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ABSTRACT 

This study aims to address the problem of attitude control of spacecraft in presence of thrust 

uncertainty, which leads to stochastic accelerations. Spacecraft equipped with electric propulsion 

and other low thrust mechanisms, often experience random fluctuations in thrust. These stochastic 

processes arise from sources such as uncertain power supply output, varying propellant flow rate, 

faulty thrusters, etc. Mission requirements and mass/fuel limitations demand an optimal and 

proactive method of control to mitigate the thrust uncertainty and parasitic torque. Stabilizing 

stochastic optimal control of the satellite attitude dynamics is derived through formulation of the 

Hamilton-Jacobi-Bellman equation associated with a stochastic differential equation. The solution 

to the Hamilton-Jacobi-Bellman partial differential equation is approximated through the method 

of Al’brekht [1]. Extension of Al’brekht method for a stochastic system was first presented in [2]; 

detailed derivations of linear and nonlinear stochastic control laws along with their analytical and 

numerical analyses are presented in this thesis. A planning method is then discussed to lower the 

error due to local nature of the control. 
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CHAPTER 1 

Introduction 

 

1.1 Background and Problem Overview 

Understanding thrust-induced disturbance is critical to the design of attitude controllers in need 

of precision pointing, as well as, reduction of fuel consumption and actuator wear. In this study, 

system disturbance is modeled proportional to the generated thrust. We propose an optimal control 

strategy that reduces the thrust uncertainty effects by directly accounting for the uncertainty in the 

dynamics. Considering the generated uncertainty by each thruster enables us to embed the 

uncertainty information directly in the proposed control law. In this manner, we formulate an 

optimal controller that adjusts its behavior based on the best-known information on the thrust-

induced disturbance and the given optimality criteria. 

This study is motivated by the growing applications of continuous thrust technologies such as 

low thrust electric propulsion (EP). Due to advances in EP technologies, recent missions have 

started to consider EP as a viable option for attitude control. In contrast to rather traditional 

momentum exchange devices, EP thrusters are not massive, nor suffer from wheel friction 

instabilities and needs of desaturation of accumulated momentum [3]. One example is LISA 

Pathfinder’s attitude control system which solely relies on varying continuous thrust through use 

of Field Emission Electric Propulsion (FEEP) thrusters [4]. 

 Furthermore, use of smaller satellites and CubeSats has become favorable recently. Smaller 

satellites are cheaper to manufacture and are capable of carrying out valuable science missions. In 

fact, use of electric and non-electric thrusters as actuators, has been shown viable for smaller 

spacecraft attitude control systems. The 6U CubeSats used in the Mars Cube One (MarCO) 

mission, for instance, use thrusters to power their attitude control system. These CubeSats have 
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been used as a communication relay to Earth. Among other future CubeSat class science missions, 

Lunar IceCube is proposed to include Electric Propulsion for actuation.  

 

Figure 1. Mars Cube One Mission CubeSats (Image Courtesy of NASA/JPL-Caltech [5]) 

One of the challenges in low thrust EP is thrust fluctuations. Low-thrust propulsion engines 

usually operate for a long range of time continuously, and thrust can fluctuate over time, as shown 

by experimental studies [6],[7],[8], and [9]. Particularly, Nicolini et al. [7] demonstrated the effects 

of increasing thrust level on the increasing error accuracy in a thrust measurement experiment for 

the FEEP thrusters. Similarly, this relationship has also been shown in Abbot [10] in the study of 

low thrust propulsion techniques in satellite attitude control. The variations in thrust are directly 

proportional to the discharge current fluctuations which have been found to be 8% - 13% of the 

nominal value [11].  

In order to achieve an efficient attitude control performance under such thrust fluctuations, an 

optimal control law that takes the thrust fluctuations into consideration is needed. As low thrust 

propulsion engines operate for a long range of time continuously, any fluctuations in thrust can be 

modeled as stochastic processes. Several studies have previously addressed actuator uncertainty. 

In an influential work, McLane [12] derived the solution of the linear regulator problem for thrust-
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dependent noise in a physical system. Similarly, in the study of stochastic Hill’s equations, Ostoja-

Starzewski and Longuski [13] modeled the thrust as an additive random process. Gustafson [14] 

provided the numerical methods for the optimal feedback control of linear spacecraft system with 

thrusters. Zhao et al. [15] investigated the attitude stabilization of a stochastic spacecraft system 

under additive disturbance. The problem of actuator uncertainty and error has also been addressed 

in [16], [17],[18], [19],[20], [21], and [22].  

In response to challenges arising in attitude control of uncertain systems, this work aims to 

solve a nonlinear quadratic regulator formulation for the attitude dynamics assuming a continuous 

varying thrust model. The stabilization of rotational rates of the spacecraft under uncertainty is 

considered. An optimal control law is proposed which achieves a desired minimum fuel 

consumption criterion, while reducing thrust uncertainty effects. This is specifically useful in 

applications such as proximity operations, in-orbit servicing, and precision instrument pointing in 

science missions where state error is highly undesirable. Moreover, the minimum fuel criterion is 

essential for satellites with smaller fuel and energy supplies. The attitude dynamics of the 

spacecraft under input uncertainty is modeled as a stochastic differential equation (SDE). A 

Hamilton-Jacobi-Bellman (HJB) equation associated with a SDE is then formulated ensuring 

stability and optimality if a solution exists. Linear and nonlinear control laws are sought, although, 

due to difficulties arising in solving the HJB directly, a powerful power series-based method is 

used: The Al’brekht method [1] provides a local solution to the HJB equation associated with a 

nonlinear differential equation. Al’brekht’s method expands the dynamics, running cost, value 

function, and the control as power series which are later substituted into the HJB equation. The 

expanded HJB is then organized in different orders of the state variable. The quadratic order forms 

the Riccati equation. Eventually at cubic order and every order higher than that, a homological-
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type equation is solved. In this manner solutions to different orders of value function and the 

optimal control are sought. Although the mentioned method yields a closed form solution to the 

HJB, the solution holds locally, and the optimality error increases further from the origin. Thus, 

solutions may be considered close to optimal locally. 

In this work, the Al’brekht method is extended for an infinite horizon HJB equation 

corresponding to a stochastic optimal control problem in which noise enters the system through 

the control input. Linear and nonlinear stochastic optimal controls are solved, and algebraic 

solutions are presented. Simulating the angular velocity stabilization of a 6U CubeSat, the acquired 

stochastic and deterministic controls are analyzed and compared. The contributions of this research 

are summarized as: I) Developing a control method to account for the actuator uncertainty effects 

in attitude stabilization applications; and II) Extending the Al’brekht method for the HJB equation 

corresponding to the stochastic optimal control problem. 

 

1.2 Organization of Thesis 

In chapter 1, the motivation behind this research is highlighted. General, descriptions of the 

physical problem, and a brief overview of the state-space method, and attitude control system are 

provided for readers with different backgrounds. In chapter 2, the governing equations of motion: 

the Euler rigid body rotational dynamics, are derived. The modeling of the physical problem is 

then presented and divided into two complementary sections: modeling of a deterministic system, 

and modeling of a stochastic system with multiplicative noise. The general concept of 

controllability of linear and nonlinear system is summarized. The provided controllability 

conditions are a useful tool in analyzing the attitude control systems, especially when discussing 

the actuator count. Chapter 3 gives the derivations of optimal control and the dynamic programing 
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principle. In the same chapter, the Itô’s Lemma and the diffusion generator are derived. The 

derivations of Hamilton-Jacobi-Bellman equation associated with a deterministic dynamical 

system, as well as a stochastic dynamical system, are then reviewed. In chapter 4, the method of 

Al’brekht [1] which is the core of this thesis, is presented. The Al’brekht method provides a 

solution to the Hamilton-Jacobi-Bellman equation locally and is a powerful tool when dealing with 

nonlinear systems. Chapter 5 contains the main contribution of this thesis: the Al’brekht method 

is extended for a stochastic system with multiplicative control noise. Optimal control for the 

uncertain model of chapter 2 is computed. Solvability conditions of the stochastic control are 

provided. Chapter 6 provides the numerical results of the control derived in chapter 5. Several 

conclusions have been drawn based on the numerical and analytical result of the proposed method. 

Benefits of using a stochastic optimal controller have also been outlined. In conclusion, a trajectory 

planning method has been discussed as future work, which may reduce the optimality error for the 

stochastic Al’brekht method. 

 

1.3 Intro to Modern Control Systems 

Fueled by the Cold War, 1950s saw the rise of modern control cultivated in the aerospace 

industry. Although the idea of feedback in engineering is more than a century old, the field of 

modern control and the state-space approach was first spearheaded through the works of Rudolf 

Kálmán mid-twentieth century. Furthermore, the classical works of Lyapunov and Poincaré in 

stability theory and dynamical systems have served as an enabling power in modern control theory. 

The idea of modern control and state-space representation is to describe systems and their 

processes as differential equations. This allows the evolution of systems to be described by all of 

their internal variables, inputs, and outputs. In a physical system specifically, it is often desired to 
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drive a system’s parameter to a desired value. As an example, consider the first order time-

invariant linear ordinary differential equation 

𝑚𝜔̇ = −𝑐𝜔 + 𝜏  

where, 𝑚 is the mass, 𝜔  is angular velocity, and variable 𝜏 is the generated torque by a motor, or 

servo. In the differential equation above, −𝑐𝜔 describes a drag force, while 𝑚𝜔̇ is rate of change 

of angular momentum. To rewrite the system in a state-space form, let 𝑥 = 𝜔, and 𝑢 = 𝜏, where 

the variable 𝑥 is called the state and 𝑢 the input (or control) variable.   

𝑥̇𝑡 = (−
𝑐

𝑚
) 𝑥𝑡 + (

1

𝑚
)𝑢(𝑡)  

Subscript 𝑡 implies that 𝑥 evolves with time. For the input 𝑢, this is communicated by writing 𝑢(𝑡). 

Renaming 𝐴 = −
𝑐

𝑚
, and 𝐵 =

1

𝑚
, then the one-dimensional system is written as 

𝑥̇𝑡 = 𝐴𝑥𝑡 + 𝐵𝑢(𝑡) (1.1) 

Note that the linear system (1.1) is 1-dimensional because it is described by only one state 

variable. We further say that the control system (1.1) is time-invariant if 𝐴 and 𝐵 do not vary with 

time. Next, let 𝑢(𝑡) = 0 ∀ 𝑡 ≥ 0 such that (1.1) becomes 𝑥̇𝑡 = 𝐴𝑥𝑡, which is the uncontrolled 

dynamics equation. The trajectory solution of this equation is the exponential decay 𝑥𝑡 = 𝑒𝐴𝑡𝑥(0), 

where 𝑥(0) is the initial condition of the differential equation (the value of 𝜔(𝑡) at 𝑡 = 0). It can 

be justified that the system is stable and decays to zero because of damping effect due to the friction 

force −
𝑐

𝑚
𝑥𝑡. The decay will happen if no control torque is inputted. On the other hand, a linear 

feedback control will have the form 𝑢(𝑡) = 𝑘𝑥𝑡, where 𝑘 is called the control gain and is 

appropriately calculated to achieve stability and other desired criteria. The control may be chosen 

in a way to increase 𝜔 to a desired value, or to stabilize the system to zero angular velocity before 

the uncontrolled decay due to friction. 
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Often it is desired to know the evolution of 𝜃 along with its rate 𝜃̇. It is straightforward to relate 

the angular velocity to the rotational angle 𝜃 by setting 𝜔 = 𝜃̇. Through defining 𝑥𝑡 as a vector 

𝑥𝑡 = [
𝜃
𝜃̇
], where 𝑥 ∈ ℝ2, the state-space system can be written in matrix form containing 𝜃  

[𝜃̇
𝜃̈
] = [

0 1

0 −
𝑐

𝑚
] [

𝜃
𝜃̇
] + [

0
1

𝑚

]𝑢   

Renaming the matrices, 𝐴 = [
0 1

0 −
𝑐

𝑚

], and 𝐵 = [
0
1

𝑚

], then the two-dimensional system becomes 

𝑥̇ = 𝐴𝑥𝑡 + 𝐵𝑢(𝑡) (1.2) 

In contrast to equation (1.1), 𝑥 in equation (1.2) is a vector in ℝ2 and is referred to as the state 

vector. The dimension of the input vector is an important quantity which governs the controllability 

properties of the system; this is discussed with more details in section 2.4 of this chapter. Note that 

for a general system 𝑥̇ = 𝐴𝑥𝑡 + 𝐵𝑢(𝑡), 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑛×𝑛, and 𝐵 ∈ ℝ𝑛×𝑚, constants 𝑛, 

and 𝑚 are determined by design, and the assumed model of the problem. 

 

1.4 Attitude Control System 

Attitude control is a subdiscipline of the guidance, navigation, and control (GNC) engineering. 

Specifically, attitude refers to the orientation of the spacecraft with respect to a reference frame, 

and attitude control is controlling the rotational rates and the orientation of the spacecraft. In space 

engineering, attitude control system is formally referred to as attitude control and determination 

system (ADCS). This naming refers to two components of a spacecraft which are either tasked 

with “determining” the current rates and orientation, or “controlling” the angular rates and steering 

the system to a new orientation. This is accomplished by groups of sensors and actuators. Sensors 

such as star trackers, sun sensors, etc. are used to determine the orientation with respect to an 
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external point or object. Other onboard devices such as inertial measurement units (IMUs) and 

gyroscopes are used for measuring the system states such as angular rates, and forces, to determine 

the attitude. Two main strategies used for controlling the attitude are the active and passive control 

methods. An Example of passive strategy is use of gravity gradient for attitude control. Operation 

of devices such as thrusters and momentum wheels is considered to be an active control strategy. 

 

Figure 2. A Generic Attitude Control Loop  

In general, an attitude control task can be thought of two control problems when one separates 

the kinematics and the dynamics of a spacecraft. The kinematics is concerned with characterizing 

the pointing of the spacecraft and driving the system to a specific orientation, i.e. controlling the 

angles with respect to a reference frame. There are several different parametrization of attitude 

kinematics some of which are: the Euler angles, quaternions, classical Rodrigues parameters, 

refined Rodrigues parameters, etc. Euler angles have been known to be “more intuitive to work 

with”, though with the disadvantage of a phenomenon known as the gimbal lock. Quaternions 

however are known to avoid the gimbal lock. The evolution of quaternions is described by the 

following bilinear differential equations 

[
𝑞̇1

𝑞̇2

𝑞̇3

] =
1

2
[

𝜔1𝑞4 − 𝜔2𝑞3 + 𝜔3𝑞2

𝜔1𝑞3 + 𝜔2𝑞4 − 𝜔3𝑞1

−𝜔1𝑞2 + 𝜔2𝑞1 + 𝜔3𝑞4

] 

𝑞̇4 = −
1

2
(𝜔1𝑞1 + 𝜔2𝑞2 + 𝜔3𝑞3) 
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where 𝜔𝑖, 𝑖 = 1,2,3 are the angular rates around the three body axes, and 𝑞𝑖, 𝑖 = 1,2,3,4 are the 

quaternion coordinates parametrizing the attitude kinematics. The goal of kinematics control law 

is to achieve a desired (𝑞1
∗, 𝑞2

∗, 𝑞3
∗). Notice that the input to these equations is the 𝜔 vector, which 

is governed by the Euler rotational dynamics equations (see section 2.1). This brings us to the 

second control task which is controlling the dynamics. By this, we mean driving the spacecraft to 

the desired angular rates (𝜔1
∗ , 𝜔2

∗ , 𝜔3
∗). The desired angular rates are either determined by the 

kinematics system, or, in specific modes such as detumbling, where desired angular velocity of 

zero is to be achieved (stabilization). In general, the two dynamics and kinematics systems are 

coupled; for instance, a general linear control law will have the form: 𝑢 = −𝑘1𝜔 − 𝑘2𝑞1:3, for 

both systems. In this thesis, we will only study the control of the dynamics system and leave the 

coupled control of kinematics and dynamics as a suggestion for future research. Because the 

actuators directly affect the dynamics equations and noise is first propagated through the dynamics, 

we will study the actuator uncertainty in context of dynamics equations. Further details on 

kinematics parametrization and control can be found in references [23], and [24]. For a control 

problem dealing with both kinematics and the dynamics systems see for example ref. [25].   

Attitude control systems can also be divided into categories of spin stabilized and three-axis 

control. In this study, we will specifically provide control algorithms for the three-axis control 

system and a family of actuators known as reaction control system (RCS). Reaction control 

systems use jets and thrusters to actively control the attitude by ejecting a form of mass to create 

a force (thrust). When this force is not pointed towards the center of mass, a torque is produced 

(i.e. when the lever arm is nonzero). While in general, there are three main families of actuators: 

RCS, the momentum devices, and magnetic devices, advantages of thrusters compared to other 

families of actuators is their great response time, higher maneuvering speed [24], and their 
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relatively good accuracy. However, the disadvantage of RCS is in fuel limitation, error and 

uncertainty due to aging and cycling of the components. Common thruster types used in attitude 

control applications are the hot gas (hydrazine) and cold gas thrusters which can produce a thrust 

on the range of 0.5 to 9000 Newtons [26]. Electric propulsion engines and electric microthrusters 

however can produce a smaller and more precise thrust which makes them an ideal choice for use 

in smaller spacecraft such as CubeSats. Moreover, modern electric propulsion systems are capable 

of producing a relatively continuous thrust profile. A currently in development thruster engine, 

known as the Variable Specific Impulse Magnetoplasma Rocket (VASIMR), has the capability of 

producing variable thrust. Although a larger engine, the properties that VASIMR offer are useful 

for space missions in need of fuel efficiency and precision. 

When it comes to attitude control and rotational motion using RCS, the thrusters are usually 

operated in pairs. This is because a thruster is only capable of producing a one-sided force vector. 

Moreover, a single force vector around the center of causes a rotation, as well as some translational 

motion which might be unwanted. To counter this translational motion and to produce a purely 

rotational motion around a single axis, a pair of thrusters, pointing in opposite directions are used 

-- see for instance figure 4. This in turn complicates the calculation of force required for attitude 

maneuvers. More importantly, this means that an algorithm is needed to convert the torque 

commands calculated by a control system to thruster activation time [24]. For an example of  this 

algorithm, see sidi [24] section 9.2.2. 

Traditionally, the number of required thrusters to fully control the attitude of a spacecraft in all 

axes is six or more thrusters, i.e. three pairs, however, more modern control systems, based on 

some controllability assumptions, have been able to lower the number of the thrusters needed to 

steer the spacecraft to different orientations -- for example see  Sidi [24] section 9.5 or section 2.5 
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of this thesis. Clearly, the location and placement of a thruster also determines the amount of 

generated torque by a single thruster. The longer the lever arm of a thruster is measured from the 

center of mass, the more torque can be generated by the thruster. However, if the lever arm is 

decreased, then thrusters would be able to produce a more precise attitude change by producing a 

larger force, at the cost of losing more fuel [24]. 

In general, algorithms and control laws presented in this thesis, and most of other works dealing 

with attitude control system, assume that actuators are able to produce a continuous variable thrust. 

Aside from the class of electric propulsion systems which are capable of this task to some degrees, 

most propulsion systems do not operate continuously. In fact, traditional non-electric thrusters are 

operated in an on/off manner. This means that when thrusters are turned on, they are capable of 

producing one level of force only. Hence, to compensate for this operational limitation, the 

conversion of a continuously variable commanded control torque to a series of constant magnitude 

pulses is needed [27]. This is accomplished using a technique known as the pulse width modulation 

(PWM). In practice, the operation of a thruster is divided into sample periods 𝑡𝑘  to 𝑡𝑘+1. Then the 

computed control torque 𝑇𝑐 is kept constant during that sample period. The following equation is 

used to compute the amount of time for which a thruster is turned on 

𝑡𝑝,𝑘 =
𝜏𝑐(𝑡𝑘)(𝑡𝑘+1 − 𝑡𝑘)

𝜏𝑡
   

where 𝜏𝑡 is the generated torque by the thruster, and 𝜏𝑐(𝑡𝑘) is the commanded control during the 

sample period starting at 𝑡𝑘 . Then, the average applied torque on [𝑡𝑘, 𝑡𝑘+1] is equal to the average 

control torque calculated by the controller [27]. A more detailed treatment of this practice is 

presented in references [27], [24], and [23]. 
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CHAPTER 2 

Governing Equations 

 

2.1     Euler Rotational Rigid Body Dynamics Equations 

In this section, the Euler rigid body dynamics equations are derived. These nonlinear equations 

are specifically important to this study as they govern the rotational dynamics of the satellite. Let 

us start by defining few preliminaries. We shall first begin by deriving an expression for the 

angular momentum of a rigid body in ℝ3. Then the moment of inertia tensor and its 

diagonalizability conditions will be shown, and finally the Euler rigid body dynamics equations 

will be derived. Euler rotational equations are necessary for modeling the attitude dynamics. 

Consider the origin of a reference frame, point 𝑂, which is attached to a rigid body consisting 

of 𝑖 particles of mass 𝑚𝑖. The angular momentum of the system of 𝑖 particles with respect to point 

𝑂 is then given by the summation  

𝐻𝑂 = ∑𝑟𝑖 × 𝑚𝑖𝑟𝑖̇
𝑖

  
(2.1) 

where 𝑟𝑖 is the position vector from point 𝑂 to the particle of mass 𝑚𝑖, and 𝑟𝑖̇ is its rate of change. 

By Rotation Axis Theorem [28], the velocity of vector 𝑟𝑖 can be expressed as  

𝑟𝑖̇ = (𝑟𝑖̇)𝑟𝑒𝑙 + 𝜔 × 𝑟𝑖 (2.2) 

where 𝜔 is the absolute angular velocity of the rigid body, and (𝑟𝑖̇)𝑟𝑒𝑙 is the velocity of 𝑟𝑖 measured 

in reference frame 𝑂, fixed to the body. Moreover, since the system of particles is a rigid body, 

the (𝑟𝑖̇)𝑟𝑒𝑙 is zero, thus, equation (2.2) becomes 

𝑟𝑖̇ = 𝜔 × 𝑟𝑖 (2.3) 



13 

 

It must be pointed out that 𝑟𝑖̇ is the velocity of the reference (body) frame with origin 𝑂, measured 

in a non-rotating (fixed) frame. Combining equation (2.3) and the angular momentum equation 

(2.1), the angular momentum with respect to point 𝑂 becomes 

𝐻𝑂 = ∑𝑚𝑖(𝑟𝑖 × (𝜔 × 𝑟𝑖))

𝑖

 
(2.4) 

Next, let the mass 𝑚𝑖 be written as 𝜌𝑑𝑉, where 𝜌 is the (uniform) density of the rigid body, and 

dV is an increment of the volume of mass 𝑚𝑖. The summation (2.4) is then rewritten as an integral 

over the volume of the rigid body 

𝐻𝑂 = ∫𝜌(𝑟 × (𝜔 × 𝑟)) 𝑑𝑉 (2.5) 

Let 𝛽 = {𝑒1, 𝑒2, 𝑒3} be the basis of the vector space ℝ3. Rewriting vectors 𝜔 and 𝑟 in basis 𝛽, 

[𝜔]𝛽 = 𝜔1𝑒1 + 𝜔2𝑒2 + 𝜔3𝑒3, and [𝑟]𝛽 = 𝑟1𝑒1 + 𝑟2𝑒2 + 𝑟3𝑒3, we may evaluate 𝑟 × (𝜔 × 𝑟) as  

𝑟 × (𝜔 × 𝑟) =    {(𝑟2
2 + 𝑟3

2)𝜔1 + (−𝑟1𝑟2)𝜔2 + (−𝑟1𝑟3)𝜔3}𝑒1

+ {(−𝑟2𝑟1)𝜔1 + (𝑟1
2 + 𝑟3

2)𝜔2 + (−𝑟2𝑟3)𝜔3}𝑒2

+ {(−𝑟3𝑟1)𝜔1 + (−r3r2)ω2 + (𝑟1
2 + 𝑟2

2)𝜔3}𝑒3 

(2.6) 

The moment of inertia tensor in standard basis becomes  

[𝐿𝐼]𝛽
𝛽

= 𝐼 = (
𝐼11 𝐼12 𝐼13

𝐼21 𝐼22 𝐼23

𝐼31 𝐼32 𝐼33

)  

where, 𝐿𝐼 : ℝ
3 → ℝ3 and entries of 𝐼 are given in the table 7 of Appendix A. Combining equations 

(2.5), and (2.6), and recognizing the moment of inertia terms, angular momentum of the rigid body 

becomes  

𝐻 = ∑∑ 𝐼𝑖𝑗𝜔𝑗𝑒𝑖

𝑗𝑖

 
(2.7) 
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= {𝐼11𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3}𝑒1 + {𝐼21𝜔1 + 𝐼22𝜔2 + 𝐼23𝜔3}𝑒2

+ {𝐼31𝜔1 + I32ω2 + 𝐼33𝜔3}𝑒3 

More concisely in vector form, (2.7) is expressed as 

[
𝐻1

𝐻2

𝐻3

] = (
𝐼11 𝐼12 𝐼13

𝐼21 𝐼22 𝐼23

𝐼31 𝐼32 𝐼33

)[

𝜔1

𝜔2

𝜔3

] (2.8) 

We have now derived the angular momentum about the origin of a reference frame, point 𝑂 

[28]. The goal is to arrive at equations governing the rotational dynamics of a rigid body. Hence, 

we may use the obtained equation to write the angular momentum about the center of mass of a 

rigid body by choosing 𝑂 as the center of the gravity, 𝐶𝐺. It is well known that rate of change of 

angular momentum 𝐻̇, is equal to the applied external moment 𝑀  

𝐻̇ = 𝑀  

To evaluate 𝐻̇, we apply the Rotation Axis Theorem [28] to vector 𝐻. The resulting 𝐻̇ is the rate 

of change of the angular momentum vector in the absolute frame 

𝐻̇ = (𝐻̇)
𝑟𝑒𝑙

+ (𝜔 × 𝐻) (2.9) 

where, (𝐻̇)
𝑟𝑒𝑙

= 𝐻̇1 + 𝐻̇2 + 𝐻̇3 is the rate of change of 𝐻 measured in the body frame about point 

𝑂 = 𝐶𝐺. Differentiating the entries of vector 𝐻 in (2.8), we obtain 

𝐻̇1 = 𝐼11𝜔̇1 + 𝐼12𝜔̇2 + 𝐼13𝜔̇3 

𝐻̇2 = 𝐼21𝜔̇1 + 𝐼22𝜔̇2 + 𝐼23𝜔̇3 

𝐻̇3 = 𝐼31𝜔̇1 + 𝐼32𝜔̇2 + 𝐼33𝜔̇3 

(2.10) 

Similarly, evaluating the cross product 𝜔 × 𝐻, we have  
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𝜔 × 𝐻 = (𝐻3𝜔2 − 𝐻2𝜔3)𝑒1 + (𝐻1𝜔3 − 𝐻3𝜔1)𝑒2 + (𝐻2𝜔1 − 𝐻1𝜔2)𝑒3 (2.11) 

Hence substituting (2.10) and (2.11) in equation (2.9) and realizing that 𝑀 = 𝑀1𝑒1 + 𝑀2𝑒2 +

𝑀3𝑒3 = (𝐻̇)
𝑟𝑒𝑙

+ (𝜔 × 𝐻), we obtain the following: 

𝑀1 = 𝐼11𝜔̇1 + 𝐼12𝜔̇2 + 𝐼13𝜔̇3 + (𝐻3𝜔2 − 𝐻2𝜔3) 

𝑀2 = 𝐼21𝜔̇1 + 𝐼22𝜔̇2 + 𝐼23𝜔̇3 + (𝐻1𝜔3 − 𝐻3𝜔1) 

𝑀3 = 𝐼31𝜔̇1 + 𝐼32𝜔̇2 + 𝐼33𝜔̇3 + (𝐻2𝜔1 − 𝐻1𝜔2) 

 

Let us now substitute in the expressions 𝐻1, 𝐻2, and 𝐻3 from equation (2.8) so that the equations 

for 𝑀1, 𝑀2, and 𝑀3 become 

𝑀1 = 𝐼11𝜔̇1 + 𝐼12𝜔̇2 + 𝐼13𝜔̇3 + 𝐼31𝜔1𝜔2 + I32ω2𝜔2 + 𝐼33𝜔3𝜔2 − 𝐼21𝜔1𝜔3

− 𝐼22𝜔2𝜔3 − 𝐼23𝜔3𝜔3 

𝑀2 = 𝐼21𝜔̇1 + 𝐼22𝜔̇2 + 𝐼23𝜔̇3 + 𝐼11𝜔1𝜔3 + 𝐼12𝜔2𝜔3 + 𝐼13𝜔3𝜔3 − 𝐼31𝜔1𝜔1

− I32ω2𝜔1 − 𝐼33𝜔3𝜔1 

𝑀3 = 𝐼31𝜔̇1 + 𝐼32𝜔̇2 + 𝐼33𝜔̇3 + 𝐼21𝜔1𝜔1 + 𝐼22𝜔2𝜔1 + 𝐼23𝜔3𝜔1 − 𝐼11𝜔1𝜔2

− 𝐼12𝜔2𝜔2 − 𝐼13𝜔3𝜔2 

(2.12) 

Above equations contain the general moment of inertia tensor, 𝐼, in the body frame. However, it 

is often desired to calculate these equations in principal axes, where 𝐼 is a diagonal matrix. Such 

matrix is obtainable from a diagonalizable general moment of inertia matrix.  

Consider the full rank moment of inertia matrix [𝐼]𝛽
𝛽

, where 𝛽 is the standard basis in ℝ3. Matrix 

[𝐿𝐼]𝛽
𝛽

 is diagonalizable if there exists another basis 𝛼 = {𝑣1, 𝑣2, 𝑣3}  of 𝑅3, such that 

[𝐿𝐼]𝛼
𝛼 = (

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

), for 𝜆𝑖, 𝑖 = 1,2,3 
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and 𝐿𝐼(𝑣𝑖) = 𝜆𝑖𝑣𝑖, 𝑖 = 123. Clearly, we have that the diagonal entries of matrix [𝐿𝐼]𝛼
𝛼 are the 

eigenvalues of matrix 𝐼. We may then express [𝐿𝐼]𝛼
𝛼 as  

[𝐿𝐼]𝛼
𝛼 = [𝐼3×3]𝛽

𝛼[𝐿𝐼]𝛽
𝛽
[𝐼3×3]𝛼

𝛽
= 𝑄−1𝐼𝑄 = 𝐼𝑃 

where, [𝐼3×3]𝛼
𝛽

= 𝑄 is the matrix representative of the identity map 𝐼3×3 with respect to bases 𝛼 

and 𝛽, and [𝐼3×3]𝛽
𝛼 = 𝑄−1 is its inverse, and 𝐼𝑃 is the principal moment of inertia matrix. It must 

be noted that columns of [𝐼3×3]𝛼
𝛽

’s are the eigenvectors of [𝐿𝐼]𝛽
𝛽

. 

Theorem 1. [29] Consider the matrix 𝐼 ∈ ℝ3×3. We say that 𝐼 is diagonalizable if 

1) det (𝐼 − 𝜆𝐼3×3) splits over ℝ 

2) For each eigenvalue 𝜆, the geometric multiplicity is equal to the algebraic multiplicity.  

 

The above conditions are summarized as follows: The first condition requires det (𝐼 − 𝜆𝐼3×3) 

to split over ℝ. This implies that det (𝐼 − 𝜆𝐼3×3) must factor completely. For instance, the 

expression (𝑎 − 𝜆1)(𝑏 − 𝜆2)(𝑐 − 𝜆3) splits over ℝ, for 𝑎, 𝑏, 𝑐 ∈ ℝ. In the second condition, the 

Algebraic multiplicity refers to the number of times, 𝜆 appears as a root of the characteristic 

polynomial of 𝐼. The Geometric multiplicity however refers to the dimension of the eigenspace of 

𝐼, 𝐸𝜆. If the two are equal, and additionally det (𝐼 − 𝜆𝐼3×3) factors completely, then 𝐼 is 

diagonalizable.  

Assuming that 𝐼 is diagonalizable with the principal moments of inertia 𝐼11, 𝐼22, and 𝐼33 as the 

diagonal entries 

[𝐿𝐼]𝛼
𝛼 = 𝐼𝑃 = (

𝐼11 0 0
0 𝐼22 0
0 0 𝐼33

)   

then equations (2.12) are simplified to 
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𝑀1 = 𝐼11𝜔̇1 + 𝐼33𝜔3𝜔2 − 𝐼22𝜔2𝜔3 

𝑀2 = 𝐼22𝜔̇2 + 𝐼11𝜔1𝜔3 − 𝐼33𝜔3𝜔1 

𝑀3 = 𝐼33𝜔̇3 + 𝐼22𝜔2𝜔1 − 𝐼11𝜔1𝜔2 

(2.13) 

where, 𝐼12 = 𝐼21 = 𝐼31 = 𝐼13 = 𝐼23 = 𝐼32 = 0. The resulting equations are known as the Euler 

equations of motion, or Euler dynamics equations. They describe the time rate of change of 𝜔 in 

terms of the applied moment 𝑀, principal moment of inertia matrix 𝐼𝑃, and the angular velocity 

vector 𝜔. Rearranging the terms of (2.13), and factoring the common angular rate terms, a more 

useful and familiar form of (2.13) is 

𝜔̇1 =
(𝐼22 − 𝐼33)

𝐼11
𝜔2𝜔3 +

𝑀1

𝐼11
 

𝜔̇2 =
(𝐼33 − 𝐼11)

𝐼22
𝜔3𝜔1 +

𝑀2

𝐼22
 

𝜔̇3 =
(𝐼11 − 𝐼22)

𝐼33
𝜔1𝜔2 +

𝑀3

𝐼33
 

(2.14) 

Few observations can be drawn from this form of the Euler equations. First consideration is that 

the three equations are nonlinear. In fact, the angular rates of the two opposite axes, affect the third 

axis. For instance, if 𝜔2 = 𝜔3 = 0, then 𝜔3 = 𝑀3. It is also important to note that in absence of 

external moments, two equal principal moments of inertia would result in a constant rate of the 

corresponding axis. For instance, suppose, 𝐼11 = 𝐼22, then 𝜔3 will have a constant value. In such 

cases of symmetry, angular rate of the constant axis is changed through an applied moment 𝑀. 

Ultimately, we consider the moments 𝑀1, 𝑀2, and 𝑀3 as the “inputs” to these equations. In the 

next section, we will use the physical meaning of the moment 𝑀 to define the control input 𝑢, and 

further develop a model for the spacecraft attitude dynamics. 
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2.2     Spacecraft Attitude Control System Modeling 

In this section, the deterministic state-space representation of the spacecraft attitude dynamics 

will be discussed. Consider the Euler equations of motion (2.14). For simplicity, we will adapt few 

briefer notations and assumptions. From now on, we’ll be using the letter 𝑥, 𝑥 ∈ ℝ3, as the state 

vector instead of 𝜔 for angular rate, and 𝐼 instead of  𝐼𝑃 for the principal moment of inertia matrix.  

We now present the calculation of torque due to a single thruster. Assume that 𝑟 = 𝑟1𝑒1 +

𝑟2𝑒2 + 𝑟3𝑒3 is the vector from the center of gravity (center of the body frame) to the thruster of 

interest. To describe the orientation of the thrusters in the body frame, we employ a spherical 

coordinate frame as shown below. 

 

Figure 3. Thruster Force Vector in Spherical Coordinates 

Constant angles 𝛼 and 𝛽 are the thruster azimuth and elevation angles [24]. Specifically, angle 

𝛼 is measured form 𝑒1 axis to the projection of vector 𝐹 onto the 𝑒1 × 𝑒2 plane. Angle 𝛽 is 

measured from the 𝑒3 axis to the vector 𝐹 as shown in figure 3. Thus, the generated torque from a 

single thruster is calculated as  
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𝜏 = 𝑟 × 𝐹 = 𝑏𝑭́ = [

𝑟2 cos(𝛽) − 𝑟3 sin(𝛼) sin(𝛽)
𝑟3 cos(𝛼) sin(𝛽) − 𝑟1 cos(𝛽)

𝑟1 sin(𝛼) sin(𝛽) − 𝑟2 cos(𝛼) sin(𝛽)
] 𝑭́ (2.15) 

where, 𝑭́ is the scalar magnitude of the force generated by the thruster, and the force vector 𝐹 is 

𝐹 = [
𝐹1

𝐹2

𝐹3

] = [

cos(𝛼) sin(𝛽)
sin(𝛼)sin (𝛽)

cos(𝛽)
] 𝑭́ (2.16) 

As stated in the previous section, thrusters are typically operated in pairs in attitude control 

maneuvers [24]. For further simplification, we assume that each thruster pair is mounted 

symmetrically, that is, the vectors from the center of mass of the spacecraft to each thruster are of 

equal length. Suppose that the spacecraft is equipped with 𝑖 pair of thrusters. Hence, consider the 

moments 𝑀𝑖, 𝑖 = 1, 2, 3 to be the moments of force, or torque 𝜏 generated by the 𝑖𝑡ℎ thruster pair. 

The forces due to thruster 1 and 2 of the 𝑖𝑡ℎ pair are denoted by 𝐹𝑖1
 and 𝐹𝑖2

 respectively. 

 

Figure 4. Produced Torque by a Thruster Pair  

For instance, for the lever arms 𝑟𝑖 = 𝑟𝑖1 = −𝑟𝑖2, the generated torque by the 𝑖𝑡ℎ thruster pair is 

calculated as 𝜏𝑖 = 𝑟𝑖1 × 𝐹𝑖1
+ 𝑟𝑖2 × 𝐹𝑖2

= 𝑟𝑖1 × (‖𝐹𝑖1
‖ + ‖𝐹𝑖2

‖)
𝐹𝑖1

‖𝐹𝑖1
‖
 . Let us denote expression 

(‖𝐹𝑖1
‖ + ‖𝐹𝑖2

‖)
𝐹𝑖1

‖𝐹𝑖1
‖
 by 𝐹𝑖, that is the net vector force generated by the 𝑖𝑡ℎ thruster pair. Then, 

𝜏𝑖 = 𝑟𝑖 × 𝐹𝑖 is the torque generated by the 𝑖𝑡ℎ pair, and the total generated torque 𝜏 is summation 
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of torques generated by all the thruster pairs. For instance, for 𝑚 thruster pairs, the torque vector 

is given by 

𝜏 = ∑𝜏𝑖

𝑚

𝑖=1

= ∑𝑏𝑖𝑭́𝑖

𝑚

𝑖=1

 (2.17) 

where 𝑭́𝑖 = ‖𝐹𝑖1
‖ + ‖𝐹𝑖2

‖ is the scalar magnitude of the force generated by the 𝑖𝑡ℎ thruster pair, 

and 𝑏𝑖 is given by (2.15). Expressing the torque vector by the state-space notation, 𝜏 becomes 

𝜏 = ∑𝑏𝑖𝑭́𝑖

𝑚

𝑖=1

= ∑ 𝑏𝑖𝑢(𝑡)𝑖

𝑚

𝑖=1

= 𝑏𝑢(𝑡) (2.18) 

where, 𝑢 ∈ ℝ𝑚 is the control vector, and 𝑏 ∶  ℝ𝑛 → ℝ𝑚 , is a real valued 𝑛 by 𝑚 matrix. The 

columns of 𝑏, namely 𝑏𝑖, give the orientation of each thruster pair in terms of angles 𝛼 and 𝛽. In 

fact, 𝑏𝑖 vectors are the axes about which the corresponding control torques ‖𝑏𝑖‖𝑢𝑖 are applied [30]. 

We consider the vectors 𝑏𝑖 to be time invariant by assumption. The entries of vector 𝑢, describe 

the generated net force by each thruster pair. Substituting 𝑏𝑢𝑡 as the generated moment in equation 

(2.14), the Euler equations of motion become 

𝑥̇𝑡 = 𝑓(𝑥𝑡) + 𝐼−1𝜏 = 𝑓(𝑥𝑡) + 𝐼−1𝑏𝑢(𝑡) 

𝑓(𝑥) =

[
 
 
 
 
 
 
𝐼22 − 𝐼33

𝐼11
 𝑥2𝑥3

𝐼33 − 𝐼11

𝐼22
 𝑥3𝑥1

𝐼11 − 𝐼22

𝐼33
 𝑥1𝑥2]

 
 
 
 
 
 

 
(2.19) 

where 𝑓(𝑥𝑡) is the drift vector field. Defining the matrix cross product for 𝑥 ∈ ℝ3, the skew-

symmetric matrix [𝑥]× = (𝑆(𝑥))
𝑇
 is defined as  
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[𝑥]× = [
0 −𝑥3 𝑥2

𝑥3 0 −𝑥1

−𝑥2 𝑥1 0
] (2.20) 

where ([𝑥]×)𝑇 = −[𝑥]×, and  𝑆(𝑥)𝐼𝑥 = (𝑥 × (𝑥𝐼)) = 𝑓(𝑥). The spacecraft deterministic attitude 

dynamics can then be summarized by the following familiar form 

𝐼𝑥̇𝑡 = 𝑆(𝑥𝑡)𝐼𝑥𝑡 + ∑𝑏𝑖𝑢(𝑡)𝑖

𝑚

𝑖=1

 (2.21) 

𝑆(𝑥) = [
0 𝑥3 −𝑥2

−𝑥3 0 𝑥1

𝑥2 −𝑥1 0
] (2.22) 

For the fully actuated case, 𝑛, 𝑚 = 3, in this thesis we assume a spacecraft that is equipped with 

3 thrusters. A control system is said to be underactuated if dim(𝑥) > 𝑟𝑎𝑛𝑘(𝑏). For system (2.21) 

described above, condition 𝑛 > 𝑚 will imply that the system is underactuated. In sections 2.4, and 

2.5 controllability of different types of control systems will be discussed. 

