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ABSTRACT 

 

Listed as one of the Essential Climate Variables by the Global Climate Observing System, 

the effective radius (Re) of the cloud drop size distribution plays an important role in the energy 

and water cycles of the Earth system. Re is retrieved from several passive sensors, such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS), based on a visible and near-infrared 

bi-spectral technique that had its foundation more than a quarter century ago. This technique makes 

a wide range of assumptions, including 1-D radiative transfer, assumed single-mode drop size 

distribution, and cloud horizontal and vertical homogeneity. It is well known that deviations from 

these assumptions lead to bias in the retrieved Re.  

Recently, an effort to characterize the bias in MODIS-retrieved Re through MISR-MODIS 

data fusion revealed biases in the zonal-mean values of MODIS-retrieved Re that varied from 2 to 

11 µm, depending on latitude [Liang et al., 2015]. Here, in a push towards bias-correction of 

MODIS-retrieved Re, we further examine the bias with MISR-MODIS data fusion as it relates to 

other observed cloud properties, such as cloud horizontal heterogeneity, cloud optical depth, and 

sun-view geometry. Our results reveal that while Re bias do show a certain degree of dependence 

on some properties, no single property dominates the behavior in the MODIS-retrieved Re bias. 

Through data stratification by observed cloud properties and latitude, we introduce a bias-

correction approach for MODIS-retrieved Re at regional scales. Our estimates reveal global 

distribution of MODIS-retrieved Re monthly mean bias ~1 to 12  µm depending on latitude and 

cloud types, the bias-corrected Re estimates of ~ 4 to 16 	µm are consistent with available 

validations of MODIS Re reported in previous studies over limited regions. Removing the mean 

bias from the original MODIS Re2.1 and Re3.7 monthly means show more consistent behavior 
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among the two channels that range from 0 to +0.6 µm in the marine stratocumulus regions and -2 

to 0 µm in the cumuliform cloud regions. This curious finding seems to suggest that the vertical 

distribution of drop sizes for marine stratocumulus clouds are very different from other types of 

marine liquid water clouds. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 
1.1.1 Clouds and Climate 

Clouds, one of the major components of the Earth’s atmosphere, cover ~70 percent of the 

Earth [Wylie et al., 2007]. Clouds play an important role in regulating Earth’s radiative energy 

budget and water cycle. Clouds both reflect incoming shortwave solar radiation and absorb 

longwave terrestrial radiation, which modulates the Earth’s radiation balance; at the same time, 

however, clouds themselves are also created by the warming and cooling of the atmosphere.  

Changes in clouds would greatly impact the radiative energy balance and water exchanges that 

determine the climate. According to the Intergovernmental Panel on Climate Change (IPCC) 

Report from 2007, cloud feedbacks remain the largest source of uncertainty in climate sensitivity 

estimates [Solomon et al., 2007]. In other words, the way clouds are represented in climate models 

greatly impact uncertainties in predicting future climates, thus it is crucial for us to understand the 

role of clouds in the Earth system’s climate, and to accurately represent clouds in our climate 

models. In doing so, it requires precise information of cloud microphysical and macrophysical 

properties over a long period. Satellite monitoring of the Earth have the advantages of good global 

coverage and continuously monitoring record. Its retrievals can be used to validate cloud 

parameterization of climate models in order to improve their performance. Thus, it is crucial that 

our satellite retrievals of cloud properties are accurate and reliable.  
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1.1.2 Cloud Droplet Effective Radius (Re) 

The cloud droplet effective radius (Re), listed as one of the Essential Climate Variables 

by the Global Climate Observing System, serves to be the main focus of this thesis. Re is a 

weighted mean of the size distribution of cloud droplets [Hansen, 1971] defined as: 

  

   𝑟& =
∫ )	∙	+,	∙-(+)	0+1
2
∫ )	∙	+3	∙-(+)	0+1
2

           (1.1) 

 

where n(r) is the size distribution and r is the radius of a cloud droplet. Re plays an important role 

in the energy and water cycle of the Earth system [Twomey, 1991; Platnick and Twomey, 1994]. 

Re has a wide range of applications, such as to assess aerosol-cloud interactions [e.g., Menon et 

al., 2008], and to evaluate cloud parameterization in climate models [e.g., Slingo, 1988; Song et 

al., 2012]. For example, given in the following relationship: 

    

     𝜏 = 	∫ 567
89:+;

𝑑𝑧>
?@A    (1.2)  

   
 

where qL is the liquid water content, 𝜏 is the optical depth, and 𝜌C is the liquid water density. One 

can derive liquid water path through retrievals of optical depth and effective radius, [Petty, 2006]. 

A further implication of this relationship is that the precipitation (hydrological cycle) and the 

radiation of the Earth system is closely connected through Re, and that Re serves to be an important 

climate variable in the Earth’s climate system. 
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1.1.3 Terra Satellite Platform 

In an effort to provide long-term measurements of the Earth system, NASA launched its 

Earth Observing System (EOS) in the 1990s - a series of coordinated polar-orbiting satellites 

designed to monitor and understand key components of the climate system and their interactions 

through long-term global observations (https://eospso.nasa.gov/). Terra, as the EOS Flagship, was 

the first satellite to study the Earth system science, exploring the connections between Earth’s 

atmosphere, land, snow and ice, ocean, and energy balance to understand Earth’s climate and 

climate change and to map the impact of human activity and natural disasters on communities and 

ecosystems. Launched on December 18, 1999, the Terra satellite and its five onboard sensors have 

been continuously collecting data of the Earth’s system over the past 18 years, and it is currently 

one of the longest single-platform satellite records for studying the Earth’s system. Terra is in a 

sun-synchronous orbit and has an equator-cross time of 10:30 A.M. Local Standard Time. In this 

research work, we use two instruments both onboard Terra, namely MODIS and MISR. 

The MODerate Resolution Imaging Spectroradiometer (MODIS) [Barnes et al., 1998] is a 

key instrument onboard the Terra satellite platform. It measures radiance in 36 discrete spectral 

channels from 0.4 to 14.4 µm and has a viewing swath of ~2300km in the cross-track direction. 

MODIS has a ground sampling resolution from 250m to 1km depending on channel. MODIS 

covers the entire Earth surface every 1-2 days. MODIS retrieves Re using bi-spectral method, with 

one channel from a visible or near-infrared channel that has tiny water absorption and is sensitive 

to optical depth, and another channel from a shortwave infrared channel (e.g., 1.6, 2.1, and 3.7 µm) 

that has strong water absorption, which is sensitive to Re [Platnick et al., 2003]. These multi-

spectral retrievals of MODIS are therefore labelled as Re 1.6, Re 2.1 and Re 3.7. 
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The Multi-angle Imaging SpectroRadiometer (MISR) also onboard the Terra satellite is a 

unique instrument of its own kind: with a camera set of 9 different view angles, MISR provides 9 

different views of the same scene within 7 minutes as the Terra satellite moves along track. The 

nadir camera (AN-camera) has a view-zenith angle of 0°, while the oblique cameras facing the 

along-track are designated as AF, BF, CF and DF with view zenith angles of 26.1°, 45.6°, 60° and 

70.5°, respectively; and the after-track pointing cameras AA, BA, CA and DA are at view zenith 

angles of -26.1°, -45.6°, -60° and -70.5°, respectively. Each camera contains four spectral channels 

at these following wavelengths: 446nm, 558 nm, 667nm, 866nm. The MISR instrument has a 

swath of ~380km and it overlaps with the center of the MODIS swath. MISR projects the retrieved 

radiances onto the Space-Oblique Mercator (SOM) grid at resolutions from 275m to 1.1km 

depending on both the camera and spectral channel. The near-infrared (NIR) radiance used in this 

study is provided at 1.1 km with oblique cameras and 275m at AN-camera. More details of the 

MISR instrument design can be found in Diner et al., [1998]. 

 

1.2 Motivation 

1.2.1 Current Situation for Aircraft and Satellite retrieved Re 

Over the past 50 years, there has been various in situ measurements of Re from aircraft 

observations. It is worth noting that the focus of this research is the Re in marine regions, and that 

the continental regions are not taken into our analysis. Shown in Table 1.1 is the results from a 

survey conducted by Miles et al., [2000] that studied the field observations of various cloud 

microphysical properties of marine clouds over the past 50 years. From all the field observation 

results given in Table 1, a rough estimate of a typical Re value for marine clouds should be 

somewhere around 4-15 µm. 
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Table 1.1 Marine stratocumulus cloud observations from Miles et al., [2000]. 

 

 
Since the 1980s there has been efforts to study the clouds from satellite measured radiances 

[Schiffer and Rossow, 1983], and it has been ~30 years since satellite started taking measurements 

of cloud microphysical properties. Currently, all operational satellite retrievals of cloud optical 

properties from scattered solar radiances assume one-dimensional radiative transfer (1D-RT), 

where clouds and boundary conditions are treated as horizontal homogeneous (i.e., plane-parallel) 

planes and cloud layers vertically homogeneous. This assumption reduces radiative transfer from 

three dimensions (3D) to one dimension (1D, in the vertical direction), which simplifies solving 

the radiative transfer equation. However, this assumption can sometimes be problematic depending 

on the application (More discussion of 1D-RT in the next chapter). Presently there are a variety of 

available satellite-derived Re products. While some of these products are based on MODIS-like 
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instruments such as the Advanced Very High-Resolution Radiometer (AVHRR) [Rossow and 

Schiffer, 1991] that also make use of the bi-spectral method to retrieve Re, some are based on 

polarization measurements [Deschamps et al., 1994] or multi-angle measurements [Poulsen et al., 

2011]. 

 

1.2.2 Intercomparison of various satellite retrieved Re 

 

 

Figure 1.1 Comparison of (a) MODIS Re 2.1 μm, (b) POLDER Re, (c) MODIS Re 3.7 μm, (d) ATSR-GRAPE 

Re 1.6 μm, (e) PATMOS-x Re 3.7 μm and (f) ISCCP Re 3.7 μm retrieved global distribution of Re for multiple 

years mean of January. 

