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ABSTRACT

Dynamic parallelism is a feature of general purpose graphics processing units

(GPUs) whereby threads running on a GPU can spawn other threads with-

out CPU intervention. This feature is useful for programming applications

with nested parallelism where threads executing in parallel may each identify

additional work that can itself be parallelized. Unfortunately, current GPU

microarchitectures do not efficiently support using dynamic parallelism for

accelerating applications with nested parallelism due to the high overhead of

grid launches, the limited number of grids that can execute simultaneously,

and the limited supported depth of the dynamic call stack.

The compiler techniques presented herein improve the performance of ap-

plications with nested parallelism that use dynamic parallelism by mitigating

the aforementioned microarchitectural limitations. Horizontal aggregation

fuses grids launched by threads in the same warp, block, or grid into a single

aggregated grid, thereby reducing the total number of grids launched and

increasing the amount of work per grid to improve occupancy. Vertical ag-

gregation fuses grids down the call stack with their descendant grids, again

reducing the total number of grids launched but also reducing the depth of

the call stack and removing grid launches from the application’s critical path.

Evaluation of these compiler techniques shows that they result in substan-

tial performance improvement over regular dynamic parallelism for bench-

marks representing common nested parallelism patterns. This observation

has held true for multiple architecture generations, showing the continued

relevance of these techniques.

This work shows that to make dynamic parallelism practical for accel-

erating applications with nested parallelism, compiler transformations can

be used to aggregate dynamically launched grids, thereby amortizing their

launch overhead and improving their occupancy, without the need for addi-

tional hardware support.
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CHAPTER 1

INTRODUCTION

Over the past decade, since the introduction of CUDA [1], graphics process-

ing units (GPUs) have proven effective as general purpose accelerators. The

most straightforward targets for GPU acceleration have been applications

with parallel computation patterns that are flat and regular in nature, and

are thus a good match for GPU architectures. However, as GPUs become

more mainstream as processors for general purpose acceleration, there is an

increased interest in using them to accelerate a wider range of computation

patterns. Of particular interest are computation patterns with nested paral-

lelism.

Nested parallelism is a computation pattern in which an application has

multiple levels of parallelism that can be exploited. The application typically

creates multiple workers to span the first level of parallelism, then each of

those workers does a certain amount of serial work, discovers more parallel

work, and creates multiple workers to span that next level of parallelism.

This process can happen recursively across multiple levels of nesting.

One example of applications that exhibit nested parallelism is graph traver-

sal [2] where the first level of parallelism consists of nodes at the current

frontier and the second level of parallelism consists of those nodes’ neigh-

bors. Another example is mesh refinement trees [3] where bounding boxes at

one level of parallelism are recursively divided into multiple sub-divisions at

subsequent levels of parallelism based on the amount of activity happening

in those boxes. Finally, some applications with inter-worker dependences can

be expressed using nested parallelism for convenience and ease of program-

ming. For example, producer-consumer chains in which a consumer worker

must wait for a producer worker to partially execute before it can begin its

execution can be expressed as though the consumer worker is nested in the

producer worker. Such producer-consumer chains are common in data sliding

algorithms [4] such as multi-dimensional array padding/unpadding as well as
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stream compaction.

To enable intuitive programming of nested parallelism computation pat-

terns on GPUs, a feature called dynamic parallelism [5, 6] was introduced

whereby threads running on the GPU can spawn other threads without CPU

intervention. Dynamic parallelism improves developer productivity and code

maintainability [2, 7, 8, 9] by allowing developers to express nested paral-

lelism computation patterns more naturally. For example, in graph traversal

algorithms, a thread visiting a node in the current frontier can launch other

threads to visit that node’s neighbors. Without dynamic parallelism, the

thread would have to loop over those neighbors sequentially, capturing less

parallelism, or use other queuing-based techniques, which can be complicated

and error prone. Similarly, in data sliding algorithms, a producer can launch

consumers when their dependences have been satisfied rather than the pro-

grammer having to manually write complicated synchronization code using

atomic operations.

While dynamic parallelism is an attractive feature for ease of programming,

it has seen limited adoption in practice due to its poor performance [7, 8, 10].

One limitation is that dynamic parallelism on current hardware incurs high

overhead when grids are launched from a GPU [7, 8]. Another limitation is

that there can be a limited number of grids that can execute at the same

time [7, 10]. These limitations are exacerbated when threads in a parent

grid (which are typically large in number) each launch a small child grid.

In this case, child grids are launched without enough work to amortize the

launch overhead, and the grid count limit is reached before the GPU is fully

utilized. Another limitation of dynamic parallelism is the bound on the

depth of the call stack, which is problematic for computation patterns with

deep recursion [7], such as those that express producer-consumer chains using

nested parallelism. All these limitations have led application developers to

resort to other programming techniques to avoid the use of dynamic paral-

lelism [8, 11, 12, 13].

There have been multiple efforts to address the inefficiency of dynamic

parallelism, both in hardware and software. Proposed hardware approaches

include coalescing dynamically launched thread blocks with existing grids on

the fly [10], co-locating child grids with their parents for better locality [14],

and providing feedback on the profitability of a launch before launching [15].

However, these hardware proposals are not available on current hardware.
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Proposed software approaches for addressing the inefficiency of dynamic

parallelism include overprovisioning parent grids with slave threads [8] or

reusing parent threads/blocks [16] to execute the nested parallel work. These

approaches eliminate dynamic grid launches entirely by using mega-kernels

that inline the code of all kernels participating in the call hierarchy into a

single one that is supplied with maximal resources. The latter approach also

uses persistent threads to keep parent threads/blocks active so that they

can be reused in the future. In contrast, the compiler techniques presented

herein avoid the use of mega-kernels and persistent threads by continuing to

use dynamic grid launches for executing nested parallel work, but controlling

the granularity of those launches.

The compiler techniques presented herein aim to reduce the overhead of

device-side grid launches that use dynamic parallelism by fusing child grids

together to amortize their launch overhead. Horizontal aggregation fuses

grids launched by threads in the same warp, block, or grid into a single

aggregated grid, thereby reducing the total number of grids launched and

increasing the amount of work per grid to improve occupancy. Vertical ag-

gregation fuses grids down the call stack with their descendant grids, again

reducing the total number of grids launched but also reducing the depth of

the call stack and removing grid launches from the application’s critical path.

These compiler techniques have been implemented in a real compiler and

have been evaluated on three recent generations of NVIDIA GPU archi-

tectures: Kepler, Maxwell, and Pascal. They have been evaluated using

benchmarks representing common nested parallelism patterns. The evalua-

tion shows that these techniques result in substantial performance improve-

ment over regular dynamic parallelism and continue to be relevant across

architecture generations.

This work shows that to make dynamic parallelism practical for accel-

erating applications with nested parallelism, compiler transformations can

be used to aggregate dynamically launched grids, thereby amortizing their

launch overhead and improving their occupancy, without the need for addi-

tional hardware support.
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CHAPTER 2

BACKGROUND AND MOTIVATION

Over the past decade, graphics processing units (GPUs) have gained adop-

tion as general purpose accelerators. As GPUs become more mainstream,

there is an increased interest in using them to accelerate a wider range of

applications such as applications exhibiting nested parallelism. This interest

has led to the introduction of a feature called dynamic parallelism. This

chapter gives an overview of the basic GPU architecture and programming

model (Section 2.1), describes nested parallelism (Section 2.2), describes dy-

namic parallelism and how it is used to accelerate applications with nested

parallelism (Section 2.3), and finally discusses the overhead of dynamic grid

launches to motivate the need for compiler optimizations to reduce this over-

head (Section 2.4).

2.1 GPU Architecture and Programming Model

Mainstream CPUs contain a few heavyweight cores which are significantly op-

timized for single-threaded performance with techniques such as out-of-order

execution, branch prediction, and other speculative execution techniques. In

contrast, GPUs consist of a large number of lightweight execution cores with

coarser-grain control, and are thus optimized for massive parallelism at the

expense of single-threaded performance. This section describes the GPU

architecture and programming model in detail.

Figure 2.1(a) illustrates a simplified diagram of a typical GPU architecture.

The most basic unit of a GPU is the streaming processor (SP), which executes

a single thread of instructions. Multiple SPs are grouped into a streaming

multiprocessor (SM). The number of SPs per SM varies significantly across

architectures: 32, 192, 128, and 64 for Fermi, Kepler, Maxwell, and Pascal

architectures, respectively. An SM contains a shared memory structure and
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Figure 2.1: GPU Architecture and Programming Model

an L1 cache that are private to the SM and shared across all SPs in the SM.

The shared memory is managed by the programmer, while the L1 cache is

managed by the hardware. The GPU is comprised of many SMs that all

share an L2 cache. The number of SMs per GPU also varies significantly

across architectures: 16, 15, 24, and 56 for Fermi, Kepler, Maxwell, and

Pascal architectures, respectively.

The structure of a CUDA program running on a GPU is illustrated in

Figure 2.1(b). The smallest unit of work in a CUDA program is a thread,

which executes a sequential stream of instructions on a single SP. Threads

are grouped into warps such that threads in the same warp logically execute

in lock-step (SIMD) on different SPs of the same SM. There are typically

32 threads per warp, which has been the case for all architecture genera-

tions to date, but that value is a characteristic of the hardware and could

change in the future. At the next level, warps are grouped into thread blocks.
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Threads/warps in the same thread block execute on the same SM, can share

memory via the shared memory structure, and can perform local barrier syn-

chronizations. Different warps of the same block are co-scheduled on the same

SM, which helps hide memory access latency. The number of threads per

block is chosen by the application but is limited by the hardware. The max-

imum number of threads allowed per block depends on the architecture but

has been 1,024 threads/block for all recent architecture generations. Finally

thread blocks are grouped into grids, the largest unit of work, which runs

on the entire GPU. Different thread blocks may execute on different SMs,

therefore threads in different thread blocks cannot access the same shared

memory structure. The only way for threads in different thread blocks to

communicate is through global memory.

Threads in different thread blocks cannot perform barrier synchronization

because there is no guarantee that they will all be scheduled simultaneously.

The only way to synchronize across all thread blocks is by terminating the

grid and launching a new one. This lack of scheduling control limits the

types of parallelism that can be expressed on the GPU. Some works have

demonstrated how barrier synchronization across all thread blocks can be

implemented using atomic operations on global memory [17, 18] and similar

techniques have also been recently added to CUDA [19]. However, these

techniques require the grid to use (and reuse) a limited number of thread

blocks to ensure that they are all simultaneously resident on the GPU in

order to synchronize.

2.2 Nested Parallelism

The grid structure of CUDA programs makes them a good fit for regular

computation patterns with a single level of parallelism, i.e., flat parallelism.

Figure 2.2(a) illustrates examples of computation patterns with flat paral-

lelism. One example is dense linear algebra operations such as dot-products,

dense matrix-vector multiplication, and dense matrix-matrix multiplication.

To process these operations, it is typically sufficient to launch a single grid

with as many threads as there are elements in the input or output vectors or

matrices. Another example of flat parallelism is stencil operations, for which

it is typically sufficient to launch a single grid with a thread to process each

6
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Figure 2.2: Examples of Flat and Nested Parallelism

grid point in the domain.

On the other hand, CUDA grids are unsuitable for computation patterns

with multiple levels of parallelism, i.e., nested parallelism. Applications with

nested parallelism typically create multiple workers to span one level of par-

allelism, then each of those workers does a certain amount of serial work,

discovers more parallel work, and creates multiple workers to span the next

level of parallelism. This process can happen recursively across multiple lev-

els of nesting. Figure 2.2(b) illustrates examples of computation patterns

with nested parallelism. One example is graph traversal [2] operations: to

capture the parallelism present in these operations, a worker must typically

be created for every node in the current frontier of the search, and each

worker then creates more workers to visit the neighbors of that node in par-

allel. Another example of nested parallelism is mesh refinement trees [3]. To

capture all the parallelism present in these operations, a worker must typi-

cally be created for every bounding box at one level of the tree. Each worker

then assesses the amount of activity happening in its box and, if needed,
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divides its box into multiple sub-divisions and creates a worker to process

each sub-division. This process may continue recursively.

2.3 Dynamic Parallelism

Dynamic parallelism is a feature that was introduced with CUDA 5.0 whereby

threads running on a GPU can create other threads without CPU interven-

tion [5]. Similar features were also introduced for other programming models

around the same time [6]. Dynamic parallelism enables intuitive program-

ming of nested parallel computation patterns on GPUs, thereby improving

developer productivity and code maintainability.

Without dynamic parallelism, there are several ways in which developers

can deal with nested parallelism in their applications. The simplest way is to

serialize the work of the second level of parallelism within the first. For ex-

ample, in graph traversal, a thread visiting a node can process its neighbors

serially. The drawback of this approach is that it does not extract all the
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parallelism available in the application and can suffer from control divergence

if adjacent threads have significantly different amounts of nested work. An-

other way to deal with nested parallelism without dynamic parallelism is to

have threads add their nested tasks to queues, then launch a subsequent grid

from the CPU based on the number of tasks in the queue. An illustration of

this approach is shown in Figure 2.3(a). The drawback of this approach is

that it is not an intuitive way to express nested parallelism which makes the

code hard to write, read, and maintain.

