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ABSTRACT

Recent advances in genetics, computer vision, and text mining are accompa-

nied by analyzing data coming from a large domain, where the domain size

is comparable or larger than the number of samples. In this dissertation, we

apply the polynomial methods to several statistical questions with rich his-

tory and wide applications. The goal is to understand the fundamental limits

of the problems in the large domain regime, and to design sample optimal

and time efficient algorithms with provable guarantees.

The first part investigates the problem of property estimation. Consider

the problem of estimating the Shannon entropy of a distribution over k el-

ements from n independent samples. We obtain the minimax mean-square

error within universal multiplicative constant factors if n exceeds a constant

factor of k/ log(k); otherwise there exists no consistent estimator. This refines

the recent result on the minimal sample size for consistent entropy estima-

tion. The apparatus of best polynomial approximation plays a key role in

both the construction of optimal estimators and, via a duality argument, the

minimax lower bound.

We also consider the problem of estimating the support size of a discrete

distribution whose minimum non-zero mass is at least 1
k
. Under the indepen-

dent sampling model, we show that the sample complexity, i.e., the minimal

sample size to achieve an additive error of εk with probability at least 0.1

is within universal constant factors of k
log k

log2 1
ε
, which improves the state-

of-the-art result of k
ε2 log k

. Similar characterization of the minimax risk is

also obtained. Our procedure is a linear estimator based on the Chebyshev

polynomial and its approximation-theoretic properties, which can be evalu-

ated in O(n+log2 k) time and attains the sample complexity within constant

factors. The superiority of the proposed estimator in terms of accuracy, com-

putational efficiency and scalability is demonstrated in a variety of synthetic

and real datasets.
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When the distribution is supported on a discrete set, estimating the sup-

port size is also known as the distinct elements problem, where the goal is

to estimate the number of distinct colors in an urn containing k balls based

on n samples drawn with replacements. Based on discrete polynomial ap-

proximation and interpolation, we propose an estimator with additive error

guarantee that achieves the optimal sample complexity within O(log log k)

factors, and in fact within constant factors for most cases. The estimator

can be computed in O(n) time for an accurate estimation. The result also

applies to sampling without replacement provided the sample size is a van-

ishing fraction of the urn size. One of the key auxiliary results is a sharp

bound on the minimum singular values of a real rectangular Vandermonde

matrix, which might be of independent interest.

The second part studies the problem of learning Gaussian mixtures. The

method of moments is one of the most widely used methods in statistics

for parameter estimation, by means of solving the system of equations that

match the population and estimated moments. However, in practice and

especially for the important case of mixture models, one frequently needs to

contend with the difficulties of non-existence or non-uniqueness of statisti-

cally meaningful solutions, as well as the high computational cost of solving

large polynomial systems. Moreover, theoretical analysis of the method of

moments are mainly confined to asymptotic normality style of results estab-

lished under strong assumptions.

We consider estimating a k-component Gaussian location mixture with a

common (possibly unknown) variance parameter. To overcome the afore-

mentioned theoretic and algorithmic hurdles, a crucial step is to denoise the

moment estimates by projecting to the truncated moment space (via semidef-

inite programming) before solving the method of moments equations. Not

only does this regularization ensures existence and uniqueness of solutions,

it also yields fast solvers by means of Gauss quadrature. Furthermore, by

proving new moment comparison theorems in the Wasserstein distance via

polynomial interpolation and majorization techniques, we establish the sta-

tistical guarantees and adaptive optimality of the proposed procedure, as well

as oracle inequality in misspecified models. These results can also be viewed

as provable algorithms for generalized method of moments which involves

non-convex optimization and lacks theoretical guarantees.
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CHAPTER 1

INTRODUCTION

Communication and information theory are traditionally based on statisti-

cal inference on probabilistic models. For instance, the transmission channel

is modeled as a conditional distribution, and the transmitted signal is de-

tected or estimated from the received noisy signal. In modern science and

engineering, statistical inference is one of the most fundamental problems un-

der various models such as the Markov model for natural languages, latent

Dirichlet allocation for document topics, Gaussian mixtures for biometric

systems, etc. One central question is how to design an accurate and efficient

algorithm to infer properties or draw conclusions of the unknown distribution

by analysis of data.

Over the last century, statisticians, information theorists, and computer

scientists have extensively studied the asymptotic regime, where the popu-

lation is fixed and large amounts of data are available. Nowadays, however,

modern datasets such as genetics data and social media are accompanied by

an underlying distribution on a far larger domain. As the domain enlarges,

the dimension and the volume of the parameter space increase so fast that

the limited amounts of data are too sparse to reach statistically sound con-

clusions, known as “curse of dimensionality” [1]. For example, in machine

learning, we measure more and more features and also use the conjunction

of different features in pursuing a finer description of an object [2]; in nat-

ural language processing, besides a large vocabulary, bigram, trigram, etc.,

are frequently used in practice [3]; in computer vision, each image can have

hundreds to thousands of different features, and the image is understood

from a combination of those features [4]. Similar situation arises in areas

like speech recognition, spam detection, and alignment of biological data.

There are improved algorithms based on classical statistical procedures, but

applying them on large domains typically yields unsatisfactory results, and

one is therefore urged to develop new theory and algorithms for the classical
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problems of modern datasets.

Recently, several challenging problems have been successfully solved using

the theory of polynomials. This approach is called the polynomial method.

In this dissertation, polynomial methods will be investigated and applied to

statistical inference problems on large domains. They provide useful tools

not only in the design of estimators in practice, but also in establishing the

theoretical limits of the inference problems.

1.1 Review and examples

Polynomial methods bring one mathematical element to the frontier of sci-

ence ranging from physics and chemistry to economics and social science.

Many challenging problems in coding theory, harmonic analysis, combina-

torics, econometrics, etc. were successfully solved from the perspective of

polynomials. In various fields of applications spanning speech processing,

control theory, finance, and game theory, optimization is often formulated

naturally with polynomial constraints; examples include Markov models, op-

timal control, option pricing, and Nash equilibria. Polynomial methods pro-

vide a natural tool to either exactly or approximately solve these diverse

problems in both theory and practice and are increasingly in evidence. In

this dissertation, we study the following polynomial methods.

Polynomial approximation. Approximation is one philosophy of science

that simplifies complicated theories, reveals the underlying structure and

aids the deep understanding of complicated objects, and is also naturally

required in practice. Polynomial approximation is one such subject and is

one of the most well-understood methods. For instance, Taylor’s polynomials

characterize the local behavior of a function, and are widely used in modern

solutions like gradient descent [2]; trigonometric polynomials represent func-

tions in the frequency domain, known as Fourier analysis in signal processing,

and help remove irrelevant noises and make the wireless communication pos-

sible [5, 6]. In statistical inference, a good polynomial is a natural proxy for

the property of interest, which is represented as a function of the underlying

distribution, a data generating model that is unknown or partially unknown.

The property itself might be difficult to estimate, and classical methods yield
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poor accuracy or require a colossal number of samples. Nevertheless, we can

first find a good approximant for the original function as a proxy property

that is easy to estimate, and then focus on this approximant. The degree of

approximation aims for a tradeoff between approximation error and estima-

tion error, which is a balance between bias and variance from a statistical

viewpoint.

Moments and positive polynomials. The theory of moments plays a

key role in the developments of analysis, probability, statistics, and opti-

mization. See the classics [7, 8] and the recent monographs [9, 10] for a

detailed treatment. In statistical inference, the method of moments was

originally introduced by Pearson [11] and its extensions have been widely

applied in practice, for instance, to analyze economic and financial data [12].

The method of moments estimates are obtained by solving polynomial equa-

tions. They are useful for their simplicity, especially in models without the

complete specification of the joint distribution of data, and also in cases when

data might be contaminated. Moments of a distribution satisfy many geo-

metric properties such as the Cauchy-Schwarz and Hölder inequalities, and a

complete description can be phrased in terms of positive polynomials (Riesz-

Haviland representation theorem). Positive polynomials are further closely

related to sums of squares, which is equivalent to positive semidefiniteness of

the representing matrix (see Section 2.3).

1.2 Polynomial methods in practice

We will apply the above two polynomial methods in the following two types

of statistical inference problems, respectively.

Estimating distributional properties on large domains. Given sam-

ples drawn from an unknown distribution, the goal is to estimate a specific

property of that distribution, such as information measures and the support

size. This falls under the category of functional estimation [13], where we

are not interested in directly estimating the high-dimensional parameter (the

distribution P ) per se, but rather a function thereof. Estimating a distribu-

tional functional has been intensively studied in nonparametric statistics,
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e.g., estimate a scalar function of a regression function such as linear func-

tional [14, 15], quadratic functional [16], Lq norm [17], etc. To estimate a

function, perhaps the most natural idea is the “plug-in” approach, namely,

first estimate the parameter and then substitute into the function. As fre-

quently observed in functional estimation problems, the plug-in estimator

can suffer from severe bias (see [18, 19] and the references therein). Indeed,

although plug-in estimate is typically asymptotically efficient and minimax

(cf., e.g., [20, Sections 8.7 and 8.9]), in the fixed alphabet regime, it can be

highly suboptimal in high dimensions, where, due to the a large alphabet size

and resource constraints, we are constantly contending with the difficulty of

undersampling in applications such as

• corpus linguistics: about half of the words in the Shakespearean canon

only appeared once [21];

• network traffic analysis: many customers or website users are only seen

a small number of times [22];

• analyzing neural spike trains: natural stimuli generate neural responses

of high timing precision resulting in a massive space of meaningful

responses [23, 24, 25].

In this dissertation, we focus on estimating some classical properties of inter-

est including Shannon entropy and the number of unseen. Those properties

can be easily estimated if the number of samples far exceeds the size of the

underlying distribution, but how can it be done if the samples are relatively

scarce, such as only a sublinear number of samples are available? It turns out

the best polynomial approximation provides a principled approach to design

an optimal estimator.

Learning Gaussian mixtures. A sample from a mixture model can be

viewed as being generated by a two-step process: first draw a parameter θ

from the unknown mixing distribution; then draw a sample from Pθ. If we are

only given unlabeled data from the mixture model, can we reconstruct the

parameters in each components efficiently? In the special case that each Pθ

is a Gaussian distribution, this is the problem of learning Gaussian mixtures.

Learning Gaussian mixtures has a long history dating back to the work of

Pearson [11], where the method of moments was first introduced. Despite its
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long history, it is still one part of the core machine learning toolkit, such as

the popular scikit-learn package in Python [26], Google’s Tensorflow [27], and

Spark’s MLlib [28], but very few provable guarantees are available. It is until

recently proved in [29, 30] that a mixture of constant number of components

can be learned in polynomial time using a polynomial number of samples.

The sharp rate error rate for learning a mixture of two univariate Gaussians

is proved more recently in [31]. What is a systematic way to obtain the

sharp error rates, and what is the best way to learn a Gaussian mixture?

We will investigate the moment methods for optimal estimation of Gaussian

mixtures.

1.3 Polynomial methods in the theoretical limits

In this dissertation, we also study the fundamental limits of statistical in-

ference. While the use of polynomial methods on the constructive side is

admittedly natural, the fact that it also arises in the optimal lower bound is

perhaps surprising. It turns out the optimality can be established via duality

in the optimization sense that will be elaborated in this section.

To give a precise definition of the fundamental limits, we begin with an

account of the general framework for statistical inference. We assume that an

observation X is generated from an unknown distribution P from a space of

distributions P . The goal is to estimate some properties of that distribution

T (P ). See an illustration of this framework in Figure 1.1. In the problems

introduced above, we consider the following two types of properties:

• Estimating distributional properties: T (P ) is a functional of the un-

known distribution P , such as the Shannon entropyH(P ) =
∑

i pi log 1
pi

and the support size S(P ) =
∑

i 1{pi>0} of a discrete distribution

P = (p1, p2, . . .).

• Learning Gaussian mixtures: T (P ) represents the parameters, includ-

ing the mean, variance, and the mixing weights, of each Gaussian com-

ponent. Equivalently, T (P ) can be viewed as the mixing distribution

of the mixture model (see Chapter 6).

For a loss function `(T̂ , T (P )) that penalizes the output of an estimator T̂ ,
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P T (P )

X = (X1, . . . , Xn)

Figure 1.1: Illustration of information flow in statistical inference.

the decision-theoretic fundamental limit is defined as the minimiax risk

R∗n , inf
T̂

sup
P∈P

EP [`(T̂ , T (P ))], (1.1)

where T̂ is an estimator measurable with respect to n independent sam-

ples X1, . . . , Xn ∼ P . Examples of the loss function include quadratic loss

`(x, y) = ‖x− y‖2
2 and zero-one loss `(x, y) = 1{‖x−y‖2>ε} for a desired accu-

racy ε. For the zero-one loss, we also consider the sample complexity.

Definition 1.1. For a desired accuracy ε and confidence 1 − δ, the sample

complexity is the minimal sample size n such that there exists an estimator

T̂ based on n samples drawn independently from a distribution P such that

P[|T̂ − T (P )| < ε] ≥ 1− δ for any P ∈ P .

In this dissertation, the fundamental limits of statistical inference refer

to a characterization of the minimax risk (1.1) or the sample complexity

in Definition 1.1. These involve an upper bound given by the statistical

guarantees of estimators and a minimax lower bound.

A general idea for obtaining lower bounds is based on a reduction of esti-

mation to testing (Le Cam’s method). If there are two distributions P and

Q that cannot be reliably distinguished based on a given number of samples,

while T (P ) and T (Q) are different, then any estimate suffers a maximum risk

at least proportional to the distance between T (P ) and T (Q). The above two

distributions can be generalized to two priors on the space of all distributions

(also known as fuzzy hypothesis testing in [32]). Here the polynomial meth-

ods enter the scene again: statistical closeness between two distributions can

be established by comparing their moments, which is exactly the basis for

the moment methods!

To implement the above lower bound program, the strategy is to choose

two priors with matching moments up to a certain degree, which ensures that

the induced distributions of data are impossible to test. The minimax lower
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bound is then given by the maximal separation in the expected functional

values subject to the moment matching condition. It turns out this opti-

mization problem is the dual problem of the best polynomial approximation.

This approach yields the optimal minimax lower bounds in the statistical

inference problems investigated in this dissertation.

1.4 Dissertation organization

A plot of this dissertation is shown in Figure 1.2.

Theory of polynomials Statistical procedure

Fundamental limit

polynomial equations moment methods moment comparison

positive polynomials moment space

polynomial approximation

property approximation

moment matching
special case

dual

Figure 1.2: A diagram of topics in the dissertation.

A background on the theory of polynomials is briefly introduced in Chap-

ter 2, including polynomial approximation, interpolation, theory of moments

and positive polynomials, and orthogonal polynomials.

Part I is devoted to property estimation. In Chapter 3, common techniques

are introduced, including Poisson sampling, approximation-theoretical tech-

niques for constructing the statistical procedures, and moment matching for

the minimax lower bounds. The problem of entropy estimation is studied in

detail in Chapter 4. In Chapter 5, we studied the estimation of the unseen,

including support size estimation and the distinct elements problem.

Learning Gaussian mixtures in Part II relies on the moment methods. A

general framework is established in Chapter 6, and moment comparison theo-

rems are developed in Chapter 7. These results are independent of properties

of Gaussians and are applicable to general mixture models. Estimators and

their statistical guarantees are given in Chapter 8.
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CHAPTER 2

BACKGROUND ON THE THEORY OF
POLYNOMIALS

We begin with background on polynomials that are useful in statistical in-

ference. For a comprehensive survey on the theory of polynomials see the

monographs by Prasolov [33] and Timan [34]. Our focus is on the algebraic

(ordinary) polynomials in one variable. Extensions to trigonometric polyno-

mials and multivariate polynomials are briefly introduced. See [34] for more

details.

The simplest polynomials are functions of one variable x of the form

pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

for some n ∈ N, where a0, a1, . . . , an are arbitrary real or complex coeffi-

cients. The degree of a polynomial is the highest power in x with a non-zero

coefficient. The set of all polynomials is a vector space P over the field of

coefficients with countably infinite dimensions; if one restricts to polynomials

of degree at most n, then it is a vector space Pn of n+ 1 dimensions.

The canonical basis for the polynomials space is the monomial basis, with

coordinates being the coefficients of polynomials. Any set of n+1 polynomials

{p0, p1, . . . , pn} such that each pm has degree m can serve as a basis for

the polynomials space Pn, and every polynomial of degree at most n can

be uniquely represented by a linear combination of these polynomials via a

change of basis.

Trigonometric polynomials are functions in θ of the form

pn(θ) =
n∑
k=0

(ak cos kθ + bk sin kθ),

with coefficients ak and bk. The degree of a trigonometric polynomial is

the largest k such that ak and bk are not both zero. The functions cos kθ

and sin(k + 1)θ/ sin θ are ordinary polynomials in cos θ, named Chebyshev
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polynomials of the first and second kind, respectively:

cos kθ = Tk(cos θ),
sin(k + 1)θ

sin θ
= Uk(cos θ). (2.1)

Multivariate polynomials of variable x = (x1, . . . , xn) are finite linear com-

binations of monomials xα = xα1
1 . . . xαnn with α = (α1, . . . , αn) ∈ Nn of the

form

p(x) =
∑
α

cαx
α,

with coefficients cα. The degree of a multivariate polynomial is the largest k

such that there exists non-zero cα with α1 + · · ·+ αn = k.

2.1 Uniform approximation and moment matching

One fundamental theorem in the approximation theory was discovered by

Weierstrass.

Theorem 2.1 (Weierstrass). Given a function f that is continuous on the

interval [a, b], and any ε > 0, there exists a polynomial p such that

|f(x)− p(x)| < ε, ∀x ∈ [a, b].

If f is continuous and has the period 2π, then there exists a trigonometric

polynomial q such that

|f(x)− q(x)| < ε, ∀x.

This theorem has been proved in a great variety of ways, and can be

generalized to the approximation of multivariate continuous functions in a

closed bounded region. For more information on this theorem, refer to [34,

Chapter 1]. In the first case of the theorem, one very elegant construction is

the Bernstein polynomial to approximate continuous functions on [0, 1]:

Bn(x) =
n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k. (2.2)

The approximation of a function f using Bernstein polynomials can be char-
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acterized in terms of the modulus of continuity

ω(δ) = sup{f(x)− f(y) : |x− y| ≤ δ}.

Clearly ω(δ) vanishes with δ if f is a continuous function.

Theorem 2.2 (T. Popoviciu). Given a continuous function f on [0, 1],

sup
0≤x≤1

|f(x)−Bn(x)| ≤ 5

4
ω(n−

1
2 ).

Proof. Note that the Bernstein polynomials can be expressed using the bi-

nomial distributions as

Bn(x) = E[f(N/n)],

where N ∼ binomial(n, x). For any δ > 0,

|f(x)−Bn(x)| ≤ E|f(x)− f(N/n)|1{|x−Nn |≤δ}|+

E|f(x)− f(N/n)|1{|x−Nn |>δ}.

To prove an upper bound of the right-hand side, we note that |f(x)−f(y)| ≤
1 + b |x−y|

δ
cω(δ). Then we have

|f(x)−Bn(x)| ≤ ω(δ) +
ω(δ)

δ
E
∣∣∣∣x− N

n

∣∣∣∣1{|x−Nn |>δ}.
The variance of the binomial distribution gives

E
∣∣∣∣x− N

n

∣∣∣∣1{|x−Nn |>δ} < 1

δ
E
∣∣∣∣x− N

n

∣∣∣∣2 =
x(1− x)

nδ
≤ 1

4nδ
.

The statement is established by choosing δ = n−1/2.

The approximation using the Bernstein polynomial is in general not as

good as other polynomials. Using the Bernstein polynomial, the rate ω(n−
1
2 )

in Theorem 2.2 cannot be replaced by other functions decreasing more rapidly.

This can be shown by considering the approximation of f(x) = |x− x0|α for

some fixed 0 < x0 < 1 and 0 < α ≤ 1. However, a continuous function can

be better approximated by polynomials indicated by Jackson [35].

Theorem 2.3 (Jackson). Given a continuous function f on [0, 1], there exists

10



a polynomial Pn of degree at most n such that

sup
0≤x≤1

|f(x)− Pn(x)| ≤ 3ω(n−1).

For information concerning this theorem we refer to [35]. Generalizations

and extensions, called Jackson-type theorems, provide degree of approxima-

tion in terms of various notions of modulus of continuity. The uniform ap-

proximation of the logarithm function is studied in Section 4.3.4 for entropy

estimation. See [34, Chapter V] and [36, Chapter 7] for more constructive

approximations.

2.1.1 Best uniform approximation

Given a continuous function f on an interval [a, b], its best uniform approx-

imation by Pn is Pn ∈ Pn such that

sup
x∈[a,b]

|f(x)− Pn(x)| = inf
P∈Pn

sup
x∈[a,b]

|f(x)− P (x)|. (2.3)

The concept of uniform approximation is introduced by Chebyshev. The best

polynomial always exists and is unique (see, e.g., [36, Chapter 3]), with the

following remarkable characterization.

Theorem 2.4 (Chebyshev). A polynomial Pn ∈ Pn is the best uniform

approximation of a continuous function f on [a, b] by Pn if and only if

there exists n + 2 points xj, a ≤ x0 < · · · < xn+1 ≤ b such that f(xj) −
Pn(xj) = ± supx∈[a,b] |f(x) − P (x)| with successive changes of sign, i.e.,

f(xj+1)− Pn(xj+1) = −(f(xj)− Pn(xj)) for j = 0, . . . , n.

This statement holds in general besides polynomials for any Haar system,

such as the ordinary polynomials on the complex plane and the trigonometric

polynomials. See [36, Section 3.3 – 3.5] for a proof of this theorem and more

information.

Finding the exact magnitude of the best approximation and the explicit

formula of the best polynomial is of special interest in each concrete case.

See [34, Section 2.11] for examples with explicit solutions. We shall give one

example investigated by Chebyshev, where the polynomial will be used in

Chapter 5 for estimating the unseen.
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Theorem 2.5. For n ∈ N, the polynomial of degree n with unitary leading

coefficient of the least deviation from zero over [−1, 1] is 1
2n−1Tn(x), where Tn

is the Chebyshev polynomial of the first kind of degree n given by (2.1). The

least deviation is 1
2n−1 .

Proof. We observe that the problem is equivalent to finding the best poly-

nomial of degree n− 1 to approximate x 7→ xn over [−1, 1]:

inf
a0,...,an−1

sup
x∈[−1,1]

|xn − an−1x
n−1 − · · · − a1x1 − a0|.

The polynomial 1
2n−1Tn(x) is monic (i.e., with unitary leading coefficient)

with maximum magnitude 1
2n−1 . The Chebyshev polynomial Tn successively

attains 1 or −1 at cos(kπ/n) for k = 0, . . . , n. The optimality of 1
2n−1Tn(x)

follows from Theorem 2.4.

The best polynomial of degree n can be obtained by solving the following

linear program with n+ 2 decision variables and infinite constraints:

min t,

s.t. a0 + a1x+ · · ·+ anx
n − t ≤ f(x), x ∈ [a, b],

a0 + a1x+ · · ·+ anx
n + t ≥ f(x), x ∈ [a, b].

(2.4)

In practical computing of the best polynomial, the solution can be approx-

imated by seeking the optimum over a discrete set of constraints replacing

the continuum. Rather than discrete analogues, the original problem can be

solved by the Algorithm 2.1 (Remez algorithm).

2.1.2 Dual of best uniform approximation

The dual (infinite dimensional) linear program of (2.4) is a moment matching

problem

max

∫
fdµ−

∫
fdν,

s.t.

∫
xjdµ =

∫
xjdν, j = 0, . . . , n,∫

dµ+

∫
dν = 1,

µ, ν are positive measures on [a, b].

(2.5)
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Algorithm 2.1 Remez algorithm.

Input: a continuous function f , an interval [a, b], a degree n.
Output: a polynomial P of degree at most n.

1: Initialize n+ 2 points a ≤ x0 < x1 < · · · < xn+1 ≤ b.
2: repeat
3: Solve the system of linear equations

f(xj)−Qn(xj) = (−1)jδ, j = 0, . . . , n+ 1,

where Qn(x) =
∑n

i=0 aix
i, with respect to unknowns δ, a0, . . . , an.

4: Find ξ and d such that

|f(ξ)−Qn(ξ)| = max
x∈[a,b]

|f(x)−Qn(x)| = d.

5: Update the sequence x0 < · · · < xn+1 by replacing one xj by ξ such
that f −Qn successively changes sign.

6: until stopping criterion is satisfied.
7: Report Qn.

The constraint imposes that the measures µ and ν matching moments up to

degree n. In this problem, strong duality can be shown by verifying sufficient

conditions in general convex optimization (see [37, pp. 48–50]). In the primal

problem, as a consequence of Chebyshev’s characterization in Theorem 2.4,

only n + 2 constraints are binding in the optimal solution. Consequently,

in the dual problem, the optimal µ∗ and ν∗ are supported on n + 2 atoms

by complementary slackness. The dual solution can be obtained accordingly

from the primal solution.

Theorem 2.6. Suppose the maximum deviation of the best polynomial P ∗ in

(2.3) is attained at a ≤ x0 < · · · < xn+1 ≤ b. The dual optimal solution of

(2.5) is

µ∗{xi} =
wi

w0 + w1 + · · ·+ wn+1

, f(xi) > P ∗(xi),

ν∗{xi} =
wi

w0 + w1 + · · ·+ wn+1

, f(xi) < P ∗(xi),

where wi = (
∏

j 6=i |xi − xj|)−1.

Proof. By Theorem 2.4, f(xi)− P ∗(xi) successively changes sign. Hence, µ∗

is supported on either {x0, x2, . . . } or {x1, x3, . . . } and ν∗ is supported on

13



the rest. Denote the maximum deviation of P ∗ by ε. Then f − P ∗ is almost

surely ε and −ε under µ∗ and ν∗, respectively.

We first verify the feasibility. For each m ∈ {0, 1, . . . , n}, consider a

polynomial P (x) =
∑

i x
m
i

∏
j 6=i(x−xj)∏
j 6=i(xi−xj)

of degree at most n + 1. P (x) coin-

cides with xm on n + 2 distinct points x0, . . . , xn+1. Hence P (x) = xm and∑
i

xmi∏
j 6=i(xi−xj)

= 0.

For optimality it suffices to show a zero duality gap:∫
fdµ∗ −

∫
fdν∗ =

∫
(f − P ∗)dµ∗ −

∫
(f − P ∗)dν∗ = ε.

The first equality is due to moment matching constraints.

Remark 2.1. Alternatively, the achievability part can be argued from an

optimization perspective (zero duality gap, see [38, Exercise 8.8.7, p. 236]),

or using the Riesz representation of linear operators as in [36], which has

been used in [17] and [39].

2.2 Polynomial interpolation

Interpolation is a method of estimating values within the range of given

data points. Given a discrete set of data points (xi, fi) for i = 0, . . . , n, the

interpolation problem consists of finding a simple function Φ such that

Φ(xi) = fi, i = 0, . . . , n.

Examples of the simple function Φ include an ordinary polynomial and a

trigonometric polynomial of the lowest degree. Interpolation is also a basic

tool for the approximation. For a comprehensive survey on related topics,

see [40].

2.2.1 Interpolation formulas of Lagrange and Newton

Theorem 2.7. Given n+1 distinct data points (xi, fi) for i = 0, . . . , n, there

exists a unique interpolating polynomial P of degree at most n such that

P (xi) = fi, i = 0, . . . , n.
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Proof. Given two interpolating polynomials P and P ′ of degree at most n,

the polynomial Q = P − P ′ is of degree at most n satisfying Q(xi) = 0

for i = 0, . . . , n. Q ≡ 0 and the uniqueness follows. Existence is given by

Lagrange or Newton formula discussed next.

The interpolating polynomial P can be explicitly constructed with the help

of Lagrange basis:

Li(x) =
∏
j 6=i

x− xj
xi − xj

=

1, x = xi,

0, x = xj, j 6= i.

Applying the above basis, we obtain the Lagrange formula

P (x) =
n∑
i=0

fiLi(x). (2.6)

Alternatively, the Newton formula for the interpolating polynomial is of

the form

P (x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + . . .

+an(x− x0) · · · (x− xn−1). (2.7)

The coefficients can be successively calculated by

f0 = P (x0) = a0,

f1 = P (x1) = a0 + a1(x1 − x0),

. . .

In general, they coincide with the divided differences ak = f0...k that are

recursively defined as

fi0i1...ik =
fi1...ik − fi0...ik−1

xik − xi0
. (2.8)

The above recursion can be calculated on the Neville’s diagram (cf. [41, Sec-

tion 2.1.2]) shown in Figure 2.1. In Neville’s diagram, the kth order divided

differences are computed in the kth column, and are determined by the previ-

ous column and the interpolation nodes x0, . . . , xn. The coefficients in (2.7)
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x0

f0

...

x1

f1

...x2

f2

...

f01

f12

f012

f0...n

xn

...

fn

k = 0 1 2 . . . n

Figure 2.1: Illustration of Neville’s digram.

are found in the top diagonal. In Chapter 7 Neville’s diagram will be used

to bound the coefficients in Newton formula (2.7).

If the data points are with values fi = f(xi) of a given function f on a set

of distinct points (commonly referred to as nodes) {x0, . . . , xn}, the divided

difference fi0...ik can be considered as a multivariate function of the nodes

xi0 , . . . , xik and is denoted by f [xi0 , . . . , xik ]. If f is kth order differentiable,

then its kth order divided differences are connected to its derivatives by the

Genocchi-Hermite formula

f [x0, . . . , xk] =

∫ 1

0

∫ s1

0

· · ·
∫ sk−1

0

f (k)((1− s1)x0 + . . .

+(sk−1 − sk)xk−1 + skxk)dsk . . . ds1. (2.9)

Concerning information on this formula and other representations of the

divided differences, see [42].

Equation (2.9) can generalize the divided differences by allowing repeated

xi:

f [x0, . . . , xk] =
f (k)(x0)

k!
, x0 = x1 = · · · = xk. (2.10)

The above generalization will be very useful when incorporating information

on derivatives, called Hermite interpolation discussed in Section 2.2.2.

The remainder in the polynomial interpolation can be conveniently ex-

pressed in terms of the divided differences

R(x) , f(x)− P (x) = f [x0, . . . , xn, x]
n∏
i=0

(x− xi). (2.11)
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If the function f is (n + 1)th order differentiable, then the remainder term

can be represented using (2.9) by

R(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi), (2.12)

for some ξ in the convex hull of {x0, . . . , xn, x}.
Equation (2.12) can be applied to analyze the approximation error of the

interpolation polynomials on a given set of nodes. A special case is on the

Chebyshev nodes, which on [a, b] is given by

xi =
b+ a

2
+
b− a

2
cos

(
2k + 1

2n+ 2
π

)
, k = 0, . . . , n,

which yields that (see [43, Eq. (4.7.28)])

|R(x)| ≤
maxx∈[a,b] |f (n+1)(x)|

2n(n+ 1)!

(
b− a

2

)n+1

, x ∈ [a, b]. (2.13)

Interpolating polynomials are the main tool to prove moment comparison

theorems in Chapter 7. Specifically, we will interpolate step functions by

polynomials in order to bound the difference of two CDFs via their moment

difference. Therefore, it is critical to have good control over the coefficients

of the interpolating polynomial. To this end, it turns out the Newton form

is more convenient to use than the Lagrange form because the former takes

into account the cancellation between each terms in the polynomial. Indeed,

in the Lagrange form (2.6), if two nodes are very close, then each term can

be arbitrarily large, even if f itself is a smooth function. In contrast, each

term of (2.7) is stable when f is smooth since divided differences are closely

related to derivatives. The following example and Figure 2.2 illustrate this

point.

Example 2.1 (Lagrange versus Newton form). Given three points x1 =

0, x2 = ε, x3 = 1 with f(x1) = 1, f(x2) = 1 + ε, f(x3) = 2, the interpolating

polynomial is P (x) = x + 1. The next equation gives the interpolating
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polynomial in Lagrange’s and Newton’s form respectively.

Lagrange: P (x) =
(x− ε)(x− 1)

ε
+ (1 + ε)

x(x− 1)

ε(ε− 1)
+ 2

x(x− ε)
1− ε

;

Newton: P (x) = 1 + x+ 0.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-0.5  0  0.5  1  1.5

(a) Lagrange formula

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-0.5  0  0.5  1  1.5

(b) Newton formula

Figure 2.2: Interpolation on three data points (0, 1), (0.1, 1.1), and (1, 2) in
black dots. (a) Illustration of three terms in Lagrange formula in dashed
lines, and the interpolating polynomial in the solid line as a summation of
three terms. (b) Illustration of three terms in Newton formula in dashed
lines, and the same interpolating polynomial.

Although we will mainly use Newton formula in Part II, this is not to

say Lagrange formula has no advantage. Lagrange formula is theoretically

important in the development of numerical analysis. While it was rarely used

in practice for many years, a variant of this formula is recently found to be

practically advantageous and is widely implemented, especially in situations

where the interpolating nodes xi are fixed. See [44].

2.2.2 Hermite interpolation

Polynomial interpolation can be generalized to interpolate the value of deriva-

tives, known as the Hermite interpolation.

Theorem 2.8. Given n + 1 distinct real numbers x0 < x1 < · · · < xn,

and values f
(k)
i for i = 0, . . . , n and k = 0, . . . ,mi, there exists a unique

polynomial of degree at most N = n+
∑

imi such that

P (k)(xi) = f
(k)
i , i = 0, . . . , n, k = 0, . . . ,mi.
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Proof. Given two interpolating polynomials P and P ′ of degree at most N ,

the polynomial Q = P −P ′ is of degree at most N and satisfies Q(k)(xi) = 0

for i = 0, . . . , n and k = 0, . . . ,mi. Therefore, each xi is a root of Q of

multiplicities mi + 1. Since
∑

i(mi + 1) > N , Q ≡ 0, and the uniqueness fol-

lows. The existence is given by the generalized Lagrange or Newton formula

introduced next.

Analogous to the Lagrange formula (2.6), the interpolating polynomial can

be explicitly constructed with the help of the generalized Lagrange polyno-

mials Li,k satisfying

L
(k′)
i,k (xi′) =

1, i = i′, k = k′,

0, otherwise.

For an explicit formula of the generalized Lagrange polynomials, see [41, pp.

52–53]. The Hermite interpolating polynomial can be simply written as

P (x) =
∑
i,k

f
(k)
i Li,k(x).

The procedure to evaluate the generalized Lagrange polynomials is tedious

even for a small number of data points. The Newton formula (2.7) can also be

extended by using generalized divided differences, which, for repeated nodes,

is defined as the value of the derivative:

fi...i+r =
f (r)(x0)

r!
, xi = xi+1 = . . . = xi+r. (2.14)

To this end, we define an expanded sequence by replacing each xi for ki times:

x0 = . . . = x0︸ ︷︷ ︸
k0

< x1 = . . . = x1︸ ︷︷ ︸
k1

< . . . < xm = . . . = xm︸ ︷︷ ︸
km

. (2.15)

The Hermite interpolating polynomial is obtained by (2.7) using this new

sequence and generalized divided differences, which can also be calculated

from the Neville’s diagram by replacing differences by derivatives whenever

encountering repeated nodes. When the data points are from a given function

f , the remainder equations (2.11) and (2.12) remain valid. Below we give an

example using Hermite interpolation to construct polynomial majorization,
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Table 2.1: Interpolation values of f .

x −1 0 1
P (x) 1 1 0
P ′(x) 0 any 0

which will be used to prove moment comparison theorems in Chapter 7.

Example 2.2 (Hermite interpolation as polynomial majorization). Let f(x) =

1{x≤0}. We want to find a polynomial majorization P ≥ f such that P (x) =

f(x) on x = ±1. To this end we interpolate f on {−1, 0, 1} with values in

Table 2.1. The Hermite interpolation P is of degree four and majorizes f [45,

p. 65]. To see this, we note that P ′(ξ) = 0 for some ξ ∈ (−1, 0) by Rolle’s

theorem. Since P ′(−1) = P ′(1) = 0, P has no other stationary point than

−1, ξ, 1, and thus decreases monotonically in (ξ, 1). Hence, −1, 1 are the only

local minimum points of P , and thus P ≥ f everywhere. The polynomial P

is shown in Figure 2.3b.

To explicitly construct the polynomial, we have an expanded sequence

−1,−1, 0, 1, 1 by (2.15). Applying Newton formula (2.7) with generalized

divided differences from the Neville’s diagram Figure 2.3a, we obtain that

P (x) = 1− 1
4
x(x+ 1)2 + 1

2
x(x+ 1)2(x− 1).

1

1

1

0

0

0

0

−1

0

0

−1/2

1

−1/4

3/4

1/2

t0 = −1

t1 = −1

t2 = 0

t3 = 1

t4 = 1

(a) Neville’s diagram.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

(b) Hermite interpolation.

Figure 2.3: Neville’s diagram and Hermite interpolation. In (a), values are
recursively calculated from left to right. For example, the red thick line
shows that f [−1,−1, 0, 1] is calculated by −1/2−0

1−(−1)
= −1/4.
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2.3 Moments and positive polynomials

The nth moment vector of a distribution µ is an n-tuple

mn(µ) = (m1(µ), . . . ,mn(µ)).

The nth moment space on K ⊆ R is defined as

Mn(K) = {mn(µ) : µ is supported on K},

which is the convex hull of {(x, x2, . . . , xr) : x ∈ K}. This convex set satisfies

many geometric constraints such as the Cauchy-Schwarz and Hölder inequal-

ities. A complete description can be phrased in terms of positive polynomials

by the next theorem. Note that a sequence of numbers (m1,m2, . . . ) can be

viewed as values of a linear functional L such that L(xj) = mj. It is in the

full moment space, i.e., the first n numbers is in the nth moment space for

every n, if there exists a representation measure µ such that L(p) =
∫
pdµ for

every polynomial p. Apparently, if the sequence is in the moment space, then

for every positive polynomial p ≥ 0 we have L(p) ≥ 0. The next theorem

shows that the converse also holds.

Theorem 2.9 (Riesz-Haviland). Let K ⊆ R be closed. If L is a linear

functional such that L(p) ≥ 0 for every positive polynomial p ≥ 0 on K, then

there exists a representing measure µ for L, i.e., L(p) =
∫
pdµ for every

polynomial p.

A truncated sequence (m1, . . . ,mn) can be similarly viewed as values of a

linear functional on Pn, the set of all polynomials of degree at most n, such

that L(xj) = mj. The truncated moment space can also be characterized in

terms of positive polynomials by Theorem 2.10.

Theorem 2.10. Let K ⊆ R be compact. If L is a linear functional on Pn
such that L(p) ≥ 0 for every p ≥ 0 on K, then there exists a representing

measure µ for L, i.e., L(p) =
∫
pdµ for every p ∈ Pn.

The above theorems can be generalized to multiple dimensions. For the

proofs of these theorems, see [10, pp. 17–18]. However, an efficient charac-

terization of positive polynomials is not known in general in multiple dimen-

sions. On the real line, positive polynomials have representations using sum
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of squares in the next proposition ([10, Propositions 3.1–3.3]). We denote

the set of finite sum of squares p2, where p ∈ Pn, by S2
n.

Proposition 2.1.

• p ≥ 0 on R, deg(p) = 2n ⇒ p(x) = f(x)2 + g(x)2, f, g ∈ Pn.

• p ≥ 0 on [0,∞), deg(p) = 2n⇒ p(x) = f(x)+xg(x), f ∈ S2
n, g ∈ S2

n−1.

• p ≥ 0 on [0,∞), deg(p) = 2n+ 1 ⇒ p(x) = f(x) + xg(x), f, g ∈ S2
n.

• p ≥ 0 on [a, b], deg(p) = 2n ⇒ p(x) = f(x) + (b − x)(x − a)g(x),

f ∈ S2
n, g ∈ S2

n−1.

• p ≥ 0 on [a, b], deg(p) = 2n + 1 ⇒ p(x) = (b − x)f(x) + (x − a)g(x),

f, g ∈ S2
n.

Using the above results, next we derive the characterization of the trun-

cated moment space on a compact interval K = [a, b], namelyMn([a, b]) that

was obtained in [7, Theorem 3.1]. Other cases can be obtained analogously

(see [10, Parts II–III] and [9, Chapter 3]). To state the result we abbreviate

the Hankel matrix with entries mi,mi+1, . . . ,mj by

Mi,j =


mi mi+1 · · · m i+j

2

mi+1 mi+2 · · · m i+j
2

+1

...
...

. . .
...

m i+j
2

m i+j
2

+1 · · · mj

 .

The matrix Mn = M0,n is also referred to as the moment matrix of order n,

a Hankel matrix of size (n+ 1)× (n+ 1).

Theorem 2.11. A vector mn = (m1, . . . ,mn) is in the moment spaceMn([a, b])

if and only if Mn � 0, (a+ b)M1,n−1 � abMn−2 + M2,n, n even,

bMn−1 �M1,n � aMn−1, n odd.
(2.16)

Proof. If n is even, by Theorem 2.10 and Proposition 2.1, mn ∈ Mn([a, b])

if and only if L(p2) ≥ 0 for every p ∈ Pn and L((b − x)(a − x)q2(x)) ≥ 0
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for every q ∈ Pn−1. These are equivalent to M0,n � 0 and (a + b)M1,n−1 �
abM0,n−2 + M2,n, respectively.

If n is odd, then mn ∈ Mn([a, b]) if and only if L((x − a)p2(x)) ≥ 0 and

L((b − x)p2(x)) ≥ 0 for every p ∈ Pn. These are equivalent to bM0,n−1 �
M1,n � aM0,n−1.

Remark 2.2. Alternatively, the above characterization of the moment space

can be obtained from the recursive properties of Hankel matrices. See [46].

Example 2.3 (Moment spaces on [0, 1]). M2([0, 1]) is simply described by

m1 ≥ m2 ≥ 0 and m2 ≥ m2
1. M3([0, 1]) is described by[

1 m1

m1 m2

]
�

[
m1 m2

m2 m3

]
� 0.

Using Sylvester’s criterion (see [47, Theorem 7.2.5]), they are equivalent to

0 ≤ m1 ≤ 1, m2 ≥ m3 ≥ 0,

m1m3 ≥ m2
2, (1−m1)(m2 −m3) ≥ (m1 −m2)2.

The necessity of the above inequalities is apparent: the first two follow from

the range [0, 1], and the last two follow from the Cauchy-Schwarz inequality.

It turns out that they are also sufficient.

Moment matrices of discrete distributions satisfy more structural proper-

ties. For instances, the moment matrix of a k-atomic distribution of any

order is of rank at most k, and is a deterministic function of m2k−1; the

number of atoms can be characterized using the determinants of moment

matrices (see [48, p. 362] or [49, Theorem 2A]) by Theorem 2.12.

Theorem 2.12. A sequence m1, . . . ,m2r is the moments of a distribution

with exactly r points of support if and only if det(Mr−1) > 0 and det(Mr) =

0.

2.4 Orthogonal polynomials and Gauss quadrature

The theory of orthogonal polynomials is another classical topic in the theory

of polynomials. The trigonometric polynomials used in Fourier analysis is one
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set of orthogonal polynomials on the unit circle. In general the orthogonality

of functions is defined as follows.

Definition 2.1. A set of functions {f1, . . . , fn} is orthogonal under the pos-

itive measure µ if

Eµ[fifj] =

∫
fifjdµ = 0, i 6= j.

Given a set of linear independent functions, an orthogonal set can be ob-

tained by the Gram-Schmidt orthogonalization process. In Section 2.4.1

we will review some classical orthogonal polynomials under commonly used

measures. Here we present the Gauss quadrature, an algorithm to find a

representing measure for a given vector of moments, that is based on the

general theory of orthogonal polynomials.

Gauss quadrature is a discrete approximation for a given distribution in

the sense of moments and plays an important role in the execution of our

Gaussian mixture estimator in Chapter 8. Given µ supported on K ⊆ R, a

k-point Gauss quadrature is a k-atomic distribution µk =
∑k

i=1wiδxi , also

supported on K, such that, for any polynomial P of degree at most 2k − 1,

EµP = EµkP =
k∑
i=1

wiP (xi). (2.17)

Gauss quadrature is known to always exist and is uniquely determined by

m2k−1(µ) (cf. e.g. [41, Section 3.6]), which shows that any valid moment

vector of order 2k − 1 can be realized by a unique k-atomic distribution. A

basic algorithm to compute Gauss quadrature is Algorithm 2.2 [50] and many

algorithms with improved computational efficiency and numerical stability

have been proposed; cf. [51, Chapter 3].

We briefly show the correctness of Algorithm 2.2. Note that in (2.18), Φ

is a polynomial of degree at most k. If (m1, . . . ,m2k−1) is the moments of a

distribution µ, then Φ is orthogonal to all polynomial P ∈ Pk−1 under µ (by

expanding the determinant with respect to the last row of (2.18) and taking
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Algorithm 2.2 Quadrature rule.

Input: a vector of 2k − 1 moments (m1, . . . ,m2k−1).
Output: nodes x = (x1, . . . , xk) and weights w = (w1, . . . , wk).

1: Define the following degree-k polynomial Φ

Φ(x) = det


1 m1 · · · mk
...

...
. . .

...
mk−1 mk · · · m2k−1

1 x · · · xk

 . (2.18)

2: Let the nodes (x1, . . . , xk) be the roots of the polynomial Φ.
3: Let the weights w = (w1, . . . , wk) be

w =


1 1 · · · 1
x1 x2 · · · xk
...

...
. . .

...
xk−1

1 xk−1
2 · · · xk−1

k


−1 

1
m1
...

mk−1

 .

expectations):

E[Φ(X)Xj] = det


1 m1 · · · mk

...
...

. . .
...

mk−1 mk · · · m2k−1

mj mj+1 · · · mj+k

 = 0, j ≤ k − 1.

For any polynomial P of degree 2k − 1, we have

P (x) = Φ(x)Q(x) +R(x),

where Q,R are polynomials of degree at most k − 1. The polynomial R can

be expressed by the Lagrangian interpolation formula

R(x) =
k∑
i=1

R(xi)

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

=
k∑
i=1

P (xi)

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

.

The following quadrature rule follows immediately from orthogonality:

E[P (X)] =
k∑
i=1

wiP (xi), wi ,
E
∏

j 6=i(X − xj)∏
j 6=i(xi − xj)

.
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It is necessary that wi ≥ 0. Consider the squared Lagrange basis Pi(x) =∏
j 6=i(x−xj)2∏
j 6=i(xi−xj)2 , which is a non-negative polynomial of degree 2k − 2. Then, by

the quadrature rule,

0 ≤ E[P (X)] =
k∑
j=1

wjPi(xj) = wi.

2.4.1 Classical orthogonal polynomials

In this subsection, we present some classical orthogonal polynomials along

with some properties that will be used in this dissertation.

Chebyshev polynomials Chebyshev polynomial Tn of degree n is defined

as

Tn(x) = cos(n arccosx) = (zL + z−L)/2, (2.19)

where z is the solution of the quadratic equation z + z−1 = 2x. They are

orthogonal with respect to the weight function (1− x2)−1/2:∫ 1

−1

Tn(x)Tm(x)(1− x2)−1/2dx =

∫ π

0

cos(nθ) cos(mθ)dθ

=


0, n 6= m,

π, n = m = 0,

π/2, n = m 6= 0.

They have the following algebraic formula:

Tn(x) =
n

2

bn/2c∑
k=0

(−1)k
(n− k − 1)!

k!(n− 2k)!
(2x)n−2k.

Hermite polynomials Denote the Hermite polynomial of degree n by

Hn. They are orthogonal under the standard normal distribution, i.e., for

Z ∼ N(0, 1),

E[Hn(Z)Hn(Z)] =

∫
Hn(x)Hm(x)φ(x)dx =

n! n = m,

0 n 6= m,
(2.20)
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where φ(x) , 1√
2π
e−x

2/2 denote the standard normal density, and Hn has the

following formula

Hn(x) = E(x+ iZ)n = n!

bn/2c∑
j=0

(−1/2)n

n!(n− 2j)!
xn−2j, (2.21)

where i =
√
−1. Hermite polynomials are the unique unbiased estimate of

the normal mean:

E[Hn(µ+ Z)] = µn.

The exponential generating function of Hermite polynomials is [52, 22.9.17]

∑
j≥0

Hj(x)
uj

j!
=
φ(x− u)

φ(x)
= e−

u2

2
+xu.

Laguerre polynomials The Laguerre polynomials are orthogonal under

the exponential distribution (i.e., with respect to the weight function e−x)

with the following close-form formula:

Ln(x) =
n∑
k=0

(
n

k

)
(−x)k

k!
. (2.22)

Denote the degree-n generalized Laguerre polynomial by L(k)
n that can be

obtained from Rodrigues representation:

L(k)
n (x) =

x−kex

n!

dn

dxn
(e−xxn+k) = (−1)k

dx

dkx
Ln+k(x), k ∈ N. (2.23)

Then the simple Laguerre polynomials are Ln(x) = L(0)
n . The orthogonality

is given by

∫ ∞
0

xke−xL(k)
n (x)L(k)

m (x) =


Γ(n+k+1)

n!
, n = m,

0, n 6= m.

The Laguerre polynomials have the following upper bound [52, 22.14.13]

|L(k)
n (x)| ≤

(
n+ k

n

)
ex/2, x ≥ 0, k ∈ N. (2.24)

Laguerre polynomials also appear in the second moments of factorial mo-
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ments under Poisson distribution in Chapter 4. The factorial moment is

defined as

(x)m ,
x!

(x−m)!
,

which gives an unbiased estimator for the monomials of the Poisson mean:

E[(X)m] = λm where X ∼ Poi(λ). The second moments of (X)m can be

expressed in terms of Laguerre polynomials. Using the probability mass

function of the Poisson distribution, we can explicitly compute E(X)2
m:

E(X)2
m =

∞∑
j=m

e−λλj

j!

j!2

(j −m)!2
= λmm!

∞∑
j=0

e−λλj

j!

(j +m)!

j!m!
.

The summation in the right-hand side can be expressed as an expectation of

a binomial coefficient

E
(
X +m

X

)
=

m∑
k=0

(
m

k

)
E
(

X

X − k

)
=

m∑
k=0

(
m

k

)
E(X)k
k!

.

Again using E(X)k = λk, we obtain that

E(X)2
m = λmm!

m∑
k=0

(
m

k

)
λk

k!
= λmm!Lm(−λ). (2.25)

Discrete Chebyshev polynomials The discrete Chebyshev polynomials,

denoted by {t0, . . . , tM−1}, are orthogonal with respect to the counting mea-

sure over the discrete set {0, 1, . . . ,M − 1} with the following formula [53,

Sec. 2.8]: for x = 0, 1, . . . ,M − 1,

tm(x) ,
1

m!
∆mpm(x) =

1

m!

m∑
j=0

(−1)j
(
m

j

)
pm(x+m− j), 0 ≤ m ≤M − 1,

(2.26)

where

pm(x) , x(x−1) · · · (x−m+1)(x−M)(x−M−1) · · · (x−M−m+1), (2.27)
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and ∆m denotes the m-th order forward difference. The orthogonality is

given by (cf. [53, Sec. 2.8.2, 2.8.3]):

M−1∑
x=0

tm(x)t`(x) = 0, m 6= `,

M−1∑
x=0

t2m(x) =
M(M2 − 12)(M2 − 22) · · · (M2 −m2)

2m+ 1
, c(M,m).

2.4.2 Gauss quadrature of the standard normal distribution

In this subsection we present a few properties of the Gauss quadrature of the

standard normal distribution that will be used in Chapter 8.

Lemma 2.1. Let gk be the k-point Gauss quadrature of N(0, σ2). For j ≥ 2k,

we have mj(gk) ≤ mj(N(0, σ2)) when j is even, and mj(gk) = mj(N(0, σ2)) =

0 otherwise. In particular, gk is σ-subgaussian.

Proof. By scaling it suffices to consider σ = 1. Let ν = N(0, 1). If j is odd,

mj(gk) = mj(ν) = 0 by symmetry. If j ≥ 2k and j is even, the conclusion

follows from the integral representation of the error term of Gauss quadrature

(see, e.g., [41, Theorem 3.6.24]):

mj(ν)−mj(gk) =
f (2k)(ξ)

(2k)!

∫
π2
k(x)dν(x),

for some ξ ∈ R; here f(x) = xj, {x1, . . . , xk} is the support of gk, and

πk(x) ,
∏

i(x− xi). Consequently, gk is 1-subgaussian [54, Lemma 2].

Lemma 2.2. Let gk be the k-point Gauss quadrature of N(0, 1). Then

Egk |X| ≥ (4k + 2)−1/2, k ≥ 2.

Proof. Let Gk ∼ gk. Note that |Gk| ≤
√

4k + 2 using the bound on the

zeros of Hermite polynomials [53, p. 129]. The conclusion follows from 1 =

E[G2
k] ≤ E|Gk|

√
4k + 2.

Lemma 2.3. Let gk be the k-point Gauss quadrature of N(0, 1). Then

Egk [Hj] = 0 for j = 1, . . . , 2k − 1, and Egk [H2k] = −k!, where Hj is the

Hermite polynomial of degree j (see (2.21)).
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Proof. Let Z ∼ N(0, 1) and Gk ∼ gk. By orthogonality of Hermite polyno-

mials (2.20) we have E[Hj(Z)] = 0 for all j ≥ 1 and thus E[Hj(Gk)] = 0 for

j = 1, . . . , 2k − 1. Expand H2
k(x) as

H2
k(x) = H2k(x) + a2k−1H2k−1(x) + · · ·+ a1H1(x) + a0.

SinceGk is supported on the zeros ofHk, we have 0 = E[H2
k(Gk)] = E[H2k(Gk)]+

a0. The conclusion follows from k! = E[H2
k(Z)] = a0 (see (2.20)).
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Part I

Property Estimation
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CHAPTER 3

POLYNOMIAL APPROXIMATION IN
STATISTICAL INFERENCE

In this part, we apply the polynomial approximation method in the estima-

tion of scalar properties T (P ) of a distribution P , including the Shannon

entropy and the support size. In this chapter, we begin with an investigation

on the common techniques that will be used in Part I.

3.1 Poisson sampling

Let P be a distribution over an alphabet of cardinality k. Let X1, . . . , Xn

be i.i.d. samples drawn from P . Without loss of generality, we shall assume

that the alphabet is [k] , {1, . . . , k}. To perform statistical inference on the

unknown distribution P or any functional thereof, a sufficient statistic is the

histogram N , (N1, . . . , Nk), where

Nj =
n∑
i=1

1{Xi=j} (3.1)

records the number of occurrences of j ∈ [k] in the sample. Then N ∼
multinomial(n, P ). To investigate the decision-theoretic fundamental limit

(1.1), we consider the minimax quadratic risk:

R∗(k, n) , inf
T̂

sup
P∈Mk

E(T̂ − T (P ))2,

where T̂ is an estimator measurable with respect to n independent samples,

and Mk denotes the set of probability distributions on [k].

The multinomial distribution of the sufficient statistic N = (N1, . . . , Nk) is

difficult to analyze because of the dependency. A commonly used technique

is the so-called Poisson sampling where we relax the sample size n from

being deterministic to a Poisson random variable n′ with mean n. Under
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this model, we first draw the sample size n′ ∼ Poi(n), then draw n′ i.i.d.

samples from the distribution P . The main benefit is that now the sufficient

statistics Ni
ind∼ Poi(npi) are independent, which significantly simplifies the

analysis.

Analogous to the minimax risk under multinomial sampling, we define its

counterpart under the Poisson sampling model:

R̃∗(k, n) , inf
T̂

sup
P∈Mk

E(T̂ − T (P ))2, (3.2)

where T̂ is an estimator measurable with respect to Ni
ind∼ Poi(npi) for

i = 1, . . . , k. In view of the exponential tail of Poisson distributions, the

Poissonized sample size is concentrated near its mean n with high proba-

bility, which guarantees that the minimax risk under Poisson sampling is

provably close to that with fixed sample size. Indeed, the next theorem

allows us to focus on the risk of the Poisson model.

