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ABSTRACT

Indoor localization systems have yet to be fully realized, but recent research is getting

close to providing a cheap, system that will change the way that we interact with indoor

computing systems. Internet of Things is growing and providing cheap, alternatives that

may help realize this goal. This thesis examines the potential of a localization system using

Bluetooth low energy beacons and the application of context-aware policy enforcement on

mobile devices through discussion and implementation.

The core of the idea is to develop a basic framework that encompasses the basis of context,

policies, and how context can tie into policy enforcement. We show how context-based

policies can be formalized and implemented on a mobile architecture with two different case

studies.

In addition to the policy engine, research is done into developing a cheap indoor localiza-

tion system to power the context-based policies in a cheap and low setup cost method based

off of existing RSSI distance estimation research. Bluetooth low energy beacons are explored

as a cheap method to enable localization indoors by using the beacons to collect signal read-

ings and create distance models empirically. Further techniques are discussed to enhance

the absolute error through signal smoothing and filtering. Finally, the system architecture

is fully explained and implemented with real-world tests in multiple environments.
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CHAPTER 1: INTRODUCTION

Localization technologies is a rapidly growing field with more and more resources poured

into developing it each year. A promising avenue of development is through the Internet

of Things, which can help lower the cost of these technologies through the sensor heavy

devices produced. This thesis focuses on the intersection between the Internet of Things and

localization to develop a framework that allows for context-aware policies to be enforced on

mobile devices.

1.1 MOTIVATION

Internet of Things (IoT) is becoming more popular due to their cheap nature and how

they integrate sensors to generate massive amounts of data with an ease of access that has

never been matched before. In the future, IoT is expected to massively contribute to both

home and business applications [1]. Most initial work on IoT has explored radio-frequency

identification (RFID) tags but [2] [3] later work explores more complex technologies including

Bluetooth. One potential area of exploration is using cheap IoT devices, which include

Bluetooth radios, to formalize and develop an indoor positioning system (IPS) that is cheap

and easy to deploy in buildings across the globe.

IPS aims to provide an easy way to track user locations while indoors, very similar to

how GPS functions outdoors. However, due to the nature of indoor environments, there can

be a lot more variation in a more limited space. The importance and difficulty of solving

these challenges are further emphasized when Microsoft holds a yearly Indoor Localization

Competition [4]. These challenges include the placement of furniture, material of the walls,

multipath propagation, loss of line of sight, and more. All of these challenges make it difficult

to develop solutions that are accurate in unique environments. To attempt to address these

problems, there is a lot of research and development being done. For example, initial work

in the early and mid-2000s looked into using RFID and Wifi access points as methods to

determine a user’s location in a building [5] [6] [7]. Other work has looked into the fusion

of phone sensor data with Wifi, RFID, Bluetooth, and more [8] but no system really solves

the localization problem [9].

A potentially useful vector to attack this problem is through the use of beacons. Beacons

are cheap and energy efficient and also provide plentiful sensor information. If successful,

beacons can provide a cheap avenue of deployment with very little setup time and cost.

One common type of these beacons is Bluetooth Low Energy (BLE) beacons. BLE beacons
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are powered by Bluetooth Low Energy technology and they are relatively cheap while also

providing an easy way to stream sensor data (temperature, humidity, etc.) to any listening

clients. These beacons and other similar devices being used in various technologies [10].

Using these beacons can potentially allow for cheap localization to enable context-aware

applications [11] [12]. This thesis explores the intersection between IPS and IoT to try to

develop more context-aware applications by using context-aware policies on mobile devices.

One example could be in the health care industry. Getting doctors the correct patients

charts and information is a necessary but time-consuming process. With a context-aware

system, a doctor could automatically be given the appropriate charts and information, sim-

plifying the process and getting the patients the help they need faster. In a different context,

students in schools could have their phones silenced only in the classroom and during class

to help facilitate a learning environment. New buildings are difficult to navigate, but a

context-aware system could give auditory guidance to help the visually impaired navigate

the building. There are a countless number of different situations where context-aware poli-

cies could change the way that we interact with the world and this thesis tries to address

some of the current problems.

1.2 CONTRIBUTIONS

This thesis explores the formalization and development of a context-aware policy system

and engine for enforcing policies on a mobile platform. In addition, there is exploratory

work done on developing a localization system using BLE beacons to ensure a low-cost

development and deployment. The main contributions of this thesis includes:

1. We formulated a set of policy actions given application and context. Outlined how to

properly enforce the given policies on a myriad of mobile devices.

2. We designed and implemented a context-aware policy enforcement engine using the

formalization and demonstrated two different case studies with the system.

3. Did preliminary research into a cheap IPS solution using Bluetooth Low Energy bea-

cons.

(a) We discuss the development of an appropriate model that approximates the dis-

tance from a given device to a BLE beacon using the received signals.

(b) We tested the overall feasibility of using BLE beacons to determine a user’s loca-

tion within a building in multiple real-world environments.
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1.3 THESIS STRUCTURE

The rest of the thesis is structured as follows:

• Chapter 2 introduces the necessary background concepts needed to understand context-

aware policies and fundamental technologies used in the localization system.

• Chapter 3 explains the underlying framework and formalization for context-aware poli-

cies and their enforcement of mobile devices.

• Chapter 4 discusses the experimental design behind an economical localization system.

• Chapter 5 highlights all the experiments and results from the localization system de-

velopment and setup.

• Chapter 6 discusses the results and explores potential future work.

• Chapter 7 concludes the thesis.
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CHAPTER 2: BACKGROUND

2.1 CONTEXT-AWARE POLICY

This section will detail basic background information about the context-aware policies.