Dynamic parallelism presents a simple way for developers to express nested

parallelism in applications. Threads that discover nested parallel work can

simply launch a new grid of threads to execute that work in parallel as shown

in Figure 2.3(b). For example, in graph traversal, a thread visiting a node in

a graph can launch a new grid with as many threads as it has neighbors after

visiting its node and identifying the number of neighbors it has. Similarly, in

mesh refinement trees, a thread/block processing a bounding box can launch

a new grid with as many threads/blocks as there are sub-divisions after it

has discovered whether or not the bounding box needs to be sub-divided for

finer resolution.

2.4 Dynamic Parallelism Overhead

In addition to enhancing the ease of programming, one would expect dy-

namic parallelism to also improve resource utilization (hence, performance)

for applications with nested parallelism because it enables launching just the

9



right number of threads needed at each level of parallelism. However, it has

been shown that dynamic parallelism has high overheads in practice [7, 8]

which has resulted in low adoption.

Figure 2.4 shows the breakdown of execution time for some benchmarks

that use dynamic parallelism (see Chapter 5 for experimental details). These

results demonstrate that workloads using dynamic parallelism can be domi-

nated by the launch overhead. The compiler techniques presented herein aim

at reducing this high overhead incurred by dynamic grid launches to make

dynamic parallelism more usable in practice.
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CHAPTER 3

HORIZONTAL AGGREGATION

The primary compiler technique proposed in this work for mitigating the high

launch overhead of dynamic parallelism is horizontal aggregation. We use the

term aggregation in general to refer to a transformation whereby grids that

were originally launched by different threads are fused together into a single

grid that is launched by a single representative thread. Aggregation can be

thought of in various dimensions – threads, call stack, and code sequence – as

well as hybrid combinations of these dimensions. Aggregation across threads

is the aggregation of grids launched by different threads in the same grid

executing the same line of code. This dimension is referred to as horizontal

aggregation, which is the subject of this chapter. Aggregation across the call

stack is the aggregation of grids launched by a thread with the grids to be

launched by its children threads in the presence of recursion. This dimen-

sion is referred to as vertical aggregation and is the subject of Chapter 4.

Aggregation across the code sequence is the aggregation of grids launched

at different lines of code in a single kernel. This dimension of aggregation is

outside the scope of this work.

Horizontal aggregation can be performed at various levels of granularity,

which is the scope of parent threads in the same parent grid across which the

launched child grids are aggregated. For example, horizontal aggregation at

warp granularity means that grids launched by threads in the same warp are

aggregated into a single grid which is launched by one of the threads in that

warp. On the other hand, grids launched by threads in different warps remain

in separate aggregated grids. This work explores horizontal aggregation at

three different levels of granularity: warp, block, and grid. Warp and block

granularity is described in Section 3.1, while grid granularity is described in

Section 3.2.
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3.1 Warp and Block Granularity

Horizontal aggregation at warp (or block) granularity fuses grids launched by

threads in the same warp (or block) into a single aggregated grid launched by

a single thread. The transformations necessary for these two levels of gran-

ularity are similar, so they are explained together with differences indicated

where necessary.

3.1.1 Transformation Overview

Figure 3.1 illustrates the impact of horizontal aggregation at each level of

granularity using a toy example. Figure 3.1(a) shows an example of reg-

ular dynamic parallelism without any aggregation applied. Five child grid

launches are performed by five different threads of the parent grid. Fig-

ure 3.1(b) illustrates the transformation that takes place when horizontal

aggregation is applied at warp granularity. The first warp in the parent grid

originally had two threads each launching a child grid. In the transformed

version, the two child grids are aggregated into one aggregated grid, which is

launched by one of the two threads in the parent warp. This transformation

effectively reduces the number of kernel launches by up to a factor of the

warp size. Warps of size two are used in this toy example for simplicity, but

warps are typically 32 threads, as explained in Section 2.1.

Figure 3.1(c) illustrates the transformation that takes place when hori-

zontal aggregation is applied at block granularity. Here, only one thread per

block launches a kernel on behalf of all the threads in the block. For example,

the first block in the original kernel performs three different grid launches by

different threads. These three grids are converted into one aggregated grid

launched by one thread. This transformation effectively reduces the number

of grid launches by up to a factor of the block size, which can be up to 1,024,

as explained in Section 2.1.

Figure 3.1(d) illustrates the transformation that takes place when hor-

izontal aggregation is applied at grid granularity. This transformation is

discussed in Section 3.2.
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01  kernel<<<gD,bD>>>(args)

02  __global__ void kernel(params) {

03      kernel body

04  }

05  allocate arrays for args, gD, and bD
06  store args in arg arrays
07  store gD in gD array, and bD in bD array
08  new gD = sum of gD array across warp/block (includes implicit barrier)
09  new bD = max of bD array across warp/block (includes implicit barrier)
10  if(threadIdx == launcher thread in warp/block) {
11     kernel_agg<<<new gD,new bD>>>
12                 (arg arrays, gD array, bD array)
13  }

14  __global__ void kernel_agg(param arrays, gD array, bD array) {
15      calculate index of parent thread
16      load params from param arrays
17      load actual gridDim/blockDim from gD/bD arrays
18      calculate actual blockIdx
19      if(threadIdx < actual blockDim) {
20          kernel body  (with kernel launches transformed and with
21                        using actual gridDim/blockDim/blockIdx)
22      }
23  }

(a) Original Kernel Call

(b) Original Kernel

(c) Transformed Kernel Call (called in a kernel)

(d) Transformed Kernel (called from a kernel)

Figure 3.2: Code Generation for Aggregation at Warp and Block Levels of
Granularity
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3.1.2 Code Transformation of Kernel Call

The code transformation necessary to perform horizontal aggregation at warp

(or block) granularity is shown in Figure 3.2. Pseudocode is used to keep

the explanation simple. Figure 3.2(a) shows the original dynamic parallelism

kernel call as called from a parent kernel. The kernel is configured with the

grid dimension gD (number of thread blocks in the launched grid) and the

block dimension bD (number of threads in a block) as well as passed a set of

arguments args (line 01). Note that gD and bD can be arbitrary expressions

so their values are not known at compile time.

Figure 3.2(c) shows how kernel calls such as the one in Figure 3.2(a) are

transformed to achieve horizontal aggregation at warp (or block) granular-

ity. The first step in the transformed code is for the warp (or block) to

allocate global arrays to store the arguments and configurations to be passed

to the aggregated kernel (line 05). Since dynamic memory allocation on the

device using cudaMalloc can be expensive, this overhead is avoided by pre-

allocating a memory pool on the host and passing it to the parent kernel.

The parent kernel can therefore perform lightweight allocation of global ar-

rays using atomic operations to grab memory from that pool. The size of

the pool can be provided as a compiler option if the default size is too large

or too small.

Next, each thread stores its arguments and configurations in the allocated

arrays (lines 06-07). The reason the aggregated kernel needs to be passed

these arguments and configurations in arrays is that different threads in the

original parent kernel may have been passing different arguments and con-

figurations to their child kernels and all these values need to be passed to

the aggregated kernel. In practice, not all arguments and configurations vary

across parent threads, which presents an opportunity for optimizations, as

discussed in Sections 3.4.1 and 3.4.2.

Next, the number of thread blocks in the aggregated grid is calculated

(line 08). The number of thread blocks in the aggregated grid is the sum of

the number of thread blocks in each of the original grids launched by each

thread participating in the aggregation. Likewise, the number of threads per

block in the aggregated grid is calculated (line 09). The number of threads

per block in the aggregated grid is calculated as the maximum number of

threads per block in all child grids launched. The maximum is used is to
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ensure that all blocks in the aggregated child grid have enough threads to

execute their work. However, using the maximum means that some blocks

may have more threads than they originally did. To address this situation,

these threads are masked out, as shown later.

Finally, one of the threads in the warp (or block) executes a single ag-

gregated kernel launch on behalf of the others (line 10). A synchronization

across the threads in the warp (or block) is needed before the launch to en-

sure that all the threads have completed the preparation of the arguments

and configurations. This synchronization is already achieved implicitly dur-

ing the warp-wide (or block-wide) summation/max. In the aggregated kernel

call, the new configurations are used (line 11), arguments are replaced with

argument arrays, and arrays containing the configurations for each original

child are added (line 12).

3.1.3 Code Transformation of Called Kernel

In addition to transforming kernel calls to collect parameters and calculate

the new configurations of the aggregated grid, a version of the launched kernel

must also be created that identifies its original caller, unpacks its parameters,

and calculates its actual configurations accordingly. Figure 3.2(b) shows

the original example kernel launched in Figure 3.2(a). The kernel receives

a set of parameters params and has a kernel body that performs a set of

operations using the various parameters as well as the reserved indexing

variables threadIdx, blockIdx, blockDim, and gridDim.

Figure 3.2(d) shows how the kernel in Figure 3.2(b) is transformed into an

aggregated version. First, the function signature of the kernel is transformed

(line 14) so that all parameters are converted into parameter arrays that con-

tain the parameters passed by each of the original parent threads. Moreover,

configuration arrays are added to the parameter list to pass the number of

blocks and threads per block of each of the original non-aggregated grids.

Next, code is added before the kernel body for the block to identify which

thread in the parent warp (or block) was its original parent (line 15). For the

block to identify its original parent, it needs a scanned (prefix sum) version

of the gD (gridDim) array to find at which point in the aggregated grid the

blocks of each parent thread are. Since all child blocks need to scan the
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same gD array, the scan is actually performed once by the parent warp (or

block) before the array is passed to the aggregated child kernel (not shown

in Figure 3.2). Conveniently, the scan can be performed while the reduction

is taking place to calculate the total number of thread blocks making it incur

little additional overhead. With the scanned array of grid dimensions, the

child thread block searches the array to identify between which two values

its own blockIdx falls, thereby identifying the thread index of its original

parent thread. The search is performed as follows. First, an initial guess is

made that assumes that the child thread blocks in the aggregated grid are

evenly distributed across parent threads. This initial guess will be correct

in cases where all parent threads launch the same number of child blocks.

If the initial guess is incorrect, then an actual search is performed. If the

number of threads available in the child thread block exceeds the size of the

parent warp/block, then each thread checks one element of the scanned array.

The thread which finds the correct position broadcasts the result to the rest

of the threads in the thread block using shared memory. If the number of

threads available in the child thread block is less than the size of the parent

warp/block, then a p-ary [20] search is used.

After identifying its original parent, the block is then able to locate its

actual parameters and configurations and load them (lines 16-18). Since

the array containing the number of thread blocks in each original grid is

scanned, the actual gD configuration is recovered by subtracting adjacent

scan elements. The block also calculates its actual blockIdx within the

original non-aggregated grid by subtracting its blockIdx in the aggregated

grid from the starting point of the original grid in the aggregated grid. A

check against the recomputed actual blockDim is made to mask out threads

that did not exist in the original child grid (line 19). This accounts for the

variation in the number of threads per block in the grids before aggregation

and the usage of the maximum for all grids after aggregation.

Finally, in the kernel body, all uses of blockDim and blockIdx are replaced

with the actual values computed previously (lines 20-21). Moreover, all kernel

launches are also transformed into aggregated kernel launches which supports

having multiple levels of nesting.
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(a) Original Launch

param=x
gD=1
bD=4

param=y
gD=2
bD=3

(b) Transformed Launch

param_arr[]={x,-,y,-}
gD_arr[]={1,0,2,0}
bD_arr[]={4,0,3,0}

gD=sum(gD_arr)=3
bD=max(bD_arr)=4

gD_scan={1,1,3,3}

gD_scan[p-1] ≤ bI < gD_scan[p]
param=param_arr[p]

gD’=gD_arr[p]
bD’=bD_arr[p]

bI’=bI-gDscan[p-1]

gD : gridDim
bD : blockDim
bI : blockIdx
p : parent

threadIdx

bI=0
p=0

param=x
gD’=1
bD’=4
bI’=0

bI=1
p=2

param=y
gD’=2
bD’=3
bI’=0

bI=2
p=2

param=y
gD’=2
bD’=3
bI’=1

Figure 3.3: Aggregation Logic Example

3.1.4 Aggregation Logic Example

Figure 3.3 shows a toy example of how horizontal aggregation works in prac-

tice. In the original kernel launch in Figure 3.3(a), the parent warp (or block)

has 4 threads. Parent thread 0 launches a child grid with 1 thread block of

4 threads and passes the value x the parameter param. Parent thread 2

launches a child grid with 2 thread blocks of 3 threads and passes the value

y the parameter param.

In the transformed version in Figure 3.3(b), the following changes take

place. Arrays of length 4 (equal to the number of original parent threads)

are allocated for the parameter param as well as the kernel launch configu-

rations gD and bD. Parent threads 0 and 2 store their param values x and

y respectively in their corresponding slot in the array for that parameter.
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Similarly, they store their values for gD and bD in the configuration arrays.

The sum of the values in the gD array is calculated to be 3, which is the

number of thread blocks to be launched in the aggregated grid. The maxi-

mum of the values in the bD array is calculated to be 4, which is the number

of threads per block to be launched in the aggregated grid. The gD array

is actually scanned while it is being summed resulting in the array gD scan

where every entry in the array indicates the number of child thread blocks

up to and including the parent thread for that position.

In the launched kernel, the first step is for a block to identify the index of

its parent thread in the parent warp (or block) denoted by p. To do so, the

block searches the gD scan array for the index p that satisfies the condition

gD scan[p− 1] ≤ bI < gD scan[p] where bI is the index of the block in the

aggregated array. For example, block 1 identifies that its index 1 is greater

than or equal to gD scan[1] and less than gD scan[2]; therefore, its parent

thread must have been thread 2.

