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Abstract

In this dissertation, we use numerical methods to study one dimensional symmetry protected topological

(SPT) phases. We focus on the density matrix renormalization group (DMRG) methods and explore the

machine learning methods. We investigated different SPT phases in the context of interactions and disorders.

The application of machine learning methods reveals new insights into the topological phases. We begin by

studying the Z3 parafermionic chain, the simplest generalization of the Kitaev p-wave wire. The quantum

entanglement diagnostics we performed allow us to determine phase boundaries, and the nature of the phase

transitions. An intervening incommensurate phase is found between the topological and trivial phases. We

locate and characterize a putative tricritical point in the phase diagram where the three above mentioned

phases meet at a single point. The phase diagram is predicted to contain a Lifshitz type transition which

we confirm using entanglement measures. As another generalization of the Kitaev p-wave wire, we study

the interacting inversion symmetric superconductor. We introduce interaction and inversion symmetry

and preserve its original time-reversal, particle-hole and chiral symmetry. The symmetries indicates a Z2

classification. We study the quantum entanglement, teleportation and fractional Josephson effects of this

system. The ground state of the topological phase is a condensation of four electrons instead of cooper-pairs.

While there is a nonzero teleportation for cooper-pairs, the teleportation of one electron is suppressed. The

inversion symmetry restricts the edge modes of the system to be cooper-pairs other than two uncorrelated

electrons. It is also proved by the 2π periodicity in the fractional Josephson effects. At last we apply

machine learning methods for classification of SPT phases when strong disorder is present. The entanglement

spectrum is used as features to train the random forest model. We do the training using the data generated

from a small fraction in the parameter space. The model can give high accuracy predictions to other regions

in the phase space. It is even able to make correct predictions to system in a different symmetry class.

A detailed analysis of the model indicates that it is able to capture the degeneracy in the entanglement

spectrum.
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Chapter 1

Introduction

1.1 Topological phases

Characterizing the phases of a material is one of the most important problems in condensed matter physics.

In the classical Landau theories, phases are characterized by local order parameters associated with the

symmetries of the system [1]. Ordered states have non-zero local order parameters, indicating broken

symmetries in those phases. However, in quantum systems there exists phases which cannot be described

by Landau’s symmetry breaking theory. These phases are denoted as topological phases [2, 3].

Gapped ground states are in the same phase if they can be connected adiabatically. The adiabatic

evolution is realized by local unitary (LU) transformations, which acts a finite number of local operators on

the ground state [4]. Two gapped ground states are considered in the same phase if they can be connected

under the LU transformation without closing the gap. There exists states which can be mapped into states

with no entanglement under finite number of LU transformations. These are topologically trivial states

with short range entanglement, since the LU transformation only changes the entanglement locally. The

remaining states must have long range entanglement, which are denoted as topologically ordered phases

phases [4]. Some examples of topologically ordered states include the fractional quantum Hall states [5, 6],

spin liquids [7], etc. There are usually fractional excitations in the bulk of these states with fractional charges

and fractional statistics described by anyon models [8].

We require the LU transformations to preserve the symmetry, then new phases emerge: the symmetry

protected topological/trivial (SPT) phases and the symmetry enriched topological (SET) phases [9]. The

SPT phases are those that can only by mapped to the trivial states by symmetry-breaking LU transforma-

tions. Topological insulators and topological superconductors are SPT phases [10, 11]. They are classified by

a ten-fold periodic table when interactions are not present [12, 13]. Similarly, the SET phases are emergent

phases when symmetries are applied to the original topological phases instead of the trivial phases [9].

The most well known topological phase is the quantum Hall states [14, 15, 16]. It is an SPT phase

protected by U(1) symmetry (charge conservation). The Hall conductance is proportional to the first Chern
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number, an integer valued topological invariant [15, 17]. Quantum Hall states are bulk insulators with con-

ducting edges, which are general features of SPT phases (gapped bulk and gapless edges). Since topological

phase transition is always accompanied by a bulk gap closing, the boundaries between vacuum and SPT

phases must be gapless. The discovery of topological insulators opens a the door for searching new topo-

logical phases [18, 19]. Two dimensional topological insulators, also known as quantum spin Hall (QSH)

states, can be understood as two copies of quantum Hall states stacked together. The magnetic fields of

the two quantum Hall states are in opposite directions, making the whole system preserving time-reversal

symmetry. The edge of QSH consists of two counter propagating currents with opposite spin polarizations,

which are called helical edge states. Such kind of systems are realized by strong spin-orbital coupling. The

Rashba effect induces effective magnetic field on the two spin bands. In real materials like HgTe, the strong

spin-orbital coupling is caused by band inversion[19].

At first, only three symmetries are considered: time reversal, charge conjugation, and chiral symmetry.

Recently, people realized the crystal point group symmetries can also have significant impact on the SPT

phases. They are denoted as topological crystalline insulators [20, 21, 22]. Three-dimensional topological

crystalline insulators have surface states protected by time reversal and discrete rotational symmetry. A

new Z2 topological invariant is defined to characterize their band structures [20].

1.2 Numerical methods for strongly correlated many-body

systems

Though many interesting physics phenomena emerge from strongly correlated electron systems, they are

hard to solve both theoretically and numerically. In most cases, we are only interested in the zero or low

temperature properties. Therefore, finding the ground state wave function becomes the main target. Two

types of numerical algorithms have been developed to tackle these questions. One start directly from the

Hamiltonian and the other from trial wave function.

To solve a lattice model, the most straight forward way is to find eigen-vectors of the Hamiltonian matrix.

This is what exact diagonalization does. Although this method gives us exact solutions, the systems we are

able to solve are small due to the curse of dimensionality, i.e. exponential increase of the Hilbert space

dimension. Many approximations and variations are developed to solve the Hamiltonian for large system

size. There are mainly two approaches: approximate the original Hamiltonian with other solvable problems,

or update trial wave functions.

Dynamical mean-field theory (DMFT) maps a many-body quantum problem to a local one embedded
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in an effective medium [23]. The medium is solved from self-consistent conditions. The new system is an

impurity model which is well studied and can be solved. The only approximation comes by setting the

self-energy to be a local quantity, i.e. independent of momentum. This approximation becomes exact when

the lattice has an infinite coordination. DMFT gained great success in solving Hubbard model in three

dimensional spaces, but it is less accurate for low dimensional system.

Other numerical methods dependent more on wave functions: quantum Monte Carlo (QMC) and tensor

network algorithms. There are many types and variations in QMC. All of them share the same key idea

which is using Monte Carlo for performing high dimensional integrals. Variational Monte Carlo uses the

variational method to find the trial wave function with the lowest energy [24]. Diffusion Monte Carlo (DMC)

is the most common high-accuracy method for electrons. It effectively simulates the evolution of a trial wave

function in imaginary time. However, DMC suffers from the fermion sign problem. One can circumvent the

sign problem by fixing the node (FN) of the ground-state wavefunction to that of the trial wavefunction [25].

In practice, the accuracy of FN-DMC is limited by the quality of the node of the trial wavefunction. The

path integral Monte Carlo solves systems at finite temperature [26]. Usually it behaves better for high

temperatures.

The tensor network algorithms are also trial wave function methods. Among them the density matrix

renormalization group has achieved great success in simulating one dimensional systems [27]. It is based on

the matrix product states (MPS), which can efficiently represent states with low entanglement. The energy

is lowered by iterative optimization of individual matrices. We will talk about this method in detail in the

next chapter. Other variational ansatz such as the projected entangled-pair states (PEPS) [28, 29] and the

mlti-scale entanglement renormalization ansatz (MERA) [30] are used in two dimensions. Recently, neural

networks are used as trial wave functions [31]. they are shown to be equivalent with the tensor network

states [32].

1.3 Organization of this thesis

In this thesis, we only focus on the SPT phases. The entanglement properties, such as entanglement entropy

and entanglement spectrum, are widely used to detect these SPT phases [33, 34, 35, 36]. However, whether

the entanglement properties are good metrics for SPT phases in general is still an open question [37]. In

this paper, we will address this issue for one dimensional systems numerically.

The paper is arranged as follows. In the second chapter, we present the basic concepts of the entanglement

and the numerical methods we used to calculate it. Free fermions have the special property that their
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Hamiltonian only has quadratic terms. This makes it possible to exactly diagonalize the Hamiltonian

and calculate desired properties. We illustrate the method with an example at the end of this chapter.

The DMRG method is used for general one dimensional systems with short range entanglement. The

entanglement entropy and spectrum can be extracted directly from the algorithm. This is the main technique

we will use in chapter three and four. At last, the one dimensional p-wave superconductor is introduced.

Models studied in the next two chapters are generalizations of it.

In the third chapter we calculate the phase diagram of the Z3 parafermions based on the entanglement

entropy diagnostic. And the ground state of the inversion symmetric topological superconductor is studied

in chapter four. In chapter five, we introduce some of the most popular machine learning methods. An

implementation of machine learning on the classic Ising ferromagnet is talked about. Then we apply the

methods to classify the disordered SPT phase.

At last, we summarize this thesis and discuss the outlook of the work in chapter six.
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Chapter 2

Background knowledge

2.1 Quantum entanglement

Entanglement is one of the most distinguishing property of a quantum system compared with a classical

one. Here we give an intuitive picture of quantum entanglement. Consider a system of two 1
2 -spins with the

single spin basis as {| ↑〉, | ↓〉}. For classical spins, this two-spin system can be in only one of the four states:

↑↑, ↑↓, ↓↑, ↓↓. Their corresponding states in quantum mechanics, such as | ↑↓〉, are product states, that can

be written as a product. For example, the state | ↑↓↑↓〉 is a product state for a system with four spins.

Moreover, the state 1√
2
(| ↑↑〉+ | ↑↓〉) is also a product state, because we can rewrite it as | ↑〉⊗ 1√

2
(| ↑〉+ | ↓〉).

Redefine the basis of the right spin as |±〉 = 1√
2
(| ↑〉 ± | ↓〉). Then the state becomes | ↑ +〉.

Product states have no entanglement. Changing or measuring one part has no effects on other parts.

Product states behave the same as classical states. For example, acting an operator on the left spin of state

| ↑↓〉 will not change the state of the right spin. On the other hand, quantum states with entanglement

can never have classical counterparts. Similarly, an entangled state can never be written in a product form.

For example, the Bell state (or the EPR state) 1√
2
(| ↑↑〉 + | ↓↓〉) is the simplest entangled state [38]. If we

measure one spin in this system, we get spin up or down with even probability. Now we measure the two spins

together. For a classical system, we must get all four combinations with the same probability. However, this

quantum state always gives both spin up or both spin down. Such behaviors make an entangled quantum

state differ significantly from a classical state.

2.1.1 Entanglement entropy

How do we measure the entanglement? We continue to use the two-spin system as an example. Consider a

general state α| ↑↑〉+ β| ↓↓〉 with |α|2 + |β|2 = 1. When either α or β is zero, the state becomes a product

state with zero entanglement. Intuitively, we know the state is maximally entangled when |α| = |β| = 1√
2
.

This is because both α and β are far away from zero when they are equal.

For those familiar with information theory, note that entanglement here is similar to information. Larger
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entanglement indicates more connections between the two parts, therefore more information can be trans-

ferred. Consider the two spins at each end of a channel. This channel transforms | ↑〉 to | ↑〉, and | ↓〉 to | ↓〉,

just like a channel transforming classical binary information. The source generates state | ↑〉 with probability

|α|2 and state | ↓〉 with probability |β|2. From Shannon’s information theory for noiseless channels [39], we

get the entropy for the channel (or entanglement for the quantum state) as −|α|2 log |α|2 − |β|2 log |β|2.

In general, we define the measurement of entanglement as the following. Given a system, we can always

bipartite the full Hilbert space in real space into two parts H = HA ⊗HB . Here HA and HB should both

be Hilbert spaces and be independent of each other. Then given a normalized state |Ψ〉 =
∑
αβ Ψαβ |α〉|β〉,

a naive definition of entanglement would be S′ = −
∑
αβ |Ψαβ |2. However, this quantity is not well defined.

We can always write the state in other basis by unitary transformations. Although the transformed state

is essentially the same as the original one, the entanglement S′ calculated this way will change. Recall that

the entropy formula is true only for orthogonal states at the two ends of the channel. This corresponds to

the Schmidt decomposition of the state

|Ψ〉 =
∑
k

λk|αk〉|βk〉, (2.1)

with {|αk〉}, {|βk〉} being the new orthogonal basis in the Hilbert spaces HA and HB respectively. The

λk are non-negative real numbers and satisfy
∑
k λ

2
k = 1. The Schmidt decomposition is the same as the

singular value decomposition (SVD) of the coefficient matrix Ψαβ with λk as singular values. Therefore, the

decomposition always exists and is unique if there are no degeneracies. The entanglement entropy is then

defined as

S = −
∑
k

λ2k log λ2k, (2.2)

This entanglement entropy is the minimum of S′ from the naive definition.

From another perspective, we define entanglement from the density matrix. Define the reduced density

matrix (RDM) of part A by tracing over all the degrees of freedom in region B of the density matrix:

ρ̂A = TrB(ρ̂) = TrB(|Ψ〉〈Ψ|). (2.3)

Similarly, we can define the RDM of part B. It can be easily shown that ρ̂A and ρ̂B have the same eigen

values λ2k. Define Renyi entropy as

S(n) =
1

1− n
log Tr(ρ̂nA) =

log(
∑
k λ

2n
k )

1− n
. (2.4)
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When n→ 1, it becomes the widely used entanglement entropy, also known as the von Neumann entropy:

S = −Tr(ρA log ρA), (2.5)

which is just the entropy we defined in Eq.2.2.

Entanglement entropy has been widely used to detect topological phases in one and two dimensional

systems [33, 34, 36]. In a gapped one dimensional system, the ground state entanglement entropy increases

with the the block size l (the size of region A), and saturates when l reaches the correlation length [40].

Furthermore, if there is topological ground-state degeneracy we would expect an entanglement of order

∼ logD where D is the degeneracy [36]. In numerical calculations, to eliminate the most harmful finite-size

effects we usually take the central-cut entanglement entropy, i.e. the entanglement entropy calculated by

cutting the chain in half.

In addition to entanglement entropy, the entanglement spectrum provides more information about topo-

logical phases [35]. Define the entanglement Hamiltonian Hs from the RDM

ρA =
1

Z
e−Hs , (2.6)

where Z is the normalization factor which ensures Tr(ρA) = 1. Then the entanglement spectrum is the

energy spectrum of the entanglement Hamiltonian Hs. It has values − log λ2k. For a general two dimensional

topological quantum states, the entanglement Hamiltonian resembles the physical Hamiltonian of the one

dimensional edge. The entanglement spectrum is related with the spectrum of the physical edge spectrum [35,

41].

2.1.2 Central charge

For critical one dimensional systems (gapless), it is known that the entanglement entropy grows logarith-

mically with l, and the scaling is characterized by the central charge. More specifically, for critical lattice

systems with open boundary conditions, the entanglement entropy has the form [40]:

S =
c

6
ln

(
2L

π
sin

πl

L

)
+ S0 (2.7)

where c is the central charge, and S0 contains non-universal sub-leading corrections. For periodic boundary

conditions,

S =
c

3
ln

(
L

π
sin

πl

L

)
+ S0. (2.8)
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Once we know the central charge we will have an important piece of information about the phase transi-

tion/critical phase, and can then appeal to previously known analytic results.

2.2 Methods for free fermions

To numerically solve a quantum system, we usually represent the Hamiltonian by a matrix in the predefined

basis. As the system size increases, the dimension of this matrix increases exponentially, making it difficult

to perform numerical calculations. However, free fermions have the advantage that there are only quadratic

terms in the Hamiltonian. We do not need to deal with the full Hamiltonian, but only single-particle

Hamiltonian, whose size is linear with the system size. In this section, we introduce numerical methods

developed particularly for free fermions.

2.2.1 Wick’s theorem

We first introduce Wick’s theorem in the language of second quantization. We use the notation for free

fermions with ĉ as annihilation operator and ĉ† as creation operator. Consider the vacuum state |0〉, then

we have the following properties

{ĉj , ĉ†k} = δij , ĉj |0〉 = 0, 〈0|ĉ†j = 0. (2.9)

For bosons, we replace anti-commutators with commutators. The fermion annihilation operator can be any

operator that annihilates a given state. We only work on fermion creation and annihilation operators with

the vacuum state. Other cases can be easily generalized.

Define normal ordering of an operator Ô as : O : such that annihilation operators are all arranged to the

right of all the creation operators. For example, set Ô = ĉ†1ĉ2ĉ
†
3ĉ4, then : Ô := −ĉ†1ĉ

†
3ĉ2ĉ4. The sign is from

exchanging of fermionic operators.

Define contraction of two operators as ̂̂O1Ô2 = Ô1Ô2 − : Ô1Ô2 :. For Ô containing only one cre-

ation or annihilation operator, the contraction is either zero (when Ô1Ô2 is already normal ordered) or the

commutator which is also a number:

cj ĉk = ĉj ĉk − : ĉj ĉk := 0

c†j ĉk = ĉ†j ĉk − : ĉ†j ĉk := 0

c†j ĉ
†
k = ĉ†j ĉ

†
k − : ĉ†j ĉ

†
k := 0

cj ĉ
†
k = ĉj ĉ

†
k − : ĉj ĉ

†
k := δjk

8



Wick’s theorem states that an operator Ô composed by ĉ and ĉ† can be rewritten as a sum of following

terms: the normal ordered product of Ô, the normal ordered product of Ô after all single contractions, all

double contractions, etc., until no more contractions can be done.

Ô = b̂1b̂2 · · · b̂n =: b̂1b̂2 · · · b̂n :

+
∑
i<j

: b̂1 · · · b̂i · · · b̂j · · · b̂n :

+
∑

i<j,k<l

: b̂1 · · · b̂i · · · b̂k · · · b̂j · · · b̂l · · · b̂n :

+ . . .

(2.10)

where b̂j represents ĉj or ĉ†j . Now consider the expectation value of Ô. Since the expectation value of any

normal ordered operator is zero, The expectation value of operator Ô is non zero only when the number of

creation and annihilation operators are the same. The result is just the final term containing only two-point

functions.

We will not prove the theorem here, but only give an example.

ĉiĉ
†
j ĉk ĉ

†
l = : ĉiĉ

†
j ĉk ĉ

†
l : + : ĉiĉ

†
j ĉk ĉ

†
l : + : ĉiĉ

†
j ĉk ĉ

†
l : + : ĉiĉ

†
j ĉk ĉ

†
l : + : ĉiĉ

†
j ĉk ĉ

†
l :

= −ĉ†2ĉ
†
4ĉ1ĉ3 − δijc

†
l ĉk + δilc

†
j ĉk − δklc

†
j ĉi + δijδkl.

The terms that are zero after contraction are not written down to save space. It can be easily checked that

the last line is equal to the original operator. When we calculate the expectation value of this operator

in vacuum, only the late term remains. Therefore, any n-point function can be written with two-point

functions.

2.2.2 Reduced density matrices and entanglement entropy

Suppose the free fermion Hamiltonian has the form

Ĥ =
∑
j,k

ĉ†jHjk ĉk =
∑
j

εj f̂
†
j f̂j (2.11)

with f̂†j =
∑
k Ukj ĉ

†
k. Written in the matrix form, define column vector ĉ = (ĉ1, ĉ2, . . . )

T (similar for f̂),

hermitian matrix H with elements Hjk, and diagonal matrix ε with diagonal elements εj in ascending order.

Then we have relations

U†HU = ε, f̂† = ĉ†U (2.12)

9



The ground state with filling n is |G〉 =
∏n
j=1 f

†
j |0〉, and the corresponding energy is E =

∑n
j=1 εj .

The single particle correlation function ρij = 〈ĉ†i ĉj〉 = U∗ik〈f̂
†
k f̂l〉Ujl. Since 〈f̂†k f̂l〉 = δk,l for k, l ≤ n, and

〈f̂†k f̂l〉 = 0 for k, l > n, we get ρij =
∑
k≤n U

∗
ikUjk.

We separate the system into part A and part B. Define the Ũ matrix as the first n columns of the U

matrix and write it into two parts as

Ũ =

 UA

UB


The correlation function ρ can be written in the block matrix form:

ρ = Ũ Ũ† =

 UAU
†
A UAU

†
B

UBU
†
A UBU

†
B


Note that the right-singular vectors of matrix UBU

†
A are just the eigenvectors of the matrixM = UAU

†
BUBU

†
A.

Since U†AUA + U†BUB = Ũ†Ũ = I, we get M = UAU
†
A − UAU

†
AUAU

†
A, which has the same eigenvectors as

the matrix UAU
†
A.

Construct a transformation matrix

T =

 TA 0

0 TB

 .