Theorem 3.1. Let R∗k = R∗(k, 0) = ( supT (P )−inf T (P )
2

)2 where P ∈ Mk. For

any α > 0 and 0 < β < 1,

R̃∗(k, (1 + α)n)−R∗ke−nα
2/4 ≤ R∗(k, n) ≤ R̃∗(k, (1− β)n)

1− exp(−nβ2/2)
. (3.3)

Proof. We first prove the right inequality. We follow the same idea as in [55,

Appendix A] using the Bayesian risk as a lower bound of the minimax risk

with a more refined application of the Chernoff bound. We express the risk

under the Poisson sampling as a function of the original samples that

R̃∗(k, (1− β)n) = inf
{T̂m}

sup
P∈Mk

E[`(T̂n′ , T (P ))],

where {T̂m} is a sequence of estimators, n′ ∼ Poi((1 − β)n) and `(x, y) ,

(x − y)2 is the loss function. The Bayesian risk is a lower bound of the

minimax risk:

R̃∗(k, (1− β)n) ≥ sup
π

inf
{T̂m}

E[`(T̂n′ , T (P ))], (3.4)

where π is a prior over the parameter space Mk. For any sequence of esti-
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mators {T̂m},

E[`(T̂n′ , T )] =
∑
m≥0

E[`(T̂m, T )]P[n′ = m] ≥
n∑

m=0

E[`(T̂m, T )]P[n′ = m].

Taking infimum of both sides, we obtain

inf
{T̂m}

E[`(T̂n′ , T )] ≥ inf
{T̂m}

n∑
m=0

E[`(T̂m, T )]P[n′ = m]

=
n∑

m=0

inf
T̂m

E[`(T̂m, T )]P[n′ = m].

Note that for any fixed prior π, the function m 7→ inf T̂m E[`(T̂m, T )] is de-

creasing. Therefore

inf
{T̂m}

E[`(T̂n′ , T )] ≥ inf
T̂n

E[`(T̂n, T )]P[n′ ≤ n]

≥ inf
T̂n

E[`(T̂n, T )](1− exp(n(β + log(1− β))))

≥ inf
T̂n

E[`(T̂n, T )](1− exp(−nβ2/2)), (3.5)

where we used the Chernoff bound (see, e.g., [56, Theorem 5.4]) and the fact

that log(1 − x) ≤ −x − x2/2 for x > 0. Taking supremum over π on both

sides of (3.5), the conclusion follows from (3.4) and the minimax theorem

(cf. e.g. [57, Theorem 46.5]).

Next we prove the left inequality of (3.3). Recall that 0 ≤ R∗(k,m) ≤
R∗(k, 0) and m 7→ R∗(k,m) is decreasing. Therefore,

R̃∗(k, (1 + α)n) ≤
∑
m>n

R∗(k,m)P[n′ = m] +
∑

0≤m≤n

R∗(k,m)P[n′ = m]

≤ R∗(k, n) +R∗(k, 0)P[n′ ≤ n]

≤ R∗(k, n) +R∗(k, 0) exp(−n(α− log(1 + α)))

≤ R∗(k, n) +R∗k exp(−nα2/4),

where n′ ∼ Poi((1 + α)n) and we used the Chernoff bound and the fact that

log(1 + x) ≤ x− x2/4 for 0 < x < 1.
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3.2 Functional estimation on large alphabets via

polynomial approximation

Functional estimation is a common task in statistical inference. As shown in

Figure 1.1, given data from an unknown distribution, the quantity of interest

is a function of that distribution rather than the high-dimensional parameters

or the entire density. For instance, in operations management the optimal

inventory level is a function of the distribution of the random demand in the

future. To estimate a function of a distribution, one natural idea is a two-

step approach: first estimate the distribution and then substitute into the

function, called the plug-in approach. However, this approach often suffers

from large bias [18, 19]. It is natural to expect that estimating a functional

is simpler than the entire distribution in the sense of lower sample complex-

ity. In this section, rather than reducing to a more complicated problem,

we describe the polynomial approximation methods to directly estimate a

functional.

Functional estimation on large alphabets with insufficient samples has a

rich history in information theory, statistics and computer science, with early

contributions dating back to Fisher [58], Good and Turing [59], Efron and

Thisted [21] and recent renewed interest in compression, prediction, classifi-

cation and estimation aspects for large-alphabet sources [60, 61, 62, 63, 64].

However, none of the current results allow a general understanding of the

fundamental limits of functional estimation on large alphabets. The partic-

ularly interesting case is when the sample size scales sublinearly with the

alphabet size.

In Part I, the design of optimal estimator and the proof of a matching

minimax lower bound both rely on the apparatus of best polynomial ap-

proximation. We will discuss the design of estimators in this section and

the minimax lower bound in the next section. Our inspiration comes from

previous work on functional estimation in Gaussian mean models [17, 39].

Nemirovski (credited in [65]) pioneered the use of polynomial approximation

in functional estimation and showed that unbiased estimators for the trun-

cated Taylor series of the smooth functionals is asymptotically efficient. This

strategy is generalized to non-smooth functionals in [17] using best polyno-

mial approximation and in [39] for estimating the `1-norm in Gaussian mean

model.
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On the constructive side, the main idea is to trade bias with variance. Un-

der the i.i.d. sampling model, it is easy to show (see, e.g., [66, Proposition 8])

that to estimate a functional T (P ) using n samples, an unbiased estimator

exists if and only if T (P ) is a polynomial in P of degree at most n. Similarly,

under Poisson sample model, T (P ) admits an unbiased estimator if and only

if T is real analytic. Consequently, there exists no unbiased entropy estima-

tor or the support size with or without Poissonized sampling. Therefore, a

natural idea is to approximate the functional by polynomials which enjoy un-

biased estimation, and reduce the bias to at most the uniform approximation

error. The choice of the degree aims to strike a good bias-variance balance.

In fact, the use of polynomial approximation in functional estimation is not

new. In [67], the authors considered a truncated Taylor expansion of log x at

x = 1 which admits an unbiased estimator, and proposed to estimate the re-

mainder term using Bayesian techniques; however, no risk bound is given for

this scheme. Paninski also studied how to use approximation by Bernstein

polynomials to reduce the bias of the plug-in estimators [66], which forms

the basis for proving the existence of consistent estimators with sublinear

sample complexity in [68].

This idea is also used by [69] in the upper bound of estimating Shan-

non entropy and power sums with a slightly different estimator which also

achieves the minimax rate. For more recent results on estimating Shannon

entropy, support size, Rényi entropy and other distributional functionals on

large alphabets, see [70, 71, 72, 73, 74].

Next we present more details of the above recipe. Let the set of functions

that can be estimated with zero bias using n independent samples be Fn =

{fi : i ∈ In}, and the estimator for fi be f̂i with variance at most σ2
i for each

i. We need to devise a good approximation of T by
∑

i aifi that is estimated

by T̂ =
∑

i aif̂i with small |ai|:

• the bias of T̂ is the approximation error
∑

i aif̂i − T ;

• the standard deviation of T̂ is at most
∑

i |ai|σi.

The choice of coefficient magnitudes aims to strike a good balance of bias

and variance.

The same approximation idea can be applied on a smaller family of func-

tions as a subset of Fn. One special case is when each fi can be estimated
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by an additive function f̂i(X1, . . . , Xn) =
∑

j f̂ij(Xj). The variance of each

f̂ij is at most σ2
ij. Then the variance of T̂ is

var[T̂ ] =
n∑
j=1

var

[∑
i

aigij(Xj)

]
≤

n∑
j=1

(∑
i

|ai|σij

)2

. (3.6)

Under the multinomial sampling model, to estimate any monomial pmi

using Ni ∼ binomial(n, pi), there exists an unbiased estimator given by

Ni(Ni − 1) . . . (Ni −m+ 1)

n(n− 1) . . . (n−m+ 1)
,

where Ni counts the occurrences of symbol i. Under the Poisson sampling

model, the monomial pni is estimated using Ni ∼ Poi(npi) by

Ni(Ni − 1) . . . (Ni −m+ 1)

nm
.

3.3 Lower bounds from moment matching

While the use of best polynomial approximation on the constructive side is

admittedly natural, the fact that it also arises in the optimal lower bound

is perhaps surprising. As carried out in [17, 39], the strategy is to choose

two priors with matching moments up to a certain degree, which ensures the

impossibility to test. The minimax lower bound is then given by the maximal

separation in the expected functional values subject to the moment matching

condition. This problem is the dual of best polynomial approximation in

the optimization sense. Using moment matching techniques, we obtain the

optimal minimax lower bounds for the estimation problems investigated in

Part I.

A general idea for obtaining lower bounds is based on a reduction of es-

timation to testing. Consider the estimation of some functional Tµ = T (µ)

with a distance metric1 ρ(T̂ , Tµ) as the loss function, where µ belongs to a

family of distributions M. If two hypotheses

H0 : X ∼ µ, H1 : X ∼ µ′,

1The reduction is similar if ρ is not a distance but satisfies triangle inequality within a
constant factor. See [32, Chapter 2].
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cannot be reliably distinguished from the samples, while the functional values

Tµ and Tµ′ are different, then any estimate suffers a maximum risk at least

proportional to ρ(Tµ, Tµ′).

Theorem 3.2. For any estimate T̂ , and any two distributions µ, µ′ ∈ M,

we have

sup
µ

Eρ(Tµ, T̂ ) ≥ 1

2
ρ(Tµ, Tµ′)(1− TV(µ, µ′)).

Proof. We will use the average risk as a lower bound of the maximum risk.

Consider an uniform prior π on {µ, µ′}. Then

rπ(T̂ ) =
1

2

∫
ρ(Tµ, T̂ )dµ+

1

2

∫
ρ(Tµ′ , T̂ )dµ′.

Since ρ is non-negative, the right-hand side is at least

1

2

∫
(ρ(Tµ, T̂ ) + ρ(Tµ′ , T̂ )) min{dµ, dµ′}.

Applying the triangle inequality yields that

rπ(T̂ ) ≥ 1

2
ρ(Tµ, Tµ′)

∫
min{dµ, dµ′}.

The integral in the last inequality is precisely 1− TV(µ, µ′) [75].

This is also known as Le Cam’s two-point method. It can be generalized

by introducing two composite hypotheses (also known as fuzzy hypotheses

in [32]):

H0 : µ ∈M0, H1 : µ ∈M1,

whereM0,M1 ⊆M, such that ρ(Tµ, Tµ′) ≥ d for any µ ∈M0 and µ′ ∈M1.

Similarly, if no test can distinguish the above two hypotheses reliably, then

any estimate suffers a maximum risk at least proportional to d. Denote the

mixture distribution by

πν =

∫
Pdν(P ), (3.7)

where ν is the mixing (prior) distribution onM. We obtain Theorem 3.3 by

a proof similar to that of Theorem 3.2.

Theorem 3.3. Let ν and ν ′ be distributions on M0 and M1, respectively.
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For any estimate T̂ , we have

sup
µ

Eρ(Tµ, T̂ ) ≥ 1

2
inf
µ∈M0

µ′∈M1

ρ(Tµ, Tµ′)(1− TV(πν , πν′)).

In order to apply the above result to obtain a minimax lower bound, we

must find two appropriate priors on M. In parametric models, M = {pθ :

θ ∈ Θ} and we need to find priors on Θ. There are two main ingredients in

Le Cam’s method: (1) functional values separation; (2) indistinguishabiblity,

i.e., statistical closeness between distributions.

It turns out these two goals can be simultaneously accomplished by the

dual of uniform approximation (2.5), which enables us to construct two (dis-

crete) distributions µ and µ′ supported on a closed interval [a, b] such that

Eµ[f ]− Eµ′ [f ] = 2 inf
P∈Pn

max
x∈[a,b]

|P (x)− f(x)|, (3.8)

and that µ and µ′ match their first n moments:

Eµ[Xj] = Eµ′ [Xj], j = 0, . . . , n. (3.9)

Statistical closeness between two mixture distributions of the form (3.7) can

be established through moment matching (3.9). The results are developed

for Gaussian mixtures and Poisson mixtures in this subsection. The lower

bounds using (3.8) and (3.9) in specific problems will be established in Chap-

ters 4, 5, and 8.

Gaussian mixtures. In Gaussian mixtures, the distribution is of the

form

πν =

∫
N(θ, 1)dν(θ) = ν ∗N(0, 1).

The statistical closeness is demonstrated in Figure 3.1, and is made precise

in Theorem 3.4. Statistical closeness via moment matching has been estab-

lished, for instance, by orthogonal expansion [76, 39], by Taylor expansion

[31, 55], and by the best polynomial approximation [72]. Similar results to

this lemma were previously obtained in [76, 39, 31].

Theorem 3.4. Suppose ν and ν ′ are centered distributions such that m`(ν) =

m`(ν
′).
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Figure 3.1: Statistical closeness via moment matching. In (a), two different
mixing distributions coincide on their first six moments; in (b), the mixing
distributions are convolved with the standard normal distribution (the
black dashed line), and the Gaussian mixtures are statistically close.

• If ν and ν ′ are ε-subgaussian for ε < 1, then

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) ≤ O

(
1√
`

ε2`+2

1− ε2

)
. (3.10)

• If ν and ν ′ are supported on [−ε, ε] for ε < 1, then

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) ≤ O

((
eε2

`+ 1

)`+1
)
. (3.11)

Proof. This is a special case of the moment comparison result Lemma 7.5

in Chapter 7. Let U ∼ ν and U ′ ∼ ν ′. If ν and ν ′ are ε-subgaussian, then

var[U ′] ≤ ε2, and E|U |p,E|U ′|p ≤ 2(ε
√
p/e)p [54]. Applying the χ2 upper

bound from moment difference in Lemma 7.5 yields that

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) ≤ eε
2/2
∑
j≥`+1

16ε2j√
2πj

,

where we used Stirling’s approximation n! >
√

2πn(n/e)n. If ν and ν ′ are sup-

ported on [−ε, ε], the conclusion is obtained similarly by using E|U |p,E|U ′|p ≤
εp.

Remark 3.1 (Tightness of Theorem 3.4). When ` is odd, there exists a

pair of ε-subgaussian distributions ν and ν ′ such that m`(ν) = m`(ν
′), while

χ2(ν ∗ N(0, 1)‖ν ′ ∗ N(0, 1)) ≥ Ω`(ε
2`+2). They can be constructed using
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Gauss quadrature introduced in Section 2.3. To this end, let ` = 2k − 1

and we set ν = N(0, ε2) and g̃k to be its k-point Gauss quadrature. Then

m2k−1(ν) = m2k−1(g̃k), and g̃k is also ε-subgaussian (see Lemma 2.1). It is

shown in [76, (54)] that

χ2(g̃k ∗N(0, 1)‖ν ∗N(0, 1)) =
∑
j≥2k

1

j!

(
ε2

1 + ε2

)j
|Egk [Hj]|2,

where gk is the k-point Gauss quadrature of the standard normal distribu-

tion, and Hk is the degree-k Hermite polynomial defined in (2.21). Since

Egk [H2k] = −k! (see Lemma 2.3), for any ε < 1, we have

χ2(g̃k ∗N(0, 1)‖ν ∗N(0, 1)) ≥ (k!)2

(2k)!

(
ε2

1 + ε2

)2k

≥ (Ω(ε))4k.

Poisson mixtures. Now we show the result for Poisson mixtures

πν =

∫
Poi(λ)dν(λ).

Poisson mixtures are discrete distributions supported on N. The following

result gives a sufficient condition for Poisson mixtures to be indistinguishable

in terms of moment matching. Analogous results for Gaussian mixtures

have been obtained in [17, Section 4.3] using Taylor expansion of the KL

divergence and orthogonal basis expansion of χ2-divergence in [39, Proof of

Theorem 3]. For Poisson mixtures we directly deal with the total variation

as the `1-distance between the mixture probability mass functions.

Theorem 3.5 (Poisson mixtures). Suppose ν and ν ′ are supported on [0,Λ]

and match the first ` moments such that 2Λ ≤ ` + 1. Denote the mixture

distributions by µ and µ′ with mixing distributions ν and ν ′, respectively.

Then

TV(µ, µ′) ≤ 1

2

(
2eΛ

`+ 1

)`+1

.

Proof. Denote the probability mass functions of µ and µ′ by p and p′, respec-

tively. Then

p(i) = E
[
e−U

U i

i!

]
, p′(i) = E

[
e−U

′U ′i

i!

]
,

where U ∼ ν and U ′ ∼ ν ′. Applying Taylor’s expansion to x 7→ e−x yields
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that

|p(i)− p′(i)| = 1

i!

∣∣∣∣∣∑
j≥0

(−1)j

j!
∆mi+j

∣∣∣∣∣ ,
where ∆mi+j = E[U i+j] − E[U ′i+j]. When ν and ν ′ match the first ` mo-

ments and are supported on [0,Λ], we have ∆mi+j = 0 when j ≤ `− i, and

|∆mi+j| ≤ Λi+j when j ≥ `− i+ 1. Then,

|p(i)− p′(i)| ≤
∑

j≥`−i+1

Λi+j

i!j!
.

The total variation distance can be expressed as (see [32, Lemma 2.1])

TV(µ, µ′) =
1

2

∑
i≥0

|p(i)− p′(i)|.

Then we obtain that

TV(µ, µ′) ≤ 1

2

∑
i+j≥`+1

Λi+j

i!j!
=

1

2

∑
j≥`+1

(2Λ)j

j!
≤ 1

2

(
2eΛ

`+ 1

)`+1

,

where Chernoff bound is used in the last inequality.

Remark 3.2. In an earlier version of [55],2 the following weaker total vari-

ation bound

TV(E [Poi(V )] ,E [Poi(V ′)]) ≤ 2 exp

(
−
(
L

2
log

L

2eM
−M

))
∧ 1, (3.12)

was proved by truncating the summation in the total variation. This bound

suffices for our purpose; in fact, the same proof techniques have been sub-

sequently used in [69, Lemma 11] for minimax lower bound of estimating

other functionals. Nevertheless, (3.13) provides a strict improvement over

(3.12), whose proof is even simpler and involves no truncation argument.

What remains open is the optimal number of matching moments to ensure

indistinguishability of the Poisson mixtures. The above result implies that

as soon as L/M exceeds 2e the total variation decays exponentially; it is

unclear whether L needs to grow linearly with M in order to drive the total

variation to zero.

2See Lemma 3 in http://arxiv.org/pdf/1407.0381v2.pdf.
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The above result is simple to prove. The next result is an improvement

in terms of constants. This is crucial for the purpose of obtaining good

constants for the sample complexity bounds in Chapter 5.

Theorem 3.6. Let V and V ′ be random variables taking values on [0,Λ]. If

E[V j] = E[V ′j], j = 1, . . . , L, then

TV(E[Poi(V )],E[Poi(V ′)]) ≤ (Λ/2)L+1

(L+ 1)!

(
2 + 2Λ/2−L + 2Λ/(2 log 2)−L) . (3.13)

In particular, TV(E[Poi(V )],E[Poi(V ′)]) ≤ ( eΛ
2L

)L. Moreover, if L > e
2
Λ, then

TV(E[Poi(V )],E[Poi(V ′)]) ≤ 2(Λ/2)L+1

(L+ 1)!
(1 + o(1)), Λ→∞.

Proof. Denote the best degree-L polynomial approximation error of a func-

tion f on an interval I by

EL(f, I) = inf
p∈PL

sup
x∈I
|f(x)− p(x)|.

Let

fj(x) ,
e−xxj

j!
. (3.14)

Let P ∗L,j be the best polynomial of degree L that uniformly approximates

fj over the interval [0,Λ] and the corresponding approximation error by

EL(fj, [0,Λ]) = maxx∈[0,Λ] |fj(x) − P ∗L,j(x)|. Then EP ∗L,j(V ) = EP ∗L,j(V ′)
and hence

TV(E[Poi(V )],E[Poi(V ′)]) =
1

2

∞∑
j=0

|Efj(V )− Efj(V ′)|

≤ 1

2

∞∑
j=0

|E(fj(V )− P ∗L,j(V ))|+ |E(fj(V
′)− P ∗L,j(V ′))|

≤
∞∑
j=0

EL(fj, [0,Λ]). (3.15)

A useful upper bound on the degree-L best polynomial approximation

error of a function f is via the Chebyshev interpolation polynomial, whose

uniform approximation error can be bounded using the Lth derivative of f .
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Specifically, we have (see (2.13))

EL(f, [0,Λ]) ≤ 1

2L(L+ 1)!

(
Λ

2

)L+1

max
x∈[0,Λ]

∣∣f (L+1)(x)
∣∣ . (3.16)

To apply (3.16) to f = fj defined in (3.14), note that f
(L+1)
j can be conve-

niently expressed in terms of Laguerre polynomials L(k)
n in (2.23).

If j ≤ L+ 1,

f
(L+1)
j (x) =

dL+1−j

dxL+1−j

(
dj

dxj
e−xxj

j!

)
=

dL+1−j

dxL+1−j (Lj(x)e−x).

Note that Lj is a degree-j polynomial, whose derivative of order higher than

j is zero. Applying general Leibniz rule for derivatives yields that

f
(L+1)
j (x) =

(L+1−j)∧j∑
m=0

(
L+ 1− j

m

)
dmLj(x)

dxm
e−x(−1)L+1−j−m

= (−1)L+1−je−x
(L+1−j)∧j∑

m=0

(
L+ 1− j

m

)
L(m)
j−m(x). (3.17)

Applying (2.24) yields that

∣∣∣f (L+1)
j (x)

∣∣∣ ≤ e−x
(L+1−j)∧j∑

m=0

(
L+ 1− j

m

)(
j

j −m

)
ex/2 = e−x/2

(
L+ 1

j

)
.

Therefore maxx∈[0,Λ] |f (L+1)
j (x)| ≤

(
L+1
j

)
when j ≤ L + 1.3 Then, applying

(3.16), we have

L+1∑
j=0

EL(fj, [0,Λ]) ≤
L+1∑
j=0

(
L+1
j

)
(Λ/2)L+1

2L(L+ 1)!
=

2(Λ/2)L+1

(L+ 1)!
. (3.18)

If j ≥ L + 2, the derivatives of fj are related to the Laguerre polynomial

by

f
(L+1)
j (x) =

(L+ 1)!

j!
xj−L−1e−xL(j−L−1)

L+1 (x).

3This is in fact an equality. In view of (3.17) and the fact that L
(m)
j−m(0) =

(
j

j−m
)

[52,

22.3], we have |f (L+1)
j (0)| =

∑
m

(
L+1−j
m

)(
j

j−m
)

=
(
L+1
j

)
.
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Again applying (2.24) when x ≥ 0 and k ∈ N, we obtain

∣∣∣f (L+1)
j (x)

∣∣∣ ≤ (L+ 1)!

j!
xj−L−1e−x

(
j

L+ 1

)
ex/2 =

1

(j − L− 1)!
e−x/2xj−L−1,

where the maximum of right-hand side on [0,Λ] occurs at x = (2(j − L −
1)) ∧ Λ. Therefore

max
x∈[0,Λ]

|f (L+1)
j (x)| ≤

 1
(j−L−1)!

(
2(j−L−1)

e

)j−L−1

, L+ 1 ≤ j ≤ L+ 1 + Λ/2,

1
(j−L−1)!

e−Λ/2Λj−L−1, j ≥ L+ 1 + Λ/2.

Then, applying (3.16) and Stirling’s approximation that ( j−L−1
e

)j−L−1 <
(j−L−1)!√
2π(j−L−1)

, we have

∑
j≥L+2

j<L+1+Λ/2

EL(fj, [0,Λ]) ≤ (Λ/2)L+1

2L(L+ 1)!

∑
j≥L+2

j<L+1+Λ/2

2j−L−1√
2π(j − L− 1)

≤ (Λ/2)L+12Λ/2

2L(L+ 1)!
, (3.19)∑

j≥L+1+Λ/2

EL(fj, [0,Λ]) ≤ (Λ/2)L+1e−Λ/2

2L(L+ 1)!

∑
j≥L+1+Λ/2

Λj−L−1

(j − L− 1)!

≤ (Λ/2)L+1eΛ/2

2L(L+ 1)!
. (3.20)

Assembling the three ranges of summations in (3.18)-(3.20) in the total vari-

ation bound (3.15), we obtain

TV(E[Poi(V )],E[Poi(V ′)]) ≤ (Λ/2)L+1

(L+ 1)!

(
2 + 2Λ/2−L + 2Λ/(2 log 2)−L) .

Finally, applying Stirling’s approximation (L+1)! >
√

2π(L+ 1)(L+1
e

)L+1,

we conclude that TV(E[Poi(V )],E[Poi(V ′)]) ≤ ( eΛ
2L

)L. If L > e
2
Λ > Λ

2 log 2
> Λ

2
,

then 2Λ/2−L + 2Λ/(2 log 2)−L = o(1).
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CHAPTER 4

ENTROPY ESTIMATION

In this chapter, we begin the application of polynomial approximation method

in entropy estimation. The Shannon entropy [77] of a discrete distribution

P is defined as

H(P ) =
∑
i

pi log
1

pi
.

Entropy estimation has found numerous applications across various fields,

such as psychology [78], neuroscience [79], physics [67], telecommunication

[80], biomedical research [81], etc. Furthermore, it serves as the building

block for estimating other information measures expressible in terms of en-

tropy, such as mutual information and directed information, which are instru-

mental in machine learning applications such as learning graphical models

[82, 83, 84, 85]. However, the definition of Shannon entropy uses the com-

plete distribution of the data source, and the domain size can be quite large,

which makes the estimation task difficult, especially when a limited amount

of samples are obtainable due to resource constraints.

We first discuss the maximum likelihood estimate, which is also known

as the empirical entropy. As introduced in Section 3.2, this is the plug-in

approach in functional estimation, for which we substitute the estimated

distribution into the function. This approach suffers from large bias with

insufficient samples, and can be highly suboptimal when we are dealing with

high-dimensional data.

We then describe the polynomial approximation method to reduce the bias

applying the polynomial approximation method in Chapter 3. To investigate

the decision-theoretic fundamental limit, we consider the minimax quadratic

risk of entropy estimation:

R∗H(k, n) , inf
Ĥ

sup
P∈Mk

EP [(Ĥ −H(P ))2], (4.1)
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where Mk denotes the set of probability distributions on [k] , {1, . . . , k},
and Ĥ is an estimator measurable with respect to n independent samples

from P . In this chapter, we will discuss

• a constant-factor approximation of the minimax risk R∗H(k, n);

• a linear-time estimator that provably attains R∗H(k, n) within universal

constant factors.

We present a preview of the fundamental limits in this chapter and briefly

discuss the impact of large domains. A constant-factor approximation of the

minimax risk R∗H(k, n) is given by Theorem 4.1.

Theorem 4.1. If n & k
log k

, then

R∗H(k, n) �
(

k

n log k

)2

+
log2 k

n
. (4.2)

If n . k
log k

, there exists no consistent estimators, i.e., R∗H(k, n) & 1.

To interpret the minimax rate (4.2), we note that the second term corre-

sponds to the classical “parametric” term inversely proportional to 1
n
, which

is governed by the variance and the central limit theorem (CLT). The first

term corresponds to the squared bias, which is the main culprit in the regime

of insufficient samples. Note that R∗H(k, n) � ( k
n log k

)2 if and only if n . k2

log4 k
,

where the bias dominates. As a consequence, the minimax rate implies that

to estimate the entropy within ε bits with probability, say 0.9, the minimal

sample size is given by

n � log2 k

ε2
∨ k

ε log k
. (4.3)

The worst-case mean-square error of the empirical entropy, denoted by

H(P̂n), is given by Theorem 4.2.

Theorem 4.2. If n & k, then

sup
P :S(P )≤k

E(H −H(P̂n))2 �
(
k

n

)2

+
log2 k

n
. (4.4)

If n . k, there exists no consistent estimators, i.e., the left-hand side of (4.4)

is Ω(1).
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Note that the first and second terms in the risk again correspond to the

squared bias and variance respectively. Comparing (4.2) and (4.4), we reach

the following verdict on the plug-in estimator: Empirical entropy is rate-

optimal, i.e., achieving a constant factor of the minimax risk, if and only if we

are in the “data-rich” regime n = Ω( k2

log2 k
). In the “data-starved” regime of

n = o
(

k2

log2 k

)
, empirical entropy is strictly rate-suboptimal. The comparison

between the optimal estimator and the empirical entropy is demonstrated in

Figure 4.1.

n

MSE of the optimal estimator
k

log k
k2

log4 kInconsistent Bias dominates Variance dominates

MSE of the empirical entropy
k k2

log2 k

Inconsistent Bias dominates Variance dominates

Figure 4.1: Classification and comparison of regimes between optimal
entropy estimator and the empirical entropy.

4.1 Empirical entropy and Bernstein polynomials

Given n independent samples X1, . . . , Xn from a discrete distribution P =

(p1, . . . , pk), the maximum likelihood estimate of the distribution is the em-

pirical distribution

P̂n = (p̂1, . . . , p̂k),

with p̂i = Ni/n, where Ni records the number of occurrences of samples with

label i and is the sufficient statistics referred to as the histogram. Then the

empirical entropy is

H(P̂n) =
∑
i

p̂i log
1

p̂i
. (4.5)

Let φ(x) = x log 1
x
. Then the bias of empirical entropy is

E[H(P̂n)]−H(P ) =
∑
i

(
n∑
j=0

φ(j/n)

(
n

j

)
pji (1− pi)n−j − φ(pi)

)
=
∑
i

(Bn(pi)− φ(pi)), (4.6)
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where Bn is the Bernstein polynomial of degree n to approximate φ using the

equation (2.2). See an illustration of Bernstein approximation in Figure 4.2.

We shall next derive several results on the bias of the empirical entropy using

the Bernstein approximation.

(a) Bernstein polynomials (b) Approximation errors

Figure 4.2: Illustration of Bernstein polynomial approximation of φ of
degree 3, 5 and 10. (a) shows the actual Bernstein polynomials, and (b)
shows the errors of approximation.

Lemma 4.1. If f is convex on [0, 1], then the Bernstein polynomials approx-

imation (2.2) satisfies the following inequalities:

Bn(x) ≥ Bn+1(x) ≥ f(x).

The inequalities are strict if f is strictly convex.

Proof. Applying the formula of Bernstein polynomials (2.2), we can calculate

that (see [36, pp. 309–310])

Bn(x)−Bn+1(x) =
x(1− x)

n(n+ 1)

n−1∑
k=0

f

[
k

n
,
k + 1

n+ 1
,
k + 1

n

](
n− 1

k

)
xk(1− x)n−k,

where f [ k
n
, k+1
n+1

, k+1
n

] is the divided difference that can be evaluated using

(7.22). This divided difference is non-negative when f is convex (see (2.9)).

Note that φ is strictly concave on [0, 1]. In this case we have

Bn(x) < Bn+1(x) < φ(x), 0 < x < 1. (4.7)
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See Figure 4.2 for an illustration. We conclude from (4.6) that the empir-

ical entropy is always underbiased, and the bias is strictly detcreasing in

magnitude as the number of samples increases [66].

Bernstein approximation has the following asymptotic formula.

Lemma 4.2. Fix x ∈ [0, 1]. If f is bounded, differentiable in a neighborhood

of x, and f ′′(x) exists, then

lim
n→∞

n(Bn(x)− f(x)) =
x(1− x)

2
f ′′(x). (4.8)

Proof. By Taylor’s expansion,

f(t) = f(x) + f ′(x)(t− x) +
f ′′(x)

2
(t− x)2 + h(t− x)(t− x)2,

where h(y) is bounded and vanishes with y. Note that Bn(x) = Ef(p̂) where

p̂ = N/n and N ∼ binomial(n, x). Then

Bn(x)− f(x) =
x(1− x)

2n
f ′′(x) + E[h(p̂− x)(p̂− x)2].

The last term is o(1/n) by the continuity of h and the concentration of

binomial distributions (see [36, pp. 304–308]).

In entropy estimation, φ′′(x) = −1/x. By using (4.6), for a fixed distribu-

tion P , the asymptotic bias of the empirical entropy as n diverges is given

by

E[H(P̂n)]−H(P ) =
∑
i

pi − 1

2n
(1 + o(1)) =

1− S(P )

2n
(1 + o(1)), (4.9)

where S(P ) denotes the support size of P . This asymptotic formula inspires

the well-known bias reduction to the empirical entropy, named the Miller-

Madow estimator [86]:

ĤMM = Ĥplug +
Ŝ − 1

2n
, (4.10)

where Ŝ is the number of observed distinct symbols. For higher-order asymp-

totic expansions of the bias, as well as various types of bias reduction, see [87].

This formula also holds when the fixed distribution assumption is relaxed to
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nmini pi →∞ [66, Theorem 5].

However, the asymptotic estimate (4.8) is not uniform over [0, 1] (see

(4.11), and also an illustration in Figure 4.3). When S(P ) is comparable

(a) Approximation error (b) Non-uniform convergence

Figure 4.3: Illustration of the non-uniform convergence of (4.8). (a) shows
φ(x)− (Bn(x) + 1−x

2n
) for n = 50. (b) further shows 2n

1−x(φ(x)−Bn(x)) at
x = 1/n for different n. The sequence of values is not converging to one.

or far exceeds the number of samples, this asymptotic estimate of the bias

in (4.9) is no longer true. Applying (4.5) yields that

H(P )− E[H(P̂n)] = E[D(P̂n‖P )],

where D(·‖·) denotes the Kullback-Leibler (KL) divergence. We obtain the

following upper bound of the bias [66, Proposition 1].

Proposition 4.1.

0 ≤ H(P )− E[H(P̂n)] ≤ log

(
1 +

S(P )− 1

n

)
.

Proof. The KL divergence is related to the χ2-divergence by [75]

D(P̂n‖P ) ≤ log(1 + χ2(P̂n‖P )).

Since log is a concave function, we obtain from the Jensen’s inequality that

E[D(P̂n‖P )] ≤ log(1 + E[χ2(P̂n‖P )]).
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The expectation in the right-hand side of the above inequality is

E[χ2(P̂n‖P )] =
∑
i

E(p̂i − pi)2

pi
=
∑
i

1− pi
n

=
S(P )− 1

n
.

We next discuss the tightness of the previous bias analysis of the empirical

entropy using the Bernstein polynomial (4.6) again. We first state a lower

bound on the Bernstein approximation obtained in [88, Theorem 5].

Lemma 4.3. For x ≥ 15/n,

|Bn(x)− φ(x)| ≥ 1− x
2n

+
1

12n2x
− x

12n2
− 1

2n3x2

≥ 1− x
2n

+
1

20n2x
− x

12n2
. (4.11)

Consequently, using (4.6) and (4.7), for a distribution P with pi ≥ 15/n,

we have1

|H(P̂n)−H(P )| ≥ S(P )− 1

2n
+

1

20n2

(∑
i

1

pi

)
− 1

12n2
.

From the above lower bound and the monotonicity in (4.7), for a uniform

distribution over k elements, the bias of the empirical entropy is at least

Ω(min{ k
n
, 1}).

Now we evaluate the variance of the empirical entropy. Note that empirical

entropy is a linear estimate

H(P̂ ) =
∑
i

g(Ni) =
∑
j

Φjg(j), (4.12)

where g(j) = φ(j/n) and Φj denotes the number of elements that appeared

exactly j times (also known as histogram order statistics [66], fingerprint

[89], or profile [60]). A variance upper bound can be obtained by the Efron-

1For a fixed distribution, as n diverges, it is obtained in [87, (14)] that

H(P )−H(P̂n) =
S(P )− 1

2n
+

1

12n2

(∑
i

1

pi
− 1

)
+O(n−3).
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Stein-Steele inequality [90]:

varH(P̂n) ≤ n

2
E(∆g(ÑX1)−∆g(ÑX′1

))2,

where X ′1 is another independent sample from P , Ñi counts the occurrences

of symbol i in X2, . . . , Xn, and ∆g(j) denotes the difference g(j + 1)− g(j).

Applying the triangle inequality yields that

varH(P̂n) ≤ nE(∆g(ÑX1))2. (4.13)

Another way of writing the above upper bound is

varH(P̂n) ≤ n
∑
i

piE(∆g(Ñi))
2 =

∑
i

ENi(∆g(Ni − 1))2, (4.14)

where Ni ∼ binomial(n, pi) and g(j) = 0 for j < 0. We have the following

result on the variance of empirical entropy.

Proposition 4.2.

varH(P̂n) ≤ log2(min{n, eS(P )})
n

.

Proof. Let g(j) = φ(j/n). The difference ∆g(j) can be uniformly upper

bounded by logn
n

in magnitude for every j = 0, . . . , n− 1, and thus by (4.13)

we obtain that

varH(P̂n) ≤ log2 n

n
.

The derivative of φ over [ j
n
, j+1

n
] is at most max{| log ej

n
|, | log e(j+1)

n
|} in mag-

nitude. This yields a refined upper bound for j = 1, . . . , n− 1:

|∆g(j)| ≤ max{| log(ej/n)|, 1}
n

.

Combining with the uniform upper bound logn
n

, we get

|∆g(j)| ≤ 1

n
log

en

j + 1
, j = 0, . . . n− 1.
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Applying (4.14) yields that

varH(P̂n) ≤ 1

n2

∑
i

ENi log2(en/Ni).

Note that x 7→ x log2(e/x) is concave on [0, 1], and x 7→ log2(ex) is concave

on [1,∞). We obtain that∑
i

E[log2(en/Ni)Ni/n] ≤
∑
i

pi log2(e/pi) ≤ log2(eS(P )),

according to Jensen’s inequality.

We obtain in Section 4.3 that, when the distribution is supported on k

elements, the MSE of any estimate using n independent samples is Ω( log2 k
n

)

in the worst case (see Proposition 4.2). This lower bound also applies to the

empirical entropy. The results of this section prove the worst-case MSE of

the empirical entropy (4.4).

4.2 Optimal entropy estimation on large domains

From the analysis in Section 4.1, the empirical entropy is asymptotically

optimal for distributions on a fixed alphabet as n diverges. Specifically,

using (4.4), the mean squared error of the empirical entropy is O( log2 k
n

) when

n ≥ k2

log2 k
, which is the optimal rate. However, the empirical entropy suffers

from large bias using linear or sublinear number of samples, i.e., n = O(k).

In this section, we describe the design of the minimax rate-optimal estimator.

4.2.1 Previous results

We begin with a review of previous results on entropy estimation on large

domain. It is well known that to estimate the distribution P itself, say, with

total variation loss at most a small constant, we need at least Θ(k) samples

(see, e.g., [91]). However, to estimate the entropy H(P ) which is a scalar

function, it is unclear from first principles whether n = Θ(k) is necessary.

This intuition and the inadequacy of plug-in estimator have already been

noted by Dobrushin [92, p. 429], who wrote:
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...This method (empirical entropy) is very laborious if m, the

number of values of the random variable is large, since in this

case most of the probabilities pi are small and to determine each

of them we need a large sample of length N , which leads to a lot of

work. However, it is natural to expect that in principle the prob-

lem of calculating the single characteristic H of the distribution

(p1, . . . , pm) is simpler than calculating the m-dimensional vector

(p1, . . . , pm), and that therefore one ought to seek a solution of the

problem by a method which does not require reducing the first and

simpler problem to the second and more complicated problem.

Using non-constructive arguments, Paninski first proved that it is possible

to consistently estimate the entropy using sublinear sample size, i.e., there

exists nk = o(k), such that R∗(k, nk)→ 0 as k →∞ [68]. Valiant proved that

no consistent estimator exists, i.e., R∗(k, nk) & 1 if n . k
exp(
√

log k)
[93]. The

sharp scaling of the minimal sample size of consistent estimation is shown to

be k
log k

in the breakthrough results of Valiant and Valiant [89, 94]. However,

the optimal sample size as a function of alphabet size k and estimation error

ε has not been completely resolved. Indeed, an estimator based on linear

programming is shown to achieve an additive error of ε using k
ε2 log k

samples

[64, Theorem 1], while k
ε log k

samples are shown to be necessary [89, Corollary

10]. This gap is partially amended in [95] by a different estimator, which

requires k
ε log k

samples but only valid when ε > k−0.03. We obtain (4.2) that

generalizes their result by characterizing the full minimax rate and the sharp

sample complexity is given by (4.3).

We briefly discuss the difference between the lower bound strategy of [89]

and ours. Since the entropy is a permutation-invariant functional of the

distribution, a sufficient statistic for entropy estimation is the histogram of

the histogram N :

Φi =
k∑
j=1

1{Nj=i}, i ∈ [n], (4.15)

also known as histogram order statistics [66], profile [60], or fingerprint [89],

which is the number of symbols that appear exactly i times in the sample. A

canonical approach to obtain minimax lower bounds for functional estimation

is Le Cam’s two-point argument [96, Chapter 2], i.e., finding two distribu-

tions which have very different entropy but induce almost the same distri-
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bution for the sufficient statistics, in this case, the histogram N1, . . . , Nk or

the fingerprints Φ1, . . . ,Φn, both of which have non-product distributions. A

frequently used technique to reduce dependence is Poisson sampling (see Sec-

tion 3.1), where we relax the fixed sample size to a Poisson random variable

with mean n. This does not change the statistical nature of the problem due

to the exponential concentration of the Poisson distribution near its mean.

Under the Poisson sampling model, the sufficient statistics N1, . . . , Nk are

independent Poissons with mean npi; however, the entries of the fingerprint

remain highly dependent. To contend with the difficulty of computing statis-

tical distance between high-dimensional distributions with dependent entries,

the major tool in [89] is a new CLT for approximating the fingerprint dis-

tribution by quantized Gaussian distribution, which is parameterized by the

mean and covariance matrices and hence more tractable. This turns out to

improve the lower bound in [93] obtained using Poisson approximation.

In contrast, we shall not deal with the fingerprint directly, but rather use

the original sufficient statisticsN1, . . . , Nk due to their independence endowed

by the Poissonized sampling. Our lower bound relies on choosing two random

distributions (priors) with almost i.i.d. entries which effectively reduces the

problem to one dimension, thus circumventing the hurdle of dealing with

high-dimensional non-product distributions. The main intuition is that a

random vector with i.i.d. entries drawn from a positive unit-mean distribution

is not exactly but sufficiently close to a probability vector due to the law of

large numbers, so that effectively it can be used as a prior in the minimax

lower bound.

While we focus on estimating the entropy under the additive error crite-

rion, approximating the entropy multiplicatively has been considered in [97].

It is clear that in general approximating the entropy within a constant fac-

tor is impossible with any finite sample size (consider Bernoulli distributions

with parameter 1 and 1 − 2−n, which are not distinguishable with n sam-

ples); nevertheless, when the entropy is large enough, i.e., H(P ) & γ/η, it is

possible to approximate the entropy within a multiplicative factor of γ using

n . k(1+η)/γ2
log k number of samples ([97, Theorem 2]).
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4.2.2 Optimal estimator via best polynomial approximation

The major difficulty of entropy estimation lies in the bias due to insufficient

samples. Recall that the entropy is given by H(P ) =
∑
φ(pi), where φ(x) =

x log 1
x
. It is easy to see that the expectation of any estimator T : [k]n → R+ is

a polynomial of the underlying distribution P and, consequently, no unbiased

estimator for the entropy exists (see [66, Proposition 8]). This observation

inspired us to approximate φ by a polynomial of degree L, say gL, for which

we pay a price in bias as the approximation error but yield the benefit of

zero bias. While the approximation error clearly decreases with the degree

L, it is not unexpected that the variance of the unbiased estimator for gL(pi)

increases with L as well as the corresponding mass pi. Therefore we only

apply the polynomial approximation scheme to small pi and directly use the

plug-in estimator for large pi, since the signal-to-noise ratio is sufficiently

large.

Next we describe the estimator in detail. In view of the relationship be-

tween the risks with fixed and Poisson sample size in Section 3.1, we shall

assume the Poisson sampling model to simplify the analysis, where we first

draw n′ ∼ Poi(2n) and then draw n′ i.i.d. samples X = (X1, . . . , Xn′) from

P . We split the samples equally and use the first half for selecting to use

either the polynomial estimator or the plug-in estimator and the second half

for estimation. Specifically, for each sample Xi we draw an independent fair

coin Bi
i.i.d.∼ Bern

(
1
2

)
. We split the samples X according to the value of B into

two sets and count the samples in each set separately. That is, we define

N = (N1, . . . , Nk) and N ′ = (N ′1, . . . , N
′
k) by

Ni =
n′∑
j=1

1{Xj=i}1{Bj=0}, N ′i =
n′∑
j=1

1{Xj=i}1{Bj=1}.

Then N and N ′ are independent, where Ni, N
′
i
i.i.d.∼ Poi (npi).

Let c0, c1, c2 > 0 be constants to be specified. Let L = bc0 log kc. Denote

the best polynomial of degree L to uniformly approximate x log 1
x

on [0, 1] by

pL(x) =
L∑

m=0

amx
m. (4.16)

Through a change of variables, we see that the best polynomial of degree L
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to approximate x log 1
x

on [0, β], where β = c1 log k
n

, is

PL(x) ,
L∑

m=0

amβ
1−mxm − x log β.

Define the factorial moment by (x)m , x!
(x−m)!

, which gives an unbiased

estimator for the monomials of the Poisson mean: E[(X)m] = λm where

X ∼ Poi(λ). Consequently, the polynomial of degree L,

gL(Ni) ,
1

n

(
L∑

m=0

am

(c1 log k)m−1 (Ni)m −Ni log β

)
, (4.17)

is an unbiased estimator for PL(pi).

Define a preliminary estimator of entropy H(P ) =
∑k

i=1 φ(pi) by

H̃ ,
k∑
i=1

(
gL(Ni)1{N ′i≤T} + g(Ni)1{N ′i>T}

)
, (4.18)

where T = c2 log k, g(j) = φ(j/n) + 1
2n

, and we apply the estimator from

polynomial approximation if N ′i ≤ T or the bias-corrected plug-in estimator

otherwise (cf. the asymptotic expansion (4.9) of the bias under the origi-

nal sampling model). In view of the fact that 0 ≤ H(P ) ≤ log k for any

distribution P with alphabet size k, we define our final estimator by

Ĥ = (H̃ ∨ 0) ∧ log k.

The next result gives an upper bound on the above estimator under the

Poisson sampling model, which, in view of the right inequality in (3.3) and

(4.4), implies the upper bound on the minimax risk R∗(n, k) in (4.2).

Proposition 4.1. Assume that log n ≤ C log k for some constant C > 0.

Then there exists c0, c1, c2 depending on C only, such that

sup
P∈Mk

E[(H(P )− Ĥ(N))2] .

(
k

n log k

)2

+
log2 k

n
,

where N = (N1, . . . , Nk)
ind∼ Poi(npi).

Before proving the above statistical guarantee, we make a few comments
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on the optimal estimator.

Computation complexity. The estimate H̃ in (4.18) can be expressed

in terms of a linear combination of the fingerprints (see (4.12)) of the second

half of samples. The coefficients {am} can be pre-computed using fast best

polynomial approximation algorithms (e.g., Algorithm 2.1 due to Remez), it

is clear that the estimator Ĥ can be computed in linear time in n, which is

sublinear in the alphabet size.

Difficulty in entropy estimation. The estimator in this section uses

the polynomial approximation of x 7→ x log 1
x

for those masses below log k
n

and the bias-reduced plug-in estimator otherwise. This suggests that the

main difficulty of entropy estimation lies in those probabilities in the interval

[0, log k
n

], which are individually small but collectively contribute significantly

to the entropy. In Section 4.2.3, to prove a minimax lower bound, the pair

of unfavorable priors consists of randomized distributions whose masses are

below log k
n

(except for possibly a fixed large mass at the last element). See

Remark 4.4 and the proof of Proposition 4.3 for details.

Bias reduction from polynomial approximation. To show the ef-

fect of bias reduction using the best polynomial approximation, we illustrate

φ(p)− E[g̃(N)] as a function of p, where N ∼ binomial(n, p) and

g̃(j) =

gL(j), j ≤ T,

φ(j/n) + 1−(j/n)
2n

, j > T.

Here gL is obtained by (4.17) using the best polynomial approximation. We

also compare with that of the Miller-Madow estimate where g̃′(j) = φ(j/n)+
1−(j/n)

2n
for every j. In Figure 4.4, we take a sample size n = 100; gL(j) is

obtained using the best polynomial of degree four to approximation φ on

[0, 0.06], and is applied with T = 3. We can clearly see the improvement on

the bias as compared to the Miller-Madow estimate when p is small.

Adaptivity. The estimator in (4.18) depends on the alphabet size k only

through its logarithm; therefore the dependence on the alphabet size is rather

insensitive. In many applications such as neuroscience the discrete data are
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Figure 4.4: Comparison of the bias of estimators for φ(p) using
N ∼ binomial(n, p). The green solid line is the bias of the polynomial
estimator g̃(N) as a function of p; the blue dashed line shows the bias of
the Miller-Madow estimator g̃′(N).

obtained from quantizing an analog source and k is naturally determined by

the quantization level [25]. Nevertheless, it is also desirable to obtain an

optimal estimator that is adaptive to k. To this end, we can replace all log k

by log n and define the final estimator by H̃ ∨ 0. Moreover, we need to set

gL(0) = 0 since the number of unseen symbols is unknown. Following [69],

we can simply let the constant term a0 of the approximating polynomial

(4.16) go to zero and obtain the corresponding unbiased estimator (4.17)

through factorial moments, which satisfies gL(0) = 0 by construction.2 The

bias upper bound becomes
∑

i(PL(pi)−φ(pi)−PL(0)) which is at most twice

the original upper bound since PL(0) ≤ ‖PL − φ‖∞. The minimax rate in

Proposition 4.1 continues to hold in the regime of k
log k

. n . k2

log2 k
, where the

plug-in estimator fails to attain the minimax rate. In fact, PL(0) is always

strictly positive and coincides with the uniform approximation error (see

Remark 4.1 for a short proof). Therefore, removing the constant term leads

to gL(Ni) which is always underbiased as shown in Figure 4.5. A better choice

for adaptive estimation is to find the best polynomial satisfying pL(0) = 0

that uniformly approximates φ.

2Alternatively, we can directly set gL(0) = 0 and use the original gL(j) in (4.17) when
j ≥ 1. Then the bias becomes

∑
i(PL(pi)− φ(pi)− P [Ni = 0]PL(0)). In sublinear regime

that n = o(k), we have
∑
i P [Ni = 0] = Θ(k); therefore this modified estimator also

achieves the minimax rate.
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Figure 4.5: Bias of the degree-6 polynomial estimator with and without the
constant term.

Sample splitting. The benefit of sample splitting is that we can first

condition on the realization of N ′ and treat the indicators in (4.18) as deter-

ministic, which has also been used in the entropy estimator in [69]. Although

not ideal operationally or aesthetically, this is a frequently used idea in statis-

tics and learning to simplify the analysis (also known as sample cloning in

the Gaussian model [98, 39]) at the price of losing half of the sample thereby

inflating the risk by a constant factor. It remains to be shown whether the

optimality result in Proposition 4.1 continues to hold if we can use the same

sample in (4.18) for both selection and estimation.

Note that the estimator (4.18) is linear in the fingerprint of the second half

of the sample. We also note that for estimating other distribution functionals,

e.g., support size [72], it is possible to circumvent sample splitting by directly

using a linear estimator obtained from best polynomial approximation.

4.2.3 Statistical guarantees of the optimal estimator

Given that N ′i is above (resp. below) the threshold T , we can conclude with

high confidence that pi is above (resp. below) a constant factor of T using

the Chernoff bound for Poissons ([56, Theorem 5.4]): if N ∼ Poi(np), then

P[N ≥ T ] ≤ exp(−T (α1 − 1− logα1)), p < α1T/n, (4.19)

P[N ≤ T ] ≤ exp(−T (α2 − 1− logα2)), p > α2T/n, (4.20)

where α1 < 1 < α2. We apply the estimator from bias-correct plug-in esti-

mator if N ′i > T and the polynomial estimator otherwise. Next we analyze
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the two cases separately.

Bias-corrected plug-in estimator. When p is large, (4.8) provides a

precise estimate of the bias of empirical entropy (see Figure 4.3). In this

regime, using bias reduction similar to the Miller-Madow estimate (4.10) to

estimate φ(p) by g(N) given in (4.18). The bias and variance of g(N) are

analyzed in the following.

Lemma 4.4.

− 1

6n2p
≤ E[φ(p)− g(N)] ≤ 1

3n3p2
+

5

6n2p
, (4.21)

var[g(N)] ≤ 2p log2(ep)

n
+

2(1 + 3np)

n3p
, (4.22)

where N ∼ Poi(np).

Polynomial estimator. When p is small, the function φ(p) is approx-

imated by PL(p), which can be estimated by gL(N) in (4.17), which is an

unbiased estimate for PL(p). Therefore the bias of gL(N) as an estimate for

φ(p) is at most the approximation error, which is obtained in [34, Section

7.5.4]:

sup
x∈[0,β]

|PL(x)− φ(x)| ≤ O(β/L2). (4.23)

We have the following upper bound on the standard deviation of gL(N).

Lemma 4.5. Let σ(gL(N)) denote the standard deviation of gL(N). We

have

σ(gL(N)) ≤ β

L∑
m=0

|am|
(
mp

nβ2

)m/2
(2e)

√
mnp +

√
p/n log β, (4.24)

where N ∼ Poi(np).

Combining these two regimes, we now prove Proposition 4.1.

Proof. With the threshold T = c2 log k, by (4.19) and (4.19), with probability

at least 1− δ such that δ = k
1−c2(

c1
c2
−log

ec1
c2

)
+ k

1−c2(
c3
c2
−log

ec3
c2

)
, we have

N ′i ≥ T ⇒ pi > c3 log k/n, N ′i ≤ T ⇒ pi < c1 log k/n, ∀ i.
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The above implications fail with probability at most δ. In this case, we

have |H − Ĥ| ≤ log k. Define two set of indices I1 = {i : N ′i > T} and

I2 = {i : N ′i ≤ T}. In the remaining proof the above high probability event

is assumed to have occurred. Hence, we have

pi > c3 log k/n, ∀ i ∈ I1; pi < c1 log k/n, ∀ i ∈ I2.

We first consider I1. Denote the error by

E1 =
∑
i∈I1

φ(pi)− g(Ni).

The mean and variance of E1 is upper bounded using (4.21) and (4.22),

respectively, by

|E[E1]| ≤ k

3n(c3 log k)2
+

5k

6nc3 log k
.

k

n log k
,

var[E1] ≤ 2

n

∑
i∈I1

pi log2(epi) +
2k(1 + 3c3 log k)

n2c3 log k
.

log2 k

n
+

k

n2
,

where in the variance bound we used the concavity of x 7→ log2(ex) on [1,∞).

These upper bounds yield that

E(E1)2 .

(
k

n log k

)2

+
log2 k

n
.

Now we consider I2. Denote the error similarly by

E2 =
∑
i∈I2

φ(pi)− g(Ni).

The bias is upper bounded by the uniform approximation error (4.23) by

|E[E2]| ≤
∑
i∈I2

c1 log k

n
O(1/L2) ≤ O

(
k

n log k

)
.

If we choose the polynomial degree L such that L ≤ c1 log k, then in (4.24)

we have mp
nβ2 ≤ 1 for p ≤ β. Then the variance of E2 is upper bounded by

var[E2] ≤ k

(
c1 log kLmaxm |am|

n
(2e)

√
c1 log kL

)2

.
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We additionally need an upper bound on the magnitude of the coefficients

am. Recall that
∑

m amx
m is the best polynomial to approximate φ on [0, 1],

which is bounded by e−1. Then the approximation error is at most e−1 and

thus pL is bounded by 2e−1. For a bounded polynomial the coefficients are

at most 2e−123L. Since L = bc0 log kc, we have

var[E2] .
(log k)4

n2
k1+2(c0 log 8+

√
c0c1 log(2e)).

The above variance upper bound isO( k
n log k

)2 as long as c0 log 8+
√
c0c1 log(2e)

< 1/4.

To conclude the proof, we specify all the constants. By assumption, log n ≤
C log k for some constant C. Choose c1 > c2 > c3 > 0 such that c2( c1

c2
−

log ec1
c2

) − 1 > C and c2( c3
c2
− log ec3

c2
) − 1 > C hold simultaneously, e.g.,

c2 = C + 1, c1 = 4c2, c3 = 0.1c2. Choosing c0 = 1
300c1

∧ c1 ∧ 0.01 completes

the proof.