 

2.3     Multiplicative Noise and Spacecraft Thrust Uncertainty Modeling 

To model the dynamics with actuator uncertainty, first consider the deterministic system model 

(2.19), which is given by 

𝑥̇𝑡 = 𝑓(𝑥𝑡) + 𝐵𝑢(𝑡) = 𝐺(𝑥𝑡, 𝑢(𝑡)) (2.23) 

where, 𝐵 = 𝐼−1𝑏. The main idea is to let generated uncertainty from the 𝑖𝑡ℎ thruster be modeled as 

a Gaussian white noise process 𝜂𝑡𝑖
, where all the 𝜂𝑡𝑖

 are independent. The uncertainty due to a 

thruster pair can be represented as 

(𝜂𝑡1
+ 𝜂𝑡2

) = 𝜉𝑡  

where 𝜉𝑡 is a Gaussian mean-zero white noise process. Then we have that  
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𝑢(𝑡)𝑖 = 𝑢̅(𝑡)𝑖(1 + (𝜉𝑖)𝑡), 𝑖 = 1, … ,𝑚  

and the control vector with multiplicative noise becomes 

𝐵𝑢𝑡 = 𝐼−1 ∑𝑏𝑖(𝑢̅𝑖(𝑡))(1 + (𝜉𝑖)𝑡)

𝑚

𝑖=1

 (2.24) 

where 𝑢̅(𝑡) ∈ ℝ𝑚 is the nominal control vector. In general, 𝜉𝑡 accounts for uncertainty in control 

input, such as thrust magnitude variations. 

 

Figure 5. [7]  Thrust Accuracy Error Measurements in Study conducted by Nicolini et al. [7] 

 

As opposed to the additive noise model considered in Ref. [13], the multiplicative uncertainty 

structure provides a more accurate and realistic model where the magnitude of noise generated by 

the thruster pair is dependent on the magnitude of the control input itself. For instance, a small 

commanded nominal control 𝑢̅ will result in (𝜉𝑢̅) ≈ 0 for an arbitrary 𝜉. Furthermore, it is known 

that for a measurable function 𝜎(𝑢̅(𝑡)) 

∫ 𝜎(𝑢̅(𝑡))𝜉𝑡 𝑑𝑡 ≈ ∫𝜎(𝑢̅(𝑡)) 𝑑𝑊𝑡 

are statistically equivalent [31]. Hence, the differential equation (2.23) is statistically equivalent to  
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𝑥𝑡 = 𝑥𝑜 + ∫ 𝐺(𝑥𝑠, 𝑢̅𝑠) 𝑑𝑠
𝑡

𝑡𝑜

+ ∫ 𝜎(𝑢̅𝑡) 𝑑𝑊𝑡

𝑡

𝑡𝑜

 (2.25) 

Given equation (2.25), we may restate (2.23) as a controlled Itô stochastic differential equation 

(SDE) with a multiplicative noise structure 

𝑑𝑥𝑡 = 𝐺(𝑥𝑡, 𝑢̅(𝑡)) 𝑑𝑡 + 𝜎(𝑢̅(𝑡))𝑑𝑊𝑡 (2.26) 

where 𝐺(𝑥𝑡, 𝑢(𝑡)) = 𝑓(𝑥𝑡) + 𝐵𝑢(𝑡) is the vector field containing the dynamics, 𝑊𝑡 𝑡 ≥ 0 is the 

𝑚-dimensional standard Brownian motion on the probability space (𝛺,ℱ, ℙ), and 𝜎(𝑢) denotes 

the diffusion coefficient. In the case of spacecraft thrusters with multiplicative noise, the diffusion 

coefficient is a function of control and is given by  

𝜎(𝑢̅) = 𝜀𝐵 [
𝑢̅1 0 0
0 ⋱ 0
0 0 𝑢̅𝑚

] (2.27) 

where, 𝜀 ≥ 0 is a real parameter scaling the thruster uncertainty effects. The diagonal control 

matrix of the diffusion coefficient is to make sure that each entry of the 𝑚-dimensional Wiener 

process is associated with its respective (𝑢̅𝑖)𝑡, 𝑖 = 1,… ,𝑚. 

 

2.4     Controllability and Observability 

In this section, we will review the controllability and observability properties of linear systems. 

Consider the following general linear control system 

𝑥̇𝑡 = 𝐴𝑥𝑡 + 𝐵𝑢(𝑡) 

𝑦𝑡 = 𝐶𝑥𝑡 
(2.28) 

where 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚 , 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝑦 ∈ ℝ𝑞, and 𝐶 ∈ ℝ𝑞×𝑛. Here, the additional 

equation 𝑦𝑡 = 𝐶𝑥𝑡 is known as the output equation. In simple terms, the output equation defines 

the relationship between the current state of the system and its output. 
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System (2.28) is said to be controllable if for every 𝑥 and every terminal time 𝑇 > 0, there 

exists a continuous input 𝑢(𝑡) 0 ≤ 𝑡 ≤ 𝑇, such that the system is taken from the initial condition 

at 𝑥(0) to 𝑥(𝑇) at 𝑡 = 𝑇 [32]. To derive the controllability condition, consider the solution to the 

differential equation (2.28) 

𝑥𝑇 = ∫ 𝑒𝐴(𝑇−𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑇

0

= ∫ 𝑒𝐴𝜏𝐵𝑢(𝑇 − 𝜏)𝑑𝜏
𝑇

0

 (2.29) 

Then, for system (2.28) to be controllable, 𝑥𝑇 must span ℝ𝑛. We have that the matrix exponential 

𝑒𝐴𝜏 can be expanded as 𝑒𝐴𝜏 = 𝐼 + 𝐴𝜏 +
𝐴2𝜏2

2
+ ⋯+

𝐴𝑘𝜏𝑘

𝑘!
+ ⋯, 𝑘 ∈ ℕ. Thus, (2.29) becomes  

𝑥𝑇 = ∫ [𝐼 + 𝐴𝜏 +
𝐴2𝜏2

2
+ ⋯+

𝐴𝑘𝜏𝑘

𝑘!
+ ⋯ ]𝐵𝑢(𝑇 − 𝜏)𝑑𝜏

𝑇

0

 (2.30) 

By Cayley-Hamilton theorem [33], [29], the matrix exponential expansion is then written as 

𝐼 + 𝐴𝜏 +
𝐴2𝜏2

2
+ ⋯ +

𝐴𝑘𝜏𝑘

𝑘!
+ ⋯ = ∑ 𝛼𝑖(𝑡)𝐴

𝑖

𝑛−1

𝑖=1

  

Hence, (2.29) becomes 

𝑥𝑇 = ∫ ( ∑ 𝛼𝑖(𝜏)𝐴
𝑖

𝑛−1

𝑖=1

 ) 𝐵𝑢(𝑇 − 𝜏)𝑑𝜏
𝑇

0

 

= ∫ [  𝐵   𝐴𝐵   𝐴2𝐵 …   𝐴𝑛−1𝐵 ] [
𝛼𝑜(𝜏)

⋮
𝛼𝑛−1(𝜏)

]  𝑢(𝑇 − 𝜏)𝑑𝜏
𝑇

0

 

= [  𝐵   𝐴𝐵   𝐴2𝐵 …   𝐴𝑛−1𝐵 ] ∫ [
𝛼𝑜(𝜏)

⋮
𝛼𝑛−1(𝜏)

]  𝑢(𝑇 − 𝜏)𝑑𝜏
𝑇

0

 

(2.31) 

We shall call 𝒞 = [  𝐵   𝐴𝐵   𝐴2𝐵 …   𝐴𝑛−1𝐵 ], the controllability matrix for linear systems. 

Hence, 𝑥𝑇 can be made equal to any arbitrary specified 𝑛-dimensional vector, only if 𝒞 has full 

row rank, i.e. 𝑟𝑎𝑛𝑘(𝒞) = dim(𝑥) = 𝑛 [32]. 
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Linear system (2.28) is observable if the initial state 𝑥(0) = 𝑥𝑜 can be uniquely determined 

from the knowledge of the input 𝑢(𝑡) and the output 𝑦𝑡 for 0 ≤ 𝑡 ≤ 𝑇. We show the observability 

condition for the linear system (2.28) by similarly deriving a rank condition for observability 

matrix. Consider the solution of the 𝑥̇𝑡 = 𝐴𝑥, given by 𝑥𝑡 = 𝑒𝐴𝑡𝑥𝑜. Substituting the trajectory into 

the equation 𝑦𝑡 = 𝐶𝑥𝑡, we obtain the output equation 𝑦𝑡 = 𝐶𝑒𝐴𝑡𝑥𝑜, as a function of 𝐴 ∈ ℝ𝑛×𝑛. 

Taking the derivative of the entries of 𝑦𝑡 equation 𝑛 − 1 times, the following matrix is constructed 

[
 
 
 
 
 

𝑦𝑡 = 𝐶𝑒𝐴𝑡𝑥𝑜

𝑑𝑦𝑡

𝑑𝑡
= 𝐴𝐶𝑒𝐴𝑡𝑥𝑜

⋮
𝑑𝑛−1𝑦𝑡  

𝑑𝑡𝑛−1
= 𝐴𝑛−1𝐶𝑒𝐴𝑡𝑥𝑜]

 
 
 
 
 

 (2.32) 

Evaluating the matrix (2.32) at 𝑡 = 0, the matrix is then rewritten as [32] 

[
 
 
 
 
 

𝑦𝑜

𝑑𝑦𝑜

𝑑𝑡
⋮

𝑑𝑛−1𝑦𝑜  

𝑑𝑡𝑛−1 ]
 
 
 
 
 

= [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

] 𝑥𝑜 (2.33) 

We identify 𝒪 = [𝐶  𝐶𝐴  ⋯   𝐶𝐴𝑛−1]𝑇 as the observability matrix. By definition, it is implied that 

all the entries of [𝑦𝑜   
𝑑𝑦𝑜

𝑑𝑡
  

𝑑𝑛−1𝑦𝑜  

𝑑𝑡𝑛−1
]
𝑇

are known when 𝒪 is full rank-𝑛. We have that the linear system 

(2.28) is observable, if and only if the matrix 𝒪 is of full column rank [32]. In this thesis, all the 

presented models and systems are assumed to have satisfied the observability condition. However 

in practice, it is not a given that observability is satisfied, thus additional work is required. In fact, 

in this thesis we have made the assumption that all the measurements and state knowledge are 

perfect and known.  
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2.5     Controllability of Spacecraft Gas Jet Thrusters 

In this section, we first consider the general nonlinear system on the smooth 𝑛-manifold 𝑀 

𝑥̇𝑡 = 𝑓(𝑥𝑡) + 𝑏𝑢(𝑡) (2.34) 

where 𝑓(𝑥) is an arbitrary nonlinear vector field, and 𝑥 ∈ 𝑀. For the special case of spacecraft 

attitude dynamics, 𝑓(𝑥) is given by (2.19), and column vectors 𝑏𝑖 are the axes which the torques 

are applied about (see section 2.2). Then for the attitude dynamics, (2.34) becomes 

𝑥̇𝑡 = 𝑓(𝑥𝑡) + 𝐼−1 ∑𝑏𝑖𝑢(𝑡)𝑖

𝑚

𝑖=1

 (2.35) 

The controllability conditions for a spacecraft attitude control system equipped with thrusters are 

derived in Crouch [30] and Isidori [34]. For system (2.35), with external torques ‖𝑏𝑖‖𝑢𝑖, Crouch 

provided the controllability condition as follows: 

Theorem 2. [30] Given a bounded control, and a Poisson stable vector field 𝑓(𝑥), system (2.35) 

is controllable if and only if it is accessible. 

 

Therefore, to analyze the system, we shall first review the definitions of a reachable set, and 

accessibility. Here, Poisson stability implies that not all trajectories of the system can leave the 

neighborhood of a Poisson stable point. 

A reachable set 𝑅(𝑥𝑜 , 𝑡) [35] of system (2.34), for a given 𝑥𝑜 ∈ 𝑀 is defined as the set of all 

𝑥 ∈ 𝑀 for which there exists an admissible control 𝑢, such that there is a trajectory of  (2.34) with 

𝑥(0) = 𝑥𝑜, and 𝑥(𝑡) = 𝑥. The reachable set from initial condition 𝑥𝑜 at time 𝑇 is then given by 

𝑅𝑇(𝑥𝑜) = ⋃ 𝑅(𝑥𝑜 , 𝑡)

0≤𝑡≤𝑇

 (2.36) 

Intuitively, this is the set of all the points that are reached by the trajectories of the system given 

an initial condition 𝑥𝑜 ∈ 𝑀. 
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Next, we define the accessibility algebra 𝒞 [35] as the span of all possible Lie brackets of 𝑓 

and 𝑏𝑖, that is, the smallest Lie algebra on 𝑀 that contains the vector fields 𝑓, and 𝑏𝑖, 𝑖 = 1,… ,𝑚. 

The accessibility distribution 𝒞 [35] of the general system (2.34) is the distribution generated by 

the vector fields in 𝒞. To give the accessibility distribution of (2.34), we shall first define the notion 

of Lie brackets. The Lie brackets of vector fields 𝑓 and 𝑏 [34] is defined as  

[𝑓, 𝑏](𝑥) =
𝜕𝑏

𝜕𝑥
𝑓(𝑥) −

𝜕𝑓

𝜕𝑥
𝑏(𝑥) (2.37) 

where 
𝜕𝑏

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑥
 are the Jacobian matrices of 𝑏 and 𝑓 respectively, i.e. 

𝜕𝑏

𝜕𝑥
=  

[
 
 
 
 
𝜕𝑏1

𝜕𝑥1
⋯

𝜕𝑏1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑏𝑛

𝜕𝑥1
⋯

𝜕𝑏𝑛

𝜕𝑥𝑛]
 
 
 
 

,    
𝜕𝑓

𝜕𝑥
=  

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 

  

For system (2.34), the accessibility distribution is given by  

𝒞 = [𝑏1 …  𝑏𝑚  [𝑎𝑑𝑏𝑖

𝑘
𝑏𝑗] …  [𝑎𝑑𝑓

𝑘
𝑏𝑖]] (2.38) 

where, 𝑎𝑑𝑓
𝑘𝑏(𝑥) = [𝑓, 𝑎𝑑𝑓

𝑘−1𝑏](𝑥) 𝑘 ≥ 1, i.e. [𝑎𝑑𝑓
𝑘𝑏] = [𝑓 … 𝑗 … [𝑓, 𝑏]], and  [𝑎𝑑𝑓

0𝑏] = [𝑏]. Then 

system (2.34) is said to be accessible from a point 𝑥𝑜 if for any 𝑇 > 0, the reachable set 𝑅𝑇(𝑥𝑜) 

contains a nonempty open set [35]. This intuitively means that there exists an arbitrary point 𝑥𝑓 ∈

𝑀 that is reachable form 𝑥𝑜 in finite time 𝑇. Moreover, point 𝑥𝑜 also needs to be reachable form 

𝑥𝑓 in finite time 𝑇.  

Theorem 3. [35] Suppose that 𝑓 is the smooth vector field of system (2.35). If dim[𝒞(𝑥𝑜)] = 𝑛, 

then for any 𝑇 > 0, the set 𝑅𝑇(𝑥𝑜) contains a nonempty open set.  

 

This implies that the system is accessible from 𝑥𝑜. Moreover, for any 𝑇 > 0, we say that system 

(2.34) is small-time locally controllable from 𝑥𝑜, if 𝑥𝑜 is an interior point of 𝑅𝑇(𝑥𝑜) [36],[35]. We 
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now provide brief computations of accessibility distribution for a spacecraft model (2.35) with 

external torque actuators, and 𝑥 ∈ ℝ3 [35],[30]: 

 

Case I. Consider a spacecraft for 𝑚 = 3, given by the model 

[
𝑥̇1

𝑥̇2

𝑥̇3

] =

[
 
 
 
 
 
 
(𝐼22 − 𝐼33)

𝐼11
𝑥2𝑥3

(𝐼33 − 𝐼11)

𝐼22
𝑥1𝑥3

(𝐼11 − 𝐼22)

𝐼33
𝑥1𝑥2]

 
 
 
 
 
 

+ [

𝑏1

𝐼11

0
0

]𝑢1 + [

0
𝑏2

𝐼22

0

]𝑢2 + [

0
0
𝑏3

𝐼33

] 𝑢3  

Case I describe the fully actuated case with application of three control torques (i.e. thruster 

pairs) 𝑢1, 𝑢2, and 𝑢3. Here, the accessibility distribution 𝒞 is given by 

𝒞(𝑥) =

[
 
 
 
 
 
 
𝑏1

𝐼11
0 0 0

𝑏2 𝑥3(𝐼22 − 𝐼33)

𝐼11𝐼22

𝑏3 𝑥2 (𝐼22 − 𝐼33)

𝐼11𝐼33

0
𝑏2

𝐼22
0 −

𝑏1 𝑥3(𝐼11 − 𝐼33)

𝐼11𝐼22
0 −

𝑏3 𝑥1(𝐼11 − 𝐼33)

𝐼22𝐼33

0 0
𝑏3

𝐼33

𝑏1𝑥2(𝐼11 − 𝐼22)

𝐼11𝐼33

𝑏2 𝑥1(𝐼11 − 𝐼22)

𝐼22𝐼33
0

]
 
 
 
 
 
 

  

Since the three directions 𝑏𝑖 are linearly independent, the rank condition is 3, i.e. dim𝒞(𝑥) = 3. 

More specifically when the system is at rest, 

𝒞(0) =

[
 
 
 
 
 
 
𝑏1

𝐼11
0 0

0
𝑏2

𝐼22
0

0 0
𝑏3

𝐼33]
 
 
 
 
 
 

 (2.39) 

thus, the system is accessible. One can always assume that a fully actuated system is always 

accessible as long as the control input directions are linearly independent. 
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Case II. Next consider the case 𝑚 = 2 and the underactuated system 𝑥̇ = 𝑓(𝑥) + 𝑏1𝑢1 + 𝑏2𝑢2. 

The accessibility distribution 𝒞(0) is computed as 

𝒞(0) =

[
 
 
 
 
 
 
𝑏1

𝐼11
0 0

0
𝑏2

𝐼22
0

0 0
𝑏1

𝐼11

𝑏2

𝐼22
(
𝐼11 − 𝐼22

𝐼33
)
]
 
 
 
 
 
 

 (2.40) 

Hence, the system is accessible as long as 𝐼11 ≠ 𝐼22. It should be noted that 𝐼11 = 𝐼22 will result in 

a constant third axis, i.e. 𝑥̇3 = 0.  Assuming 𝐼11 ≠ 𝐼22, we have dim𝒞(0) = 3, hence the assumed 

system of case II is accessible.  

 

Case III. Let us now consider the case 𝑚 = 1, and the resulting equation 𝑥̇ = 𝑓(𝑥) + 𝑏1𝑢1. 

Suppose 𝑏1 is given by  

𝑏1 = (
𝑎
𝑏
𝑐
)  

where 𝑎,𝑏,𝑐 ∈ ℝ. Then the accessibility distribution 𝒞(0) is computed as 

𝒞 =

[
 
 
 
 
 
 𝑎 −

2 𝑏 𝑐 (𝐼22 − 𝐼33)

𝐼11
−

2 𝑎 𝑐2 (𝐼11 − 𝐼33)(𝐼22 − 𝐼33)

𝐼11𝐼22

𝑏
2 𝑎 𝑐 (𝐼11 − 𝐼33)

𝐼22
−

2 𝑎2 𝑏 (𝐼11 − 𝐼22)(𝐼11 − 𝐼33)

𝐼22𝐼33
 −

2 𝑏 𝑐2 (𝐼11 − 𝐼33)(𝐼22 − 𝐼33)

𝐼11𝐼22

𝑐 −
2 𝑎 𝑏 (𝐼11 − 𝐼22)

𝐼33

2 𝑏2 𝑐 (𝐼11 − 𝐼22)(𝐼22 − 𝐼33)

𝐼11𝐼33
−

2 𝑎2 𝑐 (𝐼11 − 𝐼22)(𝐼11 − 𝐼33)

𝐼22𝐼33 ]
 
 
 
 
 
 

 

 

Having obtained three independent directions, we may now conclude that the system is accessible. 

Let us further make the assumption that 𝐼11 = 𝐼22, which implies that the spacecraft is symmetric. 

As discussed in section (2.1), the third axis of (2.14) is now constant.  Then, 𝒞(0) becomes 
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𝒞(0) =

[
 
 
 
 
 𝑎 −

2 𝑏 𝑐 (𝐼22 − 𝐼33)

𝐼11
−

2 𝑎 𝑐2 (𝐼11 − 𝐼33)(𝐼22 − 𝐼33)

𝐼11𝐼22

𝑏
2 𝑎 𝑐 (𝐼11 − 𝐼33)

𝐼22
 −

2 𝑏 𝑐2 (𝐼11 − 𝐼33)(𝐼22 − 𝐼33)

𝐼11𝐼22

𝑐 0 0 ]
 
 
 
 
 

 (2.41) 

To study the rank condition, we look at the invertibility condition of (2.41). The determinant of 

(2.41) is given by 

det(𝒞(0)) = (
𝐼1 − 𝐼3

𝐼1
)

3

𝑐4(𝑎2 + 𝑏2) 

Hence, (2.41) becomes singular only when either 𝐼11 = 𝐼33,  or 𝑐 = 0, or 𝑎 = 𝑏 = 0. Suppose that 

det(𝒞(0)) ≠ 0, then (2.41) is invertible and dimdet(𝒞(0)) = 3. Therefore, the assumed system 

of case III is accessible.   

To show controllability of cases I-III, we invoke theorems 1 and 2 of Crouch [30]. By theorem 

2 of [30], we have that the vector field 𝑓 of system (2.35) is Poisson stable. Then, by theorem 1 of 

[30], we have that systems in Cases I-III are controllable when dim𝒞 = 3. In summary, we have 

shown the cases that given a bounded control, and the Poisson stable vector field 𝑓 of (2.35), the 

system can be made accessible, and hence controllable. It should also be mentioned that for a linear 

system, the accessibility distribution reduces to the controllability matrix of section 2.4. 
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CHAPTER 3 

Optimal Control 

 

3.1     Deterministic Optimal Control 

Consider the general deterministic dynamical system 

𝑥̇𝑠 = 𝐺(𝑥𝑠, 𝑢(𝑠), 𝑠)     𝑡 ≤ 𝑠 ≤ 𝑇 

𝑥𝑡 = 𝑥𝑜 ∈ ℝ𝑛       𝑢(𝑠) ∈ ℝ𝑚 
(3.1) 

where 𝑥𝑜 is the initial condition of the differential equation. We are interested in calculating a 

control 𝑢(𝑠) that takes 𝑥𝑡 = 𝑥𝑜  to a terminal state 𝑥𝑇, while minimizing an objective function.  

Such a task is known as an optimal control problem. In general, there exist two methods of solving 

an optimal control problem:  

1) Dynamic Programing 

2) Calculus of Variation (Pontryagin’s Maximum Principle) 

In this thesis, we will primarily focus on the first method: Dynamic Programing [37], developed 

by Richard Bellman in the 1950s. However, we will also use calculus of variations to derive the 

first-order necessary condition for optimality, and what is known as the Euler-Lagrange equation 

[32]. Given the dynamical system (3.1), we would like to minimize the cost functional  

𝐽𝑥𝑜,𝑡[𝑢(. )] = ∫ 𝑟(𝑥𝑠, 𝑢(𝑠), 𝑠)
𝑇

𝑡

𝑑𝑠 + 𝜙(𝑥𝑇, 𝑇) (3.2) 

where the smooth and convex function 𝑟 ∶ ℝ𝑛 × ℝ𝑚 × ℝ → ℝ, is called the running cost, and 

𝜙(𝑥𝑇 , 𝑇) ∶  ℝ𝑛 × ℝ → ℝ, is the terminal cost. Note that 𝑇 may not be fixed. Most commonly, there 

are three types of problems with their respective cost functional forms [32]: 

1) Mayer problem: when the cost functional is only a terminal cost. 

2) Bolza problem: when both the terminal and running costs are present. 
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3) Lagrange problem: when 𝜙(𝑥𝑇 , 𝑇) = 0, and the cost functional becomes 𝐽𝑥𝑜,𝑡[𝑢(. )] =

∫ 𝑟(𝑥𝑠, 𝑢(𝑠), 𝑠)
𝑇

𝑡
𝑑𝑠. A special case of the Lagrange problem, the infinite horizon problem, is often 

considered when 𝑇 → ∞. We will use the infinite horizon setting in the incoming sections to derive 

the optimal control for spacecraft attitude dynamics.  

To start using calculus of variation we derive the differential equations which their solution will 

minimize the cost functional 𝐽. Such equations are known as the first order necessary conditions 

of optimality. Introducing the Lagrange multipliers 𝜆 ∈ ℝ𝑛, the cost functional with the dynamic 

constraint is rewritten as 𝐽 

𝐽[𝑢(. )] = 𝜙(𝑥𝑇 , 𝑇) + ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡) + 𝐺(𝑥𝑡, 𝑢(𝑡)) − 𝑥̇𝑡)
𝑇𝜆(𝑡)

𝑇

𝑡

𝑑𝑡  

Let us now define the control Hamiltonian, 𝐻: ℝ𝑛 × ℝ𝑚 × ℝ𝑛 × ℝ → ℝ, as 

𝐻(𝑥𝑡, 𝑢(𝑡), 𝜆(𝑡), 𝑡) = 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡) + 𝐺(𝑥𝑡, 𝑢(𝑡))𝑇𝜆(𝑡)  

Substituting 𝐻 into the cost functional, fixing the initial and terminal times 𝑡𝑜 and 𝑡𝑓, and 

integrating the −(𝑥̇)𝑇𝜆(𝑡) term by parts [38], 𝐽 becomes 

𝐽 = 𝜙 (𝑥𝑡𝑓
, 𝑡𝑓) + (𝑥𝑡𝑜

)
𝑇
𝜆(𝑡𝑜) − (𝑥𝑡𝑓

)
𝑇

𝜆(𝑡𝑓) + ∫ 𝐻(𝑥𝑡, 𝑢(𝑡), 𝜆(𝑡), 𝑡) + (𝑥𝑡)
𝑇𝜆̇(𝑡)

𝑡𝑓

𝑡𝑜

 𝑑𝑡  

By introducing variation in 𝑢(𝑡), the 𝛿𝑢, we’ll cause variation in 𝑥𝑡, 𝛿𝑥, and ultimately variation 

in 𝐽, 𝛿𝐽. Hence, the cost function becomes 

𝛿𝐽 = [(𝛿𝑥)𝑇 (
𝜕𝜙

𝜕𝑥
− 𝜆)]

𝑡=𝑡𝑓

+ [(𝛿𝑥)𝑇𝜆]𝑡=𝑡𝑜 + ∫(𝛿𝑥)𝑇 (
𝜕𝐻

𝜕𝑥
+ 𝜆̇)

𝑡𝑓

𝑡𝑜

+ (𝛿𝑢)𝑇
𝜕𝐻

𝜕𝑢
 𝑑𝑡 (3.3) 

Since the Lagrange multipliers are arbitrarily introduced to force the constraint into the objective 

function, and since at the optimal point, variation of the cost functional must be zero, the Lagrange 
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multipliers are chosen in a way to make the coefficients of variations 𝛿𝑥 to go to zero. Hence, let 

us choose 𝜆̇ as  

𝜆̇ = −
𝜕𝐻

𝜕𝑥
 (3.4) 

The integral term of (3.3) becomes ∫ (𝛿𝑢)𝑇 𝜕𝐻

𝜕𝑢

𝑡𝑓
𝑡𝑜

 𝑑𝑡, and the boundary condition follows as 

𝜆(𝑡𝑓) = [
𝜕𝜙

𝜕𝑥
]
𝑡=𝑡𝑓

 (3.5) 

In particular by distributing the differentiation in (3.4), we have 

𝜆̇ = − (
𝜕𝑟

𝜕𝑥
) − (

𝜕𝐺

𝜕𝑥
)

𝑇

𝜆  

Equation (3.4) is known as the costate equation [38]. Inputting 𝜆̇ and 𝜆(𝑡𝑓) into (3.3), the cost 

functional variation becomes 

𝛿𝐽 = [(𝛿𝑥)𝑇𝜆]𝑡=𝑡𝑜 + ∫(𝛿𝑢)𝑇
𝜕𝐻

𝜕𝑢

𝑡𝑓

𝑡𝑜

 𝑑𝑡  

Moreover, we have that at the optimal point, variation of the cost functional must be zero. Hence, 

we have that 𝛿𝐽 = 0. This implies that 

𝜕𝐻

𝜕𝑢
= 0 (3.6) 

All in all, to find an optimal control that minimizes the cost functional 𝐽, following set of equations 

need to be solved  

𝑥̇𝑡 = 𝐺(𝑥𝑡, 𝑢(𝑡), 𝑡) 

𝜆̇ = −
𝜕𝑟

𝜕𝑥
− (

𝜕𝐺

𝜕𝑥
)

𝑇

𝜆 = −
𝜕𝐻

𝜕𝑥
 

𝜕𝐻

𝜕𝑢
=

𝜕𝑟

𝜕𝑢
+ (

𝜕𝐺

𝜕𝑢
)

𝑇

𝜆 = 0  

(3.7) 

with boundary conditions 



34 

 

𝑥𝑡=𝑡𝑜
= 𝑥𝑜 

𝜆(𝑡𝑓) = [
𝜕𝜙

𝜕𝑥
]
𝑡=𝑡𝑓

 
 

The third and second equations of (3.7), along with the second boundary condition are known 

as the Euler-Lagrange equations [38]. The two boundary conditions are also known as the 

transversality conditions. The costate equation is solved backward in time and satisfies the 

terminal condition 𝜆(𝑡𝑓), while the state equation is solved forward in time and satisfies the initial 

condition 𝑥𝑡=𝑡𝑜. This is known as a two-point boundary value problem. There are several methods 

that provide an estimate of the optimal control 𝑢(𝑡) (i.e. based on an initial guess) to minimize the 

cost functional. In certain special cases, and when the dynamics are linear, these equations are 

easier to solve. However, in most practical applications, and physical problems, deriving an exact 

solution is difficult. Thus, numerical methods are often utilized to obtain the approximate optimal 

control. Several of these methods have been discussed in Betts [39]. 

 

3.2     Dynamic Programing 

In this section, we would like to derive the HJB partial differential equation. The HJB equation 

is of interest since the solution to the HJB gives the optimal cost of the optimal control problem. 

The steps shown in this section follow the dynamic programing derivations of Nemhauser [40]. 

Consider the dynamical system (3.1), along with the cost functional (3.2) for 0 ≤ 𝑡 ≤ 𝑇, and 𝑥𝑜 ∈

ℝ𝑛. The goal of dynamic programing is to find 𝑢∗(. ) ∈ 𝕌, the optimal control for the dynamics 

(3.1) in the time interval [0, 𝑇], such that the relation 

𝐽[𝑢∗(. )] ≤ 𝐽[𝑢(. )],  ∀ 𝑢(. ) ∈ 𝕌.  

is satisfied [32]. Let 𝑢∗(. ) be the optimal control and 𝑥∗(. ) the corresponding trajectory of the 

controlled dynamics. By choosing 𝑡 ∈ [0,𝑇], we will denote the corresponding state of the 
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optimally controlled plant at time 𝑡 by 𝑥𝑡
∗. Then 𝑢∗(. ) restricted to [𝑡, 𝑇] must be optimal for the 

following optimization problem:  

minimize [∫ 𝑟(𝑥𝑠, 𝑢(𝑠), 𝑠) 𝑑𝑠

𝑇

𝑡

+ 𝜙(𝑥𝑇 , 𝑇)] 

subject to   𝑥̇𝑠 = 𝐺(𝑥𝑠, 𝑢(𝑠), 𝑠),   𝑡 ≤ 𝑠 ≤ 𝑇 

(3.8) 

Specifically, if we were able to find the optimal control trajectory in the interval [0,𝑇] by 

solving the optimal control problem, then the resulting 𝑥∗(. ) is also optimal on all the subintervals 

of the form [𝑡, 𝑇] ⊂ [0, 𝑇] with 𝑡 > 0. This is provided that the initial condition 𝑥𝑡
∗ at time 𝑡 is 

obtained from running the system forward along the optimal trajectory from time 𝑡 = 0 [32]. 

Moreover, due to Bellman’s principle of optimality [32] we have that if some other control 

𝑢(. )∗∗ on [𝑡, 𝑇] achieved a strictly lower cost, then the concatenation of 𝑢(. )∗ on [0, 𝑡] and 𝑢(. )∗∗ 

on [𝑡, 𝑇] will yield a cost over the entire interval [0, 𝑇] which is strictly less than that achieved by 

𝑢∗(𝑡). Let us now use this principle to derive the HJB PDE associated with (3.1). 

Consider the following Lagrange problem (i.e. special case of (3.8) where 𝜙(𝑥𝑇 , 𝑇) = 0) 

minimize [∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡) 𝑑𝑡

𝑇

𝑡

] 

subject to 𝑥̇ = 𝐺(𝑥𝑡, 𝑢(𝑡), 𝑡),   𝑥𝑡 = 𝑥𝑜 

 

To formulate the problem as a dynamic program, we will define the value function, 𝑉(𝑥): ℝ𝑛 →
ℝ such that  

𝑉(𝑥𝑡, 𝑡) = min
𝑢(𝑡)
[𝑡,𝑇]

∫𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑇

𝑡

𝑑𝑡 (3.9) 

The value function is the best value (or cost) of the objective. By additivity property of integrals, 

value function can be written as a summation of two integrals  

𝑉(𝑥(𝑡), 𝑡) = min
𝑢(𝑡)
[𝑡,𝑇]

( ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑇

𝑡+𝛿𝑡

𝑑𝑡 + ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑡+𝛿𝑡

𝑡

𝑑𝑡)  
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where [𝑡, 𝑇] → [𝑡, 𝑡 + 𝛿𝑡] ∪ [𝑡 + 𝛿𝑡, 𝑇]. Further dividing the minimization interval into two 

intervals, we have that  

𝑉(𝑥(𝑡), 𝑡) = min
𝑢(𝑡)

[𝑡,𝑡+𝛿𝑡]

( min
𝑢(𝑡)

[𝑡+𝛿𝑡,𝑇]

( ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑇

𝑡+𝛿𝑡

𝑑𝑡 + ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑡+𝛿𝑡

𝑡

𝑑𝑡))  

 Realizing that the second integral is only over the interval [𝑡 + 𝛿𝑡, 𝑇],we obtain the following 

form of the value function  

𝑉(𝑥(𝑡), 𝑡) = min
𝑢(𝑡)

[𝑡,𝑡+𝛿𝑡]

( ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑡+𝛿𝑡

𝑡

𝑑𝑡 + min
𝑢(𝑡)

[𝑡+𝛿𝑡,𝑇]

∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑇

𝑡+𝛿𝑡

𝑑𝑡 ) (3.10) 

By definition, we have that  

𝑉(𝑥(𝑡+𝛿𝑡), 𝑡 + 𝛿𝑡) = min
𝑢(𝑡)

[𝑡+𝛿𝑡,𝑇]

∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑇

𝑡+𝛿𝑡

𝑑𝑡 (3.11) 

Substituting (3.11)  in equation (3.10), we obtain the following expression  

𝑉(𝑥(𝑡), 𝑡) = min
𝑢(𝑡)

[𝑡,𝑡+𝛿𝑡]

( ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑡+𝛿𝑡

𝑡

𝑑𝑡 + 𝑉(𝑥(𝑡+𝛿𝑡) , 𝑡 + 𝛿𝑡)) (3.12) 

where the ∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)
𝑡+𝛿𝑡

𝑡
𝑑𝑡 term is the immediate return, and 𝑉(𝑥(𝑡+𝛿𝑡), 𝑡 + 𝛿𝑡) term is 

known as the optimal return on [𝑡 + 𝛿𝑡, 𝑇]. For sufficiently small 𝛿𝑡, the cost function becomes 

∫ 𝑟(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝑡+𝛿𝑡

𝑡

𝑑𝑡 = 𝑟(𝑥, 𝑢, 𝑡) 𝛿𝑡  

Hence, (3.12) can be restated as 

𝑉(𝑥(𝑡), 𝑡) = min
𝑢(𝑡)

[𝑡,𝑡+𝛿𝑡]

(𝑟(𝑥, 𝑢, 𝑡)𝛿𝑡 + 𝑉(𝑥(𝑡 + 𝛿𝑡), 𝑡 + 𝛿𝑡)) (3.13) 

Next, consider the Taylor series expansion of function 𝑉(𝑡) around the constant 𝑐 ∈ ℝ 

𝑉(𝑡) = 𝑉(𝑐) + (
𝑑𝑉(𝑐)

𝑑𝑡
) (𝑡 − 𝑐) + (

𝑑2𝑉(𝑐)

𝑑𝑡2
)

(𝑡 − 𝑐)2

2!
+ ⋯    

and recall that (
𝑑𝑉(𝑐)

𝑑𝑡
) can be written as   

 (
𝑑𝑉(𝑐)

𝑑𝑡
) =  (

𝑑𝑉(𝑥𝑡,𝑡)

𝑑𝑡
) =

𝜕𝑉(𝑥𝑡,𝑡)

𝜕𝑡
+ 𝑥̇𝑡

𝑇 𝜕𝑉(𝑥𝑡,𝑡)

𝜕𝑥
  

where 𝑥̇𝑡 = (
𝑑𝑥𝑡

𝑑𝑡
) is the closed loop dynamics (3.1). Using the above Taylor series expansion, we 

expand 𝑉(𝑥(𝑡+𝛿𝑡), 𝑡 + 𝛿𝑡) around 𝑐 = (𝑥𝑡, 𝑡) such that 
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𝑉(𝑥(𝑡+𝛿𝑡), 𝑡 + 𝛿𝑡) = 𝑉(𝑥𝑡, 𝑡) + (
𝑑𝑉(𝑐)

𝑑𝑡
) (𝑡 + 𝛿𝑡 − 𝑡) 

 ⟹ 𝑉(𝑥(𝑡+𝛿𝑡), 𝑡 + 𝛿𝑡) = 𝑉(𝑥𝑡, 𝑡) + (
𝑑𝑉(𝑐)

𝑑𝑡
) 𝛿𝑡 

⟹ 𝑉(𝑥(𝑡+𝛿𝑡) , 𝑡 + 𝛿𝑡) = 𝑉(𝑥𝑡, 𝑡) + (
𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑡
+ 𝑥̇𝑡

𝑇 𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑥
)𝛿𝑡 

 

Substituting the obtained expression in (3.13), we obtain 

𝑉(𝑥𝑡, 𝑡) = min
𝑢(𝑡)

[𝑡,𝑡+𝛿𝑡]

(𝑟(𝑥, 𝑢, 𝑡)𝛿𝑡 + 𝑉(𝑥𝑡, 𝑡) + (
𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑡
+ 𝑥̇𝑡

𝑇 𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑥
) 𝛿𝑡) 

 

Note that we have ignored the higher order terms of the Taylor expansion, as well as the 𝛿𝑡2 terms. 