TA and TB are the unitary transformation matrices that diagonalize UAU
†
A and UBU

†
B . Then we have the

following relations

T †A UAU
†
A TA = D

T †B UBU
†
B TB = I −D

T †B UBU
†
A TA = S

S2 = D(I −D).

Here D and S are diagonal matrices.

Therefore, ρ is block diagonal after the transformation:

T †ρT =



d1
√
d1(1− d1)

d2
√
d2(1− d2)

. . .
. . .√

d1(1− d1) 1− d1√
d2(1− d2) 1− d2

. . .
. . .


.

10



If part A is smaller than part B, the last diagonal terms should be 0 or 1. The number of the zeros and

ones depends on the filling of the system. As a side note, if we diagonalize the whole density matrix, we can

recover Ũ as eigenvectors with eigenvalues one. Other orbitals correspond to zero eigenvalues.

The ground state can be written as [42]

|G〉 =

n∏
j=1

f̂†j |0〉 =
∏
l

(√
dlâ
†
l +

√
1− dlb̂†l

)
|0〉. (2.13)

The â and b̂ operators are defined within part A and B respectively.

â†l =
∑
j∈A

Tjlĉ
†
j for l ∈ A

b̂†l =
∑
j∈B

Tjlĉ
†
j for l ∈ B

(2.14)

Operators â† and b̂† satisfy fermion anti-commutation relations, once we realize T †T = I.

The proof for Eq. 2.13 is not trivial. Here we provide a brief proof in three steps. First, we substitute f̂†j

with â†j and b̂†j . Only j ≤ n is considered. After simplification, we get f̂†j =
∑
k â
†
k(T †AUA)kj + b̂†k(T †BUB)kj .

Second, we show that the single particle states for a Slater determinant ground state is not unique. They

can be related by unitary transformations. Mathematically, we define new fermion operators η̂† = f̂†Q,

where Q is a n-by-n unitary matrix. Then we get
∏n
j=1 η̂

†
j |0〉 = eiθ

∏n
j=1 f̂

†
j |0〉. Expand the transformation

explicitly, ∏n
j=1 η̂

†
j |0〉

=
∏n
j=1

(∑n
k=1Qkj f̂

†
k

)
|0〉

=
∑
{k1,...,kn}

∏n
j=1Qkjj f̂

†
kj
|0〉

= Det(Q)
∏n
j=1 f̂

†
j |0〉.

Here,
∑
{k1,...,kn} means sum over all possible permutations. The determinant of a unitary matrix is just a

phase. Therefore, we get the freedom to write the ground state as

f̂†j =
∑
k

â†k(T †AUAQA)kj + b̂†k(T †BUBQB)kj .

Third, we show that we can find unitary matrices QA and QB , so that

(T †AUAQA)kj =
√
dkδkj ,

(T †BUBQB)kj =
√

1− dkδkj .

11



Then we recover Eq. 2.13. We notice that the above equations are just SVD for UA and UB . Thus, QA and

QB are unitary. From U†AUA + U†BUB = I, it is not too difficult to show that QA = QB .

A few comments on Eq. 2.13. First, this equation is exact for free fermions and can be easily generalized

for free bosons. We do not use any approximations during the calculations. Second, the formula indicates

that a particle in state f̂†l |0〉 has probability dl in part A and probability 1−dl in part B. The states with dl

closer to 0.5 is of more interest, because they contribute most to the entanglement of the two parts. Third,

Eq. 2.13 can be expanded and written as the Schmidt decomposition of the ground state. Then we can get

the singular values for the full Hamiltonian as

√
dn1
1 (1− d1)1−n1

√
dn2
2 (1− d2)1−n2 . . . , (2.15)

where nj = {0, 1}. One configuration of {n1, n2, . . . } gives one value. The entanglement entropy can be

calculated by

S = −
∑

{n1,n2,... }

(∏
l

dnll (1− dl)1−nl
)

log

(∏
l

dnll (1− dl)1−nl
)

= −

(∏
l

1∑
nl=0

)(∏
l

dnll (1− dl)1−nl
)∑

l

[nl log dl + (1− nl) log(1− dl)]

= −
∑
l

1∑
nl=0

dnll (1− dl)1−nl [nl log dl + (1− nl) log(1− dl)]

= −
∑
l

[dl log dl + (1− dl) log(1− dl)] .

(2.16)

Here we used
∑
nl
dnll (1− dl)1−nl = 1. This formula is calculated from single particle Hamiltonian, different

from Eq. 2.2 which is calculated from states of the full Hamiltonian.

2.3 Density matrix renormalization group

In this section, we first describe the concepts of the matrix product state and matrix product operators.

They are building blocks for the density matrix renormalization group (DMRG) method [43]. DMRG is

introduced in the third part.

2.3.1 Matrix product states

Consider a quantum system with N unites and each unite has d degree of freedom. This system can be

electrons on a lattice, an array of qubits, etc. To describe the state of such system, we need dN parameters.

12



Figure 2.1: A graph representation of the MPS. Squares are tensors with their legs as indices. The circle
represents a diagonal matrix. A line connecting two tensors means contracting of the corresponding indices.

The number of parameters increase exponentially with the size of the quantum system. This curse of

dimensionality makes it impossible for us to represent a large quantum system exactly.

On the other hand, there is a group of special states that do not need so many parameters. Product states

can be efficiently represented by Kronecker product of each unit. In principle, the number of parameters

scales linearly with the system size. However, such states are too simple to exhibit interesting physics,

because all unites are independent of each other.

The matrix product state (MPS) are just in between of product states and general states. They have

the feature of products states that the number of parameters increases linearly, while they also have the

advantage of general states of being complex enough. In general, a quantum state can be written as the

matrix product form

|Ψ〉 =
∑
{σj}

Ψσ1,σ2···σn |σ1σ2 · · ·σn〉 =
∑
{σj}

A(1)
σ1
A(2)
σ2
· · ·A(n)

σn |σ1σ2 · · ·σn〉. (2.17)

Here, σj represents local degree of freedom of unit j. A
(j)
σj is a matrix for degree of freedom σj in unit j.

Think of Ψσ1,σ2···σn as a tensor. What we are doing is approximating this tensor by a sum of products

of matrices. When no restrictions are applied on the matrices, the approximation is exact. Then we need

as many parameters as the original tensor, because the dimension of matrix A
(j)
σj increases dramatically as

j gets further away from the edge. We restrict that the matrices should have dimensions no larger than D,

the bond dimension. The total number of parameters is at most D2d ·N , which is linear in N . The product

states are special cases of the MPS with A
(j)
σj as 1-by-1 matrices. For example, a product state of all spins

up has A
(j)
↑ = 1 and A

(j)
↓ = 0 for all j.

Note that the MPS in Eq.2.17 is not unique. We can always insert the identity I = U†U between A
(j)
σj

and A
(j+1)
σj+1 with any unitary matrix U . To get a unique representation, we apply the canonical convention

13



Figure 2.2: The canonical condition expressed in graph. The identity matrix is represented by a single line.

and write the MPS as

|Ψ〉 =
∑
{σj}

A(1)
σ1
A(2)
σ2
· · ·A(l)

σl
ΛB(l+1)

σl+1
· · ·B(n)

σn |σ1σ2 · · ·σn〉. (2.18)

The A
(j)
σj and B

(j)
σj are matrices satisfying the canonical conditions

∑
σ

A†σAσ = I,
∑
σ

BσB
†
σ = I. (2.19)

Λ is a diagonal matrix. The canonical condition ensures that the state is normalized. It can be easily checked

by applying the canonical conditions from either end of the chain.

We can get a graphical representation of the MPS as shown in Fig.2.1. We use squares to represent

tensors with each leg as an index. The circle represents a diagonal matrix. The line connecting different

tensors means contracting indices. A graph with dangling legs is still a tensor, while a graph with no external

legs is just a number. The canonical conditions can also be represented similarly as shown in Fig.2.2. The

unitary transformation mirror reflects the squares. A single line represents the identity matrix.

Any state can be written as a MPS by applying the SVD on the state recursively. For a given Ψσ1,σ2···σn ,

we can treat it as a matrix with left index as σ1 and right index as (σ2 · · ·σn). Then we decompose the

matrix as

Ψσ1,(σ2···σn) = A
(1)
σ1,k1

Λk1,k1Ψ̃
(1)
k1,(σ2···σn) = A

(1)
σ1,k1

Ψ
(1)
k1,(σ2···σn). (2.20)

Here, we write all the indices explicitly. Absorb the matrix Λ into Ψ̃(1) to get Ψ(1). We can do the SVD

again on the new Ψ(1) with left index (k, σ2) and right index (σ3 · · ·σn).

Ψ
(1)
(k1,σ2)(σ3···σn) = A

(2)
(k1,σ2),k2

Λk2,k2Ψ̃
(2)
k2,(σ2···σn) = A

(2)
(k1,σ2),k2

Ψ
(2)
k2,(σ3···σn). (2.21)

Keep doing it and rewrite A
(l)
(kl−1,σl),kl

as matrices (A
(l)
σl )kl−1,kl . Similarly, we can get matrices B

(l)
σl by doing

SVD from the right index.
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(a)

(b)

Figure 2.3: (a) A graph representation of an operator tensor. (b) The graph for the expectation value of an
operator with given MPS.

We can get the MPS representation for state |Ψ〉 by applying the SVD recursively. However, it is

impractical to keep all the matrices exactly. Suppose there are d local degrees of freedom on each site. Then

the dimensions of matrices A
(1)
σ1 , A

(2)
σ2 , · · · are 1× d, d× d2, · · · , which grow exponentially. This is also true

for the B
(j)
σj matrices. To reduce the storage space, only the components that give the most contributions

need to be kept. In practice, we take the singular vectors corresponding to the largest D singular values.

Then all the matrices are at most of dimension D ×D. For gapped states with SRE, the error introduced

by this truncation decreases exponentially as we increase the bond dimension D.

2.3.2 Matrix product operators

In physics, we are interested in physically measurable observables. From the wave function we can get

expectation values of some operators. In general, the quantum operators can also be written in a form

similar as the MPS. An operator in matrix form can be represented as a graph in Fig.2.3(a). The legs are

indices of the tensor representing physical degree of freedom. Expectation value of this operator can be

calculated by contracting all indices with the MPS (Fig. 2.3(b)).
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In practice, we cannot express operator O as a matrix for the same reason as we do not explicitly write a

wave function as a vector. The dimension of matrix O poses a severe restriction on the size of system we can

solve. Similar to wave functions, we can also generate matrix product representations for operators. Then

the expectation value of operator O is expressed by graph in Fig. 2.4(a). In this figure we omitted all the

superscripts for clarity. The original big tensor O with 2n legs is decomposed by a production of n smaller

tensors.

Unlike wavefunctions, the matrix product operators (MPO) are usually exact and straightforward to con-

struct. Suppose we want to calculate a two-point correlation function 〈ĉ†j ĉj+1〉. Since this operator only acts

on sites j and j+1, we only need to apply operations on these two sites as shown in Fig. 2.4(b). Superscripts

and subscripts are omitted because there is no ambiguity here. Now we explain how we get this graph in

detail. The full matrix of the operator can be written as I1
⊗
· · ·
⊗
Ij−1

⊗
c†j
⊗
cj+1

⊗
Ij+2

⊗
· · ·
⊗
In.

Kronecker product of two matrix Aij and Bkl can be written as tensor product of tensor Aij1 and tensor B1kl.

Both of them gives a new tensor with index (ijkl). Here we explicitly show the index. Adding one index with

dimension one does not change values of the tensor. Therefore, the Kronecker product is essentially a tensor

product. We now obtain the MPO for operator c†jcj+1. This MPO can be further simplified. Contraction of

index with dimension one can just be removed, so no horizontal legs connecting operators. Identity matrices

are the same as lines. Thus, tensors in MPS are connected with their hermitian counterparts directly, except

when c† or c is present, which is the graph in Fig. 2.4(b).

Theoretically, we can calculate any expectation values as long as we can write an operator as a product

of local operators or as their sums. However, for Hamiltonian operators, it is not an efficient way to do

the calculation. There are no general ways to construct MPO for Hamiltonian operators, but the idea is

to create matrices for each site that can recover the original formula. We will elaborate the idea using an

example.

Now we want construct the MPO for the Hamiltonian of free fermions in an open chain. The Hamiltonian

of the system is

Ĥ = −t
n−1∑
j=1

(
ĉ†j ĉj+1 + h.c.

)
. (2.22)

We can rewrite the Hamiltonian as

Ĥ =

n∏
j=1

Oj , (2.23)
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(a)

(b)

Figure 2.4: A graph for the expectation value of (a) a general MPO and (b) operator c†jcj+1. Superscripts
are omitted for simplicity. Tensors can be different even though they are represented by the same symbol.
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where

O1 =

(
0 ĉ1 ĉ†1 1

)
, Oj 6=1,n =



1 0 0 0

tĉ†j 0 0 0

−tĉj 0 0 0

0 ĉj ĉ†j 1


, On =



1

tĉ†n

−tĉn

0


(2.24)

It can be easily checked that we can recover the original Hamiltonian by substituting all the Oj . Note that

Oj are four-tensors in the bulk (they are three-tensors at the edges). In the graph representation, the two

indices of matrices Oj are represented by the horizontal legs in Fig.2.4(a). The vertical legs are physical

degrees of freedom hidden in operators ĉj and ĉj .

2.3.3 DMRG algorithm

The DMRG algorithm is ideal for solving one dimensional local Hamiltonians [27]. The key idea is updating

the ground state site by site using effective local Hamiltonians. This method manifests itself under the

language of MPS and MPO [43].

Starting from a random MPS, based on our previous discussion, it is not too difficult to calculate the

energy of this state. Our goal is to minimize the energy by varying the parameters in the MPS, i.e. matrix

elements. The general optimization methods do not work here because there are too many parameters and

the derivative is not easy to calculate. We use an iterative method that updates one or two sites every

time with other sites fixed. At each step, we can analytically get the minimum value and corresponding

parameters. However, it is not guaranteed for this method to converge to the global minimum. In practice,

we can reach reasonably low energies for systems with short range entanglement.

We talk about the algorithm in detail in the following.

Update two sites

Suppose we want to update two sites at l and l + 1 of an MPS in the form of eq.(2.18). The system can be

thought of as composed by four parts: the left environment, site l, site l+ 1 and the right environment. The

structure is shown in Fig.2.5. The basis for a single site l is |σl〉. We assume the basis for the left and right

environments are |α〉 and |β〉 respectively. Then any state can be described by

|Ψ〉 =
∑

α,σl,σl+1,β

Ψασlσl+1β |α〉|σl〉|σl+1〉|β〉 (2.25)
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Figure 2.5: The set up for the DMRG algorithm. The system is separated as the left and right environment,
and two sites in between. The corresponding MPS representations are shown in the below.

Since operators are expressed in the basis of |σ1 . . . σn〉, we need to do a transform. In fact, the procedure

of generating the MPS automatically creates the basis |α〉 and |β〉 and the transformation matrix:

|α〉 = A(1)
σ1
· · ·A(l−1)

σl−1
|σ1 · · ·σl−1〉, |β〉 = B(l+2)

σl+2
· · ·B(n)

σn |σl+2 · · ·σn〉. (2.26)

As represented by graphs in Fig. 2.5, the product of tensorsA
(1)
σ1 · · ·A

(l−1)
σl−1 is a tensor with indices (σ1 . . . σl−1α).

It can be reformed as a transformation matrix by treating (σ1 . . . σl−1) as one big index. From the canonical

constraints (Eq. 2.19), the basis |α〉 is orthonormal. Similar for basis |β〉.

Project the Hamiltonian of the system to the basis |α〉|σl〉|σl+1〉|β〉. The projected Hamiltonian is an

effective Hamiltonian for the two sites in the background environment of the other sites. This basis has

dimension D2d2. Depending on the system and the accuracy required, the bond dimension D can range

from tens to thousands. The dimension of the Hamiltonian matrix can be millions-by-millions. Such big

matrix can be solved numerically using algorithms like Lanczos or Jacobi-Davidson large sparse matrix

solvers.

Now we get the ground state wave function in the form of Eq. 2.25. The coefficients of the wave function

Ψασlσl+1β can be understood as a tensor, and represented by a graph (shown in Fig. 2.5). From the graph

representation, it is clear that to get a complete ground state wave function for the full Hamiltonian, the

only piece missing is A
(l)
σl ΓB

(l+1)
σl+1 . The ground state solved from the effective Hamiltonian fits the place, but

is not in the correct form. Treat Ψασlσl+1β as a matrix with indices (ασl) and (σl+1β). From the SVD:

Ψασlσl+1β =
∑
k

UασlkΛkkVkσl+1β , (2.27)
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We get
(
A

(l)
σl

)
αk

= Uασlk and
(
B

(l+1)
σl+1

)
kβ

= Vkσl+1β .

In practice, we can update any number of sites in one step. The generation to multiple sites is straight-

forward.

Iteration process

There are basically two types of iteration processes: sweeping in finite systems and growing in infinite

systems. In finite systems, after the update of sites l and l+ 1, we move right and update the sites l+ 1 and

l+ 2. We keep moving until we hit the edge and then go left. Usually, the ground state energy converges to

constant after a few sweeps. In infinite systems, we insert two sites in the middle of the chain in every step.

Unlike sweeping, growing changes the size of the system. The ground state energy per site converges to a

constant. The finite process can start from any random MPS. Many people also like to generate the initial

MPS from the infinite process, and then apply the sweeping.

During the iteration, the transformation matrix should be calculated. This includes contracting a chain

of tensors. Notice that most contractions repeat themselves in the iterations. We can store the results from

previous steps to speed up the program.

Although the DMRG is suitable for both fermionic and bosonic systems, attention should be paid to the

fermionic ones. Suppose we want to calculate value 〈β′α′|ÔAÔB |αβ〉. Operators ÔA and ÔB only act on

states |α〉s and |β〉s respectively. This means for fermionic ÔA and |β〉, we have ÔA|β〉 = −|β〉ÔA (This can

be understood by thinking of |β〉 as b̂†|0〉). If either of the two is bosonic, the minus sign is replace by a plus

sign. Therefore, we can write

〈β′α′|ÔAÔB |αβ〉 = c〈α|ÔA|α〉〈β|ÔB |β〉, (2.28)

where c = ± is a sign to be determined. If both ÔA and ÔB are bosonic, c = 1. Otherwise, we assume there

are nα fermions in state |α〉. Then odd/even nα − nα′ indicates fermionic/bosonic ÔA. Since 〈β′| need to

switch with ÔA, we get the parity as nα(nβ′ − nβ). Therefore, c = −1 only when nα(nβ′ − nβ) is odd.

The main error of the DMRG comes from the truncation process that cuts matrices in the MPS to desired

bond dimension D. Recall that the SVD for a general matrix is M = UΛV † with diagonals of Λ sorted

in descending order λ1 ≥ λ2 ≥ . . . . We do the cut by keeping only the D largest singular values and the

corresponding left and right eigen-vectors to form a new matrix M ′. The error measured by Frobenius norm

between the two matrices is ε = ||M −M ′||F =
√∑

j=D+1 λ
2
j . In most cases the wave functions are short

range entangled. The singular values decay exponentially. Therefore the error decrease exponentially with
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D, making a small D (∼hundreds) sufficient for general models.

Details of the DMRG algorithm can be found in Ref. [44] and more details and discussions in Ref. [43].

We provide a pseudo code in the following. We use L as the length of the chain and Hj as the MPO of the

Hamiltonian on site j. For now we assume L is even.

Algorithm 1 DMRG algorithm

1: procedure Setup
2: l← 1.
3: r ← L.
4: Construct the Hamiltonian matrix Htwo of a two site system by contracting Hl and Hr.
5: Solve Htwo and find the ground state wave function Ψσlσr .
6: Write Ψσlσr in form of the MPS using SVD: Ψσlσr=AσlαΛαβBβσr .
7: Define the left and right environments: El ← AHlA

†, Er ← BHrB
†.

8: procedure Infinite DMRG(growing)
9: repeat

10: l← l + 1.
11: r ← r − 1.
12: Eleft ← El−1
13: Eright ← Er+1

14: Construct the Hamiltonian matrix H by contracting Eleft, Hl, Hr, and Eright.
15: Solve H and find the ground state wave function Ψασlσrβ .
16: Write Ψασlσrβ in form of the MPS using SVD: Ψασlσrβ=Aασlα′Λα′β′Bβ′σrβ .
17: Define the left and right environments: El ← AEleftA

†, Er ← BErightB
†.

18: until l + 1 == r

19: procedure Finite DMRG(sweeping)
20: toRight ← true
21: repeat
22: if toRight then
23: l← l + 1.
24: r ← r + 1.
25: else
26: l← l − 1.
27: r ← r − 1.