 

 

(c) MODIS 3.7 

(e) PATMOS-x 3.7 (f) ISCCP 3.7 

(d) ATSR-GRAPE 1.6 

(a) MODIS 2.1 (b) POLDER 

Re 
(𝜇m) 
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 Shown in Figure 1.1 are multiple years of January mean Re global distributions from 

MODIS 2.1 µm spectral channel, MODIS 3.7 µm spectral channel, PATMOS-x 3.7 µm spectral 

channel, ISCCP 3.7 µm spectral channel, ATSR-GRAPE 1.6 µm spectral channel and POLDER 

retrievals. Over the past there has been comparison between these available satellite-derived Re 

products [e.g., Sayer et al., 2011; Breon and Doutriaux-Boucher, 2005; Stubenrauch et al., 2012] 

revealed disparities that range from ~2 - 3 µm by average and up to ~8 - 9 µm between different 

satellite Re products.  

On comparing the details of the various satellite-derived global distribution of Re given in 

Figure 1.1, note that these different satellite products were using different retrieval methods (e.g., 

while MODIS, PATMOS-x, ISCCP were using the aforementioned bi-spectral technique, 

POLDER take polarization measurements), come from different time periods and have different 

equator-crossing time. Still, they show distinct discrepancies (e.g., the difference between 

PATMOS-x Re 3.7 μm and ATSR-GRAPE Re 1.6 μm can be up to ~15 μm). According to a report 

from Ohring et al., [2005], in order for satellite instruments to detect slight changes of climate 

forcing signals over a long time period, the required uncertainty for passive satellite sensor 

retrieved Re is ~ 5%.  A previous study from Slingo, [1990] suggests that the top-of-atmosphere 

radiative forcing by doubled carbon dioxide concentrations can be balanced by relative increases 

of ~15-20% in the amount of low clouds, and 20-35% in liquid-water path, and by decreases of 

15-20 % mean drop radius), which indicates that a minimum relative accuracy of ~5% is needed 

to estimate climate response by monitoring Re over extended periods from satellite platforms. 
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Figure 1.2 Comparison between (a) MODIS Re retrieval with (b) AM3, (c) CAM5 and (d) ModelE2 results 

from Ban Weiss et al., [2014]. 

 

At the same time, however, these satellite Re retrievals are often used to validate climate 

model performance. Like shown in Figure 1.2, Ban Weiss et al., [2014] made a comparison of the 

Re from MODIS observation against model results from the AM3, CAM5 and ModelE2. 

Surprisingly, not only does the model results behave quite different from the satellite retrievals, 

the model spread between different models is quite large. Since cloud is the largest source of 

uncertainty in our climate models, it is very important to understand the accuracy and error 

characteristics of the satellite-derived cloud products to improve the accuracy of climate model 

predictions. This study will be focusing on studying the regional bias of MODIS retrieved Re 

products, but will also compare the MODIS retrieved Re with other satellite-derived Re products 

to examine the characteristics of current MODIS-like retrievals, and to further understand the 

actual global distribution of Re. 
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1.2.3 Issues in MODIS Re retrieval approach 

Given the Re retrieved from different satellite platforms in Figure 1.1, it is hard to find an 

agreement among different satellite retrieved Re on the global distribution of Re. Being one of the 

most popular satellite Re products currently available, MODIS Re has been used in various studies 

such aerosol-cloud interactions [e.g., Myhre et al., 2007; Ban-Weiss et al., 2014], cloud 

microphysical parameterization in climate models [e.g., Otkin and Greenwald, 2008]. On the other 

hand, the popularity of MODIS Re products have led to numerous studies that compared satellite 

retrieved Re with field observations and model simulations, and suggested hypotheses on the 

leading factors that may contribute to the errors and biases associated with the satellite retrieval of 

Re.  

Long known is the discrepancy observed between the multi-spectral Re retrievals 1.6, 2.1 

and 3.7 µm) from MODIS. One possible explanation suggests that the difference may be due to 

the vertical variation of Re profile and the difference in radiation penetration depth among the 3 

different channels [Platnick 2000; Chang and Li, 2003]. Other studies identified cloud horizontal 

heterogeneity and 3-D radiative effects to be the leading sources of uncertainty in satellite retrieved 

Re [Marshak et al., 2006; Zhang et al., 2012]. It is also known that warm rain processes such as 

drizzle may lead to bi-modal droplet size distribution and may also lead to the discrepancies 

[Zhang et al., 2013; Nakajima et al., 2010]. 

Many studies have compared MODIS-retrieved Re with in-situ observations, showing that 

the MODIS Re products may carry a positive bias that vary with cloud types and sun-view 

geometry [e.g., Painemal and Zuidema 2011; Haney, 2013]. Yet due to the characteristics of field 

observations, measurements are often limited to a certain region, that these in-situ observations are 
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not globally representative, and it is difficult to validate satellite-retrieved Re in a global sense. 

Recently, an effort to characterize the bias in MODIS-retrieved Re through data fusion of the 

Multi-angle Imaging Spectroradiometer (MISR) and MODIS revealed biases in the zonal-mean 

values of MODIS-retrieved Re that varied from 2 to 11 µm, depending on latitude [Liang et al., 

2015], and that the zonal-mean values of MODIS-retrieved Re bias shown dependence on cloud 

types: That the maximum bias appears around latitudes where cumulus clouds contribute the most 

to the total cloud fraction, and the minimum bias tends to be located in regions where marine-

stratocumulus clouds contribute the most to the total cloud fraction. This work presented a 

potential of estimating the MODIS-retrieved Re bias in a global sense.  

 

1.3 Objectives 

 
The scope of this thesis is mainly focused on studying the bias of MODIS-retrieved Re 

through careful data fusion of MISR and MODIS. Here we take the findings from Liang et al., 

[2015], and extend the study towards a bias-correction of MODIS-retrieved Re at regional scales, 

to give us a sense of how the actual global distribution of Re may look like compared to the original 

MODIS-retrieved Re.  

 

1.3.1 Study the relationship between MODIS-retrieved Re bias and related factors 

Part of the objective of this thesis is to study the relationship between MODIS-retrieved Re 

bias and other possible related factors. Shown from Liang et al., [2015], the zonal mean MODIS 

Re bias showed possible dependence on latitude and cloud types (minima bias around latitudes 

where the marine-stratocumulus clouds contribute the most to the total cloud fraction, and maxima 
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bias around latitudes where cumulus clouds contribute the most to the total cloud fraction). Such 

finding encourages us to further investigate into this matter, and to determine the relationship 

between MODIS retrieved Re bias and possible related factors. Based on our current understanding 

of 3-D radiative transfer and previous studies on MODIS retrieved Re bias, this work studies the 

dependency of Re bias on cloud type and sun-view geometry, whereas the cloud type here is 

determined by cloud properties including cloud heterogeneity and cloud optical depth, and sun-

view geometry is characterized by latitude and solar zenith angle. Through data stratification by 

observed cloud properties and sun-view geometry, relationship of MODIS Re bias and related 

impacting factors is further parameterized to correct the MODIS Re.  

 

1.3.2 Implementation of bias-correction on MODIS Re at regional scales 

One key merit of this thesis is to implement a bias-correction procedure for MODIS Re at 

regional scales, to provide a global perspective of how the bias associated with MODIS-retrieved 

Re may look like in terms of magnitude and distribution, and how the corrected Re is distributed 

globally. Once the parameterized relationship between MODIS-retrieved Re bias and the related 

factors is determined, we will be correcting the MODIS retrieved Re according to the relationship 

at regional scales. By using 8 years (2001-2008) of January MISR and MODIS data, the global 

distribution of corrected Re and the MODIS-retrieved Re bias are provided. Comparison of the 

corrected Re alongside other satellite-derived Re products will further expand the discussion on 

the validity of using Re retrievals from MODIS-like instruments.  

As for the structure of this thesis, fundamental backgrounds on the data and the theoretical 

basis are discussed in detail in Chapter 2. Chapter 3 introduces the data stratification and further 

analysis of this research, Chapter 4 will revolve around the data processing aspect of this thesis. 
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Results of both bias-corrected Re and MODIS-retrieved Re are presented in Chapter 5, while the 

discussion on the comparison with other satellite-derived Re products is also included. Lastly, 

Chapter 6 gives the final conclusion and summary of this work. 
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CHAPTER 2: FUNDAMENTALS 

 

2.1 Bi-spectral Retrieval of Re 

2.1.1 Overview of Bi-Spectral Method 

The main objective of this thesis is to correct the bias associated with MODIS-retrieved Re, 

so it is quite reasonable to start with the question: How does MODIS retrieve Re? 

There are several satellite remote sensing techniques for the retrieval of Re. For passive 

multi-spectral imaging satellite sensors such as MODIS [King et al., 1992] and the Advanced Very 

High Resolution Radiometer (AVHRR) [Rossow and Schiffer, 1991], Re is retrieved 

simultaneously with cloud optical depth (𝜏) using two shortwave spectral channels [Nakajima and 

King, 1990] - a technique commonly known as the bi-spectral method.  

Basically, two spectral channels are chosen in the bi-spectral retrieval method, with one 

channel from a visible or near-infrared MODIS channel at a non-absorbing wavelength of water 

(e.g., 0.86 µm over ocean, 0.66 µm over land), making it sensitive to the retrieval of 𝜏, while the 

other channel is at a strong water absorption wavelength in the shortwave infrared spectrum range 

(e.g., 2.1 µm, 1.6 µm and 3.7 µm), which is sensitive to particle size. 

By running simulations of different permutations of cloud optical depth and effective 

radius at different sun-view geometry, one can generate a look-up table of the two channels’ 

reflectance with different cloud optical depth and cloud effective radius values. Shown in Figure 

2.1 is an example of a cross-section of a look-up table for the reflectance functions at 0.86 µm and 

2.1 µm at a given sun-view geometry. While the X and Y axis gives the reflectance values for the 

non-absorbing wavelength (0.86 µm in this case) and the strong water absorption wavelength (2.1 
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µm), the gridded curves in the X direction gives the values for cloud optical depth, while the Y 

direction gives the values for cloud effective radius. Once this LUT is generated, it can be used to 

determine the values of Re and 𝜏 from new reflectance retrievals at the two wavelengths.  

 

Figure 2.1 LUT for 0.86 µm and 2.1 µm Reflectance with different effective radius (Re) and cloud optical depth 

(𝜏) values. From Zhang et al., [2016]. 

