
 
 

 

  

OPTIMIZATION ALGORITHMS FOR LOADING MILITARY DIESEL 
GENERATORS 

BY 
 

NATHAN PETERSON 

THESIS 

Submitted in partial fulfillment of the requirements 
for the degree of Master of Science in Electrical and Computer Engineering 

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 2018 

Urbana, Illinois 

Advisers: 

Professor Peter Sauer 
Melanie Johnson, Construction Engineering Research Laboratory (CERL) 

 



ii 
 

Abstract 

The economic load dispatch (ELD) problem challenges the designer to adequately 

provide for electrical load demand while minimizing operational costs. The military has a unique 

set of constraints for meeting the ELD problem to provide power to soldiers in forward 

operating bases. The constraints include the use of military diesel gensets that remain 

disconnected from each other and are loaded below a user-defined real power threshold (for a 

reliability safety cushion). In addition, the system must be simple enough to be constructed 

with minimal training and require no reconfiguration once established. As a result, a simple tool 

to quickly assign loads to isolated military diesel generators is required. To meet this need, this 

study compares the use of several optimization algorithms including particle swarm 

optimization (PSO), bat algorithm (BA), cuckoo search (CS), first fit decreasing (FFD) bin packing, 

and an exhaustive search (ES) method. It is found that at large enough search spaces, the 

optimization algorithms can discover reasonably optimal solutions while substantially 

decreasing search time. For this application, FFD has more optimal average solutions as well as 

faster run time compared to the other algorithms.  



iii 
 

Acknowledgments 

I would like to express my gratitude to Professor Peter Sauer and Mrs. Melanie Johnson 

for their mentorship, as well as my sincere appreciation to Dawith Ha and Tom Lee for their 

coding support. 

  



iv 
 

Contents 
 

1. Introduction ................................................................................................................................ 1 

2. Literature Review ........................................................................................................................ 6 

3. Description of Research ............................................................................................................ 12 

3.1 The Algorithms .................................................................................................................... 12 

3.1.1 The Particle Swarm Optimization Algorithm ................................................................ 12 

3.1.2 The Cuckoo Search Algorithm ...................................................................................... 15 

3.1.3 The Bat Algorithm ......................................................................................................... 18 

3.1.4 The First Fit Decreasing Bin Packing Algorithm ............................................................ 22 

3.1.5 The Exhaustive Search Algorithm ................................................................................. 25 

3.2 Procedure ............................................................................................................................ 26 

3.2.1 Setup ............................................................................................................................. 26 

3.2.2 Dimension Reduction ................................................................................................... 29 

3.2.3 Experimental Trials ....................................................................................................... 30 

3.3 Results ................................................................................................................................. 32 

3.3.1 Trial 1: Two Generators, Five Loads ............................................................................. 32 

3.3.2 Trial 2: Two Generators, Ten Loads .............................................................................. 36 

3.3.3 Trial 3: Three Generators, Ten Loads ........................................................................... 41 

4. Conclusion ................................................................................................................................. 47 

References .................................................................................................................................... 49 



1 
 

1. Introduction 

When it comes to supplying electrical power to soldiers in the field where grid power is 

unavailable, the United States military nearly always uses diesel generators. However, due to 

training constraints, the soldiers in charge of electrical equipment are typically given just weeks 

of training to learn the broad field of electrical engineering. In addition, when lives are at stake, 

soldiers are forced to treat reliability as the top priority. However, this leads to drastically 

oversized generators, wet stacking problems, and very inefficient systems. This occurs at a time 

when carbon emissions should be limited, when the price of fuel in the field can be as high as 

$500 per gallon according to former Commandant of the Marine Corps, Gen. James T. Conway, 

and when the price in lives lost can be even greater. According to a 2009 Deloitte report [1], in 

Afghanistan there is about one casualty in every 24 resupply convoys resulting in a linear 

increase in casualties in relation to the ever-increasing demand of fuel as can be seen in Figure 

1. As a result, a simple-to-use and effective method for soldiers to calculate how to load 

military diesel generators can save energy, money, and lives. 



2 
 

 

Figure 1: US Annual Casualties in Afghanistan vs. Average Monthly Fuel Consumption  

The resulting puzzle to solve is the economic load dispatch (ELD) problem. The ELD 

problem challenges the user to optimize the output of available generators such that the 

electric load is met while minimizing financial costs and adhering to system limitations. In 

simple terms, the goal is to minimize 

𝐹 = 𝐹 (𝑃 ) 
(1.1) 

subject to  

0 ≤ 𝑃 ≤ 𝑃  (1.2) 

𝑃 = 𝑃  
(1.3) 



3 
 

where 𝐹 (𝑃 ) is the operation cost of unit 𝑖 when its output power is 𝑃 , 𝑛 is the number of 

diesel generator units, 𝑃  is the maximum power output power for unit 𝑖, and 𝑃  is the total 

power demand. According to Equation (1.4), the operation cost of unit 𝑖 can be further defined 

as 

𝐹 (𝑃 ) = (fuel price) hourly consumption(loading) 
(1.4) 

where fuel consumption, as modeled by a second-order polynomial for most diesel generators, 

is defined in Equation (1.5) as 

𝐶 (𝑃 ) =  𝑎 + 𝑏 𝑃 + 𝑐 𝑃  (1.5) 

where 𝑎 , 𝑏 , and 𝑐  are non-negative constants of the i-th generating unit. 

The limitations for this application require the use of military diesel gensets that remain 

disconnected from each other and remain loaded below a user-defined real power threshold 

(for a reliability safety cushion). In addition, the system must be simple enough to be 

constructed with minimal training and require no reconfiguration once established. It is 

assumed the loads will closely follow a predictable load schedule. Since fuel prices dominate 

costs in this application, transmission and distribution costs, ramp rate limitations, maintenance 

costs, and emission costs are not considered for this model, but it is likely that maintenance 

costs and emission costs will be lower than current methods and can be added in further 

studies. 

There are many different optimization algorithms to consider when resolving the ELD 

problem. Direct method algorithms used for searching every possible point in the search space 



4 
 

are far too computationally and time intense to be considered outside of a very limited scope. A 

common second class of optimization algorithms includes gradient methods like gradient 

descent, the Newton-Raphson method, and the Frank-Wolfe algorithm, which use the second 

order derivative of the convex search space to find minima. These methods are fast and scale 

well, but require smooth, differentiable gradients and are liable to merely find local minima. 

Due to the nature of this application working with discrete generators, the ELD problem search 

space is nonlinear, discontinuous, and nondifferentiable. Furthermore, this problem is classified 

as NP-hard [2], meaning it cannot be solved in polynomial time, and therefore the time 

required to solve the problem increases exponentially with problem size. To solve this problem 

at any useful scale, a more sophisticated method must be taken.  

Heuristic-based approaches are a good alternative. Heuristics are problem-specific 

techniques used to quickly determine good solutions when other methods are too slow or 

imprecise. One such heuristic category comprises bin packing algorithms, used and explained 

later in this study. Another good alternative is metaheuristics, which are problem-independent 

techniques that sample a set of solutions when the search space is too large to sample 

completely. Many popular and successful metaheuristic algorithms mimic behaviors found in 

nature, like the ant colony optimization algorithm. Like heuristic methods, these approaches 

may not deliver the global minimum, but if appropriately selected and calibrated they can 

provide reasonably good and fast solutions that are otherwise infeasible. 

 This study includes a literature review of current evaluation methods and the 

comparison of five different optimization algorithms: particle swarm optimization (PSO), bat 



5 
 

algorithm (BA), cuckoo search (CS), first fit decreasing bin packing (FFD), and an exhaustive 

search (ES) method. 

  



6 
 

2. Literature Review 

The ELD problem has tested many different classical optimization techniques. These 

methods include the Newton method [3], the lambda iteration method (LIM) [3]–[8], the 

gradient method [9], and the gradient projection algorithm (GPA) [10]. These methods typically 

have two limitations. The first restriction is their dependence on monotonically increasing cost 

functions possessing derivatives. The ELD problem typically possess a nonconvex, nonlinear, 

and sometimes discontinuous mathematical search space due to added real world complexities 

like transmission losses, valve point loading effects (VPL), prohibited operating zones (POZ), 

multiple fuel options (MF options) and, in this application’s case, discrete disconnected diesel 

generators. This leads to the high probability of falling into a local minimum instead of the 

global optimum solution. In addition, these methods suffer the “curse of dimensionality” and 

become exponentially complex to calculate with the addition of multiple dimensions as is 

common in the ELD problem.  As a result, these traditional methods were found inadequate for 

the ELD problem beyond very limited and rudimentary applications. The one alternative 

proposed solution [11] that at least solves the first limitation requires decomposing the search 

space into differentiable regions before applying these techniques. Nonetheless, this requires 

knowledge of the search space and extra preprocessing while still being limited by low 

dimensionality limitations. 

 As a result, many metaheuristic techniques are used in the literature to solve the 

nonlinear and dimensionality issues of the ELD problem including the PSO algorithm [4], [5], [7], 

[8], [12]–[37]; the genetic algorithm (GA) [4], [5], [29], [31], [38], [39], [7], [8], [12], [18], [20], 

[24], [26], [28]; the CS algorithm [9], [25], [27], [40]–[46]; the BA [13]–[18], [31], [32], [40], [41], 



7 
 

simulated annealing (SA) [8], [35], [49]; ant colony optimization (ACO) [6], [38], [39]; firefly 

algorithm (FA) [24], [27], [43], [47]; artificial bee colony algorithm (ABC) [5], [28], [47]; bacterial 

foraging algorithm (BFA) [21], [50], [51]; gravitational search algorithm (GSA) [7], [8], [15], [28]–

[31], [49]; and many others. Most of these algorithms are inspired by nature. To add complexity 

and tunability, many of these algorithms are enhanced or combined with each other to make 

entirely new algorithms with different characteristics. To avoid the rabbit hole of near infinite 

combinations and potential tweaks of each algorithm, this study will first look at the standard 

version of PSO, CS, and BA for this particular application of the ELD problem. Upon completion 

of this study, one can use the results to further narrow their focus in search of useful algorithm 

augmentations. 

 PSO is a jack-of-all-trades algorithm that has been around longer than most swarm-

based metaheuristics and has proven robust and effective in a very large variety of fields. In the 

ELD realm, it has been employed in a wide assortment applications from thermal generators 

and cogeneration plants [4], to emissions dispatch [14], [28], [32] and uncertain wind source 

renewables [22], with numerous constraints like transmission losses, VPL, POZ, and MF options. 

Moreover, it works well from at least three generators [4] to at least 320 [26]. PSO has 

repeatedly beaten GA in optimization and completion time in comparison tests [4], [18], [14], 

[20], [24], [26], [39]–[41] as well as FA [24], [43], SA [35], ABC [43], BFA [51], and machine 

learning techniques [16], [36] under various test conditions. Nevertheless, PSO is repeatedly 

beaten by BA [19]–[23], [39] and CS [26], [27], [40], [41], [43] algorithms. One study [16] 

suggests that PSO has trouble with higher dimensionalities, while another [17] demonstrates 

better capabilities by using a Lévy distribution similar to the CS algorithm, and another [13] 



8 
 

illustrates a superior PSO variation that uses constriction factors to assist PSO in local search.  

The evolutionary particle swarm optimization (EPSO) algorithm [32] is proposed to augment 

PSO by adding evolutionary programming to enhance its search capability. As a result of 

combination, tournament, sorting, and election processes, EPSO was found to achieve faster 

convergence, lower fuel costs, and fewer emissions. While it may not be optimal in its basic 

form, PSO can be seen as an old reliable method and frequently serves as a benchmark for 

competition. 

 CS has likewise demonstrated robustness in ELD application. It has been used in a 

combination of gensets, wind power, solar power, and battery storage microgrid systems [9]; it 

has beaten PSO in 320 unit systems [26]; it beats competitors in a 40 genset 10500 MW 

simulation test [43]; and it has done well calculating electric vehicle and wind farm variables 

[46]. Like the other metaheuristics considered, it consistently outperforms GA [26], [40], [41], 

[44] and PSO/PSO variations [26], [27], [40], [41], [43], while also beating FA [27], [43], GSA 

[29], [30], and ABC [43]. In the literature, no algorithm was found to outperform CS, but one 

study [25] suggests that its performance may start to fall off on larger systems compared to 

PSO because its “nests” must be changed and recalculated every iteration. Nonetheless, it 

outperforms PSO in generator systems as big as 320 units [26]. 