The basic background is given for conceptualizing context and policies before a formalized

definition is given in Chapter 3.

2.1.1 Mobile Device and OS

A mobile device is a broad term that can refer to a wide range of devices. For this work,

we will only be taking a look at smartphones and examining Android in particular. Android

is an open source operating system designed for mobile devices. It is a software stack on top

of the Linux kernel with a middleware layer and user applications on top [13]. Due to the

ease of development, this is the mobile OS used throughout the rest of this work.

2.1.2 Context

Context is made up of three different factors here. However, it can be expanded to include

more variables as well.

• Location

• Server Time

• Current User

Location can have multiple levels of detail. The true position is where we know the location

of the device in (x, y) coordinates. This level of accuracy is hard to achieve due to a number

of factors that will be discussed later. For this thesis, we need the granularity of determining

which room a given device is in to derive context. For example, this is distinguishing if a

device is a classroom or an office.

Server time is determining when exactly the policy should be enforced. Our policy engine

is running on a centralized server setup and the server time is defined as the current system

time that the server runs on. Some policies defined may have constraints on when they

should be applied and as a result, have a defined time range dictated by the server time.

An example of this could be enforcing silenced phones only during class hours to develop a

better learning environment.
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The user is another factor that plays into context. Only certain users should get specific

policies applied to them. For example, only students should their phones silenced during

lecture but teachers should not get their phones silenced during lectures due to potential

emergencies.

2.1.3 Policy

A policy is a set of statements or actions that will on top of Android. Android has var-

ious settings and applications that can be interacted with. The set of actions a policy can

perform will directly change the values stored in these settings or send messages/intents to

applications to perform complex procedures and methods. For example, a device configura-

tion policy will any setting in Android and deals with any system variable change. Whereas

an application policy will deal with user applications to help give context and procedures to

various applications.

2.2 INDOOR POSITIONING SYSTEM

The following sections cover information related to indoor positioning/localization tech-

nologies.

2.2.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a Bluetooth protocol that is built for low-power wireless

technology. Tests have shown that BLE is very energy efficient and can be used for a variety

of applications [14]. These applications generally involve short-range control or monitoring

applications [15]. It is expected that BLE is to be incorporated into billions of devices in the

future. Since this technology is designed to be low energy, BLE devices transmit differently

from normal Bluetooth devices[16].

All BLE devices will use the Generic Attribute Profile (GATT) that is documented in the

BLE specifications. In GATT there are the following:

• Client

A device that initiates commands and requests. This would generally be a user’s

smartphone.

• Server
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Figure 2.1: Diagram of the Bluetooth Low Energy broadcast spectrum. The three advertising
channels are highlighted and can be seen as spread out across the spectrum. [17]

A beacon or other device that receives the client’s commands and requests and returns

responses. An example would be a humidity sensor.

• Characteristic

A data value that is being transferred. For example, this would be the current tem-

perature read by a sensor.

• Service

A collection of characteristics. An example would be a humidity reading along with a

time stamp since the last measurements.

• Descriptor

Provides additional information about a characteristic. For example, a temperature

reading could have a descriptor if the measurement was in Fahrenheit or Celsius.

• Identifiers

Services, characteristics, and descriptors are all attributes identified by UUIDs, which

are generally assigned by the device manufacturers.

BLE is on the 2.4GHz spectrum, from 2402MHz to 2480MHz, which is the same space that

Wifi uses. This can lead to crowding of the bandwidth causing packet drops and loss from

the BLE beacons. BLE uses Gaussian frequency shift keying (GFSK) modulation over 40

different channels [18]. GFSK works by smoothing out the frequency shifts with a Gaussian
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filter to reduce sideband power and interference with neighboring channels. The 40 channels

are 1 MHz wide and are spaced 2MHz apart with three designated advertising channels on

channels 37,38 and 39. Despite how they are named, these channels are spread out across the

2.4GHz spectrum to try and prevent interference if an advertising channel is busy. Channels

37,38, and 39 are only allowed for sending advertisement packets and nothing else. All other

traffic will be located on other channels which are decided through the client and server

handshakes. Beacons will advertise on each advertising channel with a time delay of a fixed

interval and a random value to try and prevent collisions. An overview of the BLE spectrum

can be seen in Figure 2.1. One detail to note is the positioning of the three advertising

channels across the spectrum.

BLE has a single packet format for both advertising and data transmissions. This packet

has a preamble, access address, protocol data unit (PDU), and a cyclic redundancy check

(CRC). The PDU part of the packet determines if the packet type is for advertising or a data

packet. There are different PDU types for advertising based on what the device is trying to

accomplish. Below is the list of different advertising packets.

• ADV IND

This is advertising indications, where a device requests connections to a central device.

For example, a smart health device is requesting to connect to any device.

• ADV DIRECT IND

Very similar to a ADV IND packet, but has a targeted device that it wants to connect

to. For example, a smartwatch is trying to connect to a specific phone.

• ADV NONCONN IND

Nonconnectable devices will broadcast this. Essentially, advertising information to

any devices that are listening. For example, beacons will broadcast packets with

information.

• ADV SCAN IND

Similar to ADV NONCONN IND, but there is additional information via scan responses.

For example, a tracking beacon may allow a server to request more information about

the payload.

For long-term connections, you will want to use either ADV IND or ADV DIRECT IND, de-

pending on the exact application. For our case, we use ADV SCAN IND to only retrieve received

signal strength information from them.
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2.2.2 Beacons

A beacon is a small BLE radio transmitter. They are made up of a small CPU, radio,

and batteries. It generally only will send out advertisement packets on a fixed interval and

generally, no direct connections are made. This lets multiple devices scan the advertisement

channels for these packets to gain the sensor information from the beacon. Beacons can have

a variety of sensors. Some common sensors are temperature, humidity, and signal strength.