 

2.1.2 Assumptions from Bi-Spectral Method 

There are several key assumptions made in the bi-spectral method when generating the 

LUT. For example, the “plane-parallel” assumption assumes clouds to be horizontally 

homogeneous which reduces 3-D radiative transfer to 1-D radiative transfer, where the radiation 

field varies only in the vertical direction.  

Illustrated in Figure 2.2, under the 1-D radiative transfer assumption, clouds are assumed 

to have the same (homogeneous) optical depth and horizontally stretch to infinity.  

by a number of satellite missions, includingModerate Resolution Imaging Spectroradiometer (MODIS), Visible
Infrared Imaging Radiometer Suite (VIIRS), and Spinning Enhanced Visible and Infrared Imager (SEVIRI) for
operational retrievals of cloud properties (i.e., τ, re, and derived cloud liquid water path (LWP)) [Platnick
et al., 2003; Roebeling et al., 2006; Minnis et al., 2011; Walther and Heidinger, 2012]. Given the wide usage of
the bispectral method, it is critical to study and understand its limitations and uncertainties.

The bispectral methodmakes several important assumptions about the cloud (or cloudy pixels). First, within a
cloudy pixel, the cloud is assumed to be horizontally homogenous (referred to as the “homogenous pixel
assumption”). Second, it is assumed that the pixels are independent from each other, in the sense that there
is no net interpixel transport of radiation (often referred to as the “independent pixel assumption”). Under
these assumptions, clouds are considered to be “plane-parallel.” In addition to plane-parallel cloud assump-
tions, clouds are often assumed to be vertically homogenous in the operational algorithms. Furthermore, the
size spectrum of cloud particles is often assumed to follow certain analytical distributions, such as the single
modal gamma or lognormal size distributions [e.g., Nakajima and King, 1990; Dong et al., 1997]. These
assumptions may be reasonable for certain types of clouds, such as closed-cell, nonprecipitating stratocumu-
lus, but become problematic for others, such as broken trade wind cumuli or precipitating clouds [Di
Girolamo et al., 2010; Painemal and Zuidema, 2011; Zhang and Platnick, 2011; Liang and Girolamo, 2013;
Zhang, 2013]. As elucidated in numerous previous studies, when real clouds deviate from these assumptions,
the re and τ retrievals from the bispectral method can suffer from large errors and uncertainties [e.g., Várnai
and Marshak, 2002; Kato et al., 2006; Marshak et al., 2006; Zhang and Platnick, 2011; Zhang et al., 2012; Zhang,
2013; Liang et al., 2015].

The focus of this study is the homogenous pixel assumption. Our objective is to develop a unified framework
for understanding and quantifying the impacts of subpixel level unresolved reflectance variations on re and τ
retrievals based on the bispectral method. A number of previous studies have already made substantial
progress in this direction. It has been known for a long time that at the spatial scale of climate model grids
(e.g., ~102 km) approximating inhomogeneous cloud fields with plane-parallel clouds can lead to significant
biases in shortwave solar radiation [e.g., Harshvardhan and Randall, 1985; Cahalan et al., 1994; Barker, 1996].
Cahalan et al. [1994] described an elegant theoretical framework based on a fractal cloud model to explain
the influence of small-scale horizontal variability of τ on the averaged cloud reflectance in the visible spectral

region (RVIS). It is shown that the averaged reflectance RVIS τið Þ , where τi denotes the subpixel-scale cloud
optical thickness, is smaller than the reflectance that corresponds to the averaged cloud optical thickness

τi , i.e., RVIS τið Þ < RVIS τið Þ . This inequality relation is well known as the “plane-parallel homogenous bias”

(referred to as PPHB), which is a result of the nonlinear dependence of RVIS on τ, i.e., ∂
2RVIS
∂τ2 < 0. The implication

of the PPHB for τ retrievals from RVIS is illustrated using an example shown in Figure 2a. Here we assume that
one half of an inhomogeneous pixel is covered by a thinner cloud with τ1 = 5 and the other half by a thicker

Figure 1. Examples of the look-up table of cloud bidirectional reflection functions as functions of cloud optical thickness and effective radius, based on the
combination of (a) 0.86 μm and 2.1 μm bands and (b) 0.86 μm and 3.7 μm bands. Surface is assumed to be Lambertian with a reflectance of 0.02. Solar and
viewing zenith angles are 45° and 20°, respectively. Relative azimuthal angle is 0°.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD024837

ZHANG ET AL. SUBPIXEL IMPACT ON RETRIEVALS 2
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Figure 2.2 Plane parallel cloud in 1-D Radiative Transfer 

 

Yet is this assumption good enough in approximating the clouds in nature? By looking at 

the clouds in nature, they are often not horizontally homogeneous over a wide range of scales, and 

that they could have different vertical structure as well. The radiative transfer of clouds is 3-D in 

reality, and this in turn would raise questions like “to what extent does the 1-D Radiative Transfer 

approximation produce valid accuracy for various applications?” or “when would it be most likely 

for the 1-D assumption to breakdown?” 

While such assumption may work for homogeneous cloud fields (such as stratiform clouds 

under high sun conditions), for more heterogeneous and broken clouds and lower sun, however, 

the existence of 3-D radiative effects may lead to erroneous satellite retrievals due to the 

breakdown of the 1-D assumption. Studies from the past [e.g., Marshak et al., 2006; e.g., 

Oreopoulos and Davies, 1998] have shown the impact of 3-D effects on satellite observations, 

Várnai and Marshak, [2007] showed that view angle dependence of cloud optical thickness from 

MODIS retrievals (Figure 2.3). Given in equation 2.1 is the definition of optical depth: 

𝜏 = ∫𝛽 𝑑𝑧           (2.1) 

𝜏 

surface 
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where 𝛽	is the volume extinction coefficient and z is the path length in the vertical direction. By 

definition, cloud optical thickness should be independent of view angle since it is integrated in the 

vertical direction, yet clearly seen from Figure 2.3 is strong angular variation of cloud optical 

thickness from MODIS. Such finding has served as supporting evidence of 3-D radiative effects 

for more than two decades. In fact, the assumption that clouds are both horizontal and vertical 

homogeneous has been proved by several studies [e.g., Zhang et al., 2012; Dim et al., 2007; Zinner 

and Mayer, 2006] to lead to substantial errors in satellite retrievals of cloud properties.  

 

Figure 2.3 View angle dependence of mean MODIS optical thickness of inhomogeneous clouds over land and 

ocean. From Várnai and Marshak, [2007]. 

 

One other key assumption from the bi-spectral method is a single-mode droplet size 

distribution. A monomodal droplet size distribution can represent the droplet distribution for non-

drizzle clouds and is mathematically convenient [Zhang et al., 2013], yet such assumption may not 
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fully represent the droplet size distribution of all clouds. In reality, drizzle, for example, lead to bi-

modal droplet distribution, and thus can result in bias of Re retrievals [e.g., Minnis et al., 2004] 

when using the monomodal distribution assumption.  

It is clear that whenever one deviates from these assumptions in our remote sensing 

algorithm, it leads to some form of bias in our satellite retrievals. Furthermore, it is difficult to 

estimate the bias associated with the breakdown of these assumptions, especially in a global 

perspective. For example, Di Girolamo et al. [2010] showed what the spatial patterns of 3-D 

radiative effects may look like, yet the impact of 3-D effects for satellite-retrieved products in a 

global perspective is still somewhat unknown. Therefore, it is necessary for us to study and 

understand the driving factors behind the satellite retrievals and try to improve the uncertainties in 

our satellite products. 

 

2.2 MISR-MODIS Data Fusion 

2.2.1 Data Overview 

For the scope of this analysis, MISR and MODIS datasets were used and fused. Eight years 

of January MODIS dataset consists of the MODIS Cloud Microphysical properties (MOD06 

product) and MODIS level 2 Geolocation parameters (MOD03 product). Here only liquid water 

clouds are considered based on the phase flag included in the Quality Assurance datafield in the 

MOD06 product.  MODIS Cloud Effective Radius, Cloud Optical Thickness, and Horizontal 

Heterogeneity Index (Cloudmask_SPI) are obtained from MOD06 product. All products are given 

in 1km resolution. The MOD03 Geolocation parameters which include latitude and longitude 

coordinates of each MODIS 1km resolution pixel are used in the MODIS data re-projection aspect 
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of the MISR-MODIS data fusion procedure. Version 24 of MISR NIR radiance is converted to 

bidirectional reflectance factors (BRF) using   

        BRF= GHIJJ
KLM(NOP)Q2

            (2.2) 

where L866 is the radiance of from MISR Near-Infrared (NIR) channel retrieved at the top of the 

atmosphere, SZA is the solar-zenith angle and F0 is the solar irradiance. MISR sun-view geometries 

at 17.6km resolution are interpolated to 1.1km resolution from Version 13 of the MISR Geometric 

Parameters Product (GMP). MISR Ancillary Geographic Product (AGP) is used to select clouds 

over ocean, it also provides the latitude and longitude coordinates for each 1.1km MISR pixel. 

MISR Terrestrial Atmospheric and Surface Climatology Data Version 3 are used to remove sea-

ice pixels from further analysis. 

2.2.2 Data Fusion Overview 

Liang et al., [2009] introduced a technique of fusing MISR and MODIS data at pixel level 

at the cloud top, this technique serves as the basis for the data fusion approach of this thesis. This 

section is given to briefly summarize how this technique is implemented. 