 The literature also shows BA’s versatility and superiority over GA [20], [24], [39] and PSO 

[19]–[23], [39], as well as FA [24], ABC [21], and machine learning techniques [39]. 

Unfortunately, no literature was found directly comparing the BA and CS. There are multiple 

augmentations to BA, like the novel bat algorithm (NBA) [19], [21] which compensates for the 



9 
 

Doppler effect and allows bats to hunt in wider habitats than normal BA; the enhanced bat 

algorithm (EBA) [20] which adjusts the velocity of the bats, similar to PSO, for better local 

search capabilities; and chaotic bat algorithm (CBA) [23] which tunes the emission pulse rates 

of the bats by a sinusoidal map to improve convergence consistency over normal BA by one 

order of magnitude and over PSO by two orders of magnitude. These reasons and many others 

make BA very difficult to surpass. 

 Other metaheuristics were brought up in the literature, but were generally difficult to 

find and performed worse than the previously discussed algorithms. The GA was beaten by 

virtually every metaheuristic contender. FA was likewise beaten by everything except for GA 

[24] and PSO [27] once, and was only able to beat BA and ABC when given seven times the 

amount of completion time [47]. Unlike others, FA does not automatically adjust its tuning 

parameters as the algorithm progresses, leading to poorer performance. As a result, FA is a 

poor contender. The few instances of SA were beaten by PSO [35] and GSA [8], [49] and 

typically demonstrated very slow completion periods. Not much is found regarding ABC in 

regard to the ELD problem, except that it can outperform GA [5] like the other metaheuristics 

but both PSO and CS are shown to outdo it [43]. BFA beats GA [51], but both beats [21] and 

loses to PSO [51], so it is not a strong candidate. This is likely due to its biased random walk, 

which is inadequate to search the large multidimensional search space of the ELD problem. 

With the limited literature on ACO in ELD problems, it was found too inconsistent to consider 

here. While ACO’s convergence is guaranteed, the time it takes is somewhat uncertain. It tops 

PSO [5], [28] and GA [5] as well as BA once [47] and GSA [28], but in other literature it also loses 

to PSO [43], CS [43], and GSA [49]. GSA shows promising characteristics similar to those of other 



10 
 

algorithms chosen for this study because it is more common in ELD literature and it consistently 

outstrips PSO [7], [8], [15], [28], [30], [31], [49] and GSA [7], [8], [29], [31], [49]. However, since 

it loses to CS [29], [30], it was not deemed a significant candidate. A comparison of all of the 

studied metaheuristic candidates is in Table 1.  

Table 1: Algorithm Comparison, Winners (Left) vs. Losers (Top) 

 PSO GA CS BA SA GSA BFA FA ABC ACO 

PSO 

X 

[4], [18], [14], 

[20], [24], [26], 

[39], [40], [41] 

 [24] [35]  [51] [24], 

[43] 

[43]  

GA  X      [24]   

CS [26], [27], [29], 

[40], [41], [43]  

[26], [29], [40], 

[41], [44] 
X 

  [29], 

[30] 

 [27], 

[43] 

[43]  

BA [19], [20], [21], 

[22], [23], [39] 

[20], [24], [39]  
X 

  [21] [24]   

SA     X      

GSA [7], [8], [15], 

[28], [30], [49], 

[31] 

[7], [8], [29], 

[49], [31], 

  [8], 

[49] X 

  [49]  

BFA [21] [51]     X    

FA [27]   [47]*    X [47]*  

ABC [5], [28] [5]  [47]  [28]   X  

ACO [39] [39]        X 

*Trial allowed to run 7 times as long as competing algorithms 



11 
 

Due to the nature of this study’s application, another appropriate algorithm investigated 

by this study falls under the category of a bin packing heuristic algorithm. This algorithm is 

related because, in this scenario, electrical loads must be assigned to individual, disconnected 

generators. Since diesel generator efficiencies typically increase with the electrical loading, 

using the minimum number of generators, or bins, assures the maximum net fuel economy of 

the system, assuming each generator has the same efficiency versus loading curve. Since this is 

a unique set of requirements, there are few references to it in ELD problem literature. One 

exception [52] studies the strip packing problem, a close relation to the bin packing problem, in 

scheduling different priority loads in a smart electrical grid. While scheduling loads does not 

provide a solution robust enough to satisfy the requirements of the military at this time, this 

research demonstrates the usefulness of the FFD bin packing algorithm in this field. Another 

review of bin packing algorithms [53] has demonstrated that the FFD algorithm had the most 

optimal solution among six bin packing algorithms including max rest, first fit, next fit, next fit 

decreasing, and best fit across 11 different benchmarking data sets. This finding is consistent 

with another source [54] that was unable to determine a better algorithm than the first fit 

decreasing algorithm. Even in the two-dimensional bin packing application of the problem [55], 

the FFD family of algorithms was the top contender among next fit, first fit, split fit, floor-ceiling 

no rotation, knapsack, and size alternating stack (SAS) algorithms. 

 As a result of the above literature search, the PSO algorithm, the BA, the CS 

algorithm, and the FFD bin packing algorithm were estimated to demonstrate strong solutions 

to the ELD problem. Therefore, their performance will be compared for the application of the 

problem addressed in this thesis.   



12 
 

3. Description of Research 

This research will first deeply investigate each of the five algorithms selected, followed 

by a description of the testing procedure, and finally a comparison of the testing results. 

3.1 The Algorithms 

3.1.1 The Particle Swarm Optimization Algorithm 

Designed by James Kennedy and Russel Eberhart in 1995 [56], the PSO algorithm is a 

biologically inspired, stochastic, metaheuristic swarm algorithm that mimics the social and 

individual dynamic movements of many birds, insects, and fish. In this algorithm, a swarm 

consists of agents, called particles, that move around the mathematical search space probing 

for the best solution. Each particle adjusts its position in the search space based on its own 

experience as well as the experience of the swarm. A particle’s new position and velocity can be 

given in Equation (3.1) and Equation (3.2) as 

𝑥 = 𝑥 + 𝑣  (3.1) 

𝑣 = 𝑤 𝑣 + 𝑐 𝑟 𝑝 − 𝑥 + 𝑐 𝑟 (𝑝 − 𝑥 ) (3.2) 

where 𝑥  is the particle’s new position, 𝑥  is the particle’s old position, 𝑣  is the particle’s 

new velocity, 𝑣  is a particle’s old velocity, 𝑝  is the particle’s individual best position, 𝑝  is the 

particle swarm’s global best position, 𝑤  is an inertial weight constant, 𝑐  is weighting constant 

for local personal information, 𝑐  is a weighting constant for global social information, and 𝑟  

and 𝑟  are random numbers between zero and one. If this equation is improperly tuned, a low 

velocity will create a slow algorithm, but too high will produce instability. The sum of 𝑐  and 𝑐  



13 
 

is usually empirically equal to four, and the total number of particles is usually chosen to be 

between 10 and 50. As can be seen from the velocity equation, a particle’s velocity is controlled 

by three terms where the first is its inertia, the second is its personal influence, and the third is 

its swarm influence. The way these three forces affect particle velocity and position is visualized 

in Figure 2. Using the tip to tail method of vector addition, it is easy to determine the resulting 

velocity for the particle. Viewing the velocity equation in a different way, the first term is 

applied for diversification, meaning to search for new solutions, while the second and third 

terms are applied for intensification, or to better explore known solutions within a given region. 

 The algorithm starts by setting 𝑤 , 𝑐 , 𝑐 , and the maximum number of iterations, k, as 

well as randomly initializing the particles in the search space with a position and velocity. Next, 

the fitness of each particle is evaluated according to the cost function, 𝑓 , at each position, 𝑥 . 

As defined in Equation (3.3), if the resulting function is better than the particle’s previous best, 

then its result and position are recorded as a personal best. 

𝑓 ≤ 𝑓  
true,        𝑓 = 𝑓  and 𝑝 = 𝑥

𝑓𝑎𝑙𝑠𝑒,      𝑓 = 𝑓  and 𝑝 = 𝑝
 

(3.3) 

Inertia 
Swarm 

Best 

Personal 

Best 

Particle 

New 

Direction 

Figure 2: Particle Swarm Optimization Force Vectors 



14 
 

Similarly, if the resulting function is better than the swarm’s previous best, then its result and 

position are recorded as a swarm best according to Equation (3.4).  

Next, the algorithm checks if the maximum number of iterations have been met. If so, the 

solutions are stored in 𝑓  and 𝑝 . If the maximum iterations have not been met, the velocity 

of each particle is calculated and the positions and velocities are updated according to Equation 

(3.1) and Equation (3.2) respectively, and the cycle starts again evaluating each particle’s new 

fitness. This overall process is visualized in Figure 3. 

 

Figure 3: Particle Search Optimization Algorithm Flow Diagram 

𝑓 ≤ 𝑓  
true,        𝑓 = 𝑓  and 𝑝 = 𝑥

𝑓𝑎𝑙𝑠𝑒,     𝑓 = 𝑓  and 𝑝 = 𝑝
 

(3.4) 



15 
 

 While it is better than many other algorithms, PSO can still converge on local minima 

instead of the global minimum. It quickly localizes minima but possesses weak local search 

capabilities to quickly find the local absolute minimum. In addition, it has high computational 

complexity. Nonetheless, PSO offers many benefits. The search space does not need to be 

differentiable like many other iterative methods like gradient descent, and it can solve high 

dimensional, nonconvex, and discontinuous problems. It is a simple, efficient global search 

algorithm compared to traditional optimization algorithms, and it makes no assumptions about 

the problem, which is why it is widely used in a large range of fields and applications, including 

ELD. 

 

3.1.2 The Cuckoo Search Algorithm 

The CS algorithm is a nature-inspired stochastic metaheuristic algorithm developed by 

Xin-She Yang in 2009 [57] that mimics brood parasitism of some cuckoo birds wherein they lay 

their eggs in the nest of another species. Cuckoo bird eggs are either discarded by a wary 

mother bird, or they are nurtured until they hatch and frequently dominate resources from the 

hatchlings of the parent species. In this algorithm, the nests represent potential solutions, and 

an egg in a nest represents a new solution. The goal of the algorithm is to replace the old worse 

nests/solutions with new and better nests/solutions. 

There are three assumptions taken in the CS algorithm: 

1. Every cuckoo lays exactly one egg in one nest per iteration. 

2. Nests with better quality eggs are carried on to the next round. 



16 
 

3. The number of nests is fixed and not alterable, and the egg laid by a cuckoo is 

discovered by the host bird with a probability 𝑝  ∈ [0,1]. 

 

Figure 4: (A) Brownian Walk Versus (B) Lévy Flight 

To discover a new nest, a random walk is made via Lévy flight as opposed to the usual 

Brownian walk, as it has a larger step length in the long term, allowing for more efficient 

exploration of the global search space, as seen in Figure 4. Special note should be taken of the 

much wider axis scales for Lévy flight in Figure 4B. The new Lévy flight step is calculated via 

Equation (3.5): 

𝑥 = 𝑥 + α ⊕ Lévy(λ) (3.5) 

where α is the step size and α > 0. It is common for α = 1. The ⊕ means entry-wise 

multiplication, or the Exclusive OR operation. The Lévy flight step length is taken from a Lévy 

distribution in Equation (3.6): 

Lévy ~ 𝑢 =  𝑡 , (1 < 𝜆 < 3) (3.6) 

A B 



17 
 

which has an infinite variance with an infinite mean. 

 The algorithm starts by randomly initializing 𝑛 host nests and evaluating the fitness of 

each potential solution. Only if the new solution is better than the previous global best solution, 

is it recorded. Next, a fraction of the worst nests is replaced according to probability 𝑝 , and if 

the maximum generations have not been met yet, the process starts again. This process can be 

seen in Figure 5. 

 

Figure 5: Cuckoo Search Algorithm Flow Diagram 



18 
 

 The benefits of this algorithm are many. Like the other metaheuristics evaluated, it can 

relatively quickly solve problems that are nonlinear, discontinuous, and nonconvex. Assuming 

α=1 in most cases, it has only two tuning constants, probability 𝑝  and number of host nests 𝑛, 

making it the simplest option considered, allowing it to be very generic for many problems. 

Nonetheless, this may be problematic if more control or optimization is desired. This algorithm 

has strong global convergence capabilities proven by Markovian probability theory. Exploration 

is rapid and very random due to Lévy flights, ensuring a strong global search capacity, but like 

many other metaheuristics, it may have poor local search capabilities close to the optimal 

solution. 

