
c© 2018 Haldun Umur Darbaz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/186334894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CHARACTERIZATION OF CONTAINERS IN EMERGING
APPLICATIONS: MICROSERVICES, FAAS AND GPUS

BY

HALDUN UMUR DARBAZ

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Nam Sung Kim

ABSTRACT

Containers have enabled new computing paradigms such as Functions-as-a-

Service in data centers today. Containers are inherently more lightweight

than virtual machines. This is caused by the fact that containers share the

kernel with the host system, removing the need for a two-dimensional page

walk. Containers also do not require a hypervisor. They rely on thin manage-

ment layers in container frameworks and existing Linux functionality. Linux

process and resource management features such as cgroups and namespaces

are tightly integrated to containers. This allows for simple management and

isolation of containerized applications.

Docker is currently the most prominent container framework. This thesis

utilizes Docker containers to create data center use cases with databases,

web servers, graph analytics, Functions-as-a-Service, and GPU-accelerated

stencil, lower-upper decomposition, object tracking and neural network ap-

plications. Furthermore, this thesis analyzes Docker Engine performance by

bringing up containers and breaks down bring-up overheads at function gran-

ularity. The virtual memory management aspects of Docker containers are

also characterized with a focus on container infrastructure, page tables and

page faults. This thesis reports on average 59.86% duplicated page table

entries and 35.7% duplicated page faults across four containerized processes

sharing a core. Additionally, this thesis identifies the source of 40% of con-

tainer bring-up overhead and attributes it to memory allocation, garbage

collection and process creation in Go and Linux. This thesis also identi-

fies a 7% slowdown in containerized GPU applications with NVIDIA-Docker

compared to native execution. Finally, this thesis provides guidance to archi-

tects for enabling container support in high-performance architectures, and

identifies future work to be done in the area.

ii

ACKNOWLEDGMENTS

I would like to express my gratitude to Professor Nam Sung Kim at the Uni-

versity of Illinois at Urbana-Champaign for his unending support beginning

in my undergraduate years. My passion and drive for computer architecture

grew under his guidance, without which this thesis would not have been writ-

ten. His knowledge and impeccable mentorship were paramount during my

graduate studies.

Additionally, I would like to sincerely thank Professor Josep Torrellas,

my supervisors Dimitrios Skarlatos and Mohammad Alian at the University

of Illinois at Urbana-Champaign. Collaborating with them has given me

direction and a stronger understanding of the existing problems in computing

systems. Their guidance and critique of my work have greatly contributed

to my development as a researcher.

I was able to connect my academic work to state-of-the-art industry prob-

lems and engineering challenges through the support of Nathan Myers at

Apple. The trust placed in me by him and his team has vastly expanded

my understanding of computation and challenges at scale. Through novel

graphics processing units work, I learned to be a better engineer and I greatly

appreciate our time together.

Finally, I would like to thank all of my close friends and family. Those

who have been with me every step of the way are the reason why I enjoy

what I do today. Nourishing relationships and environments allowed me to

focus on my studies and growth, even through the toughest times. Their

persistent belief in my prospective success filled me with confidence. I am

forever grateful for them.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

CHAPTER 1 INTRODUCTION . 1
1.1 Cloud Computing . 1
1.2 Service Providers and Applications 1
1.3 Thesis Focus . 2

CHAPTER 2 BACKGROUND . 4
2.1 Docker and Containers . 4
2.2 Address Translation, TLBs and Page Tables 8
2.3 Transparent Huge Pages . 10
2.4 Page LRU Lists . 11

CHAPTER 3 CONSIDERATIONS 13
3.1 Virtual Machines . 13
3.2 GPU Translation Lookaside Buffers 16

CHAPTER 4 METHODOLOGY . 18
4.1 Experiment Setup . 18
4.2 Applications . 20

CHAPTER 5 ANALYSIS . 23
5.1 Docker Engine and Container Bring-up 23
5.2 Virtual Memory Characterization 26
5.3 Containerized GPU Application Performance 34

CHAPTER 6 RELATED WORK . 37
6.1 Container Characterization . 37
6.2 Enhanced TLBs and Address Translation 38
6.3 Page Table Sharing . 38

iv

CHAPTER 7 CONCLUSION . 40
7.1 Conclusion and Takeaways . 40
7.2 Future Work . 41

REFERENCES . 42

v

LIST OF TABLES

4.1 Microservices and FaaS Evaluation System 19
4.2 GPU Accelerated Services Evaluation System 20
4.3 YCSB Configuration . 22

5.1 Full Page Fault Breakdown . 32

vi

LIST OF FIGURES

2.1 Container Image Structure . 5
2.2 Docker Container Software Stack 6
2.3 NVIDIA-Docker Container Software Stack 7
2.4 Process ID Tagged TLB Organization 8
2.5 Multi-Level Page Table Hierarchy 9
2.6 Page LRU List Flow . 11

3.1 Virtual Machine Software Stack 14
3.2 Address Translation in Virtual Machines 15

5.1 Docker Engine Scaling Performance 24
5.2 Container Bring-up Time per Application 25
5.3 Container Bring-up Kernel vs User Space 26
5.4 Container Bring-up Overheads Functional Breakdown 27
5.5 Page Table Entries at Application Initial State 28
5.6 Page Table Entries at Application Steady State 29
5.7 Active PTEs at Application Initial State 30
5.8 Active PTEs at Application Steady State 31
5.9 Page Fault Duplication . 32
5.10 Page Faults Per Million Instructions 33
5.11 CoW Page Fault Percentage 34
5.12 NVIDIA-Docker Kernel and API Distribution 35
5.13 NVIDIA-Docker Application End-to-End Runtime 36
5.14 NVIDIA-Docker API Overheads 36

vii

LIST OF ABBREVIATIONS

CPU Central Processing Unit

GPU Graphics Processing Unit

VM Virtual Machine

FaaS Function-as-a-Service

ML Machine Learning

DB Database

TLB Translation Lookaside Buffer

MMU Memory Management Unit

PGD Page Global Directory

PUD Page Upper Directory

PMD Page Middle Directory

PT Page Table

PTE Page Table Entry

THP Transparent Huge Page

ASLR Address Space Layout Randomization

CoW Copy-on-Write

NVMe Non-Volatile Memory Express

SSD Solid State Drive

I/O Input/Output

viii

CHAPTER 1

INTRODUCTION

1.1 Cloud Computing

Cloud computing is one of the most dominant paradigms in the modern field

of computing. The advent of scalable and high-performance architectures

has enabled the evolution of online platforms and services. Data-driven and

distributed applications continue their rapid evolution in data center envi-

ronments today. A key technology utilized by data centers is virtualization.

Virtualization is the backbone of application delivery, isolation and resource

sharing for multiple tenants in a cloud environment. Traditionally, virtual

machines (VM) have been utilized to provide cloud services where each ten-

ant would be provided with a VM for their allocated compute time.

Recently, containers have fundamentally altered the way cloud computing

functions. Containers package an application together with its dependencies,

necessary libraries and system software. Containers share the host system’s

kernel instead of running a guest operating system on top of the host. The

inherently lightweight design of containers allows data centers to better uti-

lize their infrastructure and have more tenants per hardware, with examples

of 10,000 containers per system [1]. The new application paradigms enabled

by containers and the scale pose challenges in terms of virtual memory man-

agement, application scheduling and performance guarantees.

1.2 Service Providers and Applications

Major cloud providers have enabled containerized services. Amazon Web

Services with ECS [2], IBM Cloud [3], Google Cloud [4] and Microsoft Azure

[5] with the Kubernetes Engine [6] are some examples of container services.

1

One major use case of Docker-based virtualization is classical data servic-

ing and processing applications such as databases and graph analytics. How-

ever, Docker has enabled new paradigms in data centers. At the forefront

of these new paradigms is Serverless Architectures through Functions-as-a-

Service (FaaS). FaaS eliminates long-running services in favor of short-lived

instances of applications to execute shorter and simpler functionality such as

data queries or basic processing. This allows for ”pay-as-you-go” models and

function-granularity scaling. FaaS is now available in major cloud providers

such as AWS through Lambda [7], IBM with OpenWhisk [8] and Google with

Cloud Functions [9].

Finally, accelerators and heterogeneous architectures have taken hold of

cloud computing. NVIDIA provides support for containerized GPU applica-

tions by extending Docker into NVIDIA-Docker [10]. GPU-enabled Docker

containers allow for the packaging of the CUDA runtime along with a Docker

image in order to execute GPU compute workloads within containers.

