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ABSTRACT 
 

 In the current thesis, we present a series of three ERP experiments investigating the time-

course and nature of contextual facilitation effects in visual object processing. In all three 

experiments, participants studied novel object-scene pairs in a paired associate memory 

paradigm. At test, we presented the scene first, followed after a delay by the test object, which 

either matched or mismatched the scene. We manipulated two key factors. 1) In all three 

experiments, we manipulated the severity of contextual mismatch between the presented object 

and the scene, including categorical violations as well as more subtle visual distortions. In this 

way, we probed the level of detail at which participants were reactivating the contextually-

congruent target object in response to the scene. 2) We manipulated the scene preview timing 

parameters both between subjects (Experiments 2.1 and 3.1) and within subjects (Experiment 

3.2). Our rationale for doing this was as follows. Rather than assuming that contextual 

facilitation effects reflect an entirely predictive or reactive/integrative process, we tested the 

hypothesis that contextual facilitation was predictive in nature. If the contextual facilitation was 

entirely integrative (i.e., people waited until the object was presented before relating it to the 

scene context), we might expect that the amount of scene preview time would not modulate 

contextual facilitation effects. What we found instead is that allowing for additional scene 

preview time leads to enhanced contextual facilitation effects, suggesting that participants are 

using the additional time that they are observing the scene alone (beyond 200 ms, which is 

sufficient to extract the gist of the scene) to prepare to process the upcoming object and 

determine whether it matches the scene. We strengthened our findings by testing this both 

between subjects using only two time points, and within subjects using a parametric gradation of 

preview times (which also allowed us to test if our findings generalized to cases of temporal 

uncertainty). We also took advantage of our use of ERPs to examine dependent measures tied to 

specific stages of cognition. We particularly focus our analysis and discussion on contextual 

priming of higher-level visual features, examining how contextual congruency modulates 

amplitude of the N300 component under various conditions and timing constraints. We also 

present a set of novel visual similarity analyses relying on V1-like features, which allow us to 

test for context effects on visual object understanding in a component-neutral fashion. Lastly, we 

present analyses of context effects on other components of the waveform: the N400, as an index 

of semantic priming, and the LPC, as an index of response-related processing. Overall, our 
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findings are consistent with a predictive account, in which participants use scene information to 

preactivate features of the upcoming object (including higher-level visual form features, as well 

as semantic features) in order to facilitate visual object understanding. Future work will further 

disentangle predictive vs. integrative processing accounts of contextual facilitation effects on 

visual object processing. 
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CHAPTER 1: INTRODUCTION 
 
The current thesis explores the nature of contextual facilitation effects in visual object 

recognition, with a focus on scene-object priming. We make use of a scene-novel object picture 

association paradigm over the course of three ERP experiments. Participants study pairings 

between natural scenes and line drawings of novel objects in an adaptation of an ERP scene-face 

associative memory paradigm (Hannula, Federmeier & Cohen, 2006). Participants are then tested 

on their memory for the paired associations by first viewing a scene context, followed by an 

object that matches or mismatches the scene. Critically, by manipulating the delay between onset 

of the (priming) scene context, and the following object target, we can explore to what extent 

facilitation for associated objects is mediated by preparatory processing. Also, by manipulating 

the relationship between the object that is presented and that which was previously studied with 

the scene, we can explore what attributes of the visual object are pre-activated in response to the 

scene. Thus, the current dissertation explores multiple aspects of how scene information can be 

used to facilitate visual object understanding, with a focus on the question of which stages of 

object processing are facilitated, and under what (timing) constraints.  

 

Overview of Experiments and Chapter Guide 

 

In our first experiment (Chapter 2, Experiment 2.1), we test whether novel visual objects can be 

partially preactivated in response to a mismatching but related context. We initially assess 

whether participants are able to rapidly learn novel object-scene associations, as well as higher-

level categorical associations among object and scene types, and whether this learning transfers 

to graded memory effects at the target object picture. Moreover, we then assess whether the 

N300 to objects is facilitated by scenes, as such facilitation would suggest that scenes facilitate 

object processing at a visuo-structural level even for recently formed scene-object associations, 

which has been unconfirmed in the literature. We then additionally apply a novel, component-

neutral analysis of visual similarity between the contextually congruent target object and the 

presented object on mismatch trials, as an alternative approach to detecting whether scenes 

facilitate visual object processing at the level of visual form. 

 In our second experiment (Chapter 3, Experiment 3.1), we drastically shortened the 

amount of contextual pre-exposure time (i.e. the amount of time scenes were presented in 
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isolation, prior to superimposing an associated or unassociated object), relative to the first 

experiment, from 2500 ms to 200 ms. This serves as a first test of whether the contextual 

facilitation effects found in our first experiment are predictive in nature. To the extent that the 

pattern of associative memory effects changes across Chapter 2 Experiment 2.1 and Chapter 3 

Experiment 3.1, this is consistent with the idea that the effects in our first experiment are driven 

by preparatory processing. 

 Our third experiment (Chapter 3 Experiment 3.2) was designed as a within subjects 

conceptual replication and extension of the first two experiments. We parametrically varied the 

amount of contextual pre-exposure time at test between 0 (concurrent scene-object presentation) 

and 2500 ms. In this way, we could not only test whether our findings generalize across slight 

variations in task demands, but also estimate at what point the predictive benefit on object 

processing associated with longer scene preview times asymptotes. That is, we can identify 

roughly how long it takes for viewing a scene in advance to yield maximal contextual benefits on 

subsequent object processing. Also, again, through the use of ERPs, we can gain an indirect 

measure of what specific processing stages are likely facilitated by scene congruency under 

various timing constraints. 

 In Chapter 4 (discussion), we review the overall pattern of findings from the three 

experiments together and conclude with suggested future directions. 

 

In the following two sections, we review some relevant background information that 

supplements the information provided in Chapters 2 and 3. 

 

1. Context-Based Prediction in Language Comprehension 

 

The introductions in Chapters 2 and 3 frame our scientific contributions purely in terms of 

building upon what we know already about the contextual benefits that congruent scenes afford 

to visual object processing, specifically. However, it can also be helpful to review what we know 

about contextual facilitation effects in another domain, and to build parallels across domains, in 

the interest of building stronger and more generalizable frameworks for understanding cognition. 

Here, we review findings from the domain of language comprehension, with an eye towards 

establishing what types of theoretical distinctions should be made, and what kinds of questions 
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should be answered, in order for us to have an adequate understanding of scene-object contextual 

facilitation effects at a cognitive level of analysis. 

Although for many years theoretical models of language comprehension focused on 

“bottom-up,” stimulus-driven processing of linguistic input, more recent models have 

highlighted the role that anticipatory, and often “top-down,” mechanisms may play in accounting 

for a variety of effects (see Van Berkum, Brown, Zwitserlood, Kooijman, & Hagoort, 2005 for a 

historic overview). Such anticipatory mechanisms may help explain the rapid pace at which 

language is understood (connected speech rates hover at around 4 syllables / second). 

Anticipatory processes may in principle operate at multiple levels of linguistic structure. For 

example, anticipation likely plays a role in choosing an appropriate time to speak when taking 

turns in conversation. But here we will focus on context-based pre-activation of semantic and 

word-level features.   

 One complication when discussing anticipatory processing is that there is often ambiguity 

in the extent to which anticipatory processes are in fact “top-down.” Thus, it’s necessary to 

clarify what we mean by “prediction” with respect to the role of executive function. Many 

authors contrast priming (as a more bottom-up, passive phenomenon) with prediction (often, as a 

more strategic process subject to executive control). However, given that our proposed 

experimental manipulations do not directly speak to the role of executive function in anticipatory 

processing, the current work will use “prediction” and “preparatory processing” as umbrella 

terms that encompass both prediction as mediated by more complex executive processes, and 

simple associative or semantic priming. So long as a preceding context has biased the ease of 

processing of subsequent stimuli in a stimulus-specific manner (in contrast with general arousal), 

we will call that “prediction.”  

Anticipatory processing in language comprehension manifests itself in a variety of ways. 

Naming latencies and lexical decision times are reduced for words preceded by facilitating 

contexts (e.g., Hess, Foss, & Carroll, 1995; Kleiman, 1980; McClelland & O’Regan, 1981). In 

addition, reading times are faster, and skip rates are higher, for words that are predictable given 

their preceding context (e.g., Ehrlich & Rayner, 1981; McDonald & Shillcock, 2003). Lastly, 

manipulations of word predictability in context result in highly reproducible neural effects during 

sentence reading, as assessed using EEG and MEG (e.g., Kutas & Hillyard, 1984; Helenius, 

Salmelin, Service, & Connolly, 1998).  
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One neural response that is particularly sensitive to word predictability in context is the 

N400 Event Related Potential (ERP) component. The N400 is a negative-going waveform 

appearing roughly 300-500 ms after the onset of a word or other potentially meaningful stimulus. 

The N400 has been systematically studied for over 35 years, and many of its functional 

sensitivities, including to semantic, lexical and orthographic properties of words, as well as their 

interactions with contextual factors, have been extensively replicated (see Kutas & Federmeier, 

2011 for review). In part due to its very consistent latency profile, one theory of the N400 

suggests that it reflects the process of accessing a semantic long term memory network to 

temporally bind together semantic features of an incoming stimulus (see, e.g., Federmeier & 

Laszlo, 2009). N400 amplitude has a tight statistical relationship with the cloze probability of a 

word given its preceding context (e.g., Wlotko & Federmeier, 2012). The cloze probability of a 

word is defined as the proportion of the time that human participants generated that word as the 

first word in a sentential continuation, given its preceding context. N400 responses to highly 

predictable (high cloze) words are smaller in amplitude than those to low cloze words. N400 

amplitude is also reduced in response to purer semantic priming, both as a function of similarity 

along preset feature dimensions and textual co-occurrence statistics. Thus, there are multiple 

converging sources of evidence that preceding context facilitates semantic processing of target 

words, both when presented singly and in sentences. 

Newer evidence has also suggested that participants may in some cases anticipate more 

detailed information about upcoming words, using mechanisms that appear outside the domain 

of simple priming. For example, Dutch adjectives mismatching the syntactic gender of a highly 

expected following noun (cloze > 75%) elicit an ERP positivity shortly after the critical 

adjective’s gender inflection (Van Berkum et al., 2005). A similar set of effects have been 

described for determiners mismatching the syntactic gender of expected upcoming nouns (or, 

with different polarity, pictures of these) in Spanish (Wicha, Moreno, & Kutas, 2004; Wicha, 

Bates, Moreno, & Kutas, 2003; Wicha, Moreno, & Kutas, 2003). Lastly, a more highly contested 

set of predictive effects have been reported for the English determiners “a” and “an” when the 

anticipated following noun began with a vowel or consonant, thus matching or mismatching the 

presented determiner (DeLong, Urbach, & Kutas, 2005; cf. Nieuwland et al., 2017; Yan, 

Kuperberg, & Jaeger, 2017). 
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Importantly, recent work on context-based prediction in language comprehension has led 

to key insights about the nature of prediction that may or may not extend to other domains: 

 

• Sensitivity to semantic memory structure. Federmeier and Kutas (1999a), in a study on young 

adults, found that words that did not fit a preceding sentential context, but nonetheless were 

semantically related to a predicted word, were partially facilitated by the (incongruent) 

context. Moreover, these effects became larger in high constraint sentences, where prediction 

would be hypothetically more advantageous. 

• Subsequent memory effects of prediction. When words are predicted in a particular sentential 

context, but not actually presented, they nonetheless generate ERP repetition effects when 

they are eventually subsequently displayed in the experiment (Rommers & Federmeier, 

submitted). 

• Effects of constraint and prediction error. Congruent but unexpected words in highly 

constraining sentences generate a frontal positivity and concomitant increase in frontal theta 

band activity, which may be interpreted as neural correlates of prediction error (see 

Rommers, Dickson, Norton, Wlotko, & Federmeier, 2017). 

• Hemispheric differences. Several lines of evidence suggest that the left hemisphere is more 

sensitive to higher level linguistic constraints and also shows signs that expected but never 

presented words are partially activated, while the right hemisphere pre-activates semantic 

features in a more bottom-up, long-lasting, and loosely constrained fashion (reviewed in 

Federmeier, 2007; further discussion in section 4 of the introduction, below). 

• Age-related changes. Older adults tend to show more limited signs of spontaneous top-down 

prediction of upcoming words, as suggested by, for example, reduced facilitation for 

incongruent words that are related to words predictable given a preceding sentential context 

(Federmeier, McLennan, De Ochoa, & Kutas, 2002). 

• Strategic changes. The rate at which linguistic contexts are followed by semantically related 

words can modulate the extent to which N400 effects of semantic pre-activation are observed 

(Lau, Holcomb, & Kuperberg, 2013). Also, being asked to predict enhances N400 facilitation 

in processing high cloze sentence-final words (Brothers, Swaab, & Traxler, 2017). Thus, 

people tend to predict less when their incentive to predict is diminished, and more when it is 

enhanced. 
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 To what extent does predictive processing in visual object recognition share these 

features? Some findings suggest that properties of verbal prediction outlined above may indeed 

extend to other domains. For example, frontal theta also appears in response to prediction errors 

generated in purely non-linguistic tasks, suggesting that some mechanisms for handling 

erroneous predictions may hold across domains (e.g., Cavanagh, Frank, Klein, & Allen, 2010). 

Furthermore, when a visual search display is preceded by a context cue, the proportion of the 

time that the context cue signals the correct location of a target affects the degree to which the 

context cue facilitates search (personal communication with Alejandro Lleras). This suggests that 

the degree to which participants anticipate target locations may be strategically ramped up based 

on global contextual factors, similar to strategic modulations of prediction effects in language 

comprehension. Lastly, pictures embedded in sentential contexts often show contextual 

facilitation effects that parallel those found for words, including interactions with hemisphere 

(e.g., Federmeier & Kutas, 2002). However, to the extent that sentence-picture priming effects 

are at least partly linguistically mediated, these findings may not extend to non-verbal contextual 

primes.  

The current thesis will assess what stages of object processing are facilitated by scenes, 

and speak to whether this facilitation is predictive in nature. In Chapter 2, we will also test 

whether one characteristic of verbal prediction holds up for purely pictorial stimuli: graded 

predictive facilitation of contextually incongruent but nonetheless categorically related stimuli. 

In addition, in the Chapter 3 we will assess the timing properties of prediction more 

systematically and quantitatively than previous studies in either the verbal or non-verbal domains 

– thereby directly answering questions about prediction in the domain of visual object 

recognition and also generating predictions for future language comprehension research. 

 

2. ERP Signatures of Visual Prediction 

 

Evoked activity to visual images can be modulated by the preceding context along several 

dimensions. In this section, we introduce one ERP component classically associated with visual 

picture priming that will prove relevant to interpreting our experimental results in all three 

experiments: The N300. 
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 The N300 (or ‘N350’) refers to a negative deflection in the ERP waveform between 

roughly 200 and 400 ms that decreases in amplitude in response to picture priming and related 

manipulations. The N300 can be elicited in response to both natural, photographic images, and 

line drawings. It tends to have an overall anteriorly biased distribution, which nonetheless often 

extends to centro-parietal sites. Although in the current proposal, the N300 will primarily be 

treated as a unitary complex, there is some evidence for the presence of dissociable 

subcomponents (e.g., Schendan & Maher 2009).  

 The N300 is thought to be more tightly yoked to perceptual processing in the visual 

modality than the N400, which is believed to reflect processing at a more abstract, amodal 

semantic level. Part of this is due to the N300’s classic association with pictorial stimuli. 

Semantic picture priming paradigms, for example, regularly elicit both an N300 and N400 effect 

(e.g., McPherson & Holcomb, 1999), while analogous manipulations of word stimuli only elicit 

an N4001 (see Kutas & Federmeier, 2011 for review). Both semantically related images (Barrett 

& Rugg, 1990; McPherson & Holcomb, 1999) and (congruent) masked verbal labels (Chauncey, 

Holcomb, & Grainger, 2009) have been shown to elicit N300 (and N400) reductions to 

subsequently presented picture targets. Not all priming manipulations, however, lead to clear 

N300 effects.  

 Hamm, Johnson, and Kirk (2002), for example, examined the pattern of occurrence of 
N300 and N400 effects across several semantic priming manipulations in a passive viewing task 
using word cues followed by target line drawings. A given picture could be preceded by a 
congruent or mismatching basic level or subordinate level name (basic and subordinate level 
names were blocked). The authors then examined four types of contrasts: 1. subordinate-between 
(the cue word ‘robin’ followed by a target picture of a collie – the word ‘collie’ followed by a 
picture of a collie), 2. subordinate within (the word ‘poodle’ followed by a picture of a collie - 
the word ‘collie’ followed by a picture of a collie), 3. basic (the word ‘bird’ followed by a picture 
of a collie – the word ‘dog’ followed by a picture of a collie), and 4. basic-subordinate 
combination (the word ‘bird’ followed by a picture of a collie – the word ‘collie’ followed by a 
picture of a collie). Critically, while all four priming manipulations elicited a reduced N400 to 
the primed picture, N300 priming was observed more selectively. Specifically, while ‘collie’ 

																																																								
1	N300-like effects have also been reported for words, however, using masked repetition priming: repeated words, 
orthographic neighbors, and, more-so than control neighbors, pseudo-homophones (e.g. ‘bakon-BACON’ > ‘bafon-
BACON’) all can reduce amplitude of an anterior negativity known as the ‘N250’ (reviewed in Grainger & 
Holcomb, 2009). To the extent that these effects reflect an orthographic processing stage of word recognition, 
however, they are still consistent with a visual processing account of N300-like deflections.	
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primed the N300 to a picture of a collie more-so than ‘robin’ or ‘bird,’ ‘poodle’ primed the N300 
just as well as ‘collie,’ suggesting that words denoting visually similar templates primed equally 
well. Interestingly, ‘dog’ did not prime the N300 more than ‘bird,’ possibly due to there being a 
reduced incentive to predict specific visual forms in blocks where only basic-level category 
primes were used.  

 Several other studies have suggested that more elaborate visual contexts, such as natural 
scenes and videos, may also prime the N300, but the presence of immediately following anterior 
N400 effects have made results difficult to interpret. The appearance of contextually incongruent 
objects in static images (Mudrik, Lamy, & Deouell, 2010; Võ & Wolfe, 2013) and video clips 
(Sitnikova, Holcomb, Kiyonaga, & Kuperberg, 2008) have been claimed to elicit a larger 
amplitude N300 and N400 response relative to contextually congruent objects. However, in some 
cases, only a (somewhat more anterior than is typical for words) N400 effect is elicited (e.g., 
Ganis & Kutas, 2003). Still frames taken from videos of natural, descriptive gestures that 
matched or mismatched a preceding cartoon have also been suggested to elicit an N300 (as well 
as an N400) effect (Wu & Coulson, 2011). In the current thesis, we have developed a novel 
analysis technique using visual similarity effects (described in more detail in the following 
chapters), which can get around problems with component-based analyses, including difficulty 
isolating the N300 and N400 responses, which partially overlap in both time and space. 

Schendan and colleagues conducted another series of experiments that further shed light 

on the functional sensitivity profile of the N300, and point to an intermediate visual processing 

stage dissociable from the multimodal, abstract semantic processing that occurs during the N400 

time window. Schendan and Kutas (2002) presented sequences of fragmented images at 

progressively decreasing levels of fragmentation and asked participants at each stage to name the 

objects or else indicate that they were unidentifiable. They demonstrated that the N300 is larger 

for unidentifiable than identifiable fragmented images, but not when the images are so 

fragmented that their contours are unrecoverable. Schendan and Kutas (2003) used a repetition 
paradigm to examine differential processing and memory representations for pictures of objects 
in canonical vs. unusual views.  They found that the N300 is more positive to stimuli presented 
in canonical than unusual views. Thus, the more easily an object can be identified, perhaps based 
on global visual contours, the smaller its N300. 

Schendan and Kutas (2007) explored repetition priming on the N300 using a repeated 
picture naming implicit memory paradigm. During both study and test, the participant viewed 
line drawings of nameable objects and pushed a button as soon as they knew the name of the 
object presented, and then later indicated how confident they were and named the object. During 
the study phase, images were presented for 5000 ms, while during the test phase, they were only 
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presented for 17 ms. At test, line drawings were always ‘segmented’ – that is, dashed lines were 
used to represent contours of the object. However, earlier at study, participants had viewed either 
an identical segmented image (‘Same’), a complementary segmented image (i.e. one with dashes 
where blanks would be at test and vice versa; ‘Complementary Fragment’), an intact image (with 
fully connected lines, ‘Intact’), or they had not studied that image before (‘Unstudied’).  In a 
separate experiment, they also tested the additional study conditions of ‘Half Fragment’ (where 
segments were half as long) and ‘Intact-Segmented’ (where isoluminant green and red segments 
were alternated) – for this second experiment, all line drawings were presented in green, with the 
exception of the red segments in the ‘Intact-Segmented’ study images. They found that the N300 
showed a similarly large repetition priming effect across all conditions, suggesting that the N300 
reflects processing of global shape contours, rather than ‘local features.’   

 Several attempts have been made to source localize the N300, and to theoretically 

characterize it within a broader visual processing network. Schendan and colleagues (Schendan 

& Kutas, 2007; Schendan & Maher, 2009) situate the N300 in a “two-state interactive account of 

visual object knowledge activation” (later extended to a multi-state account in Schendan & 

Ganis, 2012). They propose that after an initial feed-forward activation of occipito-temporal 

cortex, reflected in the P150/N170 response, occipito-temporal cortex is once again activated 

during the N300 time window, but this time is more subject to executive control (specifically, 

they propose that the ventrolateral pre-frontal cortex, VLPFC, should play a particularly 

important role in regulating N300 activation). Attempts at ERP source localization are indeed 

consistent with an occipito-temporal source for the N300 (Schendan & Maher, 2009), but the 

link to the VLPFC is somewhat weaker and more indirect. fMRI experiments using paradigms 

known to generate N300 effects can also inform attempts at source localization. In one fMRI 

study, (Ganis, Schendan, & Kosslyn, 2007) asked participants to categorize more and less 

impoverished images of objects and pseudo-objects. They found that ventro-occipital cortex was 

more highly activated by more impoverished than less impoverished images. Also, frontal areas 

including VLPFC were more active on trials where objects were marked as categorized after a 

longer period of time (which correlated with a higher degree of object fragmentation), than a 

shorter period. Overall, data have been consistent with an account in which the N300 reflects 

top-down activation of intermediate visual areas (perhaps encoding global shape information) in 

order to categorically assess visual input. 
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CHAPTER 2: NEURAL SIGNATURES OF LEARNING NOVEL OBJECT-SCENE 
ASSOCIATIONS 

 
Abstract 

 

Objects are perceived within rich visual contexts, and statistical associations may be exploited to 

facilitate their rapid recognition. Recent work using natural scene-object associations suggests 

that scenes can prime the visual form of associated objects, but it remains unknown whether this 

relies on an extended learning process. We asked participants to learn categorically structured 

associations between novel objects and scenes in a paired associate memory task while event-

related brain potentials (ERPs) were recorded. In the test phase, scenes were first presented 

(2500 ms) followed by objects that matched or mismatched the scene; degree of contextual 

mismatch was manipulated along visual and categorical dimensions. Matching objects elicited a 

reduced N300 response, suggesting visuo-structural priming based on recently formed 

associations. Amplitude of an extended positivity (onset ~200 ms) was sensitive to visual 

distance between the presented object and the contextually associated target object, most likely 

indexing visual template-matching. Results suggest recent associative memories may be rapidly 

recruited to facilitate object recognition in a top-down fashion, with clinical implications for 

populations with impairments in hippocampal-dependent memory and executive function. 