After having identified its parent thread, the thread block loads the ac-

tual parameters and configurations from the arrays to be used by the child

threads. It also calculates its real block index by subtracting the number of

thread blocks up to and including the previous parent thread’s thread blocks.

For example, block 2, whose parent thread is 2, subtracts gD scan[1] = 1

from its block index to obtain its actual block index which is 1. Finally, the

thread block masks out threads that did not exist in the original child grid.

For example, all thread blocks in the aggregated child grid have 4 threads

because the children of parent thread 0 (i.e., block 0) need 4 threads to ex-

ecute. However, the children of parent thread 2 (i.e., blocks 1 and 2) only

need 3 threads so they mask out 1 thread based on the recalculated block

dimension.

3.2 Grid Granularity

Horizontal aggregation at grid granularity is when grids launched by threads

in the same parent grid are fused together into a single grid launched from the

host. While aggregation at warp granularity and aggregation at block gran-

ularity are fairly similar, aggregation at grid granularity has some significant

differences, which are highlighted in this section.
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3.2.1 Transformation Overview

Figure 3.1(d) illustrates the transformation that takes place when horizontal

aggregation is applied at grid granularity. At this granularity, all the original

child grids are aggregated into a single grid. Since no global synchronization

on the GPU is allowed across threads in different blocks, a single thread in

the parent grid cannot be chosen to launch the grid on behalf of the others

because it is not possible for that thread to know when the others are ready.

For this reason, the aggregated grid is instead launched from the host after

the parent grid terminates. For this transformation to be possible, it must be

legal for the grid launch to be postponed until later in the execution. For such

postponing to be legal, the transformation requires that the parent kernels do

not explicitly synchronize to wait for their child kernels to finish (by default,

kernel launches are asynchronous which means that parent execution can

continue before the child grid completes). For this reason, aggregation at

grid granularity is only supported when there is no explicit synchronization

on child grids by the parent grid.

3.2.2 Code Transformation of Kernel Call

Figure 3.4 shows the code transformation applied to perform horizontal ag-

gregation at grid granularity for the same example as in Figure 3.2. Many

parts of the transformation are similar to aggregation at warp and block

granularity, but there are some key differences.

The main difference in the transformation of the kernel call is that the

call is moved to the host function that calls the parent instead of being

called from within the kernel. This transformation is shown in Figure 3.4(c),

wherein the kernel launch in Figure 3.4(a) is replaced by just the allocation

of arrays and storing of parameters and configurations (lines 05-07). After

that, once the kernel returns to the host, a new kernel is called to scan the

gD array and calculate the total sum to get the number of thread blocks

in the aggregated grid (line 08). The scan operation must be done by a

separate kernel call because it must wait for threads in all thread blocks

to finish storing their configurations which requires a global synchronization

that is achieved via kernel termination. Similarly, another kernel is called to

calculate the maximum number of threads (line 09). Finally, a launchpad
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01  kernel<<<gD,bD>>>(args)

02  __global__ void kernel(params) {

03      kernel body

04  }

On device in place of child kerne launch:
05  allocate arrays for args, gD, and bD
06  store args in arg arrays
07  store gD in gD array, and bD in bD array

On host after parent kernel launch:
08  new gD = sum of gD array across grid
09  new bD = max of bD array across grid
10

11  kernel_launchpad(new gD,new bD
12                    arg arrays, gD array, bD array)
13

14  __global__ void kernel_agg(param arrays, gD array, bD array) {
15      calculate index of parent thread
16      load params from param arrays
17      load actual gridDim/blockDim from gD/bD arrays
18      calculate actual blockIdx
19      if(threadIdx < actual blockDim) {
20          kernel body  (with kernel launches transformed and with
21                        using actual gridDim/blockDim/blockIdx)
22      }
23  }

24  void kernel_launchpad(gD, bD, param arrays, gD array, bD array) {
25      kernel_agg<<<gD, bD>>>(arg arrays, gD array, bD array)
26      postponed kernel launches from kernel body (if any)
27  }

(a) Original Kernel Call

(b) Original Kernel

(c) Transformed Kernel Call (called in a kernel)

(d) Transformed Kernel (called from a kernel)

Figure 3.4: Code Generation for Aggregation at Grid Granularity
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function is called which launches the aggregated child grid from the host (line

11-12).

3.2.3 Code Transformation of Called Kernel

The transformation of the called kernel for horizontal aggregation at grid

granularity is similar to that at warp and block granularity. However, one

key difference is that this kernel is launched using a launchpad function

from the host rather than from another kernel. If the child kernel body

itself has any kernel calls that are to be aggregated, those kernel calls can

be moved to the launchpad function. The usage of a launchpad function

is important for handling multiple levels of nesting or recursion. Without

the usage of launchpad functions, the compiler must extract all nested calls

in the call hierarchy at the call site of the uppermost parent call, which is

difficult, especially in the case where there is recursion and the depth of the

call hierarchy is not statically known. This problem does not exist at warp

and block granularity because the child kernel call is transformed within the

parent kernel, not moved outside the parent kernel like with grid granularity.

3.2.4 Limitations

Unlike horizontal aggregation at warp and block granularity, there are some

limitations faced at grid granularity due to the inability to perform a grid-

wide synchronization to perform the aggregation on the device. The first

limitation, which has been mentioned in Section 3.2.1, is that horizontal

aggregation at grid granularity requires that the parent thread does not ex-

plicitly synchronize (using cudaDeviceSynchronize()) on the kernel launch

that is being aggregated. The reason is that if the parent thread explicitly

synchronized on the kernel launch, then the kernel launch cannot be post-

poned after the synchronization, and therefore it cannot be taken outside the

kernel to be launched from the host.

The second limitation is when child kernel launch takes place inside of a

loop. In this case, the number of launches that each parent thread performs

may not be known. Handling such a case requires that the number of loop

iterations in each thread be tracked so that it can be recovered on the host to
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Horizontal Aggregation Granularity

None Warp Block Grid

+ fewer launches
+ coarser kernels

+ work is available sooner
+ less aggregation overhead

Figure 3.5: Aggregation Granularity Tradeoffs

identify how many aggregated child grids to launch. While this is possible,

it is not currently supported.

3.3 Tradeoffs between Levels of Granularity

Figure 3.5 shows the tradeoffs associated with varying the level of granular-

ity at which horizontal aggregation is performed. Coarser granularity has

the advantage of having fewer launches, hence fewer cycles wasted due to

launch overhead, and larger grids, hence better resource utilization due to

the availability of more thread blocks to schedule at a time. For example,

at grid granularity, there will only be a single child grid launch per kernel

call, whereas at warp granularity, there will be as many child grid launches

as there are warps in the parent grid with at least one thread in that warp

performing a dynamic launch.

However, finer granularity has the advantage of work being available sooner

because there are fewer parent threads to wait for, and lower aggregation

overhead due to smaller scan and max operations that need to be performed

and a smaller array that needs to be searched to identify the original parent

thread.

3.4 Additional Optimizations

This section describes a few additional optimizations that enhance horizontal

aggregation. While the techniques described in this section are not essen-

tial for correctness, they result in substantial performance improvements in

some cases and are therefore important for the overall performance of this

technique. These optimizations include: scalarization of uniform arguments,
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scalarization of uniform configurations, sparse in-kernel scan of block dimen-

sions at grid granularity, and aggregation of dynamic memory allocation.

3.4.1 Scalarization of Uniform Arguments

Recall that when grids are aggregated, the arguments passed to the original

grids are stored in arrays to be passed to the aggregated grid as shown in

Figure 3.2 line 06. However, it is often the case that some of these arguments

are uniform across all parent threads. In this case, storing duplicate values of

these configurations and arguments is a waste of space and, more importantly,

a waste of time spent storing them to global memory in the parent threads

and then loading them from global memory in the child grids. Instead, as an

optimization, no arrays are allocated for uniform arguments, and they are

passed as scalar values to the child grid.

To support this optimization, it is necessary for the compiler to analyze

the code to identify which arguments are uniform and which ones are not.

This analysis is done via standard iterative dataflow analysis techniques that

iterate over the code until convergence. The following are the main rules

applied by the analysis:

• Constant literals are uniform.

• Reserved words blockDim and gridDim are uniform.

• Reserved words threadIdx and blockIdx are non-uniform.

• A unary, binary, or ternary operation is uniform if all its operands are

uniform, and non-uniform otherwise.

• An array access is uniform if the base pointer and index are both uni-

form, and non-uniform otherwise.

• An object member variable access is uniform if the base object is uni-

form, and non-uniform otherwise.

• A function call return value is conservatively considered non-uniform

unless the function is a pure function with uniform arguments.

• The LHS of an assignment statement is uniform if its RHS is uniform

and the assignment takes place in a non-divergent context.
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• A control structure is non-divergent if its condition is uniform and

divergent otherwise.

Note that the analysis also gives information about when code is in a diver-

gent or non-divergent context. This information is useful for handling control

divergence as described in Section 3.5. Such analyses on variable uniformity

and control structure divergence are useful in research and tools that involve

transformation and optimization of GPU code [21, 22, 23, 24].

3.4.2 Scalarization of Uniform Configurations

Recall that when grids are aggregated, the configurations passed to the origi-

nal grids are stored in arrays to be passed to the aggregated grid as shown in

Figure 3.2 line 07. This passing of arrays can be avoided if the configurations

are uniform, similar to what is done for uniform arguments as discussed in

Section 3.4.1. Moreover, if the block dimension configuration is uniform, the

maximum operation over the child block dimensions is unnecessary and can

be eliminated. In this case, there is no need to pass any parameter for the

child block dimension since the child can obtain its block dimension from the

blockDim reserved word.

3.4.3 Sparse In-kernel Scan of Block Dimensions at Grid
Granularity

One of the most expensive operations in the aggregation logic is the scan

operation which is used to calculate the grid dimension of the aggregated

grid and also to provide an array which the child thread blocks can search

to identify their original parent. While the cost of these operations remains

reasonable at warp and block granularity, it can become prohibitive at grid

granularity for two reasons:

1. At grid granularity, the scan operation must be performed in a separate

grid to ensure global synchronization which incurs the overhead of an

additional grid launch and does not benefit from the grid dimension

values being in the cache as is the case at warp and block granularity.
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kernel<<<gD,bD>>>(arg1,arg2,arg3)arg1 arg2 arg3gD

1 2 1 2 1

1 2 1 2 10 0 0

CPU 
thread

Scan

1 3 3 4 4 6 7 7

Search

large array to scan

additional launch overhead

large array to search

(a) No aggregation

(b) Horizontal aggregation at grid granularity with regular scan

(c) Horizontal aggregation at grid granularity with sparse in-kernel scan

CPU 
thread

1 2 4 5 7

Atomics

Search

Order arguments 
according to scanned array

1 2 1 2 1
smaller array 

to search

no intermediate 
grid launch to scan

Figure 3.6: Sparse In-kernel Atomic-based Scan of Block Dimensions at
Grid Granularity

2. While the widths of the scanned array for warp and block granularity

are 32 and ≤ 1,024 respectively, the width can be much greater at

grid granularity since a parent grid may contain many more threads.

This larger array results in a larger scan operation after the parent

terminates and a larger search operation by each child block, which

can incur high latency.

These drawbacks are illustrated in Figure 3.6(a).

To mitigate this overhead, a different technique is used at grid granularity

to scan the grid dimension values as illustrated in Figure 3.6(b). Instead of

performing a grid-wide scan after all threads have stored their values, atomic
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operations can be used to calculate the total number of thread blocks, as

well as the number of thread blocks up to a certain thread for each parent

thread. Using this approach, parent threads will likely not access the atomic

operation in the same order as their order in the parent thread block so the

“scanned” array will not be in that order. However, this change in order

is acceptable because what matters is that whatever order parent threads

use to store the cumulative grid dimensions, this same order is used to store

arguments and configurations in their respective arrays. Using this technique,

the “scan” operation can be performed on the fly in the parent grid without

the need for a separate grid launch.

An additional advantage of performing the scan operation in this way is

that zeros can be eliminated from the array by the parent thread simply not

grabbing an entry in the array if it does not perform a launch (as opposed

to storing a zero). By doing so, the array becomes much smaller when the

child launches are sparse, resulting in a faster search operation by the blocks

in the aggregated child grid. Child launches are sparse when the launch is

guarded by some condition that is not true for all parent threads.

3.4.4 Aggregation of Dynamic Memory Allocation

In the same way that grid launches performed by every thread incur high

overhead and aggregating these launches amortizes that overhead, dynamic

memory allocation by every thread also incurs high overhead and can be

aggregated. When every thread in the grid calls cudaMalloc for a small

amount of memory as shown in Figure 3.7(a), they put a lot of pressure

on the device to service these requests. Instead, calls to cudaMalloc are

aggregated as shown in Figure 3.7(b) by: (1) summing the total requested

memory allocation across all threads in the scope of aggregation, (2) using

one thread to allocate that total memory on behalf of the others, then (3)

redistributing the allocated memory to all threads. It is only possible to

aggregate cudaMalloc at warp and block granularity since cudaMalloc is

a blocking call and blocking calls cannot be aggregated at grid granularity

as explained in Section 3.2.4. This observation is not a limitation since

cudaMalloc can be aggregated at a different granularity than other launches

in the same kernel so it will not block grid granularity aggregation from being
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Figure 3.7: Aggregation of Dynamic Memory Allocation

applied elsewhere.