1.3 Thesis Focus

Containers are inherently different from VMs in their use-cases, infrastruc-

ture and characteristics. An application that needs to scale worker processes

to match incoming traffic can scale with containers. This is referred to as

on-demand scaling. Containerized environments are scaled by bringing up

or tearing down containers. As a result, the virtual memory management

and container management performance are critical to low latency and scale.

This thesis approaches containers by investigating Docker, the prevalent con-

tainer framework in a use case oriented study. A thorough analysis of virtual

memory management of Docker containers is conducted with applications

commonly found in data centers. Furthermore, on-demand scaling perfor-

mance is investigated and a breakdown of per-function overheads of creating

and starting a container is provided.

The remainder of this thesis is organized as follows. First, the necessary

background regarding Docker, containers, process and resource management,

address translation, translation lookaside buffers, page tables, huge pages

and active page management in Linux are provided in Chapter 2. Next,

containers are compared to virtual machines and the major performance and

2

memory overhead differences are highlighted in Chapter 3. Afterwards, the

experiment methodology is presented in Chapter 4. Performance and virtual

memory characterization of Docker containers are then presented in Chapter

5. The related literature on containers, TLBs, address translation and page

table sharing in architecture and hardware along with software approaches

are reviewed in Chapter 6. Finally, the thesis reaches a conclusion about

the strengths and weaknesses of containers in Chapter 7 and finishes with

guidance for future architectural work in this area.

3

CHAPTER 2

BACKGROUND

This chapter introduces what containers are and their infrastructure, and

discusses container management in Linux using Docker. It goes into detail

regarding container images, processes, resource management and extensions

to Docker. Afterwards, it also discusses the necessary CPU architecture and

operating systems background needed to understand the analysis done later

in the thesis, with a focus on TLBs, address translation and page tables in

Intel x86-64.

2.1 Docker and Containers

2.1.1 Overview

Containers are a lighweight virtualization technology used for process isola-

tion, resource management, application packaging and delivery. Containers

are built upon several major Linux kernel features such as namespaces, con-

trol groups (cgroups) and filesystems (UnionFS for Docker). Two major

container projects today are Linux Containers (LXC) [11] and Docker [12].

This thesis characterizes Docker containers specifically.

2.1.2 Container Images

Container images are the core of the packaged application. The container

image consists of multiple read-only layers, along with a thin read-write layer

added upon launching a container. The read-only layers contain application

code and necessary libraries along with system support. These layers package

together the application and all of its dependencies. The thin read-write

layer is utilized during application runtime for any temporary data storage

4

the application needs. Image creation works by either creating a base image

or extending from other images. A common way to construct an application

image is by extending from a Linux image to include fundamental system

support. Then, applications can extend the Linux image by adding their

specific libraries and unique layers to create their own image.

Layer 4, RO

Layer 3, RO

Layer 2, RO

Layer 1, RO

Base Image (Ubuntu 16.04)

RW Layer RW Layer RW Layer

Host

Volume /data, RW

Container
1

Container
2

Container
3

Volume /logs, RW

Volume /misc, RO

Figure 2.1: Container Image Structure

An example container image can be seen in Figure 2.1. All three containers

share the same image and have their own private read/write layers. Addi-

tionally, the data, logs and misc directories of the host machine are mounted

as volumes to the three containers. The mounted volumes are shared and

visible across the containers.

2.1.3 Container Processes and Resource Management

A container instance is created from a container image. The Docker En-

gine [13] is the hypervisor replacement for Docker containers. It handles the

start-up of container processes along with necessary process and resource

management. A container can be created and started by sending the Docker

Engine container creation and start commands. Once started, there will be

5

two processes visible to the host. Namely, the containerd-shim managing the

container runtime, and the application process. The containerized applica-

tion will run on top of the Docker Engine. Multiple container applications

running on the same host machine will share the host kernel, as seen in Figure

2.2.

Hardware Infrastructure

Host Operating System

Docker Engine

Libraries

Application

Libraries

Application

Libraries

Application

Figure 2.2: Docker Container Software Stack

Containers are stateless by nature. A container is stopped and torn down

after its execution. Any container state does not persist beyond the execution

of the application within the container. However, data persistence is an

option through the use of volumes. Any directory on the host machine can

be mounted as a volume to a container process during the start-up of a

container. The mounted volume can be utilized to persist information from

the container runtime and share data with other containers.

Resource management is handled through cgroups. Control groups allow

for limiting CPU, network, I/O and memory resources allocated to a given

process. Docker integrates cgroups into the Docker Engine to manage and

restrict container process resources.

Isolation is maintained through the use of namespaces. In Linux, each

namespace sees its own allocated set of resources. Docker provides a names-

pace to each container to isolate containerized processes. It also allows for

6

packing different containers into the same namespace.

2.1.4 NVIDIA-Docker

NVIDIA-Docker brings CUDA support to containerized environments by

packaging the CUDA runtime with GPU applications and their dependencies

in the container image. NVIDIA-Docker containers are driver-agnostic and

they automatically mount the necessary driver and GPU device components

at bring-up [14].

Hardware Infrastructure

Host Operating System

Docker Engine

Libraries

Application

Libraries

Application

Libraries

Application

CUDA Driver

CUDA Toolkit/RT CUDA Toolkit/RT CUDA Toolkit/RT

Figure 2.3: NVIDIA-Docker Container Software Stack

The NVIDIA-Docker container stack is shown in Figure 2.3. NVIDIA-

Docker is fundamentally a wrapper around Docker. GPU accelerated con-

tainers have the CUDA toolkit and runtime built in to the image. Each

NVIDIA-Docker container shares the host GPU driver, similar to the way

containers share the host kernel.

7

2.2 Address Translation, TLBs and Page Tables

In architectures utilizing virtual memory, each memory access has to be trans-

lated from a virtual address to a physical address. Translation Lookaside

Buffers (TLBs) cache translations that are used frequently. In a conven-

tional TLB structure, each entry holds the virtual page number (VPN), the

corresponding physical page/frame number (PPN/PFN), along with page

flags, a unique process identifier (PCID) and a valid bit. A common TLB or-

ganization is shown in Figure 2.4. Intel TLB hierarchies today are comprised

of split L1-TLBs for instructions and data along with a unified L2-TLB [15].

0

1

1

1

0x80B0

0x80B1

0x0000

0x80A1

0x2000

0x2001

0x0000

0x1001

V Virtual Page Number Physical Page Number

Virtual Page Number Virtual Page Offset

0

1

2

2

PID

PID

=

Figure 2.4: Process ID Tagged TLB Organization

When a memory access happens, the TLBs are indexed with the virtual

address of the current access. If the L1 TLB misses, the L2 TLB is checked.

If the address translation is found in the TLBs, the translation is utilized

in the rest of the memory hierarchy. A page table walk, handled by the

memory management unit (MMU), begins when the last-level TLB access

misses. This process is shown in Figure 2.5 with 4-level page tables. Intel

has future plans to extend this scheme to 5-level page tables [16]. In Intel

8

x86-64, the MMU first reads CR3 to get the physical address of the currently

running process’s last level of the page table, the Page Global Directory

(PGD). Bits 47:39 of the virtual address are used to index into the PGD.

This step provides the MMU with the physical location of the Page Upper

Directory (PUD). Bits 38:30 of the virtual address are then used to access the

PUD, yielding the physical location of the Page Middle Directory (PMD).

The PMD is accessed with bits 29:21 of the virtual address, which results

in the base address of the Page Table (PT). The final 21 bits of the virtual

address are used for the PT index (20:12) and the page offset (11:0) for 4

KiB pages. The final access is done to find the Page Table Entry (PTE).

If a PTE is found at the final location, the MMU successfully returns the

physical translation to the processor and caches the translation.

PGD Offset PUD Offset PMD Offset Page Table Offset Page Offset

47 39 38 30 29 21 20 12 11 0

Page Global
Directory

Page Upper
Directory

Page Lower
Directory Page Table

Control Register 3

Figure 2.5: Multi-Level Page Table Hierarchy

When a PTE is not present at the accessed location, a page fault is

triggered. There are two types of page faults: soft/minor page faults and

hard/major page faults. The operating system is involved in resolving page

faults through the page fault handler.

If the PTE that is not present at the walked location is present somewhere

9

else in memory (mapped to another process), then this is considered a soft

page fault. Soft page faults occur when multiple processes share physical

pages (such as libraries) despite using separate page tables. Hard page faults

occur on the very first access to a page across all running processes. The

page fault handler provides a mapping to the currently page faulting process

and the missing PTE is populated. If the PTE is not present in memory at

all, then this is a hard page fault. This begins an I/O request to the disk in

order to bring the requested page into memory and creates a PTE for it at

the location accessed by the faulting process.