The unique ID allows for phones to identify which beacon they are communicating with.

For this work, two different beacons are tested: Estimote and Feasycom beacons.

Beacons have multiple settings that affect how they transmit packets. First, there are

multiple different beacon packet specifications due to different manufacturers. There is

iBeacon, Eddystone, Estimote, AltBeacon, and more. These all have different ways that

information is encoded in the PDU of the advertising packets and you must follow the

specifications to properly decode the information. These packets can be transmitted at

different power levels, this power level is known as the transmission level. The higher the

transmission level, the clearer the signal will be. However, that can also introduce multiple

problems due to a stronger signal strength. A stronger signal strength means it is easier

to generate multi-path propagation from bouncing off of obstacles and causing inaccurate

signal readings at the destination.

2.2.3 Received Signal Strength Indicator

Received Signal Strength Indicator or RSSI is a measurement of the power present in a

received radio signal [19]. RSSI is a signal strength percentage and is a relative measurement

that is generally defined by chipset manufacturers and not the Bluetooth specifications. RSSI

measurements are negative, where the higher values indicate the more power received in the

signal and lower indicates the signal is weaker. However, this measurement can be influenced

to a myriad of factors. Some of these factors could include multi-path propagation, other

device interference, loss of line-of-sight, and more. RSSI will be the main reading that is

used to calculate and model distance in meters from beacons.

2.3 RELATED WORKS

A large amount of work has been done in both policy enforcement and indoor localization

systems using various methods. In this section, we will cover a sample of work that is closely

related to policy enforcement and indoor localization.
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2.3.1 Policy Enforcement

Policy enforcement is done to simplify the task of managing complex networks and systems.

There is work from the early 2000s that discuss various policy models and implementations

on computer systems [20] [21]. As computer systems evolved and became increasingly more

complex and nuanced, more complex policy systems needed to become developed to satisfy

the growing requirements to properly manage them. For the Android operating system,

there have been many papers that focused on extending its existing permissions model with

more user-defined constraints and policies.

Aurasium is described as a practical policy enforcement for Android Applications [22].

It works by repackaging applications into a sandbox and closely monitors the application’s

behavior for any attempts that violate the user-defined policy. Nauman et al. describe

extending the existing Android permissions system to allow for more fine-grained control for

specific applications [23]. There is some work done on using context to restrict app run times

on Android, but policy enforcement is preventing specific apps from certain permissions [24].

This differs in this thesis since we are enforcing state changes in the system and application

level via policies instead of more fine-grained control of resources and permissions in Android.

2.3.2 Indoor Localization

Indoor localization contains a lot of research utilizing many different technologies and tech-

niques. Most solutions are based on a few key technologies. There is work done exploring:

GPS, RFID, cellular-based, ultra-wideband, WLAN/WiFi, and Bluetooth [25]. In particu-

lar, a lot of work has focused on WLAN/WiFi technologies due to the existing framework

that most places have. Some work has looked at exploring received signal strength using

Wireless access points to triangulate a users position [26]. Other work has looked at wire-

less fingerprinting which measures signals in different regions to create a mapping which is

later used for localization [27]. Bluetooth has adopted similar techniques to Wifi localization

technologies. There are both RSSI methods [28] [29], finger-printing methods [30], and a

fusion of methods [11]. While there is a lot of work put into the field, there is still no clear

solution that provides cheap and easy indoor localization using BLE beacons [4].

The work in this paper can be seen as developing a basic context-based policy system

that looks to enforce system and application changes and settings through the use of user

location. The localization system to determine user location stems from background research

put into localization systems using Wifi instead of BLE beacons. We try to blend together

work from both areas into a unique context and application.
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CHAPTER 3: CONTEXT AWARE POLICIES

In this chapter, we will formally give a definition of policy and context. Then we will

describe a high-level overview of the context-aware policy enforcement engine and its imple-

mentation. Finally, two different use cases will be described and implemented.

3.1 DEFINITIONS

Definition 3.1 Action. An action set is defined by A(app) = {a1, . . . , an}. It describes

the set of ALL potential actions a1, . . . , an given an application. An action is defined as

(app, x ∈ A(app)). An action is a tuple of the application context and an element in the

given action set for the application. If any action does not exist in the set, it is not a valid

action for that application and cannot successfully be performed.

For example, an action could be changing the system setting if mobile data is on or off. The

action set would defined as A(System.mobile data) = {set on, set off}. Any valid action

is contained within that set. Most actions for system settings are relatively simple since they

will involve only a couple of states (on/off). However, actions for custom applications can

result in larger action sets due to the number of actions that can be performed. We define

actions in this relaxed manner to allow for a generalized set of actions. This makes it easy

to extend this framework for future work.

Definition 3.2 User. User, U , is a person that is associated with a physical device.

The user is the way that we can differentiate different people and this is done through

the phone’s unique IMEI number. For example, we can tie the user id to a teacher versus a

student and then apply the corresponding policies to only students.

Definition 3.3 Location. Location, L = [(x1, y1), (x2, y2), . . . , (xn, yn)], is the location of

the device. This is defined as a set of points that when connected in order form a polygon

that defines the region in a given coordinate space. The symbol ! can prefix the location to

indicate not within the defined bounds.

Location, in this case, can be on multiple levels of granularity. In this definition, we

formalize to represent a given boundary that can be checked against by using the results

from the localization system.
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Definition 3.4 Time. Time, T = [t1, t2], is a range of time stamps that designate a length

of time.