Additionally, since 𝑉(𝑥𝑡, 𝑡) does not depend on the minimization variable 𝑢(𝑡), we shall subtract 

the 𝑉(𝑥𝑡, 𝑡) term from both sides of the equality such that  

0 = min
𝑢(𝑡)

[𝑡,𝑡+𝛿𝑡]

(𝑟(𝑥, 𝑢, 𝑡)𝛿𝑡 + (
𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑡
+ 𝑥̇𝑡

𝑇 𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑥
) 𝛿𝑡) 

(3.14) 

Further dividing by 𝛿𝑡, equation (3.14) becomes 

0 = min
𝑢(𝑡)

[𝑡,𝑡+𝛿𝑡]

(𝑟(𝑥, 𝑢, 𝑡) +
𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑡
+ 𝑥̇𝑡

𝑇 𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑥
) 

 

Finally, taking the limit 𝛿𝑡 → 0, and substituting the closed loop dynamics (3.1), we arrive at the 

following partial differential equation:  

0 =
𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑡
+ min

𝑢(𝑡)
(𝑟(𝑥, 𝑢, 𝑡) + ∑𝐺𝑖(𝑥𝑡, 𝑢(𝑡), 𝑡)

𝜕𝑉(𝑥𝑡, 𝑡)

𝜕𝑥𝑖

𝑛

𝑖=1

) (3.15) 

Equation (3.15) is the Hamilton-Jacobi-Bellman (HJB) equation. It is of great importance to us, 

since the solution to the HJB is the value function, which is the optimal cost of the given optimal 

control problem. Moreover, if the value function is obtained, we can always find the optimal 

control that minimizes the cost functional. In the consequent chapters, we formulate the HJB for 
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our physical problem of interest. However, we may first make an additional assumption: we let 

𝑇 → ∞ so that the system settles into a steady state. As a result, we have that the value function 

does not explicitly depend on time, i.e. 
𝜕𝑉(𝑥𝑡)

𝜕𝑡
= 0. Hence (3.15) simplifies to  

0 = min
𝑢(𝑡)

(𝑟(𝑥, 𝑢) + ∑ 𝐺𝑖(𝑥𝑡, 𝑢(𝑡))
𝜕𝑉(𝑥𝑡)

𝜕𝑥𝑖

𝑛

𝑖=1

) (3.16) 

Furthermore, differentiating the HJB PDE with respect to 𝑢, We obtain the equation 

0 =
𝑟(𝑥, 𝑢)

𝜕𝑢
+ ∑

𝐺𝑖(𝑥𝑡, 𝑢(𝑡))

𝜕𝑢

𝜕𝑉(𝑥𝑡)

𝜕𝑥𝑖

𝑛

𝑖=1

  (3.17) 

which is a necessary condition for a minimum. Recall the optimality condition (3.6) of the previous 

section. Clearly, the obtained condition (3.17) is the same as condition (3.6). It can also be 

observed that in the Hamiltonian formulation, the gradient of value function is the Lagrange 

multiplier. Consider the following Hamiltonian  

𝐻(𝑥, 𝑢, 𝜆) =  𝑟(𝑥, 𝑢) + 𝐺(𝑥𝑡, 𝑢)𝑇𝜆   

Substituting 𝜆 =
𝜕𝑉(𝑥𝑡)

𝜕𝑥
 for the Lagrange multiplier, we obtain  

𝐻(𝑥, 𝑢) =  𝑟(𝑥, 𝑢) +  𝐺(𝑥𝑡, 𝑢)𝑇
𝜕𝑉(𝑥𝑡)

𝜕𝑥
  

which is the familiar form of the HJB equation. Then, the Hamiltonian form of the HJB equation 

can be written as 

0 = min
𝑢∈𝑈

{ 𝐻 (𝑥, 𝑢,
𝜕𝑉(𝑥𝑡)

𝜕𝑥
)}  

In section 3.4, the HJB corresponding to a stochastic system is derived.  
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3.3     Itô’s Lemma and the Diffusion Generator 

In this section, we will derive the identity of Itô lemma. This will enable us to express the 

differential of a function of stochastic process. We will further derive the infinitesimal generator 

for a SDE. Consider the following form of the Itô stochastic differential equation 

𝑋𝑇 = 𝑋𝑡𝑜
+ ∫ 𝐺(𝑋𝑡) 𝑑𝑡

𝑇

𝑡𝑜

+ ∫𝜎(𝑋𝑡) 𝑑𝑊𝑡

𝑇

𝑡0

 

𝑑𝑋𝑡 = 𝐺(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡,   𝑡𝑜 < 𝑡 < 𝑇  

(3.18) 

where 𝑊 is a one-dimensional Brownian motion, 𝑋 ∈ ℝ, and 𝐺: ℝ → ℝ, and 𝑡𝑜 ≥ 0. We would 

like to arrive at the expression known as the Itô lemma through Taylor expansion of a measurable 

function 𝜓: ℝ → ℝ, where 𝜓 is at least 𝐶2. For any 𝑡 ∈ [𝑡𝑜 , 𝑇], consider the Itô-Taylor expansion 

of the function 𝜓 around 𝑋𝑡  

𝜓(𝑋𝑡+𝛿𝑡) = 𝜓(𝑋𝑡) + (𝑋𝑡+𝛿𝑡 − 𝑋𝑡)
𝜕𝜓(𝑋𝑡)

𝜕𝑥
+

1

2
(𝑋𝑡+𝛿𝑡 − 𝑋𝑡)

2
𝜕2𝜓(𝑋𝑡)

𝜕𝑥2
+ 

𝒪((𝑋𝑡+𝛿𝑡 − 𝑋𝑡)
3) 

(3.19) 

Here by 
𝜕𝜓(𝑋𝑡)

𝜕𝑥
, we mean  [

𝜕𝜓(𝑥)

𝜕𝑥
]|

𝑥=𝑋𝑡

 which is the derivative of 𝜓(𝑋𝑡) with respect to the state 

argument evaluated at location 𝑋𝑡. Realizing that (𝑋𝑡+𝛿𝑡 − 𝑋𝑡) is given by the SDE (3.18) as 

𝐺(𝑋𝑡)𝛿𝑡 + 𝜎(𝑋𝑡)𝛿𝑊𝑡, we substitute for the (𝑋𝑡+𝛿𝑡 − 𝑋𝑡), and the (𝑋𝑡+𝛿𝑡 − 𝑋𝑡)
2 terms 

𝜓(𝑋𝑡+𝛿𝑡) = 𝜓(𝑋𝑡) + (𝐺(𝑋𝑡)𝛿𝑡 + 𝜎(𝑋𝑡)𝛿𝑊𝑡)
𝜕𝜓(𝑋𝑡)

𝜕𝑥
+ 

1

2
(𝐺(𝑋𝑡)

2𝛿𝑡2 + 2𝐺(𝑋𝑡)𝜎(𝑋𝑡)𝛿𝑡𝛿𝑊𝑡 + 𝜎(𝑋𝑡)
2(𝛿𝑊

𝑡
)
2
)
𝜕2𝜓(𝑋𝑡)

𝜕𝑥2
+ 𝒪((𝑋𝑡+𝛿𝑡 − 𝑋𝑡)

3) 

(3.20) 

Inspecting the higher order terms in 𝛿𝑡, we see that 𝛿𝑡𝛿𝑊𝑡~𝛿𝑡3/2 , and (𝛿𝑊𝑡)
2~𝛿𝑡. Consequently, 

all higher order terms in 𝛿𝑡 which are close to zero are neglected [41]. Additionally, (𝛿𝑊𝑡)
2 is 

approximated by 𝛿𝑡. Using these approximations, (3.20) becomes 
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𝜓(𝑋𝑡+𝛿𝑡) = 

𝜓(𝑋𝑡) + (𝐺(𝑋𝑡)𝛿𝑡 + 𝜎(𝑋𝑡)𝛿𝑊𝑡)
𝜕𝜓(𝑋𝑡)

𝜕𝑥
+

1

2
(𝜎(𝑋𝑡)

2𝛿𝑡)
𝜕2𝜓(𝑋𝑡)

𝜕𝑥2
+ 𝒪(𝛿𝑡3/2) 

(3.21) 

Rearranging the 𝜓(𝑋𝑡) term in (3.21), substituting back (𝑋𝑡+𝛿𝑡 − 𝑋𝑡) = 𝑑𝑋𝑡, and ignoring the 

higher order error, we have  

𝑑𝜓(𝑋𝑡) =
𝜕𝜓(𝑋𝑡)

𝜕𝑥
𝑑𝑋𝑡 +

1

2
𝜎(𝑋𝑡)

2
𝜕2𝜓(𝑋𝑡)

𝜕𝑥2
𝑑𝑡 (3.22) 

Expression (3.22) is known as the Itô’s lemma and describes the derivative of a time-independent 

function of stochastic process. We will also derive the time-dependent case of this well-known 

equation in this section. Let us now define the generator of Itô diffusion  

ℒ𝜓(𝑥) = lim
𝛿𝑡→0

𝔼[𝜓(𝑋𝑡+𝛿𝑡)|𝑋𝑡 = 𝑥] − 𝜓(𝑥)

𝛿𝑡
= lim

𝛿𝑡→0

𝔼[𝜓(𝑋𝑡+𝛿𝑡) − 𝜓(𝑥)|𝑋𝑡 = 𝑥]

𝛿𝑡
 (3.23) 

From (3.21), the term 

𝜓(𝑋𝑡+𝛿𝑡) − 𝜓(𝑋𝑡) = (𝐺(𝑋𝑡)𝛿𝑡 + 𝜎(𝑋𝑡)𝛿𝑊𝑡)
𝜕𝜓(𝑋𝑡)

𝜕𝑥
+

1

2
(𝜎(𝑋𝑡)

2𝛿𝑡)
𝜕2𝜓(𝑋𝑡)

𝜕𝑥2
  

is substituted in for (3.23), thus evaluating the limit, we have  

ℒ𝜓(𝑥) = 𝐺(𝑋𝑡)
𝜕𝜓(𝑋𝑡)

𝜕𝑥
+

1

2
𝜎(𝑋𝑡)

2
𝜕2𝜓(𝑋𝑡)

𝜕𝑥2
 (3.24) 

This expression is known as the Generator of Itô diffusion, or, the infinitesimal generator of 

stochastic process [41]. The first term of the generator is known as the drift term, and the second 

term is known as the diffusion term. These results can be extended to higher dimensions, for the 

𝑛-dimensional 𝜓: ℝ𝑛 → ℝ, see, for example Øksendal [42], chapters 4 and 7. Suppose, 𝑋 ∈ ℝ𝑛, 

and 𝑊 is 𝑚-dimensional Brownian motion, then the infinitesimal generator of the diffusion 

associated with the SDE (3.18) is given by  

ℒ𝜓(𝑥) = ∑ 𝐺𝑖(𝑋𝑡)
𝜕𝜓(𝑋𝑡)

𝜕𝑥𝑖
𝑖

+
1

2
∑ 𝑎𝑖,𝑗(𝑋𝑡)

𝜕2𝜓(𝑋𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖,𝑗

 (3.25) 
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where, 𝑎𝑖,𝑗(𝑋) = (𝜎(𝑋)𝜎(𝑋)𝑇)𝑖,𝑗. We will use (3.25) in the latter sections of this thesis. 

Now we would like to obtain a general form of the Itô’s Lemma where the function 𝜓 is time-

dependent. Recall the Itô’s lemma (3.22) for the time independent function 𝜓(𝑋𝑡). Replacing 

𝜓(𝑋𝑡) with the time dependent 𝜓(𝑋𝑡, 𝑡), and adding the term accounting for the time variation of 

𝜓(𝑋𝑡, 𝑡), i.e. 𝑑𝜓(𝑋𝑡 , 𝑡) = (
𝜕𝜓(𝑋𝑡,𝑡)

𝜕𝑥
𝑑𝑋𝑡  +

𝜕𝜓(𝑋𝑡 ,𝑡)

𝜕𝑡
𝑑𝑡), we have  

𝑑𝜓(𝑋𝑡, 𝑡) =
𝜕𝜓(𝑋𝑡 , 𝑡)

𝜕𝑥
𝑑𝑋𝑡 +

1

2
𝜎(𝑋𝑡)

2
𝜕2𝜓(𝑋𝑡 , 𝑡)

𝜕𝑥2
𝑑𝑡 +

𝜕𝜓(𝑋𝑡 , 𝑡)

𝜕𝑡
𝑑𝑡 (3.26) 

Realizing that, 𝑑𝑋𝑡 = 𝐺(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡, and substituting for 𝑑𝑋𝑡 in (3.26), we obtain 

𝑑𝜓(𝑋𝑡, 𝑡) = 

𝜕𝜓(𝑋𝑡 , 𝑡)

𝜕𝑥
(𝐺(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡) +

1

2
𝜎(𝑋𝑡)

2
𝜕2𝜓(𝑋𝑡, 𝑡)

𝜕𝑥2
𝑑𝑡 +

𝜕𝜓(𝑋𝑡, 𝑡)

𝜕𝑡
𝑑𝑡 

 

Simplifying and rearranging further, we have 

𝑑𝜓(𝑋𝑡, 𝑡) = 

𝜕𝜓(𝑋𝑡, 𝑡)

𝜕𝑡
𝑑𝑡 + [𝐺(𝑋𝑡)

𝜕𝜓(𝑋𝑡 , 𝑡)

𝜕𝑥
+

1

2
𝜎(𝑋𝑡)

2
𝜕2𝜓(𝑋𝑡, 𝑡)

𝜕𝑥2
] 𝑑𝑡 + 𝜎(𝑋𝑡)

𝜕𝜓(𝑋𝑡 , 𝑡)

𝜕𝑥
𝑑𝑊𝑡 

(3.27) 

The terms in the brackets are recognized as the infinitesimal generator of stochastic process (3.25), 

and are written as ℒ𝜓(𝑋𝑡, 𝑡) = 𝐺(𝑋𝑡)
𝜕𝜓(𝑋𝑡 ,𝑡)

𝜕𝑥
+

1

2
𝜎(𝑋𝑡)

2 𝜕2𝜓(𝑋𝑡 ,𝑡)

𝜕𝑥2 , thus (3.27) becomes  

𝑑𝜓(𝑋𝑡 , 𝑡) =
𝜕𝜓(𝑋𝑡, 𝑡)

𝜕𝑡
𝑑𝑡 + [ℒ𝜓(𝑋𝑡 , 𝑡) 𝑑𝑡] + 𝜎(𝑋𝑡)

𝜕𝜓(𝑋𝑡, 𝑡)

𝜕𝑥
𝑑𝑊𝑡 (3.28) 

More generally, in integral form we have 

𝜓(𝑋𝑇 , 𝑇) = 𝜓(𝑋𝑡𝑜 , 𝑡𝑜) + ∫ (
𝜕𝜓(𝑋𝑡 , 𝑡)

𝜕𝑡
+ ℒ𝜓(𝑋𝑡 , 𝑡)) 𝑑𝑡

𝑇

𝑡𝑜

 + ∫ 𝜎(𝑋𝑡)
𝜕𝜓(𝑋𝑡, 𝑡)

𝜕𝑥
𝑑𝑊𝑡

𝑇

𝑡𝑜

 (3.29) 

Hence, we have obtained the Itô Lemma for a time-dependent function 𝜓. Similarly, here extension 

to the multidimensional case is straight forward, and we may assume that 𝑋 ∈ ℝ𝑛. 
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3.4     Stochastic Dynamic Programming 

In stochastic control, disturbances are modeled as random processes (as shown in section 2.3), 

and the performance index is the average over all the sample paths of the solution to the stochastic 

differential equation [32].  In this section, we will derive the HJB PDE for a stochastic system. 

Recall the Itô SDE 

𝑑𝑋𝑠 = 𝐺(𝑋𝑠 , 𝑢(𝑠)) 𝑑𝑠 + 𝜎(𝑋𝑠)𝑑𝑊𝑠 ,   𝑡 ≤ 𝑠 ≤ 𝑇 

𝑋𝑡 = 𝑥 ∈ ℝ𝑛, 
(3.30) 

Let the expected cost functional be  

𝐽𝑥,𝑡[𝑢(. )] = 𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡

] (3.31) 

We are interested in the above’s problem for all choices of initial times 0 ≤ 𝑡 ≤ 𝑇, and all choices 

of initial states 𝑥 [32]. Hence, we define the value function starting at point 𝑥 at time 𝑡 as  

𝑉(𝑥, 𝑡) = min
𝑢(.)

𝐽𝑥,𝑡[𝑢(. )] =min
𝑢(.)

𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡

] (3.32) 

where at terminal time 𝑡 = 𝑇, 𝑉(𝑥, 𝑇) = 𝜙(𝑥). By Bellman’s principle of optimality (see section 

3.2), we restate (3.31) for any control 𝑢(. ) as 

𝑉(𝑥, 𝑡) ≤ 𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠 , 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡

] (3.33) 

By additivity property of integrals, (3.33) becomes 

𝑉(𝑥, 𝑡) ≤ 𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + ∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡+𝛿𝑡

𝑡+𝛿𝑡

𝑡

] (3.34) 

Next, consider the property 𝔼𝑥𝑜
[𝜓(𝑋𝑠)] = 𝔼𝑥[𝜓(𝑋𝑠)|𝑋𝑜 = 𝑥𝑜] for 𝑠 ≥ 0 and a measurable 

function 𝜓. Setting 𝑇 = 𝑠 + 𝑡, and 𝑡𝑜 = 𝑡, we have 𝔼𝑥,𝑡[𝜓(𝑋𝑇)] = 𝔼𝑥[𝜓(𝑋𝑇)|𝑋𝑡 = 𝑥]. Further 

using the Tower Property [32], this expression is restated as 

𝔼𝑥,𝑡[𝜓(𝑋𝑇)|𝑋𝑡 = 𝑥] = 𝔼[𝔼[𝜓(𝑋𝑇)|𝑋𝑡+𝛿𝑡] | 𝑋𝑡 = 𝑥] 
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where 𝛿𝑡 > 0. Then using the Markov Property [32], we have 

𝔼[𝔼[𝜓(𝑋𝑇)|𝑋𝑡+𝛿𝑡] | 𝑋𝑡 = 𝑥] = 𝔼[𝔼𝑋𝑡+𝛿𝑡,𝑡+𝛿𝑡[𝜓(𝑋𝑇)] | 𝑋𝑡 = 𝑥] = 𝔼𝑥,𝑡[𝔼𝑋𝑡+𝛿𝑡,𝑡+𝛿𝑡[𝜓(𝑋𝑇)]] 

Therefore, we’ve obtained the property 

𝔼𝑥,𝑡[𝜓(𝑋𝑇)] = 𝔼𝑥,𝑡[𝔼𝑋𝑡+𝛿𝑡 ,𝑡+𝛿𝑡[𝜓(𝑋𝑇)]] (3.35) 

Using the property (3.35) on expression (3.34), we have  

𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + ∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡+𝛿𝑡

𝑡+𝛿𝑡

𝑡
] = 

𝔼𝑥,𝑡 [𝔼𝑋𝑡+𝛿𝑡 ,𝑡+𝛿𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + ∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡+𝛿𝑡

𝑡+𝛿𝑡

𝑡
]] 

⟹  𝑉(𝑥, 𝑡) ≤ 𝔼𝑥,𝑡 [𝔼𝑋𝑡+𝛿𝑡,𝑡+𝛿𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + ∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡+𝛿𝑡

𝑡+𝛿𝑡

𝑡

]] 

 

 

Note that the term ∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠
𝑡+𝛿𝑡

𝑡
 is not in the interval  [𝑡 + 𝛿𝑡, 𝑇], thus, we write 

 𝑉(𝑥, 𝑡) ≤ 𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠
𝑡+𝛿𝑡

𝑡

+ 𝔼𝑋𝑡+𝛿𝑡,𝑡+𝛿𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡+𝛿𝑡

]] (3.36) 

Next, assume that the control applied from 𝑡 to 𝑡 + 𝛿𝑡 is arbitrary, and that the control applied 

in the interval [𝑡 + 𝛿𝑡] (the second integral) is optimal. Thus, we have 

𝔼𝑋𝑡+𝛿𝑡,𝑡+𝛿𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇)
𝑇

𝑡+𝛿𝑡

] = 𝑉(𝑋𝑡+𝛿𝑡 , 𝑡 + 𝛿𝑡) (3.37) 

Substituting (3.37) and the inequality becomes  

𝑉(𝑥, 𝑡) ≤ 𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠
𝑡+𝛿𝑡

𝑡

+ 𝑉(𝑋𝑡+𝛿𝑡, 𝑡 + 𝛿𝑡)]  

Note that, unlike the 𝑉(𝑥, 𝑡) term, the 𝑉(𝑋𝑡+𝛿𝑡 , 𝑡 + 𝛿𝑡) term is random with respect to the 

expectation 𝔼𝑥,𝑡 [32]. Hence, the inequality is restated as  
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0 ≤ 𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠, 𝑢(𝑠)) 𝑑𝑠
𝑡+𝛿𝑡

𝑡

+ 𝑉(𝑋𝑡+𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑉(𝑥, 𝑡)] (3.38) 

Recall the Itô lemma (3.29) from the previous section. Applying the Itô lemma to 𝑉(𝑋𝑡+𝛿𝑡 , 𝑡 + 𝛿𝑡), 

we have 

𝑉(𝑋𝑡+𝛿𝑡 , 𝑡 + 𝛿𝑡) − 𝑉(𝑥, 𝑡) = 

∫ (
𝜕

𝜕𝑠
𝑉(𝑋𝑠 , 𝑠) + ℒ𝑉(𝑋𝑠 , 𝑠))

𝑡+𝛿𝑡

𝑡

𝑑𝑠 + ∫ ∇𝑉𝑇(𝑋𝑠 , 𝑠)𝜎(𝑋𝑠 , 𝑠) 𝑑𝑊𝑠

𝑡+𝛿𝑡

𝑡

 
(3.39) 

Substituting (3.39) into (3.38), we further obtain  

0 ≤ 𝔼𝑥,𝑡 [∫ (𝑟(𝑋𝑠, 𝑢(𝑠)) +
𝜕

𝜕𝑠
𝑉(𝑋𝑠, 𝑠) + ℒ𝑉(𝑋𝑠, 𝑠)) 𝑑𝑠

𝑡+𝛿𝑡

𝑡

] (3.40) 

Note that the expected value of the term with Brownian motion is zero, thus, (3.40) does not 

include this term. Let us now divide the integral by 𝛿𝑡, and take the limit of the expectation as 

𝛿𝑡 → 0. We have 

0 ≤ lim
𝛿𝑡→0

𝔼𝑥,𝑡 [
1

𝛿𝑡
∫ (𝑟(𝑋𝑠, 𝑢(𝑠)) +

𝜕

𝜕𝑠
𝑉(𝑋𝑠, 𝑠) + ℒ𝑉(𝑋𝑠, 𝑠)) 𝑑𝑠

𝑡+𝛿𝑡

𝑡

]  

Evaluating the limit results in terms given at time 𝑡, i.e. 𝑋𝑡 = 𝑥, and 𝑢(𝑡) = 𝑢 [32], thus the 

obtained expression becomes deterministic: 

0 ≤ 𝑟(𝑥, 𝑢) +
𝜕

𝜕𝑡
𝑉(𝑥, 𝑡) + ℒ𝑉(𝑥, 𝑡)  

It is important here to mention that the generator term may depend on the control 𝑢 as well. 

This will be due to terms such as 𝐺(𝑥, 𝑢), and 𝜎(𝑥, 𝑢). Assuming that we have the optimal control 

𝑢∗ as the applied control, then the inequality becomes an equality. Specifically, we have 

0 = min
𝑢

(𝑟(𝑥, 𝑢) +
𝜕

𝜕𝑡
𝑉(𝑥, 𝑡) + ℒ𝑉(𝑥, 𝑡)) (3.41) 
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We have now arrived at the HJB equation associated with a stochastic differential equation. 

Rewriting (3.41) using the infinitesimal generator of stochastic process (3.25), and separating the 

terms that do not depend on the control 𝑢, we can write the HJB equation as  

−
𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
=  

1

2
∑ 𝑎𝑖,𝑗(𝑥)

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖,𝑗

+ min
𝑢

(𝑟(𝑥, 𝑢) + ∑𝐺𝑖(𝑥, 𝑢)
𝜕𝑉(𝑥, 𝑡)

𝜕𝑥𝑖
𝑖

)  (3.42) 

and, assuming that 𝑢∗ is found and is optimal, we obtain the following form of HJB PDE 

−
𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
=  

1

2
∑ 𝑎𝑖,𝑗(𝑥)

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖,𝑗

+ 𝑟(𝑥, 𝑢∗) + ∑ 𝐺𝑖(𝑥, 𝑢∗)
𝜕𝑉(𝑥, 𝑡)

𝜕𝑥𝑖
𝑖

  

𝑉(𝑥, 𝑇) = 𝜙(𝑥) 

(3.43) 

In particular, by applying the Feynman-Kac formula [32] we have 

𝑉(𝑥, 𝑡) = 𝔼𝑥,𝑡 [∫ 𝑟(𝑋𝑠
∗, 𝑢∗(𝑋𝑠

∗, 𝑠)) 𝑑𝑠 + 𝜙(𝑋𝑇
∗)

𝑇

𝑡

]  

where the optimal trajectory, 𝑋𝑡
∗, is the solution to the SDE (3.30), such that 

𝑑𝑋𝑠
∗ = 𝐺(𝑋𝑠

∗, 𝑢∗(𝑋𝑠
∗, 𝑠)) 𝑑𝑠 + 𝜎(𝑋𝑠

∗)𝑑𝑊𝑠 ,   𝑡 ≤ 𝑠 ≤ 𝑇     

In comparison to equation (3.15), we see that the difference between the HJB PDE (3.42) 

associated with the SDE (3.30) and a HJB PDE associated with deterministic constraint is the term  

 
1

2
∑ 𝑎𝑖,𝑗(𝑥)

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑉(𝑥, 𝑡)𝑖,𝑗  which is the diffusion term of the infinitesimal generator. Similarly, 

here we may make the assumption that 𝑇 → ∞, such that the system settles into steady state. As a 

result, we have that the value function will no longer be a function, and therefore 
𝜕

𝜕𝑡
𝑉(𝑥) = 0. At 

steady state, the HJB becomes 

0= 
1

2
∑ 𝑎𝑖,𝑗(𝑥)

𝜕2𝑉(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖,𝑗

+ min
𝑢

(𝑟(𝑥, 𝑢) + ∑𝐺𝑖(𝑥, 𝑢)
𝜕𝑉(𝑥)

𝜕𝑥𝑖
𝑖

)  (3.44) 
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It is possible to solve the HJB PDE in exact form when, for instance, the dynamics 𝐺𝑖(𝑥, 𝑢) are 

linear, and the objective function is quadratic. However, the problem could become difficult in 

certain cases with nonlinear dynamics. Hence similarly here, approximations would be needed to 

obtain the approximate optimal control and the solution to the HJB. In this study, a specific form 

of the HJB PDE associated with the SDE (2.26) has arisen in the application of spacecraft attitude 

dynamics. We are specifically interested in the HJB PDE with nonlinear dynamics and 

multiplicative linear control in the diffusion term. For specifics of the modeling of this problem, 

reader may refer to section 2.3 of this thesis. Due to the application, the HJB PDE of interest is   

0= min
𝑢

(𝑟(𝑥, 𝑢) +
1

2
∑ 𝑎𝑖,𝑗(𝑢)

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑉(𝑥, 𝑡)

𝑖,𝑗

+ ∑𝐺𝑖(𝑥, 𝑢)
𝜕

𝜕𝑥𝑖
𝑉(𝑥, 𝑡)

𝑖

)   

where 𝑎𝑖,𝑗(𝑢) = 𝜎(𝑢)𝜎2(𝑢). In the next chapter, we will outline the powerful method of Al’brekht 

[1] which utilizes the power series expansion of different terms of the HJB equation to provide an 

approximate solution to the HJB locally. This specific method is of interest because of its 

efficiency in solving nonlinear problems, as well as its ability to approximate the solution to a 

degree of approximation determined by the user. We will discuss the numerical and computational 

complications associated with this method in the latter sections. 
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CHAPTER 4 

The Al’brekht Method 

 

4.1     Al’brekht Method 

In this chapter, a brief overview of the method known as the Al’brekht method [1] is discussed. 

Formulated originally by E. G. Al’brekht in 1960s, this method has been studied and extended in 

[43], [44], [45], [46], and [47]. Moreover, the method has been explored and utilized in many 

different applications and fields. The Al’brekht method is concerned with providing an 

approximate analytic optimal control for stabilization of a nonlinear system. Concisely, 

Al’brekht’s approach is the expansion of power series of the value function, control, dynamics, 

and the running cost, and substitution of the truncated expansions into the HJB equation. Then, by 

grouping the HJB equation at different orders in 𝑥, the solution to the HJB (value function and the 

control) is obtained at every order. Consider the following nonlinear deterministic differential 

equation 

𝑥̇𝑡 = 𝐺(𝑥𝑡, 𝑢(𝑡)),    𝑥(0) = 𝑥𝑜,   

𝑥 ∈ ℝ𝑛,  𝑢 ∈ ℝ   
(4.1) 

We are interested in minimizing the cost functional 

𝐽(𝑢) = ∫ 𝑟(𝑥𝑡, 𝑢(𝑡))𝑑𝑡 

∞

0

 (4.2) 

in 0 ≤ 𝑡 ≤ ∞, through appropriate choice of function 𝑢. In this chapter, we will first outline the 

sufficient conditions of control optimality, which were originally given by Al’brekht [1]. Next, we 

will show a construction of optimal control following the method of Al’brekht, and provide the 

solvability conditions for higher orders of control for the deterministic system (4.1). Finally, we 

will briefly provide a discussion on convergence and error associated with the method.  
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4.2     The Sufficient Condition of Optimal Control 

Al’brekht provided a sufficient condition for existence of stabilizing optimal control. His 

conditions used the results of Bellman in dynamic programing (See section 3.2), as well as, 

Lyapunov’s stability argument. Specifically, he argued that if the control function 𝑢(𝑥), and a 

value function 𝑉(𝑥) are obtainable and satisfy the following three conditions, then the control 𝑢 =

𝑢(𝑥) is the optimal control [1]. The sufficient conditions for optimality of control are as follows: 

 

Condition I.  The value function 𝑉(𝑥) must satisfy the Lyapunov asymptotic stability argument 

[1]. In fact, the value function 𝑉(𝑥):ℝ𝑛 → ℝ, itself is the Lyapunov function candidate, hence, it 

must satisfy the conditions of the Lyapunov’s second method for stability.  

Specifically, consider the controlled system (4.1), and assume that it has an equilibrium at the 

origin. Suppose that 𝑉(𝑥) is a smooth positive definite function, i.e. we have that, 𝑉(𝑥) = 0 if and 

only if 𝑥 = 0, and 𝑉(𝑥) > 0 if and only if 𝑥 ≠ 0. Then 𝑉(𝑥) is a Lyapunov function candidate, 

and system (4.1) is asymptotically stable if 

𝑑𝑉(𝑥)

𝑑𝑡
= ∑𝐺𝑖(𝑥, 𝑢)

𝜕𝑉(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

< 0 (4.3) 

for all 𝑥 ≠ 0 [48]. Moreover, (4.1) is locally asymptotically stable for all 𝑥 in the neighborhood of 

the equilibrium [49]. Note that the strict inequality is required for asymptotic stability of the system 

in a Lyapunov sense. However, due to Barbashin-Krasovskii-LaSalle principle, if 𝑉̇(𝑥) ≤ 0, and 

the set 𝑆 = {𝑥|
𝑑𝑉(𝑥)

𝑑𝑡
= 0 } does not contain any other trajectory of the system except 𝑥(𝑡) = 0, 

𝑡 → ∞, then the origin is said to be asymptoticly stable [50]. 
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Condition II.  Given the controlled system (4.1), the derivative of the value function, 
𝑑𝑉(𝑥)

𝑑𝑡
, 

must satisfy the equation 

𝑑𝑉(𝑥)

𝑑𝑡
= −𝑟(𝑥, 𝑢(𝑥)) (4.4) 

A closer look at this equation reveals that this equation is the steady-state HJB equation (3.16) 

when 𝑢 = 𝑢(𝑥) is optimal. Further from condition I, we have that for the pair of functions 𝑉(𝑥), 

and 𝑢(𝑥) obtained from the HJB equation, (4.1) is asymptotically stable if  

∑𝐺𝑖(𝑥𝑡, 𝑢(𝑥𝑡))
𝜕𝑉(𝑥𝑡)

𝜕𝑥𝑖

𝑛

𝑖=1

= −𝑟(𝑥𝑡 , 𝑢(𝑡)) ≤ 0 (4.5) 

 

Condition III.  The following function 𝐻: ℝ𝑛 × ℝ → ℝ, 

𝐻(𝑥, 𝑢) =
𝑑𝑉(𝑥)

𝑑𝑡
+ 𝑟(𝑥, 𝑢(𝑥)) (4.6) 

must have a minimum at each point 𝑥 in a neighborhood of the origin [1]. If so, then the control 

function 𝑢(𝑥) is the optimal control. That is assuming that the control Hamiltonian 

𝐻(𝜆, 𝑥, 𝑢) = 𝐺𝑖(𝑥, 𝑢)𝑇𝜆 + 𝑟(𝑥, 𝑢)  

 is strictly convex in 𝑢, where 𝜆 =
𝜕𝑉(𝑥)

𝜕𝑥
 is the Lagrange multiplier.  

 

Suppose that the control 𝑢∗(𝑥), and the value function 𝑉∗(𝑥) satisfy the conditions I-III, then 

from the HJB equation (3.16), we have the following system of equations 

0 = ∑ 𝐺𝑖(𝑥, 𝑢
∗(𝑥))

𝜕𝑉∗(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

+ 𝑟(𝑥,𝑢∗(𝑥)) 

0 = ∑
𝐺𝑖(𝑥, 𝑢∗(𝑥))

𝜕𝑢
 
𝜕𝑉∗(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

 +
𝑟(𝑥,𝑢∗(𝑥))

𝜕𝑢
 

(4.7) 
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Note that the second equation of (4.7) is obtained through minimization of the first equation of 

(4.7) over the control variable 𝑢. The goal of Al’brekht method is to provide an approximation of 

the real analytic functions 𝑉∗(𝑥) and 𝑢∗(𝑥) that satisfy the system of equations (4.7) in a 

neighborhood of the origin.  

If the partial sums of the series 𝑉∗(𝑥) and 𝑢∗(𝑥) are found such that conditions I-III are locally 

satisfied, then the approximate control 𝑢∗(𝑥) is the optimal control locally around the origin, hence 

minimizing (4.2). We will outline the construction of such partial sums, as in Al’brekht [1], in the 

next section. Reader may refer to Al’brekht [1] pages 1255-1256 for a formal proof of convergence 

of functions 𝑉(𝑥) and 𝑢(𝑥). 

 

4.3     The Series Solution 

Consider the power series expansions of the dynamics (4.1), and the running cost of index (4.2)  

𝐺𝑖(𝑥, 𝑢) = ∑ 𝑓𝑖
(𝑚)(𝑥)

∞

𝑚=1

+ ∑ 𝐵𝑖𝑝 𝑢𝑝

∞

𝑝=1

+ ∑ 𝑓𝑖𝑝
(𝑚)(𝑥) 𝑢𝑝,

∞

𝑚,𝑝=1

     𝑖 = 1,… , 𝑛 (4.8) 

 𝑟(𝑥, 𝑢) = ∑  𝑟(𝑚)(𝑥)

∞

𝑚=2

+ ∑ 𝑅𝑝 𝑢
𝑝

∞

𝑝=2

+ ∑ 𝑟𝑝
(𝑚)(𝑥) 𝑢𝑝,              𝑖 = 1,… , 𝑛

∞

𝑚,𝑝=1

 (4.9) 

where, (𝑚) is the order of the functions in 𝑥, and 𝑝 the power of scalar 𝑢. We also have that the 

constant 𝑅2 ∈ ℝ is nonzero: this is required for existence of stabilizing optimal control for the 

quadratic part of the system. Note that the order of the general running cost always starts at the 

quadratic order so that the function is always convex. Moreover, the running cost may have fewer 

terms, or the order of the terms may vary. For instance, for 𝑚 = 𝑝 = 2 and functions  

∑  𝑟(𝑚)(𝑥)

∞

𝑚=2

+ ∑ 𝑅𝑞 𝑢
𝑞

∞

𝑞=2

 

the running cost is that of a linear quadratic regulator (LQR) problem. 
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Next, assume the solution form of the 𝑉∗(𝑥) and 𝑢∗(𝑥) functions as power series. We have 

𝑉(𝑥) = 𝑉(2)(𝑥) + 𝑉(3)(𝑥) + ⋯+ 𝑉(𝑚)(𝑥) + ⋯ (4.10) 

𝑢(𝑥) = 𝑢(1) + 𝑢(2) + ⋯+ 𝑢(𝑚−1) + ⋯ (4.11) 

Note that similarly here, the Lyapunov function 𝑉(𝑥) starts at quadratic order to retain positive 

definiteness. In addition, the terms of the value function (of any order) are the combination of all 

the possible monomials of that order. Notice also that order of control is always one lower than 

that of value function. This structure gives rise to the manner in which the value function and 

control are obtained. For example, the second order value function gives the linear control. The 

third order value function gives the second order control, the fourth order value function gives the 

third order control, and so on.  

Recall the sufficient conditions of optimality and the system of equations (4.7). We would like 

to find the function 𝑉(𝑥) and 𝑢(𝑥) such that equations 

0 = ∑ 𝐺𝑖(𝑥, 𝑢(𝑥))
𝜕𝑉(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

+ 𝑟(𝑥, 𝑢(𝑥)) (4.12) 

0 = ∑
𝐺𝑖(𝑥, 𝑢(𝑥))

𝜕𝑢

𝜕𝑉(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

 +
𝑟(𝑥,𝑢(𝑥))

𝜕𝑢
 (4.13) 

are satisfied. Hence, let us substitute expansions (4.8), (4.9), (4.10), and (4.11) into equations 

(4.12), and (4.13). We shall group the resulting expansions of (4.12) and (4.13) based on their 

orders in 𝑥. The quadratic order of (4.12) is associated with the linear part of the system and gives 

the Riccati equation. Hence, the quadratic value function coefficient is obtained from the Riccati 

equation. Then, the first order of equation (4.13) gives the linear control  𝑢(1)(𝑥) (which depends 

on the quadratic value function).  For higher orders of value function, we shall consider the rest of 

the grouped terms of (4.12). Treating each order separately, we factor the grouped terms as linear 
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combination of monomials of that order. Then the coefficients of the monomials are equated to 

zero and solved for the unknown coefficients of 𝑉(𝑥) as a system of linear equations. 

In particular, we have that 𝑉(𝑚)(𝑥), 𝑚 > 2  are found from orders 3, … , 𝑚  of equation (4.12). 

Controls 𝑢(𝑚−1)(𝑥), 𝑚 > 3 are then obtained from solving orders 2,… ,𝑚 − 1 of equation (4.13). 

Moreover 𝑢(𝑚−1)(𝑥) when solved, are in terms of 𝑉(𝑚)(𝑥), hence the control at all orders can be 

found starting from the pair 𝑉(2)(𝑥), and 𝑢(1)(𝑥), if the solvability conditions are satisfied. 

Let us now derive the value function and the control for any order 𝑚, and 𝑚 − 1 respectively 

[1]. We start by considering the linear part of the system (4.1), that is 

𝑥̇𝑡 = 𝑓𝑖
(1)

+ 𝐵𝑖1 𝑢
(1)(𝑥), 𝑖 = 1,… , 𝑛 (4.14) 

Similarly, let us collect only the quadratic terms of the power series (4.9), such that  

𝑟(2)(𝑥, 𝑢) = 𝑟(2)(𝑥) + 𝑟1
(1)(𝑥)𝑢(1)(𝑥) + 𝑅2(𝑢

(1)(𝑥))
2
 (4.15) 

Hence, the cost functional of the linear system (4.14) becomes 

𝐽(𝑢) = ∫(𝑟(2)(𝑥) + 𝑟1
(1)(𝑥)𝑢(1)(𝑥) + 𝑅2(𝑢

(1)(𝑥))2)

∞

0

𝑑𝑡 (4.16) 

Equations (4.14) and (4.16) together are the familiar LQR problem. It is known that when 𝐵𝑖𝑞 

and 𝑅𝑞𝑘  are nonzero (the pair 𝑓𝑖
(1)

, 𝐵𝑖𝑞 are controllable), and 𝑓𝑖
(1)

 is detectable, then the linear 

problem (4.14) is solvable [51], i.e. the Riccati solution gives the coefficient of  𝑉(2)(𝑥) term. 

Further solving for linear control, the first order terms of equation (4.13) become 

0 = ∑
𝑓𝑖

(1)
+ 𝐵𝑖1 𝑢

(1)(𝑥)

𝜕𝑢

𝜕𝑉(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

 +
(𝑟(2)(𝑥) + 𝑟1

(1)(𝑥)𝑢(1)(𝑥) + 𝑅2(𝑢
(1)(𝑥))

2
)

𝜕𝑢
  

⟹ 𝑢(1)(𝑥) = −
1

2𝑅2
∑𝐵𝑖1

𝜕𝑉(2)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

−
1

2𝑅2
𝑟1

(1)
(𝑥) (4.17) 
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Let us now approach the substitution and collection process of orders in a general sense. 