Remark 4.1 (Approximation error at the end points). By Chebyshev alter-

nating theorem [99, Theorem 1.6], the error function g(x) , PL(x) − φ(x)

attains uniform approximation error (namely, ±EL(φ)) on at least L + 2

points with alternative change of signs; moreover, these points must be sta-

tionary points or endpoints. Taking derivatives, g′(x) = P ′L(x) + log(ex) and

g′′(x) =
xP ′′L (x)+1

x
. Since g′′ has at most L − 1 roots in (0, 1) and hence g′

has at most L − 1 stationary points, the number of roots of g′ and hence

the number of stationary points of g in (0, 1) are at most L. Therefore the

error at the ends points must be maximal, i.e., |g(0)| = |g(1)| = EL(φ). To

determine the sign, note that g′(0) = −∞ then g(0) must be positive for

otherwise the value of g at the first stationary point is below −EL(φ) which

is a contradiction. Hence a0 = g(0) = EL(φ).

4.2.4 Proof of lemmas

Proof of Lemma 4.4. Let p̂ denote the ratio N/n. We first analyze the bias

which can be expressed as E[φ(p) − φ(p̂) − 1
2n

], and prove (4.21). Applying

Taylor’s expansion of φ yields that

φ(p̂) = φ(p)− log(ep)(p̂− p)− 1

2p
(p̂− p)2 +

1

6p2
(p̂− p)3 −R3(p̂),
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where R3(p̂) is the remainder and can be expressed using Taylor’s theorem

for p̂ > 0 as

R3(p̂) =
1

3

∫ p̂

p

(
p̂

t
− 1

)3

dt.

If p̂ ≥ p, then the integrand is non-negative and is at most ( p̂
p
− 1)3. Hence,

we obtain that

0 ≤ R3(p̂) ≤ (p̂− p)4

3p3
;

if 0 < p̂ < p, the integral can be rewritten as
∫ p
p̂

(1 − p̂
t
)3dt, and the same

inequalities are obtained; the above inequalities obviously hold for p̂ = 0.

Using the central moments Poisson distribution:

E(X − λ)2 = λ, E(X − λ)3 = λ, E(X − λ)4 = λ(1 + 3λ), X ∼ Poi(λ),

we obtain the following:

− 1

6n2p
≤ E[φ(p)− g(N)] ≤ 1 + 3np

3n3p2
− 1

6n2p
.

Now we analyze the variance and prove (4.22). The variance can be up-

per bounded by the mean square error E(φ(p) − φ(p̂))2. Applying Taylor’s

expansion of φ again yields that

φ(p̂) = φ(p)− log(ep)(p̂− p)−R1(p̂),

where the remainder R1(p̂) can be expressed using Taylor’s theorem for p̂ > 0

as

R1(p̂) =

∫ p̂

p

(
p̂

t
− 1

)
dt.

Analogous to the previous inequalities for R3, we obtain that

0 ≤ R1(p̂) ≤ (p̂− p)2

p
, p̂ ≥ 0.

Applying the triangle inequality yields that

E(φ(p)− φ(p̂))2 ≤ 2p log2(ep)

n
+

2(1 + 3np)

n3p
.

Proof of Lemma 4.5. The standard deviation of sum of random variables is
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at most the sum of individual standard deviations. Let σ(X) denote the

standard deviation of a random variable X. Then

σ(gL(N)) ≤ β
L∑

m=0

|am|
σ((N)m)

(nβ)m
+
σ(N)

n
log β. (4.25)

The variance of (N)m is analyzed in the following.

Lemma 4.6. Let X ∼ Poi(λ). Then

var(X)m = λmm!
m−1∑
k=0

(
m

k

)
λk

k!
≤ (λm)m(2e)2

√
λm. (4.26)

Proof. The equality part follows from (2.25). We prove the inequality part.

Using
(
m
k

)
≤ mk

k!
, we have

var(X)m ≤ λmm!
m−1∑
k=0

(λm)k

(k!)2
.

The maximal term in the summation is attained at k∗ = b
√
λmc. Therefore

we obtain that

var(X)m ≤ λmm!m
(λm)k

∗

(k∗!)2
≤ (λm)m

(λm)k
∗

(k∗!)2
.

If λm < 1 then k∗ = 0 and (λm)k
∗

(k∗!)2 = 1; otherwise λm ≥ 1 and hence
√
λm
2

< k∗ ≤
√
λm. Applying k∗! >

(
k∗

e

)k∗
yields that

(λm)k
∗

(k∗!)2
≤ (λm)k

∗(
λm
4e2

)k∗ ≤ (2e)2
√
λm .

Remark 4.2. Note that the formula of E(X)2
m obtained above coincides with

λmm!Lm(−λ), where Lm denotes the Laguerre polynomial of degree m (see

(2.22)). The term e
√
λm agrees with the sharp asymptotics of the Laguerre

polynomial on the negative axis [53, Theorem 8.22.3].

In the last term of (4.25), σ(N) can be explicitly evaluated to be
√
np.
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Using (4.26), the summation in (4.25) is upper bounded by

L∑
m=0

|am|
(
mp

nβ2

)m/2
(2e)

√
mnp.

4.2.5 Numerical experiments

In this subsection, we compare the performance of our entropy estimator to

other estimators using synthetic data.3 Note that the coefficients of best

polynomial to approximate φ on [0, 1] are independent of data so they can be

pre-computed and tabulated to facilitate the computation in our estimation.

It is very efficient to apply the Remez algorithm which provably has linear

convergence for all continuous functions to obtain those coefficients (see, e.g.,

[99, Theorem 1.10]). Considering that the choice of the polynomial degree is

logarithmic in the alphabet size, we pre-compute the coefficients up to degree

400 which suffices for practically all purposes. In the implementation of our

estimator we replace N ′i by Ni in (4.18) without conducting sample splitting.

Though in the proof of theorems we are conservative about the constant

parameters c0, c1, c2, in experiments we observe that the performance of our

estimator is in fact not sensitive to their value within the reasonable range.

In the subsequent experiments the parameters are fixed to be c0 = c2 =

1.6, c1 = 3.5.

We generate data from four types of distributions over an alphabet of

k = 105 elements, namely, the uniform distribution with pi = 1
k
, Zipf distri-

butions with pi ∝ i−α and α being either 1 or 0.5, and an “even mixture”

of geometric distribution and Zipf distribution where for the first half of the

alphabet pi ∝ 1/i and for the second half pi+k/2 ∝ (1− 2
k
)i−1, 1 ≤ i ≤ k

2
. Us-

ing parameters mentioned above, the approximating polynomial has degree

18, the parameter determining the approximation interval is c1 log k = 40,

and the threshold to decide which estimator to use in (4.18) is 18; namely,

we apply the polynomial estimator gL if a symbol appeared at most 18 times

and the bias-corrected plug-in estimator otherwise. After obtaining the pre-

liminary estimate H̃ in (4.18), our final output is H̃ ∨ 0.4 Since the plug-in

3The C++ and Python implementation of our estimator is available at https:

//github.com/Albuso0/entropy.
4We can, as in Proposition 4.1, output (H̃∨0)∧log k, which yields a better performance.

We elect not to do so for a stricter comparison.
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Figure 4.6: Performance comparison with sample size n ranging from 103 to
3× 107.

estimator suffers from severe bias when samples are scarce, we forgo the

comparison with it to save space in the figures and instead compare with

its bias-corrected version, i.e., the Miller-Madow estimator (4.10). We also

compare the performance with the linear programming estimator in [64], the

best upper bound (BUB) estimator [66], and the estimator based on similar

polynomial approximation techniques5 proposed by [69] using their imple-

mentations with default parameters. Our estimator is implemented in C++

which is much faster than those from [64, 69, 66] implemented in MATLAB so

the running time comparison is ignored. We notice that the linear program-

ming in [64] is much slower than the polynomial estimator in [69], especially

when the sample size becomes larger.

We compute the root mean squared error (RMSE) for each estimator over

50 trials. The full performance comparison is shown in Figure 4.6 where the

sample size ranges from one percent to 300 folds of the alphabet size. In

Figure 4.7 we further zoom into the more interesting regime of fewer samples

with the sample size ranging from one to five percent of the alphabet size. In

this regime our estimator, as well as those from [64, 69, 66], outperforms the

5The estimator in [69] uses a smooth cutoff function in lieu of the indicator function
in (4.18); this seems to improve neither the theoretical error bound nor the empirical
performance.
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Figure 4.7: Performance comparison when sample size n ranges from 1000
to 5000.

classical Miller-Madow estimator significantly; furthermore, our estimator

performs better than those in [69, 66] in most cases tested and comparably

with that in [64]. When the samples are abundant all estimators achieve

very small error; however, it has been empirically observed in [69] that the

performance of linear programming starts to deteriorate when the sample

size is very large, which is also observed in our experiments (see [100]). The

specific figures of that regime are ignored since the absolute errors are very

small and even the plug-in estimator without bias correction is accurate.

By (4.18), for large sample size our estimator tends to the Miller-Madow

estimator when every symbol is observed many times.

4.3 Fundamental limits of entropy estimation

Thus far, we have described the empirical entropy and the construction of an

estimator using the polynomial approximation method such that the bias is

smaller than the empirical entropy. The worst-case MSE of both estimators

are analyzed. To establish a constant-factor approximation of the funda-

mental limit of entropy estimation (4.1), we need a matching minimax lower

bound. This is the goal of the present section.
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To obtain the lower bound part of (4.2), it suffices to show that the mini-

max risk is lower bounded by the two terms in (4.2) separately. This follows

from combining Propositions 4.2 and 4.3.

Proposition 4.2. For all k, n ∈ N,

R∗H(k, n) &
log2 k

n
. (4.27)

Proposition 4.3. For all k, n ∈ N,

R∗H(k, n) &

(
k

n log k

)2

∨ 1. (4.28)

Proposition 4.2 follows from a simple application of Le Cam’s two-point

method : If two input distributions P and Q are sufficiently close such that

it is impossible to reliably distinguish between them using n samples with

error probability less than, say, 1
2
, then any estimator suffers a quadratic risk

proportional to the separation of the functional values |H(P )−H(Q)|2.

Proof. For any pair of distributions P and Q, Le Cam’s two-point method

(see, e.g., [32, Section 2.4.2]) yields

R∗H(k, n) ≥ 1

4
(H(P )−H(Q))2 exp(−nD(P‖Q)). (4.29)

Therefore it boils down to solving the optimization problem:

sup{H(P )−H(Q) : D(P‖Q) ≤ 1/n}. (4.30)

Without loss of generality, assume that k ≥ 2. Fix an ε ∈ (0, 1) to be

specified. Let

P =

(
1

3k′
, . . . ,

1

3k′
,
2

3

)
, Q =

(
1 + ε

3k′
, . . . ,

1 + ε

3k′
,
2− ε

3

)
, (4.31)

where k′ = k−1. Direct computation yields D(P‖Q) = 2
3

log 2
2−ε+

1
3

log 1
ε+1
≤

ε2 and H(Q)−H(P ) = 1
3
(ε log k′ + log 4 + (2− ε) log 1

2−ε + (1 + ε) log 1
ε+1

) ≥
1
3

log(2k′)ε− ε2. Choosing ε = 1√
n

and applying (4.29), we obtain the desired

(4.27).
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Remark 4.3. In view of the Pinsker inequality D(P‖Q) ≥ 2TV2(P,Q) [101,

p. 58] as well as the continuity property of entropy with respect to the total

variation distance, |H(P )−H(Q)| ≤ TV(P,Q) log k
TV(P,Q)

for TV(P,Q) ≤ 1
4

[101, Lemma 2.7], we conclude that the best lower bound given by the two-

point method, i.e., the supremum in (4.30), is on the order of log k√
n

. Therefore

the choice of the pair (4.31) is optimal.

The remainder of this section is devoted to proving Proposition 4.3. Since

the best lower bound provided by the two-point method is log2 k
n

(see Re-

mark 4.3), proving (4.28) requires more powerful techniques. To this end,

we use a generalized version of Le Cam’s method involving two composite

hypotheses (also known as fuzzy hypothesis testing in [32]):

H0 : H(P ) ≤ t versus H1 : H(P ) ≥ t+ d, (4.32)

which is more general than the two-point argument using only simple hy-

pothesis testing. Similarly, if we can establish that no test can distinguish

(4.32) reliably, then we obtain a lower bound for the quadratic risk on the

order of d2. By the minimax theorem, the optimal probability of error for

the composite hypotheses test is given by the Bayesian version with respect

to the least favorable priors. For (4.32) we need to choose a pair of pri-

ors, which, in this case, are distributions on the probability simplex Mk, to

ensure that the entropy values are separated.

4.3.1 Construction of the priors

The main idea for constructing the priors is as follows: First, the symme-

try of the entropy functional implies that the least favorable prior must be

permutation-invariant. This inspires us to use the following i.i.d. construc-

tion. For conciseness, we focus on the case of n � k
log k

for now and our goal

is to obtain an Ω(1) lower bound. Let U be a R+-valued random variable

with unit mean. Consider the random vector

P =
1

k
(U1, . . . , Uk),

consisting of i.i.d. copies of U . Note that P itself is not a probability distri-

bution; however, the key observation is that, since E[U ] = 1, as long as the
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variance of U is not too large, the weak law of large numbers ensures that P

is approximately a probability vector.

Example 4.1. A deterministic U = 1 generates

P =

(
1

k
, . . . ,

1

k

)
,

which is a uniform distribution over k elements. A binary U ∼ 1
2
(δ0 + δ2)

generates

P =

(
U1

k
, . . . ,

Uk
k

)
,

where roughly half of Ui is two and others are zero. This is approximately

an uniform distribution over k/2 elements with the support set uniformly

chosen at random.

From this viewpoint, the CDF of the random variable U
k

plays the role

of the histogram of the distribution P, which is the central object in the

Valiant-Valiant lower bound construction (see [89, Definition 3]). Using a

conditioning argument we can show that the distribution of P can effectively

serve as a prior.

Next we outline the main ingredients in implementing Le Cam’s method:

1. Functional value separation: Define φ(x) , x log 1
x
. Note that

H(P) =
k∑
i=1

φ

(
Ui
k

)
=

1

k

k∑
i=1

φ(Ui) +
log k

k

k∑
i=1

Ui,

which concentrates near its mean E [H(P)] = E [φ(U)] + E [U ] log k by

the law of large numbers. Therefore, given another random variable

U ′ with unit mean, we can obtain P′ similarly using i.i.d. copies of

U ′. Then with high probability, H(P) and H(P′) are separated by the

difference of their mean values, namely,

E [H(P)]− E [H(P′)] = E [φ(U)]− E [φ(U ′)] ,

which we aim to maximize.

2. Indistinguishability : Note that given a distribution P = (p1, . . . , pk),

the sufficient statistics satisfy Ni
ind∼ Poi(npi). Therefore, if P is drawn
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from the distribution of P, then N = (N1, . . . , Nk) are i.i.d. distributed

according the Poisson mixture E[Poi(n
k
U)]. Similarly, if P is drawn

from the prior of P′, then N is distributed according to (E[Poi(n
k
U ′)])⊗k.

To establish the impossibility of testing, we need the total variation

distance between the two k-fold product distributions to be strictly

bounded away from one, for which a sufficient condition is

TV(E[Poi(nU/k)],E[Poi(nU ′/k)]) ≤ c/k (4.33)

for some c < 1.

To conclude, we see that the i.i.d. construction fully exploits the indepen-

dence blessed by the Poisson sampling, thereby reducing the problem to one

dimension. This allows us to sidestep the difficulty encountered in [89] when

dealing with fingerprints which are high-dimensional random vectors with

dependent entries.

What remains is the following scalar problem: choose U,U ′ to maximize

|E [φ(U)] − E [φ(U ′)] | subject to the constraint (4.33). A commonly used

proxy for bounding the total variation distance is moment matching, i.e.,

E [U j] = E [U ′j] for all j = 1, . . . , L. Together with L∞-norm constraints, a

sufficiently large degree L ensures the total variation bound (4.33). Com-

bining the above steps, our lower bound is proportional to the value of the

following convex optimization problem (in fact, infinite-dimensional linear

programming over probability measures):

FL(λ) , sup E [φ(U)]− E [φ(U ′)] ,

s.t. E [U ] = E [U ′] = 1,

E
[
U j
]

= E
[
U ′j
]
, j = 1, . . . , L,

U, U ′ ∈ [0, λ],

(4.34)

for some appropriately chosen L ∈ N and λ > 1 depending on n and k.

Finally, we connect the optimization problem (4.34) to the machinery of

best polynomial approximation. Denote by PL the set of polynomials of degree

L and

EL(f, I) , inf
p∈PL

sup
x∈I
|f(x)− p(x)|, (4.35)

which is the best uniform approximation error of a function f over a finite
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interval I by polynomials of degree L. We prove that

FL(λ) ≥ 2EL(log, [1/λ, 1]). (4.36)

Due to the singularity of the logarithm at zero, the approximation error can

be made bounded away from zero if λ grows quadratically with the degree L

(see (4.55)). Choosing L � log k and λ � log2 k leads to the impossibility

of consistent estimation for n � k
log k

. For n � k
log k

, the lower bound for

the quadratic risk follows from relaxing the unit-mean constraint in (4.34) to

E [U ] = E [U ′] ≤ 1 and a simple scaling argument. Analogous construction

of priors and proof techniques have subsequently been used in [69] to obtain

sharp minimax lower bound for estimating the power sum in which case the

log p function is replaced by pα.

4.3.2 Minimax lower bound from two composite hypotheses

For 0 < ε < 1, define the set of approximate probability vectors by

Mk(ε) ,

{
P ∈ Rk

+ :

∣∣∣∣∣
k∑
i=1

pi − 1

∣∣∣∣∣ ≤ ε

}
, (4.37)

which reduces to the probability simplex Mk if ε = 0. Generalizing the

minimax quadratic risk (3.2) for Poisson sampling, we define

R̃∗(k, n, ε) , inf
Ĥ′

sup
P∈Mk(ε)

E(Ĥ ′(N)−H(P ))2, (4.38)

where N = (N1, . . . , Nk) and Ni
ind∼ Poi(npi) for i = 1, . . . , k. Since P

is not necessarily normalized, H(P ) may not carry the meaning of entropy.

Nevertheless, H is still valid a functional. The risk defined above is connected

to the risk (4.1) for multinomial sampling by Lemma 4.7.

Lemma 4.7. For any k, n ∈ N and ε < 1/3,

R∗(k, n/2) ≥ 1

3
R̃∗(k, n, ε)− log2 k(ε2 + e−n/50)− φ2(1 + ε).

To establish a lower bound of R̃∗(k, n, ε), we apply generalized Le Cam’s

method involving two composite hypotheses as in (4.32), which entails choos-
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ing two priors such that the entropy values are separated with probability

one. It turns out that this can be relaxed to separation on average, if we

can show that the entropy values are concentrated at their respective means.

This step is made precise in Lemma 4.8.

Lemma 4.8. Let U and U ′ be random variables such that U,U ′ ∈ [0, λ]

and E [U ] = E [U ′] ≤ 1 and |E [φ(U)]− E [φ(U ′)]| ≥ d, where λ < k/e. Let

ε = 4λ√
k
. Then

R̃∗(k, n, ε) ≥ d2

16

(
7

8
− kTV(E [Poi (nU/k)] ,E [Poi (nU ′/k)])−

32λ2 log2 k
λ

kd2

)
.

(4.39)

The statistical closeness between two Poisson mixtures is established in

Section 3.3. To apply Lemma 4.8 we need to construct two random variables,

namely U and U ′, that have matching moments of order 1, . . . , L, and large

discrepancy in the mean functional value |E [φ(U)]− E [φ(U ′)]|, as described

in Section 4.3.1 and formulated in (4.34). As shown in Section 2.1.2, we can

obtain U,U ′ with matching moments from the dual of the best polynomial

approximation of φ, namely (4.35); however, we have little control over the

value of the common mean E[U ] = E[U ′] and it is unclear whether it is less

than one as required by Lemma 4.8. Of course we can normalize U,U ′ by

their common mean which preserves moments matching; however, the mean

value separation |E [φ(U)]− E [φ(U ′)]| also shrinks by the same factor, which

results in a suboptimal lower bound.

To circumvent this issue, we first consider auxiliary random variables X,X ′

supported on a interval bounded away from 0; leveraging the property that

their “zeroth moments” are one, we then construct the desired random vari-

ables U,U ′ via a change of measure. To be precise, given η ∈ (0, 1) and any

random variables X,X ′ ∈ [η, 1] that have matching moments up to the Lth

order, we can construct U,U ′ from X,X ′ with the following distributions

PU(du) =
(

1− E
[ η
X

])
δ0(du) +

α

u
PαX/η(du),

PU ′(du) =
(

1− E
[ η
X ′

])
δ0(du) +

α

u
PαX′/η(du),

(4.40)

for some fixed α ∈ (0, 1). Since X,X ′ ∈ [η, 1] and thus E
[
η
X

]
,E
[
η
X′

]
≤ 1,
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these distributions are well-defined and supported on [0, αη−1]. Furthermore,

E [U ] = E [U ′] = α, (4.41)

E
[
U j
]

= E
[
U ′j
]
, j = 1, . . . , L+ 1, (4.42)

E [φ(U)]− E [φ(U ′)] = α(E[log(1/X)]− E[log(1/X ′)]). (4.43)

To choose the best X,X ′, we consider the following auxiliary optimization

problem over random variables X and X ′ (or equivalently, the distributions

thereof):

E∗ = max E[log(1/X)]− E[log(1/X ′)],

s.t. E[Xj] = E[X ′j], j = 1, . . . , L,

X,X ′ ∈ [η, 1],

(4.44)

where 0 < η < 1. Note that (4.44) is an infinite-dimensional linear program-

ming problem with finitely many constraints. Therefore it is natural to turn

to its dual. In Section 2.1.2 we show that the maximum E∗ exists and coin-

cides with twice the best L∞ approximation error of the log over the interval

[η, 1] by polynomials of degree L:

E∗ = 2EL(log, [η, 1]). (4.45)

By definition, this approximation error is decreasing in the degree L when

η is fixed; on the other hand, since the logarithm function blows up near

zero, for fixed degree L the approximation error also diverges as η vanishes.

As shown in Lemma 4.9, in order for the error to be bounded away from

zero which is needed in the lower bound, it turns out that the necessary and

sufficient condition is when η decays according to L−2. See Lemma 4.9.

With the above preparations, we now prove the minimax lower bound in

Proposition 4.3.

Proof. Let X and X ′ be the maximizer of (4.44). Now we construct U and

U ′ from X and X ′ according to the recipe (4.40). By (4.41) – (4.43), the

first L + 1 moments of U and U ′ are matched with means equal to α which

is less than one; moreover,

E [φ(U)]− E [φ(U ′)] = αE∗. (4.46)
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Recall the universal constants c and c′ defined in Lemma 4.9. If n ≥ 2k
log k

,

let c1 ≤ 2 be a constant satisfying c
2

log c
4ec1

> 2 and thus c > 4ec1. Let

η = log−2 k, L = bc log kc ≥ c log k
2

, α = c1k
n log k

and λ = αη−1 = c1k log k
n

.

Therefore α ≤ 1. Using (4.40) and (4.46), we can construct two random

variables U,U ′ ∈ [0, λ] such that E[U ] = E[U ′] = α, E[U j] = E[U ′j], for all

j ∈ [L], and E [φ(U)]−E [φ(U ′)] = αE∗. It follows from (4.45) and Lemma 4.9

that E∗ ≥ 2c′ and thus |E [φ(U)]− E [φ(U ′)]| ≥ 2c′α. By the choice of c1,

applying Theorem 3.5 yields TV(E [Poi (nU/k)] ,E [Poi (nU ′/k)]) ≤ 2k−2. Fi-

nally, applying Lemma 4.7 and Lemma 4.8 with d = 2c′α yields the desired

lower bound R∗(k, n/2) & α2 � ( k
n log k

)2. Consequently, R∗H(k, n) & ( k
n log k

)2

when n ≥ k
log k

. If n ≤ k
log k

by monotonicity, R∗H(k, n) ≥ R∗(k, k
log k

) & 1.

Remark 4.4 (Structure of the least favorable priors). From Theorem 2.6,

we conclude that X,X ′ are in fact discrete random variables each of which

has L + 2 � log k atoms, and their support sets are disjoint. Therefore

U,U ′ are also finitely valued; however, our proof does not rely on this fact.

Nevertheless, it is instructive to discuss the structure of the prior. Except for

possibly a fixed large mass, the masses of random distributions P and P′ are

drawn from the distribution U and U ′ respectively, which lie in the interval

[0, log k
n

]. Therefore, although P and P′ are distributions over k elements, they

only have log k distinct masses and the locations are randomly permuted.

Moreover, the entropy of P and P′ constructed based on U and U ′ (see (4.48))

are concentrated near the respective mean values, both of which are close to

log k but differ by a constant factor of k
n log k

.

4.3.3 Proof of lemmas

Proof of Lemma 4.7. Denote the left-hand side of the above equation be RĤ .

For a fixed sample size m, there exists an estimator, e.g., the minimax esti-

mator, denoted by Ĥ(·,m), such that

sup
P∈Mk

E[(Ĥ(N,m)−H(P ))2] ≤

RĤ , m ≥ n/2,

log2 k, m < n/2.
(4.47)

Using the sequence {Ĥ(·,m) : m ∈ N}, we construct an estimator for the

functional H(P ), where P = (p1, . . . , pk) ∈ Mk(ε), using statistics N =
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(N1, . . . , Nk) with Ni
ind∼ Poi(npi). Denote the total number of samples by

n′ =
∑

iNi. The estimator is defined by

H̃(N) = Ĥ(N, n′).

The functional H(P ) is related to entropy of the normalized P by

H(P ) =
k∑
i=1

pi log
1

pi
= φ(s) + sH(P̃ ),

where s denotes the summation of all pi, which differs from one by at most

ε, and P̃ = P/s denotes the normalized distribution. Applying the triangle

inequality yields that

1

3
(H̃(N)−H(P ))2 ≤ (H̃(N)−H(P̃ ))2 + ((1− s)H(P̃ ))2 + φ2(s).

In the right-hand side of the above inequality, the second terms is at most

(ε log k)2, and the third term is at most φ2(1 + ε) since φ is increasing on

[0, 1/3]. For the first term, we observe that conditioned on n′ = m, N ∼
multinomial(m, P̃ ). Hence, we have

E(H̃(N)−H(P̃ ))2 =
∞∑
m=0

E[(Ĥ(N,m)−H(P̃ ))2|n′ = m]P[n′ = m].

Using (4.47), we obtain that

E(H̃(N)−H(P̃ ))2 ≤ RĤ + log2 kP[n′ < n/2].

Combining the above inequalities yields a lower bound on RĤ . In the state-

ment of lemma we applied P[n′ < n/2] < e−n/50 by the Chernoff bound ([56,

Theorem 5.4]).

Proof of Lemma 4.8. Denote the common mean by α , E [U ] = E [U ′] ≤ 1.

Define two random vectors

P =

(
U1

k
, . . . ,

Uk
k
, 1− α

)
, P′ =

(
U ′1
k
, . . . ,

U ′k
k
, 1− α

)
, (4.48)

where Ui, U
′
i are i.i.d. copies of U,U ′, respectively. Note that ε = 4λ√

k
≥
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4
√

var[U ]∨var[U ′]
k

. Define the following events indicating that Ui and H(P) are

concentrated near their respective mean values:

E ,

{∣∣∣∣∣∑
i

Ui
k
− α

∣∣∣∣∣ ≤ ε, |H(P)− E [H(P)]| ≤ d

4

}
,

E ′ ,

{∣∣∣∣∣∑
i

U ′i
k
− α

∣∣∣∣∣ ≤ ε, |H(P′)− E [H(P′)]| ≤ d

4

}
.

Using the independence of Ui, Chebyshev’s inequality and union bound yield

that

P [Ec] ≤ P

[∣∣∣∣∣∑
i

Ui
k
− α

∣∣∣∣∣ > ε

]
+ P

[
|H(P)− E [H(P)]| > d

4

]
≤ var[U ]

kε2
+

16
∑

i var[φ(Ui/k)]

d2
≤ 1

16
+

16λ2 log2 k
λ

kd2
, (4.49)

where the last inequality follows from the fact that var
[
φ
(
Ui
k

)]
≤ E

[
φ
(
Ui
k

)]2
≤
(
φ
(
λ
k

))2
when λ/k < e−1 by assumption. By the same reasoning,

P [E ′c] ≤ 1

16
+

16λ2 log2 k
λ

kd2
. (4.50)

Note that conditioning on E and E ′ the random vectors in (4.48) belong to

Mk(ε). Now we define two priors on the set Mk(ε) using (4.48) with the

following conditional distributions:

π = PP|E, π′ = PP′|E′ .

It follows from H(P) = 1
k

∑
i φ(Ui) + log k

k

∑
i Ui +φ(1−α) that E [H(P)] =

E [φ(U)]+E [U ] log k+φ(1−α). Similarly, E [H(P′)] = E [φ(U ′)]+E [U ′] log k+

φ(1−α). By assumption |E [H(P)]−E [H(P′)] | = |E [φ(U)]−E [φ(U ′)] | ≥ d.

By the definition of events E,E ′ and triangle inequality, we obtain that under

π, π′

|H(P)−H(P′)| ≥ d

2
. (4.51)

Now we consider the total variation of the sufficient statistics N = (Ni)

under two priors. Note that conditioned on pi, we have Ni ∼ Poi(npi). The
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triangle inequality of total variation then yields

TV
(
PN |E, PN ′|E′

)
≤TV

(
PN |E, PN

)
+ TV (PN , PN ′) + TV

(
PN ′ , PN ′|E′

)
=P [Ec] + TV (PN , PN ′) + P [E ′c]

≤TV (PN , PN ′) +
1

8
+

32λ2 log2 k
λ

kd2
, (4.52)

where in the last inequality we have applied (4.49)–(4.50). Note that PN , PN ′

are marginal distributions under priors PP, PP′ respectively. In view of the

fact that the total variation between product distributions is at most the sum

of total variations of pair of marginals, we obtain

TV (PN , PN ′) ≤
k∑
i=1

TV
(
PNi , PN ′i

)
+ TV(Poi(n(1− α)),Poi(n(1− α)))

=kTV(E [Poi (nU/k)] ,E [Poi (nU ′/k)]). (4.53)

Then it follows from (4.51)–(4.53) and Le Cam’s lemma [96] that

R̃∗(k, n, ε) ≥ d2

16

(
7

8
− kTV(E [Poi (nU/k)] ,E [Poi (nU ′/k)])−

32λ2 log2 k
λ

kd2

)
.

(4.54)

4.3.4 Best polynomial approximation of the logarithm
function

Lemma 4.9. There exist universal positive constants c, c′, L0 such that for

any L ≥ L0,

EbcLc(log, [L−2, 1]) ≥ c′. (4.55)

Proof of Lemma 4.9. Recall the best uniform polynomial approximation er-

ror Em(f, I) defined in (4.35). Put Em(f) , Em(f, [−1, 1]). In the sequel

we shall slightly abuse the notation by assuming that cL ∈ N, for otherwise

the desired statement holds with c replaced by c/2. Through simple linear

transformation we see that EcL(log, [L−2, 1]) = EcL(fL) where

fL(x) = − log

(
1 + x

2
+

1− x
2L2

)
.
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The difficulty in proving the desired

EcL(fL) & 1 (4.56)

lies in the fact that the approximand fL changes with the degree L. In fact,

the following asymptotic result has been shown in [34, Section 7.5.3, p. 445]:

EL(log(a − x)) = 1+o(1)

L
√
a2−1(a+

√
a2−1)L

for fixed a > 1 and L → ∞. In our case

EcL(fL) = EcL(log(a− x)) with a = 1+L−2

1−L−2 . The desired (4.56) would follow

if one substituted this a into the asymptotic expansion of the approximation

error, which, of course, is not a rigorous approach. To prove (4.56), we

need non-asymptotic lower and upper bounds on the approximation error.

There exist many characterizations of approximation error, such as Jackson’s

theorem, in term of various moduli of continuity of the approximand. Let

∆m(x) = 1
m

√
1− x2 + 1

m2 and define the following modulus of continuity for

f (see, e.g., [99, Section 3.4]):

τ1(f,∆m) = sup{|f(x)− f(y)| : x, y ∈ [−1, 1], |x− y| ≤ ∆m(x)}.

We first state the following bounds on τ1 for fL.

Lemma 4.10 (Direct bound).

τ1(fL,∆m) ≤ log

(
2L2

m2

)
, ∀m ≤ 0.1L. (4.57)

Lemma 4.11 (Converse bound).

τ1(fL,∆L) ≥ 1,∀L ≥ 10. (4.58)

From [99, Theorem 3.13, Lemma 3.1] we know that Em(fL) ≤ 100τ1(fL,

∆m). Therefore, for all c ≤ 10−7 < 0.1, the direct bound in Lemma 4.10

gives us

1

L

cL∑
m=1

Em(fL) ≤ 100

L

cL∑
m=1

log

(
2L2

m2

)
= 100c log 2 +

200

L
log

LcL

(cL)!

<
1

400
− 100

L
log(2πcL),

where the last inequality follows from Stirling’s approximation n! >
√

2πn
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(n/e)n. We apply the converse result for approximation in [99, Theorem 3.14]

that

τ1(fL,∆L) ≤ 100

L

L∑
m=0

Em(fL), (4.59)

where E0(fL) = logL. Assembling (4.58)–(4.59), we obtain for all c ≤ 10−7

and L > 10 ∨
(
100× 400 log 1

2πc

)
,

1

L

L∑
m=cL+1

Em(fL) ≥ 1

100
−

(
1

L
E0(fL) +

1

L

cL∑
m=1

Em(fL)

)

≥ 1

100
−
(

1

400
+

100 log 1
2πc

L

)
>

1

200
.

By definition, the approximation error Em(fL) is a decreasing function of the

degree m. Therefore for all c ≤ 10−7 and L > 4× 104 log 1
2πc

,

EcL(fL) ≥ 1

L− cL

L∑
m=cL+1

Em(fL) ≥ 1

L

L∑
m=cL+1

Em(fL) ≥ 1

200
.

Remark 4.5. From the direct bound Lemma 4.10 we know that EcL(log,

[1/L2, 1]) . 1. Therefore the bound (4.55) is in fact tight: EcL(log, [1/L2, 1])

� 1.

Proof of Lemmas 4.10 and 4.11. First we show (4.57). Note that

τ1(fL,∆m) = sup
x∈[−1,1]

sup
y:|x−y|≤∆m(x)

|fL(x)− fL(y)|.

For fixed x ∈ [−1, 1], to decide the optimal choice of y we need to consider

whether ξ1(x) , x−∆m(x) ≥ −1 and whether ξ2(x) , x+∆m(x) ≤ 1. Since

ξ1 is convex, ξ1(−1) < −1 and ξ1(1) > −1, then ξ1(x) > −1 if and only if

x > xm, where xm is the unique solution to ξ1(x) = −1, given by

xm =
m2 −m4 +

√
−m2 + 3m4

m2 +m4
. (4.60)

Note that ∆m is an even function and thus ξ2(x) = −ξ1(−x). Then ξ2(x) < 1

if and only if x < −xm.

Since fL is strictly decreasing and convex, for fixed x and d > 0 we have

fL(x−d)−fL(x) > fL(x)−fL(x+d) > 0 as long as −1 < x−d < x+d < 1.
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If m ≥ 2 since ξ1(0) > −1 then xm < 0 and −xm > 0. Therefore,

τ1(fL,∆m) = sup
x<xm

{fL(x)− fL(ξ2(x))} ∨ sup
x<xm

{fL(−1)− fL(x)}

∨ sup
x≥xm

{fL(ξ1(x))− fL(x)} .

Note that the second term in the last inequality is dominated by the third

term since fL(ξ1(xm)) − fL(xm) = fL(−1) − fL(xm) > fL(−1) − fL(x) for

any x < xm. Hence,

τ1(fL,∆m) = sup
x∈[−1,xm)

{fL(x)− fL(ξ2(x))} ∨ sup
x∈[xm,1]

{fL(ξ1(x))− fL(x)}

= sup
x∈[−1,xm)

{log (1 + βL(x))} ∨ sup
x∈[xm,1]

{− log (1− βL(x))} ,

(4.61)

where βL(x) , ∆m(x)

x+L2+1

L2−1

. If m = 1 we know that x1 > 0 and −x1 < 0 by

(4.60), then

τ1(fL,∆m) = sup
x<xm

{fL(x)− fL(ξ2(x) ∧ 1)} ∨ sup
x<xm

{fL(−1)− fL(x)}

∨ sup
x≥xm

{fL(ξ1(x))− fL(x)} .

Since fL(ξ2(x)∧1) ≥ fL(ξ2(x)), by the same argument, (4.61) remains a valid

upper bound of τ1(fL,∆1). Next we will show separately that the two terms

in (4.61) both satisfy the desired upper bound.

For the first term in (4.61), note that

βL(x) =
1
m

√
1− x2 + 1

m2

x+ 1 + 2
L2−1

≤ 1

m2

L
√

1− x2 + 1

(x+ 1) + 2
L2

=
L2

m2

√
1− x2 + 1

L

L (x+ 1) + 2
L

.

One can verify that
√

1−x2+ 1
L

L(x+1)+ 2
L

≤ 1 for any x ∈ [−1, 1]. Therefore,

log (1 + βL(x)) ≤ log

(
1 +

L2

m2

)
, ∀x ∈ [−1, 1],
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and, consequently,

sup
x∈[−1,xm)

{log (1 + βL(x))} ≤ log

(
2L2

m2

)
, ∀m ≤ L. (4.62)

For the second term in (4.61), it follows from the derivative of βL(x) that

it is decreasing when x > 1−L2

1+L2 . From (4.60) we have xm > 1−m2

1+m2 and hence

xm > 1−L2

1+L2 when m ≤ L. So the supremum is achieved exactly at the left

end of [xm, 1], that is:

sup
x∈[xm,1]

{− log (1− βL(x))} = − log (1− βL(xm))

= log

(
1 + xm

2
L2 +

1− xm
2

)
.

From (4.60) we know that xm ≥ −1 and xm < −1 + 3.8
m2 . Therefore 1−xm

2
≤ 1

and xm+1
2

< 1.9
m2 . For m ≤ 0.1L, we have

sup
x∈[xm,1]

{− log (1− βL(x))} ≤ log

(
1 +

1.9m2

L2

)
≤ log

(
2m2

L2

)
. (4.63)

Plugging (4.62) and (4.63) into (4.61), we complete the proof of Lemma 4.10.

Next we prove (4.58). Recall that xL −∆L(xL) = −1. By definition,

τ1(fL,∆L) ≥ fL(xL −∆L(xL))− fL(xL) = log

(
1 + xL

2
L2 +

1− xL
2

)
.

Using the close-form expression of xL in (4.60) with m = L, we further obtain

τ1(fL,∆L) ≥ log

(
2L2 +

√
−L2 + 3L4

2(L2 + 1)
+

2L4 −
√
−L2 + 3L4

2(L2 + L4)

)
≥ 1,

when L ≥ 10.
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CHAPTER 5

ESTIMATING THE UNSEEN

Estimating the support size of a distribution from data is a classical problem

in statistics with widespread applications. For example, a major task for

ecologists is to estimate the number of species [58] from field experiments;

linguists are interested in estimating the vocabulary size of Shakespeare based

on his complete works [102, 21, 103]; in population genetics it is of great

interest to estimate the number of different alleles in a population [104].

Estimating the support size is equivalent to estimating the number of unseen

symbols, which is particularly challenging when the sample size is relatively

small compared to the total population size, since a significant portion of the

population are never observed in the data. This chapter discusses two closely

related problem: support size estimation and the distinct elements problem.

5.1 Definitions and previous work

We adopt the following statistical model [105, 106]. Let P be a discrete

distribution over some countable alphabet. Without loss of generality, we

assume the alphabet is N and denote P = (p1, p2, . . . ). Given n independent

samples X , (X1, . . . , Xn) drawn from P , the goal is to estimate the support

size

S = S(P ) ,
∑
i

1{pi>0}. (5.1)

Since support size is a symmetric function of the distribution, the histogram

of samples (3.1) and the fingerprint (4.15) are both sufficient statistics for

estimating S(P ).

It is clear that unless we impose further assumptions on the distribution

P , it is impossible to estimate S(P ) within a given accuracy, for otherwise

there can be arbitrarily many masses in the support of P that, with high
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probability, are never sampled and the worst-case risk for estimating S(P )

is obviously infinite. To prevent the triviality, a conventional assumption

[106] is to impose a lower bound on the non-zero probabilities. Therefore

we restrict our attention to the parameter space Dk, which consists of all

probability distributions on N whose minimum non-zero mass is at least 1
k
;

consequently S(P ) ≤ k for any P ∈ Dk. This is called the Support Size

problem in this chapter. The decision-theoretic fundamental limit is given

by the minimax risk :

R∗S(k, n) , inf
Ŝ

sup
P∈Dk

E(Ŝ − S)2, (5.2)

where the loss function is the MSE and Ŝ is an integer-valued estimator

measurable with respect to the samples X1, . . . , Xn
i.i.d.∼ P .

We also investigate the sample complexity of the Support Size problem,

which is defined as follows.

Definition 5.1. The sample complexity n∗(k, ε) is the minimal sample size

n such that there exists an integer-valued estimator Ŝ based on n samples

drawn independently from a distribution P such that P[|Ŝ − S| ≥ εk] ≤ 0.1

for any P ∈ Dk.

Clearly, since Ŝ − S is an integer, the only interesting case is ε ≥ 1
k
,

with ε = 1
k

corresponding to the exact estimation of the support size since

|Ŝ − S| < 1 is equivalent to Ŝ = S. Furthermore, since S(P ) takes values in

[k], n∗(k, 1
2
) = 0 by definition.

Another common assumption on the support size estimation problem is

that pi has the special form pi = ki
k

with ki ∈ Z+, which arises naturally

from the Distinct Elements problem [107]:

Given n balls randomly drawn from an urn containing k colored

balls, how to estimate the total number of distinct colors in the

urn?

Originating from ecology, numismatics, and linguistics, this problem is also

known as the species problem in the statistics literature [108, 109]. Apart

from the theoretical interests, it has a wide array of applications in various

fields, such as estimating the number of species in a population of animals

[58, 59], the number of dies used to mint an ancient coinage [110], and the
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vocabulary size of an author [21]. In computer science, this problem fre-

quently arises in large-scale databases, network monitoring, and data mining

[106, 111, 107], where the objective is to estimate the types of database en-

tries or IP addresses from limited observations, since it is typically impossible

to have full access to the entire database or keep track of all the network traf-

fic. The key challenge in the Distinct Elements problem is similar: given

a small set of samples where most of the colors are not observed, how to ac-

curately extrapolate the number of unseens? The Distinct Elements is a

special case of the general support size estimation problem introduced above.

We define the corresponding sample complexity as the smallest sample size

needed to estimate the number of distinct colors with a prescribed accuracy

and confidence level. A formal definition follows.

Definition 5.2. The sample complexity n∗(k,∆) is the minimal sample size

n such that there exists an integer-valued estimator Ĉ based on n balls drawn

independently with replacements from the urn, such that P[|Ĉ − C| ≥ ∆] ≤
0.1 for any urn containing k balls with C different colors.1

5.1.1 Previous work on the Support Size problem

There is a vast amount of literature devoted to the support size estimation

problem. In parametric settings, the data generating distribution is assumed

to belong to certain parametric family such as uniform or Zipf [112, 102, 113]

and traditional estimators, such as maximum likelihood estimator and mini-

mum variance unbiased estimator, are frequently used [114, 115, 116, 21, 112,

104] – see the extensive surveys [109, 117]. When difficult to postulate or

justify a suitable parametric assumption, various nonparametric approaches

are adopted such as the Good-Turing estimator [59, 118] and variants due

to Chao and Lee [119, 120], Jackknife estimator [105], empirical Bayes ap-

proach (e.g., Good-Toulmin estimator [121]), one-sided estimator [122]. De-

spite their practical popularity, little is known about the performance guar-

antee of these estimators, let alone their optimality. Next we discuss provable

results assuming the independent sampling model.

For the naive plug-in estimator that counts the number of observed distinct

1Clearly, since Ĉ −C ∈ Z, we shall assume without loss of generality that ∆ ∈ N, with
∆ = 1 corresponding to the exact estimation of the number of distinct elements.
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symbols, it is easy to show that to estimate S(P ) within ±εk the minimal

required number of samples is Θ(k log 1
ε
), which scales logarithmically in 1

ε

but linearly in k, the same scaling for estimating the distribution P itself.

Recently Valiant and Valiant [94] showed that the sample complexity is in

fact sub-linear in k; however, the performance guarantee of the proposed

estimators are still far from being optimal. Specifically, an estimator based

on a linear program (LP) that is a modification of [21, Program 2] is proposed

and shown to achieve n∗(k, ε) . k
ε2+δ log k

for any arbitrary δ > 0 [94, Corollary

11], which has subsequently been improved to k
ε2 log k

in [64, Theorem 2, Fact

9]. The lower bound n∗(k, ε) & k
log k

in [89, Corollary 9] is optimal in k but

provides no dependence on ε. These results show that the optimal scaling

in terms of k is k
log k

but the dependence on the accuracy ε is 1
ε2

, which is

even worse than the plug-in estimator. From Theorem 5.2 we see that the

dependence on ε can be improved from polynomial to polylogarithmic log2 1
ε
,

which turns out to be optimal. Furthermore, this can be attained by a linear

estimator which is far more scalable than linear programming on massive

datasets. Finally, we mention that a general framework of designing and

analyzing linear estimators is given in [95] based on linear programming (as

opposed to the approximation-theoretic approach in this chapter).

5.1.2 Previous work on the Distinct Elements problem

The Distinct Elements problem has been extensive studied by both statis-

ticians and computer scientists.

Statistics literature The Distinct Elements problem is equivalent to

estimating the number of species (or classes) in a finite population, which

has been extensively studied in the statistics (see surveys [109, 123]) and

the numismatics literature (see survey [110]). Motivated by various practical

applications, a number of statistical models have been introduced for this

problem, and the most popular four are (cf. [109, Figure 1]):

• The multinomial model : n samples are drawn uniformly at random

with replacement;

• The hypergeometric model : n samples are drawn uniformly at random

without replacement;
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• The Bernoulli model : each individual is observed independently with

some fixed probability, and thus the total number of samples is a bino-

mial random variable;

• The Poisson model : the number of observed samples in each class is

independent and Poisson distributed, and thus the total sample size is

also a Poisson random variable.

These models are closely related: conditioned on the sample size, the Bernoulli

model coincides with the hypergeometric one, and Poisson model coincides

with the multinomial one; furthermore, hypergeometric model can simulate

multinomial one and is hence more informative. The multinomial model

is adopted as the main focus of this chapter and the sample complexity in

Definition 5.2 refers to the number of samples with replacement. In the un-

dersampling regime where the sample size is significantly smaller than the

population size, all four models are approximately equivalent.

Under these models various estimators have been proposed such as un-

biased estimators [124], Bayesian estimators [125], variants of Good-Turing

estimators [120], etc. None of these methodologies, however, have a provable

worst-case guarantee. Finally, we mention a closely related problem of esti-

mating the number of connected components in a graph based on sampled

induced subgraphs. In the special case where the underlying graph consists of

disjoint cliques, the problem is exactly equivalent to the Distinct Elements

problem [126].

Computer science literature The interests in the Distinct Elements

problem also arise in the database literature, where various intuitive esti-

mators [127, 128] have been proposed under simplifying assumptions such

as uniformity, and few performance guarantees are available. More recent

work in [107, 129] obtained the optimal sample complexity under the mul-

tiplicative error criterion, where the minimum sample size to estimate the

number of distinct elements within a factor of α is shown to be Θ(k/α2).

For this task, it turns out the least favorable scenario is to distinguish an

urn with unitary color from one with almost unitary color, the impossibility

of which implies large multiplicative error. However, the optimal estimator

performs poorly compared with others on an urn with many distinct colors

[107], the case where most estimators enjoy small multiplicative error. In
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view of the limitation of multiplicative error, additive error is later consid-

ered by [106, 130]. To achieve an additive error of ck for a constant c ∈ (0, 1
2
),

the result in [107] only implies an Ω(1/c) sample complexity lower bound,

whereas a much stronger lower bound scales like k
1−O(

√
log log k

log k
)

obtained in

[106], which is almost linear. Determining the optimal sample complexity

under additive error is the focus of the present chapter.

The Distinct Elements problem considered here is not to be confused

with the formulation in the streaming literature, where the goal is to approx-

imate the number of distinct elements in the observations with low space

complexity, see, e.g., [131, 132]. There, the proposed algorithms aim to op-

timize the memory consumption, but still require a full pass of every ball in

the urn. This is different from the setting in this chapter, where only random

samples drawn from the urn are available.

To close this subsection, we mention the Species extrapolation problem

whose recent resolution relies on results in this chapter. Given n independent

samples drawn from an unknown distribution, the goal is to predict the

number of hitherto unseen symbols that would be observed if m additional

samples were collected from the same distribution. Originally formulated in

[58] and further studied in [121, 21, 119], this problem reduces to support

size estimation if m = ∞; in contrast, for finite m, this problem remains

non-trivial even if no lower bound on the minimum non-zero probability is

imposed on the underlying distribution, since very rare species will typically

not appear in the new samples. The recent result [133] showed that the

furthest range for accurate extrapolation is m = o(n log n) and obtained the

minimax estimation error as a function of m,n for all distributions, where the

lower bound is obtained via a reduction to support size estimation studied

in this chapter.
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5.2 Estimating the support size

5.2.1 Fundamental limits of the Support Size problem

Theorem 5.1. For all k, n ≥ 2,

R∗S(k, n) = k2 exp

(
−Θ

(√
n log k

k
∨ n
k
∨ 1

))
. (5.3)

Furthermore, if k
log k
� n� k log k, as k →∞,

k2 exp

(
−c1

√
n log k

k

)
≤ R∗S(k, n) ≤ k2 exp

(
−c2

√
n log k

k

)
, (5.4)

where c1 =
√

2e+ o(1) and c2 = 1.579 + o(1).

To interpret the rate of convergence in (5.3), we consider three cases:

Simple regime n & k log k: we have R∗S(k, n) = k2 exp(−Θ(n
k
)) which can

be achieved by the simple plug-in estimator

Ŝseen ,
∑
i

1{Ni>0}, (5.5)

that is, the number of observed symbols or the support size of the

empirical distribution. Furthermore, if n
k log k

exceeds a sufficiently large

constant, all symbols are present in the data and Ŝseen is in fact exact

with high probability, namely, P[Ŝseen 6= S] ≤ E(Ŝseen − S)2 → 0. This

can be understood as the classical coupon collector’s problem (cf. e.g.,

[56]).

Non-trivial regime k
log k
� n � k log k: in this case the samples are rela-

tively scarce and the naive plug-in estimator grossly underestimate the

true support size as many symbols are simply not observed. Neverthe-

less, accurate estimation is still possible and the optimal risk is given

by R∗S(k, n) = k2 exp(−Θ(
√

n log k
k

)). This can be achieved by a linear

estimator based on the Chebyshev polynomial and its approximation-

theoretic properties. Although more sophisticated than the plug-in

estimator, this procedure can be evaluated in O(n+ log2 k) time.
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Impossible regime n . k
log k

: any estimator suffers an error proportional

to k in the worst case.

The next result characterizes the sample complexity within universal con-

stant factors that are within a factor of six asymptotically.

Theorem 5.2. Fix a constant c0 <
1
2
. For all 1

k
≤ ε ≤ c0,

n∗(k, ε) � k

log k
log2 1

ε
. (5.6)

Furthermore, if ε→ 0 and ε = k−o(1), as k →∞,

c̃1k

log k
log2 1

ε
≤ n∗(k, ε) ≤ c̃2k

log k
log2 1

ε
, (5.7)

where c̃1 = 1
2e2

+ o(1) and c̃2 = 1
2.494

+ o(1).

Compared to Theorem 5.1, the only difference is that here we are dealing

with the zero-one loss 1{|S−Ŝ|≥εk} instead of the quadratic loss (S−Ŝ)2. In the

proof we shall obtain upper bound for the quadratic risk and lower bound for

the zero-one loss, thereby proving both Theorem 5.1 and 5.2 simultaneously.

Furthermore, the choice of 0.1 as the probability of error in the definition

of the sample complexity is entirely arbitrary; replacing it by 1 − δ for any

constant δ ∈ (0, 1) only affect n∗(k, ε) up to constant factors.2

5.2.2 Optimal estimator via Chebyshev polynomials

In this section we prove the upper bound part of Theorem 5.1 and describe

the rate-optimal support size estimator in the non-trivial regime. Following

the same idea as in Section 3.1, we shall apply the Poissonization technique

to simplify the analysis where the sample size is Poi(n) instead of a fixed

number n and hence the sufficient statistics N = (N1, . . . , Nk)
ind∼ Poi(npi).

Analogous to (5.2), the minimax risk under the Poisson sampling is defined

by

R̃∗(k, n) , inf
Ŝ

sup
P∈Dk

E(Ŝ − S)2. (5.8)

2Specifically, upgrading the confidence to 1 − δ can be achieved by oversampling by
merely a factor of log 1

δ : Let T = log 1
δ . With nT samples, divide them into T batches,

apply the n-sample estimator to each batch and aggregate by taking the median. Then
Hoeffding’s inequality implies the desired confidence.
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Due to the concentration of Poi(n) near its mean n, the minimax risk with

fixed sample size is close to that under the Poisson sampling, as given by

Theorem 3.1, which allows us to focus on the model using Poissonized sample

size. In the next proposition, we first analyze the risk of the plug-in estimator

Ŝseen, which yields the optimal upper bound of Theorem 5.1 in the regime of

n & k log k. This is consistent with the coupon collection intuition.

Proposition 5.1. For all n, k ≥ 1,

sup
P∈Dk

E(S(P )− Ŝseen(N))2 ≤ k2e−2n/k + ke−n/k, (5.9)

where N = (N1, N2, . . . ) and Ni
ind∼ Poi(npi).

Conversely, for P that is uniform over [k], for any fixed δ ∈ (0, 1), if

n ≤ (1− δ)k log 1
ε
, then as k →∞,

P[|S(P )− Ŝseen(N)| ≤ εk] ≤ e−Ω(kδ). (5.10)

In order to remedy the inaccuracy of the plug-in estimate Ŝseen in the

regime of n . k log k, our proposed estimator adds a linear correction term:

Ŝ = Ŝseen +
∑
j≥1

ujΦj, (5.11)

where the coefficients uj’s are to be specified. Equivalently, the estimator

can be expressed in terms of the histogram as

Ŝ =
∑
i

g(Ni), (5.12)

where g : Z+ → R is defined as g(j) = uj + 1 for j ≥ 1 and g(0) = 0. Then

the bias of Ŝ is

E[Ŝ − S] =
∑
i:pi>0

e−npi

(∑
j≥1

uj
(npi)

j

j!
− 1

)
,
∑
i:pi>0

e−npiP (pi), (5.13)

where P (0) = −1 by design. Therefore the bias of Ŝ is at most

S max
x∈[pmin,1]

|e−nxP (x)|,
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and the variance can be upper bounded by 2S‖g‖2
∞ using the Efron-Stein

inequality [90]. Next we choose the coefficients in order to balance the bias

and variance. The construction is done using Chebyshev polynomials, which

we first introduce.

Recall that the usual Chebyshev polynomial TL (2.19). Note that TL is

bounded in magnitude by one over the interval [−1, 1]. The shifted and

scaled Chebyshev polynomial over the interval [l, r] is given by

PL(x) = −
TL(2x−r−l

r−l )

TL(−r−l
r−l )

,
L∑

m=1

amx
m − 1, (5.14)

the coefficients a1, . . . , aL can be obtained from those of the Chebyshev poly-

nomial [34, 2.9.12] and the binomial expansion, or more directly,

aj =
P

(j)
L (0)

j!
= −

(
2

r − l

)j
1

j!

T
(j)
L (− r+l

r−l)

TL(− r+l
r−l)

. (5.15)

We now let

L , bc0 log kc, r ,
c1 log k

n
, l ,

1

k
, (5.16)

where c0 < c1 are constants to be specified, and choose the coefficients of the

estimator as

uj =


ajj!

nj
, j = 1, . . . , L,

0, otherwise.
(5.17)

The estimator Ŝ is defined according to (5.11).

