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ABSTRACT

When using neural models for NLP tasks, like language modelling, it is difficult to

utilize a language with little data, also known as a low-resource language. Creole languages

are frequently low-resource and as such it is difficult to train neural language models for

them well. Creole languages are a special type of language that is widely thought of as

having multiple parents and thus receiving a mix of evolutionary traits from all of them.

One of a creole language’s parents is known as the lexifier, which gives the creole its lexicon,

and the other parents are known as substrates, which possibly are thought to give the creole

language its morphology and syntax. Creole languages are most lexically similar to their

lexifier and most syntactically similar to otherwise unrelated creole languages. High lexical

similarity to the lexifier is unsurprising because by definition lexifiers provide a creole’s

lexicon, but high syntactic similarity to the other unrelated creole languages is not obvious

and is explored in detail. We can use this information about creole languages’ unique

genesis and typology to decrease the perplexity of neural language models on low-resource

creole languages. We discovered that syntactically similar languages (especially other creole

languages) can successfully transfer learned features during pretraining from a high-resource

language to a low-resource creole language through a method called neural stacking. A

method that normalized the vocabulary of a creole language to its lexifier also lowered

perplexities of creole-language neural models.

ii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 REVIEW OF CREOLE LANGUAGES AND THEIR GENESIS . . . 3
2.1 Review of Creole Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Monogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Substratum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Superstratum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Universalist Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Other Creole Genesis Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Thoughts and Tying Lingustic Theory to Computation . . . . . . . . . . . . 6

CHAPTER 3 REVIEW OF COMPUTATIONAL PROCESSING ON CREOLE
LANGUAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Computation for Creole Genesis . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Creole Theory for NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 4 STANDARD SINGLE-PARENT PHYLOGENY ESTIMATION ON
CREOLE LANGUAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Evaluation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 5 NEURAL LANGUAGE MODEL . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 6 METHODS TO IMPROVE LOW-RESOURCE LANGUAGE PER-
FORMANCE ON NEURAL MODELS . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Cross-Lingual Parameter Sharing . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Cross-Lingual Neural Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Pre-Trained Embedding Alignment . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Spelling Normalization to Lexifier . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Using the Lexifier’s Embeddings Directly . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 7 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Neural Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Spelling Normalization and Alternate Embeddings . . . . . . . . . . . . . . . 38

iii



CHAPTER 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



CHAPTER 1: INTRODUCTION

Neural networks have been the mostly-uncontested model of choice for natural lan-

guage processing research over the last five years [1], as of 2018. With their innate ability

to describe complex functions on what is usually millions of parameters, they yield excel-

lent results when there is enough data to train the models. Unfortunately, due to the large

number of parameters in neural networks, languages that do not have large amounts of data

do not perform as well on these models; as such, there is much research devoted to what

I will refer to as low-resource methods. While lack of data is an apparent issue for neural

networks, other machine learning methods also use these methods to enhance their perfor-

mance. Languages with not much data are low-resource, and through either augmenting the

data artificially [2], projecting the unlabelled data onto labelled data [3, 4], creating special

models [5, 6, 7], or being clever with how the data is used in the model, greatly improved

results are achieved.

Virtually all creole languages are low-resource languages. When machine learning

models are used to process them, they benefit from low-resource methods. Notably, there

are a few machine learning models that use low-resource methods that take advantage of

’unique’ aspects of creole languages [2, 8, 9]. When I say ’unique’, I refer to the fact that

while most languages evolve from one parent, creoles evolve from several parents into one

’mixed’ language. For example, in the case of Haitian Creole, its parents are French and

several West African languages, one of which is assumed to be the language Fon. French

contributes to the language’s lexemes, while Fon and other African languages contribute to

the morphosyntax of the language. As such, French would be Haitian Creole’s lexifier or

superstrate, and Fon would be one of Haitian Creole’s substrates. Note that while virtually

all languages borrow linguistic features from other languages (usually vocabulary), they still

only have one evolutionary parent.

The goal of this thesis is to create low-resource methods that will increase the perfor-

mance of neural natural language processing tasks, in particular neural language modelling,

when the target language of these tasks is a creole language. Language modelling is the

task I focus on because there is a higher amount of creole language data available for the

task, but the methods proposed in this thesis can apply to other tasks and models as well.

When the unique genesis of creole languages is studied, along with the interesting typology

of creoles as they exist today, it is natural to think that similarly unique methods could be

created to process this group of languages. However, this is confounded by another innate

fact of neural networks; it is very difficult to understand why certain models work better
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than others. Tweaks to a neural model that make sense by linguistic hypotheses (e.g. creole

genesis theory and typology) could have no basis in the neural model’s empirical score (e.g.

the perplexity of a language model). This is made worse by the fact that each experiment

will necessarily use a target language with very little data; when there is very little data, the

neural network performs rather poorly already because it does not have nearly enough data

to converge to good parameters, so it is possible that no low-resource trick could push the

model closer to convergence and to a better score. A low-resource method could even make

the model perform worse by this logic, no matter how correct the linguistic theory behind

the method is.

Chapter 2 will review the history and linguistic theory of creole languages and their

genesis. Chapter 3 will review existing research that focuses on approaching creoles compu-

tationally in unique ways. Chapter 4 will examine how phylogenetic estimation methods that

do assume a single parent per language behave with creole languages, which have multiple

parents. Chapter 5 will describe the neural language model that will be used as a baseline

for further experiments. Chapter 6 will describe the low-resource methods that will augment

the base neural language model. Chapter 7 describes the data that will be used to test the

neural models created. Chapter 8 tests the low-resource methods and examines the relative

changes in perplexity per target creole language to evaluate the efficacy of each model.
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CHAPTER 2: REVIEW OF CREOLE LANGUAGES AND THEIR GENESIS

Creole languages have been known to exist for centuries, but only recently have they

begun to be seriously researched by linguists. In the past, they were regarded as either

inferior versions of their lexifiers, or not natural languages and thus not worth studying.

Both of these views have been disregarded recently, and study into creoles, and particularly

their genesis, has become hotly debated. Still yet, there does not exist a consensus on what

linguistic processes created these languages. This chapter attempts to provide an overview

on the many theories of creole genesis that scholars have published over the last century.

2.1 REVIEW OF CREOLE LANGUAGES

First, I will begin with a review of creole languages. The definitions of creoles

and pidgins are not entirely agreed upon, but one view is presented here. The majority

of scholars [10] agree on the usual sociohistorical background that led to the creation of

creoles. This background is one in which enslaved humans who spoke different languages

were transported to a place where a (usually European) language was spoken. (Note that

this is not the only sociohistorical background there are different scenarios, such as those

that created the creole languages Hawaiian Creole English and Sango). The enslaved humans

had a need to communicate with each other, so they used elements of the European language

to create a language for everyday communication between themselves [11]. The European

language provides the lexicon of the language and is hence named the lexifier. This language

is generally thought to be more regular and simpler, in terms of how easy it is to describe the

rules of the language (i.e. less consonant clusters, less phonemes, less pronoun differentiation,

less lexicon, less morphology) [11]. Most people call this a pidgin; eventually, the children

that learn this language natively are said to creolize it, thus making the language a creole;

from then on, the language develops complexity and irregularity like any other language.