One important consideration when aggregating calls to cudaMalloc is en-

suring that the corresponding calls to cudaFree behave correctly. Simply

partitioning the allocated buffer across threads is not viable because the cor-

responding calls to cudaFree will either attempt to free in the middle of the

buffer which will fail, or free the entire buffer which would deallocate data

that may still be in use by other threads. For this reason, the aggregated

call to cudaMalloc not only partitions the allocated buffer across threads,

but also stores some metadata in the buffer that is used by a transformed

version of cudaFree to perform the deallocation correctly.

Figure 3.7(c) shows the metadata stored in the buffer containing the aggre-

gated allocations. Upon allocation, metadata is initialized at the beginning

of each sub-buffer in the aggregated buffer containing the size of the sub-

buffer as well as its offset from the beginning of the buffer. Metadata is
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A

if(condition) {

B

kernel<<<gD, bD>>>(arg1, arg2, arg3);

C

}

D

(a) Original Divergent Kernel

A

__gD = 0
if(condition) {

B

__gD = gD;

C

}

kernel<<<__gD, bD>>>(arg1, arg2, arg3);

D

(b) Divergence Elimination by Postponing Kernel Launch

Figure 3.8: Handling of Control Divergence

also initialized at the beginning of the entire buffer containing the used size

which is the amount of space in the buffer that is still being used (initially, all

of it). When cudaFree is called on each of the sub-buffers, the transformed

call to cudaFree looks up the offset of the sub-buffer being freed, uses it to

identify the location of the used size variable, and atomically decrements

that variable by size. If used size reaches zero, then all the sub-buffers in

the buffer have been freed, so the thread that last atomically decremented

the counter then proceeds to free the entire buffer.

3.5 Handling of Control Divergence

For horizontal aggregation at warp and block granularity, all threads in the

warp or block must be active to participate in the aggregation operations.

These operations include the scan and maximum operations necessary to

compute the aggregated grid’s configurations. Moreover, the designated

launcher thread must always be active to allocate from the memory pool

as well as launch the aggregated grid on behalf of the other threads. This

requirement does not exist when aggregation is applied at grid granularity

since the scan and maximum operations are done in separate kernels or us-

ing atomics and the aggregated launch is performed from the host after the

kernel terminates.

29



The requirement that all threads are active to participate in aggregation

operations is violated in the presence of control divergence. For this reason,

the parent kernel is transformed to ensure that the child kernel is called

at a point in the program when all threads are active. Therefore, the child

kernel call is postponed to a later point in the parent kernel where there is no

control divergence. These points in the program can be identified using the

uniform variable analysis and divergence analysis described in Section 3.4.1.

The transformation also requires that the kernel’s launch configurations and

arguments are preserved for use at the later launch point. An example of

this transformation is shown in Figure 3.8. Since launches are asynchronous

by default, performing this transformation is legal provided that there is no

explicit synchronization (using cudaDeviceSynchronize()) by the parent

thread between the launch’s original and new location and that the launch

is not taken outside of a loop.
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CHAPTER 4

VERTICAL AGGREGATION

The horizontal aggregation transformation is good for wide and short call

trees where many threads in the same parent grid launch child grids simulta-

neously. An example of such a call tree is shown in Figure 4.1(a). However,

for tall and narrow call trees, such as that shown in Figure 4.1(b), horizontal

aggregation is not useful because there are not many launches at each level

of the tree to be aggregated. For this reason, another type of aggregation is

proposed, which is vertical aggregation.

Vertical aggregation is a transformation whereby kernel launches are aggre-

gated across different levels of the call tree. In other words, thread blocks of

child grids are aggregated with the thread blocks of their parent grids. This

requires target kernels to be recursive since aggregation must be applied to

launches of the same kernel. In this work, a specific type of recursive kernel

is targeted, namely data sliding kernels [4], which are producer-consumer

kernels whereby each grid consists of a single thread block that is launched

by its producer and that subsequently launches its consumer resulting in the

most extreme version of a tall and narrow call tree such as that shown in

Figure 4.1(b).

It is possible to implement data sliding kernels without dynamic parallelism

using traditional atomic operations for inter-block wait and release flags [4];

however, these kinds of programs are difficult to write. Dynamic parallelism

offers a more intuitive way to express these kinds of patterns. However, using

dynamic parallelism has several issues: (1) there are many grid launches, (2)

there are many small grids in flight, and (3) there is a deep call stack. Vertical

aggregation aims to address these issues.

Throughout the explanation in this chapter as well as in the evaluation

in Chapter 7, the transformation for vertical aggregation is broken down

into multiple steps to better understand the workings of the transformation

as well as the breakdown of its performance benefit. These steps are pro-
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(a) Wide and short trees suitable 
for horizontal aggregation

(b) Tall and narrow trees suitable 
for vertical aggregation

Figure 4.1: Horizontal vs. Vertical Aggregation
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motion (Section 4.1), aggregation (Section 4.2), overlap (Section 4.3), and

aggregation with overlap (Section 4.4). Each step in the transformation is

explained with reference to the baseline program shown in Figure 4.2. In this

program, every thread block is considered to execute a prologue, launch the

next thread block, and then execute an epilogue.

4.1 Launch Promotion

Promotion is the first step in the transformation whereby recursive kernel

calls are hoisted to the beginning of the kernel body. Figure 4.3 illustrates the

transformation that takes place when promotion is applied to the example in

Figure 4.2. In the transformed code, the kernel call is moved to the beginning

33



of the kernel before the prologue. However, to preserve correct ordering in

between the parent and child, code is inserted to release a flag that the child

will acquire to know when it is safe to execute. In all but the first kernel

instance (which is launched from the host), code is also inserted before the

prologue to acquire the release from the parent. The main advantage of

this step is that the launch overhead is removed from the critical path and

replaced with a more lightweight release acquire chain. The launch is thus

set up by the device runtime and the child thread blocks are scheduled on

the SMs while the parent thread block executes the prologue and before it

reaches the release operation.

Figure 4.4 shows in pseudocode the code transformation that takes place

to achieve kernel launch promotion. The target pattern of the original kernel

is shown in Figure 4.4(a). The pattern is such that the kernel executes

some prologue code, then selects a single launcher thread to perform a kernel

launch, then executes an epilogue code. The kernel launch must be configured

to have a single thread block. Moreover, the parameters/arguments of the

kernel can be classified into two categories. The first category is the available

parameters/arguments which are those that are available at the beginning

of the kernel before the prologue. The second category is the postponed

parameters/arguments which are those that are not available until after the

prologue.

The kernel in Figure 4.4(a) is transformed to two different versions, one

called from the host and one called recursively from the device, shown in

Figures 4.4(b) and (c) respectively. In the kernel called from the host in

Figure 4.4(b), the transformation is as follows. First, code is inserted before

the prologue for the launcher thread to perform the launch prematurely.

The launcher thread starts by allocating buffers (line 10) to be passed to

the child grid where the postponed arguments will be stored later once they

become available. The launcher thread also allocates a flag that is used by

the parent to communicate with the child to release it when its data is ready

(line 11). The child is then launched prematurely (lines 12-13) with the

available arguments kept as they are and the postponed arguments replaced

with their corresponding buffers. Performing a premature launch requires

that any launch condition (not shown in the figure) also be promotable to

the beginning of the kernel before the epilogue. In cases where the condition

is not promotable because it is dependent on the prologue, the launch can be
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01  __global__ void kernel(paramsavail, paramspost) {

02      prologue

03      if(launcher thread) {

04          kernel<<<1,nThreads>>>(argsavail, argspost)

05  }

06  epilogue

07  }
(a) Original Kernel

08  __global__ void kernel(paramsavail, paramspost) {

09      if(launcher thread) {
10          allocate postponed arg buffers
11          allocate child flag
12          kernel_from_kernel<<<1,nThreads>>>
13  (argsavail, postponed arg buffers, child flag)
14  }

15      prologue

16      if(launcher thread) {

17          store argspost in postponed arg buffers
18          memory fence
19  set child flag to release child
20  }

21  epilogue

22  }
(b) Transformed Kernel (called from host)

23  __global__ void kernel_from_kernel(paramsavail,
24                               postponed param buffers, flag) {
25      if(launcher thread) {
26          allocate postponed arg buffers
27          allocate child flag
28          kernel_from_kernel<<<1,nThreads>>>
29  (argsavail, postponed arg buffers, child flag)
30  }
31      wait to acquire flag
32      load paramspost from postponed param buffers
33      prologue

34      if(launcher thread) {

35          store argspost in postponed arg buffers
36          memory fence
37  set flag to release child
38  }

39  epilogue

40  }
(c) Transformed Kernel (called from kernel)

argsavail : arguments available at the beginning of the kernel

argspost : arguments whose values are “postponed” because they

are not available at the beginning of the kernel

paramsavail : parameters corresponding to available arguments 

paramspost : parameters corresponding to postponed arguments 

Figure 4.4: Code Generation for Basic Promotion
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performed speculatively and an abort signal can be sent instead of a release

signal to abort trailing launches.

After the child grid is launched prematurely, the prologue is executed nor-

mally. At the end of the prologue, the values of the postponed arguments

become available so the launcher thread stores these variables in the post-

poned argument buffers previously allocated (line 17). A memory fence is

then executed to ensure that these values become visible to the child grid

before it is released (line 18). Finally, the flag is set to be released (line 19)

which signals to the child that it is safe to start executing. The release is im-

plemented in CUDA as a non-cached store while the acquire is implemented

as a polling loop with a volatile load. In OpenCL 2.0 [25], it is also possible

to use built-in support for release and acquire. After the child is released,

the execution of the epilogue continues normally.

The second version of the transformed kernel is the one intended to be

launched from the device. The transformation is shown in Figure 4.4(c). The

transformation is largely similar to that in Figure 4.4(b) with a few essential

differences. One difference is that postponed parameters are replaced with

parameter buffers and a flag parameter is also added to the parameter list

(line 24). Another difference is that between the premature child launch

and the prologue, a wait is inserted to make sure that a child thread block

waits for its parent thread block to release it before executing its prologue

(lines 31). After the thread block is released, it also loads the postponed

parameters from the parameter buffers.

4.2 Vertical Aggregation

After kernel launches are promoted, they pave the way for two orthogonal op-

timizations: vertical aggregation and overlap of independent portions of the

prologue. This section discusses how promotion enables vertical aggregation

to be applied.

Figure 4.5 illustrates the transformation that takes place when aggrega-

tion is applied to the promoted kernel launch. The main difference between

this version and the previous version with just promotion illustrated in Fig-

ure 4.3 is that the chain of single thread block launches is replaced with a

single launch of a large pool of descendant thread blocks. The launching
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thread block also allocates buffers and flags for all of its descendants in the

aggregated grid as opposed to just its immediate descendant.

The size of the aggregated descendant pool defines the granularity of

vertical aggregation. Large pools imply more aggregation, therefore fewer

launches and larger kernels with better occupancy. They also imply longer

chains of thread blocks since the depth of the original call stack is divided by

the granularity of aggregation. If the pool of descendants is exhausted, the

last descendant in the pool launches a new pool. If the last thread block in

the chain is reached and the pool is not yet exhausted, then the final descen-

dant is responsible for sending an abort message for all tail thread blocks in

the pool to terminate. However, until the abort message is sent, these thread

blocks will occupy resources unnecessarily. Larger pools result in larger tails,

hence more unnecessary resource usage and longer tail abortion time.
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One important consideration during aggregation is that parent thread

blocks in the aggregated pool of descendants must be scheduled before their

child thread blocks. Otherwise, deadlock may occur where descendants are

scheduled before their ancestors and are waiting for their ancestors to release

them, while the ancestors cannot be scheduled because their descendants are

occupying the GPU resources. Since software has no control over the order

in which thread blocks are scheduled, the static block indices cannot be used.

Instead, the index of the thread block within the pool of descendants is as-

signed dynamically after the thread block is scheduled [26], which ensures

that parent thread blocks are always scheduled before their children.

There are multiple benefits of applying the vertical aggregation step. First,

the number of grid launches is reduced which results in less launch overhead

incurred. Second, the sizes of the grids are increased which results in better

utilization of the device. Third, the architectural limitation of the depth of

descent is mitigated because the depth of the call stack is divided by a factor

equal to the aggregation granularity (size of the descendant pool).

4.3 Overlapping Parents and Children

Another optimization enabled by promotion of kernel launches is the overlap

of independent portions of the prologue. This optimization is orthogonal

to aggregation so it is described independently in this section. In the next

section, aggregation and overlap are combined together.

The overlap optimization is based on the observation that portions of the

prologue of a child kernel can be executed independently from the parent.

The prologue can thus be divided into two portions: an independent prologue

and a dependent prologue. Informally, this independent prologue must satisfy

two conditions: (1) it must not use any postponed parameters and (2) it must

not have any data dependence with the prologue of the parent. If these two

conditions are met, then this portion of the prologue can be executed in

parallel with the parent before it releases the child.

The transformation that takes place to achieve the overlap step is shown

in Figure 4.6. In this transformation, the prologue is divided into two regions

– the independent region and dependent region – and the independent region

is hoisted before the acquire logic. If the independent region of the jth block
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Figure 4.6: Promotion with Overlap Transformation

in the chain is denoted as Pi,j, the dependent region is denoted as Pd,j, and

the entire prologue is denoted as Pj, then for this transformation to legal, it

must satisfy the conditions that: Pj does not write to any memory referenced

by Pi,j+n, and Pi,j+n does not write to any memory referenced by Pj where

n > 0. A simple programmer annotation is used to indicate the boundary

between the independent and dependent regions of the prologue. However,

dataflow analysis can also be used to detect these regions in many cases.