We proceed to explain the reasoning behind the choice (5.17) and the role

of the Chebyshev polynomial. The main intuition is that since c0 < c1, then

with high probability, whenever Ni ≤ L = bc0 log kc the corresponding mass

must satisfy pi ≤ c1 log k
n

. That is, if pi > 0 and Ni ≤ L then pi ∈ [l, r]

with high probability, and hence PL(pi) is bounded by the sup-norm of PL

over the interval [l, r], which controls the bias in view of (5.13). In view

of the extremal property of Chebyshev polynomials [34, Ex. 2.13.14], (5.14)

is the unique degree-L polynomial that passes through the point (0,−1)

and deviates the least from zero over the interval [l, r]. This explains the

coefficients (5.12) which are chosen to minimize the bias. The degree of the

polynomial is only logarithmic so that the variance is small.

The next proposition gives an upper bound of the quadratic risk of our
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estimator (5.12).

Proposition 5.2. Assume the Poissonized sampling model where the his-

tograms are distributed as N = (N1, N2, . . . )
ind∼ Poi(npi). Let c0 = 0.558 and

c1 = 0.5. As δ , n
k log k

→ 0 and k → ∞, the bias and variance of Ŝ are

upper bounded by

|E(Ŝ − S)| ≤ 2S(1 + ok(1)) exp

(
−(1 + oδ(1))

√
κ
n log k

k

)
,

var[Ŝ] ≤ O (Skc) ,

for some absolute constant c < 1, and consequently,

sup
P∈Dk

E(Ŝ(N)− S(P ))2 ≤ 4k2(1 + ok(1)) exp

(
−(2 + oδ(1))

√
κ
n log k

k

)
,

(5.18)

where κ = 2.494.

The minimax upper bounds in Theorems 5.1 and 5.2 follow from combining

Propositions 5.1 and 5.2.

Proof of upper bound of Theorem 5.1. Combining Theorem 3.1 and Propo-

sition 5.2 yields the upper bound part of (5.4), which also implies the upper

bound of (5.3) when n . k log k. The upper bound part of (5.3) when

n & k log k follows from Proposition 5.1.

Proof of upper bound of Theorem 5.2. By the Markov inequality,

R∗S(k, n) ≤ 0.1k2ε2 ⇒ n∗(k, ε) ≤ n. (5.19)

Therefore our upper bound is

n∗(k, ε) ≤ inf{n : R∗S(k, n) ≤ 0.1k2ε2}.

By the upper bound of R∗S(k, n) in (5.18), we obtain that

n∗(k, ε) ≤ 1 + oδ′(1) + oε(1) + ok(1)

κ

k

log k
log2 1

ε
,

as δ′ , log(1/ε)
log k

, 0, ε → 0, and k → ∞. Consequently, we obtain the upper
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bound part of (5.6) when 1
kc
≤ ε ≤ c0 for the fixed constant c0 < 1/2, where

c is some small constant.

The upper bound part of Theorem 5.2 when 1
k
≤ ε ≤ 1

kc
follows from the

monotonicity of ε 7→ n∗(k, ε) that

n∗(k, ε) ≤ n∗(k, 1/k) ≤ 3k log k � k

log k
log2 1

ε
,

where the middle inequality follows from Proposition 5.1 and (5.19).

Note that the optimal estimator (5.12) relies on the choice of parameters

in (5.16), which, in turn, depends on the knowledge of 1/k, the lower bound

on the minimum non-zero probability pmin. While k is readily obtainable in

certain applications where the samples are uniformly drawn from a database

or corpus of known size (see [111, 21] as well as the empirical results in

Section 5.2.5), it is desirable to construct estimators that are agnostic to

pmin and retains the same optimality guarantee. To this end, we provide

the following alternative choice of parameters. Let S̃ be the linear estimator

defined using the same coefficients in (5.17), with the approximation interval

[l, r] and the degree L in (5.16) replaced by

l =
c1

c2
0

log2(1/ε)

n log n
, r =

c1 log n

n
, L = bc0 log nc. (5.20)

Here ε is the desired accuracy and the constants c0, c1 are the same as in

Proposition 5.2. Following the same analysis as in the proof of Proposi-

tion 5.2, the above choice of parameters leads to the following upper bound

of the quadratic risk.

Proposition 5.3. Let c0, c1, c be the same constants as Proposition 5.2.

There exist constants C,C ′ such that, if ε > n−C, then

E(S̃ − S)2 ≤ C ′(S2ε2(1−
√
α) + Snc),

where α = max
(

1− c20
c1

n logn
k log2(1/ε)

, 0
)

.

Therefore, whenever the sample size satisfies n ≥ ( c1
c20

+ ok(1)) k
log k

log2 1
ε

and n ≤ (ε2k)
1
c , the upper bound is at most O((εk)2), recovering the optimal

risk bound in Proposition 5.2. The new result here is that even when n is

not that large the risk degrades gracefully.
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We finish this subsection with a few remarks.

Remark 5.1. Combined with standard concentration inequalities, the mean-

square error bound in Proposition 5.2 can be easily converted to a high-

probability bound. In the regime of n . k log k, for any distribution P ∈ Dk,
the bias of our estimate Ŝ is at most the uniform approximation error (see

(5.40)):

|E[Ŝ]− S| ≤ S exp

(
−Θ

(√
n log k

k

))
.

The standard deviation is significantly smaller than the bias. Indeed, the

coefficients of the linear estimator (5.12) is uniformly bounded by ‖g‖2
∞ ≤ kc

for some absolute constant c < 1 (see (5.53) as well as Figure 5.1 for nu-

merical results). Therefore, by Hoeffding’s inequality, we have the following

concentration bound:

P[|Ŝ − E[Ŝ]| ≥ tk] ≤ 2 exp

(
− t2k

2‖g‖2
∞

)
= exp

(
−t2kΩ(1)

)
.

Remark 5.2. The estimator (5.12) belong to the family of linear estimators :

Ŝ =
∑
i

f(Ni) =
∑
j≥1

f(j)Φj, (5.21)

which is a linear combination of fingerprints Φj’s defined in (4.15).

Other notable examples of linear estimators include:

• Plug-in estimator (5.5): Ŝseen = Φ1 + Φ2 + . . . .

• Good-Toulmin estimator [121]: for some t > 0,

ŜGT = Ŝseen + tΦ1 − t2Φ2 + t3Φ3 − t4Φ4 + . . . (5.22)

• Efron-Thisted estimator [21]: for some t > 0 and J ∈ N,

ŜET = Ŝseen +
J∑
j=1

(−1)j+1tjbjΦj, (5.23)

where bj = P[binomial(J, 1/(t+ 1)) ≥ j].
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By definition, our estimator (5.12) can be written as

Ŝ =
L∑
j=1

g(j)Φj +
∑
j>L

Φj. (5.24)

By (5.14), PL is also a polynomial of degree L, which is oscillating and re-

sults in coefficients with alternating signs (see Figure 5.1). Interestingly,
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Figure 5.1: Coefficients of estimator g(j) in (5.12) with c0 = 0.45, c1 = 0.5,
k = 106 and n = 2× 105.

this behavior, although counterintuitive, coincides with many classical esti-

mators, such as (5.22) and (5.23). The occurrence of negative coefficients

can be explained as follows. Note that the rationale of linear estimator is

to form a linear prediction the number of unseen Φ0 using the observed fin-

gerprints Φ1,Φ2, . . .; this is possible because the fingerprints are correlated.

Indeed, since the sum of all fingerprints coincides with the support size, i.e.,∑
j≥0 Φj = S, for each j ≥ 1, the random variable Φj is negatively corre-

lated with Φ0 and hence some of the coefficients in the linear estimator are

negative.

Remark 5.3 (Time complexity). The evaluation of the estimator (5.21)

consists of three parts:

1. Construction of the estimator: O(L2) = O(log2 k), which amounts to

computing the coefficients g(j) per (5.15);

2. Computing the histograms Ni and fingerprints Φj: O(n);

3. Evaluating the linear combination: O(n∧ k), since the number of non-

zero terms in the second summation of (5.21) is at most n ∧ k.
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Therefore the total time complexity is O(n+ log2 k).

Remark 5.4. The technique of polynomial approximation has been pre-

viously used for estimating non-smooth functions (Lq-norms) in Gaussian

models [65, 17, 39] and more recently for estimating information quantities

(entropy and power sums) on large discrete alphabets [55, 69]. The design

principle is to approximate the non-smooth function on a given interval us-

ing algebraic or trigonometric polynomials for which unbiased estimators

exist; the degree is chosen to balance the bias (approximation error) and the

variance (stochastic error). Note that in general uniform approximation by

polynomials is only possible on a compact interval. Therefore, in many sit-

uations, the construction of the estimator is a two-stage procedure involving

sample splitting : First, use half of the sample to test whether the correspond-

ing parameter lies in the given interval; second, use the remaining samples

to construct an unbiased estimator for the approximating polynomial if the

parameter belongs to the interval or apply plug-in estimators otherwise (see,

e.g., [55, 69] and [39, Section 5]).

While the benefit of sample splitting is to make the analysis tractable by

capitalizing on the independence of the two subsamples, it also sacrifices the

statistical accuracy since half of the samples are wasted. In this chapter,

to estimate the support size, we forgo the sample splitting approach and

directly design a linear estimator. Instead of using a polynomial as a proxy

for the original function and then constructing its unbiased estimator, the

best polynomial approximation of the indicator function arises as a natural

step in controlling the bias (see (5.13)).

5.2.3 Suboptimality of the Good-Turing and Chao-1
estimators

In this subsection we show that unless the sample size n far exceeds k, the

reciprocal of the minimal probability, both the Good-Turing estimator and

its variant (the Chao-1 estimator) lead to non-vanishing normalized mean-

square error for estimating the support size. Therefore, neither of them can

operate in the sublinear regime.

The intuition is that although both estimators work well for uniform dis-

tributions, as soon as the probability masses take two or more values, they
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become biased. To this end, consider a distribution pn with n symbols with

probability 1
2n

and 2n symbols with probability 1
4n

. This distribution has

pmin = 1
4n

and support size S = 3n. Given n samples drawn i.i.d. from pn

(similar arguments continue to hold under the Poisson sampling model), the

expected values of the first few fingerprints are as follows:

E[Φ0] = n

(
1− 1

2n

)n
+ 2n

(
1− 1

4n

)n
= n

(
e−1/2 + 2e−1/4 + o(1)

)
,

E[Φ1] = n

(
n

1

)
1

2n

(
1− 1

2n

)n−1

+ 2n

(
n

1

)
1

4n

(
1− 1

4n

)n−1

= n

(
1

2
e−1/2 +

1

2
e−1/4 + o(1)

)
,

E[Φ2] = n

(
n

2

)
1

(2n)2

(
1− 1

2n

)n−1

+ 2n

(
n

2

)
1

(4n)2

(
1− 1

4n

)n−2

= n

(
1

8
e−1/2 +

1

16
e−1/4 + o(1)

)
.

By the McDiarmid’s inequality, Φj =
∑

i 1{Ni=j}, for j = 0, 1, 2, concentrates

on the respective mean: Φj = E[Φj] +OP (
√
n). Therefore,

Ŝseen = S − Φ0 = (3− e−1/2 − 2e−1/4 + oP (1))n,

ŜG−T =
Ŝseen

1− Φ1/n
= n

(
3− e−1/2 − 2e−1/4

1− 1
2
e−1/2 − 1

2
e−1/4

+ oP (1)

)
≈ (2.72 + oP (1))n,

ŜChao1 = Ŝseen +
Φ2

1

2Φ2

= n

(
3− e−1/2 − 2e−1/4 +

(e−1/2 + e−1/4)2

e−1/2 + 1
2
e−1/4

+ oP (1)

)
≈ (2.76 + oP (1))n,

as compared to the true support size S = 3n.

5.2.4 Correlation decay between fingerprints

Recall that the fingerprints are defined by Φj =
∑

i 1{Ni=j}, where Ni denotes

the histogram of samples. The estimation of support size is equivalent to esti-

mating the unseen, namely, Φ0. In (5.17), we let the coefficients uj = 0 when

j > L, which is because higher-order fingerprints are almost uncorrelated
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with Φ0. In fact, the correlation between Φ0 and Φj decays exponentially.

Under the Poisson model, Ni
ind∼ Poi(npi). Then

cov(Φj,Φj′) = −
∑
i

P[Ni = j]P[Ni = j′], j 6= j′,

var[Φj] =
∑
i

P[Ni = j](1− P[Ni = j]).

The correlation coefficient between Φ0 and Φj follows immediately:

|ρ(Φ0,Φj)| =
∑
i

P[Ni = 0]P[Ni = j]√∑
l P[Nl = 0](1− P[Nl = 0])

∑
l P[Nl = j](1− P[Nl = j])

≤
∑
i

P[Ni = 0]P[Ni = j]√
P[Ni = 0](1− P[Ni = 0])P[Ni = j](1− P[Ni = j])

=
∑
i

√
P[Ni = 0]

1− P[Ni = 0]

P[Ni = j]

1− P[Ni = j]
=
∑
i

√√√√√ e−λi

1− e−λi

e−λiλji
j!

1− e−λiλji
j!

,

(5.25)

where λi = npi. Note that maxx>0
e−xxj

j!
= e−jjj

j!
→ 0 as j → ∞. Therefore,

for any x > 0,

e−x

1− e−x
e−xxj

j!

1− e−xxj

j!

=
1

j!

e−2xxj

1− e−x
(1 + oj(1)), (5.26)

where oj(1) is uniform as j →∞. Taking derivative, the function x 7→ e−2xxj

1−e−x

on x > 0 is increasing if and only if x+ex(j−2x)− j > 0, and the maximum

is attained at x = j/2 + oj(1). Therefore, applying j! > (j/e)j,

1

j!

e−2xxj

1− e−x
≤ (1 + oj(1))2−j. (5.27)

Combining (5.25) – (5.27), we conclude that

|ρ(Φ0,Φj)| ≤ k2−j/2(1 + oj(1)).
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5.2.5 Experiments

We evaluate the performance of our estimator on both synthetic and real

datasets in comparison with popular existing procedures.3 In the exper-

iments we choose the constants c0 = 0.45, c1 = 0.5 in (5.16), instead of

c0 = 0.558 which is optimized to yield the best rate of convergence in Propo-

sition 5.2 under the i.i.d. sample model. The reason for such a choice is that

in the real-data experiments the samples are not necessarily generated inde-

pendently and dependency leads to a higher variance. By choosing a smaller

c0, the Chebyshev polynomials have a slightly smaller degree, which results

in smaller variance and more robustness to model mismatch. Each experi-

ment is averaged over 50 independent trials and the standard deviations are

shown as error bars.

Synthetic data We consider data independently sampled from the follow-

ing distributions:

• the uniform distribution with pi = 1
k
;

• Zipf distributions with pi ∝ i−α and α being either 1 or 0.5;

• an even mixture of geometric distribution and Zipf distribution where

for the first half of the alphabet pi ∝ 1/i and for the second half

pi+k/2 ∝ (1− 2
k
)i−1, 1 ≤ i ≤ k

2
.

The alphabet size k varies in each distribution so that the minimum non-

zero mass is roughly 10−6. Accordingly, a degree-6 Chebyshev polynomial is

applied. Therefore, according to (5.24), we apply the polynomial estimator g

to symbols appearing at most six times and the plug-in estimator otherwise.

We compare our results with the Good-Turing estimator [59], the Chao 1

estimator [119, 134], the two estimators proposed by Chao and Lee [120], and

the linear programming approach proposed by Valiant and Valiant [64]. Here

the Good-Turing estimator refers to first estimate the total probability of seen

symbols (sample coverage) by Ĉ = 1− Φ1

n
then estimate the support size by

ŜG−T = Ŝseen/Ĉ; the Chao 1 estimator refers to the bias-corrected form

ŜChao1 = Ŝseen + Φ1(Φ1−1)
2(Φ2+1)

. The plug-in estimator simply counts the number

3The implementation of our estimator is available at https://github.com/Albuso0/

support.
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Figure 5.2: Performance comparison under four data-generating
distributions.

of distinct elements observed, which is always outperformed by the Good-

Turing estimator in our experiments and hence omitted in the comparison.

The results are shown in Figure 5.2. Good-Turing’s estimate on sample

coverage performs remarkably well in the special case of uniform distribu-

tions. This has been noticed and analyzed in [120, 113]. Chao-Lee’s esti-

mators are based on Good-Turing’s estimate with further correction terms

for non-uniform distributions. However, with limited number of samples, if

no symbol appears more than once, the sample coverage estimate Ĉ is zero

and consequently the Good-Turing estimator and Chao-Lee estimators are

not even well defined. For Zipf and mixture distributions, the output of

Chao-Lee’s estimators is highly unstable and thus is omitted from the plots;

the convergence rates of Good-Turing estimator and Chao 1 estimator are

much slower than our estimator and the LP estimator, partly because they

only use the information of how many symbols occurred exactly once and

twice, namely the first two fingerprints Φ1 and Φ2, as opposed to the full

spectrum of fingerprints {Φj}j≥1, and they suffer provably large bias under

non-uniform distributions as simple as mixtures of two uniform distributions

(see Section 5.2.3); the linear programming approach has similar convergence

103



rate to ours but suffers from large variance when samples are scarce.

Real data Next we evaluate our estimator by a real data experiment based

on the text of Hamlet, which contains about 32, 000 words in total consisting

of about 4, 800 distinct words. Here and below the definition of “distinct

word” is any distinguishable arrangement of letters that are delimited by

spaces, insensitive to cases, with punctuations removed. We randomly sam-

ple the text with replacement and generate the fingerprints for estimation.

The minimum non-zero mass is naturally the reciprocal of the total number of

words, 1
32,000

. In this experiment we use the degree-4 Chebyshev polynomial.

We also compare our estimator with the one in [64]. The results are plotted

in Figure 5.3, which shows that the estimator in [64] has similar convergence
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Figure 5.3: Comparison of various estimates of the total number of distinct
words in Hamlet.

rate to ours; however, the variance is again much larger and the computa-

tional cost of linear programming is significantly higher than linear estima-

tors, which amounts to computing linear combinations with pre-determined

coefficients.

Next we conduct a larger-scale experiment using the New York Times

Corpus from the years 1987 – 2007.4 This corpus has a total of 25,020,626

paragraphs consisting of 996,640,544 words with 2,047,985 distinct words.

We randomly sample 1% – 50% out of the all paragraphs with replacements

and feed the fingerprint to our estimator. The minimum non-zero mass is

4Dataset available at https://catalog.ldc.upenn.edu/LDC2008T19.
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also the reciprocal of the total number of words, 1/109, and thus the degree-

9 Chebyshev polynomial is applied. Using only 20% samples our estimator

achieves a relative error of about 10%, which is a systematic error due to

the model mismatch: the sampling here is paragraph by paragraph rather

than word by word, which induces dependence across samples as opposed

to the i.i.d. sampling model for which the estimator is designed; in com-

parison, the LP estimator5 suffers a larger bias from this model mismatch.

Furthermore, the proposed linear estimator is significantly faster than linear

programming based methods: given the sampled data, the curve in Fig-

ure 5.4 corresponding to the LP estimator takes over 5 hours to compute;

in contrast, the proposed linear estimator takes only 2 seconds on the same

computer, which clearly demonstrate its computational advantage even if one

takes into account the fact that our implementation is based on C++ while

the LP estimator is in MATLAB.
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Figure 5.4: Performance comparison using New York Times Corpus.

Finally, we perform the classical experiment of “how many words did

Shakespeare know”. We feed the fingerprint of the entire Shakespearean

canon (see [21, Table 1]), which contains 31,534 word types, to our estima-

tor. We choose the minimum non-zero mass to be the reciprocal of the total

number of English words, which, according to known estimates, is between

600,000 [136] to 1,000,000 [137], and obtain an estimate of 63,148 to 73,460

5In this large-scale experiment, the original MATLAB code of the linear programming
estimator given in [64] is extremely slow; the result in Figure 5.4 is obtained using an
optimized version provided by the author [135].
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for Shakespeare’s vocabulary size, as compared to 66,534 obtained by Efron-

Thisted [21]. Using the alternative choice of parameters that are agnostic to

k in Proposition 5.3, by setting the desired accuracy to be 0.05 and 0.1, we

obtain an estimate of 62,355 to 72,454.

5.2.6 Minimax lower bound

The lower bound argument follows the idea in [17, 39, 55] and relies on

the generalized Le Cam’s method involving two composite hypothesis, also

known as the method of fuzzy hypotheses [32]. The main idea is similar

to Section 4.3. Specifically, suppose the following (composite) hypothesis

testing problem,

H0 : S(P ) ≤ s, P ∈ Dk versus H1 : S(P ) ≥ s+ δ, P ∈ Dk,

cannot be tested with vanishing probability of error on the basis of n samples,

then the sample complexity of estimating S(P ) within δ with high probability

must exceed n. In particular, the impossibility to test the above composite

hypotheses is shown by constructing two priors (i.e., two random probability

vectors) so that the induced distribution of the samples are close in total

variation. Next we elaborate the main ingredients of Le Cam’s method:

• construction of the two priors;

• separation between functional values;

• bound on the total variation.

Let λ > 1. Given unit-mean random variables U and U ′ that take values

in {0} ∪ [1, λ], define the following random vectors

P =
1

k
(U1, . . . , Uk), P′ =

1

k
(U ′1, . . . , U

′
k), (5.28)

where Ui and U ′i are i.i.d. copies of U and U ′, respectively. Although P and

P′ need not be probability distributions, as long as the standard deviations

of U and U ′ are not too big, the law of large numbers ensures that with

high probability P and P′ lie in a small neighborhood near the probability

simplex, which we refer as the set of approximate probability distributions.
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Furthermore, the minimum non-zeros in P and P′ are at least 1
k
. It can be

shown that the minimax risk over approximate probability distributions is

close to that over the original parameter space Dk of probability distribu-

tions. This allows us to use P and P′ as priors and apply Le Cam’s method.

Note that both S(P) and S(P′) are binomially distributed, which, with high

probability, differ by the difference in their mean values:

E[S(P)]− E[S(P′)] = k(P[U > 0]− P[U ′ > 0]) = k(P[U ′ = 0]− P[U = 0]).

If we can establish the impossibility of testing whether data are generated

from P or P′, the resulting lower bound is proportional to k(P[U ′ = 0]−P[U =

0]).

To simplify the argument we apply the Poissonization technique where

the sample size is a Poi(n) random variable instead of a fixed number n.

This provably does not change the statistical nature of the problem due

to the concentration of Poi(n) around its mean n. Under Poisson sam-

pling, the histograms (3.1) still constitute a sufficient statistic, which are

distributed as Ni
ind∼ Poi(npi), as opposed to multinomial distribution in

the fixed-sample-size model. Therefore through the i.i.d. construction in

(5.28), Ni
i.i.d.∼ E[Poi(n

k
U)] or E[Poi(n

k
U ′)]. Then Le Cam’s lemma is applicable

if TV(E[Poi(n
k
U)]⊗k,E[Poi(n

k
U ′)]⊗k) is strictly bounded away from one, for

which it suffices to show

TV(E[Poi(nU/k)],E[Poi(nU ′/k)]) ≤ c

k
, (5.29)

for some constant c < 1.

The above construction provides a recipe for the lower bound. To optimize

the ingredients it boils down to the following optimization problem (over one-

dimensional probability distributions): Construct two priors U,U ′ with unit

mean that maximize the difference P [U ′ = 0]−P [U = 0] subject to the total

variation distance constraint (5.29), which, in turn, can be guaranteed by

moment matching, i.e., ensuring U and U ′ have identical first L moments for

some large L, and the L∞-norms U,U ′ are not too large. To summarize, our
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lower bound entails solving the following optimization problem:

sup P[U ′ = 0]− P[U = 0],

s.t. E[U ] = E[U ′] = 1,

E[U j] = E[U ′j], j = 1, . . . , L

U, U ′ ∈ {0} ∪ [1, λ].

(5.30)

The final lower bound is obtained from (5.30) by choosing L � log k and

λ � k log k
n

.

In order to evaluate the infinite-dimensional linear programming problem

(5.30), we consider its dual program. It is well known that the problem of

best polynomial and moment matching are dual to each other; however, un-

like the standard moment matching problem which impose the equality of

moments, the extra constraint in (5.30) is that the values of the first mo-

ment must equal to one. Therefore its dual is no longer the best polynomial

approximation problem. Nevertheless, for the specific problem (5.30) which

deals with the indicator function x 7→ 1{x=0}, via a change of variable we show

in Section 5.2.7 that (5.30) coincides exactly with the best uniform approxi-

mation error of the function x 7→ 1
x

over the interval [1, λ] by degree-(L− 1)

polynomials:

inf
p∈PL−1

sup
x∈[1,λ]

∣∣∣∣1x − p(x)

∣∣∣∣ ,
where PL−1 denotes the set of polynomials of degree at most L − 1. This

best polynomial approximation problem has been well-studied, cf. [34, 138];

in particular, the exact formula for the best polynomial that approximates

x 7→ 1
x

and the optimal approximation error have been obtained in [34, Sec.

2.11.1].

Applying the procedure described above, we obtain the following sample

complexity lower bound.

Proposition 5.4. Let δ ,
log 1

ε

log k
and τ ,

√
log k/k1/4

1−2ε
. As k → ∞, δ → 0 and

τ → 0,

n∗(k, ε) ≥ (1− oδ(1)− ok(1)− oτ (1))
k

2e2 log k
log2 1

2ε
. (5.31)

Consequently, if 1
kc
≤ ε ≤ 1

2
− c′

√
log k
k1/4 for some constants c, c′, then n∗(k, ε) &

k
log k

log2 1
2ε

.
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The lower bounds announced in Theorems 5.1 and 5.2 follow from Propo-

sition 5.4 combined with a simple two-point argument.

Proof of lower bound of Theorem 5.2. The lower bound part of (5.7) follows

from Proposition 5.4. Consequently, we obtain the lower bound part of (5.6)

for 1
kc
≤ ε ≤ c0 for the fixed constant c0 < 1/2, where c is some small

constant.

The lower bound part of (5.6) for 1
k
≤ ε ≤ 1

kc
simply follows from the fact

that ε 7→ n∗(k, ε) is decreasing:

n∗(k, ε) ≥ n∗(k, 1/kc) & k log k � k

log k
log2 1

ε
.

Proof of lower bound of Theorem 5.1. By the Markov inequality,

n∗(k, ε) > n⇒ R∗S(k, n) > 0.1k2ε2.

Therefore, our lower bound is

R∗S(k, n) ≥ sup{0.1k2ε2 : n∗(k, ε) > n} = 0.1k2ε2∗,

where ε∗ , {ε : n∗(k, ε) > n}. By the lower bound of n∗(k, ε) in (5.31), we

obtain that

ε∗ ≥ exp

(
−
(√

2e+ oδ(1) + oδ′(1) + ok(1)
)√n log k

k

)
,

as δ , n
k log k

→ 0, δ′ , k
n log k

→ 0, and k → ∞. Then we conclude the

lower bound part of (5.4), which implies the lower bound part of (5.3) when

n . k log k.

For the lower bound part of (5.3) when n & k log k, we apply Le Cam’s

two-point method [96] by considering two possible distributions, namely P =

Bern(0) and Q = Bern( 1
k
). Then

R∗S(k, n) ≥ 1

4
(S(P )− S(Q))2 exp(−nD(P‖Q))

=
k2

4
exp

(
n log

(
1− 1

k

)
− 2 log k

)
.

Since n & k log k, we have n log
(
1− 1

k

)
− 2 log k & −n

k
.
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5.2.7 Dual program of (5.30)

Define the following infinite-dimensional linear program:

E∗1 , sup P [U ′ = 0]− P [U = 0] ,

s.t. E [U ] = E [U ′] = 1,

E
[
U j
]

= E
[
U ′j
]
, j = 1, . . . , L+ 1,

U, U ′ ∈ {0} ∪ I,

(5.32)

where I = [a, b] with b > a ≥ 1 and the variables are probability measures

on I (distributions of the random variables U,U ′). Then (5.30) is a special

case of (5.32) with I = [1, λ].

Lemma 5.1. E∗1 = infp∈PL supx∈I
∣∣ 1
x
− p(x)

∣∣.
Proof. We first show that (5.30) coincides with the following optimization

problem:

E∗2 , sup E
[

1

X

]
− E

[
1

X ′

]
,

s.t. E
[
Xj
]

= E
[
X ′j
]
, j = 1, . . . , L,

X,X ′ ∈ I.

(5.33)

Given any feasible solution U,U ′ to (5.30), construct X,X ′ with the following

distributions:
PX(dx) = xPU(dx),

PX′(dx) = xPU ′(dx).
(5.34)

It is straightforward to verify that X,X ′ are feasible for (5.33) and

E∗2 ≥ E
[

1

X

]
− E

[
1

X ′

]
= P [U ′ = 0]− P [U = 0] .

Therefore E∗2 ≥ E∗1 .

On the other hand, given any feasible X,X ′ for (5.33), construct U,U ′

with the distributions:

PU(du) =

(
1− E

[
1

X

])
δ0(du) +

1

u
PX(du),

PU ′(du) =

(
1− E

[
1

X ′

])
δ0(du) +

1

u
PX′(du),

(5.35)

which are well-defined since X,X ′ ≥ 1 and hence E
[

1
X

]
≤ 1,E

[
1
X′

]
≤ 1.
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Then U,U ′ are feasible for (5.30) and hence

E∗1 ≥ P [U ′ = 0]− P [U = 0] = E
[

1

X

]
− E

[
1

X ′

]
.

Therefore E∗1 ≥ E∗2 . Finally, the dual of (5.33) is precisely the best polynomial

approximation problem (see, e.g., [55, Appendix E]) and hence

E∗1 = E∗2 = inf
p∈PL

sup
x∈I

∣∣∣∣1x − p(x)

∣∣∣∣ .
5.2.8 Proof of upper bounds

Proof of Proposition 5.1. First we consider the bias:

|E(Ŝseen − S)| =
∑
i:pi≥ 1

k

(1− P(Ni ≥ 1)) =
∑
i:pi≥ 1

k

exp(−npi) ≤ S exp(−n/k).

The variance satisfies

var[Ŝseen] =
∑
i:pi≥ 1

k

var1{Ni>0} ≤
∑
i:pi≥ 1

k

exp(−npi) ≤ S exp(−n/k).

The conclusion follows.

For the negative result, under the Poissonized model and with the samples

drawn from the uniform distribution, the plug-in estimator Ŝseen is distributed

as binomial(k, 1−e−n/k). If n ≤ (1−δ)k log 1
ε
< k log 1

ε
, then 1−e−n/k < 1−ε.

By the Chernoff bound,

P[|Ŝseen − S(P )| ≤ εk] = P[binomial(k, 1− e−n/k) ≥ (1− ε)k]

≤ e−kd(1−ε‖1−e−n/k) = e−kd(ε‖e−n/k),

where d(p‖q) , p log p
q

+ (1 − p) log 1−p
1−q is the binary divergence function.

Since e−n/k ≥ ε1−δ > ε,

d(ε‖e−n/k) ≥ d(ε‖ε1−δ) ≥ d(k−1‖k−1+δ) � k−1+δ,

where the middle inequality follows from the fact that ε 7→ d(ε‖ε1−δ) is

increasing near zero. Therefore P[|Ŝseen − S(P )| ≤ εk] ≤ exp(−Ω(kδ)).
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Proof of Proposition 5.2. First we consider the bias. By (5.13) the bias of Ŝ

is

|E[Ŝ − S]| ≤
∑
i:pi>0

|e−npiPL(pi)| ≤ S max
x∈[ 1

k
,1]
|e−nxPL(x)|, (5.36)

where PL is the Chebyshev polynomial in (5.14). Recall that L = bc0 log kc, l =
1
k
, r = c1 log k

n
. Then

max
x∈[l,r]

|PL(x)| = 1

|TL(− r+l
r−l)|

, (5.37)

max
x∈(r,1]

|e−nxPL(x)| =
maxx∈(r,1] e

−nx|TL(2x−r−l
r−l )|

|TL(− r+l
r−l)|

. (5.38)

We need Lemma 5.2 to upper bound (5.38).

Lemma 5.2. If α , L/β = Ω(1), then

max
x≥1

e−βxTL(x) =
1

2

(
α +
√
α2 + 1

e
√

1+1/α2
(1 + oL(1))

)L

, L→∞.

Applying Lemma 5.2 to (5.38) with L = bc0 log kc, β = nr(1−δ)
2

= c1 log k(1−δ)
2

,

we obtain that,

max
x≥r

∣∣∣∣e−nxTL(2x− r − l
r − l

)∣∣∣∣ ≤ 1

2

(
2ρ+

√
(2ρ)2 + 1

e
√

1+1/(2ρ)2+1/(2ρ)
(1 + ok(1) + oδ(1))

)L

,

(5.39)

where ρ , c0/c1. Combining (5.37) to (5.39),

max
x∈[l,1]

|e−nxPL(x)| ≤ 1 + ok(1) + oδ(1)

|TL(−1+δ
1−δ )|

,

as long as we pick the constant ρ such that
2ρ+
√

(2ρ)2+1

e
√

1+1/(2ρ)2+1/(2ρ)
< 1⇔ arcsinh(2ρ)

<
1+
√

1+4ρ2

2ρ
, or equivalently, ρ < ρ∗ ≈ 1.1. Then, by (5.36), the bias of Ŝ is

at most

|E[Ŝ − S]| ≤ S
1 + ok(1) + oδ(1)

|TL(−1+δ
1−δ )|

≤ 2S(1 + ok(1) + oδ(1))

(
1− 2

√
δ

1 +
√
δ

)L

= 2S(1 + ok(1)) exp

(
−(1 + oδ(1))

√
4c0ρ

n log k

k

)
. (5.40)
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Now we turn to the variance of Ŝ:

var[Ŝ] =
∑
i:pi>0

var
[
uNi1{Ni≤L}

]
≤
∑
i:pi>0

E
[
u2
Ni

1{Ni≤L}
]

≤ ‖u‖2
∞

∑
i:pi>0

P[Ni ≤ L], (5.41)

where Φj ,
∑

i 1{Ni=j} is the fingerprint of samples. The following lemma

shows that |uj| is at most exponential in the degree of the polynomial.

Lemma 5.3. Let aj be defined as (5.14) and uj be defined as (5.17). Then,

‖u‖∞ ≤
e
√
L

2
exp

(
τ

(
L

nr

)
L

)
, (5.42)

where τ(x) , arcsinh(2x)−
√

1+4x2−1
2x

.

From (5.41) and (5.42) the variance of Ŝ is at most

var[Ŝ] ≤ S
e2L

4
k2c0τ(ρ). (5.43)

Then, from (5.40) and (5.43), we obtain that

sup
P∈Dk

E(Ŝ − S)2 ≤ 4k2(1 + ok(1)) exp

(
−2(1 + oδ(1))

√
2ρ

τ(ρ)

n log k

k

)

+
e2c0 log k

4
k1+2c0τ(ρ).

Note that the first term is 4k2−oδ(1). Therefore as long as we pick constant

c0 such that 2c0τ(ρ) < 1 the second term is lower order than the first term,

and thus

sup
P∈Dk

E(Ŝ − S)2 ≤ 4k2(1 + ok(1)) exp

(
−2(1 + oδ(1))

√
2ρ

τ(ρ)

n log k

k

)
.

The conclusion follows from the fact that supρ<ρ∗ 2ρ/τ(ρ) ≈ 2.494, which

corresponds to choosing c0 ≈ 0.558 and c1 = 0.5.

Proof of Proposition 5.3. Let δ = l/r, which is less than some absolute con-

stant C/c0 when ε > n−C . The upper bound of mean squared error is es-

sentially the same as the proof of Proposition 5.2. The bias of S̃ is at most
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Smaxx∈[pmin,1] e
−nx|PL(x)| given in (5.36). For pi ∈ [l, r], the bias is upper

bounded by the uniform approximation error

max
x∈[l,r]

|PL(x)| ≤ 1

|TL(−1+δ
1−δ )|

≤ 2

(
1− 2

√
δ

1 +
√
δ

)L

≤ 2ε.

For pi > r, following (5.38)-(5.39), we have e−npi |PL(pi)| = o(ε) as long as

c0/c1 < ρ∗ ≈ 1.1. For pi ∈ [pmin, l], since the shifted Chebyshev polynomial

PL is monotone on (−∞, l), we have

|PL(x)| ≤
|TL(2pmin−r−l

r−l )|
|TL(−r−l

r−l )|
=
|TL(1 + 2αδ

1−δ )|
|TL(1 + 2δ

1−δ )|

= exp
(
−(1− oδ(1))2(1−

√
α)L
√
δ
)
≤ ε1−

√
α,

where α = l−pmin

l
∈ (0, 1) denotes the relative deviation of l from pmin, and

we used the following equation of the Chebyshev polynomial evaluated at

1 + x for x > 0:

TL(1 + x) =
1

2

((
1 + x−

√
x2 + 2x

)L
+
(

1 + x+
√
x2 + 2x

)L)
=

1

2
exp

(
(1 + ox(1))L

√
2x
)
.

To conclude, the bias of S̃ is at most

max
x∈[pmin,1]

e−nx|PL(x)| ≤ Sε1−
√

(1−pmin/l)∨0.

By similar analysis to (5.41) and (5.42) the variance is at most O(Snc) for

some constant c < 1.

5.2.9 Proof of lower bounds

Proof of Proposition 5.4. For 0 < ν < 1, define the set of approximate prob-

ability vectors by

Dk(ν) ,

{
P = (p1, p2, . . . ) :

∣∣∣∣∣∑
i

pi − 1

∣∣∣∣∣ ≤ ν, pi ∈ {0} ∪
[

1 + ν

k
, 1

]}
,
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which reduces to the original probability distribution space Dk if ν = 0.

Generalizing the sample complexity n∗(k, ε) in Definition 5.1 to the Poisson

sampling model over Dk(ν), we define

ñ∗(k, ε, ν) , min{n ≥ 0: ∃Ŝ, s.t. P[|Ŝ − S(P )| ≥ εk] ≤ 0.2,∀P ∈ Dk(ν)},
(5.44)

where Ŝ is an integer-valued estimator measurable with respect to N =

(N1, N2, . . . )
ind∼ Poi(npi). The sample complexity of the fixed-sample-size

and Poissonized model is related by Lemma 5.4.

Lemma 5.4. For any ν ∈ (0, 1) and any ε ∈ (0, 1
2
),

n∗(k, ε) ≥ (1− ν)ñ∗(k, ε, ν)

(
1−O

(
1√

(1− ν)ñ∗(k, ε, ν)

))
. (5.45)

To establish a lower bound of ñ∗(k, ε, ν), we apply generalized Le Cam’s

method involving two composite hypothesis. Given two random variables

U,U ′ ∈ [0, k] with unit mean we can construct two random vectors by P =
1
k
(U1, . . . , Uk) and P′ = 1

k
(U ′1, . . . , U

′
k) with i.i.d. entries. Then E[S(P)] −

E[S(P′)] = k(P[U > 0] − P[U ′ > 0]). Furthermore, both S(P) and S(P′)

are binomially distributed, which are tightly concentrated at the respective

means. We can reduce the problem to the separation on mean values, as

shown in Lemma 5.5.

Lemma 5.5. Let U,U ′ ∈ {0} ∪ [1 + ν, λ] be random variables such that

E[U ] = E[U ′] = 1, E[U j] = E[U ′j] for j ∈ [L], and |P[U > 0]−P[U ′ > 0]| = d,

where ν ∈ (0, 1), L ∈ N, d ∈ (0, 1), and λ > 1 + ν. Then, for any α < 1/2,

2λ

kν2
+

2

kα2d2
+ k

(
enλ

2kL

)L
≤ 0.6⇒ ñ∗

(
k,

(1− 2α)d

2
, ν

)
≥ n. (5.46)

Applying Lemma 5.1 in Section 5.2.7, we obtain two random variables

U,U ′ ∈ {0} ∪ [1 + ν, λ] such that E[U ] = E[U ′] = 1, E[U j] = E[U ′j], j =
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1, . . . , L and

P[U > 0]− P[U ′ > 0] = 2EL−1

(
1

x
, [1 + ν, λ]

)

=

(
1 +

√
1+ν
λ

)2

1 + ν

1−
2
√

1+ν
λ

1 +
√

1+ν
λ

L

, d,

where the value of EL−1( 1
x
, [1 + ν, λ]) follows from [34, 2.11.1]. To apply

Lemma 5.5 and obtain a lower bound of ñ∗(k, ε, ν), we need to pick the

parameters depending on the given k and ε to fulfill:

(1− 2α)d

2
≥ ε, (5.47)

2λ

kν2
+

2

kα2d2
+ k

(
enλ

2kL

)L
≤ 0.6. (5.48)

Let

L = bc0 log kc, λ =

(
γ log k

log(1/2ε)

)2

, n = C
k

log k
log2 1

2ε
,

α =
1

k1/3
, ν =

√√
λ/k(1− 2ε),

for some c0, γ, C � 1 to be specified, and by assumption L, λ → ∞, α
1−2ε

=

ok(1), ν
1−2ε

= oτ (1) + ok(1), 1/λ = oδ(1) . Since d ≥ 1
1+ν

(1 − 2
√

1+ν
λ

)L, a

sufficient condition for (5.47) is that(
1− 2

√
1 + ν

λ

)L

≥ 2ε
1 + ν

1− 2α
⇔ γ

c0

> 2 + oτ (1) + oδ(1) + ok(1). (5.49)

Now we consider (5.48). By the choice of ν and α, we have

ν �
√
λ/k, α� 1/

√
kd,

since 1 − 2ε �
√

log k
k1/4 , d ≥ 2ε

1−2α
and ε = k−o(1). Then the first two terms

in (5.48) vanish. The last term in (5.48) vanishes as long as the constant
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C < 2c0
eγ2 e

−1/c0 . By the fact that

sup

{
2c0

eγ2
e−1/c0 : 0 < 2c0 < γ

}
=

1

2e2
,

the optimal C satisfying (5.49) is 1+oδ(1)+oτ (1)+ok(1)
2e2

. Therefore, combining

(5.47) – (5.48) and applying (5.46), we obtain a lower bound of ñ∗ that

ñ∗(k, ε, ν) ≥ 1 + oδ(1) + oτ (1) + ok(1)

2e2

k

log k
log2 1

2ε
.

Since 1 − 2ε �
√

log k
k1/4 , we have ñ∗(k, ε, ν) �

√
k. Applying Lemma 5.4, we

conclude the desired lower bound of n∗(k, ε).

5.2.10 Proof of lemmas

Proof of Lemma 5.2. By assumption, α = L
β

is strictly bounded away from

zero. Let f(x) , e−βxTL(x) = e−βx cosh(L arccosh(x)) when x ≥ 1. By

taking the derivative of f , we obtain that f is decreasing if and only if

tanh(L arccosh(x))√
x2 − 1

=
tanh(Ly)

sinh(y)
<

1

α
,

where x = cosh(y). Let g(y) = tanh(Ly)
sinh(y)

. Note that g is strictly decreasing on

R+ with g(0) = L and g(∞) = 0. Therefore f attains its maximum at x∗

which is the unique solution of tanh(L arccosh(x))√
x2−1

= 1
α

. It is straightforward to

verify that the solution satisfies x∗ =
√

1 + α2(1 − oL(1)) when α is strictly

bounded away from zero. Therefore the maximum value of f is

e−βx
∗
TL(x∗) = e−L

√
1+1/α2(1−oL(1)) 1

2
(zL + z−L),

where we used (2.19) and z = x∗ +
√
x∗2 − 1 = (

√
1 + α2 + α)(1− oL(1)) is

strictly bounded away from 1. This proves the lemma.

Proof of Lemma 5.3. Recall that the polynomial coefficients aj can be ex-

pressed in terms of the derivatives of PL by (5.15). It is well known that

the maximum of the derivatives of a polynomial on a compact interval can

be upper bounded in terms of the maximum of the polynomial itself; one of
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such results is Markov brothers’ inequality (see, e.g., [139]):

max
−1≤x≤1

|P (k)(x)| ≤ 2kk!
n

n+ k

(
n+ k

2k

)
max
−1≤x≤1

|P (x)|,

where P is any polynomial of degree at most n. Applying the above inequality

to the degree-L polynomial P (x) =
TL( r+l

r−lx)

TL( r+l
r−l )

that is at most one on [−1, 1],

we obtain from (5.15) that

|aj| ≤
(

4

r + l

)j
L

L+ j

(
L+ j

2j

)
. (5.50)

We use the following bound on binomial coefficients [140, Lemma 4.7.1]:

√
π

2
≤

(
n
k

)
(2πnλ(1− λ))−1/2 exp(nh(λ))

≤ 1, (5.51)

where λ = k
n
∈ (0, 1) and h(λ) , −λ log λ − (1 − λ) log(1 − λ) denotes

the binary entropy function. Therefore, from (5.50) and (5.51), for j =

1, . . . , L− 1,

|aj| ≤
(

4

r + l

)j
L

L+ j

exp((L+ j)h( 2j
L+j

))√
2π · 2j L−j

L+j

≤ 1

2

(
4

r

)j
exp

(
(L+ j)h

(
2j

L+ j

))
, (5.52)

where we used the fact that maxj∈[L−1]
L√

4πj(L−j)(L+j)
= L√

4π(L2−1)
≤ 1

2
for

L ≥ 2. From (5.50), the upper bound (5.52) also holds for j = L. Using

(5.52) and Stirling’s approximation that n! < e
√
n(n

e
)n, we upper bound

|uj| = |aj |j!
nj

by, with ρ , L
nr

and β , j/L,

|uj| ≤
(

4ρ

L

)j
e
√
j

2

(
j

e

)j
exp

(
(L+ j)h

(
2j

L+ j

))
=
e
√
j

2
eL(β log 4ρβ

e
+(1+β)h( 2β

1+β
)) ≤ e

√
L

2
exp(Lτ(ρ)), (5.53)
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where

τ(ρ) , sup
β∈[0,1]

(β log
4ρβ

e
+ (1 + β)h(

2β

1 + β
)) = arcsinh(2ρ)−

√
1 + 4ρ2 − 1

2ρ
.

(5.54)

The conclusion follows.

Remark 5.5. The upper bound (5.53) on the coefficients ‖u‖∞ using Markov

brothers’ inequality is in fact tight when l � r. Note that |TL(1 − 2x
r

)| ≤ 1

for x ∈ [0, r] ⊇ [l, r]. By [34, 2.9.11], the magnitude of each coefficient of

TL(1− 2x
r

) is at most that of the corresponding coefficient in TL(x−r−l
r−l ). Note

that

TL

(
1− 2x

r

)
=

L∑
j=0

L

L+ j

(
−4

r

)j (
L+ j

2j

)
xj.

Applying [34, 2.9.11], we can lower bound the magnitude of coefficients of

PL in (5.14) by

|aj| ≥
1

|TL(− r+l
r−l)|

L

L+ j

(
4

r

)j (
L+ j

2j

)
. (5.55)

From (5.40), we have |TL(− r+l
r−l)| = exp(Θ(L

√
δ)), where δ = l/r = o(1).

Analogous to (5.52) and (5.53), applying Stirling’s approximation yields a

matching lower bound of ‖u‖∞.

Proof of Lemma 5.4. Fix an arbitrary P = (p1, p2, . . .) ∈ Dk(ν). Let N =

(N1, N2, . . .)
ind∼ Poi(npi) and let n′ =

∑
Ni ∼ Poi(n

∑
pi) ≥s.t. Poi(n(1−ν)).

Let Ŝn be the optimal estimator of support size for fixed sample size n, such

that whenever n ≥ n∗(k, ε) we have P[|Ŝn − S(P )| ≥ εk] ≤ 0.1 for any P ∈
Dk. We construct an estimator for the Poisson sampling model by S̃(N) =

Ŝn′(N). We observe that conditioned on n′ = m, N ∼ multinomial(m, P∑
i pi

).

Note that P∑
i pi
∈ Dk by the definition of Dk(ν). Therefore

P
[∣∣∣S̃(N)− S(P )

∣∣∣ ≥ εk
]

=
∞∑
m=0

P
[∣∣∣∣Ŝm(N)− S

(
P∑
i pi

)∣∣∣∣ ≥ εk

]
P [n′ = m]

≤ 0.1P[n′ ≥ n∗] + P[n′ < n∗] = 0.1 + 0.9P[n′ < n∗]

≤ 0.1 + 0.9P[Poi(n(1− ν)) < n∗].

If n = 1+β
1−νn

∗ for β > 0, then Chernoff bound (see, e.g., [56, Theorem 5.4])
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yields that

P[Poi(n(1− ν)) < n∗] ≤ exp(−n∗(β − log(1 + β))).

By picking β = C√
n∗

for some absolute constant C, we obtain ñ∗ ≤ n∗+C
√
n∗

1−ν

and hence the lemma.

Proof of Lemma 5.5. Define two random vectors

P =

(
U1

k
, . . . ,

Uk
k

)
, P′ =

(
U ′1
k
, . . . ,

U ′k
k

)
,

where Ui and U ′i are i.i.d. copies of U and U ′, respectively. Conditioned

on P and P′ respectively, the corresponding histogram N = (N1, . . . , Nk)
ind∼

Poi(nUi/k) and N ′ = (N ′1, . . . , N
′
k)

ind∼ Poi(nU ′i/k). Define the following high-

probability events: for α < 1/2,

E ,

{∣∣∣∣∑i Ui
k
− 1

∣∣∣∣ ≤ ν, |S(P)− E [S(P)]| ≤ αkd

}
,

E ′ ,

{∣∣∣∣∑i U
′
i

k
− 1

∣∣∣∣ ≤ ν, |S(P′)− E [S(P′)]| ≤ αkd

}
.

Now we define two priors on the set Dk(ν) by the following conditional dis-

tributions:

π = PP|E, π′ = PP′|E′ .

First we consider the separation of the support sizes under π and π′. Note

that E[S(P)] = kP[U > 0] and E[S(P′)] = kP[U ′ > 0], so |E[S(P)] −
E[S(P′)]| ≥ kd. By the definition of the events E,E ′ and the triangle in-

equality, we obtain that under π and π′, both P,P′ ∈ Dk(ν) and

|S(P)− S(P′)| ≥ (1− 2α)kd. (5.56)

Now we consider the total variation distance of the distributions of the

histogram under the priors π and π′. By the triangle inequality and the fact

that total variation of product distribution can be upper bounded by the
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summation of individual one,

TV(PN |E, PN ′|E′)

≤ TV(PN |E, PN) + TV(PN , PN ′) + TV(PN ′ , PN ′|E′)

= P[Ec] + TV
(
(E[Poi(nU/k)])⊗k, (E[Poi(nU ′/k)])⊗k

)
+ P[E ′c]

≤ P[Ec] + P[E ′c] + kTV(E[Poi(nU/k)],E[Poi(nU ′/k)]). (5.57)

By the Chebyshev inequality and the union bound, both

P[Ec],P[E ′c] ≤ P

[∣∣∣∣∣∑
i

Ui
k
− 1

∣∣∣∣∣ > ν

]
+ P [|S(P)− E [S(P)]| > αkd]

≤
∑

i var[Ui]

(kν)2
+

∑
i var[1{Ui>0}]

(αkd)2
≤ λ

kν2
+

1

kα2d2
, (5.58)

where we upper bounded the variance of U by var[U ] ≤ E[U2] ≤ E[λU ] = λ.

Applying the total variation bound for Poisson mixtures in Theorem 3.5

yields that

TV(E[Poi(nU/k)],E[Poi(nU ′/k)]) ≤
(
enλ

2kL

)L
. (5.59)

Plugging (5.58) and (5.59) into (5.57), we obtain that

TV(PN |E, PN ′|E′) ≤
2λ

kν2
+

2

kα2d2
+ k

(
enλ

2kL

)L
. (5.60)

Applying Le Cam’s lemma [96], the conclusion follows from (5.56) and (5.60).

5.3 Distinct elements problem

The Distinct Elements problem can be viewed as a special case of the

Support Size problem discussed in Section 5.2. Samples drawn from a k-

ball urn with replacement can be viewed as i.i.d. samples from a distribution

supported on the set { 1
k
, 2
k
, . . . , k

k
}. From this perspective, any support size

estimator, as well as its performance guarantee, is applicable to the Distinct
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Elements problem. Theorem 5.2 yields a sample complexity upper bound

O

(
k

log k
log2 k

∆

)
. (5.61)

We briefly describe and compare the strategy to construct estimators in

the last and the current sections. Both are based on the idea of polynomial

approximation, a powerful tool to circumvent the nonexistence of unbiased

estimators [17]. The key is to approximate the function to be estimated by a

polynomial, whose degree is chosen to balance the approximation error (bias)

and the estimation error (variance). The worst-case performance guarantee

for the Support Size problem in the last section is governed by the uniform

approximation error over an interval where the probabilities may reside. In

contrast, in the Distinct Elements problem, samples are generated from a

distribution supported on a discrete set of values. Uniform approximation

over a discrete subset leads to smaller approximation error and, in turn,

improved sample complexity. It turns out that O( k
log k

log k
∆

) samples are

sufficient to achieve an additive error of ∆ that satisfies k0.5+O(1) ≤ ∆ ≤
O(k), which strictly improves the sample complexity (5.61) for the Support

Size problem, thanks to the discrete structure of the Distinct Elements

problem.

5.3.1 A summary of the sample complexity

The main results of this chapter provide bounds and constant-factor approxi-

mations of the sample complexity in various regimes summarized in Table 5.1,

as well as computationally efficient algorithms. Below we highlight a few im-

portant conclusions drawn from Table 5.1:

From linear to sublinear: From the result for k0.5+δ ≤ ∆ ≤ ck in Ta-

ble 5.1, we conclude that the sample complexity is sublinear in k if and

only if ∆ = k1−o(1), which also holds for sampling without replacement.

To estimate within a constant fraction of balls ∆ = ck for any small

constant c, the sample complexity is Θ( k
log k

), which coincides with the

general support size estimation problem. However, in other regimes we

can achieve better performance by exploiting the discrete nature of the

Distinct Elements problem.
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From linear to superlinear: The transition from linear to superlinear

sample complexity occurs near ∆ =
√
k. Although the exact sam-

ple complexity near ∆ =
√
k is not completely resolved in the current

chapter, the lower bound and upper bound in Table 5.1 differ by a fac-

tor of at most log log k. In particular, the estimator via interpolation

can achieve ∆ =
√
k with n = O(k log log k) samples, and achieving a

precision of ∆ ≤ k0.5−o(1) requires strictly superlinear sample size.

Table 5.1: Summary of the sample complexity n∗(k,∆), where δ is any
sufficiently small constant, c is an absolute positive constant less than 0.5
(same over the table), and the notations a ∧ b and a ∨ b stand for min{a, b}
and max{a, b}, respectively. The estimators are linear with coefficients
obtained from either interpolation or `2-approximation.

∆ Lower bound Upper bound
≤ 1 Θ(k log k)

Θ
(
k log k

∆2

)[
1,
√
k(log k)−δ

]
[√

k(log k)−δ, k0.5+δ
]

Ω
(
k
(
1 ∨ log k

∆2

))
O

(
k log log k

1∨log ∆2

k

)
Θ
(

k
log k

log k
∆

)
[k

0.5+δ
, ck]

[ck, (0.5− δ)k] k exp(−
√
O(log k log log k))[106]6 O

(
k

log k

)
To establish the sample complexity, our lower bounds are obtained under

zero-one loss and our upper bounds are under the (stronger) quadratic loss.

Hence we also obtain the following characterization of the minimax mean

squared error (MSE) of the Distinct Elements problem:

min
Ĉ

max
k-ball urn

E

(
Ĉ − C
k

)2

= exp

{
−Θ

((
1 ∨ n log k

k

)
∧
(

log k ∨ n
k

))}

=



Θ(1), n ≤ k
log k

,

exp(−Θ(n log k
k

)), k
log k
≤ n ≤ k,

exp(−Θ(log k)), k ≤ n ≤ k log k,

exp(−Θ(n
k
)), n ≥ k log k,
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where Ĉ denotes an estimator using n samples with replacements and C is

the number of distinct colors in a k-ball urn.

5.3.2 Linear estimators via discrete polynomial approximation

In this section we develop a unified framework to construct linear estima-

tors and analyze its performance. Note that linear estimators (i.e. linear

combinations of fingerprints) have been previously used for estimating dis-

tribution functionals [68, 94, 95, 72]. As commonly done in the literature,

we assume the Poisson sampling model, where the sample size is a random

variable Poi(n) instead of being exactly n. Under this model, the histograms

of the samples, which count the number of balls in each color, are indepen-

dent which simplifies the analysis. Any estimator under the Poisson sampling

model can be easily modified for fixed sample size, and vice versa, thanks

to the concentration of the Poisson random variable near its mean. Conse-

quently, the sample complexities of these two models are close to each other.