28: Eleft ← El−1
29: Eright ← Er+1

30: Construct the Hamiltonian matrix H by contracting Eleft, Hl, Hr, and Eright.
31: Solve H and find the ground state wave function Ψασlσrβ .
32: Write Ψασlσrβ in form of the MPS using SVD: Ψασlσrβ=Aασlα′Λα′β′Bβ′σrβ .
33: Update the left and right environments: El ← AEleftA

†, Er ← BErightB
†.

34: if r + 1 == L then
35: toRight ← false
36: else if l − 1 == 1 then
37: toRight ← true

38: until the ground state energy converges

39: Calculate any desired property using the ground state wave function.

A few comments on the algorithm. In general, A, B, E, and H are tensors. The equation Ψ = AΛB

is actually contraction over non-physical indices. The matrix productions AHA† and BHB† are tensor

contractions over the physical indices. Since contraction of tensors is much clearer when using graphs, we
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Figure 2.6: A graphical representation of the DMRG algorithm. The setup corresponds to setps from 4 to
7. The update corresponds to steps from 14 to 17 and steps from 30 to 33.
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show the graph representations of the key steps in Fig. 2.6. The setup part corresponds to setps from 4 to

7. The update part appears in both infinite (steps 14 to 17) and finite (steps 30 to 33) DMRG.

Although we indicated to generate the matrix H, it is usually not explicitly done in practice. One reason

for not doing so is the high dimension of this matrix. With the bond dimension set as one thousand, the

matrix will have 1012 elements. It is not efficient to store such a big matrix; and it takes too much resources

to diagonalize it exactly. Algorithms designed to solve large matrices do not require a dense matrix as input.

Only a function that takes a vector and returns a vector is needed. This function calculates the action of the

matrix on the input vector. With proper contraction order, such function can be efficiently implemented.

2.4 An example: 1D p-wave superconductor

In this section, we solve a well-known lattice model: the spin-polarized (or spinless) p-wave superconductor

(pSC) [45]. It is the simplest model for a topological superconductor. We will first solve the spectrum

of the system in the bulk analytically, and calculate the winding number as an indicator for topological

phase. This model can also be solved numerically using the technique for free fermions. Phase diagrams

and some entanglement properties will be discussed. We will show the deep connection between the p-wave

superconductor, the Kitaev chain and the transverse-field Ising model. Some physical quantities manifest

themselves in one model other than in others.

The Hamiltonian of the p-wave superconductor is

Ĥp−SC =
∑
j

(
−tĉ†j ĉj+1 + ∆ĉj ĉj+1 + h.c.

)
+ 2µ

∑
j

(
ĉ†j ĉj −

1

2

)
. (2.29)

t is electron hopping parameter and µ is chemical potential. ∆ is a p-wave pairing coefficient. This is the

simplest pairing we can have because the s-wave paring potential is not possible for spinless fermions.

2.4.1 Bogoliubov-de-Gennes Hamiltonian

For chains with periodic boundary conditions or infinitely long, we can apply Fourier transformation and

get the single-particle Hamiltonian in the momentum space.

Ĥp−SC =
∑
k

(
−2t cos(k)ĉ†k ĉk − i∆ sin(k)ĉk ĉ−k − i∆∗ sin(k)ĉ†k ĉ

†
−k

)
+ 2µ

∑
k

(
ĉ†k ĉk −

1

2

)
. (2.30)
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Figure 2.7: The band structures for the p-wave superconductor at different parameters. From left to right,
µ increases from zero and t decreases to zero. The phase transition happens when µ = t. A small ∆ is kept
unchanged. It opens a gap in the topological phases on the left.

k takes all values in the 1st Brillouin zone. For small p, keep only quadratic terms, we get

Ĥp−SC =
∑
k

εk ĉ
†
k ĉk −

∑
k

(
i∆kĉk ĉ−k + i∆∗kĉ†k ĉ

†
−k

)
(2.31)

where εk = −tk2 − 2t+ 2µ. We ignored the constant term. The first term is just the kinetic energy for free

fermions. The second term gives the momentum dependent pairings.

Unlike free fermions, here the Hamiltonian is not diagonalized in the momentum space. We use the Nambu

representation. Define spinor as Ψk ≡ (ck c
†
−k)T . Omit constant terms, we can write the Hamiltonian in

Eq. 2.30 as H =
∑
k Ψ†pHBdG(k)Ψk. The Bogoliubov-de-Gennes (BdG) Hamiltonian is then

HBdG(k) =

 µ− t cos(k) i∆∗ sin(k)

−i∆ sin(k) −µ+ t cos(k)

 = −∆∗ sin(k)σy + (µ− t cos(k))σz.

σy and σz are Pauli matrices. This is a two band system with energies

E = ±
√

(t cos(k)− µ)2 + |∆|2 sin(k)2 (2.32)

The energy spectrum is gapless only when |µ| = |t|. This critical point separates two physical regimes: the

topological (|µ| < |t|) and trivial (|µ| > |t|) phases. In the topological phase, the system is metallic if there

is no pairing term. It has fermion surface at two points k = ± arccos(µ/t). These are crossing points of the

free fermion band and the free hole band. The pairing term opens a gap at these points and destroys the

fermion surface. In the trivial phase, the system is a gapped insulator even when there is no pairing term.

In Fig. 2.7, we plot the band structures at five different parameter sets. The pairing coefficient ∆ is always

set small compared with the other two. From left to right, the first one is the limiting case when µ = 0,
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Figure 2.8: Limiting case when there are free Majorana modes at the ends of the chain. One black circle
indicates one complex fermion. The big blue and small red dots are Majorana fermions.

while the last one is t = 0.

The topological invariant is given by the Berry phase.

ν =
1

2π

∫ π

−π
A(k)dk, A(k) = i

∑
α∈occ

〈uα(k)|∂k|uα(k)〉. (2.33)

A(k) is the Berry connection. The integral calculates the winding number, which is always an integer. Write

the Bloch Hamiltonian as H = vyσy + vzσz. Define point V = (vy, vz) on the yz-plane. Intuitively, the

winding number is the number of times that point V winds around the origin as k changes from −π to π.

2.4.2 Majorana fermions

Define Majorana fermions as

âj = ĉj + ĉ†j , b̂j =
ĉj − ĉ†j
i

. (2.34)

They satisfy conditions

âj = â†j , b̂j = b̂†j , {âj , âk} = 2δjk, {b̂j , b̂k} = 2δjk, {âj , b̂k} = 0. (2.35)

We can express the p-wave superconductor Hamiltonian using Majorana fermions. With ĉj = 1
2 (âj + ib̂j)

and ĉ†j = 1
2 (âj − ib̂j), we write Eq. 2.29 as:

ĤMajorana =
∑
j

[
−t+ ∆

2
iâj b̂j+1 +

t+ ∆

2
ib̂j âj+1 + µ iâj b̂j

]
. (2.36)

Since we can always absorb the phase of ∆ in to the definition of fermion operators, we assume ∆ is a real

number. When t = ∆, the model becomes the Kitaev Chain [45].

In the limiting case when t = ∆ and µ = 0, the Majorana Hamiltonian with open boundary conditions

does not contain operators â1 and b̂L. They correspond to the zero modes of the system. We plot such a

chain in Fig. 2.8. The decomposition of complex fermion as Majorana fermions is represented as two dots
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Figure 2.9: Energy bands at different parameters. There are two zero modes in the topological phase
(|µ| < |t|). They split at the phase transition point |µ| = |t|.

within one circle. Majorana fermions from adjacent complex fermions are connected, while independent of

each other if they are from the same complex fermion. Therefore, the edge Majorana fermions have no

partners to interact with and are completely free.

To show the edge zero modes, we solve the Hamiltonian numerically with open boundary conditions. We

set ∆ = t and t + µ = 1 for convenience. We used a chain of 20 sites. The energy spectrum is show in

Fig. 2.9. Different from Fig. 2.7, the x-axis is parameters of the Hamiltonian instead of the momentum. We

notice two degenerate zero-energy states appear only when |µ| < |t|. The corresponding wave functions are

localized at the edges, and decays exponentially into the bulk.

2.4.3 Jordan-Wigner transformation

Spin models and fermion models can have deep connections. They can be mapped to each other exactly

under the Jordan-Wigner transformation.

The Jordan-Winger transformation is defined as

ĉj =

(
j−1∏
k=1

σ̂zk

)
σ̂xj − iσ̂

y
j

2
. (2.37)

Here σ̂ are Pauli matrices representing operators for half spin. Then we have relations

ĉ†j ĉj =
1 + σ̂zj

2

ĉ†j ĉj+1 + h.c. = −1

2
(σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1)

ĉj ĉj+1 + h.c. =
1

2
(σ̂xj σ̂

x
j+1 − σ̂

y
j σ̂

y
j+1)

(2.38)
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The p-wave superconductor Hamiltonian (Eq. 2.29) after Jordan-Wigner transformation is thus

ĤXY =
∑
j

[
t+ ∆

2
σ̂xj σ̂

x
j+1 +

t−∆

2
σ̂yj σ̂

y
j+1 + µσ̂zj

]
. (2.39)

This is the XY chain with magnetic field in the z direction. Again we set t = ∆. The Hamiltonian reduces

to

ĤIsing = t
∑
j

σ̂xj σ̂
x
j+1 + µ

∑
j

σ̂zj , (2.40)

which is the transverse field Ising model with −t as ferro magnetic pairing and µ as the external magnetic

field.

This system has Z2 symmetry with the symmetry operator P̂Z =
∏L
j=1 σ̂

z
j . It is easy to check that

P̂ 2
Z = 1, and [HIsing, PZ ] = 0. Note that σ̂zj = 2ĉ†j ĉj − 1. The Z2 symmetry of the spin chain then becomes

the fermionic parity with P̂F =
∏L
j=1

(
2ĉ†j ĉj − 1

)
.

2.4.4 Entanglement analysis

Entanglement properties are widely used to detect topological phases. In this part we use the numerical

methods introduced before to analyze the p-wave superconductor. It serves as an exercise for the techniques

and gives a better understanding of the models.

The energy spectrum and the entanglement energy spectrum are the same for the two models under the

Jordan-Wigner transformation. Mathematically, the transformation acts as a non-local unitary transforma-

tion between the two Hamiltonian, thus keeping the eigenvalues unchanged. Similarly, the entanglement

Hamiltonian defined from the ground state can be related by the same unitary transformation. Therefore,

the entanglement spectra are the same for the two systems.

In fig. 2.10, we show the low energy spectrum of both the energy and the entanglement energy of the p-

wave superconductor (pSC). They are obtained using DMRG with system size L = 200 and bond dimension

m = 100. Open boundary condition is used. The spectra of the transverse field Ising model (TFIM) are

not shown because they overlap exactly with those of the pSC. This is consistent with our arguments above.

Both the energy and the entanglement energy have double degeneracy in the topological phase. However,

the origins of the degeneracy are different. The degeneracy in the ordered phase of the TFIM comes from

spontaneous symmetry breaking. It can be understood from the limiting case when the transverse field is

zero. Then the ground states are the perfect ferromagnetic with two possible directions of magnetization. In

the pSC, the ground state degeneracy comes from the edge zero modes which are Majorana fermions. In the

trivial phases there are some accidental degeneracies in the excited states, but the ground levels are always
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Figure 2.10: The (a) energy spectrum and (b) entanglement energy spectrum of the p-wave superconductor.
We set J = 1− h. The spectra of the transverse field Ising mode are exactly the same. Double degeneracy
is seen for all levels in the topological phases for both the energy and the entanglement energy.

non-degenerate. The boundary conditions have different effects on the degeneracies of the two models. If

we switch to periodic boundary conditions, the degeneracy in pSC energy spectrum disappears because the

boundary term that connects the two zero modes lifts the degeneracy. On the other hand, the TFIM is not

affected.

Now we focus on the entanglement entropy of the pSC. We still use the open boundary condition. Recall

that entanglement entropy is calculated for one bi-partition of the system. For a chain with L sites, we

can cut the chain at L − 1 different positions. We plot the entanglement entropy at all possible cuts in

Fig. 2.11(a) for topological phase, trivial phase, and at the transition point which is also known as a critical

point. We set L = 100. The upper line is the typical curve for the entanglement entropy in the topological

phase (t = ∆ = 2 and µ = 1). When the cut is close to the edge, one of the subsystem is smaller than the

correlation length. The entanglement entropy grows as the cut gets into the bulk. For the pSC, it saturates

at ln 2. The trivial phase (we chose t = ∆ = 0.5 and µ = 1) always has a small entanglement entropy as

shown by the lower line. The middle curve is the entanglement entropy at the critical point. It satisfies

Eq. 2.7.

The central cut entanglement entropy of the system as parameter changes is shown in Fig. 2.11(b). We

set t = ∆ = 1− µ for convenience. In the bulk of the topological phase, the entanglement entropy is always

ln 2. The value diverges near the transition point, and decreases after entering the trivial phase. Note that

the entanglement entropy becomes zero only in the atomic limit.

The central charge at the critical point can be extracted from the entanglement entropy S with Eq. 2.7.

We calculated the entanglement entropy at different cuts for open and periodic boundary conditions with L =
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Figure 2.11: (a) Entanglement entropy at different cuts l for topological (upper line), critical (middle), and
trivial (lower line) phases. In the topological phase, the entanglement entropy is around ln 2. At the critical
point, the entanglement entropy increases with the subsystem size. The trivial phase always has a low
entanglement entropy. (b) Central-cut entanglement entropy at different parameter sets. It is a constant
ln 2 in the topological phase until reaches the transition point, and then decreases gradually in the trivial
phase.

100. Recall that S is linear with ln(sin(πl/L)). We plot S verses x in Fig. 2.12. We set x = 1
6 ln

(
2L
π sin πl

L

)
for open boundary conditions and x = 1

3 ln
(
L
π sin πl

L

)
for open boundary conditions. A clear linear relation

can be seen for both boundary conditions. A fitted line for each of them is also shown in the figure. The

central charge calculated from the fitting is printed in the legend. Although we use the same system size, the

central charge from the periodic boundary condition is closer to the true value c = 1. The small deviation

from the true value comes from the finite size effects near the edges. We take values only in the middle of

the chain (from 1
4L to 3

4L), and do the fitting again. Now the central charge is 1.016 and 1.000018 for open

and periodic boundary conditions respectively. Compare with the results using all the data, we see a lot of

improvements especially for the periodic boundary condition.

2.4.5 Finite size effects

In this part, we discuss finite size effects in numerical simulations. Recall that there are two edge zero modes

in the topological phase of an open chain. In general, the eigenvectors with the same eigenvalues are not

uniquely determined. Linear combinations of the zero-energy states are also eigenstates of the Hamiltonian

with zero energy. When the length of the chain is comparable or smaller than the correlation length, the

two edge modes can interact with each other and lift the degeneracy. Therefore, we do not have the freedom

to choose the ground state we want to work with for small systems.

We plot the central-cut entanglement entropy (blue dots) for different system sizes and the corresponding

energy gap (red line) between the two zero modes in Fig. 2.13(a). We set t = ∆ = 0.7 and µ = 0.3 while
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Figure 2.12: Entanglement entropy at the transition point for different cut position. We use both the
open boundary condition (OBC, lower line) and the periodic boundary condition (PBC, upper line). x is
1
6 ln

(
2L
π sin πl

L

)
for OBC and 1

3 ln
(
L
π sin πl

L

)
for PBC. The fitted straight lines are also plotted.

varying the system size L. When L is small (L < 10), the entanglement entropy grows quickly with the

system size, then saturates at 2 ln 2. The 2 ln 2 can be understood as two parts. The cut in the middle of the

chain contributes one ln 2. Besides, the zero modes at the two ends of the chain are entangled to lower the

energy. The cut of this entangled state gives an additional ln 2. This can be verified by plots of the energy

gap and wave functions. The energy difference between the two zero modes are plotted in Fig. 2.13(a) as

a red line. The values are plotted in a log scale. With small system size L, the gap reduces exponentially

with L until it reaches machine accuracy. The entanglement entropy remains as 2 ln 2 until the gap closes

exactly. The typical wave function of the zero mode that is filled is plotted in Fig. 2.13(b). The blue line

with non-zero values at both ends is the amplitude of the zero mode at different sites for L = 20. It is a

combination of the two edge modes.

When L is large (L > 80), the entanglement entropy drops to ln 2. There is no contributions from the

entangled state as in the short chain case. This is consistent with our argument, because the two edge modes

in this case are too far away to interact with each other. The eigen problem solver just picks one edge state.

As shown in Fig. 2.13(b) by the green line, the wave function only has non-zero values at one end of the

chain.

When L is neither small nor large (40 < L < 80), the system is in an intermediate state with the two edge

modes partially entangled. The entanglement entropy oscillates as the size of the chain changes between even

and odd numbers. The zero mode has non-zero values at both ends of the chain (orange line in Fig 2.13(b)),

but the amplitudes at the right side is significantly smaller than those at the left side.

We Found similar effects in other one dimensional models with edge zero modes, such as the Su-Schrieffer-

Heeger (SSH) chain. Same as the pSC, the zero modes of a short SSH chain are located at two edges. The
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Figure 2.13: (a) The central-cut entanglement entropy for different system size. We set t = ∆ = 0.7 and
h = 0.3. The corresponding energy difference between the two zero modes is plotted as a red line. The scales
are on the right. (b) The wave functions of the filled zero mode at different system sizes. All of them are
edge modes. The blue line with non-zero values at both ends is for L = 20. The orange line is calculated
when L = 60. It has high amplitude on the left but low on the right. The state with L = 90 only has one
peak on the left as shown by the green line.

only one difference is that the wave function oscillates at both ends for the SSH chain, while the wave

function decrease monotonically at one end and oscillates at the other end for the pSC.

There are several ways to eliminated such effects. The most straight forward way is to use larger

system sizes, but it sometimes consumes too much computation resources. We can apply periodic boundary

conditions, or cut the middle part out of an open chain. In this case, the two edge modes are in the same

area. How do they interact each other will not affect the entanglement calculation at the cut. For central-cut

entanglement entropy of an open chain, we can add a small symmetry breaking term to split the degenerate

states into the corresponding symmetry sectors.
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Chapter 3

Phase diagram of the Z3 parafermionic
chain with chiral interactions

In this chapter, we characterize the phase diagram of a parafermionic chain using numerical methods.1

Parafermions are exotic quasiparticles with non-Abelian fractional statistics that can be realized and stabi-

lized in 1-dimensional models that are generalizations of the Kitaev p-wave wire [46]. We study the simplest

generalization, i.e. the Z3 parafermionic chain. Using a Jordan-Wigner transform we focus on the equivalent

three-state chiral clock model [47], and study its rich phase diagram using the density matrix renormalization

group (DMRG) technique [27, 43] . We perform our analyses using quantum entanglement diagnostics which

allow us to determine phase boundaries, and the nature of the phase transitions. In particular, we study

the transition between the topological and trivial phases, as well as to an intervening incommensurate phase

which appears in a wide region of the phase diagram [48, 49]. The phase diagram is predicted to contain a

Lifshitz type transition [50] which we confirm using entanglement measures. We also attempt to locate and

characterize a putative tricritical point in the phase diagram where the three above mentioned phases meet

at a single point.

This chapter is arranged as follows. We first talk about the background of this work in the first section,

and then discuss the details the entanglement criteria used to map out the phase diagram in the next section.

The DMRG algorithm gives immediate access to the entanglement entropy (EE), and therefore the central

charge, at critical points/regions in the phase diagram [40]. The third section introduces the model we will

work on and its properties. The general features of the phase diagram and regions of the topological phase

(where para-fermion boundary modes may exist) are in section four. We also discuss the nature of the

phase transitions out of the topological phase, and the numerical difficulties encountered when locating the

transition point. Section five contains our observations pertaining to a critical incommensurate phase, and

the possibility of a tricritical point in the phase diagram at the intersection of the topological, trivial, and

incommensurate phases. We also find a region of the phase diagram which exhibits the critical entanglement

features of a Lifshitz transition. Finally, we conclude by discussing future directions and possible relevance

1The material presented in this chapter was published in: Ye Zhuang, Hitesh J. Changlani, Norm M. Tubman and Taylor
L. Hughes, Phys. Rev. B 92 (3), 035154 (2015); Some of the figures and their captions in this chapter are reprinted from these
publications with minor modifications. Copyright by the American Physical Society (APS). Reuse permitted according to APS
copyright policies.
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to experiments looking for para-fermions in the last section.

3.1 Background

There has been concerted effort to engineer systems with stable Majorana bound states, and other anyonic

quasiparticles, for use in the topological quantum computation architecture [51, 52, 53, 54, 55, 56, 57].

For example, there has been recent progress in attempts to isolate Majorana bound states in quantum

nanowires [55, 58, 59, 60] and in superconductor surfaces implanted with a line of magnetic impurities [61].

These quasi-1D systems effectively realize a version of the Kitaev p-wave wire model [45], and are predicted

to have a gapped topological phase which supports characteristic Majorana bound states at the ends of the

wire.

