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Abstract 

 Catalysis is such a ubiquitous process that over 75% of existing chemical processes and 

90% of newly developed processes utilize catalysts. Understanding how to improve and create 

new catalysts is therefore essential to developing new products as well as greener and more 

efficient processes. One way to improve the environmental impact of these reactions is to move 

away from using less biocompatible second- and third-row transition metal catalysts and replace 

them with first-row transition metal catalysts. However, first-row metals tend to engage in one-

electron radical chemistry much more readily than the typically desired two-electron reactions.  

One way to induce first-row transition metals to engage in the desired reactions is to use 

strong-field ligand frameworks. Strong-field ligands cause the d-orbital splitting of the metal 

center to increase in energy, often leading to low-spin electronic configurations which favor two-

electron reactivity. N-heterocyclic carbenes (NHCs) are popular strong-field ligands due to their 

inherent stability and oxidative robustness, especially compared to phosphines. Combining NHCs 

with pincer ligand frameworks provides even more stable complexes. Therefore, we investigated 

a variety of monoanionic, bis(carbene), strong-field pincers with first-row transition metals. 

A variety of ArCCC (Ar = Mes, DIPP) and RCcCcC (R = benzyl, t-butyl) pincer ligand 

frameworks were developed and their metalation investigated. The RCcCcC pincers were 

successfully metalated with nickel generating (RCcCcC)Ni(II)Br complexes (R = benzy, t-butyl). 

DIPPCCC pincers, previously metalated with nickel and cobalt in our group, have been extended to 

iron as well. The metalation method first goes through a zwitterionic intermediate which was 

isolated and characterized before being reduced in situ to yield the (DIPPCCC)Fe(II)H(L)(L’) 

complexes. A distinct electronic effect was observed on the Fe−H when varying the L-type ligands 

coordinated to the iron center. Reactivity of these iron hydrides with CO2 showed insertion into 
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the Fe−H bond to form a κ2-OOCH complex (L = PMe3, L’ = N2). This complex was also 

independently synthesized starting from (DIPPCCC)Fe(II)Cl(PMe3)2. 

The zwitterionic metalation method was also extended to other first-row transition metals. 

The synthesis and characterization of zwitterionic complexes, H2(
DIPPCCC)M(II)Cl3 (M = Mn, Co, 

Ni), was accomplished and the in situ reduction lead to metalation using cobalt and nickel. An 

alternate metalation method, transmetalation from zirconium, into similar CCC pincer ligand 

frameworks has been previously established by the Hollis group. Utilizing a similar procedure 

zirconium complexes were synthesized and characterized (ArCCC)Zr(IV)X3 (Ar = Mes, DIPP). 

The transmetalation to iron, cobalt, and nickel were all successful with both ligand derivatives.  

Our group has studied cobalt catalysts, (MesCCC)Co(I)L, for the hydrogenation of alkenes and 

semi-hydrogenation of alkynes and were interested in extending the hydrogenation further to more 

polar functional groups. Nitrile hydrogenation is a difficult reaction both in terms of activating the 

C−N triple bond and selectivity among products. We discovered a mild set of reaction conditions 

that selectively formed the primary amine for a variety of different substrates.  

During our mechanistic work we determined that the process is actually Lewis acid-assisted 

and is in fact undergoing a two-electron catalytic process. During the investigation and subsequent 

publication of this work another product, the secondary aldimine, was seen under some reaction 

conditions. Modifying our reaction parameters, we discovered we could also selectively form the 

secondary aldimine product starting from the nitrile. This represents only the second example of a 

cobalt catalyst that can perform the hydrogenation of nitriles with selectivity to the secondary 

aldimine. Our condition switchable system also provided exceptionally mild reaction conditions 

compared to other first-row transition metal catalysts for nitrile hydrogenation. 
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Chapter 1 

 Introduction 

1.1 Introduction to Homogeneous First-Row Transition Metal Two-Electron Catalysis 

 The use of catalysts to undergo organic transformations has revolutionized the types of 

products and materials that many people take advantage of in their everyday lives. Almost 75% of 

existing processes and 90% of new processes developed involve the use of catalysts. 

Understanding these catalysts at their fundamental levels is essential for continued improvements 

and the development of novel systems. Though heterogeneous catalysts are used by many of the 

major industrial feedstock reactions subsequent steps that add complexity are often catalyzed by 

homogeneous methods (Figure 1.1).1 

Transition metal catalysts in particular have dominated the realm of homogeneous catalysis 

when it comes to adding complexity,1-3 though non-transition metal organic catalysts are growing 

in prominence.4-6 Within transition metals by far the most widely used and studied includes the 

late second- and third-row transition metals, like rhodium, palladium, iridium, and platinum, which 

often exhibit well-defined, two-electron catalytic steps.7-13 These metals have allowed chemists to 

Figure 1.1. Heterogeneous reactions (dotted arrows) feeding into homogeneous reactions (solid arrows).1 
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develop a variety of reactions including cross-couplings, hydrofunctionalizations, and carbon-

bond metatheses to name only a few examples.7-13 Their well-behaved nature allows for the 

minutiae adjustment of ligands and conditions to obtain specific regioselectivity and often 

stereoselectivity. However, while second- and third-row transition metal catalysts are well 

understood they are also more expensive and can be less biocompatible than their first-row 

congeners. The latter of which is incredibly important especially in the pharmaceutical industry. 

Replacement of these robust catalysts presents a difficult challenge that chemists are exploring, 

often through the use of first-row transition metals. The difficulty of using these metals as 

replacement catalysts arises due to their propensity to undergo one-electron side reactions that are 

often undesired. The use of these first-row metals offers cheaper and more environmentally benign 

alternatives if this limitation can be overcome or harnessed for catalytic reactivity.14 

The radical reactivity, or single electron transfer (SET), of first-row transition metals can 

be utilized to undergo transformations including C−H activation, hydrofunctionalization of 

unsaturated bonds, and a suite of polymerizations.15-18 Often these transformations offer unique 

reactivity that even second- and third-row metals do not confer and have been used for a number 

of different applications.19,20 However, replacing second- and third-row metals in catalysis usually 

requires replicating or mimicking the two-electron reactions they facilitate. To do this with first-

row transition metals their electronic structure must either be perturbed to favor two-electron 

reactivity or metal-ligand cooperativity must be accessed. Therefore, two methods for this are the 

use of redox active ligands or strongly σ-donating ligands. 

 Redox active or redox non-innocent ligands can store electrons which can then be utilized 

by a metal center to catalyze organic reactions, sometimes without any formal oxidation state 

change of the metal. The overall reaction therefore, can be either two subsequent one-electron 
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steps or a two-electron step with at least one electron coming from the ligand itself.21,22 A 

prominent example of this type of ligand includes the use of bis(imino)pyridine ligands first 

reported by Bennett, Brookhart, and Gibson.23-25 The pyridine backbone directly connects to the 

imino moiety with N-substituted aryl groups to give a tridentate ligand connected through the three 

nitrogen atoms (Figure 1.2). Both of the imine groups can be reduced allowing the ligand to store 

up to two electrons at a time. Chirik’s group, in particular, has made use of this ligand’s redox-

active ability and has investigated a number of reactions including hydrogenations,26 

hydrosilylations,27 and ethylene polymerizations28,29 with iron and cobalt catalysts. Sometimes this 

approach can even be used to access the same reactivity and products as second- and third-row 

transition metals. However, understanding and improving these catalysts requires intensive 

characterization of their electronic structures. They are also prone to deactivation due to the nature 

of their radical reactivity.30,31 

 Alternatively, strongly σ-donating ligands can be used to induce two-electron reactivity at 

the metal center itself, mirroring classic second- and third-row transition metal catalysts. Strongly 

σ-donating ligands include phosphines, carbon-based ligands, or other electron-rich ligands.32,33 

These ligands increase the electron splitting of the metal d-orbitals, often resulting in low-spin 

electronic configurations (Figure 1.3).34,35  

Figure 1.2. Bis(imino)pyridine ligand platform and its redox non-innocent reactivity. 
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Low-spin electronic configurations help to induce two-electron reactivity instead of the 

more common radical reactivity seen for first-row transition metal complexes. Traditionally 

phosphines have dominated the realm of strongly σ-donating ligands utilized in catalysis, however, 

carbon-based ligands are considered even more strongly donating than phosphines based on orbital 

overlap with the metal center (Figure 1.3). Carbenes, in particular, have garnered much attention 

as ligands for transition metal catalysts and were first reported in 1964 by Fischer.36 There are a 

number of different types of carbenes, defined as a neutral carbon atom with two unshared valence 

electrons (R-(C:)-R or R=C:) including Fischer, Schrock, radical carbenes, and N-heterocyclic 

carbenes (NHCs).36-39 

The use of N-heterocyclic carbenes (NHCs) as strongly σ-donating ligands has been rapidly 

gaining attention due to a number of factors including ease of synthesis, modularity, and their 

incredible stability especially when compared to other types of carbenes. NHCs are heterocyclic 

groups containing at least one nitrogen atom and a carbene. They are often called Arduengo 

carbenes after Anthony Arduengo who published the first isolable and ‘bottleable’ carbene in 

1991.37 A few examples of the most widely used and popular NHCs have been depicted (Figure 

1.4).37-39 The most common structure of an NHC is a five-membered ring with two substituted 

Figure 1.3. Weak vs. strong field ligand effects (left) and metal-ligand orbital overlap (right).34,35 
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nitrogen atoms adjacent to the carbene 

carbon. The nitrogen atoms are critical to the 

electronic structure because they act as σ-

withdrawing and π-donating groups which 

stabilize the structure inductively and 

mesomerically.40,41 The strain of the five-

membered ring is also important as it results 

in more sp2 bonding character of the carbene carbon. This structure helps to favor a singlet 

electronic ground state carbene which can render these NHCs nucleophilic. These unique 

electronic properties make them ideal ligands for first-row transition metal catalysts since they are 

very strongly σ-donating but typically poor π-acceptors leading to very strong and robust metal-

carbon bonds.42 A prominent example of the advantage of NHCs over phosphines can be seen 

when examining Grubbs’ first- and second-

generation catalysts for olefin metathesis 

(Figure 1.5).43-45 Grubbs’ second-

generation catalyst makes use of a saturated 

NHC that renders the catalyst air and 

moisture stable along with exhibiting 

higher catalytic reactivity and stability than its predecessor.  

 While NHCs by themselves offer excellent stability and can be easily modified their 

incorporation into pincer frameworks even further accelerates this effect. Pincers are defined as 

tridentate contiguous ligand frameworks that bind in a meridional fashion, though the term has 

been extended to include non-meridional binding as well. Metal complexes using pincers are much 

Figure 1.4. Common types of NHC ligands. 

Figure 1.5. Grubbs’ first- and second-generation. 

catalysts. 
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more stable, helping to prevent catalyst decomposition, and are often easier to isolate and study 

which is especially relevant when investigating mechanistic details.46,47 The strongly σ-donating 

nature of NHCs combined with the stability of pincers has enabled many groups, including our 

own, to synthesize a metal complexes and investigate their catalytic reactivity (Figure 1.6).46-57  

 Our ligand framework is a monoanionic bis(carbene) pincer platform that has been 

investigated with iron, cobalt, and nickel (Figure 1.7). The metalation of these ligands with first-

row transition metals has been undertaken using a variety of methods including C−H activation by 

low-valent metals, the synthesis of a zwitterionic precursor, transmetalation from zirconium, and 

the use of internal bases. Various coordination complexes were synthesized and analyzed looking 

at electronic trends particularly with iron-hydride molecules. The catalytic hydrogenation of 

Figure 1.7. Monoanionic bis(carbene) CCC pincer ligand platform. 

Figure 1.6. Examples of NHC incorporation into pincer ligand frameworks.48-57 
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nitriles was also extensively investigated using previously synthesized cobalt complexes with 

condition switchable selectivity for the primary amines and secondary aldimines, respectively. 

Mechanistic studies supported a two-electron catalytic cycle for these reactions. Often our catalytic 

conditions more closely resemble those of second- and third-row transition metals rather than other 

first-row metal catalysts, indicating the influence of our ligand framework. 
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Chapter 2 

Synthesis and Characterization of Ligand Scaffolds: Metalation using Iron and Nickel 

2.1 Ligand Platforms, Synthesis, and Metalation Methods 

 Our general ligand platform consists of a phenyl backbone group with two flanking N-

heterocyclic carbene (NHC) moieties giving a monoanionic pincer ligand. These carbenes have 

been substituted with a variety of aryl and alkyl groups along with the addition of methylene group 

linkers between the NHCs and phenyl backbone. These ligand frameworks are strongly σ-donating 

due to both the aryl backbone (M‒CAr) and NHCs (M‒CNHC) that are combined in a pincer 

conformation which helps to impart stability to the generated complexes. The structure of these 

ligand frameworks is outlined below (Scheme 2.1).  

 Ligand type A, with aryl substituted N-heterocyclic carbenes, is synthesized by two 

subsequent Buchwald-Hartwig palladium cross-couplings forming the C−N bonds to the aryl 

group and the phenyl backbone to give the tetraamine product. This compound can then be cyclized 

using triethylorthoformate and hydrochloric acid to give the final benzimidazolium salt of the 

ligand shown (Scheme 2.2). [H3(
MesCCC)]Cl2 (

MesCCC = bis(2,4,6-trimethylphenyl-benzimidazol-

2-ylidene)phenyl) and [H3(
DIPPCCC)]Cl2 (

DIPPCCC = bis(2,6-diisopropylphenyl-benzimidazol-2-

Scheme 2.1. CCC and CcCcC pincer ligand platforms shown as the 

benzimidazolium salts (top) and with a metal coordinated (bottom). 
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ylidene)phenyl) have both been synthesized and reported in the literature previously, but 

modifications were made to the procedure by our group as detailed in our previous publications.1,2 

Ligand type B, with alkyl substituted N-heterocyclic carbenes and no methylene spacer, is 

instead synthesized using a modified ligand procedure starting with benzimidazole and phenyl 

dibromide which is coupled using copper oxide to give the unsubstituted CCC backbone. The use 

of excess methyl iodide then yields the benzimidazolium salt of the ligand [H3(
MeCCC)]I2 (

MeCCC 

= bis(methyl-benzimidazol-2-ylidene)phenyl) (Scheme 2.3). This ligand is particularly insoluble 

and was not able to be metalated due to this limitation but improvements to the synthetic procedure 

were made (See 2.4 Experimental).3 

Scheme 2.2. Synthesis of Ligand type A, [H3(DIPPCCC)]Cl2 shown.1,2 

Scheme 2.3. Synthesis of Ligand type B, [H3(MeCCC)]I2.3 
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Ligand type C, with methylene spacers, is synthesized by first installing the R-groups on 

benzimidazole via an SN2 reaction. The substituted benzimidazole is then reacted with 2-bromo-

bis(1,3-bromomethyl)benzene via an SN2 copper reaction to yield the benzimidazolium salt of the 

ligand. The protonated version was also synthesized using 1,3-(bromomethyl)benzene instead 

(Scheme 2.4). This platform is especially attractive due to its modularity and simplicity as well as 

lack of palladium couplings. [H3(
BzCcCcC)]Br2 (BzCcCcC = 2,6-bis(benzyl-

methylenebenzimidazol-2-ylidene)phenyl) and [H2(
BzCcCBrcC)]Br2 (

BzCcCBrcC = 2,6-bis(benzyl-

methylenebenzimidazol-2-ylidene)-1-bromobenzene) have been previously synthesized, though 

only as the PF6 salt for the former.4,5 Other alkyl groups with this ligand type have also been 

investigated including [H2(
tBuCcCBrcC)]Br2 (tBuCcCBrcC = 2,6-bis(t-butyl-

methylenebenzimidazol-2-ylidene)-1-bromobenzene) but the protonated version, 

[H3(
tBuCcCcC)]Br2 (

tBuCcCcC = 2,6-bis(t-butyl-methylenebenzimidazol-2-ylidene)), has not yet 

been reported.6 The only d-block transition metals reported with these ligand platforms are silver 

and palladium.4,7  

Ligand types A and B form rigid pincers in which the metal binds in the traditional 

tridentate, meridional fashion. However, ligand type C has much more flexibility due to the 

methylene carbons and, while still binding tridentate, that flexibility causes the ligand to twist out 

Scheme 2.4. Synthesis of Ligand type C, [H3(RCcCH/BrcC)]Br2.4-7 
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of plane when a metal is bound as evidenced in the solid-state structures following. Metalation of 

these CCC type pincer ligands is particularly difficult due to many of their intrinsic properties. The 

salts can be easily deprotonated to give the bis(carbenes) by any sufficiently Lewis basic 

functionality, but the activation of the phenyl backbone then requires a Lewis acidic group which 

is often incompatible with the previous step. A variety of methods have been employed to 

circumvent this incompatibility. 

 Metalation of these CCC ligand frameworks has been accomplished by transmetalation 

from silver3,8-10 and zirconium,11-17 salt metathesis with excess base,1,18-19 metal sources with 

internal bases,2 and using zero valent metal sources to perform oxidative addition across C−H or 

C−Br bonds.5,7,20 Noble metals including rhodium,3,13,14 palladium,5.7,9 osmium,18 iridium,1,9,14 and 

platinum15,16 have been installed in similar CCC systems by these methods. However, our group 

was the first to metalate this type of CCC framework using a late first-row transition metal. This 

was accomplished by two different methods using nickel 1) salt metathesis and 2) the use of a 

zero-valent nickel source (Scheme 2.5).20 

Scheme 2.5. (DIPPCCC)Ni complexes. 
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 The synthesis of (DIPPCCC)Ni(II)Cl was first achieved by the in situ generation of the free 

carbene, H(DIPPCCC), using two equivalents of base which was then refluxed with NiCl2 in toluene 

to give (DIPPCCC)Ni(II)Cl in low yields (~35%). However, it was also discovered that treating the 

carbene with NiCl2py4 in a DCM/THF mixture gave the same complex in quantitative yields. The 

nickel hydride complex can also be synthesized starting with the isolated bis(carbene) and adding 

Ni(0)(COD)2. Oxidative addition across the aryl C−H bond then generated the nickel hydride in 

decent yields (41%) (Scheme 2.5).20 

 Subsequently, our group was also able to synthesize the cobalt derivatives of both the 

(DIPPCCC) and (MesCCC) ligands using a metal source containing an internal base, 

Co(N(SiMe3)2)py2 (Scheme 2.6). These complexes were found to reduce easily to the Co(II) and 

Co(I) oxidation states and were also investigated for catalytic reactivity.2,21-24  

 

 

 

 

 

 The use of these CCC pincer ligand frameworks with first-row transition metals has 

demonstrated their ability to stabilize complexes, catalyze numerous organic transformations, and 

enable two-electron catalytic reactivity. Therefore, synthesizing derivatives of the ligands as well 

as applying them to new first-row metals, like iron and manganese, would allow for the 

development of new catalysts and a better understanding of these systems. 

 

 

Scheme 2.6. (RCCC)Co complexes. 
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2.2 Synthesis and Characterization of New Complexes - Nickel 

Ligand Type C, with the methylene spacer, was first investigated with iron, cobalt, and 

nickel due to its ease of synthesis and lack of palladium couplings. [H2(
RCcCBrcC)]Br2 (R = benzyl, 

t-butyl) was treated with two equivalents of various bases to determine if the free carbene could 

be generated or if the benzylic C−H bonds were susceptible to activation first. It was found that 

the free carbenes, (BzCcCBrcC) and (tBuCcCBrcC), could be generated upon the addition of two 

equivalents of Li(N(SiMe3)2) with no activation of the benzylic C−H bonds. This is clearly 

evidenced by the loss of the downfield NHC resonances in the 1H NMR spectra and the increased 

solubility of the generated free carbenes (See 2.4 Experimental).  

The next step was to activate the C−Br bond with a metal or base which should be more 

easily accessed than a C−H bond in the same position. The free carbene was generated in situ and 

then Ni(COD)2, a zero-valent nickel source, was added to the reaction mixture. The isolation of 

Scheme 2.7. Synthesis of (RCcCcC)Ni complexes. 

Figure 2.1. Molecular structures of (BzCcCcC)Ni(II)Br (left, center) and (tBuCcCcC)Ni(II)Br (right) shown with 

50% probability ellipsoids. Solvent molecules and selected hydrogen atoms have been omitted for clarity. 
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(BzCcCcC)Ni(II)Br attested to the C−Br bond being activated but a lower yield (~60%) led to 

further investigation into this metalation. Substituting instead Ni(II)Cl2py4 with two equivalents of 

a reductant (KC8) to generate the Ni(0) in situ led to much higher yields (80-90%) for both 

(tBuCcBrcC)Ni(II)Br and (BzCcBrcC)Ni(II)Br (Scheme 2.7). This is likely due to the nickel first 

coordinating to the free carbene before being reduced to Ni(0) in situ and undergoing oxidative 

addition. Both complexes were characterized crystallographically and orienting to the plane of the 

phenyl backbone you can very clearly see the flexibility of the ligand as the two benzimidazole 

groups end up nearly perpendicular to one another (Figure 2.1, center). Both nickel centers have a 

slightly distorted square planar geometry with similar Ni−CAr bond lengths, 2.4188(3) Å and 

2.4379(8) Å for (BzCcCcC)Ni(II)Br and (tBuCcCcC)Ni(II)Br, respectively,  and Ni−CNHC bond 

lengths, 1.906(2) Å and 1.902(2) Å for (BzCcCcC)Ni(II)Br and 1.916(6) Å and 1.903(5) Å for 

(tBuCcCcC)Ni(II)Br.  

Investigating these complexes by 1H NMR spectroscopy revealed C2 symmetric spectra 

(Figure 2.2). The NHC resonances of the benzimidazolium ligand salts have disappeared and the 

previous methylene CH2 singlet resonances (R = Bz: 6.04 and 5.91 ppm, R = tBu: 5.91 ppm) have 

become diastereotopic. However, (BzCcCcC)Ni(II)Br appeared to only have three sets of doublet 

resonances (3 x 2H) for the methylene CH2 groups in the region from 4-6 ppm. Integration of the 

aryl region revealed that the extra resonance has likely been shifted downfield into the aromatic 

region. This could indicate a significant interaction between the nickel center and one of the 

methylene groups in solution since no close interaction is evident in the solid-state structure. 

Investigating the coupling constants between the visible doublets corroborates this hypothesis 

since the constants, which should be identical, do not match (J = 16.9, 13.2, and 12.3 Hz) which 

indicates possible non-symmetry in the solution state. Analysis of the isolated crystals by 1H NMR 
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spectroscopy gave the same spectrum. (tBuCcCcC)Ni(II)Br, on the other hand, displays a much 

more symmetric 1H NMR spectrum with no indication of a nickel-methylene interaction and 

matching coupling constants for the methylene doublet resonances (J = 13.6 Hz) (Figure 2.2).  

The addition of NaHBEt3 to (tBuCcCcC)Ni(II)Br yielded (tBuCcCcC)Ni(II)H via 1H NMR 

spectroscopy (Figure 2.3). The deep purple complex has a hydridic resonance that appears as a 

singlet at -7.77 ppm and the diastereotopic methylene protons appear at 5.4 ppm and 5.1 ppm as 

doublets (J = 13.5 Hz). (tBuCcCcC)Ni(II)H exhibited thermal instability when in solution at room 

temperature but appeared much more stable as a solid at -35 oC. The independent synthesis of this 

complex was attempted from the protonated version of the benzimidazolium ligand salt, 

[H3(
tBuCcCcC)]Br2, following the same metalation procedure but was unsuccessful. It was verified 

that the generation of the free carbene, as previously described, also worked with the protonated 

Figure 2.2. 1H NMR spectra (C6D6) of (RCcCcC)Ni(II)Br (R = t-butyl (top, blue), 

benzyl (bottom, red)), *indicates solvent. 
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ligand (See 2.4 Experimental). The sensitive nature of the hydride appeared to lead to 

decomposition before it could be fully isolated from the reaction mixture. A distinct color change 

could be seen during work-up from the purple color of the hydride to a dark red color previously 

observed from the decomposition of the nickel hydride complex. 

Unfortunately, the synthesis of the iron and cobalt derivatives was unsuccessful. Interested 

in pursuing a variety of first-row transition metal catalysts we turned our attention to Ligand Type 

A, [H3(
ArCCC)]Cl2, for the development of iron catalysts. 

 

2.3 Synthesis and Characterization of New Complexes - Iron 

 Ligand Type A has been metalated by our group using nickel and cobalt, as previously 

described, but applying these same routes to iron did not afford the desired products in appreciable 

yield. An Fe(II)−H molecule, later identified as (DIPPCCC)Fe(II)H(PMe3)(N2), could be generated 

using two equivalents of benzyl potassium and Fe(PMe3)4 but only in low yield (30%). Therefore, 

we sought a different synthetic route to access the iron complexes. Treatment of [H3(
DIPPCCC)]Cl2 

with FeCl2 and Li(N(SiMe3)2) (1.1equiv) in THF generates the zwitterionic complex, 

H2(
DIPPCCC)Fe(II)Cl3, in quantitative yields (Scheme 2.8).25  

Figure 2.3. Synthesis of (tBuCcCcC)Ni(II)H and 1H NMR spectrum (C6D6). 
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This compound displays a broadened, paramagnetic 1H NMR spectrum. The solution 

magnetic moment of H2(
DIPPCCC)Fe(II)Cl3, as determined by Evans’ method, was found to be 

5.73(5) μB, which is at the high end of the calculated spin-orbit coupled magnetic moment of high 

spin S=2 tetrahedral Fe(II) complexes which typically range from 5.1-5.7 μB.26,27 In order to gain 

a better understanding of the bonding in this complex X-ray quality crystals of 

H2(
DIPPCCC)Fe(II)Cl3 were grown from DCM and hexanes at -35 oC.  The iron center is 

coordinated to a single carbene ligand and three chlorides bound in a tetrahedral fashion. The other 

NHC remains protonated and is charge balanced by the extra chloride ligand on the iron center 

giving a zwitterionic complex (Figure 2.4).25 

H2(
DIPPCCC)Fe(II)Cl3 can be treated with an excess of reductant (KC8, 3.5equiv) to 

generate an Fe0 in situ in the presence of two equivalents of trimethylphosphine (PMe3) giving 

(DIPPCCC)Fe(II)H(PMe3)(N2) in quantitative yield (Scheme 2.8). Characterization of 

(DIPPCCC)Fe(II)H(PMe3)(N2) by 1H NMR spectroscopy reveals a Cs symmetric spectrum with a 

doublet at -9.67 ppm assigned to the Fe‒H (JP-H = 13 Hz) (Figure 2.5). Given the low coupling 

constant of under 20 Hz, we tentatively assigned the phosphine ligand as cis to the hydride. Typical 

coupling constants are much higher in magnitude for trans P‒H (JP-H(trans) = 90-150 Hz) while cis 

Scheme 2.8. Synthesis of (DIPPCCC)Fe(II) complexes. 