Suppose that we have already found the terms 𝑉(3)(𝑥),… , 𝑉(𝑚−1)(𝑥) and 𝑢(2)(𝑥) + ⋯+ 𝑢(𝑚−2), 

(Note that we have already obtained the pairs 𝑉(2)(𝑥), and 𝑢(1)(𝑥) from the linear part of the 

system). We are now interested in finding the next term of the solution series, 𝑉(𝑚)(𝑥), and 

𝑢(𝑚−1)(𝑥). As described earlier, to solve for coefficients of 𝑉(𝑚)(𝑥), the grouped 𝑚𝑡ℎ order terms 

of (4.12) are needed. Consider all the 𝑚𝑡ℎ order terms of (4.12) 

∑ 𝑓𝑖
(1)

(𝑥)
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖
+ ∑𝐵𝑖1 𝑢

(𝑚−1)(𝑥)
𝜕𝑉(2)(𝑥)

𝜕𝑥𝑖
+ ∑𝐵𝑖1 𝑢

(1)(𝑥)
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

+ 

𝑅2𝑢
(1)(𝑥)𝑢(𝑚−1)(𝑥) + 𝑅2𝑢

(𝑚−1)(𝑥)𝑢(1)(𝑥) + 𝑢(𝑚−1)(𝑥) 𝑟1
(1)(𝑥) = 𝐴(𝑚)(𝑥) 

(4.18) 

where, 𝐴(𝑚)(𝑥) are all the 𝑚𝑡ℎ order terms with known coefficients. We also would like to solve 

for the coefficients of 𝑢(𝑚−1)(𝑥) from all the (𝑚 − 1)𝑡ℎ order terms of (4.13). Hence, also consider 

the (𝑚 − 1)𝑡ℎ terms of (4.13) given by  

∑𝐵𝑖1

𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖
+

𝑛

𝑖=1

2𝑅2𝑢
(𝑚−1)(𝑥) = 𝐵(𝑚−1)(𝑥) (4.19) 

Similarly, 𝐵(𝑚−1)(𝑥) are the collection of  (𝑚 − 1)𝑡ℎ order terms with known coefficients. Let us 

start by simplifying the equation (4.18). Factoring 
𝜕𝑉(2)(𝑥)

𝜕𝑥𝑖
, and 

𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖
, and substituting for the 

linear control (4.17), we have 

∑(𝑓𝑖
(1)(𝑥) + 𝐵𝑖1 𝑢

(1)(𝑥))
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖
+ ∑𝐵𝑖1 𝑢

(𝑚−1)(𝑥)
𝜕𝑉(2)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

+ 

2𝑅2𝑢
(𝑚−1)(𝑥)(−

1

2𝑅2
∑𝐵𝑖1

𝜕𝑉(2)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

−
1

2𝑅2
𝑟1

(1)(𝑥)) + 
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𝑢(𝑚−1)(𝑥) 𝑟1
(1)(𝑥) = 𝐴(𝑚)(𝑥) 

⟹ ∑(𝑓𝑖
(1)(𝑥) + 𝐵𝑖1 𝑢

(1)(𝑥))
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖
+ ∑𝐵𝑖1 𝑢

(𝑚−1)(𝑥)
𝜕𝑉(2)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

+ 

(− ∑𝐵𝑖1𝑢
(𝑚−1)(𝑥)

𝜕𝑉(2)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

− 𝑢(𝑚−1)(𝑥)𝑟1
(1)(𝑥)) + 𝑢(𝑚−1)(𝑥) 𝑟1

(1)(𝑥) = 𝐴(𝑚)(𝑥) 

 

Further, carrying out the cancellations, we obtain the simplified (4.18) as 

∑(𝑓𝑖
(1)(𝑥) + 𝐵𝑖1 𝑢

(1)(𝑥))
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

= 𝐴(𝑚)(𝑥) (4.20) 

Recognizing the linear part of the system 𝐺𝑖
(1)(𝑥, 𝑢) = 𝑓𝑖

(1)(𝑥) + 𝐵𝑖1 𝑢
(1)(𝑥), becomes 

∑𝐺𝑖
(1)(𝑥, 𝑢)

𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

= 𝐴(𝑚)(𝑥)  

⟹ 
𝑑𝑉(𝑚)(𝑥)

𝑑𝑡
= 𝐴(𝑚)(𝑥) (4.21) 

Given that 𝐺𝑖
(1)(𝑥, 𝑢) is asymptotically stable (i.e. it satisfies condition I, and 𝑉(𝑥) is a Lyapunov 

function), then by Lyapunov’s theorem I (see Lyapunov [52] chapter 2, pages 71-79), there exists 

a unique solution 𝑉(𝑚)(𝑥) to equation (4.21). Let us now revisit these classical results. 

Suppose that the linear dynamical system (4.14) can be written in the following form 

𝑑𝑥

𝑑𝑡
= 𝑀𝑖1𝑥1 + 𝑀𝑖2𝑥2 + ⋯+ 𝑀𝑖𝑛𝑥𝑛 , 𝑖 = 1,… , 𝑛 (4.22) 

where 𝑀𝑖1 ∈ ℝ are constant coefficients. Let us further define the following algebraic equation 

det |

(𝑀11 − 𝜆1) 𝑀12 ⋯ 𝑀1𝑛

𝑀21 (𝑀22 − 𝜆2) ⋯ 𝑀2𝑛

⋮ ⋮ ⋱ ⋮
𝑀𝑛1 𝑀𝑛2 ⋯ (𝑀𝑛𝑛 − 𝜆𝑛)

| = 0 (4.23) 
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known as the determinantal equation, with unknowns 𝜆𝑖   𝑖 = 1,… , 𝑛. It is important to mention 

that each 𝜆𝑖 corresponds to a solution of (4.22). Then, the following theorem gives the solvability 

condition of function 𝑉(𝑥) that we are interested in: 

Theorem 4. [52] If the roots of the determinantal equation, 𝜆𝑖 𝑖 = 1,… , 𝑛 are such that, for a given 

positive integer 𝑚 = 𝑚1 + 𝑚2 + ⋯+ 𝑚𝑛, they cannot have a relation of the form  

𝑚1𝜆1 + 𝑚2𝜆2 + ⋯+ 𝑚𝑛𝜆𝑛 = 0 

with 𝑚𝑖 coefficients being non-negative, then we will always be able to find a unique form 𝑉(𝑥) 

(of (𝑚)𝑡ℎ order in 𝑥), that satisfies the following equation 

∑(𝑀𝑖1𝑥1 + 𝑀𝑖2𝑥2 + ⋯+ 𝑀𝑖𝑛𝑥𝑛)
𝜕𝑉(𝑚)(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

= 𝐴(𝑚)(𝑥) 

where 𝐴(𝑥) is any (𝑚)𝑡ℎ order known form. 

    

 This implies that any order 𝑚 of the value function is obtainable. Moreover, for any order 

𝑉(𝑚)(𝑥), control 𝑢(𝑚−1)(𝑥) can also be solved from equation (4.19). Reader may refer to 

Al’brekht [1] pages 1263-1265 for a similar derivation of the case when 𝑢 is a vectorial quantity, 

though computation presented in the next chapter is for 𝑢 ∈ ℝ𝑚.   

As an example, consider the case where 𝑚 = 3, and 𝑛 = 2, where 𝑥 ∈ ℝ2. Then the assumed 

form of the value function becomes 𝑉(3)(𝑥) = 𝑃30 𝑥1
3 + 𝑃21 𝑥1

2𝑥2 + 𝑃12 𝑥1𝑥2
2 + 𝑃03 𝑥2

3, where the 

𝑃 values are the coefficients of different orders of 𝑉(3)(𝑥). Suppose that equation (4.21) has a form  

((𝑀11 + 𝑀21 + 𝑀31 + 𝑀41)𝑃30) 𝑥1
3 + ((𝑀12 + 𝑀22 + 𝑀32 + 𝑀42)𝑃21) 𝑥1

2𝑥2 + 

((𝑀13 + 𝑀23 + 𝑀33 + 𝑀43)𝑃12) 𝑥1𝑥2
2 + ((𝑀14 + 𝑀24 + 𝑀34 + 𝑀44)𝑃03) 𝑥2

3 = 

𝐴1𝑥1
3 + 𝐴2𝑥1

2𝑥2 + 𝐴3𝑥1𝑥2
2 + 𝐴4𝑥2

3 
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with the constants 𝑀 being the coefficients of the unknown optimal constants 𝑃 (and the 

monomials), and 𝐴 the known coefficients of the monomials. Then, the resultant equation can be 

expressed as a system of linear equations 

(

𝑀11

𝑀21

𝑀31

𝑀41

  

𝑀12

𝑀22

𝑀32

𝑀42

  

𝑀13

𝑀23

𝑀33

𝑀43

  

𝑀14

𝑀24

𝑀34

𝑀44

)[

𝑃30

𝑃21

𝑃12

𝑃03

] = [

𝐴1

𝐴2

𝐴3

𝐴4

]  

then the system can be solved for the unknown constants 𝑃 with the nonsingular matrix 𝑀.  

 

4.4     A discussion on Convergence and Error 

Given that the solution to the HJB, the value function, is a power series, it is essential for the 

solution to be convergent. Specifically, if the infinite series is divergent, then any partial sum of 

the series is not an approximation of the optimal solution. Moreover, since the coefficients of the 

series are derived through the HJB equation, the form of the coefficients cannot be changed. In 

fact, we may only vary the coefficient values through choices of running cost weights, i.e. 𝑄, 𝑅, 

and entries of the input matrix 𝐵. Note that the coefficients of the power series are functions of 𝑄, 

𝑅, and 𝐵. Hence, we may conclude that the radius of convergence of such series is formed through 

choices of such constants. 

Conversely, if the infinite series is convergent, then the partial sums of the solution can be 

considered an approximation of the optimal solution. Though, this approximation is valid only 

within the radius of convergence of the infinite series. Specifically, equation 
𝑑𝑣

𝑑𝑡
= −𝑟(𝑥, 𝑢) is 

satisfied only within the radius of convergence of the infinite power series. Error may then arise 

when the series is truncated. i.e. the error will vary in different regions of the state-space. In fact, 

the error due to truncation of higher orders of the solution series decreases as we approach the 
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origin. In general, a finite truncated series that satisfies the HJB equation approximately tells us 

that the HJB equation has a solution in form of a power series within a radius of convergence. 

Another numerical issue is the region of attraction of the origin given by the Lyapunov equation 

∑𝐺𝑖(𝑥𝑡, 𝑢(𝑥𝑡))
𝜕𝑉(𝑥𝑡)

𝜕𝑥𝑖

𝑛

𝑖=1

< 0 

where 𝑉(𝑥𝑡) > 0. It is possible that increasing the order of the approximation causes the region 

where the Lyapunov equation is valid to shrink [53]. This is both undesirable and counterintuitive 

because, when increasing the order of an approximation for solution accuracy, the terms 

cancellation in some regions may actually cause the region of attraction to shrink.  
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CHAPTER 5 

Spacecraft Attitude Control and the Problem of Thrust Uncertainty 

 

5.1     Stochastic Satellite Attitude Stabilization and Control 

In this chapter, we provide a method of active recovery and correction for spacecraft attitude 

thrusters with thrust uncertainty. The method is a component of an active fault detection, isolation, 

and recovery (FDIR) strategy for the attitude determination and control system (ADCS). The 

provided optimal attitude stabilization method can be extended for tracking and control 

applications, as well as, considering the attitude kinematics subsystem. Here we are concerned 

with stabilization of rotational rates of the spacecraft while achieving desired criteria (i.e. 

minimum fuel consumption) under thrust uncertainty. In fact, by accounting for the generated 

thrust uncertainty, we reduce the error in system’s state, as well as achieving lower optimality 

error. This is specifically desirable in detumbling maneuvers, spacecraft proximity operations, as 

well as low thrust spacecraft maneuvers. Other applications include, stabilization of spacecraft 

attitude during rendezvous, or stabilization during in-orbit servicing operations. Thrust 

fluctuations and deviation from the commanded mean torque can result in undesirable effects such 

as excessive fuel consumption (limiting the lifetime of the mission), error in precision pointing of 

satellite antenna, or collisions in extreme cases. Therefore, generation of precise torques and 

compensating for uncertainty through design of stochastic controllers is desired both for safety, as 

well as optimization of mission parameters. We further demonstrate, through numerical 

experiments and simulations, that the stochastic controllers will have a lower optimality error on 

average. We have shown that for systems with assumption of no uncertainty, linear controllers can 

be made optimal. However, in presence of uncertainty and noise, these controllers are no longer 

optimal. Hence, nonlinear stochastic controllers are required to achieve the minimum cost.  
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Let us define the expected cost functional for the optimal attitude stabilization problem as 

𝐽(𝑢) = 𝔼 [∫ 𝑟(𝑥𝑡, 𝑢(𝑡)) 𝑑𝑡 | 𝑥𝑡=0 = 𝑥0

∞

𝑂

] (5.1) 

where 𝔼 is an expected value with respect to probability measure ℙ, 𝜔 = 𝑥 ∈ ℝ3×1 and 𝑢 ∈ ℝ𝑚×1  

are the angular velocity and control input respectively, and 𝑟(𝑥, 𝑢) is the running cost. Specifically, 

𝑚 is the number of thruster pairs of the model. The cost functional (5.1) is the expectation over all 

the trajectories starting at the initial state 𝑥0. We would like to find a control trajectory 𝑢, in an 

infinite horizon setting, such that it minimizes the cost functional. The cost functional (5.1) 

quantifies the total scaled energy of the angular velocity 𝑥, and the control input 𝑢. The quadratic 

running cost is then given by 𝑟(𝑥, 𝑢) =
1

2
𝑥𝑇𝑄𝑥 +

1

2
𝑢𝑇𝑅𝑢, where 𝑅 > 0, 𝑅 ∈ ℝ𝑚×𝑚, and 𝑄 ≥ 0, 

𝑄 ∈ ℝ3×3 are the constant matrices penalizing the input and the state respectively.  

Recall the spacecraft attitude model with multiplicative noise (see section 2.3). The idea behind 

the model is to let the uncertainty propagation by a thruster be modeled by Gaussian white noise 

process. The system equation is given by 

𝑑𝑥𝑡 = 𝐺(𝑥𝑡, 𝑢̅(𝑡)) 𝑑𝑡 + 𝜎(𝑢̅(𝑡))𝑑𝑊𝑡 (5.2) 

𝜎(𝑢̅) = 𝜀𝐵 [
𝑢̅1 0 0
0 ⋱ 0
0 0 𝑢̅𝑚

] (5.3) 

where 𝐺(𝑥, 𝑢) = 𝑓(𝑥) + 𝐵𝑢, and 𝑓(𝑥), given by (5.4), is the drift vector field describing the 

rotational dynamics, 𝑢̅ ∈ ℝ𝑚×1 is the nominal (commanded) control, 

𝑓(𝑥) =

[
 
 
 
 
 
 
𝐼22 − 𝐼33

𝐼11

 𝑥2𝑥3

𝐼33 − 𝐼11

𝐼22

 𝑥3𝑥1

𝐼11 − 𝐼22

𝐼33

 𝑥1𝑥2]
 
 
 
 
 
 

 (5.4) 
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and 𝐵 = 𝐼−1𝑏, 𝐵 ∈ ℝ3×𝑚, where 𝑏 is a matrix with its columns being the axes in which the 

corresponding torques are applied about (see section 2.2). The constant 𝜀 ≥ 0, 𝜀 ∈ ℝ is a parameter 

scaling the thruster uncertainty effects. Here we assume that 𝐼11, 𝐼22, 𝐼33, are the diagonal 

components of 𝐼 ∈ ℝ3×3, the principal moments of inertia matrix for the spacecraft. We also have 

that 𝑊𝑡 , 𝑡 ≥ 0 is the 𝑚-dimensional standard Brownian motion on the probability space (𝛺, ℱ, ℙ), 

and 𝜎(𝑢) denotes the diffusion coefficient. In particular 𝜎(𝑢̅(𝑡))𝑑𝑊𝑡 term models the thrust error. 

In fact, 𝑊𝑡 is 𝑚-dimensional because uncertainty is unique to each thruster. Moreover, we have 

that a generated torque is due to net force produced by a thruster pair as shown in section 2.2. This 

means that the torque uncertainty is due to uncertainty from two thrusters. 

To find the optimal stabilizing control that minimizes (5.1) we formulate a HJB equation 

associated with the nonlinear SDE (5.2). We will then use the Al’brekht method [1] to find the 

value function solution to the HJB PDE, as well as providing a stochastic optimal control which is 

close to optimal around the origin. We formulate the stationary HJB equation (5.5), along with the 

infinitesimal generator of the diffusion (5.6) defined by the SDE (5.2). Note that 𝑎𝑖,𝑗  (𝑢) =

(𝜎(𝑢)𝜎(𝑢)𝑇)𝑖,𝑗 is the covariance matrix, 𝑎 (𝑢) ∈ ℝ3×3, and 𝜎 is defined by (5.3). The superscript 

𝑢 denotes the dependency of the generator on control. From now on, we shall refrain from using 

the nominal control’s overline notation, and reserve to simply writing 𝑢. 

min
𝑢

{ℒ𝑢𝑉(𝑥) + 𝑟(𝑥, 𝑢)} = 0 (5.5) 

ℒ𝑢𝑉(𝑥) = ∑𝐺𝑖(𝑥, 𝑢)

𝑛

𝑖=1

𝜕𝑉(𝑥)

𝜕𝑥𝑖
+

1

2
∑∑𝑎𝑖,𝑗(𝑢)

𝑛

𝑗=1

𝑛

𝑖=1

𝜕2𝑉(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
 (5.6) 

Applying the generator (5.6) to the value function, the HJB equation is written as 

min
𝑢

{∑𝐺𝑖(𝑥, 𝑢)

𝑛

𝑖=1

𝜕𝑉(𝑥)

𝜕𝑥𝑖
+

1

2
∑∑𝑎𝑖,𝑗(𝑢)

𝜕2𝑉(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝑟(𝑥, 𝑢)} = 0 (5.7) 
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where 𝑛 = 3 for dynamics (5.2). Further substituting for the dynamics vector 𝐺(𝑥, 𝑢), and 

separating the terms that are independent of the control 𝑢, we rewrite HJB (5.7) as 

0 = 𝑓(𝑥)𝑇
𝜕𝑉(𝑥)

𝜕𝑥
+

1

2
𝑥𝑇𝑄𝑥

+ min
𝑢

{(𝐵𝑢)𝑇
𝜕𝑉(𝑥)

𝜕𝑥
+

1

2
𝑡𝑟𝑎𝑐𝑒 (𝜎𝜎𝑇

𝜕2𝑉(𝑥)

𝜕𝑥2
) +

1

2
𝑢𝑇𝑅𝑢} 

(5.8) 

Looking closer at the formulated HJB PDE above, the 
1

2
𝑡𝑟𝑎𝑐𝑒 (𝜎𝜎𝑇 𝜕2𝑉(𝑥)

𝜕𝑥2 ) term carrying the 

noise effects is the difference between a HJB for deterministic attitude dynamics and (5.2).  Instead 

of using lengthy notation, we will reserve to expressing the HJB “noise terms” using a briefer 

notation. Let 𝐻:ℝ → ℝ𝑚×𝑚 be a diagonal second order differential function defined as 

𝐻[. ] = 𝜀2𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑀𝑎𝑡𝑟𝑖𝑥( 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙( 𝐵𝑇𝐻𝑒𝑠𝑠𝑖𝑎𝑛[. ] 𝐵 ) ) (5.9) 

Then, expanding 𝑡𝑟𝑎𝑐𝑒 (𝜎𝜎𝑇 𝜕2𝑉(𝑥)

𝜕𝑥2 ) implies that 

𝑢𝑇𝐻[𝑉(𝑥)]𝑢 = 𝑡𝑟𝑎𝑐𝑒 (𝜎𝜎𝑇
𝜕2𝑉(𝑥)

𝜕𝑥2
)  

To approximate the solution of the HJB (5.8), we assume that the HJB satisfies a solution in 

form of convergent power series. Hence, we construct a power series representation of the value 

function 𝑉(𝑥), and the optimal control 𝑢(𝑥) [1]. Then, Al’brekht method tells us that the optimal 

control 𝑢∗(𝑥) and optimal cost function 𝑉∗(𝑥) infinite series satisfy the following HJB analog 

equations within their radius of convergence such that 

0 = 𝑓(𝑥)𝑇
𝜕𝑉∗(𝑥)

𝜕𝑥
+

1

2
𝑥𝑇𝑄𝑥 + (𝐵𝑢∗)𝑇

𝜕𝑉∗(𝑥)

𝜕𝑥
+

1

2
𝑢∗𝑇𝐻(𝑉∗(𝑥))𝑢∗ +

1

2
𝑢∗𝑇𝑅𝑢∗ (5.10) 

0 = 𝐵𝑇
𝜕𝑉∗(𝑥)

𝜕𝑥
+ 𝐻(𝑉∗(𝑥))𝑢∗ + 𝑅𝑢∗ (5.11) 

Considering equations (5.10), and (5.11), we wish to find partial sums of the infinite series 

𝑉∗(𝑥), 𝑢∗(𝑥) that satisfy the expanded HJB. To find such partial sums, we expand the rest of the 

HJB equation, that is the dynamics and the running cost. Then the HJB analog (5.8) becomes a 
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collection of terms from the truncated series in different orders of 𝑥. Hence, if equations (5.10) 

and (5.11) can be solved for the value function 𝑉(𝑥) and the control 𝑢(𝑥) at different orders, then 

the expansions 𝑉(𝑥) and 𝑢(𝑥) satisfy the HJB locally around the origin. Note that the series 

truncation error (within the radius of convergence of the infinite series) is negligible close to the 

origin, hence, 𝑉(𝑥) and 𝑢(𝑥) satisfy the HJB locally. We will demonstrate how the partial sums 

𝑢(𝑥), and  𝑉(𝑥) are obtained considering the spacecraft dynamics.  

Let us begin by assuming the solution form of 𝑢(𝑥), and 𝑉(𝑥). Note that any expansion of the 

value function and the running cost must retain their positive definite property. Thus, the lowest 

order of any expansion of the value function or the running cost will pose a quadratic form. 

Consider the expansion of the value function and the optimal control 

𝑉(𝑥) =
1

2
𝑥𝑇𝑃𝑥 + 𝑉(3)(𝑥) + 𝑉(4)(𝑥) + ⋯ (5.12) 

𝑢(𝑥) = 𝐾𝑥 + 𝑘(2)(𝑥) + 𝑘(3)(𝑥) + ⋯ (5.13) 

where 𝑉(𝑚)(𝑥) is a homogenous polynomial of (𝑚)𝑡ℎ order in 𝑥,  
1

2
𝑥𝑇𝑃𝑥 = 𝑉(2)(𝑥) is the second 

order value function, 𝑃 is a positive definite symmetric matrix, 𝑘(𝑚−1)(𝑥) is the (𝑚 − 1)th order 

nonlinear optimal control term, and 𝐾𝑥 = 𝑘(1)(𝑥) is the linear optimal feedback. The value 

function may be expanded up to the (𝑚)𝑡ℎ  order, whereas the corresponding control is always 

truncated at the (𝑚 − 1)𝑡ℎ order (see chapter 4).  

It is important to note that the quadratic order of (5.12) and the linear order of (2.13) give the 

stabilizing control to the linear part of the system. In other words, if the linear part of the system 

is controllable, under the additional conditions (given in consideration of the stochastic system) in 

section 5.2, we may then obtain the rest of the higher orders of 𝑢(𝑥) and  𝑉(𝑥) successively as in 

Al’brekht [1]. We will provide the corresponding higher order stochastic solvability conditions for 

the third and fourth order value function in section 5.3. 
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Next, let us expand the dynamics, and the running cost as power series around the origin 

𝐺(𝑥, 𝑢(𝑥)) = 𝐹𝑥 + 𝑓(2)(𝑥) + 𝑓(3)(𝑥) + ⋯+ 𝐵𝐾𝑥 + 𝐵𝑘(2)(𝑥) + 𝐵𝑘(3)(𝑥) + ⋯ (5.14) 

 𝑟(𝑥, 𝑢(𝑥)) =
1

2
𝑥𝑇𝑄𝑥 +

1

2
(𝐾𝑥)𝑇𝑅𝐾𝑥 + 𝑟(3)(𝑥) + 𝑟(4)(𝑥) + ⋯ (5.15) 

Note that the spacecraft dynamics are given by (5.4) where the drift term of (5.2) 𝑓(𝑥) = 𝑓(2)(𝑥) 

is of second order, and the linear part 𝐹𝑥 = 0. We shall substitute series (5.12), (5.13), (5.14), and 

(5.15) into the system of equations (5.10), (5.11). Collecting and grouping the different orders of 

equation (5.10), we have  

𝑓(2)(𝑥)T  ∇[𝑉(2)(𝑥) + ⋯+ 𝑉(𝑚)(𝑥)]  

+  𝐵 (𝐾𝑥 + 𝑘(𝑚)(𝑥) + ⋯+ 𝑘(𝑚−1)(𝑥))
𝑇

 ∇[𝑉(2)(𝑥) + ⋯+ 𝑉(𝑚)(𝑥)]

+
1

 2
(𝐾𝑥 + 𝑘(2)(𝑥) + ⋯+ 𝑘(𝑚−1)(𝑥))

𝑇

𝐻[𝑉(2)(𝑥) + ⋯

+ 𝑉(𝑚)(𝑥)] (𝐾𝑥 + 𝑘(2)(𝑥) + ⋯+ 𝑘(𝑚−1)(𝑥))

+ (
1

2
𝑥𝑇𝑄𝑥 +

1

2
(𝐾𝑥)𝑇𝑅𝐾𝑥 + 𝑟(3)(𝑥) + ⋯+ 𝑟((𝑚−1)2)(𝑥))

+ 𝑂|𝑥|(2𝑚−1) = 0 

(5.16) 

In fact, for equation (5.16) to hold, we have assumed that 𝑉(𝑥), and 𝑢(𝑥) are the optimal cost, and 

the optimal control respectively. In other words, solving for a truncated 𝑉(𝑥) from equation (5.16), 

is indeed solving for an approximation of the optimal value function. We have that since the 𝑚𝑡ℎ 

partial sum, 𝑉(𝑚)(𝑥), satisfies the HJB as 𝑚 → ∞,  then within the radius of convergence of the 

infinite series, the truncated value function satisfies the equation (5.16) locally around the origin.  

From (5.11), we also have 

𝐵𝑇∇[𝑉(2)(𝑥) + ⋯+ 𝑉(𝑚)(𝑥)] 

+ 𝐻[𝑉(2)(𝑥) + ⋯+ 𝑉(𝑚)(𝑥)] (𝐾𝑥 + 𝑘(2)(𝑥) + ⋯+ 𝑘(𝑚−1)(𝑥))

+ 𝑅 (𝐾𝑥 + 𝑘(2)(𝑥) + ⋯ + 𝑘(𝑚−1)(𝑥)) + 𝑂|𝑥|𝑚 = 0 

(5.17) 

Similarly, for equation (5.17) to hold, we have made the assumption that 𝑢(𝑥), and 𝑉(𝑥) are 

optimal. Hence, solving for (𝑚 − 1)𝑡ℎ partial sum of the convergent control series from (5.17), is 
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solving for an approximation of the optimal control that satisfies the HJB (5.8) as 𝑚 → ∞. The 

obtained truncated control is valid and stabilizing within the radius of convergence of the infinite 

series, and within the region of attraction given by the Lyapunov equation (see section 5.4). Hence, 

the truncated 𝑢(𝑥) series can be considered an approximation to the stabilizing nonlinear optimal 

control in a neighborhood of the origin. 

 

5.2     Linear Stochastic Control 

In this section, we derive the linear stochastic control that stabilizes the dynamics. Arranging 

the terms of (5.16) based on their degree in 𝑥, we separate each order of 𝑚 and solve the optimal 

control expressions in terms of the value function expansion. For instance, the linear stochastic 

optimal feedback term is obtainable from the linear terms of (5.16). This term is dependent on the 

second order value function coefficient 𝑃. The linear stochastic optimal feedback gain 𝐾 is 

𝐾 = − (𝐻(𝑉(2)(𝑥)) + 𝑅)
−1

(𝑃𝐵)𝑇 (5.18) 

Since the linear control (5.18) is dependent on the second order value function, entries of the matrix 

𝑃 are needed. Expanding and organizing (5.16), by substitution of (5.18) for the grouped quadratic 

terms, we arrive at equation (5.19). We may now point out that the second order terms have formed 

the following algebraic Riccati equation (ARE) 

𝑄 − (𝑃𝐵) (𝐻 (𝑉(2)(𝑥)) + 𝑅)
−1

(𝑃𝐵)𝑇 = 0 (5.19) 

The solution to the ARE (5.19) is the symmetric positive definite matrix 𝑃, where 𝑄, and 𝑅 are the 

matrices defined in (5.1). The ARE (5.19) differs from its counterpart, ARE for a deterministic 

model, via the 𝐻 (𝑉(2)(𝑥)) term arising from diffusion terms. 
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The Riccati equation is a well-studied area of research and its solvability and existence 

conditions are well known. Consider the following ARE associated with a general deterministic 

linear system of the form 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1(𝑃𝐵)𝑇 + 𝑄 = 0 (5.20) 

such that 𝐴𝜖ℝ𝑛×𝑛 , 𝐵 ∈ ℝ𝑛×𝑚. We refer the readers to the work of V. Kucera [51] where proofs of 

existence and uniqueness of solution to the ARE are given. A Hermitian solution 𝑃 to the ARE 

(5.20) exists if for 𝑄 = 𝐶𝑇𝐶, the pair (𝐴, 𝐶) is detectable, and the pair (𝐴, 𝐵) is controllable. For 

equation (5.19), the conditions can be inferred from the results of Theorem 2.1 of Wonham [54]. 

The form of the ARE studied by Wonham is  

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1(𝑃𝐵)𝑇 + Π(𝑃) + 𝑄 = 0 (5.21) 

where Π(𝑃) is a linear map from the space of symmetric  𝑛 × 𝑛 matrices onto itself. The linear 

map Π(𝑃) is such that if 𝑃 is positive semi-definite, then so is Π(𝑃). The positive definite solution 

𝑃 to (5.21) exists if (similar to (5.20)) for 𝑄 = 𝐶𝑇𝐶, the pair (𝐴, 𝐶) is detectable, and the pair 

(𝐴, 𝐵) is controllable, with the additional condition that 

𝑖𝑛𝑓
𝐾

|∫ 𝑒(𝐴+𝐵𝐾)𝑇𝑡𝛱(1𝑛×𝑛)𝑒(𝐴+𝐵𝐾)𝑡
∞

0

𝑑𝑡| < 1. (5.22) 

For the ARE (5.19) associated with the linear stochastic dynamics (5.2), we have that 𝐴 ≡ 0 and 

Π(𝑃) = 𝑃𝐵𝑅−1(𝑅−1 + 𝐻(𝐵𝑇𝑃𝐵))
−1

𝑅−1𝐵𝑇𝑃 through the Woodbury identity. When 𝐵 and 𝑅 are 

diagonal and 𝑚 = 3 = dim(𝑥) for the optimization problem (5.1), (5.2), the condition (5.22) for 

solvability of the ARE (5.19) becomes, for 𝑖 = 1, … ,𝑚, 

|∫
𝐵𝑖

2/𝑅𝑖

1 + 𝐵𝑖
2/𝑅𝑖

 𝑒2𝜆𝑚𝑎𝑥
𝐾 𝑡

∞

0

 𝑑𝑡| < 1 ⟹ 
𝐵𝑖

2/𝑅𝑖

1 + 𝐵𝑖
2/𝑅𝑖

 
1

2|𝜆𝑚𝑎𝑥
𝐾 |

< 1 (5.23) 

where 𝐵𝑖, 𝑅𝑖 are the diagonal entries of 𝐵, 𝑅, respectively, and 𝜆𝑚𝑎𝑥
𝐾  is the maximum eigenvalue 

of (𝐴 + 𝐵𝐾) for an aggressive linear control gain 𝐾 such that the eigenvalues of (𝐴 + 𝐵𝐾) are all 
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negative. Such a control exists by the stabilizability assumption. Although AREs are usually hard 

to solve algebraically, they are certainly obtainable depending on the assumed form of the matrices. 

Note that a numerical tool to approximate the solution of the ARE is the linear matrix inequalities 

(LMI) method. Rami and Zhou [55] have highlighted the LMI method for the specific case of 

(5.11) with a scalar Brownian motion. Solvability conditions have been provided in the same work. 

 

5.3     Nonlinear Stochastic Control 

Let us now derive the higher order control terms. Similarly, we separate and group the terms of 

order 𝑚 ≥ 2 in equation (5.17). Separating and arranging the quadratic and cubic terms of (5.17) 

yield expressions containing 𝑘(2)(𝑥), and 𝑘(3)(𝑥). Solving these quadratic and cubic expressions, 

the control terms are obtained as 

𝑘(2)(𝑥) = −(𝐻 (𝑉(2)(𝑥)) + 𝑅)
−1

((𝐵𝑇∇𝑉(3)(𝑥) + 𝐻 (𝑉(3)(𝑥))𝐾𝑥) (5.24) 

𝑘(3)(𝑥) = − (𝐻 (𝑉(2)(𝑥)) + 𝑅)
−1

(𝐵𝑇∇𝑉(4)(𝑥) + 𝐻 (𝑉(3)(𝑥)) (𝑘(2)(𝑥))

+ 𝐻 (𝑉(4)(𝑥))𝐾𝑥) 
(5.25) 

Clearly, both (5.24) and (5.25) depend on the value function terms 𝑉(3)(𝑥) and 𝑉(4)(𝑥). Hence, 

we will solve for the coefficients of the homogenous polynomials 

𝑉(3)(𝑥) = ∑ 𝑝𝑖𝑗𝑘

𝑖+𝑗+𝑘=3

𝑥1
𝑖𝑥2

𝑗
𝑥3

𝑘  

𝑉(4)(𝑥) = ∑ 𝑝𝑖𝑗𝑘

𝑖+𝑗+𝑘=4

𝑥1
𝑖𝑥2

𝑗
𝑥3

𝑘  

where 𝑝𝑖𝑗𝑘  are the optimal coefficients of the monomials. Note that obtaining the 3rd order and 4th 

order value function polynomials requires a more careful consideration. Here we assume that we 

have already obtained the solution to the ARE formed by the quadratic terms of (5.16), hence, the 

linear control equation is known. Manipulating the linear control coefficient, we have 
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𝑃 = −𝐵𝑇 (𝐻 (𝑉(2)(𝑥)) + 𝑅)𝐾 (5.26) 

Substituting (5.26) into the cubic and quartic terms of (5.16) and further simplifying, we obtain 

0 = 𝑓(2)(𝑥)𝑇∇𝑉(2)(𝑥) + (𝐵(𝐾𝑥))
𝑇
∇𝑉(3)(𝑥) +

1

2
(𝐾𝑥)𝑇𝐻 (𝑉(3)(𝑥)) (𝐾𝑥) (5.27) 

0 = 𝑓(2)(𝑥)𝑇∇𝑉(3)(𝑥) + (𝐵(𝐾𝑥))
𝑇
∇𝑉(4)(𝑥) +

1

2
(𝐾𝑥)𝑇𝐻 (𝑉(4)(𝑥)) (𝐾𝑥) (5.28) 

The only unknowns in equations (5.27) and (5.28) are the value function terms 𝑉(3) and 𝑉(4) 

respectively. Let us now define the linear operators for (5.27) and (5.28) 

ℒ̃𝑉(3)(𝑥) ∶= (𝐵𝐾𝑥)T∇𝑉(3)(𝑥) +
1

2
(𝐾𝑥)𝑇𝐻(𝑉(3)(𝑥)) (𝐾𝑥) (5.29) 

ℒ̃𝑉(4)(𝑥) ≔ (𝐵𝐾𝑥)T∇𝑉(4)(𝑥) +
1

2
(𝐾𝑥)𝑇𝐻(𝑉(4)(𝑥)) (𝐾𝑥) (5.30) 

To examine the solvability of (5.27) and (5.28) for 𝑉(3)(𝑥) and 𝑉(4)(𝑥) polynomials, we 

examine the eigenvalues of the corresponding operators (5.29) and (5.30). The notion of linear 

operator, or the homological equation was introduced by Arnold [56] following the work of 

Poincare in normal forms theory. Equations (5.27) and (5.28) are solvable for 𝑉(3)(𝑥) and 𝑉(4)(𝑥) 

if the eigenvalues of the corresponding operators are nonzero. In equation (5.2) for 𝜀 = 0,  the 

system becomes deterministic. As a result, linear operators (5.29) and (5.30) only contain first 

order differential operators. For the linear system with matrix 𝐵𝐾, the eigenvalues of the 

corresponding linear operators (5.29) and (5.30) are 

𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘  (5.31) 

𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘 + 𝜆𝑙 (5.32) 

respectively, where 𝜆𝑖 , 𝜆𝑗 , 𝜆𝑘 , 𝜆𝑙, 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1,… , 𝑛}, are the eigenvalues of 𝐵𝐾 [44]. The condition 

for solvability is such that these sums of eigenvalues of BK are nonzero. This is also the non-

resonance condition for a dynamical system [56], [57]. In the case of the stochastic system, the 
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solvability condition is complicated due to the second order operator. We may now state the 

following lemma regarding the solvability conditions of (5.27), and (5.28).  

 

Lemma 1.  Suppose that the linear gain 𝐵𝐾 in (5.2) is diagonal with distinct eigenvalues, then for 

diagonal 𝑄, and 𝑅 of (5.1), the eigenvalues of the linear operators (5.29) and (5.30) are 

𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘 + 𝜀2(𝛿𝑖𝑗𝜆𝑖𝜆𝑗 + 𝛿𝑖𝑘𝜆𝑖𝜆𝑘 + 𝛿𝑘𝑗𝜆𝑘𝜆𝑗) (5.33)  

𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘 + 𝜆𝑙 + 𝜀2(𝛿𝑖𝑗𝜆𝑖𝜆𝑗 + 𝛿𝑖𝑘𝜆𝑖𝜆𝑘 + 𝛿𝑖𝑙𝜆𝑖𝜆𝑙 + 𝛿𝑗𝑘𝜆𝑗𝜆𝑘 + 𝛿𝑗𝑙𝜆𝑗𝜆𝑙 + 𝛿𝑘𝑙𝜆𝑘𝜆𝑙) (5.34) 

respectively, where 𝛿𝑖𝑗 is the Kronecker delta. Then (5.27) and (5.28) are solvable if these 

eigenvalues of the operators are nonzero. 

 

Proof Consider the HJB equation (5.8) associated with the state equation (5.2). Let 𝑃1 be given 

by the ARE resulting from the second order polynomial in 𝑥 of (5.8), and 𝐾1 is the corresponding 

optimal linear gain. Using 𝑃1, 𝑉(3) is obtained by solving the 3rd order polynomial in 𝑥 of (5.8) 

− 𝑓(𝑥)𝑇𝑃1𝑥 = (𝐵𝑢1(𝑥))
𝑇
∇𝑥𝑉

(3)(𝑥) +
𝜀2

2
𝑡𝑟𝑎𝑐𝑒 [𝐵𝑈1(𝑥)(𝐵𝑈1(𝑥))

𝑇
∇𝑥

2𝑉(3)(𝑥)] (5.35) 

where 𝑢1(𝑥) ≔ 𝐾1𝑥, 𝐾1 is the linear gain (5.18), and 𝑈1 is the corresponding diagonal 𝑛 × 𝑛 

matrix constructed using 𝑢1. For a twice differentiable function 𝜑:𝑅𝑛 → 𝑅, we define the 

differential operator 

ℒ̃2𝜑(𝑥) ≔ (𝐵𝑢1(𝑥))
𝑇
 ∇𝑥𝜑(𝑥) +

𝜀2

2
𝑡𝑟𝑎𝑐𝑒 [𝐵𝑈1(𝑥)(𝐵𝑈1(𝑥))

𝑇
∇𝑥

2𝜑(𝑥)] (5.36) 

The second order partial differential equation (5.35) has a solution 𝑉(3) if the operator ℒ̃2 defined 

by (30) has nonzero eigenvalues. We want to determine the eigenvalues of ℒ̃2. 
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 Let (𝑤𝑎 , 𝜆𝑎), 𝑎 = 1,… , 𝑛, denote a left eigenvector of the 𝑛 × 𝑛 matrix 𝐵𝐾1 and corresponding 

eigenvalue (𝑛 = 3 in this chapter). If the eigenvalues of 𝐵𝐾1 are real-valued, then the left and right 

eigenvalues are equal. The cubic polynomial in 𝑥, 𝑉(3)(𝑥) can then be represented by 

𝑉(3)(𝑥) = 〈𝛼, 𝑥〉〈𝛽, 𝑥〉〈𝛾, 𝑥〉,  

where 𝛼, 𝛽, 𝛾 ∈ ℝ𝑛. We can also represent 𝑉(3)(𝑥) using a basis constructed using the left 

eigenvectors of 𝐵𝐾1 as 

𝑉(3)(𝑥) = ∑ 𝑐𝑖𝑗𝑘
(3)

𝑉𝑖𝑗𝑘
(3)

(𝑥)

𝑛

𝑖,𝑗,𝑘=1

  (5.37) 

where 𝑉𝑖𝑗𝑘
(3)(𝑥) = 〈𝑤𝑖 , 𝑥〉〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉.  If we can show that ℒ̃2𝑉𝑖𝑗𝑘

(3)(𝑥) = 𝜈𝑖𝑗𝑘𝑉𝑖𝑗𝑘
(3)

(𝑥) for some 

𝜈𝑖𝑗𝑘 , then we can conclude that 𝜈𝑖𝑗𝑘  is the 𝑖𝑗𝑘𝑡ℎ eigenvalue of 𝐿2. Consider the first order operator 

in (2.36) acting on a basis function of 𝑉(3)(𝑥). For brevity, we will denote the matrix 𝐵𝐾1 by 𝐵̂.   

(𝐵̂𝑥)
𝑇
 ∇𝑥𝑉𝑖𝑗𝑘

(3)(𝑥) 

= 𝑥𝑇𝐵̂𝑇∇𝑥[〈𝑤
𝑖, 𝑥〉〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉] 

=  𝑥𝑇𝐵̂𝑇 [(𝑤𝑖)
𝑇
〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉 + (𝑤𝑗)

𝑇
〈𝑤𝑖, 𝑥〉〈𝑤𝑘, 𝑥〉 + (𝑤𝑘)𝑇〈𝑤𝑖, 𝑥〉〈𝑤𝑗 , 𝑥〉] 

= 𝑥𝑇  [𝜆𝑖(𝑤𝑖)
𝑇
〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉 + 𝜆𝑗(𝑤𝑗)

𝑇
〈𝑤𝑖, 𝑥〉〈𝑤𝑘, 𝑥〉 + 𝜆𝑘(𝑤𝑘)𝑇〈𝑤𝑖, 𝑥〉〈𝑤𝑗, 𝑥〉] 

= [𝜆𝑖〈𝑤𝑖 , 𝑥〉〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉 + 𝜆𝑗〈𝑤𝑖, 𝑥〉〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉 + 𝜆𝑘〈𝑤𝑖 , 𝑥〉〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉] 

= (λ𝑖 + λ𝑗 + λ𝑘)𝑉𝑖𝑗𝑘
(3)(𝑥) 

(5.38) 

where, 𝑤𝑙s, 𝑙 = 𝑖, 𝑗, 𝑘 are the left eigenvectors of 𝐵̂. If the state is deterministic, then (5.35) is just 

a first order partial differential equation and the condition for solvability of (5.35) will be 

(𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘) is nonzero for all 𝑖, 𝑗, 𝑘 = 1,… , 𝑛, where 𝜆𝑖, 𝜆𝑗, 𝜆𝑘  are the eigenvalues of 𝐵̂ = 𝐵𝐾1. 

