
© 2018 Ali Kheradmand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/186334779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A FORMAL SEMANTICS OF P4 AND APPLICATIONS

BY

ALI KHERADMAND

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Grigore Rosu

Abstract

Programmable packet processors and P4 as a programming language for such devices have
gained significant interest, because their flexibility enables rapid development of a diverse set
of applications that work at line rate. However, this flexibility, combined with the complexity
of devices and networks, increases the chance of introducing subtle bugs that are hard to
discover manually. Worse, this is a domain where bugs can have catastrophic consequences,
yet formal analysis tools for P4 programs and networks are missing.

We argue that formal analysis tools must be based on a formal semantics of the target
language, rather than on its informal specification. To this end, we provide an executable
formal semantics of the P4 language in the K framework. Based on this semantics, K provides
an interpreter and various analysis tools including a symbolic model checker and a deductive
program verifier.

This thesis overviews our formal K semantics of P4, as well as several P4 language design
issues that we found during our formalization process. We also discuss some applications
resulting from the tools provided by K for P4 programmers and network administrators as
well as language designers and compiler developers, such as detection of unportable code,
state space exploration of P4 programs and networks, bug finding using symbolic execution,
data plane verification, program verification, and translation validation.

ii

To my parents, for their love and support.

iii

Acknowledgments

First, I would like to thank my adviser, Professor Grigore Rosu, for his personal and
professional support in hard times. I would also like to thank him for his patience in putting
up with the pesky graduate student that I am.
Next, I would like to thank the K development team (especially Daejun Park) and the

other members of the Formal Systems Laboratory (especially Yi Zhang) for their help with
the K framework. I would also like to thank Professor Nate Foster and the members of the
P4 Language Consortium for their support. Finally, I want to thank Professor Brighten
Godfrey, Farnaz Jahanbakhsh, and Alex Horn for their feedback on the work.
This material is based upon work supported by the National Science Foundation under

Grant No. CCF-1421575.

iv

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Background and Challenges . 4
2.1 Software Defined Networks . 4
2.2 P4 . 4
2.3 Challenges in Formalizing P4 . 7
2.4 The K Framework . 8

Chapter 3 P4K . 10
3.1 Syntax . 10
3.2 Configuration . 10
3.3 Semantics . 11
3.4 Concurrency Model . 17
3.5 Limitations . 17
3.6 Network Semantics . 17

Chapter 4 Evaluation . 19

Chapter 5 Applications . 21
5.1 Detecting Unportable Code . 21
5.2 State Space Exploration . 21
5.3 Symbolic Execution . 22
5.4 Program Verification . 24
5.5 Translation Validation . 27

Chapter 6 Related Work . 30
6.1 Semantics of Programming Languages in K 30
6.2 Network Verification . 30
6.3 Semantics and Analysis of P4 . 31

Chapter 7 Conclusion, Discussion, Future Work . 33

References . 34

v

Chapter 1: Introduction

As an increasingly important part of our life and society, computer networks have grown
significantly in size and complexity. Traditionally, to handle the network scale, the networking
hardware has been hard coded with well-established network protocols needed to run and
manage the network. However, doing so has the downside of not being able to cope with the
speed of innovation that is necessary to satisfy the diverse and growing set of user demands,
because the process of modifying networking equipment tends to be slow and expensive. This
has ignited a line of research whose goal is to make networks more programmable.

One of the most recent developments in this line of research, P4 [1], is a high level declarative
programming language for programming packet processors. P4 allows the developers to
specify how a packet processor should process its incoming packets. A P4 compiler then
translates the P4 program into an instruction set understandable by the target hardware.
The examples of targets include software switches, high performance ASICs, FPGAs, and
programmable NICs.

Since its introduction in 2014, P4 has attracted significant interest because the flexibility
that it provides enables rapid development of a diverse set of applications that can potentially
work at line rate, such as In-Band Network Telemetry [2] and switch based implementation of
Paxos [3]. However, this flexibility, combined with the complexity of networks and networking
hardware, increases the chance of introducing subtle bugs that are very hard to discover
manually, yet can have catastrophic effects, from service disruptions to security vulnerabilities.
Even without P4, answering the simplest questions about the correctness of a network

(e.g., what kind of packets can reach node B from node A) has become manually prohibitive
when the scale and complexity of networks is taken into account. Subsequently, a large body
of research has recently focused on automating the process of network verification [4, 5, 6, 7].
However, most of these works assume a simple fixed structure for the packet processors
and, as a result, may miss many details. P4 makes manual verification even harder, if not
impossible. Consequently, there is a big need for automated tools to analyze P4 programs or
networks of nodes programmed using P4.
We adhere to [8] that analysis tools for any programming language must be based on

the formal semantics of that language rather than on its informal specification. Informal
semantics are subject to interpretation by different tool developers and usually there is
no guarantee that these interpretations are consistent with the specification or with each
other. As shown in [8], state-of-the-art program analysis tools based on informal language
specifications “prove” incorrect properties or fail to prove correct properties of programs due to