 

25 
 

P‒H coupling is lower (JP-H(trans) = 15-30 Hz).29,30 However, X-ray crystallography reveals a 

slightly distorted octahedral geometry with the PMe3 trans to the hydride ligand while a bound N2 

occupies the position trans to the CAr
 carbon (Figure 2.4). Some Fe systems in the literature see a 

reversal wherein JP-H(cis) > JP-H(trans) which appears to also be true for our system.29 The Fe‒H bond 

distance, 1.52(2) Å, is within the expected range for other Fe−H’s and the N‒N bond distance is 

relatively un-activated at 1.1078(17) Å. Vibrational frequencies for the Fe‒H and N2 are observed 

by IR spectroscopy at 1724 and 2099 cm-1
, respectively. (DIPPCCC)Fe(II)H(PMe3)(N2) represents 

a rare example of an Fe monoanionic bis(N-heterocyclic carbene) pincer complex with the ligand 

bound in a tridentate fashion.   The only other example, by Meyer and co-workers, features two 

tetradentate ligands, amide functionalized bis(imidazolium) salts, coordinated in a tridentate 

(NCC) fashion to one iron center.31 

 Accessing a zwitterionic intermediate for metalation has not been previously reported for 

monoanionic bis(carbene) pincer complexes, despite the generation of the singly coordinated NHC 

complexes with rhodium and iridium. However, these noble metal systems feature a ratio of two 

metal centers to one ligand.32-33
 With this new metalation method in hand, which quantitatively 

generates both H2(
DIPPCCC)Fe(II)Cl3 and (DIPPCCC)Fe(II)H(PMe3)(N2), the synthesis and 

characterization of a family of iron complexes has been accomplished.   

Fe1 

H1 

CAr 

CNHC 
Fe

1 

P1 

Figure 2.4. Molecular structures of H2(DIPPCCC)Fe(II)Cl3 (left) and  

(DIPPCCC)Fe(II)H(PMe3)(N2) (right) shown with 50% probability ellipsoids.  

Solvent molecules and selected hydrogen atoms have been omitted for clarity. 
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Following the synthetic protocol established with (DIPPCCC)Fe(II)H(PMe3)(N2) the 

addition of the less Lewis basic PPh3 and pyridine (py) bound complexes was sought. Addition of 

two equivalents of PPh3 or pyridine to the zwitterionic complex with reductant (KC8, 3.5 equiv) 

did not result in the desired complexes. Similarly, reduction in the absence of an L-type ligand did 

not result in the isolation of an Fe−H complex. Surprisingly, despite only one phosphine being 

bound to the iron center, the addition of a single equivalent of PMe3 resulted in very little formation 

of the desired complex (<20%). Therefore, we hypothesize that metalation of the ligand requires 

an additional equivalent of PMe3 to act as a Lewis base, possibly after coordination to the metal 

center. The lower basicity of PPh3 (7.64 pKa) and pyridine (12.53 pKa) compared to PMe3 (15.5 

pKa) could result in no deprotonation and no subsequent formation of the Fe−H complexes.34 

 The addition of a single equivalent of PPh3 or pyridine in the presence of the strong Lewis 

base Li(N(SiMe3)2) (26 pKa) to H2(
DIPPCCC)Fe(II)Cl3 resulted in formation of 

(DIPPCCC)Fe(II)H(PPh3)(N2) and (DIPPCCC)Fe(II)H(py)(N2) (Scheme 2.8). Both display similar 

1H NMR spectra to complex (DIPPCCC)Fe(II)H(PMe3)(N2) with the most noticeable difference 

being the Fe‒H resonance, which shifts upfield from -9.67 ppm (PMe3) to -11.11 ppm (PPh3) and 

-18.70 ppm (py) (Figure 2.5, Table 2.1) Akin to (DIPPCCC)Fe(II)H(PMe3)(N2) the hydride 

resonance for (DIPPCCC)Fe(II)H(PPh3)(N2) is the expected doublet (JP-H  = 22.5 Hz) due to the 

coupling of the hydride and phosphine ligand. Both the phosphine iron hydrides have ATR-IR N2 

stretches at 2099 cm-1, while the pyridine hydride features a red-shifted N2 stretch at 2081 cm-1. 

The ATR-IR spectra for (DIPPCCC)Fe(II)H(PPh3)(N2) and (DIPPCCC)Fe(II)H(py)(N2) include an 

Fe−H absorption at νFe-H = 1791 and 1794 cm-1, respectively, which is blue-shifted from that of 

(DIPPCCC)Fe(II)H(PMe3)(N2) (1722 cm-1) (Table 2.1). (DIPPCCC)Fe(II)H(PMe3)(N2) could also be 

synthesized in quantitative yield using PMe3 (1equiv) and Li(N(SiMe3)2) (1equiv) (Scheme 2.8). 
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 The shifts of the hydride resonances by 1H NMR spectroscopy can be rationalized by 

looking at the trans-effect of the L-type ligand. Though only (DIPPCCC)Fe(II)H(PMe3)(N2) was 

characterized crystallographically it is likely that the other two complexes have similar orientations 

of the ligands, which is supported by the coupling constant for (DIPPCCC)Fe(II)H(PPh3)(N2) (JP-H 

= 22.5 Hz). Interested in understanding the influence the σ-donating and π-accepting abilities of 

the trans L-type ligand has on the hydride resonance shift, we sought to directly compare these 

complexes.  Although PPh3 is a better π-acceptor than PMe3 the steric constraints afforded by the 

PPh3 cause an upfield shift of the hydride resonance when compared to the PMe3 complex (-11.11 

ppm vs -9.67 ppm, respectively).  These effects were further validated when comparing these to 

the pyridine complex, as pyridine is an even poorer π-acceptor, the hydride resonance shifts even 

further upfield to -18.70 ppm.35 This increase in hydridic character is also clearly evident in the 

greater thermal instability of the pyridine iron hydride which decomposes over a few days if stored 

at room temperature. 

L = PMe3 

L = PPh3 

L = py 

Figure 2.5. 1H NMR spectra of (DIPPCCC)Fe(II)H(L)(N2) (L = PMe3, PPh3, py). 
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 Interested in probing the L-type ligand effects further excess CO and tBuNC were added 

to (DIPPCCC)Fe(II)H(PMe3)(N2) (Scheme 2.9). After monitoring by 1H NMR spectroscopy for 

several hours the kinetic products (DIPPCCC)Fe(II)H(PMe3)(CO) and 

(DIPPCCC)Fe(II)H(PMe3)(
tBuNC) were identified. The dinitrogen stretch in 

(DIPPCCC)Fe(II)H(PMe3)(N2) disappears and the C‒O stretch at 1948 cm-1 (free 2143 cm-1) can be 

observed for (DIPPCCC)Fe(II)H(PMe3)(CO). The N‒C stretch of (DIPPCCC)Fe(II)H(PMe3)(
tBuNC) 

appears at 2016 cm-1 (free 2138 cm-1) (Table 2.1). The 1H NMR spectrum for both complexes 

feature a slightly upfield shifted hydride doublet resonance at -10.96 ppm (JP-H = 4.5 Hz) for 

(DIPPCCC)Fe(II)H(PMe3)(CO) and -10.45 ppm (JP-H  = 5 Hz) for 

(DIPPCCC)Fe(II)H(PMe3)(
tBuNC). The minimal change in the P−H coupling constants indicate no 

change in the phosphine-hydride conformation and 31P NMR spectroscopy also confirms retention 

of the PMe3 ligand. Reliance on coupling constants alone, however, is inconclusive since no cis 

phosphine-hydride complex has been isolated with this system. 

 Monitoring the reactions by 1H NMR spectroscopy over four days results in the collapse 

of the Fe−H resonance from a doublet to a singlet, indicating the reaction has proceeded to the 

thermodynamic products (DIPPCCC)Fe(II)H(CO)2 and (DIPPCCC)Fe(II)H(tBuNC)2 and the new 

Fe−H resonances shift downfield to -8.41 ppm and -8.87 ppm, respectively (Scheme 2.9).  Analysis 

Scheme 2.9. Synthesis of (DIPPCCC)Fe(II)H(L)(L’) complexes. 
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by IR spectroscopy shows two C−O stretches at 1983 and 1927 cm-1 for (DIPPCCC)Fe(II)H(CO)2 

and two C−N stretches for (DIPPCCC)Fe(II)H(tBuNC)2 at 2047 and 2002 cm-1 which is consistent 

with the Cs symmetric 1H NMR spectra. These new stretches are distinct from the previously 

characterized mixed ligand species (Table 2.1). 

Alternatively, complexes (DIPPCCC)Fe(II)H(CO)2 and (DIPPCCC)Fe(II)H(tBuNC)2 can be 

synthesized by displacing the pyridine and N2 ligands in (DIPPCCC)Fe(II)H(py)(N2) with excess 

CO or tBuNC in THF (Scheme 2.9). This results in an immediate color change from purple to pale 

yellow with no observation of mixed ligand species when monitored by 1H NMR spectroscopy. 

Loss of pyridine can be tracked by 1H NMR spectroscopy and generation of the desired complexes 

was accomplished in increased yields. 

 Comparing each of the Fe−H complexes synthesized gives us information about the 

electronics both of our complexes and ligand framework. The metal center is electron rich due to 

the strongly σ-donating ligand framework which causes it to transfer electron density onto the 

other ligands when possible. This is reflected in the Fe−H 1H NMR resonance shift when switching 

 

Complex IR νL/L’ (cm-1) IR νFe-H (cm-1) 
1H NMR 

(Fe-H, ppm) 

31P NMR 

(ppm) 

JP-H 

(Hz) 

(DIPPCCC)Fe(II)H(PMe3)(N2) 2099 (N2) 1722 -9.67 (d) 11 13 

(DIPPCCC)Fe(II)H(PPh3)(N2) 2099 (N2) 1791 -11.11 (d) 50 22.5 

(DIPPCCC)Fe(II)H(py)(N2) 2081 (N2) 1794 -18.70 (s) - - 

(DIPPCCC)Fe(II)H(PMe3)(CO) 1948 1723 -10.96 (d) 10.5 4.5 

(DIPPCCC)Fe(II)H(PMe3)(tBuNC) 2016 1723 -10.45 (d) 14.9 5 

(DIPPCCC)Fe(II)H(CO)2 1983, 1927 1724 -8.41 (s) - - 

(DIPPCCC)Fe(II)H(tBuNC)2 2047, 2002 1723 -8.87 (s) - - 

 
Table 2.1. Characterization of (DIPPCCC)Fe(II)H(L)(L’) species. 



 

30 
 

to different L-type ligands. The overall trend observed is that the more π-accepting L-type ligands 

cause a downfield shift in the hydride resonance due to their ability to receive π-back-donation 

from the metal center (i.e. CO > tBuNC > PR3 > py).35 (DIPPCCC)Fe(II)H(py)(N2) has the farthest 

upfield hydride resonance due to pyridine’s lack of available p-orbital for π-back-donation (Figure 

2.6, Table 2.1). 

However, the kinetic products (DIPPCCC)Fe(II)H(PMe3)(CO) and 

(DIPPCCC)Fe(II)H(PMe3)(
tBuNC) first experience an upfield shift of the Fe−H resonance from 

(DIPPCCC)Fe(II)H(PMe3)(N2) in their 1H NMR spectra which is counterintuitive. Switching from 

a non-σ-donating L-type ligand (N2) to one that is a stronger σ-donor (CO or tBuNC), though still 

a good π-acceptor, results in this slightly upfield shift of the Fe−H resonance. Essentially, the σ-

donation effect outweighs the ligand’s π-accepting abilities. However, replacement of PMe3 in 

(DIPPCCC)Fe(II)H(PMe3)(CO) and (DIPPCCC)Fe(II)H(PMe3)(
tBuNC) with the second equivalent 

of CO or tBuNC, respectively, places these ligands trans to the hydride resulting in a much larger 

effect on the hydridic 1H NMR resonance. Both are stronger π-acceptors than PMe3 so back-

donation from the metal center to the ligand results in a downfield shift of the hydride resonance 

in the 1H NMR spectrum (Figure 2.6). 
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Figure 2.6. 1H NMR spectra of (DIPPCCC)Fe(II)H(L)(L’). 
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Similarities can be drawn when comparing the hydride shifts and phosphorus coupling 

constants to the pincer system by Guan and co-workers, (POCOP)Fe(II)H(PMe3)2.
28 In Guan’s 

system substitution of one PMe3 ligand by CO first occurs trans to the hydride with a subsequent 

downfield shift of the hydride resonance from -14.87 ppm to -9.58 ppm in the 1H NMR spectrum 

(JP-H = 52.0 Hz). Heating (POCOP)Fe(II)H(PMe3)(CO) to 80 oC for 12 h in toluene resulted in an 

upfield shift of the hydride resonance to -12.66 ppm (JP-H = 28.8 Hz). The change in the coupling 

constant is consistent with ligand rearrangement where the hydride and PMe3 are now trans to one 

another with the CO cis. This clearly shows that the placement of the CO ligand has a distinct 

effect upon the hydride-phosphorus coupling constant as well as the cis P−H coupling constant 

being larger than the trans. The movement of the hydride resonances in Guan’s system is similar 

to what is observed for CO substitution in our system. However, unlike in Guan’s system the 

possibility of ligand rearrangement in (DIPPCCC)Fe(II)H(PMe3)(CO) and 

(DIPPCCC)Fe(II)H(PMe3)(
tBuNC) was discounted due to several reasons; 1) the JP-H  coupling 

constants did not change significantly throughout the course of the reaction; 2)  a significant 

downfield shift of the Fe-H resonance in the 1H NMR spectrum was not observed due to the 

binding of the new strong π-acceptor ligand trans to the hydride; and 3) no other intermediates 

were observed by 1H NMR during the conversion of the mixed ligand complexes to the final 

products. Finally, in both systems, additional CO generates the bis(carbonyl) iron hydride complex 

with a subsequent downfield shift of the hydride resonance.28 

     Comparing the 13C NMR resonances of the N-heterocyclic carbene carbon, CNHC, and aryl 

carbon, CAr, also shows the same electronic effects based on the L-type ligand with the latter 

exhibiting the most drastic change. The CNHC resonances are 230.10 ppm (PPh3), 229.28 ppm (py), 

228.03 ppm (tBuNC), and 220.05 ppm (CO). The lower solubility of (DIPPCCC)Fe(II)H(PMe3)(N2) 
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in benzene prohibited assignation of the CNHC resonance. The CAr resonances follow the exact 

same trend as the Fe−H resonances in the 1H NMR spectra; 191.93 ppm (py), 185.70 ppm (PMe3), 

183.01 ppm (PPh3), 175.35 ppm (tBuNC), and 174.75 ppm (CO). Here it can be seen that the 

addition of a second L-type ligand in the position trans to CAr results in a much more upfield shift 

for both (DIPPCCC)Fe(II)H(CO)2 and (DIPPCCC)Fe(II)H(tBuNC)2. Both the latter complexes also 

exhibit two separate resonances in their 13C NMR spectra for the carbon bound to the Fe center 

(CO and tBuNC) which is consistent with complexes exhibiting Cs symmetry. 

With these hydrides in hand their reactivity with CO2 was investigated. The addition of 1 

atm of CO2(g) to (DIPPCCC)Fe(II)H(PMe3)(N2) led to insertion of the CO2 into the Fe−H bond 

resulting in formation of a formate product, (DIPPCCC)Fe(II)(κ2-OOCH)(PMe3), (Scheme 2.10). 

This was evident by the loss of the hydridic resonance in the 1H NMR spectrum and the growth of 

a resonance at 6.02 ppm of the formate proton (Figure 2.7). Analysis by IR spectroscopy shows 

the loss of both the Fe−H and N2 absorbances from (DIPPCCC)Fe(II)H(PMe3)(N2) and a new C−H 

stretch at 2815 cm-1 consistent with a bound formate fragment. Investigation of the 31P NMR 

Scheme 2.10. Reactivity of (DIPPCCC)Fe(II)H(PMe3)(N2). 
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spectrum indicates retention of the PMe3 ligand with a resonance at 42 ppm 

((DIPPCCC)Fe(II)H(PMe3)(N2) = 11 ppm) and integration of the 1H NMR indicates a single PMe3 

ligand and no additional solvent molecules bound to the Fe center. This indicates either a five-

coordinate iron center or multi-atom bonded formate to obtain a diamagnetic 1H NMR spectrum. 

The C−H IR absorbance falls within the region known for other M−κ2-OOCH complexes but 

M−κ1-OOCH complexes can also appear in this same region.36,37 Looking more closely at the 

fingerprint region, however, reveals a stretch at 1562 cm-1. Comparing these stretches with other 

published Fe-formate complexes clearly indicates a κ2-OOCH binding mode. The clearest 

comparison by Jonas Peters shows Fe(II)(κ1-OOCH) ranges from 1644-1603 cm-1 while Fe(II)(κ2-

OOCH) are slightly lower from 1585-1553 cm-1.37 The most likely conformation of the product, 

therefore, is (DIPPCCC)Fe(II)(κ2-OOCH)(PMe3). Efforts to crystallographically characterize this 

new formate species were unsuccessful and therefore independent synthesis was investigated.  

The addition of HCl•Et2O (1 equiv.) and PMe3 (2 equiv.) to (DIPPCCC)Fe(II)H(PMe3)(N2) 

furnishes H2 and (DIPPCCC)Fe(II)Cl(PMe3)2 in good yield (90%) (Scheme 2.10). Addition of 

OOCH

Fe-H iPr-CH

iPr-CHiPr-CH

Figure 2.7. 1H NMR spectrum of (DIPPCCC)Fe(II)H(PMe3)(N2) (top) 

 and (DIPPCCC)Fe(II)(κ2-OOCH)(PMe3) (bottom). 
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HCl•Et2O without the extra L-type ligand led only to a mixture of unidentified products. The 

second equivalent of PMe3 allows for the capture of any unreacted HCl•Et2O which helps avoid 

complex decomposition. Single crystal X-ray diffraction of the complex, 

(DIPPCCC)Fe(II)Cl(PMe3)2, shows an octahedral geometry around the iron center with the chloride 

ligand bound trans to the CAr and two axial PMe3 ligands (Figure 2.8). The 1H NMR spectrum 

reveals a Cs symmetric complex and a single 31P NMR resonance at 22.90 ppm confirms this 

assignment. The 13C NMR CNHC resonance appears at 225.91 ppm while the CAr resonance appears 

at 189.69 ppm. The use of non-coordinating acids to generate different Fe(II)−X complexes led to 

the generation of multiple inseparable products, possibly due to ligand rearrangements.  

 Treating (DIPPCCC)Fe(II)Cl(PMe3)2 with excess sodium formate led to the isolation of the 

same (DIPPCCC)Fe(II)(κ2-OOCH)(PMe3) complex characterized above including loss of the 

second PMe3 ligand as evident by integration of the 1H NMR spectrum (Scheme 2.10). This loss 

of the second PMe3 ligand supports the assignment of the formate being κ2-OOCH. It was 

previously shown that even using a strongly binding L-type ligand like CO took four days to 

replace PMe3, therefore only a strong binding interaction, like κ2-OOCH, is likely to cause it to be 

displaced. Additionally, treating (DIPPCCC)Fe(II)(κ2-OOCH)(PMe3) with one equivalent of 

HCl•Et2O and PMe3 led to re-isolation of (DIPPCCC)Fe(II)Cl(PMe3)2 (Scheme 2.10). 

Fe1 
Fe1 

Cl1 
Cl1 

Cl2 

P1 P1 

P2 

CAr CA

CNHC CNHC 

Figure 2.8. Molecular structures of (DIPPCCC)Fe(II)Cl(PMe3)2 (left) and 

(DIPPCCC)Fe(III)(Cl)2(PMe3) (right) shown with 50% and 30% probability ellipsoids, 

respectively. Solvent molecules and selected hydrogen atoms have been omitted for clarity. 
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The addition of CO2 to (DIPPCCC)Fe(II)H(py)(N2) led to the isolation of a complex with a 

paramagnetic 1H NMR spectrum instead of a diamagnetic species like (DIPPCCC)Fe(II)(κ2-

OOCH)(PMe3). Both the Fe−H and N2 stretches were lost as seen by IR spectroscopy. This 

complex could not be characterized crystallographically but the addition of PMe3 gave the same 

(DIPPCCC)Fe(II)(κ2-OOCH)(PMe3) complex that was previously characterized. The addition of 

CO2 to (DIPPCCC)Fe(II)H(CO)2 and (DIPPCCC)Fe(II)H(tBuNC)2 showed no reaction, likely due to 

having two very strong binding L-type ligands giving more stable complexes. Unfortunately, 

(DIPPCCC)Fe(II)(κ2-OOCH)(PMe3) could not be further hydrogenated and was only released from 

the Fe center when a very strong acid, like HCl, was used. We hypothesize that the paramagnetic 

complex generated after adding CO2 to (DIPPCCC)Fe(II)H(py)(N2) is still an Fe(II) species and the 

paramagnetic character is due to geometry rather than direct chemical oxidation to Fe(III). 

However, we were interested in determining whether other paramagnetic and/or higher oxidation 

states of iron could be supported by this ligand framework.  

 Treatment of either (DIPPCCC)Fe(II)H(PMe3)(N2) or (DIPPCCC)Fe(II)Cl(PMe3)2 with 

CHCl3 yields (DIPPCCC)Fe(III)Cl2(PMe3) (90%) with concomitant formation of CH2Cl2 as 

observed by 1H NMR spectroscopy (Scheme 2.11). This compound exhibits a paramagnetic 1H 

NMR spectrum with resonances ranging from 100 to -20 ppm. Analysis by X-ray crystallography 

depicts a slightly distorted octahedral Fe center with cis chloride ligands, 2.362(3) (axial) vs 

2.264(3) Å (equatorial) (Figure 2.8). The use of the one-electron oxidant tritylchloride (ClCPh3) 

led to partial conversion of (DIPPCCC)Fe(II)Cl(PMe3)2 but was unable to generate the Fe(III) 

complex cleanly. The method of chloride abstraction from CHCl3 is unknown. Alternatively, 

[(DIPPCCC)Fe(III)Cl(PMe3)2](PF6) could be generated upon the addition of AgPF6 to 

(DIPPCCC)Fe(II)Cl(PMe3)2 in DCM (Scheme 2.11). This complex also had a paramagnetic 1H 
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NMR spectrum but was a much cleaner reaction and retained a single 31P NMR signal at 26 ppm 

indicating retention of a Cs symmetric complex. 

 Overall, we were able to isolate and characterize a variety of Fe(II) hydride complexes as 

well as investigate their reactivity using CO2. The independent synthesis of (DIPPCCC)Fe(II)(κ2-

OOCH)(PMe3) from (DIPPCCC)Fe(II)Cl(PMe3)2 was accomplished and the catalytic hydrogenation 

of the formate fragment attempted. These complexes were not found to be a competent system for 

catalytic CO2 hydrogenation. Further oxidation of the Fe center was carried out using chloroform 

and AgPF6 to give two paramagnetic Fe(III) complexes.  

 

2.4 Experimental Section 

General Considerations. All air- and moisture-sensitive manipulations were performed using an 

MBraun inert atmosphere drybox with an atmosphere of nitrogen. The MBraun drybox was 

equipped with one -35 ̊C freezer for cooling samples and crystallizations. Solvents for sensitive 

manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, Nashua, 

NH) and stored over 4 Å molecular sieves purchased from Strem following literature procedure 

Scheme 2.11. Synthesis of (DIPPCCC)Fe(III) complexes. 
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prior to use.38 Iron (II) chloride anhydrous (98%) was purchased from Strem and used as received. 

Trimethylphosphine (1.0 M in THF), tert-butylisocyanide (98%), hydrochloric acid (2.0 M in 

Et2O), and pyridine (99.8%) were purchased from Sigma-Aldrich and used as received. 

Triphenylphosphine (≥ 95% (GC)) was purchased from Sigma-Aldrich and recrystallized using 

ethanol and dried before use. Lithium hexamethyldisilazide was purchased from Sigma-Aldrich 

and recrystallized under an inert atmosphere using toluene prior to use. Carbon monoxide (99.5%) 

and carbon dioxide (99.8%) was purchased from Specialty Gases of America and used as received. 

Iron (0) tetrakis(trimethylphosphine),28 potassium graphite,39 1-(tert-butyl)-1H-

benzo[d]imidazole,40 and DIPPCCC (DIPPCCC = bis(diisopropylphenyl-imidazol-2-ylidene)phenyl) 

ligand2 were prepared according to literature procedures. Chloroform-d, and benzene-d6 were 

purchased from Cambridge Isotope Labs and were degassed and stored over 4 Å molecular sieves 

prior to use. Celite® 545 (J. T. Baker) was dried in a Schlenk flask for 24 h under dynamic vacuum 

while heating to at least 150 oC prior to use in a glovebox.  

1H, 13C, and 31P NMR spectra were recorded on a Varian spectrometer operating at 500 

MHz (1H NMR), 126 MHz (13C NMR), and 202.4 MHz (31P NMR) at ambient temperature. All 

chemical shifts were reported relative to the peak of the residual solvent as a standard. Solid-state 

infrared spectra were recorded using a Perkin-Elmer Frontier FT-IR spectrophotometer equipped 

with a KRS5 Thallium Bromide/Iodide Universal Attenuated Total Reflectance accessory. 

Elemental analysis was performed by the University of Illinois at Urbana Champaign School of 

Chemical Sciences Microanalysis Laboratory in Urbana, IL. 