Performance guarantees for general linear estimators. Recall that C

denotes the number of distinct colors in a urn containing k colored balls. Let

ki denote the number of balls of the ith color in the urn. Then
∑

i ki = k and

C =
∑

i 1{ki>0}. Let X1, X2, . . . be independently drawn with replacement

from the urn. Equivalently, the Xi’s are i.i.d. according to a distribution

P = (pi)i≥1, where pi = ki/k is the fraction of balls of the ith color. The

observed data are X1, . . . , XN , where the sample size N is independent from

(Xi)i≥1 and is distributed as Poi(n). Under the Poisson model (or any of

the sampling models described in Section 5.1.2), the histograms {Ni} are

sufficient statistics for inferring any aspect of the urn configuration; here Ni

is the number of balls of the ith color observed in the sample, which is in-

dependently distributed as Poi(npi). Furthermore, the fingerprints {Φj}j≥1,

which are the histogram of the histograms, are also sufficient for estimating

any permutation-invariant distributional property [66, 130], in particular, the

number of colors. Specifically, the jth fingerprint Φj denotes the number of

colors that appear exactly j times. Note that U , Φ0, the number of unseen

colors, is not observed.

The näıve estimator, “what you see is what you get,” is simply the number

of observed distinct colors, which can be expressed in terms of fingerprints
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as

Ĉseen =
∑
j≥1

Φj.

This is typically an underestimator because C = Ĉseen + U . In turn, our

estimator is

C̃ = Ĉseen + Û , (5.62)

which adds a linear correction term

Û =
∑
j≥1

ujΦj, (5.63)

where the coefficients uj’s are to be specified. Since the fingerprints Φ0,Φ1, . . .

are dependent (for example, they sum up to C), (5.63) serves as a linear pre-

dictor of U = Φ0 in terms of the observed fingerprints. Equivalently, in terms

of histograms, the estimator has the following decomposable form:

C̃ =
∞∑
i=1

g(Ni), (5.64)

where g : Z+ → R satisfies g(0) = 0 and g(j) = 1 + uj for j ≥ 1. In

fact, any estimator that is linear in the fingerprints can be expressed of the

decomposable form (5.64).

The main idea to choose the coefficients uj is to achieve a good trade-off

between the variance and the bias. In fact, it is instructive to point out that

linear estimators can easily achieve exactly zero bias, which, however, comes

at the price of high variance. To see this, note that the bias of the estimator

(5.64) is E[C̃]− C =
∑

i≥1(E[g(Ni)]− 1), where

|E[g(Ni)−1]| = e−npi

∣∣∣∣∣−1 +
∞∑
j=1

kji
uj(n/k)j

j!

∣∣∣∣∣ ≤ e−n/k max
a∈[k]
|φ(a)− 1| , (5.65)

and φ(a) ,
∑

j≥1 a
j uj(n/k)j

j!
is a (formal) power series with φ(0) = 0. The

right-hand side of (5.65) can be made zero by choosing φ to be, e.g., the

Lagrange interpolating polynomial that satisfies φ(0) = −1 and φ(i) = 0 for

i ∈ [k], namely, φ(a) = (−1)k+1

k!

∏k
i=1(a − i); however, this strategy results in

a high-degree polynomial φ with large coefficients, which, in turn, leads to a

large variance of the estimator.
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To reduce the variance of our estimator, we only use the first L finger-

prints in (5.63) by setting uj = 0 for all j > L, where L is chosen to be

proportional to log k. This restricts the polynomial degree in (5.65) to at

most L and, while possibly incurring bias, reduces the variance. A further

reason for only using the first few fingerprints is that higher-order finger-

prints are almost uncorrelated with the number of unseens Φ0. For instance,

if red balls are observed for n/2 times, the only information this reveals is

that approximately half of the urn are red. In fact, the correlation between

Φ0 and Φj decays exponentially. Therefore for L = Θ(log k), {Φj}j>L offer

little predictive power about Φ0. Moreover, if a color is observed at most L

times, say, Ni ≤ L, this implies that, with high probability, ki ≤ M , where

M = O(kL/n), thanks to the concentration of Poisson random variables.

Therefore, effectively we only need to consider those colors that appear in

the urn for at most M times, i.e., ki ∈ [M ], for which the bias is at most

|E[g(Ni)− 1]| ≤ e−n/k max
a∈[M ]

|φ(a)− 1| = e−n/k max
x∈[M ]/M

|p(x)− 1|

= e−n/k ‖Bw − 1‖∞ , (5.66)

where p(x) , φ(Mx) =
∑L

j=1wjx
j, w = (w1, . . . , wL)>, and

wj ,
uj(Mn/k)j

j!
, B ,


1/M (1/M)2 · · · (1/M)L

2/M (2/M)2 · · · (2/M)L

...
...

. . .
...

1 1 · · · 1

 . (5.67)

Here B is a (partial) Vandermonde matrix. Lastly, since Ĉseen ≤ C ≤ k,

we define the final estimator to be C̃ projected to the interval [Ĉseen, k]. We

have the following error bound.

Proposition 5.5. Assume the Poisson sampling model. Let

L = α log k, M =
βk log k

n
, (5.68)

for any β > α such that L and M are integers. Let w ∈ RL. Let C̃ be defined

in (5.62) with uj = wjj!(
k
nM

)j for j ∈ [L] and uj = 0 otherwise. Define
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Ĉ , (C̃ ∨ Ĉseen) ∧ k. Then

E(Ĉ − C)2 ≤ k2e−2n/k ‖Bw − 1‖2
∞ + ke−n/k + k max

m∈[M ]
EN∼Poi(nm/k)[u

2
N ]

+k−(β−α log eβ
α
−3). (5.69)

Proof. Since Ĉseen ≤ C ≤ k, Ĉ is always an improvement of C̃. Define the

event E , ∩ki=1{Ni ≤ L ⇒ kpi ≤ M}, which means that whenever Ni ≤ L

we have pi ≤M/k. Since β > α, applying the Chernoff bound and the union

bound yields P[Ec] ≤ k1−β+α log eβ
α , and thus

E(Ĉ − C)2 ≤ E((Ĉ − C)1E)2 + k2P[Ec] ≤ E((C̃ − C)1E)2 + k3−β+α log eβ
α .

(5.70)

The decomposable form of C̃ in (5.64) leads to

(C̃ − C)1E =
∑

i:ki∈[M ]

(g(Ni)− 1)1{Ni≤L} , E .

In view of the bias analysis in (5.66), we have

|E[E ]| ≤
∑

i:ki∈[M ]

e−nki/k ‖Bw − 1‖∞ ≤ ke−n/k ‖Bw − 1‖∞ . (5.71)

Recall that g(0) = 0 and g(j) = uj + 1 for j ∈ [L]. Since Ni is independently

distributed as Poi(nki/k), we have

var[E ] =
∑

i:ki∈[M ]

var
[
(g(Ni)− 1)1{Ni≤L}

]
≤

∑
i:ki∈[M ]

E
[
(g(Ni)− 1)21{Ni≤L}

]
=

∑
i:ki∈[M ]

(
e−nki/k + E[u2

Ni
]
)
≤ ke−n/k + k max

m∈[M ]
EN∼Poi(nm/k)[u

2
N ].

(5.72)

Combining the upper bound on the bias in (5.71) and the variance in

(5.72) yields an upper bound on E[E2]. Then the MSE in (5.69) follows from

(5.70).

Proposition 5.5 suggests that the coefficients of the linear estimator can

be chosen by solving the following linear programming (LP)

min
w∈RL

‖Bw − 1‖∞ (5.73)
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and showing that the solution does not have large entries. Instead of the `∞-

approximation problem (5.73), whose optimal value is difficult to analyze,

we solve the `2-approximation problem as a relaxation:

min
w∈RL

‖Bw − 1‖2, (5.74)

which is an upper bound of (5.73), and is in fact within an O(log k) factor

since M = O(k log k/n) and n = Ω(k/ log k). In the remainder of this section,

we consider two separate cases:

• M > L (n . k): In this case, the linear system in (5.74) is overdeter-

mined and the minimum is non-zero. Surprisingly, as shown later in

this subsection, the exact optimal value can be found in closed form

using discrete orthogonal polynomials. The coefficients of the solution

can be bounded using the minimum singular value of the matrix B,

which is analyzed in Section 5.3.3.

• M ≤ L (n & k): In this case, the linear system is underdetermined

and the minimum in (5.74) is zero. To bound the variance, it turns out

that the coefficients bound obtained from the minimum singular value

is not precise enough in this regime. Instead, we express the coeffi-

cients in terms of Lagrange interpolating polynomials and use Stirling

numbers to obtain sharp variance bounds. This analysis in carried out

in Section 5.3.4.

We finish this subsection with two remarks.

Remark 5.6 (Discrete versus continuous approximation). The optimal es-

timator for the Support Size problem in [72] has the same linear form as

(5.62); however, since the probabilities can take any values in an interval,

the coefficients are found to be the solution of the continuous polynomial

approximation problem

inf
p

max
x∈[ 1

M
,1]
|p(x)− 1| = exp

(
−Θ

( L√
M

))
, (5.75)

where the infimum is taken over all degree-L polynomials such that p(0) = 0,

achieved by the (appropriately shifted and scaled) Chebyshev polynomial

[34]. In contrast, we will show that the discrete version of (5.75), which is

128



equivalent to the LP (5.73), satisfies

inf
p

max
x∈{ 1

M
, 2
M
,...,1}
|p(x)− 1| = poly(M) exp

(
−Θ

(L2

M

))
, (5.76)

provided L < M . The difference between (5.75) and (5.76) explains why the

sample complexity (5.61) for the Support Size problem has an extra log

factor compared to that of the Distinct Elements problem in Table 5.1.

When the sample size n is large enough, interpolation is used in lieu of

approximation. See Figure 5.5 for an illustration.
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(a) Continuous
approximation
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(c) Interpolation

Figure 5.5: Continuous and discrete polynomial approximations for M = 6
and degree L = 4, where (a) and (b) plot the optimal solution to (5.75) and
(5.76) respectively. The interpolating polynomial in (c) requires a higher
degree L = 6.

Remark 5.7 (Time complexity). The time complexity of the estimator

(5.62) consists of: (a) Computing histograms Ni and fingerprints Φj of n

samples: O(n); (b) Computing the coefficients w by solving the least square

problem in (5.66): O(L2(M + L)); (c) Evaluating the linear combination

(5.62): O(n∧k). As shown in Table 5.1, for an accurate estimation the sample

complexity is n = Ω( k
log k

), which implies L = O(log k) and M = O(log2 k).

Therefore, the overall time complexity is O(n+ log4 k) = O(n).

Exact solution to the `2-approximation. Next we give an explicit solu-

tion to the `2-approximation problem (5.74). In general, the optimal solution

is given by w∗ = (B>B)−1B>1 and the minimum value is the Euclidean dis-

tance between the all-one vector 1 and the column span of B, which, in the

case of M > L, is non-zero (since B has linearly independent columns). Tak-

ing advantage of the Vandermonde structure of the matrix B in (5.67), we

note that (5.74) can be interpreted as finding the orthogonal projection of
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the constant function onto the linear space of polynomials of degree between

1 and L defined on the discrete set [M ]/M . Using the orthogonal polynomi-

als with respect to the counting measure, known as discrete Chebyshev (or

Gram) polynomials (see [53, Section 2.8] or [141, Section 2.4.2]), we show

that, surprisingly, the optimal value of the `2-approximation can be found in

closed form.

Lemma 5.6. For all L ≥ 1 and M ≥ L+ 1,

min
w∈RL

‖Bw − 1‖2 =

[(
M+L+1
L+1

)(
M
L+1

) − 1

]−1/2

=

[
exp

(
Θ

(
L2

M

))
− 1

]−1/2

.

(5.77)

Proof. Define the following inner product between functions f and g

〈f, g〉 ,
M∑
i=1

f

(
i

M

)
g

(
i

M

)
(5.78)

and the induced norm ‖f‖ ,
√
〈f, f〉. The least square problem (5.77) can

be equivalently formulated as

min
w∈RL

‖−1 + w1x+ w2x
2 + · · ·+ wLx

L‖. (5.79)

This can be analyzed using the orthogonal polynomials under the inner prod-

uct (5.78), which we describe next.

Recall the discrete Chebyshev polynomials (2.26). By appropriately shift-

ing and scaling the set of polynomials tm, we define an orthonormal basis for

the set of polynomials of degree at most L ≤M − 1 under the inner product

(5.78) by

φm(x) =
tm(Mx− 1)√

c(M,m)
, m = 0, . . . , L. (5.80)

Since {φm}Lm=0 constitute a basis for polynomials of degree at most L, the

least square problem (5.79) can be equivalently formulated as

min
a:
∑L
i=1 aiφi(0)=−1

∥∥∥∥∥
L∑
i=0

aiφi

∥∥∥∥∥ = min
a:〈a,φ(0)〉=−1

‖a‖2 ,

where φ(0) , (φ0(0), . . . , φL(0)), a = (a0, . . . , aL), and 〈·, ·〉 denotes the
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vector inner product. Thus, the optimal value is clearly 1
‖φ(0)‖2

, achieved by

a∗ = − φ(0)

‖φ(0)‖22
.

From (2.27) we have pm(0) = pm(1) = · · · = pm(m − 1) = 0. By the

formula of tm in (2.26), we obtain

tm(−1) =
1

m!
(−1)mpm(−1) = (−1)m

m∏
j=1

(M + j).

In view of the definition of φm in (5.80), we have

φm(0) =
tm(−1)√
c(M,m)

=
(−1)m

∏m
j=1(M + j)√

M
∏m
j=1(M2−j2)

2m+1

= (−1)m

√√√√2m+ 1

M

m∏
j=1

M + j

M − j
.

Therefore

‖φ(0)‖2
2 =

L∑
m=0

2m+ 1

M

m∏
j=1

M + j

M − j
=

(
M+L+1
L+1

)(
M
L+1

) − 1,

where the last equality follows from induction since(
M+L+1
L+1

)(
M
L+1

) − (M+L
L

)(
M
L

) =
2L+ 1

M

L∏
j=1

M + j

M − j
.

This proves the first equality in (5.77).

The second equality in (5.77) is a direct consequence of Stirling’s approx-

imation. If M = L+ 1, then(
M+L+1
L+1

)(
M
L+1

) =

(
2(L+ 1)

L+ 1

)
= exp(Θ(L)). (5.81)

If M ≥ L + 2, denoting x = L+1
M

and applying n! =
√

2πn(n
e
)n(1 + Θ( 1

n
))

when n ≥ 1, we have(
M+L+1
L+1

)(
M
L+1

) = exp

(
Θ(Mx2) +

1

2
log(1− x2) + log

1 + Θ( 1
M(1−x2)

)

1 + Θ( 1
M

)

)
, (5.82)

where the last step follows from (1+x) log(1+x)+(1−x) log(1−x) = Θ(x2)

when 0 ≤ x ≤ 1. In the exponent of (5.82), the term Θ(Mx2) dominates
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when M ≥ L + 2. Applying (5.81) and (5.82) to the exact solution (5.77)

yields the desired approximation.

5.3.3 Minimum singular values of real rectangle Vandermonde
matrices

In Proposition 5.5 the variance of our estimator is bounded by the magnitude

of coefficients u, which is related to the polynomial coefficients w by (5.67). A

classical result from approximation theory is that if a polynomial is bounded

over a compact interval, its coefficients are at most exponential in the degree

[34, Theorem 2.9.11]: for any degree-L polynomial p(x) =
∑L

i=0 wix
i,

max
0≤i≤L

|wi| ≤ max
x∈[0,1]

|p(x)| exp(O(L)), (5.83)

which is tight when p is the Chebyshev polynomial. This fact has been

applied in statistical contexts to control the variance of estimators obtained

from best polynomial approximation [39, 55, 72, 69]. In contrast, for the

Distinct Elements problem, the polynomial is only known to be bounded

over the discretized interval. Nevertheless, we show that the bound (5.83)

continues to hold as long as the discretization level exceeds the degree:

max
0≤i≤L

|wi| ≤ max
x∈{ 1

M
, 2
M
,...,1}
|p(x)| exp(O(L)), (5.84)

provided that M ≥ L+ 1 (see Remark 5.8 after Lemma 5.7). Clearly, (5.84)

implies (5.83) by sending M →∞. If M ≤ L, a coefficient bound like (5.84)

is impossible, because one can add to p an arbitrary degree-L interpolating

polynomial that evaluates to zero at all M points.

To bound the coefficients, note that the optimal solution of `2-approximation

is w∗ = (B>B)−1B>1, and consequently

‖w∗‖2 ≤
‖1‖2

σmin(B)
, (5.85)
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where σmin(B) denotes the smallest singular value of B. Let

B̄ , [1, B] =


1 1/M (1/M)2 · · · (1/M)L

1 2/M (2/M)2 · · · (2/M)L

1
...

...
. . .

...

1 1 1 · · · 1

 ,

which is an M×(L+1) Vandermonde matrix and satisfies σmin(B̄) ≤ σmin(B)

since B̄ has one extra column. The Gram matrix of B̄ is an instance of

moment matrices. A moment matrix associated with a probability measure

µ is a Hankel matrix M given by Mi,j = mi+j−2, where m` =
∫
x`dµ denotes

the `th moment of µ. Then 1
M
B̄>B̄ is the moment matrix associated with

the uniform distribution over the discrete set { 1
M
, 2
M
, . . . , 1}, which converges

to the uniform distribution over the interval (0, 1). The moment matrix of

the uniform distribution is the famous Hilbert matrix H, with

Hij =
1

i+ j − 1
,

which is a well-studied example of ill-conditioned matrices in the numerical

analysis literature. In particular, it is known that the condition number of

the L×L Hilbert matrix is O( (1+
√

2)4L
√
L

) [142] and the operator norm is Θ(1),

and thus the minimum singular value is exponentially small in the degree.

Therefore we expect the discrete moment matrix 1
M
B̄>B̄ to behave similarly

to the Hilbert matrix when M is large enough. Interestingly, we show that

this is indeed the case as soon as M exceeds L (otherwise the minimum

singular value is zero).

Lemma 5.7. For all M ≥ L+ 1,

σmin

(
B̄√
M

)
≥ 1

L227L(2L+ 1)

(
M + L

eM

)L+0.5

. (5.86)

Remark 5.8. The inequality (5.84) follows from Lemma 5.7 since the co-

efficient vector w = (w0, . . . , wL) satisfies ‖w‖∞ ≤ ‖w‖2 ≤ 1
σmin(B̄)

‖B̄w‖2 ≤
√
M

σmin(B̄)
‖B̄w‖∞.

Remark 5.9. The extreme singular values of square Vandermonde matrices

have been extensively studied (c.f. [143, 144] and the references therein). For
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rectangular Vandermonde matrices, the focus was mainly with nodes on the

unit circle in the complex domain [145, 146, 147] with applications in signal

processing. In contrast, Lemma 5.7 is on rectangular Vandermonde matrices

with real nodes. The result on integers nodes in [148] turns out to be too

crude for the purpose of this chapter.

Proof. Note that B̄>B̄ is the Gramian of monomials x = (1, x, x2, . . . , xL)>

under the inner product defined in (5.78). When M ≥ L+1, the orthonormal

basis φ = (φ0, . . . , φL)> under the inner product (5.78) are given in (5.80).

Let φ = Lx where L ∈ R(L+1)×(L+1) is a lower triangular matrix and L

consists of the coefficients of φ. Taking the Gramian of φ yields that I =

L(B̄>B̄)L>, i.e., L−1 can be obtained from the Cholesky decomposition:

B̄>B̄ = (L−1)(L−1)>. Then7

σ2
min(B̄) =

1

‖L‖2
op

≥ 1

‖L‖2
F

, (5.87)

where ‖·‖op denotes the `2 operator norm, which is the largest singular value

of L, and ‖·‖F denotes the Frobenius norm. By definition, ‖L‖2
F is the

sum of all squared coefficients of φ0, . . . , φL. A useful method to bound the

sum-of-squares of the coefficients of a polynomial is by its maximal modulus

over the unit circle on the complex plane. Specifically, for any polynomial

p(z) =
∑n

i=0 aiz
i, we have

n∑
i=0

|ai|2 =
1

2π

∮
|z|=1

|p(z)|2dz ≤ sup
|z|=1

|p(z)|2. (5.88)

Therefore

σmin(B̄) ≥ 1

‖L‖F
≥ 1√∑L

m=0 sup|z|=1 |φm(z)|2

≥ 1√
L+ 1

1

sup0≤m≤L,|z|=1 |φm(z)|
. (5.89)

For a given M , the orthonormal basis φm(x) in (5.80) is proportional to

the discrete Chebyshev polynomials tm(Mx − 1). The classical asymptotic

7The lower bound (5.87), which was also obtained in [149, (1.13)] using Cauchy-Schwarz
inequality, is tight up to polynomial terms in view of the fact that ‖L‖F ≤ (L+ 1)‖L‖op.
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result for the discrete Chebyshev polynomials shows that [53, (2.8.6)]

lim
M→∞

M−mtm(Mx) = Pm(2x− 1),

where Pm is the Legendre polynomial of degree m. This gives the intuition

that tm(x) ≈ Mm for real-valued x ∈ [0,M ]. We have the following non-

asymptotic upper bound for tm over the complex plane.

Lemma 5.8. For all 0 ≤ m ≤M − 1,

|tm(z)| ≤ m226m sup
0≤ξ≤m

(|z + ξ| ∨M)m . (5.90)

Applying (5.90) on the definition of φm in (5.80), for any |z| = 1 and any

M ≥ L+ 1, we have

|φm(z)| = |tm(Mz − 1)|√
c(M,m)

≤ m227mMm√
M(M2−12)(M2−22)···(M2−m2)

2m+1

.

The right-hand side is increasing with m. Therefore,

sup
0≤m≤L,|z|=1

|φm(z)| ≤ L227LML√
M(M2−12)(M2−22)···(M2−L2)

2L+1

=
1√
M
L227L

√
2L+ 1

√
M2L+1(

M+L
2L+1

)
(2L+ 1)!

.

Combining (5.89), we obtain

σmin

(
B̄√
M

)
≥ 1

L227L
√

(L+ 1)(2L+ 1)

√(
M+L
2L+1

)
(2L+ 1)!

M2L+1

≥ 1

L227L(2L+ 1)

(
M + L

eM

)L+0.5

,

where in the last inequality we used
(
n
k

)
≥ (n

k
)k and n! ≥ (n

e
)n.

Using the optimal solution w∗ to the `2-approximation problem (5.74) as

the coefficient of the linear estimator Ĉ, the following performance guarantee

is obtained by applying Lemma 5.6 and Lemma 5.7 to bound the bias and

variance, respectively.

135



Theorem 5.3. Assume the Poisson sampling model. Then,

E(Ĉ − C)2 ≤ k2 exp

(
−Θ

(
1 ∨ n log k

k
∧ log k

))
. (5.91)

Proof. If n ≤ k
log k

, then the upper bound in (5.91) is Θ(k2), which is trivial

thanks to the thresholds that Ĉ = (C̃ ∨ Ĉseen) ∧ k. It is hereinafter assumed

that n ≥ k
log k

, or equivalently M ≤ β
α2L

2; here M,L are defined in (5.68)

and the constants α, β are to be determined later. Then, from Lemma 5.6,

‖Bw∗ − 1‖∞ ≤ ‖Bw∗ − 1‖2 ≤ exp

(
−Θ

(
L2

M

))
. (5.92)

In view of (5.85) and Lemma 5.7, we have

‖w∗‖∞ ≤ ‖w
∗‖2 ≤

‖1‖2

σmin(B)
≤ exp(O(L)).

Recall the connection between uj and wj in (5.67). For 1 ≤ j ≤ L < β log k,

we have uj = wj
j!

(β log k)j
≤ wj

β log k
. Therefore,

‖u∗‖∞ ≤
‖w∗‖∞
β log k

≤ exp(O(L))

β log k
. (5.93)

Applying (5.92) and (5.93) to Proposition 5.5, we obtain

E(Ĉ − C)2 ≤ k2 exp

(
−2n

k
−Θ

(
n log k

k

))
+ ke−n/k

+k
exp(O(log k))

(β log k)2
+ k−(β−α log eβ

α
−3).

Then the desired (5.91) holds as long as β is sufficiently large and α is

sufficiently small.

5.3.4 Lagrange interpolating polynomials and Stirling
numbers

When we sample at least a constant faction of the urn, i.e., n = Ω(k), we

can afford to choose α and β in (5.68) so that L = M and B is an invertible

matrix. We choose the coefficient w = B−11 which is equivalent to applying
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Lagrange interpolating polynomial and achieves exact zero bias. To control

the variance, we can follow the approach in Section 5.3.3 by using the bound

on minimum singular value of the matrix B, which implies that the coeffi-

cients are exp(O(L)) and yields a coarse upper bound O(k log k

1∨log ∆2

k

) on the

sample complexity. As previously announced in Table 5.1, this bound can be

improved to O(k log log k

1∨log ∆2

k

) by a more careful analysis of the Lagrange inter-

polating polynomial coefficients expressed in terms of the Stirling numbers,

which we introduce next.

The Stirling numbers of the first kind are defined as the coefficients of the

falling factorial (x)n where

(x)n = x(x− 1) . . . (x− n+ 1) =
n∑
j=1

s(n, j)xj.

Compared to the coefficients w expressed by the Lagrange interpolating poly-

nomial:
M∑
j=1

wjx
j − 1 = −(1− xM)(2− xM) . . . (M − xM)

M !
,

we obtain a formula for the coefficients w in terms of the Stirling numbers:

wj =
(−1)M+1M j

M !
s(M + 1, j + 1), 1 ≤ j ≤M.

Consequently, the coefficients of our estimator uj are given by

uj = (−1)M+1 j!

M !

(
k

n

)j
s(M + 1, j + 1). (5.94)

The precise asymptotics the Stirling number is rather complicated. In par-

ticular, the asymptotic formula of s(n,m) as n→∞ for fixed m is given by

[150] and the uniform asymptotics over all m is obtained in [151] and [152].

The following lemma is a coarse non-asymptotic version, which suffices for

the purpose of constant-factor approximations of the sample complexity.

Lemma 5.9.

|s(n+ 1,m+ 1)| = n!

(
Θ

(
1

m

(
1 ∨ log

n

m

)))m
. (5.95)

We construct Ĉ as in Proposition 5.5 using the coefficients uj in (5.94) to
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achieve zero bias. The variance upper bound by the coefficients u is a direct

consequence of the upper bound of Stirling numbers in Lemma 5.9. Then we

obtain the following mean squared error (MSE).

Theorem 5.4 (Interpolation). Assume the Poisson sampling model. If n >

ηk for some sufficiently large constant η, then

E(Ĉ − C)2 ≤ ke−Θ(n
k

) + k−0.5−3.5 k
n

log k
en + ε(k, n),

where

ε(k, n) ,


k exp

(
k2 log k
n2 e−Θ(n

k
)
)
, n . k log log k,

k
(

Θ
(
k
n

)
log k2 log k

n2

)2n/k

, k log log k . n . k
√

log k,

0, n & k
√

log k.

Proof. In Proposition 5.5, fix β = 3.5 and α = βk
n

so that L = M . Our goal

is to show an upper bound of

max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N ] = max

λ∈n
k

[M ]

M∑
j=1

u2
je
−λλ

j

j!
. (5.96)

Here the coefficients uj are obtained from (5.94) and, in view of (5.95), satisfy:

|uj| ≤
(
ηk

n

(
1 ∨ log

M

j

))j
, 1 ≤ j ≤M, (5.97)

for some universal constant η. We consider three cases separately:

Case I: n ≥
√
βk
√

log k. In this case we have n
k
≥ M . The maximum of

each summand in (5.96) as a function of λ ∈ R occurs at λ = j. Since j ≤ n
k
,

the maximum over λ ∈ n
k
[M ] is attained at λ = n

k
. Then,

max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N ] = EN∼Poi(n

k
)[u

2
N ]. (5.98)
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In view of (5.97) and j ≥ 1, we have |uj| ≤ (Θ(k/n) logM)j. Then,

EN∼Poi(n
k

)[u
2
N ] ≤ EN∼Poi(n

k
)

(
Θ

(
k logM

n

)2
)N

= exp

(
n

k

(
Θ

(
k logM

n

)2

− 1

))
= e−Θ(n/k),

as long as n & k log log k and thus k logM
n

. 1. Therefore,

max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N ] ≤ e−Θ(n/k), n & k

√
log k. (5.99)

Case II: ηk log log k ≤ n ≤
√
βk
√

log k. We apply the following upper

bound:

max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N ]

= max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N1{N≥n/k}] + max

λ∈n
k

[M ]
EN∼Poi(λ)[u

2
N1{N<n/k}]

≤ max
n
k
≤j≤M

|uj|2 + e−Θ(n/k), (5.100)

where the upper bound of the second addend is analogous to (5.98) and

(5.99). Since ηk
n
≤ 1, the right-hand side of (5.97) is decreasing with j when

j ≥M/e. It suffices to consider j ≤M/e, when the maximum as a function

of j ∈ R occurs at j∗ ≤ Me−
n
ηk . Since Me−

n
ηk ≤ n

k
when n ≥ ηk log log k,

the maximum over n
k
≤ j ≤ M is attained at j = n

k
. Applying (5.97) with

j = n
k

to (5.100) yields

max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N ] ≤

(
Θ

(
k

n

)
log

k2 log k

n2

)2n/k

+ e−Θ(n/k). (5.101)

Case III: ηk ≤ n ≤ ηk log log k. We apply the upper bound of expectation

by the maximum:

max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N ] ≤ max

j∈[M ]
u2
j .

Since ηk
n
≤ 1, the right-hand side of (5.97) is decreasing with j when j ≥M/e,

so it suffices to consider j ≤ M/e. Denoting x = log M
j

and τ = Θ( k
n
), in

view of (5.97), we have |uj| ≤ exp(Me−x log(τx)), which attains maximum
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at x∗ satisfying e1/x
∗

x∗
= τ . Then,

|uj| ≤ exp(Me−x
∗

log(τx∗)) = exp(Me−x
∗
/x∗) < exp(Mτe−1/τ ),

where the last inequality is because of τ > 1
x∗

. Therefore,

max
λ∈n

k
[M ]

EN∼Poi(λ)[u
2
N ] ≤ exp

(
k2 log k

n2
e−Θ(n

k
)

)
, k . n . k log log k.

(5.102)

Applying the upper bounds in (5.99), (5.101) and (5.102) to Proposition 5.5

concludes the proof.

Remark 5.10. It is impossible to bridge the gap near ∆ =
√
k in Table 5.1

using the technology of interpolating polynomials that aims at zero bias,

since its worst-case variance is at least k1+Ω(1) when n = O(k). To see this,

note that the variance term given by (5.72) is

∑
pi

EN∼Poi(npi)[u
2
N ] =

∑
pi

L∑
j=1

u2
je
−npi (npi)

j

j!
. (5.103)

Consider the distribution uniform[n/j0] with j0 = Le−2n/k = Ω(log k), which

corresponds to an urn where each of the n/j0 colors appears equal number

of times. By the formula of coefficient uj in (5.94) and the characterization

from Lemma 5.9, the j = j0 term in the summation of (5.103) is of order
n
j0

( k
n

log M
j0

)2j0 = n
j0

22j0 , which is already k1+Ω(1).

5.3.5 Optimality of the sample complexity

In this subsection we develop lower bounds of the sample complexity which

certify the optimality of estimators constructed in Section 5.3.2. We first

give a brief overview of the lower bound in [107, Theorem 1], which gives

the optimal sample complexity under the multiplicative error criterion. The

lower bound argument boils down to considering two hypotheses: in the null

hypothesis, the urn consists of only one color; in the alternative, the urn

contains 2∆+1 distinct colors, where k−2∆ balls share the same color as in

the null hypothesis, and all other balls have distinct colors. These two sce-

narios are distinguished if and only if a second color appears in the samples,

which typically requires Ω(k/∆) samples. This lower bound is optimal for
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estimating within a multiplicative factor of
√

∆, which, however, is too loose

for additive error ∆.

In contrast, instead of testing whether the urn is monochromatic, our first

lower bound is given by testing whether the urn is maximally colorful, that

is, containing k distinct colors. The alternative contains k − 2∆ colors,

and the numbers of balls of two different colors differ by at most one. In

other words, the null hypothesis is the uniform distribution on [k] and the

alternative is close to uniform distribution with smaller support size. The

sample complexity, which is shown in Theorem 5.5, gives the lower bound in

Table 5.1 for ∆ ≤
√
k.

Theorem 5.5. If 1 ≤ ∆ ≤ k
2
, then

n∗(k,∆) ≥ Ω

(
k − 2∆√

k

)
. (5.104)

If 1 ≤ ∆ < k
4
, then

n∗(k,∆) ≥ Ω

(
k arccosh

(
1 +

k

4∆2

))
�

k log(1 + k
∆2 ), ∆ ≤

√
k,

k3/2

∆
, ∆ ≥

√
k.

(5.105)

Proof. Consider the following two hypotheses: The null hypothesis H0 is an

urn consisting of k distinct colors; the alternative H1 consists of k − 2∆ dis-

tinct colors, and each color appears either b1 , b k
k−2∆
c or b2 , d k

k−2∆
e times.

In terms of distributions, H0 is the uniform distribution Q = ( 1
k
, . . . , 1

k
); H1

is the closest perturbation from the uniform distribution: randomly pick dis-

joint sets of indices I, J ⊆ [k] with cardinality |I| = c1 and |J | = c2, where

c1 and c2 satisfy

(number of colors) c1 + c2 = k − 2∆,

(number of balls) c1b1 + c2b2 = k.

Conditional on θ , (I, J), the distribution Pθ = (pθ,1, . . . , pθ,k) is given by

pθ =

b1/k, i ∈ I,

b2/k, i ∈ J.
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Put the uniform prior on the alternative. Denote the marginal distributions

of the n samples X = (X1, . . . , Xn) under H0 and H1 by QX and PX , re-

spectively. Since the distinct colors in H0 and H1 are separated by 2∆, to

show that the sample complexity n∗(k,∆) ≥ n, it suffices to show that no

test can distinguish H0 and H1 reliably using n samples. A further sufficient

condition is a bounded χ2 divergence [32]

χ2(PX‖QX) ,
∫

P 2
X

QX

− 1 ≤ O(1).

The remainder of this proof is devoted to upper bounds of the χ2 divergence.

Since PX|θ = P⊗nθ and QX = Q⊗n, we have

χ2(PX‖QX) + 1 =

∫
P 2
X

QX

=

∫
(EθPX|θ)(Eθ′PX|θ′)

QX

= Eθ,θ′
∫
PX|θPX|θ′

QX

= Eθ,θ′
(∫

PθPθ′

Q

)n
,

where θ′ is an independent copy of θ. By the definition of Pθ and Q,

∫
PθPθ′

Q
=
b2

1

k
|I∩I ′|+ b2

2

k
|J∩J ′|+ b1b2

k
(|I∩J ′|+|J∩I ′|) = 1+

4∑
i=1

Ai, (5.106)

where A1 ,
b21
k

(|I∩I ′|− c21
k

), A2 ,
b22
k

(|J∩J ′|− c22
k

), A3 = b1b2
k

(|I∩J ′|− c1c2
k

), and

A4 = b1b2
k

(|J ∩ I ′|− c1c2
k

) are centered random variables. Applying 1 +x ≤ ex

and Cauchy-Schwarz inequality, we obtain

χ2(PX‖QX) + 1 ≤ E[en
∑4
i=1 Ai ] ≤

4∏
i=1

(E[e4nAi ])
1
4 . (5.107)

Consider the first term E[e4nA1 ]. Note that |I∩I ′| ∼ hypergeometric(k, c1, c1),8

which is the distribution of the sum of c1 samples drawn without replacement

from a population of size k which consists of c1 ones and k − c1 zeros. By

the convex stochastic dominance of the binomial over the hypergeometric

8hypergeometric(N,K, n) denotes the hypergeometric distribution with probability
mass function

(
K
k

)(
N−K
n−k

)
/
(
N
n

)
, for 0 ∨ (n+K −N) ≤ k ≤ n ∧K
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distribution [153, Theorem 4], for Y ∼ binomial(c1,
c1
k

), we have

(E[e4nA1 ])
1
4 ≤

(
E
[
exp

(
4nb2

1

k
(Y − c2

1/k)

)]) 1
4

≤ exp

(
c2

1

4k

(
exp

(
4nb2

1

k

)
− 1− 4nb2

1

k

))
≤ exp

(
c2

1

4k

(
exp

(
4nb2

2

k

)
− 1− 4nb2

2

k

))
, (5.108)

where the last inequality follows from the fact that x 7→ ex−1−x is increasing

when x > 0. Other terms in (5.107) are bounded analogously and we have

χ2(PX‖QX) + 1

≤ exp

(
c2

1 + c2
2 + 2c1c2

4k

(
exp

(
4nb2

2

k

)
− 1− 4nb2

2

k

))
= exp

(
(k − 2∆)2

4k

(
exp

(
4n

k

⌈
k

k − 2∆

⌉2
)
− 1− 4n

k

⌈
k

k − 2∆

⌉2
))

.

(5.109)

If k − 2∆ ≥
√
k, the upper bound (5.109) implies that n∗(k,∆) ≥ Ω(k−2∆√

k
)

since the χ2-divergence is finite with O(k−2∆√
k

) samples, using the inequality

that ex − 1 − x ≤ x2

2
for x ≥ 0; if k − 2∆ ≤

√
k, the lower bound is trivial

since k−2∆√
k
≤ 1.

Now we prove the refined estimate (5.105) for 1 ≤ ∆ < k/4, in which case

|I| = c1 = k − 4∆, |J | = c2 = 2∆ and b1 = 1, b2 = 2. When c1 is close to k,

hypergeometric(k, c1, c1) is no longer well approximated by binomial(c1,
c1
k

),

and the upper bound in (5.108) yields a loose lower bound for the sample

complexity. To fix this, note that in this case the set K , (I ∪ J)c has

small cardinality |K| = 2∆. The equality in (5.106) can be equivalently

represented in terms of J, J ′ and K,K ′ by∫
PθPθ′

Q
= 1 +

|J ∩ J ′|+ |K ∩K ′| − |J ∩K ′| − |K ∩ J ′|
k

.

By upper bounds analogous to (5.107) – (5.109), χ2(PX‖QX) + 1 ≤
∏4

i=1

(E[e4nBi ])
1
4 , where B1 , 1

k
(|J ∩ J ′| − (2∆)2

k
), B2 , 1

k
(|K ∩ K ′| − (2∆)2

k
),

B3 , − 1
k
(|J ∩K ′| − (2∆)2

k
), and B4 , − 1

k
(|K ∩ J ′| − (2∆)2

k
). Note that |J ∩

J ′|, |K∩K ′|, |J∩K ′|, |K∩J ′| are all distributed as hypergeometric(k, 2∆, 2∆),
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which is dominated by binomial(2∆, 2∆
k

). For Y ∼ binomial(2∆, 2∆
k

), we have

(E[e4nBi ])
1
4 ≤

(
E
[
exp

(
t

(
Y − (2∆)2

k

))])1/4

≤ exp

(
(2∆)2

4k

(
et − 1− t

))
,

with t = 4n
k

for i = 1, 2 and t = −4n
k

for i = 3, 4. Therefore,

χ2(PX‖QX) + 1 ≤ exp

(
∆2

k

(
2e4n/k + 2e−4n/k − 4

))
= exp

(
4∆2

k
(cosh(4n/k)− 1)

)
. (5.110)

The upper bound (5.110) yields the sample complexity n∗(k,∆) ≥ Ω(k

arccosh(1 + k
4∆2 )).

Now we establish another lower bound for the sample complexity of the

Distinct Elements problem for sampling without replacement. Since we

can simulate sampling with replacement from samples obtained without re-

placement (see (5.111) for details), it is also a valid lower bound for n∗(k,∆)

defined in Definition 5.2. On the other hand, as observed in [106, Lemma

3.3] (see also [154, Lemma 5.14]), any estimator Ĉ for the Distinct Ele-

ments problem with sampling without replacement leads to an estimator

for the Support Size problem with slightly worse performance: Suppose we

have n i.i.d. samples drawn from a distribution P whose minimum non-zero

probability is at least 1/`. Let Ĉseen denote the number of distinct elements

in these samples. Equivalently, these samples can be viewed as being gener-

ated in two steps: first, we draw k i.i.d. samples from P , whose realizations

form an instance of a k-ball urn with Ĉseen distinct colors; next, we draw n

samples from this urn without replacement (n ≤ k), which clearly are dis-

tributed according to P⊗n. Suppose Ĉseen is close to the actual support size

of P . Then applying any algorithm for the Distinct Elements problem to

these n i.i.d. samples constitutes a good support size estimator. Lemma 5.10

formalizes this intuition.

Lemma 5.10. Suppose an estimator Ĉ takes n samples from a k-ball urn

(n ≤ k) without replacement and provides an estimation error of less than

∆ with probability at least 1− δ. Applying Ĉ with n i.i.d. samples from any
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distribution P with minimum non-zero mass 1/` and support size S(P ), we

have

|Ĉ − S(P )| ≤ 2∆

with probability at least 1− δ −
(
`
∆

) (
1− ∆

`

)k
.

Proof. Suppose that we take k i.i.d. samples from P = (p1, p2, . . . ), which

form a k-ball urn consisting of C distinct colors. By the union bound,

P[|C − S(P )| ≥ ∆] ≤
∑

I:|I|=∆,

pi≥ 1
`
,i∈I

(
1−

∑
i∈I

pi

)k

≤
(
`

∆

)(
1− ∆

`

)k
.

Next we take n samples without replacement from this urn and apply the

given estimator Ĉ. By assumption, conditioned on any realization of the k-

ball urn, |Ĉ−C| ≤ ∆ with probability at least 1− δ. Then |Ĉ−S(P )| ≤ 2∆

with probability at least 1 − δ −
(
`
∆

) (
1− ∆

`

)k
. Marginally, these n samples

are identically distributed as n i.i.d. samples from P .

Combining with the sample complexity of the Support Size problem in

(5.61), Lemma 5.10 leads to the following lower bound for the Distinct

Elements problem.

Theorem 5.6. Fix a sufficiently small constant c. For any 1 ≤ ∆ ≤ ck,

n∗(k,∆) ≥ Ω

(
k

log k
log

k

∆

)
.

The same lower bound holds for sampling without replacement.

Proof. By the lower bound of the support size estimation problem obtained

in [72, Theorem 2], if n ≤ α`
log `

log2 `
2∆

and 2∆ ≤ c0` for some fixed constants

c0 <
1
2

and α, then for any Ĉ, there exists a distribution P with minimum

non-zero mass 1/` such that |Ĉ − S(P )| ≤ 2∆ with probability at most 0.8.

Applying Lemma 5.10 yields that, using n samples without replacement, no

estimator can provide an estimation error of ∆ with probability 0.9 for an

arbitrary k-ball urn, provided
(
`
∆

) (
1− ∆

`

)k ≤ 0.1. Consequently, as long as

2∆ ≤ c0` and
(
`
∆

) (
1− ∆

`

)k ≤ 0.1, we have

n∗(k,∆) ≥ α`

log `
log2 `

2∆
.
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The desired lower bound follows from choosing ` � k
log(k/∆)

.

5.3.6 Proof of results in Table 5.1

Below we explain how the sample complexity bounds summarized in Table 5.1

are obtained from various results in Section 5.3.2 and Section 5.3.5:

• The upper bounds are obtained from the worst-case MSE in Section 5.3.2

and the Markov inequality. In particular, the case of ∆ ≤
√
k(log k)−δ

follows from the second and the third upper bounds of Theorem 5.4; the

case of
√
k ≤ ∆ ≤ k0.5+δ follows from the first upper bound of Theo-

rem 5.4; the case of k1−δ ≤ ∆ ≤ ck follows from Theorem 5.3. By mono-

tonicity, we have the O(k log log k) upper bound when
√
k(log k)−δ

≤ ∆ ≤
√
k, the O( k

log k
) upper bound when ∆ ≥ ck, and the O(k)

upper bound when k0.5+δ ≤ ∆ ≤ k1−δ.

• The lower bound for ∆ ≤
√
k follows from Theorem 5.5; the lower

bound for k0.5+δ ≤ ∆ ≤ ck follows from Theorem 5.6. These further

imply the Ω(k) lower bound for
√
k ≤ ∆ ≤ k0.5+δ by monotonicity.

5.3.7 Connections between various sampling models

As mentioned in Section 5.1.2, four popular sampling models have been intro-

duced in the statistics literature: the multinomial model, the hypergeometric

model, the Bernoulli model, and the Poisson model. The connections be-

tween those models are explained in detail in this section, as well as relations

between the respective sample complexities.

The connections between different models are illustrated in Figure 5.6.

Under the Poisson model, the sample size is a Poisson random variable;

conditioned on the sample size, the samples are i.i.d. which is identical to

the multinomial model. The same relation holds as the Bernoulli model to

the hypergeometric model. Given samples (Y1, . . . , Yn) uniformly drawn from

a k-ball urn without replacement (hypergeometric model), we can simulate

(X1, . . . , Xn) drawn with replacement (multinomial model) as follows: for
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Bernoulli model

hypergeometric model multinomial model

Poisson model

binomial(k, p) samples

simulate

Poi(n) samples

Figure 5.6: Relations between the four sampling models. In particular,
hypergeometric (resp. multinomial) model reduces to the Bernoulli
(resp. Poisson) model when the sample size is binomial (resp. Poisson)
distributed.

each i = 1, . . . , n, let

Xi =

Yi, with probability 1− i−1
k
,

Ym, with probability i−1
k
, m ∼ Uniform([i− 1]).

(5.111)

In view of the connections in Figure 5.6, any estimator constructed for one

specific model can be adapted to another. The adaptation from multinomial

to hypergeometric model is provided by the simulation in (5.111), and the

other direction is given by Lemma 5.10 (without modifying the estimator).

The following result provides a recipe for going between fixed and randomized

sample size.

Lemma 5.11. Let N be an N-valued random variable.

1. Given any Ĉ that uses n samples and succeeds with probability at least

1− δ, there exists Ĉ ′ using N samples that succeeds with probability at

least 1− δ − P[N < n].

2. Given any C̃ using N samples that succeeds with probability at least

1− δ, there exists C̃ ′ that uses n samples and succeeds with probability

at least 1− δ − P[N > n].

Proof. 1. Denote the samples by X1, . . . , XN . Following [106, Lemma

5.3(a)], define Ĉ ′ as

Ĉ ′ =

Ĉ(X1, . . . , Xn), N ≥ n,

0, N < n.
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Then Ĉ ′ succeeds as long as N ≥ n and Ĉ succeeds, which has proba-

bility at least 1− δ − P[N < n].

2. Denote the samples by X1, . . . , Xn. Draw a random variable m from

the distribution of N and define C̃ ′ as

C̃ ′ =

C̃(X1, . . . , Xm), m ≤ n,

0, m > n.

The given estimator C̃ fails with probability
∑

j≥0 P[C̃ fails|N = j]P[N

= j] ≤ δ. Consequently,
∑n

j=0 P[C̃ fails|N = j]P[N = j] ≤ δ. The

estimator C̃ ′ fails with probability at most

n∑
j=0

P[C̃ fails|m = j]P[m = j] + P[m > n] ≤ δ + P[m > n],

which completes the proof.

The adaptations of estimators between different sampling models imply the

relations of the fundamental limits on the corresponding sample complexi-

ties. Extending Definition 5.2, let n∗M(k,∆, δ), n∗H(k,∆, δ), n∗B(k,∆, δ), and

n∗P (k,∆, δ) be the minimum expected sample size under the multinomial,

hypergeometric, Bernoulli, and Poisson sampling model, respectively, such

that there exists an estimator Ĉ satisfying P[|Ĉ − C| ≥ ∆] ≤ δ. Combining

Chernoff bounds (see, e.g., [56, Theorem 4.4, 4.5, and 5.4]), we obtain Corol-

lary 5.1, in which the connection between multinomial and Poisson models

gives a rigorous justification of the assumption on the Poisson sampling model

in Section 5.3.2.

Corollary 5.1. The following relations hold:

• n∗H versus n∗M :

(a) n∗H(k,∆, δ) ≤ n∗M(k,∆, δ);

(b) n∗H(k,∆, δ) ≤ n ⇒ n∗M(k′, 2∆, δ +
(
k′

∆

)
(1 − ∆

k′
)k) ≤ n, for any

k′ ∈ N. In particular, if δ is a constant, then we can choose

k′ = Θ(k/ log k
∆

).

• n∗P versus n∗M :
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(c) n∗P (k,∆, δ) ≤ n⇒ n∗M(k,∆, δ + (e/4)n) ≤ 2n;

(d) n∗M(k,∆, δ) ≤ n⇒ n∗P (k,∆, δ + (2/e)n) ≤ 2n.

• n∗B versus n∗H :

(e) n∗B(k,∆, δ) ≤ n⇒ n∗H(k,∆, δ + (e/4)n) ≤ 2n;

(f) n∗H(k,∆, δ) ≤ n⇒ n∗B(k,∆, δ + (2/e)n) ≤ 2n.

5.3.8 Proof of auxiliary lemmas

Proof of Lemma 5.8. For any z ∈ C, we can represent the forward difference

in (2.26) as an integral:

∆mf(z) = f(z +m)−
(
m

1

)
f(z +m− 1) + · · ·+ (−1)mf(z)

=

∫
[0,1]m

f (m)(z + x1 + · · ·+ xm)dx1 · · · dxm.

Therefore,

|tm(z)| =
∣∣∣∣ 1

m!
∆mpm(z)

∣∣∣∣ ≤ 1

m!
sup

0≤ξ≤m
|p(m)
m (z + ξ)|. (5.112)

Recall the definition of pm in (2.27). Let pm(z) =
∑2m

l=0 a`z
`. Let z(z −

1) · · · (z−m+ 1) =
∑m

i=0 biz
i and (z−M)(z−M − 1) · · · (z−M −m+ 1) =∑m

i=0 ciz
i. Expanding the product and collecting the coefficients yields a

simple upper bound:

|bi| ≤ 2m(m−1)m−i, |ci| ≤ 2m(M+m−1)m−i ≤ 2m(2M)m−i ≤ 22mMm−i.

Since
∑2m

`=0 a`z
` = (

∑m
i=0 biz

i)(
∑m

j=0 cjz
j) , for ` ≥ m,

|a`| =

∣∣∣∣∣
m∑

i=`−m

bic`−i

∣∣∣∣∣ ≤
m∑

i=`−m

23m(m− 1)m−iMm−`+i

= 23mM2m−`
m∑

i=`−m

(
m− 1

M

)m−i
≤ m23mM2m−`.
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Taking m-th derivative of pm, we obtain

|p(m)
m (z)| =

∣∣∣∣∣
m∑
j=0

aj+m
(j +m)!

j!
zj

∣∣∣∣∣
≤

m∑
j=0

|aj+mM j|
(
m+ j

m

)
m!
∣∣∣ z
M

∣∣∣j ≤ m23mMmm!(2e)m
m∑
j=0

∣∣∣ z
M

∣∣∣j
≤ m226mMmm!

(
|z|
M
∨ 1

)m
= m226mm! (|z| ∨M)m .

Then the desired (5.90) follows from (5.112).

Proof of Lemma 5.9. The following uniform asymptotic expansions of the

Stirling numbers of the first kind was obtained in [155, Theorem 2]:

|s(n+ 1,m+ 1)| =


n!
m!

(log n+ γ)m(1 + o(1)), 1 ≤ m ≤
√

log n,

Γ(n+1+R)

Γ(R)Rm+1
√

2πH
(1 + o(1)),

√
log n ≤ m ≤ n− n1/3,(

n+1
m+1

)
(m+1

2
)n−m(1 + o(1)), n− n1/3 ≤ m ≤ n,

where γ is Euler’s constant, R is the unique positive solution to h′(x) = 0

with h(x) , log Γ(x+n+1)
Γ(x+1)xm

, H = R2h′′(R), and all o(1) terms are uniform in

m. In the following we consider each range separately and prove the non-

asymptotic approximation in (5.95).

Case I. For 1 ≤ m ≤
√

log n, Stirling’s approximation gives

n!

m!
(log n+ γ)m = n!

(
Θ

(
log n

m

))m
.

Case II. For n− n1/3 ≤ m ≤ n,(
n+ 1

m+ 1

)(
m+ 1

2

)n−m
=

n!

m!

(
Θ

(
m

n−m

))n−m
= n! exp

(
m

(
n−m
m

log

(
Θ

(
m

n−m

))
− log Θ(m)

))
= n!

(
Θ

(
1

m

))m
.

Case III. For
√

log n ≤ m ≤ n− n1/3, note that h(x) =
∑n

i=1 log(x + i)−
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m log x, and thus H = R2h′′(R) = m −
∑n

i=1
R2

(R+i)2 ≤ m. By [151, Lemma

4.1], H = ω(1) in this range. Hence,

|s(n+ 1,m+ 1)| = Γ(n+ 1 +R)

Γ(R)Rm+1
(Θ(1))m =

n!

Rm

Γ(n+ 1 +R)

n!Γ(R + 1)
(Θ(1))m,

(5.113)

where R is the solution to x( 1
x+1

+ · · · + 1
x+n

) = m. Bounding the sum by

integrals, we have

R log

(
1 +

n

R + 1

)
≤ m ≤ R log

(
1 +

n

R

)
.

If
√

log n ≤ m ≤ n
e
, then R � m

log(n/m)
, and hence

1 ≤ Γ(n+ 1 +R)

n!Γ(R + 1)
≤
(
O

(
n+R

R

))R
= exp(O(m)).

In view of (5.113), we have |s(n+1,m+1)| = n!
(Θ(R))m

, which is exactly (5.95)

when m ≤ n/e. If n/e ≤ m ≤ n− n1/3, then R � n2

n−m , and

1

Rm

Γ(n+ 1 +R)

n!Γ(R + 1)
= R−m

(
Θ

(
n+R

n

))n
= exp

(
−m log Θ

(
n2

n−m

)
+ n log Θ

(
n

n−m

))
= exp

(
−m log Θ(n) + (n−m) log Θ

(
n

n−m

))
= exp (−m log Θ(n)) .

Combining (5.113) yields that |s(n+1,m+1)| = n!(Θ( 1
n
))m, which coincides

with (5.95) since n � m is this range.
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Part II

Learning Gaussian Mixtures
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CHAPTER 6

A FRAMEWORK FOR LEARNING
MIXTURE MODELS

Learning mixture models has a long history in statistics and computer science

with early contributions dating back to Pearson [11] and recent renewed

interest in latent variable models. In a k-component mixture model from a

family of distributions P = {Pθ : θ ∈ Θ}, each observation is distributed as

X ∼
k∑
i=1

wiPθi .

Here wi is the mixing weight such that wi ≥ 0 and
∑

iwi = 1, θi ∈ Θ is the

parameter of the ith component. Equivalently, we can write the distribution

of an observation X as

X ∼ PU =

∫
Pθdν(θ), (6.1)

where ν =
∑k

i=1wiδθi denotes the mixing distribution and U ∼ ν is referred

to as the latent variable.

Generally speaking, there are three common formulations of learning mix-

ture models:

• Parameter estimation: estimate the parameter θi’s and the weights

wi’s up to a global permutation.

• Density estimation: estimate the probability density function of the

mixture model under certain loss such as L2 or Hellinger distance. This

task is further divided into the cases of proper and improper learning,

depending on whether the estimate is required to be a mixture of dis-

tributions in P or not; in the latter case, there is more flexibility in

designing the estimator but less interpretability.

• Clustering: estimate the latent variable of each sample (i.e. Ui, if the
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ith sample is distributed as PUi) with a small misclassification rate.

It is clear that to ensure the possibility of clustering it is necessary to im-

pose certain separation conditions between the clusters; however, as far as

estimation is concerned, both parametric and non-parametric, no separation

condition should be needed and one can obtain accurate estimates of the

parameters even when clustering is impossible. Furthermore, one should be

able to learn from the data the order of the mixture model, that is, the num-

ber of components. However, in the present literature, most of the estimation

procedures with finite sample guarantees are either clustering-based, or rely

on separation conditions in the analysis (e.g. [156, 157, 158]). Bridging this

conceptual divide is one of the main motivations of the present chapter.