1

their misinterpretation of the semantics of the target programming language. Moreover, the
informal language specification itself might have problems, such as ambiguities, inconsistencies,
or even parts of the language not defined at all. This is particularly relevant for new languages,
like P4, whose design has not matured yet.
It is therefore important to develop a formal semantics for P4. Furthermore, to build

confidence in the adequacy of a formal semantics, we believe it should be: (1) executable, so
it can be rigorously tested against potentially hundreds of programs; (2) compact and human
readable, so it can be easily inspected and ultimately trusted by everyone. Finally it must
be (3) modular, so new language features can be formalized without the need to change the
previously formalized features.
To this end, we have developed P4K, an executable formal semantics of P4 based on

the official P4 language specification [9]. P4K faithfully formalizes all of the language
features mentioned in the P4 specification, with a few exceptions corresponding to features
whose meaning was ambiguous or incorrect or under specified and we did not find any
satisfactory way to correct it. We have reported some of these issues to the P4 language
designers [10, 11, 12, 13, 14, 15, 16, 17, 18] and are working on a modified version of the
specification [19] addressing the issues. We validated P4K by executing 40 test cases provided
by one of the official compiler front-ends of P4 [20], a manually crafted test suite of 30 tests,
and by formally analyzing several programs.

We chose the K framework [21] for our P4 formalization effort. It has several advantages
that make it a suitable choice. First, a language defined in K enjoys all three properties
mentioned above. Second, once a programming language semantics is given, K automatically
provides various tools for the language, including an interpreter and a symbolic model
checker, at no additional effort. Finally, K has already been successfully used to formalize the
semantics of major programming languages such and C [22], Java [23], JavaScript [24], etc.
The focus of this thesis is the P4K formalization of P4, but we also show how P4K and

the tools provided by K can be used beyond just a reference model for the language. We
discuss several applications useful for P4 programmers, language designers, and compiler
developers, such as: detection of unportable code, state space exploration of P4 programs
and of networks, bug finding using symbolic execution, data plane verification, deductive
verification, and translation validation. Specifically, we make the following contributions:

• P4K: the most complete formal semantics of P4, based on the official specification of
P414 v. 1.0.4.

• A collection of P4 formal analysis tools for the networking domain, automatically
derived from the semantics.

2

The rest of the thesis is organized as follows. Chapter 2 overviews P4 and K, as well as the
challenges in defining a semantics for P4. Chapter 3 describes P4K, our K semantics of P4,
and discusses some of problems that we identified in the language specification. Chapter 4
evaluates our semantics. In Chapter 5 some of the applications of the semantics are discussed.
Chapter 6 reviews related work and Chapter 7 concludes.

3

Chapter 2: Background and Challenges

Here we give background on P4 and K. We also discuss some of the challenges that we
faced in formalizing P4.

2.1 SOFTWARE DEFINED NETWORKS

Control plane is the part of the network responsible for making packet forwarding decisions
by running computations (e.g. routing algorithms) based on the network state. Data plane
is the collection of forwarding devices (or packet processors) that actually carry the network
packets and execute the forwarding decisions. Traditionally, each device had its own vendor-
provided control plane hard-coded on the device. The need for rapid innovation has sparked
interest in Software Defined Networks (SDNs). SDN is a modern architecture in which the
control plane is physically separated from the data plane. In this architecture, one controller
can program a set of forwarding devices through open, vendor-agnostic interfaces such as
OpenFlow [25].

In OpenFlow, each device processes the packets according to the contents of one or more
flow tables. Each table will contain a set of flow entries. Abstractly, each entry is a (match,
action) tuple. Match provides values for specific fields in the packet header, and action
denotes the action to be performed if the packet header matches the respective values in
match. Possible actions include dropping, modifying, or forwarding the packet. The controller
programs the data plane through installation and modification of flow entries.
OpenFlow assumes a fixed structure for the forwarding devices. It explicitly specifies

the set of protocol headers on which it operates, the structure of the flow tables, the set
of possible actions, etc. Modification to any of these features requires an update to the
OpenFlow specification. Over the course of 4 years since the initial version of OpenFlow, the
number of supported header fields in its specification has been more than tripled [1].