2.3 Transparent Huge Pages

Scaling out the amount of managed memory becomes costly and challenging

with small pages due to the number of page table entries present across

page tables and within the TLB. Large numbers of PTEs across different

processes exert high levels of TLB pressure and require more page walks.

In order to deal with this problem, Linux utilizes huge pages [17]. Modern

processor architectures and operating systems support multiple page sizes,

namely 4 kB, 2 MB and 1 GB. Larger page sizes such as 2 MB and 1 GB are

collectively referred to as huge pages. A huge page combines smaller 4 kB

pages underneath a larger collective. Huge pages can be manually allocated

by users, and they will not be swapped out to disk during memory pressure.

Due to difficulties in managing huge pages, Transparent Huge Pages (THP)

[18] is used today. THP is abstracts away the management of huge pages and

automates it in the kernel. Huge pages are created and destroyed by pro-

moting and demoting contiguous chunks of pages. A kernel task periodically

scans page tables to find a section of memory where a huge page can replace

smaller pages. The decision to promote a set of pages to a huge page depends

on an internal threshold. If a contiguous chunk of pages surpass the internal

threshold, they may be promoted to a huge page. When the allocated pages

within a huge page fall below the threshold, the huge page may be broken

up.

10

2.4 Page LRU Lists

The Linux kernel maintains two least recently used (LRU) lists as part of its

page frame reclamation scheme [19]. These are the active and inactive lists.

The LRU lists are maintained to keep track of which pages are least recently

accessed or least frequently accessed. The information kept in the LRU lists

is used when the kernel decides to reap the Page Cache. Allocated pages

start out in the inactive list. When a page is accessed for the first time, its

referenced bit is set. The second access to a page moves it to the active list

and clears the referenced bit. Third and future accesses to a page set the

referenced bit again. This process is seen in Figure 2.6.

Referenced = 1
Active = 0

Referenced = 0  
Active = 0

Referenced = 1
Active = 1

Referenced = 0
Active = 1

Active ListInactive List

Figure 2.6: Page LRU List Flow

11

When the kernel runs low on Page Cache space, it pushes the tail of the

active list to the inactive list. Pages in the inactive list are candidates for

reclamation. A page on the active list is inferred as frequently and recently

accessed, whereas those on the inactive list are accessed sporadically.

12

CHAPTER 3

CONSIDERATIONS

This chapter introduces the software stack of virtual machines (VM) along

with two-dimensional page walks and address translation in fully virtualized

environments. It highlights the drawbacks associated with virtual machines,

and explains how Docker containers attempt to overcome the aforementioned

challenges. Finally, a literature study is conducted to contrast the perfor-

mance and memory overheads of virtual machines against those of Docker

containers.

3.1 Virtual Machines

3.1.1 Software Stack

Virtual machines work with hardware virtualization. Hardware virtualiza-

tion requires running a hypervisor such as VMWare ESXi [20], KVM [21] or

Xen [22]. The hypervisor is a software layer that virtualizes the underlying

hardware and enables resource management for multiple virtual machines.

Each virtual machine has a guest operating system underneath the applica-

tions it virtualizes. The full software stack is seen in Figure 3.1.

3.1.2 Address Translation

Address translation works with nested pages in virtual machines. The first

set of page tables are those managed by the guest operating system. The

second set of page tables are the ones maintained by the host operating

system. Since the memory address space for the guest operating system is

also virtualized, each memory access has to be translated to a virtual address

in the host system, and eventually a physical address in the host system.

13

Virtual HW

Guest OS

Hardware Infrastructure

Host Operating System

Hypervisor

Virtual HW Virtual HW

Guest OS Guest OS

Libraries

Application

Libraries

Application

Libraries

Application

Figure 3.1: Virtual Machine Software Stack

In a bare metal environment with 4-level page tables, a page walk would

first access the page global directory, then the page upper directory, followed

by the page middle directory and finally the page table. A page walk in a

virtual machine requires the access to each level of the guest page table to

be translated. This is referred to as a two-dimensional page walk. Figure 3.2

visualizes a two-dimensional page walk. This results in 24 memory accesses,

which is a major cause for performance slowdown in virtual machines [23].

Containers share the kernel with the host, thereby removing the need for a

two dimensional page walk.

3.1.3 Performance Compared to Containers

The hardware virtualization and heavier software stack of virtual machines

cause them to be inherently slower than containers. Previous work by Sharma

14

Guest
Page
Table

Guest
PMD

Guest
PUD

Guest
PGDvCR3

PGD

PUD

PMD

PT

PGD

PUD

PMD

PT

PGD

PUD

PMD

PT

PGD

PUD

PMD

PT

pCR3

Guest Virtual Address

+ + + +

PGD

PUD

PMD

PT

+

+

Guest OS

Host OS

Figure 3.2: Address Translation in Virtual Machines

et al. [24] shows that containers can use up to 89.5% less memory across their

set of applications. The authors also observe that soft-limited containers have

up to 40% higher throughput than virtual machines.

Another study by Soltesz et al. [25] uses Linux-VServer [26] to represent

a containerized environment. Their evaluation is conducted with operating

system benchmarks (fork/exec/sh/ctx/mmap/page fault). VServer perfor-

mance is within 1% of native performance, whereas Xen performed approxi-

mately 3x slower than the native baseline.

Furthermore, IBM Research has also evaluated Docker container perfor-

mance against virtual machines [27]. The authors show that containers are

within 4% range of native execution performance. Baseline kernel-based vir-

tual machines (KVM) are up to 22% slower than native performance, whereas

tuned virtual machines are at most 18% slower than native execution. One

of their key findings is that network performance is considerably slower in

containerized environments. Round trip latency is nearly twice the native

15

round trip time with both TCP and UDP protocols. Virtual machines have

lower round trip latency and lower cycles/byte transmission time than con-

tainers. Another critical observation IBM Research makes is that the I/O

performance of virtual machines is sluggish in random read/writes. Their

measurements show two to three times higher read latency in kernel-based

virtual machines. On the other hand, Docker containers have native level

I/O performance with both sequential and random read/writes. Finally, the

authors show that using the container filesystem causes a 1.5% decrease in

MySQL transaction throughput whereas using volumes avoids the perfor-

mance loss.

Overall, past research shows that container performance is near-native

level. While the performance is dependent on the exact configuration of the

container, containers consistently display higher performance than virtual

machines. The only exception shown thus far is the network performance

of Docker. This thesis does not consider virtual machines any further, and

focuses on a case-study oriented characterization of containers directly.

3.2 GPU Translation Lookaside Buffers

CUDA programs follow a single-program multiple-data (SPMD) model where

programs are developed similarly to scalar applications that execute with

a program order. The SPMD model uses single-instruction multiple-data

at the hardware level, where execution resources are wide with warp-level

scheduling. In NVIDIA architectures, 32 threads are scheduled and executed

concurrently in each pipeline [28]. Because of the execution model, the mem-

ory hierarchy organization is also effected to exploit the coalescing of memory

accesses from a warp.

Virtual memory is used in today’s highly programmable GPUs [29]. This

allows better separation and permissions of address spaces of different pro-

grams executing on a GPU and effectively enable resource sharing. The

Volta memory hierarchy is virtually indexed at the L1 caches and physically

indexed at the L2 cache. The TLBs use 2 MB page table entries where the L1

TLB has 32 MB of coverage and the L2 TLB has 8192 MB of coverage [30].

The increasing importance of scientific and high-performance computing for

data analytics, machine learning and scientific applications has ensured the

16

deployment of GPUs in cloud providers’ infrastructure. As a result, GPU

TLB performance has gained prominence.

Previous work on GPU memory hierarchies has shown the performance

degradation of using a naive address translation hierarchy modeled after CPU

TLBs and page walkers. According to [31], using a naive address translation

hierarchy where TLBs are accessed before or in parallel to L1 caches causes

performance degradation of 20-50%. The overhead is attributed to the chal-

lenges posed by the execution model, where a stalling thread will cause the

entire warp to stop, to the coalescing requirements, and to timing problems

due to massively parallel hardware. The authors of [31] propose exploiting

intra-warp cache locality and introducing smarter warp scheduling by adding

TLB-awareness to reduce the performance overheads of virtual memory to

CPU levels.

This thesis does not further consider GPU memory hierarchies. The GPU

accelerated services experimentation covers the direct overhead of container-

ization against native execution at the kernel runtime and API call level, as

described in the later Chapters 4 and 5.

17

CHAPTER 4

METHODOLOGY

This chapter discusses the experiment methodology used to characterize

Docker containers. It first details the overall setup and the evaluation sys-

tems. Then, it explains the focus of the analysis. Finally, the evaluated

applications are discussed.