This result is the same as that in [44].   
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Next, consider the second order operator in (5.36) acting on a basis function of 𝑉(3)(𝑥). By the 

hypothesis, we have that matrices 𝐵, 𝑄 and 𝑅 are diagonal. From (5.18), 𝐾1 is also diagonal, and 

hence so is 𝐵𝐾1. If 𝐵𝐾1 is diagonal, then its eigenvectors are 𝑤𝑖 = 𝑒𝑖, 𝑖 = 1,… , 𝑛, where 𝑒𝑖 is a 

unit vector in the 𝑖-direction. Therefore, 𝑤𝑎 = 𝑤𝑎
𝑖𝛿𝑖𝑝 for 𝑖 = 1,… , 𝑛, where 𝛿𝑖𝑎 is the Kronecker 

delta, which equals 1 when 𝑖 = 𝑎, zero otherwise. 

Let 𝐵̃(𝑥) ≔ 𝐵𝑈1(𝑥), which is a diagonal 𝑛 × 𝑛 matrix. Recall that 𝑈1(𝑥) is a diagonal 𝑛 × 𝑛 

matrix with diagonal entries being the vector 𝐾1𝑥. The second order differential operator (5.36) 

acting on a basis function 𝑉𝑖𝑗𝑘
(3)(𝑥) is 

𝑡𝑟𝑎𝑐𝑒 [𝐵𝑈1(𝑥)(𝐵𝑈1(𝑥))
𝑇
∇𝑥

2𝑉𝑖𝑗𝑘
3 (𝑥)] = 𝑡𝑟𝑎𝑐𝑒[𝐵̃(𝑥)𝐵̃(𝑥)𝑇∇𝑥

2𝑉𝑖𝑗𝑘
3 (𝑥)]  

= 𝐵̃𝑝𝑞(𝑥) 𝜕𝑝𝑟
2 𝑉𝑖𝑗𝑘

3 (𝑥) 𝐵̃𝑟𝑞(𝑥) 𝛿𝑝𝑞𝛿𝑟𝑞 = 𝐵𝑝𝑎𝐾𝑎𝑏𝑥𝑏 𝜕𝑟𝑟
2 𝑉𝑖𝑗𝑘

3 (𝑥) 𝐵𝑝𝑐𝐾𝑐𝑑𝑥𝑑 𝛿𝑝𝑟  

= 𝑥𝑏𝐾𝑎𝑏𝐵𝑝𝑎 [2𝑤𝑟
𝑖𝑤𝑟

𝑗
 𝛿𝑖𝑟𝛿𝑗𝑟  〈𝑤

𝑘, 𝑥〉 + 2𝑤𝑟
𝑖𝑤𝑟

𝑘 𝛿𝑖𝑟𝛿𝑘𝑟  〈𝑤
𝑗 , 𝑥〉

+ 2𝑤𝑟
𝑗
𝑤𝑟

𝑘  𝛿𝑗𝑟𝛿𝑘𝑟  〈𝑤
𝑖, 𝑥〉] 𝐵𝑝𝑐𝐾𝑐𝑑𝑥𝑑 𝛿𝑝𝑟   

= 𝑥𝑏𝐾𝑎𝑏𝐵𝑝𝑎 [2𝑤𝑝
𝑖𝑤𝑟

𝑗
 𝛿𝑖𝑝𝛿𝑗𝑟  〈𝑤

𝑘, 𝑥〉 + 2𝑤𝑝
𝑖𝑤𝑟

𝑘  𝛿𝑖𝑝𝛿𝑘𝑟  〈𝑤
𝑗 , 𝑥〉

+ 2𝑤𝑝
𝑗
𝑤𝑟

𝑘  𝛿𝑗𝑝𝛿𝑘𝑟  〈𝑤
𝑖 , 𝑥〉] 𝐵𝑟𝑐𝐾𝑐𝑑𝑥𝑑 𝛿𝑝𝑟   

= 𝑥𝑏𝐾𝑎𝑏𝐵𝑝𝑎[2𝑤𝑝
𝑖𝜆𝑖  𝜆𝑗𝑤𝑟

𝑗
 𝛿𝑖𝑝𝛿𝑗𝑟  〈𝑤

𝑘 , 𝑥〉 

                      +2𝑤𝑝
𝑖𝜆𝑖  𝜆𝑘𝑤𝑟

𝑘  𝛿𝑖𝑝𝛿𝑘𝑟  〈𝑤
𝑗 , 𝑥〉 + 2𝑤𝑝

𝑗
𝜆𝑗  𝜆𝑘𝑤𝑟

𝑘 𝛿𝑗𝑝𝛿𝑘𝑟  〈𝑤
𝑖 , 𝑥〉]𝐵𝑟𝑐𝐾𝑐𝑑𝑥𝑑 𝛿𝑝𝑟 

= 2(𝜆𝑖𝜆𝑗𝛿𝑖𝑗 + 𝜆𝑖𝜆𝑘𝛿𝑖𝑘 + 𝜆𝑗𝜆𝑘𝛿𝑗𝑘)〈𝑤
𝑖, 𝑥〉〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉 

= 2(𝜆𝑖𝜆𝑗𝛿𝑖𝑗 + 𝜆𝑖𝜆𝑘𝛿𝑖𝑘 + 𝜆𝑗𝜆𝑘𝛿𝑗𝑘)𝑉𝑖𝑗𝑘
(3)(𝑥), 

(5.39) 

by collapsing the Kronecker delta. Collecting (5.36), (5.38) and (5.39), we have  

(𝐵𝑢1(𝑥))
𝑇
 ∇𝑥𝑉𝑖𝑗𝑘

3 (𝑥) +
𝜀2

2
𝑡𝑟𝑎𝑐𝑒 [𝐵𝑈1(𝑥)(𝐵𝑈1(𝑥))

𝑇
∇𝑥

2𝑉𝑖𝑗𝑘
3 (𝑥)] 

= (𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘)𝑉𝑖𝑗𝑘
(3)(𝑥)+𝜀2(𝜆𝑖𝜆𝑗𝛿𝑖𝑗 + 𝜆𝑖𝜆𝑘𝛿𝑖𝑘 + 𝜆𝑗𝜆𝑘𝛿𝑗𝑘)𝑉𝑖𝑗𝑘

(3)(𝑥).  

 

Hence, for 𝐵, 𝑄, and 𝑅 diagonal, the second order operator (5.36) has eigenvalues 
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(𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘) + 𝜀2(𝜆𝑖𝜆𝑗𝛿𝑖𝑗 + 𝜆𝑖𝜆𝑘𝛿𝑖𝑘 + 𝜆𝑗𝜆𝑘𝛿𝑗𝑘),  

𝑖, 𝑗, 𝑘 ∈ {1, … , 𝑛}, where 𝜆𝑙s are the eigenvalues of 𝐵𝐾1 as desired. Solution to (5.35) exists when 

these eigenvalues are nonzero. 

Next, consider the fourth order polynomial in 𝑥 of (5.16)  

−𝑓(𝑥)𝑇∇𝑥𝑉
(3) = (𝐵𝑢1(𝑥))

𝑇
∇𝑥𝑉

(4)(𝑥) +
𝜀2

2
𝑡𝑟𝑎𝑐𝑒 [𝐵𝑈1(𝑥)(𝐵𝑈1(𝑥))

𝑇
∇𝑥

2𝑉(4)(𝑥)] (5.40) 

Equation (5.40) has a solution 𝑉(4) if the second order differential operator on the RHS of (5.40) 

has nonzero eigenvalues. We can similarly express 𝑉(4)(𝑥) in terms of basis functions constructed 

using the left eigenvectors of 𝐵𝐾1 

𝑉(4)(𝑥) = ∑ 𝑐𝑖𝑗𝑘𝑙
(3)

𝑉𝑖𝑗𝑘𝑙
(3)

(𝑥)

𝑛

𝑖,𝑗,𝑘,𝑙=1

  (5.41) 

where 𝑉𝑖𝑗𝑘𝑙
(4) (𝑥) = 〈𝑤𝑖, 𝑥〉〈𝑤𝑗 , 𝑥〉〈𝑤𝑘, 𝑥〉〈𝑤𝑙, 𝑥〉. By the same analysis as for 𝑉(3)(𝑥), using the basis 

function of 𝑉(4)(𝑥), the eigenvalues of the differential operator on the RHS of (5.40) become  

(𝜆𝑖 + 𝜆𝑗 + 𝜆𝑘 + 𝜆𝑙) + 𝜀2(𝜆𝑖𝜆𝑗𝛿𝑖𝑗 + 𝜆𝑖𝜆𝑘𝛿𝑖𝑘 + 𝜆𝑖𝜆𝑙𝛿𝑖𝑙 + 𝜆𝑗𝜆𝑘𝛿𝑗𝑘 + 𝜆𝑗𝜆𝑙𝛿𝑗𝑙 + 𝜆𝑘𝜆𝑙𝛿𝑘𝑙)  

𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, … , 𝑛} as desired. If all eigenvalues are nonzero, then the linear operator is invertible, 

hence the corresponding PDE can be solved given any forcing function. ∎ 

 

 

Equations (5.27) and (5.28) yield the value function 𝑉(3)(𝑥) and 𝑉(4)(𝑥), where these orders 

of value function are substituted in (5.24) and (5.25) to solve for controls 𝑘(2)(𝑥), and 𝑘(3)(𝑥). In 

this manner, we find the higher order controls. In general, consider the pairs 𝑉(𝑚)(𝑥), and 

𝑢(𝑚−1)(𝑥), ∀ 𝑚. Suppose 𝑚 = 2, and that the linear system  

𝑑𝑥𝑡 = 𝐵𝑢̅(𝑡) 𝑑𝑡 + 𝜎(𝑢̅(𝑡))𝑑𝑊𝑡  (5.42) 
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is controllable and that the condition (5.23) is satisfied. Hence, we solve for 𝑉(2)(𝑥) from the 

quadratic terms of (5.10). Having obtained 𝑉(2)(𝑥), we may then solve for 𝑢(1)(𝑥) in terms of 

𝑉(2)(𝑥). Next, suppose 𝑚 = 𝑘 + 1, then we can always solve for 𝑉(𝑘+1)(𝑥) from equation (5.10) 

when eigenvalues of the corresponding differential operators are nonzero. Therefore, the 𝑘𝑡ℎ order 

of (5.17) is solvable for 𝑢(𝑘)(𝑥) in terms of 𝑉(𝑘+1)(𝑥) ∀ 𝑘 > 1. 

 

5.4     Stochastic Stability  

Recall the Lyapunov conditions for optimality of control in Chapter 4. Here we reexamine these 

conditions in context of stochastic stability of the controlled system (5.2). Lyapunov’s second 

method for stochastic dynamics, and SDE have been studied by Mao [58], and Arnold [59]. The 

Barbashin-Krasovskii-LaSalle theorem for SDEs has also been studied in [60], [61].  

 Let us assume that the HJB associated with (5.2) has already been solved and 𝑉(𝑥, 𝑡) and 𝑢(𝑥) 

are known. Let us further define the infinitesimal generator acting on the 𝐶2,1 function 𝑉(𝑥, 𝑡), as 

ℒ 𝑉(𝑥, 𝑡) =
𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
+ ∑𝐺𝑖(𝑥, 𝑢)

𝑛

𝑖=1

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥𝑖
+

1

2
∑∑𝑎𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
 (5.43) 

where, 𝐺(𝑥, 𝑢), 𝑡 ≥ 0, is given by (5.2), and 𝑎𝑖,𝑗  (𝑢) = (𝜎(𝑢)𝜎(𝑢)𝑇)𝑖,𝑗 by (5.3). Due to 

Khasminskii [62], we have the following theorems regarding the solution stability of the stochastic 

differential equation (5.2): 

Theorem 5. [62] Suppose there exist positive definite function 𝑉(𝑥, 𝑡) ∈ 𝐶2,1 satisfying 

ℒ𝑉(𝑥, 𝑡) ≤ 0, for 𝑥 ≠ 0 

for all 𝑥 ∈ ℝ3. Then the trivial solution 𝑥(𝑡) = 0 of the SDE (5.2) is stable. 
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Theorem 6. [62] Let 𝒦 denote a class of strictly increasing continuous functions 𝐶: ℝ+ → ℝ+ 

such that 𝐶(0) = 0. Suppose there exists a positive definite function 𝑉(𝑥, 𝑡) ∈ 𝐶2,1, and 

𝐶1,𝐶2,𝐶3 ∈ 𝒦 satisfying the following 

𝐶1(|𝑥|) ≤ 𝑉(𝑥, 𝑡) ≤ 𝐶2(|𝑥|) 

ℒ𝑉(𝑥) ≤ −𝐶3(|𝑥|) 

for all 𝑥 ∈ ℝ3. Then the trivial solution 𝑥(𝑡) = 0 of the SDE (5.2) is asymptotically stable. That 

is, lim
𝑡→∞

|𝑥𝑡| = 0, ∀ 𝑥𝑜 ∈ ℝ3.  

 

Accordingly, if a function in 𝐶2,1 can be found such that the conditions of Theorems 5 and 6 

are satisfied, then the dynamics model (5.2) is asymptotically stable. Consider the power series 

solution 𝑉∗(𝑥) to equations (5.10), and (5.11) as a candidate. Since we have that 

ℒ∗𝑉∗(𝑥) = −𝑟(𝑥) ≤ 0 (5.44) 

where ℒ∗ is given by (5.6), with argument 𝑢∗ the solution to (5.11), hence, the conditions for 

Theorem 5 and 6 are satisfied. Then, the system (5.2) is asymptotically stable with region of 

attraction given by the radius of convergence of the power series 𝑉∗. If the truncated 𝑚𝑡ℎ order 

solution of (5.16), and (5.17) is used as the candidate, then asymptotic stability is achieved for the 

radius of convergence of the truncated series. 

 

5.5     Computation of the Stochastic Optimal Attitude Control Law 

In this section, we compute the optimal control of a spacecraft attitude control system equipped 

with three thruster pairs, hence let us set 𝑚 = 3, where 𝑚 is the number of available external 

torques. According to the results of sections 2.4, and 2.5, we assume that the system is controllable, 

both in a linear and nonlinear sense. That is, the three external torques are applied about three 

linearly independent axes. Furthermore, we assume that matrices 𝐵,𝑄, and 𝑅 are diagonal (see 
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section 2.2 for choosing matrix B). Specifically, we have that the linear system (5.42) is 

controllable (i.e. pair (𝐴, 𝐵) is controllable) and condition (5.23) is satisfied. 

Let 𝑃𝑖 be the diagonal entries of the symmetric optimal matrix 𝑃, where 𝑖 = 1,2,3. Similarly, 

let 𝐵𝑖, 𝑄𝑖, and 𝑅𝑖 be the diagonal elements of matrices 𝐵, 𝑄, and 𝑅 respectively. Recall that 𝐵𝑖 =

𝑏𝑖

𝐼𝑖𝑖
, where 𝐼𝑖𝑖 are the diagonal elements of 𝐼. Hence, solving (5.19) results in two solutions. Note 

that we will only use the positive root. This is due to the positive definite nature of the value 

function 𝑉(𝑥). The diagonal entries of 𝑃 are obtained as 

𝑃𝑖 =
𝜀2𝐵𝑖𝑄𝑖 + √𝜀4𝐵𝑖

2𝑄𝑖
2 + 4𝑅𝑖𝑄𝑖

2𝐵𝑖
 

(5.45) 

Note that the non-diagonal elements are zero, i.e. 𝑃𝑖𝑗 = 0 when 𝑖 ≠ 𝑗. Let us next, using (5.18), 

solve for the linear control gains 𝐾 in terms of the 𝑃. We have that the resultant linear gain matrix 

is diagonal as well. Using the same notation, the diagonal entries, 𝐾𝑖, are given by 

𝐾𝑖 = −
𝐵𝑖𝑃𝑖

𝑅𝑖 + 𝜀2𝐵𝑖
2𝑃𝑖

 (5.46) 

Next, using (5.27) and (5.28) we solve for the value function expressions 𝑉(3)(𝑥) and 𝑉(4)(𝑥). We 

obtain the value function up to a quartic degree as follows 

𝑉(𝑥) =
1

2
𝑥𝑇𝑃𝑥 + 𝜙3 𝑥1𝑥2𝑥3 + 𝜙412

 𝑥1
2𝑥2

2 + 𝜙413
 𝑥1

2𝑥3
2 + 𝜙423

 𝑥2
2𝑥3

2 (5.47) 

where the coefficient of the 3rd order value function polynomial 𝜙3 is given by 

𝜙3 =
 −𝐼22

2  𝐼33 𝑃1 +  𝐼22 𝐼33
2  𝑃1 + 𝐼11

2  𝐼33 𝑃2 − 𝐼11 𝐼33
2  𝑃2 − 𝐼11

2  𝐼22 𝑃3 + 𝐼11 𝐼2
2 𝑃3

 𝑏1 𝐼2 𝐼3 𝐾1 + 𝑏2 𝐼1 𝐼3 𝐾2 + 𝑏3 𝐼11 𝐼22 𝐾3
 (5.48) 
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Similarly, the coefficients of the 4th order value function, 𝜙4’s, are solved. Note that the optimal 

coefficients 𝜙412
, 𝜙413

, 𝜙413
, 𝜙423

 are functions of design parameter 𝐼, control gains and constants 

𝐾, 𝑄, 𝑅, 𝑃, and the noise level 𝜀. Having obtained the optimal cost that satisfies (5.8), we solve 

for the corresponding optimal control degree by degree. Equations (5.46), (5.24), and (5.25) give 

the following truncated optimal control  

 

𝑢1(𝑥) = 𝐾1 𝑥1 + 𝑘11 𝑥2𝑥3 + 𝑘12𝑥1𝑥2
2 + 𝑘13 𝑥1𝑥3

2  

𝑢2(𝑥) = 𝐾2 𝑥2 + 𝑘21 𝑥1𝑥3 + 𝑘22 𝑥1
2𝑥2 + 𝑘23 𝑥2𝑥3

2 (5.49) 

𝑢3(𝑥) = 𝐾3 𝑥3 + 𝑘31 𝑥1𝑥2 + 𝑘32 𝑥1
2𝑥3 + 𝑘33 𝑥2

2𝑥3  

where 𝐾𝑖 are the linear gains (5.46), and 𝑘𝑖𝑗’s are the nonlinear control gains. Numerical results of 

this control algorithm are presented in chapter 6.  

 

5.6     Optimality of the Linear Control  

It is often desired to know when linear optimal control is sufficient? In this section, we answer 

this question for the physical model of the spacecraft attitude dynamics (5.2). We caution the 

reader in that the following results are for a deterministic setting. For the uncertain nonlinear 

system (5.2), nonlinear control is always required to achieve optimality. 

Consider the second order polynomial of the value function, 𝑉(2)(𝑥), for the case when 𝑥 ∈ ℝ2. 

Let 𝐶 be the value of the function 𝑉(2)(𝑥) for any 𝑡 ≥ 0 

2𝑉(2)(𝑥) = 𝑥𝑇𝑃𝑥 = (𝑃1𝑥1
2 + 2𝑃12𝑥1𝑥2 + 𝑃2𝑥2

2) = 𝐶 (5.50) 

For 𝑥𝑇𝑃𝑥, one can always find an orthogonal change of variables, 𝑥 = 𝛽𝑥̃, such that 
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𝑥𝑇𝑃𝑥 = (𝛽𝑥̃)𝑇𝑃(𝛽𝑥̃) = 𝑥̃𝑇(𝛽𝑇𝑃𝛽)𝑥̃ = 𝑥̃𝑇𝑃 ̃𝑥̃ = (𝑃̃1𝑥̃1
2 + 𝑃̃2𝑥̃2

2) = 𝐶 (5.51) 

where 𝛽 is the matrix with eigenvectors of 𝑃 as its columns, and 𝑃̃1, 𝑃̃1 are the eigenvalues of 𝑃. 

Then the resulting form of (5.50) is of an ellipse equation. 

 

 
Figure 6. The Second Order Value Function Ellipse in Two Dimensions  

 

 

 

Next, we have that the second order terms of the HJB associated with the deterministic version 

of system (5.2): 𝑥̇ = 𝑓(𝑥) + 𝐵𝑢, have the following form, i.e. set 𝑚 = 2 for the LHS of (4.21) 

[𝑓(2)(𝑥)𝑇 + 𝐵𝑘(2)(𝑥)]
𝑇
∇𝑉(2)(𝑥) (5.52) 

We further have that ∇𝑉(2)(𝑥) = 𝑃𝑥, hence  

〈𝑓(2)(𝑥)𝑇 + 𝐵𝑘(2)(𝑥), 𝑃𝑥〉 (5.53) 

where 〈. , . 〉 is a dot product. The matrix 𝑃 is given by (5.45) where for 𝜀 = 0,  𝑃𝑖 =
𝐼𝑖

𝑃𝑖
√𝑄𝑖𝑅𝑖. 
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Lemma 2. Consider the deterministic system 𝑥̇ = 𝑓(𝑥) + 𝐵𝑢, with the drift term given by (5.4) 

as 𝑓(2)(𝑥) = 𝐼−1𝑆(𝑥𝑡)𝐼𝑥𝑡, 𝑥 ∈ ℝ3. Suppose that arguments of 𝑃 are such that 𝑄1𝑅1 = 𝑄2𝑅2 =

𝑄3𝑅3, and 𝑏1 = 𝑏2 = 𝑏3, then the nonlinear control 𝑘(2)(𝑥) = 0. 

 

Proof Suppose 𝑄𝑖 , 𝑅𝑖, 𝑏𝑖 ∈ ℝ, 𝑖 = 1,2,3, and 𝑄1𝑅1 = 𝑄2𝑅2 = 𝑄3𝑅3, 𝑏1 = 𝑏2 = 𝑏3. Then, from 

(5.53) we have 

〈𝑓(2)(𝑥)𝑇 , 𝑃𝑥〉 =

[
 
 
 
 
 
 
𝐼22 − 𝐼33

𝐼11
𝑥2𝑥3

𝐼33 − 𝐼11

𝐼22
𝑥3𝑥1

𝐼11 − 𝐼22

𝐼33
𝑥1𝑥2 ]

 
 
 
 
 
 

. [
𝐼1
𝑏1

√𝑄1𝑅1𝑥1

𝐼2
𝑏2

√𝑄2𝑅2𝑥2

𝐼3
𝑏3

√𝑄3𝑅3𝑥3] 

⇒ 〈𝑓(2)(𝑥)𝑇 , 𝑃𝑥〉 = [
𝑏2𝑏3(𝐼22−𝐼33)√𝑄1𝑅1+𝑏1𝑏3(𝐼33−𝐼11)√𝑄2𝑅2+𝑏1𝑏2(𝐼11−𝐼22)√𝑄3𝑅3

𝑏1𝑏2𝑏3
] 𝑥1𝑥2𝑥3 

⇒ 〈𝑓(2)(𝑥)𝑇 , 𝑃𝑥〉 = [(𝐼2 − 𝐼3)√𝑄1𝑅1 + (𝐼3 − 𝐼1)√𝑄2𝑅2 + (𝐼1 − 𝐼2)√𝑄3𝑅3] 𝑥1𝑥2𝑥3 

⇒ 〈𝑓(2)(𝑥)𝑇 , 𝑃𝑥〉 = [(𝐼2 − 𝐼2) + (𝐼3 − 𝐼3) + (𝐼1 − 𝐼1)] 𝑥1𝑥2𝑥3 

∴ 〈𝑓(2)(𝑥)𝑇 , 𝑃𝑥〉 = 0 

This further implies that 〈𝑓(2)(𝑥)𝑇 + 𝐵𝑘(2)(𝑥), 𝑃𝑥〉 = 𝐵𝑘(2)(𝑥)𝑃𝑥. We also have that for a second 

order stabilizing control 𝑘(2)(𝑥), the product 〈𝑓(2)(𝑥)𝑇 + 𝐵𝑘(2)(𝑥),𝑃𝑥〉 → 0. But we have that 

〈𝑓(2)(𝑥)𝑇 + 𝐵𝑘(2)(𝑥), 𝑃𝑥〉 = 𝐵𝑘(2)(𝑥)𝑃𝑥, hence 𝑘(2)(𝑥) = 0. ∎ 

 

In practice, the constants 𝑏𝑖 ∈ ℝ are chosen by design and the control system designer. From 

the above argument, we can conclude that choosing 𝑄𝑖, 𝑅𝑖, ∈ ℝ appropriately determines the effort 

needed by the second order controller to stabilize 𝑓(2)(𝑥). In other words, for the deterministic 

nonlinear system with drift 𝑓(2)(𝑥), a linear control can be made optimal if matrices 𝑄, 𝑅, and 𝐵 

are chosen appropriately. From a geometric point of view, the value function 𝑉(2)(𝑥) = 𝐶, is an 

ellipse for 𝑥 ∈ ℝ2, and an ellipsoid for 𝑥 ∈ ℝ3. Then we have that ∇𝑉(2)(𝑥) is a vector that is 
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normal to the tangent plane of the ellipse 𝑉(2)(𝑥) = 𝐶 at all times, as shown in figure 6. Vector 

𝑓(2)(𝑥), lies between the normal vector ∇𝑉(2)(𝑥) = 𝑃𝑥, and the tangent plane. In fact, if the 

𝑓(2)(𝑥) is not already in the tangent plane, the addition of the nonlinear feedback term 𝐵𝑘(2)(𝑥) 

is tasked with driving to zero the projection of 𝑓(2)(𝑥) on the ∇𝑉(2)(𝑥) vector. In lemma 2, it was 

shown that if choice of 𝑄𝑖,𝑅𝑖,𝑏𝑖 and consequently𝑃𝑖, places the  𝑓(2)(𝑥) vector in the tangent plane 

of the ellipse, then the contribution of the nonlinear feedback 𝑘(2)(𝑥) is zero.  

When 𝑓(2)(𝑥) lies tangent to the energy ellipsoid surface, the dynamics will not push the energy 

level outwards (which is what 𝑘(2)(𝑥) is controlling against when 𝑓(2)(𝑥) is not tangent). Linear 

control will keep shrinking the radius of that ellipsoid. If at some point we stop applying linear 

control, it will just stay at that radius/energy level; 𝑓(2)(𝑥) won’t make it grow if it’s tangent to 

the surface. If we keep applying linear control, it will keep shrinking the energy ellipsoid and since 

𝑓(2)(𝑥) won’t destabilize that process, linear control is all that’s needed to drive energy (and hence 

velocity) to zero.  

A similar, but more general results were obtained by Ikeda and Šiljak [63], where they showed 

that for a specific form of a running cost function, the linear control can be made optimal. It was 

proven that if the cost function has the form 

𝑟(𝑡, 𝑥, 𝑢) = 𝑥𝑇𝑄𝑥 − 2𝑥𝑇𝑃𝑓(𝑡, 𝑥, 𝑢) + 𝑢𝑇𝑅𝑢   

where 𝑓 is a nonlinear vector field, and 𝑟 is the running cost, then the linear control is optimal. In 

comparison to these results, in lemma 2 we’ve shown that the product 2𝑥𝑇𝑃𝑓(𝑡, 𝑥, 𝑢) is zero. 

However, it is important to point out that the linear control can be made optimal only when the 

dynamics are deterministic. In a nonlinear stochastic setting, such as the dynamics (5.2), the 

uncertainty effects carry into the higher orders of the HJB. Hence, nonlinear control is needed 

when considering the optimality of nonlinear system with multiplicative control noise.  
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5.7     Effects of Physical Parameters on Control Gains 

Often the inputted physical parameters affect the behavior of a feedback control system. 

Specifically, for the feedback controller of section 5.5, the noise level 𝜀 affects the control gains. 

In this section, the effects of moment of inertia 𝐼, and the noise level: 𝜀 variation on the linear gain 

matrix 𝐾 is studied. Suppose that the physical parameters and the control constants are arbitrarily 

chosen as 𝐼𝑖 = 0.4, 𝑏𝑖 = 1, and 𝑅𝑖 = 𝑄𝑖 = 1, where the subscript 𝑖 denotes the 𝑖𝑡ℎaxis. Then 

varying the values of 𝜀 ∈ [0,1], we generate the array of values corresponding to the different 

control gain values 𝐾𝑖. Figure 7 describes the effects of various noise levels on the linear control. 

 

Figure 7. Effects of Varying the Noise level on Linear Control Gain 

As shown on the plot, a deterministic controller does not react to varying noise levels. On the 

other hand, a stochastic control will lower the magnitude of the gain as the noise level is increased. 

This translates to the situation where highly uncertain thrust output is suppressed through 

application of small magnitude thrust. In general, note that for 𝜀 = 0, the linear stochastic control 

becomes a linear deterministic control, and the nonlinear stochastic control becomes a nonlinear 

deterministic control. 
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Figure 8. Effects of Varying the Moment of Inertia on Linear Control Gain 

 

While varying the noise percentage affects the linear gain matrix, varying the mass moment of 

inertia affects the magnitude of the linear control gain (5.46) as well. Suppose that 𝜀 = 0.015 is 

chosen arbitrarily. Figure 8 shows that a lower mass moment of inertia in design of a spacecraft 

results in a lower magnitude of the stochastic control gain. As the moment of inertia of the 𝑖𝑡ℎ axis 

is increased, the behavior of the linear stochastic control gain converges to that of a linear 

deterministic controller for the assumed diagonal form of the matrices of section 5.5. 
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CHAPTER 6 

Numerical Experiments 

 

6.1     Detumbling of a 6U CubeSat 

Throughout this chapter, we will assume that the spacecraft model is a 6U CubeSat with three 

thruster pairs. For a 6U CubeSat, the standard dimensions are given as 10 × 20 × 30 centimeters, 

and the maximum mass is 6 kg. Using table 8, the entries of moment of inertia tensor in principal 

axes (in units of kilogram meter squared) are calculated as follows: 

𝐼11 = 0.05 ,  𝐼22 = 0.065,  𝐼33 = 0.025 (6.1)  

We also assume that the thrusters are installed symmetrically, and the three torque axes are 

𝑏1 = [
1
0
0
],  𝑏2 = [

0
1
0
],  𝑏3 = [

0
0
1
] (6.2) 

The goal is to compare the performance and optimality results of the stochastic nonlinear control 

derived in section 5.5, to a linear deterministic controller for a CubeSat with thrust uncertainty. 

We shall consider two cases of 𝜀 = 0.14 and 𝜀 = 0.28. i.e. the uncertainty has standard deviation 

of 14%, and 28% from the nominal thrust, for 𝜀 = 0.14, and 𝜀 = 0.28 respectively. The control 

gains, similar to other parameters, have been kept the same for both controllers. We have trivially 

chosen the control gains as 

𝑄 = 𝑅 = [
1 0 0
0 1 0
0 0 1

] (6.3) 

Note that the input vectors (6.2), along with the choice of nonlinear gains (6.3) satisfy the 

conditions of the section 5.6 on optimality of the Linear control. This means with no thrust 

uncertainty, the linear and nonlinear controllers will perform identically. However, in this chapter 
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we demonstrate the superiority of stochastic nonlinear control when the generated thrust contains 

uncertainty.  

For the experiments of this chapter, we have randomly generated a list of 50 random initial 

conditions that are within norm 1 of the origin. A second group of 50 randomly generated initial 

conditions are also selected between norm 1 to norm 3 of the origin. For proof of the numerical 

results, each set of 50 initial conditions is shifted to 8 different octants around the origin. This done 

by creating all the negative and positive combinations of coordinates |𝑥1|, |𝑥2|, and |𝑥3| of angular 

rate. We shall assign the following designations to each octant 

 

Table 1. Assignment of Initial Conditions into Octants 

Region I: 

(𝑥1, 𝑥2, 𝑥3) 

Region II: 

(−𝑥1, 𝑥2, 𝑥3) 

Region III: 

(𝑥1, −𝑥2, 𝑥3) 

Region IV: 

(𝑥1, 𝑥2, −𝑥3), 

Region V: 

(−𝑥1, −𝑥2, 𝑥3) 

Region VI: 

(𝑥1, −𝑥2, −𝑥3), 

Region VII: 

(−𝑥1, 𝑥2, −𝑥3) 

Region VIII: 

(−𝑥1, −𝑥2, −𝑥3) 

 

 
Figure 9. Randomly Generated Initial Conditions of the First Octant 
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The list of generated initial conditions of the first octant is shown here. Note that the list is in 

the ascending order of distance to the origin. The initial conditions of the rest of the Octants are 

generated from this list. 

Table 2. Table of Randomly Generated Initial Condition Coordinates 

 𝑁𝑜𝑟𝑚 |𝑥1| |𝑥2| |𝑥3|  𝑁𝑜𝑟𝑚 |𝑥1| |𝑥2| |𝑥3| 
1 0.15746 0.07899 0.13429 0.02286 51 1.16897 0.50326 0.51749 0.91946 
2 0.29319 0.09499 0.19843 0.19381 52 1.32920 0.51785 0.98371 0.72863 
3 0.31622 0.26912 0.13726 0.09342 53 1.65226 0.55097 0.85658 1.30103 
4 0.33126 0.10050 0.08741 0.30330 54 1.73205 1.00000 1.00000 1.00000 
5 0.36545 0.11903 0.22401 0.26307 55 1.76096 0.80142 1.46083 0.56981 
6 0.38857 0.24593 0.12827 0.27213 56 1.82052 1.36772 1.04407 0.59460 
7 0.41468 0.30405 0.13154 0.24942 57 1.82853 0.54593 1.54826 0.80521 
8 0.50791 0.02631 0.31068 0.40094 58 1.89372 0.68459 1.10392 1.37799 
9 0.50872 0.40801 0.30344 0.01590 59 1.90042 1.41264 0.88504 0.91255 

10 0.56404 0.48015 0.29591 0.00519 60 1.96964 0.83031 0.78834 1.60268 
11 0.56892 0.16377 0.42434 0.34174 61 1.97633 1.70431 0.68774 0.72680 
12 0.62199 0.15979 0.10974 0.59102 62 2.00291 1.27849 0.98193 1.18867 

13 0.62211 0.51012 0.34465 0.08954 63 2.09470 0.57249 1.93118 0.57495 
14 0.65285 0.56736 0.08971 0.31026 64 2.11221 0.58017 0.92042 1.81043 
15 0.67303 0.25016 0.16916 0.60148 65 2.14225 0.90931 1.81868 0.67437 
16 0.67435 0.22464 0.51890 0.36748 66 2.16183 0.88798 1.17203 1.58472 
17 0.68376 0.27437 0.17632 0.60097 67 2.20962 0.52536 0.72920 2.01859 
18 0.68474 0.44626 0.05272 0.51667 68 2.23254 1.96285 0.80398 0.69648 
19 0.72829 0.12122 0.58347 0.41866 69 2.23485 1.57311 0.96871 1.25758 
20 0.75386 0.33501 0.66673 0.10747 70 2.31562 0.65993 1.80884 1.28635 
21 0.75397 0.61377 0.34554 0.26900 71 2.38679 0.84321 2.15181 0.59622 
22 0.76929 0.41927 0.30497 0.56835 72 2.40175 1.92028 1.18493 0.82271 
23 0.78167 0.49985 0.16868 0.57680 73 2.44536 0.82686 1.65370 1.60042 
24 0.80521 0.47640 0.64844 0.03058 74 2.46671 1.16748 0.80469 2.01844 
25 0.81448 0.67441 0.39521 0.22882 75 2.47979 0.87041 0.96191 2.11340 
26 0.81759 0.02512 0.02396 0.81685 76 2.49884 1.30189 1.60502 1.40471 

27 0.82075 0.34828 0.62454 0.40284 77 2.52209 0.87609 1.78874 1.54721 
28 0.83341 0.71110 0.37008 0.22790 78 2.55173 2.06351 1.01668 1.10436 
29 0.83454 0.26592 0.78062 0.12792 79 2.62017 0.51235 0.81271 2.43768 
30 0.84145 0.01488 0.75000 0.38122 80 2.64979 1.61323 1.27147 1.67399 
31 0.87624 0.53492 0.05924 0.69148 81 2.67490 2.44861 0.92203 0.55613 

32 0.87893 0.00060 0.86554 0.15287 82 2.69200 0.73165 2.15080 1.44418 
33 0.88060 0.25208 0.70694 0.46060 83 2.70173 1.27497 1.89324 1.44547 
34 0.88188 0.12590 0.11716 0.86495 84 2.71476 1.11441 2.19045 1.15324 
35 0.88651 0.73416 0.12997 0.47961 85 2.74945 2.27883 1.03510 1.13797 
36 0.89410 0.23599 0.02621 0.86200 86 2.79516 1.28284 2.01838 1.44685 
37 0.90999 0.52948 0.40196 0.62141 87 2.80883 2.53310 0.71545 0.98034 
38 0.92952 0.72739 0.43175 0.38538 88 2.81381 0.85542 2.23230 1.48412 
39 0.93310 0.68824 0.47702 0.41166 89 2.84890 1.27485 0.69119 2.45219 
40 0.93320 0.91036 0.06357 0.19511 90 2.85161 0.81942 2.10226 1.74377 
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Table 2 (cont.). Table of Randomly Generated Initial Condition Coordinates 

 𝑵𝒐𝒓𝒎 |𝒙𝟏| |𝒙𝟐| |𝒙𝟑|  𝑵𝒐𝒓𝒎 |𝒙𝟏| |𝒙𝟐| |𝒙𝟑| 
41 0.94243 0.76086 0.37189 0.41347 91 2.87071 2.63723 0.52254 1.00646 
42 0.96491 0.31098 0.19244 0.89292 92 2.88035 1.17075 1.03981 2.41755 
43 0.96771 0.47161 0.73240 0.42146 93 2.89653 0.84955 2.52713 1.13215 
44 0.97513 0.01435 0.95928 0.17450 94 2.93822 2.70196 0.89995 0.72294 
45 0.98013 0.81398 0.13422 0.52922 95 2.94763 2.23661 0.51148 1.85055 
46 0.98393 0.38872 0.63969 0.63860 96 2.95110 2.01250 0.81755 1.99761 
47 0.99343 0.43344 0.30100 0.84168 97 2.96206 0.64021 2.14525 1.93955 
48 0.99366 0.60879 0.27936 0.73396 98 2.96453 0.81685 2.34852 1.61420 
49 0.99450 0.25164 0.74966 0.60309 99 2.96781 1.48976 1.56312 2.03597 
50 0.99884 0.20397 0.75757 0.61819 100 2.98571 1.21029 2.66808 0.57535 

 

Next, to inspect the trajectories of the system during a detumbling maneuver under thrust 

uncertainty, we select two coordinates with considerable difference in distance from the origin. 

For demonstration, let us select the coordinate numbers 20, and 90. We would like to inspect the 

trajectories of the system with trivial gains (6.3), in Region I, for the case when 𝜀 = 0.28. The 

following trajectories are simulated for 5 realizations: 

 

Figure 10. Stochastic Nonlinear Controller State Trajectory in Region I - Coordinate 20   
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Figure 11. Stochastic Nonlinear Controller Control Trajectory in Region I - Coordinate 

20 

 

 

Figure 12. Stochastic Nonlinear Controller State Trajectory in Region I - Coordinate 90   
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Figure 13. Stochastic Nonlinear Controller Control Trajectory in Region I - Coordinate 90 

 

 

Figure 14. Deterministic Linear Controller State Trajectory in Region I - Coordinate 20   
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Figure 15. Deterministic Linear Controller Control Trajectory in Region I - Coordinate 20   

 

 

Figure 16. Deterministic Linear Controller State Trajectory in Region I - Coordinate 90   
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Figure 17. Deterministic Linear Controller Control Trajectory in Region I - Coordinate 90   

 

Let us now compare the trajectories of the coordinate number 90 in Region I, with 𝜀 = 0.28, 

with the following control gains: 

𝑄 = [
1 0 0
0 1 0
0 0 1

],  𝑅 = [

1/𝐼1
2 0 0

0 1/𝐼2
2 0

0 0 1/𝐼3
2

] 

Clearly, the choice of gains has penalized the control input (and hence the thrust magnitude). 

This means that the thrusters are commanded to actuate with a smaller thrust magnitude, thus, 

increasing the settling time of the five realizations. We have demonstrated this strategy as a 

beneficial method to both reduce the propagated uncertainty, as well as, reducing the fuel 

consumption. Though, the disadvantage of such control strategy is the longer settling times and 

increased variations among the 5 realizations compared to the previous simulated trajectory of the 

coordinate 90 with the trivial gains (6.3). The following two plots are the trajectories of the 

nonlinear stochastic control, and the linear deterministic control with the 𝑅𝑖 = 1/𝐼𝑖
2, 𝑖 = 1,2,3. 
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Figure 18. Stochastic Nonlinear Controller Control Trajectory in Region I - Coordinate 90   

 

 

Figure 19. Deterministic Linear Controller State Trajectory in Region I - Coordinate 90   
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6.2     Monte Carlo Results  

In this section, the performance of section’s 5.5 stochastic optimal controller is compared to 

that of a deterministic optimal controller applied to stochastic dynamics through an Monte Carlo 

experiment performed over the 8 regions defined in Table 1. The tables show the mean cost of the 

set of initial conditions given in Table 2. Each initial condition is simulated for 2000 realizations 

with stochastic nonlinear and deterministic linear controls. This experiment is performed for values 

of 𝜀 = 0.14, and 𝜀 = 0.28. The Initial conditions of Region I are displayed in this section. Data 

corresponding to the Regions II-VIII is tabulated in Appendix B. 