While the boundary modes in these heterostructure systems are non-Abelian anyons, they are unfortu-

nately known to beinsufficient for universal quantum computation. A possible remedy for this problem has

been to look for more exotic non-Abelian excitations. For example, Fendley has recently suggested exploring

one-dimensional ZN para-fermionic models which support topological phases with more computationally

efficient non-Abelian anyon bound states [46]. Still, the ZN non-Abelian anyons are not able to perform uni-

versal quantum computation, however they can be leveraged to create a 2D phase with Fibonaccci anyons,

which are universal [62]. These promising features have spurred wide spread interest in these models, and

has led to many analytical and numerical studies, including several experimental proposals for realizing these

topological phases [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87].

In this work, we continue along these lines of research by exploring the rich phase diagram of the Z3

para-fermionic chain; though for ease of calculation we actually study the Jordan-Wigner transformed para-

fermionic chain [47], including chiral interactions. The resulting model is the three state chiral clock model.

This model re-surfaced in this context in Ref. [46] as a candidate for exhibiting non-Abelian bound states

beyond Majorana fermions. It was shown analytically that para-fermionic boundary zero modes can exist in

this model when spatial-parity and time-reversal symmetries are broken via chiral interactions [46]. This was

verified numerically in Ref. [88], which confirms that chiral interactions can help to stabilize the boundary

zero modes, although the zero modes themselves are more fragile than one might initially expect.

Here we are interested in studying the full phase diagram of the chiral clock model as a function of two

chiral-interaction phase-parameters (θ, φ), as well as the relative strength of the nearest neighbor coupling

(J) to the local Zeeman field (f). Using entanglement techniques, we have been able to locate the phase

boundaries that separate the topological phase from the trivial gapped phase, and a critical incommensurate

33



phase, the latter of which has no analog in the Kitaev p-wave wire model. We have conclusively identified the

region in which there is a topological phase, and have explored the nature of the quantum phase transitions

in and out of the three adjoining phases. In addition, by studying oscillatory properties of the system in,

or near, the incommensurate phase, we establish the approximate location of a putative tricritical point[48,

49], and further support the entanglement signatures that were recently proposed for identifying Lifshitz

transitions[50].

3.2 Z3 chiral clock model and para-fermions

3.2.1 The Hamiltonian

For our study we use the 1D 3-state (Z3) chiral clock model [48, 89, 46, 90]. The Hamiltonian for the 3-state

chiral clock model is:

H3 = −f
L∑
j=1

τ †j e
−iφ − J

L−1∑
j=1

σ†jσj+1e
−iθ + h.c. (3.1)

following the notation in previous work [46], where f , J , θ and φ are scalar parameters, and σi and τi are

local three state spin operators on site i. The spin operators have the properties τ3 = σ3 = I, στ = ω τσ,

where ω = e2πi/3. Specifically, we use the matrix representation

τ =


1 0 0

0 ω 0

0 0 ω2

 , σ =


0 1 0

0 0 1

1 0 0

 .

The chiral clock model is related to the para-fermionic chain through a Jordan-Wigner transformation [47,

46], similar to the well-known, analogous case that the Kitaev p-wave wire is related to the transverse-field

Ising model via the same type of transformation. The parafermion operators are defined as

χj =

(
j−1∏
k=1

τk

)
σj , (3.2)

ψj =

(
j−1∏
k=1

τk

)
σjτj , (3.3)

at site j. The corresponding para-fermionic Hamiltonian is

H3 = −f
L∑
j=1

ψ†jχje
−iφ − Jω2

L−1∑
j=1

ψ†jχj+1e
−iθ + h.c. (3.4)
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3.2.2 Symmetry analysis

The chiral clock model has a global Z3 symmetry that can be represented with χ ≡
∏L
j=1 τ

†
j ≡ e

2πi
3 Z .

Here Z is the generator of the symmetry, and has three different eigenvalues 0,1,2. In addition, when

all of the coefficients of the Hamiltonian are real, i.e. when the system is a Z3-ferromagnet or Z3-anti-

ferromagnet Hamiltonian, then the Hamiltonian is invariant under time-reversal, charge-conjugation, and

parity symmetries. This can be easily seen from the following definitions of these symmetries. Charge

conjugation C acts on the spin operators via CσjC = ω2σ†j , CτjC = τ †j , C2 = 1. As an aside, note that

charge conjugation, together with the Z3 symmetry, forms the S3 permutation symmetry, i.e. the symmetry

obeyed when the 3-state clock model is restricted to the 3-state Potts model. Time reversal T acts on the

spin operators via TσjT = σj , TτjT = τ †j , T 2 = 1, and complex conjugates any scalar coefficients. Spatial

parity P acts on the spin operators via PσjP = σ−j , PτjP = τ−j , P
2 = 1. Finally, we note two things: (i)

due to the symmetry of the Hamiltonian with respect to φ and θ, we only need to consider the region of the

phase diagram where φ and θ each range from 0 to π
3 , and (ii) for f = J , the system is self-dual along the

line φ = θ.

We first address the property (i) in detail: the Hamiltonian in Eq. 3.1 has the same properties when

either of the two phases θ, φ are shifted by multiples of 2
3π. To show this we can see that the transformation

θ′ → θ +
2nπ

3
φ′ → φ+

2mπ

3
(3.5)

changes the Hamiltonian to:

H3 = −fω−n
L∑
j=1

τ †j e
−iφ − Jω−m

L−1∑
j=1

σ†jσj+1e
−iθ + h.c. (3.6)

Then we can redefine the operators:

τ ′ = ω−nτ σ′2j = ω−mσ2j σ′2j+1 = σ2j+1. (3.7)

This new set of operators preserves the properties τ3 = σ3 = I, στ = ω τσ, where ω = e2πi/3. After this

redefinition we end up with a Hamiltonian with the same form as the original.

Additionally, the transformation that flips the signs of the two phases at the same time, i.e.,

θ′ → −θ φ′ → −φ (3.8)
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changes the Hamiltonian to,

H3 = −f
L∑
j=1

τje
−iφ − J

L−1∑
j=1

σjσ
†
j+1e

−iθ + h.c. (3.9)

Here we can redefine the operators as

τ ′ = τ † σ′ = σ† (3.10)

to recover the form of the original Hamiltonian.

We can also just flip the sign of just one of the phases, say φ′ → −φ, and then the redefinition:

τ ′j = τ−j σ′j = σ−j (3.11)

leaves the Hamiltonian unchanged. If instead we flipped the sign of θ, will need a transformation that

involves both Eqs. 3.10 and 3.11.

Now, we can consider the property (ii) duality transformation:

µj+ 1
2

=

j∏
k=1

τk, νj+ 1
2

= σ†jσj+1. (3.12)

These dual operators satisfy µ3 = 1, ν3 = 1, and µν = w νµ. The dual Hamiltonian is then

Hdual
3 = −J

L−1∑
j=1

ν†
j+ 1

2

e−iθ − f
L∑
j=1

µ†
j− 1

2

µj+ 1
2
e−iφ + h.c. (3.13)

Comparing with the original Hamiltonian, the dual Hamiltonian returns to the original form if we exchange

θ and φ, and at the same time J and f .

3.2.3 Analytical results

There are many previously known results about this model (Eq.3.1), beginning with the original proposals

of Ostlund [48] and Huse [89]. For example, the corresponding two-dimensional classical Hamiltonian for

φ = 0 was studied in Ref. [48], and the one-dimensional quantum Hamiltonian was studied in Ref. [49]

for the restricted case φ = θ. One of the most important early results is that Eq. 3.1 has a second order

quantum phase transition at f = J when θ = φ = 0. At this point the model realizes the full S3 permutation

symmetry (instead of just Z3), and the critical point is described by the critical conformal field theory for

the 3-state Potts model, which has central charge 4/5 [91]. In addition, the line f cos(3φ) = J cos(3θ) [92]
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is known to be integrable and φ = θ = π
6 is super integrable [93, 94]. Despite this, the knowledge of the

location of some important critical points and their associated properties is an open question.

Generically, it is known that the phase diagram is divided up into two gapped regions, one of which is

identified with small values of f (compared with J), and the other with large values of f . These regions

are separated by continuous quantum phase transitions that we will identify and discuss further below.

Using a more modern terminology, the gapped phase for small f is a symmetry broken phase of the 3-

state clock model and it exactly corresponds to the “topological” phase in the Jordan-Wigner transformed

para-fermionic chain. The gapped phase for large f is a disordered phase of the 3-state clock model, and

maps onto the “trivial” phase of the para-fermionic chain. This gives another example of a case where the

degeneracy associated to symmetry breaking is mapped to topological degeneracy via the Jordan-Wigner

transformation [95, 96]. Hence, in either representation this phase has a three-fold ground-state degeneracy,

which can be detected by measuring the ground state EE. On the other hand, the trivial phase is equivalent

to the spin disordered phase, which does not have a generic ground-state degeneracy. The parameter f is

thus an important tuning parameter for the phase diagram, and analogous to the external transverse field

in the Ising model.

While we expect these general features to pervade the phase diagram, the phase space for generic θ and

φ is largely unexplored. Additionally, it is known that the combination of the Z3 symmetry and the chiral

nature of the interactions, gives rise to interesting behavior that cannot be found in the Majorana/Ising

case. For example, this model supports a so-called “incommensurate phase” which is not present in the

transverse-field Ising model with chiral interactions [48].

This motivates the main objective of our article, which is to characterize the phases and the nature of

the phase transitions over the entire phase space. We will show that there are two types of phase transitions

that occur to destabilize the topological phase, and there is a large region of critical incommensurate phase

that separates the topological from the trivial phase over a wide range of parameters.

3.3 Phase diagrams

3.3.1 Phases and transitions

We primarily use the spatial entanglement entropy (EE) to characterize the phase diagram. This measure

has been widely used to detect topological order in 2D [33, 34], and has been applied more recently to 1D

topological phases [36]. To arrive at our results for the phase diagram (and to obtain reasonable estimates

of the phase boundaries in the thermodynamic limit), we simulated Hamiltonians using open-boundary
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Topological

Trivial

IC

Figure 3.1: Three-dimensional phase diagram of the chiral 3-state clock model in terms of f , θ and φ with
J = 1 − f . For details of the Hamiltonian see Eq. 3.1. The topological, trivial, and incommensurate (IC)
phases are indicated. The coloring is a function of the value of f at the critical surface separating the phases.
The dashed line that connects points (0, 0, 0.5) and (π/3, π/3, 0.5) is the self-dual line.

DMRG with 100 sites, and a bond dimension m = 100. We find this to be sufficient for the phases with

low entanglement entropy. For the critical phases, additional checks were performed with bond dimension

m = 200. For establishing characteristics of other phases, for example, the region of critical incommensurate

phase, larger lengths of 400 sites were also tested.

First, we present the full three-parameter phase diagram (f ,θ,φ) over the reduced domain in Fig. 3.1,

where we have set J = 1 − f . The basic topology of the phase structure is clear. We find three distinct

phases as mentioned above. The phase corresponding to largest f values is generically the trivial phase,

and the phase corresponding to the smallest f values is generically the topological phase. They share a

common/direct phase boundary between them when θ and φ are small. For large θ or φ, an intermediate

incommensurate phase appears between the two.

We show the central-cut EE in Fig.3.2(a),(b),(c) for several 2D cross-sections of the 3D phase diagram.

These plots help to identify the gapped phases and the topology of the phase boundaries. To more clearly

identify the nature of the critical regions/boundaries we also calculate the central charge via the scaling

relation. It is interesting to see that the observed locations of the phase boundaries for cross sections φ = 0

and θ = φ are broadly consistent with earlier works [48, 49], and that the topological phase itself is stable

over a large part of the phase diagram 2.

We indicate several special points on these cross sections: Point A in Fig. 3.2(a) and Fig. 3.2(c) is the

transition point of the three-state Potts model associated with c = 4/5 [91], and Point B and C are putative

tri-critical points. We indicate approximate locations of the phase boundaries with solid, dashed, or dot-

dashed lines, depending on the nature of the phase transition, as indicated in the figure caption. Finite size

2By this we mean that the system remains gapped and the topological ground-state degeneracy is robust. We do not mean
that the edge zero-modes remain exact over the entire phase range. See Ref. [88] for discussion on this distinction.
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Figure 3.2: Three cross-sections corresponding to (a) φ = 0 (b) φ = π/3 and (c) φ = θ of the three
dimensional phase diagram, and all for L = 100. Topological, trivial, and incommensurate (IC) phases are
identified by the central-cut entanglement entropy (color coded). For (a) and (b) a 2D grid in increments of
0.01 was used to resolve fine features of the transitions. (c) was mapped out on a 2D grid in increments of
0.05. Point A is the transition point of the 3-state Potts model, i.e. the chiral clock model for (θ = φ = 0).
Points B and C are Lifshitz points and are associated with putative tricritical behavior. The solid lines,
dashed lines, and dotted-dashed lines indicate direct topological-trivial (c = 4/5) type, Kosterlitz-Thouless
type, and Pokrovskii-Talapov type [97] transitions respectively. The thick circularly-dotted line represents
an upper bound on the region where exact parafermionic zero modes can exist [46]. Panels (d), (e) and (f)
show the corresponding central charges for cross sections (a),(b),(c) respectively. The IC phase is associated
with central charge c = 1 (yellow) whereas the critical regions close to point A have c = 4/5 (green).
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effects were checked around specific points along the critical lines by running system sizes of L=100 to 400

on a finer grid. The locations of these lines did not change significantly in comparison to the resolution of

our grid, except in certain regions which are discussed in further detail in later sections.

From the central-cut EE we see that the trivial phase is characterized by a small EE, while the topological

phase has a nearly uniform EE of ≈ ln 3 indicating a three-fold degeneracy of the ground state. The change

of EE is abrupt between the two phases as can clearly been seen in Fig. 3.2(a) and Fig. 3.2(c) for θ . π/4

and θ . π/6 respectively. We also verified that this transition is accompanied by a divergence in the second

order derivative of the ground state energy (not shown).

The third phase in the phase diagram is the incommensurate phase. This is a critical phase in which the

correlation functions generically behave as A(r)e(2πi/3)Qr, where A decays algebraically and Q is irrational.

The oscillatory properties of the correlation functions also manifest themselves in oscillatory behavior seen

in energy gaps, which we address later. Although there is not an extremely sharp distinction between the

central-cut EE for the topological and incommensurate phases, the EE scaling with system size is markedly

different. The former has an EE that quickly saturates to a constant value of ln 3 with sub-system size,

while the latter has EE that diverges logarithmically with sub-system size. By fitting our data to Eq. 2.7,

we establish that the incommensurate phase is critical and its central charge is c = 1 over the entire phase.

3.3.2 Extract central charge near critical points

While constructing the detailed phase diagram cross sections, we found that while it was easy to approximate

the locations of the phase boundaries, we often encountered difficulties in precisely nailing down the central

charge of the corresponding critical points. As an example, we note the appearance of a few points with

(apparently) high central charge, indicated by red color, on the direct topological-trivial phase boundary in

Fig. 3.2(d). While in some cases there may be real physics associated to this behavior, A primary source for

these spurious effects is fitting to a region of the phase diagram that is just slightly off-criticality. We show

that the central charge is very sensitive to the precise location of the critical point, and can easily give O(1)

errors even when only slightly tuned away from criticality, and even with reasonably large-size calculations.

When performing the fit to EE data obtained from a finite size system, and for a point in parameter

space that is close to (but not at) a critical point, it is often difficult to obtain a reasonable estimate of the

central charge. One possible explanation is that, when the system size is smaller than the correlation length,

the fit to Eq. 2.7 may appear to be good, but the central charge obtained from the fit may not match the

actual central charge of the nearby critical point. This is not unique to our model, and we were also able

to observe this effect for free Dirac fermions with a tunable mass term as shown below. Eventually, if the
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Figure 3.3: The EE as a function of the subsystem size l at φ = θ = 0 and several different f close to or at
the critical point (f = 0.50). From the highest curve to the lowest one, the corresponding f is 0.495, 0.499,
0.500, and 0.501. The central charges obtained from the fitting are shown in the legend. For f = 0.495 and
f = 0.501, a plateau in the EE is seen indicating a gapped phase. For f = 0.499, an apparent critical phase
is seen which is attributed to an artifact of finite size effects.

system is tuned off criticality, and when the system size is larger than the correlation length, the EE will

saturate and hence reveal the gapped phase.

To provide an example of such behavior, we refer to known analytic results that the central charge should

be 4/5 at (f = J = 0.5, φ = θ = 0), and zero for all other f at φ = θ = 0. In Fig. 3.3, we show that at

the critical point f = J = 0.5, the central charge is c = 0.81± 0.01, close to the analytical result. However,

when we are slightly away from this point, say f = 0.499, the system still appears critical with an (apparent)

central charge of c = 1.58, much larger than the expected value of 0.80. On going slightly further away,

f = 0.495, a plateau in the EE profile is seen consistent with our expectation of a gapped phase. Thus,

the fitting procedure produces misleading results in the neighborhood of the critical point, and can make it

difficult to determine the central charge for critical points in which the position of the point is not known

to extremely high accuracy.

To further confirm our discussion above we performed similar calculations for 1D gapless Dirac fermions

using exact diagonalization. We use the 2-band free-fermion lattice Dirac model as the test model

H = −
∑
n

(
ic†n+1,↑cn,↓ + ic†n+1,↓cn,↑ + h.c.

)
−
∑
n

(
c†n+1,↑cn,↑ − c

†
n+1,↓cn,↓ + h.c.

)
+(2−m)

∑
n

(
c†n,↑cn,↑ − c

†
n,↓cn,↓

)
This model is gapless at k = 0 if m is zero, and the critical point should have a central charge of 1. If m is

tuned away from zero the system exhibits an energy gap of the size 2m. For our entanglement calculations
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the system was filled to half filling, such that when it is gapless, the filling hits exactly at the Dirac node,

and if it is gapped, the filling includes all the states in the lower band. In this model the correlation length

is controlled by the scale 1/m (with units it would be ~vF /m but ~ and vF are effectively unity for our

model).

To compare closely with our DMRG results we fit the central charge of this model using entanglement

scaling with open boundary conditions. When gapless, we find the central charge to 2 or 3 digits of accuracy.

For example, we find c=1.006 when the chain is of length 400. In addition to calculating the scaling law

over the entire chain we can improve the fit by taking symmetric cuts around the center of the chain which

reduces the edge effects. We get slightly improved accuracy for ranges such as 120-280, i.e., c=1.004. If we

increase system size to L=500 and fit over 120-380 we find c=1.003.

40-360 120-280 40-80
L=300 1.0198 1.0202 1.0199
L=400 1.022 1.024 1.021
L=500 1.0243 1.0273 1.0219.

Table 3.1: The central charge obtained by fitting from different region of the system and different system
size L. The mass gap is set to be m=1/10000

Now let us perturb the system slightly away from the critical point. For this test we turn on a gap size

of m=1/10000 as a start. As an estimate, this should give a correlation length of ξ =10000 sites. For system

size 400, if we fit from 40-360, we find c=1.022; if we fit from 120-280 we find c=1.024. If we try to fit a

different range, e.g., 40-80 we find c=1.021. Either way, the result is already 1% different than the gapless

case even for this tiny gap (compared with the bandwidth). Next we repeated the same 3 fits for L=300 and

we find c= 1.0198, 1.0202, 1.0199. And then for L=500 and find c=1.0243,1.0273,1.0219. These results are

summarized in Table. 3.1. We observe that the fits get worse when we increase the system size, and when

we fit over the region restricted mostly to lie over the center. The latter result may be expected since the

scaling function varies most slowly over the center. The fact that the fits get worse as we increase system

size is most likely just an indicator that there is a finite correlation length and that the critical scaling form

will eventually break down. For additional tests we also fit the central charge for larger (but still very small)

mass gaps with m = 1/1000 and m = 1/100 in Table. 3.2 and Table. 3.3 respectively.

40-360 120-280 40-80
L=300 1.1374 1.1633 1.1230
L=400 1.1699 1.2082 1.1372
L=500 1.2014 1.2499 1.1473

Table 3.2: The central charge obtained by fitting from different region of the system and different system
size L. The mass gap is set to be m=1/1000
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40-360 120-280 40-80
L=300 1.8811 1.7267 1.9246
L=400 1.7563 1.4033 1.9438
L=500 1.5701 1.0878 1.9385
L=600 1.3874 0.84507 1.9273

Table 3.3: The central charge obtained by fitting from different region of the system and different system
size L. The mass gap is set to be m=1/100
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Figure 3.4: (a) The transformed curve of entanglement entropy. Here x is defined as ln(Lπ sin πl
L ), where l is

the block size and the system size L = 200. For small x the curves are ordered by increasing the mass gap
(lowest mass is the lowest curve). (b) The central charge obtained by fitting the entanglement entropy from
site 40-160 for a 200 sites chain. The blue open circles are for open boundary conditions and the red dots
are for periodic boundary conditions.