 

Key Words: visual object recognition; N300; template matching; paired associate learning; 

statistical learning 

 
Introduction 

  

Rapidly perceiving and categorizing visual objects is an important survival skill, so much so that 

humans and other animals capitalize on statistical regularities in the environment in order to 

enhance its efficiency (Friston, 2005; Ranganath & Ritchey, 2012). It has long been known that 

objects presented in congruent visual contexts are recognized more accurately and rapidly and 

processed more efficiently than those in incongruent (but equally cluttered) contexts (Palmer, 

1975; Biederman, Mezzanotte, & Rabinowitz, 1982; Boyce, Pollatsek, & Rayner, 1989; Boyce & 

Pollatsek, 1992; Davenport & Potter, 2004; Ganis & Kutas, 2003). Although much research has 
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focused on what aspects of visual environments are used as cues for object recognition (reviewed 

in Oliva & Torralba, 2007), a smaller body of work has addressed what aspects of visual objects 

are brought online or primed in response to contextual cues (e.g., Biederman et al., 1982; 

Henderson & Hollingworth, 1999; Bar, 2004; Truman & Mudrik, 2018; Schendan & Kutas, 

2007; Brandman & Peelen, 2017). These studies suggest that both semantic and structural 

information about visual objects are primed by scene contexts (e.g., Gronau, Neta, & Bar, 2008; 

Brandman & Peelen, 2017; Mudrik, Lamy, & Deouell, 2010; Mudrik, Shalgi, Lamy, & Deouell, 

2014; Truman & Mudrik, 2018). However, these studies also largely relied on naturally 

occurring statistical associations that may be learned over long periods of time. Thus, it is 

possible that scene-based structural priming of visual objects is contingent on an extended 

learning process, which has neurophysiological and clinical implications. To test this, we primed 

novel objects using newly associated visual scene contexts and checked for activation of object-

related category-level and lower-level visual information. 

Context effects on visual object processing are abundant and suggest both semantic and 

form-based facilitation. Interpretations of ambiguous, degraded, briefly presented, and masked 

objects are influenced by their visual context (Bar & Ullman, 1996; Freeman et al., 2015; 

Barenholtz, 2013; Palmer, 1975; Davenport & Potter, 2004; Brandman & Peelen, 2017). For 

example, an identical visual percept of a blurred object can be categorized as either a hairdryer or 

a drill depending on whether it is embedded in a bathroom or workshop scene (Bar, 2004). 

Similarly, briefly presented objects are more likely to be misidentified as a visually similar 

object following presentation of a context associated with the incorrect item (Palmer, 1975). 

Recent evidence has suggested that even racial judgments of faces on an Asian-White continuum 

are biased by presentation in an American or Chinese setting (Freeman, Ma, Han, & Ambady, 

2013; Freeman et al., 2015). However, such effects of scene context on object categorization 

may be driven by semantic effects on higher level decision processes and do not necessarily 

reflect form-based priming (Henderson & Hollingworth, 1999; Truman & Mudrik, 2018). 

The argument that scenes facilitate object identification by supporting form-based 

matching processes has been primarily based on indirect neurophysiological evidence (Bar, 

2003, 2004, 2007; Brandman & Peelen, 2017; Truman & Mudrik, 2018). Of relevance to the 

current study, an event-related potential (ERP) component known as the N300 (also referred to 

as the N350, Ncl, or simply the N3 complex) is elicited by visual objects, and its amplitude is 
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often, but not always, modulated by scene congruency (Võ & Wolfe, 2013; Sitnikova, Holcomb, 

Kiyonaga, & Kuperberg, 2008; Mudrik et al., 2010; cf. Ganis & Kutas, 2003). The N300 is a 

fronto-central negativity peaking between roughly 200 and 400 ms, believed to index an object 

model selection process based on global shape information (Schendan & Kutas, 2002, 2003, 

2007), although slight variations in scalp topography across manipulations and over time suggest 

it may encompass multiple related processes (Truman & Mudrik, 2018; Schendan & Ganis, 

2012). Although semantic priming consistently reduces the amplitude of a later and more 

centrally distributed component, the N400, amplitude of the N300 is reduced more selectively by 

form-based priming (Hamm, Johnson, & Kirk, 2002; Kovalenko, Chaumon, & Busch, 2012). 

N300 amplitude is also modulated by factors pertaining to isolated object images, such as the 

noise level at which a visually degraded object is recognized, and viewpoint canonicity (Doniger 

et al., 2000; Schendan & Kutas, 2003). fMRI data also suggest that contextual congruency of 

objects modulates activity in a network including the lateral occipital complex (LOC), which is 

known to store high-level form representations of visual objects and is believed to be the human 

analogue of monkey inferotemporal (IT) cortex (Tootell, Tsao, & Vanduffel, 2003, Gronau et al., 

2008; Grill-Spector et al., 1998). Indeed, N300 scalp topography is consistent with generators in 

the ventral visual stream, including the LOC (Schendan & Ganis, 2012). Moreover, recent fMRI 

and MEG evidence has shown that cross-decoding accuracy of object animacy in LOC is 

enhanced by simultaneous presentation of disambiguating scenes, and that peak cross-decoding 

accuracy for objects embedded in scenes is at around 320-340 ms (Brandman & Peelen, 2017). 

Because of its numerous links to high-level visual processes, including perceptual closure and 

viewpoint accommodation, as well as form-based visual priming, differences between 

contextually congruent and incongruent objects on the N300 component have been taken as an 

index of scene priming on visual form-based matching processes during object recognition.  

In the current study, we will not only assess object N300 scene-congruity effects, but will 

also more directly confirm the engagement of perceptual matching processes based on a 

component-neutral item-based analysis. In our component-neutral analysis, visual similarity 

between the presented (distorted or mismatching) object and the object expected based on the 

preceding context is used to predict ERP amplitude. To the extent that visual similarity to the 

contextually-congruent target object predicts ERP amplitude, this suggests that visual 

information about the target object has been brought online in response to the scene. In this way, 
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we can confirm visual form priming via two different and complementary approaches: a 

component-based analysis drawing from the N300 literature, and a component-neutral analysis 

that makes a more direct inference based on the results of a single data set.  

  It is not yet known whether form-based priming of object representations by scenes is 

contingent on an extended learning process, which would suggest a crystalized associative 

representation less subject to the influence of task demands and disruption by disturbances in 

short-term memory and executive function. Prior evidence is suggestive that at least some 

aspects of object-scene priming may rely on labile attentional and hippocampally-dependent 

processes. For example, context-object associations can be rapidly implicitly learned and applied 

to facilitate tasks such as visual search (reviewed in Jiang & Chun, 2003). Using an associative 

memory paradigm, Hannula and colleagues have shown that arbitrary face-scene pairs can be 

rapidly learned and yield scene congruency effects on face viewing times within a single 

experimental session, as long as the hippocampus is intact (Hannula, Ryan, Tranel, & Cohen, 

2007). Moreover, an ERP adaptation of Hannula and colleagues’ face-scene associative memory 

task revealed that faces matching recently associated scenes elicit a less negative scalp potential 

at 300 ms, which has timing and scalp topography consistent with N300 facilitation (Hannula, 

Federmeier, & Cohen, 2006). The current study extends Hannula and colleagues’ design to novel 

object-scene pairs, in an attempt to elicit this early ERP congruency effect using a wider class of 

object stimuli, and to explicitly link it to visual form analysis. If, indeed, form-based priming of 

visual objects can be based on recently formed associations, this raises the possibility that visual 

object recognition in the natural world may be subtly disrupted in elderly or clinical populations 

that are less able to rapidly form and recruit novel associations. 

In the current study, participants associate line drawings of novel objects with natural 

images of visual scenes. To facilitate learning, novel objects are grouped into higher-level 

categories, each of which is exclusively associated at study with exemplars of a particular scene 

category (beaches, highways, etc.) for any given participant. In the test phase, participants are 

shown scenes from the scene-object pairs they recently studied, followed after 2500 ms by an 

object that a) exactly matches what had originally been studied on that specific scene, b) is a 

distorted version of the object they studied on that scene, c) is the wrong object altogether but 

belongs to the same scene-congruent higher level category (i.e. an object that has been studied on 

beaches in general but now is displayed on the wrong specific beach), or d) is the wrong object 
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and belongs to a scene-incongruent category (i.e. a highway-associated object on a beach). If 

form-based priming of objects by scenes can be induced by recently learned associations, we 

should expect the N300 to be reduced in amplitude to objects matching the scene, relative to 

mismatches. We should also expect the ERP response to show graded sensitivity to the degree of 

structural mismatch between presented incongruent objects and the scene-congruent target 

object, which we assess in a separate analysis. In addition to the N300, we will also examine 

context-based facilitation of the N400 and late positive complex (LPC) components, which have 

been linked to semantic memory and extended visual and task-relevant processing, respectively. 

 

Methods 

 

Participants 

 

Data are reported from 24 participants (mean age 21 (18-28); 10 males), all native English 

speaking University of Illinois undergraduates, who were compensated with payment. Three 

additional participants were replaced due to excessive trial loss or, in one case, use of substances 

on our exclusionary list. All participants provided written informed consent, according to 

procedures established by the IRB at the University of Illinois. Handedness was assessed using 

the Edinburgh inventory (Oldfield, 1971). All participants were right-handed; mean score: .86, 

where 1 denotes strongly right-handed and -1, strongly left-handed. 10 reported having left-

handed family members. No participants had major exposure to languages other than English 

prior to the age of 5. All had normal or corrected-to-normal vision, and none had a history of 

neurological or psychiatric disorders or brain damage or was using neuroactive drugs. 

Participants were randomly assigned to one of 24 experimental lists. 

 

Materials 

 

Overview 

 

Objects were novel, designed to resemble biological organisms (“germs”), or mechanical devices 

(“machines”). Major object categories were paired with familiar scene categories (e.g., beaches, 
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highways), such that each type of scene was associated with one type of germ and one type of 

machine for each participant.  At test, participants either saw exactly the same object that they 

had studied, an object from the same category subtype (e.g., a distortion), an object from a 

different subcategory (that had not been studied on that particular scene but had been studied on 

the same type of scene), or an object from a different major category (that thus would never have 

appeared on any scene of that type).  Across the experiment, all object types were paired with all 

scene types, and objects and scenes were never repeated in the study phase.  Details of stimulus 

development and counterbalancing follow.  

 

Scenes	

 

Stimuli consisted of pairings between photographs of natural scenes and line drawings of novel 

objects (see Figure 2.1). Scenes depicted one of 6 categories: beaches, city streets, mountains, 

forests, highways, and offices. Scenes were drawn from a pool of 288 images, 48 per category, 

that were previously normed as being highly representative of their respective scene types, and 

which had been rescaled to 800 x 600 pixels (see Torralbo et al., 2013 for norming details).  

 

Objects 

 

Line drawings of novel object prototypes for biological organisms (“germs”) or mechanical 

devices (“machines”) were created by an artist with the aid of Adobe Photoshop to maintain a 

consistent set of visual textures. Within the two classes of germs and machines, drawings were 

further organized into 6 major categories, each with 3 subcategories. Thus, there were 18 total 

subcategories of germs and machines, respectively, each with a single representative prototype 

image. Major categories shared aspects of their visual structure and texture, as well as 

homologous parts. Each subcategory prototype image was scanned and roughly centered, then 

further manipulated using Photoshop and the animation software Unity to derive individual 

exemplars. For each subcategory prototype, we altered the prototype image along 3 continuously 

changing parameter scales, with the prototype image at the center of each scale. We then took 

snap shots of the distorted images at various points along each parameter scale to generate 3 

continuously varying sets of 8 exemplars (24 exemplars / object subcategory), with 4 exemplars 
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on either side of the central prototype within each set. We never displayed the original prototype 

images in any experiment. For germs, parameter changes induced global distortions, such as 

gradually twisting the body or changing its width, while for machines, which were assumed to 

have a more rigid body, parameter changes affected the size and relative positions of component 

parts, which were first extrapolated from the prototype images using Photoshop layers to avoid 

unnatural gaps. Often, several parameters would change at once along each scale to heighten the 

visual dissimilarity among exemplars. See Figure 2.2 for an illustration of how exemplars were 

derived from the prototype images. All novel object line drawings were resized to 274 x 274 

pixels.  

 

Counterbalancing and Experimental Conditions 

 

24 experimental lists of stimuli were created, grouped into 6 sets of 4. Each list was assigned to a 

single participant. Lists within each set maintained a fixed study trial relationship between the 6 

major categories of novel objects within each class (germs or machines), and the 6 scene 

categories. Thus, for any given list (and participant), each germ or machine type would only ever 

appear on a single scene category (e.g. “beaches”) at study, and this relationship would hold for 

all 3 subtypes of the object major category. The mapping between object and scene categories 

was then systematically rotated across the 6 sets, so that over the entire experiment every object 

category was associated with every scene category at study.  

 Each list consisted of 288 study and 288 test pairs of novel object and scene stimuli. 

Stimuli within each list were organized into 18 blocks of 16 study pairs followed by 16 test pairs. 

Blocks alternated between all germs and all machines; the first block for each list was always 

germs. The same set of 288 unique scenes was used across all lists; scenes were presented 

exactly once at study and once in the corresponding test phase in each list. Each set of 4 lists had 

288 unique test objects that were used across all 4 lists; these objects were randomly drawn 

(without replacement) from the total set of possible exemplars, within constraints of the 

experimental design. Test objects were never repeated within a list, but were sometimes repeated 

across lists, such that some test object images were used more often over the full 

counterbalancing than others. 793 novel object images out of 864 possible exemplars were 

presented as test objects over the course of the experiment.  
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 Within each block, an approximately equal number of pairs involving each scene 

category and object major category were presented at both study and test. All 16 scenes 

presented at study within a block were presented in a different pseudorandom order in the 

corresponding, and immediately following, test phase. In the test phase, 4 of the 16 test trials 

were assigned to each of 4 experimental conditions (See Figure 2.3): 

1. Exact match: test object exactly matched the object paired with the scene at study 

2. Distortion: test object was a different exemplar of the same subtype of object presented 

with the scene at study 

3. Within-category mismatch: test object was a different subtype of object within the same 

major category as the object presented with the scene at study 

4. Between-category mismatch: test object was a different major category of object from 

that presented with the scene at study (and thus, belonged to a category of object that 

would never have been studied with that scene category previously; e.g., an object 

category that had only ever appeared on offices at study, now appearing on a beach at 

test). 

To illustrate, a typical study phase might contain scene-object (S-O) pairings as follows: 

S(category = 1, exemplar = a)-O(major category = 1, subtype = 1, exemplar = a), S(2,a)-

O(2,1,a), S(3,a)-O(3,1,a), S(3,b)-O(3,2,a), S(3,c)-O(3,3,a), etc. For the corresponding test phase, 

a match trial might be S(1,a)-O(1,1,a), a distortion trial might be S(1,a)-O(1,1,b), a within 

category mismatch trial might be S(1,a)-O(1,2,b), and a between category mismatch trial might 

be S(1,a)-O(2,1,b). Because there were only 16 trials per study phase, only 16 of 18 object 

categories (6 major categories x 3 subtypes / major category) were presented in each study phase. 

Half of the between category mismatches in the test phase were created by swapping two object 

subcategories from different major categories that had been presented in the preceding study 

phase (e.g. study: S(1,a)-O(1,1,a), S(2,a)-O(2,1,a); test: S(1,a)-O(2,1,b), S(2,a)-O(1,1,b)). The 

other half were created by introducing an object category that had not been presented in the 

preceding study phase (e.g. study: S(1,a)-O(1,1,a), never present object in category (2,1) that 

block; test: S(1,a)-O(2,1,a)). Within category mismatches were always created by swapping 

object subcategories within a major category that had been presented in the preceding study 

phase (e.g. study: S(1,a)-O(1,1,a), S(1,b)-O(1,2,a); test: S(1,a)-O(1,2,b), S(1,b)-O(1,1,b)). Other 
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than in the exact match condition, the exact object exemplar presented at test never matched that 

presented in the preceding study phase. 

Each list contained 72 trials per condition. Across lists, each test object and each scene 

appeared in each of the four experimental conditions an equal number of times. In fact, identical 

test object-scene pairs were used across the first 3 experimental conditions; only in the fourth 

experimental condition (between category mismatch) was it necessary to shuffle the specific 

pairings of test object and scene. Trial order within each block was pseudo-randomized, such that 

no more than two trials corresponding to each condition were presented in a row, and no more 

than 3 trials mapping on to a ‘same’ response (that is, trials in the exact match or distortion 

conditions) occurred in a row at test. Response hand was counterbalanced across lists. 

 

Procedure 

 

Participants passively studied the paired scenes and novel objects and then were tested by being 

asked to indicate, for each in a new set of pairs, whether the object matched the presented scene. 

Study and test phases were organized into 18 study-test blocks, between which the participant 

was encouraged to take a break. All breaks were self-paced.  

In each study phase, 16 scene-object pairs were presented, each beginning with a white 

fixation cross on a black background presented for 350-550 ms (duration jittered to reduce the 

impact of anticipatory slow potentials on the timelocked waveform). Next, the scene alone was 

presented centrally for 2500 ms on a black background. Right after the scene appeared, 

participants were allowed to move their eyes to take in the scene; however, 1800 ms into scene 

presentation, the fixation cross brightened to indicate that the participant should fixate in the 

center of the screen in preparation for object presentation. 700 ms later (2500 ms after scene 

onset), a white square containing the object appeared in the center of the screen, super-imposed 

on top of the scene, for 2500 ms. A screen with the word “***BLINK***” was then displayed 

for 2000 ms (preceded and followed by 50 ms of blank screen), in order to encourage the 

participant to blink between trials. 

In the test phase immediately following each study phase, 16 scene-object pairs, 

repeating all 16 scenes from the study phase, were displayed. Participants were asked not to 

move their eyes for the entire test trial duration. Similar to the study trials, each scene was first 
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displayed by itself for 2500 ms on a black background, followed by 2500 ms during which the 

test object was displayed centrally on top of the scene, again embedded in a white square. 

Participants were asked to wait until the object-scene pair was replaced by a question mark in the 

center of the screen to respond; the question mark remained on screen until a response was made. 

Participants had 3 response options: the object on this scene is (1)	the same object that I studied 

with this scene, (2)	not the same object, but “could have gone with” this scene, (3)	not the same 

object and could not have gone with this scene. Participants were told that if the object was only 

slightly visually distinct from what they remembered studying (e.g. had a different body position 

or proportions), they should still respond (1). They were also told that an object and scene ‘could 

go together’ if they believed that pair looked similar to other study items and could 

hypothetically be presented in an upcoming trial of the experiment, even if they knew that they 

hadn’t studied it. Participants were never told that there was a structured relationship among the 

object and scene categories. Participants were explicitly instructed that each test phase only 

covered materials studied in the immediately preceding study phase and that testing was non-

cumulative across blocks. Prior to the main experiment, participants were given a practice block 

of 4 study and 4 test trials, which used different but qualitatively similar object and scene images 

to those in the main study. 

During recording, participants were seated in a comfortable chair at a viewing distance of 

approximately 100 cm from the computer display. The visual angle of the scenes was 13.6° by 

9.3° and that of the object images was 4.6° by 4.2°. The recording session lasted approximately 

90 minutes. Afterwards, participants filled out an exit survey about the strategies they had used 

to complete the task, including several open response questions. In order to determine how 

participants were using the response scale, they were then given several visual examples of 

corresponding study and test scene-object pairs, and asked to indicate how they would respond to 

that test item, given that they remembered studying that study item. Lastly, for a subset of the 

object images (one from each of the 6 major categories of germs and machines), participants 

indicated which scene categories the object had been associated with during the experiment by 

circling one or more of 6 scene category labels. 

 

EEG Data Acquisition and Preprocessing 
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The electroencephalogram (EEG) was recorded from 26 silver/silver-chloride electrodes evenly 

spaced over the scalp. The sites are midline prefrontal (MiPf), left and right medial prefrontal 

(LMPf and RMPf), left and right lateral prefrontal (LLPf and RLPf), left and right medial frontal 

(LMFr and RMFr), left and right mediolateral frontal (LDFr and RDFr), left and right lateral 

frontal (LLFr and RLFr), midline central (MiCe), left and right medial central (LMCe and 

RMCe), left and right mediolateral central (LDCe and RDCe), midline parietal (MiPa), left and 

right mediolateral parietal (LDPa and RDPa), left and right lateral temporal (LLTe and RLTe), 

midline occipital (MiOc), left and right medial occipital (LMOc and RMOc), and left and right 

lateral occipital (LLOc and RLOc). The midline central (MiCe) electrode was placed where the 

“Cz” electrode would appear using the international 10-20 system. Eye movements were 

monitored via a bipolar montage of electrodes on the outer canthus of each eye. Blinks were 

detected by an electrode below the left eye. Impedances were kept below 5 KΩ. Signals were 

amplified with a .02–250 Hz bandpass using a BrainVision amplifier and digitized at 1000 Hz. 

Data were referenced online to the left mastoid and rereferenced offline to the average of the left 

and right mastoids. Each trial consisted of a 1000 ms epoch preceded by a 200 ms prestimulus 

baseline. Trials contaminated by eye movements, blinks or other recording artifacts were rejected 

offline. Artifact rejection procedures using subject-specific threshold parameters resulted in 

average trial loss of 11.3% for the exact match condition, 11.4% for the distortion condition, 

12.6% for the within-category mismatch condition, and 11.8% for the between category 

mismatch condition. A digital lowpass Butterworth IIR filter with a 30 Hz half-amplitude cut-off 

and 12 dB/octave roll-off was applied prior to statistical analysis. Prior to permutation-based 

cluster analysis, data were further down-sampled to 100 Hz. 

 

Analysis 

 

Behavioral analyses of response distributions were conducted using logistic regression modeling 

in R. Statistical analyses of individual trial EEG data were conducted using mixed effects models 

built with the lme4 package in R. Models initially included crossed random effects of subject and 

item, and by-subjects random slopes of each predictor of interest, but the random effects 

structure was sometimes scaled back to address convergence issues. EEG dependent measures 

for analysis (mean amplitudes over particular stretches of time and space post test object onset) 
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were determined in two ways: 1. a priori windows in time and space determined based on the 

prior literature and 2. a data-driven method, permutation-based cluster analysis. For component-

based analyses, we used time windows and electrode selections based on the prior literature:  

250-349 ms over fronto-central sites to capture the N300, 350-499 ms over centro-parietal sites 

for the N400, and 500-699 ms and 700-899 ms over posterior sites to capture early and late time 

windows of the Late Positive Complex (LPC). Because the N300 was the primary measure of 

interest, and because its distribution has been variably characterized over the literature, we took 

the conservative approach of measuring effects at all fronto-central sites (16 total); the N400 and 

LPC were characterized at 8 sites each, focused around each component’s typical distribution 

and reducing topographic overlap with other components. Key predictors of EEG amplitude 

included match condition and visual similarity to the target object. 

 

Results 

 

Behavioral – Online Accuracy 

 

Participants discriminated well among test objects that matched and mismatched the presented 

scene. As instructed, they tended to respond that both ‘exact match’ and ‘distortion’ condition 

objects matched the scene (response option 1 = ‘match’), and that ‘within-category mismatch’ 

and ‘between-category mismatch’ condition objects did not (response options 2 = ‘possible 

mismatch’ and 3 = ‘impossible mismatch’). Accuracy of appreciating the match between object 

and scene was computed after collapsing the exact match and distortion conditions (which were 

treated as a ‘match’) and the two mismatch conditions along with the two different mismatch 

responses (‘possible’ and ‘impossible’). Mean accuracy was 81.5%, range 64.2-97.9%. 

