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Abstract

Synaptic vesicles play a central role in the functionality and adaptability of the nervous system. They carry

inside them molecules called neurotransmitters which allow information to be transmitted from one neuron

to another cell. This transmission process can only happen if the vesicles are tightly clustered at the cell

junctions, known as synapses, such that a supply of neurotransmitters can be maintained.

The mechanism of vesicle clustering had always been considered as mainly biochemistry driven. About a

decade ago, newer evidence surprisingly demonstrated that mechanical tension can influence vesicle cluste-

ring as well. However, what allowed tension to influence clustering was not understood, and will be explored

in this dissertation.

The first part of this work explores whether neurons maintain internal tension, and identifies the origin

of the tension generators. The existence of internal tension generators allows neurons to regulate their ten-

sion state independent of their surrounding tissues, providing a potential pathway for neuronal tension to

regulate clustering. Towards this goal, we inhibited multiple proteins in in vivo drosophila motor neurons

and subsequently studied their contractility in both the axial and circumferential directions. Contractility

was hampered in both directions when either F-actin or myosin motors were inhibited, revealing that there

exist internal tension generators that consist of acto-myosin machinery. Our results also showed that this

acto-myosin driven contractility is coupled in the axial and circumferential direction, pointing to a misalig-

ned network architecture of the tension generators.

The second part describes 2 new enabling methods. The first method is a microfluidic setup that allows

partial perfusion of an insuspendable tissue sample. Preexisting partial treatment methodologies can only

be applied to suspendable samples. By extending this capability to insuspendable samples, I would be able

to perform partial treatment on in vivo drosophila neurons to study neuronal tension. The second method

was developed to support the assembly process of the microfluidic setup, which relies on natural adhesion
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between a soft polymeric material and a stiff substrate. This method uses the delamination induced by a

trapped bead at the soft-stiff interface to quantify the adhesion energy at the interface. Both methodologies

were verified by experimental results.

The final part of this work attempts to explain the relationship between tension and vesicle clustering.

By disrupting the tension generators (myosin motors) identified in the first part, I observed the declustering

of vesicles after the disassembly of F-actin. I further used the microfluidic device described in the second

part to demonstrate that a partial inhibition led to the same result. The microfluidic experiments isolated

the treatment region from the synapse such that myosin motors disruption would only hamper neuronal

tension but nothing else. It also showed that tension was generated in series along the entire length of the

neuron; any failure along the length would lead to a total tension loss. I further accounted for the dynamics

of vesicle clustering and declustering by photobleaching the fluorescence proteins fused to the vesicles and

subsequently observing the recovery due to other vesicles migrating into the bleached area. Based on all of

these experimental observations and results, it appears that F-actin and myosin motors form an in-series

network along the neuron to generate tension. This tension is responsible for sustaining the F-actin network

at the synapse. The synaptic F-actin is then able to serve as a scaffold for vesicles, such that vesicles can

stay clustered. This pathway allows tension to influence, and potentially regulate, vesicle clustering.
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Chapter 1

Introduction

1.1 Background

In multi-cellular multi-organ animals, it is essential to have a system to coordinate the activities of different

parts of the body. The nervous system serves this purpose by facilitating internal communications. Many

different cell types work together to allow the diverse functionality of the nervous system [1]. Among them,

cells called neurons specialize in transmitting signals and information. They adopt a polarized shape by

making branches—dendrites to receive signal and axons to send signal. To further propagate the signal,

axons form connections with other cells or dendrites of other neurons; the connections are known as synap-

ses. A synapse can be broadly categorized into 3 sections, the presynaptic terminal (part of the axon), the

synaptic cleft (the gap between the communicating cells), and the postsynaptic terminal (part of the target

cell). The signal transmitted by axons is an electrical signal called action potential, which initiates at the

beginning segment of the axon conduit and terminates at the synapse. When an action potential arrives at

the synapse, it triggers the release of neurotransmitters. Neurotransmitters move across the synaptic cleft

and interact with the target cell. Information is thus transmitted.

These neurotransmitters are packed inside lipid bilayer vesicles. Neurotransmitter molecules are released

when the vesicles fused with the axon membrane at the synaptic cleft. To facilitate neurotransmission, es-

pecially in long axons, a mechanism is needed to accumulate vesicles at the presynaptic terminal—diffusion

is simply too slow and cannot keep up with the amount of vesicles needed during frequent stimulation.

Yet, simply accumulating them would lead to a constant dispersion driven by brownian motion. They need

something that they can stay attached to to remain clustered.

Previous work has shown that mechanical tension, among other physical and chemical processes, plays

an important role in sustaining vesicle clustering [2]. The exact mechanism of how tension and vesicle

clustering—two seemingly unrelated processes—are related is the main subject of interest in this disserta-

tion.
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To achieve that, I will first establish that axons do indeed maintain a tension intrinsically, demonstrating

that there exists a molecular pathways which a neuron can use to regulate axonal tension, and eventually

the degree of vesicle clustering. Further studying the organization of the tension generators would reveal

how tension could be regulated. Next, enabling devices that make some of our experiments possible will be

described and discussed. With the enabling devices explained, I will then describe the experiments performed

and the obtained results. Finally, I will conclude with a mechanistic model illustrating the pathway which

tension uses to influence vesicle clustering.

1.2 Organization of the dissertation

This dissertation can be broadly categorized into 3 themes, with each theme containing 2 chapters. The

first theme explore the origin of tension in axons. I will provide evidence that shows that actin cytoskeleton

and myosin motors are essential in generating axonal tension. I will further show that this tension has a

component in the axial direction (chapter 2), and a component in the circumferential direction (chapter 3).

The 2 components are likely coupled (chapter 3).

The second theme describes 2 enabling methods. Chapter 4 is dedicated to a microfluidic method that

allows the selective perfusion of a portion of a tissue sample. The method allows a single axon to be perfused

partially. It is used in the studies described in chapter 6 & 7, which aim to explore the role and nature of

axonal tension. Chapter 5 is dedicated to a method that quantifies adhesion energy at the interface between

a soft material sample and a stiff substrate, such as that in our microfluidic setup. I will describe the thoery,

simulations, and experiments performed to develop and verify this method.

The third theme contains a chapter (chapter 6) exploring a potential role of axonal tension in regulating

a biological phenomenon known as vesicle clustering. Vesicle clustering is an important process in neural

communication and learning and memory. I will provide evidence demonstrating that tension from actin

and myosin can influence the density of vesicles at where the clustering happens. Our results also point to

a model that can integrate mechanical tension into our understanding of vesicle clustering.

The third theme also contains a chapter (chapter 7) in exploring the nature of the tension generators:

are they in series or in parallel? Our results point to an in-series model where actin and myosin interleave to

2



form a network along the axon. This model explain both the observed axial-circumferential coupling shown

in chapter 3, and the total tension loss under partial tension inhibition shown in this chapter.

I will end the dissertation by discussing the key take-aways. I will also discuss some possible future

avenues that will allow us to understand more about the role and nature of tension/force in the nervous

system.
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Chapter 2

The origin of axial axonal tension

This chapter is adapted from a previous publication1.

2.1 Motivation

Numerous studies have shown that neurites actively respond to tensile forces by growing. Bray [3] demon-

strated that neurites grow in length when towed at a controlled rate. Similarly, Pfister et al. [4] showed

that axons are able to elongate to a thousand times of their original length when simply subjected to a

mechanical tension. The elongated axons retain their electrophysiological functions [5]. These results are

not surprising given the fact that neurites are coupled to the peripheral system, which can sometimes grow

at a rapid rate (about 3.45 cm per day in the case of blue whale [6]) during early development. Recent

experiments have shown that unperturbed neurons are also tensed (rest tension > 0) in vitro [7] and in vivo

[2], further supporting the stretch-growth theory.

Neurons also actively regulate and maintain their rest tension [8]. For instance, chick sensory neurons

subjected to slackening undergo shortening and restore their tension, in most cases to a level greater than

the initial value within 60-90 min [9]. Similar behaviors are observed in chick forebrain neurites but to a

lesser degree [10]. Likewise, contractile behavior is observed in axons that are previously subjected to a

fairly large sustained strain. For example, upon removal of external forces, stretch-grown dorsal root gan-

glion neurons in rat pups contract at rates up to 6.1 µm/sec and a rest tension is slowly restored within

20 min [11]. We have also previously observed that Drosophila axons actively maintain a rest tension of

1-13nN and axons that are made slackened become taut and restore a rest tension of similar magnitude

in 10-30 minutes [12]. Contraction is also observed in neurites that are surgically severed. Earlier, Shaw

et al. [13] described how isolated axon segments in vitro often shorten after they are resected. A num-

ber of in vitro studies have also demonstrated similar shortening behavior of axons upon surgical incision

1Tofangchi A*, Fan A*, Saif MT. Mechanism of Axonal Contractility in Embryonic Drosophila Motor Neurons In Vivo.
Biophys J. 2016 *equal contribution
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[14, 15, 16]. These results suggest that maintaining an intrinsic tension is an integral part of neural activities.

One study suggests that vesicle clustering in the presynaptic terminal of neuromuscular junctions in

embryonic Drosophila is dependent on mechanical tension in the axons [2]. Clustering decreases upon surgi-

cally severing the axon (intrinsic tension is compromised), but clustering is restored upon simply restoring

the tension by stretching the severed axon. Further stretching the axon increase clustering by as much as

200% in 30 minutes [2]. In addition, it has also been shown that mechanical tension modulates local and

global vesicle dynamics in Drosophila neurons [17]; and that acute brain slices “remember” the previously

prescribed mechanical stretch and respond by showing hyperexcitability [18].

In this study we address the question: what is the origin of tension in motor neuron axons? A surgically

cleaned single-axon system in Drosophila enables us to simply bring the neuromuscular junctions closer to

the central nervous system (CNS). Typically, in the absence of any drug, the axons shorten, become taut, and

regain tension. This cycle of slackening and straightening can be repeated multiple times, resulting axons to

shorten up to 40% of their original length in some embryos. The magnitude and rate of shortening are used

as measures of contractility. We find that contractility decreases dramatically after myosin II knockdown

and inhibition, and in the presence of actin disrupting drugs. The rate of contractility however is faster when

microtubules are disrupted. These observations suggest that the mechanical tension in Drosophila motor

neurons is primarily generated by the acto-myosin machinery.

2.2 Materials & Methods

Culture and Dissection of Drosophila embryos

Transgenic Drosophila (elav0-GAL4,UAS-gap::GFP) expressing green fluorescent protein (GFP) in neuronal

membranes were used for the experiments. These flies were also crossed with homozygous UAS-zipRNAi flies

(37480; Bloomington Stock Center, Bloomington, IN) to knockdown zipper in neurons [19]. Repo-GAL4 and

UAS-mCD8::GFP flies (7415 & 32184; Bloomington Stock Center) were crossed to visualize glial membrane.

Drosophila was cultured on standard grape agar plates at room temperature (23 ◦C). For harvesting, the

embryos were dechorionated with a 50/50 bleach and water solution for 2 minutes and then rinsed with

deionized water [20]. Embryos of stage 15–16—identified by gut morphology, CNS condensation, and time

elapsed after egg laying—were placed on a double-sided tape attached to a glass cover slide. They were

then incubated under insect saline solution before being devitellinized. The embryos were oriented such that
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the ventral nerve cord was closest to the glass surface, and a glass dissection needle was used to make a

dorsal incision. The dissection was made from posterior to anterior along the embryo to remove the guts

and lay the body walls down flat. Then the axons of the aCC motor neuron and the RP2 motor neuron,

which comprise the intersegmental nerve, were isolated by gently removing other nearby sensory and motor

neurons as well as fat cells and muscle fibers around them. The neuromuscular junctions (NMJs) of the aCC

and RP2 neurons were not damaged during this process. In some cases, the axon of the RP2 neurons was

also excised, leaving only the axon of the aCC neuron intact. In most cases, both axons were intact and we

measured their combined response. Glass microneedles were fabricated using a Sutter Instruments (Novota,

CA) laser-based micropipette/fiber puller.

Micromanipulator and Imaging

Actuation of the microneedle (Fig. 2.1A) was powered and controlled by an x-y-z piezo-actuator (NanoPZ

PZC200; Newport, Irvine, CA). Live imaging of the axon under the applied deformation was carried out on

an inverted microscope (IX81; Olympus, Nashua, NH). An Andor Neo sCMOS camera cooled to -30 ◦C was

used to record images (Andor Technology, Belfast, UK) at 2 frames/second. Imaging parameters (e.g., light

intensity, exposure time, gain, etc.) were kept constant during all experiments.

Axon compression and contraction measurement

In order to relax the axonal shaft, a microneedle tip was gently placed on the tissue embedding the NMJs

(Fig. 2.1A). The tissue was then pushed towards the central nervous system (CNS) by 10-15% of initial

axon length. We traced the profile of the axon (Fig. 2.1C) by getting the intensity centroid along the x-axis

for every position of y:

C(y) =

xmax∑

x=xmin

xI[x, y]/

xmax∑

x=xmin

I[x, y] (2.1)

The obtained C in Eq. 1 was then smoothed by its moving average over one-tenth of its total length. Path

length was obtained by summing the euclidean distances between each point after smoothing. The symbols

used for measuring axon contraction are listed in Table 2.1.

Drug Treatments

Drugs used include 2Deoxyglucose and Sodium Azide for ATP depletion [21], ML-7 to inhibit myosin light

chain kinase MLCK [14], Y-27632 to inhibit myosin rho kinase ROCK [22], Latrunculin A [23, 24] and
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Table 2.1: List of symbols in the axon compression experiment.

L0 Measured arc length of axon from point a to b (Fig. 2.1B) immediately after push.

Lf Measured arc length of axon from point a to b 5 minutes after push.

Ls Straight-line distance between point a and b: ideal length of taut axon.

Cr Contraction factor
∆Lf

∆L0
=

L0−Lf

L0−Ls
represents normalized magnitude of axonal contraction.

τ Time constant of axonal contraction by assuming a first-order decay.

∆T The time interval between each compression cycle.

Cytochalasin D [25] for disruption of actin filaments, Nocodazole and Colchicine to disrupt microtubules

[26]; all stocks from Sigma-Aldrich (St. Louis, MO). DMSO (4-X; ATCC, Manassas, VA) was used as a

solvent, tested to have no observable effect at low concentration. All drugs were diluted in Ca2+/Mg2+–free

PBS.

Immunofluorescence Staining

The prepared embryos were fixed with 4% formaldehyde (28908; Fisher Scientific, Rockford, IL) for 15

minutes; permeabilized with 0.5% Triton X-100 (X100; Sigma-Aldrich, St. Louis, MO) for 10 minutes;

blocked in 5% Bovine Serum Albumin (A9647; Sigma-Aldrich, St. Louis, MO) for 10 minutes; conjugated

with mouse anti-α-tubulin (1:100; A11126; Fisher Scientific, Rockford, IL) or mouse anti-repo (1:20; 8D12;

DSHB, Iowa City, IA) for 60 minutes; tagged with Alexa 568 goat anti-mouse (1:200; A-11004; Fisher

Scientific, Rockford, IL) for 30 minutes; and imaged with a scanning confocal microscope (LSM700; Carl

Zeiss, Peabody, MA) afterwards. Samples were rinsed with PBST (PBS–0.1% Triton X-100) after each step.

All steps were performed at room temperature. A brief extraction step was added before fixation in a portion

of microtubules staining experiments to distinguish polymerized microtubules from the soluble tubulin pool.

Permeabilization was skipped in these instances.

2.3 Results

Axons have robust contraction ability upon sustained loss of tension

We investigate 1) whether embryonic Drosophila axons are capable of generating contractile force after they

undergo mechanically induced loss of tension, and 2) the dynamics of such contraction due to multiple

successive compression cycles.
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Figure 2.1: Experimental setup and data analysis methods. (A) Phase contrast image of dissected embryo.
The axon is being pushed with the microneedle from its NMJ end. (B) The geometrical parameters are
labeled on the fluorescent image of an axon undergoing a complete slackening cycle. (C) Path length
computation achieved by tracing intensity centroid along the length of axons at different time points. (D)
Contraction factor vs time plot of an axon pushed twice. Dotted lines are least-square fits of the inset
equation to the raw data. Inset plot provides an expanded look at the transient region.
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To remove tensile force in axonal shaft, the axon was compressed from the NMJ side (Fig. 2.1A), which

caused the axon to buckle and become slack (Fig. 2.1B). However, the axon exhibited gradual self-shortening

(Fig. 2.1B & C) and ultimately reached a stable straight configuration (Fig. 2.1D) within 2-3 min (end of

compression cycle 1/push 1). The degree of contraction for each axon in a cycle was characterized by the

contraction factor Cr defined as,

Cr =
∆Lf

∆Ls
=

L0 − Lf

L0 − Ls
. (2.2)

Here 0 ≤ Cr ≤ 1. Cr = 0 indicates no contraction (L0 = Lf ); Cr = 1 indicates full contraction (Lf = Ls,

for nomenclature see Fig. 2.4A and Table 2.1). All embryos showed high degree of contraction, with Cr

= 0.90–0.95 in cycle 1. In order to investigate whether the shortened axons could further contract when

subjected to another round of slackening, we examined the same axon for a 2nd compression cycle (push

2) after one hour (∆T1 = 1hr). The axon reached a steady state and became fairly straight within 2–4

minutes with Cr = 0.80–0.90. Finally, the same axon was pushed for the 3rd cycle (push 3) after half an

hour (∆T2 = 0.5hr, Fig. 2.2A & 2.4B). Again, shortening occurred within 2–4 minutes with a Cr close

to those in previous cycles. This was consistent among all six embryos examined (Fig. 2.2B). Note that

because the axon length decreased at the end of each compression cycle, the values of L0, Lf and Ls vary

among compression cycles. It is also worth noting that the total compressive strain (based on L0 in cycle 1

and Lf in cycle 3) exceeded 40% in some embryos, although axon length varied from 70 µm to 105 µm from

embryo to embryo.

These results show the rapidity and robustness of axon shortening in response to multiple occasions of

loss of tension. Results here will also serve as our control data for the latter sections where embryos were

subjected to various pharmaceutical treatments.

Axon contraction shows exponential decay over time with less shortening rate

in 2nd compression cycle

To study the dynamics of Drosophila axon contraction, we monitored time lapsed images of axons and

measured their instantaneous change of length over time (Fig. 2.1C) during both the 1st and 2nd compression
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cycles. The time-dependent contraction can be fitted to a first order exponential equation as:

Cr(t) = Crfinal
(1− e−

t
τ ) (2.3)

where experimentally Cr(t) =
L0−L(t)
L0−Ls

; L(t) is the instantaneous length; τ is the characteristic time constant

(Fig. 2.1D).

Crfinal
(reported simply as Cr in the previous section, Eq. 2.2) and τ represent the two independent pa-

rameters characterizing the magnitude and rate of axon contraction respectively in a given compression cycle.

We found that all axons exhibited a generic exponential decay in shortening over time in both cycles

(Fig. 2.1D). We further analyzed the behavior by plotting ln(1 − Cr(t)
Crfinal

) as a function of time. Data

from six randomly chosen axons show a linear dependence (Fig. 2.3). However, contractions in the 1st

cycle, performed either immediately (n=6) or one-hour after (n=6) embryo preparation, had a faster rate of

contraction (consistently among embryos) compared to the 2nd cycle (n=6, Fig. 2.2C). The one-hour-delay

experiment was done to assess any saline incubation effect. Note that Cr was similar in both cycles and

seemed to be largely independent of τ .

Contraction is distributed along the length of axon

The magnitude (Cr) and rate (τ) of contraction quantify bulk response of the axons. In order to gain insight

on the source of contraction, such as which cyto-machinery is involved, we quantify local dynamics of the

axons along their lengths. First, we overlaid the profiles of the same axon at different time points during

contraction (Fig. 2.2D), and traced the positions of a few markers along the length (red arrows). If the

contractile units are localized to a specific region, for an example the NMJ, all the fluorescence markers will

move towards the NMJ when tensed—with displacement magnitude decreasing as we move away from the

NMJ. The different markers did not move towards the same end of the axon. This implies that the source

of contraction is distributed and is not localized to the NMJ or CNS side.

Contraction Behavior of Axons Subject to Drugs Treatment

In order to explore the mechanism of axonal contraction, we investigated contraction response of axons

subjected to various pharmaceutical drugs. Each drug has potent ability to impair/disrupt specific cellular

activity/structure in axons as discussed in the following sections. Results from the previous sections (Fig.
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Figure 2.2: Axon shows robustness and nonlocalization in contraction. (A) Experimental images showing
an axon contract during three consecutive slackening cycles. The contraction strain in each cycle is 10–15%
of initial length (L0 in each cycle). Note that axon contracts and becomes taut upon each push within 2–4
minutes. Total shortening is about 40% of original length (L0 in cycle 1). (B) Cr for each compression cycle
demonstrating robust axonal contractility (n=6 in all groups). (C) Time constants of contraction for axons
pushed (1st time) immediately after surgical preparation, pushed (1st time) 1 hr after surgery, and pushed
the 2nd time 1 hr after the first push (n=6 in all groups). (D) The same axon overlaid at different time
points: 0, 10, 20, 30, 50 seconds after push. Movements of fluorescence intensity features (marked by red
arrows) reveal a change in forcing direction along the length. All error bars in standard deviation.
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Figure 2.4: Cartoon Schematics. (A) Graphical representation of various notation used. (B) Procedures of
control experiments. (C) Procedures of pharmaceutical experiments.

2.2B & 2.4B) serve as the control group. Fig. 2.4C provides a detail schematic of the procedures. Briefly,

all drugs were added immediately after the completion of push 1 and let sit for ∆T = 1 hour, similar to that

in control, before push 2 is commenced.

Axons contraction is active and requires metabolic energy for contraction

To investigate whether the process of axon contraction is active and hence requires metabolic energy, the

embryos were treated (n=6) with combined 2Deoxyglucose (60 mM, 1 hr) and Sodium Azide (20 mM) to

deplete ATP [21]. As expected in the first compression cycle, the axon contracted with Cr = 0.80±0.10, while

in the second compression cycle, the contraction factor noticeably dropped to Cr = 0.13± 0.09 (Fig. 2.2A).

