
 

 

 

 

 

 

 

 

 

 

 

     © 2018 Yajie Wang  



 
 

 

DESIGN AND ENGINEERING OF MULTI-STEP (BIO)CATALYTIC SYSTEMS 

 

 

 

 

 

 

BY 

 

YAJIE WANG 

 

 

 

 

 

 

 

DISSERTATION 

 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Chemical Engineering 

in the Graduate College of the  

University of Illinois at Urbana-Champaign, 2018 

 

 

 

Urbana, Illinois 

 

 

 

 

 

 

 

Doctoral Committee: 

  

 Professor Huimin Zhao, Chair 

 Professor Hong Yang 

 Professor Christopher V. Rao 

 Professor Yi Lu  

   

  



ii 
 

Abstract  
 

Nature has been a perpetual source of inspiration for biochemists. It is not only the vast diversity 

of compounds that living beings can create, but also the extraordinary strategies of synthesis 

deployed. Evidently, the catalysts used by living beings -enzymes- are key to nature’s synthesis 

strategies. Biocatalysis is undoubtfully one of the most invaluable gifts given by nature to flourish 

the development of green chemical and pharmaceutical industries. With the development of 

protein and metabolic engineering tools and strategies, more and more enzymes have been used in 

the industries to improve the chemical processing; and microbes such as Escherichia coli and 

Saccharomyces cerevisiae have been engineered to produce a wide variety of value-added and 

bulk chemicals to replace traditional chemical synthesis. However, researchers have just explored 

the tip of the iceberg in the biocatalysis area. Proteins with new catalytic functionality should be 

discovered or engineered to broaden current biotransformation boundaries. New in vitro enzymatic 

or chemoenzymatic cascade reactions need to be designed and optimized to realize stronger 

synthetic power and more stable systems. Metabolic networks of traditional or new 

microorganisms should be largely rewired to meet the manufacturing standards.  

In this work, I aimed at designing and engineering multi-step (bio) catalytic systems for 

selective synthesis of value-added chemicals. Microorganisms synthesize complex molecules from 

simple substrates by a series of enzymes working cooperatively. Inspired by how aromatic 

polyketides are synthesized by the teamwork between enzymes, I sought to couple biocatalysis 

with organometallic catalysis, two distinct catalytic disciplines, in one pot to realize synthetic 

power that cannot be achieved by either of them. I first developed a modular, one-pot, sequential 

chemoenzymatic system for the formal enantioselective construction of C-C bond in 2-aryl 1,4-
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dicarbonyl compounds. This sequence comprises a rhodium-catalyzed diazocoupling that 

provides >9:1 selectivity for heterocoupling of two diazoesters and a reduction mediated by an 

ene-reductase (ER), which occurs in up to 99% enantiomeric excess (ee). The high yield and 

enantioselectivity of this system were resulted from the preferential generation of an (E)-alkene 

from the diazo coupling reaction and selective reduction of the (E)-alkene in a mixture of (E) and 

(Z) isomers by the ER. This work demonstrates the benefit of combining organometallic and 

enzymatic catalysis to create unusual overall transformations that do not require the isolation and 

purification of intermediates.  

To make the system works better on a broader range of substrates, I later developed a new 

class of cooperative chemoenzymatic reactions that combine photocatalysts that isomerize alkenes 

with ene-reductases that reduce carbon-carbon double bonds to generate valuable enantioenriched 

products. I demonstrated that this method enables the stereoconvergent reduction of E/Z mixtures 

of alkenes or reduction of the unreactive stereoisomer of an alkene in yields and ee’s that match 

those obtained from the reduction of the pure, more reactive isomer. This new cooperative system 

overcomes the limitations of both individual catalysts and affords a range of synthetically valuable 

and biologically active enantioenriched compounds. More generally, these results illustrate the 

value of driving a chemical reaction with light to ensure compatibility between the chemical and 

enzymatic catalysts.  

In vitro biocatalytic reaction normally has poor tolerance to harsh conditions such as low 

pH or high substrate concentrations. Cells membrane is natural compartmentalization and protects 

the enzymes from extracellular inhibitors. In addition, cell factories-based production provides an 

attractive alternative to chemical synthesis of value-added chemicals. I also worked on engineering 

a S. cerevisiae strain as a whole-cell catalyst for L-lactic acid overproduction in industrially 
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preferred low pH environment (pH 3) by metabolic engineering and genome-wide engineering 

methods. In addition, to establish an automated cellular engineering platform, I developed a 

growth-based L-lactic acid biosensor and an automated quantification assay by BioProfile 

Analyzer.  
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CHAPTER 1. Introduction  

1.1 Biocatalysis  

Biocatalysis is defined as the use of enzymes in their purified form, as part of cell lysates, or whole 

cells to convert a molecular substrate into a product of interest.1 In 1858, biologist Louis Pasteur 

provided the first example of modern biocatalysis by realizing the resolution of racemic tartaric 

acid through fermentation with microorganisms, such as the common mold Penicillium glaucum. 

He also laid the foundation of stereochemistry in those experiments where (-)-tartaric acid was 

accumulated while (+)-tartaric acid was consumed. At the end of the 19th century, the specific 

action of an enzyme with a specific substrate was explained using a “Lock and Key” analogy and 

it was firstly postulated by Emil Fischer.2 Meanwhile, Eduard Buchner discovered the cell-free 

fermentation for biocatalytic processes.3 

Those milestones led to discovery and development of numerous biocatalytic processes in 

the 20th century. Especially the unique characteristics and benefits of biocatalysis have kept on 

drawing biochemists’ strong interests in pushing the boundaries of natural-occurring 

biotransformations and bringing biocatalysis to industrial applications. Enzymes can be considered 

as green catalysts. Unlike transition metal-based chemical catalysts that rely on mining and harsh, 

energy intensive process conditions, biocatalysts are biodegradable and easily replaced through 

inexpensive and environmentally friendly fermentation processes. Transition metal catalysts 

normally have high turnover numbers (TONs), but the economic burden posed by enzymes can 

potentially be further minimized by engineering more active variants than that being found in 

nature, optimizing the expression efficiencies and fermentation yields, improving the enzymatic 
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stabilities, and immobilizing the enzymes for recycling. More importantly, the high regio-, stereo- 

and enantioselectivity of biocatalysis make it an invaluable alternative in pharmaceutical industries.  

One famous example on how enzymes can improve industrial chemical processing is 

acrylamide synthesis. As an alternative to Cu or Mg based chemical catalysis method, the use of 

nitrile hydratases has now converted acrylonitrile to acrylamide, the monomer used to prepare 

polyacrylamide, on tens of thousands of metric tons per year.4 The replacement largely reduced 

the catalyst waste generated per kilogram of the products. Another powerful example of 

biocatalytic applications exploiting the chiral nature of these catalysts is the use of ene-reductases 

to prepare a chiral precursor of pregabalin, the active agent in Lyrica® for treatment of epilepsy, 

neuropathic pain, fibromyalgia and generalized anxiety disorder.5 The manufacturing process of 

pregabalin involving old yellow enzymes (OYEs) has been patented by Pfizer Manufacturing 

Ireland.  

One of the major reasons prohibiting the broad application of biocatalysis in manufacturing 

of chemicals is that limited unnatural reactions could be catalyzed by biocatalysts. Beginning in 

the late 1970s with pioneering work of Michael Smith and later amplified by contributions from 

Pim Stemmer and Frances Arnold, microbiologists began developing techniques that enabled 

directed evolution of enzymes.6-8 This approach has been successfully used to engineer or 

customize the enzymes that react with unnatural substrates or under unnatural reaction conditions 

that are different from those found in natural systems. For example, carbonic anhydrase has been 

engineered to sustain catalytic activity at 107 °C at pH > 3;9 and proteins have been engineered to 

deliver chemical reactions such as enantioselective cyclopropanations,10 silylations,11 and 

borylation12 reactions which are unprecedented in nature. 
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There are also several applications of engineered biocatalysts in the pharmaceutical 

industry. Early examples include the development of a ketoreductase (CDX-026) capable of 

reducing the large, hydrophobic ketone substrate 1 to yield alcohol 2. 2 serves as a precursor to 

montelukast, widely used to treat asthma and seasonal rhinitis (Figure 1A).13 A Baeyer-Villiger 

monooxygenase (BVMO) has also been engineered to enantioselectively oxidize sulfide 3 to 

provide esomeprazole 4, used to treat acid reflux (Figure 1B). An engineered transaminase 

successfully converted the sitagliptin ketone 5 to sitagliptin 6, a DPP4 inhibitor used for the 

treatment of type II diabetes (Figure 1C).1  

 

Figure 1.1. A) Biocatalytic approach to montelukast; B) BVMO catalyzed sulfide oxidation to 

produce esomeprazole; C) Preparation of sitagliptin using an engineered transaminase.  

In addition to directed evolution, several new strategies in biocatalysis also have been 

developed and applied to further broaden the substrate scope, reaction type and reaction condition 
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of current biocatalysis applications. Those strategies include but are not limited to development of 

artificial metalloenzymes, enzyme catalyzed protein conjugations, biocatalytic cascades, 

chemoenzymatic tandem reactions, computational and library design strategies for enzyme 

engineering, and metabolic pathways for chemical biosynthesis. In my study, I focused on studying 

naturally-occurring biocatalytic cascade reactions, developing in vitro chemoenzymatic 

transformations and engineering metabolic pathways for chemical overproduction.     

1.2 Natural Product Synthesis: How Nature Make Complex Molecules 

In living organisms, an individual enzyme catalyzes limited simple reactions, but the cooperative 

action of a series of enzymes build up complex molecules from simple molecules to support the 

biological functions such as generation or storage of energy, and environmental sensing and 

communication. The cascade or concurrent reactions catalyzed by multiple enzymes demonstrate 

the strongest synthetic power in nature, which makes an irreversible process reversible, eliminates 

inhibition problems caused by excess product, or circumvents the lack of substrate scattered in 

bulk solution. 

Natural products are chemical compounds synthesized by a series of enzymes working 

cooperatively in organisms. Natural products have played key roles over the past century in the 

development of medicine. More than two-thirds of clinically used antibiotics are natural products 

or their semisynthetic derivatives.14 Studying the biosynthetic mechanisms of natural products also 

enables us to gain deeper insights into enzymatic teamwork, thus enlightening us design artificial 

enzymatic cascades for selective synthesis of valuable compounds.  

Type II polyketide synthase is one of the best examples to demonstrate production of 

aromatic polyketides by teamwork between enzymes. Type II polyketides comprise a large class 
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of structurally and functionally diverse bacterial natural products. This class is rich in 

pharmacologically relevant compounds, especially anticancer agents. In analogy to type II 

bacterial and plant fatty acid synthases, type II polyketides are comprised of several individual 

enzymes encoded by the genes clustered in the same region in the genomic DNA. Although 

different type II polyketides have very diverse structure, they all share a minimal set of iteratively 

used enzymes, each expressed from a distinct gene. In general, this so-called ‘minimal PKS’ 

consists of two ketosynthase units (KSα and KSβ) and an acyl carrier protein (ACP), which serves 

as an anchor for the growing polyketide chain. With a few exceptions, genes encoding these three 

proteins are grouped together, and show a typical KSα/KSβ/ACP architecture. Additional PKS 

subunits, including ketoreductases, cyclases and aromatases define the folding pattern of the 

nascent poly-β-ketone intermediates. Finally, the polyphenols are tailored by oxygenases, glycosyl 

and methyl transferases to different compounds with diverse structures (Figure 1.2).  
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Figure 1.2.  Schematic of type II polyketide synthase. Type II PKS gene clusters encode 

dissociable polyketide synthase assemblies. The minimal polyketide synthase (min-PKS) consists 

of three proteins: KSα KSβ and ACP. The nascent polyketide chains, ranging from 16 to 30 carbons, 

are constructed by iterative condensation of malonyl-CoA catalyzed by min-PKS. The reactive 

beta-keto chains are converted into structurally diverse molecules by the action of tailoring 

enzymes (T) including cyclases (Cyc) and reductases, giving rise to final branching, oxidation 

state, and cyclization pattern.  

Although natural products have been and continue to be the source and inspiration for a 

substantial fraction of human therapeutics and knowledge of biology, the discoveries of natural 

products with new structure and unique synthesis mechanism have been greatly hindered within 

recent decades. With the advent of fast and inexpensive next generation sequencing technologies, 

Additional numerous silent biosynthetic gene clusters (BGCs) coding uncharacterized secondary 

metabolites have been identified and they are the rich sources for the discovery of new compounds 

and enzymes. Because natural products encoded by silent BGCs are hard to be detected using 



7 
 

current analytical methods due to minimal or zero BGCs expression under laboratory conditions, 

strategies to activate BGC expression and trigger metabolite production are critical to realize the 

full potential of nature’s chemical repertoire. While heterologous expression bypasses native 

regulation networks and can be engineered rationally, the entire biosynthetic pathways, often 

spanning large areas of genomes, will have to be cloned and refactored.15 Importantly, some 

natural products cannot be produced in heterologous hosts due to lack of regulatory, enzymatic, or 

metabolic requirements for product biosynthesis. Technologies that improve the genetic 

manipulation of native hosts will expedite discovery and study of the BGCs in their native contexts. 

In the first part of the thesis, an efficient CRISPR-Cas9 knock-in strategy has been developed to 

active silent BGCs in Streptomyces viridochromogenes. A new type II polyketide has been 

characterized and its corresponding synthetic enzymes has been identified.  

1.3 In vitro Tandem Catalytic Reactions for Biochemical Productions  

The synergistic effect of natural synthetic networks inspires chemists to develop artificial multi-

step tandem reactions for selective synthesis of complex molecules.16 To date, tandem reactions 

by using whole microorganisms (in vivo) have been extensively studied in the synthetic biology 

and metabolic engineering fields.17 There are growing interests to build cooperative tandem 

reactions by coupling multiple enzymes or organometallic catalysts with biocatalysts in vitro since 

the resulting catalytic systems are simpler for optimization, generate less side products and waste, 

and allow for easy product purification.18 

To date, in vitro tandem enzymatic reactions have been well developed for the preparation 

of alcohols, acids and their derivatives, amino acids, amines, nucleosides/nucleotides, 

nucleosides/nucleotides derivatives, oligosaccharides and glycoconjugates.19 The field of tandem 
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chemo-enzymatic reaction is still in its infancy.20 Recently lipase has been successfully coupled 

with various transition metal complexes for readily deracemizing secondary alcohols and primary 

amines.21 This accomplishment clearly shows the advantages of multistep one-pot processes, so-

called tandem reactions. Compared with step-wise synthesis, one-pot tandem reactions improve 

overall synthetic efficiency and reduce waste generation by avoiding intermediate purification 

steps. Additionally, tandem reactions improve the overall asymmetric synthesis efficiency by 

converting achiral substrates to single enantiopure product containing a single enantiomer. Last 

but not least, the cooperative effect among different catalytic steps enhances the selectivity and 

activity by an equilibrium process.   

However, combining multiple enzymes or enzymes with chemical catalysts in a tandem 

process is not simply replicating the catalytic behavior of each catalyst. For multi-enzymatic 

reactions, several strategies have been developed to balance the reaction rate of each step and 

maintain enzymatic activity under reaction conditions, including cell free metabolic engineering 

(CFME) and modeling.22 Protein engineering methods have been applied, such as protein 

immobilization and fusion protein construction, to improve the overall efficiency of multi-

enzymatic reactions. 23,24 Specifically, it is more challenging to find conditions to enable catalytic 

activity of organometallic catalysts and biocatalysts in one-pot due to incompatibility and mutual 

inactivation. To overcome those difficulties, several novel strategies have been developed, 

including supramolecular assembly and compartmentalization.  

1.3.1. Enzymatic Tandem Reactions  

From aerobic respiration to photosynthesis, millions of compounds are synthesized through 

enzymatic reactions during the lifespan of all living organisms. These compounds, even those with 

very complex structures, are converted from simple chemical resources such as glucose, through 
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the metabolic network in the cell. Tandem enzymatic reactions, or pathways in other words, can 

be considered as subunits of the whole metabolic network. Although enzymatic reactions have 

long been used for chemical synthesis due to many of their excellent features, particularly the high 

selectivity and specificity, multiple tandem enzymatic reaction systems developed by chemists 

recently are not simple combinations of enzymatic reactions catalyzed by individual enzymes.  

Besides all the advantageous properties of enzymatic reactions, tandem enzymatic reactions can 

be much more cost-effective by using inexpensive substrates, potentially making them 

economically feasible. Moreover, one-pot tandem enzymatic reactions simply avoid the 

purification of the intermediates, which makes the process more efficient than step-wise enzymatic 

reactions.  

While such tandem enzymatic reactions can be accomplished in vivo, as widely used in 

today’s fermentation industry, there are many advantages to use in vitro systems. First, as no 

competing pathways exist in the in vitro system and no metabolic burden or toxicity issues need 

to be considered, the yield can be much closer to the theoretical yield than the in vivo system 

Second, due to its simplicity, it would be more practical and effective to optimize the system 

through modeling and adjusting the enzymes’ concentrations. Moreover, artificial tandem 

enzymatic reactions which can produce non-natural compounds are readily set up without potential 

toxicity issues brought by the product. In the past decade, many tandem enzymatic reaction 

systems have been developed to produce tremendous chemicals.25  

Although in vitro tandem enzymatic reactions have a number of advantages over in vivo 

tandem enzymatic reactions, their weaknesses are also obvious, with the main weakness being the 

decreased flexibility. For example, most of the tandem reactions only include two or three enzymes. 

For example, through computational design, researchers have engineered the promiscuous aldolase 
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RA95.5-8 to catalyze asymmetric Michael additions and Knoevenagel reactions via Schiff base 

intermediates. Recently Hilvert’s group discovered novel activities of those aldolase variants. The 

variant RA95.5-8F can catalyze the synthesis of (R)-methodol from acetone and 6-methoxy-2-

naphthaldehyde, while the variant T53L/K210H RA95.5-8 can catalyze the dehydrated (R)-

methodol to γ-nitroketones26,27. By combination of those two aldolase variants, they achieved 

similar yield and stereoselectivity in one-pot as the reaction using the purified intermediate (Figure 

1). 

 

Figure 1.3. Synthesis of γ-nitroketones by aldolase variants. 27 

In principle, an ideal in vitro tandem reaction system should be sufficiently flexible to 

generate a broader product scope while using the low-cost substrates. Therefore, in vitro tandem 

reaction systems with higher complexity for synthesizing chemicals, such as carbohydrates, fuels, 

and fine chemicals are desired. 28-32 In recent years, great efforts were spent in the emerging CFME 

field to address such a challenge.22 A CFME system usually involves four or more enzymes and 

uses inexpensive substrates if possible, as the cost-effectiveness is a required design criteria. 33,34 

Ideally, it should combine catabolic pathways and anabolic pathways, so that both the building 

blocks and the energy for synthesizing the target molecules can be generated from simple resources, 

such as glucose. However, the design and test of such a system would be very challenging as tens 

of enzymes might be involved.35 Recently, Bowie and coworkers successfully combined the 

Embden-Meyerhof-Parnas glycolytic pathway and the mevalonate pathway to produce 

monoterpenes.36 A super-complex system with 27 enzymes was reconstituted in one-pot which 

enabled the system to synthesize monoterpenes by using glucose as the only substrate. While 
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specific designs, such as the enzymatic purge valve nodes, helped the catabolic pathway and the 

anabolic pathway work harmonically in the system.37 By switching the monoterpene synthases in 

the system, different types of monoterpenes such as limonene, pinene and sabinene can be 

produced. This system can produce monoterpenes with titers an order of magnitude higher than 

the cellular toxicity limit (15 g/L) with an almost theoretical yield (>95%), which demonstrates 

the great advantage of using enzymatic tandem reaction in vitro.  

In addition to transferring the existing pathways from in vivo to in vitro, scientists are also 

able to design de novo complex pathways, which can accomplish difficult biosynthetic tasks. In 

2017, the crotonyl–coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle 

was constructed by Erb and coworkers, which provides a seventh CO2 fixation pathway besides 

the six naturally evolved ones (Figure 1.4).38 Instead of being restricted to known enzymes, the 

researchers sought for all reactions that are biochemically feasible. Multiple cycles were designed 

from scratch and their thermodynamic feasibility was evaluated. Then, enzymes that can catalyze 

the reactions in the CETCH cycle were identified from bioinformatics databases and characterized 

individually in vitro. After combining the auxiliary proofreading and cofactor regeneration 

processes, the CETCH cycle involves 17 enzymes in total which came from nine different 

organisms from all three domains of life. Through enzyme engineering and metabolic proofreading, 

the CETCH cycle can convert CO2 into organic molecules at a rate of 5 nanomoles of CO2 per 

minute per milligram of protein. 
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Figure 1.4. The CETCH cycle contains 17 enzymes from 9 different organisms, which can convert 

CO2 into organic molecules at a rate of 5 nanomoles of CO2 per minute per milligram of protein 
38. Ccr: crotonyl-CoA carboxylase/reductase; Ecm: ethylmalonyl-CoA mutase; Epi: ethylmalonyl-

CoA/methylmalonyl-CoA epimerase; Fdh: formate dehydrogenase; Hbd: 4-hydroxybutyryl-CoA 

dehydratase; Hbs: 4-hydroxybutyryl-CoA synthetase; Kat: katalase; Mas: malate synthase; Mch: 

mesaconyl-CoA hydratase; Mcl: β-methylmalyl-CoA lyase; Mcm: methylmalonyl-CoA mutase; 

Mco: methylsuccinyl-CoA oxidase; Mct: malyl-CoA thioesterase; Pco: propionyl-CoA oxidase; 

Pkk: polyphosphate kinase; Scr: succinyl-CoA reductase; Ssr: succinic semialdehyde 

reductase. 

1.3.2. Chemoenzymatic Tandem Reactions  

Organometallic catalysis and biocatalysis are two different disciplines in terms of reaction 

categories, catalytic conditions, substrates scopes and selectivities. Organometallic catalysts have 

wide substrate scopes and high productivity and are still the key for bulk chemical manufacturing. 

Biocatalysis is becoming more widely used in the pharmaceutical industry due to its high regio-, 

stereo- and enantioselectivity, and growing advances in enzyme discovery and engineering. To 

access the advantages of both catalytic disciplines, there is a growing interest to combine 
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organometallic catalysts in tandem with enzymes to realize synthetic power that cannot be 

achieved by either of them alone.20,39 

Unlike developing tandem enzymatic reactions, it is more challenging to combine 

organometallic catalysts and biocatalysts due to incompatibility and mutual inactivation of metal 

complexes and enzymes. Up to date, only lipases and serine proteases could maintain high catalytic 

activity in organic solvents and at high temperature. Similarly, most transition-metal complexes 

are inhibited in aqueous solution with or without cellular components. In this section, we will 

summarize the major tandem chemo-enzymatic reactions developed in organic solvent and 

aqueous buffer solutions, and discuss the novel strategies used to combine organometallic catalysts 

with biocatalysts in one-pot.  

1.3.2.1. One-pot Chemo-enzymatic Reactions in Organic Solvent 

Dynamic kinetic resolution (DKR) of alcohols and amines based on transition metal-catalyzed 

racemization and lipase-catalyzed resolution in pure organic solvent has been developed towards 

a mature technology for preparation of enantiopure secondary alcohols and primary amines (Figure 

1.5). Lipase deracemizes a mixture of enantiomers by selectively acylating desired enantiomer. 

The drawback of such enzymatic kinetic resolution is that a maximum yield of only 50% can be 

obtained. However, it can be resolved by using a racemization catalyst to replenish the consumed 

enantiomer and drive the resolution up to 100% yield of desired enantiomer.  Since the pioneering 

demonstration of the DKR concept by the group of Williams,40 Bäckvall 41 and Kim,42 intense 

studies were conducted to develop efficient racemization catalysts, improve enzyme stability and 

expand substrate scope.20,21 To date, immobilized Candida antarctica lipase B (CALB) and C. 

antarctica lipase A (CALA) are the best enzymes of choice due to their robustness and activities 

in pure organic solvent at elevated temperature up to 100 °C.43  
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Figure 1.5. Dynamic kinetic resolution of amines or alcohols by coupling CALB or CALA in 

tandem with racemization catalysts. 

 

Ruthenium, iridium, alumina and vanadium complexes are the most well-developed 

catalysts for alcohol racemization. They were used in tandem with various lipases to deracemize a 

wide range of functionalized secondary alcohols, including aliphatic, allylic alcohols, 

chlorohydrins, diols, homoallylic alcohols, and N-heterocyclic 1,2-aminos alcohols, α-hydroxyl 

ketones with excellent yields and enantiomeric excess (ee).21 Besides the above-mentioned 

homogeneous catalysts, heterogeneous acids, zeolites 44,45 and vanadium based mesoporous silica 

46 were also reported as racemization catalysts of secondary alcohols. The DKR of amines is more 

challenging due to a lack of efficient racemization catalysts. To date, coupling ruthenium 

complexes, analogues of Shvo catalyst, with CALB is the most practical approach for DKR of 

aliphatic or benzylic primary amines at 90 °C.21 In recent years, Pd nanoparticles-based 

heterogenous catalysts were employed for racemization of benzylic primary amines under mild 

conditions  However, they did not work well for aliphatic amines.47 

1.3.2.2. One-pot Chemo-enzymatic Reactions in Aqueous Solutions  

Except for lipases and serine proteases, most biocatalysts have poor stability in organic solvents 

and at elevated temperature. In the past 20 years, there has been a growing interest to develop 

tandem reactions in aqueous solutions to combine unique transformations catalyzed by 

organometallic catalysts and biocatalysts.20 The major motivation to associate biocatalysts with 
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organometal catalyst in one pot is to utilize the synthetic power from each discipline for specific 

transformations that could not be realized by either of them alone. In nature, enzymes have specific 

substrate binding site for highly regio- stereo- and enantioselective synthesis. Accordingly, 

organometallic catalysts could access some reactions that enzymatic processes do not exist or work 

only on limited substrate scope, for example, hydrogenation, cross-coupling reaction, Wacker-

oxidation, olefin metathesis, etc.  

Unlike the DKR system in organic solvents, the development of tandem chemo-enzymatic 

reactions in aqueous solution is still in its infancy. The number of transformations amenable to 

these processes are small portion of catalytic reactions reported in organometallic chemistry or 

synthetic biology. Table 1.1 summarizes the representative work of one-pot chemo-enzymatic 

reactions that can occur in aqueous-based solution. They are metal-catalyzed hydrogenation in 

tandem with isomerase or hydrolase catalyzed reactions; organometallic-catalyzed racemization 

in tandem with enantioselective hydrolysis; Pd/Cu catalyzed Wacker oxidation in tandem with 

enzymatic catalyzed asymmetric reduction or reductive amination; metal-catalyzed metathesis in 

tandem with enzymatic decarboxylation, ester hydrolysis or P450-catalyzed epoxidation; metal-

catalyzed cross coupling in tandem with enzymatic reduction, oxidation and hydrolysis; Au 

catalyzed isomerization in tandem with enzymatic hydrolysis.  

Those reactions were either performed in one-pot sequential manner by avoiding the 

purification of intermediates when different reaction conditions are required for organometallic 

and enzymatic step, or in concurrent manner when two catalytic steps are compatible with each 

other. Enlighteningly, a few cooperative concurrent reactions were reported to reveal the 

significance of tandem reactions compared with the sequential transformations. For example, Zhao 

and Hartwig groups jointly reported an example of Ru-catalyzed olefin metathesis coupled with a 
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P450-monooxygenase that selectively oxidized one of the cross-metathesis products against others. 

The overall yield of concurrent reactions is 1.5 times higher than the sequential one (Figure 1.6).48 

Table 1.1. Typical one-pot tandem chemo-enzymatic reactions in aqueous solution 

Organometal Catalysts Comments Enzymatic Reaction 
Reaction 

Type 
Product Citation 

Pt (hydrogenation) 
HE/Whole 

cell 
D-glucose isomerase/ 
monoamine oxidase 

concurrent/ 
cooperative 

D-mannitol/ Chiral 
quinoline  

49-51 

Rh (hydrogenation) HE hydrolase sequential L-alanine 52 

Pt (racemization) HO hydrolase DKR 
Enantiopure allyl 

alcohol 
40 

Pyridoxal 5-phosphate 
(racemization) 

HO hydrolase DKR L-amino acid 53 

Fe (Hydrogenation-
racemization) 

HO lipase (acylation) cooperative 
Enantiopure secondary 

alcohol  
54 

Pd/Cu (Wacker oxidation) HO/Compart. 
(R) - ADH (ketone 

reduction) 
sequential/ 
concurrent 

Chiral alcohols 55,56 

Pd/Cu (Wacker oxidation) HO/Compart. 
transaminase 

(asymmetric reductive 
amination) 

concurrent Chiral amines 57 

Ru (metathesis) HO/Compart. 
decarboxylase 

(Decarboxylation) 
concurrent 

Antioxidant 4,4’-
dihydroxylstilbene 

derivatives 

58 

Ru (metathesis) HO esterase (Hydrolysis) sequential 
Cyclic malonic acid 

monoesters 
59 

Ru (metathesis) HO/biphasic P450 (epoxidation) 
cooperative 
/sequential 

Epoxide 48,60 

Ru (metathesis) HC MAO-N (Aromatizing) concurrent Pyrrolines 61 

Pd (Suzuki-coupling) HO ADH (Ketone reduction) 
concurrent 
/sequential 

Chiral biaryl alcohol 62,63 

Ir (Barbier-type coupling) HO 
galactose (alcohol 

oxidation) 
sequential 

Homoallylic sec-
alcohols 

64 

Pd (Heck coupling) HE 
(R)-ADH (Ketone 

reduction) 
sequential 

4-(4-Methoxyphenyl)-
butan-2-one 

65 

Rh (diazo-coupling) HO 
ene-reductase 

(reduction) 
sequential 

Chiral 2-aryl-substitued 
succinate derivatives 

66 

Au (cycloisomerization) HO lipase (hydrolysis) concurrent 2,5-dihydrofurans 67 

Au (hydroakyloxylation) 
Ru (olefin isomerization) 

Supramol. esterase/lipase/ADH concurrent 
Substituted 

tetrahydrofuran 
/propanal 

68 

Organocatalytic aldol 
reaction 

HO ADH Concurrent 1,3-Diols  69 

Potassium phosphate 
(cyclization)  

HO carboligase/transaminase Sequential  
Trisubstituted 

tetrahydroisoquinolines 
70 

Abbreviation: HO: homogeneous catalysts, HE: heterogeneous catalysts, Compat.: compartmentalization, Supramol. 

Supramolecular encapsulation, HC: whole cell.  
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Figure 1.6. Concurrent olefin cross-metathesis/epoxidation of 10-undecenoic acid with trans-3-

hexene.  

Chemocataysts have also been extensively used to support the catalytic function of enzyme. 

The practical applications of one of the largest classes of enzymes, oxidoreductases, contributing 

to producing critical chemicals and pharmaceuticals, are limited by the dependence on high cost 

and instable cofactors that have to be regenerated. So far, NADP(H) regeneration by enzymes has 

been well-developed and applied practically at industrial scale. However, large quantity of water-

soluble byproducts generated causes enzyme deactivation and requires costly downstream 

purification. As a result, more cofactor generation methods have been researched and developed 

to target the goals of sustainability and productivity, including chemical, homogeneous catalytic, 

electrochemical, photocatalytic and heterogeneous catalytic approaches.71,72 Importantly, visible-

light photoredox catalysis has entered the realm of biocatalysis to form a synergistic framework to 

circumvent the application of cofactors.73-75 Recently, Park and co-workers employed eosin Y as 

a photosensitizer directly transferring photoinduced electrons to P450 heme domain under 

illumination.76 Instead of coupling with oxidation enzyme, Park and co-workers realized the direct 
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activation of ene-reductases by transferring photoexcited electrons from xanthene dyes to 

prosthetic flavin moiety, for the asymmetric reduction of C=C bonds.76 Although this technology 

is still in its infancy, it is the first case to realize direct electron transfer from water to enzyme with 

O2 as the sole by product.  

 

1.3.2.3. Novel Strategies to Combine Transition Metals and Enzymes in One-pot Tandem 

Reactions 

Incompatibility of the individual reaction steps with one another is the major challenge to 

combining transition metal catalysts with biocatalysts in one-pot. Besides immobilized lipases and 

serine proteases, the majority of biocatalysts have poor stability in organic solvents. Most of the 

transition metal catalysts are not active in aqueous solution. Mutual inactivation also occurs 

frequently due to the coordination of the transition metal complex to the protein catalysts. In this 

section, we will discuss some novel strategies developed so-far to combine transition metals and 

enzymes in one-pot, including supramolecular assemblies, artificial metalloenzymes, 

compartmentalization, whole cells, and co-immobilization (Table 1.2). 

Table 1.2. The novel strategies to couple transition metals (or chemical catalysts) with enzymes 

in one-pot tandem reactions.  

 

Strategy Advantages Tandem Reactions 

Supramolecular 

Assembly （Artificial 

metalloenzyme ） 

• realize catalytic activity of metal 
catalysts in aqueous solution  

• stabilize metal complexes and 
improve turn over number (TON) 

• prevent interaction of metal 
complexes with enzymes 

• provide extra selectivity of metal 
catalysts 

• Au or Ru in tandem with esterase, 
lipase, ADH;  

• Ir in tandem with oxidoreductases  

Compartmentalization • protect enzyme from organic 
solvent  

• protect metal catalysts from 
aqueous solution  

• prevent mutual inactivation  

• Ru in tandem with decarboxylase;  

• proline in tandem with ADH;  

• Wacker oxidation in tandem with 
enzymatic reduction or 
hydroamination   
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Table 1.2. cont. 
 
Whole-cell • protect biocatalysts from metal 

catalysts 

• prevent interaction of metal with 
cellular components  

• avoid protein purification  

• Pd(0)-catalyzed reduction in 
tandem with monoamine 
oxidation  

Co-immobilization • stabilize metal catalysts  

• improved synergic effect   

• catalyst regeneration  

• CALB and Pd nanoparticles co-
immobilized into the mesoporous 
silica for DKR of amine  

 

Incorporation of transition metal complexes within supramolecular hosts is a valuable way 

to solve those problems. A long-term goal of supramolecular chemistry is construction of 

assemblies that mimic the desirable qualities of protein catalysts.77 It has been found that 

supramolecular assemblies could stabilize reactive metal complexes and increase their turn over 

numbers.78 Additionally, supramolecular complexes enable the catalytic activity of several 

transition metal catalysts in water by providing a bio-inspired hydrophobic cavity.79-81 Importantly, 

supramolecular cage prevents the direct interaction of transition metal with enzymes, thereby 

averting their mutual inactivation.68,82 Lastly, supramolecular assemblies provide extra stereo-, 

regio- and enantio-selectivity by providing a well-defined cavity for the reaction compared with 

the reaction performed in bulk solvent.83,84 Using a supramolecular approach, Toste and coworkers 

created various tandem reactions employing esterases, lipases or alcohol dehydrogenase with gold 

(I) or ruthenium (II) complexes encapsulated in a Ga4L6 tetrahedral supramolecular cluster without 

mutual inactivation (Figure 1.7).68 Their findings suggested that supramolecular assemblies may 

provide a general strategy for carrying out classic organic reactions in tandem with enzymatic 

reactions in aqueous solution.  
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Figure 1.7. A, Esterase- or lipase-mediated acetate hydrolysis followed by Au (I)-catalyzed 

hydroalkoxylation. B, Ru(II)-mediated olefin isomerization followed by ADH-catalyzed 

reduction.68 

Artificial metalloenzyme resulting from encapsulation of transition metal catalyst within a 

protein scaffold is a special form of supramolecular host-assemblies. Ward and coworkers 

developed an artificial (R)-selective transfer-hydrogenase (ATHase) by incorporation of a 

biotinylated [Cp*Ir(Biot-p-L)Cl] complex within streptavidin (Sav). Sav worked as a neutral 

shield for the Ir complex to keep it from interacting with other biocatalysts. In that way, they 

successfully combined ATHase with various NADH-, FAD- and haem-dependent enzymes 

resulting in orthogonal redox cascades that could not be achieved when the free Ir-complex was 

used,82 including a double stereoselective amine deracemization, production of L-pipecolic acid 

from L-lysine (Figure 1.8).  
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Figure 1.8. A, (S)-selective monoamine oxidase (MAO-N) was coupled with (R)-selective 

ATHase for double stereloselective deracemization of amines. B, Production of L-pipecolic acid 

from L-lysine by combining (S)-selective ATHase with an L-amino acid oxidase (LAAO) and a 

D-selective amino acid oxidase (DAAO). Catalase was used to decompose H2O2 generated in 

both cases.82   

Compartmentalization is another strategy to couple chemical catalysts with biocatalysts in 

one-pot by protecting the enzymes from the organic solvent or metal catalysts from cellular 

components; as well as shielding catalytic centers from one another to avoid mutual inactivation. 