Time is how long, or when we want the policy to execute. For example, we don’t want to

silence a phone in the classroom on the weekend since there is probably no class going on

during that time.

Definition 3.5 Context. Context is defined as a collection of the states of {U,L, T}.

This is the heart of the context-aware policy enforcement. As described at a high-level in

the background chapter, context takes together user, time and location. With the formalized

definition, it is possible to define different contexts where various policies to run in only those

instances. For example, now policies can be defined to only run during school hours in the

computer lab for specific activities for student users.

Definition 3.6 Policy. A policy is defined as P = ({A1, . . . , An}, C). It has a set of rules

and given context where the policy will take effect.

This is the set of actions that are to be taken once given context conditions are met.

Definition 3.7 Current Context. The current context is the active context using the

current user, location, and current time to generate the context.

This is the context that is currently used by the system to determine which policies to

correctly apply.

3.2 ARCHITECTURE

This section will go into details about how the policy enforcement engine was implemented

into Android. The policy engine functions as a high-level application on top of Android’s

existing permission and applications along with a policy selection server. This makes it so

that it is possible to disable the policy engine any time the user deems necessary, but it is

possible to implement the architecture on a lower level service to prevent user interference

in future works. There are four main components to the policy engine. All of the following

parts, except for the policy server, were implemented using Java 8 and the Android SDK

since it will run an Android application. A high-level overview of how the various components

of the engine interact with each other is displayed in Figure 3.1.
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Figure 3.1: This shows a high-level view of the context-aware policy engine’s architecture.

3.2.1 Policy Server

The server will hold all of the administrator-defined policies that need to be enforced. This

is queried by the Policy Enforcer with the current context and it will then return the list

of relevant policies that fit the given context for the mobile device to enforce. This removes

the storage of various policies on local devices and relies on a server maintained by a policy

administrator. Now, all devices using the context-aware policy engine can now synchronize

with the server to keep up-to-date on policies as soon as they get updated. Additionally, it

makes it easier for system administrators to manage policies company-wide. The server was

implemented in Python 3 using multi-threading via threads module to allow for multiple

clients to connect.

3.2.2 Context Retriever

This is the part of the engine that will generate the current context of the phone. It queries

the Localization System for the current location, the Policy Server for the current time,

and the uses the phone IMEI value for the user value. It combines the three results to

generate the current context. This generated context is then used throughout the rest of the

policy engine to determine what policies it should enforce.
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3.2.3 Action Performer

This will try to enforce the actions given. This will use an intent handler to send a

request for the application to handle the sent action. This system allows for the applications

to handle different state changes and actions making it more flexible in how requests are

handled. Now, the policy engine can theoretically handle a wide variety of unique and

complex actions. However, this also means that it is up to the developers of the applications

to enable these actions which may take some time. Another possible action is to set the

state of some phone configuration. This is done through the system settings handled through

Android’s SDK. Due to resource and time constraints, many of the actions implemented were

related to system configuration changes.

3.2.4 Policy Enforcer

This module provides the necessary actions to enforce specific actions to various applica-

tions. The Policy Server is queried to retrieve the list of relevant policies given the context

generated from the context retriever. For each policy, the associated context is checked again

through the Context Retriever, to ensure that we are in the correct context. If we are not

in the correct context, then the policy enforcement will terminate since the conditions are

not satisfied.

Otherwise, the context check passes the check and we then move on to the next step.

The policy enforcement module will iterate through the set of actions. For each action,

the policy enforcement module will pass the action to the Action Performer. This entire

process will loop, causing these actions and state changes to remain in effect as long as the

context remains relevant.

3.3 CASE STUDIES

3.3.1 Silencing Phones

Two different scenarios were implemented to test the policy enforcement engine. The first

case study explored the scenario of students in a classroom setting. As students attend class,

many of them leave their phones on which can lead to distractions during lecture time if they

receive messages or notifications from applications. A way to help prevent this is to develop

a set of policies that will silence all the student’s phones during lecture time. However, we

only want to silence the student’s phones during lecture times and when they are physically
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present in the classroom. Otherwise, silencing their phones will annoy them and potentially

prevent future interest. To address this scenario, the following set of policies are developed:

P1 = ({(System.ringer, set silence)},

{Students, [(0, 0), (0, 5), (5, 5), (5, 0)],

[13 : 00, 14 : 00]})

(3.1)

P2 = ({(System.ringer, set ringer)},

{Students, ![(0, 0), (0, 5), (5, 5), (5, 0)],

[13 : 00, 14 : 00]})

(3.2)

These two policies will activate as the user leaves and enters the boundary and perform

the appropriate action. P1 will apply when the user is within the room and it will silence

their phone. Once the student leaves the room, P1 will no longer apply and P2 will take

effect. This policy will turn the phone’s ringer back on allowing for normal usage. These

two policies were implemented on the policy server and the system settings changes correctly

applied as the test user entered and left the room with the appropriate user’s phone.

3.3.2 Finding Lab Partners

This scenario explores multiple users using the policy enforcement engine. The context,

in this case, is students in a class are doing a lab exercise that requires a partner. However,

this class is mainly taught in an online environment. For one of the lab exercises, students

are required to go to a lab and find a partner from the class to work on the assignment

with. The main issue is that the students do not know each other well due to the online

environment. To address this issue, we want to develop a set of policies that help students

find each other when they are in the lab. To do this, we developed a mock application called

FindAFriend that will notify users of nearby users once the application receives an intent

with the nearby user ids. The policy developed to address this is as follows:

P1 = ({(FindAFriend.Notify, send [User info])},

{Students, [(0, 0), (0, 5), (5, 5), (5, 0)],

[0 : 00, 23 : 59]})

(3.3)

P1 will send the FindAFriend application an intent that a student is currently in the lab.