4.1 Experiment Setup

4.1.1 Evaluation Systems

This thesis performs its experimental evaluation and performance measure-

ments using real systems. Three application categories are evaluated in this

thesis, namely: Microservices, Functions-as-a-Service and GPU-Accelerated

Services. Microservices and FaaS experiments are conducted on the physical

machine described in Table 4.1. GPU-accelerated applications are evaluated

on the system described in Table 4.2.

4.1.2 Characterization

Containers have been extensively studied to characterize CPU performance,

networking and I/O compared to native execution and virtual machines. This

thesis focuses on the characterization of three aspects of Docker containers

that have not yet been explored.

Container Bring-up Performance: A per-function performance breakdown

of bringing up containers is obtained and discussed using perf [32]. The

breakdown exposes the cost of different functions that are used by the Docker

Engine and by the Linux kernel to identify bottlenecks in starting up a con-

tainer. The container bring-up time is also measured by stressing the Docker

18

Table 4.1: Microservices and FaaS Evaluation System

Processor Parameters

CPU Model Broadwell Xeon E5-2650v4 2-Socket
Core Count and Frequency 24 Cores, 2.2 GHz
L1 Caches 768 kB, 8-ways, 64-byte lines
L2 Cache 3 MB, 8-ways, 64-byte lines, Unified
L3 Cache 30 MB, 20-ways, 64-byte lines, Unified
L1 dTLB 64 entries (4kB), 4 entries (1GB), 4-ways
L1 iTLB 128 entries (4kB), 8 entries (2MB), 8-ways
L2 TLB 1536 entries, 6-ways, Unified

Main-Memory Parameters

Capacity, Channels 64 GB, 2
Ranks/Channel 2
Banks/Rank 8
Frequency, Data Rate 2133 MHz, DDR4

Host and Docker Parameters

Host OS Ubuntu Xenial 16.04
Kernel 4.4.0
Docker Engine 17.06 CE

engine with varying request rates from a client. The client is a Go application

that hooks to the Docker API to send container star requests and measures

the bring-up time.

Virtual Memory Management Characterization: Because containers are a

virtualization technology, the virtual memory management performance of

containers is critical to their success. The address translation characteristics

of containerized applications are intricately analyzed with a focus on page

table entries and page faults to identify potential room for improvement.

Large numbers of containers exist on data center machines. That is due to

the fact that containers are inherently more lightweight and scalable than

virtual machines. To effectively recreate a data center oriented container

use case, four containerized processes are placed on a core to accomplish the

memory characterization.

NVIDIA-Docker GPU Performance Compared to Native Execution: The

performance overheads of containerization in traditional CPU workloads has

been well explored. As such, this thesis investigates the performance of

containerized GPU applications with NVIDIA-Docker and compares it to

native execution. The composition of execution time is constructed and the

19

Table 4.2: GPU Accelerated Services Evaluation System

Processor Parameters

CPU Model Haswell Core-i7 4790
Core Count and Frequency 4 Cores, 3.6 GHz
L1 Caches 256 kB, 8-ways
L2 Cache 1 MB, 8-ways, Unified
L3 Cache 8 MB, 16-ways, Unified
L1 dTLB 64 entries (4kB), 4 entries (1GB), 4-ways
L1 iTLB 64 entries (4kB), 8 entries (2MB), 8-ways
L2 TLB 1024 entries, 8-ways, Unified

Device Parameters

GPU Model Pascal GTX 1050
Streaming Multiprocessors 10
CUDA Cores 64 Per SM
Frequency 1.45 GHz
L2 Cache 1 MB
Memory, Interface and BW 2 GB, GDDR5, 112 GB/s

Main-Memory Parameters

Capacity, Channels 16 GB, 1
Ranks/Channel 2
Banks/Rank 8
Frequency, Data Rate 1.6 GHz, DDR3

Host and Docker Parameters

Host OS Ubuntu Xenial 16.04
Kernel 4.8.0
Docker Engine 18.06 CE
CUDA and Compute 8.0, 6.1
NVIDIA Driver 384.130

differences between containerized and native execution are highlighted with

a single application per core.

4.2 Applications

4.2.1 Microservices

Microservices are a form of software architecture that integrates multiple

small, modular components into a larger application [33]. Each modular

20

component accomplishes a set of functions and is an autonomous entity. As

part of a larger application, it can form any component such as a front-

end, data-servicing back-end or a computation engine. The decentralized

structure of microservices eases deployment in data center environments,

and as a result they have proven to be a strong target application class to be

used with Docker containers. This thesis profiles Docker with microservices

using the following application sets obtained from the Docker Hub [34].

Data-Serving: Databases and web servers form the core of data-servicing

applications. To evaluate data-serving workloads, MongoDB [35], ArangoDB

[36] and httpd [37] are used. MongoDB is a document-model NoSQL dis-

tributed database that utilizes memory-mapped storage. It is useful for real-

time analytics, content management and mobile data serving. ArangoDB

is a multi-model NoSQL database supporting key-value pairs, documents

and graphs in memory-mapped files. It is widely used in graph analytics

and has applications in cryptographic key management. Httpd is Apache’s

open-source HTTP server with multiprocessing support and efficient scal-

ing, forming the backbone of websites. The data-serving applications are all

tested with 500 MB datasets.

Compute: Compute engines are used in microservices to process data in

memory and provide analytics or results to end-users. To evaluate com-

pute workloads, Graphchi-PageRank [38] and FIO [39] are used. Graphchi

is a graph-processing framework and PageRank represents example com-

pute applications constructed with it. FIO is a flexible memory-mapped

IO benchmark. Both compute applications are tested with 500 MB datasets.

Graphchi’s dataset was obtained from SNAP [40].

Client: The Yahoo Cloud Benchmark Suite [41] is used to drive requests

in the evaluation section. The MongoDB and ArangoDB3 clients are used

as drivers to the evaluated databases, while the REST web client is used to

drive the evaluated web server, httpd. The workload configuration for YCSB

is shown in Table 4.3.

4.2.2 Functions-as-a-Service

Functions-as-a-service enable a new software paradigm where execution is

instantiated and completed at function-granularity. It replaces the persistent

21

Table 4.3: YCSB Configuration

YCSB Workload Parameters

Hot Spot Data Fraction 0.2
Hot Spot Operation Fraction 0.8
Field Count Per Entry 1
Field Length 100 Bytes
Access Distribution Uniform

and long running servers with instances of functions that scale with demand.

This enables a pay-as-you-go model in data centers and software services. To

represent FaaS, this thesis utilizes two C/C++ functions. These are named

URIParser, which parses a provided input into URI tokens and Hashing,

which generates indices given a set of keys based on the sdbm algorithm [42].

Both of these FaaS applications are evaluated in two forms: dense and sparse.

The dense versions of the applications touch all of the input data given to the

function. The sparse versions touch 20% of each 4 kB page before moving

onto the next one. The two different forms ensure different memory access

patterns are evaluated. The functions are tested with 500 MB datasets.

4.2.3 GPU-Accelerated Services

Accelerated computing provides highly efficient performance in data centers

for emerging application classes such as those rooted in machine-learning

or high-performance and scientific computing. Domain-specific processors

such as the Google TPU [43] and NVIDIA Volta [44]. To represent such

workloads, this thesis evaluates four GPU applications. Three of these ap-

plications represent the high-performance scientific computing domain with

lower-upper decomposition (LUD), Particle Filter from the Rodinia bench-

mark suite [45, 46] and Stencil from the Parboil benchmark suite [47]. To

represent machine learning workloads, this thesis utilizes a convolutional neu-

ral network (CNN), LeNet.

22

CHAPTER 5

ANALYSIS

This chapter discusses the results obtained from the experimentation de-

scribed in Chapter 4. More specifically, it details how well the Docker En-

gine can scale and the bring-up overheads of different applications. Then,

a characterization of the page tables and active pages of each application is

provided. The page fault characteristics are identified for microservices and

functions-as-a-service. Finally, GPU accelerated containers are discussed and

their performance is compared to native execution.

5.1 Docker Engine and Container Bring-up

5.1.1 Docker Engine Performance

Figure 5.1 shows the mean and tail (95th percentile) container bring-up times

on average where a client sends start requests to a set of pre-created con-

tainers. Start brings a container online and begins executing the application

encapsulated in the container. The starting time is critical for applications to

be brought up and torn down quickly for on-demand scaling in data centers.