Thus ATP inhibitory reagent significantly impaired axon contraction suggesting that axonal contractility is

an active process supported by metabolic energy. We note that ATP depletion may lead to impairment of
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myosin II motors and major actin filaments depolymerization, both verified in the following sections to lead

to loss of tension and contractility of the axon.

Myosin II contributes to force generation in axons through MLCK and ROCK

pathways

In the first set of experiments, we used transgenic embryos that expressed UASzipRNAi in neurons to knock-

down zipper [19], the gene encoding non-musecle mysoin II in Drosophila (n=7). We observed significant

inhibition of axon contraction (Cr = 0.31±0.13), indicating that Myosin II mediates axons contraction (Fig.

2.5B).

To further identify the molecular pathways by which Myosin II is activated in axons, we separately

treated the embryos with reagents ML-7, an inhibitor of Myosin light chain kinase MLCK [14] (n=6, 225

µM, 1 hr), and Y-27632, an inhibitor of Rho-dependent kinase [22] (n=6, 110 µM, 1 hr). Both ML-7 and

Y-27632 reduced axon contraction in the 2nd cycle, with Cr = 0.36± 0.20 and 0.33± 0.17 respectively (Fig.

2.5C & D). Drugs effects have saturated at the concentration reported here (Fig. 2.6). Contraction was also

significantly reduced at lower concentrations (70 µM & 35 µM for ML-7 and Y-27632 respectively, Fig. 2.6)

[27, 28]. These results together indicate that both MLCK and ROCK pathways contribute to Myosin-based

contraction and force-generating machinery in live Drosophila axons (Fig. 2.5E).

Axon contraction stops upon disruption of F-action/cortical actin

Myosin motors employ actin filaments to generate intracellular tension. Therefore, if myosin II is indeed

involved in axonal contractility, then disruption of actin filaments should also result in loss of contractility.

To examine this hypothesis, embryos were separately treated with Cytochalasin D (50 µg/mL, n=6) and

Latrunculin A (31 µM, n=6), potent reagents that disrupt actin filaments [25, 23, 24]. As it is evident in

Fig. 2.7A, both Cytochalasin D and Latrunculin A significantly impaired the ability of axons to contract,

characterized by the reduced values of Cr = 0.18± 0.12 and Cr = 0.16± 0.13 in the 2nd cycle respectively.

Disruption of microtubules accelerates contraction dynamics

Since the axonal shaft is abundant with microtubule filament (MT), we ask whether MT has any direct role

in axonal contraction. To address this question, the embryos were treated separately and simultaneously

with Nocodazole (15 µg/mL) and Colchicine (200 µM), potent drugs to destabilize microtubules [16, 29].

After drug treatments, axons maintained a high Cr = 0.87 ± 0.11 (n=4, Nocodazole), 0.89 ± 0.05 (n=4,
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Figure 2.5: Effect of pharmaceutical and genetic NMMII disruption. (A) Axon contraction stops when ATP
is depleted by treating embryos with 2Deoxyglucose and Sodium Azide. This indicates that axon contraction
is active and needs metabolic energy (n=6). Similarly, axons stops to contract when non-muscle Myosin
II is knockdown by (B) zipRNAi (n=7), and inhibited by (C) ML-7 (MLCK pathway, n=6) and (D) Y-
27632 (ROCK pathway, n=6). (E) Summary of results suggesting that myosin II is involved in active force
generation in Drosophila axons. Note that no drugs are used in control cases. Scale bar = 10 µm. All error
bars in standard deviation.
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Figure 2.7: Effect of pharmaceutical cytoskeleton disruption. (A) Axon contraction is significantly inhibited
when embryo is treated with Cyto D (n=6) and Latrunculine A (n=6). (B) Axon contraction factor remains
unaffected, as compared to control cases, when embryos are treated with Nocodazole (n=4) and Colchicin
(n=4) independently and combined (n=6). (C) Summary of results shows a significant decrease in axon
contraction when actin structures are disrupted while axon contraction factor remains insensitive to disrup-
tion of microtubule filaments. (D) Time constant ratio (τ2/τ1) significantly reduced (n=5), indicating that
contraction is happening at a faster rate, when microtubules are disrupted. No drugs are used in control
cases. Scale bar = 10 µm. All error bars in standard deviation.

Colchicine), and 0.85± 0.10 (n=6, Nocodazole + Colchicine) in the 2nd cycle—similar to the control data,

indicating that axon contraction factor alone is insensitive to MT disruption (Fig. 2.7B & C). Disruption of

microtubules resulted in tubulin beading along the axon and a reduction in α-tubulin intensity (Fig. 2.8),

as typically observed in microtubule disruption experiments [29]. Time constants comparison reveals that

the microtubule disruption expedites the contraction, i.e. the axon contracts faster and this is reflected in

τ . The ratio of the time constants (contraction time constant of push 2 divided by that of push 1, Rτ = τ2
τ1
)

with and without microtubule disruption is
Rτ(µT−)

Rτ ≃ 1
3 (Fig. 2.7D), suggesting that microtubules act as

resistive and dissipative elements in axonal contraction.
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Figure 2.8: DIC, anti-α-tubulin, and neuronal-membrane-bound-GFP composite images with (A) and wit-
hout (B) drug. Expanded images of microtubules morphology with (C) and without (D, reduced image gain
by one-eighth due to saturation) drug. (E-J) Images obtained with a brief extraction step before fixation.
Anti-α-tubulin and neuronal-membrane-bound-GFP composite images with (E, G, & I) and without (F, H,
& J) drug. The composite images are separated into the two channels indicating the presence of polymerized
microtubules (G & H) and neuronal membrane (I & J). Same imaging conditions applied unless otherwise
noted.
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2.4 Discussion

It has long been known that neurons cultured on petri dishes generate tension. Recent studies show that in

vivo axons of embryonic Drosophila also generate tension [2]. More importantly, this tension seems to play

critical roles in clustering neurotransmitter vesicles at the presynaptic terminal. Such clustering is essential

for neurotransmission. Here we seek for the origin of tension in neurons in embryonic flies by applying a series

of cytoskeletal disruptive drugs. Our key conclusion is that acto-myosin machinery is primarily involved in

the contractility of axons of embryonic motor neurons. This contractility results in tension in the axons. We

have the following remarks.

Glial cells possibly influence axon contraction

Physiology studies [30] have shown that glial ensheathment, continuous along the nerve, is complete at

stage 17. The embryos that we worked with (stage 15–16) also showed a high degree of glial ensheathment,

as evident by immunofluorescence staining targeting repo, a gene that expresses only in glial cells (Fig.

2.9). However, possibly because of the immature coupling between glial cells and axons, all of our cleaned

preparations showed minimal ensheathment along the shaft of the axons (Fig. 2.9). The axons were still able

to contract and generate tension in the absence of glial cells along their length. It is therefore unlikely for the

glial populations to influence the rest tension and the contraction factors reported in this work. However, it

is possible that glial cells also contribute to axon contractility locally providing more resistance to buckling,

which in turn influences the bulk time constant (Fig. 2.2C) and the profile after deformation and during the

contraction process (Fig. 2.2D).

Acto-myosin machinery is important in generating axon rest tension in vitro

and in vivo

In vitro studies revealed the role of cytoskeletal structure and motor protein activity in contractility of axon

in different types of neurons. For instance, disruption of F-actin eliminates retraction of neurites [14, 31];

depolymerization of actin network leads to a significant reduction in the rest tension in axons [32]. The role

of actin in axonal contractility in embryonic Drosophila, in which actin was observed to actively participate

in contraction dynamics (Fig. 2.7A & C), seems to be consistent with the in vitro studies.

Motor protein also have significant role in force generation and motility of axon. For example, it is

shown that retractions in chick sensory neurons [31], Neuro–2A neurites [22], and DRG neurons [14] are
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Figure 2.9: Glial cells visualizations, through staining (A-B) and crossing (C-F), show high degree of glial
ensheatment of uncleaned axon, and minimal ensheathment along the axon shaft of cleaned axon. (A) DIC
and anti-repo composite image of preparation. Cleaned axon on the left. (B) Anti-repo channel of A. (C
& E) Phase and glial-membrane-bound-GFP composite images at 2 different focal planes. Cleaned axon on
the right. (D & F) Glial-membrane-bound-GFP channel of C & E respectively.
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significantly dependent on Myosin II. These agree with our observations that Myosin II plays a major role

in contraction dynamics: axon contraction was significantly impaired when Myosin II was downregulated

by RNAi and inhibited using pharmaceutical reagents (Fig. 2.5). This, combined with our results on actin

disruption, strongly suggests that the interplay of acto-myosin machinery drives the fast active contraction

of slackened axons. It is also conceivable that actin network serves as force conduit along the axonal shaft.

They can sustain and transmit both external force [32] and internally generated tension (by Myosin motors,

current work); and hence, once disrupted, contractility significantly dropped in axons.

Microtubules participate by sliding, breaking, and densifying

The profile of buckling in our experiments was rarely of mode I, and was usually a combination of multiple

modes. This leads us to believe the observed deformation profile is driven by the microtubules, known to

couple with surrounding cytoskeleton to buckle at higher modes for withstanding compressive load [33].

Under acto-myosin contraction, the buckled microtubules are thought to slide against each other, possibly

influenced by tau proteins [34], leading to axon shortening. This allows the slackened axon to straighten and

build up tension [12]. Dynein motors might also be actively resisting the contraction [35]. The time evolution

of axon contraction in each cycle is analogous to that of a system modeled by a first order decay equation

(Fig. 2.1D), suggesting the presence of resistive/dissipative elements [36], supporting the hypothesis of

microtubules sliding [37]. Breaking of microtubules might occur at high compression rate/magnitude as well

[26]. The rate at which they reassemble may influence the contraction dynamics. It is worth noting that such

reassembling processes usually occur over a much longer time scale of axonal shortening, i.e. 40 minutes,

than what we observe here [26]. The subsequent reorganization and reassembling of microtubules can further

lead to a formation of a denser filamentous network upon axon shortening, which could explain the slower

dynamics (higher time constant) in push 2 in our experiment. We showed that the time constant increase

was reverted, i.e. shortening was expedited, when microtubules were disrupted, supporting the hypothesis.

Others have also shown that microtubules counterbalance tensile forces along the F-actin in vitro. For

instance, disruption of microtubules in axons leads to an increase in rest tension [16, 32]; and destabilization

or stabilization of microtubules resulted in enhanced or retarded recovery rate of dynamically-stretched

axons respectively [26].

Force can mediate actin polymerization to scaffold synaptic vesicles

Contraction of slack axons along their entire length (Fig. 2.2D), and the exponential time dependence of

contraction (Fig. 2.1D & 2.3) lead us to believe that axonal contractility results from a continuous network of
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Figure 2.10: Schematic of a possible mechanism in force generation and contraction. (A) Cartoon sche-
matic of a possible cytoskeleton configuration with cortical acto-myosin network (red network) generating
tension along the axon, and microtubules (blue strands) resisting the contraction and providing support
actively through molecular motors and/or passively through crosslinking proteins. (B) A possible loop me-
chanism in which actin network is stabilized by the tension it generates. Such stable network may facilitate
neurotransmitter vesicle clustering at the synapse, as well as other biological processes.

cortical actin filaments [38] rich in myosin motors, but the contraction is hindered by a frictional component

originating from the central network of other cytoskeleton filaments, dominated by microtubules. This is

summarized in Fig. 2.10A.

Tension is known to facilitate actin polymerization [39], and a loss of tension could lead to actin disas-

sembly. It is thus possible that the self-generated tension sustains the actin network, especially further

downstream in the actin rich presynaptic terminal—to provide a scaffold for synaptic vesicles clustering,

shown to be sensitive to all actin [40], myosin [19], and tension [2] disruption.
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Tension can influence stretch sensitive ion channels

Maintaining tension might be vital for the functionalities of ion channels. It has been argued that all ion

channels are mechanosensitive—a large enough stress will induce conformational change in ion channels

which would lead to an increase/decrease in their activation energy barrier for conductance [41]. Thus, it is

conceivable that the tension generated by acto-myosin machinery might serve as a signal for the ion channels.

The latter in turn may influence polymerization of cytoskeletal components and motor activity by regulating

their ion transport. Thus, the channels and the acto-myosin machinery may act as a feedback loop system

maintaining the rest tension and resulting in an optimal condition for neuronal functions.

Tension can promote efficient wiring

It has been suggested that cortical folding in cerebral cortex of large mammals could be driven by intrinsic

axonal tension aiming to pack the most neurons in a confined space, i.e. efficient wiring [42]. Several efforts

have been attempted to (dis)prove this hypothesis [43, 44]. Most experimental results suggest that intrinsic

tension does not cause cortical folding, but no evidence has so far been presented against its role in efficient

wiring.

As is evident from some previous experiments [2, 45], neurons respond to mechanical stimuli. However,

a neuron, like any long wire, can only sense mechanical signal efficiently when it is tensed. The ultimate role

of tension homeostasis in neurons may not merely be limited to growth as is conventionally understood, but

might be related to various neuronal functions, including axonal transport and synaptic transmission and

excitability.
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Chapter 3

The origin of circumferential axonal
tension

This chapter is adapted from a previous publication1.

3.1 Motivation

Neurons compute by integrating upstream signal inputs and propagating a single output. This signal in-

tegration and propagation requires the neuronal cell to take a specialized shape—usually in the form of

many dendrites and an extended axon [1]. Microtubules (MT) has been thought to give axons their tubular

structure [46], and actin, in the form of a mesh network, was proposed to link the cytosolic MT to the

axolemma [47]. The recent discovery of periodic subcortical actin rings and associated proteins in axons [38]

(and dendrites [48]) adds new insights to the cytoskeleton architecture. This highly regular actin network

has been suggested [49, 50] and demonstrated [51] to maintain structural integrity. How such is achieved,

however, remains largely speculative.

The contractility of actin network, driven by myosin motors, is well-established to help shape cell mor-

phology [52, 53]. In axons, the acto-myosin machinery maintains an intrinsic axial tension in vitro [54, 32]

and in vivo [2, 44, 55]. This tension can influence axonal processes such as growth [3, 56, 5, 57, 37, 58],

synaptic plasticity [2, 18], and vesicle transport [17] and release [45]. We speculate that tension could also

exist in the circumferential direction, creating a hoop stress, as suggested by the ring-like actin network.

Here we use confocal microscopy and spatial light interference microscopy (SLIM) [59] to infer circum-

ferential tension by monitoring the diameter of single axons in embryonic drosophila in vivo. We report

observations that suggest that this circumferential tension is coupled with the axial tension. It appears that

axons regulate their diameter, and hence structure, through this coupled contractile tension.

1Fan A, Tofangchi A, Kandel M, Popescu G, Saif MT. Coupled circumferential and axial tension driven by actin and myosin
influences in vivo axon diameter. Sci Rep. 2017
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3.2 Materials & Methods

Drosophila Culture

Transgenic embryonic drosophila (P(elav-GAL4)[iii] P(UAS-gap::GFP, w+)[6iii]) with neuronal membranes

tagged by green fluorescent protein (GFP) were used for the experiments. To harvest the embryo for

dissection, flies were cultured on standard grape agar plates at room temperature (23 ◦C) for 18 hrs. The

new embryos laid (0-18 hours old) were treated with 50% bleach for 1 minute for dechorionation, and

subsequently rinsed with deionized water. We then visually inspected the embryos to select the ones with

morphologies corresponding to those of stage 16. This protocol was adapted from Budnik et al. [20].

Dissection and Manipulation

Selected embryos were then transferred onto a double-sided tape (Scotch; 3M, St. Paul, MN) attached to a

large glass cover slip (12-545H; Fisher Scientific, Hampton, NH). We positioned the embryo specifically with

the dorsal side, where the CNS was, touching the tape. A glass needle (World Precision Instrument, Sara-

sota, FL), pulled by a micro-electrode puller (Sutter Instruments, Novota, CA), of 1 µm tip size and a 20◦

taper was used to cut open the embryo from the posterior end to the anterior end. The fly, now free from all

its cuticle, naturally adhered to the glass needle. We transferred it onto the cover slip glass surface, covered

it with 500 mL of PBS (the volume is important for later drug concentration), and subsequently removed

the inner organs until the body wall could be laid unrolled with the CNS exposed for further manipulations.

Intersegmental nerves, aCC motor neuron (MN) and RP2 MN, were identified from one section of the

flat body wall. We gently excised the surrounding fat cells, muscle fibers, and nearby neuron while leaving

the entire connection—CNS→aCC+RP2→NMJ—intact.

A different glass needle of similar specifications was then brought close and made adhere to the muscle

side of the NMJ using a piezoelectric micro-actuator (NanoPZ PZC200; Newport, Irvine, CA) that provided

nanometer resolution.

Pharmaceutical Drug

Cytochalasin D (50 µg/mL) was used for the disruption of F-actin. Nocodazole (15 µg/mL) and Colchicine

(200 µM) were used for the disruption of MT. Y-27632 (110 µM) and ML-7 (225 µM) were used to inhibit

the ROCK and MLCK pathways respectively. All chemicals were purchased from Sigma-Aldrich (St. Louis,
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MO). DMSO was added as a solvent and was maintained at a final concentration of less than 1%, tested

to have no observable effect [55]. All drugs were diluted in Ca2+/Mg2+ free PBS. Drugs were added to the

samples 3 minutes before the onset of measurements.

Microtubules Staining

The prepared embryos were extracted with BRB80-4mM EGTA-0.5% TX-100 (chemicals from Sigma, St

Louis, MO) for 30 seconds to distinguish polymerized MT and fixed with 4% formaldehyde (28908; Fisher

Scientific, Rockford, IL) for 15 minutes; blocked in 5% Bovine Serum Albumin (A9647; Sigma-Aldrich, St.

Louis, MO) for 10 minutes; conjugated with mouse anti-α-tubulin (1:10; 12G10; DSHB, Iowa City, IA) for

60 minutes; tagged with Alexa 647 goat anti-mouse (1:200; A-21236; Fisher Scientific, Rockford, IL) for 30

minutes; and imaged with a scanning confocal microscope (LSM700; Carl Zeiss, Peabody, MA) afterwards.

Samples were rinsed with PBST (PBS-0.1% Triton X-100) after each step. All steps were performed at room

temperature.

Confocal Imaging

The embryos were inspected using a confocal microscope (LSM700; Zeiss, Oberkochen, Germany). The 488-

nm laser was used to excite the GFP and emission light with wavelength larger than 488 nm was collected.

Pinhole size was set to 1 a.u.. A z-stack distance of 0.41 µm was maintained. A 40x/1.3 objective was

used. We note that the number of images (ranges from 15-50) for any axon depends on its degree of out of

plane tilt. We discarded samples with too much tilting that needed more than 50 images in the stack. The

scan speed was sometimes adjusted so that an image stack could be obtained in around 80 seconds. The

settings were kept consistent across all independent experiments. Image stacks were taken every 5 minutes.

We found that this minimized photobleaching while allowing images to have adequate spatial and temporal

resolution for our analysis.

Image Analysis

The collected images were post-processed first using ImageJ (U.S. National Institutes of Health, Bethesda,

MD). The z-stacks were collapsed to single images by maximum intensity projection. The images were

cropped to only the axon of interest which were then transferred to MATLAB (MathWorks, Natick, MA).

A batch-enabled script was used to detect the edge of the axons, and subsequently performed diameter

and area calculations (Fig. 3.1). The edge was traced by fitting a Gaussian profile to the intensity profile

along the x-axis for every y (axial direction of axon). The 2 locations with maximum slope (d
2I(x)
dx2 = 0)
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Figure 3.1: Approach to diameter calculation. (a) Maximum intensity projected fluorescence image of a
dissected fly embryo. Signals are from neural membrane bound GFP. The white ellipse indicates a cleaned
axon. (b) Schematics of an axon that has move away from its original axis (from x-axis to l-axis). Values
of average diameter computed along the 2 axes separately are different by a factor of cosθ. (c) Gaussian
curve (G) fitted to maximum fluorescence intensity data along the cross-section (blue dotted line in b) of a
randomly-selected axon. Points where G′′ = 0 is defined as the boundary.

were reported for each y-coordinate. Connecting those points for all y-coordinates provided a discretized

edge with axial resolution of a single pixel and lateral resolution of at least half a pixel. 3D images were

generated by ImageJ to ensure that the distance between the 2 projected edges was representative of the

diameter. Using the edge values, average diameters were computed over the same visible axonal length for

each condition among different time points.

Spatial Light Interference Microscopy (SLIM)

SLIM was also used to examine the diameter and axonal mass transport. The sample preparation is similar

to that previously described with slight modification to facilitate phase imaging. Specifically, we added a

top cover slip above a PDMS spacer to seal off the sample and prevent evaporation. In addition, the space

between the two cover slips (one supporting the embryo and the top cover) was filled with PBS. This offered

flat interfaces for PBS to avoid any bias in the phase values during light transmission. Because of the top

cover slip, no stretching manipulation was done to the samples imaged with SLIM.
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In short, SLIM is a quantitative phase imaging [60] technique that measures optical path length shifts in

a phase contrast geometry [59]. In our implementation (CellVista SLIM, Phi Optics, Inc.), the pupil plane

of a Zeiss Z1 is projected onto a spatial light modulator (SLM) that is then cycled in π/2 increments, essen-

tially modulating the phase ring internal to the objective. Four such images are combined [61] to produce

a full-field phase-map, with a radian value at each pixel. All SLIM images used in this work were acquired

with a 63x/1.4 objective (PN 420781-9910) and an sCMOS camera (Andor Zyla 5.5).

Each stack was used to reconstruct a single image to facilitate analysis (Fig. 3.2). The stack was first

cropped to a region that only the axon of interest was visualized. Then, for each 5-pixel-times-width region

along the axial direction of the axon, we found the stack plane with maximum gradient magnitude and

defined the plane as the focal plane. The obtained plane numbers were then smoothed using the robust

linear method and subsequently interpolated for every pixel along the longitudinal direction of the axon.

These values were then rounded and used to obtained a reconstructed image from the image stack.

To evaluate diameter, we made use of the negative phase region at the boundaries of the axon (Fig. 3.3).

Similar to the Gaussian fitting previously described, we obtained a profile, this time in phase values, for

every pixel along the axial direction. We smoothed the profile and computed its difference function. The 2

maximum peaks (locations with maximum slope) in the difference function bound by the negative regions

were defined as the boundary.