Besides the traditional biphasic system,85 more novel methods have been developed for 

compartmentalization purpose including hydrogel immobilization, membrane filtration and 

whole-cell isolation. Gröger and coworkers realized enzymatic decarboxylation58 and alcohol 
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dehydrogenation86 in organic solvent by encapsulating the enzymes in poly(vinyl 

alcohol)/poly(ethylene glycol) cryogels or acrylate-based superabsorbent polymer respectively. 

They coupled these two enzymes with ruthenium-catalyzed metathesis and a proline-derivative-

catalyzed aldol reaction for efficient preparation of antioxidants 4,4’-dihydroxystilbene and 1,3-

diols separately. In another study, they combined Wacker oxidation with enzymatic reduction or 

hydroamination in a one-pot process in aqueous media by withholding the detrimental effect of Cu 

ions from biotransformation in the interior of a polydimethylsiloxane thimble (PDMS) that only 

enabled the free exchange of organic chemical (Figure 1.9).55,57 

 
Figure 1.9. Site-isolation of catalysts using a PDMS thimble for the combination of a Wacker 

oxidation and an enzymatic reduction catalyzed by ADH or transamination catalyzed by 

transaminase.55 

Although supramolecular strategies have enabled the catalytic activity of several transition 

metal catalysts in aqueous environment, many metal cofactors are still inhibited by the cellular 

components and therefore require purified protein for tandem reactions in most cases. Using 

cellular membrane as a barrier to protect metal catalysts from cellular inhibitors is an attractive 

strategy. Recently, Ward and coworkers created an E. coli strain for periplasmic expression of Sav 

with a biotinylated Hoveyda-Grubbs catalyst for olefin metathesis in vivo.87 The periplasm 

provided an environment with low concentrations of inhibitors for metathesis and thus enabled the 
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high-throughput directed evolution of artificial metalloenzymes in vivo. Additionally, the use of 

whole cell provides a natural protection for biocatalysts. Lloyd and coworkers prepared (R)-1-

methyltetrahydroisoquinoline (MTQ) with 96% ee by a cooperative tandem reaction consisting of 

enantioselective monoamine oxidation catalyzed by an engineered E. coli strain and nonselective 

reduction catalyzed by nanoscale Pd (0) coated on the cell surface (Figure 1.10).51  

 

Figure 1.10. The cyclic deracemization of MTO through MDQ using palladized biocatalysts 

with the monoamine oxidase-N insert.51  

Another interesting strategy to enable chemo-enzymatic reactions in one pot is to create 

hybrid enzyme-metal nanoparticles that bear orthogonal but cooperative catalytic centers. This 

design straddles the disciplines of supramolecular and compartmentalization. The peptide is a 

robust biomaterial and can stabilize the performance of inorganic catalysts.88 The resulting 

enzyme-metal complex could work as a metalloenzyme with the catalytic activity originated from 

the introduced metal. Significantly, the surrounding proteins not only serve as protecting cage but 

also work as catalysts for distinct bioactivity.88-90 In one example, Bäckvall and coworkers created 

a hybrid catalyst consisting of CALB and Pd nanoparticles co-immobilized into the compartments 

of mesoporous silica for DKR of 1-phenylethylamine.90 The co-immobilization resulted in a more 

efficient cooperation between two catalysts and recyclability of both Pd nanoparticles and CALB 

at the same time (Figure 1.11).   
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Figure 1.11. DKR of amine with a bifunctional catalyst in which Pd nanoparticles and CALB 

are co-immobilized in the same pore of siliceous mesocellular foams.90 

1.4 Whole Cell Biocatalysis 

Chemical synthesis is a well-established route for bulk manufacturing of nutraceuticals, 

pharmaceuticals and other bulk chemicals. It lays the foundations for our daily life to provide 

necessities such as food, medicines and fuels. However, some drawbacks also exist in the process 

of chemical synthesis, such as unstable intermediates, multistep reactions, complex process control, 

etc., which result in high energy input, low production efficiency and tremendous waste generation. 

Those drawbacks are motivating the development of green and sustainable processes for chemical 

manufacturing. Cell factories-based production provides an attractive alternative to these 

challenges.  

Whole cell biocatalysis has several advantages. Microorganisms can convert renewable 

resources into fuels and value-added chemicals under mild fermentation condition that is 

environmentally friendly. Like proteins, whole-cell biocatalysis have relatively high selectivity 

over substrates and the products. High regio-, chemo-, diastereo- and enantioselectivity is very 
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desirable in chemical synthesis. Some chiral compounds or sophisticated chemicals that are 

challenges for chemical synthesis could be easily generated by biotransformation. The high 

specificity of biotransformation generally results in high catalytic efficiency, minimized side 

reactions and simplified downstream process. In addition, whole-cell biocatalysis has stronger 

tolerance against harsh reaction conditions compared with the naked enzymes. For example, the 

toxicity effect of concentrated substrates on enzyme could be largely alleviated by using 

microorganisms as a reaction unit. A few microorganisms have or can be engineered to have strong 

tolerance to elevated temperature or low pH.91,92 Last but not least, whole-cell biocatalysts allow 

for the facile implementation of enzymatic cascades that span multiple reactions, with an 

integrated supply of the myriad cofactors that are expensive but essential for complex 

biotransformation.93 This internal supply greatly simplifies cofactors regeneration and makes the 

addition of expensive external cofactors unnecessary.92 

Saccharomyces cerevisiae has been widely used in the industry for bioproduction of value-

added compounds or bulk chemicals such as ethanol, lipids,94 fatty acids,95 lactic acid,96 xylitol,97 

etc. Its “generally regarded as safe (GRAS)” status is suitable for large-scale operation. Unlike 

prokaryotes, S. cerevisiae has multiple organelles to compartmentalize different reactions. 

Furthermore, S. cerevisiae exhibits high tolerance against harsh industrial conditions, such as low 

pH and high glucose concentrations.98 Because microorganisms are evolved to maintain metabolic 

homeostasis under different conditions, their metabolisms must be intensively rewired to achieve 

high titer, rate, and yield for commercial production.  

As a model eukaryotic system, molecular and cell biology of S. cerevisiae has been studied 

in-depth with ample genetic engineering tools available. In addition, tremendous metabolic 

engineering strategies have also been developed on S. cerevisiae at the biological parts level, at 
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the pathway level, at the organelle level and at the systems levels.98 Those synthetic biology tools 

and metabolic engineering strategies play key roles in the science of rewiring cellular metabolism 

and has broad applications in cell factory development, including extended substrate scopes; 

increased production of the desired products; enabled production of novel compounds and 

improved cellular properties, such as tolerance to harsh industrial conditions. Among those 

strategies, there is growing interest to develop genome-wide engineering strategies for multiplex 

and precise genome editing of S. cerevisiae. Our lab has developed several genome-wide 

engineering tools such as, RNAi-Assisted Genome Evolution (RAGE),99 tri-functional CRISPR 

system for gene activation, interference and deletion (CRISPR-AID)100 and a CRISPR-CAS9 and 

homology-directed-repair-assisted-genome-scale engineering method (CHAnGE).101 Coupling 

those strategies with an automated cellular engineering platform, iBioFAB, we aim at engineering 

whole-cell biocatalysts with different properties in a high throughput manner.   

1.5 Project Overview  

My research was focused on designing and engineering of multi-step (bio) catalytic systems for 

selective synthesis of chiral building blocks of bioactive compounds or biodegradable polymers. 

In Chapter 2, my colleagues and I demonstrated that CRISPR-Cas9 can be used to efficiently and 

precisely introduce heterologous promoters into Streptomyces genomes for BGCs activation. I 

further applied this CRISRP-Cas9 promoter knock-in strategy in S. viridochromogenes to activate 

a few silent BGCs by precisely inserting strong constitutive promoters in front of target BGCs and 

successfully identified a new type II polyketide compound C22-1.102 This CRISPR-Cas9 mediated 

gene knock-out strategy was further used to narrow down the essential genes used for C22-1 

biosynthesis and a biosynthetic mechanism was proposed.  
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Inspired by the cooperated action of multiple enzymes for efficient synthesis, I started to 

combine transition metal catalysts with enzymes in one-pot to realize the synthetic power that 

cannot be achieved by using either of them. In Chapter 3, I described the development of a modular, 

one-pot, sequential chemoenzymatic system for the formal enantioselective construction of the C-

C bond in 2-aryl 1,4-dicarbonyl compounds. This sequence comprises a rhodium-catalyzed 

diazocoupling that provides >9:1 selectivity for heterocoupling of two diazoesters and a reduction 

mediated by an ene-reductase (ER), which occurs in up to 99% enantiomeric excess (ee). The high 

yield and enantioselectivity of this system result from the preferential generation of an (E)-alkene 

from the diazo coupling reaction and selective reduction of the (E)-alkene in a mixture of (E) and 

(Z) isomers by the ER. Screening of a panel of ERs revealed that OPR1 from Lycopersicum 

esculentum catalyzes the reduction of bulky tert-butyl or benzyl esters to afford chiral diesters that 

are poised for orthogonal reactions at the two distinct ester units of the product. Overall, this work 

demonstrates the benefit of combining organometallic and enzymatic catalysis to create unusual 

overall transformations that do not require the isolation and purification of intermediates.66 

The system developed in Chapter 2 has a few disadvantages. First, diazocoupling reaction 

is hard to scale up due to its strict reaction condition and explorable raw materials. However, if we 

prepare alkenes by the most convenient or scale-up friendly ways like Wittig-type reactions or 

olefin metathesis, we would obtain racemates with diastereomer unflavored by the ERs. In such 

case, our old system will result in low yield. This challenge inspired us to develop a new class of 

cooperative chemoenzymatic reactions that combine photocatalysts that isomerize alkenes with 

ene-reductases that reduce carbon-carbon double bonds to generate valuable enantioenriched 

products. In Chapter 4, we demonstrated that this method enables the stereoconvergent reduction 

of E/Z mixtures of alkenes or reduction of the unreactive stereoisomer of an alkene in yields and 
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ee’s that match those obtained from the reduction of the pure, more reactive isomer. This new 

cooperative system overcomes the limitations of both individual catalysts and affords a range of 

synthetically valuable and biologically active enantioenriched compounds. More generally, these 

results illustrate the value of driving a chemical reaction with light to ensure compatibility between 

the chemical and enzymatic catalysts.103 

Microbial lactic acid (LA) production under acidic fermentation conditions is highly 

desirable to reduce the production cost. However, overcoming the acid toxicity remains a major 

challenge. To develop whole-cell biocatalysis with higher tolerance to an industrially preferred 

low pH environment, in Chapter 5, I applied RAGE and CRISPR-AID guided genome-wide 

engineering methods to engineer S. cerevisiae and identify a few mutant strains with up to 3-fold 

improved acid tolerance and 1.5-fold higher LA production compared with the parent strain. The 

best mutant strain could produce 52 g/L LA in fed-batch fermentation with minimum medium at 

pH 3. In addition, to establish an Automated Cellular Engineering (ACE) platform, I developed a 

growth-based LA biosensor and an automated quantification assay by BioProfile Analyzer. 
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CHAPTER 2. Activation and Characterization of 

Biosynthetic Gene Clusters (BGCs) in Streptomyces 

viridochromogenes Using CRISPR-Cas System  

2.1 Introduction 

Streptomyces are among the most prolific and well-studied producers of diverse secondary 

metabolites that are rich sources of drugs and biologically active compounds.1 Genome sequencing 

efforts have identified a tremendous number of silent gene clusters encoding unknown secondary 

metabolites that have never been detected under laboratory conditions. Importantly, they have 

revealed a much larger capacity for biosynthesis of specialized natural products than previously 

thought. Study of these pathways also enables us to discover new enzymes with uncharacterized 

functionality and also to elucidate new biosynthetic mechanism, which greatly facilitates rational 

design of multi-step catalysis for selective synthesis of valuable compounds.   

Silent biosynthetic gene clusters (BGCs) can be activated by either: (i) manipulating of the 

native organisms or (ii) heterologously expressing silent BGCs in suitable hosts such as S. 

coelicolor, S. lividans, and S. albus.2 With the advent of recombinant DNA and synthetic biology 

technologies that enable efficient capture and refactoring of BGCs, heterologous hosts are 

increasingly employed for microbial natural product production. Those hosts have been well 

studied and plenty of genetic manipulation tools are available. However, the main drawback of a 

heterologous production system is the lack of critical biosynthetic precursors of enzyme function, 

which differ for different classes of BGCs. On the other hand, native hosts have all essential 

elements required by BGCs expression, but they lack well-developed tools for genetic 

manipulation.  
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To expand the tools for genome editing of Streptomyces, we reconstituted Type II CRISPR 

(clustered regularly interspaced palindromic repeats) system in S. albus, S. lividans, and S. 

viridochromogenes to delete genes and BGCs or introduce point mutations with high efficiency 

(60-100%).3 Type II CRISPR-Cas9 technology has revolutionized genome engineering, enabling 

the genetic manipulation of a number of genetically recalcitrant organisms. Compared to other 

site-specific genome engineering technologies, the Cas9 nuclease can be directed to nearly any 

site on the genome simply by transcribing a synthetic guide RNA (sgRNA), requiring only a 

protospacer adjacent motif (PAM) sequence at the target site. Streptococcus pyrogens Cas9 PAMs 

(NGG) are especially abundant in the GC-rich Streptomyces genomes, greatly increasing the 

number of potential target sites and coverage of CRISPR-Cas9 genome editing in these prolific 

natural product producers.  

In this study, my colleagues and I demonstrated that CRISPR-Cas9 can be used to 

efficiently and precisely introduce heterologous promoters into Streptomyces genomes for BGC 

activation. We performed proof of concept experiments in model Streptomyces species: 

Streptomyces albus and Streptomyces lividans. I further applied this CRISRP-Cas9 promoter 

knock-in strategy in S. viridochromogenes to active a few silent BGCs by precisely inserting strong 

constitutive promoters in front of BGCs and successfully identified a new Type II PKS compound. 

My colleagues simultaneously applied this strategy to S. roseosporus and S. venezuelae to activate 

silent BGCs encoding characterized or uncharacterized natural products.4 
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2.2 Results and Discussion  

2.2.1. CRISPR-Cas9 Strategy for Promoter Knock-in in Streptomyces Species  

To demonstrate that CRISPR-Cas9 can be used to precisely insert strong constitutive promoters 

into Streptomyces genomes for BGC activation, we selected the indigoidine (BLUE) cluster in S. 

albus as well as the actinorhodin (ACT) and undecylprodigiosin (RED) clusters in S. lividans. 

These transcriptionally silent BGCs have been characterized and their pigmented products make 

them excellent model clusters for testing our strategy for cluster activation.5 Using CRISPR–Cas9-

mediated knock-in, we replaced the upstream promoter regions of the main biosynthetic operons 

with a strong constitutive promoter kasO*p that worked in multiple Streptomyces species (Figure 

2.1A) and successfully activated ACT and RED gene clusters (Figure 2.2B).4 

In S. albus, CRISPR-Cas9 mediated double-stranded breaks upstream of the indigiodine 

synthetase gene significantly enhanced the knock-in efficiency of the constitutive kasO*p 

promoter (Figure 2.1B). The higher knock-in efficiency observed with editing templates 

containing 2 kb compared to 1 kb homologous arms was consistent with homology-directed repair 

mechanism of the double-stranded breaks. Co-introduction of heterologous genes, such as ~1 kb 

thiostrepton-resistance cassette (tsr) together with kasO*p, was also achieved at lower efficiencies, 

but still more efficient than inserting kasO*p alone by simple homologous recombination.4  

These results showed that CRISPR-Cas9 can be used to precisely introduce heterologous 

genetic elements into the genome of Streptomyces model strains at high efficiencies. Additionally, 

these relatively minor genetic manipulations can be enough to activate silent BGCs and trigger 

production of the encoded metabolites. Additionally, we also test the CRISPR-Cas9 guided 

promoter knock-in in other non-model Streptomyces species such as S. viridochromogenese, S. 
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roseosporus and S. venezuelae. The enhanced knock-in efficiencies observed in all cases would 

enable us to use donor DNA with shorter homology flanks as well as introduce larger genetic 

elements, both of which would have been challenging without the CRISPR-Cas9 system. Although 

homologous recombination occurs efficiently in some Streptomyces species like S. albus and S. 

lividans, the efficiency increase by CRISPR-Cas9 is essential in allowing genetic manipulation of 

otherwise challenging strains such as S. roseosporus (Figure 2.1B).   

 

Figure 2.1. CIRPSR-Cas9-based promoter knock-in strategy to activate silent biosynthetic gene 

clusters in sterptomyces. (A) Using CRISPR–Cas9, efficient and precise introduction of promoter 

cassettes (red-shaded arrows) drives expression of biosynthetic genes (blue) and triggers 

theproduction of unique metabolites (*) that are not detected in the parent strain. (B) Knock-in 

efficiencies with and without use of CRISPR–Cas9 in different Streptomyces species: (1) S. albus, 

(2) S. lividans, (3) S. roseosporus, and (4) S. venezuelae, (5) S. viridochromogenes. For S. albus, 

the knock-in efficiencies for different-sized inserts (100-bp versus 1-kb) using editing templates 

with different homology lengths (1-kb versus 2-kb) were examined. No knock-in was observed for 

S. roseosporus without CRISPR–Cas9. n.d., not determined. (C) Wild-type (wt) or indicated 

engineered S. albus strains on MGY or MGY + thiostrepton plates. (D) Wildtype and engineered 



39 
 

S. lividans strains with activated RED (left) or ACT (right) clusters on MGY plates. Ammonia 

fuming confirmed production of pH-sensitive actinorhodin-related pigments 

2.2.2. Activation Silent Biosynthetic Gene Clusters (BGCs) in Streptomyces 

viridochromogenes  

S. viridochromogenes is known to produce phosphinothricin, a well-known herbicide that 

irreversibly inhibits glutamine synthetase.6 Besides, there are additional 32 uncharacterized BGCs 

of secondary metabolites based on antiSMASH analysis (Table 2.1).7 Additionally, CRISPR-Cas9 

system has highest editing efficiency in S. viridochromogenes based on a previous study.8 It would 

be valuable and convenient to activate silent BGCs in this species. Target BGCs were chosen based 

on the following criteria: i) the BGCs must be uncharacterized, ii) the similarity between the 

selected BGCs and the characterized gene clusters in other species should be less than 70%; iii) 

most of the biosynthetic genes should be in the same operon. 7 BGCs were selected for activation, 

including Type II PKS: C22; Type I PKS: C32, C6 and C24; Lantipeptide: C7 and C20. 
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Table 2.1. AntiSMASH analyses of S. viridochromogenes DSM 40736 (NCBI Reference 

Sequence: NZ_ACEZ 00000000.1). 

Cluster Type From To Compound Study 

Cluster 1 Terpene-nrps-t1pks 147228 209213   

Cluster 2 Melanin-terpene 350984 374124   

Cluster 3 Nrps 614938 667909 Coelichelina  

Cluster 4 
T1pks-

butyrolactone 
925309 1004775   

Cluster 5 Lassopeptide 996947 1020529   

Cluster 6 T1pks 1023099 1074657 m/z 439 This study 

Cluster 7 T1pks 1068135 1123254 No New peak This study 

Cluster 8 Nrps-t1pks 1124345 1179652   

Cluster 9 Nrps-phosphonate 1172570 1240729 Phosphonothricin 
Metcalf et 
al, 20059 

Cluster 10 Ectoine 1986466 1997781 Ectoineb  

Cluster 11 NRPS-t1PKS 2482772 2542826   

Cluster 12 Terpene 2721388 2743906   

Cluster 13 Lassopeptide 3108492 3120837   

Cluster 14 Melanin 3108492 3120837   

Cluster 15 Siderophore 4468051 3223680   

Cluster 16 Butyrolactone 5785193 4479215   

Cluster 17 Lantipeptide 4691917 4720311   

Cluster 18 T1pks 4852429 4915920   

Cluster 19 Linaridin 4917000 4938204   

Cluster 20 Lantipeptide-nrps 5099822 5150004 No new peak This study 

Cluster 21 Terpene 5973704 5895857   

Cluster 22 T2pks 6046899 6089394 C22-1 This study 

Cluster 23 Siderophore 6516102 6529476   

Cluster 24 T1pks 6568627 6618163 No New peak This study 

Cluster 25 Ectoine 6692399 6703527   

Cluster 26 Bacteriocin 6914884 6926688   

Cluster 27 Terpene 6959775 6982425   

Cluster 28 Siderophore 7169194 7182469   

Cluster 29 Terpene 7611221 7638254   

Cluster 30 Terpene 8121206 8142742   

Cluster 31 
Bacteriocin-
lantipeptide 

8164951 8193467   

Cluster 32 T1pks 8282728 8326427 m/z 524 This study 

Cluster 33 Other 8476453 8521258   

a.100% of genes show similarity with coelichelin BGC of S. ceolicolor A3(2)10,11 
b100% of genes show similarity with ectoine BGCs of S. chrysomallus.12 
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For pathway-specific activation, we targeted single (kasO*p) or bi-directional (kasO*p-

rcfp) promoter cassettes to the start of the first ORF(s) of the main biosynthetic operon(s) predicted 

based on gene directionality alone (Figure 2.2A, B). The overall knock-in efficiency varied from 

80% to 100%. Introduction of bidirectional promoter cassettes into additional clusters of S. 

viridochromogenes led to overproduction of a compound that was poorly produced in the parent 

strain. For example, cluster C32 was predicted to encode a nucleoside type I polyketide synthase 

(PKS). It may be an iterative type I PKS where core catalytic domains occur on a single module 

that is used repetitively to generate the entire polyketide backbone. The core catalytic domains 

including ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP). The insertion 

of bidirectional promoter kasO*p and rcfp between the main gene module encoding a loading 

domain, PKS core catalytic domain, and an important decoration domain, aldo/keto reductase, 

triggered the overproduction of a major metabolite with m/z 524 by more than 10 thousand folds 

(Figure 2.2C).  

Introduction of a single promoter cassette upstream of the main synthetic containing-

operons activated the cryptic pathway and led to production of unique compounds that were not 

observed in the parent strains (Figure 2.2D and Figure 2.3). For example, a distinct compound with 

m/z 440 observed for another engineered S. viridochromogenes strain in which kas*Op was 

introduced upstream of a major operon including a few polyketide synthase modules encoding a 

type I polyketide (Figure 2.2D).   
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Figure 2.2. Activation of biosynthetic gene clusters (A) C32 and (B) C6 in S. viridochromogenese. 

C) HPLC analysis of ethyl acetate extracts from wild-type S. viridochromogenese (black) and an 

engineered strain (red) in which kasO*p and rcpf bidirectional promoter was introduced in cluster 

32. The UV wavelength of detection is at 280 nm. Major metabolites uniquely produced by the 

engineered strains are not observed in wild-type strains are highlighted with indicated m/z value at 

524. D) HPLC analysis of ethyl acetate extracts from wild-type S. viridochromogenese (black) and 

an engineered strain (red) in which kasO*p promoter was introduced in cluster 6. The UV 

wavelength of the detection is at 210 nm. Major metabolites uniquely produced by the engineered 

strains are not observed in wild-type strains are highlighted with indicated m/z value at 439.  

2.2.3. Identification and Characterization of Novel Type II PKS Compound C22-1  

C22 (NZ_GG657757) was predicted to be a silent, uncharacterized type II PKS gene cluster. Based 

on protein-protein BLAST analysis, this operon contains evolutionarily conserved genes of type 

II PKS, including a ketosynthase KSα (SSQG_RS26900), chain-length factor KSβ 

(SSQG_RS26905), acyl carrier protein ACP (SSQG_RS26910), and three polyketide cyclases: 

TcmJ (SSQG_RS26895), TcmN (SSQG_RS26915) and TcmI (SSQG_RS26920). This core part 

has the same gene arrangement as the spore-pigment BGC in S. avermitilis (AB070937.1) with 

protein sequence homologies ranging from 64%-84%. Additionally, there are three extra tailoring 

enzymes: amidohydrolase (SSQG_RS26925), FAD-hydroxylase (SSQG_RS26930), and 

cytochrome P450 (SSQG_RS26935).  
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Compared to the wild type S. viridochromogenes, the engineered strain S. 

viridochromogenes-895 in which kas*Op was inserted in front of the main biosynthetic operon, 

SSQG_RS26895-RS26920 secreted an obvious brown pigment in both liquid and solid MYG 

medium before sporulation with a major unique metabolite C22-1 observed by HPLC (Figure 2.3). 

HRMS of the C22-1 predicted a molecular formula C23H16O (Figure 2.5). 1H NMR, 13C NMR, 

COSY/TOCSY, HSQC and HMBC analyses revealed a novel polyketide with a dihydrobenzo [α] 

naphthacenequinone core that is shared by a family of polyketides including frankiamycin, 

benastatin, and pradimicin13 (Figure 2.3C). The cyclohexanone (ring E) in C22-1 is atypical and 

has not been observed for pentangular aromatic polyketides.14 

 

 

Figure 2.3. Activation of type II PKS biosynthetic gene cluster in S. viridochromogenes resulted 

in a mutant S. viridochromogenes-895 yielding a novel pigmented compound. (A) Partial 

schematic of NZ_GG657757 containing majority of biosynthetic genes (orange) and the position 

of promoter knock-in. (B) Production of brown pigment by the engineered strain and not wild type 

(wt) S. viridochromogenes on MGY medium. (C) HPLC analysis of extracts from an engineered 

S. viridochromogenes strain harbouring a kasO*p knock-in before SSQG_RS26895 (bottom) 

compared to that from the parent strain (top). Indicated is the major metabolite C22-1 that is 

uniquely produced by the engineered strain. (D) Chemical structure of compound C22-1. The five 

rings are labelled A-E.  
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2.2.4. Investigation the Biosynthetic Mechanism of C22-1 

Based on the study of evolutionary chemical diversity by coordinated gene swaps in type II 

polyketide gene clusters,14 C22, similar to other BGCs annotated as spore pigments, belongs to 

ancestor 3 that is the antecedent of other aromatic polyketides with carbon ranging from 20-24, 

including most of identified bioactive compounds: Frankiamycin, Pradimicin, Benastatin, 

Medermycin, etc. Ancestor 3 is a big category and around 50% aromatic polyketides gene clusters 

belong to this family. More analyses have been done to locate the position of C22 in this big family. 

The whole gene cluster was blasted against a library of 480 Streptomyces species. 232 out of 480 

contain conserved synthetic genes (I-VII) arranged in the order as shown in Figure 2.4. Those 

clusters annotated as spore pigment should produce aromatic polyketides with similar core 

structures. Interestingly, when taking other tailoring enzymes into consideration, C22 belongs to a 

very special group (Figure 2.4), 15 out of 232, which have the most tailoring enzymes, including 

cytochrome P450 and amidohydrolase that cannot be found in other groups.  

 

Figure 2.4.  Schematic of major genes in different categories of Type II PKS gene clusters 

annotated as spore pigments. whiE-, sch- and cur- are all from category C.   

Real time qPCR was performed to elucidate the expression level of SSQG_RS26925, 

SSQG_RS26930 and SSQG_RS26935 in both wild type and mutant S. viridochromogenes-895. 

Gene KSα was only transcribed in the mutant S. viridochromogenes-895, which further proved that 

the silent gene cluster C22 was activated by introducing kasO*p in front of the core operon. Minor 



45 
 

expression of amidohydrolase (925), FAD-hydroxylase (930) and P450 (935) was detected in S. 

viridochromogenes-895. Interestingly, P450 was also detected in wildtype and it may not belong 

to the cluster C22 (Figure 2.5A).  

To investigate whether SSQG_RS26925, SSQG_RS26930, and SSQG_RS26935 were 

involved in the biosynthesis of C22-1 or any other additional new compounds, we created S. 

viridochromogenes-895-OE where SSQG_RS26925, SSQG_RS26930, and SSQG_RS26935 

were cloned in an operon and overexpressed by the constitutive strong promoter psf in an 

integration plasmid pET616. The kanamycin resistance gene was used as a reporter to confirm the 

translation of the whole operon (Figure 2.5C).  We also created S. viridochromogenes-895-KO 

with SSQG_RS26925, SSQG_RS26930, and SSQG_RS26935 being knocked out. Since the 

hypothetical protein SSQG_RS26890 is also a conserved gene in BGCs for spore pigment 

synthesis, S. viridochromogenes_kasO*p-890 was created by locating kasO*p in front of 

SSQG_RS26890. It is interesting to find that all mutants shared the same metabolic profile (Figure 

2.5B). Including the characterized C22-1, there are 8 major new peaks with retention time at 21.1, 

21.8, 22.5, 24.8, 25.1, 25.4, 26.2, and 26.4 min respectively compared with the wild type. C22-1 

(21.1 min) was the major product if the fermentation took more than 10 days. Compound C22-3 

(22.7 min), C22-4 (26.3 min) and C22-5 (26.5 min) were the major product if the fermentation 

were extracted within 5 days. They have m/z at 450, 546.5 and 547.5, respectively. Those data 

proved that SSQG_RS26925, SSQG_RS26930, and SSQG_RS26935 did not participate in the 

biosynthesis of C22-1 and additional new compounds.  
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Figure 2.5. A) RT-qPCR analysis of S. viridochromogene-kas*Op-895, cluster 22. Relative gene 

expression of each indicated gene after normalization to the sigma factor for both wild type (blue) 

and engineered (red) strains. Error bars represent the standard deviation of biologically triplicates. 

(B) HPLC analysis of extracts from several engineered S. viridochromogenes strains compared to 

that from the wild type. Without specification, the fermentation took 5 days. (C) Part of scheme of 

pET616-pcf-SSQG-RS26930-925-935-neo for overexpression of SSQG-RS26930, 925 and 935 in 

a single operon.  

Based on the experimental data, the hypothetical biosynthetic mechanism of C22-1 was 

proposed as in Figure 2.6. The minimal polyketide synthase (min-PKS) consists of three proteins: 

KSα KSβ and ACP. The nascent polyketide chains consisting of 24 carbons, are constructed by 

iterative condensation of malonyl-CoA catalyzed by min-PKS. The reactive beta-keto chains are 

converted into hypothetical intermediate 1 by the action of tailoring enzymes TcmN, TcmI and 

TcmJ. It is not very clear how 1 was converted to C22-1. The reduction may occur spontaneously 

or catalyzed by another FAD-hydroxylase. Another major product C22-3 was also isolated and 

high-resolution electrospray ionization mass spectrometry in negative mode showed an m/z of 

449.1490 (calculated: 450.1490). However, we failed to characterize its structure since C22-3 was 

not stable in any tested NMR solvents. C22-1 was the only stable compound derived from gene 

cluster C22.  

Up to now, three BGCs have been experimentally related to spore pigments production. 

They are cur- from Streptomyces curacoi,15 sch- from Streptomyces halstedii,16 and whiE- spore 
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pigment cluster from Streptomyces coelicolor.17 However, none of them has been structurally 

elucidated. Although ectopic expression of the whiE-, sch- and cur- spore pigment gene clusters 

led to the isolation of polycyclic aromatic polyketides, those partially cyclized compounds were 

more likely to be fragments instead of the fully cyclized products. Thus, C22-1 was the only 

characterized structure of spore-pigment up to date.   

 

 

Figure 2.6. Proposed mechanism of C22-1 biosynthesis.  

2.3 Conclusion  

In this study, we showed that relatively small genome perturbations in the form of promoters being 

strategically introduced by CRISRP-Cas9 strategy are sufficient to activate the silent BGCs of 

different classes in multiple Streptomyces species with high to excellent efficiency, including type 

I (this study), type II (this study), and type III (our collaborator’s work), non-ribosomal peptide 

synthetase (NRPS, our collaborator’s work), hybrid PKS-NRPS (our collaborator’s work) and 

non-ribosomal peptide synthetase (NRPS, our collaborator’s work). With this strategy, one out of 

seven BGCs were overexpressed and 2 out of seven BGCs were activated. A novel type II PKS 
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compound C22-1 was characterized and it was the first fully characterized compound with 

completed cyclization corresponding to the spore pigment.  

2.4 Experimental Procedures  

2.4.1. Reagents and Media  

Unless otherwise indicated, all reagents are obtained from Sigma. 1 L of MGY medium contains 

10 g malt extract broth, 4 g Bacto yeast extract (BD Biosciences), 4 g glucose (1st Base, Axil 

Scientific) and for MGY agar plates, an additional 20 g of Bacto agar (BD Biosciences). 

Conjugation experiments involving WM6026 and WM3780 E. coli strains were performed on R2 

agar without sucrose: 0.25 g K2SO4, 10.12 g MgCl2.6H2O, 10 g glucose, 0.1 g Bacto casamino 

acids (BD Biosciences), 5.73 g TES, 20 g agar in 1 L water, autoclaved, after which 1 mL filter-

sterilized 50 mg/mL KH2PO4 solution and filter-sterilized 2.94 g CaCl2.2H2O and 3 g L-proline 

in 5 mL 1 N NaOH were added to the medium. 

2.4.2. Strains and Growth Conditions   

Strains and plasmids used in this study are listed in Table 2.2. Unless otherwise indicated, strains 

are propagated in MGY medium at 30 °C. Spore preparations and conjugation protocols were 

similar to those described by Keiser and Bibb.18 For spore preparations, 1:1000 of a spore 

preparation or 1:100 dilution of a saturated seed culture is plated on MGY plates and incubated at 

30 °C until thick spores are observed. Spores were removed from the plate using 5-mm glass beads 

(Sigma) and resuspended in sterile TX buffer (50 mM Tris, pH 7.4, 0.001% (v/v) Triton X) by 

vigorous vortexing for 30 s. The eluant containing free spores was pelleted by spinning at 

maximum speed in an Eppendorf 5810R centrifuge for 10 min, resuspended in 1 mL sterile water 
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and re-pelleted. The spores were then resuspended in water and stored at -80 °C. A typical spore 

prep contains ~107–109 spores per milliliter as determined by serial dilution plating.  