4.4 Combining Vertical Aggregation and Overlapping

As mentioned earlier, aggregation and overlap are orthogonal optimizations.

Putting the three steps together – promotion, aggregation, and overlap –
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gives the complete vertical aggregation transformation proposed in this work.

This transformation is illustrated in Figure 4.7.

The topmost parent thread block launches a pool of descendant thread

blocks and releases its immediate child after it completes its own prologue.

The subsequent children synchronize with each other using two release-acquire

chains. In the first release-acquire chain, a thread block checks if it must

launch a descendant. If yes, it either sends a release signal to the next child

in the descendant pool or launches a new pool if the pool has been exhausted.

If no, it sends an abort signal to its descendants. If the descendant receives a

release, it proceeds. If it receives an abort, it forwards the abort to the rest

of its descendants and terminates.

Once a thread block has been released by the first release-acquire chain, it

executes the independent part of the prologue and that waits to be released
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by its parent as part of the second chain. Once released by the parent, it

executes the dependent part of the prologue, sends a release signal to its

child (except for the final thread block in the chain), and then executes its

epilogue and terminates.

4.5 Advantages and Tradeoffs

The advantages of promotion compared to no promotion are that it removes

the launch from the critical path and replaces it with lightweight release ac-

quire chains. The disadvantages are that it holds onto processing resources

for a longer amount of time as child thread blocks busy-wait until they are

released by their parents. While these resources are not used by the trans-

formed kernel itself for anything else, they may be useful to other kernels in

co-run scenarios.

The advantages and tradeoffs of vertical aggregation and overlap are sum-

marized in Figure 4.8. The advantages of aggregation are that it reduces the

number of kernels, increases their granularity, and reduces the depth of the

call stack as explained previously. The disadvantage is that it results in ad-

ditional aggregation overhead as well as unnecessary tail thread blocks that

waste resources. The advantage of overlap is that it extracts more parallelism

from the long serial dependence chain.

Figure 4.8 also defines acronyms for the different versions of the transfor-

mation (P, PA, PO, PAO) based on what combinations of optimizations are

applied. The same acronyms are used in the evaluation in Chapter 7.
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CHAPTER 5

METHODOLOGY AND
IMPLEMENTATION

5.1 Benchmarks

5.1.1 Horizontal Aggregation Benchmarks

Table 5.1 shows the benchmarks and datasets used in the evaluation of the

horizontal aggregation transformation. Some of the benchmarks (bt, ccl,

qt) use CUDA Dynamic Parallelism (CDP) in the original version of the

benchmark. The rest were converted to using CDP from original versions

that used nested loops to loop over work sequentially within each thread.

For example, in the bfs benchmark, the loop over the neighbors of a node is

converted to a kernel launch with one thread in the launched grid processing

each neighbor.

For all benchmarks, private streams are used by each thread to ensure

that launches by threads in the same thread block are not placed in the

same stream and serialized which is the default semantic [33]. Using private

streams makes the baseline CDP versions faster than serializing in the default

stream (geometric mean 1.90× on Kepler and 1.83× on Maxwell). Using pri-

vate streams is also essential for the benchmarks to be amenable to horizontal

aggregation; otherwise, aggregation parallelizes kernels that should be seri-

alized according to the default semantic. Moreover, cudaDeviceSetLimit

is used to adjust the fixed-size pool of the pending launch buffer appro-

priately for the baseline CDP version. Without the right size, the cost of

overflowing the launch buffer pool penalizes the execution time of the base-

line versions [34]. By using private streams and setting the fixed-size pool

appropriately, the baseline CDP versions are made as efficient as they can

be to ensure a fair comparison.
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Table 5.1: Horizontal Aggregation Benchmarks

Name Description Dataset Block Sizes
bfs Breadth First Random, 10000 nodes parent=1024

Search [27] 1000 degree child=32
bh Barnes Hut Tree [28] 4096 bodies, 4 time-steps parent=256

child=256
bt Bezier Lines 25600 lines parent=64

Tessellation [29] child=32
ccl Connected Component 8 frames, 4 host streams parent=2

Labelling [30] child=256
gc Graph Coloring [31] 1 4096 0.01 parent=256

bcsstk13.mtx [32] child=256
mstf Minimum Spanning rmat12.sym.gr [28] parent=1024

Tree (find) [28] child=1024
mstv Minimum Spanning rmat12.sym.gr [28] parent=1024

Tree (verify) [28] child=1024
qt Quadtree [29] 40000 points, 12 depth parent=128

1 min.node child=128
sp Survey Propagation [28] random-42000-10000-3.cnf [28] parent=384

10000 literals child=64
sssp Single-Source Shortest rmat12.sym.gr [28] parent=128

Path [28] child=128

5.1.2 Vertical Aggregation Benchmarks

Different benchmarks are used for evaluating horizontal and vertical aggrega-

tion because horizontal aggregation is intended for short and fat trees, while

vertical aggregation is intended for long and narrow trees, specifically single

thread block chains. Table 5.2 shows the benchmarks and datasets used in

the evaluation of vertical aggregation. Benchmarks which require communi-

cation between adjacent thread blocks were selected and implemented using

CDP.

Each benchmark is tested on three datasets: small, medium, and large.

The small dataset is selected to create just two recurrences. The medium

dataset is selected to create 25 recurrences (the maximum that can be han-

dled by the GPUs). The large dataset is selected to be the maximum problem

size the device can handle or the maximum recurrence that aggregation at

granularity 128 can handle (whichever is smaller).
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Table 5.2: Vertical Aggregation Benchmarks

Name Description Dataset Block Sizes
los Line of Sight [29] small=511 parent=256

medium=6399 child=256
large=49407

pd Padding [4] small=120×120 parent=512
medium=450×450 child=512
large=4600×4600

pt Partition [35] small=16384 parent=512
medium=204800 child=512
large=25174016

sc Stream Compaction [36] small=16384 parent=512
medium=204800 child=512
large=25174016

unq Unique [35] small=16384 parent=512
medium=204800 child=512
large=25174016

upd Unpadding [4] small=120×120 parent=512
medium=450×450 child=512
large=4600×4600

5.2 Compiler Implementation

The compiler prototype is implemented as a source-to-source (CUDA-to-

CUDA) compiler in the Clang infrastructure. Clang version 3.8.0 was used.

Although this version does not compile code that uses dynamic parallelism

to LLVM IR, the semantic checker was modified to accept kernel calls inside

kernel functions for the sake of source-to-source transformation.

5.3 Evaluation Platform

The evaluation was performed on three recent architecture generations of

GPUs: Kepler, Maxwell, and Pascal. The Kepler GPU is an NVIDIA Tesla

K40c coupled with an 8-core Intel Core i7 950 (3.07 GHz) and uses CUDA

SDK 7.5. The Maxwell GPU is an NVIDIA GeForce GTX 980 coupled with

an 8-core Intel Core i7 950 (3.07 GHz) and uses CUDA SDK 9.1. The Pascal

GPU is an NVIDIA Titan Xp coupled with an 8-core Intel Core i7-7700K

(4.20 GHz) and uses CUDA SDK 9.1.
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5.4 Profiling

The execution time breakdowns in Figure 6.2 were obtained by incrementally

deactivating parts of the code and measuring the resulting time difference.

Code regions are deactivated using conditionals that are always false but that

cannot be proven so by the compiler. This approach prevents the compiler

from performing dead code elimination in the active regions, which would give

misleading timing results. For iterative benchmarks with data-dependent

convergence criteria (bfs, mstf, mstv, sp, sssp), only the longest-running it-

eration was profiled because deactivating code for one iteration changes the

behavior of later iterations. Likewise, for recursive kernels (qt), only the

longest running recurrence was profiled.

For the profiling results in Figure 7.2, performance counters are used from

the CUDA Profiler [37] to measure achieved occupancy and executed instruc-

tion count.
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CHAPTER 6

HORIZONTAL AGGREGATION
EVALUATION

This chapter evaluates the performance improvement from horizontal aggre-

gation at all three levels of granularity: warp, block, and grid. Throughout

the chapter, results are shown for Kepler, Maxwell, and Pascal architectures

to demonstrate the continued relevance of the horizontal aggregation trans-

formation across architecture generations.

To isolate the impact of individual optimizations on performance, the eval-

uation is carried out incrementally. First, performance is evaluated without

any optimizations in Section 6.1. Next, the incremental performance im-

provement is evaluated for each optimization including scalarization of uni-

form arguments (Section 6.2), scalarization of uniform configurations (Sec-

tion 6.3), the use of more efficient aggregation logic at grid granularity (Sec-

tion 6.4), and the aggregation of dynamic memory allocation (Section 6.5).

Finally, the results are shown with all optimizations included in Section 6.6.

Note that throughout this chapter, two benchmarks do not have versions

at grid granularity: ccl and sp. The reasons are that in ccl, the parent thread

explicitly synchronizes with the child grid using cudaDeviceSynchronize()

which prevents the launch from being postponed to the host, whereas in

sp, the parent thread launches the child grid inside a loop, which cannot be

handled. These cases in which grid granularity horizontal aggregation cannot

be applied were discussed in Section 3.2.4.

6.1 Performance without Optimizations

Figure 6.1 shows the overall speedup of unoptimized horizontal aggregation

over regular dynamic parallelism for the three levels of granularity across

the three architecture generations. Most benchmarks show speedup over

the baseline dynamic parallelism versions for all levels of granularity and all
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Figure 6.1: Speedup of Unoptimized Horizontal Aggregation over Regular
Dynamic Parallelism
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Figure 6.2: Breakdown of Execution Time for Unoptimized Horizontal
Aggregation and Regular Dynamic Parallelism

architectures. The advantage of horizontal aggregation holds across all three

architecture generations, and is the best on the most recent, which shows that

dynamic parallelism overhead continues to be a problem and that horizontal

aggregation continues to be a relevant technique.

Figure 6.2 shows the breakdown of the execution time for each benchmark

over the original dynamic parallelism (CDP) version as well as horizontal ag-

gregation at each granularity. These results are from the Kepler architecture.

In the following paragraphs, the performance of each benchmark is discussed

in the context of these profiling results.

bfs, bt, gc, sp, sssp. All five of these benchmarks show significant per-

formance improvement for all levels of aggregation granularity and across all

architectures. For all of them, the profiling results show that the original

CDP execution time was dominated by the kernel launch overhead, which

diminishes as the aggregation granularity increases. Moreover, the amount

of time spent doing real work also decreases, which reflects the improve-

ment in occupancy due to having coarser grids with more work available at

once. The time spent in the aggregation logic increases with granularity,

which is expected since the scan and search operations become longer. At

grid granularity, the significant increase in aggregation logic time offsets the

marginal reduction in launch overhead which results in a net loss compared

to block granularity. This high overhead at grid granularity is optimized in

Section 6.4. Of the five benchmarks, bt witnesses the least improvement be-
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cause it continues to be dominated by dynamic memory allocation overhead

(which is part of the blue bar). This overhead is mitigated in Section 6.5.

mstf, mstv. These two benchmarks behave similarly to the previous five.

The main difference is that the aggregation logic for these benchmarks is

much higher. At grid granularity, the overhead is so high that it offsets the

benefit of horizontal aggregation resulting in a net slowdown compared to

the original dynamic parallelism versions. This slowdown is only for the Ke-

pler and Maxwell architectures, whereas in Pascal it becomes faster because

Pascal is a more powerful GPU. This overhead is discussed and mitigated in

Section 6.2.

bh. This benchmark contains long running child grids, which amortize the

launch overhead. For this reason, the profiling results show that the launch

overhead does not dominate performance. Nevertheless, the benchmark still

shows significant performance improvement via reduction of the time spent

doing real work. This reduction is due to the improvement in occupancy due

to having coarser grids, which again highlights the dual benefit of horizontal

aggregation in not only reducing the launch overhead but also improving

resource utilization.

ccl. This benchmark consists of a parent grid that has a single thread block

with two threads. Therefore, there is not much to be gained from aggregation

at any granularity. For this reason, this benchmark experiences a slowdown

because aggregation logic is being added without any significant reduction in

launch overhead. Note that since horizontal aggregation is a compiler trans-

formation, and not a hardware modification, programmers can be selective

in applying it. The programmer can simply disable the optimization when it

is not beneficial.

qt. In this benchmark, only a single thread in the thread block performs

a grid launch. For this reason, there is not much benefit to be expected

from aggregation at warp and block granularity similar to ccl. Instead, ag-

gregation overhead is unnecessarily incurred resulting in a slowdown. On

the other hand, aggregation at grid granularity results in a speedup in Fig-

ure 6.1 (despite the profiled recurrence in Figure 6.2 having a slowdown).

This benchmark is recursive, which demonstrates the ability of horizontal

aggregation to deal with recursion and multi-depth call trees.
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Figure 6.3: Incremental Speedup from Scalarization of Uniform Arguments
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Figure 6.4: Size of Scalarized Parameters for Each Benchmark

6.2 Scalarization of Uniform Arguments

Figure 6.3 shows the incremental speedup of scalarizing uniform arguments

over unoptimized horizontal aggregation (which was evaluated in Section 6.1).

It is evident that this optimization results in significant speedups for some

benchmarks without adversely impacting others.

Figure 6.4 shows the total size of the arguments that are scalarized for

each benchmark. An important observation is that the benchmarks showing

significant speedups are also those having the largest scalarized arguments.