3.3 Results

In order to image axon diameter continuously, invasive surgery was performed on drosophila embryo to clean

the tissues (including glial cells [55]) surrounding the axon until single axons could be observed. The neural

membrane was genetically labeled with GFP for visualization purposes. Two imaging methods were used—

confocal microscopy and SLIM. The preparations were similar with SLIM samples having a top cover slip to

facilitate phase imaging (Fig. 3.4a). Fluorescence signal from the neural-membrane-bound GFP provided

contrast in the confocal system, while phase changes provided contrast in SLIM. Methods unique to each

imaging modality were used to 1) reconstruct an image stack into a single image, and 2) compute the dia-

meter (and average phase for SLIM) from the reconstructed image (Fig. 3.4b). See materials and methods

for detailed description. Axons were subjected to a series of stretching manipulations as depicted in Fig. 3.5.
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Figure 3.2: Reconstruction of SLIM stacks into a single image. (a) A computer-determined focal plane among
the stack planes is obtained for every ”5 pixel × width” section along the y-direction using the maximum
gradient method. The reconstructed image (left) is grainy because of the discretized approach. The resulting
pixel vs focal plane data is smoothed using the robust linear method. The reconstructed image (center) after
smoothing shows significant improvements. This can be further improved (right) by linear interpolation of
the 5-pixel data for every pixel. (b) We attempted multiple smoothing algorithm before we finalized on the
robust linear method as it preserves feature at the extreme ends of the axon.
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Figure 3.3: Determination of axon boundary in reconstructed SLIM images. (a) A negative phase region
can be observed from the SLIM data at the 2 boundaries of the axon, which we can use to our advantage
for diameter determination. We first look for the 2 maximum negative peaks (NP). However, there are local
peaks that can bias the results. A moving average smoothing (SNP) takes care of that. The difference curve
(DNP) of the smoothed data is obtained to locate the point of maximum slope (similar to taking a 2nd
derivative with a continuous function), which we defined as the boundary points. (b) Plot of the negative
phase data along the dotted line drawn in (a) to better illustrate the process. The peaks are pointed out in
triangles. The final boundary points are circled in dotted line. Note that the phase values reported in the
main text was never smoothed; the smoothing is done only during boundary determination.
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Figure 3.4: Sample preparation and representative images. (a) Cartoon schematic of the experimental setup
with both imaging methods. Note that no stretch experiment was carried out in the SLIM set-up due
to the top cover slip; stretching manipulations were done exclusively using the confocal setup. (b) (top)
DIC image of an axon before cleaning is completed. (center) Maximum-intensity-projected confocal image
of a cleaned axon. Green lines labeled the boundaries determined by the analysis algorithm. (bottom)
Reconstructed SLIM image of another cleaned axon. Green lines labeled the boundaries determined by the
analysis algorithm. All scale bars at 10 microns.
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Figure 3.5: Continuous sample plot of diameter data and stretching manipulations. Phase 1: PBS (or drug)
treatment of 60 minutes (Fig. 3.7). Phase 2: Stretch to 15-25% strain in less than 1 minute. Drop in
diameter due to volume conservation (Fig. 3.10b). Diameter is not monitored. Phase 3: Stretch is held and
diameter is traced for 30 minutes (Fig. 3.10c). Phase 4: Unstretch the sample to its original configuration.
Axon would first buckle and then contract to a straight configuration again in 5 minutes. Gain in diameter
due to volume conservation (Fig. 3.11c). Diameter is not monitored. Phase 5: Axon rebuilds its rest tension
and diameter is traced for another 30 minutes (Fig. 3.11b). Experiements (Fig. 3.10e & 3.11a in main text)
not subjected to phase 1 follow identical phases 2 - 5.

Actin maintains a circumferential tension resisted by microtubules

Drugs with known specificity to actin filaments (cytochalasin D, cytoD) and MT (nocodazole and colchi-

cine, noco/colch) were applied to the preparations 3 minutes before imaging commenced. The preparations

were monitored under the two imaging modalities for 60 minutes (phase 1 in Fig. 3.5). We measure initial

diameter at d1i = 2.34 ± 0.44 µm (confocal, N=6) & 3.31 ± 0.49 µm (SLIM, N=6). This corresponds to

at least 20 pixels across the width of an axon (Fig. 3.6). We estimated that our gaussian fitting measu-

rements should be accurate for at least 0.5 pixels. This gives a resolution of around 2.5%. The diameter

changes were largely consistent between the two modalities (confocal imaging and SLIM). Disrupting actin
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filaments (Fig. 3.7a & b, red) led to an increase in average diameter (confocal: d1f/d1i = 1.11 ± 0.02,

N = 8; SLIM: d1f/d1i = 1.12 ± 0.04, N = 3), and disrupting MT (Fig. 3.7a & b, blue) led to a decrease

in average diameter after 60 minutes of drug treatment (confocal: d1f/d1i = 0.87 ± 0.05, N = 6; SLIM:

d1f/d1i = 0.92 ± 0.02, N = 3). Control cases with PBS incubation (Fig. 3.7a & b, grey) showed a small

increase (confocal: d1f/d1i = 1.01±0.02, N = 6; SLIM: d1f/d1i = 1.04±0.01, N = 3) and slight fluctuations

within our estimated accuracy of 2.5%. Spatial examination also revealed that diameter increase caused by

actin disruption was consistent along the entire length of each axon (Fig. 3.8).

To test whether contractile forces are involved in diameter regulation, we treated the axons with myosin

II disrupting drugs, Y-27632 and ML-7. These drugs were found to reduce contractility of axons along the

longitudinal direction [55]. We observed diameter increase when axons were treated with Y-27632 (confocal:

d1f/d1i = 1.12±0.05, N = 3; SLIM: d1f/d1i = 1.16±0.08, N = 3) and ML-7 (d1f/d1i = 1.12±0.06, N = 3)

respectively (Fig. 3.7b & c). This implies that relaxation of tension results in increase in diameter.

Although the final magnitude of diameter increase (under cytoD or Y-27632 treatment) is similar between

the 2 modalities, the time constant is not. We believe this can be attributed to the imaging and analysis

methods used. In confocal imaging, the GFP signal comes from a membrane bound protein expressed only

in neurons. While in SLIM, the contrast is derived from the content of the axons. Furthermore, we used a

curve fitting algorithm in analyzing the data from confocal imaging to minimize noise, and such was difficult

to realize in SLIM because of the many local intensity peaks. Previous work suggests that actin filaments

are sensitive to cytoD treamtent in less than 10 minutes [62], which is what we observed in confocal imaging.

These observations can be explained by contractility of actomyosin machinery along the circumferential

direction of axons (Fig. 3.7d). When actin filaments/myosin II are disrupted, the circumferential tension is

diminished. This leads to an imbalance of cell pressure and membrane tension, and, as a result, an inflation

in diameter (and volume). On the other hand, when MT are disrupted, the polarity of the imbalance swit-

ches since there are now less restoring force against contractile actin leading to reduction in diameter. This

proposition is interestingly similar to the case of axial axonal tension [55], leading to our speculation that

tension could be coupled in the axial and circumferential directions.

SLIM imaging revealed that the average phase (p) increased (pf/pi = 1.19±0.20, N = 3) when actin was

disrupted (Fig. 3.7e, red). Average phase remained unchanged (colch: pf/pi = 0.97±0.11, N = 3; Y-27632:
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Figure 3.6: (a) Axon diameter in microns and pixels as measured by confocal and SLIM respectively. (b)
Axons incubated under cytoD for 60 minutes before subjected to a pbs washout. Data depict diameter
immediately after the washout. All shaded regions indicate error bar in standard deviation.

pf/pi = 0.95± 0.08, N = 3) upon MT disruption (Fig. 3.7e, blue) or Y-27632 treatment (Fig. 3.7e, cyan).

As phase correlates with mass density [63], this suggests that the content that left upon MT disruption had

similar density on average to the remaining content in the axon, while the new mass that had come in due

to the inflation in diameter upon actin disruption was denser on average. Increase in diameter caused by

Y-27632 did not lead to an influx of denser mass. This suggests that an inflation in diameter alone is not

sufficient to cause the influx of denser mass; actin depolymerization is necessary.

The increase in phase upon actin disruption led us to investigate any side effects that CytoD itself might

have caused. Upon a subsequent washout, axons that were treated with CytoD revert back to their original

diameter (Fig. 3.6b). This suggests that CytoD did not cause any detrimental effect on axons permanently.

We further perform an analysis to understand the nature of the heavier mass coming in upon diameter

inflation. We compared the normalized phase distribution of axons before and after cytoD treatment and

identified a continuous range that led to the reported increase in average phase (Fig. 3.9a). The pixels that

fell within the identified range show structures that resemble vesicles (Fig. 3.9b).
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Figure 3.7: Diameter changes under drug treatment. (a) Confocal and (b) SLIM measurements of average
diameter over time of axons treated with PBS (grey), cytoD (red), noco/colch (blue), and Y-27632 (cyan).
(c) Confocal measurements of average diameter over time of axons treated with PBS (grey), Y-27632 (cyan),
and ML-7 (yellow). (d) Cartoon schematic of the proposed explanation. Figures (in dotted boxes) depict
cross-section, as indicated by the dotted line in the bottom left figure, of axons under different conditions.
Red network represents actin filaments, and blue circles indicates MT. When actin filaments, and therefore
circumferential tension, are disrupted, a dilation in diameter (and volume) occurs. This can potentially
cause MT to become less compact. When MT are disrupted, actin filaments have less resistance to compact
resulting in a smaller diameter (and volume). (e) Average phase measured by SLIM of axons treated with
pbs (grey), cytoD (red), colch (blue), and Y-27632 (cyan). The average density of the cytoplasm and the
cytoskeletal components increase with time with disruption of actin, but not with MT. All shaded regions
indicate error bar in standard deviation. Unpaired two-sample t-test used to obtain p-values.
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Figure 3.8: Spatial changes of axon diameter. Sample confocal diameter data of an axon (a) with decre-
asing diameter and an axon (b) with increasing diameter due to mechanical stretch and cytoD treatment
respectively. The plots are colored (given in the legend) according to the time (0, 15, 30 minutes) after
the manipulation. Diameter changes in either direction happen along the entire length of the axon. This is
better visualized when the raw data is smoothed (right, 50 points moving average). Both axes have units in
microns.
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.
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Table 3.1: Comparison of local strain, global strain and d2f/d2i in Phase 2

Sample Global Strain (1 + ǫ2,glo)
−

1
2 Local Strain (1 + ǫ2,loc)

−
1
2 d2f/d2i

1 25.8% 0.891 24.0% 0.898 0.888
2 21.2% 0.908 19.2% 0.916 0.912
3 13.1% 0.940 13.3% 0.939 0.945

Axonal volume is conserved under fast stretch

To further examine whether axial and circumferential tension are coupled, we applied extra tension to the

axon by stretching it (15-25% strain) from the NMJ side using a micro-pipette tip connected to a piezo-

actuator (phase 2 in Fig. 3.5).

During initial fast stretch, mass flow in or out of axons is limited and volume should be conserved. We

verified such conservation of volume during initial stretching by comparing theoretical diameter ratios to

experimental values. Given the definition of strain (ǫ) as ∆l
l , the stretch ratio (λ) is defined as:

λ =
l

l0
=

l0 +∆l

l0
= 1 + ǫ. (3.1)

The volume ratio for an axon modeled as a cylindrical rod is then:

V2f

V2i
=

d22f l2f

d22il2i
=

d22f
d22i

λ. (3.2)

If volume is conserved, then volume ratio (
V2f

V2i
) is 1. The diameter ratio (d2f/d2i) is then:

d2f
d2i

=
1√
λ
= (1 + ǫ)−

1
2 . (3.3)

Using Eq. 3, we can test volume conservation by comparing diameter and strain. Two strain measu-

rements were used. One, termed global strain, traced the two ends of the axon. The other, termed local

strain, traced two clearly identifiable points along the axon (Fig. 3.10a). The results for one axon are shown

in Fig. 3.10b. We find, the diameter ratio is almost equal to (1 + ǫ)−
1
2 for both local and global strains.

Thus Eq. 3 is satisfied experimentally, implying volume conservation. The close agreement between local

strain and global strain suggests that the axonal strain is uniform along its length. In addition, it suggests

that mechanical elastic properties of the axon is also uniform along its length. Data from three samples are

shown in Table 3.1.
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Circumferential tension from actin filaments reduces axon diameter overtime

when a mechanical stretch is held

We monitor diameter changes for 30 minutes with the stretch held fixed (phase 3 in Fig. 3.5). The diameter

continued to decrease (d3f/d3i = 0.88± 0.06, N = 6) for axons treated with PBS (Fig. 3.10c, green). This

trend was not observed (d3f/d3i = 1.00± 0.04, N = 6) in axons with actin filaments disrupted (Fig. 3.10c,

red). A smaller decrease was observed (d3f/d3i = 0.93 ± 0.03, N = 6) in axons with MT disrupted (Fig.

3.10c, blue). The reduction of diameter upon a sustained stretch, again, occurred along the entire length

(Fig. 3.6). Thus volume of the axon under sustained stretch reduced in PBS and with MT disruption, but

not with actin disruption.

Previous studies have shown that upon fast stretching, axial tension increases instantaneously, and then

slowly relaxes (due to viscoelastic response to the applied tension) to a state that is more tensed (around

3-fold at 60 % strain) than that prior to any stretch (rest tension) [12]; i.e., axial tension increases after

stretch. This, together with our results that stretching led to diameter reduction (circumferential tension

increases) driven by actin filaments, again suggests that axial tension and circumferential tension could be

coupled.

We hypothesized that the actomyosin-driven reduction in diameter under sustained stretch was mainly

due to the breakage of MT upon sudden mechanical stretch [26], creating space for actin filaments to con-

tract further. This is supported by the similar diameter reduction in MT-disrupted unstretched axons in

phase 1 and untreated stretched axons in phase 3 (Fig. 3.7a, blue vs. Fig. 3.10c, green). In addition, the

smaller reduction in diameter in stretched axons with MT previously disrupted (Fig. 3.10c, blue) compared

to untreated ones (Fig. 3.10c, green) further supports the argument; in these cases, MT had been disrupted

and already resulted in a diameter reduction in phase 1. To test this hypothesis, staining experiments were

performed to show the reduction of polymerized tubulin upon stretching (Fig. 3.10d).

Furthermore, as a control against prolonged saline incubation during phase 1, we performed stretching

manipulations on a few axons immediately after embryo surgery. The observed diameter reduction showed

no significant differences compared to that after 60 minutes of PBS incubation (Fig. 3.10c & e, green).

Diameter reduction was not observed in axons not subjected to any stretch (Fig. 3.10e, grey) similar to

results in Fig 3.7a & b.
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Figure 3.10: Diameter reduction driven by actin filaments upon a sustained stretch. (a) Cartoon schematic
describing the concept of local strain (between 2 visible markers) and global strain (between 2 ends). (b)
Diameter ratios as calculated from local and global strain and observed from experiment. (c) Diameter of
axons held at prescribed stretch (15-25%) under PBS (green), cytoD (red) and noco/colch treatment (blue).
(d) Two neighboring axons with similar length are cleaned per embryo. One is stretched (bottom) and the
other is left unperturbed (top). Stretch is held for 30 minutes, after which MT staining is performed. The
total fluorescence intensity (intensity sum over all pixels within the bounded 3D region) after background
subtraction, which measures the amount of MT in each axon, is quantified and compared. Stretch ratio
defined in Eq. 1. Total intensity shown in arbitrary unit. (e) Axons imaged immediately after embryo
surgery with (green) or without (grey) stretch applied. Inset cartoon depicts the two processes. All shaded
regions indicate error bar in standard deviation. Unpaired two-sample t-test used to obtain p-values.
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Circumferential tension from actin filaments reduces axon diameter when axon

is returned to initial configuration

After the stretch was held for 30 minutes, some axons were brought back to their initial configuration.

We called this process ”unstretch” (phase 4 in Fig. 3.5). The axons first buckled when subjected to the

unstretch process. They then slowly contracted to straighten again. Note that axons treated with cytoD

do not fully contract, as also observed in other studies [55], because actin-myosin contractility is hampered.

For all instances, we waited 5 minutes after which their length did not visibly change. Axons left stretched

served as control (Fig. 3.11a).

We then continued to monitor the diameter for another 30 minutes (phase 5 in Fig. 3.5). We called

this phase ”restore” for those axons returned to their taut, straight configuration. Previous studies have

shown that axons build up significant tension [12] that is actin-myosin dependent [55] during this phase. We

observed diameter reduction in restored axons (d5f/d5i = 0.90± 0.02, N = 6), regardless of whether phase

1 had previously been executed (Fig. 3.11a & b, magenta). Diameter did not change in control cases where

axons were either never stretched (Fig. 3.11a, grey) or remained stretched without being restored (Fig.

3.11a, green), as explained in the inset of Fig. 3.11a. Reduction in diameter was significantly hampered

(d5f/d5i = 0.97± 0.02, N = 5) in axons with actin filaments distupted (Fig. 3.11b, red).

However, axons with MT disrupted (Fig. 3.11b, blue) showed no diameter reduction (d5f/d5i = 0.97 ±

0.02, N = 5). We expected higher reduction in diameter since MT disruption results in higher longitudinal

tension in axons [16, 32], and hence higher circumferential tension if there is coupling. The paradox can be

resolved by considering phase 4, in which we waited 5 minutes for the axons to straighten after unstretch.

It is known that force-free slackened axons with MT disruption straighten 3 times faster compared to axons

with MT intact [55]. Volume conservation requires that soon after straightening diameter ratio increased

to λ−1/2. After straightening, tension built up fast in MT-disrupted axons. Diameter reduced and arrived

at a steady value before phase 5 began. This explains our experimental finding of d4f/d4i < λ−
1
2 (Table

3.2 & Fig. 3.11d, blue). Axons not treated with any drugs also straightened before phase 5 commenced.

And diameter reduction (relative to the diameter from volume conservation calculations) in phase 4 was also

observed in these axons (Table 3.2 & Fig. 3.11d, magenta); the reduction however continued in phase 5.

This supports the argument that circumferential tension is coupled to axial tension: disrupting MT has been

shown to speed up axial contraction and increase axial tension [55, 16, 32], and here from our measurements

we infer that MT disruption can lead to faster circumferential contraction.
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Table 3.2: Comparison of global strain and d4f/d4i in Phase 4

Sample Treatment Global Strain (1 + ǫ4)
−

1
2 d4f/d4i

1 +noco/colch -10.9% 1.059 1.019
2 +noco/colch -14.3% 1.080 0.973
3 +noco/colch -17.5% 1.101 1.008
4 +pbs -21.2% 1.126 1.062
5 +pbs -24.9% 1.153 1.052
6 +pbs -28.4% 1.182 1.082

We compared diameter reduction as a function of time with the evolution of tension in slackened axon

measured previously [12]. Both data sets fitted well to an exponential curve in the form of Ae−t/τ + C

(Fig. 3.11d). Time constants (axial tension: 7.22 minutes; diameter: 7.11 minutes) were extracted from

the fits. The time constant for tension development and diameter reduction are comparable, implying a

common mechanism generating axial tension and reduction of diameter. This further supports that axial

and circumferential tension could be coupled. Note that these time constants are greater than those observed

in length shortening of slackened axons [55], because axons continue to apply tension after becoming taut.

This does not change the length, but can be captured using a force sensor [12].

3.4 Discussion

In this chapter we explored the biophysical factors that influence axonal diameter in motor neurons of em-

bryonic drosophila. We used two independent methods, confocal microscopy and SLIM imaging, to measure

axonal diameter. We demonstrated earlier that after synaptogenesis axons tends to contract and hence

develop tension along the longitudinal direction. Actin and myosin II are involved in generating the lon-

gitudinal tension [55]. Here we show that acto-myosin machinery is involved in generating circumferential

tension as well along the entire length of the axon. This tension originates from the contractility of corti-

cal actin, which in turn applies a compressive force on the MT. The force balance between cortical actin

and microtubule results in an equilibrium diameter of the axon (Fig. 3.12). Thus, when MT are disrup-

ted, diameter decreases; when actin is disrupted or myosin II is inhibited, diameter increases. We further

show that longitudinal and circumferential tension are coupled. They share similar time constants of evo-

lution; i.e., times to generate longitudinal tension and to contract the diameter to their respective steady

values are similar. This suggests a common mechanistic origin for both. However, the detailed cytoskele-

42



Stretch held

Restore

No stretch

a

+cytoD

+noco/colch

+pbs

b

CNS NMJ
Stretch

No stretch

Restore (N=3)

Stretch held (N=3)

No stretch (N=4)Axon at rest

t = 0 minutes t = 0 - 30 minutes t = 30 - 60 minutes

Fig. 4e

c d

Phase 5

0.0

0.5

1.0

d
4f 

/d
4i

D
ia

m
e

te
r 

R
a

ti
o

+noco/colch

(1+ϵ
4
)-1/2

d
4f 

/d
4i

+pbs

fr
o

m
 g

lo
b

a
l 
s
tr

a
in

fr
o

m
 g

lo
b

a
l 
s
tr

a
in

(1+ϵ
4
)-1/2

e
x
p

e
ri
m

e
n

ta
l 
v
a

lu
e

e
x
p

e
ri
m

e
n

ta
l 
v
a

lu
e

0 10 20 30

Time (min)

0.7

0.8

0.9

1

1.1

1.2

N
o
rm

a
liz

e
d
 D

ia
m

e
te

r
d

5
 /

 d
5

i

0 10 20 30

Time (min)

0.7

0.8

0.9

1

1.1

1.2
N

o
rm

a
liz

e
d
 D

ia
m

e
te

r

0.8

0.85

0.9

0.95

1

1.05

1.1

N
o

rm
a

lize
d

 D
ia

m
e

te
r  d

5  / d
5

i

τ = 7.11 minutes

0 5 10 15 20 25 30 35

Time (minutes)

0

0.5

1

1.5

2

F
o

rc
e

 (
n

N
)

τ = 7.22 minutes

R2 = 0.987

R2 = 0.989

y = A exp(-t/τ) + C fit

y = A exp(-t/τ) + C fit
Experimental

Experimental

***

Figure 3.11: Actin-driven diameter reduction upon return to initial configuration. (a) Diameter normalized
to the initial value of axons with no stretch (grey), stretch held (green), and stretch restored (magenta).
The three processes are described in the inset cartoon: Axons are at rest initially. Some axons are stretched
(15-25%) and the stretch is held for 30 minutes. A few axons are then returned to the original configuration.
All axons are then monitored for another 30 minutes. (b) Diameter of restored axons subjected to PBS
(magenta), cytoD (red), and noco/colch (blue) treatment. (c) Diameter ratios (similar to those in Fig.
3.10b) during phase 4 plotted for 2 axons treated with noco/colch and pbs respectively. The axons are

selected for similar (1 + ǫ4)
−

1
2 . See also Table 3.2. (d) Axial tension of a restored axon in blue (data

previously published in Rajagopalan et al. (2010)). Normalized diameter from 5c plotted in red. Both
data sets are fitted to an exponential equation (form given in the plot). R2 and τ values are displayed for
comparison purposes. Circumferential, as inferred from diameter reduction, and axial tension have similar
temporal dynamics. All shaded regions indicate error bar in standard deviation. Unpaired two-sample t-test
used to obtain p-values.
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microtubulesspectrin tetramer actin ringcontractile network

Figure 3.12: Cartoon illustration of the proposed descriptive model. Cortical actin and spectrin form a
contractile network. Cytosolic MT provides structural support and act against the axial and circumferential
tension generated by the contractile network.

tal architecture that gives rise to the circumferential contractility of embryonic axons remains to be resolved.