 
 

Table 3. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region I and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001787112 0.001756035 1.738940351 

2 0.293187079 0.005037878 0.004920388 2.33213718 

3 0.316221076 0.006311412 0.0060878 3.542977192 

4 0.33126114 0.005101999 0.004662632 8.611661092 

5 0.365447776 0.007284514 0.00737724 -1.272922766 

6 0.388573818 0.008131774 0.00750104 7.756422708 

7 0.414682564 0.009815822 0.009198391 6.290166693 

8 0.507910302 0.013482154 0.013781099 -2.217341664 

9 0.508723927 0.017571308 0.01743703 0.764188787 

10 0.564035602 0.020880404 0.020954155 -0.353204254 

11 0.568921476 0.020557525 0.019734541 4.003320784 

12 0.621993608 0.01865852 0.015146834 18.82081288 

13 0.622111707 0.025891535 0.025585309 1.182726688 

14 0.652850918 0.023042072 0.023932802 -3.865666935 

15 0.67303375 0.021142996 0.018779783 11.17728404 

16 0.674354319 0.029970584 0.029152984 2.728006034 

17 0.683764431 0.021077498 0.020672257 1.922623535 

18 0.684739975 0.022408794 0.022692774 -1.267268872 

19 0.728289287 0.034512863 0.033811517 2.032128611 

20 0.753863006 0.04262121 0.040998754 3.806687817 
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Table 3 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic 

Nonlinear Control with 𝜀 = 0.14 in Region I and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

21 0.753969075 0.035947219 0.034101678 5.134030623 

22 0.769293241 0.032891125 0.0299939 8.808531349 

23 0.781665858 0.03182285 0.029936885 5.926451621 

24 0.805212622 0.046005618 0.045666789 0.736494942 

25 0.814479069 0.042395205 0.042805415 -0.967585043 

26 0.817586623 0.02630429 0.023865562 9.271215112 

27 0.820748706 0.044133785 0.043270799 1.955386346 

28 0.833407694 0.042913722 0.043080878 -0.3895156 

29 0.834535397 0.051402634 0.051255261 0.286704836 

30 0.841453615 0.049812823 0.049420447 0.787700048 

31 0.876241566 0.040240983 0.036699145 8.801569929 

32 0.87893391 0.058238051 0.05616268 3.563599079 

33 0.880603177 0.04989527 0.05018582 -0.582320692 

34 0.881879127 0.031929159 0.032982955 -3.300417616 

35 0.886511581 0.045672404 0.042879506 6.115067977 

36 0.894100586 0.036650603 0.030782172 16.01182656 

37 0.909989643 0.046288952 0.044261995 4.378923414 

38 0.92952342 0.051760801 0.053652673 -3.655027316 

39 0.933100196 0.053189866 0.052229509 1.805525512 

40 0.933204146 0.054676087 0.052767209 3.491248693 

41 0.942425394 0.053969841 0.051481763 4.610126959 

42 0.964908062 0.043131534 0.039325133 8.825099542 

43 0.967711414 0.062165861 0.061383382 1.258694961 

44 0.975126961 0.070327167 0.072373606 -2.909884475 

45 0.980126841 0.056259329 0.052075052 7.437480215 

46 0.983925319 0.057841676 0.056535269 2.258591583 

47 0.993427783 0.045246154 0.046325056 -2.384517571 

48 0.993663086 0.052165783 0.047989905 8.005013569 

49 0.994500751 0.063419471 0.062259916 1.828390743 

50 0.998840156 0.062108323 0.060126635 3.190696826 

    

Average Cost 

Difference 

(%): 3.36065564 
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Table 4. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region I and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.070191713 0.068150652 2.9078377 

52 1.329198658 0.117361029 0.109460345 6.731948643 

53 1.652261099 0.143674911 0.139235204 3.090106102 

54 1.732050808 0.179303516 0.173288531 3.354638773 

55 1.760957841 0.214096262 0.211875683 1.037187152 

56 1.820518877 0.217084647 0.209392151 3.543546722 

57 1.828533372 0.229761775 0.223829047 2.582121236 

58 1.893715218 0.204129525 0.191760085 6.059603656 

59 1.900420695 0.219215456 0.216525443 1.227109244 

60 1.969644102 0.20751687 0.187530226 9.631334716 

61 1.976334082 0.233608943 0.231516263 0.895804623 

62 2.002910229 0.228263976 0.230335222 -0.907390959 

63 2.094697427 0.323792476 0.320701762 0.954535557 

64 2.112206523 0.233609617 0.217494183 6.898446109 

65 2.142249774 0.328475928 0.319032331 2.87497391 

66 2.161830466 0.255047446 0.243609678 4.484564972 

67 2.209623524 0.23657631 0.216357605 8.546377989 

68 2.232543354 0.323913437 0.302221315 6.696888779 

69 2.234850662 0.290089866 0.28477596 1.831813683 

70 2.315624628 0.333838442 0.334374034 -0.160434653 

71 2.386793676 0.407853192 0.413731914 -1.441381919 

72 2.401746454 0.370879516 0.35299893 4.821130554 

73 2.445361846 0.363535147 0.350316715 3.636080996 

74 2.466706602 0.288637436 0.286798041 0.637268558 

75 2.479790488 0.303081871 0.285979794 5.642725251 

76 2.498843498 0.389289977 0.375051423 3.657570315 

77 2.522092914 0.382799393 0.387668618 -1.272004341 

78 2.551730261 0.419035057 0.385241011 8.064730043 

79 2.620165462 0.342699584 0.281481046 17.86361591 

80 2.649793028 0.390258268 0.393872377 -0.926081435 

81 2.674902192 0.445186068 0.430648386 3.265529415 

82 2.692003392 0.468286689 0.471840375 -0.758869871 

83 2.701726462 0.491347485 0.446572784 9.112634549 

84 2.714761477 0.501169848 0.497433609 0.745503644 

85 2.749451218 0.455737995 0.450722332 1.10055848 

86 2.795156227 0.49244978 0.485167592 1.478767706 

87 2.808828434 0.468940135 0.467790329 0.245192429 
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Table 4 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region I and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.519508891 0.511291074 1.581843384 

89 2.848903585 0.378647326 0.348047163 8.081441586 

90 2.851611437 0.507423167 0.489537912 3.524721758 

91 2.870713551 0.500022338 0.496462186 0.711998444 

92 2.880350027 0.40937772 0.376648086 7.994971868 

93 2.896534118 0.589656375 0.58144814 1.392036967 

94 2.938218496 0.55303249 0.527127318 4.684204344 

95 2.947634879 0.476586988 0.451252678 5.315778801 

96 2.95110354 0.456732073 0.439179763 3.843021138 

97 2.962064987 0.53606848 0.527688006 1.56332165 

98 2.96452904 0.571488323 0.557432346 2.459538829 

99 2.967810632 0.499924199 0.466361881 6.713481384 

100 2.985712699 0.645541065 0.654191947 -1.340097886 

    

Average Cost 

Difference 

(%): 3.49360493 

 

 

Table 5. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region I and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.096651786 0.081547995 15.62701662 

2 0.293187079 0.154616239 0.102200972 33.9002341 

3 0.316221076 0.137090686 0.059161045 56.84532147 

4 0.33126114 0.157734073 0.07853505 50.21047213 

5 0.365447776 0.070920477 0.041553911 41.40773901 

6 0.388573818 0.116051631 0.059718463 48.54146981 

7 0.414682564 0.089801276 0.046095066 48.66992116 

8 0.507910302 0.018187926 0.012794015 29.65655186 

9 0.508723927 0.061879376 0.042537097 31.25803803 

10 0.564035602 0.203973147 0.195471202 4.16816865 

11 0.568921476 0.099776774 0.081304137 18.51396426 

12 0.621993608 0.146675045 0.070940608 51.63416638 

13 0.622111707 0.122711451 0.069471373 43.38639741 

14 0.652850918 0.13713821 0.035395664 74.18978703 

15 0.67303375 0.025155954 0.009789764 61.08371046 
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Table 5 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region I and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.135914651 0.059152943 56.47787627 

17 0.683764431 0.170392442 0.265874664 -56.03665316 

18 0.684739975 0.175614766 0.100170673 42.95999383 

19 0.728289287 0.131923888 0.109212637 17.21542014 

20 0.753863006 0.07955313 0.041483741 47.85404237 

21 0.753969075 0.044473255 0.028064927 36.8948222 

22 0.769293241 0.00349229 0.003264837 6.513001516 

23 0.781665858 0.056667494 0.050507944 10.86963571 

24 0.805212622 0.107399856 0.105381466 1.879322671 

25 0.814479069 0.136041409 0.051932838 61.82571286 

26 0.817586623 0.273472699 0.087993397 67.82369961 

27 0.820748706 0.184834968 0.104732662 43.33720352 

28 0.833407694 0.091202424 0.059648957 34.5971803 

29 0.834535397 0.196128032 0.099026417 49.50929973 

30 0.841453615 0.106568052 0.082599594 22.49122271 

31 0.876241566 0.2178001 0.192140617 11.78120802 

32 0.87893391 0.714279515 0.04448058 93.77266475 

33 0.880603177 0.212187311 0.097421455 54.08704925 

34 0.881879127 0.109823904 0.091837062 16.37789332 

35 0.886511581 0.015058367 0.008467066 43.77168287 

36 0.894100586 0.097665928 0.104537157 -7.035441409 

37 0.909989643 0.129168257 0.082245985 36.32647331 

38 0.92952342 0.202160995 0.110781005 45.2015931 

39 0.933100196 0.132275 0.090425568 31.63820246 

40 0.933204146 0.117986472 0.084291419 28.55840345 

41 0.942425394 0.230396307 0.088509791 61.58367611 

42 0.964908062 2.032163585 0.072062132 96.45392071 

43 0.967711414 0.191886474 0.032275764 83.17976101 

44 0.975126961 0.101273018 0.089838269 11.29101214 

45 0.980126841 0.08890041 0.037000485 58.37984876 

46 0.983925319 0.212591783 0.099426581 53.23122097 

47 0.993427783 0.044570523 0.018050496 59.50126989 

48 0.993663086 0.026858774 0.014510821 45.97362831 

49 0.994500751 0.076017819 0.07290567 4.093973022 

50 0.998840156 0.013889551 0.010672955 23.15838909 

    

Average Cost 

Difference 

(%): 38.09262336 
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Table 6. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region I and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.199655741 0.246074451 -23.24937419 

52 1.329198658 1.629061571 0.20705453 87.28995062 

53 1.652261099 0.560073879 0.27100742 51.61220156 

54 1.732050808 0.457472902 0.316354062 30.84747517 

55 1.760957841 0.538337897 0.338849036 37.05644022 

56 1.820518877 0.587657188 0.425581972 27.57989182 

57 1.828533372 0.553294861 0.355852233 35.6848838 

58 1.893715218 0.797735588 0.34855268 56.30724202 

59 1.900420695 0.758826153 0.373260042 50.81086223 

60 1.969644102 0.614058933 0.383024453 37.6241543 

61 1.976334082 0.590945736 0.417074613 29.42251928 

62 2.002910229 0.55477491 0.4282052 22.814606 

63 2.094697427 0.717065336 0.505872474 29.45238764 

64 2.112206523 0.700234576 0.580405351 17.11272616 

65 2.142249774 1.666815002 0.523829775 68.57301055 

66 2.161830466 2.319469947 0.507338008 78.12698504 

67 2.209623524 2.902292244 0.420631854 85.50690906 

68 2.232543354 1.071572667 0.607187502 43.33678712 

69 2.234850662 0.846603261 0.598583155 29.29590722 

70 2.315624628 1.227568736 0.585091523 52.33737179 

71 2.386793676 1.841384102 0.670151762 63.60608516 

72 2.401746454 1.223585099 0.625135675 48.90950575 

73 2.445361846 1.830570116 0.696016397 61.97816237 

74 2.466706602 0.82745518 0.538976265 34.86338862 

75 2.479790488 0.954363069 0.617235241 35.32490303 

76 2.498843498 1.194903532 0.674157 43.58063376 

77 2.522092914 0.991574364 0.627608887 36.70581753 

78 2.551730261 1.652615865 0.71634561 56.65383438 

79 2.620165462 12.17892848 0.790493391 93.50933547 

80 2.649793028 1.217476411 0.751728818 38.25516356 

81 2.674902192 1.30109964 0.871426755 33.02382628 

82 2.692003392 1.287323589 0.8295821 35.55760902 

83 2.701726462 1.588507231 0.752006334 52.65955867 

84 2.714761477 1.594900853 0.840232453 47.31757456 

85 2.749451218 1.323251979 0.757936669 42.72166747 

86 2.795156227 1.38144323 0.841151363 39.1106819 

87 2.808828434 1.289507533 1.002050283 22.29201795 
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Table 6 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region I and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.514179775 0.834135018 44.91175805 

89 2.848903585 1.606660278 0.731160186 54.49192366 

90 2.851611437 1.21943244 0.911433243 25.25758601 

91 2.870713551 1.582247743 0.904632217 42.82613324 

92 2.880350027 3.082652688 0.803151131 73.9461038 

93 2.896534118 1.271137863 1.25640027 1.159401628 

94 2.938218496 1.396067091 0.868626555 37.78045763 

95 2.947634879 1.822407132 1.553266664 14.7684051 

96 2.95110354 2.400388075 0.964740009 59.80899843 

97 2.962064987 1.329361025 1.488073413 -11.93899815 

98 2.96452904 2.474384054 0.918501219 62.87960157 

99 2.967810632 1.2628239 0.874121328 30.7804257 

100 2.985712699 1.290949916 0.968000501 25.01641712 

    

Average Cost 

Difference 

(%): 41.90601833 

 

The mean comparisons in Tables 3-6 show that the stochastic nonlinear control results in lower 

cost of the optimal control problem compared to using the deterministic linear control. Even 

though in cases where 𝜀 = 0.14 the stochastic controller had yielded a lower cost by ~3.5%. In 

fact, the cost difference is increased up to 50% as shown in the tables of Appendix B. 

Comparing the two given initial conditions, the cost difference is increased as the distance from 

the initial condition to the origin is increased. From the displayed tables, this relation can also be 

seen when 𝜀 is increased. This shows that under smaller norms of initial conditions, the two 

controllers behave similarly. However, as the distance from the origin is increased, the stochastic 

control’s mean cost decreases. This relation also follows when the noise effects are increased. The 

stochastic control’s mean cost decreases, as 𝜀 is increased. Next, we will display the Cumulative 

Distribution Functions (CDF), and the approximate Probability Density Functions (PDF) of the 

Coordinates numbers 20 and 90, which trajectories were simulated in section 6.1. 
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Figure 20. CDF of total cost for stochastic nonlinear control and deterministic linear control for 

𝜺 = 0.28 - Region I - Coordinate 20   

 

 

Figure 21. PDF of total cost for stochastic nonlinear control and deterministic linear control for 

𝜺 = 0.28 - Region I - Coordinate 20   
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Figure 22. CDF of total cost for stochastic nonlinear control and deterministic linear control for 

𝜺 = 0.28 - Region I - Coordinate 90   

 

 

Figure 23. PDF of total cost for stochastic nonlinear control and deterministic linear control for 

𝜺 = 0.28 - Region I - Coordinate 90   
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The probability density functions (PDFs) of the total cost in figures 21, and 23 are approximated 

using the kernel density estimation function in MATLAB. The total cost PDFs corresponding to 

the stochastic control have a narrower shape compared to that of the deterministic control. This 

means that using the deterministic control, there is higher probability of getting both lower and 

higher cost values, hence more uncertainty. Moreover, the cost PDFs corresponding to the 

stochastic control are shifted to the left in figures 21, and 23. This shows that achieving lower total 

cost using the stochastic control is more probable. Since the multiplicative noise magnitude is 

proportional to the control effort, the control method limits the control magnitude to avoid 

incurring higher cost. 

Through this numerical simulation, we have shown that the deterministic control is not able to 

compensate for the generated uncertainty. This in turn, demonstrates the robustness properties of 

the stochastic control in presence of disturbances.  

 

6.3     Stability of a Controlled Linear Stochastic System 

In the numerical experiments shown in this chapter, the linear deterministic control is seen to 

be able to regulate the stochastic system, since the noise magnitude is small. However, there may 

be scenarios depending on the physical and cost function parameters in which the linear 

deterministic control is not desirable. Consider a controlled linear SDE of the form:  

𝑑𝑦𝑡 = 𝐵𝐾𝑦𝑡𝑑𝑡 + 𝜀𝐵𝐾𝑦𝑡𝑑𝑊𝑡 ,  𝑦 ∈ ℝ . (6.4) 

When the stochastic optimal control of section III is applied to the SDE (5.2), the coupling between 

𝑥 components in (5.2) is only through the nonlinear parts. Therefore, the scalar SDE (6.4) with 𝐾 

given by the optimal linear gain (5.45) is equivalent to one component in the linear part of the 

optimized (5.2). The process 𝑦𝑡 given by (6.4) is a geometric Brownian motion,  
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𝑦𝑡 = 𝑦0𝑒
(𝐵𝐾−

1
2
𝜀2𝐵2𝐾2)𝑡+𝜀𝐵𝐾𝑊𝑡 ,  

where, without loss of generality, we assume that 𝑦0 > 0. We also assume that 𝑦0 is independent 

of 𝑊𝑡. Then, it can be determined that 

𝔼[𝑦𝑡] = 𝔼[𝑦0]𝑒
𝐵𝐾𝑡,          𝔼[𝑦𝑡

2] = 𝔼[𝑦0
2]𝑒(2𝐵𝐾+𝜀2𝐵2𝐾2)𝑡 .  

𝑦𝑡 is log-normally distributed with mean and variance 𝜇𝑡 = 𝔼[𝑦𝑡] and 𝜎𝑡
2 = 𝔼[𝑦𝑡

2] − 𝜇𝑡
2, 

respectively.  

Recall from (5.45) and (5.46) that the optimal linear stochastic gain 𝐾 given by (5.18) is 𝐾 =

−
𝐵𝑃

𝑅+𝜀2𝐵2𝑃
, where 𝑅 > 0 is the weight of the control energy contribution to the cost function (5.1) 

and 𝑃 > 0 is the solution to the ARE (5.19). Then, we see that 𝑦𝑡 is stable in mean, because 𝐵𝐾 <

0, so 𝔼[𝑦𝑡] → 0 as 𝑡 → ∞. 𝑦𝑡 is also stable in mean-square sense, because  

2𝐵𝐾 + 𝜀2𝐵2𝐾2 =  − (2𝑅 + 𝜀2𝐵2𝑃) < 0,   

hence 𝔼[𝑦𝑡
2] → 0 as 𝑡 → ∞. In addition, for any 𝛿 > 0,  

ℙ[𝑦𝑡 > 𝛿] =
1

2
(1 − 𝑒𝑟𝑓 (

log𝛿−𝜇𝑡

√2𝜎𝑡
)), (6.5) 

where 𝑒𝑟𝑓 is the error function. 𝜇𝑡 , 𝜎𝑡 → 0 as 𝑡 → ∞, so the error function in (6.5) goes to 1 as 

𝑡 → ∞. Therefore, for any 𝛿 > 0, ℙ[𝑦𝑡 > 𝛿] → 0 as 𝑡 → ∞, i.e. 𝑦𝑡 is stable in probability (the 

same conclusion can be made by an argument using the Markov inequality and 𝔼[𝑦𝑡] → 0).  

Now consider if we replaced 𝐾 by the linear deterministic optimal gain 𝐾𝑑𝑒𝑡 = −√
𝑄

𝑅
. Then, the 

corresponding 𝑦𝑡 will be stable in mean, but if  

𝐵

2
√

𝑄

𝑅
>

1

𝜀2,  (6.6) 

then (2𝐵𝐾𝑑𝑒𝑡 + 𝜀2𝐵2𝐾𝑑𝑒𝑡
2 ) > 0, so 𝑦𝑡 is no longer mean-square stable. Condition (6.6) indicates 

that if 𝑅 is too small, then applying the deterministic optimal control may not ensure mean-square 

stability of the linear stochastic system. A small 𝑅 means that we allow large control effort to be 
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applied. Since noise enters the system proportionally to the control effort, it is not desirable to 

apply large control even if the cost function allows it. The stochastic optimal control accounts for 

this. The deterministic control however does not, and will try to apply large control which may 

destabilize the system in mean-square sense. Recall that 𝐵 is inversely proportional to a principal 

moment of inertia. In theory, condition (6.6) could also be satisfied if a principal moment of inertia 

is too small.  

 The discussion on stability here is for a linear system, intended to investigate the possibility of 

scenarios in which applying a deterministic optimal control to a stochastic system is undesirable. 
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CHAPTER 7 

Concluding Remarks 

7.1     Future Direction of Research 

Al’brekht Method, in context of attitude control, has left us several open problems to consider: 

One of which is the implementation of a path planning method that aims to reduce the optimality 

error. Al’brekht method gives the solution to the HJB locally around the origin. This means, that 

either the control, away from the origin, will lose its stability properties, or the optimality error 

will accumulate even when stable. Let us provide an overview of the HJB Residual planning 

method:  

 Suppose that we have solved the HJB equation associated with the deterministic controlled 

Euler rigid body dynamics given in section 2.1.  

𝑥̇ = 𝑓(𝑥) + 𝑢(𝑥), where 𝑥 ∈ ℝ3, and 𝑢 ∈ ℝ𝑚. 

Also, suppose that the associated HJB equation has been solved, and the value function up to 

some order, in form of a power series, is obtained. For example, assume that the we have up to 

the 5th order. Then, the value function partial sum is given as 

∑ 𝑉(𝑝)(𝑥)

𝑘

𝑝=2

, 𝑘 ∈ {2,3,4,5} (7.1) 

Let us now define the HJB residual function 

ℛ(𝑥) =
1

2
[𝑓(𝑥)𝑇

𝜕𝑉(𝑥)

𝜕𝑥
+

1

2
𝑥𝑇𝑄𝑥 −

1

2
((

𝜕𝑉(𝑥)

𝜕𝑥
)

𝑇

𝐵𝑅−1𝐵𝑇
𝜕𝑉(𝑥)

𝜕𝑥
)]

2

 (7.2)  

Note that (7.2) is a known form in 𝑥. We then propose to use (7.2)  as a potential function in a 

gradient descent method to generate an array of way-points 𝑃𝑖, 𝑖 = 1,2,3,… . The gradient descent 

equation is given by 
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𝑝𝑖+1 = 𝑝𝑖 + 𝛼𝑖
∇𝑥ℛ(𝑝𝑖)

‖ℛ(𝑝𝑖)‖
 (7.3)  

where 𝛼𝑖 are step size of the gradient. Then, at each way-point 𝑝𝑖, we will apply a coordinate shift 

to the Al’brekht’s local control, such that the origin becomes the current way-point. This means 

that we will use each 𝑝𝑖 as a shifted coordinate origin. Applying the control to reach each 𝑝𝑖 

successively, we will stabilize around each generated way-point. Note that the next way-point is 

not calculated until stabilization about the previous way point is achieved given a tolerance. This 

chain will be continued marching towards the global origin until the way-points reach the zero 

region of (7.2) . That is, when the gradient is not steep. This is the region where Al’brekht method 

will not generate significant optimality error since the HJB is close to zero, and hence satisfied. 

 

Figure 24. Contour of Residual for 𝑉(2)(𝑥), Fixing 𝑧 = 2 

After this, Al’brekht control can be applied to the global origin. Though, planning can always 

resume, when the value exceeds a threshold.  
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Figure 25. Contour of Residual for 𝑉(4)(𝑥), Fixing 𝑧 = 2 

 

 

Figure 26. Residuals for ∑ 𝑉(𝑝)(𝑥)𝑘
𝑝=2 , 𝑘 ∈ {2,3,4,5}, at Radius 2 
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Figure 27. Residuals and Gradient Descent Iterations 

 

This method is specifically useful because it improves the optimality results by finding the 

steepest descent direction on the manifold (7.2)  and directing the Al’brekht control in the steepest 

direction to a region where it would generate a lower error, i.e. where HJB is satisfied with smaller 

error. This method gave an average of 30% improvement when the third order control with 

planning was compared to the third order Al’brekht control with no planning. However, 

computational challenges remain for future consideration: 1) Quantification of cost, or a proof of 

the method. 2) Determining the optimal choice of the time step 𝛼𝑖. In general, it is also desired to 

know if applying local solution to a series of shifted origins (i.e. the way-points) outside of the 

Al’brekht’s region of convergence consecutively will stabilize the system, and in total yield lower 

optimality error.  
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7.2     Conclusion 

Success of space missions depends on accuracy and efficiency of the spacecraft actuators. 

Thrust uncertainty causes state error, and accumulated state error is detrimental to mission 

objectives and can shorten the lifetime of the spacecraft. In fact, missions carrying science 

instruments and precision pointing devices will not be able to operate if thrust uncertainty grows. 

Motivated by these challenges, we began addressing the thrust uncertainty problem by modeling 

a realistic situation, where the generated thrust uncertainty is proportional to the magnitude of the 

generated thrust. To compensate for the thrust fluctuations, and reduce the fuel consumption under 

uncertainty, we formulated a stochastic optimal control problem through the Hamilton-Jacobi-

Bellman equation. To solve the HJB equation, we extended Al’brekht [1] method for a stochastic 

setting. We then provided the stochastic solvability conditions both for quadratic and higher orders 

of the HJB solution. The HJB associated with the stochastic Euler dynamics was solved through 

the stochastic extension of the Al’brekht method [2]. Numerical experiments were carried out for 

a model of a 6U CubeSat. The optimality of the nonlinear stochastic control law was shown. 

In this study, we were concerned with the stabilization of the attitude dynamics merely, and the 

attitude kinematics subsystem was ignored. As described earlier, for a given attitude 

parametrization, the dynamics and kinematics control laws can be jointly derived. That is, 

controlling both kinematics and dynamics at the same time. As a suggestion for future research, it 

would be important to understand the effects of thrust uncertainty on the actual pointing of the 

spacecraft. However, since the source of the noise is the dynamics model, it is important to study 

the control of noisy dynamics. Through analysis of detumbling maneuver of a 6U CubeSat model, 

we found that the stochastic control can minimize the optimality criteria 50% better than that of 

the linear deterministic control when uncertainty effects are large. 
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APPENDIX A: Moment of Inertia Tables 

 

Table 7. Table of Moment Inertia 

Diagonal Tensor Entries Off-Diagonal Tensor Entries 

𝐼11 = ∫𝜌(𝑟2
2 + 𝑟3

2) 𝑑𝑉 =∫(𝑟2
2 + 𝑟3

2) 𝑑𝑚 𝐼12 = 𝐼21 = −∫𝜌(𝑟1𝑟2) 𝑑𝑉 = −∫(𝑟1𝑟2) 𝑑𝑚 

𝐼22 = ∫𝜌(𝑟1
2 + 𝑟3

2) 𝑑𝑉 = ∫(𝑟1
2 + 𝑟3

2) 𝑑𝑚 𝐼13 = 𝐼31 = −∫𝜌(𝑟1𝑟3) 𝑑𝑉 = −∫(𝑟1𝑟3) 𝑑𝑚 

𝐼33 = ∫𝜌(𝑟1
2 + 𝑟2

2) 𝑑𝑉 = ∫(𝑟1
2 + 𝑟2

2) 𝑑𝑚 𝐼23 = 𝐼32 = −∫𝜌(𝑟2𝑟3) 𝑑𝑉 = −∫(𝑟2𝑟3) 𝑑𝑚 

 

Table 8. Moment of Inertia of a Cuboid in Principal Axes  

Diagonal Tensor Entries Off-Diagonal Tensor Entries 

𝐼11 =
1

12
𝑚(𝑥2 + 𝑦2) 

𝐼12 = 𝐼21 = 0 

𝐼22 =
1

12
𝑚(𝑧2 + 𝑦2) 

𝐼13 = 𝐼31 = 0 

𝐼33 =
1

12
𝑚(𝑥2 + 𝑧2) 

𝐼23 = 𝐼32 = 0 

 

where 𝑥 is the width, 𝑦  is the depth, 𝑧 is the height, and 𝑚 stands for the mass. 
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APPENDIX B: Monte Carlo Results in Regions II-VIII 

 

This appendix contains the detailed results of the Monte Carlo experiment performed for a 

CubeSat model. The CubeSat parameters are given as: 𝐼11 = 0.05 ,  𝐼22 = 0.065,  𝐼33 = 0.025,  

𝑏1 = (
1
0
0
), 𝑏2 = (

0
1
0
), 𝑏3 = (

0
0
1
), 𝑄 = 𝑅 = (

1 0 0
0 1 0
0 0 1

) 

For the results of  Region I, reader may refer to chapter 6. There are two groups of Initial 

conditions: one group is randomly generated within distance of norm 1 of the origin, and the 

second group is randomly generated between norm 1 and norm 3.  Each table contains 50 initials 

conditions (given in Table 2), where each initial condition has 2000 realizations. The displayed 

means are taken over 2000 realizations of each initial condition. Then average cost difference is 

calculated over all the 50 initial conditions and represents the percent improvement when a 

nonlinear stochastic is used. 

Table 9. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region II and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001787186 0.001756082 1.740407923 

2 0.293187079 0.005038835 0.004920955 2.339434219 

3 0.316221076 0.006312428 0.006088053 3.554507119 

4 0.33126114 0.005102303 0.004663047 8.608970355 

5 0.365447776 0.007284997 0.007379462 -1.296694577 

6 0.388573818 0.008132459 0.007502579 7.745261206 

7 0.414682564 0.009817469 0.009200311 6.286330293 

8 0.507910302 0.013482402 0.013782249 -2.22399492 

9 0.508723927 0.017571538 0.017437054 0.765350856 

10 0.564035602 0.0208806 0.020954289 -0.352907078 

11 0.568921476 0.020567418 0.019741404 4.016131555 

12 0.621993608 0.01866271 0.015149173 18.82650885 

13 0.622111707 0.025894273 0.025588377 1.181327011 

14 0.652850918 0.023046459 0.023936338 -3.861238193 

15 0.67303375 0.021150994 0.018784328 11.18938689 
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Table 9 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region II and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.029986569 0.029159949 2.75663266 

17 0.683764431 0.021081104 0.020676911 1.917325655 

18 0.684739975 0.022411294 0.022695257 -1.267049341 

19 0.728289287 0.034520015 0.033816306 2.038552962 

20 0.753863006 0.042627136 0.041004454 3.806687304 

21 0.753969075 0.035957804 0.034113559 5.128914652 

22 0.769293241 0.03291149 0.030016754 8.795520038 

23 0.781665858 0.031843488 0.029949064 5.949174872 

24 0.805212622 0.046007718 0.045669541 0.73504429 

25 0.814479069 0.042407088 0.042819425 -0.972329771 

26 0.817586623 0.0263043 0.023865614 9.271053816 

27 0.820748706 0.044153573 0.04329998 1.933236148 

28 0.833407694 0.0429302 0.043100726 -0.397216961 

29 0.834535397 0.051409186 0.05125973 0.290718705 

30 0.841453615 0.049813663 0.049421408 0.787444695 

31 0.876241566 0.040243264 0.036707415 8.786188772 

32 0.87893391 0.058238072 0.056162676 3.563640491 

33 0.880603177 0.049914129 0.050197703 -0.568122256 

34 0.881879127 0.031933613 0.032986491 -3.297084125 

35 0.886511581 0.04568064 0.042883748 6.122707628 

36 0.894100586 0.036652074 0.030782303 16.01484025 

37 0.909989643 0.046310428 0.044307214 4.325621415 

38 0.92952342 0.051793734 0.053668329 -3.619346401 

39 0.933100196 0.053208718 0.052242295 1.8162855 

40 0.933204146 0.054678481 0.052768732 3.492688046 

41 0.942425394 0.054011861 0.051510826 4.630528721 

42 0.964908062 0.043139319 0.039335993 8.8163807 

43 0.967711414 0.062220081 0.061421123 1.284082947 

44 0.975126961 0.070328078 0.072374025 -2.909147388 

45 0.980126841 0.056292574 0.05209125 7.463372376 

46 0.983925319 0.057858743 0.056570628 2.226310739 

47 0.993427783 0.045255487 0.046352019 -2.422980985 

48 0.993663086 0.05217928 0.048005282 7.999339039 

49 0.994500751 0.063440051 0.062285013 1.820675837 

50 0.998840156 0.06212588 0.060144351 3.18953923 

    

Average Cost 

Difference 

(%): 3.360560235 
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Table 10. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region II and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.070245779 0.068230392 2.869050437 

52 1.329198658 0.117463472 0.109469492 6.805502619 

53 1.652261099 0.143895357 0.139387729 3.132573433 

54 1.732050808 0.179550232 0.173456861 3.393686053 

55 1.760957841 0.214270745 0.211979152 1.069485073 

56 1.820518877 0.217240747 0.209549624 3.540368458 

57 1.828533372 0.229874129 0.223959981 2.572776917 

58 1.893715218 0.204247576 0.191921918 6.034665388 

59 1.900420695 0.219421845 0.216777136 1.205308088 

60 1.969644102 0.207810879 0.187859942 9.600525839 

61 1.976334082 0.233784174 0.2316903 0.89564389 

62 2.002910229 0.228606799 0.230551107 -0.850503325 

63 2.094697427 0.323991961 0.32081492 0.980592548 

64 2.112206523 0.233710265 0.217858885 6.782492004 

65 2.142249774 0.328948678 0.319311361 2.929732876 

66 2.161830466 0.255456614 0.244001061 4.484344016 

67 2.209623524 0.236789592 0.216612669 8.521034642 

68 2.232543354 0.324032225 0.302356778 6.689287309 

69 2.234850662 0.29042297 0.28514921 1.815889347 

70 2.315624628 0.334264138 0.334716973 -0.135472379 

71 2.386793676 0.407934943 0.414111166 -1.514021564 

72 2.401746454 0.371028588 0.353334556 4.76891342 

73 2.445361846 0.363890478 0.351063752 3.524886403 

74 2.466706602 0.288768335 0.287397648 0.474666648 

75 2.479790488 0.303431366 0.286379485 5.619683026 

76 2.498843498 0.389911084 0.375446457 3.709724499 

77 2.522092914 0.383458185 0.3879817 -1.179663181 

78 2.551730261 0.41964923 0.385124659 8.227006941 

79 2.620165462 0.343109175 0.281709368 17.89512256 

80 2.649793028 0.390550632 0.394715022 -1.066286887 

81 2.674902192 0.445465459 0.431014817 3.243942234 

82 2.692003392 0.468729162 0.472361333 -0.774897567 

83 2.701726462 0.49334873 0.447548344 9.283572398 

84 2.714761477 0.501847977 0.497888644 0.788950623 

85 2.749451218 0.456739879 0.451158763 1.221946398 

86 2.795156227 0.492913987 0.485767194 1.449906688 

87 2.808828434 0.469482248 0.468130921 0.28783342 

 



116 

 

Table 10 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region II and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.520561947 0.51202472 1.64000222 

89 2.848903585 0.378694632 0.34827571 8.032572841 

90 2.851611437 0.508560987 0.490061346 3.637644536 

91 2.870713551 0.500184949 0.496479765 0.740762916 

92 2.880350027 0.410602429 0.377497013 8.062645027 

93 2.896534118 0.590504234 0.582117233 1.420311651 

94 2.938218496 0.553349084 0.527290152 4.709311392 

95 2.947634879 0.476814481 0.451724599 5.261979876 

96 2.95110354 0.457190313 0.439490715 3.871385165 

97 2.962064987 0.536774667 0.528172765 1.602516378 

98 2.96452904 0.572060067 0.558076997 2.444335972 

99 2.967810632 0.501318354 0.466710084 6.903451591 

100 2.985712699 0.645811062 0.654568747 -1.356075395 

    

Average Cost 

Difference 

(%): 3.505382269 

 

 

Table 11. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region II and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.003493445 0.003264176 6.562834423 

2 0.293187079 0.015053933 0.008471753 43.72398541 

3 0.316221076 0.013897618 0.010674692 23.1904957 

4 0.33126114 0.025166066 0.009792621 61.08799577 

5 0.365447776 0.018208594 0.012801079 29.69760086 

6 0.388573818 0.026823411 0.01452616 45.84521754 

7 0.414682564 0.044512341 0.018052068 59.44480142 

8 0.507910302 0.192003712 0.03229315 83.18097639 

9 0.508723927 0.044481629 0.028067132 36.90174597 

10 0.564035602 0.13713477 0.03540153 74.18486217 

11 0.568921476 0.089178261 0.037060238 58.44252028 

12 0.621993608 0.714618753 0.044496448 93.77340051 

13 0.622111707 0.056685316 0.050523537 10.87015069 

14 0.652850918 0.079674009 0.041497823 47.91548315 

15 0.67303375 0.115970855 0.059824317 48.41435235 
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Table 11 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region II and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.090249667 0.046152822 48.86095004 

17 0.683764431 0.071015535 0.041598951 41.42274511 

18 0.684739975 0.062165466 0.042550265 31.55321141 

19 0.728289287 0.137318509 0.059229521 56.86705183 

20 0.753863006 0.076281531 0.07292434 4.40105346 

21 0.753969075 0.138699119 0.059190967 57.32419413 

22 0.769293241 0.091591688 0.059692032 34.82811225 

23 0.781665858 0.146891816 0.070907369 51.72816945 

24 0.805212622 0.106633823 0.082595955 22.54244255 

25 0.814479069 0.099691215 0.080274387 19.47697022 

26 0.817586623 0.136042582 0.051932043 61.82662689 

27 0.820748706 0.097524069 0.105040595 -7.707354635 

28 0.833407694 0.123571258 0.069581791 43.69095823 

29 0.834535397 0.096640046 0.08159809 15.56493082 

30 0.841453615 0.101214707 0.089848657 11.22964221 

31 0.876241566 0.132201754 0.090540221 31.51360075 

32 0.87893391 0.117986956 0.084291491 28.55863577 

33 0.880603177 0.110019419 0.09187209 16.49466059 

34 0.881879127 0.170502414 0.266108195 -56.07297775 

35 0.886511581 0.157848399 0.078608683 50.19988587 

36 0.894100586 2.032361145 0.072069287 96.45391335 

37 0.909989643 0.281443229 0.088091352 68.70013473 

38 0.92952342 0.126805846 0.08245172 34.97798212 

39 0.933100196 0.185981417 0.104590857 43.76273784 

40 0.933204146 0.10741512 0.105385207 1.889783658 

41 0.942425394 0.212769212 0.097594819 54.13113693 

42 0.964908062 0.231812676 0.088514431 61.8163974 

43 0.967711414 0.176188041 0.100265535 43.09174781 

44 0.975126961 0.13192691 0.109216921 17.21406862 

45 0.980126841 0.154903751 0.102251181 33.99050666 

46 0.983925319 0.218861278 0.195686219 10.58892613 

47 0.993427783 0.196843424 0.0989875 49.71256926 

48 0.993663086 0.2024056 0.110881343 45.21824355 

49 0.994500751 0.212804579 0.09939075 53.29482524 

50 0.998840156 0.204202356 0.196492437 3.775627092 

    

Average Cost 

Difference 

(%): 38.12317064 
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Table 12. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region II and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.199268285 0.247438501 -24.17354875 

52 1.329198658 1.642395547 0.207551646 87.36287089 

53 1.652261099 0.563090231 0.271914883 51.71024674 

54 1.732050808 0.457029415 0.318240024 30.36771516 

55 1.760957841 0.53752857 0.339747365 36.79454751 

56 1.820518877 0.589690053 0.434604814 26.29944983 

57 1.828533372 0.549328134 0.355961554 35.20056017 

58 1.893715218 0.801629778 0.349667461 56.38043011 

59 1.900420695 0.760962932 0.372901251 50.99613453 

60 1.969644102 0.619672077 0.383674592 38.08425358 

61 1.976334082 0.610976003 0.417999149 31.58501357 

62 2.002910229 0.558335626 0.428867605 23.18820705 

63 2.094697427 0.715095973 0.508476819 28.8939054 

64 2.112206523 0.697004219 0.585418469 16.00933636 

65 2.142249774 1.671752979 0.52307355 68.71107412 

66 2.161830466 2.339005584 0.508634741 78.25423143 

67 2.209623524 2.913149444 0.422056995 85.5120033 

68 2.232543354 1.073729951 0.608070775 43.36836988 

69 2.234850662 0.848757895 0.600479439 29.25197603 

70 2.315624628 1.239570132 0.586496239 52.68551381 

71 2.386793676 1.879775141 0.675750158 64.05154302 

72 2.401746454 1.215872837 0.628484547 48.31001006 

73 2.445361846 1.962943323 0.697650601 64.4589534 

74 2.466706602 0.83300508 0.540892673 35.06730199 

75 2.479790488 0.930137753 0.62152214 33.17955985 

76 2.498843498 1.199036 0.674847593 43.71748698 

77 2.522092914 0.944717216 0.631720113 33.1313008 

78 2.551730261 1.666905421 0.71847658 56.89757972 

79 2.620165462 12.21159167 0.791960209 93.51468482 

80 2.649793028 1.239420256 0.750476421 39.4493984 

81 2.674902192 1.30986219 0.870943803 33.50874543 

82 2.692003392 1.284168099 0.791930689 38.33122862 

83 2.701726462 1.605677835 0.755005209 52.97903525 

84 2.714761477 1.616452949 0.846707519 47.61941447 

85 2.749451218 1.351313993 0.761567924 43.64241563 

86 2.795156227 1.39371587 0.846905944 39.23395992 

87 2.808828434 1.297656749 1.010098132 22.15983677 
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Table 12 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region II and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.525303493 0.835964752 45.19354637 