Then the application will handle the rest of the logic of notifying the other user of other

students currently in the lab.
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CHAPTER 4: INDOOR LOCALIZATION SETUP

In this chapter, we discuss the underlying architecture and implementation for the in-

expensive indoor positioning system architecture and describe the experimental setup for

different components.

4.1 INDOOR POSITIONING SYSTEM ARCHITECTURE

A high-level overview of the setup can be seen in Figure 4.1. Each part will be described

in further detail in the following sections.

4.1.1 Beacon

The beacon provides characteristics in its advertising packets that are used by the clients.

Multiple Bluetooth Low Energy beacons are placed throughout the building at fixed, known

locations. These locations will generally span the proximity of a given room. There were

two different types of beacons tested: Estimote and Feasycom beacons. An example of these

beacons can be seen in Figure 4.2. The beacons provide one important attribute to the

phones, sending advertising packets that contain received signal strength indicators (RSSI).

The sole purpose of the beacons is to provide the advertising beacons for the client to receive

and process. In other applications, the beacons can provide a method to get sensor data like

temperature.

4.1.2 Client

The client, in this case, is the smartphone. This will scan the BLE advertising channels

listening for all the beacons it can hear. Those beacons are broadcasting RSSI information

which is recorded by the client. The client is constantly talking with the location server

to report RSSI measurements for each specific beacon. There is very little processing done

on the client as it mainly functions as a communication device to the server. The client

has a unique identifier associated with it which is sent with the RSSI measurements to the

server. This design decision will allow for the client to use less computing power and thus

it will conserve battery. That is important since we are using BLE beacons, there will be

constant scanning for the advertisment packets and that can strain the battery. This client

was implemented using Android Studio with Java 8, Android SDK, Estimote SDK, and

Android Beacon Library.
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Figure 4.1: This shows an overview of the localization systems architecture.

Figure 4.2: A picture of the two different types of beacons used in this work. The beacon
on the left is from Estimote and the beacon on the right is from Feasycom beacon.
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4.1.3 Server

The server is where all of the processing is done. This design choice was to lift the

computation off of the phone and offload it to a more powerful device. This choice was

made to ensure that the calculations are finished within time due to the processing power a

server will have over a phone and to help conserve phone battery life. The server will handle

the RSSI to distance calculations and eventually perform the location estimation algorithm.

Finally, the server will forward the calculated distance/location to the phone. All future

actions based on the location is handled by the policy enforcement engine. The IPS server

was implemented using Python 3.6. It is multi-threaded using the threads module to allow

for multiple clients to connect at a time.

4.1.4 Distance Estimation

Distance estimation is performed by the server. It is a method that tries to approximate

the distance from a device and the beacon based off of RSSI measurements. This can be

done multiple ways and each way was tested to see which one gave the lowest error. This is

a commonly implemented distance model for beacons:

distance = A ∗ (
r

t
)B + C (4.1)

where r is the RSSI measured by the device, t is the referenced RSSI, and A, B, C are

constants which are calculated by fitting collected data to the model.

Another commonly used model for RSSI drop off uses the transmission power of the beacon

RSSITX [12].

distance = 10
RSSI−RSSITX

−10n (4.2)

n is a constant that is calculated by fitting collected data to the equation.

Both of these distance models were implemented and fitted on a module on top of the

server using numpy and scipy.

4.2 LOCATION ESTIMATION

There are two methods that were tested for this calculation. The first method takes the

given distance estimations from each beacon reported by the client and performs a trilater-

ation to approximate the user’s position [31]. This can be done since the beacon positions
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Figure 4.3: This is an example diagram of how trilateration works using three beacons.
The three colored circles are the beacons, the large circles are potential locations where
the device can be, and the black box indicates their intersection which corresponds to the
tracked devices location.

are known. All the algorithms and methods described in this section were implemented in

Python 3.6 and the libraries numpy and scipy, unless specified otherwise.

4.2.1 Basic Trilateration

We will model the given problem the following way. Given that we have n beacons and

a single client c, we can model the distance from the client’s position (xc, yc) to beacon bi’s

position (xi, yi) by drawing a circle around the device with the radius of the distance from

the client to the beacon. Then by finding the intersection between the circles between all of

the beacons, we can determine the location of the device. This can be seen in Figure 4.3.

The equation for a circle around the given point is:

(xc − xi)
2 + (yc − yi)

2 = r2n (4.3)

To linearize these equations, we use two beacons bi and bj to create the following expres-
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sions.

(xc − xj + xj − xi)
2 + (yc − xj + xj − yi)

2 = r2n (4.4)

=
1

2
[(xc − xj)

2 + (yc − yj)
2 − r2i + (xi − xj)

2 + (yi − yj)
2] (4.5)

=
1

2
(r2j − r2i + d2ij) = bij (4.6)

where

dij =
√

(xi − xj)2 + (yi − yj)2 (4.7)

Now we can create a linear system of (n - 1) equations that can then be solved through

linear algebra. In this case, the system was solved using numpy’s least squares method.

(xc − xi)(xj − xi) + (yc − yi)(yj − yi) =
1

2
(r2i − r2j + d2ji) = bji (4.8)

And we convert this to matrix form.
x2 − x1 y2 − y1

x3 − x1 y3 − y1
...