Circumferential contractile forces are found in multiple biological processes. For example, actomyosin

rings are critical for wound healing [64, 65] and cytokinesis [66, 67]. In both cases, they exert a circumfe-

rential tension to do work and drive the dynamics of the processes. Notably, these other rings are much

larger in size and can span several cells; they are also more dynamic than those observed in axons [68].

Furthermore, the ring structure of actin has not yet been observed in myelinated axons, except that at the

nodes of Ranvier [48]. drosophila axons are not myelinated, but glial cells still form an insulating layer

around them as early as stage 15 [30]. This limits the ability to super-resolve structure of actin (and other

proteins) because of multiple scattering events [48]. Nonetheless, most evidence support the existence of

actin ring in peripheral axons. It has been shown that axonal diameter increases when adducin [51], an

actin-capping protein that is thought to link the actin and spectrin in the periodic membrane skeleton, is

disrupted; it is unclear though how adducin can help regulate diameter. The present work provides new

insights to the mechanism by which actomyosin network can maintain structural integrity and regulate shape

of axons—through the coupled axial and circumferential tension.

It is important to note that we used change of diameter of axons and the effect of force relaxing drugs

to infer circumferential tension, given that force and deformation (change of diameter) are related through
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Table 3.3: Comparison of axial tension and circumferential tension inferred from diameter changes

Treatment Stretch state Axial tension Reference Diameter Cir. tension

PBS No No change [12, 55] No change No change
cytoD No ↓ [16, 32] ↑ ↓

noco/colch No ↑ [16, 32] ↓ ↑
PBS Stretch ↑ [12] ↓ ↑
cytoD Stretch ? No change No change

noco/colch Stretch ? ↓ ↑
PBS Restore ↑ [12, 55] ↓ ↑
cytoD Restore No change [55] No change No change

noco/colch Restore ↑ [55] ↓ ↑

the cytoskeletal elasticity of the axons. Since these material properties are not known, we cannot quan-

tify the circumferential forces. There is no direct means available to measure circumferential tension. The

nano-Newton force probe used to measure longitudinal force of the axons [2] could not be used to measure

circumferential force. However, our data supports a model where longitudinal and circumferential tensions

are coupled (Table 3.3), although the precise nature of this coupling remains elusive.

Our SLIM experiments demonstrated that mass displaced during diameter reduction (following MT dis-

ruption) did not change the density of the axon. Images from electron microscopy show that axons are

MT-rich [47]. These 2 observations together suggest that the displaced mass is composed of depolymeri-

zed MT and their associated proteins. Mass that entered the axon during diameter dilation after actin

disruption, on the other hand, had higher density and resulted in new structures with vesicle-like morpho-

logy based on our phase histogram analysis. One plausible explanation is that these new structures were

originally vesicles scaffolded by an actin-rich network in the presynaptic terminal [69], which upon actin

disruption, are released into the axon. Yet, we cannot exclude the possibility of vesicles/cargo from other

sources. Channels gating and vesicles fusion can also regulate mass; it has been shown that membrane tension

provided by actin dynamics is a key factor in these processes [65, 70]. We, however, did not observe exo-

cytosis/endocytosis events in our experiments, which could be due to insufficient spatial-temporal resolution.

The reduction in diameter under stretch might seem counterintuitive to normal development, since one

would expect the axon to increase its diameter during development. In fact, several in vitro experiments

have shown that axons, when towed, would grow both axially and laterally [71, 57]; the growth is depen-

dent on new MT formation [72]. In these studies, however, the stretch is imposed slowly and gradually
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throughout the course of the experiment, while in our case the time from no stretch to full stretch (120%

of original length) is usually in less than a minute. This seems to suggest that stretching with different

strain rates can result in different MT dynamics; i.e., when stretch is applied at a higher rate than the poly-

merization process, MT can break and subsequently disassemble [26], which occurs at a faster time scale [73].

Axonal diameter is a physiologically relevant parameter, since conduction speed of action potential along

the axons scales with the diameter for both healthy and pathological neurons [74]. Nerve atrophy results

in reduction of axonal diameter and a corresponding reduction in conduction speed. Hence, significant

effort has been directed to measuring axonal and nerve diameter using multiple methods including electron

microscopy [75], and diffusion MRI [76]. However, how axons maintain their diameter has gained limited

attention. This work reveals a biophysical mechanism that maintains the diameter.
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Chapter 4

A device to apply chemical treatment
to a particular segment of an axon

This chapter is adapted from a previous publication1.

4.1 Motivation

Fluid flows at small scale are generally laminar (low Reynold’s number), where neighboring streams mix

at the interface only by diffusion leading to a mixing rate much slower than the flow rate. This facilitates

separation of fluids without the use of any physical barrier. This phenomenon has been exploited extensively

in microfluidic systems allowing a wide range of biological studies, including cell counting and sorting [77, 78],

high-throughput [79] and drug screening devices [80], gene expression [81, 82], and cellular manipulations

[83, 84].

One particular application of microfluidics is the exposure of a part of single living cells in vitro to various

drugs. One method termed partial treatment of cells using laminar flows (PARTCELL) [85] demonstrated

that disruption of cytoskeleton could be achieved in a portion of a single bovine endothelial capillary cell,

and was used to track intracellular mitochondria movement by labeling mitochondria in a specific part of

the cell [85].

PARTCELL was extended to study temperature gradient in whole drosophila embryos using two laminar

streams at different temperatures [86]. The study demonstrated that embryos were able to adapt to and

counteract unnatural ambient environment. In larger organisms, perfusion studies were performed through

the capillary system of the organisms themselves [87, 88]. In these examples, however, cellular/subcellular

scale processes could not be addressed.

A major unmet challenge in microfluidics to date is the lack of control on samples. This is due to the fact

that microchannels are prepared first. The cells or other suspendable samples are flown into the channels

next and subsequently adhere to the channel floor. But their attachment location and orientation cannot be

controlled. One needs to search for a sample along the length of the channels that can be subjected to the

1Fan A, Tofangchi A, De Venecia M, Saif MT. A simple microfluidic platform for partial treatment of insuspendable tissue
samples with orientation control. Lab Chip. 2018
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appropriate laminar streams. This lack of control on sample choice and sample placement with respect to

the flow direction has restricted the type of preparations that can be used for biological studies. Previous

methods using laminar streams are therefore limited to samples that can be suspended in saline, and are

adherent to the device substrate when allowed to [85, 86]. These limitations on sample preparations and

choices can be resolved by reversing the sequence of fluidic device fabrication and sample preparation, i.e.,

by mounting microfluidic device onto the already prepared sample such that samples do not have to be

transferred into the device.

Following this strategy, here we developed a simple microfluidic device that enabled us to perform partial

treatment of single embryonic drosophila axons in vivo. The sample (dissected embryo with exposed axons of

motor neurons) was first placed on a glass substrate where it attached to naturally. The microfluidic device

was then placed on the substrate such that the flow direction was orthogonal to the axons. The device

adhered to the substrate with sufficient strength, and did not detach when tested with exaggerated flow

conditions. We devised a scheme such that the device can be filled completely, while keeping the samples

constantly under a saline environment. A simple method was designed to measure the apparent adhesion

strength to allow for the selection of appropriate base material. Using the device and the experimental

set-up, we exposed part of single axons of mutant drosophila embryos to specific drugs. We demonstrated

that blockage of voltage-gated sodium channels can lead to calcium events and membrane hyperpolarization,

and that inhibition of myosin II at the proximal segment of axons can lead to vesicle declustering at the

distal presynaptic terminal. Such studies could not be performed using conventional microfluidic devices

where the dissected embryos would need to be flown unharmed into the channels with no control on their

adherence to the floor or their orientation.

4.2 Materials & Methods

Device fabrication

Microfluidic devices were made from a liquid silicone rubber (LSR; Bluestar LSR-4305), and, for comparison,

10:1 polydimethylsiloxane (PDMS; Sylgard 184). A mold was used to cast the device. The mold was designed

in a CAD software (SOLIDWORKS; Dassault Systèmes, Vélizy-Villacoublay, France), exported to an stereo

lithography apparatus 3D printer (Viper SI; 3D systems, Rock Hill, SC), and printed with WaterClear Ultra

10122 (Somos, Elgin, IL). LSR and PDMS were poured into the mold and left incubated overnight at 60

◦C. Blunt needles (21027A; Hamilton, Reno, NV) were punched into the silicon polymer to form inlets.

Two-part epoxy (Loctite, Düsseldorf, Germany) was used to secure the needles. The inlets (Fig. 4.1a) were
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connected to syringe pumps (NE-300 & NE-1000; New Era, Farmingdale, NY) through flexible tubings.

Device characterization

To visualize the surface defects of the devices, a scanning electron microscope (6060LV; JEOL, Tokyo, Japan)

was used. Gold/palladium coatings were performed to make the surfaces conductive for electron microscopy.

We measure the stiffness of the device material (LSR/PDMS) using a nanoindentor (Piuma; Optics 11,

Amsterdam, Netherlands), with a probe stiffness of 4.1 N/m; the load vs displacement curve obtained was

fit to the Hertzian model to extract the Young’s Modulus (Fig. 4.4a). To determine the apparent adhesion of

the device, we intercalated a glass bead (250 µm; 59202; Sigma, St. Louis, MO) between the silicone device

and a glass substrate (12-545H; Fisher Scientific, Hampton, NH) and measured the delamination length

between the substrate and the polymer induced by the bead. Some glass substrates had been incubated

with human fibronectin (33016015; Fisher Scientific, Hampton, NH) at 50 µg/mL for 1 hour to achieve

fibronectin coating.

Drosophila Culture

Transgenic drosophila (6923, 8760, 51056, 58763) were purchased from Bloomington Stock Center (Bloo-

mington, IN). Single axons were exposed using microsurgery from stage 16 embryos following established

protocols [20, 55].

Pharmaceutical Drug

Y-27632 (110 µM; Cayman Chemical, Ann Arbor, MI) were used to inhibit the ROCK pathway. Dimethyl

sulfoxide (DMSO; D8418; Sigma, St. Louis, MO) was added as a solvent and was maintained at a final

concentration of less than 1%, tested to have no observable effect [55]. Tetrodotoxin (TTX, 500 nM; T-550;

Alomone Labs, Jerusalem, Israel) were used to block voltage-gated sodium channels (Nav). All drugs were

diluted in Ca2+/Mg2+ free PBS.

Imaging

The embryos were inspected using a widefield inverted microscope (IX81; Olympus, Tokyo, Japan) with

standard GFP and mCherry filter cubes (GFP-3035D & mCherry-B; Semrock, Rochester, NY) connected

to a fluorescence source (X-Cite 120PC Q; Excelitas Technologies, Waltham, MA) and a CMOS camera

(C11440; Hamamatsu Photonics, Hamamatsu, Japan). Fluorescence images were obtained with an exposure

of 200 ms though a 20x lens (LCPlanFI; Olympus, Tokyo, Japan) unless otherwise specified.
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4.3 Results

Device assembly and basic concept

The device, made of PDMS or LSR, had multiple inlets connected to a chamber (Fig. 4.1a). The chamber

(200µm deep) was connected to a waste well. We devised a way to place a drosophila embryo inside the

chamber (Fig. 4.1b) without disturbing delicate features (Fig. 4.1c). The procedure was as follows:

1. We prepared a surgically exposed drosophila embryo under a small amount of saline on a glass slide

(Fig. 4.2i).

2. To form a closed environment, the device was laid on top of the glass slide with the embryo inside the

chamber (Fig. 4.2ii). The device was oriented in such a way that the axons were perpendicular to the

flow direction to achieve partial perfusion.

3. We gently tapped on the device to facilitate a better seal.

4. A saline bridge would form between the glass floor and the chamber ceiling initially (Fig. 4.2iii).

5. By leaving a droplet of saline at the edge of the waste well (Fig. 4.2iv), we allowed capillary action

to drive saline to back fill the chamber until no gas was left in where the chamber and the waste well

met (Fig. 4.2v).

6. We then added extra saline to the waste well (Fig. 4.2vi) and applied suction through the center

channel to allow saline to back fill the entire chamber (Fig. 4.3i).

7. We then flowed the intended solutions through the side channels one at a time, while keeping a constant

net backward flow by increasing the center suction flow (Fig. 4.3ii–v).

Following this process, all channels and the entire chamber were filled without any residue gas (Fig. 4.3vi),

which was when one can start an experiment; this process typically took less than 5 minutes.

In our preparations, the embryos adhered well naturally to the glass surface. While the concept of the

device can certainly be extended to other types of sample, testing is recommended to make sure that the

intended sample will stay stable under the filling and perfusing processes possibly—if necessary—by using

adhesives, surgical pins, or custom made apparatus[89].

An alternative to PDMS improves substrate adhesion and device performance

Most microfluidic devices are formed by functionalizing two or more layers of material (e.g. glass and

PDMS) through some manipulations (e.g. oxygen plasma) and subsequently allow the two surfaces to
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Figure 4.1: Device schematics and representative images. (a) Cartoon schematic and illustration of the
device. Three or four channels are depicted, but the device can have more channels. The device is directly
mounted onto the glass substrate holding the sample. (b) An image of the channels and the chamber with
a drosophila embryo in it. Notice the air trapped in the top channel. We have devised a way, shown in Fig.
4.8, to remove all the air inadvertently trapped during device assembly. Content in the blue box is shown in
details in Fig. 4.8, and the red box is enlarged in Fig. 4.1c. (c) Expanded view of the embryo. Inset figure
shows the preservation of delicate features, in this case an exposed axon from microsurgery.
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Figure 4.2: Device sealing process. (i) An embryo is under saline on a glass slide. (ii) The device is positioned
with a microscope such that the embryo is inside the chamber. (iii) By placing the device on top of the
glass, natural adhesion will seal the channels and the chamber. A saline bridge is formed between the glass
and the device. (iv) Small amount of saline is placed at the edge of the well without blocking the chamber
such that air can vent. (v) Capillary action will draw the saline into the chamber and the chamber will fill.
(vi) Saline is added to the well to prepare for suction backfill.
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i ii iii

iv v vi

Figure 4.3: Device filling process. (i) A suction is applied in the center channel to backfill the chamber. (ii)
A smaller flow in introduced in the bottom channel so that air trapped inside the channel will leave through
the center channel. The sunction in the center is increased to compensate for the extra volume introduced
by the bottom channel to maintain a net backward flow. (iii) Bottom channel filling is completed. (iv-vi)
The same procedure is repeated for the top channel. The center suction is increased again to compensate
for the extra volume.
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Figure 4.4: Device material characterization. (a) A sample nano-indentation curve. Loading data just after
the contact point are fitted to the Hertzian model to extract the stiffness of the material. Negative load
during the approach phase is due to surface adhesion. (b) SEM images of an LSR device with 4 channels and
a PDMS device with 3 channels. (b) A bead is placed between the material of interest and a glass substrate.
The delamination radius is much more pronounced with 10:1 PDMS (left) and 25:1 PDMS (center) compared
to LSR (right). Device thickness and image size are the same.
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bond for a period of time [90, 91]. This allows a very stable interface that can be used for culturing and

studying adherent cells over an extensive period. In our case, however, it is necessary to rely on natural

adhesion [92, 93], because artificial bonding requires chemical/physical modifications to the surface that

would inevitably influence the physiological properties of the sample as well [94].

Therefore, it was important to use a material that adhered well to glass, and was soft enough to overcome

any surface defects. PDMS was one good candidate. We further selected LSR, a material previously employed

in elastomer actuator [95]. SEM images (Fig. 4.4b) were obtained for both materials to confirm that features

on the mold were replicated. Some surface wrinkles were observed, but they did not seem to affect the seal

(Fig. 4.4b). We used a bead intercalation method to measure the apparent adhesion of LSR/PDMS to glass

(Fig. 4.5a). The size (radius) of the induced delamination is determined by the competition between the

interfacial adhesion energy and the elastic energy of the polymer [96]. The delamination radius between LSR

and glass due to the bead was half the corresponding radius for PDMS (0.511± 0.062 mm vs 1.059± 0.052

mm; Fig. 4.5b & 4.4c). The delamination diameter (radius×2) also served as an estimate of the chamber

width above which the chamber ceiling would remain collapsed once adhered to the glass floor. For this

reason, the chamber width was designed to be smaller than the delamination diameter.

To determine if LSR’s better conformability was due to its compliance alone since it is 3 times softer than

PDMS (0.403 ± 0.033 MPA vs 1.72 ± 0.14 MPA; Fig. 4.5c), we also compared it to PDMS fabricated in a

25:1 base-to-agent ratio. The ratio 25:1 was selected to render its stiffness (0.313±0.011 MPA) slightly lower

than LSR’s (Fig. 4.5c). If compliance alone explains LSR’s conformability, then we should see a smaller

delamination radius with 25:1 PDMS. This was however not the case (0.680 ± 0.066 mm; Fig. 4.5b). We

therefore concluded that LSR has stronger surface interactions with glass and would achieve better sealing

in our device.

Using the same method, we further tested glass substrates that were coated with fibronectin (FN) to

see if the adhesion strength would be compromised when a extracellular matrix (ECM) protein coating was

present. No significant differences in delamination radius (1.094± 0.137 mm) were noticed when PDMS was

mounted onto the coated glass substrate (Fig. 4.5b). This suggests that the direct mounting method can be

used on FN-coated glass, and potentially with other ECM proteins. However, if a certain protein weakens

the adhesion significantly, one can use patterning methods to coat only the channels region of the substrate,

allowing bare glass to interact with the soft polymer to form a stable seal.
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Figure 4.5: Device material characterization. (a) A bead is placed between the material of interest and a
glass substrate. A blister (indicated by the dotted line) with form as a result and the delamination radius can
be used to measure adhesion energy. (b) Delamination radius comparison among 10:1 PDMS on FN-coated
glass (N=8) and 10:1 PDMS (N=6), 25:1 PDMS (N=6), and LSR (N=10) on glass. The radii are obtained
by fitting a circle to the edge reported by the Canny edge detection method. (c) Stiffness comparison among
10:1 PDMS (N=6), 25:1 PDMS (N=6), and LSR (N=6) based on a Poisson’s ratio of 0.5.

Device validated for different flow conditions—short-term at high rate &

long-term at normal rate

To ensure that the seal will stay intact under extreme conditions, LSR devices with 3 channels were tested

using a high flow rate (5 µL/min per channel) for 40 minutes and a normal flow rate (0.5 µL/min per

channel) for 16 hours in each channel simultaneously. The glass-water-silicone triple line at the inlets

(formed due to the insertion of the metal tubes; Fig. 4.1a) resulted in a ring-like edge that was traceable

to investigate delamination of the device during pressurized flow (Fig. 4.6a). Image sequences of the

delamination propagation were resliced and bandpass-filtered to identify local intensity minimum for edge

tracing (Fig. 4.6b). This was performed for every quadrant of the circular edge, and the results were averaged.

Two samples were tested under the high-flow condition (Fig. 4.6c), which showed a stable delamination

propagation of around 200 µm, approximately one-sixth of the radius of the initial delamination. Three

samples were tested under the normal-flow condition (Fig. 4.6c); none of them showed any significant

delamination.

Our perfusion experiments in the demonstrations to follow usually lasted for around two hours, thus

saline recycling was not necessary. In cases where saline recycling is important for long duration perfusion

[18, 89], oxygen supply could become a concern. The speed of the flow should also be carefully considered. A

flow rate with which enough new saline is supplied to limit diffusion and tissue deterioration, while keeping

the flow laminar and the sample and device stable, should be used.
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Figure 4.6: Device validation under 2 different flow conditions. (a) Image of an inlet of a device before
perfusion (left) and during perfusion (right). Notice the advance of the triple line formed by glass-air/water-
silicone. (b) The triple line is traced by first reslicing a time-lapse image sequence along the normal direction
of the edge. The resulting image is bandpass filtered such that positions of local minima along the time-axis
can be identified. The position vs. time profile is used as the time trajectory of the delaminating crack.
One such analysis is performed for each quadrant of the ring edge. (c) Crack propagation under high flow
rate (5µL/min) for 40 minutes in all 4 quadrants are averaged and plotted in 2 samples. Shaded areas show
the standard deviation. (d) Crack propagation under normal flow rate (0.5µL/min) for 16 hours in all 4
quadrants are averaged and plotted in 3 samples. Shaded areas show the standard deviation.
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x
x+y

Flow position (µm)
Set 1: x+ y = 20 µL/min Set 2: x+ y = 100 µL/min

0.1 144.1 136.3
0.2 214.8 218.1
0.3 292.1 295.9
0.4 377.1 369.9
0.5 467.9 477

Table 4.1: Resulting flow positions at different flow rate ratios x
x+y of experiment set 1 & 2 respectively.

Device can achieve partial treatment resolution down to 3% of chamber width

Flow positioning (both width and location) could be controlled by simply adjusting the volumetric flow

rate of each channel, since the width ratios are theoretically directly proportional to the flow rate ratios—a

property of viscous flow. In practice however, it is uncertain how fine the resolution can be because of

variations in flow rates, channel/chamber imperfections, and other physical phenomena like diffusion. The

accuracy and resolution of the device comes down to the answer to 3 questions: 1) How narrow can the

center flow be? 2) How accurate is the positioning of the center flow? And 3) how stable is the position

of the center flow over time? To address these questions, we performed experiments that varied the side

channels flow rate, x & y (with units µL/min). The center flow was controlled at 0.5 µL/min, and contained

a food dye that fluoresced in red (Fig. 4.7a).