2.2 P4

The limitations of OpenFlow and the need for expressiveness has lead to the introduction
of P4, a high level declarative programming language for expressing the behavior of packet
processors. In P4, one can program a custom parser for their own protocol header, define
flow tables with customized structure, define the control flow between the tables, and define
custom actions. Hence, P4 allows the developers to specify how a packet processor should

4

header_type h_t {
fields { f1 : 8; f2 : 8; }

}
header h_t h1;
parser start {

extract(h1);
return ingress;

}
action a(n) {

modify_field(h1.f2 , n);
modify_field(standard_metadata.egress_spec , 1);

}
action b() {

modify_field(standard_metadata.egress_spec , 2);
}
table t {

reads { h1.f1 : exact;}
actions { a; b; }

}
control ingress {

apply(t);
}

Figure 2.1: A very simple P4 program

process its incoming packets (note, however, that P4 does not provide a mechanism to
populate the flow table entries; this is done by the controller). A P4 compiler then translates
the P4 program into the instruction set of the hardware of the packet processor on which the
program is installed (the target).

We briefly describe the basic notions of the language here. Chapter 3 discusses the language
construct in more details. A P4 program specifies at least the following components [9].
Header types: Each specifies the format (the set and size of fields) of a custom header within a
packet. Instances: Each is an instance of a header type. Parser: A state machine describing
how the input packet is parsed into header instances. Tables: Each specifies a set of fields
that the table entries can match on and a set of possible actions that can be taken. Actions:
Each (compound action) is composed of a set of primitive actions which can modify packets
and state. Control flow: Describes the custom conditional chaining of tables within the
packet processor’s pipeline.
For example, in Figure 2.1, h_t is a header type consisting of two 8 bit fields f1 and

f2. Header h1 is an instantiation of h_t. The parser consists of a single state start which
extracts h1 from the input packet. There are two compound actions a and b in the program.
The actions use the modify_field primitive action. The entries in table t match on field f1

in h1 and if applied, may call actions a or b. An entry calling a must provide a value for n.

5

Figure 2.2: P414 Abstract Forwarding Model [9]

The ingress pipeline in this program only consists of applying table t.
P4 programs operate according to the abstract forwarding model illustrated in Figure 2.2.

For each packet, the parser produces a parsed representation comprised of header instances
and sends it to the ingress match+action pipeline. Ingress, among other things, may set the
egress specification which determines the output port(s). Ingress then submits the packet to
the queuing mechanism the specification of which is out of the scope of P4. The packet may
also go through the optional egress pipeline which may make further modifications to the
packet. Finally (if not dropped) the parsed representation will be deparsed (i.e serialized)
into the packet which will be sent out. P4 also supports re-circulation (looping packets inside
the device) and cloning of packets.
The P4 Language Consortium (http://p4.org) provides the official specification of the

language, as well as various other tools including compiler front ends, software interpreters,
runtime and testing infrastructure, etc. There are two versions of P4 in current use, P414

and P416. P416 has been released by the consortium in May 2017 [26] and it is much simpler
and cleaner than P414, at the cost of deliberately breaking backwards compatibility with
P414. There are, however, important P414 program which have not been translated to
P416, and, indeed, the P414-to-P416 translator provided by the consortium is not semantics-
preserving [27]. Ideally, we would like to prove the translator correct, but for that we need
formal semantics of both P414 and P416. In this thesis we only discuss our formal semantics
of P414, leaving that of P416 and the correctness of the translator as future work. Throughout

6

http://p4.org

the thesis, we refer to P414 simply as P4.

2.3 CHALLENGES IN FORMALIZING P4

P4 has several characteristics that make it a challenging target for formalization. Here we
discuss some of this challenges and the way we dealt with them.
Unstable language: P4 is a relatively young language and it takes time for the community

to reach consensus on its design. When we started, the only publicly available version of
P4 was P414 v. 1.1.0. That version soon was deprecated and replaced with v. 1.0.3 which
we initially used to develop our semantics. In the middle of our formalization effort, P416

v. 1.0.0 as well as a minor revision of P414 (v. 1.0.4) were released. Thanks to K’s support
for modular definitions and reuse, we were able to rapidly adapt to changes and finalize our
semantics according to P414 v. 1.0.4. Through continuous discussions with the P4 designers,
we hope to help them reach more stable versions sooner.
Imprecise specification: Since P4 is a newly developed language its specification is not

free of problems. There are many inconsistencies and corner cases which are not discussed
(Chapter 3). One of the important contributions of this thesis is the identification of these
problems through rigorous formalization. We have reported some of the problems to the
community. We are also working on a modified version of the specification [19] addressing
the issues we found.
No comprehensive test suite: Similar formalization efforts for other languages (e.g. [22,

24, 28]) rely heavily on official test suites. Unfortunately, there is no official test suite for
P4. To alleviate this problem, in addition to testing our semantics against a test suite we
obtained from a P4 compiler, which only covers about half of our semantic rules (Chapter 4),
we hand-crafted a test suite that gives a complete coverage of our semantic rules.