 

3.1.3 The Bat Algorithm 

The BA is another biologically inspired stochastic metaheuristic algorithm developed by 

Xin-She Yang in 2010 [58] which is based on the echolocation of microbats to navigate their 

surroundings and hunt prey as shown in Figure 6. Similarly, in this algorithm, bats fly around the 

search space in search for potential solutions. 

There are three idealistic rules of the BA [58]: 

1. “All bats use echolocation to sense distance, and they know the difference between 

food/prey and background barriers in some magical way. 

2. Bats fly randomly with a velocity 𝑣  and position 𝑥  with a frequency 𝑓 , varying 

wavelength λ and loudness 𝐴  to search for prey. They can automatically adjust the 



19 
 

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission 

𝑟 ∈ [0,1], depending on the proximity to their target. 

3. Although the loudness can vary in many ways, we assume that the loudness varies from 

a large (positive) 𝐴  to a minimum constant value 𝐴 . “ 

 

Figure 6: Bat Echolocation: (A) Bat, (B) Prey, (d) Distance, (E) Emitted Wave of Bat, (R) 
Reflected Wave of Prey 

As is the case with real bats, the virtual bats in the search space decrease their loudness 

when getting close to their prey to focus on their target, and increase the rate of pulse 

emissions for higher tracking fidelity. In the algorithm, after initializing the bats with their 

positions, flying velocities, frequency bounds, pulse rate, and loudness, their fitness is 

calculated and a new solution is generated. New solutions are generated via Equation (3.7), 

Equation (3.8), and Equation (3.9): 

𝑓 = 𝑓 + (𝑓 − 𝑓 )𝛽 (3.7) 

𝑣 = 𝑣 + (𝑥 − 𝑥∗)𝑓  (3.8) 



20 
 

where 𝛽 ∈ [0,1] is a random vector drawn from a uniform distribution and 𝑥∗ is the current best 

global location. If the new position is better than the old one, it is recorded, and if the number 

of iterations is not maxed out, a new solution is generated again. If it is not a better solution 

and a random number is generated between zero and one and compared to the current pulse 

emission rate. If the random number is less than the pulse rate, the iterations are checked and 

a new solution is generated. If the random number is greater than the pulse rated, the best 

solution is selected and a local best solution is generated around that point. If the bat’s 

loudness is greater than the random number and the newly generated point is better than the 

previous, the new solution is accepted, the emission rate is increased, and the loudness is 

decreased before checking the iterations and starting the whole cycle again. As time goes on, 

the pulse rate and loudness of the bats follow Equation (3.10) and Equation (3.11): 

𝑟 = 𝑟 [1 − exp(−𝛾𝑡)] (3.10) 

𝐴 = 𝛼𝐴  (3.11) 

where α and 𝛾 are user-defined tuning constants. Usually, these are defined in the ranges 

0<α<1 and 𝛾>0, such that both loudness decays and pulse rate progress exponentially according 

to Equation (3.12): 

𝐴 → 0, 𝑟 → 𝑟 , 𝑎𝑠 𝑡 → ∞  (3.12) 

The flow diagram for the BA is in Figure 7.  

𝑥 = 𝑥 + 𝑣  (3.9) 



21 
 

 

Figure 7: Bat Algorithm Flow Diagram 

 The BA has many advantages. Like many other metaheuristics, it can relatively quickly 

solve problems that are nonlinear, discontinuous, and nonconvex in a simple, flexible, and easy-

to-implement way. The innovative feature of the BA is its ability to both search globally, but 

also automatically zoom in on a search space region that looks promising by naturally adjusting 

loudness and emission rate to switch its function from exploration to exploitation as time goes 

on. As a result, BA typically has a very quick start. However, it can tend to converge quickly at 



22 
 

first, then slowdown in later stages. In addition, because it is so new and not well tested yet, it 

is not clear what generic tuning parameters should be used for best results. 

 

3.1.4 The First Fit Decreasing Bin Packing Algorithm 

 While the previous sections have described metaheuristics, this section expounds on an 

application specific heuristic. The military diesel generator loading application has stark 

similarities to the bin packing problem. In the bin packing problem, the objective is to pack 

boxes of a certain weight/size into the least number of bins possible without exceeding the 

capacity of each bin. In the case of this application, the electrical loads (boxes) are loaded 

(packed) into the fewest generators (bins) possible without exceeding the output power 

capacity (size) of each generator (bin). Since diesel generator fuel efficiencies typically increase 

with the electrical loading, using the minimum number of generators assures the maximum net 

fuel economy of the system, assuming each generator has the same efficiency-versus-loading 

curve. Note that while the electrical loads are treated as one-dimensional, the electric loads in 

this scenario are actually two-dimensional due to the use of load profiles over a given time. 

When attempting to fill a generator with two or more loads, their 2D load profiles are added on 

top of each other, with the overall peak power consumption during the time period being 

treated as the 1D size of the load box to be fit into the 1D generator bin. 



23 
 

 

Figure 8: First Fit Decreasing Flow Diagram: (A) Randomly Assorted Loads, (B) Sorted Loads 
from Biggest to Smallest, (C) Second Load Is Too Big to Fit in First Generator So It Is Placed in 

the Second, (D) Final Load Assignment  

The FFD bin packing algorithm [54] is a greedy algorithm which arranges the electrical 

loads in decreasing peak power size, and then attempts to fit them into generators from the 

highest to lowest peak efficiency, as seen in Figure 8A and Figure 8B. If the first generator 

cannot pack the load without exceeding its maximum threshold, as in Figure 8C, the algorithm 

tries to pack the load into the next generator on the list until all the electrical loads are packed 

into generators, as shown in Figure 8D. If all loads fit within the designated generators, a 

resulting fitness is calculated. If they do not fit, or if there are no available generators 

remaining, the result is a nonsolution. These steps can be seen conceptually in Figure 9.  

A B 

C D 



24 
 

 

Figure 9: First Fit Decreasing Bin Packing Algorithm Flow Diagram 

While this algorithm is simpler than the other metaheuristics, its additional 

assumptions/abstractions suggest it may produce a comparable optimum cost in a small 

fraction of the time since it does not require the computation of a large number of fitness 

functions every iteration cycle like the previous algorithms. While there are many other bin 

packing algorithms like max rest (MR), first fit (FF), next fit (NF), next fit decreasing (NFD), and 

best fit (BF), FFD largely seems the most optimal according to many sources like [53] where FFD 

had the most optimal solution among six bin packing algorithms across 11 different 

benchmarking data sets. 



25 
 

3.1.5 The Exhaustive Search Algorithm 

 The ES algorithm is a rudimentary algorithm that simply iterates through every possible 

combination of electrical loads in available discrete generators. If success criteria are met, 

meaning the electrical demand is met without overloading generators, the fitness of that 

function is calculated. If it is better than the previous solution, its cost and configuration are 

saved. This procedure is diagramed in Figure 10. 

 

Figure 10: ES Algorithm Flow Diagram 



26 
 

Since this method runs through every possible solution, the algorithm is comparatively 

slow and runtime increases factorially with the scale of the problem, but it guarantees finding 

the global optimum. Depending on the size of the forward operating base and the number of 

required loads and available generators, the longer run time may be permissible in exchange 

for the optimum solution at a small enough scale. 

 

3.2 Procedure 

3.2.1 Setup 

The five algorithms (PSO, CS, BA, FFD, and ES) were coded using the Python 

programming language in the Jupyter Notebook integrated development environment (IDE). All 

the algorithms relied on a load power profile and a generator profile, while the metaheuristic 

algorithms and ES additionally relied on a load configuration file. 

Load power profile data was generated to simulate a variety of different loads one 

might find: constant resistive loads, inductive cycling loads with different cycle periods, and a 

few small random loads to simulate small miscellaneous loads throughout the day. Power data 

was broken down into peak power segments for each discrete time step. While any data 

sample frequency can be input into the algorithms, four samples per hour corresponding to 15-

minute interval data was used for a given 24-hour period. Breaking down the power 

consumption by time allows for the realistic pairing of complementary loads in a generator to 

average out, like exterior lighting for evening hours, and computers for work hours. The smaller 

the time interval, the more accurate and useful the exercise becomes. Fifteen-minute data was 



27 
 

chosen to balance real world applicability with a short enough runtime, so as to run a 

statistically interesting number of trials. To test all load configurations, load sizes were selected 

for the capability to operate all loads in any one generator. 

Generator profiles were created based on experimental field data collected from 

military diesel generators. The most common military generator line in use is the Tactical Quiet 

Generator (TQG). Fuel consumption curves were created for multiple capacity models by 

electrically loading the generators at 25%, 50%, 75%, and 100% capacity while measuring fuel 

consumption. For this simulation, 30 kW and 60 kW models and their respective consumption 

equations were used due to their predominant use. The 30 kW and 60 kW equations were 

respectively modeled as Equation (3.13) and Equation (3.14):  

𝑦 = 3.594x^3 − 5.6974x^2 + 4.5771x + 0 (3.13) 

𝑦 = 3.4458x^3 − 6.4626x^2 + 7.5029x + 0 (3.14) 

respectively, where 𝑦 is fuel consumption and x is percent loading of the generator. Their fuel 

consumption graphs are in Figure 11 and Figure 12. The cost of diesel fuel was set at a common 

forward operation base rate of $100 per gallon. 

Configuration profiles were generated to list every possible combination of all loads in 

all generators, so long as all loads are used. These combination numbers were used as the “x-

axis” for ES, PSO, BA, and CS as discussed in Section 3.2.2.  

The load, generator, and configuration profile data were preprocessed and fed into the 

algorithms. A screening step was taken to assure that no impossible combinations were 

considered where the aggregate load exceeded the capacity of the generator. Each algorithm 



28 
 

was graded on optimization of solution, i.e. lowest system cost, and shortness of runtime. 

Runtime counters were started after the variables and profile data were loaded into the 

programs and screened. Each algorithm was executed 100 times and average values were taken 

of their results. 

 

Figure 11: 30 kW TQG Fuel Consumption vs. Percent Loading 

 

Figure 12: 60 kW TQG Fuel Consumption vs. Percent Loading 

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

Fu
el

 C
on

su
m

pt
io

n 
(g

al
/h

r)

Percent Loading (%)

30 kW TQG Fuel Consumption vs. Percent 
Loading

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 20 40 60 80 100

Fu
el

 C
on

su
m

pt
io

n 
(g

al
/h

r)

Percent Loading(%)

60 kW TQG Fuel Consumption vs. Percent 
Loading



29 
 

3.2.2 Dimension Reduction 

Normally, the metaheuristics setup would consist of establishing one “fitness” 

dimension plus either 𝑛 generator dimensions or 𝑚 load dimensions, whichever is lower. 

However, this becomes very difficult to compare and work with when utilizing the ES method, 

which requires a single dimension. In addition, while the metaheuristic algorithms are capable 

at handling multi-dimensional problems, multidimensionality still tends to increase complexity 

and runtime. As a result, a technique was developed to reduce the metaheuristic search space 

from 𝑛 + 1 or 𝑚 + 1 dimensions down to only two. 

In the initial setup of the computer code, all combinations and permutations of loads in 

generators are created, ordered, and addressed in a matrix such that 𝑥 = 1 corresponds to a 

particular setup of loads in generators, and so forth. This generates the number of possible 

solutions proportional to Equation (3.15): 

𝑎 ≈  𝑛  (3.15) 

where 𝑎 is the number of possible solutions, 𝑛 is the number of available generators, and 𝑚 is 

the number of required loads. While the number of solutions increases exponentially, the 

significant number of impossible combinations where a generator would be overloaded also 

increases at approximately the same rate. Consequently, these impossible combinations are 

removed from the matrix before the metaheuristics search them, thereby drastically decreasing 

the search space and saving the time of evaluating and subsequently discarding impossible 

solutions. The second “y-dimension” is simply the fitness, or fuel cost, of that specific 

combination in accordance to the defined fitness function. 



30 
 

3.2.3 Experimental Trials 

 Three different trial sizes were designed to test the algorithms on relatively small, 

medium, and large search space scales. The small trial simulated the scenario of two generators 

and five loads (2x5). For comparison to the ES method at a small scale, the metaheuristic 

algorithms were only allowed two particles and three iterations each. The medium trial 

scenario comprised two generators and ten loads (2x10). A good rule of thumb for small 

dimensional, 𝑛, uses of metaheuristic algorithms, where 𝑛 < 10, is to assign particle numbers 

equal to 10𝑛. As a result, 10 particles were used, and metaheuristic algorithm iterations were 

set to 15. The large trial involved three generators and ten loads (3x10). Due to the vastly larger 

search space in the large trial, the particle number was set to 20 and iterations were set to 20. 