Table 2.2. Bacterial strains and plasmids used in this study. 

Strains and 
plasmids 

Description Source 

pCRISPomyces-2 
(pCm2) 

AprR, oriT, reppSG5(ts), oriColE1, sSpcas9, 
sgRNA, cassette Cobb et al.8 

pCm2-adapter1-
kasO*p 
adapter2 

pCM2 with adapters to facilitate 
assembly of editin flanks upstream and 
downstream of kasO*p 

This work 

pCm2-adapter1-
rcfp-kasO*p 
adapter2 

pCM2 with adapters to facilitate 
assembly of editing flanks upstream and 
downstream of bidirectional rcfp-kasO*p 

This work 

pET616-pcf-
SSQG-RS26930-
925-935-neo 

pET616 with SSQG-RS26930, SSQG-
RS26925, SSQG-RS26935 and neo 
being expressed by pcf in a single 
operon  

This work 

Escherichia coli 
DH5α 

F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 
recA1 endA1 hsdR17 (rK–, mK+) phoA 
supE44 λ– thi-1 gyrA96 relA1 

Zhao laboratory stock 

Escherichia coli 
WM6026 

diaminopimelic acid auxotroph  William Metcalf laboratory 

Escherichia coli 
WM3780  

dam- dcm-  William Metcalf laboratory 

Streptomyces 
albus J1074 

wild type 
Prof. Wenjun Zhang, 
University of California, 
Berkeley 

Streptomyces 
lividans 66 

wild type Zhao laboratory stock 

Streptomyces 
viridochromogenes 
DSM 40736 

wild type Zhao laboratory stock 

 

2.4.3. Construction of Genome Editing Plasmids 

All DNA manipulations were carried out in Escherichia coli DH5α or NEB5α (New England 

Biolabs). Primers used in this study are listed in Table 2.3. Restriction enzymes were obtained 

from New England Biolabs. Helper pCRISPomyces-2 plasmids for making promoter knock-in 
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constructs were made by ligating adaptor sequences, containing restriction sites flanking the 

promoter of choice (Figure 2.7) to facilitate insertion of homology arms at the XbaI site of 

pCRISPomyces-2.8 The protospacer of a target cluster was first inserted via BbsI-mediated Golden 

Gate Assembly as previously described8. The helper plasmid (pCRISPomyces-2-kasO*p, 

pCRISPomyces-2-rcfp-kasO*p) was linearized using SpeI and assembled with the downstream 

homology arm (2-kb unless otherwise indicated) by Gibson assembly (New England Biolabs). The 

second upstream homology arm (2-kb unless otherwise indicated) was subsequently inserted by 

Gibson assembly using HindIII or NheI linearized construct containing the first homology arm. 

See Figure 2.8 for workflow to construct genome editing plasmids. 

Table 2.3. Oligonucleotides used in this study  

Primers Sequence Comments 

Complementary oligonucleotides for BsaI Golden Gate asssembly of protospacers. 20 bp protospacer 
sequences are represented in lowercase letters. 

pCm2-C22-for ACGCccatggtccgtctccaaggt 
Cluster 22 protospacer in S. viridochromogenes 

pCm2-C22-rev AAACaccttggagacggaccatgg 

pCm2-C24-for ACGCccccgtgtagctgcacaggg 
Cluster 24 protospacer in S. viridochromogenes 

pCm2-C24-rev AAACccctgtgcagctacacgggg 

pCm2-C32-for ACGCctcaactcccccacacagaa 
Cluster 32 protospacer in S. viridochromogenes 

pCm2-C32-rev AAACttctgtgtgggggagttgag 

pCm2-C17-1-for-v2 ACGCccgccatcagaattcgcctg 
Cluster 17 protospacer in S. viridochromogenes 

pCm2-C17-1-rev-v2 AAAC ccgccatcagaattcgcctg 

pCm2-C20-2-for ACGCgccaactcctctgagtaaat 
Cluster 20 protospacer in S. viridochromogenes 

pCm2-C20-2-rev AAACatttactcagaggagttggc 

pCm2-C16-for ACGCggggtatggcgcgttctcga 
Cluster 16 protospacer in S. viridochromogenes 

pCm2-C16-rev AAACtcgagaacgcgccatacccc 

pCm2-C6-1-for ACGCctcgatgagatcgccgatgg 
Cluster 6 protospacer in S. viridochromogenes 

pCm2-C6-1-rev AAACccatcggcgatctcatcgag 
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Promoter Sequence 

kas*Op 
AACTCCCCCAGTCCTGCACGCTGTCGTATTCTCCTGGCCACGACTTTACAACACCGCACAGCATG
TTGTCAAAGCAGAGACCGTTCGAATGTGAACA 

rcfp 

CCGCCCGCGGGACGTGACGAGCGGCACGACTCGACGACTCCGGGCTCCTTTGACGCTGTCCGT
CGCGCCGGGTAGCGTAGGACACCGTGCCCGCGCCGTCGGGCCCTCGCGCGTGCACTCGGTCG
ACCGCTCCCTGCCGGAGTGGGTGCGGGTGCACGGGGTGGCTCCCCACCTCCTCTCGGATCGGT
CCTCGCGGACTGCCGCCGTGCGGAGGACCGGGGCGACACGCCCGGGCGCGGGGGTCGGTGC
GGGACTCCAGACCTCCGGGGTAGTCGTGCGACGGGCGACGATCCGGGCCGAGCCGGCCGTCC
TGGGTGACGGGTGCCGGTCAGACCAGAGAACACCGACAGACGGAGACGTA 

 

 

Figure 2.7. Constitutive promoters used for cluster activation. (A) sequences of constitutive 

promoters used in this study; (B, C) scheme and sequences of adapters introduced into 

pCRISPomyces at the XbaI site for making (B) monodirectional and (C) bidirectional promoter 

knock-in constructs. Restriction sites of selected enzymes are indicated in the sequence maps.  
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Figure 2.8. Workflow for constructing genome editing plasmid for promoter knock-in. Helper 

pCRISPomyces-2 plasmid (e.g. pCRISPomyces-2-kasO*p) for making promoter knock-in 

constructs were made by ligating adapter sequences, containing restriction sties flanking the 

promoter of choice to facilitate insertion of homology arms into pCRISPomyces-2. The 

protospacer of a target cluster was first inserted via BbsI-mediated Golden Gate Assembly. The 

final editing plasmid was achieved by sequential insertion of the first and second homology arms 

by Gibson assembly.   
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2.4.4. Interspecies Conjugation 

Promoter knock-in constructs were used to transform conjugating E. coli strains and colonies with 

the appropriate antibiotic resistance (for example, 50 mg/L apramycin) were picked into LB with 

antibiotics. WM6026 requires diaminopimelic acid in LB for growth, which was added to LB for 

subsequent wash and resuspension steps. Overnight cultures were diluted 1:100 into fresh LB with 

antibiotics and grown to an OD600 of 0.4–0.6. 400 µL of the culture was pelleted, washed twice 

and resuspended in LB without antibiotics. The washed E. coli cells were then mixed with spores 

at 1:5 volume ratio and spotted on R2 without sucrose plates. After incubation for 16–20 h at 30 °C, 

the plates were flooded with nalidixic acid and apramycin and incubated until exconjugants appear. 

Exconjugants were streaked onto MGY plates containing apramycin at 30 °C followed by 

restreaking to MGY plates at 37 °C to cure the CRISPR–Cas9 plasmid containing a temperature-

sensitive origin of replication. Apramycin-sensitive clones growing at 37 °C were then subjected 

to validation of promoter knock-in and genome editing as described in Section 4.4.5.  

2.4.5. Validation of Promoter Knock-in and Genome Editing 

Genomic DNA from wild type and exconjugants from the indicated strains were isolated from 

liquid cultures using the Blood and Tissue DNeasy kit (Qiagen) after pretreating the cells with 20 

mg/mL lysozyme for 0.5–1 h at 30 °C. PCR was performed using control primers beyond the 

homology regions or knock-in specific primers (Table 2.3) with KODXtreme Taq polymerase 

(Millipore). Where indicated, PCR products were subjected to digestion with specific restriction 

enzymes to differentiate between PCR products of wild type genomic sequences and successful 

genome editing by knock-ins. Positive samples were purified using Qiaquick PCR purification kit 

(Qiagen) and validated by Sanger sequencing. 
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Figure 2.9. Diagnostic PCR verification of CRISPR-Cas9 mediated promoter knock-in for 

activation of silent BCGs. The positive candidates with correct promoter (P) cassette inserted 

should give 2kb band by using primer pairs 1 and 2. For the negative control, the PCR product 

should not show band with primer pairs 1 and 3.   

2.4.6. Metabolites Analysis 

Liquid seed cultures (2 mL MGY) of wild type and engineered S. viridochromogenes strains were 

inoculated from a plate or spore stock in 14-mL culture tubes. Seed cultures were incubated at 

30 °C with 250-rpm shaking until achieving turbidity or high particle density (typically 2–3 days). 

Seed cultures were diluted 1:100 into 50 mL of MGY broth in 250-mL baffled flasks containing 

~30–40 5-mm glass beads and incubated at 30 °C with 250-rpm shaking for 5 days. The cultures 

were harvested by pelleting at maximum speed in an Eppendorf 5810R centrifuge for 10 min. The 

cell pellet was stored at -80 °C while the supernatants were split into two 50-mL Falcon tubes. 

Culture supernatants were extracted three times with equal volume ethyl acetate. For solid state 

cultures, the strains were grown on MGY plates at 30 °C for 10 days. The plates were chopped 

into small pieces and extracted twice with ethyl acetate. Extracts were dried and resuspended in 

methanol and analyzed by LC-MS using ESI source in positive ion mode (Bruker, Amazon SL Ion 

Trap) equipped with a Kinetex 2.6 μm XB-C18 100 Å (Phenomenex). HPLC parameters were as 
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follows: solvent A, 0.1% trifluoroacetic acid in water; solvent B, 0.1% trifluoroacetic acid in 

acetonitrile; gradient at a constant flow rate of 0.2 mL/min, 10% B for 5 min, 10% to 100% B in 

35 min, maintain at 100% B for 10 min, return to 10% B in 1 min, and finally, maintain at 10% B 

for 10 min; detection by UV spectroscopy at 210, 254, 280, and 320 nm. 

2.4.7. Isolation and Nuclear Magnetic Resonance Spectroscopy Analysis of C22-1 

Large-scale cultivation on solid plates (equivalent to 5L liquid culture) of the knock-in strain was 

carried out to obtain enough amount of the potential new compound. 10-day-growth, solid plates 

were soaked in equal volume ethyl acetate overnight. The extract was fractionated using C18 flash 

column chromatography and the fraction containing the target compound was further subjected to 

silica gel flash column chromatography. The column elution was monitored by TLC and the 

fractions containing the target compound were further confirmed by HPLC. High-resolution 

electrospray ionization mass spectrometry in positive mode showed an m/z of 421.0934 (calculated: 

420.0934) and predicted molecular formula as C21H16O8 (Figure 2.10). Its chemical structure was 

elucidated by extensive one- and two-dimensional NMR spectroscopy (1H, 13C, Double-Quantum 

Filtered Correlation spectroscopy (COSY), Total correlation spectroscopy (TOCSY), 

Heteronuclear single-quantum correlation spectroscopy (HSQC), Heteronuclear multiple-bond 

correlation spectroscopy HMBC (Figure 2.11-2.17). NMR analysis was performed on an Agilent 

600-MHz NMR spectrometer. The NMR peak assignement for C22-1 was summarized in Table 

2.4. 
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Figure 2.10. High-resolution electrospray ionization mass spectrometry in positive mode of 

compound C22-1.  
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Table 2.4 NMR peak assignment of compound C22-1 

No. 

viridomycin A (1) 

δC δH (J in Hz) 
COSY/ 
TOCSY HMBC 

1 54.2 2.73, d (15.3)  2, 21, 22, 23 
  2.61, d (15.3)   
2 196.8    
3 150.7    
4 137.0    
5 115.2 9.30, s  7, 15, 17 
6 135.5    
7 183.5    
8 133.0    
9 105.8 7.07, s 11 7, 11, 13 

10 162.8    
11 108.1 6.52, s 9 9, 10, 12, 13 
12 164.4    
13 111.4    
14 184.1    
15 108.7    
16 169.2    
17 119.0    
18 175.2    
19 113.2 6.43, s 21 17, 20, 21 
20 117.1    
21 44.9 3.07, d (15.6) 19 1, 3, 19, 20, 22, 

23 
  2.95, d (15.6)   

22 69.6    
23 28.9 1.26, s  1, 21, 22 

10-OH  10.70, s  9, 10, 11 
12-OH  nd   
16-OH  nd   
18-OH  nd   
22-OH  4.77, s  1, 21, 22, 23 

 

.     



58 
 

 

 

Figure 2.11. 1H NMR of C22-1 (DMSO-d6) 
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Figure 2.12. 13C of C22-1 (DMSO-d6) 
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Figure 2.13. COSY of C22-1 (DMSO-d6) 
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Figure 2.14. TOCSY of C22-1 (DMSO-d6) 
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Figure 2.15. HSQC of C22-1 (DMSO-d6) 
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Figure 2.16. HMBC of C22-1 (DMSO-d6) 
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CHAPTER 3. Combining Rh-catalyzed Diazocoupling 

and Enzymatic Reduction to Efficiently Synthesize 

Enantioenriched 2-subsituted Succinate Derivatives  
 

3.1 Introduction 

The increasing demand for chiral building blocks, particularly those used for the preparation of 

biologically active compounds, has motivated the development of novel strategies for 

enantioselective synthesis. To this end, systems that catalyze enantioselective carbon-carbon bond 

formation have been studied intensively.1-3 Biocatalysts are increasingly employed to provide 

levels of chemo-, regio- and stereoselectivity that are challenging to achieve with a small-molecule 

catalyst, but applications of biocatalysts for carbon-carbon bond formation are limited.4-6 The 

combination of chemical and biological catalysts in one-pot could enable transformations that 

cannot be achieved by either of the two catalysts alone,4,7 and we considered that formal, 

enantioselective C-C bond formation could be achieved by combining a chemical catalyst that 

forms a C-C bond and an enzyme that can set a stereogenic center at one of the carbons of the new 

bond. 

Asymmetric 2-substituted succinic acid derivatives are versatile building blocks for the 

preparation of biologically active compounds,8-11 particularly natural products containing the γ-

butyrolactone-unit.12-16 Rhodium-catalyzed asymmetric hydrogenation of itaconic acid derivatives 

(Figure 3.1a) has been widely used to prepare enantiomerically enriched 2-subsituted succinic acid 

derivatives, but these methods are not applicable to the synthesis of 2-aryl substituted succinic acid 

derivatives.17-20 Meanwhile, the synthesis of 2-aryl succinic acid derivatives via organocatalytic 

and transition metal-catalyzed asymmetric hydrogenation of prochiral aryl-substituted fumaric (E) 
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and maleic (Z) acid derivatives remains challenging.21-36 Only recently did Pfaltz and coworkers 

report an enantioselective Ir-catalyzed hydrogenation of 2-aryl-substituted fumarates and maleates 

(Figure 3.1b).21 However, the hydrogenation reactions were limited to symmetric diesters and 

required high catalyst loadings and hydrogen pressure.   

Alternative methods to prepare enantioenriched 2-aryl succinic derivatives include Rh-

catalyzed 1,4-additions of arylboronic acids to fumarate derivatives (Figure 3.1c),37 Cinchona 

alkaloid-catalyzed parallel kinetic resolution of monosubstituted succinic anhydrides (Figure 

3.1d),38 or enantioselective N-heterocyclic carbene (NHC)-catalyzed β-protonation through the 

orchestration of three distinct organocatalysts: triazolium salt, thiourea (HDB), and DMAP (Figure 

3.1e).39 However, each reaction has its limitations, such as requiring di-tert-butyl fumarates for 

high enantioseletivity, forming inseparable mixtures of constitutional isomers from fumarates 

bearing two different ester functional groups, having a maximum yield of 50%, and forming 

product with lower ee at higher conversion.  

Enzymatic C=C bond reduction was once coupled with olefin synthesis to prepare non-

chiral products.40 Here we report a two-step, one-pot sequential chemoenzymatic transformation 

to prepare enantioenriched 2-aryl 1,4-dicarbonyl compounds with good yield and excellent 

enantioselectivity. This transformation combines a Rh(II)-catalyzed diazo coupling reaction with 

an enzymatic reduction into one-pot catalytic sequence that occurs in greater efficiency than the 

two individual steps, while avoiding purification of the alkene intermediates (Figure 3.1). This 

process constitutes a novel chemoenzymatic carbon-carbon bond formation with control of the 

absolute configuration of the new stereogenic center at one of the two carbons, while addressing 

limitations of the prior syntheses of 2-aryl succinic acid derivatives. 
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Figure 3.1. Synthesis of 2-aryl succinate derivatives using sequential rhodium- and enzyme 

catalysis (GDH: Glucose dehydrogenase, rt: room temperature). 
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3.2 Results and Discussion  

3.2.1. Selective Synthesis of Unsymmetrical (E)-2-Aryl-substituted Alkenes  

To create a modular, enantioselective route to 2-aryl-fumarate derivatives, we first investigated the 

synthesis of unsymmetrical 2-aryl-substituted, alkenes containing carbonyl groups at the 1 and 4 

positions of the alkene. Davies and co-workers reported the [Rh2(OPiv)4]-catalyzed cross-coupling 

of diazo compounds to form 2-aryl-fumarate derivatives with high chemo- and stereoselectivity,3 

and we tested reactions catalyzed by both [Rh2(OPiv)4] and the commercially available 

rhodium(II) octanoate dimer [Rh2(Oct)4]. As shown in Table 3.1, cross-coupling of aryldiazo 

compounds 1 with diazoacetate derivatives 2 affords predominantly the dicarbonyl compounds 3a 

and 3b with only trace amounts (<5%) of homodimerization product 4. Importantly, the reaction 

catalyzed by [Rh2(OPiv)4] occurs with high selectivity for formation of E alkenes (100% 

stereoselectivity favoring the (E)-diester, >10:1 stereoselectivity favoring (E)-ketone-ester, except 

entry 8). The reactions catalyzed by [Rh2(Oct)4] occur with yields, chemoselectivity and 

stereoselectivity that are similar to those of reactions catalyzed by [Rh2(OPiv)4]. With improved 

methods for preparation of diazo-compounds,41,42 Rh(II)-catalyzed carbenoid-induced cross-

coupling of diazo compounds serves as an attractive convergent method for the synthesis of 

unsymmetrical alkenes.  
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Table 3.1. Synthesis of asymmetric 2-aryl-sbustitued dicarbonyl alkenes by Rh-catalyzed cross-

coupling of diazo compounds  

 

Entry Ar R1 R2 
[Rh2(Oct)4]  [Rh2(OPiv)4] 

3aa 3ba  3aa 3bb  

1 Ph OMe OEt 44% -  67% - 

2 Ph OMe OtBu 57% -  74% - 

3 Ph OMe OBn 44% 6%  67% - 

4 Ph OtBu OEt 39% -  N.A. N.A. 

5 4-F-Ph Me OEt 64% 7%  57% 5% 

6 4-Cl-Ph Me OEt 68% 7%  64% 4% 

7 3-CF3-Ph Me OEt 47% 10%  46% 3% 

8 Ph OMe 4-F-Ph 32% 4%c  20% 3% 

 aIsolated yield. bYield determined by GC analysis. 

 

3.2.2. Enantioselective Enzymatic Reduction of C-C Double Bound  

Ene-reductase (ER) containing flavin mononucleotides (FMN) require NADPH or NADH as co-

factors to catalyze asymmetric reduction. In this study, glucose dehydrogenase (GDH) from 

Bacillus megaterium was used to recycle NADPH continuously by reduction of NADP+ with 

concomitant conversion of glucose to gluconic acid. We tested the reduction of the 2-aryl fumaric 

and maleic acid derivatives with a series of ERs originating from different organisms, including 

Old Yellow Enzymes OYE1, OYE2 and OYE3 from Saccharomyces cerevisiae, OYE4 from 

Achromobacter sp., 1, 2-oxophytodienoate reductases OPR1 and OPR3 from Lycopersicum 

esculentum, alkene reductase YersER from Yersinia bercovieri; thermophilic ‘ene’-reductase 

TOYE from Thermoanaerobacter pseudethanolicus, LacER from Lactobacillus casei, XenA and 

XenB from Pseudomonas putida, and NADPH dehydrogenase EBP1 from Candida albicans.  
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Most of the ERs catalyzed the reduction of the E isomers (3a) of 2-aryl-substitued, 1,4-dicarbonyl 

alkenes generated from the cross-coupling reactions of the diazo compounds, but some of them 

resulted in products with poor ee (Table 3.3). None of the ERs we tested reduced the trace amount 

of Z isomers 3b (<5%), based on GC evaluation. Table 3.2 shows the asymmetric reduction of (E)-

2-aryl-substitued, 1,4-dicarbonyl alkenes by the ERs that gave the product in 65%-85% yield. In 

general, ERs catalyzed the reduction of the alkenes containing two esters with excellent 

enantioselectivity (>99%) (Entries 1&2) and the reduction of alkenes containing one ketone and 

one ester with good to excellent enantioselectivity (85%-99%) (Entry 5-8). OPR1 is the only 

enzyme we tested that reduced the unsaturated 1,4-dicarbonyl compounds containing bulky ester 

groups at the carbon β to the aryl group (Entries 2&3) to form enantioenriched 2-aryl succinate 

derivatives bearing two distinct esters that allow orthogonal reactivity at each terminus.39 None of 

the enzymes catalyzed the reduction of the substrate containing a bulky ester group and aryl group 

on the same alkene carbon (Entry 4). 

Compared to metal-catalyzed hydrogenation of dimethyl 2-phenylmaleates,21 the enzymatic 

reduction offers several advantages. The turnover numbers for the enzymatic reduction were 

seventy times higher than those obtained with current catalysts, and the process occurred with 

excellent enantioselectivity (>99%) at room temperature, in phosphate buffer under atmospheric 

pressure. Furthermore, YersER tolerates both water miscible organic solvents, such as DMSO and 

ethylene glycol, and immiscible organic solvents such as hexane and toluene.43 This tolerance 

toward organic solvents enhances the potential use of ERs for reactions of less water-soluble 

substrates. 
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Table 3.2. Enzymatic reduction of (E)-2-aryl-sbustitued, 1,4-dicarbonyl alkenes by ene-reductases 

 

Entry Ar R1 R2 Yielda 4 %ee 
Most 

selective ER 

Large scale  

isolated yieldb 
TONe 

1 Ph OMe OEt 
91% 

71%f >99%c YersER 84% 
455 

7071f 

2 Ph OMe OtBu 76% >99% c OPR1 65% 650 

3 Ph OMe OBn 86% >99% c OPR1 80% 430 

4 Ph OtBu OEt - - - - - 

5 4-F-Ph Me OEt 80% 87% c YersER 75% 375 

6 4-Cl-Ph Me OEt 85% 85%d YersER 78% 423 

7 3-CF3-Ph Me OEt 78% 85% d YersER 70% 322 

8 Ph OMe 4-F-Ph 87% >99% d OYE2 80% 460 
    74% >99% d YersER 69% 370 
    93% 93% d OPR1 85% 465 

aGC yield. blarge-scale (0.2 mmol) reactions and isolated yield. cee determined by chiral SFC. dee 
determined by chiral HPLC. eTurn over number (TON) is defined as the number of moles of substrate that 
a mole of catalyst can convert before becoming inactivated. KPi: sodium phosphate buffer. fReaction with 
0.01mol% enzyme loading 
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3.2.3. Two-step Sequential Reaction to Synthesize Enantioenriched 2-Aryl-

Substituted Succinate Derivatives   

Having identified an ER that reduces the substrates of the Rh-catalyzed coupling of 

diazocompounds, we sought to develop conditions to conduct the two reactions in one pot without 

purification of the intermediates. After conducting the diazo coupling reaction, we evaporated the 

DCM, added all reagents and the ER for the reduction step into the crude mixture. The one-pot 

process formed the enantioenriched succinate derivatives in >70% yield by completely converting 

the (E)-alkenes, the major product from cross-coupling reaction (Table 3.4) and leaving the (Z)-

alkene unreacted. Similar yield and enantioselectivity were observed with purified samples of the 

alkene (Table 3.2), suggesting that the ERs are compatible with the Rhodium(II) catalyst and trace 

amounts of chemical impurities contained in the crude cross coupling reaction. 

Table 3.4. Two-step sequential reaction to synthesize enantioenriched 2-aryl-substituted succinate 

derivatives 

 
 

 

Entry 
Ar R1 R2 

Yielda 
%eed 

Isolated yield 
over two 
stepse 

TON 
3ab 3bb 4c 

1 Ph OMe OEt 78% 0% 93% >99% 62% 465 

2 Ph OMe OBn 72% 0% 88% >99% 54% 440 

3 Ph OMe 4-F-Ph 38% 4% 90% >99% 26% 450 

4 3-CF3-Ph Me OEt 56% 4% 82% 89% 37% 410 

aDetermined by GC analysis. bTrace amount of reaction mixture was taken after the diazocoupling reaction and 
evaluated by GC analysis. cCalculated based on the starting materials for enzymatic reaction. dee determined by 
chiral HPLC. eCalculated based on the starting materials of the cross-coupling reaction. 
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3.2.4. Docking Experiments   

To provide possible explanations of the origin of the selectivity of ERs for (E)-alkenes over (Z)-

alkenes, we conducted computational docking studies. Docking of 4-ethyl 1-methyl 2-

phenylfumarate and 4-ethyl 1-methyl 2-phenylmaleate into the active site of OPR1 was 

conducted using the crystal structure of OPR1 (Figure 3.2) containing p-hydroxybenzoic acid 

(PHB) bound to the active site. 

 As shown in Figure 3.3A, the carbonyl oxygen of 4-ethyl 1-methyl 2-phenylfumarate is 

hydrogen bonded to His-187 Nϵ2 and His-190 Nδ1 with distances of 3.2 Å and 2.8 Å 

respectively. The distance between the N(5) of FMNH2 (transferring a hydride) and the carbon 

of the alkene that is β to the aryl group (β-carbon) of the substrate is 4.0 Å, and the distance 

between the Tyr 192 (a proton donor) and α-carbon of the substrate is 3.9 Å. The (Z)-alkene 4-

ethyl 1-methyl 2-phenylmaleate binds to the same site of OPR1 (Figure 3.3B). However the 

distance between N(5) of FMNH2 and the β carbon is more than 5.0 Å. This distance would be 

too large for the reaction to occur. In addition, the more hindered 4-(tert-butyl) 1-methyl 2-

phenylfumarate did not dock into most of the ERs (data are not shown), but it did dock into 

OPR1. As shown in Figure 3.3C, the distance between the N(5) of FMNH2 and the β-carbon of 

4-(tert-butyl) 1-methyl 2-phenylfumarate, and the distance between Tyr 192 and α-carbon of 4-

(tert-butyl) 1-methyl 2-phenylfumarate are both 4.0 Å. These distances are comparable to those 

between the proton and hydride donors of OPR1 to 4-ethyl 1-methyl 2-phenylfumarate. A pocket 

formed by Tyr-78, Lys-79 and Tyr-358 at the entrance of active site accommodates the phenyl 

ring, while the relatively open active site entrance may tolerate the bulky tert-butyl group (Figure 

3.3D). 
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Figure 3.2. Docking of p-hydroxybenzoic acid (PHB) into the active site of OPR1 in the crystal 

structure. (Left) Overlay of docked PHB (green) with original PHB (orange) in the crystal structure. 

(Right) Surface representation of the active site view of OPR1 with PHB docked at the active site.  

 

 

Figure 3.3. Docking of A) 4-ethyl 1-methyl 2- phenylfumarate, B) 4-ethyl 1-methyl 2- 

phenylmaleate, and C) 4-(tert-butyl) 1-methyl 2-phenylfumarate within the active site of OPR1. 

D) the surface representation of the active site view of OPR1 with 4-(tert-butyl) 1-methyl 2-

phenylfumarate docked at active site. In the stick models, substrates shown in green, FMN shown 

in yellow, protein residues shown in grey. 
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3.3 Conclusions and Outlook 

In summary, we have developed a one-pot, sequential catalytic system for the synthesis of 2-

aryl-succinate derivatives by formal asymmetric C-C bond formation created by integrating a 

transition-metal catalyst with an enzyme, whereby a Rh-catalyzed cross-coupling of car-bene 

units is followed by an ER-catalyzed enantioselective reduction of (E)-2-aryl-substituted 

dicarbonyl alkenes among a mixture of the E and Z isomers. With this system, 2-aryl-substituted 

succinate derivatives are generated from two different diazaoesters or ketones and reducing 

equivalents in high yield and excellent ee with-out purification of the alkene intermediates or 

separation of E and Z isomers. Evaluation of a panel of ERs as catalyst led to the identification 

of OPR1, which reacts with substrates containing bulky tert-butyl esters and produces 

enantioenriched, chiral unsymmetrical diesters that have great potential as synthetic 

intermediates. 

3.4 Experimental Procedures  

3.4.1. Materials  

Unless otherwise stated, all chemicals, reagents and catalysts were purchased from Sigma-Aldrich. 

E. coli DH5α cells were purchased from the Cell Media Facility at the University of Illinois at 

Urbana-Champaign (Urbana, IL). Escherichia coli BL21 (DE3) and plasmid pET28a+ were 

purchased from Novagen (Madison, WI). Oligonucleotides for cloning were purchased from 

Integrated DNA Technologies (IDT) (Coralville, IO). Restriction enzymes were purchased from 

New England Biolabs (Ipswich, MA). NADPH was purchased from Enzo Life Sciences 

(Farmingdale, NY). NADP+ was purchased from Roche Diagnostics (Indianapolis, IN). Isopropyl-

β-D-thiogalactoside (IPTG) was purchased from GoldBio (St. Louis, MO). The strain Bacillus 

megaterium (B14308) was obtained from the NRRL culture collection (Peoria, IL).  
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3.4.2. Cloning, Expression and Purification of Enzymes  

The YersER investigated in this research is from Yersinia bercovieri. The codon-optimized gene 

was synthesized by IDT and cloned in pET28a with N-terminal His-tag. For expression of YersER, 

a BL21 clone harboring pET28a-YersER was inoculated in 5 mL LB medium containing 100 

µg/mL ampicillin and grown overnight at 37 ºC. This overnight culture was used to inoculate 500 

mL of TB medium containing 50 µg/mL kanamycin, which was grown at 37 ºC until an OD of 

~0.6 was reached, and subsequently induced with the addition of 0.3 mM IPTG. The induced 

culture was placed at 25 ºC, 250rpm, for 16 h for protein production. 

The OYE1/2/3 investigated in this research is from baker’s yeast. The plasmid pET30a-

OYE1/2/3 with N-terminal His-tag was a gift from Dr. Francesco G. Gatti. The plasmid was 

transformed into E. coli BL21. For expression of OYE1/2/3, a BL21 clone harboring pET30a-

OYE1/2/3 respectively was inoculated in 5 mL LB medium containing 50 µg/mL kanamycin and 

grown overnight at 37 ºC. This overnight culture was used to inoculate 500 mL of LB medium 

containing 50 µg/mL kanamycin, which was grown at 37 ºC until an OD of ~0.6 was reached, and 

subsequently induced with the addition of 0.1 mM IPTG. The induced culture was placed at 25 ºC, 

250 rpm, for 16 h for protein production.  

The OPR1 investigated in this research is from Lycopersicon esculentum (tomato). The 

plasmid pET21b-OPR1 with C-terminal His-tag was a gift from Dr. Kurt Faber. The plasmid was 

transformed into E. coli BL21. For expression of OPR1, a BL21 clone harboring pET21b-OPR1 

was inoculated in 5 mL LB containing 100 µg/mL ampicillin and grown overnight at 37 ºC. This 

overnight culture was used to inoculate 500 mL of TB medium containing 100 µg/mL ampicillin, 

which was grown at 37 ºC until an OD of ~0.6 was reached, and subsequently induced with the 
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addition of 1 mM IPTG. The induced culture was placed at 25 ºC, 250 rpm, for 16 h for protein 

production.  

The OPR3 investigated in this research is from Lycopersicon esculentum (tomato). The 

plasmid pET21b-OPR3 with C-terminal His-tag was a gift from Dr. Kurt Faber. The plasmid was 

transformed into E. coli BL21. For expression of OPR3, a BL21 clone harboring pET21b-OPR3 

was inoculated in 5 mL LB medium containing 100 µg/mL ampicillin and grown overnight at 37 

ºC. This overnight culture was used to inoculate 500 mL of TB medium containing 100 µg/mL 

ampicillin, which was grown at 37 ºC until an OD of ~0.6 was reached, and subsequently induced 

with the addition of 1 mM IPTG. The induced culture was placed at 25 ºC, 250 rpm, for 16 h for 

protein production.  

KYE1 is from Kluyveromyces lactis NRRL Y-1140. The gene was synthesized by IDT and 

codon-optimized for E. coli expression. The gene was cloned into pET28a using restriction 

enzymes NdeI and XhoI. The plasmid pET28a-KYE1 was transformed into E. coli BL21 with N-

terminal His-tag. For expression of KYE1, a BL21 clone harboring pET28a-KYE1 was inoculated 

in 5 mL LB medium containing 50 µg/mL kanamycin and grown overnight at 37 ºC. This overnight 

culture was used to inoculate 500 mL of TB medium containing 50 µg/ml kanamycin, which was 

grown at 37 ºC until an OD of ~0.5-0.6 was reached, and subsequently induced with the addition 

of 0.1 mM IPTG. The induced culture was placed at 25 ºC for 16 h for protein production. 

MorR is from Pseudomonas putida. The gene was synthesized by IDT and codon-

optimized for E. coli expression. The gene was cloned into pET28a using restriction enzymes NdeI 

and XhoI with N-terminal His-tag. The plasmid pET28a-MorR was transformed into E. coli BL21. 

For expression of MorR, a BL21 clone harboring pET28a-MorR was inoculated in 5 mL LB 

medium containing 50 µg/mL kanamycin and grown overnight at 37 ºC. This overnight culture 
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was used to inoculate 500 mL of TB medium containing 50 µg/ml kanamycin, which was grown 

at 37 ºC until an OD of ~0.5-0.6 was reached, and subsequently induced with the addition of 1 mM 

IPTG. The induced culture was placed at 20 ºC for 16 h for protein production. 

SYE1 is from Shewanella oneidensis MR-1. The gene was synthesized by IDT and codon-

optimized for E. coli expression. The gene was cloned into pET28a between restriction enzymes 

NdeI and XhoI with N-terminal His-tag. The plasmid pET28a-SYE1 was transformed into E. coli 

BL21. For expression of MorR, a BL21 clone harboring pET28a-SYE1 was inoculated in 5 mL 

LB medium containing 50 µg/mL kanamycin and grown overnight at 37 ºC. This overnight culture 

was used to inoculate 500 mL of TB medium containing 50 µg/ml kanamycin, which was grown 

at 37 ºC until an OD of ~0.5-0.6 was reached, and subsequently induced with the addition of 0.5 

mM IPTG. The induced culture was placed at 28 ºC for 15 h for protein production. 