Unconventional input: The input to a P4 program is different from that of conventional
programming languages. P4 has two sources of input. One is the stream of incoming packets
that the device running the P4 program needs to process. The other is the table entries and
configurations that are installed by the controller at runtime. The mechanism by which the
controller interacts with the target at runtime is device-specific and is therefore out of the
scope of the language specification. Still, to be able to execute and analyze P4 programs, for
the target-specific language features we tried to provide the most unrestricted executable
semantics; for example, if the order of some operations was unspecified then we chose a
non-deterministic semantics, so we can still explore the entire state-space of behaviors using
the K tools.

We also grouped most of the target specific semantic rules in a separate semantic module.

7

This way, the semantics is parametric on the target specific details. One can provide a new
target specific module to change the target specific behavior, without the need to touch the
rest of the semantics. We have already used this feature when we were testing our semantics
against the p4c test suit as it contained target specific features and assumptions (Chapter 4).

2.4 THE K FRAMEWORK

K [21] is a programming language semantics engineering framework based on term rewriting.
Its underlying philosophy is that tools for a language can and should be automatically derived
from the formal semantics of that language. Indeed, K provides an actively growing set of
language-independent tools, i.e., tools which are not specific to any language but apply to
any language which has a K formal semantics. These include a parser, an interpreter, a
symbolic model checker, a sound and (relatively) complete deductive program verifier, and,
more recently, a cross language program equivalence checker and a semantic-based compiler.
Some of the tools are useful during the formalization process itself, the most important of
which is the interpreter. Using the interpreter, the semantics can be tested against potentially
many programs to gain confidence in its correctness.

To define a programming language in K, one needs to define its syntax and its semantics.
Syntax is defined using BNF grammars annotated with semantic attributes. Semantics is
given using rewrite rules (also called semantic rules) over configurations. A configuration is a
set of potentially nested cells that hold the program and its context. Each cell contains a
piece of semantic information of the input program such as the its state, environment, storage,
etc. Semantic rules are transitions between configurations: if parts of the configuration match
its left hand side, rewrite those parts as specified by the right hand side. Figure 2.3 shows a
rule taken from P4K (modified for presentation) concerning reading the value of field F from
instance I as an example.〈

I .F

V
···

〉
k 〈〈I 〉 name 〈true〉 valid 〈··· F 7→ V ···〉 fieldVals ···〉 instance

Figure 2.3: A rewrite rule capturing the semantics of reading a field in P4

The contents inside each matching pair of angle braces constitutes a cell, with the cell
name as subscript. The k cell contains the list of computations to be executed. The fragment
of computation at the front of the list (the left most) is executed first. There are multiple
instance cells each corresponding to a header instance. name contains the name of the
instance and valid keeps its validity state. fieldVals is a map from each field name to

8

the value stored in the field in the given instance. The ellipsis are part of the syntax of
K and denote contents irrelevant to the rule. The horizontal line denotes a rewrite. If
the configuration matches the pattern, the part of the configuration above the line will be
replaced by the content below the line. The rest of the configuration remain intact. A rule
may contain multiple rewrites at different positions of the configuration. In that case, all
rewrites will be applied in one step.
This example illustrates two properties of K that makes it suitable for giving semantics

specially to evolving programming languages like P4. First, note that the actual configuration
contains many more cells and each cell may contain multiple elements, but the rule only
mentions the cells that are relevant. The configuration abstraction feature of K automatically
infers what the rest of cells should be. Second, note that rewrites are local. There is no
need to rewrite the whole configuration. These two features make K rules succinct and
human readable. More importantly, they enable modular development of the semantics: if
the language specification adds or modifies a language feature the rules irrelevant to that
feature do not need to be modified.

9

Chapter 3: P4K

P4K is the most complete executable formal semantics of P414. It is based on the latest
official language specification (v. 1.0.4 [9]) and on discussions with the language designers.
Our work is open source and is available online [29]. The formalization process took 6 months
to complete by a PhD student with some familiarity with the K framework. Most of the
time was spent learning K and understanding the details of the P4 specification, including
its problems. P4K contains more than 100 cells in the configuration, 400 semantic rules, 200
syntax productions, and 2000 lines.

3.1 SYNTAX

The language specification provides a BNF grammar, whose conversion to K was straight-
forward. We mostly copy-pasted the grammar and made a few minor modifications to make
it compatible with K.

During this process, in addition to minor problems, we identified [10] an ambiguity in the
syntax between the minus sign in a constant value (for specifying negative constant values)
and the unary negation operator. This ambiguity has important semantic effects. In P4,
all the field values have a bit width associated with them. According to the specification
“For positive [constant] values the inferred width is the smallest number of bits required to
contain the value”. Also “For negative [constant] values the inferred width is one more than
the smallest number of bits required to contain the positive value” [9]. So for example −5
interpreted as a negative constant would yield a 4 bit value while if interpreted as negation
of a positive constant would yield a 3 bit result. Used in an expression with other operators,
this difference may affect whether the expression overflows or not, which subsequently may
affect the final result.