For example, sp, the most affected, has 3 scalarized arguments with all 3

being structures with multiple fields (total 160 bytes). mstf and mstv have 5

and 4 scalarized arguments respectively, both having 2 which are structures

with multiple fields (total 160 bytes and 158 bytes respectively). bh has all

primitive type arguments, but it has 19 of them (total 128 bytes). sssp has

3 scalarized arguments with 1 being a structure with multiple fields (total

120 bytes). On the other hand, the benchmarks showing little or no speedup

have a small number of scalarized arguments. For example, bfs, gc, qt, ccl, and

bt, have 28, 28, 28, 20, and 8 bytes worth of scalarized arguments respectively.

It is interesting to observe that the benchmarks resulting in the most

speedups correlate with those having the highest aggregation logic reported

in Figure 6.2. This correlation demonstrates that the redundant storage of

uniform arguments constitutes a significant portion of the aggregation logic

time.
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Figure 6.5: Incremental Speedup from Scalarization of Uniform
Configurations
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6.3 Scalarization of Uniform Configurations

Figure 6.5 shows the incremental speedup of scalarizing uniform configura-

tions over the horizontal aggregation version evaluated in Section 6.2. It is

evident that this optimization results in significant speedups for some bench-

marks without adversely impacting others.

The most significant speedups for all benchmarks are observed for ag-

gregation at grid granularity. Recall that this optimization eliminates the

reduction operations that take place to calculate the maximum block dimen-

sion provided by all parent threads. This reduction operation is small at

warp and block granularity, but can be large and results in an extra kernel

launch at grid granularity which explains why grid granularity witnesses the

largest improvement.

6.4 More Efficient Aggregation Logic at Grid

Granularity

Figure 6.6 shows the incremental speedup of employing more efficient ag-

gregation logic at grid granularity over the horizontal aggregation version

evaluated in Section 6.3. The speedups are only for aggregation at grid gran-

ularity, since this optimization is specific to that granularity. It is evident

that this optimization results in significant speedups for some benchmarks

without adversely impacting others.

One interesting observation is that this optimization results in the most

impressive speedups for bfs, mstf, and mstv. What these benchmarks have

in common is that not all parent threads perform a launch, but the launch

is guarded by a condition, whereas most of the other benchmarks have all

parent threads performing a launch except those at the boundary in the

last thread block. Without this optimization, these benchmarks store many

zeros in the array containing the number of thread blocks in each child grid.

However, with this optimization, these zeros are eliminated, resulting in a

shorter search operation in the child grid to identify its parent thread. On

the other hand, the other benchmarks do not have this benefit because all

threads have non-zero child thread blocks. They only have the benefit of

avoiding the extra grid launch to perform the scan operation by replacing it
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Figure 6.6: Incremental Speedup from More Efficient Aggregation Logic at
Grid Granularity
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with atomics.

6.5 Aggregation of Dynamic Memory Allocation

Figure 6.7 shows the incremental speedup of aggregating dynamic memory

allocation over the horizontal aggregation version evaluated in Section 6.4.

The optimization only benefits bt since that is the only benchmark that

performs dynamic memory allocation. Aggregating dynamic memory alloca-

tion results in speedups across all architectures, demonstrating the usefulness

of the horizontal aggregation optimization not just to grid launches but to

heavyweight runtime functions as well.

6.6 Performance with Optimizations

Finally, Figure 6.8 shows the combined speedup of all the optimizations put

together relative to unoptimized horizontal aggregation, and Figure 6.9 shows

the speedup of optimized horizontal aggregation over regular dynamic par-

allelism. Horizontal aggregation results in impressive speedups at all levels

of granularity for all benchmarks across all architectures, with the exception

of ccl and qt at warp and block granularity, which use few launcher threads

per block and have little opportunity for aggregation.

The speedups are sustained with architecture generations, which shows the

continued relevance of the horizontal aggregation optimization. In fact, the

speedups are higher for later generations. It seems that while GPUs in later

generations are becoming more efficient at general purpose computations,

there has not been proportional improvement in the performance of dynamic

launches. This trend is in the favor of horizontal aggregation which reduces

the number of grid launches by trading that off for more work on the GPU

to perform the computations required for aggregation.
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CHAPTER 7

VERTICAL AGGREGATION EVALUATION

7.1 Performance

Figure 7.1 shows the throughput improvement of vertical aggregation. For

each benchmark, results are shown for the small (S), medium (M), and large

(L) datasets. The comparison is performed between the original CUDA dy-

namic parallelism version (CDP), promotion only (P), promotion with aggre-

gation (PA), promotion with overlap (PO), and promotion with aggregation

and overlap (PAO). A vertical aggregation granularity of 128 is used in PA

and PAO. Throughput is considered to be the effective memory throughput

(GB/s) for all benchmarks except los which uses ray length per second. The

throughput is normalized to that of the CDP version for the small dataset.

The reason throughput is used instead of execution time is to make the per-

formance of the small, medium, and large datasets comparable because the

large dataset does not have a CDP baseline since CDP fails for that dataset

size.

Figure 7.1(a), (b), and (c) show the throughput improvement for the Ke-

pler, Maxwell, and Pascal architectures, respectively. The similarity of the

results demonstrates the continued relevance of vertical aggregation across

architecture generations.

7.1.1 Small Datasets

The small datasets are designed to create a chain of only two kernel launches.

While not realistic, they are intended to show how the overhead of vertical ag-

gregation can cause performance to degrade if the dataset is not big enough.

The aggregation step in particular (PA and PAO) results in the most over-

head since most of the thread blocks in the aggregated child grid are not
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Figure 7.1: Throughput of Vertical Aggregation

used and have to be aborted. This extreme case demonstrates the tradeoff

of vertical aggregation as discussed in Section 4.5.

7.1.2 Medium Datasets

The medium datasets are the maximum size that can be executed in CDP, be-

yond which the call depth limit is no longer sufficient. All benchmarks show

speedup at this scale. PAO on the medium dataset has a geomean speedup

of 5.27× over CDP on the medium dataset. An interesting observation is

that the benefit of overlap on its own (PO vs. P) is not as pronounced as the
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Figure 7.2: Profiling of Vertical Aggregation

benefit of overlap combined with aggregation (PAO vs. PA). The improve-

ment of PAO over P is much greater than the product of the improvement

of PA and PO. This result shows that the aggregation and overlap steps of

the vertical aggregation transformation are mutually beneficial to each other.

The profiling results presented in Section 7.2 shed more light on this issue.

7.1.3 Large Datasets

For the large datasets, only PA and PAO execute to completion while the

other versions fail, since they are limited by the maximum call depth. This

result demonstrates the power of vertical aggregation in overcoming the call

depth limitation. PAO on the large datasets achieves a throughput that is

30.44× and 21.81× higher than that achieved by CDP on the small and

medium datasets respectively.
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7.2 Profiling

Figure 7.2 shows profiling results for each step of vertical aggregation on the

medium datasets. Figure 7.2(a) shows that PA and PAO achieve significantly

better occupancy than the other versions. This result demonstrates how the

aggregation optimization improves resource utilization by creating coarser

grids with more work available to be scheduled. Figure 7.2(b) shows that

PAO executes more instructions per second than PA despite both versions

having comparable occupancy. This result demonstrates the effectiveness of

the overlap optimization in making more work available sooner such that oc-

cupant thread blocks perform actual work rather than busy-wait until they

are released. Interestingly, the overlap step does not improve instruction

throughput when applied alone, but rather only when it is applied together

with aggregation. The reason is that without aggregation, PO has low oc-

cupancy, so even if work is available sooner, the thread blocks cannot be

scheduled to execute that work.

In summary, vertical aggregation improves the performance of dynamic

parallelism when used to implement producer-consumer applications. It does

so by reducing the total number of grid launches and increasing the gran-

ularity of grids via aggregation down the call stack. Moreover, aggregating

down the call stack extends the depth of the effective stack which enables

the handling of dataset sizes that were not possible otherwise.
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CHAPTER 8

CASE STUDY: TRIANGLE COUNTING

This chapter presents a detailed case study whereby horizontal aggregation

is demonstrated on a triangle counting application. First, an overview of

triangle counting is provided in Section 8.1. Next, the baseline GPU imple-

mentation is described in Section 8.2 followed by the dynamic parallelism

implementation in Section 8.3. Finally, the performance of applying horizon-

tal aggregation to the application is evaluated in Section 8.4. The objective

of this chapter is to provide a deeper understanding of how dynamic par-

allelism is used and to show how aggregation interacts with other dynamic

parallelism optimizations that programmers manually apply.

8.1 Application Overview

Triangle counting is a graph algorithm that computes the number of trian-

gles in a graph. A triangle consists of three nodes that are mutually con-

nected. Counting triangles is important for assessing a graph’s cohesiveness

and interconnectivity. For example, triangles are common in social networks

whereby people who are connected to each other also have many connections

in common, resulting in a triangle with each of those connections. Counting

triangles thus helps identify the frequency of common relationships and is

useful to other algorithms which identify interconnected communities within

these graphs.

8.2 Baseline Implementation

The baseline GPU implementation of triangle counting used in this case study

is taken from Mailthody et al. [38]. A simple illustration of the high-level

algorithm is shown in Figure 8.1. In Figure 8.1(a), an illustration of the
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graph data structure is shown. Both Compressed Sparse Row (CSR) and

Coordinate (COO) formats are stored. CSR assists with looking up edges of

a node while COO assists with looking up head and tail nodes of an edge.

Note that before running the triangle counting algorithm, the graph nodes

are canonicalized, and undirected graphs are converted to directed graphs

where the head of the edge precedes the tail of the edge in the canonical

order. Doing so ensures that triangles are not double counted.

The baseline GPU implementation launches one thread per edge in the

graph as illustrated in Figure 8.1(b). The thread indexes the COO arrays

to identify the head and tail nodes of the edge it is processing. Next, the

thread uses the head and tail nodes to look up their adjacency lists of these

nodes via the CSR data structure as shown in Figure 8.1(c). Having ob-

tained the adjacency lists, the thread then loops sequentially through the

two lists and counts the number of common elements they contain as shown

in Figure 8.1(d).

At the end of this process, the algorithm has computed a triangle count

for each edge without double counting edges. In another kernel, these counts

are summed up to compute the total triangle count for the entire graph.

8.3 Dynamic Parallelism Implementation

8.3.1 Basic Implementation

The baseline GPU implementation described in Section 8.2 does not fully

exploit the parallelism available in the algorithm. In particular, looping

through the two adjacency lists sequentially as shown in Figure 8.1(d) can
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have long latency when the arrays are large. Furthermore, if adjacent threads

process lists with significantly different lengths, the program can suffer from

control divergence.

To address these issues, a dynamic parallelism version of the application

is implemented to extract more parallelism out of the algorithm. Instead

of looping through the arrays sequentially, the dynamic parallelism imple-

mentation performs a dynamic grid launch with a thread for each element

in the larger adjacency list (parallelizing the smaller adjacency list instead

was also tried, but did not perform as well). Each thread then performs

a binary search on the smaller adjacency list to identify potential matches.

This implementation is illustrated in Figure 8.2. Concurrent work [11] uses a

similar approach, but does not use dynamic parallelism. Instead, the smaller

adjacency list is distributed across threads of a warp and binary search is

performed on the larger adjacency list.

Note that while this implementation of the algorithm extracts more par-

allelism from the application, it is less work efficient. The reduction in work

efficiency is because the baseline algorithm visits each element in both adja-

cency lists once, whereas the dynamic parallelism implementation visits the

elements in the larger adjacency list once but may visit the elements in the

smaller adjacency list multiple times.

8.3.2 Optimizations

To ensure that the dynamic parallelism implementation is efficient, several

optimizations are applied. Per-thread default streams are enabled to avoid

serialization of grids launched from the same parent block. The number of

threads per block in the child grid is tuned. Shared memory is used to store

the smaller adjacency list in the SM if that list fits in the pre-allocated shared

memory buffer; otherwise, the list is kept in global memory. In addition to

these basic optimizations, other optimizations are applied to keep the number

of dynamic grid launches under control. These optimizations are detailed in

the rest of this subsection.

First, to avoid unnecessary dynamic grid launches, the parent thread first

checks if the smaller adjacency list is empty. If so, this means that the total

number of triangles the edge is involved in is zero, and it is unnecessary to
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launch a grid.

Second, a threshold is set for performing dynamic grid launches. A child

grid is launched only if the number of elements in the larger adjacency list

exceeds this threshold. This threshold is important because there can be

many adjacency lists with a small number of elements. In this case, it makes

more sense to process those sequentially in the parent thread and only per-

form the dynamic launch for the larger lists. This threshold can be tuned as

is shown in Section 8.4.

Third, a limit is set on the total number of child threads a parent thread

is allowed to create. If the size of the larger adjacency list exceeds this limit,

the child threads are reused to process multiple edges in that list. This

optimization not only avoids excessive creation of child threads/blocks, but

it also allows more data reuse across the reused child threads, particularly

data reuse of the smaller adjacency list which has been loaded to shared

memory. This limit can also be tuned.