Note that the morphosyntax and structure of creoles are generally thought to be similar to

each other, regardless of their historical context [11]. Beyond this accepted background, the

question then becomes one of creole genesis: what linguistic processes actually cause the

creation of the creole?
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2.2 MONOGENESIS

One theory of creole genesis is monogenesis. Monogenesis states that all pidgins and

creoles come from the same language, namely West African Pidgin Portugeuese [11, 10]. This

pidgin is said to have been spoken on slave trade ships for several centuries. The monogenesis

hypothesis posits that all pidgins and creoles have simply been relexified versions of this

language; that is, the Portuguese-derived lexicon of the pidgin was replaced by words of

another lexifier. Since through the process of relexification the structure of the language

stays the same, this is how this theory explains that all creoles are similar in structure to

one another. An obvious critique of this hypothesis is that many creole languages are not

based on European languages, so they could not have been relexified from the Portugeuese

pidgin due to geographical location.

2.3 SUBSTRATUM THEORY

Another theory of creole genesis is the substratum theory, which posits that the

substrates involved in creating a creole supply the structural features of the language. The

substrates of a creole are the non-dominant languages; in the background case previously

described, the substrates would be the different African languages the slaves spoke. One

version of this theory is also called relexification, but instead of relexifying the lexicon of

West African Pidgin, the lexicon of the substrates are relabeled based on the dominant

languages lexicon [10]. As such, this hypothesis claims that a creoles structure is provided

by some mixture of the substrates structure. The lexicon is still provided by the lexifier by

the relexification process. Another version of this theory is called code switching [12]. Code

switching is already a concept in bilingualism where a person who knows two languages

either mixes or switches between the two while speaking. This type of code switching is

slightly different than the bilingual version. The hypothesis states that the slaves trying

to speak the lexifier language did not have the resources to fully learn it, so they used

the morphosyntax of their own languages with the lexicon of the lexifier to approximately

speak it, thus creating a creole. Once again, this code switching hypothesis claims that the

substrates provide the grammar and structure of the creole.

2.4 SUPERSTRATUM THEORY

Yet another theory is the superstratum theory. This theory [13] does not necessitate

that a creole comes from a pidgin. Instead, going back to the original creole background,
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it arises when non-European slaves interact with European slaves/indentured servants (who

usually speak non-standard dialects of the European language), so the creole language that

the slaves communicate with is just this non-standard dialect of the lexifier, or superstrate.

As such, this would make creoles a direct descendant of the European language instead of

a mix of several languages. Note that this theory does not account for the similarity across

all creoles (this is because the authors of such theories [12, 13] disagree with the fact that

all creoles share similar structure; they argue that the class of languages called creoles are

not structurally similar, but simply share a similar social history).

2.5 UNIVERSALIST THEORY

The last main theory is the universalist theory. One version of this theory is called

the language bioprogram hypothesis [11, 12]. Instead of claiming that creoles structural

similarity comes from their component languages, this hypothesis claims that the similar

structural features come from when the language is nativized by a child. It states that when

the child learns a pidgin, since the pidgin is unstructured and gives the child a poverty

of linguistic input [12], the child is forced to create parameters in the pidgin it is learning

because otherwise the parameters are unmarked. As such, the Universal Grammar steps in

to fill these parameters in a way that is biologically inherent to all members of the species;

since all creoles are learned by children from very simple pidgin languages, all creoles must

exhibit similar structural features. In this thesis, that is how they explain the structural

similarity between creoles. Adjacent to this theory is an effort to prove that creoles are

typologically similar in structure [14]. Some articles use the WALS features [15] from APiCS

[16] (a database of features of creoles and pidgins) to describe their similarity [17]; others

use techniques from computational biology to show that they are related [18]; others simply

compare large amounts of creole languages to prove that they have similar features [19].

Critiques against these methods and the universalist theory include that this finding comes

from a generalization, and many counterexamples can be provided [11, 12]. Another critique

is that people who classify creoles similarly may be guilty of a circular definition of creoles,

wherein creoles that do not fit the typological classification they made for creoles are deemed

not creoles, instead of defining something as a creole purely by its sociohistorical context.
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2.6 OTHER CREOLE GENESIS THEORIES

Many scholars also make room for mixes of the above theories. For example, one

article [20] argues that the substrate and universalist hypothesis complement each other.

Where the substrate hypothesis cannot explain a structural feature, perhaps the poverty

of the pidgin language that spawned the creole created the structural feature universally.

Likewise, where the universality hypothesis cannot explain a structural feature, like when a

feature is very unlikely to have come about universally, one of the substrates may contain

that structural feature and explain its existence. Another work [12] identifies that since

many creoles generate under different circumstances, it is possible that some creoles exhibit

tenets of certain hypotheses more than other creoles due to this difference. For example,

the author of this work writes that while the superstrate hypothesis does not seem likely

for most creoles, the hypothesis seems to be correct in the case of one particular creole,

Reunionnais Creole, because of its sociohistorical context and the fact that it is very close

to its lexifier, 18th century French, in structure.

2.7 THOUGHTS AND TYING LINGUSTIC THEORY TO COMPUTATION

As a final aside, I will provide my personal opinion on the various genesis theories in

the creolistics community. It seems to me that many of the arguments I have mentioned were

written before this community had access to the APiCS database in 2013, which provides the

features of 76 pidgins and creoles, as well as larger corpora. Because of this, it was common to

disrepute arguments based on pure reasoning or narrowly focusing only on specific examples

to prove a point while ignoring broad patterns in linguistic data. One example of such a point

made in this manner instead of empirically is one article [12] arguing against creoles sharing

a typological class because they were made in different sociohistorical contexts, despite the

fact that other sources support the idae that creoles generated across different contexts and

geographies still fit into a similar typological class [17, 18]. Essentially, such arguments have

not aged well in this field as the amount of relevent data increases.

I hope in the future we can come closer to a regular study of creole genesis, as opposed

to the current climate of many combatting viewpoints. Perhaps this can be accomplished by

making sure to consider the diachronic history of how each individual creole was generated

(as emphasized in [12]), and allowing room for a mix of each potential hypothesis to explain

the aspects of any particular creoles genesis.

All of this information influences what types of low-resource methods should be used

with creoles. This will be explained in detail in chapters 3 and 6. One obvious inference
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from this information is that creoles have a very similar lexicon to their lexifier. Lexifiers are

often the language of colonizers from Europe, so lexifiers are high resource and have plenty of

data. Even if a creole is extremely low-resource, at the very least an approximation of what

each word ’means’ by itself (but not necessarily as it relates to other words nearby it) can

frequently be derived from words that sound or look alike in its lexifier; this is information

that can help a model with a low-resource creole target.
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CHAPTER 3: REVIEW OF COMPUTATIONAL PROCESSING ON
CREOLE LANGUAGES

This section presents a review of two types of papers: one that seeks to discover

properties of creole genesis through computation, and another that uses the typology of

creoles and creole genesis ideas to aid natural language processing tasks on creole languages.

3.1 COMPUTATION FOR CREOLE GENESIS

3.1.1 Explorations in creole research with phylogenetic tools

This paper by Daval-Markussen and Bakker [18] studies how to research the structure

of creole languages and how a creole language compares with its superstrate and substrate

languages. It does this by using phylogenetic tools, like Splitstree, to create networks that

explain and compare the languages’ structure based on an assumed model of character

evolution. It focuses on the structure because creole structure evolves from multiple parents,

while the lexicon usually evolves from one parent (the superstrate) and is less interesting

and controversial to study. The paper seeks to prove that creole research can contribute

greatly to the study of language evolution and genesis by the fact that they are complexly

and (possibly) regularly generated by multiple parents as opposed to the usual single parent

in the majority of languages. This paper focuses on English-based creoles (note that this is a

questionable constraint; why not explore if creoles based on other lexifiers are typologically

different in structure?)