The XenA and XenB investigated in this research are from Pseudomonas putida ATCC 

17453. The plasmid pGaston-xenA and pGaston-xenB with C-terminal His-tag was a gift from Dr. 

Uwe T. Bornscheuer. The plasmid was transformed into E. coli BL21. For expression of xenA or 

xenB, a BL21 clone harboring pGaston-xenA/xenB was inoculated in 5 mL LB medium containing 

100 µg/mL ampicillin and grown overnight at 37 ºC. This overnight culture was used to inoculate 

500 mL of LB medium containing 100 µg/mL ampicillin, which was grown at 37 ºC at 180 rpm 

until an OD of ~0.6-0.8 was reached, and subsequently induced with the addition of 0.2% (w/v) r-

rhamnose. The induced culture was placed at 25 ºC (XenB) or 30 ºC (XenA) for 8 h.  

The LacER investigated in this research is from Lactobacillus casei, The plasmid 

pET21a(+)-LacER with C-terminal His-tag was a gift from Dr. Dunming Zhu. The plasmid was 

transformed into E. coli BL21. For expression of LacER, a BL21 clone harboring pET21b-LacER 

was inoculated in 5 mL LB medium containing 100 µg/mL ampicillin and grown overnight at 37 
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ºC. This overnight culture was used to inoculate 500 mL of LB medium containing 100 µg/mL 

ampicillin, which was grown at 37 ºC until an OD of ~0.6-0.8 was reached, and subsequently 

induced with the addition of 1 mM IPTG. The induced culture was placed at 30 ºC, 250 rpm, for 

15 h for protein production 

The TOYE investigated in this research is from Thermoanaerobacter pseudetahnolicus 

E39. The plasmid pET21b-TOYE with C-terminal His-tag was a gift from Dr. Uwe T. Bornscheuer. 

The plasmid was transformed into E. coli BL21. For expression of TOYE, a BL21 clone harboring 

pET21b-TOYE was inoculated in 5 mL LB medium containing 100 µg/mL ampicillin and grown 

overnight at 37 ºC. This overnight culture was used to inoculate 500 mL of LB medium containing 

100 µg/mL ampicillin, which was grown at 25 ºC at 250 rpm until an OD of ~0.5 was reached, 

and subsequently induced with the addition of 0.4 mM IPTG. The induced culture was placed at 

25 ºC for 12 h.  

The GDH used in this research is from Bacillus megaterium B14308. B14398 was 

inoculated in 5 mL TGY medium and grown at 30 ºC for 18 h. Genomic DNA was isolated using 

the Wizard® Genomic DNA purification kit from Promega according to the manufacturer’s 

protocol. The gene encoding the gdh was amplified from the genome of B. megaterium using 

primers gdh-NdeI-for and gdh-HindIII-rev. Restriction sites are underlined. The gene was ligated 

into pET28a+ and transformed into E. coli DH5α. The plasmid pET28a-gdh was transformed into 

E. coli BL21. For expression of GDH, a BL21 clone harboring pET28a-gdh was inoculated in 5 

mL LB medium containing 50 µg/mL kanamycin and grown overnight at 37 ºC. This overnight 

culture was used to inoculate 500 mL of TB medium containing 50 µg/ml kanamycin, which was 

grown at 37 ºC until an OD of ~0.7 was reached, and subsequently induced with the addition of 

0.3 mM IPTG. The induced culture was placed at 25 ºC for 16 h for protein production. 
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All proteins were purified in the same way. Following expression, BL21 cells were 

recovered by centrifugation (6000 x g for 15 min), lysed by sonication and clarified by 

centrifugation (18 000 x g for 30 min). The protein was subsequently purified by affinity 

chromatography using a HisTrap column fitted to an AKTA FPLC system (GE Health Life 

Sciences, Pittsburgh, PA). The purified protein was buffer exchanged against 100 mM phosphate 

buffer, pH 8.1 using an Amicon Ultra concentration tube (10 kDa cut-off) before being stored in 

15% glycerol as 100 µL aliquots at -80 ºC.  

3.4.3. General Procedure for Alkene Synthesis via Rh-catalyzed Diazocoupling  

To a solution of rhodium carboxylate dimer, 1 mol % of either Dirhodium(II) tetrakispivaloate 

[Rh2(OPiv)4] or rhodium(II) octanoate dimer [Rh2(Oct)4] in dichloromethane at –78 ºC was added 

an equimolar solution of a donor–acceptor diazocompound and an α-diazocarbonyl compound in 

dichloromethane (0.2 M final concentration) in 3 portions over 30 minutes. The reaction was 

stirred at –78 ºC for 1 hour before slowly warming to room temperature. The solvent was removed 

in vacuo and the crude product purified by silica gel chromatography.  

The yield of 4-Ethyl 1-Methyl 2-phenylfumarate is 44% by [Rh2(Oct)4] and 67% by 

[Rh2(OPiv)4]. 1H NMR (600 MHz, Chloroform-d) δ 7.38–7.35 (m, 3H), 7.23 (m, 2H), 7.02 (s, 

1H), 4.04 (q, J = 7.1 Hz, 2H), 3.81 (s, 3H), 1.06 (t, J = 7.1 Hz, 3H). Characterization data matches 

those previously reported.3  

The yield of 4-(tert-Butyl) 1-Methyl 2-phenylfumarate is 57% by [Rh2(Oct)4] and 74% by 

[Rh2(OPiv)4]. 1H NMR (600 MHz, Chloroform-d) δ 7.37–7.35 (m, 3H), 7.22 (m, 2H), 6.97 (s, 

1H), 3.79 (s, 3H), 1.23 (s, 9H). Characterization data matches those previously reported.44 
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The yield of 4-Benzyl 1-Methyl 2-phenylfumarate is 49% (E:Z = 8:1) by [Rh2(Oct)4] and 

67% by [Rh2(OPiv)4]. 1H NMR (600 MHz, Chloroform-d) δ 7.40–7.31 (m, 3H), 7.30–7.28 (m, 

3H), 7.23 (m, 2H), 7.10 (m, 2H), 7.07 (s, 1H), 5.03 (s, 2H), 3.80 (s, 3H). 13C NMR (151 MHz, 

Chloroform-d) δ 166.7, 165.0, 144.0, 135.0, 133.8, 128.9, 128.8, 128.6, 128.4, 128.2, 128.2, 127.9, 

126.7, 117.2, 66.7, 52.9. IR (film): 3034, 2953, 1715, 1633, 1497, 1435, 1380, 1352, 1249, 1023 

cm-1. HRMS–ESI (m/z): [M+H]+ calculated for C18H16O4H: 297.1127, found: 297.1126. 

The yield of Methyl (E)-4-(4-Fluorophenyl)-4-oxo-2-phenylbut-2-enoate is 36% (E:Z = 

8:1) by [Rh2(Oct)4] and 22.8% (E:Z = 7:1) by [Rh2(OPiv)4]. Alkene geometry was assigned based 

on comparison with the 1H NMR data of similar alkenes reported by Davies and coworkers.Error! B

ookmark not defined. 1H NMR (600 MHz, Chloroform-d) δ 7.83 (m, 2H), 7.64 (s, 1H), 7.24–7.17 (m, 

5H), 7.02 (t, J = 8.6 Hz, 2H), 3.87 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 192.24, 166.07 (d, J = 

256.1 Hz), 165.22, 140.68, 136.12, 133.74, 132.78, 132.76, 131.79 (d, J = 9.6 Hz), 129.50, 128.86, 

128.11, 115.90 (d, J = 22.1 Hz), 53.05. 19F NMR (376 MHz, CDCl3) δ -105.94. IR (film): 3060, 

2954, 1716, 1668, 1595, 1506, 1435, 1410, 1259, 1154, 1098, 1077 cm-1. HRMS–ESI (m/z): 

[M+Na]+ calculated for C17H13FO3Na: 307.0741, found: 307.0742.  

The yield of Ethyl (E)-4-oxo-3-(3-(trifluoromethyl)phenyl)pent-2-enoate is 47% by 

[Rh2(Oct)4] and 56.4% by [Rh2(OPiv)4]. Alkene geometry was assigned based on comparison 

with the 1H NMR data of similar alkenes reported by Davies and coworkers.Error! Bookmark not defined. 1

H NMR (600 MHz, Chloroform-d) δ 7.64 (d, J = 8.9 Hz, 1H), 7.52 (t, J = 7.5 Hz 1H), 7.43 (s, 

1H), 7.36 (d, J = 7.5 Hz, 1H), 6.84 (s, 1H), 4.04 (q, J = 7.4 Hz, 2H), 2.38 (s, 3H), 1.05 (t, J = 7.0 

Hz, 3H). 13C NMR (152 MHz, CDCl3) δ 197.98, 165.16, 149.37, 135.40, 132.23,130.67 (d, J = 

130 Hz), 128.81, 128.61, 125.7 (q, J = 4.05 Hz),125.34 (q, J = 3.77), 163.66 (d, J = 273.6), 61.53, 

27.72, 13.82. 19F NMR (470 MHz, CDCl3) δ -63.04. IR (film): 3071, 2988, 2976, 2940, 2359, 
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1737, 1726, 1711, 1691, 1681, 1639, 1631, 1611, 1467 1486, 1441, 1433, 1368, 1351, 1324, 1162, 

1096, 1074, 1036, cm-1. HRMS–ESI (m/z): [M+H]+ calculated for C14H13F3O3H: 287.0895, found: 

287.0900. 

The yield of Ethyl (Z)-4-oxo-3-(3-(trifluoromethyl)phenyl)pent-2-enoate is 10% by 

[Rh2(Oct)4] and 1.3% by [Rh2(OPiv)4]. Alkene geometry was assigned based on comparison with 

the 1H NMR data of similar alkenes reported by Davies and coworkers.Error! Bookmark not defined. 1H N

MR (600 MHz, Chloroform-d) δ 7.70 (s, 1H), 7.69 (d, J = 8.18 Hz, 1H), 7.605 (d, J = 7.78 Hz 

1H), 7.54 (t, J = 8.0 Hz, 1H), 6.19 (s, 1H), 4.25 (q, J = 5.3 Hz, 2H), 2.44 (s, 3H), 1.32 (t, J = 7.3 

Hz, 3H). 13C NMR (152 MHz, CDCl3) δ 203.71, 165.17, 156.66, 133.97, 130.12, 129.88, 127.155 

(q, J = 3.57 Hz), 123.68 (q, J = 3.90 Hz), 117.62, 110.18, 102.57, 61.45, 30.53, 14.25. 19F NMR 

(470 MHz, CDCl3) δ -63.25. HRMS–ESI (m/z): [M+H]+ calculated for C14H13F3O3H: 287.0895, 

found: 287.0890. 

The yield of Ethyl (E)-3-(4-fluorophenyl)-4-oxopent-2-enoate is 64% by [Rh2(Oct)4] and 

156% by [Rh2(OPiv)4]. Each alkene was isolated separately ([Rh2(Oct)4]: 0.34 g, 64% yield; 

[Rh2(OPiv)4]: 0.30g, 56.4% yield). 1H NMR (600 MHz, Chloroform-d) δ 7.14 (m, 2H), 7.08 (t, J 

= 8.0 Hz, 2H), 6.77 (s, 1H), 4.06 (q, J = 7.2 Hz, 2H), 2.34 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H). 13C 

NMR (151 MHz, CDCl3) δ 198.77, 165.48, 163.79, 162.15, 150.00, 130.68 (d, J = 8.2 Hz), 127.65, 

115.32 (d, J = 21.6 Hz), 61.14, 27.88, 13.99. 19F NMR (376 MHz, CDCl3) δ -115.16. IR (film): 

2985, 2939, 1732, 1716, 1699, 1634, 1602, 1465, 1368, 1225, 1157, 1097, 1035 cm-1. HRMS–ESI 

(m/z): [M+Na]+ calculated for C13H13FO3Na: 259.0741, found: 259.0740. 

The yield of Ethyl (Z)-3-(4-fluorophenyl)-4-oxopent-2-enoate is 7 % by [Rh2(Oct)4] and 

0.8% by [Rh2(OPiv)4]. Each alkene was isolated separately ([Rh2(Oct)4]: 0.038 g, 7% yield; 

[Rh2(OPiv)4]: <0.005g, <1% yield). 1H NMR (500 MHz, Chloroform-d) δ 7.43 (m, 2H), 7.10 (m, 
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2H), 6.10 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). 13C NMR (126 

MHz, Chloroform-d) δ 204.48, 165.48, 165.23, 163.22, 157.10, 128.97 (d, J = 8.8 Hz), 116.48 (d, 

J = 21.6 Hz), 115.46, 61.23, 30.51, 14.26. 19F NMR (376 MHz, CDCl3) δ -111.61. IR (film): 3076, 

2984, 2939, 1715, 1699, 1616, 1601, 1506, 1417, 1370, 1277, 1239, 1185, 1108, 1032 cm-1. 

HRMS–ESI (m/z): [M+Na]+ calculated for C13H13FO3Na: 259.0741, found: 259.0739. 

The yield of Ethyl (E)-3-(4-chlorophenyl)-4-oxopent-2-enoate is 68% by [Rh2(Oct)4] and 

64% by [Rh2(OPiv)4]. 1H NMR (600 MHz, Chloroform-d) δ 7.36 (m, 2H), 7.11 (m, 2H), 6.77 (s, 

1H), 4.07 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.11 (t, J = 7.2 Hz). 13C NMR (151 MHz, Chloroform-

d) δ 198.47, 165.34, 149.91, 134.77, 132.99, 130.17, 128.49, 127.81, 61.22, 27.89, 13.99. HRMS–

ESI (m/z): [M+Na]+ calculated for C13H13ClO3Na: 275.0451, found: 275.0463. 

The yield of Ethyl (E)-3-(4-chlorophenyl)-4-oxopent-2-enoate is 7% by [Rh2(Oct)4] and 

3.3% by [Rh2(OPiv)4]. 1H NMR (600 MHz, Chloroform-d) δ 7.38 (m, 4H), 6.13 (s, 1H), 4.23 (q, 

J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.31 (t, J = 7.2 Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 

204.14, 165.38, 156.99, 136.96, 131.41, 129.99, 128.21, 116.10, 61.30, 30.52, 14.27. HRMS–ESI 

(m/z): [M+Na]+ calculated for C13H13ClO3Na: 275.0451, found: 275.0450. 

3.4.4. General Procedure for Enzymatic Alkene Reduction and Quantification 

To a solution of NADP+ (80 μL of 20 mM stock, 0.04 equiv), glucose (200 μL of a 1 M stock, 5 

equiv), GDH (1 U/mL) and enoate reductase (0.2 mol %) in 200 mM pH 7.5 phosphate buffer 

(6.08 mL) was added a solution of enoate (0.04 mmol, 1 equiv) in DMSO (200 μL) at room 

temperature. Final concentrations are as follows: 0.2 mM NADP+, 25 mM glucose, 1 U/mL GDH, 

10 μM ene-reductase, 5 mM enoate substrate, 2.5 v/v% DMSO. The reaction was incubated 

overnight at 27 ºC and 100 rpm before the addition of EtOAc (3 mL) and dodecane (200 μL of 20 

μL/mL stock in EtOAc). An aliquot was removed from the organic layer for GC (ZB-5MS) 
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analysis. The reaction mixture was extracted twice with EtOAc and the combined organic layers 

were concentrated in vacuo and purified by preparative TLC. The partially purified product was 

analyzed by chiral SFC or Chiral HPLC as described below. In some cases, the alkene starting 

material co-elutes with one of the product enantiomers and complete consumption of the starting 

material was required for chiral SFC analysis. 

Molar concentration of ene-reductase was obtained by diving the mass concentration, 

obtaining from Bradford Assay, by its molecular weight. 

Isolated yields were obtained by performing 10 times scale-up reaction in conical flask and 

extracting the reaction mixture 3 times with EtOAc. The combined organic layers were dried over 

MgSO4, filtered and concentrated in vacuo. The crude product was purified by silica gel 

chromatography. 

The isolated yield of 4-Ethyl 1-Methyl (R)-2-Phenylsuccinate is 84%. 1H NMR (600 MHz, 

Chloroform-d) δ 7.33 (t, J = 7.5 Hz, 2H), 7.30–7.25 (m, 3H), 4.13 (q, J = 7.3 Hz, 2H), 4.09 (dd, J 

= 10.2, 5.3 Hz, 1H), 3.68 (s, 3H), 3.19 (dd, J = 16.9, 10.2 Hz, 1H), 2.66 (dd, J = 17.1, 5.4 Hz, 1H), 

1.22 (t, J = 7.2 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 173.6, 171.6, 137.9, 129.0, 127.9, 127.8, 

60.9, 52.5, 47.3, 38.1, 14.3. Chiral SFC: AD-H column, 2.5% iPrOH, 2.5 mL/min, 220 nm; 

tR(major): 2.07 min, tR(minor): not observed, >95% ee. [α]D
25: –128º (c = 1.0, CHCl3). 

Characterization data matches those previously reported.44 

The isolated yield of 4-(tert-Butyl) 1-Methyl (R)-2-Phenylsuccinate is 65%. 1H NMR (600 

MHz, Chloroform-d) δ 7.32 (m, 2H), 7.30–7.26 (m, 3H), 4.02 (dd, J = 10.0, 5.4 Hz, 1H), 3.67 (s, 

3H), 3.11 (dd, J = 16.7, 10.1 Hz, 1H), 2.60 (dd, J = 16.6, 5.4 Hz, 1H), 1.40 (s, 9H). 13C NMR (151 

MHz, CDCl3) δ 173.66, 170.78, 137.98, 128.92, 127.97, 127.70, 81.11, 52.38, 47.54, 39.25, 28.15. 

IR (film): 2979, 1732, 1497, 1435, 1455, 1393, 1368, 1257, 1149, 1032, 1005, 953 cm-1. HRMS–
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ESI (m/z): [M+Na]+ calculated for C15H20O4Na: 287.1254, found: 287.1250. Chiral SFC: AD-H 

column, 2.5% iPrOH, 2.5 mL/min, 220 nm; tR(major): 1.53 min, tR(minor): not observed (3.29 

min), >99% ee. 

The isolated yield of Ethyl 3-(4-Fluorophenyl)-4-oxopentanoate is 75%. 1H NMR (500 

MHz, Chloroform-d) δ 7.18 (m, 2H), 7.03 (m, 2H), 4.17 (dd, J = 9.4, 5.3 Hz, 1H), 4.09 (m, 2H), 

3.16 (dd, J = 16.9, 9.6 Hz, 1H), 2.50 (dd, J = 16.9, 5.3 Hz, 1H), 2.11 (s, 3H), 1.21 (t, J = 7.1 Hz, 

3H). 13C NMR (126 MHz, Chloroform-d) δ 13C NMR (126 MHz, CDCl3) δ 206.82, 172.04, 162.41 

(d, J = 247.0 Hz), 133.26 (d, J = 3.2 Hz), 129.94 (d, J = 8.1 Hz), 116.22 (d, J = 21.4 Hz), 60.88, 

54.08, 37.26, 29.05, 14.26. IR (film): 2984, 2934, 1733, 1716, 1601, 1507, 1418, 1374, 1354, 1293, 

1190, 1161, 1099, 1029 cm-1. HRMS–ESI (m/z): [M+Na]+ calculated for C13H15FO3Na: 261.0897, 

found: 261.0896. Chiral SFC: AD-H column, 2.5% iPrOH, 2.5 mL/min, 220 nm; tR(major): 1.79 

min, tR(minor): 3.06 min, 87% ee. [α]D
25: –253º (c = 1.0, CHCl3). 

The isolated yield of Ethyl 3-(4-chlorophenyl)-4-oxopentanoate is 78%. 1H NMR (600 

MHz, Chloroform-d) δ 7.31 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 4.15 (dd, J = 9.6, 5.4Hz, 

1H), 4.09 (m, 2H), 3.16 (dd, J = 17.9, 10.1 Hz, 1H), 2.50 (dd, J = 17.2, 5.4Hz, 1H), 2.11 (s, 3H), 

1.21 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 206.43, 171.90, 136.04, 133.90, 129.72, 

129.69, 60.90, 54.26, 37.13, 29.07, 14.26.  HRMS–ESI (m/z): [M+Na]+ calculated for 

C13H15ClO3Na: 277.0607, found: 261.0609. Chiral HPLC: OJ-H column, 100% Hexane, 0.8 

mL/min, 220 nm; tR(major): 22.24 min, tR(minor): 23.92 min, 85% ee.  

The isolated yield of Ethyl 4-oxo-3-(3-(trifluoromethyl)phenyl)pentanoate is 70%. 1H 

NMR (600 MHz, Chloroform-d) δ 7.555 (d, J = 7.5 Hz, 1H), 7.49 (s, 1H), 7.415 (d, J = 7.7 Hz, 

1H), 4.26 (dd, J = 9.8, 5.5 Hz, 1H), 4.10 (m, 2H), 3.21 (dd, J = 17.2, 9.7 Hz, 1H), 2.54 (dd, J = 

17.9, 6.1 Hz, 1H), 2.14 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, Chloroform-d) δ 13C 
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NMR (126 MHz, CDCl3) δ 205.12, 170.73, 137.54, 130.66, 130.71 (q, J = 32.7 Hz), 128.82, 124.21 

(q, J = 3.4 Hz), 123.85 (q, J = 3.7 Hz), 122.04, 60.00, 53.61, 36.23, 28.28, 13.24. 19F NMR (470 

MHz, CDCl3) δ -63.08. HRMS–ESI (m/z): [M+Na]+ calculated for C14H15F3O3Na: 311.0871, 

found: 311.0870. Chiral HPLC: OJ-H column, 5% iPrOH, 0.8 mL/min, 220 nm; tR(major): 10.78 

min, tR(minor): 12.77 min, 85% ee. 

The isolated yield of Methyl 4-(4-fluorophenyl)-4-oxo-2-phenylbutanoate is 69%~85%. %. 

1H NMR (500 MHz, Chloroform-d) δ 8.00 (m, 2H), 7.35 (m, 4H), 7.30 (m, 1H), 7.12 (m, 2H), 

4.29 (dd, J = 10.3, 4.1 Hz, 1H), 3.92 (dd, J = 18.7, 10.3 Hz, 1H), 3.70 (s, 3H), 3.23 (dd, J = 18.0, 

4.0 Hz, 1H). 13C NMR (126 MHz, Chloroform-d) δ 13C NMR (126 MHz, CDCl3) δ 196.18, 171.97, 

165.87 (d, J = 255Hz), 138.37, 133.00 (d, J = 3.8 Hz), 130.92, 130.85, 129.10, 127.94, 127.76, 

115.95, 115.81, 52.53, 46.49, 42.87. 19F NMR (470 MHz, CDCl3) δ -106.15. HRMS–ESI (m/z): 

[M+Na]+ calculated for C17H15FO3Na: 309.0903, found: 309.0900. Chiral HPLC: OJ-H column, 

5% iPrOH, 0.8 mL/min, 220 nm; tR(major): 29.40 min, tR(minor): not observed (~25.875 min), >99% 

ee. 

3.4.5. General Procedure for One-Pot Sequential Diazocoupling–Enzymatic 

Alkene Reduction 

To a solution of rhodium carboxylate dimer, 1 mol % of either Dirhodium(II) tetrakispivaloate 

[Rh2(OPiv)4] or in dichloromethane at –78 ºC was added an equimolar solution of methyl 2-diazo-

2-phenylacetate (0.25 g, 1.5 mmol) and ethyl 2-diazoacetate (0.16 mL, 0.17 g, 1.6 mmol) in 

dichloromethane (0.2 M final concentration) in 3 portions over 30 minutes. The reaction was 

stirred at –78 ºC for 1 hour before slowly warming to room temperature. The solvent was removed 

in vacuo and the crude product was re-dissolved in 3.75 mL DMSO.  
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To a solution of NADP+ (3 mL of 20 mM stock, 0.04 equiv), glucose (7.5 mL of a 1 M 

stock, 5 equiv), GDH (2 U/mL) and enoate reductase (0.2 mol %) in 200 mM pH 7.5 phosphate 

buffer (150 mL) was added a previously prepared solution of chemical in DMSO (3.75 mL) at 

room temperature. Final concentrations are as follows: 0.4 mM NADP+, 50 mM glucose, 2 U/mL 

GDH, 20 μM enoate reductase, 10 mM enoate substrate, 2.5 v/v% DMSO. The reaction was 

incubated overnight at 27 ºC and 100 rpm. 1 mL reaction mixture was extracted by the addition of 

EtOAc (2 mL) and dodecane (20 μL of 20 mg/mL stock in EtOAc). An aliquot was removed from 

the organic layer for GC (ZB-5MS) analysis. The reaction mixture was later extracted twice with 

EtOAc (100 mL) and the combined organic layers were concentrated in vacuo and purified by 

silica gel chromatography (neutral pH silica). The purified product was dried in vacuo and further 

dried under high vacuum system. The purified product was verified by 1H NMR and analyzed by 

chiral HPLC as described in section 2.4.4.  

3.4.6. Synthesis of Racemic Products: Representative Procedure for Alkene 

Hydrogenation 

Preparation of 4-Ethyl 1-Methyl (±)-2-Phenylsuccinate:  

 

Procedure adapted from the literature.45 A solution of 4-ethyl 1-methyl 2-phenylfumarate (25 mg, 

0.11 mmol, 1 equiv) in ethanol (1.1 mL, 0. 1 M) was added to a vial containing Pd(OAc)2 (2.4 mg, 

0.01 mmol, 10 mol %) and activated charcoal (22 mg). The resulting suspension was transferred 

to a hydrogenation bomb and charged with H2 (50 psig). The reaction was stirred overnight at 

room temperature. The reaction mixture was filtered through Celite and solvent remove in vacuo. 



89 
 

The product was obtained in >90% purity (1H NMR) and could be purified further using 

preparative TLC (10% EtOAc/hexanes). Characterization data matches those obtained from 

enzyme catalyzed reduction. The same method was used to prepare other racemic products: 4-

(tert-butyl) 1-methyl 2-phenylsuccinate, ethyl 3-(4-fluorophenyl)-4-oxopentanoate, ethyl 3-(4-

chlorophenyl)-4-oxopentanoate, ethyl 4-oxo-3-(3-(trifluoromethyl)phenyl)pentanoate and methyl 

4-(4-fluorophenyl)-4-oxo-2-phenylbutanoate.  

To prepare 4-benzyl 1-methyl 2-phenylsuccinate, benzylation was performed after normal 

hydrogenation as described above. Procedure adapted from the patent.46 Na2CO3 (34.98 mg, 0.33 

mmol, 3 equiv) and benzyl bromide (18.81 mg, 0.11 mmol, 1 equiv) were added to a solution of 

4-methoxy-4-oxo-3-phenylbutanoic acid (22.88 mg, 0.11 mmol, 1 equiv) from hydrogenation of 

4-benzyl 1-methyl 2-phenylfumarate, in DMA (3.154 mL). The mixture was stirred for 18 hours 

under nitrogen at room temperature. Water (6 mL) was added and then the mixture was extracted 

twice with toluene (3.5 mL). The combined organic layers were washed twice with (2 mL) water 

and the solvent was removed under reduced pressure. The product was purified by preparative 

TLC (15% EtOAc/hexanes). Characterization data matches those obtained from enzyme catalyzed 

reduction.  

3.4.7. GC/MS Method  

1 L was injected in a split mode (20:1) into the GC-MS system consisted of an Agilent 

6890 (Agilent Inc, Palo Alto, CA, USA) gas chromatograph, an Agilent 5973 mass selective 

detector and Agilent 7683B autosampler. Gas chromatography was performed on a 30 m Optima-

5 column with 0.25 mm inner diameter (I.D.) and 0.5 m film thickness (Macherey-Nagel, 

Germany) with an injection temperature of 2500C, MSD transfer line of 2500C, and the ion source 

adjusted to 2300C. The helium carrier gas was set at a constant flow rate of 1 ml min-1. The 
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temperature program was different for different samples . 2-min at 1000C, followed by an oven 

temperature ramp of 80C min-1 to 2800C for 1 min, then 150C min-1 to 3100C a final 5 min. The 

mass spectrometer was operated in positive electron impact mode (EI) at 69.9 eV ionization energy 

in m/z 30-500 scan range. The spectra of all chromatogram peaks were evaluated using the HP 

Chemstation (Agilent, Palo Alto, CA, USA). 

3.5 Representative Traces  

3.5.1. Representative NMR Traces    

1-diazo-1-(3-(trifluoromethyl)phenyl)propan-2-one 

 
1H NMR (600 MHz, Chloroform-d)  
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13C NMR (154 MHz, Chloroform-d)  

 

 

4-Benzyl 1-Methyl 2-phenylfumarate (~8:1, E:Z)  
1H NMR (600 MHz, Chloroform-d)  
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13C NMR (151 MHz, Chloroform-d) 

 

 

4-benzyl 1-methyl (R)-2-phenylsuccinate 
1H NMR (600 MHz, Chloroform-d)  

 



93 
 

 
13C NMR (151 MHz, Chloroform-d) 

 

4-Ethyl 1-Methyl-2-Phenylsuccinate  
1H NMR (600 MHz, Chloroform-d)  
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13C NMR (151 MHz, Chloroform-d) 
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4-(tert-Butyl) 1-Methyl (R)-2-Phenylsuccinate  
1H NMR (600 MHz, Chloroform-d) 

 

 
13C NMR (151 MHz, Chloroform-d) 

 

Ethyl (E)-3-(4-chlorophenyl)-4-oxopent-2-enoate 
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1H NMR (600 MHz, Chloroform-d)  

 

 
13C NMR (151 MHz, Chloroform-d) 

 

Ethyl (Z)-3-(4-chlorophenyl)-4-oxopent-2-enoate 
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1H NMR (600 MHz, Chloroform-d) 

 

 

 
13C NMR (151 MHz, Chloroform-d) 
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Ethyl 3-(4-chlorophenyl)-4-oxopentanoate 
1H NMR (600 MHz, Chloroform-d) 

 
13C NMR (151 MHz, Chloroform-d) 
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Ethyl (Z)-3-(4-fluorophenyl)-4-oxopent-2-enoate  
1H NMR (600 MHz, Chloroform-d) 

 

 

13C NMR (126 MHz, Chloroform-d) 
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Ethyl (E)-3-(4-fluorophenyl)-4-oxopent-2-enoate  
1H NMR (600 MHz, Chloroform-d) 

 

 

 

 

13C NMR (151 MHz, Chloroform-d) 
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Ethyl 3-(4-Fluorophenyl)-4-oxopentanoate  
1H NMR (500 MHz, Chloroform-d) 

 

 

13C NMR (126 MHz, Chloroform-d) 
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Ethyl (E)-4-oxo-3-(3-(trifluoromethyl)phenyl)pent-2-enoate 
1H NMR (600 MHz, Chloroform-d) 

  

 
13C NMR (152 MHz, Chloroform-d) 
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Ethyl (Z)-4-oxo-3-(3-(trifluoromethyl)phenyl)pent-2-enoate 

1H NMR (600 MHz, Chloroform-d) 

 

 

13C NMR (152 MHz, Chloroform-d) 

 

Ethyl 4-oxo-3-(3-(trifluoromethyl)phenyl)pentanoate 
1H NMR (600 MHz, Chloroform-d) 
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13C NMR (152 MHz, Chloroform-d) 
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Methyl (E)-4-(4-Fluorophenyl)-4-oxo-2-phenylbut-2-enoate  
1H NMR (600 MHz, Chloroform-d) 

 

13C NMR (151 MHz, Chloroform-d) 
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Methyl (R)-4-(4-fluorophenyl)-4-oxo-2-phenylbutanoate 
1H NMR (600 MHz, Chloroform-d) 

 

13C NMR (151 MHz, Chloroform-d) 
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3.5.2. Representative HPLC and SFC Traces    

4-Ethyl 1-Methyl -2-Phenylsuccinate: SFC, AD-H column, 2.5% iPrOH, 2.5 mL/min, 220 nm. 

 

 

Racemate: tR= 2.09, 4.86 min (area = 50:50) 

 

Reaction with YERS-ER: tR= 2.07 min, >99% ee 

 

Starting Material: tR= 1.88 min 
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Racemate (By NP-HPLC OJH): tR= 11.69, 13.05 min (area = 50:50) 
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Diazocoupling reaction followed by reduction with Yers-ER: tR= 13.43min, >99% ee 

 

 

4-tert-Butyl 1-Methyl -2-Phenylsuccinate: SFC, AD-H column, 2.5% iPrOH, 2.5 mL/min, 220 

nm. 

 

 

 

 

 

 

Full conversion of SM required for chiral SFC analysis. 

Racemate: tR= 1.53, 3.29 min (area = 50:50) 
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Reaction with OPR1: tR= 1.57 min, >99% ee  

 

 

 

 

Ethyl 3-(4-Fluorophenyl)-4-oxopentanoate: SFC, AD-H column, 2.5% iPrOH, 2.5 mL/min, 220 

nm. 

 

 

Full conversion of SM required for chiral SFC analysis. 
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Racemate: tR= 1.79, 3.06 min (area = 50:50)  

 

Reaction with Yers-ER: tR= 1.69, 2.89 min, 87% ee  

 

Ethyl (R)-4-oxo-3-(3-(trifluoromethyl)phenyl)pentanoate: NP HPLC, OJ-H column, 95:5 

Hexanes: IPA, 0.8 mL/min, 220 nm 

 

Full conversion of SM required for chiral HPLC analysis. 

Racemate: tR= 10.347, 12.347 min (area = 50:50)  
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Reaction with Yers-ER: tR= 10.190, 11.950 min, 92% ee 

 

 

Diazocoupling reaction followed by reduction with Yers-ER: tR= 10.797, 12.747 min, 88% ee 
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Methyl (R)-4-(4-fluorophenyl)-4-oxo-2-phenylbutanoate: NP HPLC, OJ-H column, 95:5 

Hexanes : IPA, 0.8 mL/min, 220 nm. 

 

 

Full conversion of SM required for chiral HPLC analysis. 

Racemate: tR= 23.799, 29.397 min (area = 50:50)  

 

Reaction with OYE2: tR= 30.873 min, >99% ee 
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Diazocoupling reaction followed by reduction with OYE2: tR= 29.174 min, >99% ee. Other 

peaks are impurities.  

 

 

4-Benzyl 1-methyl (R)-2-phenylsuccinate: NP HPLC, OJ-H column, 95:5 Hexanes: IPA, 0.8 

mL/min, 220 nm. 

 

Full conversion of SM required for chiral HPLC analysis. 

Racemate: tR= 42.361, 48.399 min (area = 50:50)  
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Reaction with OPR1: tR= 47.557 min, >99% ee 

 

Tandem reaction: OJ-H column (250 mm), 90:10 Hexanes: IPA, 1 mL/min, 220 nm. 

Racemate: tR= 37.005, 43.485 min (area = 50:50)  

 

 

Diazocoupling reaction followed by reduction with OPR1: tR= 43.115 min, >99% ee. The 

product was confirmed by H NMR. 
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CHAPTER 4. Cooperative Asymmetric Reactions 

Combining Photocatalysis and Enzyme Catalysis 
 

4.1 Introduction 

Living organisms generate complex natural products from simple chemical precursors through 

simultaneous reactions that are catalyzed by mutually compatible enzymes. Many of these 

enzymes have been refined by evolution to be chemoselective, to react with high total turnover 

numbers, and to be highly selective. Enzymes, such as isomerases, work cooperatively with other 

enzymes, to generate products in yields and ee’s that cannot be obtained from the sequential 

reactions of the individual catalysts on their respective substrates 1,2.  In contrast, artificial organic 

total syntheses of natural products consist of sequential reactions with intermediate purification 

steps that causes these syntheses to be labor intensive, to generate large quantities of waste, and to 

generate products in low overall yields. However, chemical catalysts enable valuable 

transformations that have no biological counterpart. But the selectivity of chemical catalysts is 

often lower than that of enzymes. 