Questions 1 can be addressed by setting x = y, and allow them to increase until no further flow width

reduction is observed. Using this approach, we realized a center flow width of around 20 µm at x = y = 50

µL/min (Fig. 4.7b). The flow width was measured by fitting a Gaussian curve (G) to the intensity profile;

the distance between the 2 points where G′′ = 0 was defined as the width [97].

To validate the device’s ability to position the center flow at different locations, we performed 2 sets

of experiments that varied the flow rate ratio ( x
x+y ) similarly from 10% to 50%, but the total flow rates

(x+ y) were 20 µL/min and 100 µL/min respectively. The images obtained from each set were combined to

one image by maximum intensity projection (Fig. 4.7c). The intensity profile of the combined image was

obtained across the width of the chamber (Fig. 4.7d). The data were then smoothed to identify local maxima

(Fig. 4.8a–b)—which provided the position of the flows (Table 4.1). The flow positions were further verified

by sample autocorrelation (Fig. 4.8c–d). The flow positions from the 2 sets were then plotted against each

other (Fig. 4.7e); this ensured that the results were controlled against geometric irregularities introduced

by the fabrication process. The positions agreed between the 2 sets (Fig. 4.7e), demonstrating the ability

to place the center flow accurately.

The stability over time of the flow position also influences the resolution of the device. To account for

58



such, we set x = y = 50 µL/min and monitored the flow over a 2-hour period. The flow position was

computed for every minute and plotted against time (Fig. 4.7f). We observed fluctuations about the mean

that resembles a normal distribution (Fig. 4.8e) with a standard deviation of 4.24 µm, adding around 8 µm

to the resolution of the device. This resulted in a combined resolution of around 30 µm—sufficient for partial

cell perfusion in many applications (Fig. 4.8f). The tested device had a chamber width of 1 mm, resulting

in a 3% resolution. A chamber with a smaller width should further lead to better absolute resolution.

The employed methodology did not account for any out of focus light since we used a widefield microscope.

Fluorescence light from out of focus plane will scatter and result in a larger width measurement. We therefore

believe the resolution reported is an overestimate.

Demonstration 1: Inhibition of voltage-gated sodium channels (Nav) promotes

calcium influx

To observe calcium dynamics, we studied mutant embryos with a calcium sensor CaMPARI [98] expressed

only in neurons under GAL4/UAS control (Fig. 4.9a). CaMPARI is excitable by blue light and emits

green light in its native state. In addition, it is photoswitchable by ultraviolet light to a state that is

excitable by green light and emits red light—but only under elevated concentration of calcium ions [98].

We took advantage of this property of CaMPARI to visualize calcium dynamics under Nav inhibition using

tetrodotoxin (ttx). We observed an increase in red fluorescence but not in green fluorescence in the neurons

that were under ttx perfusion (Fig. 4.9b & 4.10). No changes were observed in either channel in the neurons

under regular saline perfusion. This seems to suggest that, similar to previous studies [99], Nav blockage

could lead to an influx of calcium ions to the cytosol (as suggested by the increase in red fluorescence) that

subsequently get removed (as suggested by the unchanged green fluorescence) either by ion pumps or calcium

uptake in organelles (e.g. mitochondria).

Demonstration 2: Inhibition of Nav modulates membrane potential

Using ttx again, we perfused embryos expressing ArcLight [100, 101], a membrane potential sensor, in neurons

under GAL4/UAS control (Fig. 4.11a). ArcLight fluoresces green under blue illumination when there is a

membrane potential. Its fluorescence intensity scales with the potential[100, 101]; i.e., a hyperpolarization

event would lead to an increase in fluorescence, and vice versa. Neurons under ttx perfusion showed a small

increase in intensity after 2 hours of perfusion (Fig. 4.11b–c), while neurons under normal saline perfusion

showed smaller changes (Fig. 4.11c & S4†). This seems to support that Nav blockage could lead to weak

membrane hyperpolarization, as previously reported [102, 103].

59



x μL/min

0.5 μL/min

y μL/min

Set 1

Set 2

100 500
Flow position of set 1 (µm)

F
lo

w
 p

o
s
it
io

n
 o

f 
s
e

t 
2

 (
µ

m
)

300
100

500

300

ideal case

a

10 15 20 25 30 35 40 45 50

Side channels flow rate (µL/min)

20

22

24

26

28

30

32

34

36

38

40

W
id

th
 (

µ
m

)

x = y

b

c

0 200 400 600 800
Position (µm)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
te

n
s
it
y
 (

a
.u

.)

midline

1000

d

e

100 120
Time (min)

-8

-6

-4

-2

0

2

4

6

8

10

F
lo

w
 p

o
s
it
io

n
 (

µ
m

)

x = y = 50

806040200

Standard deviation

f

0.1
0.2

0.3

0.4

0.5

0.1

0.2

0.3
0.4

0.5

Figure 4.7: Device accuracy and resolution validation. (a) An illustration of the experiment. (b) Width of
the center flow as side flow rates (x = y) increase. Width reduced down to around 20 µm. (c) Maximum
intensity projection of images from experiment set 1 & 2 respectively at flow rates and flow ratios stated
in Table 4.1. The blue and red dotted lines indicate the location of the intensity profile shown in (d). The
region enclosed in the white box is shown in Fig. 4.8f. (d) Intensity profile of the projection images in (c).
Green dotted line indicates the location of the chamber midline. Data enclosed in the black box are further
smoother and plotted in Fig. 4.8a–b. (e) Obtained flow positions from set 1 & 2 (Table 4.1) are plotted
against each other. Red line indicates the ideal scenario where the positions are equal. (f) Side flow rates
set to 50 µL/min and center flow imaged for 2 hours. The position of the center flow is traced. The mean
center flow position is subtracted from the data set such that the data fluctuate around a mean of zero. Red
line shows the standard deviation of the position data set.
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Figure 4.8: Flow accuracy and resolution characterization. Smoothed intensity data from the regions indi-
cated in Fig. 4.7d of experiment set 1 (a) & 2 (b). Autocorrelation of the data from experiment set 1 (c) &
2 (d). (e) A position distribution histogram of the center flow over a 2-hour period. Data also plotted tem-
porally in Fig. 4.7f. Red line shows a normal distribution (normalized to the maximum frequency) with the
same standard deviation as the position distribution. (f) Expanded view of the region of interest indicated
in Fig. 4.7c. Contrast adjusted to aid flow visualization. The flow is compared to a typical fibroblast cell.
The images have the same scale.
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Figure 4.10: Regions of interest from Fig. 4.9a expanded. Red fluorescence observed only in cells under ttx
perfusion.
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added digitally to indicate the region of Y-27632 flow. (d) Fluorescence intensity at the presynaptic terminal
(N=3) decreases with time under indirect Y-27632 perfusion, suggesting that myosin has a far-field effect
on maintaining vesicle clustering, while the unperturbed synapses (N=3) increase vesicle clustering as part
of the development process.

Demonstration 3: Partial myosin inhibition along an axon stops vesicle

accumulation at presynaptic terminal

In order to achieve sub-cellular perfusion, we used 3 simultaneous flows in a 4-channel device to perfuse

exposed axons that had green fluorescence protein fused to synaptotagmin, a vesicle protein. The 2 side

flows consisted of regular saline, while the center flow had Y-27632 added (Fig. 4.13a). Y-27632 inhibits

myosin activity and reduces contractile force in cells [22]. The center flow was focused onto the proximal

region of the axons of interest, leaving the distal synaptic regions unperturbed (Fig. 4.13a). This reduced the

acto-myosin-dependent mechanical tension [55, 97], shown to be important in sustaining vesicle clustering

[2], generated by the axons. We observed vesicle declustering at the distal presynaptic terminal (Fig.

4.13b–d) under partial tension loss (by proximal Y-27632 perfusion in our case), similar to another study

[2] that disrupted tension by excising the axon instead—an operation that, however, could lead to other

complications.
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4.4 Conclusions

We developed a microfluidic device to selectively expose part of small organisms to drugs. A unique feature

of the device, in contrast to other microfluidic systems, is the sequence of sample preparation and device

fabrication. Here, samples were prepared first, followed by device assembly. This was possible due to LSR,

in contrast to PDMS, as the material of choice for the device. LSR is 3 times more compliant than PDMS,

and is more adhesive to glass without any treatment. Placement of the device on the prepared samples

offered the ability to 1) study samples that are insuspendable, and 2) control channels orientation with

respect to the samples. The device was characterized and tested for its performance under flow rate and

duration that were an order of magnitude above what it was designed for. Accounting for the flow width

and flow stability overtime, we validated that the device can achieve partial treatment accurately in a region

of 30 µm in a 1 mm chamber—a resolution of 3 %. We used mutant drosophila to test the feasibility of the

device in studying neurological phenomena. We observed increased calcium activities and weak membrane

hyperpolarization under selective Nav inhibition, similar to what was previously reported [99, 102, 103].

We further showed that selective tension inhibition in the proximal segment of an axon can lead to loss of

vesicles in its distal presynaptic terminal, further supporting the far-field effect of tension on vesicle clustering

previously observed [2]. These demonstrations showcase the new experimental possibilities on samples that

were previously difficult to test because of the constraints of pre-assembled fluidic devices.
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Chapter 5

A method to characterize adhesion
energy at the interface of a soft
sample and a stiff substrate
This chapter is adapted from a manuscript in preparation1.

5.1 Motivation

Permanent or temporary bonds form at interfaces between dissimilar materials. Depending on the strength

of the bonds, the interface could be stable against varying degrees of mechanical perturbations resulting in

adhesion. Since adhesion can be thought of as the minimization of interfacial surface exposed to the am-

bient fluid—when the formation of interfacial bonds are more energetically favorable, it is therefore usually

described as an energy per unit area quantity. Essentially, it quantifies the amount of energy required to

separate the interface by a unit area.

To design and fabricate composite structures that rely on adhesion, methods that allow the quantification

of adhesion energy have been developed [104]. Most methods work by first forming the adhesive interface,

then subsequently measured the energy required to separate the interface into 2 surfaces. One example is

induced delamination by peeling [105, 106] or with an axial stretcher as in the case of mode I fracture [107].

The adhesion properties of thin films are also studied extensively [108]. Some recent thin film charac-

terization extends into the nano-scale regime where 2D materials, such as graphene [109, 110], are studied.

Because of the size of the sample, it is no longer suitable to study adhesion by separating interface. Thus a

bead intercalation method was developed [111], in which a bead is trapped between the 2D material and a

substrate. The trapped bead would introduce a blister at the sample-substrate interface and the radius of

the blister allows the determination of adhesion energy [111].

Beyond thin films however, the bead intercalation method is rarely used, mainly due to the lack of an

1Fan A, Delatorre M, Li Z, Salam M, Saif MT. Bead intercalation to measure adhesion energy of the interface between a
deformable sample and a stiff substrate—Theory and Experiments. In preparation
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appropriate mechanics model. The adhesion of thicker soft polymer is therefore studied using other methods,

such as by inducing a pressure difference to cause sample-substrate delamination, known as the blister test

[112, 96]. We believe the generalization of the bead intercalation method to thicker samples would provide

a simpler alternative in studying interfacial adhesion of soft material, important in, for example, the fabri-

cation of composite materials [113] and microfluidic devices [114].

Therefore, we propose a simple method that allows for the quantification of adhesion energy between

a deformable sample with finite thickness and a stiff substrate by intercalating a spherical bead at the

interface. We developed 2 sets of analytical theory, based on plate bending and contact mechanics theory

respectively, to describe the interaction. Finite element simulations were conducted to support the analytical

models. Experiments using PDMS and LSR over a glass substrate were performed to verify the results. A

piece of software, as an ImageJ or MATLAB plug-in, was developed to aid analysis and adhesion energy

computation.

5.2 Materials & Methods

Finite Element Simulation

An axisymmetric finite element model was established using ABAQUS to obtain the total strain energy

and deformation profiles of the elastomeric samples. Four-node bilinear axisymmetric quadrilateral (CAX4)

elements were used to discretize the geometry of the elastomer, and refined meshes were adopted to ensure

the accuracy. Linear elastic model was used to characterize the material behavior. The Young’s modulus

and Poisson’s ratio used were E = 1.72 or 0.403 MPa and ν = 0.49 for PDMS and LSR respectively. The

bead was considered to be rigid because it was much stiffer than the elastomer, and thus, its deformation was

negligible. “Hard contact” was implemented to simulate the interface between the bead and the elastomer,

with allowed sliding in the tangential direction. The distance between the bead and elastomer edge was kept

constant of 0.5 mm in all simulation cases. Finally, displacement boundary conditions were assigned to the

rigid bead to apply different levels of compression.

Sample Preparation

A glass cover slide was cleaned with compressed air in order to remove debris. Afterwards, a glass bead with

a diameter of 75 µm or 250 µm was positioned at the center of the cover slide. A stereo microscope was used

to visually check the quality of the glass bead. A soft polymer disk mold by the lid (d = 3.878 cm) or dish (d
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= 3.5 cm) of 35 mm petri dishes was then gently laid on top of the glass bead and allowed to adhere to the

cover slide. A blister would form around the bead during this process. Samples were then brought inside a

vacuum chamber for 15 minutes to vent the air inside the blister. The soft polymer used was one of 3 types:

PDMS mixed in a 10:1 base/agent ratio, PDMS mixed in a 25:1 base/agent ratio, and LSR mixed in a 1:1

base/agent ratio. The prepared samples were imaged immediately after leaving the vacuum chamber.

Imaging

Each blister was imaged under an inverted microscope with a 4x lens to identify the region of delamination.

A motorized stage was used whenever the 4x lens did not have enough field of view for the blister, so that a

larger image of the entire blister could be reconstructed by stitching individual smaller images of a portion

of the blister. The beads were imaged using a 10x lens to examine their size distribution.

Analysis

We performed edge detection of the blister by first asking input from human users for an estimate of the

center point and a point on the edge of the blister. The canny edge detection method was then deployed to

identify edges. The human selected points were used to construct a circle, which serves to exclude identified

edges that were beyond ±20% of the radius of the constructed circle. A circle was then fitted using the least

squares method to the remaining points of edges, providing the blister’s delamination radius.

Software

A MATLAB graphic user interface (GUI) and an ImageJ plugin were developed to perform the image

analysis, estimate the delamination radius, and compute the adhesion energy.

5.3 Results

Analytical models developed to measure adhesion energy from blister radius

Kirchhoff plates

We have the following scenario: a glass bead is sandwiched between a glass substrate and a silicone disk

(Fig. 5.1a). For all practical purposes, the bead and the glass substrate can be assumed to be rigid. The

bead can be seen as inducing a crack in the silicone-glass interface by deforming the silicone disk. We aim
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Figure 5.1: Graphical illustration of (a) the experimental setup, and the mechanical models based on (b)
plate theories and (c) contact mechanics.

to compute the interface energy given the height of the bead (h) and the radius of the crack (a).

We assumed the model in Fig. 5.1b, where there is a point load P at the center of the disk. The

displacement profile (u) in the radial direction (r) of the above loading scenario is given by [115]:

u(r) =
P

16πD

[

a2 − r2
(

1 + 2 ln
(a

r

))]

(5.1)

where D = Et3

12(1−ν2)
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At r = 0

u(r = 0) = u0 =
3Pa2

4πE′t3
(5.2)

where E′ = E
1−ν2

Therefore,

P (u0) =
4πE′t3

3a2
u0 (5.3)

The strain energy of the system (Um) can be found by integrating the force over the vertical displacement

[116], i.e.

Um =

∫

P (u0)du0 (5.4)

=

∫ h

0

4πE′t3

3a2
u0du0 (5.5)

=
2πE′t3h2

3a2
(5.6)

Now a → ∞ if there is no adhesion, because that would relax the strain energy stored. Adhesion energy

(Us) takes the form Us = γπa2, where γ = γga+γsa−γsg. γga, γsa, and γsg are the amount of energy required

to make a unit area surface for glass-air, silicone-air, and silicone-glass interfaces respectively. a → 0 if there

is only adhesion and no strain energy. Therefore, finding the minimum of the total energy U = Um+Us will

give a corresponding critical a, and as a result γ. Specifically,

dU

da
=

dUm

da
+

dUs

da
= 0 (5.7)

−4πE′t3h2

3a3
+ 2γπa = 0 (5.8)

γ =
2E′t3h2

3a4
(5.9)
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This method of measuring adhesion energy could be very sensitive as it scales with a−4.

Mindlin plates

Since Kirchhoff plates theory are only appropriate to thin plates, we consider as well another set of plate

theory known as Mindlin plates.

In axisymmetric problem, we can compute Mindlin deflection (uM ) from known deflection (uK) of

Kirchhoff plates [117]:

uM = uK +
MK − M̃K

KsGt
(5.10)

where MK is the Marcus moment, and M̃K is the Marcus moment at the clamped edge, defined as [117]:

MK = −D
1

r

d

dr

(

r
duK

dr

)

(5.11)

M̃K = −D
d2uK

dr2

∣
∣
∣
∣
r=a

(5.12)

To avoid running into the ln( 1r ) singularity in Eq. 5.1, we replaced the point load with a concentrated

uniform pressure, p at 0 ≤ r ≤ b. The Kirchhoff deflection profile is given as follows:

For 0 ≤ r ≤ b,

uK =
pa4

64D

[( r

a

)4

+ α2
(
4− 3α2 + 4α2 lnα

)
− 2α2

( r

a

)2 (
α2 − 4 lnα

)
]

(5.13)

And for b ≤ r ≤ a,

uK =
pα2a4

32D

{

2

[

α2 + 2
( r

a

)2
]

ln
( r

a

)

+
(
2 + α2

)
[

1−
( r

a

)2
]}

(5.14)

where α = b
a . By substituting Eq. 5.13 & 5.14 to Eq. 5.11 & 5.12, and then subsequently to Eq. 5.10, one

can compute the Mindlin deflection.

Because for any given r, both uK and uM is linear to p; complementary strain energy is equal to strain
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energy. Therefore,

dUm = p dAdu = u(K,M)(r, p) dp dA (5.15)

Um =

∫ 2π

0

∫ b

0

∫ p(h)

0

u(K,M)(r, p) dp r dr dθ (5.16)

We set u(K,M)(r = 0) = h to find the corresponding p(h).

This has set us up to use Eq. 5.7 again to obtain γ.

γK =
8E′t3h2

(
2a2 − b2

) [
24a4 − 2a2b2 − 21b4 + 12

(
6a2b2 + b4

)
ln

(
b
a

)]

9a4
[
4a2 − 3b2 + 4b2 ln

(
b
a

)]3 (5.17)

γM =

8GKsh
2t3E′{GKs

[
144a6GKs + 9b4

(
7b2GKs − 4t2E′

)
+ a4

(
−84b2GKs + 48t2E′

)
− 4a2

(
30b4GKs + b2t2E′

)]

+ 4
[
12a4GKs (9b2GKs − 2t2E′) + 3b4GKs (−3b2GKs + 2t2E′)− 4a2

(
9b4G2K2

s − 9b2GKst2E′ + 2t4E′2
)]

ln
(
b
a

)
}

a4
[
12a2GKs − 9b2GKs + 4t2E′ + 4 (3b2GKs − 2t2E′) ln

(
b
a

)]3

(5.18)

where Ks is the shear correction coefficient, which is assumed to be 5
6 throughout the text [117]. Note that

lim
b→0

γK = 2E′t3h2

3a4 , which is what we obtained for γ previously with the point load assumption.

Half-space indentation

The Mindlin theory accounts only for plate bending. For thick samples (t ≫ a), it is not applicable.

Therefore, we also developed a model for thick samples by using the half-space assumption. From the

solution of the Boussinesq problem, we know that the surface displacement of a half-space from a normal

point load is:

u3 =
P

πE′r
(5.19)

To avoid dealing with the 1
r singularity, we use a concentrated uniform pressure instead of a point load.

This is essentially achieved by convolving the point load solution over the area of a circular loading region
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of radius b. For a given r, where 0 ≤ r ≤ b:

du3 =
pdA

πE′r′
(5.20)

u3 =

∫ 2π

0

∫ r′(θ)

0

p

πE′r̂′
r̂′dr̂′dθ (5.21)

=
p

πE′

∫ 2π

0

r′(θ)dθ (5.22)

where r̂′ = r′(θ) is the expression of the perimeter of the circle when the origin is shifted by a distance r.

Note that the case is axisymmetric, and therefore the angle (θ) of the shift is inconsequential. Eq. 5.22 is

essentially summing the displacement contributions of all the load at the point (r, θ). The expression for

r′(θ) can be obtained from trigonometry as illustrated in Fig. 5.2a:

cos(π − θ) =
r2 + r′

2 − b2

2 r r′
(5.23)

Solving Eq. 5.23 for r′ and rejecting the negative solution yield:

r′+(θ) =
√

b2 − r2 sin2 θ − r cos θ (5.24)

which can be substituted back to Eq. 5.22. Finally, by evaluating Eq. 5.22,

u3+ =
p

πE′
4bEE

(
r2

b2

)

, for 0 ≤ r ≤ b (5.25)
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where EE(m) is the complete elliptic integral of the second kind.