The first task put the data combined with geographical categories into SplitsTree to

output a visual network (which defines a tree initially, but becomes a network to represent

uncertainty in the phylogeny estimation) describing the evolution of these languages. They

organized data for 33 Atlantic Creoles; each has 62 features denoting the absence or presence

of certain phenomena in the languages. In the output network, genealogical clusters exist

that affirm previous research on the respective languages’ heredity, as well as clusters that

represent geographical closeness.

The second task focuses on using a tool to research the possibilities of various existing

creole genesis theories, which we will briefly redefine here. They tested the superstratist

view which states that creole structure comes from the dominant language, the substratist

view which states that creole structure comes from the substrate languages, the feature pool

view which states that creole generation comes from an evolutionary-esque battle for survival

amongst its composing languages’ features, and the universalist view which posits that creole
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structures are similar and were all borne out of the challenge of communicating across several

lanaguages imperfectly and thus developed universally in the same way to conquer this

challenge. For each view, they output a network which tested the views (e.g. putting in

substrate and/or superstrate non-creoles and respective creoles) and loosely examining how

they ’grouped’ in the network. In each network, the creoles grouped together closely and

the non-creoles were rarely near the creoles; as such, the networks support the universalist

view.

The third task seeks to research the typology of creole languages. Specifically, it

seeks to discover if creoles, as a group, are structurally distinguishable from non-creoles. It

does this using a Neighbor-Joining trees visualization, which can show groupings (genesis

of languages is not relevant in this task). It uses data consisting of creoles and non-creoles,

and morphosyntatic features that say ’yes’ or ’no’ to presence of a feature; once again, the

creoles group together and the other languages are not near them. From this point, several

different datasets with different combinations of creoles and non-creoles, as well as differing

and more complex features are used and all yield the same result of creoles clustering; the

typological distinction of creoles increases when more languages are included in the data.

3.1.2 Statistical Modeling of Creole Genesis

This paper by Murawaki [17] seeks to challenge the tree model used to represent

the evolutionary history of languages, like in [18] described above. This paper uses creole

languages as an extreme example to challenge a tree-like model of evolution notion because

they notably have more than one parent. To accomplish this, data-driven methods are used.

Crucially, this paper makes an extremely salient observation on [18]’s usage of phy-

logenetic tools: it exclusively used tools that assume that each language evolves with a

single parent, even though the paper attempts to study creole languages which evolve with

multiple parents. This fact makes the phylogenetic analysis presented as-is less powerful.

Also importantly, it questions the paper’s validity in claiming that examining typology can

support any creole genesis theory, given that genesis happened in the past, and studying

typology only considers modern language features.

The first task of this paper is to examine creole languages’ distinctiveness not using

tree-based model. They used similar data to [18], which is several features denoting the

absence or presence of certain phenomena in the languages. They attempt to use a linear

SVM classifier to categorize languages as creole or not in order to test creole distinctive-

ness. The SVM failed to perfectly categorize creoles and non-creoles given this feature data,

despite previous work hypothesizing that they could be perfectly separated based on typo-
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logical features. Next, PCA was executed on the data. Two clusters of non-creole languages

were distinct from the one creole language cluster. Despite this clustering, there were some

exceptions; some non-creole languages were found near the creole cluster, and some creole

languages were found closer to non-creole cluster. While the clusters are distinct, the creole

and non-creole languages notably overlap in the PCA visualization.

The second task of this paper is to create a model intended to be able to generate creole

languages. It assumes that a creole, defined as a set of features, can be stochastically gener-

ated by mixing the features of a lexifier, substrates, and ’something else’. The model infers

these mixing proportions from observed data, which is based on ancestral mixture concepts

from computational biology. The simulated creole languages from this data mostly picks

features from the ’something else’ category as opposed to the lexifier or substrate, which

supports the universalist creole theory and puts doubt on a feature pool theory (which is

described in chapter 2).

3.2 CREOLE THEORY FOR NLP

3.2.1 CMU Haitian Creole-English Translation System for WMT 2011

This paper by Hewavitharana et al. [2] describes a Haitian Creole to English statis-

tical machine translation system. Its main goal was to create a system that would translate

SMS messages well by using texts written in Haitian Creole sent during the Haiti earth-

quake. I will focus on the method they used that relates directly to unique aspects of creole

languages.

The dataset was composed of data given to them in the competition that included

SMS data and other parallel Haitian Creole/English corpora. Some of the SMS data was

already manually cleaned, but some of it was uncleaned and difficult to translate as-is. As

such, the raw SMS data received special preprocessing. Importantly, this included collapsing

OOV words that were obviously mistakes (had special characters in them) into the nearest

vocabulary words as determined by shortest edit distance to the clean SMS data’s lexicon, as

well as normalizing spelling. Note that Haitian Creole tends to have variation in its orthog-

raphy, leading to many of these alternate spellings of identical words, making this process

important. The spelling normalization was done using French because Haitian Creole did

not have enough data to execute this normally using the noisy channel model. They did

this based on the knowledge that Haitian Creole’s lexicon derives from French, so they ig-

nored the words in the English vocabulary (because the texts contained those as well) and

normalized all other words according to the French probability distribution and into French
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words with French orthography.

3.2.2 Anou Tradir: Experiences In Building Statistical Machine Translation Systems For
Mauritian Languages Creole, English, French

This paper by Dabre et al. [8] describes experimenting with statistical machine

translation systems involving Mauritian Creole, English, and French. Particularly, it exper-

iments with using French as a bridge language for translating English into Creole via the

’transfer method’.

It begins by describing and comparing the grammar and lexicon of Mauritian Creole

to English and French. Essentially, the paper claims that while the Creole has some English

influences (because the nation was ruled by English speakers for a while), it is influenced by

French significantly more in both lexicon and grammar (essentially, it claims that French is

Mauritian Creole’s lexifier).

They developed SMT systems for all combinations of English, French, and Creole

translations that included Creole, and additionally included the system where English is

translated into Creole by a French bridge. The English-French corpus had 80x more lines

than the manually created corpora for Creole-French and Creole-English.

They used a previously proposed ’transfer method’ to get to English to Creole by using

French by translating English-to-French, then French-to-Creole. Both translation steps must

be good for this method to yield usable results. This goes off the assumption that English-

French is good, and that French-Creole is good despite the small corpus size because the

languages are close. The exact method is in the paper and involves scoring several sentences

and intermediate translations of these sentences.

They applied each translation system to a ’hard’ corpus (longer sentences) and an

’easy’ corpus (shorter sentences). For easy sentences, the English-to-Creole bridge transla-

tion worked better than the direct. For hard sentences, the direct translation worked better

than bridge translations. They posit that this is because the French to English hard transla-

tions did not score well, so the bridge translation degraded multiplicatively (as said before,

in order for this method to work well both translations must perform well).

3.2.3 Universal Dependencies Parsing for Colloquial Singaporean English

This paper by Wang et al. [9] seeks to create a Singlish treebank for parsing. The ex-

isting Singlish treebanks are small, but the paper hypothesizes since that English has lexical

and syntactic similarities to English and a large treebank, it can augment the small Singlish
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treebank to create Singlish dependency trees with a neural dependency parsing model using

biaffine attention (using neural stacking to integrate the English portion, which is explained

in chapter 6 in detail). A neurally stacked POS tagger is trained similarly because POS tags

are used in dependency parsing. They note that there are many influences from languages

that are not English, and notes that mixing English into the training cannot account for

many syntactical and lexical occurrences in Singlish.