The process of using optimization methods to tune and optimize optimization 

algorithms, called meta-optimization, is its own entire field of research. It is the last step in this 

nested optimization scheme illustrated in Figure 13. There are even many instances of using 

Meta-optimizer 

Optimization Algorithm 

Optimize Fuel Consumption 

Optimize Energy, 
Money, Lives 

Figure 13: Nested Optimization Scheme 



31 
 

metaheuristic algorithms to tune other metaheuristic algorithms. In this experiment, an 

iterative method was used to test various tuning parameters for each metaheuristic algorithm. 

The tuning parameters for PSO include the inertial (𝑤), individual (c1), and social (c2) weighting 

components. Common values for each of these coefficients were tested (𝑤=0.5, c1=c2=1) as 

well as both a higher (𝑤=0.75, c1=c2=1.5) and lower value (𝑤=0.25, c1=c2=0.5), for a total of 27 

unique combinations. The BA has tuning parameters including level of impulse emission (r0), 

volume of sound (A0), minimum wave frequency (fmin), maximum wave frequency (fmax), change 

of volume constant (α), and change of impulse emission constant (𝛾). Through analysis, the 

three constants found to affect the solution outcome most include the maximum wave 

frequency, the change of volume constant, and the change of impulse emission constant. 

Common values for these coefficients were tested (fmax=0.02, α=0.6, 𝛾=0.6) in addition to 

higher (fmax=0.03, α=0.9, 𝛾=0.9) and lower values (fmax=0.01, α=0.3, 𝛾=0.3), for a total of 27 

unique combinations while the other values were set to r0=0.9, A0=0.5, fmin=0.  The CS algorithm 

was easiest to tune since it only has one parameter, 𝑝 , for the probability that a cuckoo’s egg 

would be detected. Due to a single tuning parameter, 11 tuning scenarios were tested, where 

𝑝  was between zero and one, with an incremental step size of 0.1. 

Each trial first consists of a metaheuristic algorithm tuning step. To save runtime costs 

without harming tuning accuracy, the load profile was reduced from 96 samples, pertaining to 

15-minute data for a day, down to 10. Each combination of tuning parameters listed above is 

tested 100 times and averaged for comparison. Since the number of iterations remains 

constant, runtime is fairly consistent; therefore, solution error as compared to the ES method’s 



32 
 

solution is used to compare the tuning parameters. The optimal tuning parameters for each 

algorithm are then run 100 times using the full 96-sample load profile and compared.  

 

3.3 Results 

3.3.1 Trial 1: Two Generators, Five Loads 

 The first, small trial consisted of the setup of just two generators and five loads. There 

are only about 31 unique combinations in the search space, as seen in Figure 14. It should be 

noted that combinations to the left of the graph have more loads consolidated to as few 

generators possible, whereas the loads distribute more evenly among the generators toward 

the right. As was theorized, the graph shows that highly loaded generator configurations were 

more fuel-efficient, and therefore more cost-efficient, than evenly distributed load 

configurations. Due to the nature of combinatorics, there are more distributed load 

configurations than consolidated load configurations, and accordingly there are more poor 

solutions than good solutions in the entirety of the search space, as seen in the Figure 15 

histogram. 



33 
 

 

Figure 14: 2x5 Cost vs. Combination 

 

Figure 15: 2x5 Cost Histogram 

 As previously discussed, an iterative meta-optimization method was used to search for 

optimal tuning parameters for PSO, BA, and CS, shown in Table 2, Table 3, and Table 4 

 9,000.00

 9,200.00

 9,400.00

 9,600.00

 9,800.00

 10,000.00

 10,200.00

 10,400.00

 10,600.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Co
st

 ($
)

Combination (#)

2x5 Cost vs. Combination



34 
 

respectively. The most optimal tuning parameter for each algorithm to be used in the final 

results has been highlighted. Table 5 compares the winner of each algorithm’s calibration 

results, and Table 6 shows the final results scaled up to a full day’s worth of 15-minute interval 

data. 

Table 2: 2x5 PSO Calibration Table 

 

 

Average SD Average SD
w: 0.25 , c1: 0.5 , c2: 0.5 987.71 909.63 - 1032.92 34.06 0.03018 0.01562 - 0.05546 0.0067
w: 0.25 , c1: 0.5 , c2: 1.0 982.88 909.63 - 1030.44 32.88 0.03098 0.01562 - 0.05297 0.0055
w: 0.25 , c1: 0.5 , c2: 1.5 974.11 909.63 - 1034.40 41.03 0.02923 0.01561 - 0.04697 0.0055
w: 0.25 , c1: 1.0 , c2: 0.5 986.54 909.63 - 1032.31 32.91 0.02964 0.01561 - 0.04752 0.0058
w: 0.25 , c1: 1.0 , c2: 1.0 984.92 909.63 - 1030.44 33.95 0.03115 0.01562 - 0.05747 0.0074
w: 0.25 , c1: 1.0 , c2: 1.5 978.48 909.63 - 1038.48 36.60 0.03013 0.01518 - 0.04652 0.0042
w: 0.25 , c1: 1.5 , c2: 0.5 990.51 909.63 - 1032.92 32.71 0.02934 0.01562 - 0.04385 0.0044
w: 0.25 , c1: 1.5 , c2: 1.0 989.24 909.63 - 1032.92 32.73 0.02958 0.01562 - 0.04616 0.0040
w: 0.25 , c1: 1.5 , c2: 1.5 978.52 909.63 - 1032.31 38.70 0.02923 0.01511 - 0.04687 0.0056
w: 0.5 , c1: 0.5 , c2: 0.5 989.90 909.63 - 1032.92 29.95 0.03213 0.01562 - 0.04697 0.0052
w: 0.5 , c1: 0.5 , c2: 1.0 990.22 909.63 - 1032.92 34.77 0.02921 0.01417 - 0.04702 0.0048
w: 0.5 , c1: 0.5 , c2: 1.5 977.60 909.63 - 1032.92 38.73 0.03000 0.01561 - 0.06251 0.0068
w: 0.5 , c1: 1.0 , c2: 0.5 989.24 909.63 - 1038.48 30.60 0.03061 0.01562 - 0.06251 0.0074
w: 0.5 , c1: 1.0 , c2: 1.0 984.42 909.63 - 1038.48 38.10 0.03322 0.01561 - 0.07813 0.0107
w: 0.5 , c1: 1.0 , c2: 1.5 976.15 909.63 - 1031.99 38.40 0.03165 0.01505 - 0.06659 0.0082
w: 0.5 , c1: 1.5 , c2: 0.5 988.99 909.63 - 1034.40 36.69 0.02890 0.01561 - 0.04687 0.0062
w: 0.5 , c1: 1.5 , c2: 1.0 984.71 909.63 - 1032.92 35.12 0.02997 0.01561 - 0.06703 0.0072
w: 0.5 , c1: 1.5 , c2: 1.5 980.57 909.63 - 1032.31 36.69 0.02950 0.01562 - 0.04337 0.0032
w: 0.75 , c1: 0.5 , c2: 0.5 988.93 909.63 - 1032.92 33.48 0.02889 0.01562 - 0.04576 0.0036
w: 0.75 , c1: 0.5 , c2: 1.0 976.68 909.63 - 1031.99 37.46 0.02939 0.01316 - 0.06250 0.0056
w: 0.75 , c1: 0.5 , c2: 1.5 976.14 909.63 - 1032.92 37.63 0.02974 0.01315 - 0.04411 0.0040
w: 0.75 , c1: 1.0 , c2: 0.5 990.79 909.63 - 1032.92 29.27 0.02949 0.01562 - 0.03641 0.0021
w: 0.75 , c1: 1.0 , c2: 1.0 984.62 909.63 - 1032.92 36.57 0.02956 0.01561 - 0.05081 0.0062
w: 0.75 , c1: 1.0 , c2: 1.5 976.04 909.63 - 1034.40 37.82 0.03131 0.01561 - 0.07813 0.0090
w: 0.75 , c1: 1.5 , c2: 0.5 994.50 909.63 - 1032.92 25.30 0.02883 0.01561 - 0.04687 0.0060
w: 0.75 , c1: 1.5 , c2: 1.0 981.90 909.63 - 1030.44 36.15 0.03116 0.01561 - 0.04689 0.0067
w: 0.75 , c1: 1.5 , c2: 1.5 979.26 909.63 - 1031.99 37.22 0.02927 0.01561 - 0.04689 0.0057

Trial
Solution Runtime

Range Range



35 
 

Table 3: 2x5 BA Calibration Table 

 

Table 4: 2x5 CS Calibration Table 

 

Average SD Average SD
fmax: 0.01 , alpha: 0.3 , csi: 0.3 989.53 909.63 - 1031.99 32.96 0.04233 0.02568 - 0.07844 0.0085
fmax: 0.01 , alpha: 0.3 , csi: 0.6 989.73 909.63 - 1038.48 34.91 0.04175 0.02613 - 0.07820 0.0084
fmax: 0.01 , alpha: 0.3 , csi: 0.9 994.50 909.63 - 1034.40 28.73 0.04177 0.02780 - 0.05706 0.0053
fmax: 0.01 , alpha: 0.6 , csi: 0.3 996.95 909.63 - 1034.40 32.75 0.04084 0.02616 - 0.05364 0.0050
fmax: 0.01 , alpha: 0.6 , csi: 0.6 992.59 909.63 - 1032.92 31.83 0.04137 0.02714 - 0.07226 0.0087
fmax: 0.01 , alpha: 0.6 , csi: 0.9 986.27 909.63 - 1034.40 35.22 0.04044 0.02834 - 0.04689 0.0077
fmax: 0.01 , alpha: 0.9 , csi: 0.3 993.41 909.63 - 1034.40 33.51 0.04166 0.03081 - 0.06251 0.0075
fmax: 0.01 , alpha: 0.9 , csi: 0.6 988.87 909.63 - 1032.92 34.19 0.04234 0.02690 - 0.09374 0.0116
fmax: 0.01 , alpha: 0.9 , csi: 0.9 989.13 909.63 - 1032.92 36.26 0.04113 0.02712 - 0.06937 0.0070
fmax: 0.02 , alpha: 0.3 , csi: 0.3 993.57 909.63 - 1038.48 34.18 0.04168 0.02887 - 0.05514 0.0059
fmax: 0.02 , alpha: 0.3 , csi: 0.6 987.92 909.63 - 1034.40 35.22 0.04108 0.02618 - 0.05670 0.0071
fmax: 0.02 , alpha: 0.3 , csi: 0.9 990.41 909.63 - 1034.40 35.47 0.04058 0.02572 - 0.05869 0.0069
fmax: 0.02 , alpha: 0.6 , csi: 0.3 988.64 909.63 - 1032.92 33.16 0.04265 0.03698 - 0.05796 0.0037
fmax: 0.02 , alpha: 0.6 , csi: 0.6 988.50 909.63 - 1032.92 32.69 0.04110 0.02382 - 0.07390 0.0070
fmax: 0.02 , alpha: 0.6 , csi: 0.9 994.87 909.63 - 1034.40 31.96 0.04116 0.03081 - 0.06249 0.0080
fmax: 0.02 , alpha: 0.9 , csi: 0.3 988.81 909.63 - 1034.40 33.82 0.04214 0.02786 - 0.08927 0.0086
fmax: 0.02 , alpha: 0.9 , csi: 0.6 989.53 909.63 - 1032.31 35.17 0.04106 0.03123 - 0.06405 0.0075
fmax: 0.02 , alpha: 0.9 , csi: 0.9 991.75 909.63 - 1032.92 27.97 0.04183 0.02575 - 0.08122 0.0082
fmax: 0.03 , alpha: 0.3 , csi: 0.3 990.08 909.63 - 1032.92 33.83 0.04173 0.02512 - 0.05996 0.0059
fmax: 0.03 , alpha: 0.3 , csi: 0.6 990.58 909.63 - 1032.92 32.98 0.04162 0.02618 - 0.05586 0.0056
fmax: 0.03 , alpha: 0.3 , csi: 0.9 992.48 909.63 - 1034.40 29.33 0.04113 0.02512 - 0.05168 0.0060
fmax: 0.03 , alpha: 0.6 , csi: 0.3 980.42 909.63 - 1032.92 37.46 0.04112 0.02527 - 0.05303 0.0058
fmax: 0.03 , alpha: 0.6 , csi: 0.6 990.95 909.63 - 1034.40 35.37 0.04263 0.03123 - 0.05089 0.0038
fmax: 0.03 , alpha: 0.6 , csi: 0.9 993.26 909.63 - 1032.92 34.58 0.04136 0.03123 - 0.07269 0.0075
fmax: 0.03 , alpha: 0.9 , csi: 0.3 988.05 909.63 - 1034.40 35.16 0.04134 0.03123 - 0.06250 0.0081
fmax: 0.03 , alpha: 0.9 , csi: 0.6 987.85 909.63 - 1034.40 32.87 0.04410 0.02616 - 0.07879 0.0076
fmax: 0.03 , alpha: 0.9 , csi: 0.9 995.19 909.63 - 1032.92 33.50 0.04150 0.03069 - 0.06354 0.0064