Modified Preparation of 1,3-Bis(N-benzimidazolyl)benzene. Benzimidazole (7.0 g, 60 mmol), 

CuO (0.62 g, 8 mmol), and K2CO3 (8.2 g, 60 mmol) were combined in a 500 mL flask and 

dissolved in DMSO (30 mL). A reflux condenser was added to the flask and the entire system 
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flushed with N2. 1,3-dibromobenzene (3.0 mL, 24 mmol) was syringed into the flask and the 

reaction heated to 150 oC for 48 hours. The reaction was then cooled to room temperature and 

diluted with DCM (300 mL). The reaction mixture was then filtered through basic alumina. Instead 

of concentrating the reaction mixture which requires pumping off DMSO, an aqueous/organic 

work-up was instead done with DCM and water. The DCM layers were then concentrated under 

reduced pressure to yield a pale yellow solid. This solid was washed with cold EtOAc to remove 

the yellow colored impurities yielding a pale-yellow solid in good yield (6.86 g, 92%). 1H NMR 

(DMSO-d6, 500 MHz):  δ = 8.73 (s, 2H), 8.07 (s, 1H), 7.94 (m, 7H), 7.36 (p, J = 8.7 Hz, 4H). The 

1H NMR is in accordance with previously published literature values.3 

Modified Preparation of 1,3-Bis(1′-methyl-3′-benzimidazolyl)benzene diiodide 

[H3(MeCCC)]I2. 1,3-bis(N-benzimidazolyl)benzene (0.7 g, 2.24 mmol) was dissolved in DMF (20 

mL) and CH3I (1.39 mL, 22.4 mmol) was added dropwise. The reaction was sealed and stirred at 

40 oC for 24 hours. A white precipitate began forming within several hours. The precipitate was 

collected and rinsed with Et2O and DCM. More precipitate was formed in the washes and 

recollected as well. The resulting white solid was dried yielding quantitative conversion to the 

desired benzimidazolium salt of the ligand. 1H NMR (DMSO-d6, 500 MHz):  δ = 10.30 (s, 2H), 

8.39 (s, 1H), 8.21 (d, J = 8.3 Hz, 2H), 8.21 (d, J = 8.3 Hz, 2H), 8.17 (b, 3H), 8.06 (d, J = 8.3 Hz, 

2H), 7.80 (dt, J = 28.7 Hz, 8 Hz, 4H), 4.23, (s, 6H). The 1H NMR is in accordance with previously 

published literature values.3 

Preparation of 2-bromo-1,3-bis(bromomethyl)benzene. 2-bromo-1,3-dimethylbenzene (3.17 

mL, 23.8 mmol), benzylperoxide (36.33 mg, 0.15 mmol), and NBS (8.85 g, 49.7 mmol) were 

added to a 250 mL round bottom flask and dissolved in CHCl3 (150 mL). The reaction was refluxed 

for 12 hours and monitored by GC for completion. The reaction was then cooled to room 
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temperature and extra NBS precipitated and was filtered off. The reaction mixture was quenched 

with Na2S2O3 (10% wt soln, 2x30 mL) going from a dark red color to yellow. The solvent was 

then removed under reduced pressure giving a yellow oil that solidified overnight. The product 

was recrystallized from hexanes to give a white solid as the product (yield). 1H NMR (CDCl3, 500 

MHz):  δ = 7.42 (d, J = 9.4 Hz, 2H), 7.29 (dt, J = 10 Hz, 8.9 Hz, 1H), 4.65 (s, 4H). The 1H NMR 

is in accordance with previously published literature values.5,41 

Preparation of 1-benzyl-1H-benzo[d]imidazole. Benzimidazole (0.25 g, 2.1 mmol), benzyl 

bromide (0.25 mL, 2.1 mmol) and Na2CO3 (0.67 g, 6.3 mmol) were added to a bomb and dissolved 

in toluene (10 mL). The reaction was then sealed and heated at 135 oC for 12 hours. The resulting 

reaction mixture was filtered over celite to remove excess Na2CO3 and the filtrated concentrated 

under reduced pressure to give a yellow solid. The solid was recrystallized in DCM giving a 

slightly off-white solid as the product (0.36g, 82%). 1H NMR (CDCl3, 500 MHz):  δ = 7.93 (s, 

1H), 7.81 (d, J = 9 Hz, 1H), 7.27 (m, 6H), 7.16 (d, J = 8.5 Hz, 2H), 5.35 (s, 2H). The 1H NMR is 

in accordance with previously published literature values.42 

Preparation of 1,1'-((2-bromo-1,3-phenylene)bis(methylene))bis(3-benzyl-1H-

benzo[d]imidazole-3-ium) dibromide [H2(BzCcCBrcC)]Br2. 1-benzyl-1H-benzo[d]imidazole 

(1.02 g, 4.9 mmol) and 2-bromo-1,3-bis(bromomethyl)benzene (0.84 g, 2.45 mmol) were added 

to a bomb, dissolved in toluene (20 mL), and heated to 135 oC for 12 hours. The solid that 

precipitated out of the solution was collected by filtration and washed with Et2O and THF to 

remove any leftover starting materials. The resulting white solid was dried giving the product in 

excellent yield (1.6 g, 86%). 1H NMR (CDCl3, 500 MHz):  δ = 11.29 (s, 2H), 8.09 (d, J = 10.4, 

2H), 7.70 (d, J = 9.6, 2H), 7.62 (t, J = 9.5 Hz, 2H), 7.54 (m, 5H), 7.44 (m, 6H), 7.30 (m, 6H), 6.04 

(s, 4H), 5.91 (s, 4H). The 1H NMR matches the previously published ligand.4,5 
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Preparation of 1,1'-((1,3-phenylene)bis(methylene))bis(3-benzyl-1H-benzo[d]imidazole-3-

ium) dibromide [H3(BzCcCcC)]Br2. 1-benzyl-1H-benzo[d]imidazole (1.02 g, 4.9 mmol) and 1,3-

bis(bromomethyl)benzene (0.64 g, 2.45 mmol) were added to a bomb, dissolved in toluene (20 

mL), and heated to 135 oC for 12 hours. The solid that precipitated out of the solution was collected 

by filtration and washed with Et2O and THF to remove any leftover starting materials. The 

resulting white solid was dried giving the product in excellent yield (1.5 g, 90%). 1H NMR (CDCl3, 

500 MHz):  δ = 11.84 (s, 2H), 8.22 (s, 1H), 7.67 (m, 2H), 7.47 (m, 9H), 7.32 (m, 6H), 7.22 (m, 

6H), 5.79 (s, 4H), 5.24 (s, 4H). The 1H NMR exhibits similar resonances to other alkyl substituted 

ligands of this type that have been previously published.4,5 

Preparation of 1-(tert-butyl)-1H-benzo[d]imidazole. The product was isolated as a yellow 

liquid according to literature procedures (1.93 g, 50%). 1H NMR (CDCl3, 500 MHz):  δ = 8.02 (s, 

1H), 7.81 (m, 1H), 7.64 (m, 1H), 7.26 (m, 2H), 1.76 (s, 9H).40 

Preparation of 1,1'-((2-bromo-1,3-phenylene)bis(methylene))bis(3-tert-butyl-1H-

benzo[d]imidazole-3-ium) dibromide [H2(tBuCcCBrcC)]Br2. 1-(tert-butyl)-1H-

benzo[d]imidazole (1.40 g, 8.0 mmol) and 2-bromo-1,3-bis(bromomethyl)benzene (1.37 g, 4.0 

mmol) were added to a bomb and dissolved in toluene (40 mL). The bomb was sealed and heated 

to 135 oC for 48 hours. The product was collected as a white solid (2.62 g, 95%) that precipitated 

from the reaction mixture and was washed with Et2O and THF. 1H NMR (CDCl3, 500 MHz):  δ = 

11.47 (s, 2H), 7.93 (m, 2H), 7.59 (m, 6H), 7.47 (d, J = 9.5, 2H), 7.31 (t, J = 8.1 Hz, 1H), 6.35 (s, 

4H), 1.99 (s, 18H). The 1H NMR matches the previously published ligand.6 

Preparation of 1,1'-((1,3-phenylene)bis(methylene))bis(3-tert-butyl-1H-benzo[d]imidazole-

3-ium) dibromide [H3(tBuCcCcC)]Br2. 1-(tert-butyl)-1H-benzo[d]imidazole (0.11 g, 0.65 mmol) 

and 1,3-bis(bromomethyl)benzene (0.086 g, 0.33 mmol) were added to a bomb and dissolved in 
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toluene (20 mL). The bomb was sealed and heated to 135 oC for 48 hours. The product was 

collected as a white solid (0.20 g, 98%) that precipitated from the reaction mixture and was washed 

with Et2O and THF. 1H NMR (CDCl3, 500 MHz):  δ = 11.46 (s, 2H), 8.40 (b, 1H), 7.88 (m, 2H), 

7.83 (m, 2H), 7.57 (m, 6H), 7.37 (t, J = 9.7 Hz, 1H), 6.04 (s, 4H), 2.00 (s, 18H). 13C NMR (CDCl3, 

126 MHz):  δ = 141.61, 134.56, 132.57, 130.49, 130.25, 129.86, 129.56, 127.18, 126.68, 116.03, 

114.47, 62.33, 50.49, 29.73. The 1H NMR exhibits similar resonances to other alkyl substituted 

ligands of this type that have been previously published.6 

 

General Preparation of Free Carbenes. A 20 mL scintillation vial was charged with 

[(RCcCRcC)]Br2 and benzene:THF in a 3:1 mixture. Li(N(SiMe3)2) (2.1equiv) was dissolved in 

minimal THF and added dropwise to the ligand. The reaction was stirred at room temperature for 

1hr during which a gradual color change took place to pale yellow. The reaction was filtered over 

celite and the volatiles removed under reduced pressure giving the free carbene as a pale-yellow 

precipitate in quantitative yield. The free carbenes were stable as solids stored at -35 oC for several 

days but lasted only a few hours in coordinating solvents. 

Preparation of (BzCcCBrcC). 1H NMR (C6D6, 500 MHz):  δ = 7.40 (d, J = 7.7 Hz, 2H), 7.36 (d, J 

= 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 4H), 7.12 (d, J = 7.6 Hz, 4H), 7.06 (t, J = 7.2 Hz, 4H), 7.65 (m, 

5H), 6.29 (d, J = 7.6 Hz, 2H), 6.19 (m, 2H), 4.31 (d, J = 16.9 Hz, 1H), 3.96 (d, J = 15.9 Hz, 1H), 

3.86 (m, 1H), 3.74 (d, J = 16 Hz, 1H). 

Preparation of (tBuCcCBrcC). 1H NMR (C6D6, 500 MHz):  δ = 7.24 (d, J = 6.5 Hz, 2H), 7.06 (d, 

J = 7.3 Hz, 2H), 7.02 (d, J = 7.6 Hz, 2H), 6.89 (b, 5H), 5.92 (b, 4H), 1.72 (s, 18H). 
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Preparation of H(tBuCcCcC). 1H NMR (C6D6, 500 MHz):  δ = 8.75 (b, 1H), 7.21 (d, J = 7.9 Hz, 

2H), 7.03 (d, J = 7.7 Hz, 2H), 7.00 (d, J = 7.5 Hz, 2H), 6.91 (m, 4H), 6.84 (t, J = 7.6 Hz, 1H), 5.74 

(s, 4H) 1.70 (s, 18H).  

Preparation of (BzCcCcC)Ni(II)Br. 1,1'-((2-bromo-1,3-phenylene)bis(methylene))bis(3-benzyl-

1H-benzo[d]imidazole-3-ium) dibromide (50 mg, 0.066 mmol) and Li(N(SiMe3)2 (23.1 mg, 0.14 

mmol) were dissolved in benzene (2 mL) and THF (2 mL) respectively and cooled to -35 oC. The 

base was then added to the frozen benzene solution and warmed to room temperature (~5 mins). 

Ni(COD)2 (14.5 mg, 0.053 mmol) dissolved in THF was then added to the reaction dropwise. Ni 

was required to be the limiting reagent due to the difficulty of removing Ni(COD)2 starting material 

from the resulting product. The reaction was then concentrated under reduced pressure and filtered 

over celite washing with hexanes and benzene. The benzene wash was concentrated to give a 

yellow solid as the product (20.9 mg, 0.032 mmol, 60% based on Ni). 1H NMR (C6D6, 500 MHz):  

δ = 7.26 (d, J = 16.3 Hz, 4H), 7.14 (m, 2H), 6.89 (b, 4H), 6.85 (m, 6H), 6.76 (m, 6H), 6.67 (t, J = 

7.3 Hz, 1H), 5.44 (d, J = 16.9 Hz, 2H), 5.30 (d, J = 13.2 Hz, 2H), 4.61 (d, J = 12.3 Hz, 2H). 

Alternate Preparation of (BzCcCcC)Ni(II)Br. 1,1'-((2-bromo-1,3-

phenylene)bis(methylene))bis(3-benzyl-1H-benzo[d]imidazole-3-ium) dibromide (50 mg, 0.066 

mmol) and Li(N(SiMe3)2 (23.2 mg, 0.14 mmol) were dissolved cold THF (-35 oC) and stirred 

together at room temperature for one hour. NiCl2py4 (29.4 mg, 0.066 mmol) and KC8 (31.2 mg, 

0.23mmol) were dissolved separately in THF and then added to the free carbene generated in situ 

in that order. The reaction went from clear yellow to dark red. The reaction was stirred for four 

hours at room temperature and then concentrated under reduced pressure. The solid was washed 

with hexanes and then benzene and filtered over celite. The benzene was concentrated under 

reduced pressure giving (BzCcCcC)Ni(II)Br in good yield (34.6 mg, 80%).  
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Preparation of (tBuCcCcC)Ni(II)Br. 1,1'-((2-bromo-1,3-phenylene)bis(methylene))bis(3-t-

butyl-1H-benzo[d]imidazole-3-ium) dibromide (25 mg, 0.036 mmol) and Li(N(SiMe3)2 (12.8 mg, 

0.076 mmol) were dissolved in benzene (2 mL) and THF (2 mL) respectively and cooled to -35 

oC. The base was then added to the frozen benzene solution and warmed to room temperature (~5 

mins). Ni(COD)2 (8.0 mg, 0.029 mmol) dissolved in THF was then added to the reaction dropwise. 

Ni was required to be the limiting reagent due to the difficulty of removing Ni(COD)2 starting 

material from the resulting product. The reaction was then concentrated under reduced pressure 

and filtered over celite washing with hexanes and benzene. The benzene wash was concentrated 

to give a yellow solid as the product (9.4 mg, 0.016 mmol, 55% based on Ni). 1H NMR (C6D6, 500 

MHz):  δ = 7.17 (d, 2H), 6.98 (m, 4H), 6.89 (m, 2H), 6.78 (d, J = 7.3 Hz, 2H), 6.66 (t, J = 7.3 Hz, 

1H), 5.90 (d, J = 13.6 Hz, 2H), 4.86 (d, J = 13.6 Hz, 2H), 2.05 (s, 18H). 

Alternate Preparation of (tBuCcCcC)Ni(II)Br. 1,1'-((2-bromo-1,3-

phenylene)bis(methylene))bis(3-t-butyl-1H-benzo[d]imidazole-3-ium) dibromide (25 mg, 0.036 

mmol) and Li(N(SiMe3)2 (12.8 mg, 0.076 mmol) were dissolved cold THF (-35 oC) and stirred 

together at room temperature for one hour. NiCl2py4 (16.2 mg, 0.036 mmol) and KC8 (17.2 mg, 

0.127 mmol) were dissolved separately in THF and then added to the free carbene generated in 

situ in that order. The reaction went from clear yellow to dark red with the addition of nickel. The 

reaction was stirred for four hours at room temperature and then concentrated under reduced 

pressure. The solid was washed with hexanes and then benzene and filtered over celite. The 

benzene was concentrated under reduced pressure giving product in good yield (19.2 mg, 90%). 

Preparation of (tBuCcCcC)Ni(II)H. A 20 mL scintillation vial was charged with 

(tBuCcCcC)Ni(II)Br (0.025 g, 0.043 mmol) and approximately 2 mL of benzene and cooled to -35 

oC. NaHBEt3 (0.043 mL, 0.043 mmol) was added to the frozen reaction and thawed to room 
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temperature going from a yellow frozen solution to deep purple. The reaction was stirred at room 

temperature for 30 minutes, filtered through celite, and cooled to -35 oC. The frozen benzene was 

removed under reduced pressure yielding a dark purple solid in good yield (21 mg, 96%). 1H NMR 

(C6D6, 500 MHz):  δ = 7.31 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 7.5 Hz, 4H), 7.02 (t, J = 7.9 Hz, 2H), 

6.93 (m, 3H), 5.44 (d, J = 13.5 Hz, 2H), 5.10 (d, J = 13.5 Hz, 2H), 1.92 (s, 18H), -7.77 (s, 1H). 

Preparation of H2(DIPPCCC)Fe(II)Cl3. A 20 mL scintillation vial was charged with 

[H3(
DIPPCCC)]Cl2 (0.071 g, 0.101 mmol) and approximately 2 mL of THF.  In two separate vials, 

an equivalent of FeCl2 (0.013 g, 0.101 mmol) and 1.1 equivalents of Li(N(SiMe3)2 (0.019 g 0.111 

mmol) were dissolved in approximately 2 mL of THF each. The FeCl2 was added to the off-white 

solution of ligand and the Li(N(SiMe3)2) was added drop-wise to the solution, resulting in an 

instantaneous color change to green-brown.  After stirring for 3 hours, the color of the solution 

was orange with yellow precipitate.  Solvents were removed under reduced pressure and the yellow 

residue was dissolved in DCM, filtered over celite, and the solvent again removed under reduced 

pressure.  The product, H2(
DIPPCCC)Fe(II)Cl3 was isolated as a yellow solid (1:1) (0.08 g, 0.101 

Figure 2.9. 
1
H NMR spectrum of H(

DIPP
CCC)Fe(II)Cl

3
 (CDCl

3
). 
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mmol, 100 %).  Crystals suitable for X-ray analysis were grown overnight from a concentrated 

solution of DCM and hexanes at -35 °C. Analysis for C44H49N4FeCl3∙CH2Cl2(0.1equiv):  Calcd. 

C, 66.00; H, 5.93; N, 6.98.  Found C, 65.84; H, 5.90; N, 7.10. 1H NMR (CDCl3, 500 MHz):  δ = 

18.39, 17.67, 15.67, 15.53, 15.03, 13.71, 11.18, 8.93, 8.52, 8.27, 7.48, 6.46, 6.13, 1.28, 0.89, -1.08, 

-1.22, -5.52, -8.20. μeff = 5.73(5) μB. 

Initial Preparation of (DIPPCCC)Fe(II)H(PMe3)(N2). A 20 mL scintillation vial was charged with 

[H3(
DIPPCCC)]Cl2 (0.028 g, 0.040 mmol) and approximately 4 mL of toluene.  With vigorous 

stirring, 2.1 equivalents of benzyl potassium (0.011 g, 0.084 mmol) was weighed by difference 

and added as an orange solid.  After one hour of stirring at room temperature, the solution was 

filtered over Celite and the filtrate was cooled to -35 °C.  In a separate vial, Fe(PMe3)4 (0.014 g, 

0.039 mmol) was dissolved in approximately 3 mL of pentane.  The yellow solution was cooled to 

-35 °C.  The filtrate, containing the free carbene, HDIPPCCC generated in situ, was added drop-

wise to the iron(0) solution, resulting in a color change to brown.  After three hours of stirring at 

room temperature, volatiles were removed under reduced pressure.  The brown-yellow residue was 

triturated with pentane, affording the product as a yellow solid (9.5 mg, 0.012 mmol, 30%). 

Preparation of (DIPPCCC)Fe(II)H(PMe3)(N2). A 20 mL scintillation vial was charged with 

H2(
DIPPCCC)Fe(II)Cl3 (0.030 g, 0.038 mmol) and approximately 2 mL of toluene. Two equivalents 

of PMe3 (1.0 M THF, 0.08 mL, 0.076 mmol) was syringed into the vial. Three and a half 

equivalents of KC8 (0.018 g, 0.133 mmol) was dissolved in 2 mL of THF and added dropwise to 

the solution. The reaction was stirred at room temperature overnight and the volatiles removed 

under reduced pressure. Pentane (2 mL) was added to the solid and filtered over celite, the filtrate 

was placed in the freezer at -35 oC to crystallize. Benzene was then added to the remaining solid 

and filtered over celite until no further color washed down. The volatiles were removed under 
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pressure from the filtrate and the product as a yellow-red solid was obtained in quantitative yield 

after collection of crystalline material from the pentane wash (0.030 mg, 0.038 mmol, 100%). 

Crystals suitable for X-ray analysis were grown overnight at room temperature from a concentrated 

solution of pentane and toluene (20:1). Analysis for C47H57N6FeP∙C4H8O(1equiv):  Calcd. C, 70.9; 

H, 7.47; N, 9.73.  Found C, 70.68; H, 6.93; N, 9.35. 1H NMR (C6D6, 500 MHz):  δ = -9.65 (d, J = 

13 Hz, 1H, Fe-H), 0.63 (d, J = 7 Hz, 9H, P(CH3)3), 0.76 (d, J = 7 Hz, 6H, iPr-CH3), 1.04 (d, J = 7 

Hz, 6H, iPr-CH3), 1.20 (d, J = 7 Hz, 6H, iPr-CH3), 1.34 (d, J = 7 Hz, 6H, iPr-CH3), 2.68 (m, J = 13 

Hz, 2H, iPr-CH), 3.23 (m, J = 13 Hz, 2H, iPr-CH), 6.30 (d, J = 7 Hz, 2H, Ar-CH), 6.89 (t, J = 7 

Hz, 2H, Ar-CH), 7.05 (t, J = 7 Hz, 2H, Ar-CH), 7.18 (b, 4H, Ar-CH), 7.24 (d, J = 7 Hz, 2H, Ar-

CH), 7.37 (t, J = 7 Hz, 1H, Ar-CH), 7.62 (d, J = 7 Hz, 2H, Ar-CH), 7.84 (d, J = 7 Hz, 2H, Ar-CH).  

13C NMR (C6D6, 126 MHz):  δ = 149.09, 146.99, 146.48, 140.90, 135.06, 132.20, 129.98, 128.59, 

125.27, 123.62, 122.00, 121.13, 120.39, 110.51, 109.68, 105.94, 28.68, 28.46, 25.65, 25.06, 24.64, 

23.77, 15.73, 15.57.  31P{1H} NMR (C6D6, 202.4MHz):  δ = 11.02 (1P, P(CH3)3).  IR = 1723 cm-1 

(Fe-H), 2099 cm-1 (N2). 

Preparation of (DIPPCCC)Fe(II)H(PPh3)(N2).  A 20 mL scintillation vial was charged with 

H2(
DIPPCCC)Fe(II)Cl3 (0.030 g, 0.038 mmol) and approximately 2 mL of toluene. One equivalent 

of PPh3 (0.01 g, 0.038 mmol) and 1.1 equivalents of Li(N(SiMe3)2) (0.007 g, 0.042 mmol) were 

dissolved separately in 1 mL of toluene. Three and a half equivalents of potassium graphite (0.018 

g, 0.133 mmol) was dissolved in 2 mL of THF. The Li(N(SiMe3)2) was added to the vial of KC8 

and the PPh3 to the H2(
DIPPCCC)Fe(II)Cl3. The Li(N(SiMe3)2)/KC8 mixture was slowly added 

dropwise to the solution. The reaction was stirred at room temperature overnight and the volatiles 

removed under reduced pressure. Pentane was added to the solid and filtered over celite until no 

further color was washed down. The volatiles were removed under pressure from the filtrate and 
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the product as an orange solid was obtained in quantitative yield (0.037 mg, 0.038 mmol, 100%). 

Analysis for C62H61N6FeP∙C4H8O(0.5equiv)∙ CH2Cl2(0.5equiv): Calcd. C, 73.39; H, 6.30; N, 7.96.  

Found C, 73.41; H, 6.04; N, 7.55.   1H NMR (C6D6, 500 MHz):  δ = -11.15 (d, J = 22.5 Hz, 1H, 

Fe-H), 0.70 (m, J = 7.5 Hz, 12H, iPr-CH3), 0.90 (d, J = 6.5, 6H, iPr-CH3), 1.10 (d, J = 7 Hz, 6H, 

iPr-CH3), 2.53 (m, J = 7 Hz, 2H, iPr-CH), 2.89 (m, J = 7 Hz, 2H, iPr-CH), 6.57 (m, 6H, Ar-CH), 

6.70 (t, J = 7.5 Hz, 2H, Ar-CH), 6.78 (t, J = 8.5 Hz, 4H, Ar-CH), 6.86 (t, J = 7.5 Hz, 2H, Ar-CH), 

7.03 (m, 6H, Ar-CH), 7.27 (m, 6H, Ar-CH), 7.37 (d, J = 7.5 Hz, 2H, Ar-CH), 7.50 (t, J = 7.5 Hz, 

2H, Ar-CH), 7.63 (d, J = 8 Hz, 2H, Ar-CH). 13C NMR (C6D6, 126 MHz):  δ = 230.10, 183.01, 

149.10, 147.74, 147.02, 141.43, 137.64, 135.80, 132.99, 132.91, 132.54, 129.90, 129.51, 127.07, 

127.01, 125.27, 123.83, 121.80, 120.87, 120.78, 110.97, 109.84, 106.05, 29.38, 28.43, 25.50, 

25.38, 24.26, 22.58. 31P{1H} NMR (C6D6, 202.4 MHz):  δ = 50 (1P, PPh3).  IR = 1791 cm-1 (Fe-

H), 2099 cm-1 (N2). 

Preparation of (DIPPCCC)Fe(II)H(py)(N2).  A 20 mL scintillation vial was charged with 

H2(
DIPPCCC)Fe(II)Cl3 (0.030 g, 0.038 mmol) and approximately 2 mL of toluene. Excess pyridine 

(5 drops) was added to the vial and 1.1 equivalents of Li(N(SiMe3)2) (0.007 g, 0.042 mmol) was 

dissolved in 2 mL of toluene. Three and a half equivalents of potassium graphite (0.018 g, 0.133 

mmol) was dissolved in 2 mL of THF. The Li(N(SiMe3)2) was added to the KC8 and then slowly 

added dropwise to the reaction. The reaction was stirred at room temperature overnight and the 

volatiles removed under reduced pressure. Pentane was added to the solid and filtered over celite 

until no further color was washed down. The volatiles were removed under pressure from the 

filtrate and the product as a purple solid was obtained in quantitative yield (0.030 mg, 0.038 mmol, 

100%). Analysis for C49H51FeN7∙C7H8(1.5equiv)∙ CH2Cl2(0.5equiv):  Calcd. C, 74.73; H, 6.72; N, 

9.61.  Found C, 75.27; H, 6.64; N, 10.07.   1H NMR (C6D6, 500 MHz):  δ = -18.69 (s, 1H, Fe-H), 
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0.78 (d, J = 6.5 Hz, 6H, iPr-CH3), 0.79 (d, J = 6.5 Hz, 6H, iPr-CH3), 0.85 (d, J = 6.5 Hz, 6H, iPr-

CH3), 1.24 (d, J = 6.5 Hz, iPr-CH3), 2.64 (m, J = 7 Hz, 2H, iPr-CH), 2.84 (m, J = 7 Hz, 2H, iPr-

CH), 6.01 (5, J = 6.5 Hz, 2H, Ar-CH), 6.40 (t, J = 7.5 Hz, 1H, Ar-CH), 6.63 (d, J = 7.5 Hz, 2H, Ar-

CH), 6.88 (m, J = 7.5 Hz, 2H, Ar-CH), 7.04 (t, J = 7.5 Hz, 2H, Ar-CH), 7.20 (d, J = 8 Hz, 2H, Ar-

CH), 7.25 (d, J = 7.5 Hz, 2H, Ar-CH), 7.33 (t, J = 7.5 Hz, 2H, Ar-CH), 7.48 (t, J = 7.5 Hz, 1H, Ar-

CH), 7.74 (d, J = 8 Hz, 2H, Ar-CH), 7.87 (d, J = 8 Hz, 2H, Ar-CH), 8.12 (d, J = 5.5 Hz, 2H, Ar-

CH). 13C NMR (C6D6, 126 MHz):  δ = 229.28, 191.95, 154.47, 149.09, 148.69, 146.87, 140.49, 

134.97, 132.70, 132.62, 130.06, 125.20, 123.80, 122.85, 122.00, 121.10, 120.96, 110.42, 109.78, 

106.59, 28.64, 28.56, 26.14, 25.21, 24.29, 23.35. IR = 1794 cm-1 (Fe-H), 2081 cm-1 (N2). 