 

Figure 2.4 Illustration of MISR-MODIS cloud element co-registration and the retrieval of cloud optical depth 

at MISR 9 angle views.  
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For a 3 × 3 1.1km pixel domain in the MISR AN-camera image, a 3 × 3 1km MODIS 

retrieved cloud microphysical properties domain are projected to the MISR 1.1km SOM grid using 

a nearest neighbor algorithm. For the 3 × 3 1.1km domain in the MISR cameras, due to the view-

angle disparity between MISR cameras, when projected onto the Earth’s ellipsoid surface, the 

same cloud may be projected to different geolocations on the surface. To make sure that each 

camera has the same clouds projected to the same position, Liang et al. [2009] implemented a 

feature matching technique [Muller et al., 2002] that tracks the same clouds across MISR’s 9 

camera views at 275m resolution and register to the cloud top at the same location as the MISR 

AN-camera image. Following this procedure, the end result for a 3	× 3 1.1km MISR domain that 

is identified as fully cloudy will have cloud microphysical properties (from MODIS) registered to 

each pixel, as well as having 9 different view of MISR radiances (BRFs) registered to the same 

grid location. After this registration technique, we result in 48.2% of all fully cloudy 3×3 1.1km 

pixel domains that are identified as liquid water phase to be registered in all nine MISR cameras 

for the month of January [Liang and Di Girolamo, 2013]. The re-projected MODIS Re from 

Collection 6 Cloud Product (MOD06) [Platnick et al., 2015] are further used as inputs to DISORT 

[Stamnes et al., 1988] along with Version 24 of the MISR Level 1B2 near-infrared Bi-directional 

Reflectance Factors (BRF) to retrieve cloud optical depth at MISR 9 camera views (hereafter as 

MISR cloud optical depth).  The details of the MISR and MODIS data fusion is explained in 

section 2 of Liang et al. [2009] and sections 3 and 4 of Liang and Di Girolamo [2013]. Chapter 4 

in this thesis describes the MISR-MODIS co-registration procedures in detail.  
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2.3 Fusion Data Analysis 

 

2.3.1 Scattering-angle dependency of Cloud Optical Depth 

Liang et al., [2015] showed that when multiple-year January MODIS τ	and Re was 

organized as a function of scattering angles (Θ) in terms of the deviation from the mean optical 

depth across 2.5° latitude bins and 1° solar zenith angle bins (Figure 2.5), they discovered an 

interesting dependence of both τ and Re - a distinct line appears in the vicinity  of Θ = ~140°	(the 

rainbow scattering direction) shows up across all latitudes as shown in Figure 2.5. 

 

Figure 2.5 Angular Variation of MODIS τ	and Re as a function of latitude and scattering angles (Θ), the variation 

is given by the deviation from the zonal mean (left: 𝛥𝜏; right: 𝛥Re) from MODIS. From Liang et al., [2015]. 

When they organized the MISR 9-camera τ in the same fashion, the same distinctive line 

around the rainbow scattering direction also appears in the MISR τ result (Figure 2.6), which lead 
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to further investigation on the source of such anomaly in the optical depth retrievals. Through 

simulations, Liang et al., [2015] demonstrated that such angular variation of cloud optical depth 

observed both in MODIS and MISR can be reasonably explained by a bias in MODIS retrieved 

Re. 

 
Figure 2.6 Angular Variation of MISR τ	as a function of latitude and scattering angles (Θ), where the variation 

is given by the deviation from zonal mean cloud optical depth observations (𝛥𝜏). from MISR Cameras (Left: Aft 

Cameras; Right: Forward Cameras). From Liang et al., [2015]. 

 

For example, shown in Figure 2.7 are simulations of τ as a function of scattering angles (Θ) 

using the Discrete Ordinates Radiative Transfer [Stamnes et al., 1988]. For a cloud with a true τ = 

8 and Re = 10 μm, (as shown in the green curve), no angular variation of τ is observed across Θ.  

However, if a larger value of Re is used in retrieving τ, then the retrieved τ will be positively biased 
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relative to the truth (shown in red lines), with a local minimum in the rainbow direction, a behavior 

referred to as “τ-rainbow dip” in the rainbow direction (Θ=~140°). The opposite is true when a 

smaller Re is used (shown in blue lines), in other words the “τ-rainbow bump” at the rainbow 

direction. By studying the τ from both MISR and MODIS organized in Figure 2.5 and Figure 2.6, 

it is evident that the τ displayed a rainbow-dip behavior, which indicated the presence of a positive 

bias in the MODIS Re retrievals [Liang et al., 2015]. 

 

 

Figure 2.7 Simulations of retrieved τ across Θ as compared to the true τ = 8 and Re = 10 μm (green) if a smaller 

Re = 8μm and a larger Re = 18 μm are used instead of the true Re =10 μm; also plotted are the retrieved τ by 

using Re = 9 and 11 μm. From Liang et al., [2015]. 

 

2.3.2 Fc Analysis for Re Bias-Correction 

To estimate the bias associated with MODIS Re retrievals, a correction factor, Fc, defined 

as Retrue = ReMODIS×Fc (where Retrue is the corrected Re, and ReMODIS is the MODIS-retrieved Re) 
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was introduced in Liang et al., [2015]. Shown in Figure 2.8, simulations of the deviation of optical 

depth (Δτ) as a function of Θ are given for MISR aft-camera group with the input Re being assumed 

to be the Retrue with Fc=1.0, 0.8, 0.6, 0.4, 0.2, respectively. 

 

 

Figure 2.8 (a) Deviation of optical depth (Δτ) as a function of scattering angles for MISR aft camera group, (b-

f) Δτ calculated from MISR cloud optical depth with MODIS Re2.1 (MODIS Re retrievals from the 2.1 μm 

channel) by assuming the true Retrue = ReMODIS×Fc, with Fc = 1.0, 0.8, 0.6, 0.4, and 0.2, respectively. From 

Liang et al., [2015]. 

 

For Fc =1.0, Figure 2.8(b) shows that the τ-rainbow dip disappears as expected, since it 

reproduces the true τ with the same Re values. Yet as Fc decreases, the τ-rainbow dip becomes 

more and more pronounced, and a Fc range of 0.4 - 0.8 yields most similar results with the 

observation. Since it is discovered that the Re bias is related to the amplitude of the observed τ-

rainbow dip, if one MISR camera observes the clouds at the rainbow direction while another MISR 

camera observes the cloud outside the rainbow direction, and if 1-D radiative transfer is strictly 

applied (optical depth is independent of sun-view geometry), the difference between the observed 
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optical depths of these two MISR cameras can therefore be used to determine the bias in MODIS 

Re. Yet due to the existence of 3-D radiative transfer factors (gap, concavity and bump-RAZ 

factors, as defined in Liang and Di Girolamo, [2013]) that are not considered in 1-D radiative 

transfer, such approach would lead to biased values of Fc, and the bias in Fc is dependent on 

different sun-view geometry, since 3-D factors can either increase or decrease optical depth with 

viewing obliquity, depending on the sun-view geometry [Liang and Di Girolamo, 2013]. 

Fortunately, MISR samples both in the rainbow scattering direction and on both sides outside the 

rainbow direction in many latitude bins, one can take a camera pair on one side of the rainbow dip, 

where Fc is overestimated, and another pair on the other side where Fc is underestimated. This 

allows us to bound the true value of Fc, but without an estimated Fc mean. [Liang et al., 2015] 

 

2.3.3 Zonal mean Re2.1 bias 

Figure 2.9(a) shows the means and standard deviations of the upper and lower bound 

estimates of Fc for all eight MISR camera pairs. At each latitude bin, we can obtain both upper 

bound and lower bound estimates of Fc from camera pairs that observe within the rainbow 

direction and outside the rainbow direction. Note the dark shade area represent the range between 

the upper and lower bounds, and the lighter shade represent the range that is one standard deviation 

below the lower bound Fc mean and above the upper bound Fc mean. The green line links the 

mid-points of the upper and lower bound Fc mean estimates across all latitude bins (interpolated 

when no Fc retrievals are available at a latitude bin). Figure 2.9(b) shows zonal mean MODIS 

Re2.1 (MODIS Re retrievals from the 2.1 μm channel, hereafter Re2.1) and bias-corrected MODIS 

Re2.1, and Figure 2.9(c) simply shows the zonal mean MODIS Re2.1 bias that range from 3-11 μm. 

Interestingly, the distribution of the zonal mean MODIS Re2.1 bias displayed some interesting 
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pattern: two local maxima of MODIS Re2.1 bias appeared around 10°N and 35°S, cloud fractions 

at these latitudes are mostly contributed by marine cumulus clouds in January. At around 20°N 

and 25 °S appears a local minima of MODIS Re2.1 bias, and in these latitudes the marine 

stratocumulus clouds contributed the most to the total cloud fraction. To further study such patterns, 

we would need to move from zonal mean estimates towards regional estimates, and this is one of 

the major goals of this thesis.  

 

 

 
Figure 2.9 (a) Fc mean and standard deviation for MISR camera pairs across latitudes (b) zonal mean of MODIS 

Re2.1 and bias-corrected MODIS Re2.1 (c) zonal mean MODIS Re2.1 bias. From Liang et al., [2015]. 
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CHAPTER 3: METHODOLOGY 

 

The main goal of extending the work of Liang et al., [2015] is to move from zonal mean 

estimates of MODIS Re2.1 bias (Shown in Figure 2.9(c)) towards regional scale estimates which 

would allow us to better understand the global distribution of MODIS Re bias. In the process of 

developing a regional bias-correction estimate, we aim to further study the relationship between 

the MODIS Re bias and factors that it may depend on through data stratification.  

 

3.1 Data Stratification  

The choices of data stratification by related variables are based upon our current 

understanding of the possible factors that may contribute to the Re bias due to 3-D radiative effects: 

past studies have indicated that the 3-D radiative transfer effects is dependent on solar-zenith angle, 

cloud heterogeneity and cloud optical depth [e.g., Loeb and Davies, 1996; Zhang and Platnick, 

2011; Zhang et al., 2012; Grosvenor and Wood, 2014]. Based on these findings, we choose to 

stratify the data by cloud types (determined by cloud heterogeneity and cloud optical depth), and 

the sun-view geometry (determined by latitude and solar-zenith angle).  

 

3.1.1 Cloud Heterogeneity 

The cloud horizontal heterogeneity factor (𝐻$) is a metric that measures the horizontal sub-

pixel heterogeneity of cloud scenes. It was introduced in Liang et al. [2009]. In this thesis it is 

defined as: 
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𝐻$=𝜎/𝑅X           (3.1) 

where 𝜎 is the standard deviation and 𝑅X is the mean reflectance of the 4×4 250m resolution pixels 

within a 1km resolution MODIS footprint. Many studies in the past have noted that MODIS 

retrieved Re2.1 and Re3.7 (MODIS Re retrievals from the 3.7 μm channel, hereafter Re3.7) can have 

substantial differences [Zinner et al., 2010; Seethala and Horvath, 2010], and that the difference 

have dependence on different cloud types, ΔRe3.7-2.1 range from ~0 to -2 μm over coastal 

stratocumulus to ~-5 to -10 μm in regions of broken cumulus [Zhang and Platnick, 2011]. Similarly, 

Liang et al., [2015] also indicated that the MODIS-retrieved Re bias zonal mean distributed a 

comparable dependence, with smallest bias magnitude associated with latitudes where 

stratocumulus contributes the most to the total cloud fraction, and largest bias magnitude 

associated with latitudes where broken cumulus contributes the most to the total cloud fraction. 