The client tests the Docker Engine performance by varying the request rate

from 1 to 8 containers per second (CPS). It can be inferred that the Docker

Engine’s parallelism does not strongly scale. At a one container per second

rate, container start requests are completed in 0.68 seconds on average, with

a tail response latency of 0.78 seconds. The mean and tail response latencies

for four containers per second are 1.55 seconds and 2.24 seconds, respectively.

At eight containers per second, the average container start time is 2.65 sec-

onds, with a tail response latency of 4.59 seconds. While the latency increase

is sub-linear, container bring-up time does increase significantly due to the

serialization of requests at the Docker Engine side.

23

Figure 5.1: Docker Engine Scaling Performance

At 8 CPS, it is observed that applications generally have similar bring-up

times with the exception of MongoDB as seen in Figure 5.2. The bring-up

time is affected by the container size, application start-up time and process

launching in the kernel as discussed later in this section.

5.1.2 Functional Breakdown of Container Bring-up

Containers are brought up with the fork() system call which is invoked by

the Docker Engine. The Docker Engine first intercepts a container operation

and decodes what the operation type is. For a container start operation, the

Docker Engine uses the Containerd back-end [48]. The Containerd back-end

jumps to the Go-Runc library [49]. The Go-Runc library executes a Start()

call that goes to the Go os/exec package [50]. The executed Start() call is a

fork() system call wrapper that launches the container process. As a result,

container bring-up is lengthy and it involves kernel-level tasks alongside the

application start-up.

Figure 5.3 shows the bring-up overhead split between kernel space tasks

and user space tasks (in application space, libraries and runtimes). On aver-

age, 56.94% of the time bringing up a container is spent in the kernel space,

and 43.06% is spent in the user space, libraries and runtimes.

24

Figure 5.2: Container Bring-up Time per Application

Of the container bring-up overhead, 41.65% can be attributed to two collec-

tives as seen in Figure 5.4. These are the memory management and garbage

collection tasks done by the kernel and Go runtime. Of the bring-up time,

21.8% is spent in the Go garbage collector, and 19.85% is spent in memory

management and process start-up tasks in the kernel.

Memory Management: The major function signatures identified under this

collective are copy page range(), which copies a set of page table entries to a

new set of page tables; handle mm fault(), which is the page fault handler;

and unmap page range, which removes a set of page table entries from a given

page table.

Garbage Collection: Two major signatures are visible in the Go garbage-

collection and memory allocation tasks. Namely, mallocgc() and gcDrain().

The former is the memory allocation handler for the Go runtime. The latter

traverses a list of objects tracked by the garbage collection scheme used in Go

[51], and colors objects to determine if an object is reachable or unreachable

by the application.

25

Figure 5.3: Container Bring-up Kernel vs User Space

5.2 Virtual Memory Characterization

5.2.1 Page Table Entry Duplication

Containers of the same image type end up having highly similar page table

mappings as a result of the fork() based creation and the shared container

infrastructure caused by the image-based creation. In a data center environ-

ment where different tenants would be provided with different ASLR seeds,

container processes owned by one tenant could end up with the same vir-

tual memory layout. When multiple processes are servicing the same data

in a containerized environment in the previously described scenario, each

container of the same type ends up having identical virtual-to-physical page

mappings for shared data. This phenomenon is studied by placing four con-

tainers of the same type on a core.

At the application initial state, which is right after the bring-up, applica-

tions have varying levels of groupable and exclusive page mappings. A page

mapping is defined to be groupable if the virtual page number and the phys-

ical frame number are the same across multiple processes. If the mapping is

unique, then it is deemed to be an exclusive page mapping. Figure 5.5 shows

that on average, 53% of the total page table mappings are groupable and 47%

26

Figure 5.4: Container Bring-up Overheads Functional Breakdown

are exclusive. The highest groupability observed is 76.3% with httpd and the

lowest is 2.63% with FIO. The more internal memory a process allocates, the

more exclusive its page mappings are. Application code, libraries, shared

memory regions and memory mapped files contribute to the groupable page

mappings.

FIO and Graphchi have the largest exclusive page mapping ratios at the

application initial states. This is because neither of them have populated

their mapped input datasets at that time. For ArangoDB and MongoDB,

the initial set of groupability comes from partially loaded datasets and the

shared application code and container infrastructure. Httpd launches a large

number of worker and manager processes. The large number of processes

contributes to a high level of shared application code and libraries in addition

to the shared infrastructure across the containers. This ultimately leads to

majority groupable page table entries at the initial state for httpd. For the

Hashing and URIParser functions, the groupability comes from the container

infrastructure, application code and memory-mapped, partially populated

input datasets.

The steady states of applications and page tables are measured after two

minutes of execution time. Hashing and URIParser applications do not have

a steady state as they are short-lived functions. As a result, they are omitted

27

Figure 5.5: Page Table Entries at Application Initial State

from the steady state analysis. Figure 5.6 shows the groupability of page

table entries at the application steady state. On average, 63.7% groupability

is observed across microservices. The lowest share of exclusive mappings is in

MongoDB with 2%. MongoDB and ArangoDB randomly service data with

minimal internal buffering and processing. That causes their groupability

to increase as applications run for longer periods of time and more of their

memory mapped datasets populate page table entries. Httpd serially services

the files it hosts, also with minimal processing and internal buffering. FIO

does not initially populate the page table entries for its mapped dataset and

instead does so over time with randomized accesses. That is the reason for the

increase in groupability to 55.3% in FIO. Graphchi has the least groupable

set of mappings, with 74.7% of its mappings marked as exclusive. Graphchi’s

behavior is attributable to the fact that it only memory maps the vertices

of the input graphs while internally buffering the edges. That leads to large

amounts of differing mappings across Graphchi processes.

The total set of page table entries for an application does not provide

an accurate picture of an application’s behavior during runtime. Figure 5.7

shows the active set of pages at the application initial state. An active page

is a page that has been accessed at least multiple times. On average, 52.4%

of page mappings are active at the application initial state. It is observed

28

Figure 5.6: Page Table Entries at Application Steady State

that most of ArangoDB, MongoDB and FIO’s pages are inactive at the initial

state whereas httpd, Graphchi, Hashing and URIParser are mostly active.

FIO’s active pages are mostly comprised of application code and container

infrastructure that was utilized during start-up. ArangoDB and MongoDB’s

active pages are mostly comprised of the partially populated pages from

the memory-mapped datasets in addition to the code and infrastructure uti-

lized during start-up. The large number of worker processes spawned by

httpd indicates that the code and infrastructure utilized upon start-up is

replicated across multiple processes, raising the active groupable page count.

Graphchi’s start-up includes pre-allocated buffers to read in graph edges.

Hashing and URIParser are short lived and therefore a majority of their

pages have been accessed and operated on at the initial state.

After two minutes of execution, active pages make up 71.9% of all pages on

average as shown in Figure 5.8. A key observation here is that the groupable

page mappings also increase with the number of active pages as expected.

At the steady state, 59.86% of page table entries are deemed active and

groupable. As the selected applications run, they operate on their memory

mapped datasets and allocate internal buffers as needed. ArangoDB, Mon-

goDB, httpd, Graphchi and FIO all display this behavior at different levels.

An important takeaway is the lack of transparent huge page support across

29

Figure 5.7: Active PTEs at Application Initial State

the board. Out of the active pages, the largest transparent huge page cov-

erage is seen in Graphchi, where 0.07% of the page mappings are part of a

huge page. Transparent huge pages only support anonymous page mappings,

such as pages used for internal buffers. As a result, all of the huge page map-

pings cover exclusive pages, and none of the groupable pages are part of huge

pages. The majority of page mappings analyzed are groupable. The incurred

page fault and page walking overheads are not alleviated by huge pages, and

need to be supported.

5.2.2 Page Fault Analysis

The shared structure of containers of the same application type paired with

the page table similarities also leads to potentially increased TLB pressure

and duplicated page faults. To characterize page faults, microservices are

profiled for 10 seconds of runtime, whereas the FaaS applications are mea-

sured from bring-up to finish.

Figure 5.9 captures the percentage of total page faults that occurred on

identical virtual-to-physical page mappings. On average, 35.74% of total

page faults are duplicated. Page fault duplication is expected to increase

with more similar memory access patterns across applications. ArangoDB

30

Figure 5.8: Active PTEs at Application Steady State

and MongoDB service their data as configured in Table 4.3. FIO does fully

random reads across the whole memory mapped dataset. Graphchi’s PageR-

ank is probabilistic and separate Graphchi processes may display differing

memory accesses. Under those conditions, the aforementioned four applica-

tions have page fault duplication ranging from 10.87% to 21.42%.