Now let us consider the region outside the loading zone. For r > b

u3 = 2

∫ sin−1( b
r )

0

∫ r′+

r′
−

p

πE′r̂′
r̂′dr̂′dθ∗

=
p

πE′
2

∫ sin−1( b
r )

0

r′+(θ
∗)− r′−(θ

∗)dθ∗

(5.26)

where (Fig. 5.2b)

r′±(θ
∗) = r cos θ∗ ±

√

b2 − r2 sin2 θ∗ (5.27)

By following the procedure previously described, we obtain:

u3+ =







4bp

πE′
EE

(
r2

b2

)

, if 0 ≤ r ≤ b

4bp

πE′
EE

(

sin−1

(
b

r

)

,
r2

b2

)

, if r > b

(5.28)

where EE(φ,m) is the incomplete elliptic integral of the second kind, or simply

u3+ =
4bp

πE′
Re

(

EE

(
r2

b2

))

(5.29)

u3+ is the solution to the surface displacement of a half-space subjected to a uniform pressure, p, at a

region r ≤ b. But our problem also have the material clamped at r ≥ a. One can solve the full set of mixed

boundary conditions and obtain an exact solution, which could be quite challenging. Or one can approximate

by superimposing solutions from other loading conditions. A ringed line load could be employed, but would

result in an infinite displacement as r → a. Instead, we prescribe a finite thickness, ε, to the ring. And

the solution to this loading condition can be conveniently obtained by superimposing solutions of 2 uniform
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pressures at opposite directions with radii a and a+ ε respectively. Specifically,

u3− = −
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(5.30)

It can also simply be written as:
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(5.31)

Superimposing the solutions yields:

u3 = u3+ + u3− (5.32)

We are interested in u3(r = 0) & u3(r = a).

u3(r = 0) = h =
2bp

E′
− 2εp1

E′
(5.33)

u3(r = a) = 0 = pbEE

(

sin−1

(
b
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)

,
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− p1

(

(a+ ε)EE

(
a2

(a+ ε)2

)

− a

)

(5.34)

Force balance requires:

−p1(2aε+ ε2) + pb2 = 0 (5.35)

Thus, p, p1, and ε can be obtained by solving the above 3 equations together.

The loading profile at the center however is not necessarily a uniform distribution. It is therefore useful

to compare results with another loading profile. We conveniently use the Hertzian loading profile noting

that it is most appropriate for a small contact area:

p(r) = p0

(

1− r2

b2

) 1
2

(5.36)

The resulting displacement profile from the 2 loading conditions are plotted together in Fig. 5.3 for
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Figure 5.3: Blue line shows the displacement profile resulting from a Hertzian load applied at 0 ≤ r ≤ h/2.
Red line shows the displacement profile resulting from a uniform load applied at 0 ≤ r ≤ h/2. Grey dashed
line shows the bead’s top surface at 0 ≤ r ≤ h/2, and black dashed line shows the glass surface at r > a.

comparison purposes. The uniform load resulted in a displacement profile matching the bead surface, while

the Hertzian condition did not, justifying the selection of the uniform load profile. Compatibility is not

satisfied at r > a as expected; a negative displacement was observed. The difference, however, is small and

does not contribute significantly to strain energy calculations, as shown previously by others [118].

Finally, we use the same method as previously described to get γ for the uniform loading condition:

γ = − 1

2πa

d
[∫ 2π

0

∫ b

0

∫ p(h)

0
u3(r, p) dp r dr dθ

]

da
(5.37)

Finite element simulation results validated analytical models

To verify the analytical model, finite element analyses (FEA) were performed on samples with different

thicknesses. We applied a fixed boundary condition (u = 0) at r ≥ 0.5 mm. A rigid sphere with d = 0.25

was brought to indent the disk at r = 0. Strain energy was computed for various disk thicknesses when the

indentation has reached the full diameter of the bead (u(r = 0) = 0.25 µm). A deformation mode change

from bending to indentation was observed when sample thickness increased (Fig. 5.4a).

The strain energy values computed by FEA simulations as the indentation depth increased were obtained
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Figure 5.4: FEA simulations compared with analytical models. (a) Cross-sectional view of a thin sample (t
= 0.25 mm) and 3D view of a thick sample (t = 1 mm), both loaded by a 250 µm bead in FEA simulations.
Mises stress in MPa. (b) Strain energy as a function of bead indentation depth for samples with t = 0.25
mm and E = 1.72 (blue) or 0.403 (red) MPa computed by FEA (hollow circle) and the Mindlin plate model
(solid line). (c & d) Strain energy as a function of sample thickness computed by FEA simulations (hollow
circle), the Mindlin Plate model (blue line), and the half-space indentation model (red line) for samples with
E = 1.72 or 0.403 MPa.
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for the case of a thin sample (t = 0.25 mm). The results were displayed together with the strain energy

values predicted by the Mindlin plate theory (Fig. 5.4b). We observed a close agreement between the 2 sets

of data for both stiffnesses, verifying the accuracy of the analytical models.

When compared to the results of the analytical model, the strain energy values obtained from FEA

simulations were well-predicted by the Mindlin plate theory at small thicknesses (Fig. 5.4c & d). As the

thickness of the disk increased, the strain energy approached a plateau with values matching up with the

thickness-independent indentation theory (Fig. 5.4c & d). This transition allows the deformation mode

change from plate bending to indentation as the latter is becoming more energetically favorable when the

sample thickness increases.

Experimental results of adhesion energy

Weight can serve as a reliable measurement of disk thickness

Disk thickness is an important parameter in our model. However, measuring the thickness of every disk could

lead to debris build-up during the extra handling, inadvertently affecting the adhesion strength. Therefore,

we wanted to measure the weight of the disks instead and subsequently extract the thickness from the weight

measurements.

We measured the weight of the disks after polymerization, which allowed us to calculate a theoretical

thickness based on the documented density for each material (PDMS: ρ = 0.965 g/cm3; LSR: ρ = 1.07

g/cm3). To measured their actual thickness for comparison, we placed fluorescence beads on the top and

bottom surfaces of each disk and subsequently performed z-stack imaging to identify the best focal plane for

both surfaces using the maximum gradient method (Fig. 5.5a). This allowed us to calculate the distance

between the 2 surfaces, indicative of the actual thickness of the disks.

We observed a linear relationship between the theoretical and measured thickness (Fig. 5.5b). The

slopes smaller than 1 could be attributed to the geometry of the lids and dishes, which have slanted inner

walls. Based on the excellent correlation, thickness of the disks could be obtained by substituting the

weight/theoretical thickness into the best-fit equations.
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Figure 5.5: Thickness determination of samples. (a) Fluorescent beads (0.1 µm) are spread on the top and
bottom surfaces of the sample. An optical z-stack of the sample is then obtained and the best focal plane
of the 2 surfaces is determined by a computer algorithm. (b) Disks thickness measured vs. calculated based
on weight (h = 4m

ρπd2 ) of PDMS and LSR.

Adhesion energy computed from blister radius

A blister would form when intercalating the glass bead between the soft polymer disk and the stiff glass

substrate (Fig. 5.6a & b). The blister (delamination) radius, as proposed in our model and others’, is

governed by the adhesion energy at the polymer-glass interface. Therefore, by measuring the blister radius

(Fig. 5.6c), one can estimate the adhesion energy.

We checked the reliability of the method on 5 different preparations using combinations of 3 different

materials (10:1 PDMS, 25:1 PDMS, and LSR) and 3 different bead sizes (75 µm, 250 µm, and 500 µm).

The sizes of the beads were measured again using a light microscope with known pixel size (Fig. 5.7). We

plotted the blister radii of the different experimental sets as a function of the disk thickness. Our energy

analysis predicted that there should be a deformation mode transformation from bending to indentation as

disk thickness increases. This transformation was most apparent with the 10:1 PDMS + 250 µm bead group

(Fig. 5.8, blue), in which the blister radius initially increases, then drop to a smaller radius as indentation

deformation becomes more favorable for thicker samples. The point of transformation was dependent on

the height of the bead (indentation depth) (Fig. 5.8a) and the stiffness of the material (Fig. 5.8b), both

expected to increase the energy to indent a sample, thus hindering a mode change.
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Figure 5.6: Experimental illustrations. (a) A soft polymer slab is brought to make contact with a glass
substrate with a glass bead trapped between. (b) The trapped bead will allow the formation of a blister
made visible by the polymer-glass-air triple line. (c) An image of the blister is taken. A piece of software
will first compute the blister radius and then the adhesion energy based on the obtained radius and the
mechanics models.
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Figure 5.7: Analysis of bead sizes. (a) We obtained images of beads with diameter specifications of 75
(N=33), 250 (N=24), and 500 (N=26) µm. (b) The images are then analyzed to obtain the actual diameter
of the beads using the built-in circular Hough transform (“imfindcircles”) function in MATLAB. (c) The
measured diameters are plotted against the manufacturer-specified diameter for all 3 groups.
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Table 5.1: Comparison of adhesion energy of different samples

Sample Young’s
Modulus
(kPa)

Mean Bead
Height
(mm)

Thickness
(mm)

Mean Blis-
ter Radius
(mm)

Methodology Adhesion
Energy
(J/m2)

10:1 PDMS 1720 0.226 0.184 1.50 Mindlin 0.0725
10:1 PDMS 1720 0.226 4.06 0.853 Half-space 0.0856
10:1 PDMS 1720 0.0842 1.98 0.234 Half-space 0.0820
25:1 PDMS 313 0.226 3.02 0.356 Half-space 0.238
LSR 403 0.226 4.06 0.253 Half-space 0.898

In a separate table (Tb. 5.1), we showed the adhesion energy calculated by the Mindlin and half-space

model for thin and thick samples respectively when the deformation mode was approaching pure bending or

pure indentation. The values computed for PDMS were similar to that reported in literature [96]. We further

used the half-space model to compute adhesion energy of other polymer-glass interfaces. Adhesion energy for

samples intercalating 500 µm beads was not computed because of the large variation in their actual diameter.

Image analysis software

A piece of software was developed in ImageJ and MATLAB to aid analysis. An image of the blister is first

treated with standard histogram equalization to enhance contrast (Fig. 5.9). In the ImageJ version (Fig.

5.10), users are asked to first import the blister image. The image will then be displayed and users are

further asked to select the center of the blister and a point on the triple line. The software then employs
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the canny edge filter to identify the triple line based on the estimation provided by the user. A best fit

circle is then obtained from the identified triple line and the associated radius is recorded. Once the radius

is recorded, another prompt will ask for the material properties of the sample. Based on these inputs, the

software will compute and display values of adhesion energy using the 3 analytical models described here.

The MATLAB version works similarly, but with the material properties prompt appearing earlier.

5.4 Discussion

Although the results from our analytical model seem to agree with those from FEA simulations and expe-

riments, testifying to the validity of the assumptions made, we note that the assumptions are nonetheless

unrealistic. We assumed a uniform pressure over a constant contact radius (b) at the bead-sample interface.

The uniform pressure assumption seem to show good agreement with the ideal displacement boundary con-

dition (Fig. 5.3), but at small displacement we know from Hertzain theory that the pressure profile should

approach that given by Eq. 5.36. The constant contact radius is also not valid at small displacement. We

suspect that these differences might not be significant, since in our case the entire bead is embedded inside

the blister, and energy contribution is mostly resulting from the later phase of the indentation process.

Furthermore, the fictitious negative displacement at region r ≥ a is a result of the ring load assumption

(Fig. 5.3). In reality, we expect a decreasing load as r increases with the maximum occurring at the triple

line. This load profile would lead to a larger strain energy. We expect, however, the difference to be small

as demonstrated by others [118].

We initially hypothesized that the weight of the sample over the blister might influence the blister radius.

This was shown to be untrue, since the blister radius did not vary significantly after the deformation mode

change to indentation-dominant. Scaling arguments also show that the pressure exerted by the weight is

negligible. The stresses obtained from FEA simulations are on the order of 1 MPa. The pressure from

sample weight is quantified by ρgt, and is on the order of 100 Pa for a 10 mm sample, 4 orders of magnitude

smaller.

Internal blister pressure is another factor to consider. The actual pressure inside the blister is never

measured. We assumed it to be equivalent to the ambient pressure in all our calculations. Any pressure

difference can however influence the blister radius significantly. We mediate this by allowing the samples to

form the seal as slowly as possible such that no extra air will be trapped. The samples used in this study are
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Figure 5.9: The contrast of the triple line can be increased by balancing the contrast of the blister image
using the built-in histogram equalizaion (“histeq”) function in MATLAB. An example is shown here with
(a) the original image, (c) the adjusted image, and (b & d) their intensity distributions respectively.
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Figure 5.10: Screenshots of the ImageJ plugin. (a) A blister image is loaded into the ImageJ environment.
The user is asked to draw a line connecting the center and the edge of the blister. (b) A prompt asking
for input parameters in smoothing the image as part of the canny edge detector algorithm adopted from
[cite]. (c) A prompt asking for the material properties of the sample and the experimental parameters. (d)
An image of the identified edge (grey line), the best-fit circle to the edge (blue line), and the initial guess
from the user (red line). (e) A pop-up window displaying the center coordinates and radius of the 2 circles.
(f) A pop-up window displaying the values of adhesion energy computed based on the 3 analytical models
described in the main text.
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also gas permeable to a certain extent and thus pressure shall equate over time [119]. A better way to control

the pressure could be by performing the measurements while the sample is under a constant vacuum, which

could be done for example in a scanning electron microscope. However, in our study, we want to propose a

simple method that can be accomplished by any light microscope without extensive sample preparations.

The visibility of the sample-substrate-fluid triple line is essential to the methodology proposed here. If

the refractive indexes of the 3 materials are very similar, then contrast might be compromised. This loss

in contrast can be rescued by introducing dyes, usually to the fluid [96]. Caution is required however to

account for the influence of the presence of the dye to the adhesion strength of the interface. As such, a low

dosage is desired.

In our current setup, since contrast is created by transmission light, both the sample and the substrate

have to be transparent. This limitation can be negated by using reflection light to create contrast. In such

case, only one of either the sample or the substrate has to be transparent. If both the sample and the sub-

strate are opaque, light microscopy can no longer be used, and other imaging modalities should be explored.
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Chapter 6

The mechanism of vesicle clustering
by tension

This chapter is adapted from a submitted manuscript1.

6.1 Motivation

Neurons communicate with each other and with other cells by releasing synaptic vesicles stored at the pre-

synpatic terminal. Synaptic vesicles can be broadly categorized into 3 distinct pools [120, 121]: the readily

releasable pool, the recycling pool, and the reserve pool. Among the three pools, vesicles at the reserve pool

cluster together against dispersal and constitute the majority of all vesicles in most presynapic terminals

[121]. Many binding proteins including synapsin [122, 123], α-synuclein [124], and endocytic scaffolding pro-

teins [125] have been shown important in maintaining clustering. Furthermore, through functional [126, 127]

and structural [128] studies, it has been shown that F-actin, together with these binding proteins [129], may

form a scaffold [40, 130, 131] that allows vesicles to stay clustered.

F-actin assembly is facilitated by mechanical tension through stabilization of the catch bonds in F-actin

and its associated binding proteins [132, 133, 39]. The axon being a cable like structure can provide the ne-

cessary tension to sustain the vast network of F-actin at the presynaptic terminal. Indeed, many experiments

showed that axons maintain a rest tension [54, 12]. One experiment demonstrated that axon can generate

its own intrinsic tension through actin and myosin contractility [55]. The recent discovery of periodic actin

rings in axons [38] provides structural evidence that there exists a contractile network [97] along the axon

that can generate tension.

There also exists functional evidence that tension can influence neural activity. It has been shown that

tension and stretch can induce axon growth [4, 58], alter brain excitability [18], influence vesicle transport

[17], and modulate neurotransmitter release [45]. One study [2] showed, by first excising the axon and

1Fan A, Tofangchi A, Saif MT. Presynaptic vesicle clustering is sustained by a tension-stabilized actin scaffold.
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subsequently pulling the free end, that tension can influence vesicle clustering. However, the explanation of

how axonal tension may mediate vesicle clustering remains elusive.

To develop a better understanding of the relationship between tension and vesicle clustering, we disrup-

ted axonal tension by applying myosin disrupting drugs either globally or partially with laminar flows in

embryonic drosophila, and subsequently monitored F-actin disassembly and vesicle declustering. We found,

both F-actin and vesicle density decreases at the synapse under tension disruption. Tension was then resto-

red by washing out the drug, which allowed F-actin and vesicles to recover. In both disruption and recovery,

F-actin events occurred first. Fluorescence recovery after photobleaching (FRAP) experiments were con-

ducted to reveal that declustered vesicles moved back into the axon conduit. Our results demonstrated that

mechanical tension is necessary to sustain the F-actin network at the presynaptic terminal, which in turn

provides anchorage for vesicles/their associated proteins to stay clustered.

6.2 Materials & Methods

Drosophila Melanogaster Culture

Drosophila culture follows standard procedure. The fly lines (6923, 8760, 58714) were purchased from

Bloomington stock center. Flies were crossed in a culture chamber and embryos were collected on a grape-

agar gel. Stage 16 embryos of either sex were selected based on morphology.

Dissection and Manipulation

A detailed protocol was described previously [20]. Briefly, the harvested embryos were treated with 50%

bleach for 1 minute to remove their outer cuticle. They were then placed on a glass slide with the ventral

side facing down. Patch pipettes were used to remove some of the internal organs such that the muscle wall

and the motor neurons could be laid flat for imaging. Y-27632 (110 µM) was added 15 minutes before the

FRAP experiments, and immediately before in other experiments.

Confocal Imaging

A confocal microscope (LSM 700; Zeiss) was used to obtain optical sections of the exposed axon. A 40x/1.3

objective (420462-9900; Zeiss) was used. The 488 nm laser line was used to image embryos with GFP fused

to synaptotagmin, and the 555 nm laser line was used to image embryos with RFP fused to LifeAct. Image

stacks were taken every 5 minutes.
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FRAP Imaging

A confocal microscope (LSM 880; Zeiss) with a 488 nm laser and a 63x/1.4 objective was used. The plane

which the regions of interest had the highest fluorescence was visually identified and used as the plane for

bleaching. The regions of interest were bleached at 75% power for 12 µs per pixel. Bleaching was repeated 3

times. The pinhole was set to larger than optimal such that the microscope could cover the exposed axon in

less than 30 seconds for each time frame, while not losing any photons that would be blocked by a smaller

pinhole. Image stacks were taken every minute. All settings were kept unchanged in all FRAP experiments.

Microfludic Device

Detailed description can be found in previous work [114]. Briefly, a dissected embryo was placed on a cover

slip. A slab of patterned liquid silicon rubber is positioned on top of the embryo and mounted directly to

the cover slip. A suction flow is used to backfill the device to remove the bubbles trapped during assembly.

A widefield fluorescence microscope (IX 81; Olympus) and a 20x objective (LCPlanFI; Olympus) was used

for imaging.

Chemical Treatment

Y-27632 (110 µM, 10005583) was purchased from Cayman Chemical (Ann Arbor, MI). The concentration

used was adapted from previous work also using drosophila [55, 97]. When the drug was used in microfluidic

experiments, 2 droplets of food dye (McCormick) per 1 mL of the drug at the final concentration were added

to aid visualization.

Image Analysis

The confocal stack acquired could be represented by the intensity field I[x, y, z, t]. The summation intensity

projection Isum[x, t] performs the following operation:

Isum[x, t] =

ymax∑

y=ymin

zmax∑

z=zmin

I[x, y, z, t] (6.1)

As a result, for every time frame, intensity could be plotted against the length of the axon (x). However,

the axons could have some variations in length. A normalization scheme was needed to ensure a proper

comparison among all axons. Simply scaling the x-axis would lead to a normalization in length but would

skewed the total intensity. Therefore, we further scale the intensity (Inorm) such that the total intensity
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remains conserved; i.e.,
∑x̃max

x̃=0 Inorm[x̃]∆x̃ =
∑xmax

x=0 Isum[x]∆x,:

Inorm

[

x̃ =
100

xmax
x, t

]

=
xmax

100
Isum[x, t] (6.2)

The x-axis was conveniently scaled to 100 such that results could be plotted as a function of the percentage

of length. The data were interpolated for every 0.33%. The first 10% of the length from the muscle end was

established as the presynaptic terminal (Fig. 6.1c).

6.3 Results

F-actin disassembly precedes vesicle declustering upon tension loss

To establish that tension influences presynaptic vesicle clustering, we performed chemical treatment using

Y-27632 to inhibit the ROCK pathway, previously shown to be important in axonal tension generation [55],

in embryos of a recombinant fly line (elav-Gal4/syn-GFP-UAS) expressing synaptotagmin fused with GFP

in neuronal cells (Fig. 6.1a & b). Synaptotagmin is a vesicle protein. By fusing it with GFP, we can corre-

late green fluorescence (Fig. 6.1c & d) with the amount of vesicles present in a region of interest (e.g. the

presynaptic terminal). We observed a decrease in vesicle content for the 45 minutes that the embryos were

under chemical treatment (Fig. 6.2a). Subsequently, we washed out the drug with PBS to rescue axonal

tension and again measured the amount of vesicles for another 45 minutes; clustering was partially rescued

(Fig. 6.2a).

Since F-actin appears to have a significant role in regulating vesicle clustering [134], we further conducted

the same experiment to embryos expressing LifeAct fused with RFP (Fig. 6.1a & b). Employing LifeAct

allowed us to correlate red fluorescence with the amount of F-actin at the presynaptic terminal. Similar to

synaptic vesicles, the amount of F-actin decreased under force disruption and recovered after force recovery

(Fig. 6.2b).

The green and red fluorescence intensity at the presynaptic terminal can be summed respectively and

plotted against time to look at the temporal dynamics of vesicles and F-actin respectively. The time series

for each embryo can be normalized to the initial intensity to aid comparison. The summary of the results

for the 2 sets of experiments were shown together in (Fig. 6.2c & d). Notably, the disruption (Fig. 6.2c)

and recovery (Fig. 6.2d) of F-actin appears to occur before that of vesicles. Such has motivated us to
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Figure 6.1: Experimental setup. a) Mutants are crossed to express synaptotagmin tagged with GFP or
Lifeact tagged with RFP; these mutants serve to visualize vesicles and F-actin respectively. Embryos resulted
from the crosses are then surgically prepared to expose the axons. b) The embryos are treated with a force
(ROCK pathway) inhibitor, Y-27632, and imaged for 45 minutes under a confocal setup. The drugs are then
washed out with pbs and the embryos are imaged for another 45 minutes. c) A stack of optical slices of the
exposed axon is obtained by confocal imaging. The stack is reconstructed into a single image by summation
projection. d) The image is further projected to an intensity-vs-length plot by summing the intensity values
across the axon.
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characterize the data by fitting each time series to an exponential function of the form a(e−
t
τ )+ c. The time

constant, τ , for each individual fit was then extracted and averaged for both experimental groups monitoring

vesicles (Fig. 6.3) and F-actin (Fig. 6.4). Our data showed that actin disruption and recovery occurred

before vesicle declustering and reclustering (Fig. 6.2e), suggesting that axonal tension influence presynaptic

vesicles through F-actin.