Participants were also sensitive to the type of mismatch, and were more likely to respond that the 

test object could not have gone with the test scene (‘impossible’ response) for the between-

category mismatch condition than the within-category mismatch condition. This was 

characterized using a logistic regression model predicting the probability of response ‘impossible 

mismatch’ with fixed effect of condition (exact match or distortion vs. within category mismatch 

vs. between category mismatch; the model failed to converge when the exact match and 

distortion conditions were treated as separate predictors). The model included subject random 
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intercepts and by-subjects random effects of condition. Nested model comparisons confirmed 

that ‘impossible’ responses were more likely for the between-category mismatch than the within-

category mismatch condition: intercept = -.635, β = 1.78, SE = .217, z = 8.208, 𝜒!! = 32.36, p < 

.001. Figure 2.4a shows the mean response distribution across subjects for each condition. 

 

Behavioral – Posttest Categorization 

 

By the end of the experiment, participants demonstrated explicit knowledge of the categorical 

mapping among objects and scenes. Participants were more likely to indicate that objects were 

associated with a scene category when the two had been paired at study. Figure 2.4b shows the 

normalized confusion matrix indicating the probability that a scene category, if circled, belonged 

to the correct scene category for the depicted object. This was assessed with a logistic regression 

model predicting the probability of circling a scene category. The model included a fixed effect 

of match (between the scene and object), crossed random intercepts for subject, object (response 

item) and scene (response choice), and a by-subjects random effect of match. Nested model 

comparisons were used to confirm that scenes matching the object were more likely to be 

circled: intercept = -4.406, β = 7.814, SE = .918, z = 8.513, 𝜒!! = 40.13, p < .001.  

 

ERP Analysis: Match Condition 

 

Our component-based match condition analysis assessed whether scenes induced N300 visual 

form priming of associated objects in the test phase, and also examined semantic (N400) and 

decision-related (LPC) processing. In an analysis of the trial-by-trial ERP response to object 

images in the test phase, we targeted the temporal and topographic distribution of the N300, 

N400, and LPC (using an apriori split of the 400 ms LPC window into early and late parts, 200 

ms each, keeping window size more comparable across the analyses), and examined differences 

across conditions (see Figure 2.5 for component timing and scalp distributions). Only 

behaviorally correct (response option 1 = ‘match’ for match and distortion and response options 

2 = ‘possible mismatch’ or 3 = ‘impossible mismatch’ for within and between category 

mismatches) and artifact free trials were included. Linear mixed effects models were fit to the 

individual trial data, including fixed effects of: 
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(1) condition (contrasting match, distortion, within, and between category conditions) 

(2) response type (for within and between category mismatch conditions only, since only one 

response type was considered correct for match and distortion conditions); it should be noted 

that condition (within vs. between) was moderately associated with response (‘possible’ vs. 

‘impossible’ mismatch); Cramér’s V = .27. 

(3) the interaction between condition and response 

 

Models also included crossed random intercepts of subject, item (object+scene), and channel, 

and by subjects random slopes of condition, response and their interaction.  

Because some of the between category mismatches were also newly presented within the 

study-test block (whereas all other item types were within-block repetitions), we also examined 

the role of item recency in differentiating the between category mismatches from the other 

conditions. To do this, we compared our model above to one with an additional fixed effect, 

which contrasted condition 4 swap trials (generated by swapping object images presented in the 

immediately preceding study phase) and condition 4 new trials (generated by presenting an 

object image that was not presented in the immediately preceding study phase). 

All models were fit using maximum likelihood estimation. Fixed effects were initially 

tested using likelihood ratio tests with nested model comparisons. Follow up comparisons of 

condition means were conducted using the contest function in the lmerTest package in R, with 

family-wise error rate corrected p-values and the Satterthwaite approximation for the degrees of 

freedom; except where otherwise indicated, condition contrasts collapse across response type 

using linear combinations of beta weights but were conducted on a model that included a fixed 

effect of response type. The distortion condition was included in all models, but never differed 

reliably from the match condition. For ease of reporting, we thus describe only contrasts among 

the match condition and the two violation types. 95% confidence intervals on beta weights and 

contrasts were computed using the bootMer function in the lme4 package in R (N = 2000 

iterations). 

 

N300 
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To examine the N300, voltages were separately averaged across time for each trial from 250-349 

ms at each of 16 frontal and central sites. There was a main effect of condition (𝜒!! =14.91, p < 

.01), which persisted when recency was accounted for by including between category mismatch 

swap versus new as a fixed effect (𝜒!! =13.79, p < .01; including this effect did not substantially 

improve model fit, 𝜒!! < 1). Follow-up comparisons revealed that between category mismatches 

were more negative than matches (diff = -1.79 µV, 95% CI = [-2.74, -.83], F(1,25.5) = 13.6, p < 

.01). There was also a tendency for between category mismatches to be numerically more 

negative than within category mismatches (diff = -1.08 µV, 95% CI = [-2.25, 0.15], F(1,21.8) = 

3.19, p < .1). Within category mismatches did not reliably differ from matches (diff = -.70 µV, 

F(1,20.2) = 1.49, p > .1). The main effect of response type and its interaction with condition for 

within and between category mismatches were not statistically reliable (|t|’s < 1).  

 

N400 

 

To examine the N400, voltages were separately averaged across time for each trial from 350-499 

ms at 8 central and parietal sites. There was a main effect of condition (𝜒!! =14.05, p < .01), 

which remained as a numeric trend when recency was accounted for by including between 

category mismatch swap versus new as a fixed effect (𝜒!! =7.80, p < .1; including this additional 

factor improved model fit, 𝜒!! = 4.22, p < .05). Follow-up comparisons revealed that between 

category mismatches were more negative than all other conditions (match: diff = -1.63 µV, 95% 

CI = [-2.59, -.68], F(1,24.8) = 11.3, p < .01; within category mismatch:  diff = -1.33 µV, 95% CI = 

[-2.53, -.15], F(1,20.2) = 4.90, p < .05). When swapped was compared with new between category 

violations, new items were found to be more negative (diff = -.79 µV, 95% CI = [-.03, -1.55], 

F(1,2546) = 4.07, p < .05). Both new and swapped between category violations were more negative 

than matches (swap – match: diff = -1.23 µV, 95% CI = [-2.33, -.22], F(1,33.5) = 5.45, p < .05; new 

– match: diff = -2.02 µV, 95% CI = [-3.09, -1.00], F(1,33.0) = 15.4, p < .001). However, only new 

between category violations were reliably more negative than within category violations (diff = -

1.73 µV, 95% CI = [-2.97, -.56], F(1,24.1) = 7.42, p < .05). Within category violations did not 

reliably differ from matches (diff = -.29 μV, F(1,19.8) < 1). For the two violation types, the main 

effect of response type and its interaction with condition were not statistically reliable (|t|’s < 1).  
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LPC 

 

To examine the LPC, voltages were separately averaged across time for each trial from 500-699 

ms (early LPC) and 700-899 ms (late LPC) at each of 8 posterior sites. In the early time window 

there was no reliable effect of match condition (𝜒!! =2.60, p > .1). However, there was a reliable 

effect of response type (possible vs. impossible mismatch) for within and between category 

violations, such that trials indicated as being a possible mismatch were less positive (β = -1.42 

(µV), 95% CI = [-2.60, -.06], 𝜒!! = 4.62, p < .05). There was no reliable interaction between 

response type and condition (|t| < 1). 

 In the late time window, there was a main effect of condition (𝜒!! =13.49, p < .01), which 

persisted when recency of the between category mismatches was accounted for (𝜒!! = 14.60, p < 

.01; including swapped versus new as a factor did not substantially improve model fit, 𝜒!! = 1.12, 

p > .1). Between category mismatches were more positive than matches (diff = 1.32 µV, 95% CI 

= [.20, 2.48], F(1,24.1) = 5.30, p < .05) and within category mismatches (diff = 1.47 µV, 95% CI = 

[.19, 2.82], F(1,21.3) = 4.96, p < .05). There continued to be a reliable effect of response type 

(possible vs. impossible mismatch), with possible mismatch trials less positive (β = -2.88 (µV), 

95% CI = [-4.09, -1.67], 𝜒!! = 17.97, p < .001). There was no reliable interaction between 

response type and condition (|t| < 1).  

 

Summary 

 

Our component-based analysis revealed N300 priming of contextually congruent objects. Match 

effects were first observed in the N300 window, with increased negativity for between category 

mismatches relative to matches and distortions, and within category violations falling 

numerically in between. This pattern of effects was also seen on the N400, and the N400 

additionally showed sensitivity to recency, with new items more negative than recently seen ones 

(replicating many prior studies). Finally, the LPC was sensitive to participants’ judgments, being 

more positive to trials judged to be impossible mismatches, and, in the later part of the window, 

to between category violations overall. 

 Although there were apriori reasons to think that the N300, N400, and LPC might show 

effects of the experimental manipulations (cf. Hannula, Federmeier, & Cohen, 2006), we also 
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were interested in characterizing the pattern obtained when no apriori choices were made about 

either time window or scalp channels for analysis.  We examined this with an exploratory cluster 

analysis of match condition for behaviorally correct test object trials, conducted in the time 

domain using the ft_timelockstatistics function in fieldtrip. Details of the analysis and results can 

be found in Appendix A.  Importantly, the results of the analysis converged with the component-

based approach, showing effects differentiating match trials from mismatch trials beginning 

around 230-250 ms over the front of the head (like the N300), becoming more broadly 

distributed, and ending, around 400-430 ms over central/posterior sites (like the N400). 

Differences between the two mismatch trials types were also found from 760-990 ms over the 

back of the head (like the LPC). 

 

ERP Analysis: Target Similarity 

 

We also conducted a component-neutral analysis to confirm that visual form information about 

the contextually congruent object is brought online in response to the context scene. In doing so, 

we can make a more direct inference about the role of scene-induced visual information in object 

processing in this experimental context. We assessed whether low-level visual features of the 

scene-congruent object were accessed in memory even when it was not displayed. In focusing on 

the N300, our component-based analyses targeted what are typically thought to be intermediate 

stages of visual form analysis (Schendan & Ganis, 2015). Here, however, because we are not 

targeting the sensitivity of any particular waveform feature, we examined low-level visual 

feature similarity, providing a conservative test of visual form reactivation and taking advantage 

of the fact that the modeling of such low-level features is well-established (Pinto, Cox, & 

DiCarlo, 2008). Thus we used V1-like low-level visual features to derive a similarity metric to 

predict ERP amplitude. We adapted our match condition analysis models, adding a new fixed 

effect: visual distance from the target object. We then tested whether this predictor improved 

model fit using nested model comparisons. Models did not distinguish among the two types of 

between category violations (new vs. swap). Including a by-subjects random slope for visual 

distance from the target object resulted in a failure to converge, so the same random effects 

structure was used as for modeling the effects of match condition. 
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 Visual distance was computed as follows. First, V1-like features were generated for each 

object image using the model in Pinto, Cox, and DiCarlo (2008). Next, features with variance 

close to zero were removed to avoid numeric issues while scaling, and feature values were mean-

centered and scaled to unit variance. Next, PCA was applied to reduce the dimensionality of the 

feature space to 766 (from >80,000) while maintaining an explained variance ratio of .999. 

Visual distance was defined as the Euclidean distance between the presented object image and 

the target (studied) object image in this feature space, for each trial. Visual distance was grand 

mean centered prior to model fitting. 

 Including visual distance to the target object as a continuous predictor substantially 

improved model fit for all components (N300: 𝜒!! = 67.0, p < .001, β= -3.615x10-3, 95% CI = [-

4.45, -2.71]x10-3; N400: 𝜒!! = 88.3, p < .001, β= -5.612x10-3, 95% CI = [-6.74, -4.45]x10-3; LPC-

early: 𝜒!! = 31.5, p < .001, β= -3.211x10-3, 95% CI = [-4.32, -2.09]x10-3; LPC-late: 𝜒!! = 56.6, p 

< .001, β= -4.464x10-3, 95% CI = [-5.64, -3.31]x10-3). Negative beta values indicate that for all 

components, the more visually similar the displayed object was to the target object, the more 

positive the waveform. The distribution of visual distances across trials, broken down by 

condition, and including only behaviorally correct and artifact-free trials, is displayed in Figure 

2.7. Table 2.1 lists the mean number of trials per subject for each condition and visual distance 

bin in Figure 2.7. The ERP waveforms corresponding to these trials, broken down by visual 

distance bin, are displayed in Figure 2.8, averaging across match condition.  

 

Visual distance effects within component time windows and conditions 

 

We also examined whether the effect of visual distance to target was modulated by category-

level information. Importantly, this allowed us to observe whether visual similarity effects were 

apparent even within the distortion condition, suggesting a purer effect of visual similarity per se 

that is not contingent on category boundaries. Figure 2.9 shows estimated linear trends of visual 

distance by component and match condition, collapsing across response. We tested for 

interactions between visual distance to target, condition, and response, within behaviorally 

correct trials. The three-way interaction among match condition, response, and (mean centered) 

visual distance to target, as well as all lower order interactions, were added as fixed effects to the 

original visual distance to target models, while maintaining an identical random effects structure. 
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Interactions were tested using nested model comparisons. The effect of visual distance to target 

is reported separately for each condition and response, including 95% bootstrapped confidence 

intervals (N = 2000 iterations). All point estimates and confidence intervals on linear 

combinations of beta weights are reported below as 1000 times the original estimates.  

 

N300 

 

There were significant interactions of condition x visual distance (𝜒!! = 27.59, p < .001), and 

condition x response x visual distance (𝜒!! = 15.66, p < .001). Visual distance to target effects 

were significant in the distortion condition, and on within category violation trials that were 

responded to as ‘possible’ mismatches, but not on other mismatch trials (distortion: -5.105 [-

6.119, -4.077]; ‘possible’ within category mismatch: -3.903 [-5.593, -2.220]; ‘impossible’ within 

category mismatch: .680 [-1.095, 2.384]; ‘possible’ between category mismatch: 4.068 [-2.462, 

11.085]; ‘impossible’ between category mismatch: -1.169 [-4.960, 2.452]). Within category 

mismatches showed larger effects of visual distance to target when they were responded to as 

being ‘possible’ (see non-overlapping 95% CIs). 

 

N400 

 

There were significant interactions of condition x visual distance (𝜒!! = 10.64, p < .01), and 

condition x response x visual distance (𝜒!! = 17.39, p < .001). The effect of visual distance was 

significant at α = .05 uncorrected for all condition by response combinations, except for between 

category mismatches that were responded to as ‘possible’ (distortion: -4.903 [-6.233, -3.555]; 

‘possible’ within category mismatch: -10.421 [-12.689, -8.205]; ‘impossible’ within category 

mismatch: -4.515 [-7.132, -2.205]; ‘possible’ between category mismatch: 5.804 [-2.598, 

14.189]; ‘impossible’ between category mismatch: -4.883 [-9.290, -.253]). Within category 

mismatches showed larger effects of visual distance to target when they were responded to as 

being ‘possible’; ‘possible’ within category mismatches also showed larger visual distance 

effects than the distortion condition (see non-overlapping 95% CIs). 

 

LPC (Early) 
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There was a significant interaction of condition x visual distance (𝜒!! = 11.12, p < .01), and a 

numeric trend towards an interaction of condition x response x visual distance (𝜒!! = 5.77, p < 

.1). The distortion and within category mismatch conditions showed reliable effects of visual 

distance to target, but not the between category mismatch conditions (distortion: -2.250 [-3.566, -

.823]; ‘possible’ within category mismatch: -7.001 [-9.195, -4.706]; ‘impossible’ within category 

mismatch: -3.316 [-5.694, -.917]; ‘possible’ between category mismatch: .940 [-6.978, 8.542]; 

‘impossible’ between category mismatch: -2.489 [-6.568, 1.480]). ‘Possible’ within category 

mismatches showed larger target dissimilarity effects than the distortion condition (see non-

overlapping CIs), and were numerically larger than ‘impossible’ within category mismatches. 

 

LPC (Late) 

 

There was a significant interaction of condition x visual distance (𝜒!! = 15.92, p < .001), but the 

condition x response x visual distance interaction did not reach significance (𝜒!! = 4.56, p = 

.103); we still report each condition by response contrast separately for consistency. Visual 

distance to target effects were significant in the distortion condition, and on within category 

violation trials that were responded to as ‘possible’ mismatches, but not on other mismatch trials 

(distortion: -6.077 [-7.434, -4.633]; ‘possible’ within category mismatch: -4.119 [-6.358, -1.789]; 

‘impossible’ within category mismatch: -.889 [-3.287, 1.514]; ‘possible’ between category 

mismatch: 2.039 [-6.135, 10.464]; ‘impossible’ between category mismatch: -2.215 [-6.453, 

2.281]). 

 

Summary: Visual distance effects within component time windows and conditions 

 

In summary, we found that visual distance to target effects are generally apparent in both the 

distortion and within category mismatch conditions, but more often did not reach significance in 

the between category mismatch conditions, despite trending in the same numeric direction. We 

also found that within category mismatches generally showed larger effects of visual distance to 

match when they were responded to as being ‘possible’ (vs. ‘impossible’) scene-object pairs, 

particularly on the N300 and N400 components. On the N400 and early LPC components, 
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‘possible’ within category mismatches showed even larger effects of visual distance than the 

distortion condition.  

 

Additional Control Analyses: Object Prototypicality 

 

We also tested whether visual distance to target effects could be explained by a partial confound 

with object prototypicality. Objects that were closer in visual distance to the target also tended to 

be closer to their own category prototype (r = .155). We found that visual distance to target 

effects were more robust than and could not be explained away by (cue-independent) 

prototypicality effects, although both effects tended in the same numeric direction (see Appendix 

C for detailed results). Finally, we tested whether the presented object is visually compared to 

the target object prototype, vs. the target object exemplar, for each ERP component (see 

Appendix D). We found that exemplar-specific visual information about the target object is 

brought online and compared to the presented object, as evidenced by sensitivity to the degree of 

mismatch between the current object and the target exemplar, even when mismatch between the 

current object and the target prototype is accounted for, during the N300, N400 and LPC time 

windows. 

 

Discussion 

 

Although prior research has indicated that scenes can prime the visual form of associated objects 

(Bar, 2004; Brandman & Peelen, 2017; Truman & Mudrik, 2018), most studies have relied on 

natural statistical associations that may be learned over many years. We tested whether scene-

object visual form priming extends to recently learned scene-object associations (< 2 hours), 

using a set of categorically organized novel objects in an explicit paired association memory 

task. We examined two EEG measures of form-based priming: the N300 (comparing match and 

mismatch trials in the test phase) and target similarity effects (within mismatch trials, regressing 

a continuous measure of visual similarity to the contextually associated, but not presented, 

object). In both cases, results suggest that scenes can indeed prime the visual form of even 

recently associated objects. 
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Behaviorally, participants were able to successfully associate novel objects and scenes, 

and in a later offline post-test they demonstrated explicit knowledge of the higher category-level 

pairing between object types and scene types (which persisted throughout the experiment but 

which they were never explicitly informed of). A priori component-based and data-driven 

cluster-based analyses converged to reveal an N300 facilitation (reduced negativity beginning 

around 200-250 ms, with a frontal scalp distribution) to objects matching their associated scenes, 

relative to mismatches, in the test phase. Both matching objects and close distortions elicited a 

more positive waveform than objects that mismatched the scene type. Objects that mismatched 

the specific scene, but which were congruent with its higher-level category (beach, mountain, 

etc.), showed an intermediate level of facilitation in the N300 time-window, particularly at 

central sites. This may reflect overlapping generators with the subsequent N400, which also 

showed more facilitation for within- than between-category mismatches, and which is generally 

known to differentiate near and distant semantic violations (Federmeier & Kutas, 1999, 2001).	

Although the N300 and N400 effects we observe overlap, the early part of the effect is 

temporally and topologically more aligned with an N300 than an N400. Given prior work linking 

the N300 specifically to visual form-based priming (Hamm, Johnson, & Kirk, 2002; Kovalenko, 

Chaumon, & Busch, 2012), these results suggest that scenes may enhance accessibility of the 

visual form of even recently associated objects, at least when heightened accessibility is useful to 

the task at hand. 

In a second set of analyses, we focused on distortion and mismatch trials. We revealed a 

novel effect: an enduring sensitivity across the ERP waveform to (low-level) visual similarity to 

the target (contextually congruent) item, onsetting at roughly 200 ms. The more visually similar 

the presented object was to the contextually congruent object, the more positive the waveform, 

across the N300, N400, and LPC time windows. This effect was not simply driven by degree of 

match at the category-level: it was apparent on an item-level basis within the distortion 

condition, holding category identity constant. Attesting to the effect’s reliability, it was 

separately observed in the within-category mismatch condition, and there was a numeric trend in 

the same direction for between-category mismatches. Given the extended timing of the effect, we 

believe it at least partially reflects a template matching process (Mostert, Kok, & De Lange, 

2015; Kok, Failing, & de Lange, 2014; Kok, Mostert, & De Lange, 2017; Summerfield et al., 

2006; Summerfield & De Lange, 2014), in which the current object is visually compared to a 
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memory template of the target object, evoked by the context scene. We differentiate “template 

matching,” which may reflect a task-specific perceptual decision-making process in which a 

single memory representation (that of the template) is prioritized for comparison, from the 

generic perceptual matching processes that occur in order for an object to be recognized. 

Although early sensitivity to target similarity may partly reflect visual form priming itself, later 

sensitivity is more likely to reflect the formation of a perceptual judgment (Mostert, Kok, & De 

Lange, 2015). Interestingly, in the LPC time window at central and posterior sites, target 

similarity effects had the opposite polarity of differences due to mismatch type (that is, more 

severe category violations were more positive). This suggests distinct temporally overlapping 

processes of visual comparison and rule-based decision-making, in keeping with findings that the 

LPC is sensitive to both perceptual analysis and decision-related processing (e.g. Falkenstein, 

Hohnsbein, & Hoormann, 1994; Schendan & Kutas, 2002, 2003). Regardless of whether early 

sensitivity to target similarity is ultimately better explained as direct visual form priming of the 

current object, or as an index of decision-related processing, it corroborates early availability of 

the memory template of the target object, making visual form priming at 200-350 ms of the 

presented object more plausible given that sensitivity to even low-level visual feature similarity 

is apparent at the same time.  

Furthermore, comparing effects of visual similarity to the target exemplar vs. the target 

prototype speaks to the types of strategies participants may have used to complete our task. 

Hypothetically, participants could have remembered only the abstract/amodal conceptual object 

category that was paired with the scene and simply assessed whether the presented object 

belonged to the appropriate category. Thus, they could have brought online only a coarse visual 

representation of the target category (e.g. a prototype schematic) without finer visual details of 

the target object exemplar. However, sensitivity to target similarity goes beyond what would be 

expected if each image were compared to a prototype; rather, exemplar-specific details of the 

target image are compared to the current image, beginning as early as the N300 time window. 

Even when it was not necessary for the task at hand, participants brought online a fine-grained 

memory representation of the contextually associated target that included exemplar-level visual 

information that could be dissociated from the target prototype using gabor filters. Although we 

only report visual distance effects using a single feature space, future work could compare 

multiple measures of target similarity (e.g. shape-based, frequency-based, abstract/semantic) to 
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more fully probe the nature of the target object memory representation brought online in 

response to scene contexts. 