3.2 CONFIGURATION

The configuration contains more than 100 cells. Figure 3.1 shows part of it, featuring more
important cells. All of the language constructs including headers, instances, parser states,
actions, tables, control flows, etc have respective cells in the configuration containing their
static information and/or runtime state. For example the tables cell will contain a set of
table cells (“*” denotes multiple cells with the same name). Each of the table cells contains
a table’s static information such as its name, the fields to match (reads), and possible actions

10

〈〈K〉 k 〈...〉 headers 〈...〉 actions 〈...〉 controlFlows 〈...〉 parserStates ··· 〈〈〈Id〉 name 〈SetFld〉 reads 〈SetAct〉 acts 〈ListEnt〉 entries 〉 table∗〉 tables

〈〈〈Id〉 name 〈Bool〉metadata 〈Bool〉 valid 〈Id 7→ V al〉 fieldVals 〉 instance∗〉 instances〈〈〈Id〉 name 〈Id 7→ V al〉 vals 〉 stateful∗〉 statefuls

〈〈ListMap〉 stackFrame 〉 ctx〈〈ListId〉 dporder 〈〈Int〉 index 〉 pctx〉 parser〈Pkt〉 packetin 〈Pkt〉 packetout 〈〈ListPkt〉 in〈ListPkt〉 out〉 buffer

〉
T

Figure 3.1: Part of the P4K configuration. The ellipsis symbols indicate omitted cells.

(acts). It also contains runtime information such as the entries installed in the table.
Some cells contain the execution context. For example during the execution of an action,

the stackFrame cell holds a stack of maps from each formal parameter of the executing
action to the respective argument values passed to the action.
The cells in and out contain the input and output packet stream from/to all ports

respectively. packetin contains the current packet being processed and packout contains
the packet being serialized.
Cells are populated or modified by processing the input P4 program before execution,

during the initialization, or during the execution as discussed next.

3.3 SEMANTICS

After parsing, the P4 program populates the k cell and is executed with the semantics
rules.

3.3.1 Execution Phases

The rules describe the P4 program execution, in three phases.
Preprocessing: In this phase, P4K iterates over all the declarations in the input P4

program (in the k cell), creating and populating the corresponding cells and preparing the
configuration for execution. In some cases auxiliary information is pre-computed for the
execution phase. An important such computation is the inference of the order of packet
headers for deparsing. Details will be discussed in Section 3.3.2.

Initialization: There is an optional initialization phase after preprocessing. It is used
primarily to prepopulate the tables and packet buffers before the execution in certain analysis
such as symbolic execution. The tables and packet buffers can also be populated at runtime
in normal execution.

Runtime: The actual execution of a P4 program happens during this phase. It implements
the abstract forwarding model. Packets are taken from the input packet stream and processed
using the entries installed in the match+action tables by going through the ingress and

11

potentially the egress pipelines. The output packets are appended to the output packet
stream. This phase never terminates.

3.3.2 Language Constructs and Semantics

We briefly describe the language constructs and primarily focus on interesting findings and
relevant semantics.

Header types: Each header type is a named declaration that includes an ordered list of
fields and their attributes (e.g. field width and signedness). P4 also allows declaration of
variable length headers. During our formalization, we found corner cases (e.g. [14]) in which
the semantics of such headers are not completely clear.

Instances: Instances may be referenced in various runtime stages including parsing, table
matching, and action execution. Some instances, called header instances (although the
naming is not consistent throughout the specification [15]), keep the parsed representation of
the respective packet headers (i.e., the packet header is extracted into the header instance).
Other instances, called metadata, keep arbitrary per packet state throughout the pipeline.
For example h1 in Figure 2.1 is a header instance and meta in Figure 5.2 is a metadata. In
our semantics, both types of instances are kept as instance cells, distinguished by their
metadata cells (Figure 3.1).
It is also possible to declare fixed size, one dimensional array instances (called header

stacks), as sequences of adjacent headers (e.g. to support MPLS [30]). We keep array elements
as separate header instances, with special names that include their index. Otherwise, the
elements are treated same as other instances.

Header instances are invalid (uninitialized) until validated in parsing or by specific primitive
actions in match+action processing. According to the specification, reading an invalid header
results in an undefined value, whose behavior is target dependent. We model this using a
special value @undef. Use of @undef in an expression or action call causes the execution to
get stuck by default. We use this feature to detect unportable code (Section 5.1).

Hash generators: The ability to calculate a hash value for a stream of bytes has various
uses in networking. P4 provides the ability to declare hash generators (called field list
calculations). The developer provides a list of values (declared using a field list struct) and
selects a hash generation algorithm. The hash generator computes the hash of the bitstream
generated from the list. In the example in Figure 3.2 ipv4_checksum is a hash generator for
the ipv4_checksum_list field list (declaration omitted) with the IPv4 checksum algorithm
(csum16).