...

xn − x1 yn − y1


(
xc − x1

yc − y1

)
=


b21

b31
...

bn1

 (4.9)

which is in the form of

Ax = b (4.10)

which is then solved by

x = (ATA)−1(AT b) (4.11)

Since there are only two unknowns, we will generally only need three beacons to determine

the unique position of a device. However, this method relies on there being very little error to

allow for the system of equations to be solved. Using more beacons may provide additional

accuracy to the model, but it also introduces more overall error into the system. This error

is from the beacon’s distance estimation being not entirely accurate due to RSSI fluctuations

throughout. These kinds of error are potentially addressed with the next localization method.
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Figure 4.4: This is an example diagram of how trilateration works using three beacons
when we try to account for error in the model. The three small circles are the beacons,
the shaded area is where the beacon can be located, and the black square is where we
approximate the device is by trying to minimize the distance from each beacon. There is
no perfect intersection between the circles and instead, we try to minimize the distance for
each beacon.

4.2.2 Location Estimation with Error Accounting

The previous method was developed assuming that the distance measurements were ac-

curate causing the circles to intersect on a single point. However as previously discussed, it

is very likely that the RSSI measurements will introduce some sort of error when being cal-

culated to distance due to the 2.4GHz spectrum being crowded and multi-path propagation.

This is further illustrated in Figure 4.4. The location calculation should try to take into

account the error measurements and minimize them. To do this, we can model this problem

in the following way:

Let our device c be at given coordinates (xc, yc). Given n beacons, for beacon i we have

the coordinate (xi, yi) and an estimated distance from beacon i to client c by dic.
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√
(xc − xi)2 + (yc − yi)2 + eic = dic (4.12)

We can rearrange the equation to isolate the error on one side.

eic = dic −
√

(xc − xi)2 + (yc − yi)2 (4.13)

The total sum of the errors is now:

etotal =
n∑
i

dic −
√

(xc − xi)2 + (yc − yi)2 (4.14)

Given that, we can try to minimize the total error to get the position that will approxi-

mately be our best guess for where the device is located. To do this, we use a minimization

algorithm that will give us the approximate (xc, yc) that will produce the lowest total error.

For this purpose we looked at Nelder and Mead’s Simplex algorithm [32] and Powell’s fast

algorithm [33] in scipy’s minimization method.

4.2.3 Boundary Check

Since the location bounding is highly dependent on generating accurate RSSI measure-

ments, it is not feasible to just use the raw location information generated since it usually

will have a high degree of error from the true position. Instead, we are creating a set of

boundaries to check if the user is within them to determine if they are in a given room or

not. This is done to try and mask the inaccuracies of the entire system.

The error of the system comes from multiple parts. The distance estimation modeling

generates error due to signal fluctuations from the beacons to the mobile devices. Further

error is compounded during the location estimation due to that being feed in the distances

from the beacons. These errors are inevitable in a system like this so, there is a final

procedure to try essentially adjust for that. By only detecting within a specific boundary,

then the system is built and adjusts to these errors.

To do this boundary check, we use the point in polygon test method [34]. This was

implemented using the Shapely library in Python. To do the boundary check, we first define

the coordinates of each corner of the room (taken from the context’s location boundaries) to

create a bounding polygon and then the estimated location is used as the point in polygon

test to determine if the user is within a room or not. The coordinates are defined in the

order as they appear in the polygon. The beacons are given coordinates relative to these

coordinates so the generated location can properly determine where a mobile device is.
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CHAPTER 5: RESULTS

In this chapter, the results for various different experimental setups for the inexpensive

localization setup are shown.

5.1 DISTANCE ESTIMATION

In this section, the distance estimation modeling is discussed. The distance estimation is

done based off of the RSSI signals given by the BLE beacons to the phone.

5.1.1 RSSI Measurements

The first thing that we needed to test was how RSSI measurements fluctuate at various

distances. This was done to later develop a model mapping from RSSI to distance. The

setup involves placing an individual beacon on top of a box and a phone on a box a set

distance away. We recorded 100 RSSI values at 0.0m, 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m,

3.5m, and 4.0m. The entire room was cleared of obstacles that may cause issues. The phone

used in this experiment was the LG G4 running Android 6.0.

Estimote Beacons

There were three Estimote beacons used in this experiment. The figures 5.1, 5.2, 5.3 are

the raw RSSI recordings for each of the Estimote beacons plotted versus distance. For each

different distance, we recorded 100 continuous RSSI values for each beacon. As seen in the

figures, there is a high variation in the RSSI recordings for all three of the Estimote beacons.

That generally indicates that RSSI is a somewhat unstable measurement even when testing

in a mostly ideal environment.

Afterward, we fit the data to the two models discussed in the earlier to see which set of

models gave an overall less absolute error in meters. In Table 5.1, the two models (Equations

5.1 and 5.2) are fitted to the collected data and the absolute error in meters is collected for

each different distance measurement (0.0m, 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m, 3.5m, 4.0m)

along with the average absolute error in meters. According to the results, Equation 5.1’s

model performs better than equation 5.2’s model in most cases by roughly 0.175 meters and

overall it has less absolute error.
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Figure 5.1: This shows the raw RSSI values captured by beacon 1 at various distances.

Figure 5.2: This shows the raw RSSI values captured by beacon 2 at various distances.
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Figure 5.3: This shows the raw RSSI values captured by beacon 3 at various distances.

Model 1: d = A ∗ (
r

t
)B + C (5.1)

Model 2: d = 10
RSSI−RSSITX

−10n (5.2)

5.1.2 Feasybeacon

For the Feasybeacons, we performed exactly the same setup and data collection as the

Estimote beacons. However, there was even more variation in the RSSI readings in the

Feasybeacons compared to Estimote beacons.Figure 5.4 shows the RSSI reading results.

The RSSI readings show there is even higher variation and the collected readings weren’t

stable enough to even fit either of the two models to them. Due to this result, we went with

the Estimote Beacons for the rest of the experiments.