8.4 Performance Evaluation

This section compares the performance of the baseline triangle counting im-

plementation with the dynamic parallelism implementation with and without

applying horizontal aggregation. Only the system with the Pascal GPU is

used for evaluation. Two graphs from the Stanford Large Network Dataset

Collection [39] are used: email-EuAll, an email network from a European

Union research institution, and loc-Gowalla, a location-based online social

network called Gowalla. The properties of these graphs are summarized

in Figure 8.3. In particular, nodes are histogrammed by their degrees and

edges are histogrammed by the maximum degree of their endpoints. The

latter graph is particularly useful since the maximum degree of an edge’s

endpoints is essentially the number of child threads that will be launched by

the parent thread processing that edge, provided that number is above the

threshold.
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8.4.1 Regular Dynamic Parallelism vs. Baseline

Figure 8.4 shows the speedup of using regular dynamic parallelism compared

to using the baseline implementation. Since the application is written for

multiple GPUs, it provides the ability to select the number of edges to process

on a single GPU. This number of edges per GPU is varied on the x-axis.

Moreover, a different line is shown for each value of the threshold in the

dynamic parallelism implementation that is used to select whether to perform

the launch or process the work in the parent sequentially.

The first key observation from these results is that the benefit of using

dynamic parallelism is higher when a smaller number of edges is processed per

GPU. As the number of edges per GPU is increased, the benefit of dynamic

parallelism decreases, resulting in a slowdown in some cases. The reason is

that when the number of edges is small, the baseline which launches one

thread per edge underutilizes the parallelism available on the GPU which

favors the use of dynamic parallelism to launch more threads. However, as

the number of edges is increased, the GPU is better utilized by the baseline

version and there is little parallelism left to be exploited by the use of dynamic

parallelism. Therefore dynamic parallelism results in a slowdown when there

are many edges because the overhead is not justified. In the case of the larger

graph, the dynamic parallelism implementation is unable to complete when

processing the entire graph.

The second key observation is that as the number of edges processed per

GPU increases, the optimal threshold also increases. For a small number of

edges, there are a few parent threads so a lower threshold results in more

child launches to fill the GPU. However, as the number of edges (hence

parent threads) increases, there is less parallelism to exploit and therefore

less need for launching child threads. In this case, increasing the threshold

for performing the dynamic launch reduces the total number of launches,

which reduces the pressure on the device and only incurs the overhead of

performing launches where they are truly beneficial.

Since the optimal threshold varies depending on how many GPUs are used

and is also different for different graphs, the programmer needs to tune this

parameter appropriately. It is also possible to train a model on many dif-

ferent graphs to learn what threshold value should be used based on certain

properties of the graph such as the node and edge counts and histograms.
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8.4.2 Regular Dynamic Parallelism vs. Dynamic Parallelism
with Horizontal Aggregation

Figure 8.5 shows the speedup of using dynamic parallelism with horizon-

tal aggregation compared to using regular dynamic parallelism. The best

horizontal aggregation granularity is shown. It is evident that the benefit

of performing horizontal aggregation increases as the number of edges pro-

cessed on the GPU is increased and as the threshold is decreased. That is

because increasing the number of edges processed increases the total number

of launches, which increases the need for performing aggregation to reduce

this pressure. Similarly, decreasing the threshold also increases the total

number of launches, which again increases the need for performing aggrega-

tion to reduce the pressure.

Note that while the regular dynamic parallelism implementation fails for

the entire graph in the case of loc-Gowalla, dynamic parallelism with horizon-

tal aggregation succeeds. This result showcases the effectiveness of horizontal

aggregation in enabling dynamic parallelism at scale by reducing the pressure

created by excessive grid launches.

8.4.3 Dynamic Parallelism with Horizontal Aggregation vs.
Baseline

Figure 8.6 shows the speedup of using dynamic parallelism with horizontal

aggregation compared to using the baseline implementation. Compared to

Figure 8.4, the trend is similar but the relative speedups are much higher.

Even for the entire graphs, dynamic parallelism with horizontal aggregation is

able to outperform the baseline when the right threshold is picked. This result

shows how important the compiler techniques proposed herein are to making

dynamic parallelism more useful in practice by improving its performance.

8.4.4 Comparing Horizontal Aggregation Levels of
Granularity

Figure 8.7 shows the speedup of using dynamic parallelism with horizontal

aggregation at different levels of granularity compared to using the baseline

implementation. Only three select threshold values are used (1, 512, 4096)
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Figure 8.5: Speedup of Best Horizontal Aggregation Granularity Compared
to Regular Dynamic Parallelism
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Figure 8.6: Speedup of Best Horizontal Aggregation Granularity Compared
to Baseline Implementation

73



0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

 1,024  2,048  4,096  8,192  16,384  32,768  65,536  131,072  262,144  524,288S
p

ee
d

u
p

# Edges Processed

Warp, threshold=1 Block, threshold=1 Grid, threshold=1
Warp, threshold=512 Block, threshold=512 Grid, threshold=512
Warp, threshold=4096 Block, threshold=4096 Grid, threshold=4096

(a) Results for email-EuAll graph

(b) Results for loc-Gowalla graph

0.25

0.50

1.00

2.00

4.00

8.00

16.00

 1,024  2,048  4,096  8,192  16,384  32,768  65,536  131,072  262,144  524,288  1,048,576

S
p

ee
d

u
p

# Edges Processed

Warp, threshold=1 Block, threshold=1 Grid, threshold=1

Warp, threshold=512 Block, threshold=512 Grid, threshold=512

Warp, threshold=4096 Block, threshold=4096 Grid, threshold=4096

Figure 8.7: Comparing Horizontal Aggregation Levels of Granularity
Speedups over Baseline Implementation
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and all three levels of granularity (warp, block, grid) are shown for each

threshold value.

The results show that in the most interesting cases where a large graph

is being processed and a large threshold is being used to keep the number

of launches under control, the aggregation at grid granularity performs the

best although other levels of granularity are comparable. This observation is

consistent with the results shown in Chapter 6. On the other hand, when the

threshold is kept low, aggregation at grid granularity performs the poorest.

The reason is that a low threshold implies more parent threads will perform

grid launches which implies that the child thread blocks will have to search

a larger array at grid granularity to identify their parents. However, at warp

or block granularity, the array to be searched does not grow as it is limited

by the size of the warp or block, respectively.
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CHAPTER 9

RELATED WORK

9.1 Applications using Dynamic Parallelism

Since the introduction of dynamic parallelism, many scientists have attempted

to use it to accelerate their applications and software frameworks. It has been

used differently for different applications depending on their structure. This

section discusses these applications according to their usage models. The

usage models can be classified into the following categories: transferring con-

trol from CPU (Section 9.1.1), regular nested parallelism (Section 9.1.2), and

irregular nested parallelism (Section 9.1.3). Moreover, there have been works

that evaluate dynamic parallelism on a wide range of benchmarks, not just

specific applications (Section 9.1.4). Other works use dynamic parallelism as

a means to implement OpenMP for GPUs (Section 9.1.5).

9.1.1 Transferring Control from CPU

Many applications that use dynamic parallelism use it simply for transfer-

ring control from the CPU to the GPU. This class of applications typically

have multiple grids being launched one after the other. These grids can

be different iterations of an iterative algorithm, different stages of a multi-

stage workflow, or even different inputs to an application that is processing a

batch of inputs. Before dynamic parallelism, these applications would have

the CPU successively launch each of the grids and wait for it to finish before

launching the next. With dynamic parallelism, these applications instead

launch one or a few threads from the CPU which in turn launch the various

grids of the application from the device.

There have been many applications in the literature from various domains

that have used dynamic parallelism for transferring control from CPU. These
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applications include: connected component labelling [40], numerical inte-

gration [41], strongly connected component search for LTL model check-

ing [42], stencil [43], lattice quantum chromodynamics [44], sparse iterative

solvers [45], X-ray rendering [46], dense linear algebra [47], holography [48],

community detection in social networks [49, 50], self-organizing maps [51],

and video processing [52].

One advantage of using dynamic parallelism for transferring control from

CPU is that it frees up the CPU to do other kinds of work or to sleep and

save energy. Another advantage is that it avoids copying data from the GPU

to the CPU in the cases where the launch of the next grid is data-dependent

(e.g., checking for convergence in an iterative solver).

Note that since the number of parent threads in this usage model is typi-

cally one or a few, there is no excessive launching of child grids. Therefore,

this usage model is not of interest to the aggregation optimizations described

herein. The optimizations herein focus on applications with nested paral-

lelism, which are described in the rest of this section.

9.1.2 Regular Nested Parallelism

We make the distinction between two types of nested parallelism: regular

and irregular. In regular nested parallelism, the number of nesting levels and

the amount of parallel work available at all levels of the nesting is known

at the beginning of execution. Without dynamic parallelism, applications

with regular nested parallelism can launch a grid for each level of nesting.

Since the number of levels and the amount of work at each level is known,

doing so is slightly tedious but not too difficult. With dynamic parallelism,

applications with regular nested parallelism can simply have each worker at

one level of nesting launch a grid of workers for the next level of nesting.

There are many applications in the literature where dynamic parallelism

has been used for capturing regular nested parallelism. One application is

aperiodic reflectarray antenna analysis [53, 54] where an interpolation step

involves launching a parent thread for each input index that performs a com-

putation then launches a grid of child threads to perform an accumulation

to multiple output indices. Another application is inverse distance weight-

ing [55, 56], which also involves interpolation whereby a parent thread is
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launched for each point, the thread performs a prediction for that point,

then the thread launches a grid of child threads to compute the distance to

other points. Yet another example is video streaming [57], in which a parent

thread is launched for each macro-block that launches child grids to process

sub-blocks of that macro-block.

One advantage of using dynamic parallelism for applications with regular

nested parallelism is that it provides a more intuitive way of programming.

Another advantage is that it avoids having to wait for all workers in the previ-

ous level to complete before moving on to the next level. Finally, it transfers

control from the CPU to the GPU which captures the same advantages de-

scribed in Section 9.1.1 of freeing up the CPU and avoiding communication

between the CPU and GPU.

9.1.3 Irregular Nested Parallelism

Recall that nested parallelism is a pattern wherein an application has mul-

tiple levels of parallelism. Also recall that in regular nested parallelism, the

number of nesting levels and amount of work at each level is known prior to

execution. In contrast, in irregular nested parallelism, the number of nesting

levels and/or amount of work at each level is not known prior to execution.

This pattern is the most tedious to program without dynamic parallelism be-

cause the number of child threads (if any) at the next level of nesting is not

known until the parent threads at the previous level of nesting have actually

executed. Without dynamic parallelism, applications with irregular nested

parallelism may either serialize the work of the next level of nesting in the

thread processing at the previous level of nesting, or they may use queues

to collect the work from all the threads in the previous level of nesting and

launch a new grid for the next level of nesting. With dynamic parallelism,

threads at the previous level of nesting can simply launch child grids for the

next level of nesting and configure them with the desired number of threads.

There are two sources of irregularity in irregular nested parallelism. The

first source is where the number of child threads varies across parent threads.

This kind of irregular nested parallelism is common in graph applications

where a thread processing a node launches a grid to visit all of that node’s

neighbors. Examples from the literature where dynamic parallelism has been
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used to accelerate such applications include breadth first search [2, 58], single-

source shortest path [2, 58], PageRank [58], and depth first search [59]. Some

applications [58] perform the optimization of setting a threshold on the num-

ber of child threads which was applied in the triangle counting case study

in Chapter 8. This category of applications is the most suitable for this

optimization because of the variable child thread count.

The second source of irregularity in irregular nested parallelism is where

the launch condition may not be known. This kind of irregular nested paral-

lelism is common in tree applications such as mesh refinement trees, search

trees, and data mining trees where one does not know whether to recurse

deeper at a node in the tree until that node is evaluated. Examples where dy-

namic parallelism has been used to accelerate mesh refinement trees include

quadtrees [29] where one does not know whether to process a bounding box at

a finer resolution until visiting that bounding box and evaluating its proper-

ties. Examples where dynamic parallelism has been used to accelerate search

trees include the N-Queens problem [60, 61, 62, 63], NegMax trees [64], and

the travelling salesman problem [62, 63], where one must evaluate whether

they have actually arrived at a solution before recursing deeper into the tree

and continuing the search. Examples where dynamic parallelism has been

used to accelerate data mining trees include cluster feature trees [65], generic

hierarchical clustering [66], and frequent pattern trees [67]. Irregular nested

parallelism due to unknown launch conditions can also be found in other ap-

plications besides trees. For example, dynamic parallelism has been used to

accelerate genomic read mapping [68, 69] where parent threads perform seed

generation then launch child grids to perform seed extension only when nec-

essary. It has also been used to accelerate spiking neural networks [70] where

parent threads update neuron states and evaluate the spiking threshold, then

only launch child grids for spiked cases to update all the synapses.

One advantage of using dynamic parallelism for applications with irreg-

ular nested parallelism is that it avoids the need to serialize the work at

the next nesting level, which wastes parallelism. Another advantage is that

it avoids the need to use complicated queue data structures to collect the

work to be processed in parallel. It also has the same advantages of regular

nested parallelism described in Section 9.1.2, namely being easier to program

and avoiding waiting for the entire nesting level to finish before proceeding,

and the same advantages as transferring control from the CPU described in
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Section 9.1.1, namely freeing up the CPU and avoiding communication with

it.

9.1.4 Performance Evaluation

Beyond specific applications, there has been work on evaluating dynamic

parallelism on a wide range of benchmarks. Some works [30, 71] mainly

evaluate benchmarks that use dynamic parallelism for transferring control

to CPU. Others [7] evaluate benchmarks with actual nested parallelism and

have made similar observations about the inefficiency of dynamic parallelism

when launches are excessive.