89 2.848903585 1.610770268 0.727689055 54.82353567 

90 2.851611437 1.22319458 0.916860317 25.04378844 

91 2.870713551 1.588145517 0.90619685 42.93993589 

92 2.880350027 3.114680512 0.810668377 73.97266352 

93 2.896534118 1.288463281 1.300779489 -0.955883504 

94 2.938218496 1.400484588 0.871475599 37.77328174 

95 2.947634879 1.83657069 1.600178365 12.87139815 

96 2.95110354 2.428432578 0.961442048 60.40894624 

97 2.962064987 1.31687053 1.508836773 -14.57745758 

98 2.96452904 2.622738637 0.920474722 64.90406217 

99 2.967810632 1.274000862 0.876523724 31.19912634 

100 2.985712699 1.340235132 0.96812078 27.76485586 

    

Average Cost 

Difference 

(%): 41.9419309 

 

 

Table 13. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region III and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001787186 0.001756082 1.740407923 

2 0.293187079 0.005038835 0.004920955 2.339434219 

3 0.316221076 0.006312428 0.006088053 3.554507119 

4 0.33126114 0.005102303 0.004663047 8.608970355 

5 0.365447776 0.007284997 0.007379462 -1.296694577 

6 0.388573818 0.008132459 0.007502579 7.745261206 

7 0.414682564 0.009817469 0.009200311 6.286330293 

8 0.507910302 0.013482402 0.013782249 -2.22399492 

9 0.508723927 0.017571538 0.017437054 0.765350856 

10 0.564035602 0.0208806 0.020954289 -0.352907078 

11 0.568921476 0.020567418 0.019741404 4.016131555 

12 0.621993608 0.01866271 0.015149173 18.82650885 

13 0.622111707 0.025894273 0.025588377 1.181327011 

14 0.652850918 0.023046459 0.023936338 -3.861238193 

15 0.67303375 0.021150994 0.018784328 11.18938689 
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Table 13 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region III and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.029986569 0.029159949 2.75663266 

17 0.683764431 0.021081104 0.020676911 1.917325655 

18 0.684739975 0.022411294 0.022695257 -1.267049341 

19 0.728289287 0.034520015 0.033816306 2.038552962 

20 0.753863006 0.042627136 0.041004454 3.806687304 

21 0.753969075 0.035957804 0.034113559 5.128914652 

22 0.769293241 0.03291149 0.030016754 8.795520038 

23 0.781665858 0.031843488 0.029949064 5.949174872 

24 0.805212622 0.046007718 0.045669541 0.73504429 

25 0.814479069 0.042407088 0.042819425 -0.972329771 

26 0.817586623 0.0263043 0.023865614 9.271053816 

27 0.820748706 0.044153573 0.04329998 1.933236148 

28 0.833407694 0.0429302 0.043100726 -0.397216961 

29 0.834535397 0.051409186 0.05125973 0.290718705 

30 0.841453615 0.049813663 0.049421408 0.787444695 

31 0.876241566 0.040243264 0.036707415 8.786188772 

32 0.87893391 0.058238072 0.056162676 3.563640491 

33 0.880603177 0.049914129 0.050197703 -0.568122256 

34 0.881879127 0.031933613 0.032986491 -3.297084125 

35 0.886511581 0.04568064 0.042883748 6.122707628 

36 0.894100586 0.036652074 0.030782303 16.01484025 

37 0.909989643 0.046310428 0.044307214 4.325621415 

38 0.92952342 0.051793734 0.053668329 -3.619346401 

39 0.933100196 0.053208718 0.052242295 1.8162855 

40 0.933204146 0.054678481 0.052768732 3.492688046 

41 0.942425394 0.054011861 0.051510826 4.630528721 

42 0.964908062 0.043139319 0.039335993 8.8163807 

43 0.967711414 0.062220081 0.061421123 1.284082947 

44 0.975126961 0.070328078 0.072374025 -2.909147388 

45 0.980126841 0.056292574 0.05209125 7.463372376 

46 0.983925319 0.057858743 0.056570628 2.226310739 

47 0.993427783 0.045255487 0.046352019 -2.422980985 

48 0.993663086 0.05217928 0.048005282 7.999339039 

49 0.994500751 0.063440051 0.062285013 1.820675837 

50 0.998840156 0.06212588 0.060144351 3.18953923 

    

Average Cost 

Difference 

(%): 3.360560235 
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Table 14. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region III and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.070245779 0.068230392 2.869050437 

52 1.329198658 0.117463472 0.109469492 6.805502619 

53 1.652261099 0.143895357 0.139387729 3.132573433 

54 1.732050808 0.179550232 0.173456861 3.393686053 

55 1.760957841 0.214270745 0.211979152 1.069485073 

56 1.820518877 0.217240747 0.209549624 3.540368458 

57 1.828533372 0.229874129 0.223959981 2.572776917 

58 1.893715218 0.204247576 0.191921918 6.034665388 

59 1.900420695 0.219421845 0.216777136 1.205308088 

60 1.969644102 0.207810879 0.187859942 9.600525839 

61 1.976334082 0.233784174 0.2316903 0.89564389 

62 2.002910229 0.228606799 0.230551107 -0.850503325 

63 2.094697427 0.323991961 0.32081492 0.980592548 

64 2.112206523 0.233710265 0.217858885 6.782492004 

65 2.142249774 0.328948678 0.319311361 2.929732876 

66 2.161830466 0.255456614 0.244001061 4.484344016 

67 2.209623524 0.236789592 0.216612669 8.521034642 

68 2.232543354 0.324032225 0.302356778 6.689287309 

69 2.234850662 0.29042297 0.28514921 1.815889347 

70 2.315624628 0.334264138 0.334716973 -0.135472379 

71 2.386793676 0.407934943 0.414111166 -1.514021564 

72 2.401746454 0.371028588 0.353334556 4.76891342 

73 2.445361846 0.363890478 0.351063752 3.524886403 

74 2.466706602 0.288768335 0.287397648 0.474666648 

75 2.479790488 0.303431366 0.286379485 5.619683026 

76 2.498843498 0.389911084 0.375446457 3.709724499 

77 2.522092914 0.383458185 0.3879817 -1.179663181 

78 2.551730261 0.41964923 0.385124659 8.227006941 

79 2.620165462 0.343109175 0.281709368 17.89512256 

80 2.649793028 0.390550632 0.394715022 -1.066286887 

81 2.674902192 0.445465459 0.431014817 3.243942234 

82 2.692003392 0.468729162 0.472361333 -0.774897567 

83 2.701726462 0.49334873 0.447548344 9.283572398 

84 2.714761477 0.501847977 0.497888644 0.788950623 

85 2.749451218 0.456739879 0.451158763 1.221946398 

86 2.795156227 0.492913987 0.485767194 1.449906688 

87 2.808828434 0.469482248 0.468130921 0.28783342 
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Table 14 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region III and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.520561947 0.51202472 1.64000222 

89 2.848903585 0.378694632 0.34827571 8.032572841 

90 2.851611437 0.508560987 0.490061346 3.637644536 

91 2.870713551 0.500184949 0.496479765 0.740762916 

92 2.880350027 0.410602429 0.377497013 8.062645027 

93 2.896534118 0.590504234 0.582117233 1.420311651 

94 2.938218496 0.553349084 0.527290152 4.709311392 

95 2.947634879 0.476814481 0.451724599 5.261979876 

96 2.95110354 0.457190313 0.439490715 3.871385165 

97 2.962064987 0.536774667 0.528172765 1.602516378 

98 2.96452904 0.572060067 0.558076997 2.444335972 

99 2.967810632 0.501318354 0.466710084 6.903451591 

100 2.985712699 0.645811062 0.654568747 -1.356075395 

    

Average Cost 

Difference 

(%): 3.505382269 

 

 

Table 15. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region III and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.003493445 0.003264176 6.562834423 

2 0.293187079 0.015053933 0.008471753 43.72398541 

3 0.316221076 0.013897618 0.010674692 23.1904957 

4 0.33126114 0.025166066 0.009792621 61.08799577 

5 0.365447776 0.018208594 0.012801079 29.69760086 

6 0.388573818 0.026823411 0.01452616 45.84521754 

7 0.414682564 0.044512341 0.018052068 59.44480142 

8 0.507910302 0.192003712 0.03229315 83.18097639 

9 0.508723927 0.044481629 0.028067132 36.90174597 

10 0.564035602 0.13713477 0.03540153 74.18486217 

11 0.568921476 0.089178261 0.037060238 58.44252028 

12 0.621993608 0.714618753 0.044496448 93.77340051 

13 0.622111707 0.056685316 0.050523537 10.87015069 

14 0.652850918 0.079674009 0.041497823 47.91548315 

15 0.67303375 0.115970855 0.059824317 48.41435235 
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Table 15 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region III and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.090249667 0.046152822 48.86095004 

17 0.683764431 0.071015535 0.041598951 41.42274511 

18 0.684739975 0.062165466 0.042550265 31.55321141 

19 0.728289287 0.137318509 0.059229521 56.86705183 

20 0.753863006 0.076281531 0.07292434 4.40105346 

21 0.753969075 0.138699119 0.059190967 57.32419413 

22 0.769293241 0.091591688 0.059692032 34.82811225 

23 0.781665858 0.146891816 0.070907369 51.72816945 

24 0.805212622 0.106633823 0.082595955 22.54244255 

25 0.814479069 0.099691215 0.080274387 19.47697022 

26 0.817586623 0.136042582 0.051932043 61.82662689 

27 0.820748706 0.097524069 0.105040595 -7.707354635 

28 0.833407694 0.123571258 0.069581791 43.69095823 

29 0.834535397 0.096640046 0.08159809 15.56493082 

30 0.841453615 0.101214707 0.089848657 11.22964221 

31 0.876241566 0.132201754 0.090540221 31.51360075 

32 0.87893391 0.117986956 0.084291491 28.55863577 

33 0.880603177 0.110019419 0.09187209 16.49466059 

34 0.881879127 0.170502414 0.266108195 -56.07297775 

35 0.886511581 0.157848399 0.078608683 50.19988587 

36 0.894100586 2.032361145 0.072069287 96.45391335 

37 0.909989643 0.281443229 0.088091352 68.70013473 

38 0.92952342 0.126805846 0.08245172 34.97798212 

39 0.933100196 0.185981417 0.104590857 43.76273784 

40 0.933204146 0.10741512 0.105385207 1.889783658 

41 0.942425394 0.212769212 0.097594819 54.13113693 

42 0.964908062 0.231812676 0.088514431 61.8163974 

43 0.967711414 0.176188041 0.100265535 43.09174781 

44 0.975126961 0.13192691 0.109216921 17.21406862 

45 0.980126841 0.154903751 0.102251181 33.99050666 

46 0.983925319 0.218861278 0.195686219 10.58892613 

47 0.993427783 0.196843424 0.0989875 49.71256926 

48 0.993663086 0.2024056 0.110881343 45.21824355 

49 0.994500751 0.212804579 0.09939075 53.29482524 

50 0.998840156 0.204202356 0.196492437 3.775627092 

    

Average Cost 

Difference 

(%): 38.12317064 
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Table 16. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region III and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.199268285 0.247438501 -24.17354875 

52 1.329198658 1.642395547 0.207551646 87.36287089 

53 1.652261099 0.563090231 0.271914883 51.71024674 

54 1.732050808 0.457029415 0.318240024 30.36771516 

55 1.760957841 0.53752857 0.339747365 36.79454751 

56 1.820518877 0.589690053 0.434604814 26.29944983 

57 1.828533372 0.549328134 0.355961554 35.20056017 

58 1.893715218 0.801629778 0.349667461 56.38043011 

59 1.900420695 0.760962932 0.372901251 50.99613453 

60 1.969644102 0.619672077 0.383674592 38.08425358 

61 1.976334082 0.610976003 0.417999149 31.58501357 

62 2.002910229 0.558335626 0.428867605 23.18820705 

63 2.094697427 0.715095973 0.508476819 28.8939054 

64 2.112206523 0.697004219 0.585418469 16.00933636 

65 2.142249774 1.671752979 0.52307355 68.71107412 

66 2.161830466 2.339005584 0.508634741 78.25423143 

67 2.209623524 2.913149444 0.422056995 85.5120033 

68 2.232543354 1.073729951 0.608070775 43.36836988 

69 2.234850662 0.848757895 0.600479439 29.25197603 

70 2.315624628 1.239570132 0.586496239 52.68551381 

71 2.386793676 1.879775141 0.675750158 64.05154302 

72 2.401746454 1.215872837 0.628484547 48.31001006 

73 2.445361846 1.962943323 0.697650601 64.4589534 

74 2.466706602 0.83300508 0.540892673 35.06730199 

75 2.479790488 0.930137753 0.62152214 33.17955985 

76 2.498843498 1.199036 0.674847593 43.71748698 

77 2.522092914 0.944717216 0.631720113 33.1313008 

78 2.551730261 1.666905421 0.71847658 56.89757972 

79 2.620165462 12.21159167 0.791960209 93.51468482 

80 2.649793028 1.239420256 0.750476421 39.4493984 

81 2.674902192 1.30986219 0.870943803 33.50874543 

82 2.692003392 1.284168099 0.791930689 38.33122862 

83 2.701726462 1.605677835 0.755005209 52.97903525 

84 2.714761477 1.616452949 0.846707519 47.61941447 

85 2.749451218 1.351313993 0.761567924 43.64241563 

86 2.795156227 1.39371587 0.846905944 39.23395992 

87 2.808828434 1.297656749 1.010098132 22.15983677 
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Table 16 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region III and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.525303493 0.835964752 45.19354637 

89 2.848903585 1.610770268 0.727689055 54.82353567 

90 2.851611437 1.22319458 0.916860317 25.04378844 

91 2.870713551 1.588145517 0.90619685 42.93993589 

92 2.880350027 3.114680512 0.810668377 73.97266352 

93 2.896534118 1.288463281 1.300779489 -0.955883504 

94 2.938218496 1.400484588 0.871475599 37.77328174 

95 2.947634879 1.83657069 1.600178365 12.87139815 

96 2.95110354 2.428432578 0.961442048 60.40894624 

97 2.962064987 1.31687053 1.508836773 -14.57745758 

98 2.96452904 2.622738637 0.920474722 64.90406217 

99 2.967810632 1.274000862 0.876523724 31.19912634 

100 2.985712699 1.340235132 0.96812078 27.76485586 

    

Average Cost 

Difference 

(%): 41.9419309 

 

 

Table 17. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region IV and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001787186 0.001756082 1.740407923 

2 0.293187079 0.005038835 0.004920955 2.339434219 

3 0.316221076 0.006312428 0.006088053 3.554507119 

4 0.33126114 0.005102303 0.004663047 8.608970355 

5 0.365447776 0.007284997 0.007379462 -1.296694577 

6 0.388573818 0.008132459 0.007502579 7.745261206 

7 0.414682564 0.009817469 0.009200311 6.286330293 

8 0.507910302 0.013482402 0.013782249 -2.22399492 

9 0.508723927 0.017571538 0.017437054 0.765350856 

10 0.564035602 0.0208806 0.020954289 -0.352907078 

11 0.568921476 0.020567418 0.019741404 4.016131555 

12 0.621993608 0.01866271 0.015149173 18.82650885 

13 0.622111707 0.025894273 0.025588377 1.181327011 

14 0.652850918 0.023046459 0.023936338 -3.861238193 

15 0.67303375 0.021150994 0.018784328 11.18938689 
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Table 17 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic 

Nonlinear Control with 𝜀 = 0.14 in Region IV and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.029986569 0.029159949 2.75663266 

17 0.683764431 0.021081104 0.020676911 1.917325655 

18 0.684739975 0.022411294 0.022695257 -1.267049341 

19 0.728289287 0.034520015 0.033816306 2.038552962 

20 0.753863006 0.042627136 0.041004454 3.806687304 

21 0.753969075 0.035957804 0.034113559 5.128914652 

22 0.769293241 0.03291149 0.030016754 8.795520038 

23 0.781665858 0.031843488 0.029949064 5.949174872 

24 0.805212622 0.046007718 0.045669541 0.73504429 

25 0.814479069 0.042407088 0.042819425 -0.972329771 

26 0.817586623 0.0263043 0.023865614 9.271053816 

27 0.820748706 0.044153573 0.04329998 1.933236148 

28 0.833407694 0.0429302 0.043100726 -0.397216961 

29 0.834535397 0.051409186 0.05125973 0.290718705 

30 0.841453615 0.049813663 0.049421408 0.787444695 

31 0.876241566 0.040243264 0.036707415 8.786188772 

32 0.87893391 0.058238072 0.056162676 3.563640491 

33 0.880603177 0.049914129 0.050197703 -0.568122256 

34 0.881879127 0.031933613 0.032986491 -3.297084125 

35 0.886511581 0.04568064 0.042883748 6.122707628 

36 0.894100586 0.036652074 0.030782303 16.01484025 

37 0.909989643 0.046310428 0.044307214 4.325621415 

38 0.92952342 0.051793734 0.053668329 -3.619346401 

39 0.933100196 0.053208718 0.052242295 1.8162855 

40 0.933204146 0.054678481 0.052768732 3.492688046 

41 0.942425394 0.054011861 0.051510826 4.630528721 

42 0.964908062 0.043139319 0.039335993 8.8163807 

43 0.967711414 0.062220081 0.061421123 1.284082947 

44 0.975126961 0.070328078 0.072374025 -2.909147388 

45 0.980126841 0.056292574 0.05209125 7.463372376 

46 0.983925319 0.057858743 0.056570628 2.226310739 

47 0.993427783 0.045255487 0.046352019 -2.422980985 

48 0.993663086 0.05217928 0.048005282 7.999339039 

49 0.994500751 0.063440051 0.062285013 1.820675837 

50 0.998840156 0.06212588 0.060144351 3.18953923 

    

Average Cost 

Difference 

(%): 3.360560235 
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Table 18. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region IV and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.070245779 0.068230392 2.869050437 

52 1.329198658 0.117463472 0.109469492 6.805502619 

53 1.652261099 0.143895357 0.139387729 3.132573433 

54 1.732050808 0.179550232 0.173456861 3.393686053 

55 1.760957841 0.214270745 0.211979152 1.069485073 

56 1.820518877 0.217240747 0.209549624 3.540368458 

57 1.828533372 0.229874129 0.223959981 2.572776917 

58 1.893715218 0.204247576 0.191921918 6.034665388 

59 1.900420695 0.219421845 0.216777136 1.205308088 

60 1.969644102 0.207810879 0.187859942 9.600525839 

61 1.976334082 0.233784174 0.2316903 0.89564389 

62 2.002910229 0.228606799 0.230551107 -0.850503325 

63 2.094697427 0.323991961 0.32081492 0.980592548 

64 2.112206523 0.233710265 0.217858885 6.782492004 

65 2.142249774 0.328948678 0.319311361 2.929732876 

66 2.161830466 0.255456614 0.244001061 4.484344016 

67 2.209623524 0.236789592 0.216612669 8.521034642 

68 2.232543354 0.324032225 0.302356778 6.689287309 

69 2.234850662 0.29042297 0.28514921 1.815889347 

70 2.315624628 0.334264138 0.334716973 -0.135472379 

71 2.386793676 0.407934943 0.414111166 -1.514021564 

72 2.401746454 0.371028588 0.353334556 4.76891342 

73 2.445361846 0.363890478 0.351063752 3.524886403 

74 2.466706602 0.288768335 0.287397648 0.474666648 

75 2.479790488 0.303431366 0.286379485 5.619683026 

76 2.498843498 0.389911084 0.375446457 3.709724499 

77 2.522092914 0.383458185 0.3879817 -1.179663181 

78 2.551730261 0.41964923 0.385124659 8.227006941 

79 2.620165462 0.343109175 0.281709368 17.89512256 

80 2.649793028 0.390550632 0.394715022 -1.066286887 

81 2.674902192 0.445465459 0.431014817 3.243942234 

82 2.692003392 0.468729162 0.472361333 -0.774897567 

83 2.701726462 0.49334873 0.447548344 9.283572398 

84 2.714761477 0.501847977 0.497888644 0.788950623 

85 2.749451218 0.456739879 0.451158763 1.221946398 

86 2.795156227 0.492913987 0.485767194 1.449906688 

87 2.808828434 0.469482248 0.468130921 0.28783342 
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Table 18 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region IV and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.520561947 0.51202472 1.64000222 

89 2.848903585 0.378694632 0.34827571 8.032572841 

90 2.851611437 0.508560987 0.490061346 3.637644536 

91 2.870713551 0.500184949 0.496479765 0.740762916 

92 2.880350027 0.410602429 0.377497013 8.062645027 

93 2.896534118 0.590504234 0.582117233 1.420311651 

94 2.938218496 0.553349084 0.527290152 4.709311392 

95 2.947634879 0.476814481 0.451724599 5.261979876 

96 2.95110354 0.457190313 0.439490715 3.871385165 

97 2.962064987 0.536774667 0.528172765 1.602516378 

98 2.96452904 0.572060067 0.558076997 2.444335972 

99 2.967810632 0.501318354 0.466710084 6.903451591 

100 2.985712699 0.645811062 0.654568747 -1.356075395 

    

Average Cost 

Difference 

(%): 3.505382269 

 

 

Table 19. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region IV and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.003493445 0.003264176 6.562834423 

2 0.293187079 0.015053933 0.008471753 43.72398541 

3 0.316221076 0.013897618 0.010674692 23.1904957 

4 0.33126114 0.025166066 0.009792621 61.08799577 

5 0.365447776 0.018208594 0.012801079 29.69760086 

6 0.388573818 0.026823411 0.01452616 45.84521754 

7 0.414682564 0.044512341 0.018052068 59.44480142 

8 0.507910302 0.192003712 0.03229315 83.18097639 

9 0.508723927 0.044481629 0.028067132 36.90174597 

10 0.564035602 0.13713477 0.03540153 74.18486217 

11 0.568921476 0.089178261 0.037060238 58.44252028 

12 0.621993608 0.714618753 0.044496448 93.77340051 

13 0.622111707 0.056685316 0.050523537 10.87015069 

14 0.652850918 0.079674009 0.041497823 47.91548315 

15 0.67303375 0.115970855 0.059824317 48.41435235 
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Table 19 (cont.). Mean Cost Comparison of the Linear Deterministic and the Nonlinear 

Stochastic Control with 𝜀 = 0.28 in Region IV and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.090249667 0.046152822 48.86095004 

17 0.683764431 0.071015535 0.041598951 41.42274511 

18 0.684739975 0.062165466 0.042550265 31.55321141 

19 0.728289287 0.137318509 0.059229521 56.86705183 

20 0.753863006 0.076281531 0.07292434 4.40105346 

21 0.753969075 0.138699119 0.059190967 57.32419413 

22 0.769293241 0.091591688 0.059692032 34.82811225 

23 0.781665858 0.146891816 0.070907369 51.72816945 

24 0.805212622 0.106633823 0.082595955 22.54244255 

25 0.814479069 0.099691215 0.080274387 19.47697022 

26 0.817586623 0.136042582 0.051932043 61.82662689 

27 0.820748706 0.097524069 0.105040595 -7.707354635 

28 0.833407694 0.123571258 0.069581791 43.69095823 

29 0.834535397 0.096640046 0.08159809 15.56493082 

30 0.841453615 0.101214707 0.089848657 11.22964221 

31 0.876241566 0.132201754 0.090540221 31.51360075 

32 0.87893391 0.117986956 0.084291491 28.55863577 

33 0.880603177 0.110019419 0.09187209 16.49466059 

34 0.881879127 0.170502414 0.266108195 -56.07297775 

35 0.886511581 0.157848399 0.078608683 50.19988587 

36 0.894100586 2.032361145 0.072069287 96.45391335 

37 0.909989643 0.281443229 0.088091352 68.70013473 

38 0.92952342 0.126805846 0.08245172 34.97798212 

39 0.933100196 0.185981417 0.104590857 43.76273784 

40 0.933204146 0.10741512 0.105385207 1.889783658 

41 0.942425394 0.212769212 0.097594819 54.13113693 

42 0.964908062 0.231812676 0.088514431 61.8163974 

43 0.967711414 0.176188041 0.100265535 43.09174781 

44 0.975126961 0.13192691 0.109216921 17.21406862 

45 0.980126841 0.154903751 0.102251181 33.99050666 

46 0.983925319 0.218861278 0.195686219 10.58892613 

47 0.993427783 0.196843424 0.0989875 49.71256926 

48 0.993663086 0.2024056 0.110881343 45.21824355 

49 0.994500751 0.212804579 0.09939075 53.29482524 

50 0.998840156 0.204202356 0.196492437 3.775627092 

    

Average Cost 

Difference 

(%): 38.12317064 
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Table 20. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region IV and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.199268285 0.247438501 -24.17354875 

52 1.329198658 1.642395547 0.207551646 87.36287089 

53 1.652261099 0.563090231 0.271914883 51.71024674 

54 1.732050808 0.457029415 0.318240024 30.36771516 

55 1.760957841 0.53752857 0.339747365 36.79454751 

56 1.820518877 0.589690053 0.434604814 26.29944983 

57 1.828533372 0.549328134 0.355961554 35.20056017 

58 1.893715218 0.801629778 0.349667461 56.38043011 

59 1.900420695 0.760962932 0.372901251 50.99613453 

60 1.969644102 0.619672077 0.383674592 38.08425358 

61 1.976334082 0.610976003 0.417999149 31.58501357 

62 2.002910229 0.558335626 0.428867605 23.18820705 

63 2.094697427 0.715095973 0.508476819 28.8939054 

64 2.112206523 0.697004219 0.585418469 16.00933636 

65 2.142249774 1.671752979 0.52307355 68.71107412 

66 2.161830466 2.339005584 0.508634741 78.25423143 

67 2.209623524 2.913149444 0.422056995 85.5120033 

68 2.232543354 1.073729951 0.608070775 43.36836988 

69 2.234850662 0.848757895 0.600479439 29.25197603 

70 2.315624628 1.239570132 0.586496239 52.68551381 

71 2.386793676 1.879775141 0.675750158 64.05154302 

72 2.401746454 1.215872837 0.628484547 48.31001006 

73 2.445361846 1.962943323 0.697650601 64.4589534 

74 2.466706602 0.83300508 0.540892673 35.06730199 

75 2.479790488 0.930137753 0.62152214 33.17955985 

76 2.498843498 1.199036 0.674847593 43.71748698 

77 2.522092914 0.944717216 0.631720113 33.1313008 

78 2.551730261 1.666905421 0.71847658 56.89757972 

79 2.620165462 12.21159167 0.791960209 93.51468482 

80 2.649793028 1.239420256 0.750476421 39.4493984 

81 2.674902192 1.30986219 0.870943803 33.50874543 

82 2.692003392 1.284168099 0.791930689 38.33122862 

83 2.701726462 1.605677835 0.755005209 52.97903525 

84 2.714761477 1.616452949 0.846707519 47.61941447 

85 2.749451218 1.351313993 0.761567924 43.64241563 

86 2.795156227 1.39371587 0.846905944 39.23395992 

87 2.808828434 1.297656749 1.010098132 22.15983677 
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Table 20 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region IV and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.525303493 0.835964752 45.19354637 

89 2.848903585 1.610770268 0.727689055 54.82353567 

90 2.851611437 1.22319458 0.916860317 25.04378844 

91 2.870713551 1.588145517 0.90619685 42.93993589 

92 2.880350027 3.114680512 0.810668377 73.97266352 

93 2.896534118 1.288463281 1.300779489 -0.955883504 

94 2.938218496 1.400484588 0.871475599 37.77328174 

95 2.947634879 1.83657069 1.600178365 12.87139815 

96 2.95110354 2.428432578 0.961442048 60.40894624 

97 2.962064987 1.31687053 1.508836773 -14.57745758 

98 2.96452904 2.622738637 0.920474722 64.90406217 

99 2.967810632 1.274000862 0.876523724 31.19912634 

100 2.985712699 1.340235132 0.96812078 27.76485586 

    

Average Cost 

Difference 

(%): 41.9419309 

 

 

Table 21. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region V and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001787112 0.001756035 1.738940351 

2 0.293187079 0.005037878 0.004920388 2.33213718 

3 0.316221076 0.006311412 0.0060878 3.542977192 

4 0.33126114 0.005101999 0.004662632 8.611661092 

5 0.365447776 0.007284514 0.00737724 -1.272922766 

6 0.388573818 0.008131774 0.00750104 7.756422708 

7 0.414682564 0.009815822 0.009198391 6.290166693 

8 0.507910302 0.013482154 0.013781099 -2.217341664 

9 0.508723927 0.017571308 0.01743703 0.764188787 

10 0.564035602 0.020880404 0.020954155 -0.353204254 

11 0.568921476 0.020557525 0.019734541 4.003320784 

12 0.621993608 0.01865852 0.015146834 18.82081288 

13 0.622111707 0.025891535 0.025585309 1.182726688 

14 0.652850918 0.023042072 0.023932802 -3.865666935 

15 0.67303375 0.021142996 0.018779783 11.17728404 
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Table 21 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region V and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.029970584 0.029152984 2.728006034 

17 0.683764431 0.021077498 0.020672257 1.922623535 

18 0.684739975 0.022408794 0.022692774 -1.267268872 

19 0.728289287 0.034512863 0.033811517 2.032128611 

20 0.753863006 0.04262121 0.040998754 3.806687817 

21 0.753969075 0.035947219 0.034101678 5.134030623 

22 0.769293241 0.032891125 0.0299939 8.808531349 

23 0.781665858 0.03182285 0.029936885 5.926451621 

24 0.805212622 0.046005618 0.045666789 0.736494942 

25 0.814479069 0.042395205 0.042805415 -0.967585043 

26 0.817586623 0.02630429 0.023865562 9.271215112 

27 0.820748706 0.044133785 0.043270799 1.955386346 

28 0.833407694 0.042913722 0.043080878 -0.3895156 

29 0.834535397 0.051402634 0.051255261 0.286704836 

30 0.841453615 0.049812823 0.049420447 0.787700048 

31 0.876241566 0.040240983 0.036699145 8.801569929 

32 0.87893391 0.058238051 0.05616268 3.563599079 

33 0.880603177 0.04989527 0.05018582 -0.582320692 

34 0.881879127 0.031929159 0.032982955 -3.300417616 

35 0.886511581 0.045672404 0.042879506 6.115067977 

36 0.894100586 0.036650603 0.030782172 16.01182656 

37 0.909989643 0.046288952 0.044261995 4.378923414 

38 0.92952342 0.051760801 0.053652673 -3.655027316 

39 0.933100196 0.053189866 0.052229509 1.805525512 

40 0.933204146 0.054676087 0.052767209 3.491248693 

41 0.942425394 0.053969841 0.051481763 4.610126959 

42 0.964908062 0.043131534 0.039325133 8.825099542 

43 0.967711414 0.062165861 0.061383382 1.258694961 

44 0.975126961 0.070327167 0.072373606 -2.909884475 

45 0.980126841 0.056259329 0.052075052 7.437480215 

46 0.983925319 0.057841676 0.056535269 2.258591583 

47 0.993427783 0.045246154 0.046325056 -2.384517571 

48 0.993663086 0.052165783 0.047989905 8.005013569 

49 0.994500751 0.063419471 0.062259916 1.828390743 

50 0.998840156 0.062108323 0.060126635 3.190696826 

    

Average Cost 

Difference 

(%): 3.36065564 
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Table 22. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region V and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.070191713 0.068150652 2.9078377 

52 1.329198658 0.117361029 0.109460345 6.731948643 

53 1.652261099 0.143674911 0.139235204 3.090106102 

54 1.732050808 0.179303516 0.173288531 3.354638773 

55 1.760957841 0.214096262 0.211875683 1.037187152 

56 1.820518877 0.217084647 0.209392151 3.543546722 

57 1.828533372 0.229761775 0.223829047 2.582121236 

58 1.893715218 0.204129525 0.191760085 6.059603656 

59 1.900420695 0.219215456 0.216525443 1.227109244 

60 1.969644102 0.20751687 0.187530226 9.631334716 

61 1.976334082 0.233608943 0.231516263 0.895804623 

62 2.002910229 0.228263976 0.230335222 -0.907390959 

63 2.094697427 0.323792476 0.320701762 0.954535557 

64 2.112206523 0.233609617 0.217494183 6.898446109 

65 2.142249774 0.328475928 0.319032331 2.87497391 

66 2.161830466 0.255047446 0.243609678 4.484564972 

67 2.209623524 0.23657631 0.216357605 8.546377989 

68 2.232543354 0.323913437 0.302221315 6.696888779 

69 2.234850662 0.290089866 0.28477596 1.831813683 

70 2.315624628 0.333838442 0.334374034 -0.160434653 

71 2.386793676 0.407853192 0.413731914 -1.441381919 

72 2.401746454 0.370879516 0.35299893 4.821130554 

73 2.445361846 0.363535147 0.350316715 3.636080996 

74 2.466706602 0.288637436 0.286798041 0.637268558 

75 2.479790488 0.303081871 0.285979794 5.642725251 

76 2.498843498 0.389289977 0.375051423 3.657570315 

77 2.522092914 0.382799393 0.387668618 -1.272004341 

78 2.551730261 0.419035057 0.385241011 8.064730043 

79 2.620165462 0.342699584 0.281481046 17.86361591 

80 2.649793028 0.390258268 0.393872377 -0.926081435 

81 2.674902192 0.445186068 0.430648386 3.265529415 

82 2.692003392 0.468286689 0.471840375 -0.758869871 

83 2.701726462 0.491347485 0.446572784 9.112634549 

84 2.714761477 0.501169848 0.497433609 0.745503644 

85 2.749451218 0.455737995 0.450722332 1.10055848 

86 2.795156227 0.49244978 0.485167592 1.478767706 

87 2.808828434 0.468940135 0.467790329 0.245192429 
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Table 22 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region V and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.519508891 0.511291074 1.581843384 

89 2.848903585 0.378647326 0.348047163 8.081441586 

90 2.851611437 0.507423167 0.489537912 3.524721758 

91 2.870713551 0.500022338 0.496462186 0.711998444 

92 2.880350027 0.40937772 0.376648086 7.994971868 

93 2.896534118 0.589656375 0.58144814 1.392036967 

94 2.938218496 0.55303249 0.527127318 4.684204344 

95 2.947634879 0.476586988 0.451252678 5.315778801 

96 2.95110354 0.456732073 0.439179763 3.843021138 

97 2.962064987 0.53606848 0.527688006 1.56332165 

98 2.96452904 0.571488323 0.557432346 2.459538829 

99 2.967810632 0.499924199 0.466361881 6.713481384 

100 2.985712699 0.645541065 0.654191947 -1.340097886 

    

Average Cost 

Difference 

(%): 3.49360493 

 

 

Table 23. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region V and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.00349229 0.003264837 6.513001516 

2 0.293187079 0.015058367 0.008467066 43.77168287 

3 0.316221076 0.013889551 0.010672955 23.15838909 

4 0.33126114 0.025155954 0.009789764 61.08371046 

5 0.365447776 0.018187926 0.012794015 29.65655186 

6 0.388573818 0.026858774 0.014510821 45.97362831 

7 0.414682564 0.044570523 0.018050496 59.50126989 

8 0.507910302 0.191886474 0.032275764 83.17976101 

9 0.508723927 0.044473255 0.028064927 36.8948222 

10 0.564035602 0.13713821 0.035395664 74.18978703 

11 0.568921476 0.08890041 0.037000485 58.37984876 

12 0.621993608 0.714279515 0.04448058 93.77266475 

13 0.622111707 0.056667494 0.050507944 10.86963571 

14 0.652850918 0.07955313 0.041483741 47.85404237 

15 0.67303375 0.116051631 0.059718463 48.54146981 
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Table 23 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region V and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.089801276 0.046095066 48.66992116 

17 0.683764431 0.070920477 0.041553911 41.40773901 

18 0.684739975 0.061879376 0.042537097 31.25803803 

19 0.728289287 0.137090686 0.059161045 56.84532147 

20 0.753863006 0.076017819 0.07290567 4.093973022 

21 0.753969075 0.135914651 0.059152943 56.47787627 

22 0.769293241 0.091202424 0.059648957 34.5971803 

23 0.781665858 0.146675045 0.070940608 51.63416638 

24 0.805212622 0.106568052 0.082599594 22.49122271 

25 0.814479069 0.099776774 0.081304137 18.51396426 

26 0.817586623 0.136041409 0.051932838 61.82571286 

27 0.820748706 0.097665928 0.104537157 -7.035441409 

28 0.833407694 0.122711451 0.069471373 43.38639741 

29 0.834535397 0.096651786 0.081547995 15.62701662 

30 0.841453615 0.101273018 0.089838269 11.29101214 

31 0.876241566 0.132275 0.090425568 31.63820246 

32 0.87893391 0.117986472 0.084291419 28.55840345 

33 0.880603177 0.109823904 0.091837062 16.37789332 

34 0.881879127 0.170392442 0.265874664 -56.03665316 

35 0.886511581 0.157734073 0.07853505 50.21047213 

36 0.894100586 2.032163585 0.072062132 96.45392071 

37 0.909989643 0.273472699 0.087993397 67.82369961 

38 0.92952342 0.129168257 0.082245985 36.32647331 

39 0.933100196 0.184834968 0.104732662 43.33720352 

40 0.933204146 0.107399856 0.105381466 1.879322671 

41 0.942425394 0.212187311 0.097421455 54.08704925 

42 0.964908062 0.230396307 0.088509791 61.58367611 

43 0.967711414 0.175614766 0.100170673 42.95999383 

44 0.975126961 0.131923888 0.109212637 17.21542014 

45 0.980126841 0.154616239 0.102200972 33.9002341 

46 0.983925319 0.2178001 0.192140617 11.78120802 

47 0.993427783 0.196128032 0.099026417 49.50929973 

48 0.993663086 0.202160995 0.110781005 45.2015931 

49 0.994500751 0.212591783 0.099426581 53.23122097 

50 0.998840156 0.203973147 0.195471202 4.16816865 

    

Average Cost 

Difference 

(%): 38.09262336 
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Table 24. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region V and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.199655741 0.246074451 -23.24937419 

52 1.329198658 1.629061571 0.20705453 87.28995062 

53 1.652261099 0.560073879 0.27100742 51.61220156 

54 1.732050808 0.457472902 0.316354062 30.84747517 

55 1.760957841 0.538337897 0.338849036 37.05644022 

56 1.820518877 0.587657188 0.425581972 27.57989182 

57 1.828533372 0.553294861 0.355852233 35.6848838 

58 1.893715218 0.797735588 0.34855268 56.30724202 

59 1.900420695 0.758826153 0.373260042 50.81086223 

60 1.969644102 0.614058933 0.383024453 37.6241543 

61 1.976334082 0.590945736 0.417074613 29.42251928 

62 2.002910229 0.55477491 0.4282052 22.814606 

63 2.094697427 0.717065336 0.505872474 29.45238764 

64 2.112206523 0.700234576 0.580405351 17.11272616 

65 2.142249774 1.666815002 0.523829775 68.57301055 

66 2.161830466 2.319469947 0.507338008 78.12698504 

67 2.209623524 2.902292244 0.420631854 85.50690906 

68 2.232543354 1.071572667 0.607187502 43.33678712 

69 2.234850662 0.846603261 0.598583155 29.29590722 

70 2.315624628 1.227568736 0.585091523 52.33737179 

71 2.386793676 1.841384102 0.670151762 63.60608516 

72 2.401746454 1.223585099 0.625135675 48.90950575 

73 2.445361846 1.830570116 0.696016397 61.97816237 

74 2.466706602 0.82745518 0.538976265 34.86338862 

75 2.479790488 0.954363069 0.617235241 35.32490303 

76 2.498843498 1.194903532 0.674157 43.58063376 

77 2.522092914 0.991574364 0.627608887 36.70581753 

78 2.551730261 1.652615865 0.71634561 56.65383438 

79 2.620165462 12.17892848 0.790493391 93.50933547 

80 2.649793028 1.217476411 0.751728818 38.25516356 

81 2.674902192 1.30109964 0.871426755 33.02382628 

82 2.692003392 1.287323589 0.8295821 35.55760902 

83 2.701726462 1.588507231 0.752006334 52.65955867 

84 2.714761477 1.594900853 0.840232453 47.31757456 

85 2.749451218 1.323251979 0.757936669 42.72166747 

86 2.795156227 1.38144323 0.841151363 39.1106819 

87 2.808828434 1.289507533 1.002050283 22.29201795 
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Table 24 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region V and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.514179775 0.834135018 44.91175805 