6.1 Estimating the mixing distribution

Following the framework proposed in [159, 160], in this chapter we consider

the estimation of the mixing distribution, rather than estimating the param-

eters of each component. The main benefits of this formulation include the

following:

• Assumption-free: to recover individual components it is necessary to

impose certain assumptions to ensure identifiability, such as lower bounds

on the mixing weights and separations between components, none of

which is needed for estimating the mixing distribution. Furthermore,

under the usual assumption such as separation conditions, statisti-

cal guarantees on estimating the mixing distribution can be naturally

translated to those for estimating the individual parameters.

• Inference on the number of components: this formulation allows us to

deal with misspecified models and estimate the order of the mixture

model.

In this framework, a meaningful and flexible loss function for estimating

the mixing distribution is the 1-Wasserstein distance defined by

W1(ν, ν ′) , inf{E[‖X − Y ‖] : X ∼ ν, Y ∼ ν ′}, (6.2)
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where the infimum is taken over all couplings, i.e., joint distributions of X

and Y which are marginally distributed as ν and ν ′ respectively. In one

dimension, the W1 distance coincides with the L1-distance between the cu-

mulative distribution functions (CDFs) [161]. This is a natural criterion,

which is not too stringent to yield trivial result (e.g. the Kolmogorov-Smirnov

(KS) distance1) and, at the same time, strong enough to provide meaningful

guarantees on the means and weights. In fact, the commonly used crite-

rion minΠ

∑
i ‖θi − θ̂Π(i)‖ over all permutations Π is precisely (k times) the

Wasserstein distance between two equally weighted distributions [161].

Furthermore, we can obtain statistical guarantees on the support sets and

weights of the estimated mixing distribution under the usual assumptions in

literature [162, 29, 31] that include separation between the means and lower

bound on the weights. See Section 6.2 for a detailed discussion. We highlight

the following result, phrased in terms of the parameter estimation error up

to a permutation.

Lemma 6.1. Let

ν =
k∑
i=1

wiδθi , ν̂ =
k∑
i=1

ŵiδθ̂i .

Suppose that

ε = W1(ν, ν̂),

ε1 = min{‖θi − θj‖, ‖θ̂i − θ̂j‖ : 1 ≤ i < j ≤ k},

ε2 = min{wi, ŵi : i ∈ [k]}.

If ε < ε1ε2/4, then, there exists a permutation Π such that

‖θi − θ̂Π(i)‖ ≤ ε/ε2, |wi − ŵΠ(i)| ≤ 2ε/ε1, ∀ i.

6.2 Wasserstein distance

A central quantity in the theory of optimal transportation, the Wasserstein

distance is the minimum cost of mapping one distribution to another. In this

part, we will be mainly concerned with the 1-Wasserstein distance defined in

1Consider two mixing distributions δ0 and δε with arbitrarily small ε, whose KS distance
is always one.
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(6.2), which can be equivalently expressed, through the Kantorovich duality

[161], as

W1(ν, ν ′) = sup{Eν [ϕ]− Eν′ [ϕ] : ϕ is 1-Lipschitz}. (6.3)

The optimal coupling in (6.2) has many equivalent characterization [163]

but is often difficult to compute analytically in general. Nevertheless, the

situation is especially simple for distributions on the real line, where the

quantile coupling is known to be optimal and hence

W1(ν, ν ′) =

∫
|Fν(t)− Fν′(t)|dt, (6.4)

where Fν and Fν′ denote the CDFs of ν and ν ′, respectively. Both (6.3) and

(6.4) provide convenient characterizations to bound the Wasserstein distance

in Chapter 7.

As previously mentioned in Section 6.1, two discrete distributions close in

the Wasserstein distance have similar support sets and weights. This is made

precise in Lemma 6.2 and 6.3 next. In Lemma 6.2 the distance between two

support sets is in terms of the Hausdorff distance defined as

dH(S, S ′) = max

{
sup
x∈S

inf
x′∈S′
‖x− x′‖, sup

x′∈S′
inf
x∈S
‖x− x′‖

}
. (6.5)

Lemma 6.2. Suppose ν and ν ′ are discrete distributions supported on S and

S ′, respectively. Let ε = min{ν(x) : x ∈ S} ∧min{ν ′(x) : x ∈ S ′}. Then,

dH(S, S ′) ≤ W1(ν, ν ′)/ε.

Proof. For any coupling PXY such that X ∼ ν be Y ∼ ν ′,

E|X − Y | =
∑
x

P[X = x]E[|X − Y ||X = x]

≥
∑
x

ε · inf
x′∈S′
‖x− x′‖ ≥ ε · sup

x∈S
inf
x′∈S′
‖x− x′‖.

Interchanging X and Y completes the proof.
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Lemma 6.3. For any δ > 0,

ν(x)− ν ′([x± δ]) ≤ W1(ν, ν ′)/δ,

ν ′(x)− ν([x± δ]) ≤ W1(ν, ν ′)/δ.

Proof. Using the optimal coupling P ∗XY such that X ∼ ν be Y ∼ ν ′, applying

Markov inequality yields that

P[|X − Y | > δ] ≤ E|X − Y |/δ = W1(ν, ν ′)/δ.

By Strassen’s theorem (see [161, Corollary 1.28]), for any Borel set B, we

have ν(B) ≤ ν ′(Bδ) + W1(ν, ν ′)/δ and ν ′(B) ≤ ν(Bδ) + W1(ν, ν ′)/δ, where

Bδ , {x : infy∈B |x − y| ≤ δ} denotes the δ-fattening of B. The conclusion

follows by considering a singleton B = {x}.

Lemmas 6.2 and 6.3 together yield a bound on the parameter estimation

error (up to a permutation) in terms of the Wasserstein distance, which was

previously given in Lemma 6.1:

Proof. Denote the support sets of ν and ν ′ by S = {θ1, . . . , θk} and S ′ =

{θ̂1, . . . , θ̂k}, respectively. Applying Lemma 6.2 yields that dH(S, S ′) ≤ ε/ε2,

which is less than ε1/4 by the assumption ε < ε1ε2/4. Since ‖θi − θj‖ ≥ ε for

every i 6= j, then there exists a permutation Π such that

‖θi − θ̂Π(i)‖ ≤ ε/ε2, ∀ i.

Applying Lemma 6.3 twice with δ = ε/2, x = θi and x = θ̂Π(i), respectively,

we obtain that

wi − ŵΠ(i) ≤ 2ε/ε1, ŵΠ(i) − wi ≤ 2ε/ε1.
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CHAPTER 7

MOMENT COMPARISON THEOREMS

Moment comparison is a classical topic in the probability theory. Classical

moments comparison theorems aim to show convergence of distributions by

comparing a growing number of moments. For example, Chebyshev’s theo-

rem states if mr(π) = mr(N(0, 1)), then (see [164, Theorem 2])

sup
x∈R
|Fπ(x)− Φ(x)| ≤

√
π

2r
,

where Fπ and Φ denote the CDFs of π and N(0, 1), respectively. The no-

tation will be used throughout this chapter. For two compactly supported

distributions, the above estimate can be sharpened to O( log r
r

) [165]. In con-

trast, in the context of estimating finite mixtures we are dealing with finitely

supported mixing distributions, which can be identified by a fixed number of

moments. However, with finitely many samples, it is impossible to exactly

determine the moments, and measuring the error in the KS distance is too

much to ask (see Section 6.1). It turns out that W1-distance is a suitable met-

ric for this purpose, and the closeness of moments does imply the closeness

of distribution in the W1 distance, which is the integrated difference (L1-

distance) between two CDFs as opposed the uniform error (L∞-distance).

7.1 Wasserstein distance between discrete distributions

A discrete distribution with k atoms has 2k − 1 free parameters. Therefore

it is reasonable to expect that it can be uniquely determined by its first

2k − 1 moments. Indeed, we have the following simple identifiability results

for discrete distributions.

Lemma 7.1. Let ν and ν ′ be distributions on the real line.
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1. If ν and ν ′ are both k-atomic, then ν = ν ′ if and only if m2k−1(ν) =

m2k−1(ν ′).

2. If ν is k-atomic, then ν = ν ′ if and only if m2k(ν) = m2k(ν
′).

Proof. We only need to prove the “if” part. We prove this lemma using the

apparatus of interpolating polynomials.

1. Denote the union of the support sets of ν and ν ′ by S. Here S is of

size at most 2k. For any t ∈ R, there exists a polynomial P of degree

at most 2k − 1 to interpolate x 7→ 1{x≤t} on S. Since mi(ν) = mi(ν
′)

for i = 1, ..., 2k − 1, we have

Fν(t) = Eν [1{X≤t}] = Eν [P (X)] = Eν′ [P (X)] = Eν′ [1{X≤t}] = Fν′(t).

2. Denote the support set of ν by S ′ = {x1, . . . , xk}. Let Q(x) =
∏

i(x−
xi)

2, a non-negative polynomial of degree 2k. Since mi(ν) = mi(ν
′) for

i = 1, ..., 2k, we have

Eν′ [Q(X)] = Eν [Q(X)] = 0.

Therefore, ν ′ is also supported on S ′ and thus is k-atomic. The con-

clusion follows from the first case of Lemma 7.1.

In the context of statistical estimation, we only have access to samples

and noisy estimates of moments. To solve the inverse problems from mo-

ments to distributions, our theory relies on the following stable version of

the identifiability in Lemma 7.1, which show that closeness of moments im-

plies closeness of distributions in Wasserstein distance. In the sequel we refer

to Propositions 7.1 and 7.2 as moment comparison theorems.

Proposition 7.1. Let ν and ν ′ be k-atomic distributions supported on [−1, 1].

If |mi(ν)−mi(ν
′)| ≤ δ for i = 1, . . . , 2k − 1, then

W1(ν, ν ′) ≤ O
(
kδ

1
2k−1

)
.

Proposition 7.2. Let ν be a k-atomic distribution supported on [−1, 1]. If

|mi(ν)−mi(ν
′)| ≤ δ for i = 1, . . . , 2k, then

W1(ν, ν ′) ≤ O
(
kδ

1
2k

)
.
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Remark 7.1. The exponents in Proposition 7.1 and 7.2 are optimal. To see

this, we first note that the number of moments needed for identifiability in

Lemma 7.1 cannot be reduced:

1. Given any 2k distinct points, there exist two k-atomic distributions

with disjoint support sets but identical first 2k−2 moments (see Lemma 8.24).

2. Given any continuous distribution, its k-point Gauss quadrature is k-

atomic and have identical first 2k − 1 moments (see Section 2.3).

By the first observation, there exists two k-atomic distributions ν and ν ′ such

that

mi(ν) = mi(ν
′), i = 1, . . . , 2k − 2,

|m2k−1(ν)−m2k−1(ν ′)| = ck, W1(ν, ν ′) = dk,

where ck and dk are strictly positive constants that depend on k. Let ν̃ and

ν̃ ′ denote the distributions of εX and εX ′ such that X ∼ ν and X ′ ∼ ν ′,

respectively. Then, we have

max
i∈[2k−1]

|mi(ν̃)−mi(ν̃)| = ε2k−1ck, W1(ν̃, ν̃ ′) = εdk.

This concludes the tightness of the exponent in Proposition 7.1. Similarly,

the exponent in Proposition 7.2 is also tight using the second observation.

When the atoms of the discrete distributions are separated, we have the

following adaptive version of the moment comparison theorems (cf. Proposi-

tions 7.1 and 7.2).

Proposition 7.3. Suppose both ν and ν ′ are supported on a set of ` atoms

in [−1, 1], and each atom is at least γ away from all but at most `′ other

atoms. Let δ = maxi∈[`−1] |mi(ν)−mi(ν
′)|. Then,

W1(ν, ν ′) ≤ `

(
`4`−1δ

γ`−`′−1

) 1
`′

.

Proposition 7.4. Suppose ν is supported on k atoms in [−1, 1] and any t ∈
R is at least γ away from all but k′ atoms. Let δ = maxi∈[2k] |mi(ν)−mi(ν

′)|.
Then,

W1(ν, ν ′) ≤ 8k

(
k42kδ

γ2(k−k′)

) 1
2k′

.
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7.1.1 Proofs

First we prove Proposition 7.5, which is slightly stronger than Proposi-

tion 7.1. We provide three proofs: the first two are based on the primal

(coupling) formulation of W1 distance (6.4), and the third proof uses the

dual formulation (6.3). Specifically,

• The first proof uses polynomials to interpolate step functions, whose

expected values are the CDFs. The closeness of moments imply the

closeness of distribution functions and thus, by (6.4), a small Wasser-

stein distance. Similar idea applies to the proof of Proposition 7.2

later.

• The second proof finds a polynomial that preserves the sign of the

difference between two CDFs, and then relate the Wasserstein distance

to the integral of that polynomial. Similar idea is used in [30, Lemma

20] which uses a polynomial that preserves the sign of the difference

between two density functions.

• The third proof uses polynomials to approximate 1-Lipschitz functions,

whose expected values are related to the Wasserstein distance via the

dual formulation (6.3).

Proposition 7.5. Let ν and ν ′ be discrete distributions supported on ` atoms

in [−1, 1]. If

|mi(ν)−mi(ν
′)| ≤ δ, i = 1, . . . , `− 1, (7.1)

then

W1(ν, ν ′) ≤ O
(
`δ

1
`−1

)
.

First proof of Proposition 7.5. Suppose ν and ν ′ are supported on

S = {t1, . . . , t`}, t1 < t2 < · · · < t`. (7.2)

Then, using the integral representation (6.4), the W1 distance reduces to

W1(ν, ν ′) =
`−1∑
r=1

|Fν(tr)− Fν′(tr)| · |tr+1 − tr|. (7.3)

For each r, let fr(x) = 1{x≤tr}, and Pr be the unique polynomial of degree

`−1 to interpolate fr on S. In this way we have fr = Pr almost surely under
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both ν and ν ′, and thus

|Fν(tr)− Fν′(tr)| = |Eνfr − Eν′fr| = |EνPr − Eν′Pr|. (7.4)

Pr can expressed using Newton formula (2.7) as

Pr(x) = 1 +
∑̀
i=r+1

fr[t1, . . . , ti]gi−1(x), (7.5)

where gr(x) =
∏r

j=1(x− tj) and we used fr[t1, . . . , ti] = 0 for i = 1, . . . , r. In

(7.5), the absolute values of divided differences are obtained in Lemma 7.2:

|fr[t1, . . . , ti]| ≤
(
i−2
r−1

)
(tr+1 − tr)i−1

. (7.6)

In the summation of (7.5), let gi−1(x) =
∑i−1

j=0 ajx
j. Since |tj| ≤ 1 for every

j, we have
∑i−1

j=0 |aj| ≤ 2i−1 (see Lemma 7.3). Applying (7.1) yields that

|Eν [gi−1]− Eν′ [gi−1]| ≤
i−1∑
j=1

|aj|δ ≤ 2i−1δ. (7.7)

Then we obtain from (7.4) and (7.5) that

|Fν(tr)− Fν′(tr)| ≤
∑̀
i=r+1

(
i−2
r−1

)
2i−1δ

(tr+1 − tr)i−1
≤ `4`−1δ

(tr+1 − tr)`−1
. (7.8)

Also, |Fν(tr)− Fν′(tr)| ≤ 1 trivially. Therefore,

W1(ν, ν ′) ≤
`−1∑
r=1

(
`4`−1δ

(tr+1 − tr)`−1
∧ 1

)
· |tr+1 − tr| ≤ 4e(`− 1)δ

1
`−1 , (7.9)

where we used max{ α
x`−2 ∧ x : x > 0} = α

1
`−1 and x

1
x−1 ≤ e for x ≥ 1.

Second proof of Proposition 7.5. Suppose on the contrary that

W1(ν, ν ′) ≥ C`δ
1
`−1 , (7.10)

for some absolute constant C. We will show that maxi∈[`−1] |mi(ν)−mi(ν
′)| ≥

δ. We continue to use S in (7.2) to denote the support of ν and ν ′. Let
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∆F (t) = Fν(t) − Fν′(t) denote the difference between two CDFs. Using

(7.3), there exists r ∈ [`− 1] such that

|∆F (tr)| · |tr+1 − tr| ≥ Cδ
1
`−1 . (7.11)

We first construct a polynomial L that preserves the sign of ∆F . To this

end, let S ′ = {s1, . . . , sm} ⊆ S such that t1 = s1 < s2 < · · · < sm = t` be

the set of points where ∆F changes sign, i.e., ∆F (x)∆F (y) ≤ 0 for every

x ∈ (si, si+1), y ∈ (si+1, si+2), for every i. Let L(x) ∈ ±
∏m−1

i=2 (x − si) be a

polynomial of degree at most `− 2 that also changes sign on S ′ such that

∆F (x)L(x) ≥ 0, t1 ≤ x ≤ t`.

Consider the integral of the above positive function. Applying integral by

parts, and using ∆F (t`) = ∆F (t1) = 0 yields that∫ t`

t1

∆F (x)L(x)dx = −
∫ t`

t1

P (x)d∆F (x) = Eν′ [P (X)]− Eν [P (X)], (7.12)

where P (x) is a polynomial of degree at most `− 1 such that P ′(x) = L(x).

If we write L(x) =
∑`−2

j=0 ajx
j, then P (x) =

∑`−2
j=0

aj
j+1

xj+1. Since |sj| ≤ 1 for

every j, we have
∑`−2

j=0 |aj| ≤ 2`−2 (see Lemma 7.3), and thus
∑`−2

j=0
|aj |
j+1
≤

2`−2. Hence,

|Eν′ [P (X)]− Eν [P (X)]| ≤ 2`−2 max
i∈[`−1]

|mi(ν)−mi(ν
′)|. (7.13)

Since ∆F (x)L(x) is always non-negative, applying (7.11) to (7.12) yields

that

|Eν′ [P (X)]−Eν [P (X)]| ≥
∫ tr+1

tr

|∆F (x)L(x)|dx ≥ Cδ
1
`−1

|tr+1 − tr|

∫ tr+1

tr

|L(x)|dx.

(7.14)

Recall that |L(x)| =
∏m−1

i=2 |x−si|. Then for x ∈ (tr, tr+1), we have |x−si| ≥
x− tr if si ≤ tr, and |x− si| ≥ tr+1 − x if si ≥ tr+1. Hence,

|L(x)| ≥ (tr+1 − x)a(x− tr)b,

for some a, b ∈ N such that a, b ≥ 1 and a + b ≤ ` − 2. The integral of the
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right-hand side of the above inequality can be expressed as (see [52, 6.2.1])∫ tr+1

tr

(tr+1 − x)a(x− tr)bdx =
(tr+1 − tr)a+b+1

(a+ 1)
(
a+b+1
b

) .
Since |tr+1 − tr| ≥ |∆F (tr)| · |tr+1 − tr| ≥ Cδ

1
`−1 and

(
a+b+1
b

)
≤ 2a+b+1, and

a+ b+ 1 ≤ `− 1, we obtain from (7.14) that

|Eν′ [P (X)]− Eν [P (X)]| ≥ δ
(C/2)`−1

`
. (7.15)

We obtain from (7.13) and (7.15) that

max
i∈[`−1]

|mi(ν)−mi(ν
′)| ≥ δ

(C/4)`−1

`
.

Third proof of Proposition 7.5. We continue to use S in (7.2) to denote the

support of ν and ν ′. For any 1-Lipschitz function f , Eνf and Eν′f only

pertain to function values f(t1), . . . , f(t`), which can be interpolated by a

polynomial of degree ` − 1. However, the coefficients of the interpolating

polynomial can be arbitrarily large.1 To fix this issue, we slightly modify the

function f on S to f̃ , and then interpolate f̃ with bounded coefficients. In

this way we have

|Eνf − Eν′f | ≤ 2 max
x∈{t1,...,t`}

|f̃(x)− f(x)|+ |EνP − Eν′P |.

To this end, we define the values of f̃ recursively by

f̃(t1) = f(t1), f̃(ti) = f̃(ti−1) + (f(ti)− f(ti−1))1{ti−ti−1>τ}, (7.16)

where τ ≤ 2 is a parameter we will optimize later. From the above definition

|f̃(x) − f(x)| ≤ τ` for x ∈ S. The interpolating polynomial P can be

expressed using Newton formula (2.7) as

P (x) =
∑̀
i=1

f̃ [t1, . . . , ti]gi−1(x),

where gr(x) =
∏r

j=1(x − tj) such that |Eν [gr] − Eν′ [gr]| ≤ 2rδ by (7.7) for

1For example, the polynomial to interpolate f(−ε) = f(ε) = ε, f(ε) = 0 is P (x) = x2/ε.
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r ≤ `− 1. Since f is 1-Lipschitz, we have |f̃ [ti, ti+1]| ≤ 1 for every i. Higher-

order divided differences are recursively evaluated by (2.8). We now prove

f̃ [ti, . . . , ti+j] ≤ (2/τ)j−1, ∀ i, j, (7.17)

by induction on j. Assume (7.17) holds for every i and some fixed j. The

recursion (2.8) gives

f̃ [ti, . . . , ti+j+1] =
f̃ [ti+1, . . . , ti+j+1]− f̃ [ti, . . . , ti+j]

ti+j+1 − ti
.

If ti+j+1−ti < τ , then f̃ [ti, . . . , ti+j+1] = 0 by (7.16); otherwise, f̃ [ti, . . . , ti+j+1]

≤ ( 2
τ
)j by triangle inequality. Using (7.17), we obtain that

|Eνf − Eν′f | ≤ 2τ`+
∑̀
i=2

(
2

τ

)i−2

2i−1δ ≤ 2`

(
τ +

4`−2

τ `−2
δ

)
.

The conclusion follows by letting τ = 4δ
1
`−1 .

The proof of Proposition 7.2 uses a similar idea as the first proof of Propo-

sition 7.5 to approximate step functions for all values of ν and ν ′; however,

this is clearly impossible for non-discrete ν ′. For this reason, we turn from

interpolation to majorization. A classical method to bound a distribution

function by moments is to construct two polynomials that majorizes and

minorizes a step function, respectively. Then the expectations of these two

polynomials provide a sandwich bound for the distribution function. This

idea is used, for example, in the proof of Chebyshev-Markov-Stieltjes inequal-

ity (cf. [45, Theorem 2.5.4]).

Proof of Proposition 7.2. Suppose ν is supported on x1 < x2 < . . . < xk.

Fix t ∈ R and let ft(x) = 1{x≤t}. Suppose xm < t < xm+1. Similar to Ex-

ample 2.2, we construct polynomial majorant and minorant using Hermite

interpolation. To this end, let Pt and Qt be the unique degree-2k polynomi-

als to interpolate ft with values in Table 7.1. As a consequence of Rolle’s

theorem, Pt ≥ ft ≥ Qt (cf. [45, p. 65], and an illustration in Figure 7.1).

Using Lagrange formula of Hermite interpolation [41, pp. 52–53], Pt and Qt
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Table 7.1: Interpolation values of ft.

x1 . . . xm t xm+1 . . . xk
P 1 . . . 1 1 0 . . . 0
P ′ 0 . . . 0 any 0 . . . 0
Q 1 . . . 1 0 0 . . . 0
Q′ 0 . . . 0 any 0 . . . 0

Polynoimal majorant

Polynomial minorant

● ● ●

● ● ●

0.5

1.0

Figure 7.1: Polynomial majorant Pt and minorant Qt that coincide with the
step function on 6 red points. The polynomials are of degree 12, obtained
by Hermite interpolation in Section 2.2.

differ by

Pt(x)−Qt(x) = Rt(x) ,
∏
i

(
x− xi
t− xi

)2

.

The sandwich bound for ft yields a sandwich bound for the CDFs:

Eν′ [Qt] ≤ Fν′(t) ≤ Eν′ [Pt] = Eν′ [Qt] + Eν′ [Rt],

Eν [Qt] ≤ Fν(t) ≤ Eν [Pt] = Eν [Qt].

Then the CDFs differ by

|Fν(t)− Fν′(t)| ≤ (f(t) + g(t)) ∧ 1 ≤ f(t) ∧ 1 + g(t) ∧ 1, (7.18)

f(t) , |Eν′ [Qt]− Eν [Qt]|, g(t) , Eν′ [Rt].

The conclusion will be obtained from the integral of CDF difference using

(6.4). Since Rt is almost surely zero under ν, we also have g(t) = |Eν′ [Rt]−
Eν [Rt]|. Similar to (7.7), we obtain that

g(t) = |Eν′ [Rt]− Eν [Rt]| ≤
22kδ∏k

i=1(t− xi)2
.

166



Hence,

∫
(g(t) ∧ 1)dt ≤

∫ (
22kδ∏k

i=1(t− xi)2
∧ 1

)
dt ≤ 16kδ

1
2k , (7.19)

where the last inequality is proved in Lemma 8.23.

Next we analyze f(t). The polynomial Qt (and also Pt) can be expressed

using Newton formula (2.7) as

Qt(x) = 1 +
2k+1∑

i=2m+1

ft[t1, . . . , ti]gi−1(x), (7.20)

where t1, . . . , t2k+1 denotes the expanded sequence

x1, x1, . . . , xm, xm, t, xm+1, xm+1, . . . , xk, xk

obtained by (2.15), gr(x) =
∏r

j=1(x − tj), and we used ft[t1, . . . , ti] = 0

for i = 1, . . . , 2m. In (7.20), the absolute values of divided differences are

obtained in Lemma 7.2:

ft[t1, . . . , ti] ≤
(
i−2

2m−1

)
(t− xm)i−1

.

Using (7.20), and applying the upper bound for |Eν [gi−1]−Eν′ [gi−1]| in (7.7),

we obtain that

f(t) = |Eν′ [Qt]− Eν [Qt]| ≤
2k+1∑

i=2m+1

(
i−2

2m−1

)
2i−1δ

(t− xm)i−1
≤ k42kδ

(t− xm)2k
,

∀ xm < t < xm+1, m ≥ 1.

If t < x1, then Qt = 0 and thus f(t) = 0. Then, analogous to (7.19), we

obtain that ∫
(f(t) ∧ 1)dt ≤ 16kδ

1
2k . (7.21)

Using (7.19) and (7.21), the conclusion follows by applying (7.18) to the

integral representation of Wasserstein distance (6.4).

Proof of Proposition 7.3. The proof is analogous to the first proof of Proposi-

tion 7.5, apart from a more careful analysis of polynomial coefficients. When
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each atom is at least γ away from all but at most `′ other atoms, the left-hand

side of (7.8) is upper bounded by

|Fν(tr)− Fν′(tr)| ≤
`4`−1δ

(tr+1 − tr)`′γ`−`′−1
.

The remaining proof is similar.

Proof of Proposition 7.4. Similar to the proof of Proposition 7.3, this proof is

analogous to Proposition 7.2 apart from a more careful analysis of polynomial

coefficients. When every t ∈ R is at least γ away from all but k′ atoms, the

left-hand sides of (7.19) and (7.21) are upper bounded by

∫
(g(t) ∧ 1)dt ≤ 4k

(
22kδ

γ2(k−k′)

)1/(2k′)

,∫
(f(t) ∧ 1)dt ≤ 4k

(
k42kδ

γ2(k−k′)

)1/(2k′)

.

The remaining proof is similar.

7.1.2 Auxiliary lemmas

Lemma 7.2. Let t1 ≤ t2 ≤ . . . be an ordered sequence (not necessarily

distinct) and tr < t < tr+1. Let f(x) = 1{x≤t}. Then

f [ti, . . . , tj] = (−1)i−r
∑

L∈L(i,j)

∏
(x,y)∈L

1

tx − ty
, i ≤ r < r + 1 ≤ j, (7.22)

where L(i, j) is the set of lattice paths from (r, r + 1) to (i, j) using steps

(0, 1) and (−1, 0).2 Furthermore,

|f [t1, . . . , ti]| ≤
(
i−2
r−1

)
(tr+1 − tr)i−1

, i ≥ r + 1. (7.23)

Proof. Denote by ai,j = f [ti, . . . , tj] when i ≤ j. It is obvious that ai,i = 1

2Formally, for a, b ∈ N2, a lattice path from a to b using a set of steps S is a sequence
a = x1, x2, . . . , xn = b with all increments xj+1 − xj ∈ S. In the matrix representation
shown in the proof, this corresponds to a path from ar,r+1 to ai,j going up and right. This
path consists of entries (i, j) such that i ≤ r < r + 1 ≤ j, and thus in (7.22) we always
have tx ≤ tr < tr+1 ≤ ty.

168



for i ≤ r; ai,i = 0 for i ≥ r+ 1; ai,j = 0 for both i < j ≤ r and j > i ≥ r+ 1.

For i ≤ r < r + 1 ≤ j, the values can be obtained recursively by

ai,j =
ai,j−1 − ai+1,j

ti − tj
. (7.24)

The above recursion can be represented in Neville’s diagram as in Section 2.2.

In this proof, it is equivalently represented in a upper triangular matrix as

follows: 

1 0 · · · 0 a1,r+1 · · ·

1
. . .

...
...

1 0 ar−1,r+1 · · ·
1 ar,r+1 · · ·

0 · · · 0

0 . . .
...

0


.

In the matrix, every ai,j is calculated using the two values left to it and

below it. The values on any path from ar,r+1 to ai,j going up and right will

contribute to the formula of ai,j in (7.22). The paths consist of two types:

first go to ai,j−1 and then go right; first go to ai+1,j and then go up. Formally,

{L, (i, j) : L ∈ Li,j−1} ∪ {L, (i, j) : L ∈ Li+1,j} = Li,j. This will be used in

the proof of (7.22) by induction present next. The base cases (rth row and

(r + 1)th column) can be directly computed:

ar,j =

j∏
v=r+1

1

tr − tv
, ai,r+1 = (−1)i−r

r∏
v=i

1

tv − tr+1

.

Suppose (7.22) holds for both ai,j−1 and ai+1,j. Then ai,j can be evaluated

by

ai,j =
(−1)i−r

ti − tj

 ∑
L∈L(i,j−1)

∏
(x,y)∈L

1

tx − ty
+

∑
L∈L(i+1,j)

∏
(x,y)∈L

1

tx − ty


= (−1)i−r

 ∑
L∈L(i,j)

∏
(x,y)∈L

1

tx − ty

 .

For the upper bound in (7.23), we note that |L(i, j)| ≤
(

(r−1)+(i−(r+1))
r−1

)
in
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(7.22), and each summand is at most 1
(tr+1−tr)i−1 in magnitude.

Lemma 7.3. Let

P (x) =
∏̀
i=1

(x− xi) =
∑̀
j=0

ajx
j.

If |xi| ≤ β for every i, then

|aj| ≤
(
`

j

)
β`−j.

Proof. P can be explicitly expanded and we obtain that

a`−j = (−1)j
∑

{i1,i2,...,ij}⊆[`]

xi1 · xi2 · . . . · xij .

The summation consists of
(
`
j

)
terms, and each term is at most βj in magni-

tude.

7.2 Higher-order moments, and density functions

Lemma 7.4. If U and U ′ each takes at most k values in [−1, 1], and |E[U j]−
E[U ′j]| ≤ ε for j = 1, . . . , 2k − 1, then, for any ` ≥ 2k,

|E[U `]− E[U ′`]| ≤ 3`ε.

Proof. Let f(x) = x` and denote the atoms of U and U ′ by x1 < · · · < xk′ for

k′ ≤ 2k. The function f can be interpolated on x1, . . . , xk′ using a polynomial

P of degree at most 2k − 1, which, in the Newton form (2.7), is

P (x) =
k′∑
i=1

f [x1, . . . , xi]gi−1(x) =
k′∑
i=1

f (i−1)(ξi)

(i− 1)!
gi−1(x),

for some ξi ∈ [x1, xi], where gr(x) =
∏r

j=1(x − xj) and we used the inter-

mediate value theorem for the divided differences (see [41, (2.1.4.3)]). Note

that for ξi ∈ [−1, 1], |f (i−1)(ξi)| ≤ `!
(`−1+i)!

. Similar to (7.7), we obtain that

|E[U `]− E[U ′`]| = |E[P (U)]− E[P (U ′)]| ≤
k′∑
i=1

(
`

i− 1

)
2i−1ε ≤ 3`ε.
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In the context of learning Gaussian mixture models, we can obtain the

distance between two density functions by comparing their moments.

Lemma 7.5 (Bound χ2-divergence using moments difference). Suppose all

moments of ν and ν ′ exist, and ν ′ is centered with variance σ2. Then,

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) ≤ e
σ2

2

∑
j≥1

(∆mj)
2

j!
,

where ∆mj = mj(ν)−mj(ν
′) denotes the jth moment difference.

Proof. The densities of two mixture distributions ν ∗N(0, 1) and ν ′ ∗N(0, 1)

are

f(x) =

∫
φ(x− u)dν(u) = φ(x)

∑
j≥1

Hj(x)
mj(ν)

j!
,

g(x) =

∫
φ(x− u)dν ′(u) = φ(x)

∑
j≥1

Hj(x)
mj(ν

′)

j!
,

respectively, where φ denotes the density of N(0, 1), and we used φ(x−u) =

φ(x)
∑

j≥0Hj(x)u
j

j!
(see the exponential generating function of Hermite poly-

nomials [52, 22.9.17]). Since x 7→ ex is convex, applying Jensen’s inequality

yields that

g(x) = φ(x)E[exp(U ′x− U ′2/2)] ≥ φ(x) exp(−σ2/2).

Consequently,

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) =

∫
(f(x)− g(x))2

g(x)
dx

≤ e
σ2

2 E

(∑
j≥1

Hj(Z)
∆mj

j!

)2
 = e

σ2

2

∑
j≥1

(∆mj)
2

j!
,

where Z ∼ N(0, 1) and the last step follows from the orthogonality of Hermite

polynomials (2.20).
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CHAPTER 8

LEARNING GAUSSIAN MIXTURES

Consider a k-component Gaussian location mixture model, where each ob-

servation is distributed as

X ∼
k∑
i=1

wiN(µi, σ
2). (8.1)

Here wi is the mixing weight such that wi ≥ 0 and
∑

iwi = 1, µi is the

mean (center) of the ith component, and σ is the common standard devia-

tion. Equivalently, we can write the distribution of an observation X as a

convolution

X ∼ ν ∗N(0, σ2), (8.2)

where ν =
∑k

i=1wiδµi denotes the mixing distribution. Thus, we can write

X = U + σZ, where U ∼ ν is referred to as the latent variable, and Z is

standard normal and independent of U . We adopt the framework in Chap-

ter 6 and the goal is to estimate the mixing distribution ν. Equivalently,

estimating the mixing distribution can be viewed as a deconvolution prob-

lem, where the goal is to recover the distribution ν using observations drawn

from the convolution (8.2). Throughout this chapter we consider estimating

the mixing distribution ν with respect to the Wasserstein distance (6.2).

8.1 Related work and main results

Existing methodologies for mixture models are largely divided into likelihood-

based and moment-based methods; see Section 8.1.3 for a detailed review.

Among likelihood-based methods, the Maximum Likelihood Estimate (MLE)

is not efficiently computable due to the non-convexity of the likelihood func-

tion. The most popular heuristic procedure to approximate the MLE is the
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Expectation-Maximization (EM) algorithm [166]; however, absent separation

conditions, no theoretical guarantee is known in general. Moment-based

methods include the classical method of moments (MM) [11] and many ex-

tensions [167, 168]; however, the usual method of moments suffers from many

issues as elaborated next.

8.1.1 Failure of the usual method of moments

The method of moments, commonly attributed to Pearson [11], produces

an estimator by equating the population moments to the sample moments.

While conceptually simple, this method suffers from the following problems,

especially in the context of mixture models:

• Solubility : the method of moments entails solving a multivariate poly-

nomial system, in which one frequently encounters non-existence or

non-uniqueness of statistically meaningful solutions.

• Computation: solving moment equations can be computationally in-

tensive. For instance, for k-component Gaussian mixture models, the

system of moment equations consist of 2k − 1 polynomial equations

with 2k − 1 variables.

• Accuracy : existing statistical literature on the method of moments

[20, 167] either shows mere consistency under weak assumptions, or

proves asymptotic normality assuming very strong regularity condi-

tions (so that delta method works), which generally do not hold in

mixture models since the convergence rates can be slower than para-

metric. Some results on nonparametric rates are known (cf. [20, The-

orem 5.52] and [169, Theorem 14.4]) but the conditions are extremely

hard to verify.

To explain the failure of the vanilla method of moments in Gaussian mix-

ture models, we analyze the following simple two-component example.

Example 8.1. Consider a Gaussian mixture model with two unit variance

components: X ∼ w1N(µ1, 1)+w2N(µ2, 1). Since there are three parameters

µ1, µ2 and w1 = 1−w2, we use the first three moments and solve the following
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system of equations:

En[X] = E[X] = w1µ1 + w2µ2,

En[X2] = E[X2] = w1µ
2
1 + w2µ

2
2 + 1,

En[X3] = E[X3] = w1µ
3
1 + w2µ

3
2 + 3(w1µ1 + w2µ2),

(8.3)

where En[X i] , 1
n

∑n
j=1 X

i
j denotes the ith moment of the empirical distri-

bution from n i.i.d. samples. The right-hand sides of (8.3) are related to the

moments of the mixing distribution by a linear transformation, which allow

us to equivalently rewrite the moment equations (8.3) as:

En[X] = E[U ] = w1µ1 + w2µ2,

En[X2 − 1] = E[U2] = w1µ
2
1 + w2µ

2
2,

En[X3 − 3X] = E[U3] = w1µ
3
1 + w2µ

3
2,

(8.4)

where U ∼ w1δµ1 + w1δµ2 . It turns out that with finitely many samples,

there is always a non-zero chance that (8.4) has no solution; even with in-

finite samples, it is possible that the solution does not exist with constant

probability. To see this, note that, from the first two equations of (8.4), the

solution does not exist whenever

En[X2]− 1 < E2
n[X], (8.5)

that is, the Cauchy-Schwarz inequality fails. Consider the case µ1 = µ2 = 0,

i.e., X ∼ N(0, 1). Then (8.5) is equivalent to

n(En[X2]− E2
n[X]) ≤ n,

where the left-hand side follows the χ2-distribution with n − 1 degrees of

freedom. Thus, (8.5) occurs with probability approaching 1
2

as n diverges,

according to the central limit theorem.

In view of the above example, we note that the main issue with the usual

method of moments is the following: although individually each moment

estimate is accurate (
√
n-consistent), jointly they do not correspond to the

moments of any distribution. Moment vectors satisfy many geometric con-

straints, e.g., the Cauchy-Schwarz and Hölder inequalities, and lie in a convex
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set known as the moment space. Thus for any model parameters, with finitely

many samples the method of moments fails with non-zero probability when-

ever the noisy estimates escape the moment space; even with infinitely many

samples, it also provably happens with constant probability when the order

of the mixture model is strictly less than k, or equivalently, the population

moments lie on the boundary of the moment space (see Lemma 8.33 for a

justification).

8.1.2 Main results

We propose the denoised method of moments (DMM), which consists of three

main steps: (1) compute noisy estimates of moments, e.g., the unbiased

estimates; (2) jointly denoise the moment estimates by project them onto

the moment space; (3) execute the usual method of moments. It turns out

that the extra step of projection resolves the three issues of the vanilla version

of the method of moments identified in Section 8.1.1 simultaneously:

• Solubility : a unique statistically meaningful solution is guaranteed to

exist by the classical theory of moments;

• Computation: the solution can be found through an efficient algorithm

(Gauss quadrature) instead of invoking generic solvers of polynomial

systems;

• Accuracy : the solution provably achieves the optimal rate of conver-

gence, and automatically adaptive to the clustering structure of the

population.

We emphasize that the denoising (projection) step is explicitly carried out

via a convex optimization in Section 8.2.1, and implicitly used in analyzing

Lindsay’s algorithm [49] in Section 8.2.2, when the variance parameter is

known and unknown, respectively.

Next we present the theoretical results. Throughout this chapter, we as-

sume that the number of components satisfy

k = O

(
log n

log log n

)
. (8.6)
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Denote the underlying model as a convolution of ν =
∑

iwiδµi and N(0, σ2).

Our main result is Theorem 8.1.

Theorem 8.1 (Optimal rates). Suppose that |µi| ≤ M for M ≥ 1 and σ is

bounded by a constant, and both k and M are given.

• If σ is known, then there exists an estimator ν̂ computable in O(kn)

time such that, with probability at least 1− δ,

W1(ν, ν̂) ≤ O

(
Mk1.5

(
n

log(1/δ)

)− 1
4k−2

)
; (8.7)

• If σ is unknown, then there exists an estimator (ν̂, σ̂) computable in

O(kn) time such that, with probability at least 1− δ,

W1(ν, ν̂) ≤ O

(
Mk2

(
n

log(1/δ)

)− 1
4k

)
, (8.8)

and

|σ2 − σ̂2| ≤ O

(
M2k

(
n

log(1/δ)

)− 1
2k

)
. (8.9)

The above convergence rates are minimax optimal for constant k as shown

in Section 8.3 (the optimality of (8.7) has been previously shown in [160]).

Note that these results are proved under the worst-case scenario where the

centers can be arbitrarily close, e.g., components completely overlap. It is

reasonable to expect a faster convergence rate when the components are

better separated, and, in fact, a parametric rate in the best-case scenario

where the components are fully separated and weights are bounded away

from zero. To capture the clustering structure of the mixture model, we

introduce the following definition.

Definition 8.1. The Gaussian mixture (8.1) has k0 (γ, ω)-separated clusters

if there exists a partition S1, . . . , Sk0 of [k] such that

• |µi − µi′ | ≥ γ for any i ∈ S` and i′ ∈ S`′ such that ` 6= `′;

•
∑

i∈S` wi ≥ ω for each `.

In the absence of the minimal weight condition (i.e. ω = 0), we say the

Gaussian mixture has k0 γ-separated clusters.
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The next result shows that the DMM estimators attain the following adap-

tive rates.

Theorem 8.2 (Adaptive rate). Under the conditions of Theorem 8.1, sup-

pose there are k0 (γ, ω)-separated clusters such that γω ≥ Cε for some abso-

lute constant C > 2, where ε denotes the right-hand side of (8.7) and (8.8)

when σ is known and unknown, respectively.

• If σ is known, then, with probability at least 1− δ,1

W1(ν, ν̂) ≤ Ok

(
Mγ

− 2k0−2
2(k−k0)+1

(
n

log(k/δ)

)− 1
4(k−k0)+2

)
. (8.10)

• If σ is unknown, then, with probability at least 1− δ,2

√
|σ2 − σ̂2|, W1(ν, ν̂) ≤ Ok

(
Mγ

− k0−1
k−k0+1

(
n

log(k/δ)

)− 1
4(k−k0+1)

)
.

(8.11)

The result (8.10) is also minimax rate-optimal when k, k0 and γ are con-

stants, in view of the lower bounds in [160]. We also provide a simple proof

in Remark 8.1 by extending the lower bound argument in Section 8.3. For

the case of unknown σ, we do not have a matching lower bound for (8.11). In

the fully separated case (k0 = k), (8.11) reduces to n−
1
4 while a parametric

rate is achievable.

Next we discuss the implication on density estimation (proper learning),

where the goal is to estimate the density function of the Gaussian mixture

by another k-Gaussian mixture density. Given that the estimated mixing

distribution ν̂ from Theorem 8.1, a natural density estimate is the convolution

f̂ = ν̂ ∗ N(0, σ2). Theorem 8.3 shows that the density estimate f̂ is O( 1
n
)-

close to the true density f in χ2-divergence, which bounds other common

distance measures such as the Kullback-Leibler divergence, total variation,

and Hellinger distance.

1Here Ok(·) denotes a constant factor that depends on k only.
2Note that the estimation rate for the mean part ν is the square root of the rate

for estimating the variance parameter σ2. Intuitively, this phenomenon is due to the
infinite divisibility of the Gaussian distribution: note that for the location mixture model
ν ∗N(0, σ2) with ν ∼ N(0, ε2) and σ2 = 1 has the same distribution as that of ν ∼ δ0 and
σ2 = 1 + ε2.
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Theorem 8.3 (Density estimation). Under the conditions of Theorem 8.1,

denote the density of the underlying model by f = ν ∗N(0, σ2). If σ is given,

then there exists an estimate f̂ such that

χ2(f̂‖f) + χ2(f‖f̂) ≤ Ok(log(1/δ)/n),

with probability 1− δ.

So far we have been focusing on well-specified models. To conclude this

subsection, we discuss misspecified models, where the data need not be gen-

erated from a k-Gaussian mixture. In this case, the DMM procedure still

reports a meaningful estimate that is close to the best k-Gaussian mixture

fit of the unknown distribution. This is made precise by the next result of

oracle inequality style.

Theorem 8.4 (Misspecified model). Assume that X1, . . . , Xn is indepen-

dently drawn from a density f which is 1-subgaussian. Suppose there ex-

ists a k-component Gaussian location mixture g with variance σ2 such that

TV(f, g) ≤ ε. Then, there exists an estimate f̂ such that

TV(f̂ , f) ≤ Ok

(
ε
√

log(1/ε) +
√

log(1/δ)/n
)
,

with probability 1− δ.

8.1.3 Related work

There exist a vast literature on mixture models, in particular Gaussian mix-

tures, and the method of moments. For a comprehensive review see [170, 171].

In the following, we highlight a few existing results that are related to the

present chapter.

Likelihood-based methods. Maximum likelihood estimation (MLE) is

one of the most useful method for parameter estimation. Under strong sep-

aration assumptions, MLE is consistent and asymptotically normal [172];

however, those assumptions are difficult to verify, and it is computationally

hard to obtain the global maximizer due to the non-convexity of the likeli-

hood function in the location parameters.
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Expectation-Maximization (EM) [166] is an iterative algorithm that aims

to approximate the MLE. It has been widely applied in Gaussian mixture

models [172, 173] and more recently in high-dimensional settings [156]. In

general, this method is only guaranteed to converge to a local maximizer of

the likelihood function rather than the global MLE. In practice we need to

employ heuristic choices of the initialization [174] and stopping criteria [175],

as well as possibly data augmentation techniques [176, 177]. Furthermore, its

slow convergence rate is widely observed in practice [172, 174]. Additionally,

the EM algorithm accesses the entire dataset in each iteration, which is

particularly expensive for large sample size and high dimensions.

Lastly, we mention the nonparametric maximum likelihood estimation

(NPMLE) in mixture models proposed by [178], where the maximization

is taken over all mixing distributions which need not be k-atomic. This is an

infinite-dimensional convex optimization problem, which has been studied

in [179, 180, 170] and more recently in [181] on its computation based on

discretization. One of the drawbacks of NPMLE is its lack of interpretability

since the solution is a discrete distribution with at most n atoms cf. [181,

Theorem 2]. Furthermore, few statistical guarantees in terms of convergence

rate are available.

Moment-based methods. The simplest moment-based method is the

method of moments (MM) introduced by Pearson [11]. The failure of the

vanilla MM described in Section 8.1.1 has motivated various modifications

including, notably, the generalized method of moments (GMM) introduced

by Hansen [167]. GMM is a widely used methodology for analyzing economic

and financial data (cf. [12] for a thorough review). Instead of exactly solving

the MM equations, GMM aims to minimize the sum of squared differences

between the sample moments and the fitted moments. While it enjoys various

nice asymptotic properties [167], GMM involves a non-convex optimization

problem which is computationally challenging to solve. In practice, heuristics

such as gradient descent are used which converge slowly and lack theoretical

guarantees.

For Gaussian mixture models (and more generally finite mixture mod-

els), our results can be viewed as a solver for GMM which is provably exact

and computationally efficient, which significantly improves over the existing

heuristic solvers in terms of both speed and accuracy; this is another algorith-
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mic contribution of the present chapter. We also note that minimizing the

sum of squares in GMM is not crucial and minimizing any distance yields the

same theoretical guarantee. We discuss the connections to GMM in details

in Section 8.2.1.

There are a number of recent work in the theoretical computer science liter-

ature on provable results for moment-based estimators in Gaussian location-

scale mixture models, see, e.g., [30, 29, 182, 31, 183]. For instance, [30] con-

siders the exhaustive search over the discretized parameter space such that

the population moments is close to the empirical moments. This method

achieves the estimation accuracy n−Θ(1/k), which is optimal up to constant

factors in the exponent, but is computationally expensive in practice. By

carefully analyzing Pearson’s method of moments equations [11], [31] showed

the optimal rate Θ(n−1/12) for two-component location-scale mixtures; how-

ever, this approach is difficult to generalize to more components. Finally, for

moment-based methods in multiple dimensions, such as spectral and tensor

decomposition, we defer the discussion to Section 8.4.2.

Other methods. In the case of known variance, the minimum distance

estimator is studied by [184, 159, 160]. Specifically, the estimator is a k-

atomic distribution ν̂ such that ν̂ ∗ N(0, σ2) is the closest to the empirical

distribution of the samples. The minimax optimal rate O(n−
1

4k−2 ) for esti-

mating the mixing distribution under the Wasserstein distance is shown in

[160] (which corrects the previous result in [159]), by bounding the W1 dis-

tance between the mixing distributions in terms of the KS distance of the

Gaussian mixtures [160, Lemma 4.5]. However, the minimum distance es-

timator is in general computationally expensive and suffers from the same

non-convexity issue of the MLE. In contrast, denoised method of moments is

efficiently computable and adaptively achieves the optimal rate of accuracy

as given in Theorem 8.2.

Finally, we discuss density estimation, which has been studied for the

MLE in [185, 186]. If the estimator is allowed to be any density (improper

learning), it is known that as long as the mixing distribution has a bounded

support, the rate of convergence is close to parametric regardless of the num-

ber of components; specifically, the optimal squared L2-risk is Θ(
√

logn
n

) [187],

achieved by the kernel density estimator designed for analytic densities [188].

Of course, the optimal proper density estimate (which is required to be a k-
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Gaussian mixture) enjoys the same rate of convergence; however, finding

the k-Gaussian mixture that best approximates a given density is computa-

tionally challenging again due to the non-convexity. From this perspective,

another contribution of Theorems 8.3-8.4 is that by approximating moments

the best approximation can be found within logarithmic factors.

8.2 Estimators and statistical guarantees

8.2.1 Known variance

The denoised method of moments for estimating Gaussian location mixture

models (8.2) with known variance parameter σ2 consists of three main steps:

1. estimate m2k−1(ν) by m̃ = (m̃1, . . . , m̃2k−1) (using Hermite polynomi-

als);

2. denoise m̃ by its projection m̂ onto the moment space (semidefinite

programming);

3. find a k-atomic distribution ν̂ such that m2k−1(ν̂) = m̂ (Gauss quadra-

ture).

The complete algorithm is summarized in Algorithm 8.1.

Algorithm 8.1 Denoised method of moments (DMM) with known variance.

Input: n independent samples X1, . . . , Xn, order k, variance σ2, interval
I = [a, b].

Output: estimated mixing distribution.
1: for r = 1 to 2k − 1 do
2: γ̂r = 1

n

∑
iX

r
i

3: m̃r = r!
∑br/2c

i=0
(−1/2)i

i!(r−2i)!
γ̂r−2iσ

2i

4: end for
5: Let m̂ be the optimal solution of the following:

min{‖m̃− m̂‖ : m̂ satisfies (2.16)}, (8.12)

where m̃ = (m̃1, . . . , m̃2k−1).
6: Report the outcome of Gauss quadrature (Algorithm 2.2) with input m̂.
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We estimate the moments of the mixing distribution in lines 1 to 4. The

unique unbiased estimators for the polynomials of the mean parameter in a

Gaussian location model are Hermite polynomials (2.21) such that EHr(X) =

µr when X ∼ N(µ, 1). Thus, if we define

γr(x, σ) = σrHr(x/σ) = r!

br/2c∑
j=0

(−1/2)j

j!(r − 2j)!
σ2jxr−2j, (8.13)

then Eγr(X, σ) = µr when X ∼ N(µ, σ2). Hence, by linearity, m̃r is an

unbiased estimate of mr(ν). The variance of m̃r is analyzed in Lemma 8.1.

Lemma 8.1. If X1, . . . , Xn
i.i.d.∼ ν ∗N(0, σ2) and ν is supported on [−M,M ],

then

var[m̃r] ≤
1

n
(O(M + σ

√
r))2r.

As observed in Section 8.1.1, the major reason for the failure of the usual

method of moments is that the unbiased estimate m̃ needs not constitute a

legitimate moment sequence, despite the consistency of each individual m̃i.

To resolve this issue, we project m̃ to the moment space using (8.12). As

explained in Section 2.3, (2.16) consists of positive semidefinite constraints,

and thus the optimal solution of (8.12) can be obtained by semidefinite pro-

gramming (SDP).3 In fact, it suffices to solve a feasibility program and find

any valid moment vector m̂ that is within the desired 1√
n

statistical accuracy.

Now that m̂ is indeed a valid moment sequence, we use the Gauss quadra-

ture introduced in Section 2.3 (see Algorithm 2.2) to find the unique k-atomic

distribution ν̂ such that m2k−1(ν̂) = m̂. Using Algorithm 8.1, m̃ is computed

in O(kn) time, the semidefinite programming is solvable in O(k6.5) time us-

ing the interior-point method (see [190]), and the Gauss quadrature can be

evaluated in O(k3) time [50]. In view of the global assumption (8.6), Algo-

rithm 8.1 can be executed in O(kn) time.

We now prove the statistical guarantee (8.7) for the DMM estimator pre-

viously announced in Theorem 8.1:

Proof. By scaling it suffices consider M = 1. We use Algorithm 8.1 with Eu-

clidean norm in (8.12). Using the variance of m̃ in Lemma 8.1 and Chebyshev

3The formulation (8.12) with Euclidean norm can already be implemented in popular
modeling languages for convex optimization problem such as CVXPY [189]. A standard
form of SDP is given in Section 8.6.7.
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inequality yield that, for each r = 1, . . . , 2k − 1, with probability 1− 1
8k

,

|m̃r −mr(ν)| ≤
√
k/n(c

√
r)r, (8.14)

for some absolute constant c. By the union bound, with probability 3/4,

(8.14) holds simultaneously for every r = 1, . . . , 2k − 1, and thus

‖m̃−m2k−1(ν)‖2 ≤ ε, ε ,
(
√
ck)2k+1

√
n

.

Since m2k−1(ν) satisfies (2.16) and thus is one feasible solution for (8.12), we

have ‖m̃− m̂‖2 ≤ ε. Note that m̂ = m2k−1(ν̂). Hence, by triangle inequality,

we obtain the following statistical accuracy:

‖m2k−1(ν̂)−m2k−1(ν)‖2 ≤ ε. (8.15)

Applying Proposition 7.1 yields that, with probability 3/4,

W1(ν̂, ν) ≤ O
(
k1.5n−

1
4k−2

)
.

The confidence 1 − δ in (8.7) can be obtained by the usual “median trick”:

divide the samples into T = log 2k
δ

batches, apply Algorithm 8.1 to each

batch of n/T samples, and take m̃r to be the median of these estimates. Then

Hoeffding’s inequality and the union bound imply that, with probability 1−δ,

|m̃r −mr(ν)| ≤
√

log(2k/δ)

n
(c
√
r)r, ∀ r = 1, . . . , 2k − 1, (8.16)

and the conclusion follows.

To conclude this subsection, we discuss the connection to the generalized

method of moments (GMM). Instead of solving the moment equations, GMM

aims to minimize the difference between estimated and fitted moments:

Q(θ) = (m̂−m(θ))>W (m̂−m(θ)), (8.17)

where m̂ is the estimated moment, θ is the model parameter, and W is

a positive semidefinite weighting matrix. The minimizer of Q(θ) serves as

the GMM estimate for the unknown model parameter θ0. In general the
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objective function Q is nonconvex in θ, notably under the Gaussian mixture

model with θ corresponding to the unknown means and weights, which is

hard to optimize. Note that (8.12) with the Euclidean norm is equivalent

to GMM with the identity weighting matrix. Therefore Algorithm 8.1 is an

exact solver for GMM in the Gaussian location mixture model.

In theory, the optimal weighting matrix W ∗ that minimizes the asymptotic

variance is the inverse of limn→∞ cov[
√
n(m̂ − m(θ0))], which depends the

unknown model parameters θ0. Thus, a popular approach is a two-step

estimator [12]:

1. a suboptimal weighting matrix, e.g., identify matrix, is used in the

GMM to obtain a consistent estimate of θ0 and hence a consistent

estimate Ŵ for W ∗;

2. θ0 is re-estimated using the weighting matrix Ŵ .