To combine the advantages of the biological systems with the reactivity of artificial 

chemical catalysts, chemists have devised sequential, concurrent, and cooperative 

chemoenzymatic reactions that combine enzymatic and artificial catalysts (Figure 4.1).3-11 

Sequential Chemoenzymatic Reaction is a chemoenzymatic reaction that consists of at least 

two distinct steps that do not occur simultaneously. A solvent exchange may be required, and/or a 

catalyst, reagent, or enzyme may be added to the reaction mixture without intermediate purification 
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step. Similar (and sometimes superior) product yields and ee’s of products can usually be achieved 

when the two reactions are conducted in different vessels.   

 

Figure 4.1. Schemes for different types of chemoenzymatic reactions  

Concurrent chemoenzymatic reaction is a chemoenzymatic reaction that includes at least 

one catalyst and at least one enzyme that simultaneously catalyze two reactions in the same 

medium (biphasic and heterogeneous systems are included). Mutual catalyst deactivation must not 

occur for these systems to operate. Similar (and sometimes superior) yields and ee’s of products 

can usually be achieved if the two reactions are conducted in a sequential manner or in different 

vessels.  

Cooperative chemoenzymatic reaction is a chemoenzymatic reaction that includes at least 

one catalyst and at least one enzyme that simultaneously catalyze two reactions in the same 

medium (biphasic and heterogeneous systems are included). The catalysts in these systems must 

operate concurrently and be mutually compatible. Cooperative chemoenzymatic processes 

generate products in yield or selectivities or both that cannot be obtained from the sequential 

reactions of the individual catalytic reactions. This unique feature of cooperative processes makes 
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them the most valuable type of chemoenzymatic process.  However, cooperative chemoenzymatic 

processes are difficult to develop because chemical and enzymatic catalysts generally operate in 

different media at different temperatures and can deactivate each other. As a result, the scope of 

cooperative chemoenzymatic processes that have been reported over the last 30 years has been 

narrow 9,11,12.  

The majority of cooperative chemoenzymatic processes that have been reported over the 

last 30 years can be divided into two categories: 1) chemoenzymatic dynamic kinetic resolutions 

of alcohols and amines, and 2) enzymatic reactions requiring the simultaneous regeneration of a 

cofactor 6,7,13. The first category of reactions has been explored extensively because of the synthetic 

utility of the products and because the esterases employed in these reactions are unusually stable 

in organic solvent at elevated temperatures. The second category of reactions has been studied 

because of the need to recycle or replace expensive or unstable biological cofactors with 

inexpensive terminal oxidants or reductants. New approaches to the development of 

chemoenzymatic reactions are needed to enable valuable chemical transformations beyond kinetic 

resolutions and cofactor regenerations. 

Chemoenzymatic transformations of alkenes would be valuable because alkenes are 

common reactants in chemical synthesis, and enantioselective reactions of alkenes are the most 

practiced class of enantioselective catalytic processes. Ene-reductases react with α,β-unsaturated 

carbonyl compounds and nitriles to generate saturated products with high enantioselectivity. 

However, these enzymes often react with just one E or Z isomer of an alkene 14. The limitations of 

my previous work (Chapter 3) on a (non-cooperative) sequential one-pot reaction in which a 

rhodium-catalyzed diazocoupling reaction generated alkenes which were reduced by ene-

reductases to provide enantioenriched 2-substituted acid diesters, inspired efforts to develop a 
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conceptually new cooperative system. In cases in which the diastereoselectivity of the diazo-

coupling reaction was low, and the ene-reductase only selectively reduced one of the isomers of 

substrate, the overall process was low yielding. Many of the most widely employed synthetic 

methods to form alkenes, including modern catalytic processes, like olefin metathesis, and 

traditional methods, like olefinations of carbonyl compounds, yield E/Z mixtures that must be 

separated before catalytic reduction to achieve high enantioselectivity. Other methods selectively 

generate an isomer of an alkene that is unreactive in the presence of common ene-reductases. Thus, 

we envisioned a chemoenzymatic reduction of olefin mixtures to highly enantioenriched products 

by combining a chemical catalyst to effect alkene isomerization and an ene-reductase to reduce 

one of the alkene isomers of the mixture. However, because thermal alkene isomerization is often 

a high-temperature process that is incompatible with enzymes, we considered the potential of a 

photocatalytic approach for the isomerization of alkenes. Here, we report a cooperative 

chemoenzymatic reaction that combines the photoisomerization of alkenes with an enzymatic 

reduction of one isomer of a mixture of E and Z alkenes (or pure Z alkenes). This system enables 

the stereoconvergent reduction of alkenes to form enantioenriched carbonyl compounds and 

nitriles (Figure 4.2) and shows the value of combining a photocatalyst with an enzyme catalyst to 

achieve cooperative processes beyond cofactor regeneration. 

 

Figure 4.2. Combining of photocatalytic isomerization and enzymatic reduction of alkenes.  
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4.2 Results and Discussion  

To develop a stereoconvergent enzymatic reduction of an isomeric mixture of alkenes, initial 

reactions were conducted with the model substrate 2-phenylbut-2-enedioic acid dimethyl ester (1a). 

YersER, an ene-reductase isolated from Yersinia bercovieri, exclusively reduces the E isomer of 

2-phenylbut-2-enedioic acid dimethyl ester ((E)-1a) to dimethyl 2-phenylsuccinate (2a) in high 

yields with excellent ee’s in the presence of a glucose dehydrogenase (GDH) enzyme for cofactor 

regeneration. To develop a stereoconvergent reduction reaction, a catalyst for the E/Z 

isomerization of olefins that is compatible with ene-reductases needed to be identified. An 

appropriate catalyst would 1) operate in aqueous solution at ambient temperature, 2) isomerize 

alkenes at rates that significantly exceed the rates of enzymatic reduction, 3) remain active in the 

presence of ene-reductases, substrates, and products in the reaction mixture, 4) isomerize olefins 

at the low substrate concentrations required for enzymatic reduction, and 5) generate the more 

reactive isomer of a substrate from the less reactive isomer. The isomerization catalyst must also 

6) be mutually compatible with the ene-reductases, 7) be mutually compatible with a glucose 

dehydrogenase NADPH regeneration system, 8) and not racemize the product. 

4.2.1. Development of Conditions for Cooperative Reaction 

Negligible isomerization was observed in our initial attempts to isomerize (E)-1a or (Z)-1b in the 

presence of various metal salts and organic catalysts in Tris buffer at ambient temperature (Data 

were not shown). Inspired by the work of Gilmour et al. and Weaver et al., we considered that 

photocatalytic isomerization of alkenes 15-18 could be combined with enzymatic reduction to create 

the envisioned cooperative chemoenzymatic process. Gilmour et al. reported the 

photoisomerization of α,β-unsaturated monoesters with riboflavin in the presence of UV (402 nm) 
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light in acetonitrile 15. This reaction is proposed to proceed via preferential singlet or triplet energy 

transfer from a photocatalyst to one alkene isomer.  

We began our investigation by assessing the photoisomerization of (Z)-1a in solvent 

mixtures appropriate for catalytic function of ene-reductases 19. We found that limited 

isomerization of (Z)-1a was observed in the semi-aqueous media (1:9 DMSO:Tris buffer) in the 

presence of blue light (450-470 nm) and in the absence of a photocatalyst (Figure 4.3). However, 

extensive isomerization of (Z)-1a was observed when the reaction was conducted with riboflavin 

in the presence of blue light. A photostationary state (PS) consisting of a 9:1 ration of (E) to (Z) 1a 

was obtained after (Z)-1a was irradiated with blue light for 24 h in the presence of 5% riboflavin 

(Figure 4.3). However, only 18% yields of 2a were obtained when YersER and riboflavin were 

employed concurrently in the presence of the blue light. This result demonstrated the importance 

of establishing compatibility between photocatalyst and enzymes.  
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Figure 4.3. Isomerization and Reduction of (Z)-1a in the Presence of a Series of Photocatalysts 

and Blue Light.  aPS is the % of (E)-1a present after (Z)-1a was irradiated with blue light in the 

presence of 5% photocatalyst for 24 h. The PS values for experiments labeled “None*” and “None” 

in have been corrected for initial trace quantities of (E)-1a. Experiments labeled “None*” were 

conducted in the presence of ambient light.  Ribo: Riboflavin, FMN: Flavin Mononucleotide, FAD: 

Flavin Adenine Dinucleotide, EosY: Eosin Y, Fluor: Fluorescein, RuBipy: Ru(Bipy)3Cl2, RuBpz: 

[Ru(Bpz)3](PF6)2, Ir-80: CAS 808142-80-5, Ir-67: CAS 676525-77-2, Ir-16: CAS 1607469-49-7, 

Ac: Acridinium Salt CAS - 674783-97-2.  

Before we evaluated the compatibility between various photocatalysts and ERs, we 

investigated the effects of DMSO concentration on the rate of alkene isomerization and enzymatic 

reduction. Higher (E)-1a:(Z)-1b ratios were obtained when the photoisomerization was conducted 

in semi-aqueous media with lower DMSO concentration within 15 minutes (Figure 4.4a). 

Isomerization rate in 5% DMSO was comparable with that in 10% DMSO and dropped 

tremendously when DMSO increased to 20%. The standard substrate cyclohexen-1-one of ERs 

was used to evaluate the catalytic activity of YersER. The depletion rate of reducing cofactor 

NADPH indicates the reducing rate of cyclohexen-1-one by YersER. The enzymatic activity will 
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be tremendously inhibited when DMSO more than 10% (Figure 4.4b). We chose 10% DMSO in 

Tris buffer as final solution to improve the solubility of substrate in aqueous solution.  

 

Figure 4.4. The effect of DMSO concentration on a) alkene photoisomerization rate and b) 

enzymatic reducing rate. *Control: the same reaction system without cyclohexen-1-one added. 

NAPDH has strongest absorption at 340nm. 2-3 minutes lag in NADPH depletion may be due to 

the substrate-enzyme binding process.  

 

We hypothesized that competitive binding of riboflavin to the flavin-binding site of YersER 

led to the inhibition of enzymatic activity 20. Thus, we sought alternative photocatalysts that would 

lead to isomerization of (Z)-1a without inhibiting YersER or the cofactor regeneration system. The 

E/Z isomerization of (Z)-1a was evaluated in the presence of a series of organometallic and organic 

photocatalysts in 1:9 DMSO:50 mM Tris buffer, and the PS for each combination is recorded in 

Fig 3.3. Greater than 40% conversion of (Z)-1a to (E)-1a was observed when the substrate was 

irradiated in the presence of the majority of the photocatalysts, and the highest E/Z ratios exceeded 

8:1 (Figure 4.3). Increasing catalyst loading and increasing light intensity enhanced the rate of 

photoisomerization of (Z)-1a (Figure 4.5 and Figure 4.6).  
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Figure 4.5. The effect of photocatalyst loading on the %(E)-1a at photostationary state. a) 

photoisomerization of (Z)-1a by Ir-16 and b) FMN. (Data provided by Zachary C. Litman)  

 

Figure 4.6. Light intensity (distance of reaction from light source) versus % (E)-1a After 15 min 

(Data provided by Zachary C. Litman) 

 

Having identified a series of photocatalysts for the isomerization of (Z)-1a to (E)-1a in a 

semi-aqueous medium, we evaluated the “toxicity effect” of various photocatalysts on enzymatic 

system by reducing (E)-1a with YersER in the presence of photocatalysts with or without blue 

light. Riboflavin, Fluorescent and EosinY inhibited the enzymatic activity tremendously (Figure 

4.7). Although ruthenium catalysts did not jeopardize the enzymatic function, they greatly 

inhibited the enzymatic activity in the presence of the blue light (Figure 4.7). 
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Figure 4.7. Enzymatic reduction of (E)-1a (more reactive isomer) in the presence of different 

photocatalysts with or without blue light 

  

We further evaluated the concurrent cooperative photoisomerization and enzymatic 

reduction of (Z)-1a with the same photocatalysts (Figure 4.3). Moderate to high yields of 2a were 

obtained when a range of catalysts were used in the cooperative process. The highest conversions 

and yields were obtained when the cooperative reaction was conducted with 5% of flavin 

mononucleotide (FMN) or 1% of the cationic iridium(III) complexes [Ir(dmppy)2(dtbbpy)]PF6 (Ir-

16), [Ir(dtbbpy)(ppy)2]PF6 (Ir-67), and [Ir(dtbppy)2(dtbbpy)]PF6 (Ir-80). High isomerization rate 

was achieved by the same loading of Ir-16 compared with FMN (Figure 4.8)  
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Figure 4.8. Photoisomerization of (Z)-1a with 5% FMN or 1% Ir-16 

4.2.2. Substrates Scope  

The high yields and ee’s obtained from the cooperative reduction of the model diester (Z)-

1a encouraged us to investigate the cooperative reduction of other aryl diesters. We identified 

enzymes that preferentially reduce the E isomers of diesters 1b-1f in Figure 4.9 in high yields and 

ee’s (Table 4.2). These enzymes were then employed in the cooperative reduction of the Z isomers 

of 1b-1d with Ir-16 or FMN as a photocatalyst in the presence of blue light. High yields of product 

were obtained from the cooperative isomerization and reduction of each of the diesters, including 

those containing electron-rich ((Z)-1b) and electron-poor aryl groups ((Z)-1d) with either FMN or 

Ir-16 as photocatalysts and the enzymes YersER, XenB, or OPR1 (Table 4.2). The yields and ee’s 

of the products obtained from the cooperative reductions of the Z isomers of 1b-1d were equivalent 

to those obtained from the enzymatic reduction of the E isomers of substrates 1b-1d in the absence 

of the photocatalyst. This result implies that the cooperative reduction of any E/Z mixture of these 

alkenes should give high yields and ee’s of reduced products. This feature of the cooperative 

system was crucial for obtaining high yields and ee’s for the reduction of 1e and 1f, which were 

synthesized as inseparable mixtures of E and Z alkenes. The cooperative chemoenzymatic 



131 
 

reduction of a 62:38 mixture of E and Z isomers of 1e afforded 2e in 74% yield and >99% ee, and 

the cooperative reduction of a 61:39 mixture of E and Z isomers of 1f afforded 2f in 94% yield and 

91% ee. The yields and ee’s from the cooperative reduction of (E/Z)-1e and (E/Z)-1f indicate that 

the reactions were stereoconvergent. The enzymatic reductions of 1e and 1f in the absence of a 

photocatalyst and light formed the reduced products in only 58% and 60% yield, reflecting the 

reaction with only the E isomer of the E/Z mixture (Table 4.1). 

To determine if the cooperative reaction would give high yields and high 

enantioselectivities with alkenes other than diesters, the cooperative reduction of unsaturated 

compounds containing diverse combinations of functional groups was evaluated. The ene-

reductases OPR1, TOYE, OYE2, YersER, and SYE1 preferentially reduced the E isomers of 

alkenes 1g-1o to form 2g-2o in high yields and ee’s. The cooperative reactions of the Z isomers of 

1g-1o were then conducted with Ir-16 or FMN in the presence of blue light. The results from the 

combination of photocatalyst and enzyme that generated the products in the highest yields and ee’s 

from the Z isomers of 1g-1o are shown in (Table 4.2). High yields and ee’s were obtained for the 

cooperative reduction of β-cyano-α,β-unsaturated ester (Z)-1h,  α-cyano-α,β-unsaturated esters 

(Z)-1i and (Z)-1j, and amidocyanate (Z)-1k. High yields and ee’s were also obtained from the 

reactions of cyanoketone (Z)-1l, β-keto-α,β-unsaturated esters (Z)-1m and (Z)-1n, and α-keto-α,β-

unsaturated ester (Z)-1o. The cooperative reductions of amidoacrylate (Z)-1g and amidocyanate 

(Z)-1k are noteworthy because enzymatic reductions of alkenes containing Weinbreb amides have 

not been reported to our knowledge. Control experiments revealed that (Z)-1l, (Z)-1m, and (Z)-1n 

undergo enzymatic reduction to generate products in high yields and ee’s in the presence of blue 

light but in the absence of an added photocatalyst (Table 4.2). In these cases, the alkenes (1l-1n) 

isomerize in the presence of blue light alone (Figure 4.10).  
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Figure 4.9. Scope of the cooperative photoisomerization and reduction and comparison to 

sequential reactions.  

 

 

Figure 4.10. Photoisomerization of alkenes under different conditions. Red bar indicated the 

reactions conducted with 5% FMN, 50 mM Tris buffer at pH 7.5, and 5% DMSO at RT in the 

presence of blue light. Orange bar indicated the reactions conducted with 1% Ir-16, 50 mM Tris 

buffer at pH 7.5, and 5% DMSO at RT in the presence of blue light. Blue bar indicated reactions 

conducted with 50 mM Tris buffer at pH 7.5, and 5% DMSO at RT in the presence of blue light. 

Grey bar indicated reactions conducted with 50 mM Tris buffer at pH 7.5, and 5% DMSO at RT 

in the presence of ambient light. (The detailed of experimental setting and values are presented in 

section 3.4.6)  
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Table 4.1. Enantioselective enzymatic reduction of substrates 1a to 1p 

 

Entry Substrate Enzyme % Conversiona % Yielda % eeb 

1 E-1a YersER 100% 88% >99% 

2 Z-1a YersER 0% 0% - 

3 E-1b YersER 100% 87% >99% 

4 Z-1b YersER 0% 0% - 

5 E-1c XenB 90% 82% >99% 

6 Z-1c XenB 0% 0% - 

7 E-1d xenB 98% 92% 93% 

8 Z-1d xenB 0% 0% - 

9 
(62/38) 

(E/Z)-1e 
OPR1 67% 58% >99% 

10 
(61/39) 

(E/Z)-1f 
XenB 60% 60% 88% 

11 E-1g OPR1 100% 92% >99% 

12 Z-1g OPR1 0% 0% - 

13 E-1h TOYE 98% 93% >99% 

14 Z-1h TOYE 0% 0% - 

15 E-1i OYE2 100% 98% 94% 

16 Z-1i OYE2 7% 3% - 

17 E-1j OYE2 100% 94% 76% 

18 Z-1j OYE2 0% 0% - 

19 E-1k YersER 100% 87% 99% 

20 Z-1k YersER 10% 6% - 

21 E-1l OYE2 100% 98% >99% 

22 Z-1l OYE2 0% 0% - 

23 E-1m OPR1 100% 90% >99% 

24 Z-1m OPR1 30% 26% - 

25 E-1n SYE1 100% 96% 89% 

26 Z-1n SYE1 0% 6% - 

27 E-1o YersER 100% 80% 98% 

28 Z-1o YersER 0% 0% - 

29 Z-1p SYE1 100% 78% >99% 

30 E-1p YersER 14% 14% - 

Standard conditions: reactions were conducted with 0.5% ene-reductase, 1 U/mL GDH, 25 mM glucose, 0.2 

mM NADP+, 50 mM Tris buffer at pH 7.5, and 10% DMSO at RT. a Year and conversion determined by GC. 
bee determined by chiral HPLC.  
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Table 4.2. Cooperative photoisomerization and reduction of substrates 1a to 1p 

 

Entry Substrate Type Enzyme Photocat. PS (%E)c % Conversiona % Yielda % eeb 

1 Z-1a I YersER - - 8% 4% - 

2 Z-1a II YersER 5% FMN 94% 99% 70% >99% 

3 Z-1a III YersER 1% Ir-16 78% 88% 87% >99% 

4 
(50/50) 
(E/Z)-1a 

II YersER 5% FMN - 99% 86% >99% 

5 
(50/50) 
(E/Z)-1a 

III YersER 1% Ir-16 - 96% 89% >99% 

6 Z-1b I YersER - - 7% 7% - 

7 Z-1b II YersER 5% FMN 61% 72% 63% 92% 

8 Z-1b III YersER 1% Ir-16 69% 89% 89% >99% 

9 Z-1c I XenB - - 15% 14% - 

10 Z-1c II XenB 5% FMN 92% 58% 39% - 

11 Z-1c III XenB 1% Ir-16 68% 89% 89% >99% 

12 Z-1d I XenB - - 12% 11% - 

13 Z-1d II XenB 5% FMN 94% 70% 58% - 

14 Z-1d III XenB 1% Ir-16 72% 94% 82% >99% 

15 
(62/38) 
(E/Z)-1e 

I OPR1 - - 73% 56% - 

16 
(62/38) 
(E/Z)-1e 

II OPR1 5% FMN 93% 72% 60% >99% 

17 
(62/38) 
(E/Z)-1e 

III OPR1 1% Ir-16 67% 98% 74% >99% 

18 
(61/39) 
(E/Z)-1f 

I XenB - - 63% 63% - 
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Table 4.2. cont.  

19 
(61/39) 
(E/Z)-1f 

II XenB 5% FMN 96% 78% 60% 87% 

20 
(61/39) 
(E/Z)-1f 

III XenB 1% Ir-16 81% 
94% 

 
94% 91% 

21 Z-1g I OPR1 - - 9% 9% - 

22 Z-1g II OPR1 5% FMN 97% 28% 21% - 

23 Z-1g III OPR1 1% Ir-16 88% 98% 82% >99% 

24 Z-1h I TOYE* - - 7% 7% - 

25 Z-1h II TOYE* 1% FMN 69% 99% 98% >99% 

26 Z-1h III TOYE* 1% Ir-16 68% 88% 87% >99% 

27 Z-1i I OYE2* - - 10% 5% - 

28 Z-1i II OYE2* 1% FMN 46% 100% 94% 99% 

29 Z-1i III OYE2* 1% Ir-16 61% 98% 92% 98% 

30 
(50/50) 
(E/Z)-1i 

II OYE2* 1% FMN - 99% 94% 98% 

31 (50/50) 
(E/Z)-1i 

III OYE2* 1% Ir-16 - 99% 92% 98% 

32 Z-1j I OYE2 - - 3% 3% - 

33 Z-1j II OYE2 5% FMN 3% 78% 60% 90% 

34 Z-1j III OYE2 5% Ir-16 9% 92% 80% 92% 

35 Z-1k I YersER* - - 26% 20% - 

36 Z-1k II YersER* 5% FMN 71% 100% 82% 99% 

37 Z-1k III YersER* 1% Ir-16 70% 100% 96% 99% 

38 Z-1l I OYE2 - 89% 100% 95% >99% 

39 Z-1l II OYE2 5% FMN 87% 94% 46% - 

40 Z-1l III OYE2 1% Ir-16 73% 99% 86% - 

41 Z-1m I OPR1 - 92% 100% 80% >99% 

42 Z-1m II OPR1 5% FMN 82% 100% 73% 95% 

44 Z-1m III OPR1 1% Ir-16 83% 100% 81% >99% 

45 Z-1n I SYE1 - 77% 78% 65% - 

46 Z-1n II SYE1 5% FMN 80% 39% 3% 76% 

47 Z-1n III SYE1 1% Ir-16 78% 65% 60% 88% 

48 Z-1o I YersER - - 24% 20% - 

49 Z-1o II YersER 5% FMN 89% 100% 90% 86% 

50 Z-1o III YersER 1% Ir-16 76% 100% 92% 96% 

51 E-1p Id OYE2 - - 48% 8% - 

52 E-1p IId OYE2 5% FMN 14% 89% 22% - 

53 E-1p IIId OYE2 1% Ir-16 14% 98% 74% >99% 

Type I reaction: reactions were conducted with 0.5% ene-reductase, 1 U/mL GDH, 25 mM glucose, 0.2 mM NADP+, 50 mM Tris buffer at pH 7.5, and 10% DMSO at RT in the 

presence of blue light. Type II reaction: reactions were conducted with 0.5% ene-reductase, 1 U/mL GDH, 5% FMN, 25 mM glucose, 0.2 mM NADP+, 50 mM Tris buffer at pH 

7.5, and 10% DMSO at RT in the presence of blue light. Type III reaction: Type II reaction: reactions were conducted with 0.5% ene-reductase, 1 U/mL GDH, 1% Ir-16, 25 mM 

glucose, 0.2 mM NADP+, 50 mM Tris buffer at pH 7.5, and 10% DMSO at RT in the presence of blue light. a Year and conversion determined by GC. bee determined by chiral 

HPLC. c PS is the % E of a substrate present after the Z isomer (or E/Z isomer mixture) was irradiated with light in the presence of either 5% FMN or 1% Ir-16 for 24 h. In the 

case of 1p, (E)-1p was irradiated with blue light in the presence of FMN and Ir-16 for 24 h, and the % of (Z)-1p was determined. dIsomers used in these experiments different 

from those depicted in formula. *conducted with 0.2% ene-reductase.  
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4.2.3. Cooperative Concurrent Reaction Versus Sequential Reaction  

The cooperative enzymatic reductions of alkenes 1i and 1j shown in Fig. 3.11 illustrate the benefits 

of a cooperative system over two sequential reactions. The photoisomerization of (Z)-1i and (Z)-

1j with Ir-16 or FMN result in E/Z mixtures in which the less reactive Z isomer is the major 

component. As a result, low yields were obtained from the sequential isomerization and reduction 

of (Z)-1i and (Z)-1j. The ee of 2i obtained from the sequential isomerization and reduction of (Z)-

1i was slightly lower than the ee obtained from the enzymatic reduction of the pure, more reactive 

isomer (E)-1i, and this difference likely results from the slow reduction of the Z isomer of 1i after 

rapid consumption of the E isomer during the second stage of the sequential process Figure 4.11. 

In contrast, the simultaneous, cooperative reduction of (Z)-1i and (Z)-1j generated products 2i and 

2j in both high yields and ee’s.  

 

Figure 4.11. Comparison of sequential (1) vs. cooperative reduction (2) of cyanoacrylates 1i and 

1j under standard conditions. 
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An enzyme that selectively reduces the E isomer of trifluoromethylcyanate 1p in high yield and 

ee could not be identified, but OYE2 selectively reduces the Z isomer of 1p in high yield and ee 

(Table 4.1). To determine if a cooperative reaction could convert (E)-1p to 2p in high yield and ee, 

the ability of (E)-1p to undergo photoisomerization in the presence of Ir-16 and blue light was 

evaluated. An 86:14 ratio of the E/Z isomers of 1p was established after 24 h of irradiation with 

blue light in the presence of Ir-16. Although the photostationary state of 1p favors the less reactive 

E isomer, the cooperative reaction of (E)-1p to 2p occurred in high yield and ee with Ir-16 as the 

photocatalyst and OYE2 as the reductase. This example illustrates an important benefit of the 

cooperative chemoenzymatic reaction: the system enables either the isomerization of a Z alkene 

with simultaneous enzymatic reduction of the E isomer or the isomerization of an E alkene with 

simultaneous enzymatic reduction of the Z isomer. The conversion of (E)-1p to 2p is also 

noteworthy because enzymatic reduction to generate a product containing a stereogenic center 

substituted with a trifluoromethyl group is rare.  

4.2.4. Derivatization of Synthesized Enantioenriched Products 

To demonstrate the synthetic value of this new method, preparative scale cooperative reactions 

were conducted with 1% Ir-16 and 40-60 mg of (Z)-1a, a 62:38 mixture of the E and Z isomers of  

1e, (Z)-1g, (Z)-1h, and (Z)-1o. Product 2a was isolated in 87% yield and >99% ee, product 2e was 

isolated in 79% yield and >99% ee, product 2g was isolated in 71% yield and >99% ee, product 

2h was isolated in 96% yield and 92% ee, and product 2o was isolated in 79% yield and >99% ee 

(Table 4.3).  
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Table 4.3. Summary of prep scale cooperative reactions 

 

Entry Substrate Enzyme Time % Conversiona % Yielda % eeb 

1 Z-1a YersER 7 h 100% 87% >99% 

2 
(62/38) 
(E/Z)-1e 

OPR1c 
24h 

96% 79% >99% 

3 Z-1g OPR1 24h 92% 71% >99% 

4 Z-1h TOYE 24h 100% 96% 92% 

5 Z-1o YersER 24h 98% 79% >99% 

. a Isolated yield. bee determined by chiral HPLC. c Conducted with 0.2% OPR1.  

 

The enantioenriched compounds that were obtained from the cooperative isomerization 

and enzymatic reduction system can be transformed into a variety of biologically active molecules 

and valuable synthetic intermediates (Fig. 3.12). For example, the selective hydrolysis of the tert-

butyl ester in compound 2e followed by a Curtius rearrangement yielded 3e, a β2-amino ester. The 

β-amino ester was isolated in 90% yield without significant erosion of enantiomeric excess (98% 

ee). The selective reduction of the Weinreb amide in compound 2g with Schwartz’s reagent yielded 

methyl 4-oxo-2-phenylbutanoate (3g) in 74% isolated yield and 99% ee. This compound is an 

intermediate in the synthesis of protein kinase inhibitors and microsomal triglyceride transfer 

protein inhibitors.21,22 Acid-catalyzed hydrolysis of the nitrile in 2p yielded 4,4,4-trifluoro-3-

phenylbutanoic acid (3p) in 96% yield and >99% ee. This versatile synthetic intermediate has 

previously been employed in the synthesis of inhibitors of beta amyloid production.23,24 Reduction 

of 2a with lithium aluminum hydride formed 2-phenylbutane-1,4-diol (3a) in 93% yield and >99% 

ee. This diol is a synthetic precursor to inhibitors of matrix metalloproteases.25 Other products of 
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the cooperative reactions are known precursors to biologically active compounds. For example, 2i 

and 2j have been converted previously to -amino acids (including balcofen and phenibut) and -

lactams,26 2h has been converted into a 2 amino ester and a 2 lactam,27 and 2m has been converted 

into calyxolanes, which are cyclic ether natural products.28 Thus, the products of the cooperative 

chemoenzymatic reduction are precursors to valuable synthetic intermediates by both newly 

disclosed and previously reported transformations. (Derivatizations were performed by Zachary 

Litman. The detailed steps were presented in SI of publication: Nature, volume 560, pages355–

359 (2018)).  

 

Figure 4.12. Derivatization of enantioenriched products.  

 

A short summary of the previously reported and newly disclosed transformations of the 

products of the chemoenzymatic cooperative reduction of alkenes are follows. (1) Conversion 2a 

to 3a: 4.0 equiv LiAlH4, THF, 5 h, RT. (2) Conversion of 2e to 3e: i. 1:1 TFA:DCM, 3 h, RT. ii. 
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1.7 equiv NEt3, DCE, and 1.5 equiv DPPA, 65 ºC, 2 h.  iii. 0.10 equiv of Mo(O)2Cl2, t-BuOH, 65 

ºC, 1 h 10 min. (3) Conversion of 2g to 3g: 1.4 equiv Cp2Zr(H)Cl, 1.0 equiv ZrF4, 1:1 THF:DCM, 

3 h, RT. (4) Conversion of 2h to 3h was previously reported.27 (5) Conversion of 2i to 3i was 

previously reported.26 (6) Conversion of 2j to 3j was previously reported.26 (7) Conversion of 2m 

to 3m was previously reported.28 (8) Conversion of 2p to 3p: 1:1 H2O:H2SO4, 6 h, 120 ºC.  

4.3 Conclusion  

The combination of a photocatalytic process and an enzymatic reaction enables transformations 

that combine the reactivity of chemical catalysts with the selectivity of enzymes. Two features of 

photocatalytic reactions make them, in general, suitable for chemoenzymatic processes: 1) 

photochemical reactions typically occur at or near room temperature, making them compatible 

with thermal requirements of enzymatic systems, and 2) photocatalysts often react by mechanisms, 

such as outer-sphere electron transfer or energy transfer, that involve intermediates that are stable 

to water and the functional groups in proteins. These considerations, in combination with the 

renewed interest in photocatalysis and the rapidly advancing tools of molecular biology, should 

create opportunities for the development of a wide range of new cooperative chemoenzymatic 

transformations.  

4.4 Experimental procedures  

4.4.1. General Materials   

All air-sensitive manipulations were conducted in a nitrogen-filled glovebox or by standard 

Schlenk technique under nitrogen. All glassware was heated in an oven and cooled under an inert 

atmosphere prior to use. Vials (4 mL) were used as reaction vessels and were sealed with Teflon-

lined-lined caps. Products were visualized on TLC plates with an anisaldehyde stain and a heat 
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gun. 1H and 13C NMR spectra were acquired on 300 MHz, 400 MHz, 500 MHz, or 600 MHz 

Bruker instruments at the University of California. 19F NMR spectra were obtained at 376 MHz 

on a 400 MHz instrument – chemical shifts relative to CFCl3 at 0 ppm. NMR spectra were 

processed with MestReNova 5.0 (Mestrelab Research SL). Chemical shifts are reported in ppm 

and referenced to residual solvent peaks (CHCl3 in CDCl3: 7.26 ppm for 1H and 77.16 ppm for 

13C). Coupling constants are reported in hertz. Flash chromatography was performed with a 

Teledyne ISCO CombiFlash RF 200 with Gold-Top silica. E/Z ratios were determined by 1H NMR 

spectroscopy and corrected values obtained from GC analysis. High-resolution mass spectra were 

obtained via the Micro-Mass/Analytical Facility operated by the College of Chemistry, University 

of California, Berkeley. Organometallic photocatalysts were purchased from Aspira Scientific. 

Organic photocatalysts were purchased from Sigma Aldrich. 

Chiral HPLC analyses were performed 3 instruments: HPLC1 - GL science GL-7400 

instrument using Daicel Chiracel columns at 35 ˚C, HPLC2 - Agilent 1100 series, HPLC3 - 

Shimadzu Prominence HLPC system with SPD-M20A UV/VIS Photodiode array detector. A 

mixture of HPLC-grade hexanes and isopropanol were used as eluents. Chiral SFC analyses were 

performed on a Jasco instrument using Daicel Chiracel columns at 40 ˚C and HPLC-grade 

isopropanol as the co-eluent. Optical rotations were measured on Perkin Elmer 241 and JASCO 

P-1030 polarimeters equipped with sodium vapor lamps at 589 nm and sample concentrations are 

denoted as c. (in g/100 mL). 

E. coli DH5α cells were purchased from the Cell Media Facility at the University of Illinois 

at Urbana-Champaign (Urbana, IL). Escherichia coli BL21 (DE3) and plasmid pET28a+ were 

purchased from Novagen (Madison, WI). Oligonucleotides for cloning were purchased from 

Integrated DNA Technologies (IDT) (Coralville, IO). Restriction enzymes were purchased from 
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New England Biolabs (Ipswich, MA). NADPH was purchased from Enzo Life Sciences 

(Farmingdale, NY). NADP+ was purchased from Roche Diagnostics (Indianapolis, IN). Isopropyl-

β-D-thiogalactoside (IPTG) was purchased from GoldBio (St. Louis, MO). The strain Bacillus 

megaterium (B14308) was obtained from the NRRL culture collection (Peoria, IL).  
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4.4.2. Photocatalyst Abbreviations, CAS Numbers, and Structures  
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4.4.3. Experimental Apparatus   

Blue Light Source (Blue LED Lamp): 34 W Kessil KSH150B Blue LED Grow Light with cooling 

fan. Unless otherwise indicated, all reactions requiring blue light were conducted with the Kessil 

blue lamp positioned 20 cm from the base of the stir plate. Both 4 mL and 20 mL vials were placed 

horizontally on the stir-plate (Figure 4.13). http://kessil.com/photoredox/Products.php 

  

Figure 4.13. Blue LED Light Setup and Emission Spectrum of Blue LED Light 

 

4.4.4. Cloning, Expression and Purification of Enzymes 

YersER  

The YersER employed in this research was originally isolated from Yersinia bercovieri. The 

codon-optimized gene was synthesized by IDT and cloned in pET28a with N-terminal His-tag. 