A POS tagger for Singporean English is created via neural stacking on English. Briefly,

this means that an English POS tagger was trained regularly. Afterward, a conjoined model

consisting of the pretrained English POS tagger as the first layers and the untrained Singa-

porean POS tagger as the last layers; the input goes through the English tagger first, and

then its emission vector (i.e. the final result of the neural network before it is translated into

a part of speech category) is concatenated with the input embedding of the Singaporean

POS tagger, which feeds forward as normal. This conjoined model is trained and loss is

backpropagated through it entirely. Essentially, the features learned by the English tagger

are transferable to the Singaporean tagger via this method, which allows the Singaporean

model to converge further without having more data in its own language. A model for de-

pendency parsing is generated in a very similar manner.

For both POS tagging and dependency parsing, the stacked model performs better

than the unstacked baseline models (English alone or Singlish alone) according to relative

error reduction for POS and UAS and LAS ratings for dependency parsing.

3.3 CONCLUSIONS

The first paper [18] shows that phylogenetic methods that try to reconstruct lan-

guage evolution based on syntactic features places creoles closer in the reconstruction rather

than lexifiers and substrates, showing that creoles are similar syntactically. The second

paper [17] is important because it shows that while creoles are not linearly separable from

non-creoles, they are distinctive. Its explorations into creating non-tree, mixed-parent mod-

els are fascinating as well and possibly support universalist theories of creole genesis. The

third paper [2] introduces the fascinating idea of normalizing the spelling of creole languages

effectively with the very lexically similar lexifier language. The fourth paper [8] is important

because it acknowledges that the lexifier has both lexical and syntactical similarities to the

creole language, which makes it useful to use in a unique transfer learning machine transla-

tion method. The fifth paper [9] suggests a neural model which yields excellent results on a

low-resource creole model when used with a similar high-resource language.

Very interestingly, all 3 machine learning papers utilized the lexifier, and some made
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claims that the lexifier was the best choice of language to use in their models due to its

close syntax to a creole language. While lexifiers do tend to have a slightly closer syntax

to creoles compared to an arbitrary language, as evidenced by the data-driven explorations

in the first two papers, substrates and especially creole languages have much closer syntax.

Consider [9]: its part of speech tagging and dependency parsing models’ success depend

directly on how well the models are able to capture the syntax of a language. The lexicon

itself is abstracted away by the input layer embeddings used (they are turned into feature

vectors representing a word’s semantics, usually independent from explicit lexicons), which

makes the choice of English seem silly; why justify the use of English based on syntax when

other languages, like other creoles, have much closer syntax to Singaporean English? More

broadly, this line of thought makes clear a certain unanswered but very important question:

in these last 2 machine learning models we reviewed, how important is the syntactic simi-

larity of the language that aids the low-resource language? The claim that having similar

syntax is the reason for the choice of lexifiers aiding low-resource creole languages is made,

but is not examined further. This question will be researched later using the neural stacking

model with languages of varying syntactic closeness.
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CHAPTER 4: STANDARD SINGLE-PARENT PHYLOGENY ESTIMATION
ON CREOLE LANGUAGES

As an extension to the type of phylogeny estimation exploration performed in paper

[18] described in detail in chapter 3, we will examine how RAxML [21], a maximum likelihood

phylogeny estimation software, places creole languages in its estimated trees. The placement

will always be ’incorrect’ because of RAxML’s single parent assumption in its evolution

models, but their location in the tree will describe the creole languages’ syntactic typology

relative to other languages. There exist papers that already include creole languages in

their language evolution ’tree of life’, like [22]. This paper and others use lexicostatistical

methods that group any pair of languages closer together if they share identical cognates.

Unsurprisingly, since creoles take the lexicon of their lexifier, the creoles end up very close

to the lexifier in these trees. This is why in this chapter we will study syntactic typology;

it is more exciting to explore. The input to RAxML uses Indo-European languages except

for two creole langauges, Sranan and Haitian Creole. Sranan and Haitian Creole’s lexifiers,

English and French, are in the dataset as well.

4.1 DATA

Morphosyntactic features from APiCS [16] that correspond with WALS [15] fea-

tures were downloaded. The features used and their corresponding APiCS number are

displayed in Table 4.1. From this data, we can represent the WALS features as a matrix.

Each row represents a language, and each column represents a morphosyntactic feature

from WALS/APiCS. Each entry represents the particular language’s value for the corre-

sponding feature as an integer. Missing data is imputed with nearest neighbor imputa-

tions via python library fancyimpute. The data in PHYLIP format can be viewed here:

https://github.com/aviolaine/nlp_for_creoles/tree/master/raxml. Both the cate-

gorical matrix and the binary-encoded matrix can be viewed. The features that correspond

to the categorical matrix’s columns are also shown there.

4.2 EVALUATION METHOD

As inspired by [23], I will evaluate the sections of the tree that do not contain creole

languages by comparing the tree to the generally approved ground truth. Since I am only

using Indo-European languages, the ground truth is very accurate. To be specific, for each
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APiCS Feature Number Feature Name
13 Gender distinctions in personal pronouns
7 Order of relative clause and noun
29 Indefinite articles
58 Alignment of case marking of full noun phrases
73 Predicative noun phrases
103 Polar questions
100 Negative morpheme types
59 Alignment of case marking of personal pronouns
2 Order of possessor and possessum
33 Distance contrasts in demonstratives
71 Noun phrase conjunction and comitative
76 Predicative noun phrases and predicative locative phrases
18 Politeness distinctions in second-person pronouns
72 Nominal and verbal conjunction
4 Order of adposition and noun phrase
54 Suppletion according to tense and aspect
70 Comitatives and instrumentals
36 Sortal numeral classifiers
6 Order of cardinal numeral and noun
8 Order of degree word and adjective
56 The prohibitive
60 Ditransitive constructions with give
91 Applicative constructions
23 Expression of nominal plural meaning
92 Subject relative clauses
62 Expression of pronominal subjects
32 Pronominal and adnominal demonstratives
77 Predicative possession
22 Occurrence of nominal plural markers
1 Order of subject, object, and verb
12 Position of interrogative phrases in content questions
38 Marking of possessor noun phrases
42 Comparative standard marking
3 Order of adjective and noun
15 Inclusive/exclusive distinct. in indpt. personal pronouns
21 Indefinite pronouns
28 Definite articles
5 Order of demonstrative and noun

Table 4.1: APiCS/WALS features used in phylogeny estimation
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Indo-European subfamily, if the subfamily is not exactly a clade in the estimated tree, I will

note how the tree deviates from the subfamily.

4.3 METHODS

Maximum likelihood is used to estimate a phylogeny estimation with RAxML. The

input data is transformed into binary features instead of categorical via a one-hot encoding

(this means that each entry stands for the absence or presence of a feature value). The de-

fault settings are used at http://www.trex.uqam.ca/index.php?action=raxml, but data

type is set to BINARY and substitution model is set to BINCAT, such that the phylogeny is

estimated based on a model that assumes that each binary character can switch from present

to absent and vice versa over time as languages evolve. Specifically, RAxML version 7.2.6

as released by Alexandros Stamatakis in February 2010 [21] was used with the arguments

”./raxmlHPC -m BINCAT -f d -s inputRaxML.phy -n trex”. Note that RAxML does not

produce deterministic results, so the results shown here won’t necessarily be exactly repro-

duced with identical input and commands, particularly branches with low support. This is

why the four trees that are produced slightly differ in estimating Indo-European, non-creole

languages; they decided to put the Indo-European languages with low confidence in different

places each time. RAxML is chosen because it is a standard, well-performing method that

has a single-parent evolutionary assumption. As such, we can examine how creole genesis is

explained under this likely false evolutionary model.