All these previous results encourage us to further look into the effects of cloud heterogeneity on 

MODIS-retrieved Re, thus we are stratifying the fusion data by cloud heterogeneity. 

 

3.1.2 Cloud Optical Depth 

When it comes to classifying different cloud types, a common criterion would be the cloud 

optical depth (thickness) variable. For example, Rossow and Schiffer [1991] used cloud top 

pressure and cloud optical thickness to divide nine different cloud types from the ISCCP data. By 

stratifying the data further by cloud optical depth, one could simply come up with a set of different 

cloud types when combining the stratification by cloud horizontal heterogeneity. Furthermore, 

Liang et al., [2015] has discussed the mutual dependence of 𝜏 and Re and concluded that the 

observed MODIS 𝜏	rainbow-dip and MISR	𝜏	rainbow-dip (with MODIS Re as inputs) indicated 
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the overestimate of MODIS-retrieved Re. In a different study, Boers and Rotstayn, [2001] 

examined the relationship between cloud optical depth and effective radius from remote sensing 

observations. They concluded that depending on the relative variability of droplet concentration, 

cloud depth, mixing and precipitation, and the correlation between cloud depth and droplet 

concentration, it is possible to obtain positive, negative or zero correlation between optical depth 

and effective radius. Surprisingly, however, Han et al., [1998] found consistent negative 

correlations of optical depth with effective radius for regions of high optical depth, and positive 

correlations for oceanic regions of low optical depth. Here we will examine how the MODIS Re 

bias is related to the retrieved cloud optical depth, adding cloud optical depth to the stratification 

variables to help better characterize the different cloud types and to provide a climatology at 

regional scales. 

 

3.1.3 Solar Zenith Angle 

Apart from the cloud optical properties, the sun-view geometry also impacts the retrieval 

of cloud microphysical properties such as the Re and cloud optical depth [e.g., Loeb et al., 1997; 

Várnai and Davies, 1999]. As suggested in Grosvenor and Wood, [2014], in conditions where 

solar-zenith angle is larger than 65-70°, the MODIS retrievals of optical depth and Re becomes 

unreliable due to retrieval artifacts related to cloud top heterogeneity and plane-parallel bias. In 

particular, the mean optical depth displayed rapid increase as the solar zenith angle becomes larger 

than 65-70°, while the MODIS multi-spectral Re retrievals also distributed large spread as the 

solar-zenith angle became large. Other works that also looked into the impact of solar zenith angle 

on optical depth retrievals [Loeb et al.,1997; Loeb and Coakley, 1998; Várnai and Davies, 1999] 

point to the breakdown of 1-D radiative transfer assumption and the plane-parallel assumption in 
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the 3-D reality. 

In our analysis, to determine the impact of solar zenith angle on MODIS Re bias, we follow 

the setup from Liang et al., [2015] to group the data in 2.5° latitude bins and 1° solar-zenith angle 

bins. 

 

3.1.4 Stratification Procedures 

MISR-MODIS Fusion Data is first stratified by 7 H𝜎 bins and 5 𝜏 bins, and then further 

stratified into 2.5° latitude bins and 1° solar-zenith angle bins. Following the definition of Fc in 

Liang et al. [2015], Fc is defined as Re corrected = Fc × ReMODIS, the Re corrected is the “bias-corrected” 

Re value and ReMODIS is the original MODIS retrieved Re value. In each 2.5° latitude bin, for each 

stratified data bin (stratified by 𝐻$ bins and 𝜏) at both the upper and lower bound, a set of Fc 

correction factors were retrieved over all possible SZA bins across all camera pairs, and a mean 

Fc is reported along with a standard deviation. In our analysis, we follow such practice to retrieve 

a mean Fc with standard deviation for each data bin (stratified by latitude, 𝐻$  and 𝜏). For the 

January data, we restricted the criteria of choosing only adjacent neighboring MISR camera pairs 

(e.g., AA-AN, AN-AF, BF-CF, BA-CA, …). 

 

3.2 Trend of Fc as a function of 𝑯𝝈 and τ  

Figure 3.1 shows an example of mean midpoint Fc (which in turn provides an estimate of 

the MODIS Re bias) as a function of 𝜏 and 𝐻$ in 2.5° latitude bins. Larger Fc values (smaller 

correction in Re) are associated with smaller 𝐻$ and 𝜏 bins (smoother and optically thinner clouds), 

while smaller Fc values (larger correction in Re) are associated with larger 𝐻$  and 𝜏. Such a 
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pattern with gradients shifting from large Fc values to smaller Fc values diagonally are observed 

for most of the latitude bins, while the magnitude of such shift varies for different latitude bins. 

This is consistent with our understandings of the impact of 3-D radiative effects on Re retrieval in 

the visible and IR spectrums, namely that larger Re bias tends to be found in more heterogeneous 

and optically thicker clouds due to stronger 3-D radiative effects. Such result also indicates that 

while Re bias show a dependence on cloud properties such as 𝐻$ and 𝜏, there is no single cloud 

property that dominates the behavior in MODIS-retrieved Re bias. 

 
Figure 3.1 Fc correction factors mid-points (median values) (given as Re corrected = Fc × ReMODIS) across all 2.5° 

latitude bins, each 2.5° latitude bin have Fc values for each 𝐻$ and 𝜏 bins. 
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3.3 Parameterization of Fc equations 

 

Following the data stratification discussed above, we parameterized the Fc equation as 

follows: 

          Re correct (i) = Fc (i) × Re MODIS(i)    (3.2) 

Where Re correct and Re MODIS represent the bias-corrected mean Re value and the original mean 

MODIS Re value at 2.5° latitude and longitude resolution, Fc is mean of the Fc correction factor 

at the upper or lower bound at 2.5° latitude bin resolution, and i is the index for each stratified data 

bin (i = 1,2, …, 35). By keeping track of the number of samples (N) that fall into each stratified 

data bin, the final bias-corrected mean Re for each gridpoint is weighted by the number of samples: 

  Re w_correct,(lat,lon) =∑ ( ](^_`,^bc)(d)
∑ ](^_`,^bc)(d),e
fgh

∙5i
d@j  Re correct,(lat,lon) (i)) (3.3) 

Where Re w_correct is the weighted mean corrected Re at 2.5° latitude and longitude resolution, Ni is 

the number of sample pixels at 2.5° latitude and longitude resolution. 

Following the estimates described in Liang et al., [2015], the 75% confidence level lie 

between the upper and lower bound estimates of Fc, and by assuming a Gaussian distribution, the 

Fc mid-point is equivalent to the Fc mean, and that the 68% confidence level within 1 standard 

deviation. Therefore, our standard deviation here is defined as: 

σ = [ (Reupper - Relower)/2](0.68/0.75)   (3.4) 
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where the Reupper represent the upper bound estimate of bias-corrected Re and the Relower as the 

lower bound estimate of bias-corrected Re. 

After such weighted mean estimate of corrected Re, we can provide a climatology of the 

mean Re in a global sense, that is, to provide the mean Re according to the contribution to the total 

cloud fraction of a 2.5° × 2.5° latitude-longitude bin. 
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CHAPTER 4: DATA PROCESSING 

 

One of the main setbacks of this research work is the massive amount of data processing 

that is required. To provide a sense of how much data went into such analysis, a total of 8 years’ 

worth of MISR-MODIS fused data for January was processed. As briefly discussed in Chapter 2, 

the bias-correction of MODIS Re is based upon the capability of MISR-MODIS Data Fusion, and 

the data fusion itself follows strict sequential procedures that requires co-registered pixels across 

both MISR camera set and MODIS to pass certain criteria. In this chapter, we will discuss the data 

processing procedures in detail, and also introduce the collaboration work between the University 

of Illinois and the Texas A&M University. 

 

4.1 Data Processing Procedures  

Following the details in the previous section, the MISR and MODIS Data Fusion features 

a strict serial processing procedure that is described in the following content. To implement MISR 

MODIS Data fusion, the following steps summarizes the working sequential steps needed for 

generating MISR-MODIS fusion data. 

 

4.1.1 Data Directory Manipulation 

To achieve near-automated data processing to meet up with the mass data processing demand, 

multiple days (at least, sometimes up to multiple years) of MISR L1B2 radiance data and MISR 

GMP geometric parameters along with MODIS MOD03 Geolocation dataset and MOD06 Cloud 

products dataset have to be organized in a common directory format so that a simple automated 



34 
 

search can be done by running bash scripts. To implement such data manipulation, the steps listed 

here are strictly followed: 

1. Create a processing txt list with all valid dates of interest, path, orbit numbers, and block 

numbers. 

2. Organize MISR L1B2 Radiance data and Geometric Parameters according to MISR path 

number and orbit number. 

3. Organize MODIS MOD03 and MOD06 in the same fashion as the previous MISR files. 

After all this is completed, a new txt list with MISR path, orbit and block information with MODIS 

Julian date, calendar date, MODIS 5-min block start time, start block and end block number 

information is generated. 

 Following the generation of the new txt list is the generation MODIS reprojection index. 

Using the geolocation information stored in MISR Ancillary Geographic Products (AGP) and 

MODIS MOD03 geolocation dataset, MODIS 1km pixels that overlap with MISR 1.1km pixels 

are re-projected to the 1.1km resolution MISR grid using nearest neighbor calculations. 

 

4.1.2 MISR 9-camera view cloud-element co-registration  

One of the key parts of the MISR-MODIS data fusion procedures is to co-locate the MISR 9 

camera views to the same cloud element. By this definition, we are referring to the registration of 

cloud pixels across MISR’s 9 camera views to the same MISR AN-camera pixel position. This 

process includes the identification of valid MISR AN-camera domains that pass certain criteria 

(will be discussed in the following sections), defining a search window to implement feature 

matching to track clouds across the 9 MISR camera views, and to assign the cloud pixels across 

MISR’s 9 camera views to the MISR AN-camera pixel position. 
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(a)                   (b)                                 (c)  

Figure 4.1 A schematic illustration of the co-registration of BRFs from the nine MISR cameras, each having 

their own time stamp (designated as 𝑡j, 𝑡8,… 𝑡m) over which time the cloud can move. (a) Co-registration at the 

surface altitude (standard product); (b) co-registration at the cloud-top altitude; and (c) co-registration to the 

same cloud element.  