For expression of YersER, a BL21 colony harboring pET28a-YersER was inoculated in 5 mL LB 

containing 100 µg/mL ampicillin and grown overnight at 37 ºC. This overnight culture was used 

to inoculate 500 mL of TB medium containing 100 µg/mL ampicillin, which was grown at 37 ºC 

until an OD of ~0.6 was reached. Protein expression was subsequently induced with the addition 

of 0.3 mM IPTG. The induced culture was placed at 25 ºC, 250 rpm, for 16 h for protein production. 
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YersER Sequence: 

MKTAKLFSPLKVGALTLPNRVFMAPLTRLRSIEPGDIPTPLMAEYYRQRASAGLIITEAT

QISFQAKGYAGAPGLHTQEQLNAWKKITQAVHEEGGHIAVQLWHVGRISHSSLQPGQQ

APVAPSAIAADTRTTVRDENGAWVRVPCSTPRALETEEIPGIINDFRQATANAREAGFDY

IELHAAHGYLLHQFMSPASNQRTDQYGGSIENRTRLTLEVVDATAAQWSAERIGIRISPL

GPFNGLDNGEDQEEAALYLIDELNKRHIAYLHISEPDWAGGKPYSEAFRDAVRARFKGV

IIGAGAYTAEKAEELIEKGFIDAVAFGRSYISNPDLVARLQQHAPLNEPDGETFYGGGAK

GYTDYPTL 

 

OYE1/OYE2/OYE3  

The OYE1/2/3 ene-reductases employed in this research were originally isolated from baker’s 

yeast. The plasmids pET30a-OYE1/2/3 with N-terminal His tag were gifts from Dr. Francesco G. 

Gatti’s lab. The plasmids were transformed into E. coli BL21. For expression of OYE1/2/3, BL21 

colonies harboring pET30a-OYE1/2/3 respectively were inoculated in 5 mL LB containing 50 

µg/mL kanamycin and grown overnight at 37 ºC. These overnight cultures were used to inoculate 

500 mL of LB medium containing 50 µg/mL kanamycin, which were grown at 37 ºC until ODs of 

~0.6 were reached. Protein expression was subsequently induced with the addition of 0.1 mM 

IPTG. The induced cultures were placed at 25 ºC, 250 rpm, for 16 h for protein production.  

OYE1 Sequence: 

MSFVKDFKPQALGDTNLFKPIKIGNNELLHRAVIPPLTRMRALHPGNIPNRDWAVEYYT

QRAQRPGTMIITEGAFISPQAGGYDNAPGVWSEEQMVEWTKIFNAIHEKKSFVWVQLW

VLGWAAFPDNLARDGLRYDSASDNVFMDAEQEAKAKKANNPQHSLTKDEIKQYIKEY

VQAAKNSIAAGADGVEIHSANGYLLNQFLDPHSNTRTDEYGGSIENRARFTLEVVDALV

EAIGHEKVGLRLSPYGVFNSMSGGAETGIVAQYAYVAGELEKRAKAGKRLAFVHLVEP

RVTNPFLTEGEGEYEGGSNDFVYSIWKGPVIRAGNFALHPEVVREEVKDKRTLIGYGRF

FISNPDLVDRLEKGLPLNKYDRDTFYQMSAHGYIDYPTYEEALKLGWDKK 

OYE2 Sequence: 

MPFVKDFKPQALGDTNLFKPIKIGNNELLHRAVIPPLTRMRAQHPGNIPNRDWAVEYYA

QRAQRPGTLIITEGTFPSPQSGGYDNAPGIWSEEQIKEWTKIFKAIHENKSFAWVQLWVL

GWAAFPDTLARDGLRYDSASDNVYMNAEQEEKAKKANNPQHSITKDEIKQYVKEYVQ

AAKNSIAAGADGVEIHSANGYLLNQFLDPHSNNRTDEYGGSIENRARFTLEVVDAVVDA

IGPEKVGLRLSPYGVFNSMSGGAETGIVAQYAYVLGELERRAKAGKRLAFVHLVEPRVT
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NPFLTEGEGEYNGGSNKFAYSIWKGPIIRAGNFALHPEVVREEVKDPRTLIGYGRFFISNP

DLVDR 

OYE3 Sequence: 

MPFVKGFEPISLRDTNLFEPIKIGNTQLAHRAVMPPLTRMRATHPGNIPNKEWAAVYYG

QRAQRPGTMIITEGTFISPQAGGYDNAPGIWSDEQVAEWKNIFLAIHDCQSFAWVQLWS

LGWASFPDVLARDGLRYDCASDRVYMNATLQEKAKDANNLEHSLTKDDIKQYIKDYIH

AAKNSIAAGADGVEIHSANGYLLNQFLDPHSNKRTDEYGGTIENRARFTLEVVDALIETI

GPERVGLRLSPYGTFNSMSGGAEPGIIAQYSYVLGELEKRAKAGKRLAFVHLVEPRVTD

PSLVEGEGEYSEGTNDFAYSIWKGPIIRAGNYALHPEVVREQVKDPRTLIGYGRFFISNPD

LVYRLEEGLPLNKYDRSTFYTMSAEGYTDYPTYEEAVDLGWNKN 

 

OPR1 

The OPR1 employed in this research was originally isolated from Lycopersicon esculentum 

(tomato). The plasmid pET21b-OPR1 with C-terminal His tag was a gift from Dr. Kurt Faber’s 

group. The plasmid was transformed into E. coli BL21. For expression of OPR1, a BL21 colony 

harboring pET21b-OPR1 was inoculated in 5 mL LB containing 100 µg/mL ampicillin and grown 

overnight at 37 ºC. This overnight culture was used to inoculate 500 mL of TB medium containing 

100 µg/mL ampicillin, which was grown at 37 ºC until an OD of ~0.6 was reached. Protein 

expression was subsequently induced with the addition of 1 mM IPTG. The induced culture was 

placed at 25 ºC, 250 rpm, for 16 h for protein production.  

OPR1 Sequence: 

MENKVVEEKQVDKIPLMSPCKMGKFELCHRVVLAPLTRQRSYGYIPQPHAILHYSQRST

NGGLLIGEATVISETGIGYKDVPGIWTKEQVEAWKPIVDAVHAKGGIFFCQIWHVGRVS

NKDFQPNGEDPISCTDRGLTPQIRSNGIDIAHFTRPRRLTTDEIPQIVNEFRVAARNAIEAG

FDGVEIHGAHGYLIDQFMKDQVNDRSDKYGGSLENRCRFALEIVEAVANEIGSDRVGIRI

SPFAHYNEAGDTNPTALGLYMVESLNKYDLAYCHVVEPRMKTAWEKIECTESLVPMR

KAYKGTFIVAGGYDREDGNRALIEDRADLVAYGRLFISNPDLPKRFELNAPLNKYNRDT

FYTSDPIVGYTDYPFLETMT 

XenB  

The XenB employed in this research is from Pseudomonas putida ATCC 17453. The plasmid 

pGaston-XenB with C-terminal His-tag was a gift from Dr. Uwe T. Bornscheuer’s group. The 
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plasmid was transformed into E. coli BL21. For expression of XenB, a BL21 colony harboring 

pGaston-XenB was inoculated in 5 mL LB containing 100 µg/mL ampicillin and grown overnight 

at 37 ºC. This overnight culture was used to inoculate 500 mL of LB medium containing 100 

µg/mL ampicillin, which was grown at 37 ºC at 180 rpm until an OD of ~0.6-0.8 was reached. 

Protein expression was subsequently induced with the addition of 0.2% (w/v) r-rhamnose. The 

induced culture was placed at 25 ºC XenB for 8 h.  

XenB Sequence: 

METTTLFDPITLGDLQLPNRIIMETAPLTRCRADEGRVPNALMETAEYYVQRASAGLILS

EATSVSAMETGVGYPDTPGIWNDEQVRGWNNVTKAVHAAGGRIFLQLWHVGRISHPS

YLNGELPVAPSAIQPKGHVSLVRPLSDYPTPRALETEEIIDIVEAYRSGAENAKAAGFDG

VEIHGANGYLLDQFLQSSTNQRTDRYGGSLENRARLLLEVTDAAIEVWGANRVGVHLA

PRADAHDMETGDADRAETFTYVARELGKRGIAFICSREREADDSIGPLIKEAFGGPYIVN

ERFDKASANAALASGKADAVAFGVPFIANPDLPARLAADAPLNEARPETFYGRGPVGYI

DYPRLGSHHHHHH 

TOYE 

The TOYE employed in this research was originally isolated from Thermoanaerobacter 

pseudetahnolicus E39. The plasmid pET21b-TOYE with C-terminal His tag was a gift from Dr. 

Uwe T. Bornscheuer’s group. The plasmid was transformed into E. coli BL21. For expression of 

TOYE, a BL21 colony harboring pET21b-TOYE was inoculated in 5 mL LB containing 100 

µg/mL ampicillin and grown overnight at 37 ºC. This overnight culture was used to inoculate 500 

mL of  LB medium containing 100 µg/mL ampicillin, which was grown at 25 ºC at 250 rpm until 

an OD of ~0.5 was reached. Protein expression was subsequently induced with the addition of 0.4 

mM IPTG. The induced culture was placed at 25 ºC for 12 h.  

TOYE Sequence: 

 

MSILHMPLKIKDITIKNRIMMSPMCMYSASTDGMPNDWHIVHYATRAIGGVGLIMQEAT

AVESRGRITDHDLGIWNDEQVKELKKIVDICKANGAVMGIQLAHAGRKCNISYEDVVGP

SPIKAGDRYKLPRELSVEEIKSIVKAFGEAAKRANLAGYDVVEIHAAHGYLIHEFLSPLSN
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KRKDEYGNSIENRARFLIEVIDEVRKNWPENKPIFVRVSADDYMEGGINIDMMVEYINMI

KDKVDLIDVSSGGLLNVDINLYPGYQVKYAETIKKRCNIKTSAVGLITTQELAEEILSNER

ADLVALGRELLRNPYWVLHTYTSKEDWPKQYERAFKK 

SYE1  

The SYE1 employed in this research was originally isolated from Shewanella. The codon-

optimized gene was synthesized by IDT and cloned in pET28a with N-terminal His-tag. For 

expression of SYE1, a BL21 colony harboring pET28a-SYE1 was inoculated in 5 mL LB 

containing 100 µg/mL ampicillin and grown overnight at 37 ºC. This overnight culture was used 

to inoculate 500 mL of TB medium containing 100 µg/mL ampicillin, which was grown at 37 ºC 

until an OD of ~0.6 was reached. Protein expression was subsequently induced with the addition 

of 0.1 mM IPTG. The induced culture was placed at 25 ºC, 250 rpm, for 16 h for protein production. 

SYE1 Sequence: 

 

MTQSLFQPITLGALTLKNRIVMPPMTRSRASQPGDVANHMMAIYYAQRASAGLIVSEGT

QISPTAKGYAWTPGIYTPEQIAGWRIVTEAVHAKGCAIFAQLWHVGRVTHPDNIDGQQP

ISSSTLKAENVKVFVDNGSDEPGFVDVAVPRAMTKADIAQVIADYRQAALNAMEAGFG

IELHAANGYLINQFIDSEANNRSDEYGGSLENRLRFLDEVVAALVDAIGAERVGVRLAPL

TTLNGTVDADPILTYTAAAALLNKHRIVYLHIAEVDWDDAPDTPVSFKRALREAYQGVI

YAGRYNAEKAEQAINDGLADMIGFGRPFIANPDLPERLRHGYPLAEHVPATLFGGGEKL

TDYPTYQA 

 

GDH from Bacillus megaterium  

Bacillus megaterium B14308 was inoculated in 5 mL TGY medium and grown at 30 ºC for 18 h. 

Genomic DNA was isolated using the Wizard® Genomic DNA purification kit from Promega 

according to the manufacturer’s protocol. The gene encoding the gdh was amplified from the 

genome of B. megaterium using primers gdh-NdeI-for and gdh-HindIII-rev. Restriction sites are 

underlined. The gene was ligated into pET28a+ and transformed in E. coli DH5α. 
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The plasmid pET28a-gdh was transformed into E. coli BL21. For expression of GDH, a BL21 

colony harboring pET28a-gdh was inoculated in 5 mL LB containing 50 µg/mL kanamycin and 

grown overnight at 37 ºC. This overnight culture was used to inoculate 500 mL of TB medium 

containing 50 µg/ml kanamycin, which was grown at 37 ºC until an OD of ~0.7 was reached. 

Protein expression was subsequently induced with the addition of 0.3 mM IPTG. The induced 

culture was placed at 25 ºC for 16 h for protein production. 

Following expression, BL21 cells were recovered by centrifugation (6000 x g for 15 min), lysed 

by sonication and clarified by centrifugation (18 000 x g for 30 min). The protein was subsequently 

purified by affinity chromatography using a HisTrap column fitted to an AKTA FPLC system (GE 

Health Life Sciences, Pittsburgh, PA). The purified protein was buffer exchanged against 100 mM 

KPi buffer, pH 8.1 using an Amicon Ultra concentration tube (10 kDa cut-off) before being stored 

in 15% glycerol as 100 µL aliquots at -80 ºC 

4.4.5. GC/MS Methods and Calibration Curve  

Instrument 1: 1 L was injected in a split mode (20:1) into the GC-MS system consisting of an 

Agilent 6890 (Agilent Inc, Palo Alto, CA, USA) gas chromatograph, an Agilent 5973 mass 

selective detector, and Agilent 7683B autosampler. Gas chromatography was performed on a 30 

m HP-5MS with 0.25 mm inner diameter (I.D.) and 0.25 m film thickness (Agilent, USA) with 

an injection temperature of 250 ºC, MSD transfer line of 250 ºC, and the ion source adjusted to 230 

ºC. The helium carrier gas was set at a constant flow rate of 1 ml min-1. The temperature program 

for different samples is listed below. The mass spectrometer was operated in positive electron 

impact mode (EI) at 69.9 eV ionization energy in m/z 30-500 scan range. The spectra of all 

chromatogram peaks were evaluated using the HP Chemstation (Agilent, Palo Alto, CA, USA). 
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Instrument 2: 1 L was injected in a split mode (20:1) into the GC-MS system consisting of an 

Agilent 6890N (Agilent Inc, Palo Alto, CA, USA) gas chromatograph, an Agilent 5975B mass 

selective detector, and Agilent 7683B autosampler. Gas chromatography was performed on a 30 

m DB-5MS column with 0.25 mm inner diameter (I.D.) and 0.25 m film thickness (Agilent 

Technologies, USA) with an injection temperature of 300 ºC, MSD transfer line of 230 ºC, and 

the ion source adjusted to 230 ºC. The helium carrier gas was set at a constant flow rate of 1 ml 

min-1. The temperature program was different for different samples. The mass spectrometer was 

operated in positive electron impact mode (EI) at 69.9 eV ionization energy in m/z 30-500 scan 

range. The spectra of all chromatogram peaks were evaluated using the HP Chemstation 

(Agilent, Palo Alto, CA, USA). 
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Figure 4.14. The summary of GC methods and the retention times.  
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Figure 4.15. The representative of GC calibration curve  
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Figure 4.15. cont.  
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Figure 4.15. cont.  
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Figure 4.15. cont.  
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Figure 4.15. cont.  
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Figure 4.15. cont.  
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Table 4.4. Tabulated Results of Figure 4.10 for the Photoisomerization of Alkenes Under 

Different Conditions (Photostationary States - PS) 

Sub. Abbrev 

% E 

X 

Ambient 

% E 

X 

blue light 

% E 

5% FMN 

blue light 

% E 

1% Ir- 16 

blue light 

1a Ph Est 0.1a 1.2a 93.9 77.9 

1b p-OMe Est 3.4a 7.6a 60.9 69.0 

1c p-F Est 0.0a 1.4a 92.1 67.9 

1d p-CF3 Est 0.0 0.0 93.5 72.3 

1e tBu Est 62.3 62.5 93.1 66.6 

1f Py Est 61.3 63.7 96.0 81.3 

1g Est Wein 0.0a 1.1a 96.9 87.6 

1h Est CN 0.3a 0.4a 71.9 67.9 

1i CN Est 0.0 0.0 45.3 60.9 

1j p-Cl CN Est 0.0 0.0 2.9 9.0 

1k CN Wein 0.0a 2.8a 70.9 69.8 

1l CN Ph Keto 16.7 88.6 87.3 72.5 

1m Est Ph Keto 2.9 92.3 82.0 83.3 

1n Est Me Keto 24.8 76.8 79.9 77.8 

1o top Keto Est 0.0a 1.0a 88.5 75.7 
a Initial trace quantities of E substrate were subtracted from values obtained after subjecting (Z)-

1x to various conditions. b 1% FMN. c 1% FMN, 2h. d 5% Ir-16.  

It is unlikely that substrates 1e and 1f undergo isomerization in the presence of ambient 

light (the E/Z ratios obtained from the reactions conducted in ambient light closely match the 

initial E/Z ratios). Because of 1e’s structural similarity to 1a and other related diesters, and the 

high yields obtained in the cooperative experiments (see section G), it is highly likely that 1e 

undergoes rapid isomerization in the presence of blue light and 1% Ir-16 (even though the final 

photostationary ratio with Ir-16 closely resembles the initial E/Z ratio).  Substrates 1l, 1m, and 

1n undergo some isomerization in the presence of ambient light at room temperature. The Z 

isomers of 1l, 1m, and 1n, could be isomerized in the presence of blue light alone. However, the 

reduction of the Z isomer of these substrates could only be accomplished in high yields when the 

reactions were conducted in the presence of blue light (with or without a catalyst).  
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Since (Z)-1p is the more reactive isomer for OYE2, (E)-1p was used as the starting material for 

isomerization experiments involving 1p. All other experimental details were identical to the ones 

described above. 

4.4.7. General Synthetic Procedures for the Cooperative and Non-Cooperative 

Enzymatic Reduction of Alkenes  

General Procedure 1: Enzymatic Reduction of Alkenes 

 

To a 4 mL vial containing a magnetic stir bar, a solution of NADP+ (5.00 μL of 20.0 mM stock, 

0.0400 equiv), glucose (12.5 μL of a 1.00 M stock, 5.00 equiv), GDH (1.00 U/mL) and ene-

reductase (0.200 or 0.500 mol %) in 50 mM pH 7.5 Tris buffer (~450 uL) was added a solution 

of alkene (0.00250 mmol, 1.00 equiv, in 25.0 μL DMSO) at room temperature. The final solution 

volume was ~500 μL. The final reagent and catalyst concentrations were as follows: 0.200 mM 

NADP+, 25.0 mM glucose, 1 U/mL GDH, 10 or 25 μM ene-reductase, 5.00 mM substrate, 5.00 

v/v% DMSO. The reaction was incubated for ~15 h at 24 ºC on a magnetic stirrer. At the end of 

this period, EtOAc (1 mL) and dodecane (10.0 μL of 0.0200 g/mL stock in EtOAc) were added. 

An aliquot was removed from the organic layer, and the yield and conversion of the reaction 

were determined by GC analysis with dodecane as the internal standard.  

The ee of the product was obtained from a separate reaction conducted on a 5 mL scale 

(10 X scale of the general procedure listed above) in a 20 mL vial. Concentrations of all reagents 

and catalysts were identical to those listed above. After the reaction was incubated for ~15 h at 

24 ºC, EtOAc was added, and the organic layer was extracted three times. The combined organic 
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layers were concentrated under vacuum and purified by preparative TLC. The ee of the product 

was determined by Chiral HPLC or SFC. 

 

General Procedure 2: Reactions Conducted in the Absence of a Photocatalyst but in the 

Presence of Light 

 

To a 4 mL vial containing a magnetic stir bar, a solution of NADP+ (5.00 μL of 20.0 mM 

stock, 0.0400 equiv), glucose (12.5 μL of a 1.00 M stock, 5.00 equiv), GDH (1.00 U/mL) and ene-

reductase (0.200 or 0.500 mol %) in 50 mM pH 7.5 Tris buffer (~450 uL) was added a solution of 

alkene (0.00250 mmol, 1.00 equiv, in 25.0 μL DMSO) at room temperature. The final solution 

volume was ~500 μL. The final reagent and catalyst concentrations were as follows: 0.200 mM 

NADP+, 25.0 mM glucose, 1 U/mL GDH, 10 or 25 μM ene-reductase, 5.00 mM substrate, 5.00 

v/v% DMSO. The reaction was irradiated with a with a blue LED lamp positioned 20 cm above 

the reaction vial for ~15 h at 24 ºC on a magnetic stirrer. At the end of this period, EtOAc (1 mL) 

and dodecane (10.0 μL of 0.0200 g/mL stock in EtOAc) were added. An aliquot was removed 

from the organic layer, and the yield and conversion of the reaction were determined by GC 

analysis with dodecane as the internal standard.  

The ee of the product was obtained from a separate reaction conducted on a 5 mL scale 

(10 X scale of the general procedure listed above) in a 20 mL vial. Concentrations of all reagents 

and catalysts were identical to those listed above. After the reaction was incubated for ~15 h at 

24 ºC, EtOAc was added, and the organic layer was extracted three times. The combined organic 
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layers were concentrated under vacuum and purified by preparative TLC. The ee of the product 

was determined by Chiral HPLC or SFC. 

 

General Procedure 3: Cooperative Enzymatic Reduction of Alkenes in the Presence of a 

Photocatalyst and Light 

 

To a 4 mL vial containing a magnetic stir bar, a solution of NADP+ (5.00 μL of 20.0 mM 

stock, 0.0400 equiv), glucose (12.5 μL of a 1.00 M stock, 5.00 equiv), GDH (1.00 U/mL) and ene-

reductase (0.200 or 0.500 mol %) in 50 mM pH 7.5 Tris buffer (~425 uL) was added a solution of 

alkene (0.00250 mmol, 1.00 equiv, in 25.0 μL DMSO) at room temperature. A solution containing 

FMN or Ir-16 (1.00 or 5.00 mol %) and 25.0 μL of DMSO was added. The final solution volume 

was ~500 μL. The final reagent and catalyst concentrations were as follows: 0.200 mM NADP+, 

25.0 mM glucose, 1 U/mL GDH, 10 or 25 μM ene-reductase, 5.00 mM substrate, 0.250-0.0500 

mM FMN or Ir-16, and 10.0 v/v% DMSO. The reaction was irradiated with a with a blue LED 

lamp positioned 20 cm above the reaction vial for ~15 h at 24 ºC on a magnetic stirrer. At the end 

of this period, EtOAc (1 mL) and dodecane (10.0 μL of 0.0200 g/mL stock in EtOAc) were added. 

An aliquot was removed from the organic layer, and the yield and conversion of the reaction were 

determined by GC analysis with dodecane as the internal standard.  

The ee of the product was obtained from a separate reaction conducted on a 5 mL scale (10 

X scale of the general procedure listed above) in a 20 mL vial. Concentrations of all reagents and 

catalysts were identical to those listed above. After the reaction was incubated for ~15 h at 24 ºC, 
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EtOAc was added, and the organic layer was extracted three times. The combined organic layers 

were concentrated under vacuum and purified by preparative TLC. The ee of the product was 

determined by Chiral HPLC or SFC. 

4.4.8. Procedure for Sequential Isomerization and Reduction of Alkenes 

 

To a 4 mL vial containing a magnetic stir bar, a solution of alkene (0.00250 mmol, 1.00 

equiv, in 25.0 μL DMSO), a solution containing FMN or Ir-16 (1.00 or 5.00 mol %) and 25.0 μL 

of DMSO, and 50 mM pH 7.5 Tris buffer (~425 uL) were added at room temperature. The vial 

was sealed with a Teflon cap, and the solution was irradiated with a with a blue LED lamp 

positioned 20 cm above the reaction vial for 8 h at 24 ºC on a magnetic stirrer. At the end of this 

period, the vial was uncapped and a solution of NADP+ (5.00 μL of 20.0 mM stock, 0.0400 equiv), 

glucose (12.5 μL of a 1.00 M stock, 5.00 equiv), GDH (1.00 U/mL), and OYE2 (0.200 mol %) 

were added. The final solution volume was ~500 μL. The reaction mixture was re-sealed and 

incubated for 15 h at 24 ºC on a magnetic stirrer under ambient conditions and light. At the end of 

this period, EtOAc (1 mL) and dodecane (10.0 μL of 0.0200 g/mL stock in EtOAc) were added. 

An aliquot was removed from the organic layer, and the yield and conversion of the reaction were 

determined by GC analysis with dodecane as the internal standard.  

The ee of the product was obtained from a separate reaction conducted on a 5 mL scale 

(10 X scale of the general procedure listed above) in a 20 mL vial. Concentrations of all reagents 

and catalysts were identical to those listed above. After the reaction was incubated for ~15 h at 

24 ºC, EtOAc was added, and the organic layer was extracted three times. The combined organic 
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layers were concentrated under vacuum and purified by preparative TLC. The ee of the product 

was determined by Chiral HPLC or SFC 

4.4.9. Preparative Scale Cooperative Reactions 

Preparative scale cooperative reactions were conducted with the same relative concentrations of 

reagents as those listed in General Procedure 3 on a 100 X scale. 

To a 125 mL Erlenmeyer flask containing a magnetic stir bar, a solution of NADP+ (0.500 

mL of 20.0 mM stock, 0.0400 equiv), glucose (1.25 mL of a 1.00 M stock, 5.00 equiv), GDH (1.00 

U/mL), and ene-reductase (0.200 or 0.500 mol %) in 50 mM pH 7.5 Tris buffer (42.5 mL) was 

added a solution of alkene (0.250 mmol, 1.00 equiv) in 2.50 mL of DMSO. A solution containing 

Ir-16 (1.00 mol %) and 2.50 mL of DMSO was added. The final concentrations were as follows: 

0.200 mM NADP+, 25.0 mM glucose, 1 U/mL GDH, 10.0 or 25.0 μM enoate reductase, 5.00 mM 

substrate, 0.0500 mM Ir-16, 10.0 v/v% DMSO. The reaction was flask was placed inside a dewar 

containing 300 mL of water at room temperature on a stirplate. A blue LED lamp was placed 20 

cm above the base of the stirplate and a thermometer was inserted in the water bath. The reaction 

was irradiated with light for 7-15 h, and the temperature of the water bath was maintained at 24 

ºC. At the end of this period, the reaction mixture was transferred to a separatory funnel containing 

brine and extracted with EtOAc. The organic layers were combined and concentrated under 

vacuum and purified by automated silica gel chromatography (combiflash), eluting with a mixture 

of ethyl acetate and hexanes. 
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The substrate (Z)-1a (0.250 mmol, 1.00 equiv) was allowed to react according to the 

general procedure for preparative scale reactions with 0.2% YersER and 1% Ir-16. The reaction 

time was 7 h. The product was purified by automated silica gel chromatography (combiflash), 

eluting with a mixture of ethyl acetate and hexanes (gradient 0:100 to 15:95 EtOAc:Hexanes).  

The product (R)-2a was obtained as a clear oil (0.0481 g, 0.217 mmol, 87% yield, >99% ee). The 

spectra of the product matched those of (rac)-2a. For relevant HPLC traces see section K.  

 

 
 

A (62:38) mixture of (E/Z)-1e (0.250 mmol, 1.00 equiv) was allowed to react according to 

the general procedure for preparative scale reactions with 0.5% OPR1 and 1% Ir-16. The reaction 

time was 24 h. The product was purified by automated silica gel chromatography (combiflash), 

eluting with a mixture of ethyl acetate and hexanes (gradient 0:100 to 10:90 EtOAc:Hexanes).  

The product (R)-2e was obtained as a clear oil (0.0520 g, 0.197 mmol, 79% yield, >99% ee). The 

spectra of the product matched those of (rac)-2e. For relevant HPLC traces see section K.  

 

 

 
 

The substrate (Z)-1g (0.200 mmol, 1.00 equiv) was allowed to react according to the 

general procedure for preparative scale reactions with 0.2% OPR1 and 1% Ir-16. The reaction 
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time was 24 h. The product was purified by automated silica gel chromatography (combiflash), 

eluting with a mixture of ethyl acetate and hexanes (gradient 0:100 to 40:60 EtOAc:Hexanes).  

The product (R)-2g was obtained as a clear oil (0.0356 g, 0.142 mmol, 71% yield, >99% ee). The 

spectra of the product matched those of (rac)-2g. For relevant HPLC traces see section K. 

 
 

The substrate (Z)-1h (0.241 mmol, 1.00 equiv) was allowed to react according to the 

general procedure for preparative scale reactions with 0.2% TOYE and 1% Ir-16. The reaction 

time was 24 h. The product was purified by automated silica gel chromatography (combiflash), 

eluting with a mixture of ethyl acetate and hexanes (gradient 0:100 to 20:80 EtOAc:Hexanes).  

The product (R)-2h was obtained as a clear oil (0.0438 g, 0.231 mmol, 96% yield, 92% ee). The 

spectra of the product matched those of (rac)-2h. For relevant HPLC traces see section K. 
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The substrate-1j (0.150 mmol, 1.00 equiv) was allowed to react according to the general 

procedure for preparative scale reactions with 0.2% OYE2 and 1% Ir-16. The reaction time was 

24 h. The product was purified by automated silica gel chromatography (combiflash), eluting with 

a mixture of ethyl acetate and hexanes (gradient 0:100 to 20:80 EtOAc:Hexanes).  The product 

(R)-2j was obtained as a clear oil (0.0205 g, 0.0917 mmol, 61% yield, 91% ee). The spectra of the 

product matched those of (rac)-2j. For relevant HPLC traces see section K. 

 
 

The substrate-1o (0.200 mmol, 1.00 equiv) was allowed to react according to the general 

procedure for preparative scale reactions with 0.2% YersER and 1% Ir-16. The reaction time was 

24 h. The product was purified by automated silica gel chromatography (combiflash), eluting with 

a mixture of ethyl acetate and hexanes (gradient 0:100 to 20:80 EtOAc:Hexanes).  The product 

(R)-2o was obtained as a clear oil (0.0326 g, 0.158 mmol, 79% yield, >99% ee). The spectra of 

the product matched those of (rac)-2o. For relevant HPLC traces see section K. 
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4.4.10. Investigating the Plausibility of Direct Photoreduction of (Z)-1a and the 

Photoracemization of (R)-2a 

Reactions 1 and 2 were conducted on a 0.5 mL scale with 5mM (R)-2a 

 

Scheme 1. Subjecting (R)-2a to Photoisomerization Conditions to Determine if Racemization of 2a Occurs 

 

 
No erosion of ee observed 

 

 
No erosion of ee observed 

 

 

HPLC1 - OJ-H column, 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (minor): 26.397 min, 

tR(major): 32.417 

 

(rac)-2a HPLC1 trace 
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(R)-2a HPLC1 trace from Reaction 1 with 1%  Ir-16 

 
 

(R)-2a HPLC1 trace from Reaction 2 with 5% FMN 

 
 

 

Authentic (R)-2a HPLC1 trace 

 
 

Scheme 2. Testing for Photoreduction of (Z)-1a 

 

Sub. Type Photocat. Conv. Yield  

Z-1a X 5% FMN 0% 0% 

Z-1a X 1% Ir-16 0% 0% 
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Reaction 3 was conducted on a 0.5 mL scale with 5 Mm (Z)-1a. The Z isomer of a substrate was allowed 

to react in the presence of GDH, NADP+, and glucose. No ene-reductase was present in this type 

of experiment. In the absence of an ene-reductase, only direct photoreduction of the substrate 

(with NADPH) should generate saturated products. Any products generated by photoreduction 

should be racemic since no ene-reductase is present in this type of experiment 

 

Reaction 4 was conducted on a 5 mL scale according to General Procedure 1 for the cooperative reduction 

of alkenes with (Z)-1a. The % ee of (R)-2a in Reaction 4 matched that obtained in the same reaction 

conducted in air. This suggests that neither photoracemization of the product nor photoreduction of the 

substrate occurs in a nitrogen atmosphere. 