4.4 EVALUATION OF RESULTS

See the generated trees in Figure 4.1-4.4. These figures can also be seen here: https:

//github.com/aviolaine/nlp_for_creoles/tree/master/raxml. Each language name is

limited to 5 characters maximum in the figure (e.g. Sranan is cut short to Srana). The

languages used, not including the creoles, are from the Indo-European subfamilies Albanian,

Baltic, Celtic, Germanic, Indic, Iranian, Romance, and Slavic. I define their subfamilies

identically to how the WALS database defines them. Some subfamilies have more languages

than others in these experiments. Four trees are estimated: one with all of these languages,

one with all of these languages except Sranan, one with all of these languages except Haitian

Creole, and one with all of these languages without the creoles.
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• No creoles:

– Celtic: Irish and Cornish are placed in the Romance family, but are closer than

not.

– Germanic: All of the Germanic languages are close.

– Indic: Bengali is separated from the other Indic languages by Pashto and Balto-

Slavic languages.

– Iranian: Pashto and Persian are extremely far apart.

– Romance: All of the Romance languages are close.

– Slavic: Bulgarian has grouped with Germanic languages.

• Just Sranan: Sranan appears nearest to English in the Germanic section, but has

a large distance from English. English is Sranan’s lexifier, so this supports a creole

having a similar lexifier, at least compared to many other arbitrary languages, in terms

of syntactic closeness.

• Just Haitian Creole: Haitian Creole is sibling to French and has a long branch

distance to French. This also supports that a creole has a syntactic similarity to its

lexifier.

• Both creoles: Haitian Creole and Sranan are siblings. The sibling of their clade is En-

glish, which is still a large branch distance away. Haitian Creole is farther from English

than Sranan. While English is close to Sranan, it is even closer to another completely

unrelated creole language, which supports the universal theory of creole genesis; note

that this finding doesn’t disregard the fact that lexifiers can be syntactically similar

to creoles as well. This is an interesting result, because Sranan and Haitian Creole de-

veloped in two separate countries, and their existence in the same region cannot alone

account for their syntactic closeness compared to all other Indo-European languages

in this data.

4.5 SUMMARY OF FINDINGS

Even though RAxML’s binary model of evolution on syntactic WALS feature is

inappropriate because the model of evolution is tree-like, the trees produced still say much

about the morphosyntactic closeness of creole languages compared to themselves and other

languages. We can see that according to RAxML, the two creole languages studied are
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syntactically close to their lexifier when compared to any arbitrary language, but the two

creole languages are much closer to each other than they are to their lexifiers. Lexifiers indeed

have similar syntactic features compared to their creole languages and are not an awful choice

in the low-resource multlingual models with creole languages as a target discussed in Chapter

3, but creole languages are much closer to each other syntactically and have the potential

to transfer more syntactic information. This idea should not be disregarded because the

potential of transfering more syntactic information could very much boost the performance

of low-resource languages on NLP tasks. Lastly, it is concerning how the RAxML trees

sometimes fail at correctly estimating subfamilies based on syntactic WALS features; it’s

not abysmal, but it could be better and lexicostatistical trees like in [22] tend reconstruct

subfamilies more accurately. Perhaps the trees found in [18] could be examined for their

correctness to ground truth subfamilies as well?
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CHAPTER 5: NEURAL LANGUAGE MODEL

In order to demonstrate techniques for low-resource creole languages in neural mod-

els, we will be focusing on neural language models. In particular, the baseline model is a

word-level LSTM language model with pre-trained FastText embeddings used at the input

layer. Language models require no labelled data, so creole languages with no labelled data

can still create language models. Language models are useful in NLP because they accu-

rately represent the distribution of words over a language given a context. In particular,

having a good language model is essential for NLP tasks like machine translation [24], or

any task that requires language generation. For example, some language models can easily

generate language word-by-word: given a word and its context, it can choose a probable

word to occur next. Also, keep in mind that the methods recommended in chapter 6 can

apply to many neural models for NLP, not just language modelling.

First I will describe the language model created by Mikolov in [25], called the recur-

rent neural network language model or RNNLM. Its purpose is to learn patterns of variable

length in sequences by mimicking how neurons in a human brain have short-term memory.

Its input layer describes a single word via a 1 of N encoding, w(t), where a vector of length

N is described where all entries are 0 except for one entry, which is set to 1, which thus

identifies the vector as corresponding to a unique vocabulary word. No two unique vocab-

ulary words can share the same vector via this encoding. This input layer is concatenated

with the hidden layer from the previous timestep, which is then multiplied by a vector of

activation weights and put through a sigmoid function f to create hidden layer vector sj(t).

Then, that hidden layer vector is multiplied by another vector of weights and put through

a softmax function g in order to obtain outputs that define a probability distribution over

the words in the vocabulary, which is the result for the timestep. This process continues

for all timesteps (the length of the sequence of words). Taken directly from [25], Equations

5.1-5.3 describe a mathematical representations of each layer, input, hidden, and output, at

a timestep:

x(t) = [w(t)T s(t− 1)T ]T (5.1)

sj(t) = f(Σixi(t)uji) (5.2)

yk(t) = g(Σjsj(t)vkj) (5.3)

Backpropagation occurs through time in this model. This means that the error is propagated

through a certain number of timesteps in order to update the weights of the network during

training.
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Lately, LSTM cells [26] have been used in recurrent neural networks like the one just

described, and they have a stellar performance and language modelling while remaining

efficient. Standing for long short term memory, they attempt to hold onto information that

was seen an arbitrarily long number of cells in the past. Since humans producing natural

language know about things that happened an arbitrary amount of time into the past, this

knowledge influences what they will say next (e.g. which gendered pronoun should I use?)

Briefly, LSTM cells accomplish this by keeping a cell state in each cell of a timestep. Gates

choose which elements of this cell state to forget and remember based on previous hidden

states and the current word, and a cell’s hidden layer is based directly on this cell state.

Practically, this means that LSTM cells are great at learning which information is important

to keep track of based on context and the word itself.

Finally, I will describe input embeddings. In the RNNLM described above, recall that

input layer represented words via a 1 of N encoding; this means that all words are equally

different from each other. It is obvious that this is not the case; certain words are much

closer in similarity than others. Input embeddings aim to describe the semantic meaning of

each word as an n-dimensional feature vector. To create input embeddings, an easy way is to

run a language model and map each word to a vector initialized randomly; allow the weights

in these vectors to be adjusted during training by gradients. The resulting weights of all of

these vectors for all of these words should now be decent approximations of their semantic

meaning relative to each other. More complex methods exist for creating input embeddings

[27], but that is the general idea. Pre-trained input embeddings exist which are trained on

enormous amounts of data, and the more data one uses the better the input embeddings

become. These pre-trained input embeddings are frequently used in tasks not even related

to language modelling and have become almost necessary for models to be competitive with

the state-of-the-art. All of the models in chapter 6 will use pre-trained FastText embeddings

[28]. FastText embeddings have a special property that prevents words from being out-

of-vocabulary because the embeddings are created from all of the subwords in a word; this

technique is also assumed to make the embeddings more representative of a word’s semantics

and morphology.
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CHAPTER 6: METHODS TO IMPROVE LOW-RESOURCE LANGUAGE
PERFORMANCE ON NEURAL MODELS

This chapter will introduce methods that were used to try to improve the language

modelling of low-resource creole languages. Each method utilizes concepts from linguistic

theory and creole genesis about creole languages.