The above two-step approach can be similarly implemented in the denoised

method of moments.

8.2.2 Unknown variance

When the variance parameter σ2 is unknown, unbiased estimator for the

moments of the mixing distribution no longer exists (see Lemma 8.25). It

is not difficult to consistently estimate the variance,4 then plug into the

DMM estimator in Section 8.2.1 to obtain a consistent estimate of the mixing

distribution ν; however, the convergence rate is far from optimal. In fact,

to achieve the optimal rate in Theorem 8.1, it is crucial to simultaneously

estimate both the means and the variance parameters. To this end, again we

take a moment-based approach. The following result provides a guarantee for

any joint estimate of both the mixing distribution and the variance parameter

in terms of the moments accuracy.

Proposition 8.1. Let

π = ν ∗N(0, σ2), π̂ = ν̂ ∗N(0, σ̂2),

4For instance, the simple estimator σ̂ = maxiXi√
2 logn

satisfies |σ − σ̂| = OP (log n)−
1
2 .
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where ν, ν̂ are k-atomic distributions supported on [−M,M ], and σ, σ̂ are

bounded. If |mr(π)−mr(π̂)| ≤ ε for r = 1, . . . , 2k, then

|σ2 − σ̂2| ≤ O(M2ε
1
k ), W1(ν, ν̂) ≤ O(Mk1.5ε

1
2k ).

To apply Proposition 8.1, we can solve the method of moments equations,

namely, find a k-atomic distribution ν̂ and σ̂2 such that

En[Xr] = Eπ̂[Xr], r = 1, . . . , 2k, (8.18)

where π̂ = µ̂∗N(0, σ̂2) is the fitted Gaussian mixture. Here both the number

of equations and the number of variables are equal to 2k. Suppose (8.18) has a

solution (µ̂, σ̂). Then applying Proposition 8.1 with δ = Ok(
1√
n
) achieves the

rate Ok(n
−1/(4k)) in Theorem 8.1, which is minimax optimal (see Section 8.3).

In stark contrast to the known σ case, where we have shown in Section 8.1.1

that the vanilla method of moments equation can have no solution unless

we denoise by projection to the moment space, here with one extra scale

parameter σ, one can show that (8.18) has a solution with probability one!5

Furthermore, an efficient method of finding a solution to (8.18) is due to

Lindsay [49] and summarized in Algorithm 8.2. Indeed, the sample moments

are computable in O(kn) time, and the smallest non-negative root of the

polynomial of degree k(k + 1) can be found in O(k2) time using Newton’s

method (see [191]). So overall Lindsay’s estimator can be evaluated in O(kn)

time.

In [49] the consistency of this estimator was proved under extra assump-

tions. In fact we will that it unconditionally achieves the minimax optimal

rate (8.8) and (8.9) previously announced in Theorem 8.1. In this section

we show that Lindsay’s algorithm produces an estimator σ̂ so that the corre-

sponding the moment estimates lie in the moment space with probability one.

In this sense, although no explicit projection is involved, the noisy estimates

are implicitly denoised.

We first describe the intuition of the choice of σ̂ in Lindsay’s algorithm,

5It is possible that the equation (8.18) has no solution, for instance, when k = 2, n = 7
and the empirical distribution is π7 = 1

7δ−
√
7 + 1

7δ
√
7 + 5

7δ0. The first four empirical mo-
ments are m4(π7) = (0, 2, 0, 14), which cannot be realized by any two-component Gaussian
mixture (8.1). Indeed, suppose π̂ = w1N(µ1, σ

2)+(1−w1)N(µ2, σ
2) is a solution to (8.18).

Eliminating variables leads to the contradiction that 2µ4
1 + 2 = 0. Assuringly, as we will

show later in Lemma 8.3, such cases occur with probability zero.
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Algorithm 8.2 Lindsay’s estimator for normal mixtures with an unknown
common variance.

Input: n samples X1, . . . , Xn.
Output: estimated mixing distribution ν̂, and estimated variance σ̂2.

1: for r = 1 to 2k do
2: γ̂r = 1

n

∑
iX

r
i

3: m̂r(σ) = r!
∑br/2c

i=0
(−1/2)i

i!(r−2i)!
γ̂r−2iσ

2i

4: end for
5: Let d̂k(σ) be the determinant of the matrix {m̂i+j(σ)}ki,j=0.

6: Let σ̂ be the smallest positive root of d̂k(σ) = 0.
7: for r = 1 to 2k do
8: m̂r = m̂r(σ̂)
9: end for

10: Let ν̂ be the outcome of the Gauss quadrature (Algorithm 2.2) with input
m̂1, . . . , m̂2k−1

11: Report ν̂ and σ̂2.

i.e., line 6 of Algorithm 8.2. Let X ∼ ν ∗N(0, σ2). For any σ′ ≤ σ, we have

E[γj(X, σ
′)] = mj(ν ∗N(0, σ2 − σ′2)).

Let dk(σ
′) denote the determinant of the moment matrix {E[γi+j(X, σ

′)]}ki,j=0,

which is an even polynomial in σ′ of degree k(k + 1). According to Theo-

rem 2.12, dk(σ
′) > 0 when 0 ≤ σ′ < σ and becomes zero at σ′ = σ, and

thus σ is characterized by the smallest positive zero of dk. In lines 5 – 6, dk

is estimated by d̂k using the empirical moments, and σ is estimated by the

smallest positive zero of d̂k. We first note that d̂k indeed has a positive zero

as shown in Lemma 8.2.

Lemma 8.2. Assume n > k and the mixture distribution has a density.

Then, almost surely, d̂k has a positive root within (0, s], where s2 , 1
n

∑n
i=1(Xi−

En[X])2 denotes the sample variance.

The next result shows that, with the above choice of σ̂, the moment es-

timates m̂j = En[γj(X, σ̂)] for j = 1, . . . , 2k given in line 8 are implicitly

denoised and lie in the moment space with probability one. Thus (8.18)

has a solution, and the estimated mixing distribution ν̂ can be found by the

Gauss quadrature. This result was previously shown in [49] but under extra

conditions.
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Lemma 8.3. Assume n ≥ 2k−1 and the mixture distribution has a density.

Then, almost surely, there exists a k-atomic distribution ν̂ such that mj(ν̂) =

m̂j for j ≤ 2k, where m̂j is from Algorithm 8.2.

With the above analysis, we now prove the statistical guarantee (8.8) and

(8.9) for Lindsay’s algorithm announced in Theorem 8.1.

Proof. It suffices to consider M = 1. Let π̂ = ν̂∗N(0, σ̂2) and π = ν∗N(0, σ2)

denote the estimated mixture distribution and the ground truth, respectively.

Let m̂r = En[Xr] and mr = mr(π). The variance of m̂r is upper bounded by

var[m̂r] =
1

n
var[Xr

1 ] ≤ 1

n
E[X2r] ≤ (

√
cr)2r

n
,

for some absolute constant c. Using Chebyshev inequality, for each r =

1, . . . , 2k, with probability 1− 1
8k

, we have,

|m̂r −mr| ≤ (
√
cr)r

√
k/n. (8.19)

By the union bound, with probability 3/4, the above holds simultaneously

for every r = 1, . . . , 2k. It follows from Lemmas 8.2 and 8.3 that (8.18) holds

with probability one. Therefore,

|mr(π̂)−mr(π)| ≤ (
√
cr)r

√
k/n, r = 1, . . . , 2k,

for some absolute constant c. In the following, the error of variance estimate

is denoted by τ 2 = |σ2 − σ̂2|.

• If σ ≤ σ̂, let ν ′ = ν̂ ∗ N(0, τ 2). Using Eπ[γr(X, σ)] = mr(ν) and

Eπ̂[γr(X, σ)] = mr(ν
′), where γr is the Hermite polynomial (8.13), we

obtain that (see Lemma 8.21)

|mr(ν
′)−mr(ν)| ≤ (

√
c′k)2k

√
k/n, r = 1, . . . , 2k, (8.20)

for an absolute constant c′. Applying Proposition 8.1 yields that

|σ2 − σ̂2| ≤ O(kn−
1
2k ), W1(ν, ν̂) ≤ O(k2n−

1
4k ).
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• If σ ≥ σ̂, let ν ′ = ν ∗N(0, τ 2). Similar to (8.20), we have

|mr(ν̂)−mr(ν
′)| ≤ (

√
c′k)2k

√
k/n , ε, r = 1, . . . , 2k.

To apply Proposition 8.1, we also need to ensure that ν̂ has a bounded

support, which is not obvious. To circumvent this issue, we apply a

truncation argument thanks to the following tail probability bound for

ν̂ (see Lemma 8.16):

P[|Û | ≥
√
c0k] ≤ ε(

√
c1k/t)

2k, Û ∼ ν̂, (8.21)

for absolute constants c and c′. To this end, consider Ũ = Û1{|Û |≤√c0k}
∼ ν̃. Note that Ũ is k-atomic supported on [−

√
c0k,
√
c0k], we have

W1(ν, ν̂) ≤ εeO(k) and |mr(ν̃) − mr(ν̂)| ≤ kε(c1k)k for r = 1, . . . , 2k.

Using the triangle inequality yields that

|mr(ν̃)−mr(ν
′)| ≤ ε+ kε(c1k)k.

Now we apply Proposition 8.1 with ν̃ and ν∗N(0, τ 2) where both ν̃ and

ν are k-atomic supported on [−
√
c0k,
√
c0k]. In the case ν̃ is discrete,

the dependence on k in Proposition 8.1 can be improved (by improving

(8.63) in the proof) and we obtain that

|σ2 − σ̂2| ≤ O(kn−
1
2k ), W1(ν, ν̃) ≤ O(k2n−

1
4k ).

Using k ≤ O( logn
log logn

), we also obtain W1(ν, ν̂) ≤ O(k2n−
1
2k ) by the

triangle inequality.

To obtain a confidence 1− δ in (8.8) and (8.9), we can replace the empirical

moments m̂r by the median of T = log 1
δ

independent estimates similar to

(8.16).

8.2.3 Adaptive results

In Sections 8.2.1 and 8.2.2, we proved the statistical guarantees of our estima-

tors under the worst-case scenario where the means can be arbitrarily close.

Under separation conditions on the means (see Definition 8.1), our estima-
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tors automatically achieve a strictly better accuracy than the one claimed

in Theorem 8.1. The goal in this subsection is to show those adaptive re-

sults. The key is the adaptive version of the moment comparison theorems

Propositions 7.3 and 7.4.

The adaptive result (8.10) in the known variance parameter case is ob-

tained using Proposition 7.3 in place of Proposition 7.1. To deal with un-

known variance parameter case, using Proposition 7.4, we first show the

following adaptive version of Proposition 8.1.

Proposition 8.2. Under the conditions of Proposition 8.1, if both Gaussian

mixtures both have k0 γ-separated clusters in the sense of Definition 8.1, then,

√
|σ2 − σ̂2|, W1(ν, ν̂) ≤ Ok

((
ε

γ2(k0−1)

) 1
2(k−k0+1)

)
.

Using these propositions, we now prove the adaptive rate of the denoised

method of moments previously announced in Theorem 8.2.

Proof of Theorem 8.2. By scaling it suffices to consider M = 1. Recall that

the Gaussian mixture is assumed to have k0 (γ, ω)-separated clusters in the

sense of Definition 8.1, that is, there exists a partition S1, . . . , Sk0 of [k]

such that |µi − µi′ | ≥ γ for any i ∈ S` and i′ ∈ S`′ such that ` 6= `′, and∑
i∈S` wi ≥ ω for each `.

Let ν̂ be the estimated mixing distribution which satisfies W1(ν, ν̂) ≤ ε

by Theorem 8.1. Since γω ≥ Cε by assumption, for each S`, there exists

i ∈ S` such that µi is within distance cγ, where c = 1/C, to some atom of

ν̂. Therefore, the estimated mixing distribution ν̂ has k0 (1− 2c)γ-separated

clusters. Denote the union of the support sets of ν and ν̂ by S.

• When σ is known, each atom in S is Ω(γ) away from at least 2(k0− 1)

other atoms. Then (8.10) follows from Proposition 7.3 with ` = 2k and

`′ = (2k − 1)− 2(k0 − 1).

• When σ is unknown, (8.11) follows from a similar proof of (8.8) and

(8.9) with Proposition 8.1 replaced by Proposition 8.2.

The rate in (8.10) as well as its optimality is previously obtained in [160],

but their minimum-distance estimator is computationally expensive. Finally,

we note that if one only assumes the separation condition but not the lower
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bound on the weights, we can obtain an intermediate result that is stronger

than (8.7) but weaker than (8.10).

Theorem 8.5. Under the conditions of Theorem 8.1, suppose σ is known

and the Gaussian mixture has k0 γ-separated clusters. Then, with probability

at least 1− δ,

W1(ν, ν̂) ≤ Ok

(
Mγ

− k0−1
2k−k0

(
n

log(k/δ)

)− 1
4k−2k0

)
. (8.22)

8.2.4 Unbounded means

In the previous subsections, we assume that the means lie in a bounded

interval. In the unbounded case, it is in fact impossible to estimate the

mixing distribution under the Wasserstein distance.6 Nevertheless, provided

that the weights are bounded away from zero, it is possible to estimate the

support set of the mixing distribution with respect to the Hausdorff distance

(cf. (6.5)). This is the goal of this subsection.

In the unbounded case, blindly applying the previous moment-based meth-

ods does not work, because the estimated moments suffer from large variance

due to the wide range of values of the means (cf. Lemma 8.1). To resolve

this issue, we shall apply the divide and conquer technique to reduce the

range in each subprogram. Specifically, we will divide the real line into small

intervals, estimate means in each interval separately, and report the union.

The complete algorithm is given in Algorithm 8.3.

The first step is to apply a clustering method that partitions the samples

into a small number of groups. There are many clustering algorithms in

practice such as the popular Lloyd’s k-means clustering [192]. In lines 1 – 4,

we present a conservative yet simple clustering with the following guarantees

(see Lemma 8.18):

• each interval is of length at most O(kL);

• a sample Xi = Ui + σZi is always in the same interval as the latent

variable Ui.

6Let πε = 1+ε
2 δ0 + 1−ε

2 δM . Then W1(π0, πε) = Mε, but D(π0‖πε) ≤ O(ε2). Choosing
ε = o(1/

√
n) and M � 1/ε leads to arbitrarly large estimation error.
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Algorithm 8.3 Estimate means of a Gaussian mixture model in the un-
bounded case.

Input: n samples X1, . . . , Xn, variance parameter σ2 (optional), cluster pa-
rameter L, and weights threshold τ , test sample size n′.

Output: a set of estimated means Ŝ
1: Merge overlapping intervals [Xi±L] for i ≤ n′ into disjoint ones I1, . . . , Is.
2: for j = 1 to s do
3: Let cj, `j be such that Ij = [cj ± `j].
4: Let Cj = {Xi − cj : Xi ∈ Ij, i > n′}.
5: if σ2 is specified then
6: Let (ŵ, µ̂) be the outcome of Algorithm 8.1 with input Cj, σ

2, and
[−`j, `j].

7: else
8: Let (ŵ, µ̂) be the outcome of Algorithm 8.2 with input Cj.
9: end if

10: Let Ŝj = {x̂i + cj : ŵi ≥ τ}.
11: end for
12: Report Ŝ = ∪jŜj.

In the present clustering method, each cluster Cj only contains samples that

are not used in line 1 so that the intervals are independent of each Cj. This

is a commonly used sample splitting technique in statistics to simplify the

analysis. Note that only a small number of samples are needed to determine

the intervals (see Theorem 8.6). In the second step, we estimate means in

each Ij using samples Cj and report the union of all means.

The statistical guarantee of Algorithm 8.3 is analyzed in Theorem 8.6.

Note that Theorem 8.6 holds in the worst case, and can be improved in

many situations: The number of samples in each Cj increases proportionally

to the total weights. The adaptive rate in Theorem 8.2 is applicable when

separation is present within one interval. We can postulate fewer components

in one interval based on information from other intervals.

Theorem 8.6. Assume in the Gaussian mixture (8.1) wi ≥ ε, σ is bounded.

Let S = supp(ν) be the set of means of the Gaussian mixture, and Ŝ be the

output of Algorithm 8.3 with L = Θ(
√

log n) and τ = ε/(2k). If n ≥ 2n′ ≥
Ω( log(k/δ)

ε
), then, with probability 1− δ − n−Ω(1), we have

dH(Ŝ, S) ≤

 O
(
Lk3.5( εn

log(1/δ)
)−

1
4k−2/ε

)
, σ is known,

O
(
Lk4( εn

log(1/δ)
)−

1
4k /ε

)
, σ is unknown,
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Table 8.1: Parameters in a random Gaussian mixture model.

Weights 0.123 0.552 0.010 0.080 0.235
Centers -0.236 -0.168 -0.987 0.299 0.150

where dH denotes the Hausdorff distance (see (6.5)).

8.2.5 Numerical experiments

The algorithms of the current chapter are implemented in Python.7 In Algo-

rithm 8.1, the explicit denoising via semidefinite programming uses CVXPY

[189] and CVXOPT [193], and the Gauss quadrature is calculated based on

[50]. In this section, we compare the performance of our algorithms with the

EM algorithm, also implemented in Python, and the GMM algorithm using

the popular package gmm [194] implemented in R. We omit the comparison

with the vanilla method of moments which constantly fails to output a mean-

ingful solution (see Section 8.1.1). In all figures presented in this section, we

omit the running time of gmm, which is on the order of hours as compared

to seconds using our algorithms; the slowness of of gmm is mainly due to the

heuristic solver of the non-convex optimization (8.17).

We first clarify the parameters used in the experiments. EM and the it-

erative solver for (8.17) in gmm both require an initialization and a stop

criterion. We use the best of five random initializations: The means are

drawn independently from a uniform distribution, and the weights are from

a Dirichlet distribution. Then we pick the estimate that maximizes the like-

lihood and the minimal moment discrepancy (8.17) in EM and GMM, re-

spectively. The EM algorithm terminates when log-likelihood increases less

than 10−3 or 5,000 iterations are reached; we use the default stop criterion

in gmm [194].

Known variance. We generated a random instance of Gaussian mixture

model with five components and a unit variance. The means are drawn

uniformly from [−1, 1]; the weights are drawn from the Dirichelet distribution

with parameters (1, 1, 1, 1, 1), i.e., uniform over the probability simplex. It

has the parameters in Table 8.1. We repeat the experiments 20 times and plot

7The implementations are available at https://github.com/Albuso0/mixture.
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and the average and the standard deviation of the errors in the Wasserstein

distance. We also plot the running time at each sample size. The results are

shown in Figure 8.1. These three algorithms have comparable accuracies,
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Figure 8.1: Comparison of different methods under a randomly generated
five-component Gaussian mixture model.

but EM is significantly slower than DMM: it is 15 times slower with 5,000

samples and is increasing with the number of samples. This is because EM

accesses all samples in each iteration, instead of first summarizing data into

a few moments.

EM becomes slower when samples from different components have more

overlaps since the maximizer of the likelihood function lies in a flat area [172,

174]. In this case, a loose stop criterion will terminate the algorithm early

before convergence, while a stringent one incurs substantially longer running

time. To show this, we do an experiment in which a two-component Gaussian

mixture is to be estimated. However, the two components completely overlap,

i.e., samples are drawn from N(0, 1). To see the effect of the stop criterion, we

additionally run the EM algorithm that terminates when the log-likelihood

increases less than 10−4 instead of 10−3, shown as EM+ in the figures. The

setup is the same as before and the results are shown in Figure 8.2. Again the

accuracies are similar, but EM+ is much slower than EM without substantial

gain in the accuracy. Specifically, at 5,000 samples, EM is still 15 times

slower than DMM, but EM+ is 60 times slower.

Lastly, we demonstrate a faster rate in the well-separated case as shown

in Theorem 8.2. In this experiment, the samples are drawn from 1
2
N(1, 1) +

1
2
N(1,−1). The results are shown in Figure 8.3. In this case, the estimation

error decays faster than the one shown in Figure 8.2. The larger absolute

values of the Wasserstein distance is an artifact of the range of the means.
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Figure 8.2: Comparison of different methods when components completely
overlap.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

W
1

n/1000

Accuracy

DMM
GMM

EM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

se
co

n
d
s

n/1000

Running time

DMM
EM

Figure 8.3: Comparison of different methods when components are
separated.

Unknown variance. We conduct an experiment under the same five-

component Gaussian mixture as before, but now the estimators no longer

have access to the true variance parameter. In this case, Lindsay’s algo-

rithm (see Algorithm 8.2) involves the empirical moments of degrees up to

10, among which higher-order moments are hard to estimate with limited

samples. Indeed, the standard deviation of En[X10] is 1√
n

√
var[X10] ≈ 473

under this specified model with n = 5000 samples. To resolve this issue, we

introduce an extra screening threshold τ to determine whether an empirical

moment is too noisy and accept the empirical moment of order j only when

its empirical variance satisfies

En[X2j]− (En[Xj])2

n
≤ τ, (8.23)

where the left-hand side of (8.23) is an estimate of the variance of En[Xj].

The estimated mixture model consists of k̃ components for the largest k̃ such

that the first 2k̃ empirical moments are all accepted. In the experiment, we
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choose τ = 0.5. The results are shown in Figure 8.4. The performance of
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Figure 8.4: Comparison of different methods with unknown variance.

the Lindsay and EM estimators are similar and better than GMM, which is

possibly due to the large variance of higher-order empirical moments. The

running time comparison are similar to before and thus are omitted. The

experiments under the models of Figure 8.2 and Figure 8.3 also yield similar

results.

8.3 Lower bounds for estimating Gaussian mixtures

This section introduces minimax lower bounds for estimating Gaussian lo-

cation mixture models which certify the optimality of our estimators. We

will apply Le Cam’s two-point method, namely, find two Gaussian mixtures

that are statistically close but have different parameters. Then any estimate

suffers a loss at least proportional to their parameter difference.

To show a vanishing statistical distance between two mixture models, one

commonly used proxy is moment matching, i.e., ν∗N(0, 1) and ν∗N(0, 1) are

statistically close if m`(ν) = m`(ν
′) for some large `. This is demonstrated in

Figure 3.1, and is made precise in Theorem 3.4. The best lower bound follows

from two different mixing distributions ν and ν ′ such that m`(ν) = m`(ν
′)

with the largest degree `, which is 2k − 2 when both distributions are k-

atomic and 2k − 1 when one of them is k-atomic (see Lemma 7.1 and the

following Remark 7.1). Next we provide the precise minimax lower bounds

for the case of known and unknown variance separately.
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Known variance. We shall assume a unit variance. First, we define the

space of all k Gaussian location mixtures as

Pk = {ν ∗N(0, 1) : ν is k-atomic supported on [−1, 1]},

and we consider the worst-case risk over all mixture models in Pk. From the

identifiability of discrete distributions in Lemma 7.1, two different k-atomic

distributions can match up to 2k−2 moments. Therefore, using Theorem 3.4,

the best minimax lower bound using Le Cam’s method is obtained from the

optimal pair of distributions for the following:

max W1(ν, ν ′),

s.t. m2k−2(ν) = m2k−2(ν ′),

ν, ν ′ are k-atomic on [−ε, ε].

(8.24)

The value of the above optimization problem is Ω(ε/k) (see Lemma 8.20).

Using ε =
√
kn−

1
4k−2 , we obtain the following minimax lower bound.

Proposition 8.3.

inf
ν̂

sup
P∈Pk

EPW1(ν, ν̂) ≥ Ω

(
1√
k
n−

1
4k−2

)
,

where ν̂ is an estimator measurable with respect to X1, . . . , Xn
i.i.d.∼ P = ν ∗

N(0, 1).

Remark 8.1. The above lower bound argument can be easily extended to

prove the optimality of (8.10) in Theorem 8.2, where the mixture satisfies

further separation conditions in the sense of Definition 8.1. In this case,

the main difficulty is to estimate parameters in the biggest cluster. When

there are k0 γ-separated clusters, the biggest cluster is of order at most

k′ = k− k0 + 1. Similar to (8.24), let ν̃ and ν̃ ′ be two k′-atomic distributions

on [−ε, ε]. Consider the following mixing distributions

ν =
k0 − 1

k0

ν0 +
1

k0

ν̃, ν ′ =
k0 − 1

k0

ν0 +
1

k0

ν̃ ′,

where ν0 is the uniform distribution over {±2γ,±3γ, . . .} of cardinality k0−1.

Then both mixture models have k0 (γ, 1
k0

)-separated clusters. Thus the min-
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imax lower bound Ω( 1√
k′
n−

1
4k′−2 ) analogously follows from Le Cam’s method.

Unknown variance. In this case the collection of mixture models is

defined as

P ′k = {ν ∗N(0, σ2) : ν is k-atomic supported on [−1, 1], σ ≤ 1}.

In Theorem 3.4, mixing distributions are not restricted to be k-atomic but can

be Gaussian location mixtures themselves, thanks to the infinite divisibility

of the Gaussian distributions, e.g., N(0, ε2) ∗N(0, 0.5) = N(0, 0.5 + ε2). Let

gk be the k-point Gauss quadrature of N(0, ε2). Then gk has the same first

2k − 1 moments as N(0, ε2), and gk ∗ N(0, 0.5) is a k Gaussian mixture.

Applying (3.10) yields that

χ2(gk ∗N(0, 1)‖N(0, 1 + ε2)) ≤ O(ε4k).

Using W1(gk, δ0) ≥ Ω(ε/
√
k) (see Lemma 2.2), and choosing ε = n−

1
4k , we

obtain the following minimax lower bound.

Proposition 8.4. For k ≥ 2,

inf
ν̂

sup
P∈Pk

EPW1(ν, ν̂) ≥ Ω

(
1√
k
n−

1
4k

)
,

inf
ν̂

sup
P∈Pk

EP |σ2 − σ̂2| ≥ Ω
(
n−

1
2k

)
,

where the infimum is taken over estimators ν̂, σ̂2 measurable with respect to

X1, . . . , Xn
i.i.d.∼ P = ν ∗N(0, σ2).

8.4 Extensions and discussions

8.4.1 Gaussian location-scale mixtures

In this chapter we focus on the Gaussian location mixture model (8.1), where

all components share the same (possibly unknown) variance. One immediate

extension is the Gaussian location-scale mixture model with heteroscedastic
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components:
k∑
i=1

wiN(µi, σ
2
i ). (8.25)

Parameter estimation for this model turns out to be significantly more diffi-

cult than the location mixture model, in particular:

• The likelihood function is unbounded. In fact, it is well known that the

maximum likelihood estimator is ill-defined [178, p. 905]. For instance,

consider k = 2, for any sample size n, we have

sup
p1,p2,θ1,θ2,σ

n∏
i=1

[
p1

σ1

ϕ

(
Xi − θ1

σ1

)
+
p2

σ2

ϕ

(
Xi − θ2

σ2

)]
=∞,

achieved by, e.g., θ1 = X1, p1 = 1/2, σ2 = 1, and σ1 → 0.

• In this model, the identifiability result based on moments is not com-

pletely settled and we do not have a counterpart of Lemma 7.1. Note

that the model (8.25) comprises 3k − 1 free parameters (k means, k

variances, and k weights normalized to one), so it is expected to be

identified through its first 3k − 1 moments. However, the intuition

of equating the number of parameters and the number of equations

is already known to be wrong as pointed out by Pearson [11], who

showed that for k = 2, five moments are insufficient and six moments

are enough. The recent result [195] showed that, if the parameters are

in general positions, then 3k − 1 moments can identify the Gaussian

mixture distribution up to finitely many solutions (known as algebraic

identifiability). Whether 3k moments can uniquely identify the model

(known as rational identifiability) in general positions remains open,

except for k = 2. In the worst case, we need at least 4k − 2 mo-

ments for identifiability since for scale-only Gaussian mixtures all odd

moments are zero (see Section 8.4.3 for details).

Besides the issue of identifiability, the optimal estimation rate under the

Gaussian location-scale mixture model is resolved only in special cases. The

sharp rate is only known in the case of two components to be Θ(n−1/12)

for estimating means and Θ(n−1/6) for estimating variances [31], achieved

by a robust variation of Pearson’s method of moment equations [11]. For

k components, the optimal rate is known to be n−Θ(1/k) [30, 29], achieved
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by an exhaustive grid search on the parameter space. In addition, the above

results all aim to recover parameters of all components (up to a global permu-

tation), which necessarily requires many assumptions including lower bounds

on mixing weights and separation between components; recovering the mix-

ing distribution with respect to, say, Wasserstein distance, remains open.

8.4.2 Multiple dimensions

So far we have focused on Gaussian mixtures in one dimension. The mul-

tivariate version of this problem has been studied in the context of clus-

tering, or classification, which typically requires nonoverlapping components

[162, 196]. One commonly used approach is dimensionality reduction: pro-

jecting data onto some lower-dimensional subspace, clustering samples in

that subspace, and mapping back to the original space. Common choices

of the subspace include random subspaces and subspaces obtained from the

singular value decomposition. The approach using random subspace is an-

alyzed in [162, 197], and requires a pairwise separation polynomial in the

dimensions; the subspace from singular value decomposition is analyzed in

[196, 198, 199, 200], and requires a pairwise separation that grows polyno-

mially in the number of components. Tensor decomposition for spherical

Gaussian mixtures has been studied in [201], which requires the stronger as-

sumption that that means are linear independent and is inapplicable in lower

dimensions, say, two or three dimensions.

When components are allowed to overlap significantly, the random projec-

tion approach is also adopted by [30, 29, 31], where the estimation problem

in high dimensions is reduced to that in one dimension, so that univariate

methodologies can be invoked as a primitive. We provide an algorithm (Algo-

rithm 8.4) using similar random projection ideas to estimate the parameters

of a Gaussian mixture model in d dimensions for known covariance matrices,

using the univariate algorithm in Section 8.2.1 as a subroutine, and obtain

the estimation guarantee in Theorem 8.7; the unknown covariance case can

be handled analogously using the algorithm in Section 8.2.2 instead. How-

ever, the dependency of the performance guarantee on the dimension is highly
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suboptimal,8 which stems from the fact that the method based on random

projections estimates each coordinate independently. Moreover, this method

needs to match the Gaussian components of the estimated model in each

random direction, which necessarily requires lower bounds on the mixing

weights and separation between the means.

Algorithm 8.4 Learning a k-component Gaussian mixture in d dimensions.

Input: n samples X1, X2, . . . , Xn ∈ Rd, common covariance matrix Σ, and
separation parameter τ , radius parameter ρ.

Output: estimated mixing distribution π̂ with weights and means (ŵj, µ̂j)
for j = 1, . . . , k .

1: Let (b1, . . . , bd) be a set of random orthonormal basis in Rd, and r = b1.
2: Let {(wj, µj)} be the outcome of Algorithm 8.1 using n projected samples
〈X1, r〉, . . . , 〈Xn, r〉, variance r>Σr, and interval [−ρ, ρ].

3: Reordering the indices such that µ1 < µ2 < · · · < µk.
4: Initialize k weights ŵj = wj and means µ̂j = (0, . . . , 0).
5: for i = 1 to d do
6: Let r′ = r + τbi.
7: Let {µ′j} be the estimated means (weights are ignored) from Algo-

rithm 8.1 using n projected samples 〈X1, r
′〉, . . . , 〈Xn, r

′〉, variance
r′>Σr′, and interval [−ρ− τ, ρ+ τ ].

8: Reordering the indices such that µ′1 < µ′2 < · · · < µ′k.

9: Let µ̂j := µ̂j + bi
µ′j−µj
τ

for j = 1, . . . , k.
10: end for

Theorem 8.7. Suppose in a d-dimensional Gaussian mixture
∑k

j=1wjN(µj,Σ),

‖µj‖2 ≤M, ‖µi − µj‖2 ≤ ε, wj ≥ ε′, ∀ i 6= j.

Then Algorithm 8.4 with n > (Ωk(
M
ε̃ε′

))4k−2 log d
δ

samples, τ = ε̃
2M

, and ρ =

M , where ε̃ = δε
k2
√
d
, yields π̂ such that, with probability 1− 2δ,

W1(π, π̂) < Ok

(√
d
Mεn
τε′

)
,

where π =
∑

j wjδµj and εn = min{( n
log(d/δ)

)−
1

4k−2 , ε̃2−2k

√
log(d/δ)

n
}.

8Specifically, in d dimensions, estimating each coordinate independently suffers an `2-
loss proportional to

√
d; however, it is possible to achieve d1/4. See Lemma 8.32 for an

example.
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Proof. By the distribution of random direction r on the unit sphere (see

Lemma 8.31) and the union bound, we obtain that, with probability 1− δ,

|〈µi − µj, r〉| > 2ε̃, ∀ i 6= j.

Without loss of generality, assume 〈µ1, r〉 < · · · < 〈µk, r〉. Applying Theo-

rem 8.1 yields that, with probability 1− δ
d+1

,

W1(πr, π̂r) ≤ Ok

(
M

(
n

log(d/δ)

)− 1
4k−2

)
,

where πr denotes the Gaussian mixture projected on r and π̂r is its estimate.

The right-hand side of the above inequality is less than cεrε
′ for some constant

c < 0.5 when n > (Ωk(
M
ε̃ε′

))4k−2 log d
δ
. Applying Theorem 8.2 yields that

W1(πr, π̂r) ≤ Ok

(
Mε̃2−2k

√
log(d/δ)

n

)
.

Hence, we obtained W1(πr, π̂r) ≤ Ok(Mεn). It follows from Lemma 6.1 that,

after reordering indices,

|〈µj, r〉 − µ̃j| < Ok(Mεn/ε
′), |wj − ŵj| < Ok(Mεn/ε̃). (8.26)

On each direction r` = r + τb`, the means are separated by |〈µi − µj, r`〉| >
2ε̃−2Mτ > ε̃ and the ordering of the means remains the same as on direction

r. Therefore the accuracy similar to (8.26) continues to hold for the estimated

means µ̃`,j (µ′j in lines 7 and 8). Note that µj =
∑

` b`
〈µj ,r`〉−〈µj ,r〉

τ
and µ̂j =∑

` b`
µ̃`,j−µ̃j

τ
. Therefore,

‖µ̂j − µj‖2
2 ≤

d∑
`=1

(
Ok(Mεn/ε

′)

τ

)2

.

Applying the triangle equality yields that

W1(π, π̂) <
√
dOk(Mεn/ε

′)/τ +MOk (Mεn/ε̃) < Ok

(√
d
Mεn
τε′

)
.

It is interesting to directly extend the DMM methodology to multiple

dimensions, which is challenging both theoretically and algorithmically:
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• To apply our method in multiple dimensions, the challenge is to obtain

a multidimensional moment comparison theorem analogous to Propo-

sition 7.1 or 7.2, the key step leading to the optimal rate. These results

are proved by the primal formulation of the Wasserstein distance and

its simple formula (6.4) in one dimension [161]. Alternatively, they can

be proved via the dual formula (6.3) which holds in any dimension;

however, the proof relies on the Newton’s interpolation formula, which

is again difficult to generalize or analyze in multiple dimensions.

• To obtain a computationally efficient algorithm, we rely on the semidef-

inite characterization of the moment space in one dimension to denoise

the noisy estimates of moments. In multiple dimensions, however, it

remains open how to efficiently describe the moment space [9] as well as

how to extend the Gauss quadrature rule to multivariate distributions.

8.4.3 General finite mixtures

Though this chapter focuses on Gaussian location mixture models, the mo-

ments comparison theorems in Chapter 7 are independent of properties of

Gaussian. As long as moments of the mixing distribution are estimated ac-

curately, similar theory and algorithms can be obtained. Unbiased estimate

of moments exists in many useful mixture models, including exponential mix-

tures [202], Poisson mixtures [203], and more generally the quadratic variance

exponential family (QVEF) whose variance is at most a quadratic function

of the mean [204, (8.8)].

As a closely related topic of this chapter, we discuss the Gaussian scale

mixture model in detail, which has been extensively studied in the statistics

literature [205] and is widely used in image and video processing [206, 207].

In a Gaussian scale mixture, a sample is distributed as

X ∼
k∑
i=1

wiN(0, σ2
i ) =

∫
N(0, σ2)dν(σ2),

where ν =
∑k

i=1 wiδσ2
i

is a k-atomic mixing distribution. Equivalently, a

sample can be represented as X =
√
V Z, where V ∼ ν and Z is standard

normal independent of V . In this model, samples from different components
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significantly overlap, so clustering-based algorithms will fail. Nevertheless,

moments of ν can be easily estimated, for instance, using En[X2r]/E[Z2r] for

mr(ν) with accuracy Or(1/
√
n). Applying a similar algorithm to DMM in

Section 8.2.1, we obtain an estimate ν̂ such that

W1(ν, ν̂) ≤ Ok(n
− 1

4k−2 ),

with high probability.

Moreover, using a recipe similar to that in Section 8.3, a minimax lower

bound can be established. Analogous to (8.24), let ν and ν ′ be a pair of k-

atomic distributions supported on [0, ε] such that they match the first 2k− 2

moments, and let

π =

∫
N(0, σ2)dν(σ2), π′ =

∫
N(0, σ2)dν ′(σ2),

which match their first 4k − 3 moments and are
√
ε-subgaussian. Applying

Theorem 3.4 with π ∗ N(0, 0.5), π′ ∗ N(0, 0.5), and ε = Ok(n
− 1

4k−2 ) yields a

minimax lower bound

inf
ν̂

sup
P∈Gk

EPW1(ν, ν̂) ≥ Ωk

(
n−

1
4k−2

)
,

where the estimator ν̂ is measurable with respect to X1, . . . , Xn ∼ P , and

the space of k Gaussian scale mixtures is defined as

Gk =

{∫
N(0, σ2)dν(σ2) : ν is k-atomic supported on [0, 1]

}
.

8.5 Denoising an empirical distribution

In this section, we consider the related problem of denoising an empirical dis-

tribution. Given noisy data Xi = θi+Zi for i = 1, . . . , n, where Zi ∼ N(0, 1)

is an independent Gaussian noise, the goal is to estimate the histogram of

θ = (θ1, . . . , θn), namely, the probability distribution

πθ =
1

n

n∑
i=1

δθi .
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Using the framework of Chapter 6, we will estimate the CDF under the

Wasserstein distance. Comparing to Gaussian mixture models, here the mix-

ing distribution is given by the histogram πθ.

In this problem, the plug-in estimator is the empirical distribution of data.

However, the plug-in approach is inconsistent.

Theorem 8.8. Let θ = (θ1, . . . , θn) ∈ Θn, X = (X1, . . . , Xn) and Xi
ind∼ Pθi.

Then,

sup
θ∈Θn

E[W p
p (πθ, πX)] = sup

θ∈Θ
E|X − θ|p.

Proof. By the naive coupling that PX|θi = Pθi ,

E[W p
p (πθ, πX)] ≤ E

[
1

n

n∑
i=1

|θi −Xi|p
]
≤ sup

θ∈Θ
E|X − θ|p.

Consider θ = (θ0, . . . , θ0), hence πθ = δθ0 .

sup
θ∈Θn

E[W p
p (πθ, πX)] ≥ sup

θ0∈Θ
E[W p

p (δθ0 , πX)] = sup
θ0∈Θ

E

[
1

n

n∑
i=1

|θ0 −Xi|p
]

= sup
θ∈Θ

E|X − θ|p.

Corollary 8.1. Suppose Θ 6= ∅. Let θ = (θ1, . . . , θn) ∈ Θn and X =

(X1, . . . , Xn) ∼ N(θ, In). Then,

sup
θ∈Θn

E[W p
p (πθ, πX)] = E|Z|p, ∀ p ≥ 1,

where Z ∼ N(0, 1).

In this section, we will use the moment-based method to denoise the em-

pirical distribution.

8.5.1 Estimation of the empirical moments

The estimation of the empirical moments is the same as estimating the mo-

ments of the mixing distribution in Chapter 8. The unbiased estimator of

the kth empirical moment mk(πθ) = 1
n

∑n
i=1 θ

k
i is

m̃k =
1

n

n∑
i=1

Hk(Xi). (8.27)

204



The variance of Hk(Xi) is related to the Laguerre polynomials (2.22) by

var[Hk(Xi)] = k!Lk(−θ2
i )− θ2k = k!

k−1∑
j=0

(
k

j

)
θ2j
i

j!
. (8.28)

Higher moments of the Hermite polynomials are obtained in Lemma 8.4.

Lemma 8.4. Let X ∼ N(θ, 1). For all k, t ≥ 1,

E|Hk(X)− θk|t ≤ 2tE|Hk(X)|t < 2t

3

(
(3θ)kt + 2

√
2

(
9kt

e

)kt/2)
. (8.29)

Proof. Let X ′ be the i.i.d. copy of X. By Jensen’s inequality,

E|Hk(X)− θk|t = EX |EX′ [Hk(X)−Hk(X
′)]|t ≤ E|Hk(X)−Hk(X

′)|t

≤ 2tE|Hk(X)|t,

which is the first inequality of (8.29).

Note one representation of Hermite polynomials that Hk(x) = E(x+ iW )k,

where W ∼ N(0, 1). Then, by Jensen’s inequality,

E|Hk(X)|t = EX |EW (X+iW )k|t ≤ EX |EW |X+iW |k|t ≤ E|X+iW |kt, t ≥ 1.

(8.30)

The right-hand side of (8.30) can be further upper bounded by

E|θ+W ′+iW |kt ≤ 3kt−1(θkt+2E|W |kt) = 3kt−1

(
θkt +

2√
π

Γ

(
kt+ 1

2

)
2kt/2

)
.

The conclusion follows by the upper bound of gamma function that Γ(x+1) <√
2π(x+1/2

e
)x+1/2 [208].

Using the higher moments in Lemma 8.4, we obtain the following concen-

tration inequalities on m̃k.

Lemma 8.5. Suppose θ ∈ [−M,M ]n.

P[|m̃k −mk(πθ)| ≥ ε] ≤ k!Lk(−M2)−M2k

nε2
. (8.31)
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If nε2 ≥ 144e(18k)k,

P[|m̃k −mk(πθ)| ≥ ε] ≤ 2 exp

(
− 1

18

(
nε2

72

) 1
k+1

(
1 ∧

log( knε2

8(3M)2k+2 )

k + 1

))
.

(8.32)

If nε2 ≥ 144e(3M)2k,

P[|m̃k −mk(πθ)| ≥ ε] ≤ 2 exp

(
− nε2

144e

1

(3M)2k

(
1 ∧ k log

8e2(3M)2k+2

knε2

))
.

(8.33)

Proof. By Markov inequality,

P[|m̃k −mk(πθ)| ≥ ε] ≤ inf
t

E
∣∣ 1
n

∑n
i=1(Hk(Xi)− θki )

∣∣t
εt

= inf
t

E
∣∣∑n

i=1(Hk(Xi)− θki )
∣∣t

(nε)t
.

The first conclusion (8.31) follows by t = 2 (i.e., Chebyshev inequality) and

the variance of m̃k in (8.28).

Applying Marcinkiewicz-Zygmund inequality that,

E

∣∣∣∣∣
n∑
i=1

(Hk(Xi)− θki )

∣∣∣∣∣
t

≤ C(t)nt/2−1

n∑
i=1

E|Hk(Xi)− θki |t

≤ C(t)nt/2 sup
θ

E|Hk(Xi)− θki |t, t ≥ 2,

where C(t) ≤ (3
√

2t)t [209], and the moment bound in (8.29), we have

P[|m̃k −mk(πθ)| ≥ ε] ≤ inf
t≥2

(
18t

nε2

)t/2
2t

3

(
(3M)kt + 2

√
2

(
9kt

e

)kt/2)

≤ 2 inf
t≥2

(
72

nε2

(
9k

e

)k
tk+1

)t/2

∨
(

72

nε2
(3M)2kt

)t/2
.

Then, (8.32) follows by letting t = 1
e
(nε

2

72
( e

9k
)k)

1
k+1 and applying ( e

9k
)

k
k+1 ≥ e

9k
,

and (8.33) follows by letting t = 1
e
nε2

72
1

(3M)2k .
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8.5.2 Denoising via Bernstein polynomials

Let πθ = 1
n

∑n
i=1 δθi . For conciseness assume πθ is supported on [0, 1]. Sup-

pose the moments of πθ of degrees up to L are known, we can approximate

πθ by a probability measure π(L) supported on equidistant partition of [0, 1],

namely, {i/L : i = 0, 1, . . . , L}, using Bernstein polynomial approximation.

Denote by θ(L) the random variable associating with π(L). The probability

mass function (pmf) of θ(L) is given by

p
(L)
k = P[θ(L) = k/L] = EX∼πθ [P[binomial(L,X) = k]]

=

(
L

k

) L∑
j=k

(
L− k
j − k

)
(−1)j−kmj, (8.34)

for k = 0, . . . , L, where P[binomial(L,X) = k] =
(
L
k

)
Xk(1 − X)L−k is the

Bernstein basis polynomial and mj = 1
n

∑
i θ

j
i is the jth moment of πθ. The

intuition is that, for any fixed α ∈ [0, 1], by the law of large numbers, as

L→∞,

P[θ(L) ≤ α] = EX∼πθ [P[binomial(L,X) ≤ αL]]

=
1

n

n∑
i=1

P[binomial(L, θi) ≤ αL]→ 1

n

n∑
i=1

1{θi≤α}.

We can upper bound the approximation error Wp(πθ, π
(L)) by the natural

coupling from the construction of Pθ(L) that Pθ(L)|X = binomial(L,X)/L.

Lemma 8.6. For any p ≥ 1,

Wp(πθ, π
(L)) ≤ Cp√

L
, (8.35)

where Cp only depends on p, Cp ≤ 1/2 for 1 ≤ p ≤ 2 and Cp ≤ 3
√

2p for

p > 2.

Proof. Let X ∼ πθ and Pθ(L)|X = binomial(L,X)/L. For p = 2,

W 2
2 (πθ, π

(L)) ≤ E(θ(L)−X)2 = E
[
E
[
(θ(L) −X)2

∣∣X]] = E
[
X(1−X)

L

]
≤ 1

4L
.

(8.36)
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For 1 ≤ p ≤ 2, Hölder’s inequality and (8.36) imply that

Wp(πθ, π
(L)) ≤ W2(πθ, π

(L)) ≤ 1

2
√
L
. (8.37)

For p > 2, analogous to (8.36),

W p
p (πθ, π

(L)) ≤ E(θ(L) −X)p = E
[
E
[
(θ(L) −X)p

∣∣X]] ≤ Ap
Lp/2

Lp
=

Ap
Lp/2

,

(8.38)

where the second inequality follows from Marcinkiewicz-Zygmund inequality,

Ap is a constant that only depends on p and Ap ≤ (3
√

2p)p [209]. The

conclusion follows from (8.37) and (8.38).

Using Xi
ind∼ N(θi, 1) instead of the true moments of π, we can estimate

the moments by the m̃j as in (8.27), thereby estimating p
(L)
k by

p̃k =

(
L

k

) L∑
j=k

(
L− k
j − k

)
(−1)j−km̃j. (8.39)

Then p̃ = (p̃0, . . . , p̃L) is an unbiased estimator for p(L) = (p
(L)
0 , . . . , p

(L)
L ), and

the risk of p̃ is shown in Lemma 8.7.

Lemma 8.7. With probability 1− e−Ω(L),

‖p̃− p(L)‖1 ≤
√
O(L)L+1

n
. (8.40)

Proof. Applying (8.32) with ε =
√
O(L)L+1/n and the union bound yields

that, with probability 1− e−Ω(L),

|m̃k −mk| < ε =

√
O(L)L+1

n
, ∀ k = 1, . . . , L.

Consequently, by (8.34) and (8.39),

‖p̃− p(L)‖1 <
L∑
k=0

(
L

k

) L∑
j=k

(
L− k
j − k

)
ε = 3Lε =

√
O(L)L+1

n
.

Note that p̃ = (p̃0, . . . , p̃L) defined above may not be a valid pmf. Never-

theless we can project it onto a valid pmf under `1-distance: find a valid pmf
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p̂ = (p̂0, . . . , p̂L) that minimizes ‖p̃− p̂‖1. This is accomplished by simply

thresholding at zero followed by normalization. By triangle inequality and

the optimality of projection,

‖p̂− p(L)‖1 ≤ ‖p̃− p̂‖1 + ‖p̃− p(L)‖1 ≤ 2‖p̃− p(L)‖1. (8.41)

Denote by π̂B the probability measure corresponding to p̂. By picking

L = (1 + o(1)) logn
log logn

, we have the following upper bound on the risk of π̂B.

Theorem 8.9. For any constant p ≥ 1, with probability 1− e−Ω(logn/ log logn),

Wp(πθ, π̂B) ≤ Cp

√
log log n

log n
,

where Cp only depends on p.

Proof. Since θ ∈ [0, 1], we can upper bound of W p
p (π̂B, π

(L)) by the total

variation distance:

W p
p (π̂B, π

(L)) ≤ TV(π̂B, π
(L)) =

1

2
‖p̂− p(L)‖1 ≤ ‖p̃− p(L)‖1, (8.42)

where the last inequality follows from (8.41). Then, applying triangle inequal-

ity and (8.42), the approximation error of π(L) in (8.35) and the estimation

error of p̃ in (8.40),

Wp(πθ, π̂B) ≤ Wp(πθ, π
(L)) + ‖p̃− p(L)‖1/p

1 ≤
C ′p√
L

+

(√
O(L)L+1

n

)1/p

,

with probability 1−e−Ω(L). Let L = (1+o(1)) logn
log logn

, we have (
√
O(L)L+1/n)1/p =

o(1/
√
L) and thus

Wp(πθ, π̂B) ≤
C ′p√
L

(1 + o(1)) = C ′p(1 + o(1))

√
log log n

log n
.

The conclusion follows.

209



8.5.3 Optimal denoising under W1 distance

The estimator in Section 8.5.2 uses equidistant partition of the interval

[0, 1] which might not be necessary in the optimal denoising. Consider

θ ∈ [−M,M ]n. Recall the dual representation of W1 distance in (6.3). Let

Lip(1) denote the set of functions with best Lipschitz constant one. The

idea comes from the observation that if two probability measures match mo-

ments up to degree L, then their expectations of f(X) are separated by

at most twice the uniform approximation error of f by polynomial of de-

gree no greater than L over the given interval [55]. By Jackson’s theorem

EL(f, [−M,M ]) . M/L as long as f ∈ Lip(1). Though the exact moments

of πθ are not available, if we can find π̂ with moments sufficiently close to

that of πθ, then the expectations of f(X) under πθ and π̂ are still guaranteed

to be close to each other as shown in Lemma 8.8.

Lemma 8.8. Let µ and ν be two probability measures supported on [−M,M ].

Denote by ML(µ) = (m1(µ)
M

, . . . , mL(µ)
ML ) the first L normalized moments of µ

and similarly for ML(ν). Then

W1(µ, ν) ≤ πM

L+ 1
+ 2M(1 +

√
2)L ‖ML(µ)−ML(ν)‖2 .

Proof. Fix any f ∈ Lip(1). Let P ∗L be the best polynomial of degree L

to uniformly approximate f over [−M,M ], and denote its coefficients by

a = (a1, . . . , aL).

|Eµf − Eνf | ≤ |Eµ(f − P ∗L)|+ |Eν(f − P ∗L)|+ |EµP ∗L − EνP ∗L|

≤ 2 sup
−M≤x≤M

|f(x)− P ∗L(x)|+
L∑
i=1

|ai||mi(µ)−mi(ν)|

= 2EL(f, [−M,M ]) +
L∑
i=1

|aiM i|
∣∣∣∣mi(µ)

M i
− mi(ν)

M i

∣∣∣∣
≤ Mπ

L+ 1
+ ‖b‖2‖ML(µ)−ML(ν)‖2,

where b = (a1M, . . . , aLM
L) and we applied the upper bound on the uniform

approximation error of Lip(1) functions [210, Theorem 4.1.1]

EL(Lip(1), [−M,M ]) = MEL(Lip(1), [−1, 1]) ≤ Mπ

2(L+ 1)
.
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For any f with Lip(f) ≤ 1, it has variation no more than 2M over [−M,M ]

then by the optimality of P ∗L its variation is at most 4M . Then, apart from

the constant term, applying (8.61) yields that ‖b‖2 ≤ 2M(1 +
√

2)L and thus

|Eµf − Eνf | ≤
Mπ

L+ 1
+ 2M(1 +

√
2)L‖ML(µ)−ML(ν)‖2. (8.43)

The conclusion follows by applying (8.43) in the dual representation of W1

distance in (6.3).

Remark 8.2. It is obtained by [211] that the sharp characterization of the

uniform approximation of Lipschitz functions is

EL(Lip(1), [−1, 1]) =
π − o(1)

2L
.

Remark 8.3. If two probability measures match moments up to degree L,

then

sup
ML(µ)=ML(ν)

W1(µ, ν) = sup
ML(µ)=ML(ν)

sup
f∈Lip(1)

|Eµf − Eνf |

= sup
f∈Lip(1)

sup
ML(µ)=ML(ν)

|Eµf − Eνf |

= sup
f∈Lip(1)

2EL(f, [−M,M ]) = 2EL(Lip(1), [−M,M ]),

where the third equality follows by the dual problem of best polynomial

approximation.

Using the estimator for the empirical moments, let M̃ = ( m̃1

M
, . . . , m̃L

ML ). We

project m̃ to the space of moment sequence by (8.12) and obtain a corre-

sponding estimator π̂. Then, by the optimality of projection and the triangle

inequality,

‖M(πθ)−M(π̂)‖2 ≤ ‖M(π̂)− M̃‖2 + ‖M(πθ)− M̃‖2 ≤ 2‖M(πθ)− M̃‖2.

(8.44)

If M is a constant, we can pick L = (1+o(1)) logn
log logn

and obtain the following

upper bound on the risk of π̂.

Theorem 8.10. Suppose θ ∈ [−M,M ]n. If M is a constant, then, with
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probability 1− e−Ω(logn/ log logn),

W1(πθ, π̂) ≤ πM
log log n

log n
(1 + o(1)). (8.45)

If M = Mn �
√

log n, then, with high probability,

W1(πθ, π̂) .
1√

log n
. (8.46)

Proof. Applying Lemma 8.8 and (8.44) yields that

W1(πθ, π̂) ≤ πM

L+ 1
+ 4M(1 +

√
2)L‖m(πθ,M)− m̃‖2.

If M is a constant, by picking L = (1+o(1)) logn
log logn

such that (1+
√

2)L
√

O(L)L+1

n
=

o( 1
L+1

), we obtain (8.45). If M = Mn �
√

log n, applying the estimation error

of m̃ in (8.33) with ε =
√
O(M)2L+2/n and the union bound,

W1(πθ, π̂) ≤ πM

L+ 1
+ 4M(1 +

√
2)L
√
O(M)2L+2

n
, (8.47)

with probability 1− exp(−eΩ(L)).

8.5.4 Subsampling

Let X = (X1, . . . , Xn) and Xi
ind∼ N(θi, 1). Let Y = (Y1, . . . , Ym) be m

samples from X uniformly at random without replacement. The goal is to

estimate πθ from Y . Though Yi are dependent, marginally, Yi ∼ πθ ∗N(0, 1).

Hence, an unbiased estimator for the moments of πθ is

m̃k =
1

m

m∑
i=1

Hk(Yi).

Project the sequence m̃ = (m̃1, . . . , m̃L) to a valid moment vector m̂, and

finally find the corresponding estimator π̂sub.

Theorem 8.11. Let θ ∈ [−M,M ]n for any given constant M ,

E[W1(πθ, π̂sub)] ≤ πM
log logm

logm
(1 + o(1)).
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Proof. Applying the same argument as (8.47) yields that

W1(πθ, π̂sub) ≤ πM

L+ 1
+ 4M(1 +

√
2)L‖m(π)− m̃‖2.