Scheme 3. Cooperative Reduction of (Z)-1a Under a Nitrogen Atmosphere 

 
 

 (rac)-2a 

 

 
(R)-2a 
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4.5 HPLC Traces for the Cooperative Enzymatic Reduction of Alkenes 

and Control Experiments 

 

Separation Method/Eluent: 

HPLC2 - OJ-H (150mm), 5% iPrOH, 95% hexanes 0.8 mL/min, 220 nm; tR (minor):  15.752 min, 

tR(major): 19.953 

 

(rac)-2a HPLC2 trace 
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Table 4.1 Entry 1 

(R)-2a HPLC2 trace from the enzymatic reduction of (E)-1a with 0.2% YersER (>99% ee)

 
 

HPLC2 - OJ-H (150mm), 5% iPrOH, 95% hexanes 0.8 mL/min, 220 nm; tR (minor):  14.787 

min, tR(major): 18.704 

(rac)-2a HPLC2 trace 
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Table 4.2 Entry 2 

(R)-2a HPLC2 trace from the cooperative enzymatic reduction of (Z)-1a with 0.5% YersER and 

5% FMN in the presence of blue light (>99% ee) 

 

 
 

 

Table 4.2 Entry 3 

 (R)-2a HPLC2 trace from the cooperative enzymatic reduction of (Z)-1a with 0.5% YersER and 

1% Ir-16 in the presence of blue light  (>99% ee) 
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Table 4.2 Entry 4 

 (R)-2a HPLC2 trace from the cooperative enzymatic reduction of (50/50) (E/Z)-1a with 0.5% 

YersER and 5% FMN in the presence of blue light (>99% ee) 

 

 
 

Table 4.2 Entry 5 

 (R)-2a HPLC2 trace from the cooperative enzymatic reduction of (50/50) (E/Z)-1a with 0.5% 

YersER and 1% Ir-16 in the presence of blue light  (>99% ee) 

 

 
 

 

 

Table 4.1 Entry 3 

Separation Method/Eluent: 

HPLC1 - OJ-H column, 10% iPrOH, 90% hexanes 1.0 mL/min, 220 nm; tR (major): 27.704 min, 

tR(minor): 31.059 min 

Enantiomeric Excess = >99% ee 

(rac)-2b HPLC1 trace 
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(R)-2b HPLC1 trace from enzymatic reduction of (E)-1b with YersER (>99% ee) (0.0351 g scale) 

 
 

 

Table 4.2 Entry 7 

Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 50% iPrOH, 50% hexanes 0.5 mL/min, 254 nm; tR (major):  18.695 min, 

tR(minor): 20.156 

 

(rac)-2b HPLC2 trace 
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(R)-2b HPLC2 trace from the cooperative enzymatic reduction of (Z)-1b with 0.5% YersER and 

5% FMN in the presence of blue light (92% ee) 

 

 
 

Table 4.2 Entry 8 

 (R)-2b HPLC2 trace from the cooperative enzymatic reduction of (Z)-1b with 0.5% YersER and 

1% Ir-16 in the presence of blue light  (>99% ee) 

 

 
 

 

 

Table 4.1 Entry 5 

Separation Method/Eluent: 

SFC – OD-H column, 0.5% iPrOH, 2.5 mL/min, 220 nm; tR (minor): 2.000 min, tR(major): 2.533 

Enantiomeric Excess: >99 % ee 
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(rac)-2c SFC trace 

 
 

(R)-2c SFC trace from enzymatic reduction of (E)-1c with XenB (>99% ee) (0.0357 g scale – 

Entry 13)

 
 

Table 4.2 Entry 11 

Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (major):  13.857 min, 

tR(minor): 14.665 
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 (rac)-2c HPLC2 trace 

 

 
 

 (R)-2c HPLC2 trace from the cooperative enzymatic reduction of (Z)-1c with 0.5% XenB and 1% 

Ir-16 in the presence of blue light  (>99% ee) 

 

 

 

 

Table 4.1 Entry 7 

Separation Method/Eluent: 

HPLC1 - OJ-H column, 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (major): 8.607 min, 

tR(minor): 10.121 

Enantiomeric Excess = 93% ee 
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(rac)-2d HPLC1 trace 

 
 

(R)-2d HPLC1 trace from enzymatic reduction of (E)-1d with XenB (93% ee) ( 

 
 

Table 4.2 Entry 14 

Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (major):  7.736 min, 

tR(minor): 9.231 

 

(rac)-2d HPLC2 trace 
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(R)-2d HPLC2 trace from the cooperative enzymatic reduction of (Z)-1d with 0.5% XenB and 1% 

Ir-16 in the presence of blue light  (>99% ee) 

 

 
 

 

Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 10% iPrOH, 90% hexanes 1.0 mL/min, 220 nm; tR (minor):  6.916 min, 

tR(major): 7.450 

 

HPLC2 - OJ-H (150mm), 10% iPrOH, 90% hexanes 1.0 mL/min, 220 nm; tR (major):  4.949 min, 

tR(minor): 5.260 

 

 (rac)-2e HPLC2 trace 
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Table 4.2 Entry 16 

(R)-2e HPLC2 trace from the cooperative enzymatic reduction of (62/38) (E/Z)-1e with 0.5% 

OPR1 and 5% FMN in the presence of blue light (>99% ee) 

 

 
 

(rac)-2e HPLC2 trace 

 

 
 

Table 4.2 Entry 17 

 (R)-2e HPLC2 trace from the cooperative enzymatic reduction of (62/38) (E/Z)-1e with 0.5% 

OPR1 and 1% Ir-16 in the presence of blue light  (>99% ee) 
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Table 4.1 Entry 9 

Separation Method/Eluent: 

HPLC1 OJ-H, 1% iPrOH, 99% hexanes 1.0 mL/min, 220 nm; tR (minor): 14.412 min, tR(major): 

16.004 min 

Enantiomeric Excess = >99% ee 

 

(rac)-2e HPLC1 trace 

 
 

 

(R)-2e HPLC1 trace from prep-scale cooperative enzymatic reduction of 62:38 (E/Z)-1e with OPR1 and 1% 

Ir-16 in the presence of blue light (>99% ee) 

 
 

 

 

 

Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (minor):  28.321 min, 

tR(major): 38.119 
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(rac)-2f HPLC2 trace 

 

 
 

Table 4.2 Entry 19 

(R)-2f HPLC2 trace from the cooperative enzymatic reduction of (61/39) (E/Z)-1f with 0.5% 

XenB and 5% FMN in the presence of blue light (87% ee) 

 

 
 

Table 4.2 Entry 20 

 (R)-2f HPLC2 trace from the cooperative enzymatic reduction of (61/39) (E/Z)-1f with 0.5% 

XenB and 1% Ir-16 in the presence of blue light  (91% ee) 

 

 
 

 

 



183 
 

Table 4.1 Entry 10 

Separation Method/Eluent: 

Chiral SFC - OD-H column, 2% iPrOH, 2.5 mL/min, 220 nm; tR (minor): 3.060 min, tR(major): 

4.087 

Enantiomeric Excess = 88% ee 

 

(rac)-2f SFC trace 

 
 

 

(R)-2f SFC trace from enzymatic reduction of 61:39 (E/Z)-1f with XenB (88% ee) (0.0330 g scale 

– Entry 27) 
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Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (minor):  22.210 min, 

tR(major): 26.681 

 

(rac)-2g HPLC2 trace 

 

 
 

Table 4.1 Entry 11 

(R)-2g HPLC2 trace from the enzymatic reduction of (E)-1g with 0.2% OPR1 (>99% ee) 
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Table 4.2 Entry 23 

(R)-2g HPLC2 trace from the cooperative enzymatic reduction of (Z)-1g with 0.5% OPR1 and 1% 

Ir-16 in the presence of blue light  (>99% ee) 

 

 
There is a shift in retention time of the major enantiomer compared to the same enantiomer on 

the HPLC trace of the racemic product. The identity of the product was confirmed by GC-MS: 

The GC trace of reaction: 

 
The MS trace of the peak 
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Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (minor):  28.587 min, 

tR(major): 31.567 

 

(rac)-2h HPLC2 trace 

  

 
 

Table 4.1 Entry 13 

(R)-2h HPLC2 trace from the enzymatic reduction of (E)-1h with 0.2% TOYE (>99% ee) 
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Table 4.2 Entry 25 

 (R)-2h HPLC2 trace from the cooperative enzymatic reduction of (Z)-1h with 0.2% TOYE and 

1% FMN in the presence of blue light (>99% ee) 

 

 
 

Table 4.2 Entry 26 

 (R)-2h HPLC2 trace from the cooperative enzymatic reduction of (Z)-1h with 0.2% TOYE and 

1% Ir-16 in the presence of blue light  (>99% ee) 

 

 
 

There is a significant shift in retention time of the major enantiomer compared to the same 

enantiomer on the HPLC trace of the racemic product. The identity of the product was confirmed 

by GC-MS: 

 

The GC trace of reaction on Z isomer with 0.2mol% TOYE/1mol% Ir-16 
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The MS trace of peak:  

 
 

 

Separation Method/Eluent: 

HPLC2 - OJ-H (150mm), 5% iPrOH, 95% hexanes 0.8 mL/min, 220 nm; tR (minor):  17.493 min, 

tR(major): 18.994 

 

(rac)-2i HPLC2 trace 
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Table 4.2 Entry 28 

(R)-2i HPLC2 trace from the cooperative enzymatic reduction of (Z)-1i with 0.2% OYE2 and 1% 

FMN in the presence of blue light (99% ee) 

 

 
 

Table 4.2 Entry 29 

 (R)-2i HPLC2 trace from the cooperative enzymatic reduction of (Z)-1i with 0.2% OYE2 and 1% 

Ir-16 in the presence of blue light (98% ee) 

 

 
 

Table 4.2 Entry 30 

 (R)-2i HPLC2 trace from the cooperative enzymatic reduction of (50/50) (E/Z)-1i with 0.2% 

OYE2 and 1% FMN in the presence of blue light (98% ee) 
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Table 4.2 Entry 31 

 (R)-2i HPLC2 trace from the cooperative enzymatic reduction of (50/50) (E/Z)-1i with 0.2% 

OYE2 and 1% Ir-16 in the presence of blue light  (98% ee) 

 

 
 

 

Table 4.1 Entry 15 

Separation Method/Eluent: 

HPLC1 - OJ-H column, 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (minor):  34.510 min, 

tR(major): 38.378 

Enantiomeric Excess = 94% 

(rac)-2i HPLC1 trace 

 
 

(R)-2i HPLC1 trace from enzymatic reduction of (E)-1i with OYE2 (94% ee) (0.0234 g scale – 

Entry 41) 
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Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (minor):  25.616 min, 

tR(major): 28.421 

 

(rac)-2j HPLC2 trace 

 

 
 

Table 4.2 Entry 33 

(R)-2j HPLC2 trace from the cooperative enzymatic reduction of (Z)-1j with 0.5% OYE2 and 5% 

FMN in the presence of blue light (90% ee) 
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Table 4.2 Entry 34 

 (R)-2j HPLC2 trace from the cooperative enzymatic reduction of (Z)-1j with 0.5% OYE2 and 5% 

Ir-16 in the presence of blue light  (91% ee) 

 

 
 

Table 4.1 Entry 17 

Separation Method/Eluent: 

HPLC1 – OJ-H, 10% iPrOH, 90% hexanes 1.0 mL/min, 220 nm; tR (minor):  13.360 min, 

tR(major): 14.563 

 

(rac)-2j HPLC1 trace (OJ-H) 

 
 

(R)-2j HPLC1 (OD-H) trace from the enzymatic reduction of (E)-1j with OYE2 (76% ee) (0.0221 

g scale - Entry 48) 
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Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (minor):  33.103 min, 

tR(major): 35.794 

 

(rac)-2k HPLC2 trace 

 

 
 

Table 4.1 Entry 19 

(R)-2k HPLC2 trace from the enzymatic reduction of (E)-1k with 0.2% YersER (99% ee) 
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Table 4.2 Entry 36 

 (R)-2k HPLC2 trace from the cooperative enzymatic reduction of (Z)-1k with 0.2% YersER and 

5% FMN in the presence of blue light (99% ee) 

 

 
 

Table 4.2 Entry 37 

 (R)-2k HPLC2 trace from the cooperative enzymatic reduction of (Z)-1k with 0.2% YersER and 

1% Ir-16 in the presence of blue light (99% ee) 
 

 

 
 

 
Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 10% iPrOH, 90% hexanes 1.0 mL/min, 220 nm; tR (minor):  33.295 

min, tR(major): 39.70 

 

(rac)-2l HPLC2 trace 
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Table 4.2 Entry 37 

(R)-2l HPLC2 trace from the stereoconvergent enzymatic reduction of (Z)-1l with 0.2% OYE2 in 

the presence of blue light (>99% ee) 

 

 
 

Table 4.1 Entry 21 

Separation Method/Eluent: 

SFC - OD-H column, 10% MeOH, 2.5 mL/min, 220 nm; tR (minor): 3.342 min, tR(major): 3.933 

min 

Enantiomeric Excess = 99% 

(rac)-2l SFC trace 
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(R)-2l SFC trace from the enzymatic reduction of (E)-1l with OYE2 (99% ee) (0.0175 g scale – 

Entry 58) 

 
 

 

 

Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 10% iPrOH, 90% hexanes 1.0 mL/min, 254 nm/220 nm; tR (major):  

24.092 min, tR(minor): 42.281 

 

(rac)-2m HPLC2 trace 
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Table 4.1 Entry 23 

(R)-2m HPLC2 trace from the enzymatic reduction of (E)-1m with 0.2% OPR1 (>99% ee) 

 

 
 

Table 4.2 Entry 41 

(R)-2m HPLC2 trace from the stereoconvergent enzymatic reduction of (Z)-1m with 0.5% OPR1 

in the presence of blue light (>99% ee) 

 

 
 

Table 4.2 Entry 42 

 (R)-2m HPLC2 trace from the cooperative enzymatic reduction of (Z)-1m with 0.5% OPR1 and 

5% FMN in the presence of blue light (95% ee) 
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Table 4.2 Entry 43 

 (R)-2m HPLC2 trace from the cooperative enzymatic reduction of (Z)-1m with 0.5% OPR1 and 

1% Ir-16 in the presence of blue light (>99% ee) 

 

 
 

 

Separation Method/Eluent: 

HPLC2 - OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (major):  19.551 min, 

tR(minor): 20.986 

 

(rac)-2n HPLC2 trace 
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Table 4.1 Entry 25 

(S)-2n HPLC2 trace from the enzymatic reduction of (E)-1n with 0.2% SYE1 (89% ee) 

 

 
 

Table 4.2 Entry 45 

(S)-2n HPLC2 trace from the cooperative enzymatic reduction of (Z)-1n with 0.5% SYE1 and 5% 

FMN in the presence of blue light (76% ee) 

 

 
 

Table 4.2 Entry 46 

 (S)-2n HPLC2 trace from the cooperative enzymatic reduction of (Z)-1n with 0.5% SYE1 and 1% 

Ir-16 in the presence of blue light  (88% ee) 
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Separation Method/Eluent: 

HPLC2 – ID-3 (150mm), 5% iPrOH, 95% hexanes 0.8 mL/min, 220 nm; tR (major):  6.834 min, 

tR(minor): 7.324 

 

(rac)-2o HPLC3 trace 

 

 

 

Table 4.1 Entry 27 

(R)-2o HPLC3 trace from the enzymatic reduction of (E)-1o with 0.2% YersER (98% ee) 
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Separation Method/Eluent: 

HPLC2 – OJ-H (250mm), 5% iPrOH, 95% hexanes 1.0 mL/min, 220 nm; tR (major):  14.896 min, 

tR(minor): 15.616 

 

(rac)-2o HPLC2 trace 

 
 

Table 4.2 Entry 48 

(R)-2o HPLC2 trace from the cooperative enzymatic reduction of (Z)-1o with 0.5% YersER and 

5% FMN in the presence of blue light (86% ee) 
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Table 4.2 Entry 49 

 (R)-2o HPLC2 trace from the cooperative enzymatic reduction of (Z)-1o with 0.5% YersER and 

1% Ir-16 in the presence of blue light (96% ee) 

 

 

 

 

Separation Method/Eluent: 

HPLC2 – OJ-H (250mm), 20% iPrOH, 80% hexanes 1.0 mL/min, 220 nm; tR (minor):  10.824 

min, tR(major): 13.382 

 

(rac)-2p HPLC2 trace 
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Table 4.1 Entry 29 

(S)-2p HPLC2 trace from the enzymatic reduction of (Z)-1p with 0.2% OYE2 (>99% ee) 

 

 
 

Table 4.2 Entry 52 

(S)-2p HPLC2 trace from the cooperative enzymatic reduction of (E)-1p with 0.5% OYE2 and 1% 

Ir-16 in the presence of blue light (>99% ee) 
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CHAPTER 5. Automated Cellular Engineering of 

Saccharomyces cerevisiae Strains with High Resistance 

and Production of Lactic Acid  

5.1 Introduction 

Lactic acid (LA) has broad applications in the food, cosmetics, pharmaceutical and chemical 

industries. Recently, LA demand has grown dramatically, mainly due to its potential as a building 

block of poly-lactic acid materials.1 Poly-lactic acid is a biodegradable alternative to petroleum-

based plastics, preferably synthesized from optically pure monomers. Given this prerequisite of 

LA optical purity in PLA synthesis, microbial fermentation is the optimum choice since chemical 

synthesis generally generates racemic LA.2,3 

Mainly thanks to its high acid tolerance, Saccharomyces cerevisiae serves as a promising 

host for LA production under acidic fermentation condition. Increasing the acid tolerance of LA 

producing S. cerevisiae could reduce the usage of neutralizing reagents such as CaCO3 and 

simplify the downstream purification steps, thus reducing the cost of LA production. Coupled with 

metabolic engineering efforts, heterologous expression of stereospecific lactate dehydrogenase 

(LDH) gene in S. cerevisiae enables the production of optically pure L- or D-LA with titer as high 

as 142 g/L, albeit at an industrially non-preferred pH (pH 4.7).4 Adaptive evolution was also 

applied to create a S. cerevisiae mutant producing up to 82.6 g/L LA at a lower pH (pH 3.5).5  

Recently, we developed two advanced genome-scale engineering tools in S. cerevisiae: 

CRISPR-AID,6 and RNA interference-assisted genome evolution (RAGE)7. CRISPR-AID is a 

combinatorial metabolic engineering strategy based on an orthogonal tri-functional CRISPR 

system that combines transcriptional activation, transcriptional interference and gene deletion in 

the S. cerevisiae in a high-throughput manner. RAGE is based on RNA interference for genome-
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scale overexpression and downregulation in S. cerevisiae. Standardized genetic parts encoding 

overexpression and knockdown mutations of >90% yeast genes could be created in a single step 

from a full-length cDNA library.7 Through iterative cycles of creating a library of mutants with 

high throughput screening or selection, RAGE can continuously improve target traits by 

accumulation multiplex beneficial genetic modification in an evolving yeast genome. Particularly. 

we also developed an automated cellular engineering (ACE) platform for yeast multiplex genome 

engineering by combining RAGE and a robotic system called Illinois Biological Foundry for 

Advanced Biomanufacturing (iBioFAB).7 This platform is capable of creating and screening 

massive genomic variants in a fully automated manner and we have used it to optimize diverse 

phenotype of S. cerevisiae including cellulase expression, isobutanol production, glycerol 

utilization, and furfural tolerance.7,8 

In this study, I applied RAGE and CRISPR-AID methods to identify a few single mutants 

with improved LA resistance and production at an industrially preferred low pH (pH 3). To adapt 

the selection process into an ACE platform for high throughput screening, I developed a growth-

based LA biosensor and an automated quantification assay based on industry-standard BioProfile 

Analyzer.  Based on the single round screening, I created a few mutants with up to 3 times 

improved acid tolerance and 1.5 times LA production compared with the parent strain. The best 

candidate could produce 52 g/L LA in fed-batch fermentation at pH 3 with SC medium.    

5.2 Results and Discussion 

5.2.1. Creation of L-LA Producing Mutants with RNAi and CRISPR-AID 

Machinery 

Hahn and co-workers recently created a D-LA producing strain JHY5610 with good D-LA 

productivity of 26.8 g/L by expressing a D-lactate dehydrogenase gene while deleting alcohol 
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dehydrogenases, glycerol-3-phosphate dehydrogenase and D-lactate dehydrogenase involved in 

ethanol production (ADH1, ADH2, ADH3, ADH4 and ADH5), glycerol production (GPD1 and 

GPD2), and degradation of D-LA (DLD1) respectively (Figure 5.1). Further adaptive evolution 

and metabolic engineering led to the mutant JHY 5730 producing up to 82.6 g/L of D-LA with a 

yield of 0.83g/g glucose and a productivity of 1.5 g/(L.h) in fed-batch fermentation at pH 3.5.9 We 

obtained JHY5610 and JHY5617 from Dr. Hahn’s lab as positive controls in this study (Table 5.1). 

 

Figure 5.1. Metabolic engineering to produce lactic acid in S. cerevisiae. 

Instead of starting with the wild type CEN.PK2-1C, we first created several L -LA mutants 

by replacing ADH5 with four different L-lactate dehydrogenase genes, Lp-ldh from Lactobacillus 

plantarum, Lpm-ldh, a mutant of Lp-ldh, Lb-ldh from Lactobacillus brevis, and Ro-ldh from 

Rhizopus oryzae, while deleting ADH1, ADH4, GPD1 and GPD2, resulting mutants PK2M2, 

PK2M3, PK2M4 and PK2M5 respectively (Table 5.1). Among them, PK2M2, PK2M3 and 

PK2M4 showed a L-LA productivity that is comparable to that of JHY5610 (Figure 5.2). 
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Table 5.1. Summary of CEN.PK2 mutants and their genome types  

Mutants Genome type 

JHY5610 Adh 1-5∆, gpd1-2∆, dld1∆, PTDH3-Lm.ldhA-TCYC1-
kanMX 

JHY5617* Based on JHY 5610: erf2∆, SURI245S-kanMX 
PK2-M1 Adh1,4∆, gpd1-2∆ 
PK2-M2 Adh1,4,5∆, gpd1-2∆, PTEF1p-Lp.ldh-TTEF1p

-kanMX 
PK2-M3 Adh1,4,5∆, gpd1-2∆, PTEF1p-Lpm.ldh-TTEF1p

-kanMX 
PK2-M4 Adh1,4,5∆, gpd1-2∆, PTEF1p-LB.ldh-TTEF1p

-kanMX 
PK2-M5 Adh1,4,5∆, gpd1-2∆, PTEF1p-Ro.ldh-TTEF1p

-kanMX 
PK2-M6 Adh1,2,3,4∆, gpd1-2∆ 

 

The four newly created mutants (PK2M2, PK2M3, PK2M4 and PK2M5) together with 

JHY 5610 and JHY 5617 were grown in YPG medium and a small amount of cells (OD600=1) were 

serially diluted and spotted onto YPD solid medium supplemented with or without LA at different 

pH (Figure 5.3). Increasing LA concentration with pH unchanged or decreasing pH alone inhibited 

the cell growth. Further deletion of ADH2 and AHD3 may improve the LA production (Figure 5.1, 

PK2M2-M4 versus JHY5610), but it led to worse acid tolerance (Figure 5.3). PK2M3 was selected 

as a good parent strain for genome-scale engineering due to its moderate LA production and acid 

tolerance compared with JHY5610 and JHY5617. PK2M3 was largely inhibited at pH 3.0 with 2% 

LA (Figure 5.3) and failed to grow at pH lower than 3 (data were not shown). Thus, medium 

supplemented with 2.5% LA at pH 3.0 would be chosen as selection medium to identify mutants 

with improved acid tolerance. 
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Figure 5.2. L-LA production in PK2M2, PK2M3, PK2M4, PK2M5 and D-LA production in 

JHY5610 and JHY5617. The mutants were grown in YPD medium with 50 g/L glucose in a 50 

mL bioreaction tube from CELLTREAT, at 30 ◦C with shaking at 250 rpm. The error bars indicate 

standard deviations of three independent experiments. 
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Figure 5.3. Effects of pH and LA concentration on the mutant’s growth.  

 

The RNAi machinery originated from S. castellii was reconstructed into PK2M3 using the 

same protocol as described elsewhere.10 Green fluorescent protein (GFP) was selected as the 

reporter to test the RNAi machinery. The reporter system consisted of an GFP expression cassette 

on yeast centromere plasmid (YCp) pRS414 and an anti-sense GFP cassette (GFPrc) on YCp 
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pRS416 (Figure 5.4). The RNAi machinery cassette consisting of ago1 and dcr1 genes that were 

driven by the constitutive promoters PTEF1 and PTPI1 respectively was transformed into PK2M3 

together with a delta-integration cassette. Since the location and the copy number of integrations 

will affect the performance of the RNAi machinery. 36 mutants were screened to identify the best 

candidate with the weakest GFP expression when both GFP and GFPrc were expressed (Figure 

5.5). GFP and GFPrc were removed from the selected mutant by using the 5-fluoroorotic acid (5-

FOA) and 5-fluoroanthranilic acid (5-FAA) counterselection system. The resulting strain was 

named as PK2M3-RNAi and it was used for transformation of genome-wide single gene 

overexpression and knockdown library, RAGE 2.0.10 

 

Figure 5.4. GFP reporter system: A) GFP is overexpressed by strong constitute promoter PTEF1 

and B) anti-sense GFP is overexpressed by PTEF1.  

  

 

Figure 5.5. Flowcytometry analysis of mutants: A) PK2M3-RNAi-pRS414_GFP, B) PK2M3-

RNAi-pRS414_GFP-pRS416_GFPrc. 

 

The orthogonal tri-functional CRISPR system, CRISPR-AID, was also reconstructed in 

PK2M3 based on Lian J. et. al’s work.6 CRISPR-guided deletion in the final strain PK2M3-PAID6 
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was verified by ADE2 deletion efficiency. PK2M3-PAID6 was used as the parent strain to create 

a CRISRP-AID library.  

5.2.2. Establishing Screening Methods for L-LA Overproduction 

For high-throughput screening, we proposed two automated quantification assays using BioProfile 

Analyze, including pH indicator-based quantification assay and lactate oxidase-based 

quantification assay (LOD). We also developed a cell growth-based LA biosensor and designed a 

high-throughput system combined with the biosensor technique for screening ultracellular 

metabolites.  

5.2.2.1. Bromocresol Green Assay  

The pH indicator with no side-effect on yeast growth could be used to identify the mutant with 

high LA production in a high throughput way. We firstly aimed at making the agar plate containing 

pH indicator that enabled the obvious color change around the colony producing more LA than 

others. Since our aim was “creation a yeast strain that can produce 50 g/L LA at pH 3” , we tested 

a few pH indicators working at pHs ranging from 0.2 to 5.4 (Table 5.2). However, they are either 

not stable under the light or have poor solubility in aqueous medium. More importantly, the pH 

indicators working at low pH range are not sensitive to the small changes of LA concentration. 

We then decided to develop a pH indicator assay in 96-well plates that could be analyzed 

quantitatively by the plate reader.   

Bromocresol green was chosen as the pH indicator since it has relatively linear color 

changes with decreasing PH.  A calibration curve of LA concentration versus absorbance change 

at 616 nm was built by adding 2 ul SC liquid medium with different amount of LA into 200 ul 60 

mg/L bromocresol blue solution at pH 5.5 (Figure 5.6 A). Bromocresol green assay (BG) works 

for LA ranging from 0.01 g/L to 1 g/L. LA concentration is reverse proportional to the absorbance 
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at 616 nm and a linear correlation can be established between LA concentration versus Abs 

(A616nm)-1. 2 ul 12-hr SC fermentation broth of different mutants was evaluated using BG assay 

(Figure 5.6 B). The lighter the color or lower the absorbance value of the culture broth, the higher 

the concentration of LA. The calculated concentration is comparable with the values measured by 

HPLC. BG assay could be integrated in iBioFAB to evaluate LA concentration from fermentation 

broth of different mutants in a high-throughput manner.   

Table 5.2. pH Indicators tested for agar plate-based screening  

Indicator 
Acid 
color 

Transition range 
Base 
color 

Comments 

Cresol red Red pH 0.2-pH 1.8 Yellow Unstable, poor solubility,  
Thymol blue  Red pH 1.2-pH2.8 Yellow Poor solubility, unsensitive 
Methyl yellow Red pH 2.9-pH 4.0 Yellow Unsensitive  
Bromophenol blue Yellow pH 3.0-pH 4.6 Green Unsensitive, outside range 
Bromocresol green Yellow pH 3.8-pH 5.4 Blue Outside range 

 

 

Figure 5.6. Bromocresol green (BG) assay development and verification. A) calibration curve of 

LA concentration versus absorbance at A616nm, B) LA production of different mutants measured 

by BG assay and HPLC.  

 

5.2.2.2. Lactate Oxidase Assay  

The BG assay is not specific to L-LA measurements and it can also be used for D-LA screening. 

However false-positives may also occur if the mutants produce more acids other than LA resulting 
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in low fermentation pH. To overcome this shortcoming, we developed a LOD assay specific for 

L-LA measurements.  

L-LA can be oxidized by lactate oxidase (LOD) to pyruvate and H2O2. There are several 

methods available to quantitatively measure the amount of H2O2.  I selected the lactate oxidase 

from Aerococcus viridans (L9795) and the fluorometric hydrogen peroxide assay kit (MAK165-

1KT) from sigma. The LOD reaction was successfully integrated with the fluorometric hydrogen 

peroxide assay kit. The reaction protocol was established for creating the calibration curve of LA 

(uM) versus RFU (Ex/Em = 540/590 nm) (Figure 5.7A) and for measuring the fermentation sample 

(Figure 5.7B). The fermentation supernatant should be diluted 1000 times before the 

measurements since the active interval of LOD assay is 5 uM to 30 uM. Although the concentration 

measured by LOD was about 20%~50% less than the actual concentration, the relative 

concentration of different mutants was consistent with the HPLC measurements. This assay was 

done in 96-well plates and the absorbance change was detected at 590 nm using fluorescent plate 

reader. LOD assay could be used to directly measure the L-LA concentration in fermentation 

supernatant and the process could be adapted to iBioFAB easily for high-throughput screening. 

The assay costs US$1.22/reaction.  
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Figure 5.7. LOD assay development and verification. A) The calibration curve of L-LA (uM) 

versus the RFU (Ex/Em=540/590 nm). B) Measurements of fermentation samples by LOD assay 

and HPLC. The error bars represent the standard deviation of biologically triplicate experiments. 

 

5.2.2.3. L-Lactic Acid Biosensor  

Inspired by L-LA biosensor constructed in E. coli,11 I planned to develop a genetic sensor 

responsive to L-LA concentration in CEN.PK2.1C, so that we would be able to rapidly screen the 

high L-LA producing strain in a high throughput manner. We designed the yeast biosensor based 

on a bacterial transcription factor LIdR and its corresponding operator O1 and O2, involved in L-

LA metabolism in E. coli.12 LIdR undergoes a conformational change when it specifically binds 

to L-LA and dissociates from its operator O1 (design 1) or O2 (design 2), allowing access of the 

RNA polymerase (Figure 5.8A). LIdR was fused with a strong NLS SV40 at the C-terminus to 

enable nuclear import. The LIdR-NLS SV40 was assembled in a YCp with TEF1 promoter and 

PGK1 terminator. To provide a quantitative readout of LIdR-O behavior, a YIp harboring the GFP 

as a reporter was constructed. The O1 or O2 regulated fluorescent protein expression cassette was 

constructed by inserting O1 or O2 into an engineered promoter GPM1 in front of GFP. The GPM1 

promoter was modified with only one upstream activation sequence conserved to eliminate native 

transcriptional regulation (Figure 5.8B). The operator sequence was inserted immediately in front 

of the TATA box. 
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Figure 5.8. Design of L-LA sensor/regulating circuits: (A) scheme (B) sequence  

I first evaluated the GFP expression level in PK2M1-LAb1 (PK2M1_pRS405-GPM1(O1)-

GFP-PGK1t_pRS416) and PK2M1-LAb2 (PK2M1_pRS405-GPM1(O1)-GFP-PGK1t_pRS416) 

in SC-Ura liquid medium supplemented with 20 g/L glucose and different L-LA concentration or 

at different pHs. The GFP intensity increased when L-LA concentration was increased from 0% 

to 1% while decreased at 2% (Figure 5.9A). It was interesting to find that pH value alone had 

regulation effect on GFP expression. The fluorescence intensity increased when the pH decreased 

from 6.7 to 2.7. Further decrease in pH inhibited the GFP expression (Figure 5.9B). Since SC-Ura 

liquid medium with 2% L-LA is at pH 2.4, cellular stress response to low pH maybe the reason of 

decreased GFP intensity at 2% L-LA.  
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Figure 5.9. A) Dynamic response of L-LA-sensing/regulating gene circuits in SC-Ura liquid 

medium supplemented with 20 g/L glucose at A) different L-LA concentrations; B) at different 

pHs. Sensor activity was measured by fluorescence intensity of 24-hr cell culture by flow 

cytometry.  

To test the regulation effect of L-LA on GFP expression alone, I measured the GFP 

intensity of PK2M1-LAb1 and PK2M1-LAb2 individually in SC-Ura liquid medium with different 

L-LA concentration at pH 5.6. The sensor activity was measured at 6hr, 12hr, 18hr, 24hr, 24hr and 

48hr respectively. The induction ratio was maximum at 24 hr after L-LA being added. The 

fluorescence intensity was proportional to the L-LA concentrations from 0.2% to 2% and there 

was no substantial background fluorescence change in PK2M1 (Figure 5.10). Native repressor of 

O1 and O2 may present and could interact with L-LA. Introducing LIdR in PK2M1-LAb1-LIdR 

(PK2M1_ pRS405-GPM1(O1)-GFP-PGK1t_pRS416-TEF1p-LIdR-PGK1t) and PK2M1-LAb2-

LIdR (PK2M1_pRS405-GPM1(O2)-GFP-PGK1t_pRS416-TEF1p-LIdR-PGK1t) improved the 

sensitivity of L-LA-sensing/regulating gene circuit to different L-LA concentrations. Higher 

induction ratio was achieved for gene circuit containing LIdR: around 4-fold in PK2M1-LAb1-

LIdR and PK2M1-LAb2-LIdR, 2-fold in PK2M1-LAb1 and PK2M1-LAb2). In both cases, O2 has 

stronger basal level expression than O1.  

I further optimized the L-LA-sensing/regulating gene circuit by adjusting the ratio of 

O1(O2)/LIdR by using a high copy number plasmid to express LIdR. I also used a codon-optimized 
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LIdR to replace the original LIdR from E. coli to theoretically achieve higher expression level. 

More LIdR in the system reduced the induction ratio of L-LA-sensing/regulating gene circuits 

within the working range (0~4% L-LA) (Figure 5.11). So, use of single copy repressor is enough 

to achieve the best regulation effect. 

 

Figure 5.10. Dose-response curves of L-LA-sensing/regulating gene circuits. Dynamic response 

of sensors designed with different operator A) LAb1 or B) LAb2 with or without LIdR being 

expressed in SC-Ura liquid medium supplemented with 20 g/L glucose and different L-LA 

concentration at pH 5.6. The average fluorescence intensity of 24-hr liquid culture was measured 

by flowcytometry.   

 

 

Figure 5.11. Dose-response curves of L-LA-sensing/regulating gene circuits designed with 

different Operator/repressor ratio. Sensor activities were compared by fluorescence intensity of 

cells cultured in SC-Ura liquid medium with 20 g/L glucose and different L-LA concentrations 

(%) at pH 5.6. LIdRcm indicates codon-optimized LIdR. LIdRcm-H indicates that LIdRcm was 

expressed on high copy number plasmid.  
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The designed L-LA-sensors could respond to different amount of extracellular L-LA. To 

use the sensor as a high throughput screening method to identify mutants with improved LA 

production. I must confirm that L-LA-sensing/regulating gene circuit can work well in the yeast 

strains producing different amount of L-LA. I built different L-LA-sensing/regulating gene circuits, 

basically LAb1-LIdR, LAb2-LIdR and LAb3-LIdR in PK2M3, PK2M4 and PK2M5 that produced 

different amount of L-LA in flask-fermentation (Figure 5.2). LAb3-LIdR is a new design which 

placed O1 behind the UAS region and O2 just before the TATA box.  A small amount of PK2M3-

sensor, PK2M4-sensor and PK2M5-sensor strains (OD600=1) were inoculated in SC-Ura liquid 

medium supplemented with 20 g/L glucose and 100 mM citrate phosphate at pH 5.6. The 

fluorescence intensity and L-LA production of 24-hr culture were analyzed by flowcytometry and 

HPLC respectively. In LAb2-LIdR design, mutants produced more L-LA have stronger 

fluorescence intensity too (Figure 5.12A, B). The mutants produced more L-LA after 24-hr 

fermentation also have higher titer at the end of 3-day fermentation (Figure 5.12 and Figure 5.2). 

Although the Lab1-LIdR sensing/regulating gene circuits worked well in Pk2M1 that does not 

produce LA, it did not show good correlation between L-LA production and fluorescent intensity 

in those strains producing LA. The L-LA sensor works well in other two common liquid mediums 

used in this study SC-Ura and YPD, and the sensor activity assay is performed after 24 hrs (Figure 

5.12C, D).  
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Figure 5.12. A) and B) Different L-LA sensor activity in PK2M3, PK2M4 and Pk2M5 produced 

different amount of LA after 24-hr fermentation in SC-Ura liquid medium supplemented with 20 

g/L glucose and 100 mM citrate phosphate at pH 5.6 C) and D) LAb2qc-LIdR L-LA sensor activity 

in PK2M3, PK2M4 and PK2M5 produced different amount of LA after 24-hr fermentation in SC-

Ura liquid medium supplemented with 20g/L glucose, 12-hr and 24-hr fermentation in YPD 

medium. 