6.1 CROSS-LINGUAL PARAMETER SHARING

This method is derived from [7], which hypothesizes that since the hidden layers

of a model are feature extractors and the last layer performs logistic regression (which is

language-dependent), hidden layers are transferable between models of different languages.

The experiments in the paper support this hypothesis, and it seems that certain languages

work better than others when their parameters are shared. This is an intriguing result, but

the reason as to why certain languages do better is not explored (which is what we will explore

later for some models). We personally found that this method did not work well for language

modelling of text, with some models consistently performing worse than the baseline that

did not use cross-lingual hidden parameter layer sharing, so its results are not included.

The method in the paper likely worked well because it used speech data and its input was

represented as phonemes. Phonemes are absolutely more language independent (albeit not

entirely - consider how many languages use clicks) than FastText input embeddings are.

We assume that this method does not work well when the semantic spaces of the input

embeddings are not perfectly aligned (which they will never be between two text languages

unless they are trained together explicitly).

6.2 CROSS-LINGUAL NEURAL STACKING

This method is derived from [6] and [9]. Notably, the latter is described briefly

in Chapter 3 and uses English as the language to support the target low-resource creole

language of Singaporean English, Singlish (English is Singlish’s lexifier). In contrast to the

parameter sharing model, this model successfully allows us to lower perplexity on creole

languages, so in chapter 8 we will study which high-resource languages allow this model to

perform the best and why. As such, I will explain this model in detail here.

See figure 6.1. The first few layers of this model are from a pretrained language model

of a high-resource language, but the output layer which performs a softmax is not included.

This pretrained language model contains syntactic features extracted from this language, as
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Figure 6.1: A Single Timestep of a Neural Stacking Language Model
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any good language model should. See the following equations 6.1 and 6.2, recreated directly

from [6]:

~wi
a = tanh(Ws~hi) (6.1)

~riw = ~wi
c ⊕ ~wi

a (6.2)

Tanh of the final hidden vector from the high-resource pretrained model, ~hi, times a

weight matrix Ws is known as is ~wi
a. Concatenate ~wi

a with the original input embedding of

the word ~wi
c, which gives us ~riw, a vector that effectively encodes all of the information from

the pretrained high-resource language but also the input word. Afterward, a low-resource

language is trained as normal but with this altered input embedding. Backpropagation

occurs through the whole stacked model. It is called stacked because it effectively utilizes

pretraining to combine two models into one, even if the models are trained on different

languages.

In review, the steps to training this model are:

• Pretrain a language model for high-resource language (e.g. French) in its entirety

• Set the first layers of the neural stacking model to be the entirety of the pretrained

high-resource language model, but do not include the output layer (which performs an

operation to convert the output layer into a distribution over vocabulary words)

• The vector produced as the output at the last hidden layer, ~hi, will be multiplied by a

matrix of weights, Ws, and the tanh of it all will be taken to get ~wi
a (see equation 6.1)

• The above vector is concatenated with the original input embedding for the word,

~wi
c, which will be used as the new input embedding, ~riw. This step effectively deeply

encodes syntactic information from the high-resource language model into the low-

resource language model

• The rest of the layers are a language model for the low-resource language, including a

regular output layer

• Backpropagation occurs throughout the whole model, including the layers from the

pretrained high-resource language model. The pretrained layers are allowed to change

according to computed gradients

To review, [9] justified its choice of English to serve as the pretrained model in their

stacking model due to its lexical and syntactic similarities to Singaporean English, the low-

resource language of the model they wished to improve. Two things are striking about that

claim:
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• The lexical similarity of the two languages is not useful in the way that they appear

to describe it is. Recall input embeddings: they turn word tokens into feature vectors

representing the semantics of the word. The fact that Singaporean English establishes

the majority of its lexicon based on English words doesn’t really affect how well the

neural stacking or any neural model will perform; that’s why it’s possible to use a

language like Chinese at all in these cross-lingual model. Even though Chinese is

lexically extremely different (logograms vs. phonograms), each Chinese logogram is

still translated into the same input embedding vector as every other language. The

only way in which a similar lexicon would matter for picking which model to use as

the pretrained model in neural stacking is to say that if two languages have similar

lexicons, the semantic space defined by the two languages should also be similar and

can possibly be mapped but even this reasoning seems unsure.

• As we demonstrated in chapter 4, there does exist a syntactic similarity that is above

average between creole languages and their lexifiers. The degree of syntactic similarity

between creole and lexifier differs per creole. However, it is generally true that creole

languages are much closer to each other than to any other languages, including their

lexifier, as demonstrated in chapter 4 and [18]. For this reason, the syntactic similarity

of English and Singaporean English is not so compelling when you see that languages

like Haitian Creole, which has an exceptional amount of data available for a creole

language, have much greater syntactic similarity.

As such, the experiments on neural stacking models in chapter 8 will focus on which

pretrained languages lower the perplexity of creole language models the most and why.

Specifically, similarity of lexicon and syntax will be examined as a possible factor in reducing

perplexity.

6.3 PRE-TRAINED EMBEDDING ALIGNMENT

Recall the definition of a pre-trained embedding from chapter 5. Pre-trained input

embeddings are an excellent way to enhance a neural model. However, each set of pre-trained

embeddings describe different semantic spaces. For example, imagine that two languages X

and Y have pre-trained embeddings trained on data in their respective languages. This

means that if language X borrows a word from language Y , language X cannot simply

borrow the pre-trained embedding for the word in language Y to describe the semantics of

the word. This is because even though the words are the same, the embeddings for both

languages are described in separate spaces because the embeddings were trained separately.
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Consider the above two sections. Hidden parameter sharing directly transfers a high

resource model’s hidden layer parameters to initialize a low-resource language model. Since

each language’s input embeddings have a different semantic space, despite the hypothesis

Ghoshal made for speech neural networks, this means that the hidden layer parameters also

have to be in a different space this means that the features from the hidden layers cannot

be directly transferred to a different language model. The same logic goes for the neural

stacking model in Figure 6.1, a Sranan word embedding interacts with hidden layers that

are trained to interact with Haitian Creole word embeddings. Unfortunately, Sranan and

Haitian Creole have embeddings in different semantic spaces, so it will be difficult for the

model to reconstitute the features learned by the Haitian Creole model during pretraining.

Consider what would happen if the embeddings were in the same semantic space. If

this were true, it would follow that the hidden layers would describe the same features across

models. This seems ideal we would be able to transfer knowledge from pretraining a separate

language model much more easily with neural stacking! Thankfully, there is a method to

do this defined by [29]. Given a list of vectors thought to have identical meanings in both

languages, this method finds the transformation between the two vector spaces that will

’rotate’ them into the same vector space. They find a rotation that minimizes the mean

distance between a set of paired points (so that a pair of points will be words we have iden-

tified as having identical meanings in two languages). This transformation does not form a

perfect mapping, but it definitely will allow a neural stacking model to be able to transfer

the syntactic features it found during pretraining the high-resource language.

In chapter 8, we will align the high resource language’s input embeddings to the low

resource language’s input embeddings. Since we want to test how neural stacking will de-

crease the perplexity of the model when different languages are used as a pretrained high

resource model, aligning the embeddings of both models to the same semantic space will

then mean that the two models are sharing syntactic features explicitly. It follows that if

the syntactic features between the two languages are similar, if the high-resource and low-

resource languages in a neural stacking model are more syntactically similar, the perplexity

will be lower because more features were learned during pretraining.

6.4 SPELLING NORMALIZATION TO LEXIFIER

We will shift gears to discussing how to take advantage of lexifiers when attempting

to improve creole language models. Lexifiers are known to provide the basis for the lexicon

of their creole languages.