Range Range
Trial

Solution Runtime

Average SD Average SD
pa: 0 965.88 909.63 - 1031.99 36.82 0.05689 0.04503 - 0.08876 0.0075
pa: 0.1 969.70 909.63 - 1029.38 35.19 0.05956 0.04227 - 0.07196 0.0052
pa: 0.2 966.39 909.63 - 1024.30 36.95 0.06040 0.04142 - 0.09777 0.0100
pa: 0.3 969.54 909.63 - 1024.30 35.76 0.06017 0.04686 - 0.11636 0.0097
pa: 0.4 972.02 909.63 - 1024.30 34.37 0.05952 0.04687 - 0.07495 0.0049
pa: 0.5 967.85 909.63 - 1029.38 34.74 0.05854 0.04686 - 0.09150 0.0080
pa: 0.6 965.97 909.63 - 1019.44 35.38 0.05935 0.04376 - 0.09374 0.0074
pa: 0.7 964.75 909.63 - 1014.35 37.23 0.05752 0.04352 - 0.07814 0.0086
pa: 0.8 967.71 909.63 - 1027.57 36.79 0.05729 0.04686 - 0.07660 0.0077
pa: 0.9 967.45 909.63 - 1027.57 36.26 0.06010 0.04344 - 0.08962 0.0081
pa: 1.0 971.94 909.63 - 1029.38 31.90 0.05917 0.03977 - 0.12021 0.0094

Range Range
Trial

Solution Runtime



36 
 

 

Table 5: 2x5 Calibration Results 

 

Table 6: 2x5 Final Results 

 

 The Trial 1 results demonstrate that, for similar runtimes compared to the ES method at 

the small scale, metaheuristic algorithms can provide solution errors around seven to eight 

percent in this application. However, the first fit decreasing algorithm was shown to provide the 

perfect solution with a runtime an order of magnitude smaller than the ES method. 

Nevertheless, metaheuristic algorithms are expected to perform better on bigger data sets. 

3.3.2 Trial 2: Two Generators, Ten Loads 

The second, medium trial consisted of the setup of two generators and ten loads. There 

are about 1000 unique combinations in the search space, as seen in Figure 16. Like before, 

more distributed load configurations can be seen on the right of the graph, occurring in a step-

like pattern as configurations change from 10 loads in Generator 1 and 0 loads in Generator 2, 

Average ($) % Error SD Average (s) % Diff SD
ES 909.63        0.0% 909.63 - 909.63    0.00 0.0428 0.0% 0.0261 - 0.1052 0.0107
FFD 909.63        0.0% 909.63 - 909.63    0.00 0.0066 -146.8% 0.0042 - 0.0080 0.0006
PSO 974.11        6.8% 909.63 - 1,034.40 41.03 0.0292 -37.7% 0.0156 - 0.0470 0.0055
BA 980.42        7.5% 909.63 - 1,032.92 37.46 0.0411 -4.1% 0.0253 - 0.0530 0.0058
CS 964.75        5.9% 909.63 - 1,014.35 37.23 0.0575 29.3% 0.0435 - 0.0781 0.0086

Range ($) Range (s)

2x5 Calibration Results

Algorithm
Solution Runtime

Average ($) % Error SD Average (s) % Diff SD
ES 9,030.80     0.0% 9,030.80 - 9,030.80   0.00 0.352 0.0% 0.344 - 0.391 0.0097
FFD 9,030.80     0.0% 9,030.80 - 9,030.80   0.00 0.014 -184.9% 0.008 - 0.023 0.0018
PSO 9,819.37     8.4% 9,030.80 - 10,429.59 401.62 0.214 -48.5% 0.187 - 0.250 0.0137
BA 9,865.65     8.8% 9,030.80 - 10,365.36 404.75 0.299 -16.0% 0.281 - 0.320 0.0115
CS 9,715.45     7.3% 9,030.80 - 10,239.40 353.26 0.420 17.7% 0.359 - 0.484 0.0201

Runtime
Range ($) Range (s)

2x5 Final Results

Algorithm
Solution



37 
 

all the way to 5 loads in Generator 1 and 5 loads in Generator 2. Again, Figure 17 illustrates the 

increasing gap between a few good solutions and an avalanche of poor solutions. 

 

Figure 16: 2x10 Cost vs. Combination Graph 

 

Figure 17: 2x10 Cost Histogram 

 14,000.00

 14,500.00

 15,000.00

 15,500.00

 16,000.00

 16,500.00

 17,000.00

 17,500.00

 18,000.00

 18,500.00

 19,000.00

0 100 200 300 400 500 600 700 800 900 1000

Co
st

 ($
)

Combination (#)

2x10 Cost vs. Combination



38 
 

Trial 2 meta-optimization was performed for PSO, BA, and CS, shown in Table 7, Table 8, 

and Table 9 respectively. Table 10 compares the winner of each algorithm’s calibration results, 

and Table 11 shows the final results scaled up to a full day’s worth of 15-minute interval data. 

Table 7: 2x10 PSO Calibration Table 

 

Average SD Average SD
w: 0.25 , c1: 0.5 , c2: 0.5 1611.44 1438.14 - 1753.31 60.49 0.9197 0.9025 - 1.0104 0.012
w: 0.25 , c1: 0.5 , c2: 1.0 1596.74 1438.14 - 1754.20 96.77 0.9291 0.8745 - 1.2393 0.042
w: 0.25 , c1: 0.5 , c2: 1.5 1524.73 1438.14 - 1753.31 92.36 0.9098 0.8675 - 0.9914 0.022
w: 0.25 , c1: 1.0 , c2: 0.5 1613.85 1438.14 - 1736.55 56.49 0.9439 0.9065 - 1.4522 0.075
w: 0.25 , c1: 1.0 , c2: 1.0 1579.79 1438.14 - 1743.79 89.68 0.9246 0.8885 - 1.0504 0.022
w: 0.25 , c1: 1.0 , c2: 1.5 1514.40 1438.14 - 1753.31 90.01 0.9101 0.8655 - 0.9744 0.019
w: 0.25 , c1: 1.5 , c2: 0.5 1628.82 1438.14 - 1743.79 61.61 0.9222 0.9025 - 1.0194 0.015
w: 0.25 , c1: 1.5 , c2: 1.0 1580.54 1438.14 - 1753.31 95.31 0.9190 0.8755 - 0.9554 0.011
w: 0.25 , c1: 1.5 , c2: 1.5 1499.57 1438.14 - 1753.31 86.28 0.9114 0.8655 - 1.0514 0.029
w: 0.5 , c1: 0.5 , c2: 0.5 1593.46 1438.14 - 1743.79 81.93 0.9226 0.9005 - 1.0524 0.016
w: 0.5 , c1: 0.5 , c2: 1.0 1517.26 1438.14 - 1754.20 97.60 0.9105 0.8635 - 1.0054 0.018
w: 0.5 , c1: 0.5 , c2: 1.5 1495.30 1438.14 - 1753.31 84.27 0.9029 0.8615 - 1.0404 0.026
w: 0.5 , c1: 1.0 , c2: 0.5 1595.90 1438.14 - 1743.79 82.78 0.9250 0.9015 - 1.0474 0.021
w: 0.5 , c1: 1.0 , c2: 1.0 1525.39 1438.14 - 1753.31 96.81 0.9142 0.8705 - 0.9904 0.017
w: 0.5 , c1: 1.0 , c2: 1.5 1490.14 1438.14 - 1743.79 81.02 0.9040 0.8665 - 1.0224 0.021
w: 0.5 , c1: 1.5 , c2: 0.5 1599.06 1438.14 - 1753.31 84.56 0.9256 0.8995 - 1.0474 0.022
w: 0.5 , c1: 1.5 , c2: 1.0 1527.51 1438.14 - 1753.31 98.59 0.9117 0.8715 - 1.0404 0.020
w: 0.5 , c1: 1.5 , c2: 1.5 1498.16 1438.14 - 1743.79 97.41 0.9035 0.8705 - 1.0454 0.022
w: 0.75 , c1: 0.5 , c2: 0.5 1505.16 1438.14 - 1736.55 88.08 0.9140 0.8825 - 1.0744 0.020
w: 0.75 , c1: 0.5 , c2: 1.0 1484.53 1438.14 - 1743.79 83.58 0.8980 0.8665 - 0.9464 0.016
w: 0.75 , c1: 0.5 , c2: 1.5 1500.86 1438.14 - 1753.31 86.74 0.8946 0.8525 - 0.9564 0.017
w: 0.75 , c1: 1.0 , c2: 0.5 1521.48 1438.14 - 1753.31 81.31 0.9154 0.8855 - 1.0034 0.016
w: 0.75 , c1: 1.0 , c2: 1.0 1491.71 1438.14 - 1753.31 78.04 0.9053 0.8705 - 0.9924 0.016
w: 0.75 , c1: 1.0 , c2: 1.5 1489.62 1438.14 - 1743.79 79.32 0.8968 0.8545 - 0.9994 0.021
w: 0.75 , c1: 1.5 , c2: 0.5 1527.96 1438.14 - 1754.20 81.87 0.9159 0.8905 - 1.0334 0.018
w: 0.75 , c1: 1.5 , c2: 1.0 1482.63 1438.14 - 1736.55 67.79 0.9083 0.8635 - 1.0114 0.021
w: 0.75 , c1: 1.5 , c2: 1.5 1478.91 1438.14 - 1669.34 58.16 0.8986 0.8575 - 0.9355 0.015

Trial
Solution Runtime

Range Range



39 
 

Table 8: 2x10 BA Calibration Table 

 