 

 As partially described in Chapter 1, it takes ~7 mins for all 9 MISR cameras to view the same 

scene, during which period due to wind effects (cloud motion, etc.) the clouds in the same scene 

may have moved. To avoid the cloud movement across different MISR cameras, cloud pixels are 

co-registered to the same geolocation as in the MISR AN camera view (Figure 4.1). More detailed 

information on the MISR Image Matcher techniques used in the feature matching is provided in 

Muller et al., [2002]. Again, the cloud-element co-registration process is divided into the following 

major steps: 

1. Dumping MISR NIR Radiance from MISR L1B2 files into binary format in a 5-block 

chunk form. This 5-block defines the feature matching range that is required in the 

following steps.  

2. Identifying valid MISR AN-camera domains that (a) has valid retrievals from all MISR 9 

cameras; (b) are liquid clouds; (c) over ocean; (d) has valid MODIS reprojection index. 

3. Calculate MISR cloud-element co-registration index (utilizing feature tracking technique 

to co-register the MISR 9 angle views to the same position as the AN-camera projection). 
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According to the statistics given from Liang and Di Girolamo [2013], the quality control 

procedures through these steps result in a total of 48.2% of fully cloudy pixels being registered 

for January. 

 

4.1.3 MISR and MODIS products reprojection 

After the co-registration index are generated, alongside the MODIS reprojection index, the 

1km resolution MOD06 cloud products, 9-angle MISR solar-view-geometries, and MISR Near 

Infrared BRF can be registered to the 1.1km resolution MISR grid. For the purpose of studying the 

bias of MODIS-retrieved Re, MODIS Re was used as inputs to the Discrete Ordinates Radiative 

Transfer DISORT [Stamnes et al., 1988] model to retrieve MISR 9 angle views Cloud Optical 

Thickness. 

 

4.2 Data Deliveries for Texas A&M 

Through the development of this MISR-MODIS Data Fusion dataset, we combined quite 

a few standard data products from both MISR and MODIS, and created a fused dataset that is co-

registered and overlapping. In some sense, we created a unique dataset that can be used for studies 

that involves utilizing the angular signatures that MISR samples and the spectral signatures that 

MODIS samples. One use case for such dataset is the collaboration work between Texas A&M 

and the University of Illinois, where they studied the ice crystal surface roughness from multi-

angular sensors. The MISR-MODIS Data Fusion data is a great match for their study, since the 

cloud-element co-registration allows one to study the angular variation of BRF for the same cloud 

pixels. 
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For demonstration, Figure 4.2 shows the angular distribution of MISR Near InfraRed (NIR) 

BRFs (0.866 µm channel) averaged over a domain of 3x3 1.1 km pixels from a portion of thick 

cirrus using cloud element co-registration and constant altitude co-registration. It is apparent that 

a large discrepancy in the angular distribution of BRFs exists between the two co-registration 

methods. In this case, the domain was selected over the brightest portion of the thick cirrus from 

the nadir view. The darker pixels neighboring the bright region may be viewed from oblique angles 

for the constant altitude co-registration and, hence, averaged into the domain, leading to lower NIR 

BRFs values than those from the same cloud co-registration.  

 

 
Figure 4.2 Angular distribution of BRFs averaged over a domain of 3x3 1.1km pixels from a scene (MISR Orbit 

73138, Block 69) dominated by thick cirrus registered to the same cloud (orange line) and to a constant altitude 

(blue line). The domain is selected over the brightest portions of the cirrus.   

 

Furthermore, this fusion dataset not only includes the MISR 9 angular Radiance retrievals, 

but also the MODIS cloud optical properties (such as Re, Cloud Top Pressure, Cloud Optical 
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Thickness, …) from MOD06 products, which are useful parameters for the retrieval of ice crystal 

roughness. Starting from March 2016, we have been providing several data deliveries for Texas 

A&M for their development of the ice crystal roughness retrieval algorithm. Among these data 

deliveries, the most notable one is the last data delivery, where the full 2013 calendar years’ worth 

of MISR-MODIS Data Fusion was processed and delivered to Texas. Not only does this MISR-

MODIS fused data covers the full year of 2013, which makes it the longest continuous timespan 

for MISR-MODIS fused data, it also includes the highest amount of different datafields from both 

MISR and MODIS products. For example, within the dataset you may find MISR L1B2 radiances 

for the 9 angles, MODIS L1B Band 2 and Band 7 Radiances at 1km resolution, both MISR and 

MODIS Cloud Top Height, MODIS Effective Radius and Cloud Optical Thickness, etc. See 

Appendix for a full list of the datafields stored in the 2013 dataset. In total, multiple-parallel jobs 

with a total of 23.4K node hours over ~1 full month time period was used to generate ~50TB of 

data on Blue Waters for the 2013-year dataset.  
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CHAPTER 5: RESULTS 

 

5.1 MODIS original Re2.1 and Corrected Re2.1 

 Figure 5.1(a) shows the mean MODIS Re2.1 averaged over 8 years (2001-2008) for marine 

liquid clouds after cloud-element registration. (Note that ~48.3% of the original MODIS cloudy 

pixels passed quality control procedures.) From Figure 5.1(a), the global distribution of MODIS 

retrieved Re2.1 displayed a dependence on different cloud type, while the largest mean Re values 

(~22 to 25	µm) appear in the regions where the more cumuliform clouds contributes most to the 

total cloud fraction (e.g., around the ITCZ), the lowest mean Re values (~10 to 13	µm)  appear in 

regions where the marine-stratocumulus contribute the most to the total cloud fraction (e.g., off 

the west coasts of continents). The global mean MODIS Re2.1 value range from ~10 to 25 µm. 

 

Figure 5.1 (a) mean MODIS Re2.1 for January 2001-2008; (b) mean bias-corrected MODIS Re2.1 using the 

midpoint of Fc upper and lower bounds for January 2001-2008. 

(a) 

(b) 
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After removing the bias according to the magnitude of the rainbow-dip, however, Figure 

5.1(b) indicate a dramatic drop of mean Re values that is ~4 to 16 µm, while the cloud dependence 

feature of the original MODIS-retrieved Re are preserved (higher mean Re values in more 

cumuliform regions and lower mean Re values in more stratiform regions). Despite the substantial 

reduction in mean Re magnitude between Figure 5.1 (a) and 5.1(b), effects of increased 

concentration of Cloud Condensation Nuclei (CCN) over the continents [Twomey and Squires, 

1959] (which can lead to smaller Re) [Ramanathan et al., 2001] was clearly shown in both results, 

with smaller mean Re values (~4 – 8	µm) surrounding continents. 

 

5.2 MODIS Re2.1 mean Bias Distribution 

To have a better picture of the difference between the MODIS original Re and the bias-

corrected MODIS Re, for example, shown in Figure 5.2, we subtract between the MODIS original 

Re2.1 and the bias-corrected MODIS Re2.1. In other words, shown in Figure 5.2 is the distribution 

of the MODIS Re2.1 mean bias for the month of January 2001-2008 from 60°N	to 60°S. Figure 5.2 

reveals that according to our bias-correction procedures, MODIS Re 2.1 product	 carries a positive 

bias [Liang et al., 2015] that shows dependence on different cloud regimes, ranging from 1-3 µm 

in the more stratiform cloud regions (e.g., the marine-stratocumulus off the western coasts of 

continents) and all the way up to the 10-12 µm range in the more cumuliform regions (e.g., the 

strip of high bias around the ITCZ). This is consistent with our own knowledge of stratiform clouds: 

for the more homogeneous and smoother clouds, less impact from 3-D radiative effects result in 

smaller Re bias, while cumuliform clouds suffer stronger 3-D effects due to greater cloud 

heterogeneity and thus result in larger Re bias. Also, higher bias values generally appear in the 

Northern Hemisphere, which may partially be due to the lower solar-zenith angles in the higher 
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latitudes (even though meteorological drivers, cloud patterns may also be important influential 

factors for the higher bias in the Northern Hemisphere). It has been long known that the solar 

zenith angle has clear impact on satellite retrieved cloud microphysical properties [e.g., Loeb and 

Davies, 1996; Grosvenor and Wood, 2014; Kato and Marshak, 2009]. At large solar-zenith angles, 

even for the smoother clouds, slight change in cloud texture may lead to prominent 3-D radiative 

effects that lead to the observed bias in the satellite retrievals. 

 

Figure 5.2 Difference between the January mean MODIS original Re 2.1 and the bias-corrected MODIS Re 2.1. 

The circles and descriptions indicate past field observation and model simulation results. 

 

In search for validation of our estimates of the MODIS Re bias, we compare our results 

with some recent validations for MODIS Re 2.1µm. For example, in Figure 5.2, ① shows an 

estimate of bias ~1 to 13µm for marine boundary layer clouds under high sun condition based on 

MODIS-tied LES (Large Eddy Simulation) simulations [Evans, 2013]; ②	indicate	that	according 

to the observations from the Rain in Cumulus over the Ocean (RICO) field campaign, bias range 

~7 to 12 µm in trade cumulus regions under high sun condition [Haney, 2013]; and from the 
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VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) [Wood et 

al., 2011] ③, for stratus clouds, ~1 to 2 μm is observed under high sun condition [e.g., Painemal 

and Zuidema, 2011]. Figure 5.2 reveals that our estimates of the global distribution for MODIS Re 

2.1	µm bias is in good agreement with these field validations and model simulations. 

 

5.3 MODIS multi-spectral Original Re vs. Corrected Re  

Shown in Figure 5.3 we compare the MODIS multi-spectral (2.1, 1.6, and 3.7 μm) original 

mean Re with the corrected multi-spectral mean Re, alongside the uncertainty associated with each 

multi-spectral corrected Re.  