We see that when we are tuned near, but not at, the critical point the best fits in the gapped case seem to

come from smaller system sizes, and over ranges which do not include the flat middle portion of the scaling

range nor the far tails of the scaling range. The unfortunate thing is that once we are a bit further away

from the critical point this optimized fitting pattern no longer works. In this case none of the fitting regimes

we used give accurate results because the system begins to reveal its gapped nature. We do find something

close to c = 1 when m = 1/100 and L = 500 (Table. 3.3), but this seems accidental since we tested it for

L=600 and got a worse results. From this data we would claim that for the Dirac model when the central

charge differs by 20% from its expected value then we are too far away from the critical point to do any

fitting and should claim that it is not critical. In fact for a system size of 500 and mass gap of m = 1/1000

the fitted values are closer to 6/5 instead of 1 and could easily lead to misidentification of critical points in

models where their location is not known exactly.

As a possible diagnostic we plot the entanglement entropy as a function of x = ln(Lπ sin πl
L ), where l

is the sub-block size. The slope of the entanglement entropy vs x should be interpreted as c/6. The only

feature that could be used as a diagnostic is that if the transformed curve has a decrease in slope then we

are definitely too far away from a critical point to fit properly as can be seen in Fig. 3.4(a). The final two
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(a) (b)

Figure 3.5: Panel (a) shows the entanglement entropy (for the central cut), as a function of f for θ = 1.00.
The EE increases for larger sizes of the system for f from 0.07 to 0.17, indicating a critical phase at this
region. (b) shows the corresponding central charge calculated for various system sizes. The change of the
central charge becomes sharper for larger systems.

curves have clear decreases in slope as we move far away from criticality. Note that all these artificially high

central charges only occur when we use open boundary conditions. As can be seen in Fig. 3.4(b), the central

charge first goes up then drops for open boundary conditions when we tune the system away from criticality.

However, it decreases monotonically for periodic boundary conditions.

3.3.3 Kosterlitz-Thouless transition

Although most phase boundaries were easily identified, there are three regions where difficulties arise: (i) the

trivial-incommensurate phase transition at φ = 0 and large θ (lower-right corner of Figs. 3.2(a) and 3.2(d)),

(ii) the topological-incommensurate phase transition at φ = π/3 and small θ (upper-left corner of Figs. 3.2(b)

and 3.2(e)), and (iii) the Lifshitz transition area for f = 0.5 and φ = θ ∼ π/6 as seen in Figs. 3.2(c) and

3.2(f). Regions (i) and (ii) are related by duality, and the explanation of the numerical difficulties in these

regions may have a common origin. To explain, we recall that the trivial-incommensurate phase transition

at φ = 0 and large θ, i.e. region (i), is of the Kosterlitz-Thouless type [48]. Hence, the correlation length

decays as exp(c(T −TKT )−1/2) away from the transition point [98, 99], and this results in a long correlation

length (compared to our system size L = 100) for this region of the phase diagram. The duality indicates

that region (ii) may also be near a Kosterlitz-Thouless phase transition point. Thus, we attribute the issues

with these regions as likely artifacts due to finite size effects. We elaborate further on this in this part. The

remaining region (iii) requires more discussion, to which we turn in the next part.

We first discuss the features seen in Figs. 3.2(a) and 3.2(d), i.e., the cross section for φ = 0. For small
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Figure 3.6: The profile of the entanglement entropy as s function of block size l at φ = π/3, θ = 0 and (a)
f = 0.8 (b) f = 0.9 for different system size. The continuous lines are the fit to the DMRG data.

f and large θ, the phase transition between the topological and trivial phase is indirect: it is mediated by

the incommensurate phase. To establish the fact that the incommensurate region is of non-zero extent, we

performed finite size analyses on both the entanglement entropy and central charge as is shown in Figs 3.5(a)

and 3.5(b) This extent is found to be from f ≈ 0.07 to f ≈ 0.15. We find that the central charge of the

trivial-incommensurate transition is consistent with that of the Kosterlitz-Thouless (KT) type, i.e., c = 1 [48].

Because of the duality in the Hamiltonian (Eq. 3.1), the phase diagram is symmetric with respect to

the line f = J = 0.5, φ = θ. Thus, the above mentioned phase transition is dual to the incommensurate-

topological phase transition, for large φ and small θ. That is to say, the region with the smooth change of

the central charge in the lower-right corner of Fig. 3.2(d) is dual to the (red) region in the upper-left corner

of Fig. 3.2(e). This region, being near the KT phase transition point is also plagued by finite size errors: the

correlation length is long compared with the system size (L = 100).

To test this assertion, we studied the (apparently) large central charge that was calculated near the

critical region, as is shown in Fig. 3.6. For example, as is shown in Fig. 3.6(a), the point φ = π/3, θ = 0, and

f = 0.8 appears to be critical, but for larger system sizes is shown to be gapped. We base this conclusion

on the appearance of a saturation plateau in the profile of the EE scaling as a function of subsystem size.

As a comparative check, we went deeper into the critical regime (i.e. f = 0.9). As can be seen in Fig. 3.6(b)

and as is expected, we found no such plateau in the EE.
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Figure 3.7: (Color online) Properties of the critical line at f = J = 1/2 for various values of θ = φ (a)
Profile of the EE as a function of block size shows Lifshitz oscillations. We predict the oscillation length for
φ < 0.2 to be larger than our system size L = 200. (b) Energy gap between the ground and first excited
state, which displays similar oscillatory behavior on varying the system size. (c) Characteristic oscillation
lengths in the EE and energy gap, which are nearly identical for a large range of φ. The (green) line is the
fit with ζ = φ−3.75 + 1.16.

3.4 Lifshitz behavior

3.4.1 Lifshitz transition in chiral clock model

Let us now focus on the cross-section in Figs. 3.2(c), 3.2(f), which corresponds to φ = θ. Since the system is

self-dual on the line f = J , the trivial-topological phase boundary should just be the line f = J = 0.5, a fact

verified in our numerical calculations when θ = φ are small. On top of the phase diagram we also plot the

function f = [2 sin(3φ)][1 + 2 sin(3φ)]−1 (in a thick circular dotted line), which represents an upper bound

on the region in which exact parafermionic zero modes are expected to exist as proven in Ref. [46]. The

region of the phase diagram above this curve are guaranteed to not have exact parafermionic zero modes,

despite still being in the topological phase with the topological ground state degeneracy. Along the critical

line f = J = 0.5, c = 4/5 at the ferromagnetic point (φ = θ = 0), and c = 1 at the antiferromagnetic

point (φ = θ = π/3) [91]. It is a priori unclear how the central charge transitions from c = 4/5 to c = 1,

i.e., is it an abrupt jump at some transition point, or does it change incrementally in stages, or perhaps

something else entirely? Only a few studies address this question directly: among them is the work of Howes

et al. [49] who used fermion analyses and series expansions to conjecture that a tricritical point connecting

the ordered (topological), disordered (trivial), and incommensurate phases exists at exactly φ = θ = π/6.

McCoy et al. [93, 94] studied the super integrable line φ = θ = π/6 and suggested a modified picture with

the incommensurate phase stretched all the way down to the point φ = θ = 0 and f = J = 0.5. Our results

seem to support the latter picture, as we will further develop below.

To address the questions posed above, we studied the critical line f = J carefully. We observed (see

Fig 3.7(a)) that before we reach the putative tricritcal (Lifshitz) point at φ = θ = π/6, the EE starts
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to show oscillatory behavior 3 . The frequency of the oscillations increases as we approach the Lifshitz

point from small φ = θ, and when further increasing φ = θ its amplitude dies out after the system clearly

enters the incommensurate phase. Conventionally, a Lifshitz transition point of this nature corresponds

to a continuously varying oscillation length, and in this case it is the length scale associated with the

incommensurate order. Interestingly, the shapes of the EE oscillation curves match those observed recently

in 1D free, and interacting, fermion systems near Lifshitz points where the Fermi surface is augmented by

additional Fermi points [50]. Thus, our result adds to the evidence of Ref. [50] that these types of EE

oscillations are a fingerprint of the Lifshitz-type phase transition. As an aside, we mention that the Lifshitz

oscillations are only present in the EE when one uses open boundary conditions. One can easily check this

by calculating the EE for free fermions as a function of next-nearest neighbor hopping[50], but with periodic

boundary conditions.

To quantitatively study the nature of this critical regime we want to investigate the variation of the

central charge. However, in the presence of oscillations in the EE, we must modify Eq. 2.7 if we wish to

extract the central charge. Empirically, the observed oscillations appear to have a similar form to those in

the work Ref. [100], and we propose a phenomenological scaling form which can fit the EE with oscillations:

S(l)cor =
c

6
ln

(
L

π
sin

πl

L

)
+ S0 +

cos(2πl/ζ + p)

(L/2− |L/2− l|)w
,

where the first two terms are the same as in Eq. 2.7, and the third term incorporates oscillations and a

symmetrized damping function. The parameter ζ is the oscillation length and p is a phase factor. These

parameters, along with the exponent w, are free-parameters determined by fitting. Some representative fits

are shown in Figs. 3.8(a) and 3.8(b), which clearly capture the sub-leading oscillations accurately.

The results of calculating the central charge from this procedure are shown as a function of φ in Fig. 3.8(c).

One can see that there is still an unaccounted for effect that leads to a peak in the central charge at a system-

size dependent φ value. More careful inspection reveals that the peak is located at a φ∗ that corresponds to

an oscillation length ζ ≈ L/2. Thus, as seen in the figure, the peak location φ∗, occurs at values closer and

closer to φ = θ = 0 when system size is increased, and all other parameters remain fixed. Our observations

indicate that the central charge converges to c ≈ 1 when φ ≥ φ∗, and c ≈ 4/5 for φ < φ∗. This strongly

suggests that the transition from c = 4/5 to c = 1 along the line f = J = 0.5 is an abrupt one that occurs at

φ = θ = φ∗. From our numerical data it appears that φ∗ → 0 as L→∞. Hence, our data supports a scenario

where there is an immediate onset of oscillations as one tunes away from φ = θ = 0 in the thermodynamic

3Note, in Fig. 3.7(a) the EE curves in the incommensurate phase are not shown because they overlap with the curve at
φ = θ = 0.5.
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Figure 3.8: Panels (a) and (b) show the profile of the entanglement entropy (as a function of block size) for
various values of system size at φ = θ = 0.25 and φ = θ = 0.35 respectively. Panel (c) shows the central
charge obtained by fitting the entanglement entropy with the corrected formula along the line φ = θ and
f = J = 0.5. The two dashed lines are at c = 0.8 and c = 1. The arrow indicates the trend of the peak
when L is increased.

limit.

We corroborate this by observing that oscillations are not seen in the EE if the oscillation length itself

exceeds the system size L. For example, for L = 200, the oscillations are not explicitly visible for φ . π/12,

however upon increasing the system size, with all other parameters fixed, the oscillations appear over a larger

region of φ, as is shown in Fig. 3.8(a). As φ is decreased the oscillation length increases, and thus we must

use larger and larger systems to observe the oscillations. Thus, we believe that this is evidence that, in the

thermodynamic limit, the oscillations are a feature for all θ = φ except θ = φ = 0. An alternate scenario,

which we can not rule out completely based on this numerical data, is that the incommensurate phase

persists to small but non-zero values of θ = φ. Thus, a conservative estimate of the location of the tricritical

point is 0 ≤ (θ = φ) < 0.25, which is well below the previously conjectured location at θ = φ = π/6. We

aim to shed further light on this transition through larger scale simulations in future work.

Finally, we note that matching oscillations are observed in the splitting of the lowest two energy states

(Fig. 3.7(b)), as a function of system size. We can extract the characteristic length scale ζ of the oscillations

from both the EE (for a given system length), and the energy gap (as a function of system length). Our results

are shown in Fig. 3.7(c) where a clear correlation between the two is observed for φ = θ < π/4. The solid

(green) line in Fig. 3.7(c) is the fit of the oscillation length for φ = θ < π/4 to the function ζ = φ−3.75 +1.16.

When φ = θ = 0, the oscillation length appears to diverge, indicating that no such oscillations survive in

the non-chiral 3-state Potts model limit. Attempts to relax the fit with ζ = (φ − φ∗)−η + const (i.e. with

a possibly non-zero φ∗) gave φ∗ ∼ 0.09 indicating that the conjectured tricritical point may be in close

proximity to φ∗ = 0.
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Figure 3.9: Entanglement entropy as a function of block size for different next nearest hopping t with (a)
open and (b) periodic boundary condition. t is chosen from 0.97 to 1.03 with a step of 0.001. The lower part
corresponds to t ≤ 1. The cyan peak appears in the middle of panel (a) is of t = 1.001. Panel (b) shows the
entanglement entropy increases as we increase t. Clearly, there are some steps for such increase.

3.4.2 Lifshitz transition in 1D free fermions

For comparison with our discussion of the Lifshitz transition in the chiral clock model we consider a version

with 1D free fermions hopping on a chain with nearest neighbor and next nearest neighbor hopping. As the

n.n.n. hopping is increased additional Fermi-points can enter the spectrum and eventually hit the chemical

potential which leads to a Lifshitz transition of the Fermi-surface topology. As our model we consider free

fermions with next nearest neighbor hopping.

H = −
∑
n

[
c†n+1cn + tc†n+2cn + h.c.

]
(3.14)

Here, t is the parameter for the next nearest hopping. The energy spectrum of this model is E = −2 cos(k)−

2t cos(2k). When t increases from zero, the topology of the Fermi surface at zero energy changes from two

points to four points at t = 1, which is the Lifshitz transition.

We calculate the entanglement entropy of this model with open boundaries and the periodic boundaries

at half filling. The results are shown in Fig. 3.9(a) and Fig. 3.9(b) and one can immediately recognize

the pattern of oscillations that we saw earlier for the chiral clock model. One interesting thing to notice

is that the oscillations go away when we use periodic boundary conditions. This model, and the related

entanglement properties, are carefully studied in Ref. [50]. For periodic boundary conditions the curves

gradually increase from the scaling form with c = 1 to a scaling form of c = 2 which is the result expected

for two sets of left and right movers at the Fermi-level.
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3.5 Conclusions

In summary, we have mapped out the three dimensional phase diagram of the Z3 chiral clock model using the

density matrix renormalization group method. Using the entanglement entropy (of the half-chain) as a diag-

nostic, we have been able to locate the phase boundaries of the various topological-trivial-incommensurate

phase transitions. Quantitatively, we have also been able to see the variation of the central charge along the

various critical surfaces that divide these phases. Another outcome of this study is the identification of the

Lifshitz transition using the entanglement entropy, along with an estimate of the location of the putative

tricritical point. We discussed several competing qualitative scenarios for the cross section of the phase

diagram in which the tricritical point has been predicted to exist. Our data suggests that the tricritical

point (along f = J = 1/2) is not at φ = θ = π/6: rather we find it to be shifted to a much smaller value in

the range 0 ≤ θ = φ < 0.25.

Finally, our results must be viewed in a broader context as providing further confirmation of the stability

of the parafermionic topological phase to chiral interactions, over a wide range of parameters. We expect

a further study of this and related models to elucidate the conditions under which these phases can be

practically realized.
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Chapter 4

Inversion symmetric topological
superconductor with interactions

It is well known that interaction can reduce the Z classification of topological superconductors in one-

dimensional BDI class to Z8. If inversion symmetry is conserved, the classification can be further reduced

to Z2. The ground state of the topological phase in this interacting inversion symmetric superconductor

is a condensation of four electrons instead of cooper-pairs. In this paper, we study the teleportation and

fractional Josephson effects of this system. While there is a nonzero teleportation for cooper-pairs, the

teleportation of one electron is suppressed. To restore the one electron teleportation, inversion symmetry

must be broken. The inversion symmetry restricts the edge modes of the system to be cooper-pairs other

than two uncorrelated electrons. It is also proved in the fractional Josephson effects. The 2π periodicity in

the ground states indicating the tunneling of cooper-pairs.

4.1 Introduction

Topological states are of great interest due to it’s potential application to fault tolerance quantum compu-

tation [101, 51, 56]. A full classification of topological phases for free fermions is obtained in all dimen-

sions [12, 13]. The systems are classified into ten classes according to the time-reversal, charge-conjugation

and chiral symmetry. Although only three symmetries are considered in the ten-fold classification, SPT

phases can also be protected by other symmetries such as spatial symmetries [102, 103, 104, 105].

When interaction is considered, the classification can either be reduced or enhanced. For example, the

classification of free fermions in class BDI in one dimension is reduced from Z to Z8 [106]. The Z classification

can be understood as n parallel Kitaev chains protected by time-reversal symmetry. No quadratic terms that

preserve time-reversal symmetry can be added at the edge to gap out the edge state. However, a quartic

interaction term that couples eight Majoranas can adiabatically connect eight parallel Kitaev chains with a

topological trivial state [106].

On the other hand, if systems in class BDI have inversion symmetry, they are always trivial. Inversion

symmetry changes ν to −ν. Preserving inversion symmetry requires ν = −ν, which makes ν = 0. However,
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Figure 4.1: The schematic relationship between different systems and their classifications.

introducing interactions can enhance the classification to Z2 [107]. This can be seen as follows. If interactions

are allowed, the classification is reduced to Z8 [106]. The topological phase with ν = 4 can remain itself

under inversion symmetry ν = 4 → ν = −4 (mod 8) = 4. A schematic relationship between these states is

shown in Fig. 4.1.

It is now natural to ask, what is the difference between the time-reversal invariant SPT phase and the

interaction enhanced SPT phase. In both cases, there are Majorana fermions at the ends of the chain. In

the first case, the Majoranas are of different types while in the inversion symmetric case, the Majoranas

are of the same type. It is interesting to know if we can distinguish these two types of Majoranas by

some mesurable effects. In this paper, we will discuss the effect of inversion symmetry and interaction on

this system through entanglement entropy and espectrum, teleportation and charge polarization. A phase

transition between topological phases with and without inversion symmetry is discovered. The teleportation

properties and fractional Josephson effects of the systems are also discussed in detail.

4.2 Construct the Hamiltonian

To construct the Hamiltonian, we first consider a system with four parallel Kitaev chains which does not

have inversion symmetry (Fig. 4.2(a)). We denote t1 and t2 as intra-cell and inter-cell pairing terms for the

Majorana fermions. The system is in a topological phase when t1 < t2. To impose inversion symmetry to

this system, we enlarge the unit cell to include two sites for each chain (eight complex fermions or sixteen

Majorana fermions in one unit cell). Then exchange the position of the two Majorana fermions in one chain
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(a) (b)

Figure 4.2: (a) Four parallel Kitaev chains. We plot four unit cells with four fermions in one unit cell. The
fermions are represented by the elliptical circles with two Majorana fermions inside each circle. The blue
(big) dots represent Majorana fermions of type a and the red (small) dots are Majorana fermions of type b.
The bars indicate the pairing of Majorana fermions with alternating strength t1 and t2. (b) The inversion
symmetric 4 electron superconductor. We plot two unit cells. The oval shadow that connects eight Majorana
fermions represents the intra-cell nearest-neighbor interaction f1 between them.

for the right half of the unit cell. The pairing term t2 connecting two neighboring complex fermions should

be set to zero for a inversion symmetric system. However, turning off t2 also makes the system transform

from the topological phase to a trivial phase. Then we add interactions that couple the four chains (the

ovals in Fig. 4.2(b)), so that it can transform back to a topological phase. We will talk about the phase

diagram and the transition between the two topological phases in detail in next sections.

For convenience, we redefine complex fermions by combining Majorana fermions in the same column in

Fig. 4.2(b) and consider the lattice with only four Majorana fermions (one column) on each lattice site. The

two complex fermions combined from the upper/lower two Majorana fermions are labeled by spin up/down.

Note that the complex fermion defined this way do satisfy the spin properties at the edge [107].

We use the eight-Majorana Fidkowski-Kitaev terms as the interaction in our system [106]. Written as

complex fermions, the interaction includes terms between two sites j and k

Wj,k = −4(n̂j↑ + n̂j↓ − 1)(n̂k↑ + n̂k↓ − 1) + 8(ĉj↑ĉj↓ĉk↑ĉk↓ + ĉ†j↑ĉ
†
j↓ĉ
†
k↑ĉ
†
k↓), (4.1)

together with the on-site interaction

Vj = −(2n̂j↑ − 1)(2n̂j↓ − 1). (4.2)
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The full Hamiltonian we consider is then

H =

N∑
j=1

f0Vj +

N−1∑
j=1

(f1W4j,4j+1 + t2P4j−1,4j+1)

+

N∑
j=1

(f1W4j−2,4j−1 + t1P4j−3,4j−2 + t1P4j−1,4j + t2P4j−2,4j) .