Httpd services files serially in a sequential memory access pattern. Hash-

ing and URIParser applications also serially read and process their input

datasets, sequentially in the dense versions and with constant strides in the

sparse versions. The resulting similar memory access patterns also contribute

to page fault duplication. These three applications in five forms display

51.38% to 55.68% page fault duplication.

Figure 5.10 shows the page fault rates across microservices and functions-

as-a-service. On average, 15.07 page faults per one million instructions were

observed.

ArangoDB, MongoDB, and Graphchi applications have lower page faults

per million instructions. The database applications service 20% of their

dataset 80% of the time. The reuse will prevent further page faults. Graphchi’s

traversal will mostly touch the in-memory buffered edges, leaving a lower page

fault per million instruction rate with respect to its overall operation as a

graph analytics benchmark. The page fault rate goes up to 47.32 page faults

31

Figure 5.9: Page Fault Duplication

per one million instructions in httpd. This can be attributed to the minimal

processing httpd does, leaving few non-memory instructions and servicing

data sequentially. Most of the execution time is spent servicing new data,

which leads to high page fault rates. A similar pattern is observed in FIO,

albeit at a smaller magnitude.

Table 5.1: Full Page Fault Breakdown

Page Fault Breakdown (%)

Application Read CoW Shared Anon Swap WP

ArangoDB 48.164 0.668 0.026 47.973 0.000 3.168
MongoDB 52.420 0.730 0.029 43.477 0.000 3.345
HTTPd 61.598 0.857 0.034 33.484 0.000 4.028
Graphchi 3.127 0.365 7.401 85.166 0.000 3.940
FIO 14.652 0.223 81.925 1.722 0.000 1.478
Hashing Dense 23.399 2.265 0.034 38.473 0.003 35.826
Hashing Sparse 29.976 2.081 0.030 34.312 0.002 33.599
URIParser Dense 21.104 2.341 0.037 39.771 0.000 36.747
URIParser Sparse 23.930 2.228 0.030 36.916 0.000 36.896
Average 30.930 1.306 9.950 40.144 0.001 17.670

Table 5.1 shows the full page fault breakdown for each application. This

thesis analyzes six types of page faults. The page fault handler will first

32

Figure 5.10: Page Faults Per Million Instructions

check to see if the searched PTE is present in the page tables. If the PTE

is not present in the page table, the handler will check whether the page is

mapped anonymously. If it is, that is an anonymous fault. If the page is not

anonymously mapped and the access is a read, the page fault is a read fault.

If the access is a write on a page that is not shared, it is a copy-on-write

fault. Otherwise it is a shared fault. In the case where the PTE exists but

is not present, then that is a swap fault. Finally, if the PTE is present on

a write access fault and the PTE is not marked for writes, that is a write

protect fault. The majority of the page faults observed are read and shared

faults, at 30.93% and 40.14%.

The persistence of groupability across page table entries and continued

duplicated page faults depends on the page mappings staying the same as

the parent process. Figure 5.11 shows the percentage of copy-on-write faults

across the total number of page faults in each application. A copy-on-write

fault causes a process to break off from the parent mappings, and by extension

the mappings of other containers of the same type. Upon a copy-on-write, a

new private copy of the page is created for the faulting process, and thus the

mapping becomes exclusive. On average, 1.30% of the overall page faults are

copy-on-write faults. The low rate of copy-on-write faults indicates that the

analyzed page table mappings stay intact throughout execution.

33

Figure 5.11: CoW Page Fault Percentage

5.3 Containerized GPU Application Performance

Figure 5.12 displays the CUDA kernel and API call split across the set of con-

tainerized GPU applications. On average, native execution spends 25.854%

of the application runtime in GPU kernels and 74.146% of application run-

time in CUDA API calls. Containerized execution spends 25.32% of its total

runtime in GPU kernels, and 74.68% in CUDA API calls. The overall split

is similar, with a 0.5% degradation in GPU utilization from a shift in kernel

execution to API time. The difference is caused by comparable kernel exe-

cution time and an increase in the CUDA API time when the containerized

environment is used.

The containerized application experiences an average 7% slowdown when

application time is measured end-to-end. Figure 5.13 displays the container-

ized performance for each application normalized to native execution. Con-

tainerization overhead ranges from 3.4% in Stencil to 10.8% in Particle Filter.

The source of the slowdown stems from the CUDA just-in-time (JIT) compi-

lation, as shown in Figure 5.14. The just-in-time compiler in CUDA ensures

that older device architectures are supported by ensuring the correctly gener-

ated PTX is executed during runtime [52]. NVIDIA-Docker incurs an 11.9%

JIT compilation overhead on average, ranging from 9.4% in LeNet to 13.1%

34

Figure 5.12: NVIDIA-Docker Kernel and API Distribution

in Stencil.

Two other critical API calls are compared. These are cudaMalloc and

cudaMemcpy. GPU memory is allocated in a CUDA application by using

cudaMalloc. Memory transfer between the GPU and the CPU is done us-

ing cudaMemcpy. Containerized execution incurs a 12.2% overhead on cud-

aMalloc, and 1.4% overhead in cudaMemcpy on average. The difference in

cudaMemcpy ranges from 3.3% faster than native execution to 7.1% slower

than native execution. This can be attributed to noise, and cudaMemcpy is

concluded to run at native-level. The total time spent in cudaMalloc does

not exceed 1.2% of total end-to-end runtime. As a result, the cudaMalloc

slowdown is not a major overhead to the application.

The evaluated applications are compiled to generate appropriate parallel

thread execution assembly (PTX) for the evaluated system described in Table

4.2 in order to minimize JIT overhead. NVIDIA-Docker containers are meant

to be device and driver agnostic. In a use case where a particular compute

capability is not specified during compilation to support a wider range of

devices, the observed JIT overhead will greatly increase. As a result, it

can be concluded that NVIDIA-Docker performs at near-native level where

the container supports specific devices, but performance losses are observed

where the supported architecture range increases.

35

Figure 5.13: NVIDIA-Docker Application End-to-End Runtime

Figure 5.14: NVIDIA-Docker API Overheads

36

CHAPTER 6

RELATED WORK

This chapter provides a brief summary of the previous research relevant to

this thesis. Past container characterization studies, enhanced TLB designs,

new address translation flows and page translation sharing schemes are high-

lighted.

6.1 Container Characterization

Researchers investigate Docker storage system performance using NVMe

SSDs, varying file systems, storage drivers and block sizes in [53]. Their

observation shows that using Docker volumes brings container I/O perfor-

mance close to raw block device performance consistently. This work focuses

on storage operations in Docker.

The authors of [54] evaluate the bring-up time, memory use and CPU uti-

lization of containers and virtual machines with big data applications at large

cluster sizes. They use k-means clustering, logistic regression, Pagerank and

SQL join to study container and virtual machine performance. Their main

observation is that containerized environments have stronger scaling than vir-

tual machines, attributed to more effective CPU utilization at large cluster

sizes and lower memory usage in containers. This study further establishes

the lightweight nature of containers.

Finally, another study tests container performance using MapReduce [55]

performance [56]. The authors find that container performance is comparable

to native execution in sorting applications with large datasets. They also note

that no significant performance impact is observed by running two containers

side by side, one with their evaluation applications and one that stresses CPU,

memory or I/O. Their findings are obtained with LXC.

Existing container characterization studies all focus on different aspects of

37

container performance and isolation. All of these works are orthogonal to

the analysis done in this thesis.

6.2 Enhanced TLBs and Address Translation

Traditional processor hardware has separate structures for different page

sizes in their TLBs to avoid energy efficiency along with design and veri-

fication complexity issues. The drawback of this approach is underutilized

TLB hardware in cases where the kernel extensively uses one type of page

size. MIXTLB [57] proposes a new TLB design that unifies all page sizes

under one hardware structure to increase TLB utilization while preserving

an energy-efficient and simple design.

Guest operating systems in virtual machines keep their own set of page

tables. Memory accesses in virtual machines need to be translated to an

address in the host machine. This causes page walks to be two-dimensional.

POMTLB [58] implements an L3 TLB that is kept in a portion of main

memory. A miss in the L2 TLB for their scheme checks the in-memory

TLB for the desired entry instead of initiating a page walk immediately. The

authors convert two-dimensional page walks to single accesses and also utilize

the cache hierarchy to keep more TLB entries in the processor.

Previous research has also evaluated the performance benefits of using flat

nested page tables and an inverted shadow page table [23]. Their work focuses

on eliminating the page walking overhead of virtual machines, increasing TLB

hit rates and reducing the number of memory accesses in a page walk.