 

5.2.3. Establishing Screening Methods for Low pH Tolerance  

RAGE 2.0 library and CRISPR-AID library were constructed on the plasmid pRS416 and pRS426 

respectively.6,10 SC-Ura solid/ liquid medium supplemented with 20 g/L galactose and LA at low 

pH was chosen as the selecting medium for acid tolerance screening. To identify the optimum pH 

and LA concentration for selection purpose, 1ul (OD600 = 1) PK2M3 (approximately 104 cells) 

were plated on SC-Ura solid medium at pH ranging from 2.6 to 5 with LA ranging from 1% to 4% 
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respectively. SC-Ura supplemented with 20 g/L glucose and 3% LA at pH 3.0 showed around 100 

small colonies after 4-day growth and it was chosen as the selection plate for screening mutants 

with improved acid tolerance.  

Based on later study, there is no absolute relationship between strong acid tolerance and 

high LA production. The tolerance screening was coupled with the production screening based on 

the bromocresol assay since it can be applied to the iBioFAB platform more easily compared with 

other screening methods. As shown in Figure 5.13, following the transformation, the yeast library 

was plated on SC-Ura solid medium supplemented with 20 g/L galactose and 3% LA at pH 3.0. 

The first appeared colonies or those sizes were bigger than the largest colonies on the control plates 

were inoculated in deep-round 96-well plates dispensed with SC-Ura liquid medium supplemented 

with 20 g/L galactose. The saturated culture was sub-cultured one time to synchronize the growth. 

The subculture was used to do growth profile evaluation in the selecting medium and fermentation 

test. For growth profile evaluation, mutants and control strain with the initial OD600 of 0.2~0.8  

were grown in SC-Ura liquid medium supplemented with 20 g/L glucose with 3% LA at pH 3. 

The OD600 was measured at 4h intervals for the first 24hs and 12h intervals for the next 2 days. 

For fermentation, mutants and control strain with the initial OD600 of 1 were started in SC-Ura 

supplemented with 50g/L glucose. The bromocresol green assay was applied on 3-day 

fermentation culture to estimate the LA production. The top candidates from both tolerance 

screening and LA production screening were chosen for further verification and analysis. The 

plasmids from those candidates were extracted, sequenced and re-transformed back into fresh-

background parent strain confirm the improvements. The improved strain can be used as new 

parent strain for the next round of engineering.  
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Figure 5.13. Schematic of library screening and verification.  

5.2.4. CADnm-RNAi RAGE 2.0 Library  

CADnm is the mutant of CEN.PK2-1C with an reconstructed functional RNAi machinery. We 

first created CADnm-RNAi-RAGE 2.0 library to demonstrate the outperformance of RAGE 2.0 

library in terms of improving the strain tolerance at low pH compared with the wild type. To ensure 

the adequate coverage, >106 independent clones were obtained for both overexpression library 

CADnm-pRS416-TEF1p-RAGE2.0-Forward and (library size: 1.1×106) and knockdown library 

CADnm-pRS416-TEF1p-RAGE2.0-Reverse (library size: 4.4×106).  We performed the 

enrichment selection of the overexpression and the knockdown libraries in SC-Ura liquid medium 

supplemented with 20 g/L glucose and 0% to 4% LA at pH 3.0. Both libraries outperformed the 

control strain in the first round of enrichment (Figure 5.14A) 
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Figure 5.14. A) Comparison of RAGE 2.0 libraries with the control strain CADnm-pRS416 in 

SC-Ura liquid medium supplemented with 20 g/L glucose and 0~4% LA at pH 3. B) The growth 

profile of CADnm-pRS416 in SC-Ura liquid medium supplemented with 20 g/L glucose and 5~9% 

LA at pH 3.  

Since the control strain also reached the same OD as the library at 4% LA. I evaluated the 

growth rate of the control strain at higher LA concentration (5% to 9%) (Figure 5.14B). CADnm 

has higher LA tolerance compared with PK2M3. The growth rate and maximum OD were reduced 

while increasing the LA concentration. Libraries in SC-Ura (20 g/L glucose, 7% LA, pH 3) were 

further enriched in the same medium four to five rounds to reach 625 to 3125-fold total enrichment. 

For each round enrichment, 2% inoculum was transformed into fresh SC-Ura (20 g/L glucose, 7% 

LA, pH 3) when the OD600 exceeded 1 in a previous round. The enrichment was also performed 

on CADnm-pRS416 as a control. After enrichment, single colonies were obtained by streaking the 

library onto a SC-Ura plate containing 5% LA at pH 3. Fifty randomly picked colonies from each 

library were examined for growth in SC-Ura (20 g/L glucose, 5% LA, pH 3) (Figure 5.15). 35 

candidates with either higher final OD600 or faster exponential growth rate compared with the 

enriched control strain CADnm-pRS416 (enriched) were selected for further verification.  

Plasmid library was isolated from the positive candidates and sequenced to elucidate the target 

gene information. 21 candidates down regulated the expression of tup1, encoding a chromatin-

silencing transcriptional regulator. Interestingly, five candidates upregulated the expression of 
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tup1 too. Other up- or downregulated candidates are summarized in Table 5.3. We transformed 

those isolated plasmids into fresh background CADnm and PK2M3-RNAi strain to confirm the 

improvements on the acid tolerance. Since CADnm strain has very strong tolerance to LA, the 

mutants did not show obvious improvements of growth in acid medium (Figure 5.16A,B). 

However, the final OD600 of mutants PK2M3-RNAi-tup1 (down), tma10 (down), tup1 (up), bmh1 

(up), stf1(down) was much larger than that of the parent strain PK2M3-RNAi-pRS416 in acidic 

medium with galactose as carbon source. Although PK2M3 has glucose “toxicity” due to gene 

modification, mutants with tup1 being overexpressed, tup1 (up), or knockdown, tup1 (down), still 

overperformed the parent strain PK2M3 in terms of growth rate and final OD600 (Figure 5.16C,D).  

 

Figure 5.15. Growth profile evaluation of CADnm RAGE 2.0 libraries versus control CADnm-

pRS416 in SC-Ura liquid medium supplemented with 20 g/L glucose and 3.5% LA at pH 3, A) 

biomass accumulation versus time B) growth rate versus time.  
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Table 5.3. Gene targets of top candidates from growth profile evaluation in selecting medium 

Gene Regulation Repeatability Comments 

tup1 Down 21/35 Chromatin-silencing transcriptional regulator 

tma10 Down 2/35 
Protein abundance increases in response to DNA 
replication stress 

stef1 Down 1/35 ATPase-binding protein 

phd1p Down 1/35 
Transcriptional activator that enhances pseudohyphal 
growth; physically interacts with the Tup1-Cyc8 
complex and recruits Tup1p to its targets 

bmh1 Up 5/35 Regulation protein 
tup1 Up 5/35 Chromatin-silencing transcriptional regulator 

 

 

Figure 5.16. Growth profile evaluation of mutants versus control strain. A) log phase growth rate 

and B) mass accumulation of CADnm-mutants and control CADnm-pRS416 in SC-Ura with 20 

g/L glucose and 3.5% LA at pH 3. C) mass accumulation of PK2M3-RNAi-mutants and control 

PK2M3-RNAi-pRS416 in SC-Ura with 20 g/L galactose and 3.5% LA at pH 3. D) mass 

accumulation of PK2M3-RNAi-mutants and control PK2M3-RNAi-pRS416 in SC-Ura with 20 

g/L glucose and 3.5% LA at pH 3. The error bars represent the standard deviation of biologically 

triplicate experiments.  
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5.2.5. PK2M3nm-RNAi RAGE 2.0 Library  

The PK2M3-RNAi-RAGE 2.0-overexpression and knockdown libraries were created by 

transforming the plasmid library pRS416-RAGE2.0-overexpression and pRS416-RAGE2.0-

knockdown into the parent strain PK2M3-RNAi. 106 colonies were obtained for each library to 

ensure adequate coverage of all genes. The libraries were screened and analyzed by the method 

discussed in Section 5.2.3. Although the library mutants did not show as strong acid tolerance as 

the wildtype CADnm-pRS416, a lot of good candidates were identified with greatly improved acid 

tolerance compared with the parent strain PK2M3-RNAi-pRS416 (Figure 5.17). BG assay also 

indicated a few candidates with improved LA production in small-scale fermentation test.  

21 candidates with either strongest acid tolerance or highest LA production were verified 

by re-transforming the corresponding plasmids into the fresh background PK2M3-RNAi. All 

selected mutants had higher final OD600 than the parent strain PK2M3-RNAi-pRS416 (Figure 

5.18). The mutants with stronger acid tolerance may not result in higher LA production (Figure 

5.19). Permanent mutants of top three candidates, FA3, RG4, and RD5, with highest LA 

production and good acid tolerance were constructed by integrating the genetic regulation part into 

the chromosome of PK2M3-RNAi using YIp pRS404. Among them, except PK2M3-RNAi-FA3 

in which an uncharacterized gene being overexpressed, both PK2M3-RNAi-RG4 and PK2M3-

RNAi-RD5 have different genes being down-regulated. They are fba1 and htb1 encoding fructose-

biphosphate aldolase and core histone protein required for chromatin assembly and chromosome 

function respectively. 



228 
 

 

Figure 5.17. Growth profile of PK2M3-RNAi-RAGE 2.0 libraries versus wild type CADnm-

pRS416 and parent strain PK2M3-RNAi-pRS416 in selection medium SC-Ura supplemented with 

20 g/L glucose and 3.5% LA at pH 3. 

 

Figure 5.18. Growth profile verification of top 21 mutants from the first-round screening versus 

the parent strain PK2M3-RNAi-pRS416 in selecting medium SC-Ura supplemented with 20 g/L 

glucose and 3.5% LA at pH 3. 
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Figure 5.19. L-LA production in 2-mL falcon tube fermentation (SC-Ura supplemented with 50 

g/L glucose) measured by HPLC. The error bars represent the standard deviation of biologically 

triplicate experiments.  

Among, PK2M3-RNAi-FA3, PK2M3-RNAi-RD5 and PK2M3-RNAi-RG4, only PK2M3-RANi-

FA3 shew stronger acid tolerance compared with the parent strain (Figure 5.20 A). Compared with 

PK2M3-RNAi-pRS416-RD5 and RG4, the permanent mutants PK2M3-RNAi-RD5 and PK2M3-

RNAi-RG4 only have single copy of gene regulation module, which may result in weaker acid 

tolerance.  In the shake-flask fermentation with minimum medium SC supplemented with 50 g/L 

glucose, the glucose consumption rate of FA3 was faster than that of other three strains (Figure 

5.20 B). Three mutants had higher L-LA production rate and production than the parent strain. 

PK2M3-RNAi-FA3 produced 1.5 times more L-LA than the parent strain and had highest final 

OD600 at the end of fermentation (Figure 5.20 C&D). Thus PK2M3-RNAi-FA3 was chosen as the 

best candidates to do semi-batch fermentation.  
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Figure 5.20. Acidic tolerance and L-LA productivity of PK2M3-RNAi-FA3, RG4, RD5 versus 

the parent strain PK2M3-RNAi-pRS416. A) growth profile evaluation in the selecting medium 

SC-Ura supplemented with 20 g/L glucose and 3.5% LA at pH 3. B) glucose consumption in flask 

fermentation with SC supplemented with 50 g/L glucose. C) L-LA production in the flask 

fermentation. D) Final OD600 in the flask fermentation. The error bars represent the standard 

deviation of biologically triplicate experiments.  

 

5.2.6. PK2M3nm-PAID6 CRISPR-AID Library  

PK2M3-PAID6-Activation, PK2M3-PAID6-Inactivaton and PK2M3-PAID6-Deletion libraries 

were created by transforming plasmid libraries pRS426-CRISPR-Activation, pRS426-CRISPR-

Inactivation and pRS426-CRISPR-Deletion into the parent strain PK2M3-PAID6. 3×106, 2×106 

and 1×106 colonies were obtained for each library respectively to ensure the adequate coverage. 

The libraries were screened and analyzed by the method discussed in section 5.2.3. Top 28 



231 
 

candidates from the first-round acid tolerance and BG assay screening were picked for further 

verification. Among them, 14 candidates were from activation library; 11 candidates were from 

inactivation library and only 3 candidates were from the deletion library. The plasmids from the 

top candidates were extracted and sequenced to elucidate the target gene. The mutants with 

overexpression of an uncharacterized gene 4833, knockdown of tef1, or spte4 are especially 

interesting since there are more than two screened mutants targeting at those genes respectively.  

28 candidates were verified by re-transforming the corresponding plasmids into the fresh 

background PK2M3-PAID6 strain. Only four mutants A-A5, I-E5, I-H7 and I-H8 had higher final 

OD600 than the parent strain PK2M3-PAID6-pRS426 (Figure 5.21). They are mutants with 4833 

being overexpressed, tef1, spt4 and som1 being down regulated respectively. Tef1 and spt4 encode 

translational elongation factor and transcriptional elongation factor respectively. SOM1 is the 

subunit of the mitochondrial inner membrane peptidase. None of them has been reported to 

improve yeast acid tolerance in the literature.   

 

Figure 5.21. Growth profile verification of top 28 mutants from the first-round screening versus 

the parent strain PK2M3-PAID6-pRS426 in selecting medium SC-Ura supplemented with 20 g/L 

glucose and 3.5% LA at pH 3.  
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To make the stable mutant, gene-targeting module including the gRNA were integrated into the 

pre-tested spots in the genomic DNA of the parent strain by using CRISPR-based gene-editing 

strategy. The insertion of extracellular DNA at those spots does not affect the strain’s overall 

phenotype. The resulted mutants PK2M3-PAID6-H7, E5 and A5 still had stronger acidic tolerance 

than the parent strain PK2M3-PAID6-pRS426 (Figure 5.22A). In the shake-flask fermentation 

with minimum medium SC supplemented with 50 g/L glucose, PK2M3-PAID6-A5 and E5 grew 

faster, consumed glucose faster and produced more LA than the other three strains. Interestingly, 

although PK2M3-PAID6-H7 had strongest acid tolerance among all mutants, it produced least LA 

within 4-day fermentation, which means stronger acid tolerance may not lead to higher LA 

production.  From the first round CRISPR-AID library screening, two mutants were identified with 

improved acid tolerance and LA production compared with the parent strain. They are PK2M3-

RNAi-A5 in which an uncharacterized gene 4388 being overexpressed, and PK2M3-RNAi-E5 in 

which tef1 being transcriptional down regulated.  

 

 



233 
 

 

Figure 5.22. Acidic tolerance and L-LA production of PK2M3-PAID6-A5, E5, H7 and H8 versus 

the parent strain PK2M3-PAID6. A) growth profile evaluation in the selecting medium SC-Ura 

(3.5% LA, pH 3). B) glucose consumption in flask fermentation with SC supplemented with 50 

g/L glucose. C) L-LA production in flask fermentation. D) mass accumulation in flask 

fermentation. The error bars represent the standard deviation of biologically triplicate experiments.  

 

5.2.7. Fermentation  

We also evaluated L-LA production of PK2M3-RNAi-FA3 in fed-batch bioreaction at pH 3.0 

using a 1L bench-top bioreactor. In 500 mL fed-batch fermentation, by consuming 68 g glucose, 

up to 52 g/L of L-LA was produced with a yield of 0.77 g/g.  

5.3 Conclusion  

In this study, we constructed a LA producing mutant PK2M3 that can produce 40 g/L L-LA in 

fed-batch fermentation with YPD medium. We constructed RNAi and CRISPR-AID machinery in 

PK2M3 and using PK2M3 as the parent strain to apply genome-wide engineering to improve the 
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acid tolerance and LA overproduction. The first-round engineering resulted in one permeant 

mutant from PK2M3-RAGE 2.0 library and two mutants from PK2M3-CRISPR-AID libraries 

with up to 2.5-times acid tolerance and 1.5-times LA production compared with the parent strain. 

The best mutant PK2M3-RNAi-FA3 with an unknown gene overexpressed can produce up to 52 

g/L L-LA in fed-batch fermentation with SC medium. To adapt the selection process into ACE 

platform for high throughput screening, we also developed a growth-based LA biosensor and an 

automated quantification assay based on industry-standard BioProfile Analyzer. The best 

candidates from the first-round engineering would be used as the new parent strain for multiple 

rounds engineering.  

5.4 Future Work 

Pk2M3-RNAi-FA3 will be used to perform second or third round genome-wide engineering to 

further improve the acid tolerance and LA production. We will also develop the whole engineering 

and selection process on iBioFAB and using automotive cellular platform to realize iterative 

engineering in high throughput manner.  

LA is exported out of the cell after being synthesized. At low pH, lactic acid is present in tis 

protonated form and can therefore enter the cell by diffusion.  General bulk fermentation followed 

by Fluorescence Activated Cell Sorting (FACS) cannot be used to identify the mutants producing 

more LA than others. We are establishing a microfluidics droplet system. Droplet-based 

microfluidics system can be used to generate water in oil droplet with similar size to 

compartmentalize single cells, which enable the analysis of metabolites released from or secreted 

by the cells.13 Stephanopoulos and co-workers used microfluidic system and build-in fluorescence-

based sorting facility to successfully enriched L-lactate -producing E. coli clones 5,800X from a 

population containing one L-lactate producer per 104 D-lactate producers.14 Alper and co-workers 
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recently using double emulsion (W/O/W) to sort out riboflavin overproduced Yarrowia 

lipolytica.15 We plan to combine L-lactate biosensor with both single water in oil (W/O) droplet 

system followed by breaking the droplet for FACS and double emulsion (W/O/W) that would be 

directly applied on FACS to screen out high LA producing mutants.  

5.5 Experimental Procedures  

5.5.1. Strains and Media and Culture Conditions  

All yeast mutants used in this study are described in Table 5.4. S.cerevisiae CEN.PK2-1C strain 

(MATa ura3-52 trp1-289 leu2-3,112 his3Δ1 MAL2-8C SUC2) was used as a parental strain in this 

study. The deletion of ADH and PDC gene inhibited the mutant’s growth in glucose media. All 

mutants were cultivated in YP medium (20 g/L peptone and 10 g/L yeast extract), synthetic 

complete (SC) or synthetic drop-out medium (SC drop-out) (1.67 g/L Difco Yeast Nitrogen Base 

without amino acids, 5 g/L ammonium sulfate, 0.83 g/L synthetic complete drop out mix) 

supplemented with 20 g/L galactose.  

For rich medium fermentation, all yeast cells were cultivated in YP medium supplemented 

with 20, 50 or 100 g/L glucose. For selective medium fermentation, yeast cells were cultivated in 

synthetic complete (SC) or synthetic drop-out medium (SC drop-out) supplemented with 20, 50 or 

100 g/L glucose. Pre-cultured cells (OD600 =1) were inoculated in 5 mL of media containing 50 

g/L glucose in a 50 mL screw cap conical tube, and then cultured at 30 ◦C with shaking at 250 rpm. 

For shake flask fermentation, precultured cells (OD600 =1) were cultivated in 20 mL of media 

medium containing 50 g/L glucose in a 125 mL conical flask. 
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Acidic selecting agar plates were made of normal SC or SC-Ura plate supplemented with 3.5% 

LA at pH 3.0. Acidic selecting medium were made of normal SC or SC-Ura plate supplemented 

with 3.5% LA at pH 3.0.  

Fed-batch fermentation was performed in 500 mL SC medium containing 50 g/L glucose using a 

1L bench-top bioreactor at 30°C with agitation speed of 450 rpm and air flow rate of 1.0 vvm. The 

pH of the culture medium was maintained at 3.5 by using 4 N NaOH. Strain PK2M3-RNAi-FA3 

was pre-cultured in SC medium containing 20 g/L glucose an inoculated into the fermenter with 

initial OD600 of 10. The feeding solution (600 g/L glucose and half the vol of 2XSC) was 

intermittently added to the culture medium when the glucose concentration was lower than 5 g/L. 

Table 5.4. The strain information of this study.  

Strains Genotype and description Reference 

CEN.PK2-1C MATa ura3-52 trp1-289 leu2-3,112 his3Δ1 MAL2-8C SUC2 EUROSCARF 

PK2M1 
CEN.PK2.1C 
adh1Δ::loxP::adh4Δ::loxP::gpd1Δ::loxP::gpd2Δ::loxP 

This Study 

PK2M2 PK2M1 adh1Δ::PTEF1-Lp.ldh-TTEF1 This Study 

PK2M3 PK2M1 adh1Δ::PTEF1-Lpm.ldh-TTEF1 This Study 

PK2M4 PK2M1 adh1Δ::PTEF1-Lb.ldh-TTEF1 This Study 

PK2M5 PK2M1 adh1Δ::PTEF1-Ro.ldh-TTEF1 This Study 

PK2M3-RNAi PK2M3 d::TEF1p-Ago-TPI1-Dcr This Study 

PK2M3-PAID6 PK2M3 KanMX-TDH3p-dLbCpf1-VP64-p65-ADH1t-ENO2p-
Csy4-PGK1tTPI1p-dSpCas9-RD11-RD5-RD2-TPI1t-TEF1p-
SaCas9-TEF1t 

This Study 

CADnm CEN.PK2-1C d::TEF1p-Ago-TPI1-Dcr 7 

PK2M3-RNAi-FA3 PK2M3-RNAi pRS404-TEF1p-fa3-PGK1t This Study 

PK2M3-RNAi-RD5 PK2M3-RNAi pRS404-PGK1t-htb1-TEF1p This Study 

PK2M3-RNAi-RG4 PK2M3-RNAi pRS404-PGK1t-fba1-TEF1p This Study 

PK2M3-PAID6-A5 Pk2M3-PAID6 SAR52p-LbCpf1 scaffold-4833 gRNA-SUP4t This Study 

Table 5.4. cont. 

PK2M3-PAID6-H7 Pk2M3-PAID6 SAR52p-SpSgRNA structure-spt4 gRNA-SUP4t This Study 

PK2M3-PAID6-E5 Pk2M3-PAID6 SAR52p-SpSgRNA structure-tef1 gRNA-SUP4t This Study 

PK2M3-PAID6-H8 
Pk2M3-PAID6 SAR52p-SpSgRNA structure-som1 gRNA-
SUP4t 

This Study 

JHY5610 
CEN.PK2-1C  adh1Δ::loxP adh2Δ::loxP adh3Δ::loxP 
adh4Δ::loxP::adh5Δ::loxP gpd1Δ::loxP gpd2Δ::loxP:: 
dld1Δ::PTDH3-Lm.ldhA-TCYC1-loxP-kanMX-loxP 

9 

JHY5617* JHY 5610: erf2∆, SURI245S-kanMX 9 
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5.5.2. Plasmid Construction  

All major primer and plasmids used in this study are described in Table 5.5 and Table 5.6 

respectively. 

Table 5.5. All major primers used in this study 

Name Sequence Description 

loxP-ADH5-rev 
cgataggccagctaagtggatcggagatttgatcaaacctctggc 
cataggccactagtggat 

Overlap extension PCR 
to construct TEF1p-
LDH-TEF1p-Loxp-
KanMx-Loxp cassette 

TEF1t-loxP-for gatattgtcgtaacaaatactttgatcggcgctat cagctgaagcttcgtacg 

TEF1t-rev atagcgccgatcaaagta 

ADH5-TEF1p-for atgccttcgcaagtcattcctgaaaaacaaaaggctattgtcttt gcggatagcttcaaaatg 

ADH5-for atgccttcgcaagtcatt 

ADH5-rev cgataggccagctaagtg 

GFP-for tagcaatctaatctaagttttaattacaaa atgcgtaaaggagaagaa 
Construct pRS414-GFP 

GFP-rev tgatcatgaattaataaaagtgttcgcaaattatttgtatagttcatc 

GFPrc-for atctaagttttaattacaaactatttgtatagttcatc Construct pRS416-
GFPrc GFPrc-rev cgatttcaattcaattcaatatgagtaaaggagaagaa 

pRS404-
Insert_fwd  

cgataagcttgatatcgaattcagcaacaggcgcgttgga  Construct pRS404-
TEF1p-FA3, RD5, RG4-
PGK1t 

pRS404-
Insert_rev  

cgctctagaactagtggatccaggaagaatacactatactggatctaaagagtac  

X-3-INT-SNR52F atcaggcacgaaggcacactcgtatatgcatgttgttgaactttgaaaagataatgtatg Together with pSg335 to 
make mutant PK2M3-
PAID6-H7 X-3-INT-M13R ttccatggggtcgcaacttttcccggtgacctctacatgtaggaaacagctatgaccatg 

XI-1-INT-SNR52F gcgccggttttcattttcttccacggaataccaagcccatctttgaaaagataatgtatg Together with pSg337 to 
make mutant PK2M3-
PAID6-H8 XI-1-INT-M13R ctgtacgcagcatttagcagagatttgccaatgccaagaaaggaaacagctatgaccatg 

XII-2-INT-SNR52F tgcgtctaacgcttttgccacttggatttctattataggactttgaaaagataatgtatg Together with pSg341 to 
make mutant PK2M3-
PAID6-E5 XII-2-INT-M13R aagaaattcttcctgtgcttcatcaaaacgcgaaaattcgaggaaacagctatgaccatg 

XI-3-INT-SNR52F ccaatcaaagaagcatcggttcagatcgagcaaactgtagctttgaaaagataatgtatg Together with pSg339 to 
make mutant PK2M3-
PAID6-A5 XI-3-INT-M13R tgacatccaaactacaaaaccgagattggacatatagcacaggaaacagctatgaccatg 

LA001 gtaccgggccccccctcgagaagcttcgtcttttcttg Construct pRS405-
LAb1/LAb2 LA002 agttcttctcctttactcattattgtaatatgtgtgtttgtttg 

Table 5.5. cont.    

LA003 aatctaagttttaattacaaaatgattgttttacccagacgc 
Construct pRS416-LIdR 

LA004 cgatttcaattcaattcaattcaaacttttctttttttttttggtggtgcgtttttctccctcgaatg 

pRS426-HindIII-
TEF1p-for 

aatacgactcactatagg 
Construct pRS426-
TEF1p-PGK1t pRS426-BamHI-

PGK1t-rev 
taaagggaacaaaagctg 

LIdR-cm-GA-for aatctaagttttaattacaaa atgattgttttgccaaga Construct pRS416-
LIdRcm LIdR-cm-GA-rev cgatttcaattcaattcaatttaaacttttctttttttttttg 

pRS426-HindIII-
TEF1p-for-3 

gtcgacggtatcgataagctt agcaacaggcgcgttgga 
Construct pRS426-
TEF1p-LIdR-PGK1t pRS426-BamHI-

PGK1t-rev-3 
gatcccccgggctgcaggaatt caggaagaatacactatactggat 
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Table 5.6. The major plasmids used in this study  

Plasmid Genotype Source or Reference 

pH5-Lpldh pRS425-TEF1p-Lpldh-TEF1t This study 

pH5-Lpmldh pRS425-TEF1p-Lpmldh-TEF1t This study 

pH5-Lbldh pRS425-TEF1p-Lbldh-TEF1t This study 

pH5-Roldh pRS425-TEF1p-Roldh-TEF1t This study 

pRS414-GFP pRS414-TEF1p-GFP-HX7Tt This study 

pRS416-GFPrc pRS414-TEF1p-GFPrc-HXPGK1t This study 

pRS-Ago pRS-delta-KanMX-LoxP-TEF1p-AGO1-
PGK1t-TPI1p-DCR1-GPD1t 

10 

pRS404-FA3 pRS404-TEF1p-fa3-PGK1t This study 

pRS404-RD5 pRS404-PGK1t-htb1-TEF1p This study 

pRS404-RG4 pRS404-PGK1t-fba1-TEF1p This study 

pSg335 pRS426-X-3-gRNA Lian et. al. 
(unpublished) 

pSg337 pRS426-XI-1-gRNA Lian et. al. 
(unpublished) 

pSg341 pRS426-XII-2-gRNA Lian et. al. 
(unpublished) 

pSg339 pRS426-XI-3-gRNA Lian et. al. 
(unpublished) 

pRS405-LAb1 pRS405-LAb3-GFP-PGK1t This study 

pRS405-LAb2 pRS405-LAb3-GFP-PGK1t This study 

pRS405-LAb3 pRS405-LAb3-GFP-PGK1t This study 

pRS416-LIdR pRS416-TEF1p-LIdR-PGK1t This study 

pRS416-LIdRcm pRS416-TEF1p-LIdRcm-PGK1t This study 

pRS425-LIdRcm pRS426-TEF1p-LIdRcm-PGK1t This study 

pRS416-RAGE 2.0-
Overexpression 

pRS416-TEF1p-cDNA-PGK1t 7 

pRS416-RAGE 2.0-
Knockdown 

pRS416-TEF1p-cDNArc-PGK1t 7 

pRS426-CRISPR-A pRS426-SAR52p-LbCpf1 scaffold-
gRNA-SUP4t 

Lian et. al. 
(unpublished) 

Table 5.6. cont.   

pRS426-CRISPR-I pRS426-SAR52p-SpSgRNA structure-
gRNA-SUP4t 

Lian et. al. 
(unpublished) 

pRS426-CRISPR-D pRS426-SAR52p-SaRNA structure-
gRNA-SUP4t 

Lian et. al. 
(unpublished) 

 

5.5.3. Construction of Genetically Manipulated Strains  

PK2M1 was created by deleting adh1, adh4, gpd1 and gpd 2 in CEN.PK2-1C consecutively using 

Cre-mediated gene knockouts methods.16  PK2M2, PK2M3, PK2M4 and PK2M5 were created by 
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replacing ADH5 with Lp-ldh, Lpm-ldh, Lp-ldh and Ro-ldh respectively using Cre-mediated gene 

knock-in methods.16 

5.5.4. Analytical Methods  

To determine the concentration of acetate, ethanol, glucose and lactate, all samples collected from 

culture supernatants were centrifuged 10 minutes at 13000 rpm and the supernatant were quantified 

by high performance liquid chromatography (HPLC). HPLC analysis was performed in UltiMate 

3000 HPLC system (Thermo Fishers Scientific) equipped with a Bio-Rad Aminex HPX-87H 

column at 60 °C with 5 mM H2SO4 at a flow rate of 0.6 mL/min and refractive index (RI) as a 

detector keeping at 35 °C. Cell growth was monitored by determining optical density at 600 nm.  

5.5.5. Bromocresol Green Assay  

Lactic acid and bromocresol green were purchased from Sigma-Aldrich (St. Louis. MO). 

Bromocresol green reaction solution (BG) was prepared by dissolving 60 mg bromocresol green 

powder into 1 L distillation water. The pH of the solution was adjusted to 5.5 while the solution 

just turned into deep blue by using sodium hydroxide. All fermentation samples (around 20 g/L) 

were diluted 5 times. While doing the measurements, 200 uL BG solution was added in a Corning 

UV-Transparent Microplates with clear flat bottom (ThermoFisher Scientific, Rockford, IL). 2 uL 

diluted fermentation sample was mixed well with reaction solution and the A616 nm absorbance was 

recorded with Cary 300 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, CA) 

5.5.6. LOD Assay  

L-Lactic acid, lactate oxidase from Aerococcus viridans (L9795) and Fluorometric Hydrogen 

Peroxide Assay kit (FHP) were purchased from Sigma-Aldrich (St. Louis. MO). Lactate oxidase 

master mix (LOD-MM) was prepared by suspended LOD with assay buffer from FHP assay kit 
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resulting in 0.01 U/uL solution. FHP master mix (MM) was prepared right before the 

measurements by following the FHP assay kit protocol. All fermentation samples (around 20 g/L 

concentration) were diluted 200 times with assay buffer. While doing the measurements, 50 uL 

LOD-MM mixed with 50 uL MM and was added in a Corning 96-well, clear bottom fluorescence 

plate (ThermoFisher Scientific, Rockford, IL). 2 uL diluted fermentation sample was mixed well 

with reaction solution. The plate was incubated at room temperature for 30 minutes. The 

fluorescent signal was detected using a Tecan Infinite M1000 PRO microplate reader (Morrisville, 

NC). The excitation and emission wavelength of FHP kit were set at 540 nm and 590 nm 

respectively. All experiments were performed in triplicate.    

5.5.7. Sensor Activity Assays   

For the characterization of L-LA sensor/regulating gene circuit in S. cerevisiae CEN.PK2.1C, 

PK2M1 strain was transformed with each circuit-containing plasmid and plated on SC-His-Ura 

plates supplemented with 20 g/L glucose. Single colonies were inoculated into 2 mL SC-Ura-His 

liquid medium supplemented with 20 g/L glucose. Overnight culture was sub-cultured one time to 

synchronize the growth.  The subculture was inoculated in 2 mL of SC-Ura liquid medium 

supplemented with 20 g/L glucose and different amount of L-LA with an initial OD600 of 1.0. 

Strains were cultured at 30 °C and 250 rpm. Samples were taken at 24 hr for flow cytometry 

analysis.  

For the characterization of L-LA sensor/regulating gene circuit in L-LA producing S. 

cerevisiae. PK2M3, PK2M4 and PK2M5 was transformed with each circuit-containing plasmid 

and plated on SC-His-Ura plates supplemented with 20 g/L glucose. Single colonies were 

inoculated into 2mL SC-Ura-His liquid medium supplemented with 20 g/L glucose. Overnight 

culture was sub-cultured one time to synchronize the growth. The subculture was inoculated in 2 
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mL of SC-Ura liquid medium supplemented with 20 g/L glucose, or 100 mM citrate-phosphate 

with an initial OD600 of 1.0 or YPD liquid medium with an initial OD600 of 0.4. Strains were 

cultured at 30 °C and 250 rpm. Samples were taken at 24 hr for flow cytometry analysis.  

5.5.8. Library Construction and Screening   

In the CAD, PK2M3-RNAi or PK2M3-PAID6 strains, the standard LiAc/ssDNA/PEG protocol 

was used to transform 10 ug to 20 ug RAGE or CRISPR-AID library plasmids based on the 

transformation efficiency of about 0.5 ~ 3×105 cfu/ug. The library DNA (20 ug) was able to 

achieve a library size of more than 1×106 to ensure a nearly complete coverage of the yeast 

genome.10 Following the transformation, the RAGE library yeast cells were plated onto 150 mm 

diameter Petri-dish plates of solid SC(G)-U medium supplemented with 3.5% LA at pH 3.0. The 

CRIRSPR-AID library yeast cells were recovered in SC(G)-URA medium to saturation and plated 

onto150 mm diameter Petri-dish plates of solid SC(G)-U medium supplemented with 3.5% LA at 

pH 3.0. The number of cells were adjusted so that each plate would form about 104 on SC-URA 

plate while about 103 on an SC-URA (pH3, 3% LA) plate. The library and control plates were 

incubated at 30 °C for 3-4 days. Nighty three colonies whose sizes were bigger than the largest 

colonies on the control plates or first appeared on the selection plate were picked from the library 

plates. The growth performances of the selected colonies and the control strain were compared in 

SC(D)-Ura liquid medium with 3.5% LA at pH3. The LA production levels of the mutants and 

control were compared in SC-Ura medium supplemented with 50g/L glucose and evaluated by BG 

assay. The plasmids from the top strains whose growth behaviors or LA production were 

considerably better than the control strain were isolated and amplified by E. Coli. The plasmids 

were sequenced to identify the gene targets. The selected plasmids where then individually 

retransformed in a fresh background parent strain. Growth behaviors and LA production were 
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evaluated again to confirm the improved quality compared with the parent strain. To confirm a 

given gene-target, a designed mutant was constructed by integrating the corresponding RNAi 

cassette or CRISPR AID modular part into the chromosome of a fresh background strain. 
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