(4.3)

Here N is the number of unit cells. Pj,k includes the pairing terms between sites j and k

Pj,k = iĉ†j,↑ĉk,↑ + iĉ†j,↓ĉk,↓ + h.c. (4.4)

4.2.1 Symmetries of the system

Inversion - The inversion symmetry I reverses the lattice. It takes the operator on site j to site N−j+1. All

the terms in the Hamiltonian (eq. 4.3) preserves the inversion symmetry except for the next-nearest-neighbor

hopping terms t2. The t2 hopping terms are always on odd/even sites for inter-cell/intra-cell hopping. After

inversion the hopping terms on even and odd sites switches.

Fermion parity - We define the fermion parity for spin up and spin down fermions separately as P↑, P↓.

It can be easily seen from eq. 4.3 that no term breaks either of the two fermion parities.

Time-reversal - The time reversal T preserves the physical fermion operators. For our redefined complex

fermions, we have T ĉj,σT −1 = ±ĉ†j,σ, and T ĉ†j,σT −1 = ±ĉj,σ, since we pair the same type of Majorana

fermions. The sign depends on the site i. Within one unit cell of four sites, we take “+” for site 1, 4 and

take “−” for site 2 and 3. Note that if we define the states on sites 2 and 3 by acting on the vacuum state |0〉

with operators iĉ†j,σ, there will be no difference between different sites when acting T on the states. Then

T is the same as charge conjugation C.

Above are all the symmetries we consider in our system. To implement the symmetries in the numerical

calculation, we cannot use the basis of occupation numbers because they respect non of those symmetries.

For a two-site system, we list the basis we use in Table 4.1 (not normalized) and label them with the

eigenvalues of the symmetries P↑, P↓ and T .

4.2.2 Limiting cases

When interactions are turned off, the system is just four decoupled parallel Kitaev chains. A phase transition

happens at t1 = t2. The topological phase is when t1 < t2. This can be understood by considering the limiting

case t1 = 0. The system has four free Majoranas at each end of the chain. Note that although the free

54



basis states P↑ P↓ T
|0〉|0〉+ | ↑↓〉| ↑↓〉

+ + +| ↑〉| ↑〉+ | ↓〉| ↓〉
|0〉|0〉 − | ↑↓〉| ↑↓〉

+ + −| ↑〉| ↑〉 − | ↓〉| ↓〉
|0〉| ↓〉 − | ↑↓〉| ↑〉

+ − +| ↓〉|0〉 − | ↑〉| ↑↓〉
|0〉| ↓〉+ | ↑↓〉| ↑〉

+ − −| ↓〉|0〉+ | ↑〉| ↑↓〉
| ↑〉|0〉+ | ↓〉| ↑↓〉 − + +|0〉| ↑〉+ | ↑↓〉| ↓〉
| ↑〉|0〉 − | ↓〉| ↑↓〉 − + −|0〉| ↑〉 − | ↑↓〉| ↓〉
| ↑〉| ↓〉 − | ↓〉| ↑〉 − − +|0〉| ↑↓〉 − | ↑↓〉|0〉
| ↑〉| ↓〉+ | ↓〉| ↑〉 − − −|0〉| ↑↓〉+ | ↑↓〉|0〉

Table 4.1: Basis states and the corresponding symmetry values for a two-site system.

Majoranas are in the edge unit cells, only on the left side they are on the edge site. When t2 = 0, all the

unit cells are decoupled, indicating a topological trivial phase when t1 > t2.

When the hopping terms are turned off, the system is discussed by Lapa et. al. [107]. The model can be

mapped to an anti-ferromagnetic Heisenberg spin-1/2 chain when f0 =∞, which fixes the fermion parity to

be even on each site. Though the bulk has time-reversal symmetry T 2 = 1, the edges have T 2 = −1. In this

case, the free Majoranas are all on the edge sites.

4.3 Numerical results

From the limiting case analysis, we know that there are two topological phases; one is interacting and

preserves inversion symmetry (II-phase) but the other is non-interacting and breaks inversion symmetry

(NN-phase). There are a few questions that can hardly be answered analytically: 1) Is the II-phase stable

with respect to general hopping terms such as t1? 2) Is the NN-phase stable with respect to interactions?

3) are the two topological phases the same? If not, is there a phase transition between the two? Are there

any physical observables that can be measured to distinguish the two?

In the following, we will address all these questions by solving the Hamiltonian (eq. 4.3) numerically. We

adopt the density matrix renormalization group (DMRG) method for all the calculations.
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4.3.1 Phase diagram

To characterize the different phases, we use the entanglement entropy and the entanglement spectrum at

the central cut (cEE and cES) [35, 36]. They can be extracted naturally by implementing the DMRG

calculation. The entanglement entropy can be naturally extracted from the DMRG calculation. To find the

phase diagram, we use open boundary conditions and set the number of sites L = 160 (N = 40 unit cells)

and bond-dimension m = 40.

0 1 2

t2

0.00

0.25

0.50

f 1

Trivial

II-phase

NN-phase

t1 = 1, f0 = f1

Figure 4.3: The phase diagram. We set t1 = 1 and f0 = f1. The blue dots are obtained from the cES and
the green stars are from cEE. The dashed line is t2 + 4f1 = 4.

In Fig. 5.12, we show the phase diagram obtained from the entanglement properties of the system. The

lower left region is the trivial phase with zero cEE. The rest parts of the phase diagram have cEE S ∼ ln 4.

The value of S deviates near the phase boundaries. We separate the region of zero and non-zero S by the

green stars.

To find the phase boundary of the two topological phases, we have to look at the cEE and cES in

detail. In Fig. 4.4, we plot the change of cEE, cES and the ground state energy by varying t2 along the line

t2 + 4f1 = 4. As can be seen in Fig. 4.4(a), the cEE diverges at t2 ∼ 2.4, indicating a phase transition at

that point. The divergence in cEE corresponds to the split of the cES (Fig. 4.4(b)). In the II-phase, the cES

is four-fold degenerate for all the entanglement energies. In the NN-phase, the lowest entanglement energy

is singly degenerate, while there are large degeneracies in the higher energy levels. We indicate this kind of

phase boundary by blue dots in the phase diagram in Fig. 5.12.

In addition, we plot the ground state energy in Fig. 4.4(c). The solid line is the second order derivative

of the energy respect to f1. From the peak of the derivative at point f1 = 0.4, we reach the conclusion that

the phase transition between the two topological phase is of second order.
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Figure 4.4: (a) The entanglement entropy, (b) the entanglement spectrum and (c) the ground state energy
along the line t2 + 4f1 = 4t1. The solid line in (c) is the second order derivative of the energy. The
discontinuous near t2 ∼ 2.4 in all these properties indicates there is a phase transition between the two
topological phases.

4.3.2 teleportation

From the phase diagram, we can say with confident that both the topological phase are stable. However,

even though the two phases are separated by a second order phase transition, it is still not clear whether

they are truly different or not. In the following, we will show that the two topological phases are actually

different. They have different teleportation properties.

The teleportation is measured from the static correlation function C1,L = 〈c†1↑c
†
1↓cL↑cL↓〉. To get some

intuition on this property, we first consider the case when the Majorana fermions at the edges are free. Then

we have four free Majorana fermions at site 1 and the other four at site L. Since the Majorana fermions at

one edge are of the same type, the only on-site term that preserves time-reversal and couples the four is the

on-site interaction term Vj . This term locks the on-site fermion parity, so the teleportation of one fermion

is always suppressed. This is because one fermion teleportation changes the on-site fermion parity of both

edges, making the teleported state orthogonal to the original one.

On the other hand, the teleportation of cooper pairs is allowed when the fermion parity at the edges

are even. Consider a two-site system consisting only the edge sites. The only states that have non-zero

cooper-pair teleporataion are 1√
2
(|0〉1| ↑↓〉L ± | ↑↓〉1|0〉L). They have teleportation value C1,L = ∓0.5.

When the hopping terms are turned on, the local fermion parity is not fixed, so the single fermion tele-

portation is possible. However, from the numerical calculation, all types of the single fermion teleportation

is always suppressed for all the parameter values.

We investigate the cooper-pair teleportation along the line t2 + 4f1 = 4 in the phase diagram. In

Fig. 4.5, we plot the teleportation valuse between sites 1 and L, sites 1 and L − 1, sites 2 and L, and

sites 2 and L − 1. The teleportation values are calculated using the ground state in the symmetry sector
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Figure 4.5: The teleportation value between the edge sites for ground state of symmetry (a) {P↑,P↓, T } =
{+,+,−} and (b) {P↑,P↓, T } = {−,−,+}

{P↑,P↓, T } = {+,+,−} (Fig. 4.5(a)) and {P↑,P↓, T } = {−,−,+} (Fig. 4.5(b)). For the symmetry sectors

with opposite time-reversal value, the teleportatioin values are of opposite signs.

Note that all the teleportation values drops to zero at the transition point t2 ∼ 2.4. This point is

consistent with the transition point obtained from the entanglement properties of the system.

4.3.3 Review of the periodicity of the Josephson effect for the

Majorana/Kitaev chain

Consider first a normal Kitaev chain with a single species of complex fermion ψj = 1
2 (aj + ibj) located at site

j. Suppose the Hamiltonian contains 2e pairing terms of the form ∆ψjψj+1+h.c., where the superconducting

order parameter ∆ = ∆0e
−iθ with ∆0 real and positive. Here we will slightly formalize Kitaev’s explanation

for why the ground state of the system in the topological phase is only periodic in θ with period 4π, and

not 2π.

The phase θ can be removed from the Hamiltonian by performing a unitary transformation on the

Hamiltonian which will add a compensating phase to the fermions ψj . To do this we need to find an

operator U such that UψjU
† = ei

θ
2ψj . Since the two types of Majorana’s are given in terms of ψj by the

formulas

aj = ψj + ψ†j (4.5)

bj = −i(ψj − ψ†j ) , (4.6)
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we are looking for a transformation which acts as

UajU
† = cos( θ2 )aj − sin( θ2 )bj (4.7a)

UbjU
† = sin( θ2 )aj + cos( θ2 )bj . (4.7b)

The Hamiltonian H ′ with the phase θ removed is then given by H ′ = UHU†.

The operator which can do this transformation for the Majorana’s aj , bj is Uj = e−i
θ
4 (iajbj), where

iajbj = 2ψ†jψj − 1 is just the local fermion parity operator for site j. Therefore the operator U for the whole

chain is given by

U =

N∏
j=1

e−i
θ
4 (iajbj)

= e−i
θ
4

∑N
j=1(iajbj)

= ei
Nθ
4 e−i

θ
2F , (4.8)

where F =
∑N
j=1 ψ

†
jψj is the fermion number operator, not to be confused with N which is the length of

the chain.

Now we can see that when θ → θ + 2π, the Hamiltonian returns to itself, but at θ = 2π the operator U

becomes

U(θ = 2π) = ei
Nπ
2 (−1)F , (4.9)

so it is proportional to the total fermion parity operator (−1)F . In the ground state subspace of a chain in

the topological phase (consisting of two states), U acts as the matrix U(θ = 2π) = ei
Nπ
2 σz, which is not the

identity. This explains why the system is only periodic in θ with period 4π, and not 2π.

4.3.4 Josephson effect for the Fidkowski-Kitaev chain

Although the FK features 4e pairing as well as 2e, for now let’s continue to define the phase as in the 2e

case, so we still consider unitary transformations that act on the Majorana’s as in Eq. (4.7) above. The FK

chain has eight complex fermions ψj,J = 1
2 (aj,J + ibj,J) in each unit cell, so the correct transformation that

rotates the phases of all fermions is now

U =

N∏
j=1

8∏
J=1

e−i
θ
4 (iaj,Jbj,J )

= ei2Nθe−i
θ
2F , (4.10)
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where now F =
∑N
j=1

∑8
J=1 ψ

†
j,Jψj,J is the fermion number operator. For θ = 2π we have U(θ = 2π) =

(−1)F .

For the FK chain with open boundary conditions, we can add a time-reversal symmetric quartic per-

turbation for the four Majorana’s at each end of the chain, as long as the perturbations on both ends are

identical in order to preserve the inversion symmetry. In this case the ground state subspace of the chain

consists of four states, and all four states have the same fermion parity (the parity of these four states is

odd or even depending on the sign of the quartic perturbation added at the ends of the chain). So we find

that U(θ = 2π) = ±I4 (where I4 is the 4× 4 identity matrix) in the ground state subspace of the FK chain.

This evidence suggests that in terms of the 2e pairing phase θ, an ordinary Kitaev chain has a 4π periodic

Josephson effect, while the FK chain has a 2π periodic Josephson effect.

4.3.5 Suppression of 4π Josephson effect for non-interacting TSC’s due to

interactions

In this section we consider the Josephson effect (JE) for a set of four ordinary Kitaev/Majorana chains. We

consider two half-infinite chains with different superconducting phases which meet at the origin n = 0. At

the origin we consider single fermion tunneling between the two chains (which leads to the 4π JE), but we

also turn on quartic interactions at the ends of each chain.

The Majorana chain in the region n ≥ 0 (the right half of the space) consists of the four flavors of complex

fermion ψrn,J , where J = 1, 2, 3, 4 and the superscript r stands for “right”. The 2e superconducting phase

for this chain is θr, so the complex fermions are written in terms of Majorana fermions as

ψrn,J =
ei
θr
2

2
(arn,J + ibrn,J) . (4.11)

The Majorana chain in the region n ≤ 0 (the left half) consists of the complex fermions ψln,J . In this region

the superconducting phase is θl and the complex fermions are written in terms of Majorana fermions as

ψln,J =
ei
θl
2

2
(aln,J + ibln,J) . (4.12)

Now we assume that each of the chains is in the topological superconducting phase, so that at the origin

n = 0 we have the four unpaired Majorana modes ar0,J coming from the right chain, and the four unpaired

Majorana modes bl0,J coming from the left chain. We assume single fermion (number-conserving) tunneling
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between the two chains at the origin, of the form

V =
∑
I,J

tIJ(ψr,†0,Iψ
l
0,J + h.c)

≈ i
∑
I,J

t̃IJa
r
0,Ib

l
0,J , (4.13)

where t̃IJ = tIJ cos
(
θr−θl

2

)
and we have approximated this term by ignoring all Majorana’s which are paired

in the bulk of the superconductors. From now on I will drop the “0” index (the position index) on the

Majorana’s ar0,J and bl0,J , since these are the only Majorana’s that we will be dealing with. The tunneling

term between the chains takes the form

V = i
∑
I,J

t̃IJa
r
Ib
l
J . (4.14)

We now study the tunneling term V when strong interactions are turned on for the unpaired Majorana’s

at the junction. So we consider a Hamiltonian for the junction of the form

H = H0 + V , (4.15)

where

H0 = −u(P l + P r) (4.16)

with P l = bl1b
l
2b
l
3b
l
4 and P l = ar1a

r
2a
r
3a
r
4. So H0 is the interaction which fixes the local fermion parity. We

assume that H0 is the dominant interaction and treat V as a perturbation.

We now investigate the effects of V in the subspace of the total Hilbert space at the junction consisting of

the states |ψ〉 with even local fermion parity, i.e., P l|ψ〉 = P r|ψ〉 = |ψ〉. To do this we perform a Schrieffer-

Wolf transformation on the Hamiltonian H, following the formalism in arXiv:1105.0675. First define the

projector P0 onto the subspace of even local fermion parity:

P0 =

(
P r + 1

2

)(
P l + 1

2

)
. (4.17)

We also defineQ0 = I−P0. Then we split the perturbation into diagonal and off-diagonal pieces V = Vd+Vod,

where

Vd = P0V P0 +Q0VQ0

= V + 2P0V P0 − {P0, V } , (4.18)
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and

Vod = P0VQ0 +Q0V P0

= −2P0V P0 + {P0, V } . (4.19)

In our case one can show that P0V P0 = 0 (it must be the case because V is a hopping term and so it negates

the local parity when it acts).

Now we perform a unitary transformation to obtain a new Hamiltonian H ′ = UHU† which has the

off-diagonal piece of the perturbation, Vod, removed. We write U = eS where S† = −S. Then expanding

out eSHe−S shows that to first order we must choose S such that

[H0, S] = Vod . (4.20)

The corrected Hamiltonian H ′ to lowest order is then

H ′ = H0 + Vd + [S, V ] . (4.21)

Finally we project H ′ into the space of states with even local fermion parity to see how the perturbation

acts in that sector (which is the low energy sector), i.e., the final Hamiltonian operating in the low-energy

sector is

H ′′ = P0H
′P0 . (4.22)

This is equivalent to just taking the matrix elements 〈ψ|H ′|φ〉 of H ′ in states |ψ〉, |φ〉 which are in the sector

of even local fermion parity P r = P l = 1.

In our case the solution to Eq. (4.20) takes the form

S = αV P r + βP lV , (4.23)

where α and β must satisfy α−β = 1
4u . Using the formula [AB,C] = A{B,C}−{A,C}B and the fact that

{V, P r} = {V, P l} = 0, we find that the correction to the Hamiltonian is

[S, V ] = −2αV 2P r + 2βP lV 2 . (4.24)

62



We can compute

V 2 =
∑

I,J,K,L

t̃IJ t̃KLa
r
Ia
r
Kb

l
Jb
l
L . (4.25)

Then we can see that for K 6= I and L 6= J , multiplication of this by P r or P l will still give a quartic

interaction. Now suppose there is a term in which K = I. Naively this gives a quadratic term of the form

∑
I,J,L

t̃IJ t̃ILb
l
Jb
l
L , (4.26)

however, this term sums to zero since t̃IJ t̃IL is even under J ↔ L while blJb
l
L is odd under J ↔ L. A similar

argument shows that any term with J = L also vanishes. Finally, any term with I = K and J = L is just a

constant.

The main point is that since t̃IJ ∝ cos
(
θr−θl

2

)
, the induced interaction in the low-energy sector is

proportional to cos2
(
θr−θl

2

)
= 1

2 + 1
2 cos(θr − θl) which means that the periodicity of the Josephson effect

is reduced back down to 2π in the low energy sector. The locking of the local fermion parity by the strong

interaction H0 has suppressed single fermion tunneling, and only Cooper pair tunneling survives to contribute

to the Josephson effect.

Finally, there is one peculiar property of the induced interaction term. Since we only need α−β = 1
4u to

satisfy Eq. (4.20), there are many possible choices. For example we could choose α = 1
4u , or α = −β = 1

8u .

The second choice seems to be the most symmetric, and it leads to an induced interaction of the form

[S, V ] = −
∑

I,J,K,L

t̃IJ t̃KL
4u

[
(arIa

r
Kb

l
Jb
l
L)P r + P l(arIa

r
Kb

l
Jb
l
L)
]
. (4.27)

In any case, we always get a quartic interaction with coefficient ∝ t2

u . The resolution of this puzzle is

that after projection into the space of even local parity P r = P l = 1 all choices of α and β give the same

interaction.

4.4 Conclusions

In summary, we have constructed a one dimensional topological superconductor with interactions. The time-

reversal, particle-hole, chiral, and inversion symmetries are preserved. The ground state of the topological

phase in this interacting inversion symmetric superconductor is a condensation of four electrons instead of

cooper-pairs. The teleportation and fractional Josephson effects of this system are calculated. While there

is a nonzero teleportation for cooper-pairs, the teleportation of one electron is suppressed by the inversion
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symmetry. This is because the edge modes of the system must be cooper-pairs other than two uncorrelated

electrons with the presence of inversion symmetry. It is also verified by the fractional Josephson effects. The

2π periodicity in the ground states indicating the tunneling of cooper-pairs.
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Chapter 5

Machine learning symmetry protected
topological phases

We apply random forest as a machine learning model to classify topological phases when strong disorder

is present. We show that using entanglement spectrum as features for the training, the model gives high

accuracy of classification. This model can be applied to other regions in the phase space and even to other

systems. A detailed analysis of the model indicates that it captures the degeneracy in the entanglement

spectrum.

5.1 Introduction

One of the most important problems in condensed matter physics is phase classification. In the classical

Landau theories, phases are characterized by local order parameters associated with symmetries of the

system [1, 108]. This unified criteria breaks down when topological order was discovered in quantum many-

body systems [2, 3]. Many methods have been developed to classify topological phases, such as string order

parameters, entanglement properties, topological indexes and etc. [109, 12, 110, 36]. Although a classification

table was later proposed for free fermion systems in different symmetry classes [12, 13], explicit confirmations

are still needed at strong disorder for each symmetry class. Many successful attempts have been made with

symmetry class A, AIII, and BDI using entanglement properties, level statistics analysis, and real-space

topological index [111, 112, 113, 114, 115].