9.1.5 Dynamic Parallelism for Implementing OpenMP

Dynamic parallelism has also been used by implementations of OpenMP.

Liao et al. [72] and Bertolli et al. [73] use dynamic parallelism for transfer-

ring control from the CPU when implementing OpenMP parallel regions for

GPUs. Ozen et al. [74] use dynamic parallelism to capture nested parallelism

in OpenMP.

9.2 Dynamic Parallelism Optimizations

9.2.1 Compiler and Software Optimizations

Several compiler/software optimizations have been proposed for optimizing

dynamic parallelism. CUDA-NP [8] is a compiler approach whereby rather

than using the dynamic parallelism API, parallel loops are nested inside

parent threads and are annotated with directives. The compiler transforms

the parent kernel to launch an excess number of threads such that each parent

thread is accompanied with multiple slave threads in the same thread block.

Using control flow, these slave threads are activated whenever a parallel

loop is encountered and are used to execute the iterations of that parallel

loop concurrently. Collaborative Task Engagement [75] further improves this

technique by having multiple parent threads share slave threads for better
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load balance and less control divergence. This approach specifically targets

the case where the amount of nested parallelism in the parent thread is low

such that a single thread block is sufficient to handle it.

Free Launch [16] eliminates launches of child grids entirely and instead

reuses parent threads/blocks to process the child grids. This transformation

requires the code for all the kernels involved in the call hierarchy to be inlined

into the same kernel, a technique often referred to as a megakernel [76]. It also

requires the blocks of the megakernel to be resident on the GPU throughout

the entire execution, even if those blocks are idle, in order to pick up tasks

that may be created in the future, a technique often referred to as persistent

threads [77]. One drawback of this approach is that constructing the mega-

kernel requires the code for all participating kernels to be available to the

compiler in the same translation unit which prevents separate compilation of

kernels. Another drawback is that the different kernels participating in the

megakernel may have different resource requirements for resources such as

registers, shared memory, threads per block, etc. The megakernel therefore

requires the maximum of each resource across all participating kernels, so if

there is a large disparity across participating kernels, this may lead to signif-

icant underutilization of resources by the megakernel. Yet another drawback

is that the use of persistent threads hogs GPU resources even when they

are not in use which leads to underutilization of resources when there are

co-running grids on the GPU. In contrast, the compiler techniques presented

herein do not eliminate child kernel calls, but aggregate them to mitigate

their overhead. Megakernels or persistent threads are not used, and there-

fore separate compilation is possible and co-runner kernels are not starved.

Li et al. [78, 79], Wu et al. [80], and KLAP [81] propose aggregation tech-

niques similar to the techniques presented herein. Li et al. [78, 79] use par-

allelization templates targeting optimize irregular nested loops and parallel

recursive computations. Wu et al. [80] use generic compiler transformations

with the assistance of directive-based annotations. KLAP [81] uses generic

compiler optimizations without additional annotations. This work provides

more details about how these techniques can be implemented and optimized

as well as an evaluation across multiple architecture generations and a case

study on a real application.

Zhang et al. [82, 83] further enhance the technique of aggregating child

grids by grouping together child grids with similar optimal configurations
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rather than aggregating all child grids into the same grid. This optimization

is based on the observation that in applications with irregular nested paral-

lelism, a parent thread may launch anywhere between one and thousands of

child threads. Provisioning a large child block size for parents with few child

threads results in wasted threads, whereas provisioning a small child block

size for parents with many child threads underutilizes the GPU. Instead,

this optimization groups child grids favoring small block sizes together and

child grids favoring large block sizes together in separate aggregated child

grids with different configurations resulting in better utilization of resources.

However, this technique is hard to implement in a compiler for CUDA with-

out hints from the programmer because it is difficult for the compiler to prove

that it is legal to change the thread block size and that the programmer has

not made any assumptions about it elsewhere in the code.

9.2.2 Hardware Optimizations

Many hardware techniques have also been proposed for mitigating the over-

head of dynamic parallelism. Dynamic Thread Block Launch (DTBL) [10,

84] proposes hardware support for lightweight dynamic launching of thread

blocks rather than heavyweight dynamic launching of entire grids. The dy-

namically launched thread blocks are essentially coalesced to existing kernels

on the fly by the hardware. DTBL is further enhanced with LaPerm [14], a

locality-aware scheduler for dynamically launched thread blocks which prior-

itizes the execution of child thread blocks and attempts to execute them on

the same SMs as their parents for improved locality while remaining aware

of load balance across SMs.

SPAWN [15] propose a hardware controller that assists the programmer

in identifying whether or not a dynamic launch would be favorable based on

historic behavior of child grids as well as the current state of the device and

how busy it is. If the controller finds that performing the launch is favorable,

it schedules the child grid, otherwise it informs the programmer who may

then execute the child work serially in the parent.

While these techniques are promising for improving dynamic parallelism

performance in future GPU generations, the compiler techniques proposed

herein improve performance on current GPUs.
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9.3 Parallelization and Optimization of Recursion and

Producer-Consumer Chains

Kernel Weaver [85] fuses producer-consumer kernels performing relational

algebra operations, but this work was before dynamic parallelism was intro-

duced. Vertical aggregation specifically targets producer-consumer patterns

expressed with dynamic parallelism. The benchmarks used include relational

operations. Gómez-Luna et al. [4] introduce a set of GPU algorithms (called

data sliding algorithms) that perform promotion with aggregation and over-

lap through libraries. However, this work does not connect these techniques

with recursion using dynamic parallelism for better programmability.

There has been a lot of work on optimizing recursive function calls or

sequential loops with dependent operations by extracting parallelism from

them to execute on multi-core CPUs or CPU vector units [86, 87, 88, 89, 90]

or by improving their locality [91, 92, 93]. The promotion and overlap steps

of vertical aggregation have a similar objective of extracting more parallelism

from long dependence chains on GPUs by removing as much work as possible

from the critical path.

9.4 Other Trends in GPU Computing

9.4.1 Parallelization of Task Graphs

Not all computation patterns can be described in terms of either flat or nested

parallelism. Some computation patterns have a more complex parallelism

structure. In some applications, a task may be dependent on multiple pre-

decessor tasks and cannot execute until all its predecessors have completed.

For example, in wavefront applications that diagonally sweep through a grid,

a tile of that grid cannot be processed until its top and left neighboring tiles

have been processed. This kind of parallelism structure cannot be expressed

with nested parallelism since the tile cannot be nested in either of its prede-

cessors because it must wait for both. Therefore, dynamic parallelism is not

an intuitive way of programming such applications.

An intuitive way of programming such applications on GPUs is to allow the

programmer to describe a task graph and have a runtime system schedule
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that task graph on the GPU and enforce dependences. CUDA [94] and

HSA [95] both provide support for describing and executing such task graphs,

but this support is at the granularity of entire grids. There have been multiple

efforts to provide support for task graph scheduling and finer granularity

such as at the granularity of thread blocks. Wireframe [96] and Liu [97]

propose hardware support to implement such a system while Juggler [98]

provides a software-only solution. Versapipe [99] is a software framework for

implementing and optimizing task pipelines, which are a special case of task

graphs.

9.4.2 Kernel Synthesis

As GPUs continue to evolve, optimizing code for GPUs is like chasing a

moving target. Different architecture generations tend to favor different op-

timizations and tuning parameters. To address this issue, tools like Tan-

gram [100, 101, 102, 103, 104] enable programmers to write simple codelets

representing different algorithms for the same computation and compose

these codelets together based on the architectural hierarchy of the device to

automatically synthesize optimized kernels. These kernels are further auto-

tuned according to the parameters of the specific architecture generation.

Tangram’s approach for kernel synthesis is appropriate for supporting dy-

namic parallelism. Without dynamic parallelism, the GPU hierarchy in Tan-

gram is such that grids distribute work to blocks which distribute to warps

which distribute to threads. Since dynamic parallelism allows threads to

launch other grids, it creates recursion in the architecture hierarchy such

that threads which are at the lowest level can distribute work to grids which

are at the highest level. Moreover, Tangram’s facilities for selecting between

serial and parallel codelets is appropriate for automatically synthesizing code

that either serializes nested parallel work, parallelizes it via a dynamic launch,

or does either depending on a tunable threshold. This kind of optimization

was applied manually in the triangle counting case study in Chapter 8.
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9.4.3 Memory Systems

Dynamic parallelism increases the autonomy of GPUs in systems because it

allows the GPU to launch new grids without CPU intervention. As GPUs be-

come more mainstream, other features have also been added to increase their

autonomy. One notable feature is shared virtual memory or unified memory

whereby a GPU can directly access memory allocated by the CPU without

having to rely on the CPU for performing explicit memory copies. Vari-

ous works have showcased the collaborative execution patterns that shared

virtual memory enables. These works include benchmark suites such as

Hetero-mark [105, 106, 107], Chai [108, 109], and HeteroSync [110, 111],

optimization of applications such as Bézier Surfaces [112] and Betweenness

Centrality [113], simulation frameworks such as gem5-gpu [114, 115] and

MGSim [116], and other evaluation efforts [117, 118, 119, 120, 121, 122].

Various software infrastructures have also been built to assist with effi-

cient scheduling of collaborative workloads. These infrastructures include

EMRF [123] for balancing fairness and efficiency, Luminar [124] for profile

guided resource scheduling, FinePar [125] and Cho et al. [126] for automated

workload partitioning, and Airavat [127, 128] for efficient power management.

Veselý et al. [129, 130] use shared virtual memory to implement system calls

from GPUs. Architecture enhancements in the context of shared virtual

memory include topics such as coherence [131, 132], address translation [133],

and cache design [134, 135, 136, 137, 138]. Vijayaraghavany et al. [139] use

shared virtual memory in the design of accelerator building blocks for exascale

supercomputers. While integrating the CPU and GPU memory hierarchies

benefits programmability and performance, it poses security concerns since

the GPU may now access CPU memory. Olson et al. [140] propose a sand-

boxing mechanism for accelerators while Erb et al. [141] address the problem

of buffer overflow from GPU code.

Beyond volatile memory, non-volatile memory technologies are gaining

attention for their promise to provide high density and low-power byte-

addressable memories. They have stimulated in research on various topics

such as programming models for guaranteeing crash consistency of persistent

data [142, 143, 144], design of durable data structures [145, 146, 147], repre-

sentation of pointers in persistent objects [148, 149, 150], garbage collection

for non-volatile memory [151], and the use of non-volatile memory devices
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for compute [152, 153, 154]. Erudite [155] aims at redesigning the memory

hierarchy to bring GPUs and NVM closer together.
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CHAPTER 10

CONCLUSION

Dynamic parallelism provides an intuitive interface for programming applica-

tions with nested parallelism on GPUs, but it has seen limited adoption due

its high overhead. This work shows that to make dynamic parallelism prac-

tical for accelerating applications with nested parallelism, compiler trans-

formations can be used to aggregate dynamically launched grids, thereby

amortizing their launch overhead and improving their occupancy, without

the need for additional hardware support.

A set of compiler techniques is presented to mitigate the overhead of dy-

namic parallelism. The first technique, horizontal aggregation, fuses grids

launched by multiple parent threads into a single aggregated grid thereby

reducing the number of launches and increasing the amount of work per grid

to improve occupancy. This technique can be applied at warp, block, or grid

granularity with larger levels of granularity trading off higher aggregation

overhead and delaying blocks for fewer launches and larger grids. The second

technique, vertical aggregation, optimizes recursive kernels with producer-

consumer chains by aggregating grids down the call stack and launching them

earlier than their original call site, enforcing dependences via release-acquire

chains. This optimization not only reduces the number of grids launched, but

also extends the depth of the call stack and shortens the critical path of the

application. Horizontal and vertical aggregation at varying levels of granu-

larity result in significant speedups for a variety of benchmarks representing

common nested parallelism patterns. The speedups are obtained across mul-

tiple generations of GPU architectures showing the continued relevance of

these techniques.

The lessons learned from the compiler techniques, the case study, and the

literature review presented herein suggest several best practices for writing

dynamic parallelism code. The fundamental objectives behind these best

practices are to control the number of grid launches and to amortize the
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launch overhead across more work in the child grid. The first practice is to

set a threshold on the number of child threads and to serialize the nested work

in the parent thread if the threshold is not met. This practice is demonstrated

in the triangle counting case study and is also applied by some applications

and targeted by some hardware optimizations in the literature. It is possible

to automatically apply this technique in the compiler which is an interesting

future direction. The second practice is to aggregate grids across parent

threads or down the call stack. This work shows that this optimization can be

performed effectively by the compiler. However, cognizance of the compiler’s

ability to aggregate grids informs other best practices that follow. The third

practice is to use uniform arguments and child block sizes across parent

threads whenever possible. This practice enables the compiler to generate

more efficient aggregation code. For applications where parent threads have

significant variation in the number of child threads, hence variation in optimal

child block sizes, child grids can be grouped according to their optimal child

block sizes and groups can be aggregated separately where each group has a

uniform child block size. This technique has been shown to be effective when

applied manually in the literature. Automating it in the compiler would

require hints from the programmer on how to safely modify the block size

which is an interesting future direction. Finally, the fourth practice is to

reuse child threads, which increases the amount of work per thread block,

amortizing the overhead introduced from aggregation. This practice has been

demonstrated manually in the triangle counting case study. It is also possible

to automatically apply this technique in the compiler which is an interesting

future direction.
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[108] J. Gómez-Luna, I. El Hajj, L.-W. Chang, V. Garćıa-Floreszx, S. G.
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