Average SD Average SD
fmax: 0.01 , alpha: 0.3 , csi: 0.3 1550.30 1438.14 - 1753.31 91.84 1.4736 1.4202 - 1.6560 0.033
fmax: 0.01 , alpha: 0.3 , csi: 0.6 1540.10 1438.14 - 1754.20 89.78 1.4698 1.4242 - 1.5761 0.021
fmax: 0.01 , alpha: 0.3 , csi: 0.9 1547.23 1438.14 - 1730.63 81.07 1.4761 1.4122 - 1.6531 0.036
fmax: 0.01 , alpha: 0.6 , csi: 0.3 1554.77 1438.14 - 1743.79 89.78 1.4738 1.4252 - 1.5961 0.022
fmax: 0.01 , alpha: 0.6 , csi: 0.6 1553.92 1438.14 - 1753.31 86.07 1.4740 1.4352 - 1.5731 0.017
fmax: 0.01 , alpha: 0.6 , csi: 0.9 1556.21 1438.14 - 1743.79 87.08 1.4745 1.4062 - 1.6171 0.027
fmax: 0.01 , alpha: 0.9 , csi: 0.3 1545.97 1438.14 - 1743.79 86.80 1.4698 1.4232 - 1.5641 0.019
fmax: 0.01 , alpha: 0.9 , csi: 0.6 1546.41 1438.14 - 1743.79 83.57 1.4746 1.4212 - 1.6241 0.022
fmax: 0.01 , alpha: 0.9 , csi: 0.9 1540.24 1438.14 - 1730.63 81.25 1.4693 1.4342 - 1.5011 0.013
fmax: 0.02 , alpha: 0.3 , csi: 0.3 1529.03 1438.14 - 1694.46 75.99 1.4773 1.4422 - 1.6211 0.026
fmax: 0.02 , alpha: 0.3 , csi: 0.6 1531.44 1438.14 - 1736.55 83.07 1.4729 1.4132 - 1.5901 0.024
fmax: 0.02 , alpha: 0.3 , csi: 0.9 1530.61 1438.14 - 1753.31 77.91 1.4747 1.4242 - 1.6560 0.029
fmax: 0.02 , alpha: 0.6 , csi: 0.3 1524.75 1438.14 - 1753.31 76.12 1.4675 1.4212 - 1.5051 0.016
fmax: 0.02 , alpha: 0.6 , csi: 0.6 1540.97 1438.14 - 1730.63 75.02 1.4759 1.4292 - 1.6291 0.031
fmax: 0.02 , alpha: 0.6 , csi: 0.9 1539.51 1438.14 - 1743.79 83.62 1.4695 1.4232 - 1.6900 0.027
fmax: 0.02 , alpha: 0.9 , csi: 0.3 1540.52 1438.14 - 1736.55 77.39 1.4742 1.4452 - 1.7660 0.032
fmax: 0.02 , alpha: 0.9 , csi: 0.6 1536.37 1438.14 - 1753.31 75.58 1.4732 1.4282 - 1.5231 0.014
fmax: 0.02 , alpha: 0.9 , csi: 0.9 1531.36 1438.14 - 1753.31 77.68 1.4738 1.4412 - 1.6400 0.025
fmax: 0.03 , alpha: 0.3 , csi: 0.3 1520.95 1438.14 - 1754.20 74.34 1.4689 1.4262 - 1.6121 0.023
fmax: 0.03 , alpha: 0.3 , csi: 0.6 1530.28 1438.14 - 1753.31 70.68 1.4727 1.4212 - 1.5941 0.029
fmax: 0.03 , alpha: 0.3 , csi: 0.9 1518.72 1438.14 - 1754.20 80.57 1.4690 1.4132 - 1.6021 0.026
fmax: 0.03 , alpha: 0.6 , csi: 0.3 1522.12 1438.14 - 1753.31 78.18 1.4752 1.4382 - 1.5951 0.025
fmax: 0.03 , alpha: 0.6 , csi: 0.6 1534.29 1438.14 - 1673.14 70.53 1.4673 1.4182 - 1.5041 0.014
fmax: 0.03 , alpha: 0.6 , csi: 0.9 1541.13 1438.14 - 1736.55 77.80 1.4722 1.4332 - 1.6640 0.023
fmax: 0.03 , alpha: 0.9 , csi: 0.3 1533.77 1438.14 - 1743.79 76.91 1.4660 1.4082 - 1.4991 0.014
fmax: 0.03 , alpha: 0.9 , csi: 0.6 1529.15 1438.14 - 1711.10 68.74 1.4715 1.4242 - 1.6580 0.023
fmax: 0.03 , alpha: 0.9 , csi: 0.9 1529.92 1438.14 - 1753.31 83.96 1.4692 1.4162 - 1.5141 0.013

Trial Solution Runtime
Range Range



40 
 

Table 9: 2x10 CS Calibration Table 

 

Table 10: 2x10 Calibration Results 

 

Table 11: 2x10 Final Results 

 

The Trial 2 results demonstrate even higher metaheuristic algorithm solution accuracy 

than Trial 1, with even faster runtimes compared to the ES method. PSO provides 3.5% higher 

average solution with less than half the runtime of ES, while demonstrating a smaller standard 

deviation than the other metaheuristic algorithms. The FFD algorithm again comes out the clear 

Average SD Average SD
pa: 0 1560.49 1438.14 - 1743.79 84.44 1.8316 1.7490 - 2.0458 0.033
pa: 0.1 1564.48 1438.14 - 1781.41 83.33 1.8300 1.7560 - 1.9499 0.026
pa: 0.2 1561.80 1438.14 - 1743.79 83.61 1.8332 1.7540 - 2.0388 0.039
pa: 0.3 1553.87 1438.14 - 1754.20 95.92 1.8280 1.7400 - 1.9998 0.035
pa: 0.4 1538.57 1438.14 - 1711.10 78.98 1.8238 1.7360 - 1.8709 0.021
pa: 0.5 1552.18 1438.14 - 1739.60 76.34 1.8312 1.7540 - 1.9699 0.023
pa: 0.6 1541.36 1438.14 - 1721.06 76.33 1.8263 1.7460 - 2.0958 0.034
pa: 0.7 1546.37 1438.14 - 1736.55 79.72 1.8260 1.7750 - 1.9629 0.027
pa: 0.8 1531.71 1438.14 - 1705.45 69.73 1.8291 1.7820 - 1.9429 0.021
pa: 0.9 1546.27 1438.14 - 1711.10 78.11 1.8242 1.7360 - 1.8669 0.019
pa: 1.0 1539.39 1438.14 - 1736.55 73.17 1.8301 1.7830 - 1.9399 0.024

Trial
Solution Runtime

Range Range

Average ($) % Error SD Average (s) % Diff SD
ES 1,438.14     0.0% 1,438.14 - 1,438.14 0.00 2.1057 0.0% 2.0568 - 2.6086 0.063
FFD 1,438.14     0.0% 1,438.14 - 1,438.14 0.00 0.0072 -198.6% 0.0060 - 0.0090 0.001
PSO 1,478.91     2.8% 1,438.14 - 1,669.34 58.16 0.8986 -80.4% 0.8575 - 0.9355 0.015
BA 1,518.72     5.5% 1,438.14 - 1,754.20 80.57 1.4690 -35.6% 1.4132 - 1.6021 0.026
CS 1,531.71     6.3% 1,438.14 - 1,705.45 69.73 1.8291 -14.1% 1.7820 - 1.9429 0.021

Runtime
Range ($) Range (s)

2x10 Calibration Results

Algorithm
Solution

Average ($) % Error SD Average (s) % Diff SD
ES 14,312.39  0.0% 14,312.39 - 14,312.39 0.00 16.820 0.0% 16.702 - 17.041 0.068
FFD 14,312.39  0.0% 14,312.39 - 14,312.39 0.00 0.017 -199.6% 0.016 - 0.033 0.003
PSO 14,822.25  3.5% 14,312.39 - 17,473.65 728.42 7.147 -80.7% 6.559 - 7.497 0.140
BA 15,228.21  6.2% 14,312.39 - 17,473.65 867.32 11.771 -35.3% 10.249 - 12.296 0.275
CS 15,287.88  6.6% 14,312.39 - 16,778.14 770.78 14.598 -14.1% 11.624 - 14.952 0.343

Runtime
Range ($) Range (s)

2x10 Final Results

Algorithm Solution



41 
 

winner in accuracy and runtime, performing the same task as ES three orders of magnitude 

faster. 

 

3.3.3 Trial 3: Three Generators, Ten Loads 

The third, large trial consisted of the setup of three generators and ten loads. There are 

about 70,000 unique combinations in the search space, as seen in Figure 18. This graph 

demonstrates characteristics similar to those of the other trials with an even higher disparity in 

the number of good versus poor solutions in Figure 19. 

 

Figure 18: 3x10 Cost vs. Combination Graph 

 

 14,000.00

 15,000.00

 16,000.00

 17,000.00

 18,000.00

 19,000.00

 20,000.00

 21,000.00

 -  10,000  20,000  30,000  40,000  50,000  60,000  70,000

Co
st

 ($
)

Combination (#)

3x10 Cost vs. Combination



42 
 

 

Figure 19: 3x10 Cost Histogram 

Trial 3 meta-optimization was performed for PSO, BA, and CS, shown in Table 12, Table 

13, and Table 14 respectively. Table 15 compares the winner of each algorithm’s calibration 

results, and Table 16 shows the final results scaled up to a full day’s worth of 15-minute interval 

data. 

 



43 
 

Table 12: 3x10 PSO Calibration Table 

 

Average SD Average SD
w: 0.25 , c1: 0.5 , c2: 0.5 1688.59 1438.14 - 1787.08 87.62 2.4712 2.0244 - 2.9360 0.374
w: 0.25 , c1: 0.5 , c2: 1.0 1552.78 1438.14 - 1789.24 122.97 2.7266 2.5623 - 3.0154 0.113
w: 0.25 , c1: 0.5 , c2: 1.5 1588.01 1438.14 - 1774.74 114.73 2.6213 2.4998 - 2.9529 0.112
w: 0.25 , c1: 1.0 , c2: 0.5 1704.95 1500.44 - 1820.05 74.73 2.8879 2.8123 - 3.0320 0.026
w: 0.25 , c1: 1.0 , c2: 1.0 1547.91 1438.14 - 1844.68 117.94 2.7532 2.5658 - 2.9918 0.104
w: 0.25 , c1: 1.0 , c2: 1.5 1579.70 1438.14 - 1773.08 111.92 2.6146 2.4998 - 3.1256 0.110
w: 0.25 , c1: 1.5 , c2: 0.5 1690.90 1438.14 - 1809.04 77.51 2.8984 2.8279 - 3.0154 0.038
w: 0.25 , c1: 1.5 , c2: 1.0 1555.96 1438.14 - 1787.08 117.39 2.7421 2.5467 - 2.9217 0.094
w: 0.25 , c1: 1.5 , c2: 1.5 1577.32 1438.14 - 1782.09 110.41 2.6012 2.5024 - 2.8904 0.087
w: 0.5 , c1: 0.5 , c2: 0.5 1585.57 1438.14 - 1789.24 119.75 2.7968 2.6248 - 3.0467 0.081
w: 0.5 , c1: 0.5 , c2: 1.0 1561.67 1438.14 - 1770.12 109.43 2.6558 2.5310 - 2.9841 0.108
w: 0.5 , c1: 0.5 , c2: 1.5 1601.18 1438.14 - 1846.61 102.97 2.5571 2.4998 - 2.9216 0.061
w: 0.5 , c1: 1.0 , c2: 0.5 1612.98 1438.14 - 1842.52 119.29 2.8268 2.6873 - 3.0310 0.064
w: 0.5 , c1: 1.0 , c2: 1.0 1557.11 1438.14 - 1852.89 112.90 2.6574 2.5467 - 2.9495 0.088
w: 0.5 , c1: 1.0 , c2: 1.5 1584.51 1438.14 - 1669.34 103.91 2.5734 2.4998 - 2.7249 0.058
w: 0.5 , c1: 1.5 , c2: 0.5 1595.62 1438.14 - 1791.47 111.31 2.8253 2.6717 - 2.9842 0.058
w: 0.5 , c1: 1.5 , c2: 1.0 1543.92 1438.14 - 1770.12 102.62 2.6575 2.5154 - 3.0935 0.094
w: 0.5 , c1: 1.5 , c2: 1.5 1587.39 1438.14 - 1669.34 101.06 2.5666 2.4998 - 2.7810 0.053
w: 0.75 , c1: 0.5 , c2: 0.5 1574.77 1438.14 - 1774.74 73.80 2.6671 2.5623 - 2.9373 0.068
w: 0.75 , c1: 0.5 , c2: 1.0 1607.34 1438.14 - 1669.34 84.31 2.5728 2.5154 - 2.7810 0.047
w: 0.75 , c1: 0.5 , c2: 1.5 1617.67 1438.14 - 1669.34 80.83 2.5491 2.4998 - 2.7810 0.049
w: 0.75 , c1: 1.0 , c2: 0.5 1562.79 1438.14 - 1774.74 78.36 2.7147 2.5779 - 2.9217 0.066
w: 0.75 , c1: 1.0 , c2: 1.0 1596.59 1438.14 - 1842.52 87.96 2.5866 2.5121 - 2.8748 0.055
w: 0.75 , c1: 1.0 , c2: 1.5 1625.79 1438.14 - 1669.34 75.86 2.5353 2.4842 - 2.6881 0.033
w: 0.75 , c1: 1.5 , c2: 0.5 1577.01 1438.14 - 1782.09 77.06 2.7219 2.5779 - 3.1560 0.076
w: 0.75 , c1: 1.5 , c2: 1.0 1578.51 1438.14 - 1669.34 78.92 2.6057 2.5311 - 2.8255 0.048
w: 0.75 , c1: 1.5 , c2: 1.5 1620.68 1438.14 - 1669.34 77.83 2.5456 2.4998 - 2.7810 0.042

Trial
Solution Runtime

Range Range



44 
 

Table 13: 3x10 BA Calibration Table 

 

  