With the development of computer technologies, machine learning now provides a new framework for

solving problems in physics. Promising developments have been achieved in applying machine learning

techniques to condensed matter physics. Supervised learnings have been used directly in characterizing

phases in both classical spin systems [31, 116, 117, 118, 119] and quantum many-body systems [120, 121,

122, 123, 124, 125, 126]. Specifically, neural networks are the most widely used model to identity phases

especially topological phases. Chen insulators and fractional Chen insulators can be classified by feeding

quantum loop topography into the neural network [123]. On the other hand, entanglement spectrum was

used as features for training to locate phase transition points [124]. Neural networks are powerful models that
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have universal approximation capabilities [127, 128]. Their black-box attribute makes it hard to interpret

the trained models, therefore not so insightful in physics applications. Besides, the large number of hyper-

parameters in a neural network makes it difficult to train.

In this paper, we use random forest (RF) as our machine learning model instead of neural networks to

detect topological phases with strong disorder. Random forest is an ensemble method that is capable of

representing complicated functions with much fewer parameters compared with neural networks, but with

better interpretation abilities [129, 130]. It is a collection of decision trees, which can be understood as

piece wise constant functions in the feature space. An individual decision tree cannot make good predictions

because in general predictions of decision trees have large variance. Averaging over decision trees reduces

variance, making random forest a popular method in machine learning community. One major advantage of

random forest is that it has few hyper-parameters. Besides, It is immune to problems such as over-fitting,

collinearity, etc.

We propose the use of the entanglement spectrum (ES) as our input data. The ES has been widely

used to characterize topological phases. A robust degeneracy in entanglement spectrum is an indicator for

topological phase in general [35, 36]. We calculated the ES of a disordered chiral Hamiltonian in symmetry

class AIII. The RF model trained by the data generated from a small fraction of phase diagram can be

generalized to the full phase space with high prediction accuracy. Further more, the trained RF model

shows high prediction ability in Kitaev chain [45], which is in symmetry class BDI. A detailed analysis

reveals that the RF model is capturing the degeneracy in the ES.

5.2 Machine learning methods

In general, a machine learning problem can be described mathematically as follows. Use X as features of

the training data and Y as responses. X and Y are matrices that have the same number rows. Each row

of X is an observation, and each column is a feature. In many cases Y is just a column vector, i.e. one

value for each observation, but we can also have Y as matrices. For example, in a classification problem the

response of one observation is a vector. Each element of this vector indicates the probability of being in the

corresponding class. The goal of machine learning is to find a function f(X) that can best represent Y . This

is the supervised learning. For the unsupervised learning, no response Y is provided. People use supervised

learning for regression and classification, but unsupervised learning can only be used to do classification.

The training process is to find the best f from a family of functions. It is crucial to choose an appropriate

function family. First, we introduce two concepts: training error and test error. We usually use the loss
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Figure 5.1: Bias variance trade-off. When the model is simple, we are in the high bias region (left) with high
training and testing error. As the model complexity increases, both error decrease. If we make the model
more complex, we reach the high variance region (right) with low training error but high testing error.

function L(Y, f(X)) as a measurement of the error. Divide the data set into two parts: training and testing.

Only the training data is used for the training process, while testing data is completely hidden during the

training. After the training, the training and testing error are calculated for the training and testing data

respectively.

If the functions are simple, such as linear functions, we are posing a lot of restrictions to the model. In

this case, we are biased and the model usually has high training and testing error. If the functions are too

complex, the model tends to over-fit. This corresponds to the high variance region. In this area the training

error usually is small, because we find the We show the relations between model complexity and error in

Fig. 5.1. This is known as the bias-variance trade-off in the machine learning community. A good model

should have low error for both training and testing data.

5.2.1 Linear models

Simple linear regression

We start from the simplest machine learning method: linear regression. Suppose the response Y is linearly

related with the features X. Define function

f(X) = β0 +Xβ. (5.1)

Here the intercept β0 is a number. The coefficients β is a column vector. We want to find the β0 and β that

minimize the loss function

L(Y, f(X)) = ||Y − f(X)||2, (5.2)
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where || · || is the L− 2 norm. This is also known as least square.

Although linear regression is the simplest model, it can still over fit when there are a lot of features.

We can reduce the complexity of the linear regression by adding regularization terms. The most popular

regularization terms are L−2 and L−1 norms, corresponding to ridge regression and LASSO. For the ridge

regression, the L − 2 norm of the coefficients are added to the loss function Eq. 5.2, posing restrictions on

large amplitudes.

Lridge = ||Y − (β0 +Xβ)||2 + λ||β||2. (5.3)

Here, λ is a positive number. It is a hyper-parameter to be tuned. Larger λ means higher regularization

and simpler model.

Logistic regression

We can use linear models for classification problems. However, directly applying linear regression with

Y as indicators makes terrible predictions. This is due to the fact that the Y values are discrete while

linear regression makes continuous predictions. What we need to do is to use a step-like function to do the

transformation. The most commonly used function is the sigmoid function σ(x) = 1/(1 + e−x).

For a binary classification problem, suppose the probability of being in one class is

f(X) =
1

1 + e−(β0+Xβ)
. (5.4)

We used the same notation as for the linear regression. Then Y is either one or zero, because we know for

sure whether the observation is in this class or not. We do not use the same loss function Eq. 5.2, as it is

not convex in this case. Instead we use the cross entropy as the loss function.

L(Y, f(X)) = − 1

n

n∑
j=1

[yj log(f(xj)) + (1− yj) log(1− f(xj))] , (5.5)

where xj and yj are rows of X and Y respectively. Same as linear regression, we can add regularization

terms to the loss function to poss additional constraints on the coefficients.

For a multi-classification problem with K classes, we use the softmax function as the probability for class

k:

P (y = k|X) =
ebk+XWk∑K
j=1 e

bj+XWj

. (5.6)

Here, the number bj is the intercept for class j and the column vector Wk is the coefficient. The corresponding
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loss function is then

L(Y, f(X)) = − 1

n

n∑
j=1

∑
k

pk log[P (y = k|X)]. (5.7)

We used pk as the true probability distribution. It takes value one if the observation is in class k, otherwise

zero. When K = 2, it reduces to the binary classification problem.

5.2.2 Neural networks

Neural networks can be understood as generalizations of linear and logistic regressions. The input information

is processed step by step within each layer until the last one. The features generated in the last layer

are put into a linear or logistic regression to give the final result. Different neural networks have their

unique processing schemes. We will introduce two neural networks in this part: the feed forward and the

convolutional neural networks. We will not go into the details too much as it is time consuming to develop

a neural network from scratch. Besides, there are a lot of well developed packages ready for us to use, such

as Keras, Tensorflow, Caffee, Pytorch, and etc.

Feed forward neural networks

The feed forward neural network is the most basic neural network. A neural network is often represented

by a figure with each neuron as a feature. As shown in Fig. 5.2, a feed-forward neural network is composed

by a bunch of layers. Each layer contains several features or neurons represented by circles in the figure.

Layers are calculated in order from left to right. The left most layer is the input layer and the right most

layer is the output layer. All the other layers in between are the hidden layers. Neurons within the same

layer are not connected. Mathematically, we denote each layer as X0, X1, . . . , Xn. For a single observation,

they are row vectors with each element as one neuron. In general, for an input data with n observations,

they are matrices with n rows and columns as features. The input layer X0 = X is known; and the output

layer Xn = Ŷ is the value our model predicts. Two neighboring layers are connected by

Xi+1 = f(Xi) = σ(bi +XiWi), (5.8)

where σ(x) = 1/(1 + e−x) is the sigmoid function as before.

All the non-linearity comes from the sigmoid function. We can use other functions instead of the sigmoid

function, such as the hyperbolic tangent and the rectified linear unit (ReLU). ReLU is defined as the positive

part of the argument ReLU(x) = max(0, x). All these functions are called activation functions. Among them

the most widely used is the ReLU. Although it is not smooth at zero, it over performances others in most

69



Figure 5.2: A feed forward neural network with n + 1 layers. Each circle is a neuron, representing one
feature. The first layer (yellow) is the input layer and the last one (purple) is the output layer. Other layers
(blue) are hidden layers.

problems.

The choice of loss functions is the same as linear cases. We use mean square error for regressions and

cross entropy for classifications in general. A regularization term like λ
∑
i ||Wi||2 can be added to the

loss function to prevent over fitting as well. Moreover, the technique of drop-off is used more often as a

regularization method. We mask neurons in each layer with some probability α, i.e. independently set values

of neurons as zero with probability α. This prevents neurons to collaborate with other neurons.

In linear regression the coefficients can be solved directly from the analytic formula. In logistic regression

the loss function is convex, so we can always use the gradient descent to find the best parameters. However,

the feed forward neural networks have no analytic solutions nor convex loss functions. Many numerical

methods as generalizations of the gradient descent have been developed to find the minimum of the loss

function. Among them, Adam is the most popular. It is a kind of stochastic gradient descent combined

with the momentum and self-adjusting learning rate. More details can be found in the paper proposing

Adam [131].

Convolutional neural networks

The convolutional neural network (CNN) is known for its ability of image processing. One distinguishing

feature of the CNN is it takes into account the spatial structure of data. In addition to the ordinary feed-

forward layers, the CNN has convolution layers, rectifier layers and pooling layers. We list the mathematical
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Figure 5.3: Convolution of input image I with filter image Fk. The output value is one element of image
Ck. With multiple filters, we can get different output images.

operations for these layers:

convolution Cijk =
∑
di,dj ,q

Ii+di,j+dj ,qFdi,dj ,q,k

rectifier R = max{C, 0}

pooling Oij = max{Ri:i+si,j:j+sj}.

Here, I is input image with q channels. F is filter images with size (di, dj). q is index for input channels

and k for output channels.

As shown in Fig. 5.2.2, the convolution layer takes one image I as an input, convolves with filter images

Fk, and outputs a stack of filtered images Ck. If the input images have multiple channels, the convolved

results are summed up for all input channels. The rectifier layer sets negative values to zero, as images

always have non-negative values at each pixel. This is just the ReLU activation function. The pooling

layer takes the maximum value among an window of the filtered image stack. One pixel of an image is

considered as a feature. While convolution in general creates layers with more features, pooling reduces the

feature number. Convolution and pooling together extract information from the image and transform them

as abstract numbers, so that the following layers can use them to make predictions.

5.2.3 Random forest

Random forest is an ensemble method. This means the prediction is given as the averaged results of the

individual regressors or classifiers. Random forest averages over randomized decision trees. We first introduce

decision trees.
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(d)

Figure 5.4: Decision tree prediction of a function plotted in panel (a). Dark color means higher values. The
small dots are the data samples used to train the model. Panels (b) and (c) are predictions by a fully grown
tree and a tree with maximum dept as 4 respectively. The tree with depth 4 is shown in panel (d).

Decision trees

Decision Tree is a non-parametric supervised learning method. It can be used for both regression and

classification. It makes predictions by learning simple decision rules inferred from the data. Shown in

Fig. 5.4(d) is a typical decision tree. It is simple to understand and to interpret. Start from the root node,

anyone can follow the rule to do predictions.

We give an example of decision tree by fitting it with a continuous function. The function is plotted in

Fig. 5.4(a). It takes a point on a two dimensional plane and returns a value. We randomly selected 300 data

points as training data. They are shown as small dots in the figure. The root node of the tree contains all

the data. A tree grows with the node split into two. The split is just cutting the parameter space in half.

The position of the cut is chosen so that it maximally reduces the error. The nodes without child nodes

are called leaf nodes. A tree stops growing when all its leaf nodes are pure. For a regression problem, this

means there is one sample in the leaf. For a classification problem, this means all the samples in the leaf

belong to the same class. We show the prediction results of a fully grown tree in Fig. 5.4(b). The maximal

depth of this tree is 19. As can be seen in the figure, the parameter space is divided into small rectangles.
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The predicted values within the same rectangle of the parameter space are the same. A bigger tree has finer

rectangles, thus gives smaller training error. As a comparison, We plot the prediction of a smaller tree in

Fig. 5.4(c). The corresponding tree is shown in Fig. 5.4(d). The color of the tree indicates the amplitude

of the predicted value. In general, a tree divides the parameter space with n-orthotope when there are n

features. It can be understood as finding the best piece wise constant functions.

Although the decision tree method has many advantages such as simple interpretation, it usually does

not perform well on test data. Decision trees are prone to be over-complex and over-fit the data. Moreover,

they are unstable because a completely different tree might be generated even with small variations in the

training data.

Random forest

Random forest is an ensemble of decision trees. By averaging over trees, the over-fitting and unstable

problems can be mitigated. The averaging process is also known as bagging. Think of each tree as one

random variable Tb with mean fb and variance σ2
b . The random forest is then represented by the random

variable T = 1
B

∑B
b=1 Tb. If all the trees have the same mean and variance and are not correlated, T has

mean fb and variance 1
Bσ

2
b . Therefore, bagging can improve the variance of the model. Decision trees are

usually unbiased but with high variance. Thus, they benefit from bagging.

Random forest differs in only one way from bagging. Only a subset of features are used at each node split

when growing a tree. This reduces correlations between the trees. If some features are strong predictors,

these features will always be selected making the trees correlated.

5.3 Ising ferromagnet

We first consider the simplest model: classical Ising ferromagnet on a square lattice with nearest-neighbor

interaction. The Hamiltonian is

H = −
∑
i,j

(Si,jSi+1,j + Si,jSi,j+1), (5.9)

with Sij = ±1. At low temperature, the system is in the ferromagnetic phase with all spins parallel. At high

temperature, the thermal fluctuation overrides the ferromagnetic interaction, making the spins fluctuate

randomly. Theoretically, the phase transition happens at temperature T = 2/ ln(1 +
√

2).

We generate spin configurations from classical Monte Carlo. The system size is chosen as (30,30). We

take periodic boundary condition, because there are large finite effects from open boundaries. We take
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Figure 5.5: Analysis of Ising spin configuration data. Panel (a) shows the percentage of sample variances of
the first ten principal components. We plot the data points in 2D using (b) PCA and (c) MDS. The color
indicates temperature.

spin configurations after thermalization as input data. Thus, the data has 900 features. The samples are

labeled as ferromagnetic or paramagnetic based on the temperature used. We generate spin configurations

at temperatures from 0.5 to 4 with step 0.05. The number of samples should be more than the number of

features for linear models. Otherwise, the model will definitely over fits the data due to the small sample

size. Therefore, we need to keep at least 13 configurations at each temperature. We choose to take 200.

5.3.1 Data visualization

Before we build any model, we would like to know what the data looks like. We take 20 configurations at

each temperature for visualization purpose. Our data has 900 features, so the data points are in a 900-

dimensional space. Since the data elements can only be one or minus one, all data points are at corners

of a high dimensional cube. It is hard to think about objects in a space of more than three dimensions.

For simplicity consider a three dimensional cube with corners at (±1,±1,±1). The ferromagnetic spin

configurations have all spins parallel. They occupy the two corners that are the most further away from

each other. The remaining corners in between are paramagnetic.

In the 900-dimensional space, the situation is similar. The ferromagnetic phase has spin configurations

that locate near two corners. We want to project the data points onto a two dimensional plane. The plane is

chosen so that the data spreads the most on this plane. This is basically what principal component analysis

(PCA) does. It finds a direction that maximize the variance if all data are projected on it. The direction

is called the first principal component (1st PC). Then among directions perpendicular to the 1st PC, the

direction with maximal variance is found. We can keep doing it until reaching the dimension of the space.

We calculate the variance of data along all the PC, and plot their percentage in Fig. 5.5(a). As can

be seen from the figure, the 1st PC explained almost half of the total variance. Therefore, the data can

be well separated along a line. We plot 2D projection of the data in Fig. 5.5(b). The light color indicates
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high temperature, thus the paramagnetic phase. As can be seen, data generated from low temperature

concentrates on two points (±30,0), while high temperature configurations lay between them. The 1st

PC is basically sum of all spins. There are some dark points scattered in the middle region. Those are

configurations with domain walls, as the sum of spins is close to zero.

In addition to the PCA, we can visualize high-dimensional data with muli-dimensional scaling (MDS).

This method project data to low dimensional space with the pair distance preserved. In general, we find the

projections that minimize the difference between the distance matrix of projected and original data points.

We plot the result in Fig. 5.5(c). Same as the PCA projection, the configurations with domain walls scatter

among the paramagnetic ones.

5.3.2 Supervised learning

Before we go to any sophisticated models, we always use a linear model to set benchmarks. For this binary

classification problem, we apply the logistic regression with L− 2 norm regularization. We expect the linear

model to be sufficient for this problem, because we can tell the phase from the total magnetization, which

is just the mean spin value. Unfortunately, the logistic regression can only give random guesses even for the

training data. The reason is that the ferromagnetic phase is divided by the paramagnetic phase into two

disconnected regions in the parameter space (shown in Fig. 5.5(b)). We cannot use one plane to separate the

two phases in the parameter space. We set benchmarks with predictions by magnetization M . We predict

the configuration to be in the magnetic phase if M is larger than 0.5. With this criteria, we get prediction

accuracy as 0.945.

Feed-forward neural networks

We apply neural networks to do the classification. The model is trained using a feed-forward neural network

with one hidden layer. The number of neurons in the hidden layer is a hyper-parameter that can be tuned. We

vary this number from zero to 512. When it is zero, the model reduces to the logistic regression. Increasing

the number of neurons makes the model more complex. We used ReLU as our activation function. The

optimization algorithm is chosen as Adam.

Use the cross entropy as error. We plot the error for models with different number of neurons in

Fig. 5.6(a). The data set is split into training and testing set with ratio 2:1. We use log scales for the x-axis.

This figure has the similar structure with Fig. 5.1. Fewer neurons indicates simpler model. Both training

and testing errors are large when the neuron number is small. While training error keeps decreasing with

more neurons, the testing error goes up with larger neuron numbers, indicating over-fitting. The model has
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Figure 5.6: Model performance of the feed-forward neural network with one hidden layer. We vary the
neuron number. The error and accuracy for both the training and testing data are shown in panel (a) and
(b) respectively. Training data performances slightly better than testing data with smaller error and higher
accuracy.

low training and testing errors when the number of neurons is between 8 to 128.

Define accuracy as the percentage of correct predictions. In Fig. 5.6(b), we plot the training and testing

accuracy verses the neuron number. Both of them get closer to one for larger neuron numbers. This is

consistent with the decreasing error in Fig. 5.6(a).

We take the model with 8 neurons in the hidden layer. A simple calculation yields the total number of

parameters of this model is (1 + 900)×8 + (1 + 8)×2 = 7, 226. It is close to 8, 174, the number of samples of

the training data. The training accuracy is 0.99 and testing accuracy is 0.96. The errors are 0.037 and 0.11

for training and testing data respectively. Training takes only a few seconds. We plot the predictions for the

test data in Fig. 5.7(a). The blue dots are predictions for individual spin configurations. And the orange line

is their average for the corresponding temperature. The vertical black dashed line indicates the theoretical

transition temperature, while the horizontal black dashed line is a guide of the eye for 0.5 probability.

Note that most wrong predictions appear near the transition point. However, some configurations at

very low temperature are predicted as paramagnetic with high probability. These configurations contain

domain walls that separate the space into regions with parallel spins within each region.

Convolutional neural networks

The input data are spin configurations of a 2D lattice. they are images which can be best trained using

convolutional neural networks. We use the same training and testing data. The convolutional neural network

has one convolution cell with 32 filter channels, followed by max-pooling with 2×2 windows. The parameter

number of this model is comparable with the feed-forward neural network we used before.

76



(a) (b) (c)
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Figure 5.7: Predictions of (a) feed-forward neural networks with one hidden layer, (b) convolutional neural
networks, and (c) random forest. The blue dots are predicted probabilities of being ferromagnetic for
individual spin configurations. The orange line is the averaged probabilities. The vertical black dashed line
indicates the theoretical transition temperature. Comparison between the prediction and magnetization is
shown in panels (d) (e) and (f) for feed-forward neural networks, convolutional neural networks, and random
forest respectively. The color indicates temperature used to generate the spin configuration. The red line
from (0,0) to (1,1) is drawn to guide the eye.

The training accuracy is 0.997 and testing accuracy is 0.991. The errors are 0.0886 and 0.024 for training

and testing data respectively. Training takes approximately one minutes. The convolutional neural network

behaves better than the feed-forward neural network. The predictions on testing data is plotted in Fig. 5.7(b).

Compared with Fig. 5.7(a), the convolutional network makes correct predictions for all spin configurations

deep in the phase. It also has better performances near the transition temperature.

Random forest

Next, we use random forest as our model. We choose 100 trees with maximum depth as 10. The training

takes only a few seconds. The training accuracy is 0.996 and testing accuracy is 0.988. Compared with the

neural networks, random forest can make high accuracy predictions with short training time. The prediction

results are shown in Fig. 5.7(c).
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Conclusion

As a summary for the four models. The logistic regression cannot make reasonable predictions because the

underlying relation is not linear. All the other three models can make predictions with accuracy of more

than 0.95.