Enhancing TLB structures and accelerating the address translation flow

are extensively studied in computer architecture. Containers do not suffer

from two-dimensional page walks. However, this study observed the dupli-

cation in page table entries and the duplicated page fault rates. As a result,

enhancing address translation and TLB organization can benefit containers.

6.3 Page Table Sharing

In the Android kernel, every new process forks from a wrapper process called

the zygote. This, coupled with the fact that mobile applications rely on high

38

levels of shared libraries, presents an opportunity to speed up runtime by

sharing translations, as shown in [59]. The authors identify code and library

pages that are shared across multiple applications and mark them as global.

Global page translations are shared in ARM TLBs, and their scheme results

in reduced PTE copying overhead and fewer page faults. They also observe

increased TLB performance as a result.

VMWare has implemented a page and translation sharing mechanism in

the ESX server [60]. The author identifies identical pages mapped to multiple

virtual machines and maps each guest operating system page to the same

guest physical page. This allows greater memory commitment to virtual

machines and reduces the memory footprint of each virtual machine.

Page and translation sharing mechanisms directly relate to the memory

characteristics of Docker containers as identified by this thesis.

39

CHAPTER 7

CONCLUSION

7.1 Conclusion and Takeaways

Docker is the prominent container framework today in an environment dom-

inated by cloud computing. Containers on the same physical host share the

same kernel, rendering them inherently more lightweight. While the perfor-

mance of containers is much closer to native execution than virtual machines,

they have several characteristics that should be supported by future archi-

tectures.

First, the Docker Engine is reliant on the Go runtime and kernel tasks to

bring up a container. Go memory allocation and garbage collection overheads

coupled with process creation in the kernel constitute 40% of the container

bring-up time.

Second, up to 97% groupable address translations and up to 54% dupli-

cated page faults are observed. Microservices operate on very large datasets

and it is critical to reduce the unnecessary translation overhead. The shared

infrastructure of containers and process-level scaling of containerized appli-

cations present an opportunity to share translations to drastically reduce

the page faults observed by containerized applications and also de-duplicate

redundant page table entries.

Functions-as-a-service scale at function granularity. Functions can be

brought up, executed quickly and torn down on-demand. As a result, op-

timizing the container bring-up process is key to having resilient and high-

performing architectures for containers.

GPU-accelerated service performance is reliant on the compilation process.

Specifically compiling a CUDA application for a small set of compute capa-

bilities and GPU architectures or a particular device reduces the overhead

of just-in-time compilation. Deploying an NVIDIA-Container image for a

40

wide set of architectures or without specifying any compute capabilities to

the NVIDIA CUDA Compiler yields greater JIT overhead, further degrading

application end-to-end performance. In an optimal scenario where device ar-

chitecture is specified, this thesis observes an 11.9% end-to-end performance

degradation imposed by NVIDIA-Docker. Kernel performance, however, is

not affected by containerization.

7.2 Future Work

Studying applications thoroughly is key to developing domain-specific pro-

cessors and accelerators today. Hardware/software co-design allows one to

optimize across layers and enable high-performance computing with more

optimal solutions than hardware-only or software-only approaches. With

the advent of heterogeneous computing in data centers, NVIDIA-Docker

and GPU computing gain prominence. A case-study based investigation of

NVIDIA-Docker overheads should be investigated by stressing shared GPU

resources by instantiating many processes using modern frameworks such as

Caffe [61] and Pytorch [62] to effectively recreate a data center environment.

These frameworks are deployed through NVIDIA NGC [63], as they power

many high-performance applications today.

The transformation in application classes today must be followed by re-

searchers in heterogeneous computing. The effects of containerization on

high-performance, scientific and parallel computing should be instrumented

intricately to enable the next generation of processor architectures.

41

REFERENCES

[1] S. Seelam, “Docker at Insane Scale on IBM Power Systems,” 2015.
[Online]. Available: https://www.ibm.com/blogs/bluemix/2015/11/
docker-insane-scale-on-ibm-power-systems/

[2] Amazon Web Services, “Amazon Container Services,” 2018. [Online].
Available: https://aws.amazon.com/containers/

[3] IBM, “IBM Cloud Kubernetes Service,” 2018. [Online]. Available:
https://www.ibm.com/cloud/container-service

[4] Google, “Containers at Google,” 2018. [Online]. Available: https:
//cloud.google.com/containers/

[5] Microsoft, “Azure Kubernetes Service,” 2018. [Online]. Available:
https://azure.microsoft.com/en-us/services/kubernetes-service/

[6] Google, “Kubernetes Engine,” 2018. [Online]. Available: https:
//cloud.google.com/kubernetes-engine/

[7] Amazon Web Services, “AWS Lambda,” 2018. [Online]. Available:
https://aws.amazon.com/lambda/

[8] IBM, “IBM Cloud Functions,” 2018. [Online]. Available: https:
//www.ibm.com/cloud/functions

[9] Google, “Google Cloud Functions,” 2018. [Online]. Available:
https://cloud.google.com/functions/

[10] NVIDIA, “GPU Enabled Docker Container,” 2018. [Online]. Available:
https://www.nvidia.com/object/docker-container.html

[11] LXC Contributors, “What’s LXC?” 2018. [Online]. Available: https:
//linuxcontainers.org/lxc/introduction/

[12] Docker Inc., “What Is a Container,” 2018. [Online]. Available:
https://www.docker.com/resources/what-container

[13] Docker Inc., “Docker Engine,” 2018. [Online]. Available: https:
//docs.docker.com/engine/#why-docker

42

https://www.ibm.com/blogs/bluemix/2015/11/docker-insane-scale-on-ibm-power-systems/
https://www.ibm.com/blogs/bluemix/2015/11/docker-insane-scale-on-ibm-power-systems/
https://aws.amazon.com/containers/
https://www.ibm.com/cloud/container-service
https://cloud.google.com/containers/
https://cloud.google.com/containers/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/lambda/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://cloud.google.com/functions/
https://www.nvidia.com/object/docker-container.html
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://www.docker.com/resources/what-container
https://docs.docker.com/engine/#why-docker
https://docs.docker.com/engine/#why-docker

[14] R. Olson, J. Calmels, F. Abecassis, and P. Rogers,
“NVIDIA Docker: GPU Server Application Deployment Made
Easy,” 2016. [Online]. Available: https://devblogs.nvidia.com/
nvidia-docker-gpu-server-application-deployment-made-easy/

[15] R. Rahman, “Intel Xeon Phi Microarchitecture,” 2013.
[Online]. Available: https://software.intel.com/en-us/articles/
intel-xeon-phi-core-micro-architecture

[16] “5-Level Paging and 5-Level EPT,” White Paper, Intel, May 2017.

[17] Kernel.org Contributors, “Huge TLB Page,” 2018. [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

[18] Red Hat, “Huge Pages and Transparent Huge Pages,” 2018.
[Online]. Available: https://access.redhat.com/documentation/
en-us/red hat enterprise linux/6/html/performance tuning guide/
s-memory-transhuge

[19] M. Gorman, “An investigation into the theoretical foundations and im-
plementation of the linux virtual memory manager,” M.S. thesis, Uni-
versity of Limerick, Ireland, 2003.

[20] VMWare, “VMware ESXi: The Purpose-Built Bare Metal Hypervi-
sor,” 2018. [Online]. Available: https://www.vmware.com/products/
esxi-and-esx.html

[21] KVM Contributors, “Kernel Virtual Machine,” 2018. [Online].
Available: https://www.linux-kvm.org/page/Main Page

[22] Xen Project, “The Hypervisor (x86 ARM),” 2013. [Online]. Available:
https://www.xenproject.org/developers/teams/hypervisor.html

[23] J. Ahn, S. Jin, and J. Huh, “Revisiting hardware-assisted page walks
for virtualized systems,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12. Washington,
DC, USA: IEEE Computer Society, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337159.2337214 pp. 476–487.

[24] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers
and virtual machines at scale: A comparative study,” in Proceedings
of the 17th International Middleware Conference, ser. Middleware
’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2988336.2988337 pp. 1:1–1:13.

43

https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/
https://devblogs.nvidia.com/nvidia-docker-gpu-server-application-deployment-made-easy/
https://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
https://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.linux-kvm.org/page/Main_Page
https://www.xenproject.org/developers/teams/hypervisor.html
http://dl.acm.org/citation.cfm?id=2337159.2337214
http://doi.acm.org/10.1145/2988336.2988337

[25] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, ser. EuroSys ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1272996.1273025 pp. 275–287.

[26] Linux-VServer Developers, “Linux-VServer Overview,” 2013. [Online].
Available: http://www.linux-vserver.org/Overview

[27] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated per-
formance comparison of virtual machines and linux containers,” in IBM
Research Report, Jul 2014.