 

Figure 5.3 Global distribution of January mean original MODIS Re (Left Column), bias-corrected MODIS Re 

(Center Column), standard deviation of bias-corrected MODIS Re for the three MODIS spectral channels (1.6, 

2.1 and 3.7 µm) (Right Column). 
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The first noticeable feature of Figure 5.3 is that there are substantial differences in the 

global distribution of mean Re values between the original MODIS Re products (e.g., MODIS 

retrieved Re from 1.6, 2.1 and 3.7	𝛍m channel, hereafter Re1.6, Re2.1	and Re3.7), especially for Re3.7, 

which appears to have much smaller Re values across the globe than the other two Re products. 

The discrepancy between MODIS spectral retrievals of Re has led to studies searching for 

explanations. For example, Platnick [2000] showed that due to difference in the vertical 

distribution of weighting functions of these 3 MODIS channels (Re3.7 peaks more to the cloud top 

than Re1.6 and Re2.1), a vertical Re profile that increase from cloud base to cloud top (e.g., adiabatic 

clouds) should have Re3.7 greater than Re2.1 and Re1.6. However, Platnick also noted that the 

difference in weighting function of these spectral channels can only account for a difference of ~1-

2 𝛍m between the corresponding MODIS Re spectral retrievals, which seems insufficient to 

explain the discrepancy shown in Figure 5.3. Zhang et al. [2012] investigated the effects of drizzle 

and cloud horizontal heterogeneity on the MODIS Re retrievals and implied that much of the 

uncertainty can be attributed to 3-D radiative effects and plane-parallel Re bias, while drizzle does 

not show a significant impact on the retrieved Re. While our current explanation of this large 

discrepancy is not comprehensive, interestingly however, after we apply the bias-correction 

procedure to these MODIS spectral Re products individually, Figure 5.3 reveals that all three 

channels essentially showed more consensus in the mean Re values (they are generally within ~1-

2 𝛍m of absolute difference from channel to channel). Such difference may be more realistically 

the effect of the differences in the depth of radiation penetration among the spectral channels. This 
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tends to suggest that the corrected-Re might actually reflect the true Re value at these different 

wavelengths. 

 In estimating the bias-corrected Re, we also provide the uncertainty associated with the 

upper and lower bound estimates of the mean Fc. Recall that for each set of Fc retrieved within a 

2.5° latitude bin, we separately retrieve an upper bound Fc mean and a lower bound Fc mean, the 

midpoint of the upper bound Fc mean and the lower bound Fc mean is used as the correction Fc 

value for correcting the MODIS Re. The uncertainty plot simply represents half of the distance 

between the upper and lower bound Fc retrievals (converted to µm). Due to the limitation of our 

approach, we do see some “banding” (stratified features) artifacts. We suspect that these artifacts 

may be associated with sun-view geometry, since our bias-correction are based on the magnitude 

of the “𝜏-rainbow-dip”, in latitudes where less MISR camera pairs can observe both sides of the 

“rainbow-dip”, the estimate may relate to large uncertainty. Nevertheless, it is evident that all 3-

channel uncertainty distribution share the dependence on different cloud regimes: it has the 

smallest uncertainty (~0.5 - 1	µm) around the marine-stratocumulus region where the clouds are 

more homogeneous, and over the rest of the world the more cumuliform cloud regimes have 

uncertainty ranging from ~1 - 3	µm.  

 

5.4 Vertical Variations of Re from multi-spectral corrected Re 

From Figure 5.3 we can see that after removal of the bias from the multi-spectral MODIS 

Re, we end up with similar behaviors in the mean Re values (that are within 1~3	µm between 

different channels) across all 3 MODIS spectral Re. Here we are interested in further quantifying 

the difference between the 3-channel bias-corrected MODIS Re. Shown in Figure 5.4, we 

differenced the bias-corrected global distributions of mean Re for the 3 channels, denoted as 
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𝛥 Recorrect 2.1-1.6 and 𝛥 Recorrect 3.7-2.1. Upon examining the results of the difference maps 

(i.e.	𝛥Recorrect_2.1-1.6 and 𝛥Recorrect_3.7-2.1), several interesting features showed up: (1) ΔRecorrect 3.7-2.1 

shares the same general spatial pattern with ΔRecorrect 2.1-1.6, whereas the former appears to be 

greater in magnitude than the latter one in most parts of the world, while the latter one appears to 

be noisier; and (2) Both ΔRecorrect 2.1-1.6 and ΔRecorrect 3.7-2.1 appears to be positive over the more 

homogeneous cloud regions (e.g., marine-stratocumulus), while negative elsewhere across the 

60°N	to 60°S region we examined.   

 

Figure 5.4 (a) Difference between the mean corrected Re2.1 and Re1.6 for January 2001-2008 

(ΔRecorrect_2.1-1.6) (µm) (b) Difference between the mean corrected Re3.7 and Re2.1 for January 2001-

2008 (ΔRecorrect_3.7-2.1) (µm) 

 

If we associate these results with the aforementioned vertical distribution of weighting 

functions for the MODIS spectral channels, since the 3.7 µm channel weighting function peaks 

higher than the other two channels (2.1	µm and 1.6 µm), and that 2.1	µm peaks higher than 1.6 µm, 

the different signs (shown as blue and red in Figure 5.4) of ΔRecorrect_2.1-1.6 and ΔRecorrect_3.7-2.1 

indicate the vertical variation of Re profiles near the cloud top: For instance, where 𝛥Recorrect_3.7-

2.1 is positive (especially over the marine-stratocumulus regions) tends to suggest that the vertical 
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variation of Re profile may increase with altitude (e.g., adiabatic cloud profiles), and the negative 

holds true where 𝛥Re correct 3.7-2.1 is negative. We believe that this behavior indicates that the vertical 

variation of Re profiles may be related to the different types of cloud regimes, and that it may 

further suggest the different mechanisms of convection over the globe: For example, in some parts 

of the world, the dominating convection mechanism is radiative cooling from cloud top, whereas 

in the rest of the world, warming from below is the prominent mechanism of convection. Currently 

we do not have a comprehensive explanation on this matter, yet this curious finding requires further 

investigation.  

 

5.5 Intercomparison of corrected Re with other satellite Re products 

In Figure 5.5, we compare our global distribution of upper bound estimates of mean bias-

corrected Re3.7 for January with other satellite-retrieved Re datasets, namely the Pathfinder 

Atmospheres-Extended (PATMOS-x) [Heidinger et al., 2013] between January 2002-2008, the 

International Satellite Cloud Climatology Project (ISCCP) [Schiffer and Rossow, 1983] from 

January 1992-1999, the Along-Track Scanning Radiometers-Global Retrieval of ATSR Cloud 

Parameters and Evaluation (ATSR-GRAPE) [Sayer et al., 2011] from January 2003-2009, and the 

Polarization and Directionality of the Earth’s Reflectances (POLDER) [Breon et al., 2000] from 

January 2006-2013. The first three dataset comes from the Global Energy and Water Cycle 

Experiment (GEWEX) Cloud Assessment Database [Stubenrauch et al., 2012]. POLDER Level 2 

effective radius retrievals for the month of January are averaged at 2.5° resolution for direct 

comparison with the 2.5° resolution MODIS maps from our data analysis; for the purpose of noise 

filtering, for each grid point only sample numbers greater than 12 is further taken into our analysis.  
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Figure 5.5 Comparison of the (a) bias-corrected MODIS Re3.7 (with MISR sampling); (b) MODIS Re 3.7 μm 

(with MISR sampling); (c) PATMOS-x Re 3.7 μm; (d) POLDER Re; (e) ATSR-GRAPE Re 1.6 μm and (f) 

ISCCP Re 3.7 μm retrieved global distribution of Re for the multiple-years mean of January. 

 

Before serious comparison on the details of each satellite derived Re product, the goal for 

this comparison is not to determine which product is the more accurate and reliable Re product, 

but instead, to compare these currently available satellite-derived Re products with the corrected 

Re, study the similarities and differences between the results while taking into account of the 

differences in retrieval mechanism, time of operation and other possible influential factors, to shed 

lights on the limitations of MODIS-like instruments (e.g., MODIS, PATMOS-x and ISCCP in 

Figure 5.5) using the bi-spectral retrieval technique.  
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From Figure 5.5, it is evident that these different satellite-retrieved Re products have 

substantial differences (e.g., the difference between PATMOS-x Re 3.7 μm and ATSR-GRAPE 

Re 1.6 μm can be up to ~15 μm). When compared with other satellite-retrieved Re, the estimated 

bias-corrected Re appears to be smaller than the other satellite retrieved monthly mean Re value 

(except for ATSR-GRAPE which gives a range of 4 – 6 μm in more cumulus cloud regions). 

Interestingly, the bias-corrected Re have magnitudes more similar to the retrievals of POLDER 

and ATSR-GRAPE, whereas MODIS, PATMOS-x and ISCCP result in larger Re retrievals than 

the rest. We speculate that this can be related to the fact that MODIS-like instruments using the 

bi-spectral technique are more susceptible to 3-D radiative effects than POLDER and ATSR-

GRAPE, whereas the latter two make use of either polarization or multi-angle measurements. In 

terms of the implication of this comparison, it is clear that there are large discrepancies between 

different satellite Re products, while sampling differences are acknowledged, the large uncertainty 

associated with these satellite-retrieved Re products makes them questionable for conducting 

climate research. Furthermore, the shared features among the bias-corrected Re, POLDER Re and 

ATSR-GRAPE (in regions where POLDER have valid retrievals) contrast greatly to those using 

the bi-spectral retrieval technique (MODIS, PATMOS-x and ISCCP), and suggests that the bi-

spectral technique with the 1-D radiative transfer can be problematic when retrieving Re in the 

actual 3-D world. 
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CHAPTER 6: DISCUSSIONS AND CONCLUSIONS 

 

6.1 Validation 

The validation of the bias-correction of MODIS-retrieved Re remains a significant 

challenge in this thesis. Primarily due to the nature of satellite retrievals, satellites have unique 

advantages such as high spatial coverage and wide temporal span, especially when compared to 

ground and field observations. In this particular case of bias-correction for MODIS-retrieved Re, 

however, the main difficulty for validation lies in the fact that the truth of MODIS-retrieved Re, or 

the true Re values in reality, is somewhat unknown. This may even hold true for the validation of 

most satellite products, since the truth of a certain satellite product is often unknown. 

In the absence of the knowledge on the actual truth, field campaign measurements and 

ground observations serve to be one of the main sources of validation for satellite products.  there 

are certain limitations embedded in the nature of field observations that are worth mentioning.  