Preparation of (DIPPCCC)Fe(II)H(CO)2.  A 50 mL schlenk flask was charged with 

(DIPPCCC)Fe(II)H(PMe3)(N2) (0.020 g, 0.025 mmol) and approximately 5 mL of benzene. CO gas 

(4atm) was added to the flask after freeze pump thawing. The reaction was stirred at room 

temperature over four days, going slowly from red to pale yellow, and the volatiles were removed 

under reduced pressure. The product (DIPPCCC)Fe(II)H(CO)2 was obtained as a pale yellow solid 

in high yield (0.015 mg, 0.02 mmol, 80%). Analysis for C46H46N4O2Fe∙CH2Cl2(0.3equiv): Calcd. 

C, 72.39; H, 6.11; N, 7.29.  Found C, 72.65; H, 5.96; N, 7.36. 1H NMR (C6D6, 500 MHz):  δ = -

8.42 (s, 1H, Fe-H), 0.77 (d, J = 6.5 Hz, 6H, iPr-CH3), 0.87 (d, J = 7 Hz, 6H, iPr-CH3), 1.13 (d, J = 

6.5 Hz, 6H, iPr-CH3), 1.44 (d, J = 6.5 Hz, 6H, iPr-CH3), 2.36 (m, J = 7 Hz, 2H, iPr-CH), 2.98 (m, 

J = 7 Hz, 2H, iPr-CH), 6.57 (d, J = 8 Hz, 2H, Ar-CH), 6.86 (t, J = 7.5 Hz, 2H, Ar-CH), 7.04 (t, J = 

7.5 Hz, 2H, Ar-CH), 7.10 (d, J = 8 Hz, 2H, Ar-CH), 7.18 (m, 2H, Ar-CH) 7.23 (d, J = 8 Hz, 2H, 

Ar-CH), 7.43 (t, J = 8 Hz, 1H, Ar-CH), 7.61 (d, J = 8 Hz, 2H, Ar-CH), 7.72 (d, J = 8 Hz, 2H, Ar-

CH). 13C NMR (C6D6, 126 MHz): δ = 220.05, 214.04, 209.82, 174.82, 147.81, 147.66, 146.91, 
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139.20, 133.57, 131.84, 130.63, 124.85, 124.49, 122.93, 122.88, 122.19, 111.07, 110.86, 108.16, 

28.78, 28.60, 25.85, 24.84, 23.84, 23.54.  IR = 1983, 1927 cm-1 (C-O).  

 

 

Alternate Preparation of (DIPPCCC)Fe(II)H(CO)2.  A 50 mL schlenk flask was charged with 

(DIPPCCC)Fe(II)H(py)(N2) (0.020 g, 0.025 mmol) and approximately 5 mL of benzene. CO gas 

(4atm) was added to the flask after freeze pump thawing. The reaction immediately changed from 

purple to pale yellow. The volatiles were removed under reduced pressure and 

(DIPPCCC)Fe(II)H(CO)2 was obtained as a pale yellow solid in high yield (0.017 mg, 0.023 mmol, 

90%). 

Preparation of (DIPPCCC)Fe(II)H(tBuNC)2.  A 20 mL scintillation vial was charged with 

(DIPPCCC)Fe(II)H(PMe3)(N2) (0.020 g, 0.025 mmol) and approximately 5 mL of THF. Excess t-

butylisocyanide (5eq, 0.014 mL, 0.125 mmol) was added to the vial. The reaction was stirred at 

room temperature for four days going slowly from orange to yellow/green. The volatiles were 

removed under reduced pressure and the product (DIPPCCC)Fe(II)H(tBuNC)2 was obtained as a 

Figure 2.10. 
1
H NMR spectrum of (

DIPP
CCC)Fe(II)H(CO)
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pale yellow solid in high yield (0.018 mg, 0.021 mmol, 85%). Analysis for 

C54H64N6Fe∙CH2Cl2(0.3equiv): Calcd. C, 74.24; H, 7.41; N, 9.57.  Found C, 74.36; H, 7.27; N, 

9.21. 1H NMR (C6D6, 500 MHz):  δ = -8.82 (s, 1H, Fe-H), 0.61 (s, 9H, tBu-(CH3)3), 0.62 (s, 9H, 

tBu-(CH3)3), 0.82 (d, J = 6.5 Hz, 6H, iPr-CH3), 1.03 (d, J = 7 Hz, 6H, iPr-CH3), 1.31 (d, J = 6.5 

Hz, 6H, iPr-CH3), 1.51 (d, J = 7 Hz, 6H, iPr-CH3), 2.87 (septet, J = 7 Hz, 2H, iPr-CH), 3.34 (septet, 

J = 7 Hz, 2H, iPr-CH), 6.27 (d, J = 8 Hz, 2H, Ar-CH), 6.84 (t, J = 7.5 Hz, 2H, Ar-CH), 7.04 (t, J = 

7.5 Hz, 2H, Ar-CH), 7.19 (d, J = 8 Hz, 2H, Ar-CH), 7.25 (d, J = 7.5 Hz, 2H, Ar-CH), 7.31 (t, J = 

7.5 Hz, 2H, Ar-CH), 7.53 (t, J = 8 Hz, 1H, Ar-CH), 7.84 (d, J = 7.5 Hz, 2H, Ar-CH), 7.97 (d, J = 8 

Hz, 2H, Ar-CH). 13C NMR (C6D6, 126 MHz): δ = 228.03, 187.33, 186.39, 175.31, 148.70, 147.96, 

146.97, 140.85, 136.53, 132.06, 129.48, 125.14, 124.80, 122.10, 120.98, 120.02, 109.60, 109.49, 

106.00, 55.39, 54.15, 31.27, 31.17, 28.69, 28.53, 25.14, 24.94, 24.59, 23.74. IR = 2047, 2002 cm-

1 (C-N).  

Alternate Preparation of (DIPPCCC)Fe(II)H(tBuNC)2.  A 20 mL scintillation vial was charged 

with (DIPPCCC)Fe(II)H(py)(N2) (0.020 g, 0.025 mmol) and approximately 5 mL of THF. Excess t-

Figure 2.11. 
1
H NMR spectrum of (

DIPP
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butylisocyanide (3eq, 0.008 mL, 0.075 mmol) was added to the vial. The reaction immediately 

changed from purple to yellow/green. The volatiles were removed under reduced pressure and the 

product (DIPPCCC)Fe(II)H(tBuNC)2 was obtained as a pale yellow solid in high yield (0.021 mg, 

0.024 mmol, 95%). 

Preparation of (DIPPCCC)Fe(II)(κ2-OOCH)(PMe3). A 50 mL schlenk flask was charged 

with (DIPPCCC)Fe(II)H(PMe3)(N2) (0.020g, 0.025 mmol) and approximately 3 mL of benzene. The 

reaction was stirred at room temperature under an atmosphere of CO2 for 36 hours. The volatiles 

were removed under reduced pressure and the product (DIPPCCC)Fe(II)(κ2-OOCH)(PMe3) was 

obtained as a red-purple solid. Pentane was added and the solution was filtered over celite and the 

filtrate was placed in the freezer at -35 oC to crystallize. Red-purple needle crystals were obtained 

in 60% yield (0.012g, 0.015 mmol). Concentrating the filtrate a second time yielded more red-

purple crystals. 1H NMR (C6D6, 21 °C): δ = 0.22 (d, J = 8.5 Hz, 9H, (P(CH3)3)2), 0.69 (d, J = 6.5 

Hz, 6H, iPr-CH3), 1.00 (d, J = 7 Hz, 6H, iPr-CH3), 1.11 (d, J = 6.5 Hz, 6H, iPr-CH3), 1.47 (d, J = 

7 Hz, 6H, iPr-CH3), 2.16 (septet, J = 6.5 Hz, 2H, iPr-CH), 3.75 (septet, J = 7 Hz, 2H, iPr-CH), 6.02 

(d, J = 4 Hz, 1H, OOCH), 6.79 (d, J = 8 Hz, 2H, Ar-CH), 6.95 (t, J = 7.5 Hz, 2H, Ar-CH), 7.01 (d, 

J = 7.5 Hz, 2H, Ar-CH), 7.11 (t, J = 8 Hz, 2H, Ar-CH), 7.18 (m, 2H, Ar-CH) 7.21 (t, J = 7.5 Hz, 

2H, Ar-CH), 7.30 (t, J = 8 Hz, 1H, Ar-CH), 7.68 (d, J = 7.5 Hz, 2H, Ar-CH), 7.98 (d, J = 8 Hz, 

2H, Ar-CH). IR = 2815 cm-1 (OOCH), 1562 cm-1 (OOCH), 1276 cm-1 (OOCH). 

Preparation of (DIPPCCC)Fe(II)Cl(PMe3)2.  A 20 mL scintillation vial was charged with 

(DIPPCCC)Fe(II)H(PMe3)(N2) (0.020 g, 0.025 mmol) and approximately 3 mL of THF.  With 

vigorous stirring, two equivalents of PMe3 (1.0 M THF, 0.05 mL, 0.05 mmol) was syringed into 

the vial followed by 1.1 equivalents of HCl∙Et2O (2.0 M, 0.014 mL, 0.0275 mmol) resulting in a 

dark red solution. The solution was stirred overnight at room temperature and the volatiles were 
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removed under reduced pressure giving pure product (0.020 g, 0.023 mmol, 90%). Crystals 

suitable for X-ray analysis were grown from DCM. Analysis for 

C50H63N4FeClP2∙CH2Cl2(0.81equiv):  Calcd. C, 64.78; H, 6.91; N, 5.95.  Found C, 64.55; H, 6.69; 

N, 6.38.   1H NMR (C6D6, 500 MHz):  δ = 0.47 (s, 18H, (P(CH3)3)2), 0.90 (d, J = 6.6 Hz, 12H, iPr-

CH3), 1.26 (d, J = 6.5 Hz, 12H, iPr-CH3), 2.95 (m, J = 6.5 Hz, 4H, iPr-CH), 6.73 (d, J = 8 Hz, 2H, 

Ar-CH), 6.88 (t, J = 7.5 Hz, 2H, Ar-CH), 7.07 (t, J = 7.6 Hz, 2H, Ar-CH), 7.20 (d, J = 7.8 Hz, 4H, 

Ar-CH), 7.24, (t, J = 6.5 Hz, 2H, Ar-CH), 7.33 (t, J = 7 Hz, 1H, Ar-CH), 7.63 (d, J = 7.7 Hz, 2H, 

Ar-CH), 7.91 (d, J = 8 Hz, 2H, Ar-CH). 13C NMR (C6D6, 126 MHz):  δ = 225.91, 189.69, 149.52, 

147.67, 141.94, 135.62, 132.10, 129.79, 124.32, 122.23, 121.15, 118.6, 112.79, 109.29, 106.79, 

29.21, 26.48, 23.69, 16.57.  31P{1H} NMR (C6D6, 202.4MHz):  δ = 22.90 (1P, P(CH3)3).  
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Preparation of (DIPPCCC)Fe(III)(Cl)2(PMe3).  A 20 mL scintillation vial was charged with 

(DIPPCCC)Fe(II)Cl(PMe3)2 (0.020 g, 0.0229 mmol) and excess chloroform (CHCl3) was added and 

stirred at room temperature for 20 minutes. The red solid changed to a dark green solution. The 

volatiles were then removed under reduced pressure to yield pure product (0.017 g, 0.021 mmol, 

90%). Crystals suitable for X-ray analysis were grown from DCM and pentane. Analysis for 

C47H54N4FeCl2P∙CH2Cl2(1.35equiv): Calcd. C, 61.3; H, 6.03; N, 5.91.  Found C, 61.3; H, 5.68; N, 

5.96.   1H NMR (CDCl3, 500 MHz):  δ = 100.51, 80.17, 20.49, 15.69, 11.21, 8.91, 8.56, 7.60, 7.40, 

6.88, 6.44, 2.70, 2.37, 1.54, 1.41, 1.22, 1.09, 0.42, -1.19, -2.92, -19.35. μeff = 2.81 μB. 

Figure 2.12. 
1
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Figure 2.13. 
1
H NMR spectrum of (

DIPP
CCC)Fe(III)Cl

2
PMe

3
 (CDCl

3
). 



 

55 
 

Preparation of [(DIPPCCC)Fe(III)Cl(PMe3)2](PF6). A 20 mL scintillation vial was charged with 

(DIPPCCC)Fe(II)Cl(PMe3)2 (0.020 g, 0.0229 mmol) and approximately 3 mL of THF. Silver 

hexafluorophosphate (0.058 g, 0.0229 mmol) was dissolved in a separate vial in 2 mL of THF and 

added to the solution dropwise. The solution was stirred at room temperature overnight and the 

red solution changed to dark green with precipitate which was filtered off through celite. The 

volatiles were removed under reduced pressure yielding the product which was recrystallized by a 

slow diffusion of pentane into DCM (0.022 g, 0.023 mmol, 95%). Analysis for 

C50H63N4FeCl3PF6∙CH2Cl2(0.2equiv): Calcd. C, 58.24; H, 6.17; N, 5.41. Found C, 58.36; H, 6.36; 

N, 5.29. 1H NMR (C6D6, 21 °C): δ = -19.52, -3.01, -1.24, 1.25, 1.88, 2.19, 4.50, 6.40, 7.53, 8.11, 

3.49, 8.85, 10.91, 14.92, 19.52. 31P{1H} NMR (C6D6, 21 °C): δ = 26.40 (1P, P(CH3)2), -143.50 

(1P, PF6). 
19F{1H} NMR (C6D6, 21 °C): δ = -72.05, -73.57.  

Figure 2.14. 
1
H NMR spectrum of [(
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3
)

2
]PF

6
 (CDCl

3
). 
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Compound (BzCcCcC)Ni(II)Br (tBuCcCcC)Ni(II)Br 

Empirical formula C39H32N4NiBr C42H45N4NiBr 

Formula weight 695.31 744.44 

Temperature/K 100.01 100.15 

Crystal system orthorhombic triclinic 

Space group Pccn P1 

a/Å 18.8748(9) 9.2859(3) 

b/Å 19.1500(8) 9.7065(4) 

c/Å 17.1403(9) 19.8810(7) 

α/° 90.00 98.1365(19) 

β/° 90.00 90.0145(19) 

γ/° 90.00 91.516(2) 

Volume/Å3 6195.4(5) 1773.27(11) 

Z 8 1 

Reflections collected 287307 29450 

Independent reflections 
9501 [Rint = 0.0503, 

Rsigma = 0.0149] 

17519 [Rint = 0.0248, 

Rsigma = 0.0403] 

Goodness-of-fit on F2 1.069 1.064 

Final R indexes [I>=2σ (I)] R1 = 0.0414, wR2 = 0.1046 R1 = 0.0275, wR2 = 0.0722 

Final R indexes [all data] R1 = 0.0504, wR2 = 0.1118 R1 = 0.0356, wR2 = 0.0849 

 

Table 2.2. Crystallographic parameters for (RCcCcC)Ni(II)Br (R = benzyl, t-butyl). 
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Compound H2(
DIPPCCC)Fe(II)Cl3 (DIPPCCC)Fe(II)H(PMe3)(N2) 

Empirical formula C45H51N4OCl5Fe C54.5H73N6PFe 

Formula weight 897.00 899.01 

Temperature/K 100.0 100.0 

Crystal system monoclinic triclinic 

Space group P21/n P-1 

a/Å 16.2332(7) 12.0449(5) 

b/Å 17.6703(7) 14.6183(6) 

c/Å 16.3741(7) 15.7848(7) 

α/° 90.00 107.2907(18) 

β/° 98.5058(15) 108.0980(19) 

γ/° 90.00 103.6701(19) 

Volume/Å3 4645.2(3) 2351.23(17) 

Z 4 2 

Reflections collected 42898 82887 

Independent reflections 
8519 [Rint = 0.0289, 

Rsigma = 0.0205] 

17198 [Rint = 0.0426, 

Rsigma = 0.0367] 

Goodness-of-fit on F2 3.856 1.034 

Final R indexes [I>=2σ (I)] R1 = 0.2514, wR2 = 0.6416 R1 = 0.0427, wR2 = 0.1092 

Final R indexes [all data] R1 = 0.2691, wR2 = 0.6686 R1 = 0.0583, wR2 = 0.1191 

 

Table 2.3. Crystallographic parameters for H2(
DIPPCCC)Fe(II)Cl3 and 

(DIPPCCC)Fe(II)H(PMe3)(N2). 
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Compound (DIPPCCC)Fe(II)Cl(PMe3)2 (DIPPCCC)Fe(III)(Cl)2(PMe3) 

Empirical formula C50H63N4P2ClFe C23.5H27ClFe0.5N2P0.5 

Formula weight 873.28 416.33 

Temperature/K 100.04 112.56 

Crystal system monoclinic triclinic 

Space group C2/c P-1 

a/Å 21.1714(11) 10.7730(17) 

b/Å 11.0332(5) 14.849(2) 

c/Å 18.8162(10) 16.687(2) 

α/° 90 91.381(8) 

β/° 90.101(2) 95.761(8) 

γ/° 90 93.318(8) 

Volume/Å3 4395.2(4) 2650.2(7) 

Z 4 4 

Reflections collected 92760 18875 

Independent reflections 
4062 [Rint = 0.0472, 

Rsigma = 0.0135] 

18875 [Rint = ?, 

Rsigma = 0.1107] 

Goodness-of-fit on F2 1.101 1.090 

Final R indexes [I>=2σ (I)] R1 = 0.0479, wR2 = 0.1181 R1 = 0.0868, wR2 = 0.1972 

Final R indexes [all data] R1 = 0.0510, wR2 = 0.1201 R1 = 0.1375, wR2 = 0.2258 

 

Table 2.4. Crystallographic parameters (DIPPCCC)Fe(II)Cl(PMe3)2 and 

(DIPPCCC)Fe(III)(Cl)2(PMe3). 
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Chapter 3 

Extending the Metalation Methods 

3.1 Zwitterionic Metalation Method 

 The new zwitterionic method of metalation with iron was successful in giving quantitative 

yield of the metalated complexes.1 The extension of this method to other first-row transition metals 

would be beneficial since a major challenge facing the use of these ligands is their difficult and 

specific metalation. The method was first extended to nickel and cobalt since these metals have 

previously been shown to generate isolable pincer complexes with our ligand framework.2-4  

 The same procedure was used adding one equivalent of Li(N(SiMe3)2) to [H3(
DIPPCCC)]Cl2 

that was stirring in THF with the desired metal salt, M(II)Cl2 (M = Co, Ni) (Scheme 3.1). Both 

reactions changed color over several hours and the metal chloride salts, insoluble at first, went into 

solution as they reacted with the in situ generated carbene. The volatiles were removed under 

reduced pressure yielding a sticky residue that was dissolved using DCM or benzene, for cobalt 

and nickel respectively, and filtered over celite to remove the LiCl byproduct. The nickel 

zwitterionic complex, H2(
DIPPCCC)Ni(II)Cl3, was much more soluble than its iron and cobalt 

analogues. The isolated complexes were a pale yellow for H2(
DIPPCCC)Ni(II)Cl3 and a bright teal 

blue for H2(
DIPPCCC)Co(II)Cl3. Investigating the latter by 1H NMR spectroscopy revealed a broad, 

paramagnetic spectrum similar to the previously synthesized zwitterionic complex, 

H2(
DIPPCCC)Fe(II)Cl3 (Figure 3.1). However, H2(

DIPPCCC)Ni(II)Cl3, while still having somewhat 

Scheme 3.1. Synthesis of H2(DIPPCCC)M(II)Cl3 complexes. 
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broad resonances, is contained almost entirely within the diamagnetic window (Figure 3.1). This 

change in overall isotropic resonance shifts is likely due to the greater paramagnetic character of 

the Fe complex (S = 2) decreasing to Co (S = 3/2) and then Ni (S = 1) assuming a high-spin 

electronic configuration in a tetrahedral environment.5 While the complexes’ increased solubility 

and change in color indicated a reaction occurred the salts, [H3(
RCCC)]M(II)Cl4, might have been 

synthesized instead. However, adding the metal salts, M(II)Cl2 (M = Fe, Co, Ni), without base 

present did not lead to the same dramatic color changes nor the same 1H NMR spectra. 

 The zwitterionic complexes were then treated with a mixture of base (Li(N(SiMe3)2)) and 

reductant (KC8). The nickel zwitterionic complex, H2(
DIPPCCC)Ni(II)Cl3, yielded 

(DIPPCCC)Ni(II)Cl instead of the hydride likely due to the large amount of chloride present in 

solution as well as the hydride’s inherent instability (Scheme 3.2). The 1H NMR spectra matched 

the previously published complex.2 

Figure 3.1. 1H NMR spectra of H2(DIPPCCC)M(II)Cl3 (M = Fe, Co, Ni). 

M = Fe 

M = Co 

M = Ni 

1
H NMR: CDCl3 
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 The reduction of H2(
DIPPCCC)Co(II)Cl3 required additional L-type ligands such as pyridine 

or PMe3. The addition of pyridine to the reaction yielded (DIPPCCC)Co(III)Cl2py. However, when 

PMe3 was added the hydride complex, (DIPPCCC)Co(III)(H)(Cl)(PMe3), was obtained instead 

(Scheme 3.2). The former complex had been previously independently synthesized and fully 

characterized but the latter species had only been synthesized using the (MesCCC) ligand. The 1H 

NMR spectrum of (DIPPCCC)Co(III)Cl2py matches the previously published complex.3 The 1H 

NMR spectrum of (DIPPCCC)Co(III)(H)(Cl)(PMe3) shows the hydridic resonance at -10.25 ppm 

(JP-H = 113 Hz) as a doublet due to the phosphorus-hydride coupling compared to -10.0 ppm (JP-H 

= 109 Hz)  for (MesCCC)Co(III)(H)(Cl)(PMe3).
4 The latter has been crystallographically 

characterized and shows the hydride and phosphorus in a trans configuration to each other. It can 

be assumed, therefore, that the diisopropylphenyl derivative has this same conformation due to the 

similar phosphorus-hydride coupling constants (JP-H = 113 vs 109 Hz). All three complexes were 

obtained in quantitative yields through both reaction steps as was previously observed using iron.  

Scheme 3.2. Synthesis of (DIPPCCC)M(Clx)(L) complexes. 
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 After the successful synthesis of these complexes we turned our attention to the synthesis 

of the manganese complexes. The zwitterionic complex, H2(
DIPPCCC)Mn(II)Cl3, was synthesized 

and characterized as a very faint yellow solid (Scheme 3.3). The zwitterionic complex is 1H NMR 

silent but the color change and increased solubility indicates coordination of the metal to the 

carbene. Unfortunately, the in situ reduction of the manganese center using the previously 

described methodology did not appear to result in metalation of the ligand framework. The addition 

of various L-type ligands did not change this outcome as previously seen with cobalt. Other 

metalation methods were attempted but resulted in no discernible, isolable manganese complexes. 

Therefore, we decided to use transmetalation to attempt to coordinate manganese into these ligand 

frameworks.  

 

3.2 Transmetalation Method using Zirconium 

 Transmetalation, the transfer of an organic group from one metal to another, is commonly 

invoked in many organic reactions including zirconium to other elements.6 However, zirconium 

pincer complexes have only been reported by Hollis and co-workers.6-10 This was accomplished 

by treating [H3(
nBuCCC)]I2 (nBuCCC = 1,3-bis(1-butylimidazolium)benzene) with excess 

Zr(NMe2)4 to generate (nBuCCC)Zr(IV)X3 complexes. Hollis determined that the identity of the 

substituents on the zirconium complexes, halides or dimethylamides, was directly influenced by 

the metalation conditions. The group was also able to demonstrate transmetalation from these 

Scheme 3.3. Synthesis of H2(DIPPCCC)Mn(II)Cl3 complex. 
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zirconium complexes to cobalt, rhodium, palladium, and platinum.11-17 Using similar reaction 

conditions [H3(
ArCCC)]Cl2 (Ar = DIPP or Mes) was treated with excess Zr(NMe2)4 in a 

benzene/DCM mixture. Zirconium complexes, (MesCCC)Zr(IV)Cl(NMe2)2 and 

(DIPPCCC)Zr(IV)Cl(NMe2)2, were obtained in quantitative yield (Scheme 3.4). Similar to Hollis’ 

system a slight change in conditions led to the isolation of (MesCCC)Zr(IV)Cl2(NMe2) and 

(DIPPCCC)Zr(IV)Cl2(NMe2) instead (Scheme 3.4). Alternatively, stirring 

(ArCCC)Zr(IV)Cl(NMe2)2 (Ar = DIPP or Mes) with DCM overnight led to ligand exchange and 

the isolation of (ArCCC)Zr(IV)Cl2(NMe2) (Ar = DIPP or Mes) (Scheme 3.4). Additionally, 

(DIPPCCC)Zr(IV)Cl(NMe2)2 could be regenerated from (DIPPCCC)Zr(IV)Cl2(NMe2) with treating 

of excess LiNMe2 in THF overnight (Scheme 3.4). 

Each of the zirconium complexes were characterized by 1H NMR spectroscopy giving 

diamagnetic spectra (Figure 3.2). Integration of the spectra as well as the symmetry of the alkyl 

resonances helped to identify the geometry and identity of the products. The mesityl ligand variant, 

Scheme 3.4. Synthesis of (MesCCC)Zr(IV)X3 (top) and (DIPPCCC)Zr(IV)X3 (bottom). 
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(MesCCC), has three methyl groups that give either two (12H, 6H) or three resonances (6H x 3) 

based on whether the symmetry of the complex is C2 or Cs, respectively. Similarly, the diisopropyl 

ligand variant, (DIPPCCC), gives either a single septet (4H) and two doublet resonances (12H x 2) 

(C2) or two septets (2H x 2) and four doublet resonances (6H x 4) (Cs). Any remaining alkyl 

resonances were attributed to either one or two dimethylamido groups. Interestingly, based on this 

information, the two ligands generate different isomers with the same formulas under identical 

reaction conditions. (MesCCC)Zr(IV)Cl(NMe2)2 gives a C2 symmetric 1H NMR spectra, based on 

the two methyl alkyl resonances, and a single overlapping peak integrates to two dimethylamido 

groups that must then be trans to one another (Figure 3.2, top). However, the 

(DIPPCCC)Zr(IV)Cl(NMe2)2 complex, generated under the same reaction conditions, is Cs 

symmetric with two different resonances integrating to two dimethylamido groups indicating the 

18H 12H 

6H x 4 

6H x 4 

2H x 2 

4H 

12H x 2 

Figure 3.2. 1H NMR spectra of (MesCCC)Zr(IV)Cl(NMe2)2 (top), (MesCCC)Zr(IV)Cl2(NMe2) 

(second), (DIPPCCC)Zr(IV)Cl(NMe2)2 (third), and (DIPPCCC)Zr(IV)Cl2(NMe2) (bottom). 