To further support the claim, we compared the spatial intensity distributions of vesicles (Fig. 6.5) and

F-actin (Fig. 6.6) at the presynaptic terminals before and after treatment. Each intensity distribution is

normalized to the average value of the distribution. From the data, it could be observed that the disruption

and recovery for both vesicles and F-actin occurred at around the mid-region of the presynaptic terminal,

supporting that their activities could be co-localized and correlated.
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Figure 6.2: F-actin and vesicle dynamics during tension loss and recovery. a) Treating embryos with Y-27632
leads to the reduction of green fluorescence, pointing to a loss of vesicles at the presynaptic terminal. Upon
pbs washout, the fluorescence (and vesicle clustering) is partially recovered. b) Similarly, red fluorescence,
indicative of F-actin, diminishes under Y-27632 treatment, and recovers after pbs washout. c) The intensity
reduction upon Y-27632 treatment of multiple samples are summarized. The red curve (N=7) represents
F-actin reduction, while the black curve represents vesicle reduction (N=17). d) The intensity recovery upon
pbs washout of multiple samples are summarized. The red curve (N=7) represents F-actin recovery, while
the black curve represents vesicle recovery (N=15). Shaded regions in both c & d are standard deviation
error. Intensity data are normalized to the initial value at time = 0. e) The disruption and recovery data
sets of each sample are fitted individually to an exponential curve of the form ae−

t
τ + c. The time constants

(τ) for disruption and recovery of vesicles and F-actin are averaged respectively and shown here and—for
comparing the fit with the data—in Fig. 6.3 & 6.4. In both disruption and recovery, although the overall
trend is similar, F-actin activities precede that of vesicles. Error bars in standard deviations. Unpaired
two-sample t-test used to obtain p-values. Fig. 6.5 & 6.6 further show the spatial difference in vesicles and
F-actin intensity before and after tension relaxation and recovery.
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Figure 6.3: Temporal data sets of normalized vesicle intensity are fit individually to an exponential of the form
a(e−

t
τ ) + c. The resulting best-fit parameters are averaged to generate the blue curve as a representation

of the temporal dynamics of vesicle (a) declustering and (b) reclustering. Shaded regions show error in
standard deviation.
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Figure 6.4: Temporal data sets of normalized F-actin intensity are fit individually to an exponential of the
form a(e−

t
τ )+c. The resulting best-fit parameters are averaged to generate the blue curve as a representation

of the temporal dynamics of F-actin (a) disassembly and (b) reassembly. Shaded regions show error in
standard deviation.

Previously clustered presynaptic vesicles diffuse out of the synapse to the axon

conduit upon tension loss

The disappearance of F-actin could be explained by actin disassembly, which can occur rapidly. However,

the reduction in clustered vesicles could be due to 3 reasons: 1) vesicles were degraded, 2) vesicles were

released, 3) vesicles moved elsewhere. Fluorescence recovery after photobleaching (FRAP) has been exten-

sively used in studying the mobility of molecules. It utilizes a high power laser to bleach the fluorescence

molecules in a region of interest. Since the bleaching is permanent, any recovery in fluorescence is due to new

molecules coming into the region (Fig. 6.7a). To understand the dynamics of the vesicles after declustering,

we performed FRAP at the presynaptic terminal and at a distal region of the axon.
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Figure 6.5: Normalized intensity of vesicles along the length of the axon at the synaptic region before and
after force (a) relaxation and (b) recovery. The intensity data of each synapse (before and after treatment
combined) are normalized to a mean intensity of 1. Shaded regions show error in standard deviation.
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Figure 6.6: Normalized intensity of F-actin along the length of the axon at the synaptic region before and
after force (a) relaxation and (b) recovery. The intensity data of each synapse (before and after treatment
combined) are normalized to a mean intensity of 1. Shaded regions show error in standard deviation.
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At the presynaptic terminal, embryos treated with Y-27632 recovered at a slower rate compared to the

control embryos not treated with Y-27632 (Fig. 6.7b). The rate could be rescued by washing out Y-27632

with pbs. The fluorescence intensity can be again summed and plotted (Fig. 6.7c), this time however nor-

malized as ∆F
∆F0

= I−Ib
I0−Ib

, where I is the intensity sum at each time frame, Ib is the intensity sum post-bleach,

and I0 is the intensity sum pre-bleach. The recovery curves were therefore bound by 0 and 1 and could be

compared among the different experimental conditions. The individual recovery curves were then further

fit to an exponential of the form a(e−
t
τ ) + c. Comparing the time constants of the different conditions, we

confirmed that under Y-27632 fluorescence recovery was hampered (Fig. 6.7d). The results suggest that

less new vesicles came into the presynaptic terminal when tension was disrupted. Based on these findings,

we hypothesized that under tension disruption the presynaptic terminal lost the ability to “store” vesicles,

leading to a flux of vesicles from the presynaptic terminal to the axon conduit.

Such has motivated us to perform FRAP on the distal end of the axon conduit. The first 30% of length of

the axon (not including the presynaptic terminal) was bleached (Fig. 6.8a). The fluorescence of that region

was then monitored and summed across the width for each time frame. The region was split into 10 equal

and non overlapping segments for analysis and comparison (Fig. 6.8b). Segments closer to the presynaptic

terminal could be seen from both the images themselves (Fig. 6.8a) and the kymograph (Fig. 6.8c) to have

faster fluorescence recovery under tension relaxation. The fluorescence recovery data of each segment (Fig.

6.9) were fit to an exponential of the from a(e−
t
τ ) + c. The extracted time constants were then averaged

and plotted in both control and tension disrupted conditions against their respective segment number (Fig.

6.8d). This plot revealed that in the control samples, recovery was much slower at the segments immediately

next to the presynaptic terminal (large τ). Such trend was not observed in samples with tension disrupted,

and the recovery occurred at a faster rate at the extreme segments.

Together with what was observed when we perform FRAP on the presynaptic terminal, the data suggested

that vesicles in axons, when unperturbed, undergo movement unidirectionally from the CNS to the synapse

at the distal region of axon that we studied (Fig. 6.8e). When tension was disrupted, there was a flux of

declustered vesicles from the presynaptic terminal to the axon conduit, which explained the bidirectional

recovery observed (Fig. 6.8e).
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Figure 6.7: Movement of vesicles at the synapse upon tension disruption and recovery. a) FRAP allows the
study of vesicle movements. It works by subjecting a region of interest to prolonged light exposure in order to
photobleach the region. The region is continuously monitored after the bleaching event. When surrounding
unbleached molecules move into the region of interest, fluorescence signal recovers. b) The presynaptic
terminal is subjected to FRAP; fluorescence recovery is significantly hampered when samples are treated
with Y-27632. c) Results for multiple samples are summarized. The intensity values are normalized to the
pre-bleach (1) and post-bleach (0) values. Recovery is slower in the Y-27632 treated samples (red, N=3)
compared to the control samples (black, N=3). Pbs washout restored recovery partially (blue, N=3). All
shaded regions indicate error bar in standard deviation. d) Recovery data sets from all 3 conditions are fitted
individually to an exponential curve of the form ae−

t
τ + c. Error bars in standard deviations. Unpaired

two-sample t-test used to obtain p-values.

99



Pre-bleach Post-bleach

5 minutes

Post-bleach

15 minutes

Post-bleach

25 minutes

Post-bleach

C
o

n
tr

o
l

+
Y

-2
7

6
3

2

first 30% of axon length

#1 #8#7#6#5#4#3#2 #10#9PT

color scheme for segment #NMJ CNS

+Y-27632

+pbs

ti
m

e
ti

m
e

NMJ CNS

NMJ CNS

10

Segment #

0

20

40

60

T
im

e
 c

o
n
s
ta

n
t 
(m

in
u
te

)

control

+Y-27632

2 4 6 8

PT axon

+pbs

vesicles move

unidirectionally

PT axon

+Y-27632

vesicles move

bidirectionally

a b

c

d

e

*

Figure 6.8: Changes in directionality of vesicle movement at axon upon tension disruption. (a) A distal
region of an axon is bleached in embryos where Y-27632 is either added to the saline or not added (control).
Visual inspection reveals that recovery occurs faster at regions further away from the synapse in control
cases, while all regions recover at similar rate when tension is disrupted. (b) A scheme is devised, in which
the bleached region, amount to around 30% of the axon length, is divided into 10 equal segments. Each
segment can then be analyzed separately. (c) Kymographs of the bleached region is generated by summing
the intensity laterally across the axon for each time frame. The different recovery profiles as described in (a)
can be observed again. (d) For each of the 10 segments, a recovery time constant is obtained by fitting the
data set, such as that shown in Fig. 6.9, to an exponential curve of the form ae−

t
τ + c. The time constants

are summarized and reported here. Control samples (grey, N=3) show a higher time constant at segments
closer to the synapse. Tension-disrupted samples (red, N=3) show lower time constant near the synapse, and
a higher time constant at the middle segments. All shaded regions indicate error bar in standard deviation.
Unpaired two-sample t-test used to obtain p-values. (e) The data support a model in which vesicles move
unidirectionally (towards the synapse) normally, but bidirectionally when under tension disruption.
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Figure 6.9: FRAP data of each segment of (a) control and (b) treated axons are plotted according to the
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synapse.
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Localized tension disruption of axon away from the synapse also leads to

vesicle declustering

So far we have applied the chemical treatment over the entire embryo, which could lead to processes inde-

pendent of axonal force that can result in depletion of synaptic vesicles and F-actin. If chemical treatment

can be localized at the axon, then we can disrupt only tension while still maintaining the integrity of the

synapse and the rest of the embryo. Anything observed at the presynaptic terminal is therefore due to the

loss of tension and not because of other compounding factors.

We therefore employed a microfluidic setup [114] that allowed us to perform partial treatment of the

axon using the properties of laminar flow (Fig. 6.10a). A proximal region of the axon was perfused with

Y-27632 to relax the motors at that region, while the rest of the neuron was perfused with pbs (Fig. 6.10a).

Control axons were perfused with pbs or diluted food dye at the region of interest. We observed a stark

contrast of vesicles fluorescence between control and tension disrupted axons (Fig. 6.10b). In control axons

(Fig. 6.10c), vesicles were recruited into the presynaptic terminal over time possibly as part of the deve-

lopment process. In tension disupted axons (Fig. 6.10c), vesicles declustered over time resulting in reduced

fluorescence, similar to what we observed when we applied the chemical treatment globally.

Since the synapse was kept unperturbed throughout the experiment, we concluded that vesicle clustering

can be solely influenced by the tension maintained along the axon.

6.4 Discussion

Axonal tension was demonstrated in both in vitro and in vivo experiments [54, 135]. Recently, it has been

shown that axons generate intrinsic tension in vivo through actin and myosin contractility [55]. By using

a ROCK pathway inhibitor, we disrupted this contractility—and therefore axonal tension—and observed

first F-actin disassembly and then vesicle declustering (Fig. 6.2c–e). The declustered vesicles moved from

the presynaptic terminal into the axon conduit as revealed by our FRAP experiments (Fig. 6.8e). Furt-

hermore, when we disrupted the contractility at a proximal segment of the axon conduit away from the

synapse, vesicle declustering still occurred (Fig. 6.10b). Declustering with force relaxation far away from

the synapse implies that tension is essential to sustain clustering, and that the tension is transmitted along

the entire length of the axon as a series of force generators holding each other. Since F-actin forms cortical

rings periodically along the length of the axon [38, 48], it is conceivable that axonal tension is generated
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Figure 6.10: Partial treatment of axon for localized tension release leads to vesicle declustering. (a) A
previously developed microfluidic device is used to partially treat a segment of an exposed axon away from
the synapse. (b) Fluorescence intensity (from vesicles) at the synapse is summed and plotted when the center
flow contains Y-27632 and food dye (red, N=5), just food dye (blue, N=3), or neither (black, N=4). All
shaded regions indicate error bar in standard deviation. Unpaired two-sample t-test used to obtain p-values.
(c) The declustering event can also be observed by visual inspection when Y-27632 is added to the center
flow.
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by F-actin-myosin machines pulling onto neighboring F-actin rings (Fig. 6.11a). In fact, recently it was

observed that myosin expressions show a similar, but offset, periodicity of ∼190 nm to F-actin rings’ [136].

Myosin filaments are ∼300 nm in length [137, 138], we therefore suspect that they are positioned at an angle

to the long axis such that they can fit inside the 190 nm gaps between neighboring actin rings. This way

the F-actin-myosin machines can apply coupled axial and circumferential tension as observed previously [97].

This architecture may serve another purpose. It ensures that F-actin fibers are not continuous along the

axon conduit when interrupted by the actin rings. This loss of continuous F-actin prevents the vesicles from

leaving the actin rich [139] presynaptic terminals where they are transported by myosin V and VI along

F-actin tracks to/from the active zone [134, 140]. The above mechanism could explain our observed slower

vesicle mobility (longer FRAP recovery time) at the presynaptic terminal when motors are disrupted by

Y-27632 (Fig. 6.7c), since the disruption of motors leads to more passive vesicle dynamics in contrast to

active motions driven by the motors.

The change of synaptic strength [141], or better known as synaptic plasticity, has major implications in

learning and memory. Plasticity can occur either presynaptically [142], when more neurotransmitter vesicles

are released per action potential, or postsynaptically [143], when a larger response arises per stimulation due

to the increase in the number of neurotransmitter receptors. The number of synaptic vesicles available at the

presynaptic terminal can therefore influence synaptic strength. Interestingly, reserve vesicles are deployed

mainly during intense stimulation [144], which is also when presynaptic plasticity is observed [145, 146],

suggesting that reserve vesicles and their associated clustering mechanism could play a role in presynaptic

plasticity.

Of all the proteins that have been shown to influence vesicle clustering, synapsin I has been studied the

most extensively [147, 148, 149]. Synapsin I is a membrane protein that has a Ca2+-dependent affinity to

both F-actin and the vesicle membrane [150, 69, 151], allowing it to facilitate F-actin polymerization [129],

to bundle F-actin [152], and to anchor vesicles to F-actin [153]. It has been suggested that with Ca2+ influx

during an action potential, vesicles anchored onto F-actin through synapsin I are released, and are moved

away from the reserve pool [154], possibly by myosin motors [155, 156], to replenish released vesicles. We

demonstrated that F-actin events precede vesicles events in all our experiments, supporting the claim that F-

actin can serve as an anchoring scaffold for vesicles primed with synapsin I and other proteins [40, 130, 131].

We note that, however, several experiments have reported that disruption of F-actin by latrunculin-A did not
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have significant effect on vesicle dynamics in adult frog and mouse neuromuscular junctions [157, 158, 159].

Although the short-term regulation of reserve pool size can be explained by the interaction between

synapsin I and F-actin in a Ca2+-dependent manner [153, 152, 154], any long-term regulation, such as those

observed in presynaptic plasticity [145, 146, 160], most certainly would require alterations of the F-actin

scaffold itself given that intracellular Ca2+ concentration is tightly regulated [161]. Based on our results that

axonal tension exerts an influence on presynaptic F-actin, we suspect that neurons may utilize this tension

pathway to regulate vesicle density long-term.

Taker together, we propose that F-actin network at the presynaptic terminal serves two major functions—

1) a scaffold to hold the vesicles and 2) a set of double lane highways for vesicle transport (Fig. 6.11b).

Myosin II motors serve as the force generators between the anti-parallel actin fibers. This anti-parallel

organization of F-actin allows bi-directional vesicle trafficking using plus-end-directed myosin V and minus-

end-directed myosin VI [134]. In the axon conduit, tension is continuous along the entire length in a series

fashion (Fig. 6.11a). A disruption of force at any region of the axon-synapse hard wired system results in

an imbalance in force at the synapse destabilizing the synaptic actin network. Vesicles then begin to move

out of the synapse by diffusion, as evidenced in our FRAP experiments. Current literature describes the

molecular mechanisms of F-actin polymerization at the synapse, but this molecular view does not explain

how the architecture of F-actin network is formed and how it is sustained for scaffolding and directing vesicle

dynamics at the synapse. Our data closes this gap and reveals that long-range mechanical force generated

by acto-myosin machinery is necessary for the emergence and sustenance of the extensive F-actin network

at the synapse, and hence vesicle clustering.
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Figure 6.11: Proposed mechanistic model of vesicle clustering. (a) Axonal tension generated by F-actin
and myosin motors along the axon stabilizes the F-actin network at the presynaptic terminal. The F-actin
network at the presynaptic terminal provides a scaffold for vesicles to attach to. Therefore, when tension is
disrupted, F-actin disassembly occurs before vesicle declustering; the declustered vesicles move proximally
into the axon conduit as supported by the FRAP experiments. The microfluidic experiments further confirm
the role of tension: although disruption occurs away from the presynaptic terminal, vesicles still decluster.
(b) At the presynaptic terminal, F-actin can serve a dual purpose to 1) provide a scaffold for clustered
vesicles and to 2) provide the physical tracks where cargo-carrying motors can transport vesicles to/from the
active zone. By binding onto the F-actin scaffold through synapsin I and other proteins, vesicles can cluster
at the reserve pool. Myosin II generates tension by pulling onto anti-parallel F-actin fibers, which provides
force continuity to stabilize the F-actin network. The F-actin fibers can then serve as tracks for Myosin V
and VI to transport vesicles.
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Chapter 7

The serial nature of the tension
generators along the axon

This chapter is adapted from a manuscript in preparation1.

7.1 Motivation

Mechanical tension has been shown to play an influential role in vesicle clustering [2], vesicle dynamics [17],

neural excitability [18], and axon growth [3, 4]. Studies using glass needles [54, 162], force probe [12], and

fluidic flow [36] show that there exists a finite intrinsic tension in in vitro and in vivo neurons. Further

evidence shows that mammalian brains also maintain a residual tension [43], which was speculated to drive

cortical folding among other things [42, 44]. It is thus possible that a neuron can regulate its function by

regulating its intrinsic tension.

How a neuron regulates its tension therefore warrants investigation. Many groups have shown that actin

and myosin are responsible for generating tension, while microtubules act against it [32, 31, 55]. Recently, it

is further revealed that axonal tension has a coupled circumferential component, pointing to the hypothesis

that tension is generated by a contractile network unaligned to the axis of the axon [97]. Super-resolution

microscopy reveals that F-actin forms periodic rings along the length of the axon, with connecting spectrin

tetramer in between each ring [38, 48]. Myosin motors have also been shown to associate with the F-actin

rings [136]. We therefore hypothesize that the contractile network could be in series and tension is trans-

mitted along the network.

Here, we test this hypothesis by disrupting a segment of axonal cytoskeletal proteins by partial chemical

treatment—if the contractile network is indeed in series, a local disruption will lead to a total loss of tension.

We achieved this by using a microfluidic device that can combine partial treatment with tension measurement

[114]. We modeled the axon as a slender string subjected to a shear load. Flow rate was increased in a

1Fan A, Saif MT. Partial treatment of single axons reveals a connected cytoskeleton network in generating axonal tension.
In preparation
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step-wise fashion to probe the elastic response of the axon. A global/partial chemical treatment could

also be simultaneously applied. Such allowed us to evaluate the stiffness and rest tension of axons under

partial/global F-actin, myosin, and microtubules disruption, and reveal the underlying architecture of the

tension network.

7.2 Materials & Methods

Drosophila culture

Drosophila culture followed standard procedure [20]. The fly line expressing green fluorescence protein

(GFP) on neuronal membranes (5146) was purchased from Bloomington stock center (Bloomington, IN).

Flies were placed in a culture chamber and embryos were collected on a grape-agar gel. Embryos of stage

16 were selected based on morphology.

Microfluidics setup

Sample preparation followed an established protocol [114]. Briefly, a dissected embryo was placed on a

cover slip (12-545H; Fisher Scientific, Hampton, NH). A slab of patterned liquid silicon rubber (Bluestar

LSR-4305) is positioned on top of the embryo and mounted directly to the cover slip. A suction flow is used

to backfill the device to remove the bubbles trapped during assembly.

Chemical treatment

Cytochalasin D (50 µg/mL), Nocodazole (15 µg/mL), Y-27632 (110 µM) were applied to the center flow to

either partially or globally inhibit the respective proteins. Cytochalasin D and nocodazole were purchased

from Sigma-Aldrich (St. Louis, MO) and Y-27632 from Cayman Chemical (Ann Arbor, MI).

Imaging

An inverted microscope (IX81; Olympus, Center Valley, PA) with standard GFP and mCherry filters was

used. All images were acquired using a 20x/0.4 lens (LCPlanFI; Olympus, Center Valley, PA). Exposure

time for axon imaging is set to 300ms. Red fluorescent beads of 0.1 µm in diameter (F8801; Thermo Fisher

Scientific, Waltham, MA) were placed at the bottom of the glass slide (exposed to air). The best focal planes

of the beads and the axon were identified. The distance d between the 2 planes minus the thickness t of the

glass slide provided the elevation of the axon from the glass surface (Fig. 7.1a).
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Figure 7.1: Schematics of the device. (a) A side-view of the device illustrating the position of the red
fluorescence beads and their role in determining the elevation of the exposed axon, za = d − t. (b) The
elevation of the exposed axon is important in determining the flow rate at that z-plane, which governs the
shear load felt by the axon.

Mechanics Model

The elevation of the axon, za, is important because the flow velocity is a function of such. Our device can be

approximated as a parallel plate setup (Fig. 7.1b) since the width w is much larger than the height h. Given

the no-slip boundary condition at the fluid-solid interface and the laminar flow condition at low Reynold’s

number, the flow profile is:

V (z) = Vmax(1− 4
z2

h2
) (7.1)

where z is the direction perpendicular to the top and bottom surface, and z=0 is the mid-plane of the

chamber parallel to the top and bottom surface. The constant Vmax could be determined by integrating

V (z) over z multiplied by the width, and matching the applied volumetric flow rate, Qapp, from the syringe

pump:

Qapp = w

∫ h
2

−
h
2

V (z)dz = Vmaxw

∫ h
2

−
h
2

(1− 4
z2

h2
)dz (7.2)

109



T
T + dTτ

flow direction
x

y
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As a result, the flow velocity felt by the axon is:

V (za) =
Qapp

w
∫ h

2

−
h
2

(1− 4 z2

h2 )dz
(1− 4

za
2

h2
) (7.3)

The flow velocity can then be further converted to a shear load, given by τ = 4πµV
ln( 3.7ν

rV
)
[163], where µ is the

dynamic viscosity, ν is the kinematic viscosity, and r is the radius of the axon.