The language specification identifies a set of well known hash generation algorithms (e.g.,

12

field_list_calculation ipv4_checksum {
input { ipv4_checksum_list; }
algorithm : csum16;
output_width : 16;

}

Figure 3.2: A field list calculation example

IPv4 checksum and CRC). In our semantics, we treat hash generation as a black box; K
allows us to “hook” library function calls that implement the desired functionality. It is
possible to also directly specify the algorithms using K rules inside the semantics, but we did
not find any compelling reason to do so.

We found a problem [17] with the specification during the formalization of field lists. Each
element of a field list can refer to a field in an instance, an instance itself (when all the fields
in that instance are used), another field list (when all the fields identified by that list are
used), a constant value, or the keyword payload. According to the specification “payload
indicates that the contents of the packet following the header of the previously mentioned
field is included in the field list” [9]. However, “previously mentioned field” is ambiguous. For
instance, in Figure 3.3 it is not clear if payload refers to f1 or f2.

field_list fl1 { h.f1; }
field_list fl2 { h.f2; fl1; payload; }

Figure 3.3: Ambiguity in the semantics of payload

Thus we do not provide semantics for payload. P416 has replaced field lists with a C-like
struct construct, disallowing the payload keyword.

Checksums: A field in a header instance can be declared to be a calculated field, indicating
that it carries a checksum. The developer provides a hash generator for verification of the
checksum at the end of parsing, and/or an update of the checksum during deparsing. For
example, in Figure 3.4, the field hdrChecksum in the header instance ipv4 is declared to be a
calculated field which uses the hash generator ipv4_checksum for its verification and update.

calculated_field ipv4.hdrChecksum {
verify ipv4_checksum;
update ipv4_checksum;

}

Figure 3.4: A calculated field example

The P4 specification leaves undefined the order in which the calculated fields must be

13

updated or verified. For verification, the order can matter depending on the target. For
update, the order can matter in cases where the field list calculation of a calculated field
includes another calculated field. After discussing [18] with the language designers, to obtain
the most general behavior, we decided to choose a non-deterministic order for update and
verify. K provides a search tool which one can use to explore all possible non-deterministic
outcomes to check whether they differ. (Section 5.2).

Parser: The user can define a parser to deserialize the input packet into header instances
(the parsed representation). The parser is defined as a state machine. In each state, it is
possible to extract header instances (i.e., copy the data from the packet at the current offset
into respective field values for the given instances) and to modify metadata. Then, it is
possible to conditionally transition to another state, to end the parsing, or to throw an
(explicit) exception. For example, in state parse_ethernet in Figure 5.1, after extracting
the ethernet header, based on the value of the etherType field, the parser may transition
to the parser state parse_ipv4 or end the parsing and start the ingress pipeline.

Exception Handlers: P4 allows us to declare exception handlers for implicit or explicit
parser exceptions. In case an exception occurs, parsing is terminated and the relevant handler
is invoked. Each handler can either modify metadata and continue to ingress or immediately
drop the packet. There is a default handler that drops the packet. For example in Figure 2.1
if a packet is too short for the extraction of h1, an implicit exception is thrown and the
default handler drops the packet.

Deparsing: This is the opposite of parsing. At egress, the (potentially modified) valid
header instances are serialized into a stream of bytes to be sent. An important question in
deparsing is the order in which the header instances should be serialized. The parsing order is
not enough to find the deparse order, since header instances might also be added (validated)
or removed (invalidated) in the match+action pipeline. According to the specification “[A]ny
format which should be generated on egress should be represented by the parser used on
ingress” [9] and the order of deparsing should be inferred from the parse graph.
If the parse graph is acyclic, a topological order can be used as the deparsing order.

However, in general the graph might be cyclic as there may be recursion in parsing. While in
simple cases an order can still be inferred (e.g., cases where recursion is only used for the
extraction of header stacks), there are cases in which a meaningful order can not be inferred.
This is a well known problem [31]. In our semantics, we support simple cases of cyclic parse
graphs. All of the practical examples we have seen so far can be handled by our semantics.
P416 has switched to an approach in which the deparse order is explicitly defined by the

programmer.
Stateful Elements: P4 supports stateful language constructs that can hold state for

14

longer than one packet, as opposed to per packet state in instances. Counters count packets
or bytes, meters measure data rates, and registers are general purpose stateful elements.
The declaration of each of these elements creates an array of memory units. The units may
be direct ly bound to the table entries. In that case, the (counter and meter) units will
automatically be updated when the corresponding entry is matched in match+action. The
units may alternatively be static; then they should explicitly be accessed or updated via
special primitive actions. For example, in Figure 5.2, reg is a static register with a single 8
bit memory cell.