Average SD Average SD
fmax: 0.01 , alpha: 0.3 , csi: 0.3 1590.49 1438.14 - 1774.74 72.87 4.5930 4.4372 - 4.8065 0.084
fmax: 0.01 , alpha: 0.3 , csi: 0.6 1610.55 1438.14 - 1789.24 76.44 4.5952 4.4372 - 4.8278 0.077
fmax: 0.01 , alpha: 0.3 , csi: 0.9 1597.39 1438.14 - 1837.21 78.14 4.5957 4.4372 - 4.8590 0.083
fmax: 0.01 , alpha: 0.6 , csi: 0.3 1601.51 1438.14 - 1782.09 76.62 4.5977 4.4059 - 4.7456 0.074
fmax: 0.01 , alpha: 0.6 , csi: 0.6 1600.54 1438.14 - 1789.24 84.11 4.6057 4.4059 - 4.7421 0.083
fmax: 0.01 , alpha: 0.6 , csi: 0.9 1591.61 1438.14 - 1852.89 76.74 4.6158 4.4777 - 4.8903 0.075
fmax: 0.01 , alpha: 0.9 , csi: 0.3 1603.36 1438.14 - 1838.77 82.16 4.6276 4.4684 - 4.8434 0.074
fmax: 0.01 , alpha: 0.9 , csi: 0.6 1599.02 1438.14 - 1851.93 87.98 4.5867 4.3747 - 4.7259 0.077
fmax: 0.01 , alpha: 0.9 , csi: 0.9 1610.64 1438.14 - 1797.88 87.03 4.6019 4.4059 - 4.8746 0.082
fmax: 0.02 , alpha: 0.3 , csi: 0.3 1597.30 1438.14 - 1669.34 57.80 4.5699 4.3909 - 4.7229 0.073
fmax: 0.02 , alpha: 0.3 , csi: 0.6 1601.35 1438.14 - 1782.09 60.58 4.5673 4.3903 - 4.7398 0.073
fmax: 0.02 , alpha: 0.3 , csi: 0.9 1589.40 1438.14 - 1791.47 65.11 4.5754 4.3747 - 4.7965 0.086
fmax: 0.02 , alpha: 0.6 , csi: 0.3 1600.85 1438.14 - 1762.59 66.81 4.5776 4.3747 - 4.7809 0.078
fmax: 0.02 , alpha: 0.6 , csi: 0.6 1601.33 1438.14 - 1792.74 70.54 4.5685 4.4215 - 4.7808 0.083
fmax: 0.02 , alpha: 0.6 , csi: 0.9 1591.69 1438.14 - 1774.74 73.51 4.5604 4.4036 - 4.7809 0.074
fmax: 0.02 , alpha: 0.9 , csi: 0.3 1600.07 1438.14 - 1795.81 67.72 4.5734 4.4059 - 4.7965 0.078
fmax: 0.02 , alpha: 0.9 , csi: 0.6 1587.67 1438.14 - 1755.06 70.22 4.5598 4.4059 - 4.8121 0.087
fmax: 0.02 , alpha: 0.9 , csi: 0.9 1589.28 1438.14 - 1712.42 67.41 4.5577 4.4059 - 4.7653 0.071
fmax: 0.03 , alpha: 0.3 , csi: 0.3 1616.11 1438.14 - 1669.34 49.53 4.5430 4.3903 - 4.7965 0.074
fmax: 0.03 , alpha: 0.3 , csi: 0.6 1606.60 1438.14 - 1669.34 58.56 4.5421 4.3747 - 4.7795 0.077
fmax: 0.03 , alpha: 0.3 , csi: 0.9 1599.03 1438.14 - 1669.34 58.68 4.5378 4.3903 - 4.7653 0.074
fmax: 0.03 , alpha: 0.6 , csi: 0.3 1593.60 1438.14 - 1669.34 65.33 4.5390 4.4059 - 4.7965 0.073
fmax: 0.03 , alpha: 0.6 , csi: 0.6 1607.75 1438.14 - 1774.74 68.57 4.5439 4.3903 - 4.9942 0.094
fmax: 0.03 , alpha: 0.6 , csi: 0.9 1592.39 1438.14 - 1669.34 61.60 4.5431 4.4059 - 4.8434 0.079
fmax: 0.03 , alpha: 0.9 , csi: 0.3 1598.20 1438.14 - 1669.34 62.37 4.0134 3.1716 - ##### 1.733
fmax: 0.03 , alpha: 0.9 , csi: 0.6 1599.70 1438.14 - 1669.34 59.07 3.2994 3.2029 - 3.5355 0.057
fmax: 0.03 , alpha: 0.9 , csi: 0.9 1592.06 1438.14 - 1669.34 71.98 3.3094 3.1716 - 3.6716 0.080

Trial Solution Runtime
Range Range



45 
 

Table 14: 3x10 CS Calibration Table 

 

Table 15: 3x10 Calibration Results 

 

Table 16: 3x10 Final Results 

 

Trial 3 shows results similar to those of the other trials, with a larger emphasis on 

runtime superiority. FFD again has a perfect solution, this time with a runtime five orders of 

magnitude faster than ES, and three orders of magnitude faster than the PSO, BA, and CS. 

Metaheuristic algorithm runtimes are two orders of magnitude lower than those of the ES 

method with average solution errors at or below about 10 percent. PSO again provides a better 

Average SD Average SD
pa: 0 1604.04 1438.14 - 1798.85 91.75 4.0358 3.8122 - 4.4142 0.120
pa: 0.1 1600.84 1438.14 - 1771.45 81.95 4.1144 3.8435 - 5.0704 0.197
pa: 0.2 1599.27 1438.14 - 1807.38 79.19 4.0823 3.8591 - 5.3071 0.186
pa: 0.3 1593.29 1438.14 - 1785.86 85.53 4.5798 3.8747 - 5.7405 0.670
pa: 0.4 1592.69 1438.14 - 1785.03 81.95 4.9496 3.8903 - 5.9058 0.689
pa: 0.5 1603.42 1438.14 - 1781.41 72.78 5.1911 3.9060 - 6.0039 0.628
pa: 0.6 1586.49 1438.14 - 1770.12 72.30 5.2439 3.8900 - 6.2859 0.651
pa: 0.7 1601.94 1438.14 - 1770.87 80.40 5.1360 3.8435 - 6.2736 0.675
pa: 0.8 1597.59 1438.14 - 1787.08 78.73 5.2822 3.9060 - 5.8934 0.573
pa: 0.9 1610.32 1438.14 - 1770.87 60.11 5.4789 3.9841 - 5.8433 0.415
pa: 1.0 1600.92 1438.14 - 1774.74 65.42 5.4591 4.0123 - 5.7652 0.425

Trial
Solution Runtime

Range Range

Average ($) % Error SD Average (s) % Diff SD
ES 1,438.14     0.0% 1,438.14 - 1,438.14 0.00 158.2720 0.0% 158.0022 - 158.5077 0.172
FFD 1,438.14     0.0% 1,438.14 - 1,438.14 0.00 0.0073 -200.0% 0.0052 - 0.0090 0.001
PSO 1,543.92     7.1% 1,438.14 - 1,770.12 102.62 2.6575 -193.4% 2.5154 - 3.0935 0.094
BA 1,587.67     9.9% 1,438.14 - 1,755.06 70.22 4.5598 -188.8% 4.4059 - 4.8121 0.087
CS 1,586.49     9.8% 1,438.14 - 1,770.12 72.30 5.2439 -187.2% 3.8900 - 6.2859 0.651

Runtime
Range ($) Range (s)

3x10 Calibration Results

Algorithm Solution

Average ($) % Error SD Average (s) % Diff SD
ES 14,312.39  0.0% 14,312.39 - 14,312.39 0.00 1304.170 0.0% 1262.385 - 1338.186 23.28
FFD 14,312.39  0.0% 14,312.39 - 14,312.39 0.00 0.018 -200.0% 0.010 - 0.031 0.01
PSO 15,250.06  6.3% 14,312.39 - 17,759.70 1047.87 20.810 -193.7% 18.830 - 23.131 0.64
BA 15,912.75  10.6% 14,312.39 - 16,667.92 652.75 34.703 -189.6% 29.326 - 37.892 2.20
CS 15,846.99  10.2% 14,312.39 - 17,759.70 854.58 42.154 -187.5% 35.605 - 46.101 2.45

Runtime
Range ($) Range (s)

3x10 Final Results

Algorithm
Solution



46 
 

solution, on average, compared to BA and CS. Since the algorithms defined a set number of 

iterations for each trial, solution errors can further be reduced by allowing further iterations, 

and since there is such a wide difference between metaheuristic algorithm and ES runtimes, 

this would likely be very beneficial. This same relationship holds for the number of particles. 

  



47 
 

4. Conclusion 

 This thesis explored the use of heuristic and metaheuristic optimization algorithms to 

solve the ELD problem with isolated generators. Overall, FFD is the clear winner of all these 

algorithms in this version of the ELD problem, with significantly faster runtimes with low range 

and standard deviation, and flawless solutions. In this scenario, load sizes were designed so that 

all loads can fit into a single generator, thereby allowing the algorithms to evaluate the full 

range of potential combinations. In other scenarios where all loads cannot perfectly fit into a 

single generator, FFD may not execute flawless solutions. Nonetheless, it is estimated that 

solution error would be relatively small, and runtime would be just as fast. Indeed, FFD also 

demonstrates its ability to scale its runtime better for bigger configuration compared to the 

other algorithms. In addition, since FFD does not require a configuration profile like the other 

algorithms, it is even faster and easier to implement the preprocessing steps. 

While FFD performed very well, the metaheuristic algorithms also performed well 

compared to ES, especially at larger configurations. PSO was the clear winner in this application, 

with better solutions and runtimes about twice as fast as BA and CS. Further research is 

suggested for tuning PSO and evaluating other PSO hybrid algorithms for even better results. 

Since few sources could be found comparing BA and CS in the literature search, their 

comparison was particularly interesting. From the data, little difference in their outcomes was 

identified. CS was certainly easier to tune with only a single tuning parameter, and while 

significant time was devoted to meta-optimizing BA’s tuning parameters, further research can 

be made in the future to evaluate all tuning parameters for BA in comparison to CS. All these 

algorithms demonstrated that generators with higher loadings typically resulted in lower costs. 



48 
 

The feasibility of dimension reduction for this application was demonstrated. There are 

real world advantages to this strategy in interconnected systems, especially when system 

configuration and available generators do not change, but load levels do. Further research is 

suggested to directly compare this low dimension approach with a high dimension approach.  

These metaheuristic algorithms show promise in solving grid-level ELD problems where 

time-varying loads require generator utilization algorithms to be recalculated rapidly for cost 

savings. In addition, these algorithms can be further augmented by adding other generation 

equipment like renewable energy sources. As engineers try to incorporate more data and 

energy sources into the mix of our electricity supply, these algorithms become more and more 

significant. With proper utilization engineers can save energy, money, and lives. 

  



49 
 

References 

[1] C. Wald and T. Captain, “Energy security: America’s best defense,” Deloitte Development 
LLC, 2009. 

[2] W. T. Elsayed, Y. G. Hegazy, F. M. Bendary, and M. S. El-bages, “Modified social spider 
algorithm for solving the economic dispatch problem,” Eng. Sci. Technol, an Int. J., vol. 
19, no. 4, pp. 1672–1681, 2016. 

[3] J. Lin and F. H. Magnago, “Power system economic dispatch,” in Electricity Markets: 
Theories and Applications, 1st ed., Hoboken, New Jersey: John Wiley & Sons, Inc., 2017, 
pp. 119–146. 

[4] M. Sudhakaran, P. A.-D.-V. Raj, and T. G. Palanivelu, “Application of particle swarm 
optimization for economic load dispatch problems,” 2007 Int. Conf. Intell. Syst. Appl. to 
Power Syst., pp. 1–7, 2007. 

[5] S. K. Nayak, K. R. Krishnanand, B. K. Panigrahi, and P. K. Rout, “Application of artificial bee 
colony to economic load dispatch problem with ramp rate limits and prohibited 
operating zones,” in 2009 World Congress on Nature and Biologically Inspired Computing, 
NABIC 2009 - Proceedings, 2009. 

[6] M. N. Nwohu and O. O. Paul, “Evaluation of economic load dispatch problem in power 
generating stations by the use of ant colony search algorithms,” Int. J. Res. Stud. Electr. 
Electron. Eng., vol. 3, no. 1, pp. 2454–9436, 2017. 

[7] S. Khandualo, A. K. Barisal, P. K. Pradhan, and P. K. Patro, “A gravitational search 
algorithm for solving economic load dispatch problem,” Int. J. Eng. Res. Technol., vol. 3, 
no. 1, pp. 293–297, 2014. 