The shear load would lead to a force balance (Fig. 7.2) in the form of:

dTx = 0 (7.4)

dTy = τdx (7.5)

Eq. 7.4 & 7.5 can be rewritten as:

T0 cosθ0 = T cosθ (7.6)

d(T sinθ) = τdx (7.7)

where T0 and θ0 indicates the tension and angle at the origin. Eq. 7.7 can then be reformulated to:

d(T0 cosθ0
dy

dx
) = τdx (7.8)

By performing integrations and applying the appropriate boundary conditions: 1) y(x = 0) = 0, and 2)

dy
dx

∣
∣
x=0

= tanθ0, we arrived at the following expression for the profile of the axon subjected to a shear load
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of τ :

y =
τ

2T0 cosθ0
︸ ︷︷ ︸

A[t]

x2 + tan θ0
︸ ︷︷ ︸

B[t]

x (7.9)

The profile of the axon was obtained from image analysis. The identified points along the axon were expressed

as x-y coordinates. The points were then fit to Eq. 7.9 to obtain the constants A and B for each frame t

with the point closest to the central nervous system (CNS) as the origin. By substituting Eq. 7.6 to Eq.

7.9, tension can also be expressed as

T [t] =
τ

2A[t]cosθ
(7.10)

=
τ

2A[t]

√

1 +

(
dy

dx

)2

(7.11)

T [t] =
τ

2A[t]

∫
ds[t]
∫
dx

(7.12)

where T is the average tension along the axon,
∫
ds is the arc length of the axon, and

∫
dx is the projected

length of the axon perpendicular to the flow direction. The arc length can be evaluated by using the equation

Eq 7.9. The difference in arc length over time will also provide the displacement of the axon. The projected

length does not vary significantly with time because it is perpendicular to the flow direction and thus can

be prescribed based on the images.

Image Analysis

The following procedures were performed by a custom code written in MATLAB (Fig 7.3). Image intensity

profile along the y-axis for every x was collected and smoothed. Intensity peaks falling between predefined

minimum and maximum widths and satisfying a minimum prominence were obtained. The obtained peak

points were further screened for continuity to identify the axon. The profile of the axon (now in x-y

coordinate) was then translated such that the point closest to the CNS was at the origin. The profile was

subsequently fitted to a quadratic function. The parameters A[t] and B[t] in Eq. 7.9 could then be obtained

and were used to calculate the average tension and the path length of the axon.
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Figure 7.3: An axon (a) before and (b) after image analysis. The blue line in b traces the profile of the
axon. (c) An obtained axon profile is translated such that the point closest to the CNS is at the origin. The
profile is fitted to a quadratic function and the coefficients A and B in Eq. 9 (main text) is obtained.

7.3 Results

Stiffness and rest tension of axon

The ability to calculate tension using the profile of the axon enabled us to perform a loading experiment

by increasing the flow rate. Therefore, we held the flow rate at 0, 20, 40, 60, 100, 140, and 200 µL/min

respectively for approximately 3 minutes at each step. The immediate elastic response as captured by the

dotted line in Fig. 7.4 were used to calculate displacement (path length difference) and the change in average

tension. A load vs. displacement plot could then be obtained by adding the elastic response sequentially.

This procedure allows us to look at the pure elastic response of the axon with minimal influence from the

viscous response.

The load-displacement plot conforms to a linear function with the slope being the stiffness and the y-

intercept being the rest tension (Fig. 7.5a). Since stiffness is length dependent—a longer axon under the

same load will lead to a larger deflection, we plotted the stiffness value for each axon tested with respect to

their rest length (Fig. 7.5b). A 1/length scaling was observed as expected. Further comparing to existing

literature we found that PC12 axons of 100 - 200 µm in length had stiffness values of 0.4 - 0.5 nN/µm

[162, 36, 32], matching our results here. We also observed a rest tension range of 0.1 to 3.5 nN (Fig. 7.5c),
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L to the data, as indicated by the black curve. (c) Rest tension values of the 8 axons
are summarized here. Error bars showing the minimum and maximum tension values.

agreeing with that reported previously both in vitro [162, 36] and in vivo [12].

Partial F-actin and myosin disruption can lead to total tension loss without

changing an axon’s elasticity

After confirming the validity of our setup by comparing our tension and stiffness measurements to that

found in the literature, we can then make use of the advantages unique in our setup—the ability to do

partial treatment on an insuspendable sample. A flow containing cytochalasin D or Y-27632 were applied

through one of the center channels (Fig. 7.6). At the same time, the side channels applied the appropriate

flow rate such that the central flow can be focused onto only a portion of the axon (∼30 µm [114]). To

achieve partial treatment at all times, the total flow rate had to be kept high. Therefore, we held the flow

rate at 100 µL/min for 10 minutes. Then the axon was loaded twice more at 140 and 200 µL/min. After the

loading paradigm, the flow rate was brought back to 100 µL/min and held for another 10 minutes. However,

the central flow was switched off in this case. This way, we intended to wash out the effect of the chemical

treatment. The axon was again loaded at 140 and 200 µL/min after the washout. We then repeated the

same procedure as described in the previous section to obtain the load-displacement plots that allowed us

to calculate stiffness and rest tension.

Both F-actin and myosin disruption led to a decrease in rest tension to a negative value, while stiffness
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remained largely unchanged (Fig, 7.7a & b). A negative rest tension has no physical meaning, but it points

to that when tension is zero, the displacement is finite and the axon would remain curved. We checked

that by unloading the axon in a few cases immediately after the partial treatment. The axons did remain

curved. This observation is similar to those observed previously in another study where axons were buckled

under the influence of acto-myosin disruption. Those axons would remain buckled since contractility was

hampered.

Partial and global microtubules disruption can lead to axon softening without

changing an axon’s rest tension

Microtubules are known to provide the structural stiffness for axons [1]. This led us to treat axons with

nocodazole to disrupt microtubules both partially and globally to investigate if such would affect the slope

in our load-displacement plots. Indeed, stiffness after washout increased several folds, but rest tension re-

mained the same (Fig. 7.7c).

We further compared all our results by dividing the stiffness and tension values in the treatment cases

with those in the respective washout cases. This way we compare the same axon with disruption and without

disruption. We observed a similar trend that microtubules disruption led to a decrease in stiffness but not

rest tension, and acto-myosin disruption led to a decrease in rest tension but not stiffness (Fig. 7.7d & e).

The magnitude of stiffness decrease was more pronounced in global microtubules disruption (Fig. 7.7d). We

therefore inspected the experimental images and observed that since microtubules disruption was localized

in the partial treatment cases, the axons retained some of their structural stiffness in the untreated regions

(Fig. 7.7f & g).

7.4 Discussion

In this study, we employed a microfluidic setup [114] that can perform partial treatment on insuspendable

samples to 1) measure the elastic response of an exposed axon, and 2) disrupt F-actin, myosin motors, and

microtubules locally at a segment of the axon conduit. This unique approach allowed us to investigate the

underlying architecture of the cytoskeletal network.

We revealed that a local F-actin or myosin disruption could lead to a complete intrinsic tension loss

without effecting the elastic properties of the axon. We reasoned that this observation could be explained
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by a connected network of acto-myosin contractile units (Fig. 7.8). A failure to transmit tension at any

point would lead to a total loss of tension, since the rest of the network lost the anchor points for contractile

motion, and hence tension generation, to happen. The undisrupted proteins might have other anchor points,

especially to the cell membrane. The cell membrane alone however may not be able to sustain force because

of its fluidic nature.

Microtubules disruption, on the other hand, led to a concentrated loss of microtubules at the region of

treatment affecting the stiffness partially, but not the intrinsic tension. This observation agrees with the

current view that microtubules plays a passive role in tension generation in axons; they provide resistance

to the contractile motion of F-actin and myosin motors, but do not actively generate a force [55].

A recent study provided the functional insight for our experiments here. Using the same partial treatment

system, the study revealed that a local myosin motors disruption can lead to presynaptic vesicle declustering

with a magnitude similar to that of global myosin motors disruption. Using the results of the current study,

we reasoned that the similarity in magnitude in both global and local disruption is due to a total tension loss

in the connected tension network. Thus, it is possible that a neuron can regulate its synaptic efficacy—which

occurs at the distal end—by regulating mechanical tension at the proximal region of its axon or even its cell

body.
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Chapter 8

Conclusions and Future Works

In this dissertation, I revealed that the mechanical tension maintained by the neurons themselves can regulate

presynaptic vesicle clustering through a previously unknown biophysical mechanism: tension along the axon

stabilizes a presynaptic actin-rich scaffold, which provides an anchorage for vesicles to accumulate. This

implies that neurons can potentially modulate their synaptic strength (important in learning and memory)

through changing their tension state. The discovery can be broken down into 4 different but related findings:

1. Axons maintain tension through actin and myosin. Vesicles cluster naturally at the presynaptic

terminal, and tension is necessary for the vesicles to cluster. So it seems that either neurons maintain a

tension themselves, or the surrounding tissues are pulling onto the neurons. To distinguish between the

two, I slackened in vivo fruit fly axons to observe if they can contract to generate tension themselves.

Axons exhibited contractility and recovered the taut profile in less than 4 minutes. This contractility

was significantly hampered under the inhibition of myosin motors and disruption of actin filaments,

leading to the conclusion that actin and myosin generate tension in axon.

2. Actin and myosin also maintain tension in the circumferential direction. Actin in axons,

however, has a cortical ring-like structure. These actin rings are periodic along the length. This raised

the possibility that actin and myosin are also generating tension in the circumferential direction. To

study this, I used confocal microscopy and spatial light interference microscopy (in collaboration with

Prof. Gabriel Popescu) to monitor the diameter of axons over time. Both imaging modalities revealed

that diameter increased when actin or myosin were disrupted, and decreased when microtubules were

disrupted. This suggests that actin and myosin are constantly applying a circumferential tension onto

the content, mostly microtubules, of the axon. I further demonstrated, through stretching and relaxing

the axon with a piezo-manipulator, that tension was coupled in the axial and circumferential direction.

3. Axonal tension sustains presynaptic F-actin to recruit vesicles and stop vesicles from

diffusing back into the axon. Since axons maintain its own axial and circumferential tension by

actin and myosin, I then asked how these proteins could influence vesicle clustering. This would point
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to the mechanistic pathway that neurons employ to regulate vesicle clustering with mechanical tension.

I investigated this by inhibiting myosin motors and observing vesicle declustering. Vesicle declustered

as a result of myosin loss. Interestingly, under myosin inhibition, actin filaments at the presynaptic

terminal also disassembled, and do so before vesicles declustered. It appears that actin disassembly

occurs before vesicle declustering in the cascade of events, pointing to a presynaptic actin scaffold.

The declustered vesicles have to go somewhere. To account for their dynamics, I employed a technique

called fluorescence recovery after photobleaching (FRAP). This allows the study of the movement

of the fluorescing vesicles. Using this technique, I observed less vesicles moving into the synapse and

more vesicles moving into the distal region of the axon when the samples were under myosin inhibition.

Therefore, I concluded that declustered vesicles moved into the axon conduit.

One problem with chemical inhibition of proteins is that it has no spatial specificity. In our case, all the

myosin motors were inhibited. This limits the interpretation of any observations to myosin dependent,

not (myosin-generated) tension dependent. For this reason, I developed a microfluidic platform that

can perform partial treatment on a small tissue sample. I used the platform to inhibit myosin motors at

a proximal segment of the axon, therefore leaving the myosin motors at the presynaptic terminal intact.

Declustering events still occurred under partial treatment, suggesting that the tension generated by

myosin motors, but not myosin motors themselves, regulated the process.

4. Axonal tension is in series in nature. Given the observation that a partial tension disruption can

lead to declustering of equal magnitude to that induced by a global disruption, I hypothesize that the

tension generators are in series in nature. To test this hypothesis, I used the same partial treatment

setup to disrupt F-actin, myosin, and microtubules respectively locally at a segment of the axon while

simultaneously load the axon by increasing the flow rate. The experiments show that a partial F-actin

or myosin disruption can lead to a total tension loss supporting that the tension-generating contractile

network is connected in a in-series fashion along the length of the axon.

Collectively, I demonstrated that 2 contractile proteins, actin and myosin, maintain an intrinsic tension al-

ong the axon both axially and circumferentially. These contractile proteins stabilize a presynaptic actin-rich

scaffold, which allows vesicles to act against diffusion to accumulate at the synapse. When these proteins are

disrupted, the scaffold disassembles, and vesicles diffuse back into the axon conduit. Tension from myosin

motors along the axon—but not the motors themselves—sustains this process, possibly through activating

the catch bonds in the F-actin scaffold. This biophysical pathway provides the first evidence that an axon

can perform strength modulation on its synaptic connections, a key process in our understanding of learning

and memory, through regulating its own mechanical tension.
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A future avenue could be that of further relating mechanical tension to neural function. I discussed here

that vesicle clustering can be regulated by mechanical tension, but the effect of an increase pool of vesicles

has yet to be demonstrated to influence 1) release rate and magnitude, and 2) the evoked potential at the

postsynaptic terminal. These 2 themes can be tested by experiments in the cellular scale in using neurons

stemming from embryonic bodies or from living animals.

Some diseases such as traumatic brain injury can also be caused by the alteration in tension by an

external or internal event. Therefore, comparing the tension state of animals with and without the disease

of interest would illuminate the role of tension in it. In order to acheive this, a robust and non-invasive

method to measure physiological forces at high spatial and temporal resolution is necessary. This is why I

also believe a new tool to map mechanical forces systematically will produce many interesting discoveries

related to the field of neuromechanics.
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Muñoz, G Wayne Brodl, G Wayne Brodland, Benoit Ladoux, and Xavier Trepat. Forces driving
epithelial wound healing. Nature physics, 10(9):683–690, September 2014.

[65] Laure Saias, Jim Swoger, Arturo D’Angelo, Peran Hayes, Julien Colombelli, James Sharpe, Guillaume
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[88] David Dahlgren, Carl Roos, Erik Sjögren, and Hans Lennernäs. Direct In Vivo Human Intestinal
Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods. Journal
of pharmaceutical sciences, 104(9):2702–26, September 2015.

[89] Bernard J Slater, Anthony Y Fan, Kevin A Stebbings, M Taher A Saif, and Daniel A Llano. Mo-
dification of a Colliculo-thalamocortical Mouse Brain Slice, Incorporating 3-D printing of Chamber
Components and Multi-scale Optical Imaging. Journal of visualized experiments : JoVE, (103), Janu-
ary 2015.

[90] D C Duffy, J C McDonald, O J Schueller, and G M Whitesides. Rapid Prototyping of Microfluidic
Systems in Poly(dimethylsiloxane). Analytical chemistry, 70(23):4974–84, December 1998.

[91] Chang Lu and Scott S. Verbridge. Microfluidic Methods for Molecular Biology. Springer, May 2016.

[92] S Takayama, J C McDonald, E Ostuni, M N Liang, P J Kenis, R F Ismagilov, and G M Whitesi-
des. Patterning cells and their environments using multiple laminar fluid flows in capillary networks.
Proceedings of the National Academy of Sciences of the United States of America, 96(10):5545–8, May
1999.

[93] Zhiqiang Li, Ying Zhang, Philip R LeDuc, and Kelvin B Gregory. Microbial electricity generation via
microfluidic flow control. Biotechnology and bioengineering, 108(9):2061–9, September 2011.

[94] S G Knoll, W W Ahmed, and T A Saif. Contractile dynamics change before morphological cues during
fluorescence [corrected] illumination. Scientific reports, 5:18513, December 2015.

[95] Jun Shintake, Samuel Rosset, Bryan Schubert, Dario Floreano, and Herbert Shea. Versatile Soft Grip-
pers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Advanced materials
(Deerfield Beach, Fla.), 28(2):231–8, January 2016.

[96] Aarash Sofla, Erkin Seker, James P. Landers, and Matthew R. Begley. PDMS-Glass Interface Adhesion
Energy Determined Via Comprehensive Solutions for Thin Film Bulge/Blister Tests. Journal Of
Applied Mechanics-Transactions Of The Asme, 77(3):ARTN 031007, May 2010.

128



[97] Anthony Fan, Alireza Tofangchi, Mikhail Kandel, Gabriel Popescu, and Taher Saif. Coupled circum-
ferential and axial tension driven by actin and myosin influences in vivo axon diameter. Scientific
reports, 7(1):14188, October 2017.

[98] Benjamin F Fosque, Yi Sun, Hod Dana, Chao-Tsung Yang, Tomoko Ohyama, Michael R Tadross,
Ronak Patel, Marta Zlatic, Douglas S Kim, Misha B Ahrens, Vivek Jayaraman, Loren L Looger, and
Eric R Schreiter. Neural circuits. Labeling of active neural circuits in vivo with designed calcium
integrators. Science (New York, N.Y.), 347(6223):755–60, February 2015.

[99] A Aubry, C Batini, J M Billard, R T Kado, and P Morain. Tetrodotoxin induced calcium spikes:
in vitro and in vivo studies of normal and deafferented Purkinje cells. Experimental brain research,
84(2):297–302, January 1991.

[100] Lei Jin, Zhou Han, Jelena Platisa, Julian R A Wooltorton, Lawrence B Cohen, and Vincent A Pieri-
bone. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent
protein voltage probe. Neuron, 75(5):779–85, September 2012.

[101] Guan Cao, Jelena Platisa, Vincent A Pieribone, Davide Raccuglia, Michael Kunst, and Michael N
Nitabach. Genetically targeted optical electrophysiology in intact neural circuits. Cell, 154(4):904–13,
August 2013.

[102] A R Freeman. Electrophysiological activity of tetrodotoxin on the resting membrane of the squid giant
axon. Comparative biochemistry and physiology. A, Comparative physiology, 40(1):71–82, September
1971.

[103] D C Chang and J Liu. A comparative study of the effects of tetrodotoxin and the removal of external
Na+ on the resting potential: evidence of separate pathways for the resting and excitable Na currents
in squid axon. Cellular and molecular neurobiology, 5(4):311–20, December 1985.

[104] Costantino Creton and Matteo Ciccotti. Fracture and adhesion of soft materials: a review. Reports
on progress in physics. Physical Society (Great Britain), 79(4):046601, April 2016.

[105] JG Williams. Energy release rates for the peeling of flexible membranes and the analysis of blister
tests. International Journal Of Fracture, 87(3):265–288, 1997.

[106] Qiming Wang and Xuanhe Zhao. Phase Diagrams of Instabilities in Compressed Film-Substrate Sys-
tems. Journal Of Applied Mechanics-Transactions Of The Asme, 81(5):ARTN 051004, May 2014.

[107] JW HUTCHINSON and Z SUO. Mixed-Mode Cracking In Layered Materials. Advances In Applied
Mechanics, Vol 29, 29:63–191, 1992.

[108] L. B. Freund and S. Suresh. Thin Film Materials. Cambridge University Press, January 2004.

[109] Steven P Koenig, Narasimha G Boddeti, Martin L Dunn, and J Scott Bunch. Ultrastrong adhesion of
graphene membranes. Nature nanotechnology, 6(9):543–6, August 2011.

[110] Z. Cao, P. Wang, W. Gao, L. Tao, J. W. Suk, R. S. Ruoff, D. Akinwande, R. Huang, and K. M.
Liechti. A blister test for interfacial adhesion of large-scale transferred graphene. Carbon, 69:390–400,
April 2014.

[111] Zong Zong, Chia-Ling Chen, Mehmet R. Dokmeci, and Kai-tak Wan. Direct measurement of graphene
adhesion on silicon surface by intercalation of nanoparticles. Journal Of Applied Physics, 107(2):ARTN
026104, 2010.

[112] JA HINKLEY. A Blister Test For Adhesion Of Polymer-Films To Sio2. Journal Of Adhesion,
16(2):115–125, 1983.

[113] P. Davies, L. Sohier, J. Y. Cognard, A. Bourmaud, D. Choqueuse, E. Rinnert, and R. Creac’hcadec.
Influence of adhesive bond line thickness on joint strength. International Journal Of Adhesion And
Adhesives, 29(7):724–736, October 2009.

129



[114] Anthony Fan, Alireza Tofangchi, Matthew de Venecia, and Taher Saif. A simple microfluidic platform
for the partial treatment of insuspendable tissue samples with orientation control. Lab on a chip,
18(5):735–742, February 2018.

[115] Richard Budynas, Warren Young, and Ali Sadegh. Roark’s Formulas for Stress and Strain, 8th Edition.
McGraw-Hill Education, December 2011.

[116] KT WAN, RG HORN, S COURMONT, and BR LAWN. Pressurized Internal Lenticular Cracks At
Healed Mica Interfaces. Journal Of Materials Research, 8(5):1128–1136, May 1993.

[117] C. M. Wang, J. N. Reddy, and K. H. Lee. Shear Deformable Beams and Plates. Elsevier, July 2000.

[118] CY Hui, A Jagota, SJ Bennison, and JD Londono. Crack blunting and the strength of soft elastic solids.
Proceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences, 459(2034):1489–
1516, 2003.

[119] Haibing Zhang. The Permeability Characteristics of Silicone Rubber. SAMPE Fall Technical Confe-
rence, January 2006.

[120] Thomas C Sudhof. The synaptic vesicle cycle. Annual review of neuroscience, 27:509–47, January
2004.

[121] Silvio O Rizzoli and William J Betz. Synaptic vesicle pools. Nature reviews. Neuroscience, 6(1):57–69,
January 2005.

[122] L Li, L S Chin, O Shupliakov, L Brodin, T S Sihra, O Hvalby, V Jensen, D Zheng, J O McNamara, and
P Greengard. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased
seizure propensity, in synapsin I-deficient mice. Proceedings of the National Academy of Sciences of
the United States of America, 92(20):9235–9, September 1995.

[123] D M Landis, A K Hall, L AWeinstein, and T S Reese. The organization of cytoplasm at the presynaptic
active zone of a central nervous system synapse. Neuron, 1(3):201–9, May 1988.

[124] Giuliana Fusco, Tillmann Pape, Amberley D Stephens, Pierre Mahou, Ana Rita Costa, Clemens F
Kaminski, Gabriele S Kaminski Schierle, Michele Vendruscolo, Gianluigi Veglia, Christopher M Dob-
son, and Alfonso de Simone. Structural basis of synaptic vesicle assembly promoted by α-synuclein.
Nature communications, 7:12563, September 2016.
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