One of such limitation is the measurement uncertainty, which simply is the same problem with 

satellite measurements, that the uncertainty from the in-situ measured data can lead to biased 

measurements, and thus undermine the validity of such observation. Another common limitation 

of field observation is the poor spatial and temporal coverage. Unlike satellites, field observations 

make use of aircrafts and in-situ sensors that can often measure at a certain location at certain 

periods of time, it is almost impossible to have field observations that cover the entire globe in a 

continuous fashion.  

Despite these limitations of field observation, for the purpose of comparison and validation, 

this thesis compared the estimated bias associated with limited field observations that took place 
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in several locations across the globe during the winter seasons (to compare with the January 

results), as well as some model simulations. Without being impeded by the measurement 

uncertainties of these field observations, it is encouraging that the estimated MODIS retrieved Re 

bias were in good agreement with these field observations and model simulations (the difference 

are within ~1 μm). However, such validation is far from being a comprehensive validation, and 

that it would require more field observations and model simulation results across the different 

regions of the globe to increase the confidence of such validation. 

 

6.2 Implications 

Upon careful examination of the results in this thesis, several possible implications are as 

followed. First of all, it is evident that according to the observed “τ-rainbow dip”, MODIS Re2.1 

product is associated with an overestimate that range ~ 1 to 12 μm and depend on different cloud 

regimes: the MODIS Re2.1 bias range from ~1 to 3 μm over the coastal marine-stratocumulus 

regions, and up to ~10 to 12 μm in the broken cumulus regions. Comparison between some field 

observations suggest that they are in good agreement with in-situ measurements. Such estimates 

of the MODIS Re bias can help users who are currently using MODIS Re products to conduct 

research, for example, using Re to study aerosol-cloud interactions [e.g., Myhre et al., 2007] and 

cloud microphysical parameterization in climate models [e.g., Otkin and Greenwald, 2008], to 

acknowledge the possible existence of a systematic error within the MODIS Re product. Further, 

this could impact our current understandings of climate change, the impact of which is yet to be 

examined. 

Finally, this result suggests that the bi-spectral retrieval method used in MODIS-like 

passive satellite sensors may yield to substantial errors, primarily due to breakdown of the 1-D 
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radiative transfer assumption and the plane-parallel assumption in the real world, whereas for 

satellites using other techniques, such as polarization, multi-angle measurement may not be as 

susceptible to 3-D effects. This would allow future satellite instrumental designs to look for 

alternative ways to improve the retrieval accuracy.  

 

6.3 Limitations 

A few limitations of this thesis need to be noted here. First of all, the data processing for 

MISR-MODIS fusion is not highly efficient, due to the code setup that requires strict sequential 

processing procedures, it is yet to be optimized on Blue Waters to have the capability of running 

in multiple-parallel jobs for each step. Such inefficient processing procedure makes it nearly 

impossible to implement full-mission-year data processing (consider the fact that processing 12 

months’ worth of data takes about 1 full months’ time). One side effect of such computational 

speed is the amount of data processed that can be used for bias-correction estimates. Due to the 

limited amount of available data for the analysis, larger uncertainty and more artifacts tend to be 

associated with the results, and that it also limits the possibility of looking into other related topics, 

such as “the seasonal variation of MODIS retrieved Re bias”. 

Another limitation lies with the methodology of the approach. This method of bias-

correction can only account for the bias associated with the observed “τ-rainbow dip” near the 

rainbow scattering direction, but there may be other factors (such as the effect of View-Zenith 

Angle differences [e.g., Liang and Di Girolamo, 2013], effects of drizzle [e.g., Zhang et al. 2013]   

that may contribute to the bias, and the impact of which is still somewhat unknown. Furthermore, 

when parameterizing the bias-correction equations, the retrieval of Fc is set to be at every 2.5° 

latitude bin rather than the more logical 2.5° latitude by 2.5° longitude bin, primarily due to the 



52 
 

amount of computational work that is required. This stratification limitation resulted in artifacts 

that appeared in a few latitude bins in the results.  

Finally, when considering for the uncertainty associated with the Fc retrievals at each 2.5° 

latitude bin, the practice of using the midpoints as the median of Fc upper bound and Fc lower 

bound seemed questionable. Since the Fc upper bound and lower bound estimates are both 

independent sets of Fc samples retrieved at different solar-zenith angles, the sample distribution 

of Fc from the lower to the upper bound may not strictly follow a normal distribution, so it would 

be questionable to approximate the midpoints as the mean of the Fc upper and lower bounds. More 

investigation into efficient representation of the uncertainties should be done. 

 

6.4 Summary 

This thesis presented a new way of quantifying the MODIS Re bias at regional scales. In 

particular, using 8 years of January MISR and MODIS fusion data, we reported estimates of bias-

corrected mean MODIS Re2.1 that range from ~4 - 16 μm depending on different cloud regimes. 

By comparing the upper bound estimates of the bias-corrected mean MODIS Re2.1 and the original 

mean MODIS Re2.1, we revealed that the original MODIS Re2.1 may be overestimate by ~1 to 12 

μm depending on latitude and cloud types. Through further comparison with past studies, our 

estimates are consistent with past in-situ field observations. Removing the bias for the MODIS 

multi-spectral Re retrievals reveal similar results (the difference between channels are generally 

within ~1 to 2 μm).  Difference between the bias-corrected MODIS Re3.7 and Re2.1 showed clear 

dependence on cloud regimes (negative over more cumulus regions, and positive over marine-

stratocumulus regions), which suggest differences in the vertical variations of Re profiles between 

the different channels. We suspect that this may be due to the different mechanisms of convection 
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over the globe, and this may also impact our current interpretation of the vertical profile of Re 

from MODIS [e.g., Chang and Li, 2003]. The bias-correction procedures in this work 

demonstrated a potential of quantifying the regional bias in MODIS Re associated with the plane-

parallel approximation and may further be applied to other MODIS-like instruments to improve 

the accuracy of these satellite-derived cloud microphysical properties. In terms of final conclusions, 

the large uncertainties of MODIS-retrieved Re is far from the required 5% accuracy for climate 

studies [Ohring et al., 2005]. The impact of the large uncertainties to studies that use the original 

MODIS Re products to examine, for example, cloud microphysical parameterization in climate 

models [e.g., Otkin and Greenwald, 2008] and cloud-aerosol interactions [e.g., Ban-Weiss et al., 

2014] should be examined in depth.  

 

6.5 Future work 

In terms of future work, before looking into other topics, it is necessary to start with the 

investigation on a good statistical representation of the uncertainty (or confidence intervals) 

associated with the bias-correction of MODIS retrieved Re. (As discussed in Section 6.3), it will 

be very useful if we can associate the bias-corrected Re estimates with a confidence interval (e.g., 

a 95% confidence level) to give us some idea on the range of uncertainties. 

Another potential research topic is to further study the seasonal variations of MODIS 

retrieved Re bias with the additional availability of MISR-MODIS fused data for the summer 

months’ (July or August). It would be interesting to examine the changes between the global 

distribution of MODIS retrieved Re (and bias) and investigate the possible factors that lead to such 
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differences. One known impacting factor is the solar zenith angle effect, since the solar zenith 

angle between Northern Hemisphere winter and summer are different. 

One of the remaining questions of this thesis is to further investigate into the cause of the 

observed vertical variation of Re among different MODIS spectral channels. An examination into 

dynamics of atmospheric convection is required to determine what are the leading mechanisms of 

convection in different cloud regimes, and by taking in re-analysis data one could also look into 

the meteorological drivers that may contribute to the bias in the MODIS Re retrievals.  

As for validation, there are currently quite a few new field campaigns on cloud 

microphysical and macrophysical properties such as the ObserRvations of Aerosols above Clouds 

and their intEractionS (ORACLES) off the west coast of Africa, and the Cloud, Aerosol and 

Monsoon Processes Philippines Experiment (CAMP2EX) taking place in the Philippines in 2019. 

It would be interesting to compare and validate the estimated MODIS Re bias with measurements 

from these new field campaigns. 

Lastly, the necessity of speeding up the current MISR-MODIS data processing on Blue-

Waters is self-evident. Eventually the bias-correction procedures should be improved to a stage 

that it can be applied to a full-mission-length processing, and this would require making the 

maximum possible use of the parallel supercomputing power of Blue Waters. 
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APPENDIX A: DATAFIELD LIST 
 

Table A.1 Datafields in the Data Delivery for Texas A&M University 

Product Dataset Tree SDS name 

NIR BRF NIR Band NIR BRF 

MIB2GEOP GeometricParameters SolarZenith 

MIB2GEOP GeometricParameters SolarAzimuth 

MIB2GEOP GeometricParameters DfZenith 

MIB2GEOP GeometricParameters DfAzimuth 

MIB2GEOP GeometricParameters CfZenith 

MIB2GEOP GeometricParameters CfAzimuth 

MIB2GEOP GeometricParameters BfZenith 

MIB2GEOP GeometricParameters BfAzimuth 

MIB2GEOP GeometricParameters AfZenith 

MIB2GEOP GeometricParameters AfAzimuth 

MIB2GEOP GeometricParameters AnZenith 

MIB2GEOP GeometricParameters AnAzimuth 

MIB2GEOP GeometricParameters AaZenith 

MIB2GEOP GeometricParameters AaAzimuth 

MIB2GEOP GeometricParameters BaZenith 

MIB2GEOP GeometricParameters BaAzimuth 

MIB2GEOP GeometricParameters CaZenith 

MIB2GEOP GeometricParameters CaAzimuth 

MIB2GEOP GeometricParameters DaZenith 

MIB2GEOP GeometricParameters DaAzimuth 

MOD06L2 mod06 Quality_Assurance_1km (Phase) 

MOD06L2 mod06 Cloud_Optical_Thickness 

MOD06L2 mod06 Cloud_Effective_Radius 

MOD06L2 mod06 Cloud_Top_Pressure_1km 

MOD06L2 mod06 Cloud_Top_Temperature_1km 

MOD06L2 mod06 Cloud_Mask_SPI (H𝜎) 

MOD06L2 mod06 Atm_Corr_Refl 

MOD06L2 mod06 Cloud_Top_Height_1km 

MIL2TCSP Stereo_WithoutWindCorrection_1.1km CloudTopHeight_WithoutWindCorrection 

 