This idea is inspired directly from [2]. Creoles frequently do not have a standardized
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orthography. As such, words that have the same semantic and contextual meaning have

multiple spellings in datasets. Generally, the creoles’ lexifiers tend to have a more standard-

ized orthography, and the lexicons of the creoles and the lexifier highly match by definition.

As such, this low-resource method is to normalize each word in the dataset so that it maps

to the closest French word by minimizing edit distance. This will effectively limit the noise

present in the variant spellings in the dataset. More sophisticated normalization techniques

could result in less errors and lower perplexity.

6.5 USING THE LEXIFIER’S EMBEDDINGS DIRECTLY

A simple idea to experiment with is seeing if using the lexifier’s embeddings instead

of the creole’s embeddings will yield better performance of the creole model. Since we are

using FastText, the embeddings produced depend on n-grams. If the n-grams between lexifier

and creole are similar enough and maintain enough semantic meaning between each other

if they are similar, this could be very useful. This is because most lexifiers are extremely

high resource languages due to European colonization (so languages like Portuguese, French,

English, and Dutch are very common lexifiers), so their embeddings will be much more highly

trained than a low resource creole’s embedding. If the n-grams between the lexifier and the

creole are not similar enough, the spelling normalization defined in the last section can be

performed in tandem with this method to make the n-grams more similar at a potential loss

to correct semantic meaning of n-grams.
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CHAPTER 7: EXPERIMENTS

All experiments implement a word language model in PyTorch. Each model uses

an LSTM with 2 hidden layers of dimension 200 and pre-trained 300-dimensional FastText

embeddings at the input layer. Each model was trained for 20 epochs. The hyperparameters

used are: an evaluation and test batch size of 10, a training batch size of 20, and a bptt

length of 35. The learning rate was divided by 4 each time the perplexity does not decrease

on the validiation set after an epoch. The test score is determined by the model saved at the

epoch that achieved the lowest perplexity, and only the test scores are shown. The models

were run on an Intel Xeon CPU E5-2640 v42.4Ghz processor, 512GB of memory, and GTX

1080 TI 11GB GPUs. Since there is very little data for the low resource languages in these

experiments, the changes in perplexity are thus rather low. (None of these methods explicitly

add data to the low resource language.) This is fine, though, because the low changes in

perplexity are inevitable. It follows that the methods and suggestions in this section would

accordingly cause more drastic drops in perplexity if there were more data.

7.1 DATASETS

Table 7.1 describes the languages in use. Only considered (except for Sranan and Lin-

gala) if the language had a bible available at https://github.com/christos-c/bible-corpus,

these languages were selected by examining some APiCS [16] morphosyntactic features that

also exist on WALS [15], particularly the features shown in Table 4.1, and only using lan-

guages which have 30 or more of these features available.

In one experiment, our goal was to determine which language decreased perplexity

of a low-resource creole language the most and to discover why. In order to validly com-

pare the effects of language choice in neural stacking, the pretrained high-resource models

Afrikaans Chinese Farsi
Finnish German Greek
Hebrew Hindi Hungarian

Japanese Kannada Malagasy
Maori Burmese Russian

Spanish Tagalog Turkish
Vietnamese English French

Haitian Creole Sranan Lingala

Table 7.1: Languages used
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must have equivalent amounts of data. As such, we used translations of the bible in each

language in order to get about equal amounts of data per pretrained model. Unfortu-

nately, in the case of Sranan and Lingala, only New Testament translations could be found

at http://ebible.org/pdf/srnNT/ and http://gospelgo.com/f/lingala_nt.htm. All

other bible translations are found here: https://github.com/christos-c/bible-corpus.

These bibles and new testaments were then also used for other experiments. The data is

preprocessed and tokenized with the same script used to create the pretrained FastText em-

beddings. The data is split 80/10/10 into a training, validiation, and test set respectively.

The data was split per book so that 80% of each book in the bible is in the training set and

10% of each book in the bible is in the validation set.

7.2 NEURAL STACKING

The experiments in this section will attempt to identify the factor that explains which high-

resource pretrained language model will aid a low-resouce language in lowering its perplexity

the most via neural stacking. In this section, all neural stacking models’ pretrained language

model use pretrained FastText embeddings that are aligned to the low resource model; as

explained in chapter 6, this will help the neural stacking model directly transfer the syntactic

features it learned during training to the low resource model. The factors examined are

syntactic similarity and lexical similarity. In this section, all tokens that cannot be resolved

to a pretrained embedding become the same token with the same embedding, ’<UNK>’,

which is a special token that represents rare words.

7.2.1 Syntactic and Lexical Similarity

Define v and w as vectors that represent values each language has for all word

order features from the APiCS-WALS database. The features that define word order in

the APiCS-WALS database are features 1, 2, 3, 4, 5, 6, 7, 8, and 12 as defined in Table

4.1. Throw out all entries in v and w for which one vector has missing a value. We define

syntactic similarity between two languages as:

ssim(v,w) =
|v| −H(v,w)

|v|
(7.1)

Word order is very relevant to language modelling, which explicitly must learn word order

and thus must encode them as features.

Define y and z as vectors that represent which cognate type each language has for all

32



200 words on the Swadesh list (read [22] for more clarification on this terminology). If two

languages share a cognate, their values for the Swadesh list word in this vector are identical;

otherwise the values are not identical. We define lexical similarity between two languages

as:

lsim(y, z) =
|y| −H(y, z)

|y|
(7.2)

This is also known as the lexicostatistical percentage in [22], which is also the paper from

which I collect these similarities.

7.2.2 Do syntax and lexical similarity increase as perplexity decreases?

Figures 7.1, 7.2, and 7.3 show the graphs of syntactical similarity of a language

pair vs. the difference of the baseline on the low-resource language alone minus the neural

stacking model on the language pair. In other words, each point on this graph denotes how

much a language pair reduced the perplexity in its neural stacking model where the creole

language being plotted is the low-resource language, and the other language being plotted

is the high-resource language that is pretrained.

Figures 7.4 and 7.5 show the same, but the x-axis is instead lexical similarity based on lex-

icostatistical percentages from [22]. If the high resource language was not Indo-European,

the lexical similarity is set to 0. Since Lingala does not have a Indo-European lexifier, there

was no point in showing its graph because its lexical similarity would always be 0.

In all of the graphs of syntactic similarity, 7.1-7.3, there is a positive correlation between

difference in perplexity and word order / syntactic similarity. This means that the perplexity

is reduced further when using a neural stacking model if the pretrained model has a more

similar word order to the creole language! It appears to always be a good idea to choose a

language that is more syntactically similar when creating a neural stacking model.

In the graphs of lexical similarity, 7.4 has a negative correlation and 7.5 has positive cor-

relation. For figure 7.4, this means that for Haitian Creole, choosing a syntatically similar

language is vastly superior to choosing a lexically similar language. For figure 7.5, choosing

a lexically similar language is only slightly less superior to choosing a syntactically similar

language; which is reasonable, because lexically similar languages and lexifiers are somewhat

syntactically close as well as demonstrated in chapter 4. This shows that choices that are

lexically closer to a creole language are not necessarily bad, but as shown in figure 7.4, for

some creoles lexically close languages can be awful at reducing perplexity; it just depends

on the individual language.