Our results also suggest that task-relevant category-level information may modulate the 

visual matching process or the extent to which it is engaged. The effect of visual similarity to 

target tended to be larger in magnitude for distortions and within-category mismatches than for 

between-category mismatches. Also, within-category mismatches that were reported as being 

incongruent but able to “go with the scene” elicited a stronger visual similarity effect than those 

reported as mismatching the scene type. Indeed, ‘possible’ within category mismatches showed 

even larger effects of visual distance than distortions on the N400 and early LPC. These 

interactions may be partially driven by changes in the range of visual distance to target across 

match conditions and responses. For example, matching processes may be the most evident when 

the presented image is distinct enough from the target for the difference to be detectable, but not 

so different that there is little representational overlap. Nonetheless, given that within and 

between category mismatches had largely overlapping distributions of visual distance in our 

experiment, it may also be that ‘impossible’ mismatches were more likely to be rejected from 

consideration in a top-down / rule-based fashion. To the extent that scene-congruent visual 

objects are more likely than scene-incongruent objects to be matched against a memory template 

for an expected scene-congruent object, this corroborates aspects of Bar's (2004) theory of object 

recognition, which postulates that scenes constrain the object categories that are considered for 

assignment to a visual stimulus. Within this framework, each scene type in our experiment 

served as a ‘context frame’ associated with a subset of the object stimuli. When the presented 

object matched the context frame, the participant considered whether it might also belong to the 

target object category. However, when the presented object mismatched the context frame, this 

matching process was engaged to a lesser extent. Future work should further explore whether the 

target similarity effects observed here are task-specific and if they can be modulated by 

additional factors known to affect anticipatory visual processing. 

Taken together, our results corroborate the hypothesis that recently formed arbitrary 

associations between contextual cues and object representations can facilitate visual object 

recognition via visuo-structural priming (as dissociated from amodal semantic or decision 

boundary-based effects, which may co-occur). Although we used scene-novel object associations 

and an explicit memory task, similar contextual priming effects have been observed using other 
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types of visual sequences, even when contextual associations are unrelated to the task at hand. 

For example, Turk-Browne and colleagues had participants make orthogonal judgments to a 

continuous sequence of faces and places, and found that statistical regularities induce 

hippocampally encoded predictive cuing of upcoming stimuli, and facilitate visual object 

recognition as indexed by behavioral responding (Turk-Browne, Scholl, Johnson, & Chun, 

2010). Kok and colleagues have similarly found expectation-based pre-activation of task-

irrelevant visual features, using cross-modal cuing (Kok et al., 2017). Moreover, some theories 

suggest that top-down effects on perception, implicit statistical learning, and explicit paired 

associate learning may rely on partially overlapping mechanisms (Pearson & Westbrook, 2015). 

To the extent that statistical associations are rapidly implicitly learned and regularly used to 

facilitate processing of anticipated upcoming visual input, our findings may extend to visual 

object processing under the task demands of normal daily life. That is, recent episodic memories 

of the objects present in an environment may lead to visual form priming that facilitates object 

recognition when the environment is reinstated. In turn, populations with short-term memory 

impairments as the result of a disorder or as a function of normal aging may also experience 

disruptions in object recognition relative to healthy young adults. A growing body of literature 

linking the hippocampus and prefrontal cortex, areas particularly susceptible to damage and 

disruption (Anand & Dhikav, 2012; Baars & Gage, 2010; Fabiani, 2012), to visual prediction and 

mismatch detection, underscores this possibility (hippocampus: Chen, Olsen, Preston, Glover, & 

Wagner, 2011; Chen, Cook, & Wagner, 2015; Duncan, Ketz, Inati, & Davachi, 2012; Hindy, Ng, 

& Turk-Browne, 2016; Kok & Turk-Browne, 2018;  frontal cortex: Bar et al., 2006; 

Summerfield et al., 2006; Summerfield & Koechlin, 2008).  

In summary, neural evidence suggests that scenes can prime the visual form of even 

recently associated objects. Gabor-filter based visual features, similar to the empirically inferred 

neural representation in areas V1/V2, are reasonably well correlated with the memory 

representation of the object that is brought online in response to a context scene. Rapid statistical 

learning of object-scene associations could be exploited in future research to more carefully 

control for the strength of contextual associations between objects and scenes. Future work 

should focus on expanding the generalizability of our approach by bridging the gap between 

explicit paired associate learning and implicit statistical learning in the context of daily life. Also, 

the types of similarity analyses we used in the present study could be extended to further refine 
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our understanding of the nature of memory representations of visual objects, by comparing 

multiple measures of visual similarity. Lastly, clinical implications of the current results could be 

verified by comparing behavioral and neural indices of scene-object priming across the lifespan 

and in disordered populations.  
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Table 
 
Table 2.1. Mean number of behaviorally correct and artifact-free trials per subject included for 
each condition and visual distance bin. 
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Figures 

Figure 2.1. Scene and novel object categories. a) Examples of the 6 scene categories used in the 
experiment. b) Prototypical images for the 18 subcategories of germs, grouped into 6 major 
categories. c) Prototypical images for 18 subcategories of machines, grouped into 6 major 
categories. 
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Figure 2.2. Illustration of how exemplars were derived from prototypical images for germs and 
machines. Germs were assumed to have flexible, and machines rigid, bodies. 
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Figure 2.3. Experimental conditions. 
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Figure 2.4. Behavioral results. a) Proportion of responses by condition in the online memory 
task. Participants were reliably sensitive to condition, and responded to distortions similarly to 
the exact match condition, as instructed. b) Confusion matrix of scene-object category 
associations indicated at post-test. Scenes circled by participants were the associated scene 
category for the displayed object 76-90% of the time, demonstrating explicit knowledge of the 
scene – object category mapping. 
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Figure 2.5. Timing and electrode sites used to characterize the components of interest. 
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Figure 2.6. Match vs. mismatch conditions at 12 representative sites (scalp locations indicated at 
bottom right). An additional 15 Hz low pass filter was applied after averaging for display 
purposes. 
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Figure 2.7. Distribution of Euclidean distance to the target object in the V1-like feature space 
across trials, plotted separately for each condition. Match condition is not shown because the 
visual distance was always exactly 0. Red lines indicate the demarcations used in Table 2.1. 
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Figure 2.8. ERP averages by visual distance bin. Distance = 0 indicates the Exact Match 
condition, while higher distances indicate that the presented object was more visually distinct 
from the target object at test. Only behaviorally correct and artifact free trials included. An 
additional 5 Hz low pass filter was applied prior to plotting. Sites used to generate each plot are 
indicated at bottom left. 
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Figure 2.9. Estimated effect of visual similarity to target by component and match condition. 
Higher distances indicate that the presented object was more visually distinct from the target 
object at test. Visual distance generally impacted the ERP waveform similarly across the 
Distortion, Within-Category Mismatch, and Between-Category Mismatch conditions, in that the 
waveform was more positive the more visually similar the presented object was to the target. 
Only behaviorally correct and artifact free trials included; points aggregated across subjects by 
visual distance rounded to the nearest 100; points containing fewer than 10 trials were dropped. 
Linear trends were derived from a linear mixed effects model including the interaction between 
visual distance and condition. Highlighting indicates 95% bootstrap confidence intervals on 
linear trends (2000 iterations). 
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CHAPTER 3: PRIOR EXPOSURE TO SCENE CONTEXT FACILITATES HIGHER 
LEVEL VISUAL PROCESSING OF RECENTLY ASSOCIATED OBJECTS 

 

Abstract 

 
Visual object recognition and categorization is facilitated by contextual congruency with the 

surrounding scene. However, the precise mechanisms involved remain unclear. Building on prior 

work showing that previewing a scene can facilitate processing of associated objects even at the 

level of visual analysis (Chapter 2), we here asked to what extent such facilitation is dependent 

on viewing time. Across two ERP studies (N=60), we had participants study categorically 

organized novel object-scene pairs in an explicit paired associate learning task. At test, we varied 

contextual pre-exposure duration, both between (200 ms vs. 2500 ms) and within subjects (0-

2500 ms). We found that amplitude reductions on the N300, an event-related potential 

component linked to the processing of object structure, are enhanced for scene-congruent objects 

with longer scene previews, up to approximately one second of preview time. Similar results 

were obtained in a separate component-neutral analysis of mismatch trials using visual similarity 

between the target (contextually congruent) and presented objects as a covariate. Results are 

consistent with a predictive pre-activation account of scene-object facilitation. 

 

Key Words: visual object recognition; N300; contextual priming; paired associate learning; 

statistical learning 

 
Introduction 

 
Visual object processing is facilitated when objects are embedded in supportive (vs. incongruent) 

scene contexts. For example, in prior work (Chapter 2) we demonstrated that visual processing of 

even newly-associated objects is facilitated by the prior presentation of contextually congruent 

scenes, consistent with views suggesting an important role for predictive processing in the brain 

(Friston, 2005; Rao & Ballard, 1999; Mumford, 1992). However, it remains unclear the extent to 

which such contextual facilitation effects develop over time, and if so, what that time course is 

like. The current study addresses this line of inquiry by manipulating the amount of time that 

participants have to view a scene context, prior to presentation of a probe object. If the amount of 
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contextual pre-exposure time impacts later processing of the probe object, this suggests that 

participants are indeed doing something while they are looking only at the scene context that is 

facilitating subsequent processing of the object. Thus, rather than assuming that prediction is 

taking place, we are testing a necessary corollary of the predictive pre-activation account of 

contextual facilitation for visual object processing. Moreover, by measuring the brain’s 

electrophysiological response to the object using event related potentials (ERPs), while 

manipulating the object’s degree of match to the most statistically likely, contextually congruent 

object, we can form a clearer understanding of the types of information that are facilitated by 

contextual pre-exposure under various timing constraints. In particular, the N300 response can be 

used as an index of the extent to which the visual form of the object has been primed by the 

preceding scene context. Similarly, sensitivity of the N300 to timing constraints on prediction 

can be used to inform our understanding of how timing impacts the level of detail that context-

informed predictions may assume in the service of visual object processing. 

 

Congruent Contexts Facilitate Visual Object Understanding 

 

 Visual object recognition and categorization is facilitated by congruent scene contexts. 

More specifically, visual object categorization judgments for ambiguous or degraded stimuli are 

strongly influenced by the surrounding context (e.g., Palmer, 1975; Bar & Ullman, 1996; 

Freeman et al., 2015; Barenholtz, 2014; Davenport & Potter, 2004; Brandman & Peelen, 2017). 

Davenport and Potter (2004), for example, demonstrated that the identification of foreground 

objects in briefly presented (and backward masked) photographs was facilitated when they were 

thematically associated with the simultaneously presented background. For instance, a priest 

would be more likely to be correctly identified on a church background than on a football field 

background. Not only do identification judgments become more accurate (e.g., Palmer, 1975; 

Davenport & Potter, 2004; Davenport, 2007; Auckland, Cave, & Donnelly, 2007) but response 

times in categorization and identification tasks are generally reduced given a facilitating visual 

context, when compared with an incongruent, equally cluttered context (identification: e.g., 

Ganis & Kutas, 2003; Gronau, Neta, & Bar, 2008; categorization: e.g., Joubert, Fize, Rousselet, 

& Fabre-Thorpe, 2008; Sun, Simon-Dack, Gordon, & Teder, 2011). Ganis and Kutas (2003), for 

example, used a two-stage response paradigm in which participants hit a button as soon as they 
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felt they could identify an object, then typed their identification response. Response times for the 

initial button press were faster for objects that were superimposed on congruent contexts after a 

short (300 ms) delay, when compared to incongruent contexts. Along a similar vein, Barenholtz 

(2014), using a paradigm in which objects embedded in scenes were presented at successively 

less severe levels of visual degradation until identification, found that objects could be identified 

at a higher level of visual degradation when they were associated with a congruent visual 

context. The question of which specific processing stages are facilitated by contextual 

congruency is still under debate, with some advancing the hypothesis that even early visual 

processing stages are contextually facilitated (e.g., Bar, 2003; Kok, Failing, & de Lange, 2014), 

and others suggesting that context effects may only come into play at a later deliberative stage 

that is not tightly yoked to perceptual processing (e.g., Henderson & Hollingworth, 1999; 

Firestone & Scholl, 2016). 

 

Neurophysiological Indices of Visual Object Processing Shed Light on the Nature of Contextual 

Facilitation 

 

Neural evidence suggests that scene-object priming is at least partially visuo-structural in 

nature. That is, it goes beyond amodal semantic priming, and includes priming of information, 

such as global shape, which is specific to the visual modality. One particularly relevant source of 

evidence for this comes from the event-related potential (ERP) component known as the N300, 

and related fMRI studies using manipulations known to induce N300 effects. The N300 (also 

known as the N350, Ncl or N3 complex) is a negative-going waveform peaking between 200-

400 ms at fronto-central sites, which is sensitive to several manipulations relevant to visual 

object understanding and might be described at a cognitive level as reflecting a fairly high-level 

processing stage in visual object recognition and categorization. One prominent neurocognitive 

model (the multistate interactive or MUSI account2; Schendan & Ganis, 2012; 2015) has 

specifically linked the N300 response to the dynamic interaction between fronto-parietal control 

networks and more modally selective occipito-temporal networks involved in higher level visual 

processing. The sensitivity profile of the N300 supports a tight link to higher level visual 

																																																								
2	An	earlier	form	of	this	theory	was	known	as	the	two-state	interactive	account	of	visual	object	cognition	
(Schendan	&	Kutas,	2007).	



	 49	

processing. For example, N300 amplitude is sensitive to the noise level at which a visually 

degraded object is recognized (Doniger et al., 2000; Schendan & Kutas, 2002), to noncanonical 

viewpoint accommodation using semantically rich stimuli (Schendan & Kutas, 2003; McPherson 

& Holcomb, 1999), and to the degree of rotational discrepancy between abstract object images in 

a mental rotation task (Schendan & Lucia, 2009). Objects that are more difficult to recognize 

tend to elicit larger amplitude N300’s, as is evident in all of the tasks just mentioned, as well as 

in contrasts between pseudo-objects and real objects or scrambled versus intact objects 

(Holcomb & McPherson, 1994; McPherson & Holcomb, 1999; Schendan & Lucia, 2010; 

Schendan & Ganis, 2015). The N300 also shows selective sensitivity to form-based visual 

priming, in attempts to differentiate it from multimodal semantic priming indexed by the later 

peaking and more centro-parietal (but often co-modulated) N400 response (Hamm, Johnson, & 

Kirk, 2002; Kovalenko, Chaumon, & Busch, 2012). Attempts at ERP source localization and 

parallel studies using fMRI have suggested that the N300 response is likely localized to 

extrastriate occipito-temporal cortex (possibly including the Lateral Occipital Complex, or LOC, 

which encodes higher level form information for visual objects), but reflects feedback 

connections from a fronto-parietal control network that only comes into play after roughly 200 

ms post stimulus onset (reviewed in Schendan & Ganis, 2015).  

Of particular relevance to the current study, N300 amplitude is also modulated by the 

congruity of a visual object with its context, and is reduced by the copresence of a related visual 

scene (e.g., object-object priming: Barrett & Rugg, 1990; McPherson & Holcomb, 1999; scene-

object priming: Võ & Wolfe, 2013; Mudrik, Lamy, & Deouell, 2010; Mudrik, Shalgi, Lamy, & 

Deouell, 2014; Truman & Mudrik, 2018). This is important, because it suggests that contextual 

priming of objects by scenes goes beyond amodal semantic priming, and extends to modality 

specific priming of the visual form of the anticipated object. However, most studies of N300 

priming have relied on preexisting scene-object associations present in the natural world. We 

previously tested whether visual form priming of the N300 extends to novel associations 

between objects and scenes, validating that the learning paradigm used in the current study, 

which has benefits for controlling lower-level visual properties of the stimuli, can reproduce 

N300 visual form priming of objects by scenes (Chapter 2). Participants studied multiple pairs of 

novel objects and natural scenes and, in a subsequent test period, were required to judge whether 

an object superimposed on a scene was the same object originally studied with that scene. 
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Importantly, because we used novel objects with no preexisting associations to the scenes, we 

were able to perfectly counterbalance the visual statistical properties of contextually associated 

and unassociated objects. We found that participants are able to rapidly associate novel object 

and scene categories. Moreover, when scene contexts are presented 2500 ms prior to the onset of 

a matching or mismatching novel object, N300 scene congruity effects can be elicited in 

response to the object – effects that are qualitatively similar to those found using natural, pre-

existing statistical associations between objects and scenes. We further showed that effects 

beginning at approximately 200 ms showed a graded sensitivity to visual similarity between the 

presented and target (congruent) object (more similar objects eliciting more positive responses), 

which provides component-neutral evidence that, with an extended scene preview, the visual 

form of the target novel object is primed by the scene in our paradigm 

We care not only what stages of processing can be aided by contextual facilitation, but 

also about the timing properties of these effects. Timing is of interest because it constrains 

hypotheses regarding the types of scene information used to inform object understanding, and 

also the degree to which contextual facilitation effects are attentionally-mediated and subject to 

strategic control. For example, contextual facilitation of visual form could be an automatic 

process relying solely on information that can be rapidly extracted from a scene. Alternatively, it 

could reflect a more temporally extended predictive process. A temporally extended process 

would open up the possibility that object processing is additionally influenced by scene 

properties that take longer to extract. It also support the hypothesis that features of the upcoming 

contextually congruent object are predictively preactivated in an attentionally-mediated fashion, 

which could in turn be more subject to strategic control. Some contextual facilitation effects do 

indeed require time to unfold. In the domain of language comprehension, for example, time must 

elapse following contextual exposure in order to observe certain kinds of contextual benefits. For 

instance, the order of words in a sentence can greatly change the meaning of the sentence (e.g., 

“the cop arrested the thief” vs. “the thief arrested the cop”), but it can take a second or longer to 

use word order information to inform predictions regarding upcoming words in a sentence 

(Chow, Lau, Wang, & Phillips, 2018). Similarly, the stimulus onset asynchrony (SOA) of words 

in sentences presented using rapid serial visual presentation (RSVP) has been shown to affect 

predictive processing, with shorter SOAs associated with diminished predictive effects (Wlotko 

& Federmeier, 2015). Specifically, priming of contextually incongruent words that were 



	 51	

semantically related to the expected word was diminished for 250 ms SOAs compared to 500 ms 

SOAs3. In the domain of scene-object priming, the extent to which pre-exposure time constrains 

the extent and nature of the contextual benefit for object processing remains an open area of 

inquiry, motivating the current study. 

 

Mixed Interpretations of the Processing Stages Impacted by Scene-Object Priming 

 

 The ERP literature on scene-object priming has revealed that scenes prime objects to 

some extent with both successive/delayed and simultaneous presentation, although precise 

latency estimates and component-based interpretations (as reflecting an N300 or N400 effect, or 

some combination thereof, in addition to later LPC or slow-wave effects, which are often co-

present) have varied across studies. Võ and Wolfe (2013) had participants judge whether scene-

object pairs had been presented previously (which was true only of filler trials). They first 

presented the scene alone for 500 ms, then superimposed a cue to the target object location for 

approximately an additional 500 ms,. They then removed the location cue and in its place 

superimposed on the scene a semantically congruent object, a semantically incongruent object 

that was visually similar to the expected object and obeyed the laws of physics, or a semantically 

congruent or incongruent object in an unexpected or improbable location given the scene. Võ 

and Wolfe separately reported N300 and N400 effects of semantic congruency, time-locked to 

object onset. Specifically, they found a broadly distributed congruency effect between 250-600 

ms, such that scene-congruent objects elicited a more positive waveform than incongruent 

objects. The effect appeared topographically similar across early and late time-windows of 

analysis (250-350 ms, and 350-600 ms). ,Ganis and Kutas (2003), however, used a similar 

paradigm which also employed a contextual preview prior to object onset, but interpreted their 

results as supporting scene-object N400 priming in the absence of N300 priming. Ganis and 

Kutas (2003) first cued participants as to where an object would appear, then displayed a context 

scene by itself for 300 ms, before superimposing congruent and incongruent objects at the cued 

location. For example, either a soccer ball or a toilet paper roll might appear on top of a soccer 

field. Participants were asked to identify the object that appeared. Ganis and Kutas found what 
																																																								
3	Interestingly, effects of SOA interacted with block order, in that participants showed a more similar pattern across 
presentation rates if they initially viewed sentences at the slower rate, before speeding up, consistent with a practice 
effect that carried over to facilitate rapid RSVP sentence comprehension.	
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they interpreted as an anterior N400 congruency modulation between 250-500 ms, and further 

suggested that the absence of a clear N300 effect, as distinct from the N400, better supported the 

hypothesis that scenes prime objects at a semantic/conceptual level, rather than priming their 

visual form.  

 Another line of work has explored the role that advance pre-exposure to the context scene 

might play in driving scene-object congruency effects, using simultaneous presentation of scenes 

containing objects that semantically match or mismatch the scene (e.g., Demiral, Malcolm, & 

Henderson, 2012; Mudrik, Lamy, & Deouell, 2010; Mudrik, Shalgi, Lamy, & Deouell, 2014; 

Truman & Mudrik, 2018). Of these studies, only one has employed a between subjects 

manipulation of scene preview duration (Demiral et al., 2012), while the others made inferences 

based on the pattern of effects for simultaneous scene-object presentation alone. Unfortunately, 

Demiral et al. (2012) has some design features that make its results difficult to interpret. 

Specifically, it repeated the scene contexts within subjects, presenting them on one trial with a 

congruent and, on another trial, an incongruent object. This introduces a memory confound, if 

the incongruent object/scene pairs are more memorable than the congruent ones, leading to better 

memory for the scene context. Indeed, in their first experiment, where scenes were presented 300 

ms prior to objects, they found uncharacteristically early effects of object-scene congruency 

(onsetting < 50 ms post object onset4) that could be explained by a reduced N400 (and possibly 

N300) to the scene, when the current scene was congruent with the object, meaning that in an 

earlier presentation it was incongruent with the object (and therefore, the scene is better 

remembered and the repetition effect is larger). In their second experiment, where scenes and 

objects were presented simultaneously, there does appear to be a delay in the onset of classical 

scene-object priming effects, consistent with an account in which visual form-based priming is 

more likely to appear when the scene precedes the object. However, if the N400 response (and 

potentially also the N300 response) to congruent scenes is again reduced due to enhanced 

repetition priming as discussed above, we would now have two competing effects: larger N300-

N400’s to congruent scenes, and smaller N300-N400’s to congruent objects. For this reason, it is 

very difficult to interpret the pattern of congruency effects for simultaneous scene-object 

presentation in this study. 
																																																								
4	It	takes	roughly	50	ms	for	visual	information	to	make	first	contact	with	primary	visual	cortex	in	humans	
(Hillyard	&	Anllo-Vento,	1998),	and	the	filter	settings	applied	to	EEG	data	in	Demiral	et	al.	are	mild	(.1-80	Hz	
half-amplitude	cut-off)	and	are	unlikely	to	explain	this	discrepancy.	
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 Mudrik and colleagues examined scene-object congruency effects using simultaneous 

scene-object presentation, without the above repetition confound, in a series of experiments 

wherein similarly shaped but contextually incongruent objects were artificially inserted in place 

of congruent objects in natural photographs (Mudrik, Lamy, & Deouell, 2010; Mudrik, Shalgi, 

Lamy, & Deouell, 2014; Truman & Mudrik, 2018). Mudrik, Lamy, and Deouell (2010) had 

participants judge whether a cued object in each photograph was being manipulated with zero, 

one or both hands by people in the image. Critically, on half the trials, the original object in the 

cued position was digitally replaced with a semantically incongruent object. The incongruent 

object roughly matched the shape of the original object on some trials, but the degree of match 

varied across stimuli; for example, an arrow might be replaced by a tennis racket, a basketball 

with a watermelon, etc. An attempt was made to control for lower level visual properties of the 

congruent and incongruent images, including spatial frequency, contrast, and chromaticity. 