89 2.848903585 1.606660278 0.731160186 54.49192366 

90 2.851611437 1.21943244 0.911433243 25.25758601 

91 2.870713551 1.582247743 0.904632217 42.82613324 

92 2.880350027 3.082652688 0.803151131 73.9461038 

93 2.896534118 1.271137863 1.25640027 1.159401628 

94 2.938218496 1.396067091 0.868626555 37.78045763 

95 2.947634879 1.822407132 1.553266664 14.7684051 

96 2.95110354 2.400388075 0.964740009 59.80899843 

97 2.962064987 1.329361025 1.488073413 -11.93899815 

98 2.96452904 2.474384054 0.918501219 62.87960157 

99 2.967810632 1.2628239 0.874121328 30.7804257 

100 2.985712699 1.290949916 0.968000501 25.01641712 

    

Average Cost 

Difference 

(%): 41.90601833 

 

 

Table 25. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region VI and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001787112 0.001756035 1.738940351 

2 0.293187079 0.005037878 0.004920388 2.33213718 

3 0.316221076 0.006311412 0.0060878 3.542977192 

4 0.33126114 0.005101999 0.004662632 8.611661092 

5 0.365447776 0.007284514 0.00737724 -1.272922766 

6 0.388573818 0.008131774 0.00750104 7.756422708 

7 0.414682564 0.009815822 0.009198391 6.290166693 

8 0.507910302 0.013482154 0.013781099 -2.217341664 

9 0.508723927 0.017571308 0.01743703 0.764188787 

10 0.564035602 0.020880404 0.020954155 -0.353204254 

11 0.568921476 0.020557525 0.019734541 4.003320784 

12 0.621993608 0.01865852 0.015146834 18.82081288 

13 0.622111707 0.025891535 0.025585309 1.182726688 

14 0.652850918 0.023042072 0.023932802 -3.865666935 

15 0.67303375 0.021142996 0.018779783 11.17728404 
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Table 25 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region VI and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.029970584 0.029152984 2.728006034 

17 0.683764431 0.021077498 0.020672257 1.922623535 

18 0.684739975 0.022408794 0.022692774 -1.267268872 

19 0.728289287 0.034512863 0.033811517 2.032128611 

20 0.753863006 0.04262121 0.040998754 3.806687817 

21 0.753969075 0.035947219 0.034101678 5.134030623 

22 0.769293241 0.032891125 0.0299939 8.808531349 

23 0.781665858 0.03182285 0.029936885 5.926451621 

24 0.805212622 0.046005618 0.045666789 0.736494942 

25 0.814479069 0.042395205 0.042805415 -0.967585043 

26 0.817586623 0.02630429 0.023865562 9.271215112 

27 0.820748706 0.044133785 0.043270799 1.955386346 

28 0.833407694 0.042913722 0.043080878 -0.3895156 

29 0.834535397 0.051402634 0.051255261 0.286704836 

30 0.841453615 0.049812823 0.049420447 0.787700048 

31 0.876241566 0.040240983 0.036699145 8.801569929 

32 0.87893391 0.058238051 0.05616268 3.563599079 

33 0.880603177 0.04989527 0.05018582 -0.582320692 

34 0.881879127 0.031929159 0.032982955 -3.300417616 

35 0.886511581 0.045672404 0.042879506 6.115067977 

36 0.894100586 0.036650603 0.030782172 16.01182656 

37 0.909989643 0.046288952 0.044261995 4.378923414 

38 0.92952342 0.051760801 0.053652673 -3.655027316 

39 0.933100196 0.053189866 0.052229509 1.805525512 

40 0.933204146 0.054676087 0.052767209 3.491248693 

41 0.942425394 0.053969841 0.051481763 4.610126959 

42 0.964908062 0.043131534 0.039325133 8.825099542 

43 0.967711414 0.062165861 0.061383382 1.258694961 

44 0.975126961 0.070327167 0.072373606 -2.909884475 

45 0.980126841 0.056259329 0.052075052 7.437480215 

46 0.983925319 0.057841676 0.056535269 2.258591583 

47 0.993427783 0.045246154 0.046325056 -2.384517571 

48 0.993663086 0.052165783 0.047989905 8.005013569 

49 0.994500751 0.063419471 0.062259916 1.828390743 

50 0.998840156 0.062108323 0.060126635 3.190696826 

    

Average Cost 

Difference 

(%): 3.36065564 
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Table 26. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region VI and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.070191713 0.068150652 2.9078377 

52 1.329198658 0.117361029 0.109460345 6.731948643 

53 1.652261099 0.143674911 0.139235204 3.090106102 

54 1.732050808 0.179303516 0.173288531 3.354638773 

55 1.760957841 0.214096262 0.211875683 1.037187152 

56 1.820518877 0.217084647 0.209392151 3.543546722 

57 1.828533372 0.229761775 0.223829047 2.582121236 

58 1.893715218 0.204129525 0.191760085 6.059603656 

59 1.900420695 0.219215456 0.216525443 1.227109244 

60 1.969644102 0.20751687 0.187530226 9.631334716 

61 1.976334082 0.233608943 0.231516263 0.895804623 

62 2.002910229 0.228263976 0.230335222 -0.907390959 

63 2.094697427 0.323792476 0.320701762 0.954535557 

64 2.112206523 0.233609617 0.217494183 6.898446109 

65 2.142249774 0.328475928 0.319032331 2.87497391 

66 2.161830466 0.255047446 0.243609678 4.484564972 

67 2.209623524 0.23657631 0.216357605 8.546377989 

68 2.232543354 0.323913437 0.302221315 6.696888779 

69 2.234850662 0.290089866 0.28477596 1.831813683 

70 2.315624628 0.333838442 0.334374034 -0.160434653 

71 2.386793676 0.407853192 0.413731914 -1.441381919 

72 2.401746454 0.370879516 0.35299893 4.821130554 

73 2.445361846 0.363535147 0.350316715 3.636080996 

74 2.466706602 0.288637436 0.286798041 0.637268558 

75 2.479790488 0.303081871 0.285979794 5.642725251 

76 2.498843498 0.389289977 0.375051423 3.657570315 

77 2.522092914 0.382799393 0.387668618 -1.272004341 

78 2.551730261 0.419035057 0.385241011 8.064730043 

79 2.620165462 0.342699584 0.281481046 17.86361591 

80 2.649793028 0.390258268 0.393872377 -0.926081435 

81 2.674902192 0.445186068 0.430648386 3.265529415 

82 2.692003392 0.468286689 0.471840375 -0.758869871 

83 2.701726462 0.491347485 0.446572784 9.112634549 

84 2.714761477 0.501169848 0.497433609 0.745503644 

85 2.749451218 0.455737995 0.450722332 1.10055848 

86 2.795156227 0.49244978 0.485167592 1.478767706 

87 2.808828434 0.468940135 0.467790329 0.245192429 
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Table 26 (cont.) Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region VI and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.519508891 0.511291074 1.581843384 

89 2.848903585 0.378647326 0.348047163 8.081441586 

90 2.851611437 0.507423167 0.489537912 3.524721758 

91 2.870713551 0.500022338 0.496462186 0.711998444 

92 2.880350027 0.40937772 0.376648086 7.994971868 

93 2.896534118 0.589656375 0.58144814 1.392036967 

94 2.938218496 0.55303249 0.527127318 4.684204344 

95 2.947634879 0.476586988 0.451252678 5.315778801 

96 2.95110354 0.456732073 0.439179763 3.843021138 

97 2.962064987 0.53606848 0.527688006 1.56332165 

98 2.96452904 0.571488323 0.557432346 2.459538829 

99 2.967810632 0.499924199 0.466361881 6.713481384 

100 2.985712699 0.645541065 0.654191947 -1.340097886 

    

Average Cost 

Difference 

(%): 3.49360493 

 

 

Table 27. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region VI and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.00349229 0.003264837 6.513001516 

2 0.293187079 0.015058367 0.008467066 43.77168287 

3 0.316221076 0.013889551 0.010672955 23.15838909 

4 0.33126114 0.025155954 0.009789764 61.08371046 

5 0.365447776 0.018187926 0.012794015 29.65655186 

6 0.388573818 0.026858774 0.014510821 45.97362831 

7 0.414682564 0.044570523 0.018050496 59.50126989 

8 0.507910302 0.191886474 0.032275764 83.17976101 

9 0.508723927 0.044473255 0.028064927 36.8948222 

10 0.564035602 0.13713821 0.035395664 74.18978703 

11 0.568921476 0.08890041 0.037000485 58.37984876 

12 0.621993608 0.714279515 0.04448058 93.77266475 

13 0.622111707 0.056667494 0.050507944 10.86963571 

14 0.652850918 0.07955313 0.041483741 47.85404237 

15 0.67303375 0.116051631 0.059718463 48.54146981 
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Table 27 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region VI and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.089801276 0.046095066 48.66992116 

17 0.683764431 0.070920477 0.041553911 41.40773901 

18 0.684739975 0.061879376 0.042537097 31.25803803 

19 0.728289287 0.137090686 0.059161045 56.84532147 

20 0.753863006 0.076017819 0.07290567 4.093973022 

21 0.753969075 0.135914651 0.059152943 56.47787627 

22 0.769293241 0.091202424 0.059648957 34.5971803 

23 0.781665858 0.146675045 0.070940608 51.63416638 

24 0.805212622 0.106568052 0.082599594 22.49122271 

25 0.814479069 0.099776774 0.081304137 18.51396426 

26 0.817586623 0.136041409 0.051932838 61.82571286 

27 0.820748706 0.097665928 0.104537157 -7.035441409 

28 0.833407694 0.122711451 0.069471373 43.38639741 

29 0.834535397 0.096651786 0.081547995 15.62701662 

30 0.841453615 0.101273018 0.089838269 11.29101214 

31 0.876241566 0.132275 0.090425568 31.63820246 

32 0.87893391 0.117986472 0.084291419 28.55840345 

33 0.880603177 0.109823904 0.091837062 16.37789332 

34 0.881879127 0.170392442 0.265874664 -56.03665316 

35 0.886511581 0.157734073 0.07853505 50.21047213 

36 0.894100586 2.032163585 0.072062132 96.45392071 

37 0.909989643 0.273472699 0.087993397 67.82369961 

38 0.92952342 0.129168257 0.082245985 36.32647331 

39 0.933100196 0.184834968 0.104732662 43.33720352 

40 0.933204146 0.107399856 0.105381466 1.879322671 

41 0.942425394 0.212187311 0.097421455 54.08704925 

42 0.964908062 0.230396307 0.088509791 61.58367611 

43 0.967711414 0.175614766 0.100170673 42.95999383 

44 0.975126961 0.131923888 0.109212637 17.21542014 

45 0.980126841 0.154616239 0.102200972 33.9002341 

46 0.983925319 0.2178001 0.192140617 11.78120802 

47 0.993427783 0.196128032 0.099026417 49.50929973 

48 0.993663086 0.202160995 0.110781005 45.2015931 

49 0.994500751 0.212591783 0.099426581 53.23122097 

50 0.998840156 0.203973147 0.195471202 4.16816865 

    

Average Cost 

Difference 

(%): 38.09262336 
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Table 28. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region VI and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.199655741 0.246074451 -23.24937419 

52 1.329198658 1.629061571 0.20705453 87.28995062 

53 1.652261099 0.560073879 0.27100742 51.61220156 

54 1.732050808 0.457472902 0.316354062 30.84747517 

55 1.760957841 0.538337897 0.338849036 37.05644022 

56 1.820518877 0.587657188 0.425581972 27.57989182 

57 1.828533372 0.553294861 0.355852233 35.6848838 

58 1.893715218 0.797735588 0.34855268 56.30724202 

59 1.900420695 0.758826153 0.373260042 50.81086223 

60 1.969644102 0.614058933 0.383024453 37.6241543 

61 1.976334082 0.590945736 0.417074613 29.42251928 

62 2.002910229 0.55477491 0.4282052 22.814606 

63 2.094697427 0.717065336 0.505872474 29.45238764 

64 2.112206523 0.700234576 0.580405351 17.11272616 

65 2.142249774 1.666815002 0.523829775 68.57301055 

66 2.161830466 2.319469947 0.507338008 78.12698504 

67 2.209623524 2.902292244 0.420631854 85.50690906 

68 2.232543354 1.071572667 0.607187502 43.33678712 

69 2.234850662 0.846603261 0.598583155 29.29590722 

70 2.315624628 1.227568736 0.585091523 52.33737179 

71 2.386793676 1.841384102 0.670151762 63.60608516 

72 2.401746454 1.223585099 0.625135675 48.90950575 

73 2.445361846 1.830570116 0.696016397 61.97816237 

74 2.466706602 0.82745518 0.538976265 34.86338862 

75 2.479790488 0.954363069 0.617235241 35.32490303 

76 2.498843498 1.194903532 0.674157 43.58063376 

77 2.522092914 0.991574364 0.627608887 36.70581753 

78 2.551730261 1.652615865 0.71634561 56.65383438 

79 2.620165462 12.17892848 0.790493391 93.50933547 

80 2.649793028 1.217476411 0.751728818 38.25516356 

81 2.674902192 1.30109964 0.871426755 33.02382628 

82 2.692003392 1.287323589 0.8295821 35.55760902 

83 2.701726462 1.588507231 0.752006334 52.65955867 

84 2.714761477 1.594900853 0.840232453 47.31757456 

85 2.749451218 1.323251979 0.757936669 42.72166747 

86 2.795156227 1.38144323 0.841151363 39.1106819 

87 2.808828434 1.289507533 1.002050283 22.29201795 
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Table 28 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region VI and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.514179775 0.834135018 44.91175805 

89 2.848903585 1.606660278 0.731160186 54.49192366 

90 2.851611437 1.21943244 0.911433243 25.25758601 

91 2.870713551 1.582247743 0.904632217 42.82613324 

92 2.880350027 3.082652688 0.803151131 73.9461038 

93 2.896534118 1.271137863 1.25640027 1.159401628 

94 2.938218496 1.396067091 0.868626555 37.78045763 

95 2.947634879 1.822407132 1.553266664 14.7684051 

96 2.95110354 2.400388075 0.964740009 59.80899843 

97 2.962064987 1.329361025 1.488073413 -11.93899815 

98 2.96452904 2.474384054 0.918501219 62.87960157 

99 2.967810632 1.2628239 0.874121328 30.7804257 

100 2.985712699 1.290949916 0.968000501 25.01641712 

    

Average Cost 

Difference 

(%): 41.90601833 

 

 

Table 29. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region VII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001787112 0.001756035 1.738940351 

2 0.293187079 0.005037878 0.004920388 2.33213718 

3 0.316221076 0.006311412 0.0060878 3.542977192 

4 0.33126114 0.005101999 0.004662632 8.611661092 

5 0.365447776 0.007284514 0.00737724 -1.272922766 

6 0.388573818 0.008131774 0.00750104 7.756422708 

7 0.414682564 0.009815822 0.009198391 6.290166693 

8 0.507910302 0.013482154 0.013781099 -2.217341664 

9 0.508723927 0.017571308 0.01743703 0.764188787 

10 0.564035602 0.020880404 0.020954155 -0.353204254 

11 0.568921476 0.020557525 0.019734541 4.003320784 

12 0.621993608 0.01865852 0.015146834 18.82081288 

13 0.622111707 0.025891535 0.025585309 1.182726688 

14 0.652850918 0.023042072 0.023932802 -3.865666935 

15 0.67303375 0.021142996 0.018779783 11.17728404 
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Table 29 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region VII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.029970584 0.029152984 2.728006034 

17 0.683764431 0.021077498 0.020672257 1.922623535 

18 0.684739975 0.022408794 0.022692774 -1.267268872 

19 0.728289287 0.034512863 0.033811517 2.032128611 

20 0.753863006 0.04262121 0.040998754 3.806687817 

21 0.753969075 0.035947219 0.034101678 5.134030623 

22 0.769293241 0.032891125 0.0299939 8.808531349 

23 0.781665858 0.03182285 0.029936885 5.926451621 

24 0.805212622 0.046005618 0.045666789 0.736494942 

25 0.814479069 0.042395205 0.042805415 -0.967585043 

26 0.817586623 0.02630429 0.023865562 9.271215112 

27 0.820748706 0.044133785 0.043270799 1.955386346 

28 0.833407694 0.042913722 0.043080878 -0.3895156 

29 0.834535397 0.051402634 0.051255261 0.286704836 

30 0.841453615 0.049812823 0.049420447 0.787700048 

31 0.876241566 0.040240983 0.036699145 8.801569929 

32 0.87893391 0.058238051 0.05616268 3.563599079 

33 0.880603177 0.04989527 0.05018582 -0.582320692 

34 0.881879127 0.031929159 0.032982955 -3.300417616 

35 0.886511581 0.045672404 0.042879506 6.115067977 

36 0.894100586 0.036650603 0.030782172 16.01182656 

37 0.909989643 0.046288952 0.044261995 4.378923414 

38 0.92952342 0.051760801 0.053652673 -3.655027316 

39 0.933100196 0.053189866 0.052229509 1.805525512 

40 0.933204146 0.054676087 0.052767209 3.491248693 

41 0.942425394 0.053969841 0.051481763 4.610126959 

42 0.964908062 0.043131534 0.039325133 8.825099542 

43 0.967711414 0.062165861 0.061383382 1.258694961 

44 0.975126961 0.070327167 0.072373606 -2.909884475 

45 0.980126841 0.056259329 0.052075052 7.437480215 

46 0.983925319 0.057841676 0.056535269 2.258591583 

47 0.993427783 0.045246154 0.046325056 -2.384517571 

48 0.993663086 0.052165783 0.047989905 8.005013569 

49 0.994500751 0.063419471 0.062259916 1.828390743 

50 0.998840156 0.062108323 0.060126635 3.190696826 

    

Average Cost 

Difference 

(%): 3.36065564 
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Table 30. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region VII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.072919536 0.069778784 4.307147217 

52 1.329198658 0.11362718 0.108816334 4.233886525 

53 1.652261099 0.159482321 0.137926034 13.51641168 

54 1.732050808 0.181999412 0.178882594 1.712542834 

55 1.760957841 0.212423498 0.210689533 0.81627715 

56 1.820518877 0.21546605 0.207444698 3.722791425 

57 1.828533372 0.238020329 0.225666074 5.190420403 

58 1.893715218 0.192082563 0.191161808 0.479354045 

59 1.900420695 0.222392404 0.213270569 4.101684854 

60 1.969644102 0.194592541 0.185107048 4.87454053 

61 1.976334082 0.238466274 0.226449741 5.039091209 

62 2.002910229 0.237799276 0.227285708 4.421194114 

63 2.094697427 0.313407755 0.317698041 -1.36891525 

64 2.112206523 0.23064719 0.207205359 10.16350162 

65 2.142249774 0.327231214 0.320043158 2.196628845 

66 2.161830466 0.249882207 0.253855732 -1.590159171 

67 2.209623524 0.232959658 0.204951073 12.02293393 

68 2.232543354 0.304115102 0.309437035 -1.749973326 

69 2.234850662 0.295887363 0.278467041 5.887484514 

70 2.315624628 0.342873677 0.332544591 3.012504882 

71 2.386793676 0.408063911 0.40235781 1.398335235 

72 2.401746454 0.360819165 0.361294624 -0.131771955 

73 2.445361846 0.354098169 0.348719635 1.51893867 

74 2.466706602 0.322296533 0.279987417 13.12738781 

75 2.479790488 0.33032071 0.297281537 10.00215002 

76 2.498843498 0.390811901 0.366240044 6.287387052 

77 2.522092914 0.402586537 0.377726641 6.175043904 

78 2.551730261 0.394234241 0.383648837 2.68505451 

79 2.620165462 0.292008017 0.283587524 2.883651289 

80 2.649793028 0.415305178 0.386707215 6.886011706 

81 2.674902192 0.439758875 0.446670939 -1.571785007 

82 2.692003392 0.472968023 0.46077734 2.577485616 

83 2.701726462 0.46026769 0.459636071 0.13722847 

84 2.714761477 0.503729031 0.491721916 2.383645569 

85 2.749451218 0.465110721 0.453033806 2.596567582 

86 2.795156227 0.524017238 0.488921663 6.697408575 

87 2.808828434 0.48910839 0.4929749 -0.790522228 
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Table 30 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region VII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.519540378 0.49987758 3.784652475 

89 2.848903585 0.414397872 0.406496304 1.906758765 

90 2.851611437 0.528775079 0.487798297 7.74937842 

91 2.870713551 0.480934024 0.488490598 -1.571228639 

92 2.880350027 0.405485879 0.373471784 7.895242726 

93 2.896534118 0.582987434 0.580419748 0.440435911 

94 2.938218496 0.515189384 0.528103986 -2.506767818 

95 2.947634879 0.483742987 0.447703671 7.450095866 

96 2.95110354 0.440004398 0.441918159 -0.434941361 

97 2.962064987 0.524340021 0.519175852 0.984889305 

98 2.96452904 0.563295323 0.547561207 2.793226855 

99 2.967810632 0.548037076 0.483594644 11.75877218 

100 2.985712699 0.651990494 0.63486768 2.626236813 

    

Average Cost 

Difference 

(%): 3.734566327 

 

 

Table 31. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region VII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.00349229 0.003264837 6.513001516 

2 0.293187079 0.015058367 0.008467066 43.77168287 

3 0.316221076 0.013889551 0.010672955 23.15838909 

4 0.33126114 0.025155954 0.009789764 61.08371046 

5 0.365447776 0.018187926 0.012794015 29.65655186 

6 0.388573818 0.026858774 0.014510821 45.97362831 

7 0.414682564 0.044570523 0.018050496 59.50126989 

8 0.507910302 0.191886474 0.032275764 83.17976101 

9 0.508723927 0.044473255 0.028064927 36.8948222 

10 0.564035602 0.13713821 0.035395664 74.18978703 

11 0.568921476 0.08890041 0.037000485 58.37984876 

12 0.621993608 0.714279515 0.04448058 93.77266475 

13 0.622111707 0.056667494 0.050507944 10.86963571 

14 0.652850918 0.07955313 0.041483741 47.85404237 

15 0.67303375 0.116051631 0.059718463 48.54146981 
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Table 31 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region VII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.089801276 0.046095066 48.66992116 

17 0.683764431 0.070920477 0.041553911 41.40773901 

18 0.684739975 0.061879376 0.042537097 31.25803803 

19 0.728289287 0.137090686 0.059161045 56.84532147 

20 0.753863006 0.076017819 0.07290567 4.093973022 

21 0.753969075 0.135914651 0.059152943 56.47787627 

22 0.769293241 0.091202424 0.059648957 34.5971803 

23 0.781665858 0.146675045 0.070940608 51.63416638 

24 0.805212622 0.106568052 0.082599594 22.49122271 

25 0.814479069 0.099776774 0.081304137 18.51396426 

26 0.817586623 0.136041409 0.051932838 61.82571286 

27 0.820748706 0.097665928 0.104537157 -7.035441409 

28 0.833407694 0.122711451 0.069471373 43.38639741 

29 0.834535397 0.096651786 0.081547995 15.62701662 

30 0.841453615 0.101273018 0.089838269 11.29101214 

31 0.876241566 0.132275 0.090425568 31.63820246 

32 0.87893391 0.117986472 0.084291419 28.55840345 

33 0.880603177 0.109823904 0.091837062 16.37789332 

34 0.881879127 0.170392442 0.265874664 -56.03665316 

35 0.886511581 0.157734073 0.07853505 50.21047213 

36 0.894100586 2.032163585 0.072062132 96.45392071 

37 0.909989643 0.273472699 0.087993397 67.82369961 

38 0.92952342 0.129168257 0.082245985 36.32647331 

39 0.933100196 0.184834968 0.104732662 43.33720352 

40 0.933204146 0.107399856 0.105381466 1.879322671 

41 0.942425394 0.212187311 0.097421455 54.08704925 

42 0.964908062 0.230396307 0.088509791 61.58367611 

43 0.967711414 0.175614766 0.100170673 42.95999383 

44 0.975126961 0.131923888 0.109212637 17.21542014 

45 0.980126841 0.154616239 0.102200972 33.9002341 

46 0.983925319 0.2178001 0.192140617 11.78120802 

47 0.993427783 0.196128032 0.099026417 49.50929973 

48 0.993663086 0.202160995 0.110781005 45.2015931 

49 0.994500751 0.212591783 0.099426581 53.23122097 

50 0.998840156 0.203973147 0.195471202 4.16816865 

    

Average Cost 

Difference 

(%): 38.09262336 
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Table 32. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region VII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.285582285 0.144519534 49.39478338 

52 1.329198658 0.269827876 0.201766684 25.22392894 

53 1.652261099 6.3961436 0.30205764 95.27750378 

54 1.732050808 0.971567466 0.379595395 60.92958975 

55 1.760957841 0.487998511 0.356113483 27.02570297 

56 1.820518877 0.835525381 0.356483017 57.33426832 

57 1.828533372 0.756925993 0.363328782 51.99943125 

58 1.893715218 0.637495568 0.378880163 40.56740441 

59 1.900420695 1.387698276 0.404050304 70.88341817 

60 1.969644102 0.792771058 0.403733072 49.07318227 

61 1.976334082 0.738670275 0.395742341 46.42503503 

62 2.002910229 0.721830057 0.411381322 43.00856295 

63 2.094697427 0.865749627 0.552531228 36.17886622 

64 2.112206523 5.26063037 0.47079377 91.05062062 

65 2.142249774 0.825728315 0.551985841 33.15163945 

66 2.161830466 0.737989617 0.447537233 39.35724529 

67 2.209623524 0.993018734 0.573809098 42.21568253 

68 2.232543354 0.635390196 0.508653755 19.94623796 

69 2.234850662 1.501862368 0.54415052 63.76828315 

70 2.315624628 0.894141083 0.571382485 36.0970549 

71 2.386793676 1.162220203 0.596587881 48.6682576 

72 2.401746454 3.576443304 0.673407199 81.17103664 

73 2.445361846 0.892904387 0.679292194 23.92329976 

74 2.466706602 0.79146168 0.669743425 15.37891951 

75 2.479790488 1.801543661 0.557929502 69.03047567 

76 2.498843498 1.412336426 0.691577578 51.03308495 

77 2.522092914 0.881344308 0.709236934 19.52782496 

78 2.551730261 40.33179831 0.695687471 98.27508938 

79 2.620165462 2.002149473 0.970655543 51.51932677 

80 2.649793028 43.83578307 0.742442739 98.30630894 

81 2.674902192 0.983466935 0.758767019 22.84773472 

82 2.692003392 1.597268619 0.79637272 50.14159104 

83 2.701726462 23.5962763 0.872479102 96.30247124 

84 2.714761477 1.205836026 0.891077268 26.10294859 

85 2.749451218 1.537852656 0.940839667 38.82120873 

86 2.795156227 5.119470286 0.897539983 82.46810836 

87 2.808828434 1.540931051 0.917962594 40.4280553 
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Table 32 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region VII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.555741064 0.896475474 42.37630572 

89 2.848903585 3.093538602 0.793976151 74.33437066 

90 2.851611437 5.770058687 0.914681711 84.14779188 

91 2.870713551 1.597128785 0.876549096 45.1171938 

92 2.880350027 1.214974365 0.759084095 37.52262456 

93 2.896534118 1.287866823 0.955770589 25.7865354 

94 2.938218496 1.599258348 0.950804332 40.54717089 

95 2.947634879 2.792630089 0.876430113 68.61631921 

96 2.95110354 8.102297387 0.809516388 90.00880431 

97 2.962064987 1.660226278 0.958689355 42.25550046 

98 2.96452904 1.259679949 0.938393954 25.50536709 

99 2.967810632 2.157063088 0.980291203 54.5543564 

100 2.985712699 1.280137055 0.999812228 21.89803243 

    

Average Cost 

Difference 

(%): 50.91049113 

 

 

Table 33. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region VIII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.001792059 0.001759754 1.802667094 

2 0.293187079 0.005057754 0.00491277 2.866571796 

3 0.316221076 0.00639192 0.006257919 2.096405729 

4 0.33126114 0.005392618 0.004573353 15.19234241 

5 0.365447776 0.007652993 0.007106402 7.142181171 

6 0.388573818 0.008051113 0.007547189 6.259064808 

7 0.414682564 0.009485212 0.009692929 -2.189901982 

8 0.507910302 0.014324566 0.013050842 8.891889061 

9 0.508723927 0.017595158 0.017155858 2.49670737 

10 0.564035602 0.021031315 0.020785368 1.169432105 

11 0.568921476 0.020253885 0.019958606 1.457888891 

12 0.621993608 0.018560131 0.0151625 18.30607105 

13 0.622111707 0.026346711 0.025567119 2.958974181 

14 0.652850918 0.025241288 0.024562962 2.68736816 

15 0.67303375 0.021443811 0.019679741 8.226475496 
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Table 33 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region VIII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.028839268 0.029285314 -1.546661785 

17 0.683764431 0.021708392 0.020410631 5.978154918 

18 0.684739975 0.023057336 0.023026123 0.135372092 

19 0.728289287 0.03404093 0.033115056 2.719886379 

20 0.753863006 0.040499612 0.041570551 -2.644319019 

21 0.753969075 0.0360001 0.034458823 4.281314222 

22 0.769293241 0.031734128 0.030435905 4.090936463 

23 0.781665858 0.033025176 0.030670347 7.130405751 

24 0.805212622 0.046087491 0.045403745 1.48358321 

25 0.814479069 0.042750628 0.041298158 3.397540882 

26 0.817586623 0.028017149 0.026977594 3.710423737 

27 0.820748706 0.044573634 0.04271126 4.17819482 

28 0.833407694 0.043284073 0.043095174 0.43641797 

29 0.834535397 0.052508495 0.051783953 1.37985751 

30 0.841453615 0.049917355 0.048807585 2.223214555 

31 0.876241566 0.038352299 0.036474553 4.896046264 

32 0.87893391 0.058460693 0.057566862 1.528944012 

33 0.880603177 0.052737688 0.050390569 4.45055504 

34 0.881879127 0.032363909 0.029602387 8.532722638 

35 0.886511581 0.042967073 0.041978322 2.301183288 

36 0.894100586 0.032492583 0.033170626 -2.086762546 

37 0.909989643 0.04511822 0.042867434 4.988639796 

38 0.92952342 0.052887669 0.051815727 2.026827304 

39 0.933100196 0.053438195 0.055392766 -3.657629322 

40 0.933204146 0.05309186 0.05393725 -1.592314616 

41 0.942425394 0.054498071 0.052538842 3.595043343 

42 0.964908062 0.042093549 0.040505133 3.773536198 

43 0.967711414 0.062424927 0.06049442 3.092525483 

44 0.975126961 0.072247687 0.070069242 3.015245883 

45 0.980126841 0.052972622 0.051496408 2.786749117 

46 0.983925319 0.057631003 0.054082397 6.157459276 

47 0.993427783 0.047723815 0.044037393 7.724492029 

48 0.993663086 0.05326616 0.05089677 4.44820913 

49 0.994500751 0.062572046 0.059360566 5.132451541 

50 0.998840156 0.064179525 0.059896043 6.674218901 

    

Average Cost 

Difference 

(%): 3.682132036 
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Table 34. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.14 in Region VIII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.070245779 0.068230392 2.869050437 

52 1.329198658 0.117463472 0.109469492 6.805502619 

53 1.652261099 0.143895357 0.139387729 3.132573433 

54 1.732050808 0.179550232 0.173456861 3.393686053 

55 1.760957841 0.214270745 0.211979152 1.069485073 

56 1.820518877 0.217240747 0.209549624 3.540368458 

57 1.828533372 0.229874129 0.223959981 2.572776917 

58 1.893715218 0.204247576 0.191921918 6.034665388 

59 1.900420695 0.219421845 0.216777136 1.205308088 

60 1.969644102 0.207810879 0.187859942 9.600525839 

61 1.976334082 0.233784174 0.2316903 0.89564389 

62 2.002910229 0.228606799 0.230551107 -0.850503325 

63 2.094697427 0.323991961 0.32081492 0.980592548 

64 2.112206523 0.233710265 0.217858885 6.782492004 

65 2.142249774 0.328948678 0.319311361 2.929732876 

66 2.161830466 0.255456614 0.244001061 4.484344016 

67 2.209623524 0.236789592 0.216612669 8.521034642 

68 2.232543354 0.324032225 0.302356778 6.689287309 

69 2.234850662 0.29042297 0.28514921 1.815889347 

70 2.315624628 0.334264138 0.334716973 -0.135472379 

71 2.386793676 0.407934943 0.414111166 -1.514021564 

72 2.401746454 0.371028588 0.353334556 4.76891342 

73 2.445361846 0.363890478 0.351063752 3.524886403 

74 2.466706602 0.288768335 0.287397648 0.474666648 

75 2.479790488 0.303431366 0.286379485 5.619683026 

76 2.498843498 0.389911084 0.375446457 3.709724499 

77 2.522092914 0.383458185 0.3879817 -1.179663181 

78 2.551730261 0.41964923 0.385124659 8.227006941 

79 2.620165462 0.343109175 0.281709368 17.89512256 

80 2.649793028 0.390550632 0.394715022 -1.066286887 

81 2.674902192 0.445465459 0.431014817 3.243942234 

82 2.692003392 0.468729162 0.472361333 -0.774897567 

83 2.701726462 0.49334873 0.447548344 9.283572398 

84 2.714761477 0.501847977 0.497888644 0.788950623 

85 2.749451218 0.456739879 0.451158763 1.221946398 

86 2.795156227 0.492913987 0.485767194 1.449906688 

87 2.808828434 0.469482248 0.468130921 0.28783342 
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Table 34 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.14 in Region VIII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 0.520561947 0.51202472 1.64000222 

89 2.848903585 0.378694632 0.34827571 8.032572841 

90 2.851611437 0.508560987 0.490061346 3.637644536 

91 2.870713551 0.500184949 0.496479765 0.740762916 

92 2.880350027 0.410602429 0.377497013 8.062645027 

93 2.896534118 0.590504234 0.582117233 1.420311651 

94 2.938218496 0.553349084 0.527290152 4.709311392 

95 2.947634879 0.476814481 0.451724599 5.261979876 

96 2.95110354 0.457190313 0.439490715 3.871385165 

97 2.962064987 0.536774667 0.528172765 1.602516378 

98 2.96452904 0.572060067 0.558076997 2.444335972 

99 2.967810632 0.501318354 0.466710084 6.903451591 

100 2.985712699 0.645811062 0.654568747 -1.356075395 

    

Average Cost 

Difference 

(%): 3.505382269 

 

 

Table 35. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region VIII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

1 0.157460926 0.004535157 0.002775515 38.80002783 

2 0.293187079 0.021782673 0.012298881 43.53823724 

3 0.316221076 0.021171265 0.010247173 51.59867302 

4 0.33126114 0.018644523 0.009913928 46.82659518 

5 0.365447776 0.037648693 0.0130614 65.30716255 

6 0.388573818 0.060974891 0.014280811 76.57919373 

7 0.414682564 0.086295561 0.063836421 26.0258342 

8 0.507910302 0.047218653 0.035762877 24.26112444 

9 0.508723927 0.046216553 0.029565503 36.02832536 

10 0.564035602 0.049114322 0.035170456 28.39063199 

11 0.568921476 0.096893833 0.038697096 60.06237447 

12 0.621993608 0.066911313 0.032344855 51.66010943 

13 0.622111707 0.06335594 0.045047073 28.89842243 

14 0.652850918 0.100312001 0.067214707 32.99435057 

15 0.67303375 0.060459975 0.041662937 31.09005312 
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Table 35 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region VIII and Initial Conditions within Norm 1 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

16 0.674354319 0.148568656 0.05115695 65.56679475 

17 0.683764431 0.405859829 0.056358457 86.11381243 

18 0.684739975 0.140313976 0.058758306 58.12369695 

19 0.728289287 0.09501592 0.06316325 33.52350878 

20 0.753863006 0.079549933 0.065099894 18.1647406 

21 0.753969075 0.092280044 0.0623443 32.4401054 

22 0.769293241 0.248992727 0.06714767 73.03227671 

23 0.781665858 0.110461212 0.053588294 51.48677709 

24 0.805212622 0.102104076 0.085311683 16.44634931 

25 0.814479069 0.089898883 0.304521187 -238.7374544 

26 0.817586623 0.402745525 0.087429983 78.29150731 

27 0.820748706 0.15431882 0.08037901 47.91367021 

28 0.833407694 0.109105783 0.077525204 28.94491802 

29 0.834535397 0.120426456 0.082387527 31.58685379 

30 0.841453615 0.134263746 0.079972883 40.4359813 

31 0.876241566 0.277277858 0.08225977 70.33309091 

32 0.87893391 0.1450879 0.093537008 35.53080022 

33 0.880603177 0.172683348 0.090259041 47.73147346 

34 0.881879127 0.674305647 0.182434881 72.94477934 

35 0.886511581 0.363956253 0.081616075 77.57530639 

36 0.894100586 0.148024893 0.072536534 50.99707058 

37 0.909989643 0.360982273 0.097809395 72.90465416 

38 0.92952342 0.126124495 0.100391057 20.40320397 

39 0.933100196 0.138127527 0.115203111 16.59655858 

40 0.933204146 0.129727611 0.147939099 -14.03825117 

41 0.942425394 0.138735926 0.150439717 -8.436019877 

42 0.964908062 0.298877097 0.080800388 72.96534642 

43 0.967711414 0.196230157 0.101718692 48.16357796 

44 0.975126961 0.15381182 0.126168375 17.97224979 

45 0.980126841 0.117646671 0.099730071 15.22915978 

46 0.983925319 0.156219116 0.136568171 12.57909112 

47 0.993427783 0.274679565 0.100453065 63.42899965 

48 0.993663086 0.220484906 0.10733801 51.31729763 

49 0.994500751 0.415781822 0.124283905 70.10838412 

50 0.998840156 0.16546028 0.112362944 32.09068426 

    

Average Cost 

Difference 

(%): 37.83584222 
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Table 36. Mean Cost Comparison of the Linear Deterministic and the Stochastic Nonlinear 

Control with 𝜀 = 0.28 in Region VII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 

Deterministic 

Linear 

Stochastic 

Nonlinear  

Cost Error 

(%) 

51 1.168965631 0.199268285 0.247438501 -24.17354875 

52 1.329198658 1.642395547 0.207551646 87.36287089 

53 1.652261099 0.563090231 0.271914883 51.71024674 

54 1.732050808 0.457029415 0.318240024 30.36771516 

55 1.760957841 0.53752857 0.339747365 36.79454751 

56 1.820518877 0.589690053 0.434604814 26.29944983 

57 1.828533372 0.549328134 0.355961554 35.20056017 

58 1.893715218 0.801629778 0.349667461 56.38043011 

59 1.900420695 0.760962932 0.372901251 50.99613453 

60 1.969644102 0.619672077 0.383674592 38.08425358 

61 1.976334082 0.610976003 0.417999149 31.58501357 

62 2.002910229 0.558335626 0.428867605 23.18820705 

63 2.094697427 0.715095973 0.508476819 28.8939054 

64 2.112206523 0.697004219 0.585418469 16.00933636 

65 2.142249774 1.671752979 0.52307355 68.71107412 

66 2.161830466 2.339005584 0.508634741 78.25423143 

67 2.209623524 2.913149444 0.422056995 85.5120033 

68 2.232543354 1.073729951 0.608070775 43.36836988 

69 2.234850662 0.848757895 0.600479439 29.25197603 

70 2.315624628 1.239570132 0.586496239 52.68551381 

71 2.386793676 1.879775141 0.675750158 64.05154302 

72 2.401746454 1.215872837 0.628484547 48.31001006 

73 2.445361846 1.962943323 0.697650601 64.4589534 

74 2.466706602 0.83300508 0.540892673 35.06730199 

75 2.479790488 0.930137753 0.62152214 33.17955985 

76 2.498843498 1.199036 0.674847593 43.71748698 

77 2.522092914 0.944717216 0.631720113 33.1313008 

78 2.551730261 1.666905421 0.71847658 56.89757972 

79 2.620165462 12.21159167 0.791960209 93.51468482 

80 2.649793028 1.239420256 0.750476421 39.4493984 

81 2.674902192 1.30986219 0.870943803 33.50874543 

82 2.692003392 1.284168099 0.791930689 38.33122862 

83 2.701726462 1.605677835 0.755005209 52.97903525 

84 2.714761477 1.616452949 0.846707519 47.61941447 

85 2.749451218 1.351313993 0.761567924 43.64241563 

86 2.795156227 1.39371587 0.846905944 39.23395992 

87 2.808828434 1.297656749 1.010098132 22.15983677 
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Table 36 (cont.). Mean Cost Comparison of the Linear Deterministic and the Stochastic  

Nonlinear Control with 𝜀 = 0.28 in Region VII and Initial Conditions Between Norm 1 and 3 

 Initial Condition 

Norm 
Deterministic 

Linear 
Stochastic 

Nonlinear  
Cost Error 

(%) 

88 2.813805571 1.525303493 0.835964752 45.19354637 

89 2.848903585 1.610770268 0.727689055 54.82353567 

90 2.851611437 1.22319458 0.916860317 25.04378844 

91 2.870713551 1.588145517 0.90619685 42.93993589 

92 2.880350027 3.114680512 0.810668377 73.97266352 

93 2.896534118 1.288463281 1.300779489 -0.955883504 

94 2.938218496 1.400484588 0.871475599 37.77328174 

95 2.947634879 1.83657069 1.600178365 12.87139815 

96 2.95110354 2.428432578 0.961442048 60.40894624 

97 2.962064987 1.31687053 1.508836773 -14.57745758 

98 2.96452904 2.622738637 0.920474722 64.90406217 

99 2.967810632 1.274000862 0.876523724 31.19912634 

100 2.985712699 1.340235132 0.96812078 27.76485586 

    

Average Cost 

Difference 

(%): 41.9419309 

 