Tables 7.2-7.4 reiterate the same information in a different format. The same values
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Figure 7.1: Haitian creole’s perplexity reduction vs. syntactic similarity

Figure 7.2: Sranan’s perplexity reduction vs. syntactic similarity
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.png

Figure 7.3: Haitian creole’s perplexity reduction vs. lexical similarity

.png

Figure 7.4: Sranan’s perplexity reduction vs. lexical similarity
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Figure 7.5: Lingala’s perplexity reduction vs. syntactic similarity

Avg. ppl reduction Syn. similarity Lex. similarity
Creoles (w Afrikaans) 1.05 0.70 0.13

Creoles (w/o Afrikaans) 1.04 0.78 0.09
Romance langs 0.32 0.67 0.75

Indo-European langs 0.58 0.54 0.28
All langs 0.63 0.48 0.12

Table 7.2: Haitian Creole Neural Stacking by Group

Avg. ppl reduction Syn. similarity Lex. similarity
Creoles (w Afrikaans) 1.20 0.70 0.26

Creoles (w/o Afrikaans) 1.16 0.72 0.09
Germanic langs (w Afrikaans) 1.25 0.63 0.61

Germanic langs (w/o Afrikaans) 1.23 0.611 0.62
Indo-European langs 0.98 0.58 0.30

All langs 1.05 0.49 0.13

Table 7.3: Sranan Neural Stacking by Group
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Average ppl reduction Word order similarity
Creoles (w Afrikaans) 1.62 0.56

Creoles (w/o Afrikaans) 1.42 0.61
All langs 0.87 0.41

Table 7.4: Lingala Neural Stacking by Group

for perplexity are examined, but this time they are grouped and averaged alongside the

group’s average similarity metrics. Note that Afrikaans is singled out because it is both

Germanic and partially considered a creole language.

In table 7.2, the grouping with all creoles yields the highest average perplexity reduc-

tion. This group also has a very low lexical similarity and a very high word order/syntactic

similarity, which further supports the fact that similar syntax reduces perplexity but not

having lexical similarity does not hinder it. In fact, languages in the same language family

for Haitian Creole actually did not reduce perplexity as much as languages in other fami-

lies. In table 7.3, Germanic languages did the best at reducing perplexity slimly followed by

creole languages. This shows that sometimes lexifiers and languages in the lexifiers’ family

can improve the model’s performance as well. Note that creoles did very well despite only

having a rather low 0.26 lexical similarity on average; it’s likely due to the high syntactic

similarity. In table 7.4, creoles lessen reduction more than all languages on average do while

maintaining a higher syntactic similarity again.

7.2.3 Why examine this for creole languages?

There is a subtle reason for why examining this data for creole languages as the

low-resource language in neural stacking is more interesting than for any other language.

It is true that these results will likely generalize to non-creoles, but keep this in mind: for

languages that undergo single parent evolution, if two pairs of languages have similar lexicon,

it is very likely that the two pairs of languages also have a similar syntax. As examined in

chapter 3 and 4, we know that this is not the case for creole languages. Due to their odd

genesis, there are languages for which they are lexically close to but not as syntactically close

to (lexifiers and languages in their family). Similarly, there are languages for which they are

extremely syntactically close to but are not lexically close to at all (other creole languages).

As such, the choice of which language to use for creole languages is more complex given

these two factors.
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Technique Reduction in ppl from baseline
Use French embeddings. 0.69

Normalize to French, use Haitian Creole embeddings. 0.84
Normalize to French, use French embeddings. -0.62

Table 7.5: Using French to decrease the perplexity of a Haitian Creole model

Technique Reduction in ppl from baseline
Use English embeddings. 0.54

Normalize to English, use Sranan embeddings. 0.23
Normalize to English, use English embeddings. 0.79

Table 7.6: Using English to decrease the perplexity of a Sranan model

7.2.4 Analysis

Other creole languages as a group are the best or very close to the best at reducing

perplexity for every low resource creole. Keep in mind that this is while two of the three

creoles, Sranan and Lingala, have less than half the data of all other languages because only

a New Testament is available for them. Creoles tend to have very high syntactic similar but

very low lexical similarity, which leads us to believe that syntax is the most important factor

in multilingual neural models. As we mentioned in the above section, creole languages gave

us the unique opportunity to decouple lexical similarity and syntactic similarity to examine

which one is truly the most salient. Finally, we propose that high resource languages in

a multilingual model should be syntactically close in order to best increase performance.

This is not a hard rule, as there are still data points on Figures 7.1-7.5 that have low

syntax similarity but reduced perplexity greatly. Nonetheless, the correlations with syntax

and perplexity reduction are consistent across languages while the correlations with lexical

similarity and perplexity reduction are not.

7.3 SPELLING NORMALIZATION AND ALTERNATE EMBEDDINGS

Instead of using <UNK> tokens like the previous section, the models in these sec-

tions assign out of vocabulary words random embeddings. Despite lexical similarity

not being so important in terms of choice of language in a multilingual neural model, lexifiers

can still be used in interesting ways like described in chapter 6. Table 7.5 and 7.6 hold the

results of spelling normalization to a lexifier with and without using lexifier embeddings. It

also holds the results of just using lexifier embeddings with spelling normalization.
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In table 7.5, the best reduction comes from normalizing words to French from Haitian

Creole and then using Haitian Creole embeddings. In table 7.6, the best reduction comes

from normalizing words to English from Sranan and then using English embeddings. Nor-

malization seems to help in both cases by reducing variance in spelling of items with similar

semantics. However, why does Haitian Creole prefer using its own embeddings over a lexifier?

The answer is simple: FastText embeddings are trained on Wikipedia articles, and there are

a lot of articles for Haitian Creole. In fact, there are fifty times more articles written in

Haitian Creole than there are in Sranan. Haitian Creole’s embeddings appear to be good

enough such that using another language’s embeddings, no matter how good and similar

they are, does not help (in fact, it does worse than the baseline the Haitian Creole embed-

dings help that much). However, in Sranan’s case, only 1000 articles are written in Sranan

in Wikipedia, so its embeddings are pretty bad. That is why normalizing the language and

using English embeddings helps not only does it reduce noise in the Sranan vocabulary, but

it gets to use the much superior English embeddings well. All in all, utilizing lexifiers is a

useful multilingual approach for creating better language models.
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CHAPTER 8: CONCLUSION

Multilingual neural models give languages with little data a chance to obtain bet-

ter performance by taking advantage of the features that a model in another language has

learned by pretraining. In order to transfer these features effectively, we have found that

using a neural stacking method with embeddings in the same semantic space works well for

the task of creating a language model. Furthermore, through examining low-resource creole

languages’ typology and how they are similar and dissimilar to other languages, we came to

the conclusion that syntactic similarity is the best metric for choosing a high resource model

to pretrain for these multilingual models, and not so much lexical similarity. Of course, other

factors have to be taken into account besides syntactic similarity, like the amount of data

available to train the high resource language’s pretrained model, but the fact that creole

languages Sranan and Lingala acting as the ’high resource language’ with half the amount of

data of other more dissimilar languages could perform as well or better at reducing perplex-

ity shows that syntactic similarity is a strong factor in how well these multilingual neural

language models will perform.

Lexical similarity should not be totally disregarded, however. Once again, by examin-

ing how low-resource creole languages performed in terms of relative perplexity difference,

normalizing the spelling of languages with less standardized orthography helped decrease

language model perplexity when creole languages were normalized to vocabulary in their

lexifier. In the case of Sranan, which had poorly trained embeddings due to lack of re-

sources, spelling normalization in combination with using its lexifier’s embeddings increased

performance even more.

Creole languages are fascinating and deserve to be more well-studied computationally.

Much is unknown or unsure about them still, but uncovering their mysteries can tell us a

lot about how language evolution and the universal language principles of the human mind

operate.
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