Similar to scene-object priming paradigms including a delay between scene and object onset, 

Mudrik et al. (2010) found that contextually incongruent objects elicited a more negative 

waveform over anterior sites between roughly 270-650 ms (although cluster analysis results 

suggest an even earlier onset at some electrode sites). This basic finding has since been 

replicated twice on different sets of participants using subsets of these stimuli (Mudrik et al., 

2014; Truman & Mudrik, 2018).  

Mudrik and colleagues interpret their results as suggesting that N300 congruency effects 

can be elicited even with simultaneous scene and object presentation. Importantly, however, only 

the incongruent images were photo-manipulated, and, by the nature of the design, the stimuli 

could not be counterbalanced across conditions. Truman and Mudrik (2018) compared the onset 

latency of two ERP contrast effects within subjects: scrambledversus intact objects and 

congruent versus incongruent objects. They found very similar onset latencies for these two 

effects (240 ms for scrambled versus intact, 260 ms for congruent versus incongruent). Notably, 

however, scrambled objects were presented within intact scenes and still shared the same rough 

shape as the original intact (congruent and incongruent) objects, making them somewhat 

identifiable from context. Overall, Mudrik and colleagues have demonstrated that at least some 

kinds of contextual congruity effects can include N300 modulations, even with simultaneous 

presentation of the object and scene. Quite possibly, though, these effects may rely on gradual 

statistical learning of object-context associations that may not extend to novel object stimuli. 
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Mudrik and colleagues’ findings also do not rule out the possibility that additional, more 

temporally extended processing may further refine and enhance contextual priming effects, 

including priming of an object’s visual form. In the current study, we will build on our prior 

work, extending the paradigm used in Experiment 2.1 to observe how visual form priming 

interacts with timing constraints on contextual pre-exposure. 

 

Testing and Refining the Predictive Pre-activation Hypothesis of Context Effects in Visual Object 

Understanding 

 

In the current study, we report two experiments designed to assess the extent to which the 

contextual facilitation effects we observed previously are contingent on having sufficient pre-

exposure time to the context scene. Participants studied novel object-scene pairs in a paired-

associate learning study. In Chapter 2 (Experiment 2.1), scenes had been presented 2500 ms 

prior to objects in the test phase, allowing ample time for temporally extended predictive 

processing. Here, in our first experiment (Experiment 3.1), we shortened contextual pre-exposure 

time from 2500 ms to 200 ms, leaving participants with enough time to rapidly extract the gist of 

the scene (reviewed in Larson, Freeman, Ringer, & Loschky, 2014) prior to object onset, but 

potentially restricting their ability to actively prepare for viewing the upcoming object. Active 

preparation might be limited by imposing time constraints either by limiting the time participants 

have to use (potentially any kind of) information about the scene to form a detailed prediction for 

the upcoming object, or by restricting the nature of the information participants are able to 

extract from the scene in advance (i.e. to a coarser gist, rather than a finer-grained scene 

representation incorporating information derived from higher spatial frequencies). To permit 

statistical inferences regarding the effect of prolonging contextual pre-exposure time on visual 

object processing, we directly compare the results of our first experiment to the dataset in 

Chapter 2. Specifically, we examine the size and timing properties of the scene-object contextual 

match/mismatch effect across the two different pre-exposure times in a between subjects 

comparison. If the N300 match/mismatch effect is larger given a longer pre-exposure time, or if 

shortening the pre-exposure time leads to qualitative and/or quantitative evidence for processing 

delays, this would suggest that participants are in fact using the time that they are observing the 

context in isolation (beyond the first 200 ms) to prepare for the most likely upcoming object at 
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various stages of processing. An interaction with N300 match/mismatch effect size, specifically, 

would support the idea that visuo-structural priming of objects by scenes is contingent, in at least 

some cases, on having sufficient time to process the scene in advance.  

We also examine whether another contextual congruency effect that we observed and 

reported for the first time in Chapter 2 is contingent on having sufficient contextual pre-exposure 

time. Specifically, we previously observed that contextually incongruent objects that are visually 

similar to the target matching object elicit more positive ERP waveforms beginning at roughly 

200 ms. This effect showed finer sensitivity to visual features than what would be expected from 

our broader contextual congruency manipulations alone and suggests that participants evoked a 

visual template of the target scene-congruent object and visually compared the presented object 

to this target. If target similarity effects are diminished or absent with a reduced contextual pre-

exposure time, this would support the hypothesis that they are contingent on having sufficient 

time to process the scene in advance. 

 In our second experiment (Experiment 3.2), we examine this same question of how 

timing constraints affect scene-object priming using a within-subjects design to ensure that 

processing differences contingent on scene preview duration hold within individuals in a single 

experimental session. We also vary scene preview duration (i.e. contextual pre-exposure time) 

continuously between 0 and 2500 ms to better approximate how much contextual pre-exposure 

time is needed to observe visuo-structural priming on the N300 elicited by a contextually 

congruent/incongruent visual object. Unlike Chapter 2 Experiment 2.1 and Experiment 3.1 of 

this paper, we also modified the design to collect response time data in addition to observing the 

electrophysiological response. By observing how response time and ERP component amplitudes 

change as a function of contextual pre-exposure time, we can gain a finer grained understanding 

of how long it takes to extract relevant information from a context scene and apply that 

information towards preparing for the task of determining contextual congruency of a later 

presented object.  

 Thus, in Experiment 3.1, we use a high-powered design to identify context-based effects 

when scene preview time is limited, and directly compare our results to prior work to assess the 

impact of prolonged pre-exposure to a scene context on object understanding. In Experiment 3.2, 

we conduct a within subjects replication and extension of our first experiment that allows us to 

gain a finer grained understanding of how preparatory processing tuned to facilitate processing 
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of upcoming visual objects evolves over time. Across the two experiments, we are able to assess 

how people use contextual information to predict (or otherwise facilitate processing): N300 

modulations and component-neutral visual similarity effects suggest visual form-based priming, 

N400 effects index semantic priming, and late positive complex (LPC) and response time (RT) 

data speak to the decision-making process involved in determining contextual congruity. 

 

Experiment 3.1 

In our first experiment, we replicate the design of Experiment 2.1 but with one critical 

adjustment: scene preview duration in the test phase has now been shortened to 200 ms. By 

directly comparing the current experiment with Experiment 2.1, we can examine whether and 

how participants use extended contextual preview time to prepare to see the target object image 

at test. 

 

Methods 

Participants 

Data are reported from 24 participants (mean age 22, range 18-29; 9 males), all native English 

speaking University of Illinois undergraduates, who were compensated with payment. One 

additional participant was replaced due to excessive trial loss. All participants provided written 

informed consent, according to procedures established by the IRB at the University of Illinois. 

Handedness was assessed using the Edinburgh inventory (Oldfield, 1971). All participants were 

right-handed; mean score: .84, where 1 denotes strongly right-handed and -1, strongly left-

handed. 8 reported having left-handed family members. No participants had major exposure to 

languages other than English prior to the age of 5, and none had a current diagnosis of any 

neurological or psychiatric disorder or brain damage or was using neuroactive drugs. All had 

normal or corrected-to-normal vision for the distances used in the experiment. All participants 

also passed a behavioral criterion for inclusion: they showed significant sensitivity in their 

response distribution to the match/distortion vs. mismatch conditions (Pearson’s Chi Squared 

Statistic, all individual participant p’s < .001). Participants were randomly assigned to one of 24 

experimental lists. 
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Materials 

Overview 

Materials and counterbalancing are described in detail in Chapter 2; however, key points are 

reproduced here. Novel objects resembling either biological organisms (“germs”) or mechanical 

devices (“machines”) were paired with natural scenes. Objects were organized hierarchically 

such that germs and machines could be subdivided into major categories, then subcategories, 

then exemplars (i.e., distortions). At study, each major object category was consistently paired 

with a scene type (e.g. germ category 1 with beaches, germ category 2 with forests) for any given 

participant. In the test phase, participants viewed each scene from the study phase, followed by 

an object that exactly matched what they had studied with that scene, a distortion of that object, 

an object from a different subcategory (that had been associated with that scene type, but not that 

specific scene, at study), or an object from a different major category (that would never have 

appeared on that scene type at study). Across the experiment, all object types were paired with 

all scene types, and objects and scenes were never repeated in the study phase. 

 

Scenes 

Scenes depicted one of 6 categories: beaches, city streets, mountains, forests, highways, and 

offices. Scenes were drawn from a pool of 288 images, 48 per category, that were previously 

normed as being highly representative of their respective scene types and which had been 

rescaled to 800 x 600 pixels (see Torralbo et al., 2013 for norming details).  

 

Objects 

Line drawings of novel object prototypes for biological organisms (“germs”) or mechanical 

devices (“machines”) were created by an artist with the aid of Adobe Photoshop to maintain a 

consistent set of visual textures. Within the two classes of germs and machines, drawings were 

further organized into 6 major categories, each with 3 subcategories. Thus, there were 18 total 

subcategories of germs and machines, respectively, each with a single representative prototype 

image. Major categories shared aspects of their visual structure and texture, as well as 

homologous parts. From each subcategory prototype image, 24 exemplar images were derived by 

changing the relative positions, proportions and orientations of the object parts. Prototype images 
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were never shown to participants. For details on how exemplar images were created, see Chapter 

2. All novel object line drawings were resized to 274 x 274 pixels.  

 

Counterbalancing and Experimental Conditions 

24 experimental lists of stimuli were used, identical to those in Chapter 2, which contains more 

details on counterbalancing. For any given list (and participant), each germ or machine type 

would only ever appear on a single scene category (e.g. “beaches”) at study, and this relationship 

would hold for all 3 subtypes of the object major category. The mapping between object and 

scene categories was then systematically rotated across the 6 sets, so that over the entire 

experiment every object category was associated with every scene category at study. Each list 

consisted of 288 study and 288 test pairs of novel object and scene stimuli. Stimuli within each 

list were organized into 18 blocks of 16 study pairs followed by 16 test pairs. Blocks alternated 

between all germs and all machines; the first block for each list was always germs. The same set 

of 288 unique scenes was used across all lists; scenes were presented exactly once at study and 

once in the corresponding test phase in each list. Test objects were never repeated within a list. 

Within each block, an approximately equal number of pairs involving each scene category and 

object major category were presented at both study and test. All 16 scenes presented at study 

within a block were presented in a different pseudorandom order in the corresponding, and 

immediately following, test phase. In the test phase, 4 of the 16 test trials were assigned to each 

of 4 experimental conditions (See Figure 3.1): 

5. Exact match: test object exactly matched the object paired with the scene at study 

6. Distortion: test object was a different exemplar of the same subtype of object presented 

with the scene at study 

7. Within-category mismatch: test object was a different subtype of object within the same 

major category as the object presented with the scene at study 

8. Between-category mismatch: test object was a different major category of object from 

that presented with the scene at study (and thus, belonged to a category of object that 

would never have been studied with that scene category previously; e.g., an object 

category that had only ever appeared on offices at study, now appearing on a beach at 

test). 
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Half of the between category mismatches in the test phase were created by swapping two object 

subcategories from different major categories that had been presented in the preceding study 

phase. The other half were created by introducing an object category that had not been presented 

in the preceding study phase. Within category mismatches were always created by swapping 

object subcategories within a major category that had been presented in the preceding study 

phase. Other than in the exact match condition, the exact object exemplar presented at test never 

matched that presented in the preceding study phase (i.e. a distortion derived from the same 

object prototype was used). 

Each list contained 72 trials per condition. Across lists, each test object and each scene 

appeared in each of the four experimental conditions an equal number of times. Trial order 

within each block was pseudo-randomized, such that no more than two trials corresponding to 

each condition were presented in a row, and no more than 3 trials mapping on to a ‘same’ 

response (that is, trials in the exact match or distortion conditions) occurred in a row at test. 

Response hand was counterbalanced across lists. 

 

Procedure 

 

Participants passively studied the paired scenes and novel objects and then were tested by 

being asked to indicate, for each in a new set of pairs, whether the object matched the presented 

scene. In each study trial, the scene alone was first presented centrally (2500 ms) on a black 

background, followed by the object superimposed on the scene (2500 ms). In the test phase, the 

scene was again presented alone, this time for a brief interval (200 ms), followed by the object 

superimposed on the scene (2500 ms), after which a blank screen with a question mark appeared, 

prompting the participant’s response. Participants had 3 response options: the object on this 

scene is (1)	the same object that I studied with this scene, (2)	not the same object, but “could 

have gone with” this scene, (3)	not the same object and could not have gone with this scene. 

Participants were told that if the object was only slightly visually distinct from what they 

remembered studying (e.g. had a different body position or proportions), they should still 

respond (1). They were also told that an object and scene ‘could go together’ if they believed that 

pair looked similar to other study items and could hypothetically be presented in an upcoming 

trial of the experiment, even if they knew that they hadn’t studied it. Participants were never told 
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that there was a structured relationship among the object and scene categories. Participants were 

explicitly instructed that each test phase only covered materials studied in the immediately 

preceding study phase and that testing was non-cumulative across blocks. Prior to the main 

experiment, participants were given a practice block of 4 study and 4 test trials.  

During recording, participants were seated 100 cm away from the computer in a 

comfortable chair. The visual angle of the scenes was 13.6° by 9.3° and that of the object images 

was 4.6° by 4.2°. The recording session lasted approximately 90 minutes. Afterwards, for a 

subset of the object images (one from each of the 6 major categories of germs and machines), 

participants indicated which scene categories the object had been associated with during the 

experiment by circling one or more of 6 scene category labels. 

For further details on the procedure, see Chapter 2. The experimental procedure was the 

same as in Chapter 2 Experiment 2.1, except that during the test phase, scenes were presented in 

isolation for 200 ms (not 2500 ms) prior to super-imposing the object on top of the scene. This 

enables a between-subjects comparison across the experiments. 

 

EEG Data Acquisition and Preprocessing 

 

The electroencephalogram (EEG) was recorded from 26 silver/silver-chloride electrodes evenly 

spaced over the scalp. The sites are midline prefrontal (MiPf), left and right medial prefrontal 

(LMPf and RMPf), left and right lateral prefrontal (LLPf and RLPf), left and right medial frontal 

(LMFr and RMFr), left and right mediolateral frontal (LDFr and RDFr), left and right lateral 

frontal (LLFr and RLFr), midline central (MiCe), left and right medial central (LMCe and 

RMCe), left and right mediolateral central (LDCe and RDCe), midline parietal (MiPa), left and 

right mediolateral parietal (LDPa and RDPa), left and right lateral temporal (LLTe and RLTe), 

midline occipital (MiOc), left and right medial occipital (LMOc and RMOc), and left and right 

lateral occipital (LLOc and RLOc). The midline central (MiCe) electrode was placed where the 

“Cz” electrode would appear using the international 10-20 system. Eye movements were 

monitored via a bipolar montage of electrodes on the outer canthus of each eye. Blinks were 

detected by an electrode below the left eye. Impedances were kept below 5 KΩ. Signals were 

amplified with a .02–250 Hz bandpass using a BrainVision amplifier and digitized at 1000 Hz. 

Data were referenced online to the left mastoid and rereferenced offline to the average of the left 
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and right mastoids. Each trial consisted of a 1000 ms epoch preceded by a 200 ms prestimulus 

baseline. Trials contaminated by eye movements, blinks or other recording artifacts were rejected 

offline. Artifact rejection procedures using subject-specific threshold parameters resulted in 

average trial loss of 22.2% for the exact match condition, 21.9% for the distortion condition, 

23.1% for the within-category mismatch condition, and 21.1% for the between category 

mismatch condition. A digital lowpass Butterworth IIR filter with a 30 Hz half-amplitude cut-off 

and 12 dB/octave roll-off was applied prior to statistical analysis. Prior to permutation-based 

cluster analysis, data were further down-sampled to 100 Hz. 

 

Analysis 

Behavioral analyses of response distributions were conducted using logistic regression modeling 

in R. Statistical analyses of individual trial EEG data were conducted using mixed effects models 

built with the lme4 package in R. Models initially included crossed random effects of subject and 

item, and by-subjects random slopes of each predictor of interest, but the random effects 

structure was sometimes scaled back to address convergence issues. EEG dependent measures 

consisted of mean amplitudes over time windows and electrode sites selected to capture 

particular components of interest, and are identical to Chapter 2 to maximize comparability. 

Dependent measures of interest are mean amplitudes at: 250-349 ms over fronto-central sites to 

capture the N300, 350-499 ms over centro-parietal sites for the N400, and 500-699 ms and 700-

899 ms over posterior sites to capture early and late time windows of the Late Positive Complex 

(LPC). Key within-subjects predictors of EEG amplitude included match condition and visual 

similarity to the target object. In a between-subjects analysis combining the current data set with 

that in Chapter 2, we assessed interactions between scene preview time at test (200 ms vs. 2500 

ms) and the effects of match condition and visual similarity to target. We also conducted an 

exploratory time-domain cluster analysis examining effects of match condition in the current 

experiment, results of which are presented in Appendix E. 

 

Results 

Behavioral – Online Accuracy 

As in Chapter 2 Experiment 2.1, participants discriminated well among test objects that matched 

and mismatched the presented scene. Accuracy was computed after collapsing the exact match 
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and distortion conditions (which were treated as a ‘match’) and the two mismatch conditions 

along with the two different mismatch responses (‘possible’ and ‘impossible’). Mean accuracy 

was 80.3%, range 59.7-93.4%. Comparing the current dataset to the dataset in Chapter 2, 

accuracy did not differ from when scene preview was 2500 ms (Welch two-sample t-test, t = .45, 

df = 45.6, p = .67). Participants were also sensitive to the type of mismatch. A logistic regression 

model predicting the probability of response ‘impossible mismatch’ with fixed effect of 

condition (exact match or distortion vs. within category mismatch vs. between category 

mismatch), using subject random intercepts, by-subjects random effects of match condition, and 

nested model comparisons, confirmed sensitivity to mismatch type: intercept = -0.938, β = 2.57, 

SE = .324, z = 7.934, 𝜒!! = 30.92, p < .001. Figure 3.4a shows the mean response distribution 

across subjects for each condition. Distribution of responses was comparable to that seen when 

scene preview was 2500 ms (Chapter 2).  

Participants were numerically more likely to respond to between category mismatches as 

being impossible, compared to Experiment 2.1 (due to convergence issues, a simplified random 

effects structure was used that removed the by subjects random slope for match/distortion vs. 

within/between category mismatch; β = -.76, SE = .405, z = -1.87, 𝜒!! = 3.40, p < .1). There was 

no difference in probability of responding ‘match’ to the exact match and distortion conditions 

across the current experiment and Experiment 2.1 (due to convergence issues, a simplified 

random effects structure was used that removed the by subjects random slope for between 

category mismatch vs. other match conditions; 𝜒!! < 1).  

 

Behavioral – Posttest Categorization 

On the posttest, participants demonstrated explicit knowledge of the categorical mapping among 

objects and scenes. Participants were more likely to indicate that objects were associated with a 

scene category when the two had been paired at study. Figure 3.4b shows the normalized 

confusion matrix indicating the probability that a scene category, if circled, belonged to the 

correct scene category for the depicted object. This was assessed with a logistic regression model 

predicting the probability of circling a scene category, with a fixed effect of match, crossed 

random intercepts for subject, object (response item) and scene (response choice), a by-subjects 

random effect of match, and nested model comparisons: intercept = -4.79, β = 8.16, SE = .869, 

z = 9.388, 𝜒!! = 43.87, p < .001. When results were compared with Experiment 2.1, there were no 
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significant interactions with experiment (probability of circling a scene type was similar for both 

matching and mismatching scene types across experiments, |z|’s < 1). 

 

ERP Analysis: Match Condition 

 

We followed the component-based analysis approach in Chapter 2, important aspects of which 

are reproduced below. We also extended the analysis to directly compare the current dataset with 

that in Chapter 2 (see Figure 3.6 for a visual comparison of mismatch - match ERP difference 

waves across these two studies). Only behaviorally correct (response option 1 = ‘match’ for 

match and distortion and response options 2 = ‘possible mismatch’ or 3 = ‘impossible mismatch’ 

for within and between category mismatches) and artifact free trials were included. Linear mixed 

effects models were fit to the individual trial data, including fixed effects of: 

 

(4) condition (contrasting match, distortion, within, and between category conditions) 

(5) response type (for within and between category mismatch conditions only, since only one 

response type was considered correct for match and distortion conditions); condition (within 

vs. between) was moderately associated with response (‘possible’ vs. ‘impossible’ 

mismatch) in the current experiment; Cramér’s V = .43. 

(6) the interaction between condition and response 

 

Models also included crossed random intercepts of subject, item (object+scene), and channel, 

and by subjects random slopes of condition, response and their interaction. We also compared 

this model to one with an additional fixed effect, which contrasted between category mismatch 

swap trials (generated by swapping the condition of object images that had been presented in the 

immediately preceding study phase) and between category mismatch new trials (generated by 

presenting an object image that had not been presented in the immediately preceding study 

phase). 

All models were fit using maximum likelihood estimation. Fixed effects were initially 

tested using likelihood ratio tests with nested model comparisons. Follow up comparisons of 

condition means were conducted using the contest function in the lmerTest package in R, with 

family-wise error rate corrected p-values and the Satterthwaite approximation for the degrees of 
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freedom. Except where otherwise indicated, condition contrasts collapse across response type 

using linear combinations of beta weights but were conducted on a model that included a fixed 

effect of response type. The distortion condition was included in all models, but, as in 

Experiment 2.1, never differed reliably from the match condition. For ease of reporting, we thus 

describe only contrasts among the exact match and mismatch conditions.  

 

N300 

 

To examine the N300, voltages were separately averaged across time for each trial from 250-349 

ms at each of 16 frontal and central sites. Due to convergence issues, the by-subjects random 

effect of distortion condition was removed. There was a main effect of condition (𝜒!! = 12.95, p 

< .01), which remained when recency was accounted for by including between category 

mismatch swap versus new as a fixed effect (𝜒!! = 9.33, p < .05, random effect of response to 

mismatch trials removed to achieve convergence; accounting for recency improved model fit, 𝜒!! 

= 9.45, p < .01). Follow-up comparisons revealed that between category mismatches were more 

negative than matches (diff = -1.20 µV, F(1,28.7) = 9.2, p < .01). Within category mismatches were 

also numerically more negative than matches (diff = -.93 µV, F(1,23.0) = 3.1, p < .1). Between and 

within category mismatches did not differ from each other (F < 1). Among between category 

mismatches, new trials were more negative than swap trials (diff = -1.03 µV, F(1,3240) = 9.2, p < 

.01). When examined separately, between category mismatch new trials were significantly more 

negative than matches (diff = -1.71 µV, F(1,41.1) =16.0, p < .001), but swap trials were not (F(1,39.9) 

= 2.5, p > .1). There was no main effect of response nor interaction between match condition and 

response among mismatch trials (response: 𝜒!! < 1; response x match condition: 𝜒!! = 2.53, p > 

.1). 

Thus, in the N300 time window there was a more negative response to new items (which 

were only used in the between category mismatch condition) compared to repeated items. There 

was also a tendency for mismatches to be more negative than matches, as in Experiment 2.1, but 

this effect was small and not reliable in the pairwise comparisons. 