[8] M. Udgir, H. M. Dubey, and M. Pandit, “Gravitational search algorithm: A novel 
optimization approach for economic load dispatch,” Int. Conf. Microelectron. Commun. 
Renew. Energy, pp. 1–6, 2013. 

[9] M. Bhoye, S. N. Purohit, I. N. Trivedi, M. H. Pandya, P. Jangir, and N. Jangir, “Energy 
management of renewable energy sources in a microgrid using cuckoo search 
algorithm,” IEEE Students’ Conf. Electr. Electron. Comput. Sci., 2016. 

[10] R. Podmore, “Economic power dispatch with line security limits,” IEEE Trans. Power 
Appar. Syst., vol. PAS-93, no. 1, pp. 289–295, 1974. 

[11] F. N. Lee and A. M. Breipohl, “Reserve constrained economic dispatch with prohibited 
operating zones,” IEEE Trans. Power Syst., vol. 8, no. 1, pp. 246–254, 1993. 

 



50 
 

[12] I. T. Kolkata, “Medium scale multi-constraint economic load dispatch using hybrid 
metaheuristics,” 2017 3rd Int. Conf. Res. Comput. Intell. an Commun. Networks, pp. 169–
173, 2017. 

[13] N. Kumar, U. Nangia, and K. B. Sahay, “Economic load dispatch using improved particle 
swarm optimization algorithms,” Proc. 6th IEEE Power India Int. Conf. PIICON 2014, pp. 
1–6, 2014. 

[14] F. M. Shahir, M. Farsadi, H. Zafari, and A. Sadighmanesh, “Solving economic emission 
load dispatch problems using particle swarm optimization with smart inertia factor,” 
ELECO 2015 - 9th Int. Conf. Electr. Electron. Eng., pp. 500–504, 2016. 

[15] A. Sharma and S. Vadhera, “Comparative analysis of economic load dispatch using 
evolutionary and nature based algorithms,” 2017 Int. Conf. Power Embed. Drive Control, 
pp. 296–300, 2017. 

[16] N. J. Singh, J. S. Dhillon, and D. P. Kothari, “Integrated particle swarm optimization 
variants for economic load dispatch problem,” 2016 7th India Int. Conf. Power Electron., 
pp. 1–5, 2016. 

[17] Y. Wu and J. Guo, “Particle swarm optimization using Lévy distribution for economic load 
dispatch problem,” 2017 Int. Conf. Ind. Informatics - Comput. Technol. Intell. Technol. Ind. 
Inf. Integr., no. 4, pp. 262–265, 2017. 

[18] A. Zaraki and M. F. Bin Othman, “Implementing particle swarm optimization to solve 
economic load dispatch problem,” 2009 Int. Conf. Soft Comput. Pattern Recognit., pp. 
60–65, 2009. 

[19] S. Gautham and J. Rajamohan, “Economic load dispatch using novel bat algorithm,” 1st 
IEEE Int. Conf. Power Electron. Intell. Control Energy Syst., pp. 1–4, 2016. 

[20] G. Pradhan and P. D. Dewangan, “Solving optimal load dispatch problem using enhanced 
bat optimization algorithm,” Int. Conf. Innov. Power Adv. Comput. Technol. [i-PACT2017], 
pp. 1–6. 

[21] H. Tehzeeb ul Hassan, M. Zunair Zamir, M. Usman Asghar, and H. M. Aamir Faiz, 
“Economic load dispatch using novel bat algorithm with quantum and mechanical 
behaviour,” 2017 Int. Symp. Wirel. Syst. Networks, pp. 1–6, 2017. 

[22] J. Tholath Jose, “Economic load dispatch including wind power using bat algorithm,” 
2014 Int. Conf. Adv. Electr. Eng., pp. 1–4, 2014. 

[23] Y. Tonce, K. Priyanto, M. F. Maulana, and A. Giyantara, “Dynamic economic dispatch 
using chaotic bat algorithm on 150 kV Mahakam power system,” 2017 Int. Semin. Intell. 
Technol. Its Appl. Dyn. 



51 
 

[24] G. Yamina Ahlem, B. Hamid, L. Fatiha, and G. Fatima Zohra, “New approach for solving 
economic load dispatch problem,” 2014 Int. Conf. Electr. Sci. Technol. Maghreb, pp. 1–5, 
2014. 

[25] M. K. Duttal A, Das S, Tudu B, “A novel improved algorithm using cuckoo search for 
economic load dispatch,” 1st IEEE Int. Conf. Power Electron. Intell. Control Energy Syst. , 
pp. 1–6, 2016. 

[26] S. Sahoo, K. Mahesh Dash, R. C. Prusty, and A. K. Barisal, “Comparative analysis of 
optimal load dispatch through evolutionary algorithms,” Ain Shams Eng. J., vol. 6, pp. 
107–120, 2015. 

[27] M. H. Sulaiman and M. R. Mohamed, “Solving economic dispatch problems utilizing 
cuckoo search algorithm,” in Proceedings of the 2014 IEEE 8th International Power 
Engineering and Optimization Conference, PEOCO 2014, 2014, pp. 89–93. 

[28] H. T. Jadhav, S. Raj, and R. Roy, “Solution to economic emission load dispatch problem 
using modified artificial bee colony algorithm,” in 2013 3rd International Conference on 
Electric Power and Energy Conversion Systems, 2013, pp. 1–6. 

[29] R. Kaur and G. K. Gill, “Solution to economic load dispatch problem using cuckoo search 
algorithm,” Int. J. Electr. Electron. Res., vol. 3, no. 2, pp. 362–369, 2015. 

[30] T. Trung Nguyen, D. Ngoc Vo, N. Vu Quynh, and L. Van Dai, “Modified cuckoo search 
algorithm: A novel method to minimize the fuel cost,” Multidiscip. Digit. Publ. Inst., vol. 
11, no. 6, pp. 1–27, 2018. 

[31] S. Kumar, S. Mehta, and Y. S. Brar, “Solution of economic load dispatch problem using 
gravitational search algorithm with valve point loading,” Int. J. Eng. Res. Technol., vol. 3, 
no. 6, pp. 2007–2012, 2014. 

[32] M. N. Abdullah, A. H. A. Bakar, N. A. Rahim, H. Mokhlis, and C. Tan, “Implementation of 
hybrid particle swarm optimization for combined economic-emission load dispatch 
problem,” 2014 IEEE 8th Int. Power Eng. Optim. Conf., vol. 8, no. March, pp. 402–407, 
2014. 

[33] M. A. Ansari and N. Kardam, “Implementation of particle swarm optimization for 
dynamic economic load dispatch problem,” 2013 Int. Conf. Energy Effic. Technol. Sustain., 
pp. 1273–1278, 2013. 

[34] Z.-L. Gaing, “Constrained dynamic economic dispatch solution using particle swarm 
optimization,” Power Eng. Soc. Gen. Meet. 2004. IEEE, pp. 153–158, 2004. 

[35] S. G. Gaurav Kumar Gupta, “Particle swarm intelligence based dynamic economic 
dispatch with daily load patterns including valve point effect,” 2017 3rd Int. Conf. Cond. 
Assess. Tech. Electr. Syst., pp. 83–87, 2017. 



52 
 

[36] V. Hosseinnezhad and E. Babaei, “Economic load dispatch using PSO and TLBO,” Int. J. 
Electr. Power Energy Syst., vol. 49, no. 1, pp. 212–219, 2013. 

[37] V. K. Jadoun, K. R. Niazi, A. Swarnkar, and N. Gupta, “Variable acceleration coefficient-
based particle swarm optimization for non-convex economic load dispatch problem,” 
2011 IEEE PES Int. Conf. Innov. Smart Grid Technol. ISGT India 2011, pp. 126–130, 2011. 

[38] B. Ramesh, V. Chandra Jagan Mohan, and V. C. Veera Reddy, “Application of bat 
algorithm for combimned economic load and emission dispatch,” Int J Electr Electron Eng 
Telecommun, pp. 1–9, 2013. 

[39] S. Bhattacharya, B. Ranjan, A. Routray, and A. Dash, “Implementation of bat algorithm in 
economic dispatch for units with multiple fuels and valve- point effect,” 2017 Int. Conf. 
Electr. Instrum. Commun. Eng., pp. 1–7, 2017. 

[40] S. K. Lingala R, Bethina A, Rao P, “Economic load dispatch using heuristic algorithms,” 
2015 IEEE Int. WIE Conf. Electr. Comput. Eng., pp. 519–522, 2015. 

[41] S. Sahoo, K. M. Dash, and A. Kumar Barisal, “Solution of economic load dispatch by 
evolutionary optimization algorithms- A comparative study,” 2014 Int. Conf. Control. 
Instrumentation, Energy Commun., pp. 259–263, 2014. 

[42] D. Sen and P. Acharjee, “Hybridization of cuckoo search algorithm and chemical reaction 
optimization for economic load dispatch problem,” 2016 Int. Conf. Expo. Electr. Power 
Eng. (EPE 2016), pp. 798–804, 2016. 

[43] K. C. Sudhakar A, “Bio inspired algorithms in power system operation: A review,” 2017 
Int. Conf. Recent Trends Electr. Electron. Comput. Technol., pp. 113–119, 2017. 

[44] R. Chellappan and D. Kavitha, “Economic and emission load dispatch using cuckoo search 
algorithm,” Int. Conf. Innov. Power Adv. Comput. Technol. [i-PACT2017], pp. 1–7, 2017. 

[45] T. Sukmadi, A. Dwi Wardhana, and M. Agus Riyadi, “Optimization of gas turbine power 
plant economic dispatch using cuckoo search algorithm method,” 4th Int. Conf. Inf. Tech., 
Comput. Electr. Eng., pp. 131–135, 2017. 

[46] Q. X. Hua P, Zuo-fang L, “Economic dispatch of power systems including electric vehicle 
and wind farm,” 2017 IEEE Conf. Energy Internet Energy Syst. Integr., pp. 1–5, 2017. 

[47] Y. A. Gherbi, H. Bouzeboudja, and F. Lakdja, “Hybrid metaheuristic for the combined 
economic-emission dispatch problem,” in 12th International Symposium on 
Programming and Systems, ISPS 2015, 2015, pp. 1–7. 

[48] H. Zhang and Q. Hui, “Cooperative bat searching algorithm: A combined perspective from 
multiagent coordination and swarm intelligence,” in 13th IEEE Conference on Automation 
Science and Engineering (CASE), 2017, pp. 1362–1367. 



53 
 

[49] C. C. Meher K, Swain R, “An analysis of dynamic economic dispatch using search space 
reduction based gravitational search algorithm,” Int. J. Energy Power Eng., vol. 10, no. 3, 
pp. 452–459, 2016. 

[50] I. A. Farhat and M. E. El-Hawary, “Mult-objective economic-emission optimal load 
dispatch using bacterial foraging algorithm,” 25th IEEE Can. Conf. Electr. Comput. Eng., 
pp. 1–5, 2012. 

[51] A. Y. Saber and G. K. Venayagamoorthy, “Economic load dispatch using bacterial foraging 
technique with particle swarm optimization biased evolution,” IEEE Swarm Intell. Symp. 
St. Louis MO USA, pp. 1–8, 2008. 

[52] A. Ranjan, P. Khargonekar, and S. Sahni, “Offline first fit scheduling in smart grids,” in 
Proceedings - IEEE Symposium on Computers and Communications (ISCC), 2016, pp. 758–
763. 

[53] B. Rieck, “Basic analysis of bin-packing heuristics,” Publ. por Interdiscip. Cent. Sci. 
Comput., pp. 1–9, 2010. 

[54] D. S. Johnson, “Fast algorithms for bin packing,” J. Comput. Syst. Sci., vol. 8, pp. 272–314, 
1974. 

[55] N. Ntene and J. H. van Vuuren, “A survey and comparison of guillotine heuristics for the 
2D oriented offline strip packing problem,” Discret. Optim., vol. 6, pp. 174–188, 2009. 

[56] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Neural Networks, 1995. 
Proceedings., IEEE Int. Conf., vol. 4, pp. 1942–1948, 1995. 

[57] X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights,” 2009 World Congr. Nat. Biol. 
Inspired Comput., pp. 210–214, 2009. 

[58] X. S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative 
Strategies for Optimization (NICSO 2010), 2010, pp. 65–74. 

 