1
H NMR: C

6
D

6
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two must be in a cis configuration (Figure 3.2, third). This same trend is evident in 

(MesCCC)Zr(IV)Cl2(NMe2) and (DIPPCCC)Zr(IV)Cl2(NMe2) where the former is Cs symmetric 

with the chlorides cis and the latter is C2 symmetric with the chlorides trans to one another. Each 

1H NMR spectrum indicates a single dimethylamido group which in (MesCCC)Zr(IV)Cl2(NMe2) 

must be trans to a chloride ligand and in (DIPPCCC)Zr(IV)Cl2(NMe2) must be trans to the aryl group 

of the ligand (Figure 3.2, second and bottom). This indicates that (MesCCC) prefers a configuration 

in which a chloride is trans to the phenyl backbone while (DIPPCCC) prefers a dimethylamido 

ligand in that position. This could be attributed to either electronic or steric differences between 

the ligands or some combination of the two factors.  

Characterization by X-ray crystallography was also carried out on 

(DIPPCCC)Zr(IV)Cl(NMe2)2 to definitively determine the structure and, as identified by 1H NMR 

spectroscopy, the chloride is axial to the plane of the ligand with the two dimethylamido groups 

cis to one another (Figure 3.3). Comparing 

this structure to Hollis’ complexes, 

(nBuCCC)Zr(IV)X3, show many 

similarities.7-10 The Zr‒CNHC and Zr‒CAr 

bond lengths and bond angles are nearly 

identical among all the complexes but 

especially for its (nBuCCC)Zr(IV)I(NMe2)2 

congener with the same Cs symmetry as 

(DIPPCCC)Zr(IV)Cl(NMe2)2. The Zr‒N bond lengths are slightly longer in our complex which is 

likely due to the steric difference moving from n-butyl to diisopropylphenyl substituents. 

Figure 3.3. Molecular structure of 

(DIPPCCC)Zr(IV)Cl(NMe2)2 shown with 50% 

probability ellipsoids. Solvent molecules and selected 

hydrogen atoms have been omitted for clarity. 

Zr1 

CAr 

CNHC 
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Hollis reported the ability to generate his zirconium complexes in situ before undergoing 

transmetalation in one reaction vessel.11-17 However, transmetalation to Fe, Co, or Ni did not occur 

upon the in situ generation of the zirconium complexes in our systems. Starting with the isolated 

zirconium complexes, on the other hand, led to easy transmetalation to Fe, Co, and Ni complexes 

using (MesCCC)Zr(IV)Cl(NMe2)2 and (DIPPCCC)Zr(IV)Cl(NMe2)2 in quantitative yields (Scheme 

3.5). Each of the product complexes were compared and matched by 1H NMR spectroscopy to 

literature values except for (MesCCC)Ni(II)Cl and (MesCCC)Fe(II)Cl(PMe3)2 which had not been 

previously reported. (MesCCC)Ni(II)Cl was independently synthesized and the 1H NMR spectrum 

of the transmetalated complex matched. (MesCCC)Fe(II)Cl(PMe3)2 has a single 31P NMR 

resonance at 18.04 ppm indicating a C2 symmetric complex which is corroborated by the 1H NMR 

spectrum containing two alkyl mesityl resonances and a single broad PMe3 resonance (See 3.3 

Experimental). The zirconium bis(chloride) complexes, (MesCCC)Zr(IV)Cl2(NMe2) and 

(DIPPCCC)Zr(IV)Cl2(NMe2), however, did not undergo transmetalation which could indicate 

increased insolubility or ligand substitutents play an important role during transmetalation. 

Scheme 3.5. Synthesis of (RCCC)M(II/III)(Cl)x(L)y complexes. 
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These transmetalation reactions offer an alternative metalation strategy compared to 

traditional methods for these CCC ligand frameworks. Our group has been able to develop other 

high yielding metalation methods, but they often require very specific conditions. The metalation 

methodology, even between the two similar ligand frameworks (MesCCC) and (DIPPCCC), can 

require contrasting conditions and generate different final complexes. The zirconium 

transmetalation reactions were identical and essentially quantitative for each of the metals studied 

for either of the ligand frameworks. This method offers a very straightforward route to the metal 

complexes without extensive optimization of reaction parameters. It could likely be extended to 

other ligand derivatives as well, as changing the R-groups appended to the NHCs did not require 

a change in metalation conditions. Throughout the synthesis of these complexes it did not appear 

that any L2M complexes were formed. This can likely be attributed to the more sterically hindered 

aryl groups off the NHCs which discourages the formation of these undesired products compared 

to Hollis’ much smaller butyl groups where L2M (M = Co) complexes could be isolated depending 

upon the transmetalation conditions.15,16 

 Once the transmetalation methodology had been developed and verified on known 

complexes we attempted to metalate using manganese and copper. The zirconium complexes, 

(ArCCC)Zr(IV)Cl(NMe2)2 (Ar = Mes, DIPP), were treated with a variety of Mn and Cu metal 

sources along with various L-type ligands. No clearly identifiable complexes were able to be 

isolated and most often the zirconium starting complexes were re-isolated at the end indicating a 

complete lack of transmetalation occurring. Given the propensity of zirconium to transmetalate to 

copper in the literature it was somewhat surprising that we were not able to isolate the copper 

complexes.6 The relative electronegativity of Fe (1.83), Co (1.88), Ni (1.91), and Cu (1.90) varies 

only by 0.07 points which should indicate similar transmetalation reactivity.18 However, the use 
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of an electron rich, rigid pincer ligand could have contributed to the lack of transmetalation to 

copper. Again, examining the electronegativity differences, it is possible that Mn (1.55) is too 

similar to Zr (1.33) to undergo this transmetalation.18 

The extension of the zwitterionic metalation methodology to cobalt and nickel has been 

accomplished in quantitative yields. The synthesis and characterization of four different zirconium 

complexes was undertaken and transmetalation to iron, cobalt, and nickel was observed for both 

the (MesCCC) and (DIPPCCC) ligands. Unfortunately, these methods were not amenable to 

manganese and copper. However, this work represents the first time these zwitterionic complexes 

have been isolated, characterized, and subsequently reduced in situ to give the fully metalated 

complexes. It also represents the first report of transmetalation from zirconium to iron and one of 

the few nickel and cobalt examples. 

 

3.3 Experimental Section 

General Considerations. All air- and moisture-sensitive manipulations were performed using an 

MBraun inert atmosphere drybox with an atmosphere of nitrogen. The MBraun drybox was 

equipped with one -35  C̊ freezer for cooling samples and crystallizations. Solvents for sensitive 

manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, Nashua, 

NH) and stored over 4 Å molecular sieves purchased from Strem following literature procedure 

prior to use.19 Cobalt (II) chloride anhydrous (98%) and nickel (II) chloride anhydrous (98%) were 

purchased from Strem and used as received. Trimethylphosphine (1.0 M in THF) and pyridine 

(99.8%) were purchased from Sigma-Aldrich and used as received. Triphenylphosphine (≥ 95% 

(GC)) was purchased from Sigma-Aldrich and recrystallized using ethanol and dried before use. 

Lithium hexamethyldisilazide was purchased from Sigma-Aldrich and recrystallized under an inert 

atmosphere using toluene prior to use. Zirconium (IV) dimethylamide was purchased from 
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Oakwood and sublimed under a nitrogen atmosphere prior to use, clean Zr starting material was 

essential to generate the complexes cleanly. Potassium graphite,20 and DIPPCCC (DIPPCCC = 

bis(diisopropylphenyl-imidazol-2-ylidene)phenyl) ligand3 were prepared according to literature 

procedures. Chloroform-d, tetrahydrofuran-d8, and benzene-d6 were purchased from Cambridge 

Isotope Labs and were degassed and stored over 4 Å molecular sieves prior to use. Celite® 545 (J. 

T. Baker) was dried in a Schlenk flask for 24 h under dynamic vacuum while heating to at least 

150 ˚C prior to use in a glovebox. 1H, 13C, and 31P NMR spectra were recorded on a Varian 

spectrometer operating at 500 MHz (1H NMR), 126 MHz (13C NMR), and 202.4 MHz (31P NMR) 

at ambient temperature. All chemical shifts were reported relative to the peak of the residual 

solvent as a standard.  

 

Preparation of H2(DIPPCCC)Co(II)Cl3.  A 20 mL scintillation vial was charged with 

[H3(
DIPPCCC)]Cl2 (0.071 g, 0.101 mmol) and approximately 2 mL of THF.  In two separate vials, 

an equivalent of CoCl2 (0.013 g, 0.101 mmol) and 1.1 equivalents of Li(N(SiMe3)2) (0.019 g 0.111 

mmol) were dissolved in approximately 2 mL of THF each. The CoCl2 was added to the off-white 

solution of ligand and the Li(N(SiMe3)2) was added drop-wise to the solution, resulting in an 

instantaneous color change to light blue.  After stirring for 3 hours, the color of the solution was 

bright teal.  The solvent was removed under reduced pressure and the teal residue was dissolved 

in DCM, placed in the freezer at -35 oC for 5 minutes, filtered over celite, and the solvent again 

removed under reduced pressure.  The product, H2(
DIPPCCC)Co(II)Cl3 was isolated as a bright teal 

blue powder (0.08 g, 0.101 mmol, >99 %).  1H NMR (CDCl3, 500 MHz):  δ = 12.06, 11.83, 11.45, 

10.83, 10.15, 8.57, 7.77, 7.50, 7.43, 6.59, 6.37, 6.30, 5.79, 4.67, 0.78, 0.47, 0.45, 0.06, -0.93. 

HRMS (ESI), calc. for C44H49Cl2CoN4O (M – Cl)+: 779.74; found 781.3. 



 

76 
 

Preparation of H2(DIPPCCC)Ni(II)Cl3.  A 20 mL scintillation vial was charged with 

[H3(
DIPPCCC)]Cl2 (0.071 g, 0.101 mmol) and approximately 2 mL of THF.  In two separate vials, 

an equivalent of NiCl2 (0.013 g, 0.101 mmol) and 1.1 equivalents of Li(N(SiMe3)2) (0.019 g 0.111 

mmol) were dissolved in approximately 2 mL of THF each. The NiCl2 was added to the off-white 

solution of ligand and the Li(N(SiMe3)2) was added drop-wise to the solution, resulting in an 

instantaneous color change to yellow.  After stirring for 3 hours the solvents were removed under 

reduced pressure and the yellow residue was dissolved in DCM, placed in the freezer at -35 oC for 

5 minutes, filtered over celite, and the solvent again removed under reduced pressure.  The product, 

H2(
DIPPCCC)Ni(II)Cl3 was isolated as a pale yellow solid (0.077 g, 0.097 mmol, 96 %).  1H NMR 

(CDCl3, 500 MHz):  δ = 8.84, 8.63, 8.32, 7.97, 7.89, 7.74, 7.63, 7.42, 7.21, 6.78, 3.05, 2.28, 1.34, 

1.29, 1.14, 1.07, 1.03, 0.85, 0.79. HRMS (ESI), calc. for C44H47Cl3N4Ni (M)+: 796.93, found 

796.40. 

Preparation of (DIPPCCC)Ni(II)Cl. A 20 mL scintillation vial was charged with 

H2(
DIPPCCC)NiCl3 (0.030 g, 0.038 mmol) and approximately 2 mL of toluene. Li(N(SiMe3)2) 

(0.007 g, 0.042 mmol, 1.1eq) was dissolved separately in 1 mL of toluene. Three and a half 

equivalents of potassium graphite (0.018 g, 0.133 mmol) was dissolved in 2 mL of THF. The 

Li(N(SiMe3)2) was added to the vial of KC8 and the mixture was slowly added dropwise to the 

complex. The reaction was stirred at room temperature overnight and the volatiles removed under 

reduced pressure. The precipitate was washed with pentane over celite and then dissolved in 

benzene. The volatiles were removed under pressure from the filtrate and the product as an orange-

yellow solid was obtained in quantitative yield (0.031 g, 0.099 mmol, 98 %). 1H NMR (C6D6, 500 

MHz):  δ = 7.52 (d, J = 7.8, 2H), 7.26-7.11 (m, 9H), 7.00 (t, J = 7.9, 2H), 6.82 (t, J = 7.9, 2H), 6.61 
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(d, J = 8.8 Hz, 2H), 2.64 (sept, J = 6.6 Hz, 4H), 1.47 (d, J = 6.7, 12H), 0.88 (d, J = 6.6, 12H). 

Matches literature compound.2 

Preparation of (DIPPCCC)Co(III)Cl2(Py). A 20 mL scintillation vial was charged with 

H2(
DIPPCCC)Co(II)Cl3 (0.030 g, 0.038 mmol), pyridine (5 drops), and approximately 2 mL of 

toluene. Li(N(SiMe3)2) (0.007 g, 0.042 mmol, 1.1eq) and potassium graphite (0.006 g, 0.042 

mmol, 1.1eq) were dissolved separately in 2 mL of THF. The Li(N(SiMe3)2) was added to the vial 

of KC8 and the mixture was then slowly added dropwise to the complex. The reaction was stirred 

at room temperature overnight and the volatiles removed under reduced pressure. The solid was 

washed with hexanes and benzene to remove impurities and then dissolved in DCM and filtered 

over celite. The volatiles were removed under reduced pressure from the filtrate and the product 

as a green solid was obtained in quantitative yield (0.032 g, 0.038 mmol, >99 %). 1H NMR (CDCl3, 

500 MHz):  δ = 8.82 (d, J = 4.8 Hz, 2H), 8.27 (d, J = 8.2 Hz, 2H), 7.88 (d, J = 7.8 Hz, 2H), 7.55 (t, 

J = 7.8 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.8 Hz, 2H), 7.16 (t, J = 7.7 Hz, 4H), 6.96 (d, 

J = 7.8 Hz, 4H), 6.76 (d, J = 8.1 Hz, 2H), 6.41 (t, J = 6.4 Hz, 2H), 2.68 (septet, J = 6.6 Hz, 4H), 

0.98 (d, J = 6.5 Hz, 12H), 0.68 (d, J = 6.7 Hz, 12H). Matches literature compound.3 

Preparation of (DIPPCCC)Co(III)H(Cl)(PMe3). A 20 mL scintillation vial was charged with 

H2(
DIPPCCC)Co(II)Cl3 (0.030 g, 0.038 mmol), PMe3 (0.038 mL, 0.038 mmol), and approximately 

2 mL of toluene. Li(N(SiMe3)2) 1.1 equivalents (0.007 g, 0.042 mmol) and 1.1 equivalents of 

potassium graphite (0.006 g, 0.042 mmol) were dissolved separately in 2 mL of THF. The 

Li(N(SiMe3)2) wfas added to the vial of KC8 and the mixture was the slowly added dropwise to 

the first solution. The reaction was stirred at room temperature overnight and the volatiles removed 

under reduced pressure. The solid was washed with hexanes to remove impurities and then 

dissolved in benzene and filtered over celite. The volatiles were removed under reduced pressure 
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from the filtrate and the product was obtained as a red solid (0.030 g, 0.037 mmol, 98 %). 1H NMR 

(C6D6, 500 MHz):  δ = 7.72 (d, J = 6.8 Hz, 2H), 7.63 (m, 1H), 7.42 (d, J = 6.4 Hz, 2H), 7.27 (m, 

2H), 7.03 (d, J = 8.9 Hz, 4H), 6.86 (d, J = 6.8 Hz, 4H), 6.64 (d, J = 7.5 Hz, 2H), 3.12 (sept, J = 6 

Hz, 2H), 2.63 (sept, J = 6 Hz, 2H), 1.36 (m, 12H), 1.00 (s, 9H), 0.70 (m, 12H), -10.25 (d, J = 113 

Hz, 1H). 13C NMR (C6D6, 126 MHz):  δ = 147.27, 146.21, 145.72, 140.94, 134.58, 131.19, 129.68, 

128.59, 124.47, 123.26, 123.09, 122.39, 122.27, 112.26, 110.30, 107.28, 29.13, 28.73, 25.31, 

24.39, 24.64, 24.05, 13.77, 13.61. HRMS (ESI), calc. for C47H54ClCoN4P (M – H)+: 799.31; found 

799.31. Similar to (MesCCC)Co(III)H(Cl)(PMe3) in the literature.4 

Preparation of (MesCCC)Zr(IV)Cl(NMe2)2. A 20 mL scintillation vial was charged with 

[H3(
MesCCC)]Cl2 (0.030 g, 0.048 mmol) and 3 mL of benzene and placed in a -35 oC freezer until 

frozen. Two and a half equivalents of Zr(NMe2)4 (0.032 g, 0.121 mmol) was dissolved in a minimal 

Figure 3.4. 1H NMR spectrum of (DIPPCCC)Co(III)H(Cl)(PMe3) (C6D6). 
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amount of DCM and placed in a -35 oC freezer for 5 minutes. The DCM solution was then added 

dropwise to the frozen benzene solution and warmed to room temperature. The reaction was stirred 

at room temperature overnight. The solvents were removed under reduced pressure and a 

hexanes/diethyl ether mixture (2 mL) was added to the yellow solid and stirred for 30 minutes. 

The reaction mixture was filtered over celite, discarding the wash, and the remaining yellow solid 

was dissolved in benzene. The volatiles were removed under reduced pressure yielding 

(MesCCC)Zr(IV)Cl(NMe2)2 as an pale yellow solid in excellent yield (0.035 g, 0.046 mmol, 96 %). 

1H NMR (C6D6, 500 MHz):  δ = 7.92 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 7.9 Hz, 2H), 7.43 (t, J = 7.8 

Hz, 1H), 7.10 (t, J = 7.5 Hz, 2H), 6.93 (t, J = 7.9 Hz, 2H), 6.81 (s, 4H), 6.67 (d, J = 8.1 Hz, 2H), 

2.80 (s, 12H), 2.11 (s, 6H), 2.05 (s, 12H). 13C NMR (CDCl3, 126 MHz):  δ = 204.46, 149.52, 

139.28, 136.99, 136.00, 133.39, 131.98, 129.48, 128.59, 124.85, 124.76, 124.34, 124.05, 114.47, 

113.03, 112.21, 111.84, 43.90, 21.04, 17.95. HRMS (ESI), calc. for C38H33ClN4Zr (M – (NMe2)2)
+: 

670.14; found 670.36. 

Preparation of (MesCCC)Zr(IV)Cl2(NMe2). A 20 mL scintillation vial was charged with 

[H3(
MesCCC)]Cl2 (0.030 g, 0.048 mmol) and 3 mL of DCM and placed in a -35 oC freezer. Two 

and a half equivalents of Zr(NMe2)4 (0.032 g, 0.121 mmol) was dissolved in a minimal amount of 

DCM and placed in a -35 oC freezer for 5 minutes. The zirconium was then added dropwise to the 

ligand and warmed to room temperature. The reaction was stirred at room temperature overnight. 

The solvents were removed under reduced pressure and diethyl ether (2 mL) was added to the off-

white solid and stirred for 30 minutes. The reaction mixture was filtered over celite, discarding the 

ether wash, and the remaining yellow solid was dissolved in DCM. The volatiles were removed 

under reduced pressure yielding (MesCCC)Zr(IV)Cl2(NMe2) as an yellow solid in excellent yield 

(0.036 g, 0.048 mmol, 100 %). Alternatively, if (MesCCC)Zr(IV)Cl(NMe2)2 is stirred with DCM 
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overnight almost complete conversion to (MesCCC)Zr(IV)Cl2(NMe2) can be seen. 1H NMR 

(CDCl3, 500 MHz):  δ = 8.24 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 7.8 Hz, 2H), 7.52 (t, J = 7.7 Hz, 2H), 

7.47 (t, J = 8 Hz, 1H), 7.36 (t, J = 7.7 Hz, 2H), 7.10 (d, J = 8 Hz, 2H), 7.04 (s, 2H), 6.97 (s, 2H), 

2.83 (s, 6H), 2.34 (s, 6H), 2.22 (s, 6H), 1.87 (s, 2H). 13C NMR (CDCl3, 126 MHz):  δ = 202.61, 

167.68, 149.03, 139.94, 137.58, 135.83, 135.31, 131.91, 131.32, 130.24, 129.01, 128.75, 128.48, 

125.15, 124.58, 113.90, 112.51, 112.41, 45.30, 21.43, 18.57, 17.17. HRMS (ESI), calc. for 

C38H33ClN4Zr (M – (NMe2)2)
+: 670.14; found 669.20. 

Preparation of (DIPPCCC)Zr(IV)Cl(NMe2)2. A 20 mL scintillation vial was charged with 

[H3(
DIPPCCC)]Cl2 (0.030 g, 0.043 mmol) and 3 mL of benzene and placed in a -35 oC freezer until 

frozen. Two and a half equivalents of Zr(NMe2)4 (0.029 g, 0.107 mmol) was dissolved in a minimal 

amount of DCM and placed in a -35 oC freezer for 5 minutes. The DCM solution was then added 

dropwise to the frozen benzene solution and warmed to room temperature. The reaction was stirred 

at room temperature overnight. The solvents were removed under reduced pressure and hexanes 

(2 mL) was added to the bright yellow solid and stirred for 30 minutes. The reaction mixture was 

filtered over celite, discarding the hexanes wash, and the remaining pale-yellow solid was 

dissolved in benzene. The volatiles were removed under reduced pressure yielding 

(DIPPCCC)Zr(IV)Cl(NMe2)2 as a pale-yellow solid in excellent yield (0.034 g, 0.041 mmol, 95 %).  

1H NMR (C6D6, 500 MHz):  δ = 7.88 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.32 (t, J = 7.9 

Hz, 1H), 7.27 (m, 4H), 7.19 (m, 2H), 7.03 (t, J = 8.2 Hz, 2H), 6.85 (t, J = 8.0 Hz, 2H), 6.68 (d, J = 

8.1 Hz, 2H), 3.11 (septet, J = 6.0 Hz, 2H), 3.02, (s, 6H), 2.84 (septet, J = 6.3 Hz, 2H), 2.44 (s, 6H), 

1.52 (d, J = 5.9 Hz, 6H), 1.23 (d, J = 6.1 Hz, 6H), 0.85 (d, J = 6.1 Hz, 6H), 0.74 (d, J = 6.3 Hz, 

6H). 13C NMR (C6D6, 126 MHz):  δ = 205.80, 174.82, 149.22, 138.14, 133.65 131.78, 130.61, 
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128.59, 126.92, 125.50, 124.46, 124.01, 123.23 114.36, 113.62, 112.94, 46.89, 41.43, 28.76, 26.13, 

25.72, 24.25, 23.76. HRMS (ESI), calc. for C45H48N4Zr (M)+: 719.24, found 719.48. 

Preparation of (DIPPCCC)Zr(IV)Cl2(NMe2). A 20 mL scintillation vial was charged with 

[H3(
DIPPCCC)]Cl2 (0.030 g, 0.043 mmol) and 3 mL of DCM and placed in a -35 oC freezer. Two 

and a half equivalents of Zr(NMe2)4 (0.029 g, 0.107 mmol) was dissolved in a minimal amount of 

DCM and placed in a -35 oC freezer for 5 minutes. The zirconium was then added dropwise to the 

ligand and warmed to room temperature. The reaction was stirred at room temperature overnight. 

The solvents were removed under reduced pressure and diethyl ether (2 mL) was added to the off-

white solid and stirred for 30 minutes. The reaction mixture was filtered over celite, discarding the 

ether wash, and the remaining yellow solid was dissolved in benzene. The volatiles were removed 

under reduced pressure yielding (DIPPCCC)Zr(IV)Cl2(NMe2) as an pale yellow solid in excellent 

yield (0.033 g, 0.040 mmol, 92 %). 1H NMR (C6D6, 500 MHz):  δ = 7.78 (d, J = 8.4 Hz, 2H), 7.62 

(d, J = 7.8 Hz, 2H), 7.27 (m, 5H), 7.21 (d, J = 7.5 Hz, 2H), 7.02 (t, J = 7.5 Hz, 2H), 6.85 (t, J = 7.3 

Hz, 2H), 6.68 (d, J = 7.8 Hz, 2H), 2.92 (septet, J = 7 Hz, 4H), 2.85 (s, 6H), 1.45 (d, J = 6.3 Hz, 

12H), 0.78 (d, J = 6.6 Hz, 12H). 13C NMR (C6D6, 126 MHz):  δ = 201.27, 170.77, 149.28, 147.94, 

147.52, 137.25, 133.12, 131.43, 130.72, 128.59, 125.38, 124.96, 124.90, 124.65, 123.82, 114.62, 

113.82, 113.19, 45.62, 28.85, 26.14, 23.75. HRMS (ESI), calc. for C44H45Cl2N4Zr (M – (NMe2))
+: 

792.00; found 793.23. 

General Preparation of (RCCC)MClxLy from (RCCC)Zr(IV)Cl(NMe2)2. A 20 mL scintillation 

vial was charged with 25 mg of (RCCC)Zr(IV)Cl(NMe2)2 and dissolved in 2 mL of DCM or THF. 

The desired L-type ligand (PMe3 for Fe, pyridine for Co) was added to the dissolved zirconium 

complex. The M(II)Cl2 (1 equiv.) was dissolved or suspended in DCM or THF and added dropwise 

to the solution. In the case for cobalt ClCPh3 (1 equiv.) was dissolved in THF and added dropwise 
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after 5 minutes. The reaction was then stirred overnight at room temperature. The volatiles were 

removed under reduced pressure and the resulting precipitate was washed with hexanes and diethyl 

ether to remove any zirconium byproducts. The solid was then dissolved in benzene (DCM for 

cobalt) and filtered over celite. Removing the solvent resulted in the isolation of a colored solid in 

quantitative yield. The 1H NMR spectra were compared and matched to published literature values 

or other independent synthesis, again except for (MesCCC)Fe(II)Cl(PMe3)2. The yields and 1H 

NMR resonance values are given for each complex below. 