5.1.3 Signal Smoothing and Filtering

The above results highlight how noisy the RSSI measurements are. We need some way

to filter or smooth out the signals so it is more stable and ready to use for more location

calculations. The first method we examine is 1-D Kalman filtering. The Table 5.2 shows
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Beacon 1 Beacon 2 Beacon 3
Error Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
0.0m 0.042624 1.413688 0.175036 1.492749 0.059736 1.443382
0.5m 1.603021 1.731129 0.558941 1.596474 1.296694 1.683414
1.0m 0.513789 1.132259 0.499714 1.167990 0.955199 1.190438
1.5m 0.444195 0.704195 0.870718 0.778583 1.469435 0.821231
2.0m 1.016804 0.416964 0.515321 0.346743 0.605019 0.183641
2.5m 0.925470 0.329597 1.022401 0.268155 0.840253 0.334541
3.0m 0.693714 0.690804 0.568913 0.655560 1.179656 0.814297
3.5m 2.063840 1.191978 1.027778 0.954635 0.647071 1.144202
4.0m 0.373766 1.430781 0.887066 1.568701 1.554227 1.652690
Overall 0.853935 1.005269 0.680654 0.981066 0.956366 1.029760

Table 5.1: Absolute Error of different models

Figure 5.4: This figure shows the RSSI readings from the Feasycom BLE beacon.
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Beacon 1 Beacon 2 Beacon 3
Error Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Overall 0.662921 1.003607 0.548922 0.984523 0.774674 1.029128

Table 5.2: Absolute Error with Kalman Filtering on Each Model

Figure 5.5: This shows the absolute error as the average window changes from 1 to 50.

the effect that Kalman filtering has on the two different models. Model 1 shows a drop in

absolute error but Model 2 only shows a slight drop. Another method employed to smooth

out the RSSI readings was a moving window average. This basically means that we take

the average RSSI value across a window and use it for the distance calculation. Figure

5.5 shows the effect of window size on the absolute error for Model 1. As the window size

increases, the absolute error will also decrease. We then look at the effects of using both

Kalman filtering and the moving average window in Figure 5.6. After a window size of 10,

there is little difference between only using the moving average window and the combination

between Kalman filtering and the window.

5.2 LOCATION DETECTION

For location detection, we are testing if the system is able to successfully detect that you

are inside a room correctly. This system only works for a single room, but it can be easily
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Figure 5.6: This shows the absolute error as the average window changes from 1 to 50 with
Kalman filtering.

expanded to multiple rooms using the same server architecture. For the experiment, we will

go through each meter of the room and test if the system properly detects if you are in the

room along with regions outside of the test room. Two different beacon setups are tested to

see how beacon configuration affects the system’s accuracy. Finally, two different real-world

testing environments are used to see if the system can perform in actual environments.

5.2.1 Apartment Room

This location is done in my apartment room. The Estimote beacons were placed in the

corners on the ceiling secured with double-sided tape and all obstacles were left in the same

position throughout all of the experiments. This environment is a complex environment

since it consists of multiple factors that can potentially cause signal bouncing. This was

chosen in order to simulate a real world example as closely as possible. Figures 5.7 and 5.8

show the results found.

The results show that the system seems to work relatively well. The overall accuracy in

this environment showed a 91.635% classification accuracy for predicting if the user device

was correctly in the room or not. From these results, the system can be used for actual

applications - like the context-aware policy engine.
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Figure 5.7: This shows the results of the location test. The check marks indicate the
location test at that location successfully detected being inside/outside of the room. The
cross indicates that the wrong location was determined.
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Figure 5.8: This shows the location test results when the beacon configuration changed.
There seems to be very little variation on the overall accuracy of the system even when the
beacon positions changed.
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Figure 5.9: This shows how the RSSI values changed as the device moved from underneath
the beacon (0m) to the other end of the room (9m). The RSSI changes have no pattern to
them.

5.2.2 Siebel Center Lab

This location was done in the Security Lab on the fourth floor of Thomas M. Siebel Center

for Computer Science. The beacons were placed on the indicated locations on the ceiling with

double-sided tape as well and all obstacles were left as is throughout all of the experiments.

This room may be typical of a computer labatory found in other buildings. There are

multiple obstacles that can cause potential issues. Figures 5.10 and 5.11 indicate the results

found. In both figures, there is a lot of wrong predictions when testing location outside

of the room boundaries. This seems to be an issue with the recorded RSSI measurements

for both of the setups. The overall accuracy for this environment was only 49.853%, which

indicates the system does not function well at all.

Both of the setups were not correctly detecting that the user was outside of the given

room boundaries. Looking at smoothed/averaged RSSI values as seen in Figure 5.9, there

is a lot of change in the RSSI signal that did not correspond to the appropriate distance

change. The RSSI values never dipped below -75 which seemed to indicate that there may

be issues with the beacons themselves or there was a lot of signal interference at the lab.

This shows that relying on RSSI values is unreliable and as a result causes the rest of the

system to not function as intended.

30



Figure 5.10: The location results of the localization system when being tested at Siebel
center.
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Figure 5.11: Location test results of a different setup at Siebel center. There isn’t much
change in system accuracy even when the beacon positions changed.
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CHAPTER 6: DISCUSSION AND FUTURE WORK

This project illustrated potential architectures of both a context-sensitive policy enforce-

ment engine in addition to a basic indoor localization system using BLE beacons as a cheap

alternative to other hardware stacks designed to solve localization. However, there were

several issues and areas of concern that came up as research progressed.