 

N400 
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To examine the N400, voltages were separately averaged across time for each trial from 350-499 

ms at 8 central and parietal sites. There was a main effect of condition (𝜒!! =14.15, p < .01), that 

persisted even when recency was accounted for by including between category mismatch swap 

versus new as a fixed effect (𝜒!! = 9.11, p < .05; accounting for recency improved model fit, 𝜒!! = 

6.36, p < .05). Follow-up comparisons revealed that both between and within category 

mismatches were more negative than the match condition (between: diff = -1.66 µV, F(1,26.7)  = 

12.0, p < .01; within: diff = -1.03 µV, F(1,17.6)  = 4.9, p < .05). Between and within category 

mismatches did not significantly differ from each other (F(1,23.5)  = 1.6, p > .1). Among between 

category mismatches, new trials were more negative than swap trials (diff = -.99 µV, F(1,3126)  = 

6.7, p < .01). Both new and swap between category mismatch trials were more negative than 

matches (new: diff = -2.16 µV, F(1,36.2)  = 17.5, p < .001; swap: diff = -1.17 µV, F(1,35.2)  = 5.1, p < 

.05). There was no main effect of response nor interaction between match condition and response 

among mismatch trials (response: 𝜒!! < 1; response x match condition: 𝜒!! = 1.09, p > .1). 

In the N400 time window, there was thus a robust effect of match versus mismatch, as 

well as an effect of recency, replicating the pattern seen in Experiment 2.1.  However, there was 

no significant effect of mismatch type. 

 

LPC 

 

To examine the LPC, voltages were separately averaged across time for each trial from 500-699 

ms (early LPC) and 700-899 ms (late LPC) at each of 8 posterior sites. In the early time window 

there was a main effect of condition (𝜒!! =11.99, p < .01), which persisted even when recency 

was accounted for by including between category mismatch swap versus new as a fixed effect 

(𝜒!! = 10.56, p < .05; accounting for recency did not significantly improve model fit, 𝜒!! < 1). 

Both between and within category mismatches were more negative than matches (between: diff 

= -1.46 µV, F(1,25.9)  = 7.9, p < .01; within: diff = -1.59 µV, F(1,19.5)  = 11.5, p < .01). Between and 

within category mismatches did not significantly differ from each other (F < 1). There was no 

main effect of response nor interaction between condition and response among mismatch trials 

(𝜒!!’s < 1). This pattern differs substantively from that seen in Experiment 2.1, which found only 

an effect of response type and no effects of match condition. 
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 In the late time window, there again was a main effect of match condition  (𝜒!! =10.15, p 

< .05), that persisted even when recency was accounted for by including between category 

mismatch swap versus new as a fixed effect (𝜒!! =9.96, p < .05; accounting for recency did not 

significantly improve model fit, 𝜒!! < 1). Within category mismatches were more negative than 

matches and between category mismatches (within – match, diff = -1.73 µV, F(1,16.7)  = 15.4, p < 

.01; between – within, diff = 2.21 µV, F(1,23.8)  = 20.1, p < .001). Between category mismatches 

did not significantly differ from matches, and were numerically more positive than matches (diff 

= .48 µV, F(1,24.4)  =1.0, p > .1). Experiment 2.1 also found more positive responses to between 

compared with within category mismatches in this time window, although in that case matches 

patterned more like within than like between category mismatches. 

There was no main effect of response nor interaction between condition and response 

among mismatch trials (response: 𝜒!! = 1.52; response x match condition: 𝜒!! = 1.92; p’s > .1). 

Again this differs from Experiment 2.1, which showed a continued effect of response type in the 

late (as in the early) LPC window. 

 

Between-Subjects Comparison: 200 ms vs. 2500 ms Scene Preview 

 

To examine interactions with scene preview time, we directly compared the current experiment 

(200 ms scene preview) with the dataset in Chapter 2 (2500 ms scene preview).  

For the N300, there was a significant interaction between match condition and scene 

preview time (𝜒!! = 13.98, p < .01). The between category mismatch – exact match contrast was 

larger given a longer scene preview (β = -1.12, SE = .55, 𝜒!! =3.94, p < .05). Among mismatch 

trials, there was no significant interaction of scene preview time with response, or response x 

match condition (scene preview x response: 𝜒!! < 1; scene preview x response x match condition: 

𝜒!! = 2.04, p > .1). 

For the N400, there were no significant interactions with scene preview time (scene 

preview x match condition: 𝜒!! = 2.54; scene preview x response: 𝜒!! = 1.90; scene preview x 

response x match condition: 𝜒!! < 1; p’s > .1). 

In the early LPC window, there was a significant interaction between match condition 

and scene preview time (𝜒!! = 11.93, p < .01). Given a long preview time, there was no reliable 

effect of match condition, with the within and between category mismatch conditions 
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numerically more positive than the exact match condition. With a short preview, the within and 

between category mismatches were significantly more negative than the exact match condition. 

Thus, the [within category mismatch – exact match] and [between category mismatch – exact 

match] contrasts were significantly more positive given a long scene preview, (scene preview x 

(within – exact): β = 3.27, SE = 1.03, 𝜒!! = 9.04, p < .01; scene preview x (between – exact): β = 

2.29, SE = .76, 𝜒!! = 8.24, p < .01). There was also a significant interaction between scene 

preview time and response, reflecting that ‘possible’ mismatch responses elicited a more 

negative waveform than ‘impossible’ responses with long scene previews, but not short scene 

previews (β = -2.84, SE = 1.34, 𝜒!! = 4.34, p < .05). 

In the late LPC time window, there was no significant interaction between scene preview 

time and match condition (𝜒!! = 5.54, p > .1). There was, however, a significant interaction 

between scene preview time and response, again reflecting that ‘possible’ mismatch responses 

elicited a more negative waveform than ‘impossible’ responses with long scene previews, but not 

short scene previews (β =-3.47, SE = 1.54, 𝜒!! = 4.88, p < .05). 

 

ERP Analysis: Target Similarity 

 

Following Chapter 2, we also conducted a separate set of analyses in order to assess whether 

low-level visual features of the scene-congruent object were accessed in memory even when it 

was not displayed. We added an additional fixed effect to our match condition analysis models: 

visual distance from the target object. We then tested whether this predictor improved model fit 

using nested model comparisons. Models did not distinguish among the two types of between 

category violations (new vs. swap). The same random effects structure was used as for modeling 

the effects of match condition. Visual distance was computed as Euclidean distance between the 

presented and scene-congruent object in a V1-like feature space derived from the model in Pinto, 

Cox, and DiCarlo (2008). Chapter 2 provides more details. Beta values are reported as 1000 

times the original estimates. 

 There was a significant interaction between experiment (2500 ms vs. 200 ms scene 

preview time) and the effect of visual similarity to target, for all components of interest (N300: β 

= -2.255, SE = .426, 𝜒!! =27.96, p < .001; N400: β = -4.124, SE = .602, 𝜒!! = 46.83, p < .001; 

early LPC: β = -3.926, SE = .599, 𝜒!! =42.94, p < .001; late LPC: β = -3.265, SE = .627, 𝜒!! 
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=27.06, p < .001). Given a 2500 ms scene preview, the waveform was more positive for objects 

more similar to the target across all four components, but given a 200 ms scene preview (the 

current experiment), the effect was smaller, absent, or, for the early LPC, there was a significant 

effect that tended in the opposite direction (N300, β = -1.509, SE = .485, 𝜒!! = 9.67, p < .01; 

N400 and late LPC: 𝜒!!’s < 1; early LPC: β = 1.399, SE = .631, 𝜒!! = 4.90, p < .05). 

 

Discussion 

 

With a short preview time, match effects were weak in the N300 window, emerging 

robustly in the N400 time window (with more negative responses to mismatch than to match 

trials) and continuing into the early LPC time window.  On the late LPC, within category 

mismatches were more negative than both matches and between category mismatches. There 

were no interactions with response on any of the four components.  

When directly compared with Experiment 2.1, 2500 ms scene previews were found to 

elicit larger N300 mismatch effects at the test object than 200 ms scene previews. N400 match 

effect size did not differ across short and long preview times. Having a short (200 ms) scene 

preview also led to the emergence of match effects (of a similar form to those seen for the N400) 

in the early LPC time window. The combined pattern of smaller mismatch effects at an early 

point in time, and larger ones at a later point in time, suggests a delay in the timing with which 

the brain appreciates the match/mismatch distinction when the participant is given less time to 

process the scene context prior to viewing the test object. In addition, the early and late LPC 

were sensitive to the participant’s response choice independent of condition only when a long 

preview time was given. This may partially reflect the tighter correlation between mismatch type 

and response type in the current experiment, compared with Experiment 2.1 (Cramér’s V = .43 

vs. .27). Alternatively, it is consistent with a delay in response-related processing. 

 The results of the target similarity analysis corroborate the patterns in the match analysis 

in suggesting that short preview times provide less evidence for preparatory processing. With a 

short preview time, effects of target similarity were smaller or absent, suggesting participants 

were less likely to have activated a representation of the target object in response to the scene. 

 

Experiment 3.2 
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In Experiment 3.2, we used a within-subjects parametric design to replicate and extend the 

findings of Experiment 3.1: that N300 match-mismatch effects are enhanced by giving 

participants an extended contextual preview prior to viewing the object at test. By treating scene 

preview duration as a continuous parameter (0-2500 ms), we can 1) estimate how much scene 

preview time is enough to maximize the contextual benefit and 2) explore whether our findings 

extend to a case where there is temporal uncertainty in when the object image will appear 

following the context scene. 

 

Methods 

Participants 

Data are reported from 36 participants (mean age 20, range 18-25; 10 males), all native English 

speaking University of Illinois undergraduates, who were compensated with payment. 3 

additional participants were replaced due to excessive trial loss (1) or poor behavioral 

performance on the online task (2). The criterion for poor behavioral performance was showing 

no significant sensitivity to match condition (Pearson’s Chi-squared test). All participants 

provided written informed consent, according to procedures established by the IRB at the 

University of Illinois. Handedness was assessed using the Edinburgh inventory (Oldfield, 1971). 

All participants were right-handed; mean score: .78, where 1 denotes strongly right-handed and -

1, strongly left-handed. 15 reported having left-handed family members. No participants had 

major exposure to languages other than English prior to the age of 5, and none had a current 

diagnosis of any neurological or psychiatric disorder or brain damage or was using neuroactive 

drugs. All reported normal or corrected-to-normal vision for the distances used in the 

experiment. 

 Participants were randomly assigned to one of 36 experimental lists. 

 

Materials 

Similar materials were used as in Experiment 3.1, with the following changes. 36 lists of 

experimental stimuli (drawing from the same set as in Experiment 3.1) were generated such that 

each list consisted of 16 blocks of study/test trials. Each study and test phase contained 18 

object-scene pairs. Test phase trials were divided evenly into three experimental match 
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conditions: exact match, within category mismatch, and between category mismatch. Unlike in 

Experiment 3.1, all mismatch trials were created by recombining objects and scenes that had 

been presented in the preceding study phase. The same exemplar object images presented in the 

study phase were presented at test. Blocks alternated between germ and machine objects. 

Whether the first block of trials consisted of germs or machines was counterbalanced across 

participants. Test trials were divided evenly into three of the four object match conditions from 

Experiment 3.1: exact match, within category mismatch, and between category mismatch. In 

addition, the amount of time scenes were presented prior to object onset at test (scene preview 

duration) was varied continuously between 0 and 2500 ms, orthogonal to match condition. Test 

trials were pseudorandomized such that no match condition was ever presented more than 3 

times in a row. Furthermore, no object major category or scene type was ever presented more 

than twice in a row at study or test. 

 

Procedure 

The task and procedure were similar to Experiment 3.1, with the following changes. As in 

Experiment 3.1, participants were instructed to respond ‘match’ if they felt that the presented 

object image in the test phase was a distorted version of the image they had studied with that 

scene in the study phase. And, as in Experiment 3.1, a distortion trial was included in the 

practice. However, no distortion trials were presented in the main experiment. Unlike in 

Experiment 3.1, participants were instructed to respond as quickly and accurately as possible as 

soon as the object appeared in each test phase trial. On the object-scene category matching post 

test, all 36 object prototypes were shown and asked to be matched with one or more of 6 scene 

type labels (whereas, in Experiment 3.1 participants responded to only a subset of the objects). 

 

EEG Data Acquisition and Preprocessing 

EEG data acquisition and preprocessing was the same for Experiment 3.1. Artifact rejection 

procedures using subject-specific threshold parameters resulted in average trial loss of 27.0% for 

the exact match condition, 22.0% for the within-category mismatch condition, and 22.4% for the 

between category mismatch condition. 

 

Analysis 
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Effects of match condition and preview time on the brain response and behavior were assessed 

using mixed effects modeling, similar to Experiment 3.1. However, scene preview time at test 

was now treated as a continuous within-subjects predictor. Also, because participants were asked 

to respond immediately in this experiment, the impact of match condition and preview time on 

response time was also assessed. 

 

Results 

Behavioral – Online Accuracy 

Initial behavioral analyses were conducted to screen participants for poor behavioral 

performance. All but two participants included in the study showed significant sensitivity to the 

match vs. mismatch contrast, collapsing across mismatch type and ‘possible’ vs. ‘impossible’ 

mismatch response (Pearson’s Chi-squared test for 2 x 2 contingency table, p’s < .01). The 

remaining two participants were sensitive to between category mismatches vs. other trials, but 

responded similarly to matches and within category mismatches, again collapsing across 

‘possible’ and ‘impossible’ mismatch responses (Pearson’s Chi-squared test for 3 x 2 

contingency table, p’s < .01).  

For subsequent online behavioral analyses, trials were excluded for which no response 

was registered within the first 5000 ms of object onset (37 total trials across the experiment, 

0.36% of the data). Mean accuracy was 76.1%, range 58.5-96.9%. Participants as a group were 

sensitive to the type of mismatch and were more likely to respond that between category 

mismatches were ‘impossible’ than that within category mismatches were ‘impossible’ (intercept 

= -1.742, β = 1.492, SE = .197, z = 7.587, 𝜒!! = 34.12, p < .001). Figure 3.8a shows the mean 

response distribution across subjects for each condition. The probability of responding correctly 

to match trials increased with increasing scene preview duration (β =.161, SE = .069, z = 2.337, 

𝜒!! =5.44, p < .05). However, sensitivity to mismatch type did not improve with increasing scene 

preview (based on two models respectively predicting probability of a ‘possible’ or ‘impossible’ 

mismatch response, examining interactions between scene preview duration and each mismatch 

condition ID variable, |z|’s < 1).  

 

Behavioral – Response Time 
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Linear mixed effects models were fit to test whether log response time was predicted as a 

function of match condition, response, mean centered scene preview duration (in seconds), and 

their interactions. Following the ERP analyses for Experiments 3.1 and 3.2, for all models 

random intercepts of item (scene + object) and subject were included, as well as by-subjects 

random slopes of condition, response, and their interaction. Nested model comparisons were 

used to test individual fixed effects, in a forward model selection procedure. Only behaviorally 

correct trials were examined.  

Within category and between category mismatches were both responded to more slowly 

than exact matches (within – exact: β = .250, SE = .019, 𝜒!! = 62.07, p < .001; between – exact: 

β = .197, SE = .017, 𝜒!! = 54.41, p < .001). ‘Possible’ responses did not differ reliably from 

‘impossible’ responses (𝜒!! = 1.62, p > .1). Within category mismatches were responded to more 

slowly than between category mismatches (β = .053, F(1,89.9)  = 16.56, 𝜒!! = 11.54, p < .001).  

 The more time participants had to preview the context scene prior to test object onset, the 

faster their response times (β = -.096, SE = .006, 𝜒!! = 256.0, p < .001). This was modulated by 

match condition (𝜒!! = 14.51, p < .001). Longer preview times sped up the confirmation of match 

trials more than the rejection of mismatch trials (effect of preview time on match trials: β = -

.129, SE = .011; decrease in preview facilitation for mismatches relative to matches: within 

category, β = .041, SE = .014; between category, β = .051, SE = .014). Within mismatches, 

there was no significant further modulation of the preview facilitation effect by whether a 

‘possible’ or ‘impossible’ response was given (𝜒!! = 2.00, p > .1). Figure 3.8b plots response 

time as a function of scene preview duration and match condition. 

 

Behavioral – Posttest Categorization 

As in Experiment 3.1, participants showed sensitivity to the association between object and 

scene types at study. Figure 3.8c shows the normalized confusion matrix indicating the 

probability that a scene category, if circled, belonged to the correct scene category for the 

depicted object. This was again assessed with a logistic regression model predicting the 

probability of circling a scene category, with a fixed effect of match, crossed random intercepts 

for subject, object (response item) and scene (response choice), a by-subjects random effect of 

match, and nested model comparisons. As in Experiment 3.1, there was a significant effect of 
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matching the correct scene type on the probability of circling a response option (intercept = -

3.45, β = 5.85, SE = .451, z = 12.99, 𝜒!! = 61.55, p < .001). 

 

ERP Analysis: Match by Preparation Time 

We assessed whether the match/mismatch effect would be enhanced by giving the participant 

more preparation time (i.e., a longer scene preview) at test. In contrast with Experiment 3.1, we 

now used a within-subjects design and a continuous measure of scene preview duration. Linear 

mixed effects models predicting mean EEG amplitude were fit to the individual trial data for 

each of the four components of interest used in Experiment 3.1 (targeting the N300, N400, early 

LPC, and late LPC). Models included the following fixed effects: 

 

(1) match condition (contrasting match, within, and between category conditions) 

(2) response type (for within and between category mismatch conditions only); condition 

(within vs. between) was moderately associated with response (‘possible’ vs. ‘impossible’ 

mismatch); Cramér’s V = .22. 

(3) the interaction between match condition and response 

(4) mean centered scene preview duration as a continuous linear predictor, in seconds 

(5) the interaction between match condition and scene preview duration 

(6) the 3-way interaction between match condition, response, and scene preview duration 

  

The same random effects structure was used as for Experiment 3.1, with random intercepts of 

subject, item (scene+object), and channel, and by-subjects random slopes of match condition, 

response, and match condition x response. Our attempt to include a by-subjects random slope of 

scene preview duration led to convergence issues. 

 

All four component models revealed a numeric or significant three-way interaction between 

match condition, response, and scene preview duration (N300: 𝜒!! = 5.57, p < .1; N400: 𝜒!! = 

89.77, p < .001; early LPC: 𝜒!! = 54.11, p < .001; late LPC: 𝜒!! = 39.08, p < .001). Therefore, the 

interaction between scene preview duration and the mismatch – match effect is reported 

separately by mismatch and response type (within vs. between category mismatch type x 

‘possible’ vs. ‘impossible’ response). To aid in interpretation, corresponding mismatch – match 
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effect estimates at the mean scene preview duration are also reported. Because changing scene 

preview duration led to more or less overlap between the scene and object elicited ERPs, we do 

not attempt to interpret the overall effect of scene preview duration. 

 

N300 

At the mean scene preview duration (1264 ms), between category mismatches were more 

negative than exact matches, across response type (‘possible’: diff = -1.21 µV, F(1,38.8)  =4.98, p < 

.05; ‘impossible’: diff = -1.33 µV, F(1,38.2) = 4.62, p < .05). Within category mismatches did not 

differ significantly from between category mismatches (F’s < 1) and were numerically more 

negative than matches for both response types (‘possible’: diff = -.83 µV, F(1,32.2)  =2.58; 

‘impossible’: diff = -.94 µV, F(1,30.0) = 1.90; p’s > .1).  

The mismatch – match effect was larger (more negative) given a longer preview duration, 

for both mismatch types and both response types (‘possible’ within category mismatch: β = -.908 

µV/s, F(1,94771)  = 69.9, p < .001; ‘impossible’ within category mismatch: β = -.781 µV/s, F(1,90640)  

= 24.1, p < .001; ‘possible’ between category mismatch: β = -1.061 µV/s, F(1,5704)  =11.9, p < 

.001; ‘impossible’ between category mismatch: β = -1.416 µV/s, F(1,5747) = 21.0, p < .001).  

The interaction of N300 effect size and scene preview duration is of particular interest in 

the current study. We took advantage of our treatment of scene preview duration as a continuous 

parameter spanning 0-2500 ms, in order to get an approximate estimate of the amount of 

contextual pre-exposure time needed to show a reliable mismatch – match effect on the N300, 

given our design. Thus, we fit a separate mixed effects model predicting N300 amplitude, this 

time treating preview time as an unordered binned predictor with the following factor levels (in 

ms): [0, 500], (500, 1000], (1000, 1500], (1500, 2000], (2000, 2500]. For each preview time bin, 

we then computed the unweighted average of four mismatch – match effects: within category 

‘possible’ response, within category ‘impossible’ response, between category ‘possible’ 

response, between category ‘impossible’ response. By taking the unweighted average, we 

compensated for any fluctuations in the proportions of mismatch type and response type across 

preview time bins. This gross measure of the N300 mismatch – match effect became significant 

and remained so for scene preview durations greater than approximately 1000 ms ([0,500] ms: 

diff = -.56 µV, F < 1; (500,1000] ms: diff = -2.50 µV, F(1,73.3)  = 1.87, p > .1; (1000,1500] ms: 

diff = -4.06 µV, F(1,71.7)  = 4.97, p < .05; (1500,2000] ms: diff = -8.25 µV, F(1,69.6)  = 20.9, p < 
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.001; (2000,2500] ms: diff = -6.01 µV, F(1,XX.X)  = 10.8, p < .01). See Figure 3.10b for a graphical 

illustration. 

 

N400 

At the mean scene preview duration, mismatches were estimated to be more negative 

than exact matches, regardless of mismatch type or response type (‘possible’ within: diff = -1.08 

µV, F(1,32.8)  = 5.38, p < .05; ‘impossible’ within: diff = -2.51 µV, F(1,26.7) =11.5, p < .05; 

‘possible’ between: diff = -1.85 µV, F(1,34.3)  = 6.77, p < .05; ‘impossible’ between: diff = -1.06 

µV, F(1,38.9) =3.29, p < .1). Within and between category mismatches did not differ significantly 

for either response type (‘possible’: F(1,34.3) = 1.52; ‘impossible’: F(1,30.9) = 2.80; p’s > .1).  

As was true for the N300, for the N400 the mismatch – match effect was larger (more 

negative) given a longer preview duration for both mismatch types and both response types 

(‘possible’ within category mismatch: β = -.344 µV/s, F(1,46172)  = 5.23, p < .05; ‘impossible’ 

within category mismatch: β = -2.585 µV/s, F(1,44455)  =137.8, p < .001; ‘possible’ between 

category mismatch: β = -.938 µV/s, F(1,5220)  = 7.07, p < .01; ‘impossible’ between category 

mismatch: β = -1.140 µV/s, F(1,5252)  =10.4, p < .01).  

 

Early LPC 

At the mean scene preview duration, mismatches were generally more negative than matches 

(‘possible’ within: diff = -1.49 µV, F(1,32.3) = 15.7, p < .001; ‘possible’ between: diff = -1.62 µV, 

F(1,39.4) = 6.64, p < .05); ‘impossible’ within: diff = -1.26 µV, F(1,29.1) = 3.52, p < .1). However, 

‘impossible’ between category mismatches were numerically more positive than exact matches 

(diff = .34 µV, F < 1), and significantly more positive than ‘impossible’ within category 

mismatches (diff = 1.60, F(1,36.7) =4.86, p < .05).  

 Effects did not vary by preview time for items that were given a ‘possible’ response 

(‘possible’ within: F(1,45455)  = 1.10; ‘possible’ between: F < 1; p’s > .1). For ‘impossible’ within 

category mismatches, the mismatch – match effect was more negative given longer scene 

preview (β = -1.692 µV/s, F(1,43048)  =59.2, p < .001) and the same pattern was seen numerically 

for ‘impossible’ between category mismatches (β = -.559 µV/s, F(1,5174)  =2.83, p < .1). The effect 

of scene preview on ‘impossible’ within category mismatches was larger than on ‘impossible’ 

between category mismatches (β = 1.133 µV/s, F(1,7811) = 9.21, p < .01). 
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Late LPC 

At the mean scene preview duration, the only significant match effect was that ‘possible’ within 

category mismatches were estimated to be more negative than exact matches (diff = -1.24 µV, 

F(1,33.3)  =10.9, p < .01) and numerically also more negative than ‘possible’ between category 

mismatches (diff = 1.04 µV, F(1,33.7)  =3.52, p < .1). No other condition differed from exact 

matches (‘possible’ between: diff = -.20 µV, F < 1; ‘impossible’ within: diff = -.01 µV, F < 1; 

‘impossible’ between: diff = 1.36 µV, F(1,38.8)  = 3.50, p < .1). 