 

Preparation of (DIPPCCC)Ni(II)Cl. Yield (0.022 g, 0.030 mmol, >99 %). 1H NMR (CDCl3, 500 

MHz):  δ = 7.51 (d, J = 8.2 Hz, 2H), 7.22 (m, 3H), 7.16 (m, 2H), 7.13 (d, J = 7.8 Hz, 4H), 7.00 (t, 

J = 8.3 Hz, 2H), 6.82 (t, J = 7.9 Hz, 2H), 6.60 (d, J = 8.1 Hz, 2H), 2.64 (septet, J = 6.9 Hz, 4H), 

1.47 (d, J = 6.8 Hz, 12H), 0.87 (d, J = 6.9 Hz, 12H). This complex was matched to literature 

values.2 

Preparation of (MesCCC)Ni(II)Cl. Yield (0.021 g, 0.033 mmol, >99 %). This complex was later 

independently synthesized via regular metalation methods giving the same 1H NMR spectrum. 1H 

NMR (THF-d8, 500 MHz):  δ = 8.25 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 7.7 Hz, 2H), 7.53 (t, J = 7.6 

Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7. 31 (t, J = 7.4 Hz, 2H), 6.80 (d, J = 8.2 Hz, 2H), 6.77 (s, 4H),  

2.24 (s, 6H), 1.88 (s, 12H). 13C NMR (THF-d8, 126 MHz):  δ = 184.37, 148.73, 140.22, 136.45, 

135.34 130.57, 130.41, 128.82, 126.29, 125.20, 112.71, 112.21, 110.09, 21.04, 17.54. HRMS 

(ESI), calc. for C38H33N4Ni (M - Cl)+: 603.20, found 603.21. 
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Preparation of (DIPPCCC)Fe(II)Cl(PMe3)2. Yield (0.025 g, 0.029 mmol, 98 %). 1H NMR 

(CDCl3, 500 MHz): δ = 7.90 (d, J = 7.9 Hz, 2H), 7.63 (d, J = 7.4 Hz, 2H), 7.33 (t, J = 7.9 Hz, 1H), 

7.24 (t, J = 6.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 4H), 7.07 (t, J = 7.6 Hz, 2H), 6.88 (t, J = 7.4 Hz, 2H), 

6.72 (d, J = 8 Hz, 2H), 2.94 (septet, J = 6.6 Hz, 4H), 1.25 (d, J = 6.3 Hz, 12H), 0.89 (d, J = 6.4 Hz, 

12H), 0.46 (s, 18H).  

Preparation of (MesCCC)Fe(II)Cl(PMe3)2. Gives a red solid, (MesCCC)Fe(II)Cl(PMe3)2, in 

excellent yield (0.023 g, 0.029 mmol, 89 %). 1H NMR (THF-d8, 500 MHz): δ = 8.36 (d, J = 6.8 

Hz, 2H), 7.98 (d, J = 6.2 Hz, 2H), 7.64 (t, J = 6.2 Hz, 1H), 7.53 (t, J = 6.4 Hz, 2H), 7.38 (t, J = 6.8 

Hz, 2H), 7.16 (s, 4H), 6.97 (d, J = 7.8 Hz, 2H), 2.38 (s, 6H), 2.09 (s, 12H), 0.57 (s, 18H). 13C NMR 

(THF-d8, 126 MHZ): δ = 219.86, 148.23, 140.86, 138.87, 138.42, 137.22, 136.73, 133.42, 132.33, 

131.64, 129.84, 127.14, 125.52, 125.02, 113.98, 111.63, 111.48, 22.31, 21.39, 21.26.  31P{1H} 

NMR (THF-d8, 202.4 MHz):  δ = 18.04. HRMS (ESI), calc. for C44H51N4P2Fe (M - Cl)+: 753.29, 

found 752.29. 

 

Figure 3.5. 1H NMR spectrum of (MesCCC)Ni(II)Cl (THF-d8), *indicates solvent. 

* 

* 
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Preparation of (DIPPCCC)Co(III)Cl2(N2). Yield (0.025 g, 0.030 mmol, >99 %). 1H NMR (CDCl3, 

500 MHz):  δ = 8.82 (d, J = 4.8 Hz, 2H), 8.27 (d, J = 8.2 Hz, 2H), 7.88 (d, J = 7.8 Hz, 2H), 7.55 (t, 

J = 7.8 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.8 Hz, 2H), 7.16 (t, J = 7.7 Hz, 2H), 6.96 (d, 

J = 7.8 Hz, 4H), 6.76 (d, J = 8.1 Hz, 2H), 6.41 (t, J = 6.4 Hz, 2H), 2.68 (septet, J = 6.6 Hz, 4H), 

0.98 (d, J = 6.5 Hz, 12H), 0.68 (d, J = 6.7 Hz, 12H). This complex was matched to literature 

values.3 

Preparation of (MesCCC)Co(III)Cl2py. Yield (0.023 g, 0.031 mmol, 94 %). 1H NMR (CDCl3, 

500 MHz):  δ = 8.78 (d, J = 4.9 Hz, 2H), 8.25 (d, J = 8.1 Hz, 2H), 7.83 (d, J = 7.8 Hz, 2H), 7.55 (t, 

J = 7.9 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 7.31 (m, 1H), 7.20 (t, J = 7.6 Hz, 2H), 6.78 (d, J = 8 Hz, 

2H), 6.52 (m, 6H), 2.19 (s, 6H), 1.83 (s, 12H). This complex was matched to literature values.3 

 

 

* 

Figure 3.6. 1H NMR spectrum of (MesCCC)Fe(II)Cl(PMe3)2 (THF-d8), *indicates solvent. 
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Chapter 4 

Cobalt Catalyzed Nitrile Hydrogenation to Primary Amines 

4.1 Introduction1  

 The development of systems for the selective formation of primary amines, particularly 

from nitriles being the most atom-economical route, is of interest due to their wide uses in the bulk 

and fine chemical industries.1,2 The hydrogenation of nitriles to primary amines takes place in two 

separate steps first going through the primary imine intermediate (Figure 4.1). The difficulty of 

product selectivity arises from the ability of the generated primary amine to intercept this 

intermediate and, upon the loss of ammonia, generate the secondary aldimine side product. This 

product can also undergo further hydrogenation to the secondary amine or subsequent 

condensation to the tertiary amine.1 

Heterogeneous nitrile hydrogenation processes often suffer from low functional group 

tolerance and reduced selectivity for the primary amine due to these side reactions, including 

secondary and tertiary amine formation.1-5 Homogeneous nitrile hydrogenation catalysts are 

typically more selective with milder reaction conditions, but are less active than their 

heterogeneous counterparts and tend to require more expensive second- and third-row transition 

                                                           
1 Portions of this chapter are reproduced from the following publication with permission from the authors: Tokmic, 
K.;* Jackson, B. J.;* Salazar, A.; Woods, T. J.; Fout, A. R. Cobalt-Catalyzed and Lewis Acid-Assisted Nitrile 
Hydrogenation to Primary Amines: A Combined Effort. J. Am. Chem. Soc. 2017, 139, 13554-13561. 

Figure 4.1. Hydrogenation of nitriles. 
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metal catalysts.6-17 Replacing these expensive catalysts with late first-row transition metals offers 

a cheaper and much more environmentally benign alternative.18,19  

Homogeneous nitrile hydrogenation using late first-row transition metals has been 

undertaken by Beller and Milstein for manganese,20 iron,21-23 and cobalt24,25 with systems that are 

very selective for primary amines, though they still require high hydrogen pressure and extended 

reaction times (Table 4.1). Often the reactivity is attributed to ligand-assisted hydrogenation and 

not a completely metal-centered process, where the mechanism has been elucidated. Therefore, 

we were interested in determining whether our system was competent for this transformation under 

milder conditions as well as its operative mechanism.  

 Our group has reported that the hydrogenation of alkenes and E-selective semi-

hydrogenation of alkynes can be carried out by (MesCCC)Co(I)(H2)PPh3 using very mild 

conditions.26,27 Mechanistic insights, including para-hydrogen induced polarization (PHIP) 

transfer NMR spectroscopy, indicated a metal-centered Co(I/III) process for these transformations. 

However, this complex is both air and moisture sensitive which limits its ease of use so a change 

to using the air-stable (MesCCC)Co(III)Cl2py with an in situ activator was targeted. The use of 

Table 4.1. Literature examples to other first-row nitrile hydrogenation catalysts.20-25 
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Grignard, metal hydride, or metal alkoxides as in situ activators has been investigated by a number 

of groups.28-33 Encouraged by our previous studies using Co(I) hydrogenation catalysts34 we sought 

to use NaHBEt3 as the in situ activator for our catalysis. Herein the selective hydrogenation of 

nitriles to primary amines using a bench-stable catalyst precursor, (MesCCC)Co(III)Cl2py (py = 

pyridine), in situ activator, NaHBEt3, and low H2 pressure (4 atm) is described.  

 

4.2 Optimization of Reaction Parameters and Substrate Scope 

 The initial reaction parameters were modeled after previously published cobalt nitrile 

hydrogenation systems using benzonitrile as the model substrate.23,24 The use of 

(MesCCC)Co(III)Cl2py (2 mol%), NaHBEt3 (4 mol%), and 4 atm of H2 in toluene at 115 oC for 8 h 

resulted in the complete conversion of benzonitrile, but with selectivity to the secondary aldimine 

as seen by GC-MS (Table 4.2, Entry 2). Adding KOtBu (6 mol%) resulted in complete conversion 

and selectivity for the primary amine with a yield of 97% (Table 4.2, Entry 1). The addition of the 

base helps to prevent the formation of the secondary aldimine as has been previously reported in 

other systems.1,2 A variety of other bases including K(N(SiMe3)2), NaOEt, NaOtBu, and NaOPent 

were also tested ranging from 76-95% yield, but KOtBu proved to give the best yield of the amine 

(Table S4.5). The amount of base caused only a small variance in selectivity but 6 mol% was found 

to give the best yield of primary amine (Table S4.5). Various controls excluding the catalyst, in 

situ activator (NaHBEt3), or hydrogen showed no conversion of the starting material (Table S4.5). 

 Using 1 atm of H2 led to the same conversion as 4 atm (>99%) but much lower selectivity 

for the primary amine (50%) (Table 4.2, Entry 3). Lowering the temperature to 100 oC or 80 oC 

still resulted in complete conversion of the starting material but less selectivity for the primary 

amine (Table 4.2, Entry 5 & 6). Carrying out the catalysis just above room temperature at 30 oC 
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gave 0% conversion of the starting material (Table 4.2, Entry 4). Monitoring the reaction at shorter 

reaction times (2, 4, and 6 hrs) showed similar conversions and less selectivity for the primary 

amine likely due to decomposition of the primary imine on the instrument itself (Table 4.2, Entry 

7-9). It is also possible that the equilibrium between the secondary imine and primary imine is 

reversed with longer reaction times but later studies monitoring by 1H NMR spectroscopy proved 

this false. While primary imines are known to be unstable and typically transient this was our first 

indication that monitoring by GC-MS wasn’t the best method for full quantification of these 

reaction mixtures.  

We were also interested in whether other cobalt sources could undergo this transformation 

under these or similar conditions. (PPh3)2Co(I)(N(SiMe3)2), (PPh3)3Co(I)Cl, and Co(III)(acac)3 

were subjected to these same reaction conditions, with NaHBEt3 as the reductant where relevant, 

but no conversion of the starting material was observed under any conditions (Table S4.5).35,36 

 The optimized reaction conditions (toluene, 115 oC, 8 h, 4 atm H2, KOtBu 6 mol%) were 

determined and the scope of this reaction was investigated. Conversion was determined by GC-

MS where applicable (>99%) and the isolated yields are of the hydrochloride salts. A variety of 

Table 4.2. Optimization of reaction conditions. 
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aromatic and aliphatic nitriles were found to be hydrogenated efficiently and selectively to their 

primary amines (Table 4.3). Electron-donating aromatic substrates including methoxy, methyl, and 

naphthyl were hydrogenated with high yields including those with more sterically hindered ortho-

substitution (1b-1g, 1m). The ortho- and meta-substituted methoxy substrates required slightly 

higher catalyst loadings likely due to steric interactions. Electron-withdrawing aromatic substrates 

like fluoro, chloro, and trifluoromethyl proceeded with good but slight lower yields (1j-1l). 

Anlines (1h, 1i) were tolerated under these reaction conditions but not in the ortho position which 

could be due to a bidentate interaction with the metal center. Phenols in any position were not 

tolerated and appeared to result in decomposition of the catalyst as seen by distinct color changes 

even before the addition of H2. Para-methylester benzonitrile (1n) was hydrogenated in very high 

yield with the ester fragment intact but ketone or aldehyde functionalities in the same position 

Table 4.3. Nitrile hydrogenation substrate scope. 
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resulted in zero conversion of the starting material. Aromatic nitro functional groups also shut 

down the catalysis and gave no conversion of the starting nitrile. 

 Aliphatic substrates were hydrogenated in very good yields including phenylacetonitrile 

(1o) and phenylpropionitrile (1p). The cyclic non-aromatic cyclohexylnitrile (1q) gave complete 

conversion and an isolated yield of 85%. All the alkyl substrates that were too light to be analyzed 

by the GC-MS method are given as only isolated yields instead. Three, four, and five carbon alkyl 

nitriles were isolated in very good yields (1t-1v). Additionally, two substrates not seen before for 

first-row homogeneous nitrile hydrogenation are acetonitrile (1r) and t-butylnitrile (1s). Ethyl 

amine is a widely used chemical in industry and hydrogenation of acetonitrile presents an atom-

economical route to this product.37 The sterically hindered t-butylnitrile (1s) was also isolated in 

excellent yield (88%). 

This transformation demonstrates the utility of this system in hydrogenating nitriles with 

excellent reactivity and selectivity to their primary amines. Additionally, the reaction can be scaled 

up while still retaining the same yield of the product (p-MePhCN, 200 mg, 97% yield). The 

optimized conditions use a very low pressure of hydrogen and short reaction times compared to 

other first-row transition metal systems (Table 4.1). Beller’s PNP Fe pincer complex operates on 

some of the mildest conditions that have been published but, again, still requires 30 bar of hydrogen 

pressure.21,22 All the first-row catalyst systems for nitrile hydrogenation in the literature use 30-60 

bar of pressure compared to our system at 4 bar H2 (Table 4.1).20-25 The lower hydrogen pressure 

also allowed the use of standard Schlenk lines and tubes instead of requiring high pressure reaction 

apparatuses. After establishing the catalytic competence of our system, we next examined the 

mechanism of this transformation in greater detail with particular emphasis on identifying any 

two-electron processes as observed in our previous studies.26,27,38,39 
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4.3 Mechanistic Studies  

 Para-hydrogen induced polarization 

(PHIP) is an extremely powerful tool to study 

the placement of a molecule of H2 onto a 

substrate by NMR spectroscopy.40-54 Our lab 

has previously reported PHIP transfer NMR 

studies of Co(η2-H2) bis(carbene) pincer 

complexes for the hydrogenation of carbon-

carbon bonds.26,27 We were interested to see 

if we could extend this technique to the 

hydrogenation of nitriles.  

PHIP transfer NMR spectroscopy results from the hyperpolarization of H2 to p-H2 and 

signals can be seen in the 1H NMR spectrum for each of these hydrogen atoms as long as they are 

added pairwise to magnetically distinct positions of the substrate. In the studies undertaken with 

the hydrogenation of nitriles a 45o pulse and a double quantum OPSY (only para-hydrogen 

spectroscopy) filter in the 1H NMR experiment was used.52 We chose para-methoxybenzonitrile 

as the model substrate since the methoxy group provides a clearly discernible handle in the 1H 

NMR spectrum for each of the possible hydrogenation products. The addition of p-H2 to a toluene-

d8 solution consisting of para-methoxybenzonitrile, (MesCCC)Co(III)Cl2py (2 mol%), NaHBEt3 (4 

mol%), and KOtBu (6 mol%) resulted in the observation of hyperpolarized resonances only when 

heated above 85 oC (Figure 4.2). The primary imine resonances were clearly seen by this method, 

but though primary amine resonances appeared they were not polarized by p-H2. This indicates 

that p-H2 was added pairwise to the nitrile moiety to generate the primary imine but that the process 

Figure 4.2 PHIP data 45o pulse (top) 

and 1H NMR OPSY (bottom). 
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of hydrogenation from the imine to the amine could be going through a different mechanism.55-58 

These results indicate that a Co(I/III) mechanism is most likely operative as observed in our 

previous hydrogenation studies. This is the first time the hyperpolarization of resonances using p-

H2 have been observed using polar functionalities through a hydrogenative process.58-65 

 Interested in identifying our active catalytic species we set out to isolate the Co(I) complex 

generated upon the addition of two equivalents of NaHBEt3 to (MesCCC)Co(III)Cl2py. Initial 

reactions indicated the reduction of the Co(III) center to a diamagnetic, C2 symmetric Co(I) 

complex that displayed broadened features by 1H NMR spectroscopy. Solution IR spectroscopy of 

the brown complex revealed an intense absorption at 2081 cm-1 tentatively assigned as 

(MesCCC)Co(I)(N2) (vide infra). An alternate reduction using potassium graphite (KC8, 2equiv) 

yielded (MesCCC)Co(I)(py) in 80% yield (Scheme 4.1). Crystals suitable for X-ray diffraction 

show a square planar geometry around cobalt (Figure S4.1). Analysis by 1H NMR spectroscopy 

indicates a diamagnetic C2 symmetric complex and IR spectroscopy shows no N2 stretching 

frequency as previously observed when reducing using NaHBEt3. This is likely due to the Lewis 

acid coordinating to pyridine allowing N2 to bind to the metal. This was confirmed by adding BEt3 

to (MesCCC)Co(I)(py) and identifying the BEt3-pyr adduct by 1H and 11B NMR spectroscopy.  

 Interested in understanding the metal-substrate interactions during catalysis we then treated 

(MesCCC)Co(I)(py) with para-OMe-PhCN which yielded (MesCCC)Co(I)(p-OMe-PhCN) where the 

Scheme 4.1. Synthesis of (MesCCC)Co(I)(py) and (MesCCC)Co(I)(p-OMe-PhCN). 
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pyridine ligand has been replaced by the nitrile (Scheme 4.1). Characterization by 1H NMR 

spectroscopy showed a very similar spectrum to (MesCCC)Co(I)(py) and integrations consistent 

with one nitrile per cobalt center. Examining this species by IR spectroscopy shows an absorbance 

at 2084 cm-1 which is red shifted by 32 cm-1 from the free nitrile (2216 cm-1) indicative of an end-

on binding mode.66 

Having established that the nitrile coordinates to the reduced cobalt species in an end-on 

fashion, we next explored the competency of both Co(I) catalysts for nitrile hydrogenation. Using 

(MesCCC)Co(I)(py) (2 mol%), KOtBu (6 mol%), and 4 atm of H2 the hydrogenation of para-

methylbenzonitrile did not proceed, and only starting material was recovered (Table 4.4, Entry 1). 

Under optimized catalytic conditions, two equivalents of NaHBEt3 activates the pre-catalyst, with 

subsequent formation of BEt3. To our surprise, the addition of two equivalents of BEt3 (4 mol%) 

to the (MesCCC)Co(I)(py) catalyzed reaction enabled the hydrogenation to proceed with a similarly 

high yield to the original reaction (Table 4.4, Entry 2 & 3). This result suggests the borane, acting 

as a Lewis acid, is intimately involved in the catalysis. To further evaluate the necessity of Lewis 

acids in the catalysis, BPh3, LiOTf, and Ca(OTf)2 were targeted. The addition of each Lewis acid 

Table 4.4. Lewis acid screen for catalysis. 
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to the catalytic reaction resulted in the hydrogenation of para-methylbenzonitrile to the primary 

amine in good yields (Table 4.4, Entry 4-6). This indicates that the reaction requires a Lewis Acid 

to proceed. The triflate Lewis acids had a slightly lower yield likely due to their lower solubility 

in toluene. Using instead (MesCCC)Co(I)(p-OMe-PhCN) as the catalyst (2 mol%), two equivalents 

of BEt3 (4 mol%), and KOtBu (6 mol%) resulted in the hydrogenation of para-

methoxybenzonitrile, again with a similar yield to the original reaction, indicating that pyridine or 

pyridine-borane adducts are not necessary for the catalysis to proceed (Table 4.4, Entry 7 & 8).  

We next wanted to confirm that a Co(I/III) reaction mechanism was still operative starting 

with our Co(I) catalysts instead of the Co(III) with in situ activation. Upon the addition of p-H2 to 

a toluene-d8 solution containing para-methoxybenzonitrile, (MesCCC)Co(I)(py) (2 mol%), NaOtBu 

(6 mol%), and BEt3 (4 mol%) heated to 75 oC the same PASADENA effects were observed as 

starting with the Co(III) catalyst. On the basis of the PHIP transfer 1H NMR data, the first step in 

the hydrogenation of nitriles conforms with the concerted nature of H2 addition, which is consistent 

with our previous studies of the cobalt-catalyzed hydrogenation of carbon-carbon multiple bonds 

using (MesCCC)Co(I)H(PPh3).
26,27 Interested in the reaction profile we next monitored the reaction 

by 1H NMR spectroscopy.  

 Monitoring the hydrogenation of para-methoxybenzonitrile by 1H NMR spectroscopy 

reveals an immediate decline in the nitrile starting material going to the primary imine initially 

(Figure 4.3). This is then consumed and followed by a steady increase in the primary amine 

throughout the reaction. The formation of the secondary aldimine is essentially zero during the 

entire reaction. This indicates that the temperature and added base are in fact preventing the 

equilibrium from taking place between the primary imine/amine and the secondary aldimine. 
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Adding one equivalent of amine to the reaction mixture did not change the reaction time indicating 

the increased amine concentration did not inhibit catalytic turnover.  

 Knowing the Lewis acid is essential for the hydrogenation of the nitrile to the primary 

imine we next questioned if the presence of a Lewis acid was necessary for the hydrogenation of 

the primary imine to the primary amine to proceed. Use of a primary imine surrogate, N-

benzylideneamine, under regular catalytic conditions in the absence of Lewis acid gave 10% 

conversion to the secondary amine as observed by GC-MS. In contrast, the addition of BEt3 (4 

mol%) resulted in 90% conversion to the primary amine. Therefore, the Lewis acid can also 

facilitate the second hydrogenation step, but it is not necessary for the reaction to occur.  

 In view of these findings on the importance of the Lewis acid we next re-examined the 

hydrogenation of para-acetylbenzonitrile, a substrate that proved unamenable towards 

hydrogenation under the previous reaction conditions (vide supra). We recognized that the Lewis 

acid is necessary for catalysis, so it was postulated that an interaction of the Lewis acid with the 

ketone functionality could inhibit catalytic turnover. Accordingly, the addition of 1.04 equivalents 

Figure 4.3. Reaction profile of the hydrogenation of p-methoxybenzonitrile with (MesCCC)Co(I)(py) (2 

mol%), BEt3 (4 mol%), and NaOtBu (6 mol%) in toluene-d8 under 4 atm of H2 at 115 oC. 
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of BEt3 with respect to the substrate, to account for coordination to the ketone and the amount 

needed to hydrogenate the nitrile, furnished the primary amine in 95% yield (Scheme 4.2). 

Notably, the ketone functionality was not reduced under these conditions, which is a distinct 

difference from the iron,22 ruthenium,67,68 and palladium69 systems. The increase in Lewis acid 

equivalents was applied to formyl and thiophene functionalities but did not improve catalysis.  

 Computational modeling and experimental data have shown that reactivity of the Lewis 

acidic boranes (BF3 and B(C6F5)3) with nitriles results in an electrostatic interaction in the 

subsequent adduct formation.70,71 Interested in understanding if a nitrile-borane interaction was 

present we treated a solution of (MesCCC)Co(I)(p-OMe-PhCN) with BEt3, and the mixture was 

monitored by 1H NMR spectroscopy. Unfortunately, there was no change in the 1H NMR spectrum 

at room temperature nor when heating to 100 oC. Likewise, examining the reaction by IR 

spectroscopy revealed no change in the C≡N stretch, and coordination of N2 was not observed. We 

next wanted to make the pre-formed nitrile-borane adduct which was accomplished by treating 

para-methoxybenzonitrile with BPh3 in hexanes.72 The isolated adduct was characterized, added 

to (MesCCC)Co(I)(py), and monitored by 1H NMR spectroscopy where the formation of 

(MesCCC)Co(I)(p-OMe-PhCN) was observed. No nitrile-borane interaction was observed by either 

11B NMR or IR spectroscopy.  

 Nonetheless, while the nitrile was found to coordinate to the cobalt center only end-on at 

ambient temperatures, we propose that under catalytic conditions the coordination mode changes 

to accommodate the pairwise addition of H2 onto the metal center as indicated by the PHIP NMR 

Scheme 4.2. Hydrogenation of 4-acetylbenoznitrile with stoichiometric Lewis acid. 
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data. One possibility involves a side-on coordination mode of the nitrile through the C≡N π-orbital 

proceeding through a three-center bonding geometry. In the side-on coordination mode the C≡N 

bond would be more amenable toward functionalization, and the nitrogen lone pair would be 

available to interact with a Lewis acid in a similar fashion as observed in bisphosphine nickel(0) 

complexes.73-75 A computational study by Jiao and co-workers reported that the energy difference 

decreases between end-on and side-on coordination modes of acetonitrile in cobalt complexes with 

increasing electron-donating ability of the ligands and, therefore, the nitrile group becomes more 

negatively charged.76 On the basis of these studies and those presented herein, the most viable role 

of the Lewis acid in the observed catalysis is depicted (Figure 4.4).  

In conclusion, the catalytic activity of a cobalt bis(carbene) pincer system was extended 

toward the hydrogenation of a broad scope of nitriles with excellent selectivity toward the primary 

amines. Through the course of our studies, it was determined that the hydrogenation does not 

proceed without the addition of catalytic amounts of a Lewis acid. On the basis of the mechanistic 

studies herein and corroborating literature precedents, the nature of the Lewis acid is proposed to 

facilitate a side-on coordination of the nitrile to the cobalt center, permitting a pairwise transfer of 

H2 through a Co(I/III) redox process. Furthermore, supplemented by insights gleaned from the 

mechanistic studies, a nitrile featuring a ketone functionality was amenable toward the selective 

hydrogenation of only the nitrile, with the addition of super-stoichiometric amounts of Lewis acid. 

Finally, in our approach investigating a bench stable hydrogenation pre-catalyst accompanied by 

Figure 4.4. Proposed coordination of Lewis acid to the cobalt-bound nitrile. 
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in situ activation by NaHBEt3, the presumed innocence of the Lewis acid byproduct was contested, 

and it proved to hold a substantial role in the observed catalysis. 

 

4.4 Experimental Section 

General Considerations. All manipulations of air- and moisture-sensitive compounds were 

carried out in the absence of water and dioxygen in an MBraun inert atmosphere drybox under a 

dinitrogen atmosphere except where specified otherwise.  All glassware was oven dried for a 

minimum of 8 h and cooled in an evacuated antechamber prior to use in the drybox. Solvents for 

sensitive manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, 

Nashua, NH) and stored over 4 Å molecular sieves purchased from Strem following a literature 

procedure prior to use.77 Toluene-d8 and benzene-d6 were purchased from Cambridge Isotope Labs 

and were degassed and stored over 4 Å molecular sieves prior to use.  Dimethyl sulfoxide-d6 was 

purchased from Cambridge Isotope Labs and stored over 4 Å molecular sieves prior to use.    