In our definition we unified all these elements as instances of the stateful cell (Figure 3.1)
which can be accessed like registers. Other operations are defined as functions which read
and manipulate the registers. Each stateful cell in the configuration has a map from an
index to a value. The index is either a table entry id (for direct) or an array index (for static).
The mechanism of updating meters is target specific (not part of the language specification).
Subsequently we do not perform any action in case a meter is updated. If needed, one can
add a mechanism in our target specific module.

The specification does not specify [12] the initial value of the stateful elements. It is sensible
to assume that the initial value of counters is 0, and similarly for meters. For registers, by
default we initialize the registers to @undef. Moreover, the specification is inconsistent [13]
about whether direct meters are allowed to be explicitly updated by table actions. To be
consistent with counters and registers, we assume they are allowed.

Finally, if multiple counters/meters are directly bound to the same table, the specification
does not state [18] the order in which the elements must be updated when an entry in that
table is matched. The order can affect the outcome in multi-threaded packet processors
(Section 3.4) as there may be data races over stateful elements. Again, we choose a non-
deterministic order for updating the counters/meters, so we can systematically explore it
using K’s search.

Actions: Compound actions are user defined imperative functions that can take arguments
and if called, perform a sequence of calls to other compound actions or built-in primitive
actions. Primitive actions provide various functionality including arithmetic, addition/re-
moval/modification of instances and header stacks, access/modification of stateful elements,
cloning, re-circulation, dropping the packet, etc. Actions are executed as a result of table
matches.
We formalized all the primitive actions (see Section 3.5 for limitations on clone primitive

actions). The specification does not specify the behavior of some corner cases, such as shift
with negative shift amount. We intentionally do not provide semantics for such cases to
detect unportable code.

15

The previous version of the specification [32] stated that all primitive actions resulting
from a table match execute in parallel, making the semantics of the action in Figure 3.5
unclear.

action a() {
modify_field(h.f, 1);
modify_field(h.f, 2);

}

Figure 3.5: Unclear semantics of parallel action execution

modify_field(f,v) is a primitive action that updates field f with v. The latest revision
(1.0.4) switched to sequential semantics, so we do not have to deal with this case anymore.

Tables: Tables will be populated at runtime by the controller. Each entry provides values
for the fields that are specified in the declaration, an action that should be executed if the
entry is selected, and arguments to be passed to the action.

The interaction mechanism between the controller and P4 target is out of the scope of the
specification. Hence, the answer to questions such as what happens if a table is modified by
the controller while it is being applied on a packet is target dependent. We currently assume
that modification and application of the same table are mutually exclusive.
P4 provides various matching modes per each field. For example, exact matches exact

numbers and ternary matches ternary bit vectors. It is also possible to associate priorities
with table entries. In case more than one table entry is applicable, the rule with the highest
priority will be selected. Longest Prefix Match (LPM) is a special kind of ternary match
useful for IP prefixes. The specification specifies how the relative priority of an entry with
LPM match can be inferred bases on the corresponding match value of the entry. However,
it does not specify how the priority should be decided in cases where there are more than
one field with LPM match type [11]. We assume all entries have explicit (unique) priorities
regardless of their match types. We keep the entries sorted in their descending order of
priority. To apply a table on a packet, we iterate over the entries in order and select the first
matching entry.

Control Flow: User defines the order and the conditions under which various tables are
applied to a packet using control functions. The body of a control function is a control block
consisting of a sequence of control statements. A statement might apply a table, call a control
function, or conditionally select a control block. Ingress is a special control function that is
automatically called after (successful) parsing. Egress is another (optional) special control
function. If defined, it will automatically be called when the queuing mechanism takes the
packet to be sent out.

16

Other constructs: We omit the discussion of value sets, action profiles, and action
selectors as well as many details of the discussed constructs. Interested readers can refer to
the semantics [29] for more details.

3.4 CONCURRENCY MODEL

Real world high performance packet processors have multiple threads of execution. The
specification is silent about the concurrency model. As a result, what constitutes a thread
depends on the target hardware. In our semantics, we support a multithreading model in
which each thread individually does all of what a single threaded program does by addition
of a few more cells and rules1 (similar to Section 3.6). The input/out packet streams, the
tables, and the stateful elements constitute the shared memory between the threads.

3.5 LIMITATIONS

P4 provides four primitive actions for cloning a packet under process from ingress/egress
to ingress/egress. The actions that clone a packet into the egress put the clones in the queue
between ingress and egress pipelines. Since we currently do not model the ingress and egress
pipelines as separate threads, we only support a single packet in the queue between the two.
Therefore, we do not directly support clone into egress. Instead, we treat such clones as new
incoming packets with auxiliary flags to skip the ingress pipeline.