  ‘Impossible’ mismatch – match contrasts became more negative with increasing scene 

preview time, but not ‘possible’ mismatch – match contrasts (‘impossible’ within: β = -1.009 

µV/s, F(1,45005) = 20.4, p < .001; ‘impossible’ between: β = -.845 µV/s, F(1,5187) = 6.27, p < .05; 

‘possible’ within: β = -.090 µV/s, F < 1; ‘possible’ between: β = .230 µV/s, F < 1). Effects of 

preview time were not modulated by mismatch type, holding response type constant (F’s < 1). 

 

Discussion 

 

Earlier ERP measures (targeting the N300 and N400) were robustly sensitive to category-

level mismatches between the presented and target object at test. Specifically, mismatching 

objects elicited a more negative waveform than matching objects at these latencies. Moreover, 

this sensitivity increased when participants were given more time to process the context scene 

prior to the onset of the test object, replicating the pattern shown between subjects in our analysis 

of Experiment 3.1. We further estimated that N300 match effects emerged and stabilized after 

roughly 1000 ms of contextual pre-exposure time given the current design and sample size. 

Later ERP measures (targeting the early and late LPC) showed a more complex pattern of 

sensitivity, reflecting the interaction of stimulus and response related processing. When 

participants ultimately decided a mismatch was ‘impossible’ given the context scene, to the 

extent that they were given more time to process the scene in advance, the mismatch – match 

effect became more negative in this interval. However, when they ultimately decided the 

mismatch was ‘possible,’ the duration of contextual preview no longer affected amplitude of the 

mismatch – match effect. 
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General Discussion 

	
In two separate experiments, we tested a necessary corollary of the hypothesis that contextual 

facilitation effects on object recognition are partially mediated by predictive pre-activation of 

object features. Specifically, we tested whether (1) contextual priming of the visual features of an 

object associated with a scene is reduced when participants have little time to preview the scene 

before object presentation and (2) whether the amount of priming from a scene onto its 

associated object increases with duration of scene preview. We found that viewing the context 

scene in advance does in fact result in enhanced visuo-structural priming of the associated object, 

as indexed by N300 facilitation. Moreover, graded effects of visual similarity between the 

expected object and the actually presented one are linked to a longer contextual pre-exposure 

time. In our between subjects analysis (200 vs. 2500 ms scene preview), we found evidence for 

delays in processing the degree of mismatch between the presented object and the contextually 

congruent target, given a shorter contextual pre-exposure time. ERP match/mismatch effects 

were more prevalent later in the waveform given a shorter scene preview duration, and response-

related processing was also attenuated on later components, consistent with a delay in shifting 

from the task of matching the object to the scene to the task of selecting a response. In our 

within-subjects manipulation (Experiment 3.2), we again found that longer contextual pre-

exposure times were associated with greater N300 and N400 facilitation for contextually 

congruent objects. We also found converging evidence from response times and ERP 

match/mismatch effects, suggesting that participants require approximately 1000-1500 ms of 

contextual pre-exposure time to show early effects of contextual benefit (i.e., N300 facilitation 

for contextually congruent objects). Overall, our findings suggest that participants use additional 

time when viewing a scene context alone to prepare to visually process and categorize an 

upcoming visual object. Below, we discuss the impact of scene-object congruency on different 

aspects of object processing, as assessed through behavioral measures and ERPs. We then detail 

the impact of preview time on each and discuss the implications of those patterns for predictive 

accounts of contextual facilitation on visual object processing. Finally, we consider factors 

relevant to assessing the likelihood that our findings will generalize to more naturalistic real-life 

situations and task demands. 
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 First we review evidence for successful associative learning, and for an overall contextual 

congruency benefit, which can be further broken down by dependent measure to form stronger 

ties to specific aspects of cognition. In both of the current experiments, as in Experiment 2.1, 

participants demonstrated that they were able to rapidly associate novel objects and scenes. Not 

only were participants successful in their online memory task, but they also demonstrated 

explicit knowledge of which object types were associated with which scene types on the offline 

post-test.. The early and late LPC reflect increasingly response and task-oriented activity 

(Mostert, Kok, & De Lange, 2015). As we found previously, within category mismatches were 

more negative than between category mismatches on the late portion of the LPC in both 

experiments, reflecting greater difficulty in determining the appropriate response for possible but 

unstudied scene-object combinations (e.g., Finnigan, Humphreys, Dennis, & Geffen, 2002). This 

interpretation is also supported by response time data in Experiment 3.2, which showed slower 

overall responding to within than between category mismatches. Earlier in the waveform, 

matches tended to be more positive than mismatches in both the N400 and N300 time windows. 

While the N400 is associated with multimodal semantic priming (reviewed in Kutas & 

Federmeier, 2011), the N300 is associated with an earlier stage of visuo-structural priming (e.g., 

Schendan & Kutas, 2002, 2003, 2007; Hamm, Johnson, & Kirk, 2002; Kovalenko, Chaumon, & 

Busch, 2012). Match facilitation on earlier portions of the ERP waveform (in particular, the 

N300 component) is consistent with the idea that contextual congruency facilitates not only 

response-related processing and categorical judgments, but also higher-level visual analysis of 

the (contextually associated or unassociated) object itself, including visuo-structural priming. 

The next question, then, is to what extent this priming is contingent on an extended scene 

preview, which would be consistent with a predictive pre-activation account of context effects on 

object recognition. 

Across the two experiments, shorter scene preview times were associated with 

diminished or delayed contextual congruency effects. Specifically, shorter scene previews were 

associated with smaller match/mismatch effects on earlier components: the N300 and N400 

(although the N400 only showed this pattern in Experiment 3.2). As is nicely captured in Figure 

3.6, in our between subjects comparison (Experiment 3.1 vs. Experiment 2.1), shorter scene 

preview times were also associated with larger match/mismatch effects in the early LPC window 

(500-699 ms), consistent with a global latency shift in the peak match/mismatch response. In 
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Experiment 3.2, which used a parametric, within-subjects design, we also observed an interaction 

between scene preview duration and decision related processing on the early and late LPC, 

although it differed qualitatively from Experiment 3.1 and was sensitive to response, as 

discussed further below. Increased scene preview duration was also associated with benefits in 

accuracy and speed of responding in Experiment 3.2. Below we further discuss the time-

dependent enhancement of contextual benefit effects on behavior, decision-related brain 

responses (the LPC), and semantic and visual form priming, each in turn. 

 We observed behavioral effects of contextual pre-exposure time, when immediate 

responding was required (Experiment 3.2). With delayed responding, the distribution of 

responses was similar across preview times (Experiment 3.1 vs. Experiment 2.1). With 

immediate responding (Experiment 3.2), however, correct responses were faster overall given 

longer scene previews, and particularly so for matching objects. Moreover, the probability of 

correctly identifying a match also increased with increasing contextual pre-exposure time (a 

similar increase in accuracy was not observed for mismatch trials). This combined increase in 

accuracy and decrease in response time for match trials cannot be explained by a simple speed-

accuracy trade-off. The overall pattern of shorter and more accurate responding with extended 

scene preview duration is consistent with facilitated object processing given more time to 

process the scene, and thus, is consistent with a predictive pre-activation account. The interaction 

between preview benefit and match condition is more challenging to interpret but still of some 

interest, because it provides further indirect evidence supporting the hypothesis that the 

representation of the most likely object is selectively enhanced by pre-exposure to the scene. 

Broader findings from the visual attention literature have indeed suggested that people are able to 

hold the attentional template of a particular target in mind (in this case, the contextually 

congruent object), but are less successful at ruling out mismatches based on a ‘negative’ template 

(e.g., Robinson, Clevenger, & Irwin, 2018). More quantitative modeling inspired by the visual 

attention literature, and more closely integrating decision theory, with separate estimates for the 

amount and nature of information required to reach a 3-way decision bound for matches, close 

and distant mismatches, may be required to fully understand what implications this pattern of 

responding has for processing in the brain. Now that the behavioral data has confirmed that 

object processing is indeed facilitated by longer contextual previews, we turn to the specific 
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pattern of ERP facilitation effects, which helps answer the question of which specific stages of 

processing are facilitated by longer contextual pre-exposure times. 

 The LPC was sensitive to preview time across both experiments, but with some 

qualitative differences. As previously mentioned, the late LPC was sensitive to match condition, 

such that within category mismatches were more negative than between category mismatches. 

Within category mismatches were more likely to elicit a ‘possible’ response than between 

category mismatches in both experiments. Possibly partially due to this, in Experiment 3.1, there 

was no interaction with response (as distinct from mismatch type) on the late LPC. However, in 

Experiment 3.2, at mean scene preview duration, it was found that only within category 

mismatches that elicited a ‘possible’ response were more negative than the other match 

conditions, while within category mismatches that were responded to as being ‘impossible’ had 

similar late LPC amplitudes to exact matches and were only numerically more negative than 

‘impossible’ between category mismatches. When scene preview duration was lengthened in our 

between subjects comparison (Experiment 3.1 vs. Experiment 2.1), longer scene preview was 

associated with a stronger effect of response on the late LPC, such that ‘possible’ responses were 

associated with a more negative waveform in Experiment 2.1 only. There was no interaction 

between scene preview duration and match condition. In contrast, for Experiment 3.2, there was 

a three-way interaction between match condition, response, and scene preview duration on the 

late LPC: match/mismatch effects grew larger with increased scene preview, only on trials 

responded to as ‘impossible.’ Notably, the correlation between mismatch type and response type 

was somewhat stronger for Experiment 3.1 (Cramér’s V = .43) than either Experiment 3.2 

(Cramér’s V = .22), or Experiment 2.1 (Cramér’s V = .27). Thus, it is possible that it is simply 

more difficult to tease apart effects of response vs. mismatch type in Experiment 3.1 than the 

other two experiments due to higher multicollinearity between these predictors. However, 

another more interesting possibility is that response-related processing itself may be delayed 

under conditions where there is both delayed responding and an inadequate scene preview time, 

as in Experiment 3.1.  

 On the early LPC, with speeded responding (Experiment 3.2), we again saw an 

interaction between match and response at mean scene preview duration: ‘possible’ mismatches 

were reliably more negative than the match condition, but not ‘impossible’ mismatches. The 

three-way interaction with scene preview duration was similar to the late LPC. With delayed 



	 81	

responding, short scene previews (Experiment 3.1) were associated with an effect of match but 

not response (both mismatch conditions were about equally more negative than the match 

condition). Long scene previews (Experiment 2.1) were associated with an effect of response 

type but not match: ‘possible’ mismatch responses were more negative than ‘impossible’ 

mismatch responses. In contrast with Experiment 3.1, both mismatch types were numerically 

slightly more positive than matches overall, and this crossover interaction makes it unlikely that 

the different patterns observed across scene preview durations could be explained by higher 

multicollinearity between condition and response in Experiment 3.1. Direct between-subjects 

statistical comparisons confirmed the observed differences across scene preview durations. Thus, 

as with the late LPC, results from the early LPC window are consistent with a delay in response 

selection when responses are not immediate and insufficient scene preview time (200 ms) is 

given. However, in the current study we are even more interested in the effect that extended 

contextual pre-exposure may have on earlier components: the N400 and N300. 

 On the N400, an earlier index of semantic processing, we observed contextual facilitation 

effects that were robust even at short preview times. Mismatches were consistently more 

negative than matches on the N400, across all experiments. For Experiment 3.2 only, with 

speeded responding, we also observed an interaction between match condition and response in 

the N400 time window, again consistent with speeded responding leading to earlier response 

selection. In our between subjects comparison, there was no interaction of either match condition 

or response with scene preview duration. In Experiment 3.2, match-mismatch effects did 

increase in size given longer scene previews. Overall, the relative robustness of the N400 match 

effect suggests consistent contextually-sensitive semantic processing of the object images, with 

or without an extended contextual preview. The Experiment 3.2 results further suggest that under 

at least some conditions, semantic processing of object images may be further enhanced by 

contextual pre-exposure. 

Of particular importance to the current study was the question of whether N300 

match/mismatch effects, an index of visuo-structural priming, would be modulated by contextual 

pre-exposure time. This is because scene priming of object-specific features (in contrast with 

contextual bias effects on categorization and decision processes) is a tighter, more targeted 

corollary of the hypothesis that people predictively pre-activate visual features of upcoming 

objects based on scene information. Although we did observe an N300 effect of match condition 
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given only a 200 ms scene preview, this was driven primarily by recency. That is, while there 

were numeric trends for other kinds of match/mismatch effects in the expected direction, the 

only statistically reliable effect of match condition was that images of objects that were not 

displayed at all in the preceding study phase elicited larger N300 amplitudes than contextually 

matching objects. In our between subjects comparison (combining Experiment 3.1 with the 

dataset in Chapter 2 Experiment 2.1), we confirmed that the size of N300 match/mismatch 

effects was modulated by contextual pre-exposure time. Specifically, between-category 

mismatches elicited larger amplitude N300s than matches, but particularly so given a longer 

(2500 ms) scene preview duration. In Experiment 3.2, we replicated this pattern: N300 

match/mismatch effects were larger given a longer scene preview. Moreover, we found that 

N300 match/mismatch effects only became significant using the current design and sample size 

given at least 1000-1500 ms of scene preview. We thus have strong support for the idea that 

scene-object priming on the N300 is at least partially dependent on contextual pre-exposure time. 

There were a few discrepancies between the results of our between-subjects (Experiment 

3.1) and within-subjects (Experiment 3.2) analyses of the N300. For example, there was still 

some N300 priming by congruent scene contexts given a consistent 200 ms scene preview in 

Experiment 3.1, but N300 priming was only apparent with longer (1000 ms +) scene preview 

times in Experiment 3.2. This could partly be explained by the fact that N300 effects in 

Experiment 3.1 were driven by target recency (i.e., ‘new’ between category mismatches), while 

the design of Experiment 3.2 removed the recency confound. (Notably, recency effects alone 

could not explain N300 priming given a constant 2500 ms scene preview in Experiment 2.1, 

either). In addition, the power to detect N300 effects at short scene previews may have been 

enhanced in a design with a consistent temporal relationship between scene and object onset. The 

fact that we detected item recency effects on the N300 underscores the benefits of avoiding or 

controlling for item repetition and its potential interactions with the conditions of interest, which, 

as mentioned in the introduction, may have clouded interpretability of the latency manipulation 

in Demiral, Malcolm, & Henderson (2012). 

We also confirmed that visuo-structural priming is contingent on adequate contextual 

pre-exposure time in a novel component-neutral analysis. In Chapter 2, we showed for the first 

time that higher visual similarity between the presented object and the most contextually 

expected object based on the scene leads to a more positive waveform beginning at roughly 200 
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ms, consistent with a visuo-structural priming benefit. The predictor of ERP amplitude in this 

analysis is tightly yoked to visual properties of the target, contextually congruent object, and is 

derived from V1-like gabor filter features (Pinto et al., 2008). Thus, this analysis allows us to 

side-step difficulties in disentangling N300 and N400 effects, which partially overlap in time and 

space. Previous studies examining the question of how contextual pre-exposure benefits visuo-

structural priming have generally used component-based analyses where component overlap is 

likely a partial confound (e.g., Mudrik, Lamy, & Deouell, 2010; Mudrik, Shalgi, Lamy, & 

Deouell, 2014; Truman & Mudrik, 2018). In our between-subjects analysis, we found that this 

index of visuo-structural priming is enhanced given a longer contextual pre-exposure time. In 

fact, with only 200 ms of scene preview, we only found evidence of a small effect in the 

expected direction on the N300, despite detecting robust effects across the N300, N400 and LPC 

in our earlier Experiment 2.1 using a 2500 ms scene preview. This component neutral analysis 

provides further support for our claim that visuo-structural priming of a contextually congruent 

object is dependent on adequate contextual pre-exposure time, which is consistent with a 

predictive pre-activation account. 

 One important critique of the current study is that an enhancement of contextual 

facilitation effects given more time to process the context may simply reflect the formation of a 

more detailed or sophisticated representation of the context itself. This can be differentiated from 

a predictive pre-activation account, which specifies that features of the associated object 

representation are brought online prior to object onset. We cannot rule out this alternative 

hypothesis at present, pending using machine-learning based approaches to better target pre-

activation of object-based features during the scene preview period (similar to the approach 

adopted in Kok, Mostert, & De Lange, 2017). However, our current results have already 

provided evidence against any theory in which assessing contextual congruency between an 

object and scene is independent of the duration of prior exposure to the scene. Also, our N300 

and visual similarity analyses have more tightly yoked facilitation effects to visual features of the 

anticipated object, which is more complicated to explain under a non-predictive account than 

generic facilitation at a semantic level. 

 Another important critique of the current work is that it is as yet unclear to what extent 

conscious and explicit memorization of scene-object pairs in a paired associate learning 

paradigm would generalize to cognitive processes employed during object recognition in daily 
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life. One argument in favor of generalizability is the fact that global semantic properties of visual 

contexts remain relatively stable over time, from the perspective of a human observer carrying 

out day-to-day activities. This temporal stability (on the order of minutes to hours) makes it more 

likely that not only rapid gist extraction (which takes place during the first 200 ms of scene 

exposure, recently reviewed in Larson, Freeman, Ringer, & Loschky, 2014), but also slower 

processes that relate contexts to specific objects over the course of 1 second or more, might 

contribute to visual object recognition in the real world. The broader literature on statistical 

learning (and its pervasiveness even at early stages of cognitive development; e.g. Saffran, Aslin, 

& Newport, 1996; Kirkham, Slemmer, & Johnson, 2002) is also key to addressing the 

generalizability question (some recent studies applying implicit statistical learning paradigms to 

the study of visual processing in adults include: Turk-Browne, Scholl, Johnson, & Chun, 2010; 

Kok, Failing, & de Lange, 2014). We do not yet have strong enough links assessing the precise 

relationship between explicit paired associate learning paradigms and implicit statistical learning 

paradigms; however, some preliminary evidence suggests some degree of overlap in the 

processes used to achieve learning of statistical associations in these two types of tasks (Pearson 

& Westbrook, 2015). Specifically, clinical populations that show deficits in implicit statistical 

learning often also show deficits in explicit paired associate learning (Pearson & Westbrook, 

2015). The visual search literature also provides some insight into the question of 

generalizability. It’s long been known that statistical regularities between contextual factors and 

target locations facilitate visual search for more abstract stimuli (reviewed in Jiang & Chun, 

2003) as well as objects embedded in more naturalistic scenes (reviewed in Wolfe, Võ, Evans, & 

Greene, 2011), and that semantically incongruous objects in a scene attract more and longer 

duration fixations (e.g., Loftus & Mackworth, 1978; Võ & Henderson, 2009). Recently, it was 

also shown that contextually incongruent objects in a scene attract longer total viewing times 

than consistent objects, even when their presence is irrelevant to the task at hand (i.e., finding the 

letter T, which has been artificially overlaid on top of the image; Cornelissen & Võ, 2017). 

Similarly, Munneke, Brentari, and Peelen (2013) found that scene consistency effects on object 

recognition persist regardless of whether the object location has been cued in advance. Together, 

these studies suggest that scene information may facilitate object recognition in a fairly 

automatic fashion, independent of specific task demands (although object-object spatial 

congruency effects may be more easily modulated by attentional cuing, see Gronau & Shachar, 
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2014). Future work could combine more naturalistic stimuli and task demands with 

neuroimaging techniques such as EEG/MEG that can provide biomarkers specific to visual form-

based priming, as differentiated from amodal categorization and decision-making, to further 

address the question of generalizability. 

 In summary, consistent with prior work, scenes were found to facilitate processing for 

contextually congruent objects at a variety of processing stages, even when the association 

between object and scene was formed recently. We additionally extended prior work by showing 

that many scene-object facilitation effects, indexing dissociable cognitive processes, interact with 

scene preview duration. Of particular interest, our results suggest that visual contexts can be 

processed in advance of viewing an object to facilitate visual form-based processing of the 

subsequently presented object, consistent with a predictive preactivation account. The current 

study thus contributes to a larger body of work testing the boundaries and levels of abstraction 

used for predictions, as well as their sensitivities to time constraints and task-demands, within a 

predictive coding account of the brain (e.g., Demiral et al., 2012; Wlotko & Federmeier, 2015; 

Chow, Lau, Wang, & Phillips, 2018). Through the use of ERPs, we have shown that temporally-

contingent context effects do not simply affect semantic processing, or later stage decision-

making, but, as demonstrated in our N300 and visual similarity-based analyses, also affect 

predictive processing within high-level vision itself. 
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Figures 
 
Figure 3.1. Experimental conditions. 
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Figure 3.2. Experiment 3.1 Procedure 
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Figure 3.3. Experiment 3.2 Design and Conditions. 
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Figure	3.4.	Experiment	3.1	behavioral results. a) Proportion of responses by condition in the 
online memory task. Participants were reliably sensitive to condition, and responded to 
distortions similarly to the exact match condition, as instructed. b) Confusion matrix of scene-
object category associations indicated at post-test. Scenes circled by participants were the 
associated scene category for the displayed object 82-92% of the time, demonstrating explicit 
knowledge of the scene – object category mapping.		
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Figure	3.5.	Experiment 3.1 match vs. mismatch conditions at 12 representative sites (scalp 
locations indicated at bottom right). An additional 15 Hz low pass filter was applied after 
averaging for display purposes. 
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Figure	3.6.	Comparing	effects	of	match	condition	across	scene	preview	durations:	
Experiment	3.1	vs.	Experiment	2.1.	Difference	waves	of	within	category	mismatch	–	match,	
and	between	category	mismatch	–	match,	plotted	separately	by	scene	preview	duration	
(200	ms	vs.	2500	ms).	Additional	5	Hz	low	pass	filter	applied	following	averaging	for	
display	purposes.	
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Figure	3.7.	Experiment	3.1	ERP averages by visual distance bin. Distance = 0 indicates the 
Exact Match condition, while higher distances indicate that the presented object was more 
visually distinct from the target object at test. Only behaviorally correct and artifact free trials 
included. An additional 5 Hz low pass filter was applied prior to plotting. Sites used to generate 
each plot are indicated at bottom left. 
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Figure 3.8. Experiment	3.2	behavioral results. a) Proportion of responses by condition in the 

online memory task. b) Response time is sensitive to match condition and scene preview 

duration. c) Confusion matrix of scene-object category associations indicated at post-test. 
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Figure 3.9. Experiment 3.2 test object match vs. mismatch condition ERPs at 12 representative 

sites (scalp locations indicated at bottom right). An additional 15 Hz low pass filter was applied 

after averaging for display purposes. 
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Figure 3.10. Experiment 3.2 ERP waveforms time-locked to test object onset, plotted separately 

by match condition and scene preview duration (500 ms bins). a) ERP waveforms aggregated 

across 5 central electrode sites, indicated at right. Additional 15 Hz low pass filter applied after 

averaging for display purposes. b) Estimated effect size of N300 mismatch – match effect by 

scene preview duration bin. Estimates computed for each preview time bin as unweighted 

average of four separate mismatch – match effects: within vs. between category mismatch x 

‘impossible’ vs. ‘possible’ response. Modeled over 16 frontal channels in N300 time window 

using linear mixed effects model including 5 x 500 ms scene preview duration bins. Error bars 

show 2 x approximate standard error. 
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Figure 3.11. Experiment 3.2 within category mismatch – exact match difference waves, plotted 

separately by scene preview duration (500 ms bins), aggregated across frontal, central, posterior, 

left lateral, and right lateral electrode sites. Darker shades indicate shorter preview times. 