Then, by Cauchy-Schwartz inequality,

E[W1(πθ, π̂sub)] ≤ πM

L+ 1
+ 4M(1 +

√
2)L

√√√√ L∑
i=1

E(m̃k −mk)2. (8.48)

The MSE of the moment estimator m̃k is

E

(
1

m

m∑
i=1

(Hk(Yi)−mk)

)2

=
1

m
var[Hk(Y1)] +

m− 1

m

(
E[Hk(Y1)Hk(Y2)]−m2

k

)
. (8.49)

Let {I, J} ⊆ [n] be two indices taken uniformly at random. Then

E[Hk(Y1)Hk(Y2)]−m2
k = E[Hk(XI)Hk(XJ)]−m2

k = E[θkI θ
k
J ]−m2

k

=
1

n(n− 1)

∑
i 6=j

θki θ
k
j −

(
1

n

n∑
i=1

θki

)2

=
1

n− 1

((∑
i θ

k
i

n

)2

−
∑

i θ
2k
i

n

)
≤ 0.

(8.50)

The variance of Hk(Y1) is

E(Hk(Y1)−mk)
2 ≤ E[H2

k(XI)] =
1

n

n∑
i=1

E[H2
k(Xi)] =

1

n

n∑
i=1

k!Lk(−θ2
i ),

(8.51)

where in the last step we used the second moment of Hk(Xi). Plugging (8.50)

and (8.51) into (8.49), we obtain the MSE of m̃k that

E(m̃k −mk)
2 ≤ k!Lk(−M2)

m
.

Then, applying (8.48), we obtain that

E[W1(πθ, π̂sub)] ≤ πM

L+ 1
+ 4M(1 +

√
2)L
√
L
L!LL(−M2)

m
.
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Picking L = (1 + o(1)) logm
log logm

, we have (1 +
√

2)L
√
LL!LL(−M2)

m
= o( 1

L+1
),

hence the conclusion.

8.5.5 Minimax rates under W1 distance

Two composite hypotheses. Recall the dual representation of W1 dis-

tance:

W1(π, π̂) = sup
f :Lip(f)≤1

|Eπ[f(X)]− Eπ̂[f(X)]|.

For any fixed function f satisfying Lip(f) ≤ 1, the risk of estimating the ad-

ditive functional T (θ) = 1
n

∑n
i=1 f(θi) also serves a lower bound of estimating

π:

inf
π̂

sup
θ∈Θn

E(W1(π, π̂))2 ≥ inf
π̂

sup
θ∈Θn

E (Eπ[f(X)]− Eπ̂f(X))2

≥ inf
T̂

sup
θ∈Θn

E
(
T (θ)− T̂

)2

.

For example, by taking f(x) = |x|, the minimax risk of estimating `1-norm

of Gaussian mean [39] yields that

inf
π̂

sup
θ∈[−1,1]n

E(W1(π, π̂))2 ≥ β2
∗

(
log log n

log n

)2

(1 + o(1)),

inf
π̂

sup
θ∈Rn

E(W1(π, π̂))2 ≥ 4β2
∗

9e2 log n
(1 + o(1)),

where β∗ ≈ 0.28017 is the Bernstein constant.

Consider Θ = [−M,M ] and T (θ) = 1
n

∑n
i=1 f(θi) with f being a function

that achieves the approximation error

EL(Lip(1), [−M,M ]) , sup
Lip(f)≤1

EL(f, [−M,M ]).

The sharp characterization of the above quantity is [211]

EL(Lip(1), [−M,M ]) = M · EL(Lip(1), [−1, 1]) = M
π − o(1)

2(L+ 1)
. (8.52)

The dual problem of the uniform approximation of f on [−M,M ] yields two

probability measures supported on [−M,M ], denoted by µ and ν, that match
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moments of degrees of 1, . . . , L, with functional values separated by

|Eµf − Eνf | = 2EL(f, [−M,M ]) = 2EL(Lip(1), [−M,M ]) =
Mπ

L
(1− o(1)).

Define two priors on [−M,M ]n by U = (U1, . . . , Un) ∼ µ⊗n and U ′ =

(U ′1, . . . , U
′
n) ∼ ν⊗n. By the separation property of µ and ν, the functional

values are separated on average by

E[T (U)− T (U ′)] = |Eµf − Eνf | =
Mπ

L
(1− o(1)). (8.53)

The marginal distributions of samples under two priors are n i.i.d. Gaussian

mixtures EX∼µ[N(X, 1)]⊗n and EX∼ν [N(X, 1)]⊗n, respectively. By the mo-

ment matching property of µ and ν, the Gaussian mixtures cannot be tested

reliably, as shown in Lemma 8.9 [39].

Lemma 8.9. Suppose µ, ν supported on [−M,M ] match moments of degree

1, . . . , L. Then

χ2(EX∼µ[N(X, 1)]‖EX∼ν [N(X, 1)]) ≤ eM
2/2
∑
k>L

M2k

k!
. (8.54)

Theorem 8.12. If M is a constant, then

inf
π̂

sup
θ∈[−M,M ]n

E[W1(π, π̂)] ≥ πM

2

log log n

log n
(1 + o(1)). (8.55)

If M = Mn =
√

log n, then

inf
π̂

sup
θ∈[−Mn,Mn]n

E[W1(π, π̂)] &
1√

log n
. (8.56)

Proof. Define two high probability concentration events:

E =

{∣∣∣∣∣ 1n
n∑
i=1

f(Ui)− Eµf

∣∣∣∣∣ ≤ ε

}
, E ′ =

{∣∣∣∣∣ 1n
n∑
i=1

f(U ′i)− Eνf

∣∣∣∣∣ ≤ ε

}
,

and by the Chebyshev inequality,

P[Ec],P[E ′c] ≤ var[f(X)]

nε2
≤ M2

nε2
,
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since Lip(f) ≤ 1 on [−M,M ]. Finally, we construct two priors by π = PU |E

and π′ = PU ′|E′ , respectively. By the definition of E,E ′ and the separation of

mean values in (8.53), the functional values in two hypotheses are separated

by

T (U)− T (U ′) ≥ Mπ

L
(1− o(1))− 2ε. (8.57)

By triangle inequality, the total variation distance between two hypotheses

is

TV(PX|E, PX′|E) ≤ P[Ec] + P[E ′c] + TV(PX , PX′)

≤ P[Ec] + P[E ′c] +
√
χ2(PX‖PX′). (8.58)

Applying the upper bound of the χ2 distance in (8.54) yields that

TV(PX|E, PX′|E) ≤ 2M2

nε2
+

√√√√exp

(
neM2/2

∑
k>L

M2k

k!

)
− 1. (8.59)

If M is a fixed constant, we can pick L = logn
log logn

(1 + o(1)) and ε = n−1/4

to obtain (8.55); if M = Mn =
√

log n, we can pick L � log n and ε = n−1/4

to obtain (8.56).

Fano method. Let Θ = [−M,M ]n. For θ = (θ1, . . . , θn) ∈ Θ denote the

histogram by πθ = 1
n

∑
δθi and the law of the observation by Pθ = N(θ, In).

For any θ, θ′ ∈ Θ, the Kullback-Leibler divergence between observations is

D(Pθ‖Pθ′) =
‖θ − θ′‖2

2

2
.

The Wp distance for p ≥ 1 between histograms is (see, e.g., [161, 2.2.2])

Wp(πθ, πθ′) =
‖θ̃ − θ̃′‖p
n1/p

,

where θ̃ and θ̃′ are an ordered sequence of θ and θ′, respectively.

The goal is to find a c-packingM of {πθ : θ ∈ Θ} in W1 distance such that

log |M| & sup
θ,θ′∈M

‖θ − θ′‖2
2.

If M = Mn � n, we can construct an explicit packing: Let the grid be
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G = (g1, . . . , gn) be the equipartition of the interval [−Mn,Mn]. Consider

the θ of form θ = G+ αε where α ∈ {0, 1}n and ε & 1. Then

‖θ − θ′‖2
2 = ε2dH(α, α′),

where dH denotes the Hamming distance. When ε is a small constant that

ε ≤ 2Mn/n, the W1 distance is simply

W1(Pθ, Pθ′) =
1

n
‖θ − θ′‖1 =

εdH(α, α′)

n
.

By Gilbert-Varshamov bound, the maximal cn-packing of {0, 1}n in Ham-

ming distance has size at least

|M| ≥ 2n∑cn−1
j=0

(
n
j

) .
Hence, log |M| & n. By letting ε be a small constant and applying Fano

method, we conclude that, when M = Mn � n,

inf
π̂

sup
θ∈[−Mn,Mn]n

E(W1(π, π̂))2 & 1.

8.5.6 `2-norm of the coefficients of bounded polynomials

For any polynomial p(x) =
∑L

i=0 aix
i, denote the coefficients by a = (a0, . . . ,

aL), then the sum of squares of its coefficients is given by the following

compact formula:
L∑
i=0

|ai|2 =
1

2π

∮
|z|=1

|p(z)|2dz.

Then, combining the triangle inequality, we have

‖a‖2 ≤ sup
|z|=1

|p(z)| ≤ ‖a‖1. (8.60)

Lemma 8.10. If the polynomial p of degree L satisfies |p(x)| ≤ 1 on [−1, 1],

then |p(z)| ≤ (1 +
√

2)L on |z| = 1.

Proof. Let f(y) , p(y+y−1

2
)/yL which is analytic and bounded on |y| ≥ 1.

For y = eiθ, |f(y)| = |p(cos θ)| ≤ 1. By the maximum modulus principle,
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|f(y)| ≤ 1 for any |y| > 1. Consider |z| = 1 and let y+y−1

2
= 2 for some

|y| ≥ 1. Then y = z±
√
z2 − 1 and by triangle inequality |y| ≤ 1+

√
2. Since

|f(y)| ≤ 1, then |p(z)| ≤ |y|L ≤ (1 +
√

2)L.

Corollary 8.2. Let PL(x) =
∑L

i=0 aix
i and suppose |PL(x)| ≤M on [−K,K].

Denote the vector b = (a0K
0, a1K

1, . . . , aLK
L).

‖b‖2 ≤M(1 +
√

2)L. (8.61)

Remark 8.4. Consider the Chebyshev polynomial TL(z) = 1
2
(yL + y−L),

where z = y+y−1

2
. TL(x) is bounded by one on [−1, 1].

|TL(i)| = |(
√

2 + 1)L + (−1)L(
√

2− 1)L|
2

≥ (
√

2 + 1)L − (
√

2− 1)L

2
.

By (8.60), the upper bound in (8.61) has a tight exponent. This is also

observed by the explicit formula for the Chebyshev polynomial:

TL(x) =
L

2

bL/2c∑
j=0

(−1)j

L− j

(
L− j
j

)
(2x)L−2j.

The coefficients at j = αL with α = 2−
√

2
4

is

1

2(1− α)

(
(1− α)L

αL

)
2(1−2α)L

≥ 1

2(1− α)

1

2
√

2αL(1− α
1−α)

exp

(
L

(
(1− α)h

(
α

1− α

)
+ (1− 2α) log 2

))

� (1 +
√

2)L√
L

,

where h(x) , −x log x − (1 − x) log(1 − x) and we used the bound on the

binomial coefficient in [140, Lemma 4.7.1].
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8.6 Proofs

8.6.1 Proofs of density estimation

Proof of Theorem 8.3. By scaling it suffices to consider M = 1. Similar to

(8.15) and (8.16), we obtain an estimated mixing distribution ν̂ supported

on k atoms in [−1, 1] such that, with probability 1− δ,

‖m2k−1(ν̂)−m2k−1(ν)‖2 ≤
√
ck log(1/δ)/n,

for some constant ck that depends on k. The conclusion follows from Lemmas

7.5 and 7.4.

Proof of Theorem 8.4. Recall that f is 1-subgaussian and σ is a fixed con-

stant. Similar to (8.16), we obtain an estimate m̃r for Ef [γr(X, σ)] (see the

definition of γr(·, σ) in (8.13)) for r = 1, . . . , 2k−1 such that, with probability

1− δ,
|m̃r − Ef [γr(X, σ)]| ≤

√
ck log(1/δ)/n,

for some constant ck that depends on k. By assumption, TV(f, g) ≤ ε

where both f and g are 1-subgaussian. Let g = ν ∗ N(0, σ2). Then, us-

ing Lemma 8.11 and the triangle inequality, we have

|m̃r −mr(ν)| ≤ Ok

(
ε
√

log(1/ε) +
√

log(1/δ)/n
)
, r = 1, . . . , 2k − 1.

Using the projection (8.12), we obtain ν̂ similar to (8.15) such that

‖m2k−1(ν̂)−m2k−1(ν)‖2 ≤ Ok

(
ε
√

log(1/ε) +
√

log(1/δ)/n
)
.

Let f̂ = ν̂ ∗N(0, σ2). Using the moment comparison in Lemmas 7.5 and 7.4,

and applying the upper bound TV(f̂ , g) ≤
√
χ2(f̂‖g)/2, we obtain that

TV(f̂ , g) ≤ Ok

(
ε
√

log(1/ε) +
√

log(1/δ)/n
)
.

The conclusion follows from the triangle inequality.

Lemma 8.11. Let σ be a constant. If f and g are 1-subgaussian, and
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TV(f, g) ≤ ε, then,

|Ef [γr(X, σ)]− Eg[γr(X, σ)]| ≤ Or(ε
√

log(1/ε)).

Proof. The total variation distance has the following variational representa-

tion:

TV(f, g) =
1

2
sup
‖h‖∞≤1

|Efh− Egh|. (8.62)

Here the function γr(·, σ) is a polynomial and unbounded, so the above rep-

resentation cannot be directly applied. Instead, we apply a truncation ar-

gument, thanks to the subgaussianity of f and g, and obtain that, for both

X ∼ f and g (see Lemmas 8.27 and 8.29),

E[γr(X, σ)1{|X|≥α}] ≤ (O(
√
r))rE|Xr1{|X|≥α}| ≤ (O(α

√
r))re−α

2/2.

Note that by definition (8.13), γr(x, σ) on |x| ≤ α is at most (O(α
√
r))r.

Applying (8.62) yields that, for h(x) = γr(x, σ)1{|x|≤α},

|Efh− Egh| ≤ ε(O(α
√
r))r.

The conclusion follows by choosing α = Or(
√

log(1/ε)) and using the triangle

inequality.

8.6.2 Proofs for Section 8.2.1

Proof of Lemma 8.1. Note that m̃r = 1
n

∑n
i=1 γr(Xi, σ). Then we have

var[m̃r] =
1

n
var[γr(X, σ)],

where X ∼ ν ∗N(0, σ2). Since the standard deviation of a summation is at

most the sum of individual standard deviations, using (8.13), we have

√
var[γr(X, σ)] ≤ r!

br/2c∑
j=0

(1/2)j

j!(r − 2j)!
σ2j
√

var[Xr−2j].
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X can be viewed as U + σZ where U ∼ ν and Z ∼ N(0, 1) independent of

U . Since ν is supported on [−M,M ], for any ` ∈ N, we have

var[X`] ≤ E[X2`] ≤ 22`−1(M2` + E|σZ|2`) ≤ ((2M)` + E|3σZ|`)2,

where in the last step we used the inequality E|Z|2` ≤ 2`(E|Z|`)2 (see Lemma

8.12). Therefore,

√
var[γr(X, σ)] ≤ r!

br/2c∑
j=0

(1/2)j

j!(r − 2j)!
σ2j((2M)r−2j + E|3σZ|r−2j)

= E(2M + σZ ′)r + E(3σ|Z|+ σZ ′)r,

where Z ′ ∼ N(0, 1) independent of Z. The conclusion follows by the moments

of the standard normal distribution (see [54]).

Lemma 8.12. Let Z ∼ N(0, 1). For ` ∈ N, we have√
π

8
≤ E|Z|2`

2`(E|Z|`)2
≤
√

2

π
.

Proof. Direct calculations lead to (see [212, 3.461.2–3]):

E|Z|2`

2`(E|Z|`)2
=


(2`
` )

( `
`/2)2`

, ` even,

π`
8`

(
2`
`

)(
`−1
`−1

2

)
, ` odd.

Using 2n√
2n
≤
(
n
n/2

)
≤ 2n

√
2
πn

[140, Lemma 4.7.1], we obtain that

√
π

8
≤

(
2`
`

)(
`
`/2

)
2`
≤
√

2

π
,

π

4

√
`

2(`− 1)
≤ π`

8`

(
2`

`

)(
`− 1
`−1

2

)
≤

√
`

2(`− 1)
,

which prove this lemma for ` ≥ 5. For ` ≤ 4 the lemma follows from the

above equalities.
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8.6.3 Proofs for Section 8.2.2

Proof of Proposition 8.1. By scaling it suffices to consider M = 1. Without

loss of generality assume σ ≥ σ̂ and otherwise we can interchange π and π̂.

Let τ 2 = σ2 − σ̂2 and ν ′ = ν ∗N(0, τ 2). Similar to (8.20), we obtain that

|mr(ν
′)−mr(ν̂)| ≤ (c

√
k)2kε, r = 1, . . . , 2k, (8.63)

for some absolute constant c. Using Lemma 8.13 yields that τ ≤ O(ε
1
2k ). It

follows from Proposition 7.2 that

W1(ν ′, ν̂) ≤ O
(
k1.5ε

1
2k

)
.

The conclusion follows from W1(ν ′, ν) ≤ O(τ) and the triangle inequality.

Lemma 8.13. Suppose π = ν ∗ N(0, τ 2) and π′ is k-atomic supported on

[−1, 1]. Let ε = maxi∈[2k] |mi(π)−mi(π
′)|. Then,

τ ≤ 2 (ε/k!)
1
2k .

Proof. Denote the support of π′ by {x′1, . . . , x′k}. Consider the polynomial

P (x) =
∏k

i=1(x− x′i)2 =
∑2k

i=0 aix
i that is almost surely zero under π′. Since

every |x′i| ≤ 1, similar to (7.7), we obtain that

Eπ[P ] = |Eπ[P ]− Eπ′ [P ]| ≤ 22kε.

Since π = ν ∗N(0, τ 2), we have

Eπ[P ] ≥ min
x

E[P (x+ τZ)] ≥ τ 2k min
y1,...,yk

E

[∏
i

(Z + yi)
2

]
= k!τ 2k,

where Z ∼ N(0, 1), and in the last step we used Lemma 8.14.

Lemma 8.14. Let Z ∼ N(0, 1). Then,

min{E[p2(Z)] : deg(p) ≤ k, p is monic} = k!

achieved by p = Hk.

Proof. Since p is monic, it can be written as p = Hk +
∑k−1

j=0 αjHj, where
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Hj is the Hermite polynomial (2.21). By the orthogonality (2.20), we have

E[p2(Z)] = k! +
∑k−1

j=0 α
2
jj! and the conclusion follows.

Proof of Lemma 8.2. The proof is similar to [49, Theorem 5B]. Let M̂r(σ)

denote the moment matrix associated with the empirical moments of γi(X, σ)

for i ≤ 2r, and let

σ̂r = inf{σ > 0 : det(M̂r(σ)) = 0}. (8.64)

The smallest positive zero of d̂k is given by σ̂k. Direct calculation shows that

σ̂1 = s. Since the mixture distribution has a density, then almost surely, the

empirical distribution has n points of support. By Theorem 2.12, the matrix

M̂r(0) is positive definite and thus σ̂r > 0 for any r < n. For any q < r,

if M̂r(σ) is positive definite, then M̂q(σ) as a leading principal submatrix is

also positive definite. Since eigenvalues of M̂r(σ) are continuous functions of

σ, we have σ̂r > σ ⇒ σ̂q > σ, and thus

σ̂q ≥ σ̂r, ∀ q < r. (8.65)

In particular, σ̂k ≤ σ̂1.

Proof of Lemma 8.3. We continue to use the notation in (8.64). Applying

(8.65) and Lemma 8.2 yields that

0 < σ̂ = σ̂k ≤ σ̂k−1 ≤ ... ≤ σ̂1 = s,

and for any σ < σ̂j, the matrix M̂j(σ) is positive definite. Since det(M̂k(σ̂)) =

0, then, for some r ∈ {1, . . . , k}, we have det(M̂j(σ̂)) = 0 for j = r, . . . , k,

and det(M̂j(σ̂)) > 0 for j = 0, . . . , r − 1. By Theorem 2.12, there exists an

r-atomic distribution whose jth moment coincides with γ̂j(σ̂) for j ≤ 2r. It

suffices to show that r = k almost surely.

Since the mixture distribution has a density, in the following we condition

on the event that all samples X1, . . . , Xn are distinct, which happens almost

surely, without loss of generality. We first show that the empirical moments

(γ̂1, . . . , γ̂n), where γ̂j = 1
n

∑
iX

j
i , have a joint density in Rn. The Jabobian
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matrix of this transformation is

1

n


1

2
. . .

n




1 · · · 1

X1 · · · Xn

...
. . .

...

Xn−1
1 · · · Xn−1

n

 ,

which is invertible. Since those n samples (X1, . . . , Xn) have a joint density,

then the empirical moments (γ̂1, . . . , γ̂n) also have a joint density.

Suppose, for the sake of contradiction, that r ≤ k−1. Then det(M̂r−1(σ̂)) >

0 and det(M̂r(σ̂)) = det(M̂r+1(σ̂)) = 0. In this case, m̂2r+1(σ̂) is a deter-

ministic function of m̂1(σ̂), . . . , m̂2r(σ̂) (see Lemma 8.26). Since σ̂ is the

smallest positive root of d̂r(σ) = 0, it is uniquely determined by (γ̂1, . . . , γ̂2r).

Therefore, m̂2r+1(σ̂), and thus γ̂2r+1, are both deterministic functions of

(γ̂1, . . . , γ̂2r), which happens with probability zero, since the sequence (γ̂1,

. . . , γ̂2r+1) has a joint density. Consequently, r ≤ k − 1 with probability

zero.

The proof of (8.21) relies on the following result, which obtains a tail

probability bound by comparing moments.

Lemma 8.15. Let ε = maxi∈[2k] |mi(ν) − mi(ν
′)|. If either ν or ν ′ is k-

atomic, and ν is supported on [−1, 1], then, for any t > 1,

P[|Y | ≥ t] ≤ 22k+1ε/(t− 1)2k, Y ∼ ν ′.

Proof. We only show the upper tail bound P[Y ≥ t]. The lower tail bound

of Y is equal to the upper tail bound of −Y .

• Suppose ν is k-atomic supported on {x1, . . . , xk}. Consider a polyno-

mial P (x) =
∏

i(x− xi)2 of degree 2k that is almost surely zero under

ν. Since every |xi| ≤ 1, similar to (7.7), we obtain that

Eν′ [P ] = |Eν [P ]− Eν′ [P ]| ≤ 22kε.

Using Markov inequality, for any t > 1, we have

P[Y ≥ t] ≤ P[P (Y ) ≥ P (t)] ≤ E[P (Y )]

P (t)
≤ 22kε

(t− 1)2k
.
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• Suppose ν ′ is k-atomic supported on {x1, . . . , xk}. If those values are

all within [−1, 1], then we are done. If there are at most k − 1 values,

denoted by {x1, . . . , xk−1}, are within [−1, 1], then we consider a poly-

nomial P (x) = (x2 − 1)
∏

i(x− xi)2 of degree 2k that is almost surely

non-positive under ν. Similar to (7.7), we obtain that

Eν′ [P ] ≤ Eν′ [P ]− Eν [P ] ≤ 22kε.

Since P ≥ 0 almost surely under ν ′, the conclusion follows follows

analogously using Markov inequality.

Lemma 8.16. Let

π = ν ∗N(0, τ 2), π̂ = ν̂,

where ν and ν are both k-atomic, ν is supported on [−1, 1], and τ ≤ 1. If

|mi(π)−mi(π̂)| ≤ ε for i ≤ 2k, then, for any t ≥
√

18k,

P[|Û | ≥ t] ≤ 22k+1ε

( t√
18k
− 1)2k

, Û ∼ ν̂.

Proof. Let g be the (k + 1)-point Gauss quadrature of the standard normal

distribution. Furthermore, g is supported on [−
√

4k + 6,
√

4k + 6] for some

absolute constant c (see the bound on the zeros of Hermite polynomials in

[53, p. 129]). Let G ∼ g, U ∼ ν, and Û ∼ ν̂. Denote the maximum absolute

value of U + τG by M which is at most 1 +
√

4k + 6 ≤
√

18k for k ≥ 1.

Applying Lemma 8.15 with the distributions of U+τG√
18k

and Û√
18k

yields the

conclusion.

8.6.4 Proofs for Section 8.2.3

Proof of Theorem 8.5. Note that U and Û are both supported on a set of

2k atoms, and the largest cluster of U is of size at most k − k0 + 1. Since

different clusters of U are separated by γ, then each atom of either U and Û

is at least γ/2 away from all but 2k − k0 atoms. From the proof of (8.7), we

have |mr(Û) − mr(U)| < (O(
√
k))2k

√
log(k/δ)

n
. The conclusion follows from

Proposition 7.3.

Proof of Proposition 8.2. The proof is similar to Proposition 8.1, except that
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moment comparison theorem Proposition 7.2 is replaced by its adaptive ver-

sion Proposition 7.4. Recall (8.63):

|mr(ν
′)−mr(ν̂)| ≤ (c

√
k)2kε, r = 1, . . . , 2k,

where ν ′ = ν ∗ N(0, τ 2) and τ 2 = |σ2 − σ̂2|. Since ν̂ ∗ N(0, 1) has k0 γ-

separated clusters, any t ∈ R can be γ/2 close to at most k − k0 + 1 atoms

of ν̂. Applying Proposition 7.4 yields that

W1(ν ′, ν̂) ≤ 8k

(
k(4c
√
k)2kε

(γ/2)2(k0−1)

) 1
2(k−k0+1)

.

Using Lemma 8.17 yields that τ ≤ Ok(W1(ν ′, ν̂)). The conclusion follows

from W1(ν ′, ν) ≤ O(τ) and the triangle inequality.

Lemma 8.17. Suppose π = ν ∗N(0, τ 2) and π′ is k-atomic. Then

τ ≤ Ok(W1(π, π′)).

Proof. In this proof we write W1(X, Y ) = W1(PX , PY ). Let Z ∼ N(0, 1),

U ∼ ν, and U ′ ∼ π′. For any x ∈ R, we have

W1(x+ τZ, U ′) = τW1(Z, (U ′ − x)/τ) ≥ ckτ,

where ck = inf{W1(Z, Y ) : Y is k-atomic}.9 For any couping between U+τZ

and U ′,

E|U + τZ − U ′| = E[E[|U + τZ − U ′||U ]] ≥ ckτ.

Proof of Theorem 8.5. By scaling it suffices to consider M = 1. Recall that

the Gaussian mixture is assumed to have k0 γ-separated clusters in the sense

of Definition 8.1, that is, there exists a partition S1, . . . , Sk0 of [k] such that

|µi − µi′ | ≥ γ for any i ∈ S` and i′ ∈ S`′ such that ` 6= `′. Denote the union

of the support sets of ν and ν̂ by S. Each atom is S is at least γ/2 away

from at least k0 − 1 other atoms. Then (8.22) follows from Proposition 7.3

with ` = 2k and `′ = (2k − 1)− (k0 − 1).

9We can prove that ck ≥ Ω(1/k) using the dual formula (6.3).
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8.6.5 Proofs for Section 8.2.4

Lemma 8.18. Assume in the Gaussian mixture (8.1) wi ≥ ε, σ = 1. Suppose

L =
√
c log n in Algorithm 8.3. Then, with probability at least 1 − ke−n′ε −

n−( c
8
−1), the following holds:

• `j ≤ 3kL for every j.

• Let Xi = Ui + Zi for i ∈ [n], where Ui ∼ ν is the latent variable and

Zi ∼ N(0, 1). Then, |Zi| ≤ 0.5L for every i ∈ [n]; Xi ∈ Ij if and only

if Ui ∈ Ij.

Proof. By the union bound, with probability 1 − ke−n′ε − n−( c
8
−1), the fol-

lowing holds:

• |Zi| ≤ 0.5L for every i ∈ [n].

• For every j ∈ [k], there exists i ≤ n′ such that Ui = µj.

Recall the disjoint intervals I1 ∪ . . . ∪ Is = ∪n′i=1[Xi ± L]. Then, we obtain

that
k⋃
j=1

[µj ± 0.5L] ⊆ I1 ∪ · · · ∪ Is ⊆
k⋃
j=1

[µj ± 1.5L].

The total length of all intervals is at most 3kL. Since |Zi| ≤ 0.5L, Xi =

Ui + Zi is in the same interval as Ui.

Proof of Theorem 8.6. Since n′ ≥ Ω( log(k/δ)
ε

), applying Lemma 8.18 yields

that, with probability at least 1− δ
3
− n−Ω(1), the following holds:

• `j ≤ O(kL) for every j.

• Let Xi = Ui + σZi for i ∈ [n] as in Lemma 8.18. Then, |Zi| ≤ 0.5L for

every i ∈ [n]; Xi ∈ Ij if and only if Ui ∈ Ij.

The intervals I1, . . . , Is are independent of every Cj and are treated as de-

terministic in the remaining proof. We first evaluate the expected moments

of samples in Cj, conditioned on |Zi| ≤ L′ , 0.5L. Let X = U + σZ where

U ∼ ν and Z ∼ N(0, 1). Then,

E[(X − cj)r|X ∈ Ij, |Z| ≤ L′] = E[(X − cj)r|U ∈ Ij, |Z| ≤ L′]

= E[(U ′j + σZ)r||Z| ≤ L′],
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where U ′j = Uj − cj, and Uj ∼ PU |U∈Ij . Since |U ′j| ≤ O(kL) and L′ =

Θ(
√

log n), the right-hand side differs from the unconditional moment by

(see Lemma 8.30)

|E[(U ′j+σZ)r||Z| ≤ L′]−E[(U ′j+σZ)r]| ≤ (kLσ
√
r)rn−Ω(1), r = 1, . . . , 2k−1,

which is less than n−1 when k ≤ O( logn
log logn

). Therefore, the accuracy of

empirical moments in (8.14), (8.19) and thus Theorem 8.1 are all applicable.

Since wi ≥ ε, with probability at least 1− δ
3
, each Cj contains Ω(nε) samples,

and applying Theorem 8.1 yields that, with probability 1− δ
3
,

W1(ν̂j, νj) ≤

O(Lk2.5( nε
log(3k/δ)

)−
1

4k−2 ), σ known,

O(Lk3( nε
log(3k/δ)

)−
1
4k ), σ unknown,

for every j, where νj denotes the distribution of U ′j and ν̂j is the estimate

in Theorem 8.1. Using the weights threshold τ = ε/(2k), and applying

Lemma 8.19, we obtain that

dH(supp(ν̂j), supp(νj)) ≤
W1(ν̂j, νj)

ε/(2k)
.

The conclusion follows.

Lemma 8.19. Let ν be a discrete distribution whose atom has at least ε

probability. Let Sν and Sν̂ denote the support sets of ν and ν̂, respectively.

For Ŝ ⊆ Sν̂,

dH(Sν , Ŝ) ≤ W1(ν, ν̂)

(miny∈Ŝ ν̂(y)) ∧ (ε− ν̂(Ŝc))+

.

Proof. This is a generalization of Lemma 6.2 in the sense that the minimum

weight of ν̂ is unknown. For any coupling PXY such that X ∼ ν and Y ∼ ν̂,

for any y ∈ Ŝ,

E|X − Y | ≥ ν̂(y)E[|X − Y ||Y = y] ≥ ε1 min
x∈Sν
|x− y|,

where ε1 = miny∈Ŝ ν̂(y). Note that P[Y 6∈ Ŝ, X = x] ≤ ν̂(Ŝc) and ν(x) ≥ ε

for any x ∈ Sν . Then we have P[Y ∈ Ŝ, X = x] ≥ (ε − ν̂(Ŝc))+ , ε2, and

thus

E|X − Y | ≥ ε2E[|X − Y ||X = x, Y ∈ Ŝ] ≥ ε2 min
y∈Ŝ
|x− y|.

228



Using the definition of dH in (6.5), the proof is complete.

8.6.6 Proofs for Section 8.3

Proof of Theorem 3.4. Let U ∼ ν and U ′ ∼ ν ′. If ν and ν ′ are ε-subgaussian,

then var[U ′] ≤ ε2, and E|U |p,E|U ′|p ≤ 2(ε
√
p/e)p [54]. Applying the χ2

upper bound from moment difference in Lemma 7.5 yields that

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) ≤ eε
2/2
∑
j≥`+1

16ε2j√
2πj

,

where we used Stirling’s approximation n! >
√

2πn(n/e)n. If ν and ν ′ are sup-

ported on [−ε, ε], the conclusion is obtained similarly by using E|U |p,E|U ′|p ≤
εp.

Proof of Proposition 8.3. Let ν and ν ′ be the optimal pair of distributions

for (8.24). Applying Theorem 3.4 yields that

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) ≤ c

(
eε2

2k − 1

)2k−1

,

for some absolute constant c. The two mixing distributions satisfy (see

Lemma 8.20)

W1(ν, ν ′) ≥ Ω(ε/
√
k).

The conclusion follows by choosing ε = c′
√
kn−

1
4k−2 for some absolute con-

stant c′ and applying Le Cam’s method [96].

Lemma 8.20.

sup{W1(ν, ν ′) : m`(ν) = m`(ν
′), ν, ν ′ on [−1, 1]} = Θ(β/(`+ 1)).

Furthermore, the supremum is β(π−o(1))
`+1

as ` → ∞, and is achieved by two

distributions whose support sizes differ by at most one and sum up to `+ 2.

Proof. It suffices to prove for β = 1. Using the dual characterization of the

W1 distance in Section 6.2, the supremum is equal to

sup
f :1−Lipschitz

sup {Eνf − Eν′f : m`(ν) = m`(ν
′), ν, ν ′ on [−β, β]} .
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Using the duality between moment matching and best polynomial approxi-

mation (see [55, Appendix E]), the optimal value is further equal to

2 sup
f :1−Lipschitz

inf
P :degree ≤`

sup
|x|≤1

|f(x)− P (x)|.

The above value is the best uniform approximation error over 1-Lipschitz

functions, a well-studied quantity in the approximation theory (see, e.g.,

[210, section 4.1]), and thus the optimal values in the lemma are obtained. A

pair of optimal distributions are supported on the maxima and the mimima

of P ∗− f ∗, respectively, where f ∗ is the optimal 1-Lipschitz function and P ∗

is the best polynomial approximation for f ∗. The numbers of maxima and

minima differ by at most one by Chebyshev’s alternating theorem (see, e.g.,

[34, p. 54]).

Proof of Proposition 8.4. Let ν = N(0, ε2) and ν ′ be its k-point Gauss quadra-

ture. Then m2k−1(ν) = m2k−1(ν ′) and ν and ν ′ are both ε-subgaussian (see

Lemma 2.1). Applying Theorem 3.4 yields that

χ2(ν ∗N(0, 1)‖ν ′ ∗N(0, 1)) ≤ O(ε4k).

Note that ν ∗ N(0, 1) = N(0, 1 + ε2) is a valid Gaussian mixture distribu-

tion (with single zero mean component). Between the above two mixture

models, the variance parameters differ by ε2; the mean parameters satisfy

W1(gk, δ0) ≥ Ω(ε/
√
k) (see Lemma 2.2). The conclusion follows by choosing

ε = cn−
1
4k for some absolute constant c applying applying Le Cam’s method

[96].

8.6.7 Standard form of the semidefinite programming (8.12)

Given an arbitrary vector m̃ = (m̃1, . . . , m̃r), we want to compute its projec-

tion onto the moment space Mr([a, b]). By introducing an auxiliary scalar

variable t satisfying t ≥ ‖x‖2
2, (8.12) is equivalent to

min t− 2〈m̃, x〉+ ‖m̃‖2
2,

s.t. t ≥ ‖x‖2
2, x satisfies (2.16).
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This is a semidefinite programming with decision variable (x, t), since the

constraint t ≥ ‖x‖2
2 is equivalent to

[
t x>

x I

]
� 0 using Schur complement

(see, e.g., [213]).

8.6.8 Auxiliary lemmas

Lemma 8.21. If |E[X`] − E[X ′`]| ≤ (C
√
`)`ε for ` = 1, . . . , r, then, for γr

in (8.13),

|E[γr(X, σ)]− E[γr(X
′, σ)]| ≤ ε

(
(2σ
√
r/e)r + (2C

√
r)r
)
.

Proof. Note that |E[X`] − E[X ′`]| ≤ E|C
√
eZ ′|rε by Lemma 8.22, where

Z ′ ∼ N(0, 1). Then,

|E[γr(X, σ)]− E[γr(X
′, σ)]| ≤

br/2c∑
i=0

r!σ2i

i!(r − 2i)!2i
E[|C
√
eZ ′|r]ε

= ε · E[(σZ + |C
√
eZ ′|)r],

where Z ∼ N(0, 1) independent of Z ′. Applying (a + b)r ≤ 2r−1(|a|r + |b|r)
and Lemma 8.22 completes the proof.

Lemma 8.22.

(p/e)p/2 ≤ E|Z|p ≤
√

2(p/e)p/2, p ≥ 0.

Proof. Note that

E|Z|p

(p/e)p/2
=

2p/2Γ(p+1
2

)
√
π(p/e)p/2

, f(p), ∀ p ≥ 0.

Since f(0) = 1 and f(∞) =
√

2, it suffices to show that f is increasing in

[0,∞). Equivalently, x
2

log 2e
x

+ log Γ(x+1
2

) is increasing, which is equivalent

to ψ(x+1
2

) ≥ log x
2

by the derivative, where ψ(x) , d
dx

log Γ(x). The last

inequality holds for any x > 0 (see, e.g., [214, (3)]).

Lemma 8.23. Let r ≥ 2. Then,∫ (
δ∏r

i=1 |t− xi|
∧ 1

)
dt ≤ 4rδ

1
r .
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Proof. Without loss of generality, let x1 ≤ x2 ≤ · · · ≤ xr. Note that

∫ (
δ∏r

i=1 |t− xi|
∧ 1

)
dt =

∫ x1

−∞
+

∫ x1+x2
2

x1

+

∫ x2

x1+x2
2

+ · · ·+
∫ ∞
xr

.

There are 2r terms in the summation and each term can be upper bounded

by ∫ ∞
xi

(
δ

|t− xi|r
∧ 1

)
dt =

∫ ∞
0

(
δ

tr
∧ 1

)
dt =

r

r − 1
δ

1
r .

The conclusion follows.

Lemma 8.24. Given any 2k distinct points x1 < x2 < · · · < x2k, there exist

two distributions ν and ν ′ supported on {x1, x3, . . . , x2k−1} and {x2, x4, . . . , x2k},
respectively, such that m2k−2(ν) = m2k−2(ν ′).

Proof. Consider the following linear equation
1 1 · · · 1

x1 x2 · · · x2k

...
...

. . .
...

x2k−2
1 x2k−2

2 · · · x2k−2
2k



w1

w2

...

w2k

 = 0.

This underdetermined system has a non-zero solution. Let w be a solution

with ‖w‖1 = 2. Since all weights sum up to zero, then positive weights in

w sum up to 1 and negative weights sum up to −1. Let one distribution be

supported on xi with weight wi for wi > 0, and the other one be supported

on the remaining xi’s with the corresponding weights |wi|. Then these two

distribution match the first 2k − 2 moments.

It remains to show that the weights in any non-zero solution have alter-

nating signs. Note that all weights are non-zero: if one wi is zero, then

the solution must be all zero since the Vandermonde matrix is of full row

rank. To verify the signs of the solution, without loss generality, assume that

w2k = −1 and then
1 · · · 1

x1 · · · x2k−1

...
. . .

...

x2k−2
1 · · · x2k−2

2k−1




w1

w2

...

w2k−1

 =


1

x2k

...

x2k−2
2k

 .
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The solution has an explicit formula that wi = Pi(x2k) where Pi is an interpo-

lating polynomial of degree 2k−2 satisfying Pi(xj) = 1 for j = i and Pi(xj) =

0 for all other j ≤ 2k−1. Specifically, we have wi =
∏
j 6=i,j≤2k−1(x2k−xj)∏
j 6=i,j≤2k−1(xi−xj) , which

satisfies wi > 0 for odd i and wi < 0 for even i. The proof is complete.

Lemma 8.25 (Non-existence of an unbiased estimator). Let X1, . . . , Xm be

independent samples distributed as pN(s, σ2)+(1−p)N(t, σ2) = ν ∗N(0, σ2),

where ν = pδs + (1− p)δt and p, s, t, σ are the unknown parameters. For any

r ≥ 2, unbiased estimator for the rth moments of ν, namely, psr + (1− p)tr,
does not exist.

Proof. We will derive a few necessary conditions for an unbiased estimator,

denoted by g(x1, . . . , xm), and then arrive at a contradiction. Expand the

function under the Hermite basis

g(x1, . . . , xm) =
∑

n1,...,nm≥0

αn1,...,nm

∏
i

Hni(xi),

and denote by Tn(µ, σ2) the expected value of the Hermite polynomial EHn(X)

under Gaussian model X ∼ N(µ, σ2). Without loss of generality we may as-

sume that the function g and the coefficients α are symmetric (permutation

invariant). Then, the expected value of the function g under σ2 = 1 is

E[g(X1, . . . , Xm)] =
∑

n1,...,nm≥0

αn1,...,nm

∏
i

(psni + (1− p)tni), (8.66)

which can be viewed as a polynomial in p, whereas the target is psr+(1−p)tr,
a linear function in p. Matching polynomial coefficients yields that∑

n1+···+nm≥0

αn1,...,nmt
n1+···+nm = tr, (8.67)∑

n1+···+nm≥0

αn1,...,nm(sn1 − tn1)tn2+···+nm ·m = sr − tr, (8.68)

∑
n1+···+nm≥0

αn1,...,nm

j∏
i=1

(sni − tni)tnj+1+···+nm = 0, ∀ j = 2, . . . ,m, (8.69)

where we used the symmetry of the coefficients α. The equality (8.69) with

j = m yields that αn1,...,nm 6= 0 only if at least one ni is zero; then (8.69) with

j = m− 1 yields that αn1,...,nm 6= 0 only if at least two ni are zero; repeating
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this for j = m,m−1, . . . , 2, we obtain that αn1,...,nm is non-zero only if at most

one ni is non-zero. Then the equality (8.68) implies that αn1,...,nm is non-zero

only if exactly one ni = r and the coefficient is necessarily 1
m

. Therefore, it

is necessary that the symmetric function is g(x1, . . . , xm) = 1
m

∑m
i=1Hr(xi).

However, this function is biased when σ2 6= 1.

Lemma 8.26. Given a sequence γ1, γ2, . . . , let Hj denote the Hankel matrix

of order j + 1 using 1, γ1, . . . , γ2j. Suppose det(Hr−1) 6= 0, and det(Hr) =

det(Hr+1) = 0. Then,

γ2r+1 = (γr+1, . . . , γ2r)(Hr−1)−1(γr, . . . , γ2r−1)>.

Proof. The matrices Hr−1 and Hr are both of rank r by their determinants.

We first show that the rank of [Hr, v], which is the first r + 1 rows of Hr+1

and is of dimension (r+ 1)× (r+ 2), is also r, where v , (γr+1, . . . , γ2r+1)>.

Suppose the rank is r+1. Then v cannot be in the image of Hr. By symmetry

of the Hankel matrix, the transpose of [Hr, v] is the first r + 1 columns of

Hr+1. Those r + 1 columns are linearly independent when its rank is r + 1.

Since det(Hr+1) = 0, then the last column of Hr+1 must be in the image of

the first r + 1 columns, which is a contradiction.

Since the first r columns of Hr+1 are linearly independent, and the first

r + 1 columns of Hr+1 are of rank r, then the (r + 1)th column of Hr+1 is

in the image of the first r columns, and thus γ2r+1 is a linear combination

of γr+1, . . . , γ2r. Since Hr−1 is of full rank, the coefficients can be uniquely

determined by (Hr−1)−1(γr, . . . , γ2r−1)>.

Lemma 8.27. If |x| > 1, then

|Hr(x)| ≤ (
√
cr|x|)r,

for some absolute constant c.

Proof. For |x| > 1,

|Hr(x)| ≤ r!

br/2c∑
j=0

(1/2)j

j!(r − 2j)!
|x|r = |x|r|Hn(i)| = |x|r|E(i + iZ)r|

= |x|r|E(1 + Z)r| ≤ (
√
cr|x|)r,

for some absolute constant c, where i =
√
−1 and Z ∼ N(0, 1).
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Lemma 8.28. Let Z ∼ N(0, 1).

P[Z > M ] ≤ e−
M2

2 .

Proof. Applying Chernoff bound yields that

P[Z > M ] ≤ exp(− sup
t

(tM − t2/2)) = exp(−M2/2).

Lemma 8.29. For r even, and M ≥ 1,

E[Zr1{|Z|>M}] ≤ r(O(
√
r))r

(
M r−1e−

M2

2

)
.

Proof. Applying an integral by parts yields that∫ ∞
M

xre−
x2

2 dx = M r−1e−
M2

2 + (r − 1)M r−3e−
M2

2 + (r − 1)(r − 3)M r−5e−
M2

2

+ · · ·+ (r − 1)!!

∫ ∞
M

e−
x2

2 dx.

Applying Lemma 8.28 and (r − 1)!! ≤ (O(
√
r))r, the conclusion follows.

Lemma 8.30. For M ≥ 1,

0 ≤ E[Zr]− E[Zr||Z| ≤M ] ≤ r(O(
√
r))r

(
M r−1e−

M2

2

)
.

Proof. For r odd, we have E[Zr] − E[Zr||Z| ≤ M ] = 0. For r even, the left

inequality is immediate since x 7→ xr is increasing. For the right inequality,

E[Zr]− E[Zr||Z| ≤M ] = E[Zr]−
E[Zr1{|Z|≤M}]

P[|Z| ≤M ]
≤

E[Zr]− E[Zr1{|Z|≤M}]

P[|Z| ≤M ]
,

and the conclusion follows from Lemma 8.29.

Lemma 8.31 (Distribution of random projection). Let X be uniformly dis-

tributed over the unit sphere Sd−1. For any a ∈ Sd−1 and r > 0,

P[|〈a,X〉| < r] < r
√
d.

Proof. Denote the surface area of the d-dimensional unit sphere by Sd−1 =
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2πd/2

Γ(d/2)
. By symmetry,

P[|〈a,X〉| < r] = P[|X1| < r] =

∫ r
−r(
√

1− x2)d−2Sd−2

√
1− x2dx

Sd−1

=
2Sd−2

Sd−1

∫ r

0

(1− x2)
d−3

2 dx < r
√
d,

where X1 is the first coordinate of X.

Lemma 8.32 (Accuracy of the spectral method). Let X1, . . . , Xn
i.i.d.∼ 1

2
N(−θ,

Id) + 1
2
N(θ, Id), where θ ∈ Rd. Let λS be the largest eigenvalue of S − Id,

where S = 1
n

∑
iXiX

>
i denotes the sample covariance matrix, and v̂ the

corresponding normalized eigenvector, where we decree that θ>v̂ ≥ 0. Let

ŝ =
√

(λS)+ and θ̂ = ŝv̂. If n > d, then, with high probability,

‖θ − θ̂‖2 ≤ O(d/n)1/4.

Proof. The samples can be represented in a matrix formX = θε>+Z ∈ Rd×n,

where ε ∈ Rn is a vector of independent Rademacher random variables, and

Z has independent standard normal entries. Using ε>ε = n, we have

S − Id = θθ> +B + C,

where B = 1
n
ZZ>−Id and C = 1

n
(θε>Z>+Zεθ>) are both symmetric. With

high probability, the largest eigenvalue of B is at most d/n + 2
√
d/n (see

[215, Theorem II.13]), which is O(
√
d/n) when n > d, and the spectral norm

of C is also O(
√
d/n). Then, |λS − ‖θ‖2

2| ≤ O(
√
d/n) by Weyl’s inequality,

and thus |ŝ − ‖θ‖2| ≤ O(d/n)1/4. Since v̂ maximizes ‖u>(S − Id)u‖ among

all unit vectors u ∈ Rd, including the direction of θ, then we obtain that

(θ>v̂)2 ≥ ‖θ‖2
2 −O(

√
d/n), and consequently,

‖θ − ‖θ‖2v̂‖2
2 ≤ O(

√
d/n).

The conclusion follows from the triangle inequality.

Lemma 8.33. The boundary of the space of the first 2k − 1 moments of

all distributions on R corresponds to distributions with fewer than k atoms,

while the interior corresponds to exactly k atoms.

Proof. Given m = (m1, . . . ,m2k−1) that corresponds to a distribution of ex-
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actly k atoms, by [49, Theorem 2A], the moment matrix Mk−1 is positive

definite. For any vector m′ in a sufficiently small ball around m, the corre-

sponding moment matrix M′
k−1 is still positive definite. Consequently, the

matrix M′
k−1 is of full rank, and thus m′ is a legitimate moment vector by

[9, Theorem 3.4] (or [46, Theorem 3.1]). If m corresponds to a distribution

with exactly r < k atoms, by [49, Theorem 2A], Mr−1 is positive definite

while Mr is rank deficient. Then, m is no longer in the moment space if m2r

is decreased.
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S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[28] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “MLlib: Machine learn-
ing in Apache Spark,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1235–1241, 2016.

[29] A. T. Kalai, A. Moitra, and G. Valiant, “Efficiently learning mixtures
of two Gaussians,” in Proceedings of the Forty-Second ACM Symposium
on Theory of Computing. ACM, 2010, pp. 553–562.

[30] A. Moitra and G. Valiant, “Settling the polynomial learnability of mix-
tures of Gaussians,” in Foundations of Computer Science (FOCS), 2010
51st Annual IEEE Symposium on. IEEE, 2010, pp. 93–102.

[31] M. Hardt and E. Price, “Tight bounds for learning a mixture of two
Gaussians,” in Proceedings of the Forty-Seventh Annual ACM on Sym-
posium on Theory of Computing. ACM, 2015, pp. 753–760.

[32] A. Tsybakov, Introduction to Nonparametric Estimation. New York,
NY: Springer Verlag, 2009.

[33] V. V. Prasolov, Polynomials. Springer Science & Business Media,
2009, vol. 11.

[34] A. F. Timan, Theory of Approximation of Functions of a Real Variable.
Pergamon Press, 1963.

[35] D. Jackson, The Theory of Approximation. American Mathematical
Soc., 1930, vol. 11.

[36] R. A. DeVore and G. G. Lorentz, Constructive Approximation.
Springer, 1993.

[37] R. T. Rockafellar, Conjugate Duality and Optimization. Society for
Industrial & Applied Mathmatics, 1974, vol. 16.

[38] D. G. Luenberger, Optimization by Vector Space Methods. John Wiley
& Sons, 1969.

240



[39] T. Cai and M. G. Low, “Testing composite hypotheses, Hermite poly-
nomials and optimal estimation of a nonsmooth functional,” The An-
nals of Statistics, vol. 39, no. 2, pp. 1012–1041, 2011.

[40] P. J. Davis, Interpolation and Approximation. Courier Corporation,
1975.

[41] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed.
New York, NY: Springer-Verlag, 2002.

[42] C. de Boor, “Divided differences,” Surveys in Approximation Theory,
vol. 1, pp. 46–49, 2005.

[43] K. E. Atkinson, An Introduction to Numerical Analysis. John Wiley
& Sons, 1989.

[44] L. N. Trefethen, Approximation Theory and Approximation Practice.
Siam, 2013, vol. 128.

[45] N. I. Akhiezer, The Classical Moment Problem: and Some Related
Questions in Analysis. Oliver & Boyd, 1965, vol. 5.

[46] R. E. Curto and L. A. Fialkow, “Recursiveness, positivity, and trun-
cated moment problems,” Houston Journal of Mathematics, vol. 17,
no. 4, pp. 603–635, 1991.

[47] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge
University Press, 2012.

[48] J. V. Uspensky, Introduction to Mathematical Probability. McGraw-
Hill, 1937.

[49] B. G. Lindsay, “Moment matrices: Applications in mixtures,” The
Annals of Statistics, pp. 722–740, 1989.

[50] G. H. Golub and J. H. Welsch, “Calculation of Gauss quadrature rules,”
Mathematics of Computation, vol. 23, no. 106, pp. 221–230, 1969.

[51] W. Gautschi, Orthogonal Polynomials: Computation and Approxima-
tion. Oxford University Press on Demand, 2004.

[52] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions:
with Formulas, Graphs, and Mathematical Tables. Courier Corpora-
tion, 1964.

[53] G. Szegö, Orthogonal Polynomials, 4th ed. Providence, RI: American
Mathematical Society, 1975.

241



[54] V. V. Buldygin and Y. V. Kozachenko, “Sub-Gaussian random vari-
ables,” Ukrainian Mathematical Journal, vol. 32, no. 6, pp. 483–489,
1980.

[55] Y. Wu and P. Yang, “Minimax rates of entropy estimation on large
alphabets via best polynomial approximation,” IEEE Transactions on
Information Theory, vol. 62, no. 6, pp. 3702–3720, 2016.

[56] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[57] H. Strasser, Mathematical Theory of Statistics: Statistical Experi-
ments and Asymptotic Decision Theory. Berlin, Germany: Walter
de Gruyter, 1985.

[58] R. A. Fisher, A. S. Corbet, and C. B. Williams, “The relation be-
tween the number of species and the number of individuals in a random
sample of an animal population,” The Journal of Animal Ecology, pp.
42–58, 1943.

[59] I. J. Good, “The population frequencies of species and the estimation
of population parameters,” Biometrika, vol. 40, no. 3-4, pp. 237–264,
1953.

[60] A. Orlitsky, N. P. Santhanam, and J. Zhang, “Universal compression
of memoryless sources over unknown alphabets,” IEEE Transactions
on Information Theory, vol. 50, no. 7, pp. 1469–1481, 2004.

[61] S. Bhat and R. Sproat, “Knowing the unseen: Estimating vocabulary
size over unseen samples,” in Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 1,
2009, pp. 109–117.

[62] B. Kelly, A. Wagner, T. Tularak, and P. Viswanath, “Classification
of homogeneous data with large alphabets,” IEEE Transactions on
Information Theory, vol. 59, no. 2, pp. 782–795, 2013.

[63] A. B. Wagner, P. Viswanath, and S. R. Kulkarni, “Probability esti-
mation in the rare-events regime,” IEEE Trans. Inf. Theory, vol. 57,
no. 6, pp. 3207–3229, 2011.

[64] P. Valiant and G. Valiant, “Estimating the unseen: Improved estima-
tors for entropy and other properties,” in Advances in Neural Informa-
tion Processing Systems, 2013, pp. 2157–2165.

242



[65] I. Ibragimov, A. Nemirovskii, and R. Khas’ minskii, “Some problems
on nonparametric estimation in Gaussian white noise,” Theory of Prob-
ability & Its Applications, vol. 31, no. 3, pp. 391–406, 1987.

[66] L. Paninski, “Estimation of entropy and mutual information,” Neural
Computation, vol. 15, no. 6, pp. 1191–1253, 2003.

[67] M. Vinck, F. P. Battaglia, V. B. Balakirsky, A. H. Vinck, and C. M.
Pennartz, “Estimation of the entropy based on its polynomial repre-
sentation,” Physical Review E, vol. 85, no. 5, p. 051139, 2012.

[68] L. Paninski, “Estimating entropy on m bins given fewer than m sam-
ples,” IEEE Transactions on Information Theory, vol. 50, no. 9, pp.
2200–2203, 2004.

[69] J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Minimax estimation of
functionals of discrete distributions,” IEEE Transactions on Informa-
tion Theory, vol. 61, no. 5, pp. 2835–2885, 2015.

[70] J. Jiao, K. Venkat, Y. Han, and T. Weissman, “Maximum likelihood
estimation of functionals of discrete distributions,” arXiv:1406.6959v4,
2014.

[71] J. Acharya, H. Das, A. Orlitsky, and A. T. Suresh, “A unified maxi-
mum likelihood approach for estimating symmetric properties of dis-
crete distributions,” in International Conference on Machine Learning,
2017, pp. 11–21.

[72] Y. Wu and P. Yang, “Chebyshev polynomials, moment matching, and
optimal estimation of the unseen,” arXiv:1504.01227, 2015.

[73] Y. Han, J. Jiao, and T. Weissman, “Does Dirichlet prior smoothing
solve the Shannon entropy estimation problem?” arXiv:1502.00327,
2015.

[74] Y. Han, J. Jiao, and T. Weissman, “Adaptive estimation of Shannon
entropy,” arXiv:1502.00326, 2015.

[75] A. L. Gibbs and F. E. Su, “On choosing and bounding probability
metrics,” International Statistical Review, vol. 70, no. 3, pp. 419–435,
2002.
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