[28] “NVIDIA Tesla V100 GPU Architecture,” White Paper, NVIDIA, Au-
gust 2017.

[29] N. Sakharnykh, “Maximizing Unified Memory Performance in
CUDA,” 2017. [Online]. Available: https://devblogs.nvidia.com/
maximizing-unified-memory-performance-cuda/

[30] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA Volta GPU Architecture via Microbenchmarking,” Citadel,
High Performance Computing RD Team, Tech. Rep., 2018.

[31] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support
for address translation on GPUs: Designing memory management
units for CPU/GPUs with unified address spaces,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS
’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541942 pp. 743–758.

[32] Kernel.org Contributors, “perf: Linux Profiling with Performance
Counters,” 2015. [Online]. Available: https://perf.wiki.kernel.org/
index.php/Main Page

[33] MongoDB, Inc., “What are Microservices?” 2018. [Online]. Available:
https://www.mongodb.com/what-are-microservices

[34] Docker Inc., “Docker Hub,” 2018. [Online]. Available: https:
//hub.docker.com/

[35] MongoDB, Inc., “What is MongoDB?” 2018. [Online]. Available:
https://www.mongodb.com/what-is-mongodb

[36] ArangoDB, Inc., “ArangoDB - a Native Multi-Model Database,”
2018. [Online]. Available: https://www.arangodb.com/why-arangodb/
multi-model/

44

http://doi.acm.org/10.1145/1272996.1273025
http://www.linux-vserver.org/Overview
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
http://doi.acm.org/10.1145/2541940.2541942
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.mongodb.com/what-are-microservices
https://hub.docker.com/
https://hub.docker.com/
https://www.mongodb.com/what-is-mongodb
https://www.arangodb.com/why-arangodb/multi-model/
https://www.arangodb.com/why-arangodb/multi-model/

[37] Apache Software Foundation, “httpd - Apache Hypertext Transfer
Protocol Server,” 2018. [Online]. Available: https://httpd.apache.org/
docs/2.4/programs/httpd.html

[38] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’12. Berkeley, CA, USA: USENIX Association, 2012. [Online].
Available: http://dl.acm.org/citation.cfm?id=2387880.2387884 pp. 31–
46.

[39] J. Axboe, “fio - Flexible I/O tester,” 2018. [Online]. Available:
https://fio.readthedocs.io/en/latest/fio doc.html

[40] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, June 2014.

[41] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,” in
Proceedings of the 1st ACM Symposium on Cloud Computing, ser.
SoCC ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152 pp. 143–154.

[42] M. I. Seltzer and O. Yigit, “A new hashing package for UNIX,” in Pro-
ceedings of the Usenix Winter 1991 Conference, Dallas, TX, USA, Jan-
uary 1991, 1991, pp. 173–184.

[43] Google Inc., “Cloud TPU,” 2018. [Online]. Available: https:
//cloud.google.com/tpu/

[44] NVIDIA, “NVIDIA Volta,” 2018. [Online]. Available: https:
//www.nvidia.com/en-us/data-center/volta-gpu-architecture/

[45] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), ser. IISWC ’09. Washington,
DC, USA: IEEE Computer Society, 2009. [Online]. Available:
https://doi.org/10.1109/IISWC.2009.5306797 pp. 44–54.

[46] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang,
and K. Skadron, “A characterization of the rodinia benchmark
suite with comparison to contemporary CMP workloads,” in
Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC’10), ser. IISWC ’10. Washington, DC,
USA: IEEE Computer Society, 2010. [Online]. Available: http:
//dx.doi.org/10.1109/IISWC.2010.5650274 pp. 1–11.

45

https://httpd.apache.org/docs/2.4/programs/httpd.html
https://httpd.apache.org/docs/2.4/programs/httpd.html
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://fio.readthedocs.io/en/latest/fio_doc.html
http://doi.acm.org/10.1145/1807128.1807152
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/IISWC.2010.5650274
http://dx.doi.org/10.1109/IISWC.2010.5650274

[47] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. Liu, and W. mei W. Hwu, “Parboil: A revised bench-
mark suite for scientific and commercial throughput computing,” Uni-
versity of Illinois at Urbana-Champaign, Center for Reliable and High-
Performance Computing, Tech. Rep., 2012.

[48] Containerd Contributors, “An Open and Reliable Container Runtime,”
2018. [Online]. Available: https://github.com/containerd/containerd

[49] The Open Container Initiative Contributors, “CLI Tool For Spawning
and Running Containers According to the OCI Specification,” 2018.
[Online]. Available: https://github.com/opencontainers/runc

[50] The Go Authors, “Go OS/Exec Package,” 2009. [Online]. Available:
https://golang.org/pkg/os/exec/

[51] The Go Authors, “Go GC: Prioritizing Low Latency and Simplicity,”
2015. [Online]. Available: https://blog.golang.org/go15gc

[52] NVIDIA, “Just-in-Time Compilation,” 2018. [Online]. Avail-
able: https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.
html#just-in-time-compilation

[53] Q. Xu, M. Awasthi, K. T. Malladi, J. Bhimani, J. Yang, and M. An-
navaram, “Docker characterization on high performance SSDs,” in 2017
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), April 2017, pp. 133–134.

[54] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A comparative
study of containers and virtual machines in big data environment,” in
IEEE International Conference On Cloud Computing, vol. 12, 07 2018,
pp. 178–185.

[55] IBM, “Apache MapReduce,” 2018. [Online]. Available: https:
//www.ibm.com/analytics/hadoop/mapreduce

[56] M. G. Xavier, M. V. Neves, and C. A. F. D. Rose, “A performance
comparison of container-based virtualization systems for MapReduce
clusters,” in 2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, Feb 2014, pp. 299–306.

[57] G. Cox and A. Bhattacharjee, “Efficient address translation for archi-
tectures with multiple page sizes,” in ACM SIGOPS Operating Systems
Review, vol. 51, 04 2017, pp. 435–448.

46

https://github.com/containerd/containerd
https://github.com/opencontainers/runc
https://golang.org/pkg/os/exec/
https://blog.golang.org/go15gc
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#just-in-time-compilation
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#just-in-time-compilation
https://www.ibm.com/analytics/hadoop/mapreduce
https://www.ibm.com/analytics/hadoop/mapreduce

[58] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking TLB
designs in virtualized environments: A very large part-of-memory
TLB,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, ser. ISCA ’17. New York, NY, USA: ACM,
2017. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080210
pp. 469–480.

[59] X. Dong, S. Dwarkadas, and A. L. Cox, “Shared address translation
revisited,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. New York, NY, USA: ACM,
2016. [Online]. Available: http://doi.acm.org/10.1145/2901318.2901327
pp. 18:1–18:15.

[60] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, Dec.
2002. [Online]. Available: http://doi.acm.org/10.1145/844128.844146

[61] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[62] Pytorch Contributors, “From Research to Production,” 2018. [Online].
Available: https://pytorch.org/

[63] NVIDIA, “NVIDIA GPU Cloud,” 2018. [Online]. Available: https:
//www.nvidia.com/en-us/gpu-cloud/

47

http://doi.acm.org/10.1145/3079856.3080210
http://doi.acm.org/10.1145/2901318.2901327
http://doi.acm.org/10.1145/844128.844146
https://pytorch.org/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.nvidia.com/en-us/gpu-cloud/

	List of Tables
	List of Figures
	LIST OF ABBREVIATIONS
	CHAPTER 1 Introduction
	Cloud Computing
	Service Providers and Applications
	Thesis Focus

	CHAPTER 2 Background
	Docker and Containers
	Overview
	Container Images
	Container Processes and Resource Management
	NVIDIA-Docker

	Address Translation, TLBs and Page Tables
	Transparent Huge Pages
	Page LRU Lists

	CHAPTER 3 Considerations
	Virtual Machines
	Software Stack
	Address Translation
	Performance Compared to Containers

	GPU Translation Lookaside Buffers

	CHAPTER 4 Methodology
	Experiment Setup
	Evaluation Systems
	Characterization

	Applications
	Microservices
	Functions-as-a-Service
	GPU-Accelerated Services

	CHAPTER 5 Analysis
	Docker Engine and Container Bring-up
	Docker Engine Performance
	Functional Breakdown of Container Bring-up

	Virtual Memory Characterization
	Page Table Entry Duplication
	Page Fault Analysis

	Containerized GPU Application Performance

	CHAPTER 6 Related Work
	Container Characterization
	Enhanced TLBs and Address Translation
	Page Table Sharing

	CHAPTER 7 Conclusion
	Conclusion and Takeaways
	Future Work

	REFERENCES