Channel locations at bottom left. Additional 5 Hz low pass filter applied after averaging for 

display purposes. 
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Figure 3.12. Experiment 3.2 between category mismatch – exact match difference waves, plotted 

separately by scene preview duration (500 ms bins), aggregated across frontal, central, posterior, 

left lateral, and right lateral electrode sites. Darker shades indicate shorter preview times. 

Channel locations at bottom left. Additional 5 Hz low pass filter applied after averaging for 

display purposes. 
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CHAPTER 4: DISCUSSION 

 

Over three ERP experiments, we explored the nature of the contextual benefit to visual object 

processing from statistically associated scenes. In Chapter 2 Experiment 2.1, we demonstrated 

that even novel associations between objects and scenes can result in scene-object priming after a 

brief training session, including scene-based facilitation for visual form processing of the object. 

This was shown not only through examination of the N300 component, which is linked to visual 

form processing, but also through a separate set of component-neutral analyses on mismatch 

trials using visual similarity effects of the target, expected object vs. the actually presented object 

to draw inferences about whether the visual form of the target object is selectively activated by 

the scene. In Chapter 3 Experiments 3.1 and 3.2, we further tested a corollary of predictive 

processing accounts of context effects on visual object recognition: that longer duration 

contextual pre-exposure times should enhance contextual facilitation effects. Indeed, that’s what 

we found: across two sets of analyses, longer contextual pre-exposure times were associated with 

stronger effects of context at an intermediate stage of object processing associated with high-

level visual form template matching, indexed by the N300 response. A between-subjects visual 

similarity analysis confirmed this finding in a component-neutral way. In the following section, 

we review future directions for research that could further refine our understanding of how 

context in general, and scene information in particular, facilitates object recognition and 

categorization. 

 

Future Directions 

 

Using Machine-Learning to Differentiate Predictive vs. Integrative Accounts of Contextual 

Facilitation Effects 

 

Machine-learning based approaches are increasingly popular in the domain of cognitive 

neuroscience, and when combined with EEG/MEG, can allow us to make fine-grained inferences 

when specific representations are brought online (for a recent review and tutorial focused on 

EEG/MEG applications, see King & Dehaene, 2014). To further differentiate between predictive 

and integrative interpretations of contextual facilitation effects and their enhancement with 
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increased exposure to the priming context, future work could apply a machine-learning based 

approach. Specifically, a classifier predicting the identity of a contextually associated target 

object could be fit to EEG data following onset of the scene prime, but preceding onset of the 

object itself. If an appropriate performance baseline were specified, or careful counterbalancing 

was used to ensure that there were no residual statistical associations between, e.g., physical 

properties of the scene context and the following object’s identity, then above-chance classifier 

accuracy would be strong evidence for a predictive pre-activation account. A similar approach 

has been used by Kok, Failing, and de Lange (2014) with fMRI to make the inference that (100% 

valid) predictive auditory cuing can induce the representation of an expected visual stimulus (a 

gabor patch in a particular orientation) to be brought online in V1. The data presented in the 

current thesis could be used as a pilot exploratory dataset for a first-pass machine-learning based 

search for evidence of predictive pre-activation of visual object features during the scene 

preview phase. If positive evidence was found, an additional EEG dataset would then be 

collected that would confirm the result while maximizing power for the design. 

 

Utilizing Different Measures of High and Low Level Visual Similarity As a Component-Neutral 

Approach to Identifying the Level(s) of Visual Processing Facilitated by Context 

 

In the current thesis, we only presented visual similarity analyses using a single set of visual 

features derived from the V1-like representation of Pinto, Cox, & DiCarlo (2008) as applied to 

our stimulus set. In another set of analyses that we are actively working on, we have explored 

alternative measures of visual similarity derived from a convolutional neural network (Alexnet; 

Krizhevsky, Sutskever, & Hinton, 2012), that might tap into more or less orthogonal measures of 

the extent to which high and low-level visual representations are brought online by a given 

context. More specifically, the first convolutional layer of Alexnet also generates a V1-like 

feature space but may have somewhat distinct properties from the Pinto et al. (2008) features 

used in the current thesis; the Pinto et al. features in fact correlate better with slightly later layers 

within Alexnet. The fully connected layers of Alexnet, then, can be used to derive a higher-level 

visual representation that captures more categorical information about the objects. For example, 

using multidimensional scaling, it can be seen that for the higher-level representational similarity 

space, objects are clustered with other objects of the same category, and germs and machines are 
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cleanly separated. In the lower-level feature representational similarity space, which is more 

sensitive to local visual features, the objects are quite mixed up across lower and higher level 

category boundaries in terms of which specific exemplar is considered close in space to another 

exemplar. In future work, not only could these Alexnet derived measures be further explored, but 

additional measures, like the shape-based matching algorithm used in Kovalenko, Chaumon, & 

Busch (2012), could be examined and compared in a more extensive methods paper. By 

identifying an optimal set of visual similarity metrics and addressing any multicollinearity issues 

that might arise, we could potentially much more strongly link EEG and other 

neurophysiological data on anticipatory processing / template matching to specific stages of 

visual processing with fewer assumptions based on timing or spatial localization. 

 

The Role of Temporal Expectancy in Optimal Use of Context to Facilitate Visual Object 

Processing 

 

In our discussion of Chapter 3 Experiments 3.1 and 3.2, we noted some discrepancies across the 

between-subjects and within-subjects analyses, and suggested they may be explainable in terms 

of our shift from delayed responding to immediate responding. Another possibility is that 

temporal expectancy is higher for Chapter 2 Experiment 2.1 and Chapter 3 Experiment 3.1, 

because in these two experiments the object always had a consistent temporal relationship with 

the scene (either fixed at a 200 ms or 2500 ms SOA). In Chapter 3 Experiment 3.2, when we 

continuously varied preview time, we also broke down this temporal structure and presumably 

made it more difficult to rhythmically synchronize processing of the scene context with that of 

the following object. Temporal expectancy could also play a role in explaining differences 

between the two fixed timing experiments, in that temporal expectations are likely to be more 

precise at shorter delays (200 ms) than substantially longer ones (2500 ms).  

One goal of future work branching off from the current project will be to more 

systematically assess and quantify how the temporal relationship between a scene prime and 

object target modulates pre-activation of target visual features. Manipulating not only the overall 

SOA, but also the degree to which SOA is consistent across trials and predictable across the 

course of the experiment, may also impact the extent to which participants use prime information 

to facilitate processing of the upcoming target.  
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 Temporal expectations refer to predictions about the perceptual timing of an upcoming 

stimulus formed implicitly in response to the temporal structure of a task. They are behaviorally 

detectible when used to enhance performance on a motor or perceptual task. Response latencies 

across a variety of perceptual, memory, and motoric tasks decrease as stimulus presentation 

times become more predictable. Saccade latencies to targets also decrease, and smooth pursuit 

behavior is modulated by increasing temporal regularity of a moving stimulus, including an 

increase in the occurrence of anticipatory eye gazes (see Nobre, Correa, & Coull, 2007). 

 Temporal expectation effects are also evident in patterns of brain activity, and are 

intimately linked to the concept of neural entrainment. One of the earliest ERPs to be 

characterized, the contingent negative variation (CNV), increases in amplitude during the delay 

period between a cue and target stimulus, and its amplitude is correlated with time perception 

and timing performance (reviewed in Martin, Houck, Kičić, & Tesche, 2008). More recently, 

intracranial recordings in monkey cortex have revealed that neuronal synchrony and spike rates 

in task-relevant areas are modulated by the so-called “hazard function”: the conditional 

probability of a task-relevant stimulus appearing, given that it has not yet appeared (e.g., Riehle, 

Grün, Diesmann, & Aertsen, 1997; Janssen & Shadlen, 2005; reviewed in Nobre et al., 2007). 

Also, the entrainment of neural oscillations to quasi-periodic signals, such as the syllable onsets 

of continuous speech, are a plausible mechanism of temporal expectancy effects in domains such 

as speech recognition (see discussion in Arnal & Giraud, 2012; Peelle & Davis, 2012). More 

generally, converging behavioral and neural evidence suggest that knowing when a stimulus will 

appear in time may help people to anticipate what will appear, by more effectively coordinating a 

neural response.  

We are currently working on an additional EEG experiment, in which participants 

memorize novel-object scene pairs in the paradigm used in the current thesis, but trials are split 

into blocks with a 200 ms scene-object SOA at test, blocks with a 2500 ms SOA, and blocks with 

a random 50/50 mixture of the two SOAs. This future work will give us a preliminary avenue for 

investigating the role that temporal expectation may play in driving the results of the experiments 

presented in the current thesis.  

 

Hemispheric Differences in Predictive Processing 
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Another future direction will speak to hemispheric differences in how scene contexts are used to 

facilitate visual object processing. One of the clearest instances of hemispheric specialization is 

the strong left lateralization of language production in most people. Early evidence for this came 

from patients with brain damage in a single hemisphere, and later, the Wada test, in which a 

barbiturate is injected into the left or right carotid artery to selectively anesthetize the ipsilateral 

hemisphere. For most people, globally inhibiting the left hemisphere, as in the Wada test, hinders 

speech production, while right hemisphere inhibition leaves speech production intact. 

Subsequent research on stroke victims and split-brain patients, as well as studies using visual 

half-field presentation in neurally healthy individuals, have suggested that while the left 

hemisphere may drive speech production, both hemispheres contribute to language 

comprehension, albeit in different ways. For example, while left hemisphere damage is more 

strongly associated with a variety of comprehension deficits at the level of word meaning and 

syntax, right hemisphere damage has been linked to impairment in drawing elaborative 

inferences from verbal materials, as well as joke comprehension (e.g., Beeman, 1993; Brownell, 

Michel, Powelson, & Gardner, 1983). Moreover, the left and right hemispheres show different 

patterns of semantic and orthographic activation during word recognition and sentence reading 

tasks. As a general trend, the left hemisphere shows more signs of top-down modulation of 

semantic activation, on the basis of syntactic and other higher-level linguistic considerations, 

than the right (reviewed in Federmeier, 2007).  

 One method for exploring hemispheric processing differences that will be used in the 

current proposal is visual half-field presentation. By briefly presenting visual stimuli to the left 

or right of central fixation (> .5°), it is possible to bias processing to the contralateral hemisphere 

of the brain. This is driven by the neuroanatomical structure of the visual system – almost all 

visual input in a given hemifield is sent selectively to primary visual cortex in the contralateral 

hemisphere. While in principle inter-hemispheric communication may begin shortly thereafter 

via the corpus callosum, the number of connections between the two hemispheres is orders of 

magnitude smaller than the number of connections within each hemisphere, suggesting 

substantial information loss. Moreover, longer-latency topographic differences in the ERP brain 

response to left vs. right lateralized stimuli attest to the fact that even after hundreds of 

milliseconds, different neural generators are brought online in response to right vs. left hemifield 

stimulus presentation (e.g., Huang, Lee, & Federmeier, 2010). Though this speaks less strongly 
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to the efficacy of the technique with regard to lateralization per se, well-documented behavioral 

effects of visual hemifield further attest to the lasting effects of lateralized presentation on 

cognition (reviewed in Federmeier, Wlotko, & Meyer, 2008). 

Visual half-field presentation has been used in combination with behavioral methods and 

ERPs to reveal differences in predictive processing across the two hemispheres in the domain of 

language comprehension. For example, Deacon and colleagues (2004) found N400 semantic 

priming for purely associatively related word pairs (e.g., ‘honey’/’bee’) was selective to rvf/LH 

(right visual field / Left Hemisphere) presentation, but N400 priming for purely categorically 

related word pairs (e.g., ‘broccoli’/’tree’) was selective to lvf/RH (left visual field / Right 

Hemisphere) presentation. This is consistent with the idea that the left hemisphere is anticipating 

upcoming linguistic input on the basis of current input, while the right hemisphere is reactively 

integrating semantic content across words in a more bottom-up fashion (see Federmeier, Wlotko, 

& Meyer, 2008 for discussion). Federmeier and Kutas (1999b) further demonstrated that for 

young adults, words that are incongruent with a particular sentential context but nonetheless 

semantically related to a congruent and predicted word show signs of partial activation in the 

left, but not right, hemisphere. Specifically, N400 amplitude is reduced for semantically related 

but incongruent words relative to semantically unrelated and incongruent words when the critical 

words are presented in the rvf/LH, but not the lvf/RH. Thus, only the left hemisphere 

demonstrated sensitivity to expected but never presented verbal input in a top-down fashion.  

Noting that language production and many controlled aspects of predictive processing in 

comprehension seem to both be left-lateralized, Federmeier (2007) proposed the “Production 

Affects Reception in Left Only” (PARLO) framework for understanding hemispheric differences 

in language comprehension. This framework posits that anticipatory processing is more 

constrained by top-down linguistic knowledge in the left hemisphere precisely because the left 

hemisphere encodes information relevant to language production that is less accessible to the 

right hemisphere.  

However, domain general accounts of hemispheric differences may also partially explain 

the more top-down, predictive nature of processing in the left hemisphere. Hemispheric 

asymmetries found in the temporal expectation literature, for example, also endorse a predictive 

bias for the left hemisphere and a reactive bias for the right hemisphere (see Coull & Nobre, 
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2008). Also, linguistic contexts have been shown to facilitate picture processing on the N400 

with similar hemispheric asymmetries to words (Federmeier & Kutas, 2002). 

In another experiment we are currently working on, we lateralize presentation of target 

stimuli to establish whether the left and right hemispheres show similar predictive vs. reactive 

processing biases in visual object recognition, when non-verbal contextual materials are used as 

primes. We particularly pay attention to how ‘possible’ mismatches between the target object 

and scene prime are processed by each hemisphere relative to the other match/mismatch 

conditions. Partial facilitation for ‘possible’ mismatches would be analogous to the ‘incongruent-

related’ condition used in Federmeier and Kutas (1999a,b; 2002), and would similarly be 

suggestive of a top-down, predictive mechanism. If predictive processing, operationalized in this 

way, is shown to be lateralized to the left hemisphere in a similar manner to language 

comprehension, this might suggest a domain general mechanism or a common set of predictive 

processing principles with respect to hemispheric asymmetries. In addition, we will extend the 

visual similarity analysis approach applied in Chapters 2 and 3 of the current thesis, to examine 

component-neutral signatures of processing differences across the hemispheres. 
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APPENDIX A: MATCH CONDITION CLUSTER ANALYSIS RESULTS 
 

The following condition contrasts were assessed using a by-subjects dependent samples T-test on 

the subject-level averaged waveforms (down-sampled to 100 Hz) from 10 to 990 ms in 10 ms (1 

sample) increments:  

 

Match vs. Distortion 

Match vs. Within Category Mismatch 

Match vs. Between Category Mismatch 

Distortion vs. Within Category Mismatch  

Within Category Mismatch vs. Between Category Mismatch  

Between Category Mismatch – Swapped vs. Between Category Mismatch – New  

 

Positive and negative clusters were separately assessed. Individual channel-time-points were 

considered for cluster inclusion at α = .05, and were required to have at least two neighboring 

channels also included in the cluster. Cluster significance was computed by comparing the sum 

of the T values within each cluster to the distribution of the maximum sum of T values cluster 

score over a random permutation baseline, α = .025, n = 2000 repetitions. See Figures A1 and A2 

for the distributions of significant clusters over time and space for each condition contrast. 

 

Distortion - Exact Match 

No significant clusters were found. 

 

Within Category Mismatch  - Exact Match 

A negative cluster was found from 250-400ms, which began at frontal sites, was broadly 

distributed across the head from ~290-350 ms, and ended at central sites (sumT = -818, p = 

.0095). 

 

Between Category Mismatch - Exact Match 

A negative cluster was found from 230-430 ms, which began at frontal sites, was broadly 

distributed at ~280-370 ms, and ended at centro-parietal sites (sumT = -1418, p =.0030).  
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Within Category Mismatch - Distortion 

Two negative clusters were found. The first negative cluster was from 170-430 ms, again starting 

at frontal sites, being broadly distributed at ~290-390 ms, and ending at central sites (Tsum = -

1575, p = .0025).  The second negative cluster was from 760-990 ms at central and posterior sites 

(Tsum = -695, p = .0160). 

 

Between Category Mismatch  - Within Category Mismatch 

A positive cluster was found from 760-990 ms at posterior sites, possibly reflecting response 

differences among correct trials for the between vs. within category mismatch conditions (Tsum 

= 738, p = .0070). 

 

Between Category Mismatch Swap vs. New Trials 

No significant clusters were found. 
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Figure A1. Timing and scalp topography of early match condition clusters, in 50 ms increments. 
Significant cluster sites indicated with an asterisk. 
 
 

 
 
 
  

250-300 ms 300-350 ms 350-400 ms

400-430 ms200-250 ms170-200 ms

250-300 ms

250-300 ms

300-350 ms

300-350 ms

350-400 ms 400-430 ms

350-400 ms

230-250 ms

-3 μV

3 μV

Within Category Mismatch - Exact Match, Negative Cluster, 250-400 ms 

Between Category Mismatch - Exact Match, Negative Cluster, 230-430 ms

Within Category Mismatch - Distortion, Negative Cluster 1, 170-430 ms



	 119	

Figure A2. Timing and scalp topography of late match condition clusters, in 50 ms increments. 
Significant cluster sites indicated with an asterisk. 
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APPENDIX B: COMPARISON OF ERP RESPONSE TO MATCH VS. DISTORTION 
CONDITIONS 
 
Figure B1. Match vs. distortion condition at 12 representative sites (scalp locations indicated at 
bottom right). An additional 15 Hz low pass filter was applied after averaging for display 
purposes. 
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APPENDIX C: VISUAL DISTANCE TO TARGET VS. PRESENTED OBJECT 
PROTOTYPICALITY 
 

We tested that visual distance to target effects were not driven by prototypicality of the presented 

object (relative to its own category), which would be independent of the presented scene context. 

Visual distance to the 36 prototype images (18 germs, 18 machines) from which the exemplar 

object images were derived was computed for each object image presented in the test phase. The 

same feature space and procedure was used to compute visual distance as when computing visual 

distance between the presented and target object images. The same random effects structure was 

maintained as in the match condition and visual distance to target analyses. Effects of visual 

distance to prototype, and the additive benefit of including visual distance to target as an 

additional predictor, were assessed using nested model comparisons. To test for effects of 

prototypicality, models containing fixed effects of match condition, response, and their 

interaction, as well as (grand mean centered) visual distance to prototype, were compared to a 

null model excluding the effect of prototype. All beta values and standard errors (in parentheses) 

are reported as 1000 times the original estimates. Effects of distance to prototype were 

significant or numerically trended in the same direction across all four components (N300: β = -

2.606 (1.466), 𝜒!! = 3.15, p < .1; N400: β = -5.094 (1.718), 𝜒!! = 8.77, p < .01; early LPC: β = -

5.122 (1.609), 𝜒!! = 10.10, p < .01; late LPC: β = -3.074 (1.670), 𝜒!! = 3.38, p < .1). Next, (grand 

mean centered) visual distance to target was included as an additional predictor to distance to 

prototype, to see if it explained substantially more variance than a null model containing only 

distance to prototype. Including visual distance to target improved model fit for all four 

components (N300: 𝜒!! = 64.39, p < .001; N400: 𝜒!! = 82.12, p < .001; early LPC: 𝜒!! = 27.00, p 

< .001; late LPC: 𝜒!! = 53.77, p < .001). The converse was less true: adding distance to prototype 

as an additional predictor to a model that already included distance to target improved model fit 

more modestly or not at all (N300: 𝜒!! < 1; N400: 𝜒!! = 2.61, p = .106; early LPC: 𝜒!! = 5.63, p < 

.05; late LPC: 𝜒!! < 1). Within models that included both distance to prototype and distance to 

target as fixed effects, effect size estimates tended to be larger and standard errors tended to be 

smaller for distance to target effects (N300: distance to target β = -3.573 (.445), distance to 

prototype β = -1.111 (1.482); N400: distance to target β = -5.470 (.603), distance to prototype β 

= -2.810 (1.739); early LPC: distance to target β = -3.008 (.579), distance to prototype β = -3.867 

(1.627); late LPC: distance to target β = -4.399 (.599), distance to prototype β = -1.237 (1.690)). 
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Taken together, visual distance to the specific target object image associated with each scene 

appears to be a more important explanatory variable than distance to the category prototype of 

the presented object. 
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APPENDIX D: VISUAL DISTANCE TO TARGET EXEMPLAR VS. TARGET 

PROTOTYPE  

 

We assessed whether participants compared the current object image in the test phase to the 

specific target exemplar object image paired with the scene, or to the prototype target object 

image. The same random effects structure was maintained as in the match condition and visual 

distance to target analyses. Effects of visual distance to target prototype, and the additive benefit 

of including visual distance to target exemplar as an additional predictor, were assessed using 

nested model comparisons. Models containing fixed effects of match condition, response, and 

their interaction, as well as visual distance to target prototype and visual distance to target 

exemplar, were compared to a null model excluding the effect of visual distance to target 

exemplar. Continuous predictors were grand mean centered. Including visual distance to target 

exemplar improved model fit for all four component time-windows (N300: 𝜒!! = 57.05, p < .001; 

N400: 𝜒!! = 62.92, p < .001; early LPC: 𝜒!! = 17.55, p < .001; late LPC: 𝜒!! = 34.07, p < .001). 
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APPENDIX E: EXPERIMENT 3.1 MATCH CONDITION PERMUTATION-BASED 
CLUSTER ANALYSIS 
 
Experiment 3.1 Match Condition Permutation-Based Cluster Analysis 
 
The following condition contrasts were assessed using a by-subjects dependent samples T-test on 

the subject-level averaged waveforms (down-sampled to 100 Hz) from 10 to 990 ms in 10 ms (1 

sample) increments:  

 

Match vs. Distortion 

Match vs. Within Category Mismatch 

Match vs. Between Category Mismatch 

Distortion vs. Within Category Mismatch  

Within Category Mismatch vs. Between Category Mismatch  

Between Category Mismatch – Swapped vs. Between Category Mismatch – New  

 

Positive and negative clusters were separately assessed. Individual channel-time-points were 

considered for cluster inclusion at α = .05, and were required to have at least two neighboring 

channels also included in the cluster. Cluster significance was computed by comparing the sum 

of the T values within each cluster to the distribution of the maximum sum of T values cluster 

score over a random permutation baseline, α = .025, n = 2000 repetitions. See Figure A1 for the 

distributions of significant clusters over time and space for each condition contrast. 

 

Distortion - Exact Match 

No significant clusters were found. 

 

Within Category Mismatch  - Exact Match 

A broadly distributed negative cluster was found from 340-990 ms, beginning at fronto-central 

sites and later extending to posterior sites (sumT = -3597, p = .0005). 

 

Between Category Mismatch - Exact Match 

A broadly distributed negative cluster was found from 300-710 ms (sumT = -2539, p = .0005). 
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Within Category Mismatch - Distortion 

A broadly distributed negative cluster was found from 510-930 ms (sumT = -1980, p = .0010). 

 

Between Category Mismatch  - Within Category Mismatch 

A positive cluster was found from 660-990 ms, focused on posterior sites (sumT = 1226, p = 

.0030). 

 

Between Category Mismatch Swap vs. New Trials 

No significant clusters were found. 
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Figure	E1.	Timing and scalp topography of experiment 3.1 match condition clusters. Significant 
cluster sites indicated with an asterisk. 
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