6.1 DISCUSSION

The policy formulation and implementation showed that this is a viable system design that

works in different scenarios as explored by the two different case studies. The framework

explained is easily expandable and shows that it is possible to enforce context-sensitive

computing and policies on smartphones in an easy and efficient manner. The two different

case studies were easily implemented on the described context-aware policy engine showing

the flexibility that the system can bring.

The distance estimation based on the RSSI signals of beacons showed very different results.

In the normal testing environment, we showed that there is generally a 1-meter error with

distance estimation using either of the models discussed. This by itself is a good result since

most indoor localization systems are getting a couple of meters of inaccuracy. This error is

even further reduced when introducing signal smoothing. The moving average window and

Kalman filter help to reduce the random fluctuations that RSSI measurements normally ex-

perience. The combination from the two methods reduces the variation the most causing the

distance estimation error to decrease making the system more reliable for location estima-

tion. Any reduction to the noise in RSSI measurements means that the distance estimation

will be more accurate allowing for more accurate location estimation.

However, further testing in multiple real-world environments showed that there are a lot

of issues with only using raw RSSI values. As shown in Figure 5.9, the RSSI readings in

a noisy environment, like a computer lab, shows high variation and sometimes lack any

signal drop off even as distance increases to 9 meters or more. This most likely indicates

that there are multiple factors influencing the RSSI readings. Some of these factors are

crowding of the 2.4 GHz band causing lots of packet loss, a lot of potential propagation

paths due to the environment having multiple obstacles, and lack of line of sight due to the

aforementioned obstacles. As a result, there is a lot of consistent RSSI readings that cause

distance estimation in noisy environments to be very error-prone. These issues may be due

to a lack of a solid model that takes into account these different factors.
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Location estimation only using the RSSI signals seemed to work relatively well in the first

environment, as shown by Figures 5.7 and 5.8. The system demonstrated roughly a 90%

accuracy for detecting if the user’s smartphone was in the room or not. For most general

applications, this accuracy is fine as most of the error is centered around the boundary

transitions from entering and leaving the room boundaries. However, this result did not

transfer when testing at Siebel Center’s computer laboratory environment. This is most

likely due to the reasons stated above that cause the RSSI readings in a larger environment

not be stable. This indicates that quieter, smaller areas may make it easier to deploy

the Bluetooth based systems and that the current approach does not translate to noisier

environments well. The range of beacons may be hardware dependent and better BLE

radios may affect the results. In the end, the inexpensive localization system ran into issues

that dealt with hardware inaccuracies. If these could be addressed, then future development

may result in an inexpensive and accurate localization solution.

6.2 FUTURE WORKS

In the future, there are multiple avenues to explore. First, the formal definition can be

expanded and more strict. Currently, the definition serves a very general framework but it

lacks the coverage of some cases as to how to handle conflicts, context overlaps, access to

resources, and more. This could be further explored to make it more comprehensive. The

entire framework is implemented on top of Android due to ease of development. However,

in the future, the entire system could be brought down a level. The context-aware policy

engine can easily be adapted into the Android operating system which could lead to more

fine-grained control of system settings and other security benefits.

Another area of interest is different options for modeling RSSI to distance from beacons.

This work only explored two options, but there are many possible models to explore that

might more accurately account for different variables and factors to help make the distance

estimation more accurate and thus more useful. If the distance model can be accurately

established, then all future localization systems will also be more accurate as a result. One

potential area of interest is the use of neural networks as trained regression models for

accurately modeling distance based on time and RSSI readings from beacons.

Finally, the localization setup explored in this work was very naive and basic. Future

work could take into account more variables to make it more accurate. Instead of only using

RSSI measurements, the system could take into account phone sensors and do a fusion based

approach to make it more accurate as some work has started to do.
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CHAPTER 7: CONCLUSION

Past work has focused on using custom-made hardware or existing expensive hardware

solutions to try and solve the indoor localization problem. However, recently there has been

more and more development on the Internet of Things and that could potentially allow for

cheaper solutions for the problem. This work looked at potential policy systems that would

take advantage of these solutions as a way to provide inexpensive localization system. This

system can then be used by other works to enable and allow for context-aware computing

and applications.

The first thing that this thesis discusses is the formal definition of basic context-sensitive

policies. Based on the formal definitions, the system’s architecture and implementation

were developed and described in detail. Multiple trade-offs were discussed such as using a

centralized policy server to offset all of the CPU intensive work to help conserve battery

life on the less powerful mobile devices. Additionally, it is easy to extend the action set to

encompass multiple applications for more complex user interactions. Finally, two different

case studies on potential policies that were implemented as a demo were explained. The two

case studies explored different vectors of applications that context-aware policies can bring

to mobile computing and showed that the context-aware policy system discussed is a viable

way to enable context-aware computing.

The second part of the thesis explored a preliminary approach to solving the indoor

localization problem using cheap Bluetooth low energy beacons. This approach is important

because it looks at the feasibility of using BLE beacons in an inexpensive localization system.

Previous work has looked at using RSSI as a way to estimate distance and we look at how

we develop an inexpensive solution using that work. The past work has shown how BLE and

RSSI can be used as a method for determining general user location. These works used BLE

beacons since they are extremely cheap and can provide a rough estimate of the distance

from a smartphone based on their RSSI readings. These RSSI readings were modeled using

various signal to distance equations to generate a real-data model. Then the system uses

these distances to try and pinpoint the location of the user through multiple beacons. In

practice, this system was shown to work well in one real-world environment. But another

real-world test showed high variation in RSSI values. That issue prevented the system

from functioning reliably and it showed that BLE beacons have not advanced far enough

to mitigate the issues to perform well in multiple, complex environments. In the end, a

basic architecture for both the server and client were implemented to help demonstrate the

potential of this approach but further research is needed to solve the underlying problems.
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