A comparison of random forest and neural network models is shown in Fig. 5.7. The convolutional neural

network gives the most accurate predictions. As can be seen from Fig. 5.7(b), the model only gives uncertain

predictions near phase boundaries. With the blue dots as predicted probability of being in the ferromagnetic

phase, and the orange line as their average, we only see deviation of blue dots from the orange line near

transition temperature. On the other hand, predictions of the other two models varies for configurations

from the same temperature.

Since the predicted probability is a number from zero to one and the absolute value of magnetization

also falls in this range, we plot their relationship in Fig. 5.7. The random forest model gives the highest

correlation between the magnetization and the probability. Moreover, it makes correct predictions for those

configurations trapped in local minimum. Those configurations are represented by dark purple dots in

Fig. 5.7(f). Although they have low magnetization, the model can predict them as in the ferromagnetic

phase. The predictions from neural networks do not show significant relationship with the magnetization.

5.4 Disordered chiral chain

We start with the disordered chiral chain in Ref. [114]. It is a one-dimensional topological insulator of the

AIII symmetry class. Defined on a one-dimensional chain with two sites A and B in one unit cell, the

Hamiltonian is written as

H =
∑
n

[
tn
2
c†n (σx + iσy) cn+1 + h.c

]
+
∑
n

mnc
†
nσycn. (5.10)

Here c†n = (c†n,A, c
†
n,B) are fermion creation operators in unit cell n. We put disorder to both the hopping

and mass terms, i.e. tn = 1 +W1ω1, and mn = m+W2ω2, where ω1 and ω2 are random variables generated

from box distribution on [−0.5, 0.5].
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5.4.1 Analytic properties of the Hamiltonian

In the clean limit, the system has translational symmetry. We can write the Bloch Hamiltonian

H(k) = t cos kσx + (t sin k +m)σy (5.11)

The chiral symmetry operator C = σz anti-commutes with H(k): CH(k)C−1 = −H(k). Winding number

ν can be calculated as the topological invariant for the AIII class, which is represented by the Z classifica-

tion [109]. ν can be calculated for an infinite chain as [132]

ν =
1

2πi

∫ 2π

0

∂kq(k)

q(k)
dk. (5.12)

Here, q(k) = teik − im is the off-diagonal term of H(k). Write the Bloch Hamiltonian in the form of

H(k) = dx(k)σx + dy(k)σy with d2x(k) + d2y(k) = 1. Then the winding number ν calculates the number of

times point (dx, dy) goes around the origin as k goes through the whole Brillouin Zone. When |m| < |t|, the

system is in symmetry protected topological (SPT) phase with winding number ν = 1. Otherwise, ν = 0.

On a finite lattice of length L, the integral becomes sum. We get the discrete version of Eq. 5.12

ν =
1

L

L−1∑
k=0

teik/2π

teik/2π − im
. (5.13)

When disorder is turned on, in the limit that W2 � t, the system is completely dimerized within

individual unit cells despite the value of m. This gives the same product states as in the atomic limit, which

are topologically trivial. Therefore, there must be a phase transition when W2 is gradually increasing with

|m| < |t|. This topological phase transition point is consistent with the divergence in localization length and

can be calculated from formula [114].

|2t+W1|t/W1+1/2|2m−W2|m/W2−1/2

|2t−W1|t/W1−1/2|2m+W2|m/W2+1/2
= 1. (5.14)

We set t = 1. This equation defines a surface that divides the three-dimensional parameter space into two

parts. The topological invariant can be define in real space by Ref [114]

ν = −Tr{Q∓[X,Q±]}. (5.15)

Here X is position operator. Q± and Q∓ are projects of homotopically equivalent flatband Hamiltonian Q.
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Figure 5.8: Topological invariant (big blue dots) and charge polarization (orange small dots) are calculated
for the chiral chain with L = 30. The clean and disordered cases are shown in panel (a) and (b) respectively.
Panel (c) shows the predicted topological invariant verses the calculated value for disordered data. The color
bar is W , indicating the strength of disorder. The dashed line connects points (0,0) and (1,1).

We have relations Q = Q± +Q∓ and Q± = Q−1∓ .

5.4.2 Machine learning topological invariant

Predict disordered systems with models trained by clean systems

Note that the real space topological invariant (Eq. 5.15) is the same as the charge polarization of an open

chain. The topological invariant defined in Eq. 5.12 is for an infinite or periodic chain. In a clean system,

we can calculate both invariants. The two do not match each other near the transition point due to finite

size effect from the edges.

We calculate the topological invariant for a chain with L = 30. Both the clean limit and the disordered

chain are considered. In Fig. 5.8(a), we plot the topological invariant calculated by Eq. 5.12 as blue dots.

Even though the system size is small, the topological invariant has a sharp decrease at the transition point

m = 1. The small orange dots are the charge polarization calculated with the same parameter but in an

open chain. As can be seen, the two values deviates a lot near the phase boundary. With larger system size

L, the deviation will be smaller.

In Fig. 5.8(b), the blue dots are the topological invariant calculated by Eq. 5.15. We set m = 0.5 and

W = 2W1 = W2. The charge polarization is shown as smaller orange dots. It is clear that the charge

polarization overlaps exactly with the topological invariant calculated in real space.

We apply machine learning methods to predict topological invariant with the existence of disorder for

small systems. We use charge density as our features, because they are directly related with the charge

polarization. The training data is the obtained from the clean systems; and we test on disordered systems

with the topological invariant calculated in real space. A linear regression with L − 2 norm regularization
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is used. We take 100 data samples by varying m from 0.5 to 2 for a L = 30 clean chain as training data.

We only used a small data set for training because we want to deal with small systems. We used the same

data set as in Fig. 5.8(a). The testing data is chosen as samples plotted in Fig. 5.8(b). There are 100

data samples in total. The prediction results are shown in Fig. 5.8(c). If the predictions are the same as

topological invariant calculated in real space, the points should fall onto the dashed back line. It is a line

from point (0,0) to point(1,1). The color represents the disorder strength W . Lighter color means higher

disorder. From the figure, we see that predictions are consistent with the calculated values.

Linear models well predict topological invariant based on charge densities. The model trained with clean

systems can be generalized to make predictions on systems with disorder. The predictions are close to the

calculated values. They get closer to each other with increasing L. Note that we have avoided to choose L

to be 4n with n as integers. The reason is there are divergences near phase boundaries when L = 4n. It is

a finite size numerical effect. When L gets larger, the divergence goes away. This divergence messes up the

linearity of the data, making the linear model behave strangely.

Trial-and-test method to locate phase boundary

Without any knowledge of the phase, we can use a trial-and-test method to tell determine the phase bound-

ary [124, 125]. The idea is simple. We assume the system is characterized by one parameter p. Assume

further that there are two phases separated by pc. We do not know the value of pc, but we can assume

pc = pi for several pi values and do training and testing. If pi is not the true critical point, the testing error

would be large. We only need to try a few pi values and find the value with the lowest error or highest

accuracy. With this method, we can find the phase boundary of a system along parameter p.

We work with the disordered system of size L = 100 with open boundary conditions. Same as previous

part, we set m = 0.5 and W = 2W1 = W2. 10,000 charge density configurations are generated for W from

0 to 10. We randomly choose 70% as training data and the remaining as testing data. We apply a simple

logistic regression with L − 2 regularization. The error is calculated by cross-entropy and accuracy is the

percentage of correct predictions. We vary the trial critical point from 2 to 8. The training and testing

error and accuracy is shown in Fig. 5.9(a). We get the best performance when Wc = 4, which is close to the

theoretical value.

Using the best model, i.e. model trained by setting Wc = 4, we compare the predicted probability with

the topological invariant in Fig. 5.9(b). The red line is drawn as a guide of the eye. As can be seen from the

figure, all data points falls close to the line, indicating that the topological invariant can best characterize

the phases.
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Figure 5.9: (a) Error (left axis) and accuracy (right axis) for training and testing data for different trial
critical point values Wc. The best prediction happens at Wc = 4 with lowest testing error and highest testing
accuracy. (b) Predicted probability of being in the topological phase verses topological invariant. The red
line is from point (0,0) to point (1,1). Color indicates W , the strength of disorder. Lighter color means
stronger disorder. (c) Coefficients of the logistic regression model.

We plot the coefficients of the model in Fig. 5.9(c). Since we have two sites in one unit cell, there are

2L = 200 coefficients, one for each site. The orange dots are values for sites of type A and green dots for type

B sites. The charge densities on A sites do not change for different parameters. Therefore their coefficients

are set to be zero. It is interesting to see that the coefficients for B sites increase linearly (approximately)

with the site position. With a proper rescale, it resembles the calculation of charge density.

Note that the model finds the best coefficients from a statistical point of view. It is impossible to recover

topological invariant from the training. However, we can gain some intuition or inspiration from the machine

learning model.

5.4.3 Machine learning topological phase from entanglement spectrum

Entanglement entropy has been widely used to detect 1D topological phases [36]. Set t = 1, m = 0.5 and a

small disorder strength for hopping W1 = 1. We increase W2 and the calculated central-cut entanglement

entropy (cEE) using periodic boundary condition on a chain of length L = 400. We calculate 100 disorder

configurations at each W2 and present the raw data in Fig. 5.10(a) as blue dots. The values of entanglement

entropy spread out when disorder gets large. We indicate the theoretical transition point with a dashed line.

Notice that in the topological phase, the distribution of entanglement entropy at fixed W2 never goes below

2. The upper bond of entanglement entropy increases with W2 until transition point and then decreases to

a fixed value. We average the entanglement entropy of the 100 configurations and plot in Fig. 5.10(a) as

a red solid line. The averaged entanglement entropy bumps near the theoretical transition point. We can

hardly get the transition point even with the averaged entanglement entropy.

Since entanglement entropy cannot be used to characterize topological phases when disorder is present,
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Figure 5.10: (a) Central-cut entanglement entropy and (b) Single particle entanglement spectrum of the
disordered chiral chain. The vertical black dash line is the analytical transition point. The red line in panel
(a) is the average value. Double degeneracy of the spectrum at 0.5 on the left hand side indicates SPT
phase. There may be accidental degeneracies in the trivial phase due to disorder.

we apply machine learning techniques to ameliorate it. We calculated single particle ES [133] of the lattice

model as the input data. Periodic boundary conditions are used on a chain of length L = 400 with t set as

one. For simplicity, we first focus on a line in the 3D phase space {m,W1,W2} with m = 0.5 and W1 = 1.

We plot the ES of one disorder configuration at each value of W2 in Fig. 5.10(b). The black vertical line

indicates the theoretical transition point calculated from Eq. 5.14. We can clearly see double degeneracy at

0.5 on the left part, which is a signature for SPT phases. In the region of strong disorder, there are no such

degeneracies in general. However, there may be accidental degeneracies induced by disorder.

5000 training samples were generated with W2 ranging from 0 to 4 and from 7 to 10. We intentionally

skipped the area near the phase transition point, in hope that the RF model can locate it only with knowledge

deep in the phase. Test data was generated separately over the whole range of W2 from 0 to 10. Using the

same training and testing data, we fit three models: linear model (LM), neural network (NN), and random

forest (RF). The first two models were fitted as comparisons with the RF model. The python package

sklearn [134] was used for training and predicting.

We show the prediction results of the three models in Fig. 5.11(a). The red stars, blue crosses, and green

dots are predicted probabilities of being in the topological phase from LM, NN, and RF model respectively.

We can see that most states are correctly classified for all the three models. The linear model has several

misclassified states in the region of strong disorder, while NN and RF models only have wrong classifications

near the phase boundary. We fit the predicted probability with function

f(x) = 1/(1 + eb+wx) (5.16)
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Figure 5.11: (a) Predicted probability of being in the topological phase by the three models: linear model
(red star and dashed line), neural network (blue cross and dotted line), and random forest (green dot and
solid line). The lines are fitted by Eq. 5.16. (b) Accuracy and log loss of prediction by random forest with

different transition points W
(c)
c . The point with the highest accuracy (lowest log loss) is the true transition

point.

The fitted lines are shown in the figure as a guide of eye. The black vertical dashed line indicates the

true transition point; and the horizontal one is 0.5 probability. We chose the cutoff value as 0.5, i.e. when

predicted probability is larger than 0.5, we say the state is in the topological phase. Otherwise, it is in the

trivial phase.

Define accuracy as the percentage of correctly predicted samples. We get the accuracy of the LM, NN,

and RF model as 0.966, 0.974, and 0.977 respectively. Linear model has the lowest accuracy among the

three, due to its simple linear assumption. NN and RF model behavior similarly.

To locate the phase transition point, we can find the crossing point of the 0.5 probability line with the

probability fitting line. On the other hand, we can also use a confusion scheme [124]. We set the true

transition point is at W
(c)
2 and calculate the prediction accuracy. If W

(c)
2 is the true transition point, we get

high accuracy. Otherwise the accuracy is low. We plot the accuracy at different W
(c)
2 in Fig. 5.11(b). The

∧ shape of the plot suggests the true transition point at W2 ≈ 5, which is consistent with the analytic result

indicated by the vertical dashed line.

For completeness, we make the same plot for error. We measure the error of fitting by log loss or cross

entropy

H(p, q) = Ep[− log q] (5.17)

where, p is the true probability distribution and q is the predicted probability distribution. The ∨ shape of

the plot is consistent with what we get from accuracy.
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Figure 5.12: The predicted phase diagram of (a) W1 = 1.0 and (b) m = 0.5. The black solid lines are
theoretical phase boundaries. P is the predicted probability of being in the topological phase.

It is interesting to see that the trained model can locate the transition point with respectively high

accuracy. Even though the model is not given the information near the phase boundary, it can make correct

predictions. Further, we apply the trained model on other regions of the phase space.

We take two cross sections of the three-dimensional phase diagram. One with W1 = 1 and the other with

m = 0.5. The phase diagrams are plotted in Fig 5.12. Color indicates the predicted probability of being

in topological phase. Theoretical phase boundaries are plotted as solid black lines. As can be seen, the

model makes predictions with high confidence deep in the phase. When disorder is small, predicted phase

boundaries match perfectly with theoretical ones, while there are some deviations near the phase boundaries

at large disorder.

Since the ES is a general feature for topological phases, we should be able to extend it to other topological

systems. This is indeed true when we apply the RF model to the Kitaev chain. The Hamiltonian of the

Kitaev chain is [45]

H =
∑
n

[tn ibnan+1 +mn ianbn], (5.18)

where an and bn are Majorana fermions. We add disorder to the parameters tn = 1 + W1ω1 and mn =

m + W2ω2. Note that same as the tn and mn in the chiral model of Eq. 5.10, tn and mn here can also be

interpreted as inter-cell and intra-cell hopping terms.

The prediction results are shown in Fig. 5.13(a). We added terms that break time reversal and chiral

symmetry:
∑
n ianan+1 + ibnbn+1. Similar with Fig. 5.11(a), the dots representing predicted probabilities

of being in the topological phase. The red line is fitted using Eq. 5.16. There is clearly a phase transition

near W2 = 8.
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Figure 5.13: (a) The predicted probability of being in the topological phase of Kitaev model. (b) Feature
importance from random forest model. The high value in the middle indicates high importance of mid-gap
states in entanglement spectrum.

To see what random forest does exactly, we plot the feature importance of the model (Fig. 5.13(b)).

Feature importance measures the number of splits in a tree that includes the feature [135]. High feature

importance means the feature is more likely to be used to seperate classes. As shown by the figure, the

middle values of the ES shows the highest influence on predictions. It suggests that the RF model focuses

on the degeneracy of the ES to do classification.

To illustrate this point, we add a small σz term that breaks chiral symmetry. We fix other parameters as

m = 0.5 and W1 = W2 = 1, so that the system is in topological phase when symmetry is not broken. Since

the topological phase is protected by chiral symmetry, turning on a σz term immediately breaks down the

topological phase and the degeneracy in entanglement spectrum is lifted.

As the symmetry breaking term becomes stronger, the degenerate states in the entanglement spectrum

get further away from each other (shown in Fig. 5.14(a)). The predictions made by the RF model are shown

in Fig. 5.14(b). The blue dots are the raw prediction probabilities. When there is no symmetry breaking

term, i.e. chiral symmetry is preserved, the model predicts the states as topological. As long as the symmetry

breaking strength is non-zero, the predicted probability immediately drops below 0.5. This probability goes

down gradually as the symmetry breaking strength increase.

We check whether the prediction is related with entanglement gap. We use the entanglement degeneracy

to make predictions of the phase. If the gap is smaller than 0.001, we say the state has probability one as

being in the topological phase. Otherwise, we say the state is in the trivial phase. The predicted results

give accuracy 0.977, which is close to the accuracy of random forest classifier. We plot the predictions from

degeneracy in Fig. 5.15(a) by orange dots. Since we can only predict one or zero, we take average of the
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(a) (b)

Figure 5.14: (a) Entanglement spectrum with symmetry breaking term. (b) The probability of being in the
topological phase with symmetry breaking term added to the system. All configurations are in the trivial
phase except when symmetry is preserved.

predictions as the probability (green line). The predictions of random forest is show in blue square for

comparison. Clearly, the two predictions matches perfectly.

We plot the distribution of random forest predictions in Fig. 5.15(b) when degeneracy exists or not. Note

that the y-axis is cut in the middle. When there is degeneracy, the random forest classifier predict with

probability one in most cases. Similarly, the predictions by random forest classifier are mostly zero when

there are no degeneracies. In addition to entanglement gaps, random forest makes predictions based on

other features as well. As can be seen from the distribution plot, there are small/big prediction probabilities

when there are/not degeneracies.

Random forest can extract most information from features when feature number is not too large. In this

case, entanglement spectrum may not be able to capture all the information with disorder. This is the main

obstacle to improve the prediction accuracy. On the other hand, the states near phase boundaries may be

in the wrong side of phase, making accuracy even lower.

5.5 Summary

In summary, we used machine learning techniques to classify phases. Both traditional methods, such as

logistic regression and random forest, and deep learning methods, such as neural networks are used as

our models. We applied logistic regression, random forest and neural networks to classify classical Ising

ferromagnets and topological phases. Compared with linear model, random forest gives better predictions.

On the other hand, it preserves the easy interpretation ability of linear model. Neural network gives similar
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(a) (b)

Figure 5.15: (a) Predictions by degeneracy in entanglement spectrum (blue dots) compared with random
forest classifier (orange square). The green line is average of predictions by degeneracy. Theoretical phase
transition point is indicated by a vertical dashed line. (b) Distribution of predictions by random forest
classifier. When entanglement spectrum has (no) double degeneracy, most predictions give probability one
as being in the topological (trivial) phase.

accuracy as the random forest, but requires more time for training. The behavior of neural networks can be

improved by fine tuning hyper parameters.

With entanglement spectrum as features, we trained a random forest model. Because of the robustness

of entanglement spectrum, the model trained on a small training data can be well generalized to test data

in a larger phase space, and even to other models. A closer look at the RF model indicates that the model

is capturing the degeneracy of entanglement spectrum in the middle.
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Chapter 6

Conclusions and outlook

In this thesis, we studied one dimensional symmetry protected topological (SPT) phases. The density

matrix renormalization group (DMRG) method is applied to solve the chiral Z3 parafermionic chain and

the interacting inversion symmetric topological superconductor. We determined the phase diagrams of the

two systems based on quantum entanglement analysis. We discovered three phases in the Z3 parafermionic

chain: a topological phase, a trivial phase and an intervening incommensurate phase. The tricritical point

where the three phases meet at a single point is located by analyzing the Lifshitz type transition. The

topological superconductor is generalized from the Kitaev p-wave wire. The calculation of teleportation and

the fractional Josephson effects indicates that the ground state of the topological phase is a condensation

of four electrons instead of cooper-pairs. Moreover, the inversion symmetry restricts the edge modes of

the system to be cooper-pairs other than two uncorrelated electrons. We then applied machine learning

methods to find universal classifiers for SPT phases. After comparing three machine learning methods, we

chose random forest as our model The trained model can give high accuracy predictions to other regions in

the phase space, even other systems with different symmetries.

Many efforts have been made on applying machine learning techniques to physics problems, but there

are still many things can be done. We used entanglement spectra as features to train the model. They are

properties calculated from the ground states. The performance of the model depends highly on the type of

features we choose. We still need to use our prior knowledge about the system to choose proper features.

It is interesting to see if it is possible to train a model with ground state wavefunctions. For a classical

model there is no big obstacle, because many work has been done based on spin configurations. However,

a quantum state wavefunction cannot be represented exactly in general. The best approximation for now

belongs to tensor networks. For one dimensional systems, it would thus be interesting to build models that

can extract information automatically from matrix product states and then make predictions.

Another potentially interesting problem to consider is to extend the ability of the unsupervised learning.

Most physics models people study with machine learning have analytic solutions, because we need to label

the phases before any training can be done. With unsupervised learning we do not need those knowledge,
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so we can work on unsolved problems. There have already been quite a few works on this direction, but

still with the solved models. It will be exciting if unsupervised learning can detect phases that are note

previously known.
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