Deuterium oxide was purchased from Sigma-Aldrich and used as received.  Sodium 

triethylborohydride solution (1.0 M in toluene) and triethylborane solution (1.0 M in hexanes) 

were purchased from Sigma-Aldrich.  Celite® 545 (J. T. Baker) was dried in a Schlenk flask for 

24 h under dynamic vacuum while heating to at least 150˚C prior to use in a glovebox. All nitrile 

substrates were purchased from Sigma-Aldrich or Alfa Aesar and the solids were re-crystallized 

and dried prior to use.  NMR Spectra were recorded at room temperature on a Varian spectrometer 

operating at 500 or 600 MHz (1H NMR) and 126 MHz (13C NMR) (U500, VXR500, UI500NB, 

UI600) and referenced to the residual HDO, C2D5HSO, HC7D7, and C6D5H resonance (δ in parts 

per million, and J in Hz) unless otherwise noted. Potassium graphite (KC8)
78 was prepared 
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according to literature procedures. (MesCCC)CoCl2py (1)34 was prepared according to literature 

procedures. 

 

 

 

 

 

 

 

 

*See paper for crystallographic parameters. 

Table 4.5. Controls and optimization of benzonitrile hydrogenation. 

Figure 4.5. Molecular structure of (MesCCC)Co(I)(py) shown with 50% probability 

ellipsoids. Solvent molecules and H atoms have been omitted for clarity.* 
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Synthesis of Cobalt(I) Complexes 

Preparation of (MesCCC)Co-py (2-py):  A 20 mL scintillation vial was charged with 

(MesCCC)CoCl2py (0.100 g, 0.133 mmol) and THF (10 mL).  A suspension of KC8 (0.038 g, 0.281 

mmol) in THF (5 mL) was added to the mixture. After stirring for 2 hours, the dark brown 

suspension was filtered over Celite and concentrated to a dark solid under reduced pressure.  The 

product was then extracted into benzene (3 x 5 mL), filtered over Celite, and lyophilized under 

reduced pressure to a dark brown solid (0.072 g, 0.105 mmol, 80%).  NMR data (in benzene-d6, 

25 °C):  1H δ = 8.03 (d, J = 5.4, 2H), 7.79 (t, J = 7.4, 1H), 7.65 (d, J = 7.6, 2H), 7.23 (t, J = 7.8, 

3H), 7.00 (t, J = 7.5, 3H), 6.66 (d, J = 7.8, 4H), 6.31 (s, 5H), 1.96 (s, 6H), 1.83 (s, 12H). 13C δ = 

147.4, 139.7, 137.1, 136.1, 135.1, 133.1, 129.1, 128.6, 127.5, 122.3, 122.2, 110.0, 108.5, 105.9, 

20.9, 17.8. HRMS (ESI), calc. for C43H39CoN5 (M + H)+: calculated 684.2537; found 684.2543. 

Preparation of (MesCCC)Co(p-NCC6H4OCH3) (2-NCArOCH3):  A 20 mL scintillation vial was 

charged with (MesCCC)CoCl2py (0.072 g, 0.095 mmol) and THF (10 mL).  A suspension of KC8 

(0.026 g, 0.194 mmol) in THF (5 mL) was added to the mixture. After stirring for 2 hours, the dark 

brown suspension, 2-py, was filtered over Celite and a solution of 4-methoxybenzonitrile (0.013 

g, 0.095 mmol) was added.  After stirring the mixture for 1 h, the solution was concentrated to a 

solid under reduced pressure.  The product was then extracted into benzene (3 x 5 mL), filtered 

over Celite, and lyophilized under reduced pressure to a brown solid (0.055g, 0.074 mmol, 79%).  

Alternatively, 2-NCArOCH3 can also be prepared by the addition of 1 equiv of 4-

methoxybenzonitrile to 2-py following the same work up procedure. NMR data (in benzene-d6, 25 

°C):  1H δ = 7.92 (d, J = 8.0, 2H), 7.65-7.57 (m, 3H), 7.32 (s, 1H), 7.00 (s, 1H), 6.95 (t, J = 7.6, 

2H), 6.64 (t, J = 8.1, 4H), 6.47 (s, 4H), 6.43 (d, J = 8.5, 2H), 3.20 (s, 3H), 2.03 (s, 12H), 1.74 (s, 

6H). The low solubility of 2-NCArOCH3 in benzene precluded the collection of 13C NMR data. 
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HRMS (ESI), calc. for C46H40CoN5O (M)+: calculated 737.2565; found 737.2583. ATR-IR: 2184 

cm-1 (Co-N≡CR). 

 

In situ Stoichiometric Reactivity Studies 

Treatment of (MesCCC)CoCl2py with 2 equivalence of NaHBEt3  

A 4 mL scintillation vial was charged with 1 (0.004 g, 0.006 mmol), NaHBEt3 (1.0 M in toluene, 

12 μL, 0.011 mmol) and toluene (2 mL). Solution IR (C7H8): 2082 cm-1 (Co-N2). (See Figure S9) 

 

General Procedure: Nitrile Hydrogenation 

A 50 mL schlenk tube was charged with 1 (2 mg, 0.0027 mmol) and KOtBu (0.9 mg, 0.008 mmol) 

in toluene (2 mL) and two equivalents of NaHBEt3 (5.4 uL, 0.0054 mmol) were added. The nitrile 

was added last and the total volume raised to 4 mL of toluene. It was then subjected to two freeze 

pump thaw cycles and placed under 1 atm of H2 gas at 77K. The mixture was allowed to warm to 

room temperature, resulting in 4 atm of H2 gas. The flask was placed in a 115 oC oil bath for 8hrs. 

The reaction was then removed from the oil bath and cooled to room temperature, the H2 gas 

vented, and the reaction analyzed by GC-MS to determine conversion. In all cases the nitrile 

starting material was not detected by GC-MS after the completion of the reaction. The resulting 

reaction mixture was diluted with 15 mL of diethyl ether before HCl (0.1 mL, 0.1M, MeOH) was 

added and stirred at room temperature overnight. A fine green and white precipitate was obtained 

after removing the solvent under reduced pressure. The solid was then washed with either 5 mL 

diethyl ether or dichloromethane depending on the solubility and filtered through a Celite plug. 
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The product was then washed down in methanol and the solvents removed under reduced pressure 

yielding a fine white powder which was characterized by 1H, 13C, and 19F NMR spectroscopy 

where appropriate. All catalytic yields are the average of duplicate or triplicate runs. The spectra 

were compared to published literature examples of these species that already contain HR-MS data 

Substrate i was not found in the literature and so was further characterized by HR-MS. 

NMR Data for Isolated HCl Salts of Primary Amines:* 

 (4-methoxyphenyl)methanamine hydrochloride: (1b)a 1H NMR (DMSO, 

500 MHz): δ = 7.38 (d, J = 10.5, 2H), 7.02 (d, J = 10.5, 2H), 4.09 (s, 2H), 3.82 

(s, 3H). 13C NMR (DMSO, 126 MHz): 159.44, 130.66, 125.23, 114.61, 55.40, 42.67. 

(3-methoxyphenyl)methanamine hydrochloride: (1c)b 1H NMR (DMSO, 

500 MHz): δ = 8.46 (s, 3H), 7.31 (t, J = 8, 1H), 7.15 (s, 1H), 7.04 (d, J = 7, 

1H), 6.93 (d, J = 8, 1H), 3.97 (s, 2H), 3.76 (s, 3H). 13C NMR (DMSO, 126 MHz): 159.26, 135.69, 

129.58, 120.95, 114.48, 113.89, 55.20, 42.04. 

(2-methoxyphenyl)methanamine hydrochloride: (1d)b 1H NMR (DMSO, 500 

MHz): δ = 8.38 (s, 3H), 7.39 (m, 2H), 7.06 (d, J = 10, 1H), 6.97 (t, J = 9.5, 1H), 

3.94 (s, 2H), 3.83 (s, 3H). 13C NMR (DMSO, 126 MHz): 157.13, 130.24, 121.73, 120.23, 110.87, 

55.52, 37.42. 

p-tolylmethanamine hydrochloride: (1e)b 1H NMR (DMSO, 500 MHz): δ = 

8.57 (s, 3H), 7.56 (d, J = 7.5, 2H), 7.41 (d, J = 8, 2H), 4.14 (s, 2H), 2.70 (s, 3H). 

13C NMR (DMSO, 126 MHz): 137.70, 131.20, 129.07, 129.01, 41.89, 20.82. 

m-tolylmethanamine hydrochloride: (1f)a 1H NMR (DMSO, 500 MHz): δ = 

8.61 (s, 3H), 7.29 (m, 3H), 7.17 (d, J = 7.5, 1H), 3.94 (s, 2H), 2.30 (s, 3H). 13C NMR (DMSO, 126 

MHz): 137.42, 133.87, 129.28, 128.65, 128.18, 125.74, 41.96, 20.71. 
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o-tolylmethanamine hydrochloride: (1g)c 1H NMR (DMSO, 500 MHz): δ = 8.46 

(s, 3H), 7.42 (d, J = 7, 1H), 7.25 (m, 3H), 3.99 (s, 2H), 2.35 (s, 3H). 13C NMR 

(DMSO, 126 MHz): 136.39, 132.16, 130.03, 129.02, 128.16, 125.75, 39.32, 18.57. 

4-(aminomethyl)aniline dihydrochloride: (1h)b 1H NMR (D2O, 500 MHz): 

δ = 7.20 (d, J = 7, 2H), 6.80 (d, J = 10, 2H), 3.99 (s, 2H). 13C NMR (D2O, 126 

MHz): 147.16, 130.36, 130.32, 123.26, 116.59, 42.89. 

3-(aminomethyl)aniline dihydrochloride: (1i) 1H NMR (D2O, 500 MHz): δ 

= 7.25 (t, J = 9.5, 1H), 6.84 (m, 3H), 4.04 (s, 2H). 13C NMR (D2O, 126 MHz): 

147.04, 134.09, 130.34, 119.53, 116.99, 116.36, 43.23. HRMS (ESI), calc. for C7H11N2Cl+: 

calculated 123.0917; found 123.0922. 

 (4-fluorophenyl)methanamine hydrochloride: (1j)b 1H NMR (DMSO, 500 

MHz): δ = 8.42 (s, 3H), 7.55 (m, 2H), 7.26 (m, 2H), 4.00 (s, 2H). 13C NMR 

(DMSO, 126 MHz): 162.07 (d, J = 306.3), 131.43 (t, J = 8.7), 130.51 (d, J = 2.8), 115.35 (dd, J = 

26.9, 6.1), 41.36 (t, J = 7.1). 19F NMR (DMSO, 470 MHz): δ = -114.47. 

 (3-chlorophenyl)methanamine hydrochloride: (1k)c 1H NMR (DMSO, 500 

MHz): δ = 8.55 (s, 3H), 7.64 (s, 1H), 7.46 (m, 3H), 4.02 (s, 2H). 13C NMR 

(DMSO, 126 MHz): 136.64, 132.99, 130.35, 128.91, 128.22, 127.76, 41.42. 

(4-(trifluoromethyl)phenyl)methanamine hydrochloride: (1l)b 1H NMR 

(DMSO, 500 MHz): δ = 8.54 (s, 3H), 7.79 (d, J = 7.5, 2H), 7.73 (d, J = 7, 2H), 

4.12 (s, 2H). 13C NMR (DMSO, 126 MHz): 139.09, 129.80, 128.77 (q, J = 31.5), 125.28 (q, J = 

3.8), 124.11 (q, J = 272), 41.51. 19F NMR (DMSO, 470 MHz): δ = 61.50. 

naphthalen-1-ylmethanamine hydrochloride: (1m)b 1H NMR (DMSO, 500 

MHz): δ = 8.58 (s, 3H), 8.15 (d, J = 8, 1H), 7.99 (m, 2H), 7.61 (m, 4H), 4.51 (s, 
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2H). 13C NMR (DMSO, 126 MHz): 133.19, 130.66, 130.14, 128.95, 128.62, 127.24, 126.72, 

126.19, 125.35, 123.48, 39.15. 

(4-(methoxycarbonyl)phenyl)methanaminium chloride: (1n)b 1H NMR 

(DMSO, 500 MHz): δ = 8.75 (s, 3H), 7.96 (d, J = 8.5, 2H), 7.67 (d, J = 8, 2H), 

4.09 (s, 2H), 3.85 (s, 3H). 13C NMR (DMSO, 126 MHz): 165.89, 129.37, 129.21, 129.18, 52.24, 

41.68.  

2-phenylethan-1-amine hydrochloride: (1o)b 1H NMR (DMSO, 500 MHz): δ 

= 8.28 (s, 3H), 7.32 (m, 2H), 7.24 (m, 3H), 2.96 (m, 4H). 13C NMR (DMSO, 126 

MHz): 137.52, 128.63, 128.61, 126.68, 39.93, 32.93.  

3-phenylpropan-1-amine hydrochloride: (1p)b 1H NMR (DMSO, 500 MHz): 

δ = 8.19 (s, 3H), 7.29 (m, 2H), 7.19 (m, 3H), 2.74 (m, 2H), 2.64 (m, 2H), 1.87 

(m, 2H). 13C NMR (DMSO, 126 MHz): 140.94, 128.39, 128.28, 125.99, 38.27, 31.92, 28.80. 

cyclohexylmethanamine hydrochloride: (1q)b 1H NMR (DMSO, 500 MHz): δ = 

8.05 (s, 3H), 2.60 (d, J = 6.4, 2H), 1.70 (m, 4H), 1.58 (m, 2H), 1.15 (m, 3H), 0.90 

(m, 2H). 13C NMR (DMSO, 126 MHz): 44.35, 35.37, 29.83, 25.67, 25.07. 

 ethanamine hydrochloride: (1r)d 1H NMR (DMSO, 500 MHz): δ = 8.02 (s, 3H), 

2.79 (q, J = 7.5, 2H), 1.15 (t, J = 7.3, 3H). 1H NMR (D2O, 500MHz): δ = 3.03 (qd, J = 7.5, 2H), 

1.26 (t, J = 7, 3H).  13C NMR (DMSO, 126 MHz): 34.02, 12.51. 

2,2-dimethylpropan-1-amine hydrochloride: (1s)c 1H NMR (DMSO, 500 MHz): δ 

= 8.11 (s, 3H), 2.58 (s, 2H), 0.94 (s, 9H). 13C NMR (DMSO, 126 MHz): 49.68, 30.13, 

26.91. 
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butan-1-amine hydrochloride: (1t)e 1H NMR (DMSO, 500 MHz): δ = 8.13 (s, 

3H), 2.72 (t, J = 8.6, 2H), 1.53 (m, 2H), 1.31 (m, 2H), 0.87 (t, J = 8.8, 3H). 13C NMR (DMSO, 126 

MHz): 38.38, 28.98, 19.18, 13.51. 

pentan-1-amine hydrochloride: (1u)f 1H NMR (DMSO, 500 MHz): δ = 8.12 (s, 

3H), 2.71 (t, J = 7.5, 2H), 1.55 (m, 2H), 1.27 (m, 4H), 0.86 (t, J = 6.8, 3H). 13C NMR (DMSO, 126 

MHz): 38.62, 28.01, 26.57, 21.66, 13.76. 

hexan-1-amine hydrochloride: (1v)f 1H NMR (DMSO, 500 MHz): δ = 8.13 

(s, 3H), 2.71 (t, J = 7.3, 2H), 1.55 (m, 2H), 1.25 (m, 8H), 0.85 (t, J = 6.8, 3H). 13C NMR (DMSO, 

126 MHz): 38.67, 31.07, 28.23, 26.92, 25.86, 22.00, 13.94. 

1-[4-(aminomethyl)phenyl]ethan-1-one hydrochloride: (1w)g 1H NMR 

(DMSO, 500 MHz): δ = 8.51 (s, 3H), 7.97 (d, J = 8.5, 2H), 7.66 (d, J = 8, 2H), 

4.09 (s, 2H), 2.58 (s, 3H). 13C NMR (DMSO, 126 MHz): 197.63, 139.23, 136.55, 129.08, 128.28, 

41.68, 26.83. ATR-IR (ATR): 1696.80 cm-1 (C=O). 

 

 

HR-MS data 

aBornschein, C.; Werkmeister, S.; Junge, K.; Beller, M. TBAF-catalyzed hydrosilylation for the 

reduction of aromatic nitriles. New J. Chem. 2013, 37, 2061-2065. 

bBornschein, C.; Werkmeister, S.; Wendt, B.; Jiao, H.; Alberico, E.; Baumann, W.; Junge, H.; 

Junge, K.; Beller, M. Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with 

a well-defined iron pincer complex. Nat. Comm. 2014, 5, 1-11. 

cGandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. Boron-catalyzed silylative reduction of 

nitriles in accessing primary amines and imines. J. Org. Chem. 2015, 80, 7281-7287. 
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dJackson, D. M.; Ashley, R. L.; Brownfield, C. B.; Morrison, D. R.; Morrison, R. W. Rapid 

conventional and microwave-assisted decarboxylation of l-histidine and other amino acids via 

organocatalysis with r-carvone under superheated conditions. Synthetic Communications 2015, 45, 

2691-2700. 

eChen, X.; Zhou, S.; Qian, C. Hydrogen transfer reduction of nitriles in DBU based ionic liquids. 

Arkivoc, 2012, 8, 128-136. 

f Werkmeister, S.; Junge, K.; Wendt, B.; Spannenberg, A.; Jiao, H.; Bornschein, C.; Beller, M. 

Chem. Eur. J. 2014, 20, 4227-4231. 

gMurai, N.; Miyano, M.; Yonaga, M.; Tanaka, K. One-Pot primary aminomethylation of aryl and 

heteroaryl halides with sodium phthalimidomethyltrifluoroborate. Org. Lett. 2012, 14 (11), 2818-

2821. 

 

*See paper for actual substrate 1H NMR spectra 
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1H NMR Spectrum, 500 MHz, C6D6 (2-py) 

 

 

 

 

 

 

 

 

 

 

 

 

 

13C NMR Spectrum, 126 MHz, C6D6 (2-py) 

Figure 4.6. 1H NMR (C6D6, 500 MHz) spectrum of (MesCCC)Co-py (2-py). 

Figure 4.7. 13C NMR (C6D6, 126 MHz) spectrum of (MesCCC)Co-py (2-py). 
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1H NMR Spectrum, 500 MHz, C6D6 (2-NCArOCH3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. 1H NMR (C6D6, 500 MHz) spectrum of (MesCCC)Co(p-NCC6H4OCH3) (2-NCArOCH3). 

(*denotes THF, ^denotes H grease). 

* 
^ ^ 
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1H NMR Spectra, 500 MHz, C6D6. 1 reaction with 2 equiv. NaHBEt3 and 2-py reaction with 

BEt3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1H NMR Spectrum  

Figure 4.9. 1H NMR (C6D6, 500 MHz) spectrum of 1 reaction with 2 equiv of NaHBEt3 (1.0 M 

toluene) (top) and 2-py reaction with BEt3 (1.0 M hexanes) (bottom). 

1H NMR Spectrum  
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Para-hydrogen (p-H2) Induced Polarization (PHIP) NMR Studies 

Sample preparation using 1. A standard J. Young NMR tube was charged with 4-

methoxybenzonitrile (17.6. mg, 0.133 mmol), KOtBu (1.0 mg, 0.0089 mmol) and 1 (2.0 mg, 

0.0027 mmol) in ca. ½ ml of toluene-d8.  A solution of NaHBEt3 (1.0 M in toluene, 5.3 μL, 0.0053 

mmol) was added and the color the solution turned brown.  The sample was subjected to two 

freeze-pump-thaw cycles and p-H2 gas (1 atm) was added at 77K on a high-vacuum line. The 

sample was kept frozen in liquid nitrogen and warmed to ambient temperature and shaken 

immediately prior to inserting into the NMR spectrometer (Following ALTADENA conditions).  

No polarization was observed at 30 oC and 60 oC.  Upon warming the probe temperature to 85 oC, 

polarization of the imine functionality was observed (see Figure S11). In the case of 4-

(trifluoromethyl)benzonitrile, polarization of the imine functionality was observed upon warming 

the probe temperature to 80 oC (see Figure S12). 

Sample preparation using 2-py. A standard J. Young NMR tube was charged with 4-

methoxybenzonitrile (9.7 mg, 0.0731 mmol), NaOtBu (0.4 mg, 0.0416 mmol), 2-py (1.0 mg, 

0.00146 mmol) and BEt3 (1.0 M in hexane, 3.0 μL, 0.003 mmol) in ca. 1 ml of toluene-d8.  The 

sample was subjected to two freeze-pump-thaw cycles and p-H2 gas (1 atm) was added at 77K on 

a high-vacuum line.  The sample was kept frozen in liquid nitrogen and warmed to ambient 

temperature and shaken immediately prior to inserting into the NMR spectrometer. No polarization 

was observed at 25 oC. Upon warming the probe temperature to 65 oC, 70 oC and 75 oC, 

polarization of the H atoms of the imine functionality were observed (at 75 oC, the signals were 

more pronounced and are depicted in Figure S13). In the case of 4-(trifluoromethyl)benzonitrile, 

polarization of the imine functionality was observed upon warming the probe temperature to 55 

oC and 65 oC.  At 65 oC the imine signals were more pronounced and are depicted in Figure S14. 
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NMR Spectrometer. All PHIP NMR data presented herein were collected on a Varian UNITY 

Inova 600 NB High-Resolution NMR Console with a 5mm Varian AutoTuneX 1H/X PFG Z probe, 

X=31P-15N. All spectra were collected in toluene-d8 and the residual solvent resonance (C6D5CD3) 

was referenced to 2.08 ppm.  1H NMR spectra were recorded using 45o pulse angle. The spectral 

window of 30ppm was used in both proton and 1H-OPSY experiments.  1H-OPSY NMR data was 

collected via a double quantum coherence pathway using the pulse sequence below (Figure S10).  

The 1H-OPSY spectra are anti-phase peaks, and they are displayed with absolute mode (phase 

correction) in the following spectra.79,80 

 

Generation of para-hydrogen. A parahydrogen converter was used to generate the para-H2 

enriched hydrogen gas. This consisted of copper tubing filled with a hydrous ferric oxide catalyst 

that was cooled to 14 K using a closed-cycle helium cryostat. A detailed description of the 

converter can be found in Tom et al., which was able to consistently convert naturally occurring 

Figure 4.10. Double quantum OPSY pulse sequence (OPSY-d): the vertical bar at 1H channel represents 

/2 pulse.  Phase cycle: 1: (y)4(x)4, 2: (x)4(y)4, rec: (x)4(y)4.   Z Gradient:  50 G/cm rectangular 

gradient was used.  First gradient was applied for 1ms in the opposite direction of the second gradient 

which was applied for 2ms.  0.5ms gradient recovery delays were used after each gradient.  The 

acquisition time was 4 seconds and no delay between scans was used. 
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hydrogen gas (3:1 ortho:para) to 99.99% para-H2.81 For practical and convenience purposes, a 

lecture bottle was filled with p-H2 to 50 psi.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1H NMR Spectrum (45o pulse)  

Figure 4.11. 1H NMR (C7D8, 600 MHz, 45o pulse) spectrum of 1 (2 mol%), NaHBEt3 (4 mol%), KOtBu 

(6 mol%) and 4-methoxybenzonitrile under 4 atm of p-H2 at 85 oC (top). 1H-OPSY NMR (C7D8, 600 

MHz) spectrum of 1 (2 mol%), NaHBEt3 (4 mol%), KOtBu (6 mol%) and 4-methoxybenzonitrile under 

4 atm of p-H2 at 85 oC (bottom). 

 

1H-OPSY NMR Spectrum  
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1H NMR Spectrum (45o pulse)  

Figure 4.12. 1H NMR (C7D8, 600 MHz, 45o pulse) spectrum of 2-py (2 mol%), BEt3 (4 mol%), NaOtBu 

(6 mol%) and 4-methoxybenzonitrile under 4 atm of p-H2 at 75 oC. 
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Amine concentration experiment with 4-methoxybenzylamine and 4-tolunitrile or 4-

methoxybenzonitrile 

A standard J. Young NMR tube was charged with 4-tolunitrile (4.3 mg, 0.0367 mmol) or 4-

methoxybenzonitrile (4.9 mg, 0.0367 mmol), 4-methoxybenzylamine (5 μL, 0.367 mmol), 

NaOtBu (0.2 mg, 0.002 mmol), 2-py (0.5 mg, 0.0007 mmol) and BEt3 (1.0 M in hexane, 1.5 μL, 

0.0015 mmol) in ca. ½ mL of toluene-d8.  The sample was subjected to two freeze-pump-thaw 

cycles and H2 gas (1 atm) was added at 77K on a high-vacuum line. After heating the reaction for 

9 h in at 115 oC, the H2 was vented and complete conversion to the primary amine product was 

observed for 4-tolunitrile by GC-MS analysis. When 4-methoxybenzonitrile was used, only the 

amine product was observed by GC-MS. 

In situ NMR monitoring of a catalytic run 

A standard J. Young NMR tube was charged with 4-methoxybenzonitrile (4.9 mg, 0.0365 mmol), 

NaOtBu (0.2 mg, 0.002 mmol), 2-py (0.5 mg, 0.0007 mmol), BEt3 (1.0 M in hexane, 1.5 μL, 

0.0015 mmol) and triphenyl methane (4.46 mg, 0.0182 mmol, internal standard) in ca. ½ mL of 

toluene-d8.  The sample was subjected to two freeze-pump-thaw cycles and H2 gas (1 atm) was 

added at 77K on a high-vacuum line. After warming the NMR tube to ambient temperature, the 

reaction was heated in a 115 oC oil bath.  For each time point, the reaction was removed from the 

oil bath, allowed to cool to ambient temperature, washed with hexanes to remove the excess oil 

and an 1H NMR spectrum was recorded (Figure S15). 
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In situ NMR monitoring of a catalytic run 
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Figure 4.13. 1H NMR (C7D8, 500 MHz) spectra of 2-py (2 mol%), BEt3 (4 mol%), NaOtBu (6 mol%) 

and 4-methoxybenzonitrile under 4 atm of H2 taken a different timepoints during the hydrogenation 

reaction. 
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1H NMR data (in toluene-d8, 25 °C, 500 MHz):  1H δ = 8.02 (s, 1H), 7.68 (d, J = 8.8, 2H), 7.21 

(d, J = 8.8, 2H), 6.77 (d, J = 8.6, 2H), 6.70 (d, J = 8.7, 2H), 4.61 (s, 2H), 3.34 (s, 3H), 3.25 (s, 

3H). 

 

 

 

 

 

 

 

 

Figure 4.14. 1H NMR (C7D8, 500 MHz) spectra N-(4-methoxybenzyl)-1-(4-

methoxyphenyl)methanimine. (*denotes H grease) 
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Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2002; pp 

647−692. 

38. Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.; Fout, A. R. A Highly Chemoselective Cobalt 

Catalyst for the Hydrosilylation of Alkenes using Tertiary Silanes and Hydrosiloxanes. 

ACS Catal. 2016, 6, 3589−3593. 

39. Ibrahim, A. D.; Entsminger, S. W.; Fout, A. R. Insights into a Chemoselective Cobalt 

Catalyst for the Hydroboration of Alkenes and Nitriles. ACS Catal. 2017, 7, 3730−3734. 

40. Kovtunov, K. V.; Beck, I. E.; Bukhtiyarov, V. I.; Koptyug, I. V. Observation of 

Parahydrogen-Induced Polarization in Heterogeneous Hydrogenation on Supported Metal 

Catalysts. Angew. Chem., Int. Ed. 2008, 47, 1492−1495. 



 

125 
 

41. Balu, A. M.; Duckett, S. B.; Luque, R. Para-hydrogen induced polarisation effects in liquid 

phase hydrogenations catalysed by supported metal nanoparticles. Dalton Trans. 2009, 

5074−5076. 

42. Irfan, M.; Eshuis, N.; Spannring, P.; Tessari, M.; Feiters, M. C.; Rutjes, F. P. J. T. Liquid-

Phase Parahydrogen-Induced Polarization (PHIP) with Ligand-Capped Platinum 

Nanoparticles. J. Phys. Chem. C 2014, 118, 13313−13319. 

43. Burueva, D. B.; Salnikov, O. G.; Kovtunov, K. V.; Romanov, A. S.; Kovtunova, L. M.; 

Khudorozhkov, A. K.; Bukhtiyarov, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I.; Koptyug, I. 

V. Hydrogenation of Unsaturated Six-Membered Cyclic Hdyrocarbons Studied by the 

Parahydrogen-Induced Polarization Technique. J. Phys. Chem. C 2016, 120, 

13541−13548. 

44. Salnikov, O. G.; Liu, H.; Fedorov, A.; Burueva, D. B.; Kovtunov, K. V.; Copéret, C.; 
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Chapter 5 

Cobalt Catalyzed Semi-Hydrogenation of Nitriles and Lewis Acid Controlled Condensation 

to Secondary Aldimines 

5.1 Introduction 

 Nitrile hydrogenation presents a particular challenge to chemists due to the complex 

mixture of products that can be formed. Due to the two-step nature of the hydrogenation the 

primary imine intermediate is susceptible not only to degradation but also nucleophilic attack by 

the primary amine. The secondary aldimine produced from this condensation reaction can also be 

further hydrogenated or functionalized to give the secondary amines and tertiary amines, 

respectively. Several methods, including the addition of base and increasing temperature and 

hydrogen pressure, can be used to control selectivity for the primary amines but the secondary 

aldimines also represent interesting synthetic products.1-2 

 Imines are reactive intermediates which can easily undergo further functionalization 

including condensations, cyclizations, C‒H additions, [3+2] cycloadditions, reductive and A3 

coupling, and enantioselective reduction and C‒C bond formation to name only a few.1-11 

However, this propensity to undergo further reactivity can also inhibit the synthesis and isolation 

Figure 5.1. Hydrogenation of nitriles. 
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of these products. Secondary aldimines, specifically, are often synthesized through the 

condensation of aldehydes with primary amines but can also be obtained from the aerobic 

oxidation of secondary amines, primary amines, or alcohols, the dehydrogenation of secondary 

amines, and a dehydrogenative synthesis from alcohols and primary amines has also recently been 

reported.12-20 Often these synthetic methods require multiple coupling partners and suffer from 

reduced functional group tolerance. The synthesis of secondary aldimines using nitriles, therefore, 

represents the most atom economical route to these products.1 

Homogenous catalysts capable of hydrogenating nitriles to primary amines are somewhat 

limited21-33 though it has lately been extended to also include first-row transition metal catalysts.34-

40 Beller, Milstein, and most recently our group have reported systems capable of hydrogenating 

nitriles selectively to primary amines using Fe,34-36 Mn,37 and Co.38-40 However, changing the 

selectivity to generate the secondary aldimines exclusively is not as straightforward as it might 

seem since over-hydrogenation to the secondary amines and tertiary amines is common for many 

catalysts.1 The synthesis of secondary aldimines from nitriles has been reported for Ru, Mo, Fe, 

and Ni catalysts.41-46 Cobalt catalysts capable of nitrile hydrogenation to primary amines have been 

reported38-40 but only one example selective for the secondary aldimines has been published.47 

We recently reported the selective hydrogenation of nitriles to primary amines using a 

Co(III) catalyst with in situ activator.40 The use of higher temperature and a base were found to be 

necessary to avoid secondary aldimine formation during the catalysis. Therefore, we were 

subsequently interested in determining if modification of the reaction parameters could generate 

the secondary aldimine product selectively. Herein, the hydrogenation of nitriles to primary imines 

and amines is followed by condensation to selectively form the secondary aldimine products. A 

distinct dependence on temperature and the identity and amount of Lewis acid was also discovered. 
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5.2 Optimization of Reaction Parameters and Substrate Scope 

 Our initial investigations into this transformation began with the optimized reaction 

parameters for primary amine selectivity previously reported, toluene at 115 oC, 8 h, 4 atm H2, 

(MesCCC)Co(III)Cl2py (2 mol%), NaHBEt3 (4 mol%), and KOtBu (6 mol%) (Table 1.1, Entry 1).40 

Benzonitrile was initially used as the model substrate for this reaction. Our previous studies 

identified that the secondary aldimine was obtained in the absence of base (Table 1.1, Entry 2). 

However, when extending these same reaction conditions to other substrates we discovered this 

was not always the case as a mixture of products was obtained (Table 1.1, Entry 3).   

Previous studies indicated a lower temperature generated more of the secondary aldimine 

product even in the presence of base.40 This phenomenon has also been observed and studied 

closely in the literature specifically with a ruthenium system.44 Lowering the reaction temperature 

to 80 oC still generated a substantial amount of primary amine but the amount of secondary 

aldimine produced did increase (Table 1.1, Entry 4). The reaction time was reduced to four hours 

since conversion was determined to be complete within that period (See 5.4 Experimental). Using 

the (MesCCC)Co(I)(py) catalyst previously reported with the addition of BEt3 in increased amounts 

(8 mol%) gave a similar result to starting from the Co(III) catalyst (Table 1.1, Entry 5).  

Figure 5.2. Hydrogenation of nitriles with (MesCCC)Co(I)(py). 
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Taking inspiration from our previous work, where different Lewis acids effected yield of 

the product, we hypothesized that the identity of the Lewis acid might have some effect. Adding 

BPh3 (4 mol%, 1:1 BEt3) to the Co(III) catalyzed reaction resulted in the selective formation of 

the secondary aldimine (Table 1.1, Entry 6). This indicates a distinct shift in the selectivity based 

on the identity of the Lewis acid. Due to the already complex reaction mixture a pre-formed Co(I) 

catalyst and BPh3 were used giving the same selective formation of the secondary aldimine (Table 

1.1, Entry 7). The optimal amount of BPh3 was found to be four equivalents (8 mol%) relative to 

catalyst as determined using multiple substrates. Limiting the reaction to one Lewis acid simplifies 

the possible interactions even though it prohibits starting with a bench stable pre-catalyst. 

Henceforth, we set out to determine the substrate scope of this reaction using (MesCCC)Co(I)(py) 

and BPh3.  

The optimized reaction conditions using (MesCCC)Co(I)(py) (2 mol%) (toluene, 80 oC, 4 

hrs, 4 atm H2, BPh3 (8 mol%)) were applied to a variety of substrates, both aromatic and aliphatic. 

Substitution in the ortho-, meta-, and para-positions was tolerated using methyl or methoxy groups 

with excellent yields (Table 5.2) The methoxy substituted aryl substrates required slightly longer 

reaction times to go to completion and the meta-substituted required a higher catalyst loading (4 

Table 5.1. Optimization of reaction parameters. 
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mol%) which was also observed in our previous nitrile hydrogenation studies.40 The sterically 

hindered ortho-substituted tolunitrile (Table 5.2) also required a slightly longer reaction time (6 

hrs) and a larger amount of Lewis acid (12 mol%, 6 equiv. to catalyst). The isolated yield (79%) 

was slightly lower for this particular substrate as well, though GC-MS conversion shows only the 

secondary aldimine product. Electron-withdrawing groups in the form of para-methylester and 

para-trifluoromethyl groups were also tolerated (Table 5.2). The latter with the optimized 

conditions and the former with a higher loading of Lewis acid and longer reaction time (12 mol%, 

6 hrs).  

Table 5.2. Nitrile hydrogenation substrate scope. 
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Applying nitrile hydrogenation systems to alkyl substrates presents a significant challenge. 

Many literature studies struggle to achieve high yields or even effective hydrogenation using these 

substrates. We found that much longer reaction times (16-20 hrs) were required to achieve 

adequate conversion along with slightly higher catalyst loadings (4 mol%) and elevated 

temperatures (100 oC). Cyclohexylnitrile was completely converted to its secondary aldimine 

based on GC-MS yields but the difficulty of isolating the reactive product gave a much lower yield 

(30%). The alkyl secondary aldimines decomposed quickly, even under an inert atmosphere, so an 

alternate method of purification was undertaken. The hydrochloride salts of the secondary amines 

were instead isolated and the yield of the reaction determined, similar to the method previously 

utilized for the isolation of the primary amines.40 This method was used for the four non-aryl 

substrates (Table 5.2). Few of the alkyl substrates went to complete conversion, even with 

increased catalyst loading, but no primary amines were detected by GC or GC-MS. This allowed 

for the isolation of the secondary amine hydrochloride salts with no primary amine salts present. 

The alkyl and aliphatic substrates were isolated in good yields (Table 5.2).  

Surprisingly, a number of substrates that were competent in our previous nitrile 

hydrogenation studies either did not yield the secondary aldimine or did not hydrogenate under the 

modified reaction conditions. For example, the aniline substrates were not hydrogenated at 80 oC. 

Increasing the temperature to 100 oC allowed for the hydrogenation to proceed for the meta 

substituted substrate, but only the primary amine was generated. Meta-chlorobenzonitrile gave 

similar results to the meta-aniline substrate. Napthylcyanide was hydrogenated at either 

temperature but only with selectivity for the primary amine.40 Interested in examining this 

transformation further mechanistic studies were carried out. 
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5.3 Mechanistic Insights 

 The specificity of this reaction for a single Lewis acid, BPh3, is distinctly different from 

our original studies. Optimization of the reaction conditions for nitrile hydrogenation to the 

primary amines revealed no dependence on the amount of Lewis acid and only a small amount of 

variability (±20%) in yield based on the identity of Lewis acid. However, in the case of our 

secondary aldimine studies a direct selectivity dependence on both the amount and type of Lewis 

acid was observed. The optimized catalytic conditions using BEt3 generated only 45% yield of the 

secondary aldimine (Table 5.3, Entry 1). Using those same conditions but substituting BPh3 gave 

quantitative yield of the secondary aldimine (Table 5.3, Entry 2). LiOTf, previously competent for 

nitrile hydrogenation to the primary amines, gave a very low yield of the secondary aldimine under 

these conditions (Table 5.3, Entry 3). Another Lewis acid that was previously competent for our 

Lewis acid-assisted nitrile hydrogenation, Ca(OTf)2, was unable to assist under these conditions 

and no conversion was observed (table 5.3, Entry 4).40 However, the lower solubility of these 

triflates at 80 oC versus 115 oC could also be contributing to the lack of reactivity. 

Table 5.3. Lewis acid dependence in catalysis. 
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Additionally, when more difficult substrates were addressed in this catalysis, a dependence 

on the amount of Lewis acid for selectivity was identified. Hydrogenating 4-MeEsterPhCN under 

regular catalytic conditions, with a slightly longer reaction time (6 h), generated only a small 

amount of the desired secondary aldimine product (30%) (Table 5.3, Entry 5). However, increasing 

the loading of BPh3 to 12 mol% instead gave the secondary aldimine exclusively (>99%) (Table 

5.3, Entry 6). Similarly, 2-MePhCN also required increased loading of the Lewis acid to achieve 

quantitative conversion to the secondary aldimine selectively (Table 5.3, Entry 7-8).  

These results suggest that both the identity and amount of Lewis acid plays an intimate role 

in the selectivity during catalysis. Since no previous Lewis acid dependence was determined when 

hydrogenating the nitriles to primary amines selectively we propose that BPh3 is helping to 

increase the rate of the condensation reaction. Examples of this reactivity in the literature require 

much longer reaction times than we observed which also helps to indicate the Lewis acid’s role in 

both the condensation reaction and nitrile hydrogenation. The reaction, as previously established, 

is in fact a Lewis-acid assisted process since hydrogenation does not occur in the absence of a 

Lewis acid.  

We initially proposed that the interaction of the Lewis acid helps promote the side-on 

coordination of the nitrile to the metal center and activate it to undergo subsequent hydrogenation 

to the primary imine (Figure 5.3). Based on this work and the Lewis acid dependence discovered 

we also propose that BPh3 places an essential role in the condensation reaction between the primary 

imine and primary amine. Unfortunately, we were unable to determine its exact role but 

hypothesize that it could act either through sequestration of the generated NH3 or stabilization of 

reactive intermediates. 
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 Overall a very efficient nitrile hydrogenation reaction with mild conditions was carried out 

using (MesCCC)Co(I)(py) as the catalyst with BPh3 playing an active role during the 

transformation. The reaction times were significantly shorter than other previously published 

nitrile hydrogenation catalysts and is similar to the two ruthenium literature examples in terms of 

hydrogen pressure.41-46 This study also represents, to our knowledge, only the second example of 

a cobalt catalyst performing the hydrogenation of nitriles with selectivity to the secondary 

aldimines. Investigations into the mechanism and cross-coupled or cross-condensation of nitriles 

with other amines to create asymmetric secondary aldimines is currently on-going.  

 

5.4 Experimental Section 

General Considerations. All manipulations of air- and moisture-sensitive compounds were 

carried out in the absence of water and dioxygen in an MBraun inert atmosphere drybox under a 

dinitrogen atmosphere except where specified otherwise.  All glassware was oven dried for a 

minimum of 8 h and cooled in an evacuated antechamber prior to use in the drybox. Solvents for 

sensitive manipulations were dried and deoxygenated on a Glass Contour System (SG Water USA, 

Nashua, NH) and stored over 4 Å molecular sieves purchased from Strem following a literature 

procedure prior to use.48 Toluene-d8, benzene-d6, and chloroform-d were purchased from 

Cambridge Isotope Labs and were degassed and stored over 4 Å molecular sieves prior to use.  

Triethylborane solution (1.0 M in hexanes) was purchased from Sigma-Aldrich.  Triphenylborane 

Figure 5.3. Proposed coordination of Lewis acid to the cobalt-bound nitrile. 
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was purchased from Oakwood Chemical and re-crystallized from diethyl ether prior to use. 

Lithium triflate (anhydrous) and calcium triflate (anhydrous) were purchased from Sigma-Aldrich 

and used as received.  Celite® 545 (J. T. Baker) was dried in a Schlenk flask for 24 h under 

dynamic vacuum while heating to at least 150 ˚C prior to use in a glovebox. All nitrile substrates 

were purchased from Sigma-Aldrich or Alfa Aesar and the solids were re-crystallized and dried 

prior to use.  NMR Spectra were recorded at room temperature on a Varian spectrometer operating 

at 500 or 600 MHz (1H NMR) and 126 MHz (13C NMR) (U500, VXR500, UI500NB, UI600) and 

referenced to the residual solvent. Potassium graphite (KC8)
49 was prepared according to literature 

procedures. (MesCCC)CoCl2py (1)50 and (MesCCC)Co(I)(Py)40 were prepared according to 

literature procedures. 

 

 

 

 

 

Table 5.4. Optimization of BPh3 amount. 
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Literature Procedure - Synthesis of Cobalt(I) Complexes40 

Preparation of (MesCCC)Co-py:  A 20 mL scintillation vial was charged with (MesCCC)CoCl2py50 

(0.100 g, 0.133 mmol) and THF (10 mL).  A suspension of KC8 (0.038 g, 0.281 mmol) in THF (5 

mL) was added to the mixture. After stirring for 2 hours, the dark brown suspension was filtered 

over Celite and concentrated to a dark solid under reduced pressure.  The product was then 

extracted into benzene (3 x 5 mL), filtered over Celite, and lyophilized under reduced pressure to 

a dark brown solid (0.072 g, 0.105 mmol, 80%).  NMR data (in benzene-d6, 25 °C):  1H δ = 8.03 

(d, J = 5.4, 2H), 7.79 (t, J = 7.4, 1H), 7.65 (d, J = 7.6, 2H), 7.23 (t, J = 7.8, 3H), 7.00 (t, J = 7.5, 

3H), 6.66 (d, J = 7.8, 4H), 6.31 (s, 5H), 1.96 (s, 6H), 1.83 (s, 12H). 13C δ = 147.4, 139.7, 137.1, 

136.1, 135.1, 133.1, 129.1, 128.6, 127.5, 122.3, 122.2, 110.0, 108.5, 105.9, 20.9, 17.8. HRMS 

(ESI), calc. for C43H39CoN5 (M + H)+: calculated 684.2537; found 684.2543. 

Table 5.5. Substrates not selective for the secondary aldimine. 
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General Procedure: Nitrile Hydrogenation and Condensation 

A 50 mL schlenk tube was charged with (MesCCC)Co(I)(py) (2 mg, 0.0027 mmol) in toluene (2 

mL). BPh3 (8-12 mol%) was dissolved in toluene (1 mL) and added to the flask. The nitrile was 

added and the total volume raised to 4 mL of toluene. It was then subjected to two freeze pump 

thaw cycles and placed under 1 atm of H2 gas at 77K. The mixture was allowed to warm to room 

temperature, resulting in 4 atm of H2 gas. The flask was heated in an oil bath (80 – 100 oC, 4 – 

20hrs). The reaction was then removed from the oil bath, cooled to room temperature, brought into 

the glovebox, the H2 gas vented, and the reaction analyzed by GC-MS to determine conversion. 

The volatiles were removed under reduced pressure and hexanes or diethyl ether added to the 

remaining oil before filtering through celite. After the volatiles were removed a very pale yellow 

solid or liquid was analyzed by 1H, 13C, and 19F NMR spectroscopy where appropriate. All catalytic 

yields are the average of duplicate or triplicate isolated runs. The spectra were compared to 

published literature examples of these species that already contain HR-MS data.a-c Substrates 

Bis(cyclohexylmethyl)amine hydrochloride, diheptylamine hydrochloride, bis(3-

phenylpropyl)amine hydrochloride, and diphenethylamine hydrochloride were not found in the 

literature and so was further characterized by HR-MS. 

 

Experimental for Secondary Imine (Substrates) 

aN-benzylidenebenzylamine: 1H NMR (CDCl3, 500 MHz): δ = 8.32 (s, 1H), 7.74 (m, 2H), 7.34 

(dd, J = 5.1, 1.9 Hz, 4H), 7.27 (m, 2H), 7.19 (m, 2H), 4.75 (s, 2H). 13C NMR (CDCl3, 126 MHz): 

162.13, 139.38, 136.23, 130.90, 128.3, 128.62, 128.39, 128.09, 127.11, 65.20. 

aN-(4-methoxybenzylidene)-1-(4-methoxyphenyl)methylamine: 1H NMR (CDCl3, 500 MHz): 

δ = 8.29 (s, 1H), 7.71 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 6.87 
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(d, J = 8.5 Hz, 2H), 4.72 (s, 2H), 3.83 (s, 3H), 3.79 (s, 3H). 13C NMR (CDCl3, 126 MHz): 161.72 

161.05, 158.70, 131.73, 129.91, 129.27, 129.24, 113.96, 64.54, 55.47, 55.40. 

aN-(3-methoxybenzylidene)-1-(3-methoxyphenyl)methylamine: 1H NMR (CDCl3, 500 MHz): 

δ = 8.36 (s, 1H), 7.4 (q, J = 1.2 Hz, 1H), 7.3 (m, 3H), 6.99 (dq, J = 7.6, 1.4 Hz, 2H), 6.92 (m,2H), 

6.82 (dd, J = 8.2, 2.1 Hz, 1H), 4.81 (s, 2H), 3.85 (s, 3H), 3.81 (s, 3H). 13C NMR (CDCl3, 126 

MHz): 126.18, 159.98, 159.86, 140.92, 137.66, 134.36, 129.69, 129.62, 127.49, 121.81, 120.44, 

117.74, 113.72, 112.55, 111.65, 65.04, 55.52, 55.35. 

bN-(4-methylesterbenzylidene)-1-(4-methylesterphenyl)methylamine: 1H NMR (CDCl3, 500 

MHz): δ = 8.46 (s, 1H), 8.10 (d, J = 8 Hz, 2H), 8.03 (d, J = 8 Hz, 2H), 7.86 (d, J = 8 Hz, 2H), 7.43 

(d, J = 8 Hz, 2H), 7.34 (d, J = 6.8 Hz, 2H), 4.90 (s, 2H), 3.94 (s, 3H), 3.91 (s, 3H). 13C NMR 

(CDCl3, 126 MHz): 167.09, 144.47, 140.01, 133.95, 132.33, 130.13, 128.42, 128.04, 127.74, 

127.38, 127.08, 125.97, 52.54, 52.34. 

aN-(4-methylbenzylidene)-1-(4-methylphenyl)methylamine: 1H NMR (CDCl3, 500 MHz): δ = 

8.35 (s, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.23 (m, 4H), 7.16 (d, J = 7.8 Hz, 2H), 4.78 (s, 2H), 2.39 (s, 

3H), 2.35 (s, 3H). 13C NMR (CDCl3, 126 MHz): 161.82, 141.10, 136.64, 136.44, 133.70, 129.42, 

129.27, 128.35, 128.07, 64.95, 21.66, 21.26. 

aN-(3-methylbenzylidene)-1-(3-methylphenyl)methylamine: 1H NMR (CDCl3, 500 MHz): δ = 

8.38 (s, 1H), 7.67 (m, 1H), 7.56 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.7 Hz, 1H), 7.31 (m, 1H), 7.25 

(m, 1H), 7.16 (m, 2H), 7.10 (d, J = 7.4 Hz, 1H), 4.80 (s, 2H), 2.40 (s, 3H), 2.37 (s, 3H). 13C NMR 

(CDCl3, 126 MHz): 162.22, 139.29, 138.45, 138.22, 136.26, 131.67, 128.88, 128.58, 128.51, 

127.84, 127.58, 125.98, 125.19, 65.27, 21.55, 21.38. 

aN-(2-methylbenzylidene)-1-(2-methylphenyl)methylamine: 1H NMR (CDCl3, 500 MHz): 

Small amount of BPh3 present. δ = 8.69 (s, 1H), 7.95 (dd, J = 7.8, 0.8 Hz, 1H), 7.38 (dd, J = 7.9, 
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1.4 Hz, 1H), 7.28 (m, 3H), 7.17 (m, 2H), 7.16 (m, 1H), 4.82 (s, 2H), 2.50 (s, 3H), 2.38 (s, 3H). 13C 

NMR (CDCl3, 126 MHz): 160.66, 137.84, 137.74, 136.22, 133.70, 130.93, 130.39, 130.22, 128.35, 

127.74, 127.15, 126.31, 126.19, 63.44, 19.54, 19.45. 

cN-(4-trifluoromethylbenzylidene)-1-(4-trifluoromethylphenyl)methylamine: 1H NMR 

(CDCl3, 500 MHz): δ = 8.47 (s, 1H), 7.91 (d, J = 8 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 

8.1 Hz, 2H), 7.48 (d, J = 8 Hz, 2H), 4.90 (s, 2H). 19F NMR (CDCl3, 470 MHz): -62.48, -62.86. 13C 

(CDCl3, 126 MHz): 161.23, 143.14, 139.15, 128.67, 128.27, 125.82, 125.63, 64.57. 

 

Alphatic and alkyl substrates were isolated as the hydrochloride salts of the secondary amines. 

Bis(cyclohexylmethyl)amine hydrochloride: 1H NMR (DMSO, 500 MHz): δ = 2.65 (m, 2H), 

2.42 (m, 2H), 1.73 (m, 12H), 1.26 (m, 8H), 0.80 (m, 3H). HRMS (ESI), calc. for C14H27N (M - 

HCl)+: 209.21, found 209.38. 

Diheptylamine hydrochloride: 1H NMR (DMSO, 500 MHz): δ = 2.80 (s, 4H), 1.55 (s, 4H), 1.27 

(b, 12H), 0.88 (s, 6H). 

Bis(3-phenylpropyl)amine hydrochloride: 1H NMR (DMSO, 500 MHz): δ = 8.32 (b, 2H), 7.29 

(m, 4H), 7.21 (m, 6H), 2.83 (t, J = 7.2 Hz, 2H), 2.75 (t, J = 7 Hz, 2H), 2.64 (t, J = 7.5 Hz, 4H), 

1.93 (m, 2H), 1.86 (m, 2H). 13C NMR (DMSO, 126 MHz): 140.89, 128.40, 128.26, 126.01, 46.31, 

38.27, 32.04, 31.88, 28.74, 27.24. HRMS (ESI), calc. for C18H24N (M - Cl)+: 254.19, found 255.82. 

Diphenethylamine hydrochloride: 1H NMR (DMSO, 500 MHz): δ = 8.54 (b, 2H), 7.33 (m, 4H), 

7.25 (m, 6H), 3.12 (b, 2H), 3.00 (t, J = 6.8 Hz, 4H), 2.91 (m, 2H). 13C NMR (DMSO, 126 MHz): 

137.52, 128.60, 126.66, 47.83, 32.93, 31.70. HRMS (ESI), calc. for C16H20N (M - Cl)+: 226.16, 

found 226.82. 
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HR-MS Data 

aHuang, B.; Tian, H.; Lin, S.; Xie, M.; Yu, X.; Xu, Q. Cu(I)/TEMPO-catalyzed aerobic oxidative 

synthesis of imines directly from primary and secondary amines under ambient and neat 

conditions. Tetrahedron Lett. 2013, 54, 2861-2864. 

bBosanac, T.; Wilcox, C. S. Precipiton Reagents: Precipiton Phosphines ofr Solution-Phase 

Reductions. Org. Lett. 2004, 6, 2321-2324. (But it cites this one: Ashton, P. R.; Glink, P. T.; 

Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D. J. Self-Assembling [2]- and 

[3]Rotzxanes from Secondary Dialkylammonium Salts and Crown Ethers**. Chem. Eur. J. 1996, 

2, 729-736. 

cMarui, K.; Nomoto, A.; Akashi, H.; Ogawa, A. Green Oxidation of Amines to Imines Based on 

the Development of Novel Catalytic Systems Using Molecular Oxygen or Hydrogen Peroxide. 

Synthesis, 2016, 48, 31-42. 
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