3.6 NETWORK SEMANTICS

It is useful to be able to simulate or analyze a network of P4 programs rather than just
a single program (Sections 5.3.2 and 5.2). In order to do so, we need the semantics of the
network. Thanks to the modularity of K, we easily modeled the semantics of a P4 network
without changing the P4 language semantics. We only needed to add a few more cells
and preprocessing rules. We added a root nodes cell containing multiple node cells each
containing the configuration of a P4 program plus a nodeId cell. We also added a topology

cell which holds the connection between the nodes.
To model the network links, we added a single rule that takes a packet from the end of the

output stream of one node and puts it at the beginning of the input stream of the node it is
1In all of our experiments we used only a single thread for each P4 program. Throughout the thesis we

assume executions are single threaded.

17

connected to. If needed, one can also model packet loss in the links by a single additional
rule. Note that here we have multiple threads of concurrent execution, whose interleaving is
non-deterministic. The thread interleaving space can be explored using the K search mode
(Section 5.2).

18

Chapter 4: Evaluation

K provides us with an interpreter derived automatically from the semantics, enabling us to
test our semantics. Official conformance test suits are an ideal target for testing executable
semantics. Unfortunately, P4 does not have such a test suite. A new official P4 compiler
front end (p4c [20]) has a limited set of tests for P414, which we used in our evaluation.

Generally, it is non-trivial to port tests across different implementations of P4, as its IO is
not specified (Section 2.3). Fortunately, the p4c tests were easy to adopt. Each test, along
with the P4 program under test, contains an STF file. The file describes table entries, input
packets, and the expected output packets. We systematically converted the STF files into
our test format.

The suite contains tests with minor issues including use of deprecated syntax, unspecified
constructs, or unspecified primitive actions. We fixed the issues by slightly modifying to the
corresponding P4 programs or test files, and implementing the primitive actions in a target
specific module for the tests. Moreover, the tests assume undefined1 egress specification leads
to packet drop. The specification does not specify the behavior in this case, so it is target
dependent. In our semantics, by default the execution gets stuck in such cases. In our target
dependent module for the tests, we added a rule to drop the packet in such cases.
The tests also helped us identify a few problems in P4K. For example, we found that we

had misunderstood the semantics of a primitive action (pop). Note that push and pop have
rather an unusual semantics in P4 [16].
After fixing the problems with the tests and our semantics, P4K passed 39 out of the

40 test. The failing test2 has multiple inferable deparsing orders. The order chosen in our
execution happens to be different from the order the test expects. We verified that both
orders are possible.
Inspired by [24], we measured the percentage of the semantics rules exercised by the

tests (the semantic coverage of the tests). The tests cover under 54% of the semantics and
miss many of the semantic features. We have also manually developed 30 tests during our
formalization process. Together, these 70 tests cover almost all the semantic rules.

Each test took 19.5s (± 3.2s) on average with the maximum of 125s.3 We note that approx.
10s out of this time is the startup time of K and is not related to execution. We also note
that K has multiple backends. We use an open source backend [8] which is relatively very

1According to the specification egress specification is undefined unless set explicitly. We model this using
the @undef value.

2Namely parser_dc_full.stf.
3All experiments are run on a machine with Intel Xenon CPU ES-1660 3.30GHz and 32GB DDR3 1333MHz

RAM.

19

poor in terms of performance. We expect the runtime to improve by orders of magnitude on
performant commercial backends (e.g. [33]).

20

Chapter 5: Applications

Besides defining a formal semantics for P4 and thus helping make the P4 specification
more precise, a secondary objective of our effort was to make use of the various tools that K
provides. We demonstrate how the tools can be useful for the P4 developers and network
administrators, as well as for the P4 language designers and compiler developers.

5.1 DETECTING UNPORTABLE CODE

As seen above, in some cases the P4 specification does not provide the expected behavior of
the program. P4 programs exhibiting such unspecified behavior may not be portable among
different targets and compilers. It is not wise to solely rely on the expertise of P4 developers
in the low level details of the specification to check if their code is portable. It is desirable to
have tools that automate this check. For simple cases, such behavior may be detectable by
syntactic checks. In general, unspecified behavior may depend on the input.
By default, we do not provide semantics for cases which are not covered by the language

specification. If the execution of a program reaches a point with unspecified behavior, the
execution gets stuck. Avoiding over-specification therefore allows us to check for unspecified
behavior in P4 programs. This is done simply by running the program and checking whether
it reaches a state in which it gets stuck or not. The check can be performed using either
concrete or symbolic inputs. We show a symbolic example in Section 5.3.
To tune the semantics for a specific target, one can provide custom semantics for cases

with unspecified behavior in the target specific module.

5.2 STATE SPACE EXPLORATION

K provides a search execution mode which allows us to explore all possible execution traces
when non-determinism is present. In K, non-determinism occurs when more that one rewrite
rule is applicable, or the same rule is applicable at multiple positions in the configuration. In
normal execution mode, only one of the applicable rules is (non-deterministically) selected. In
the search mode, all the applicable rules are explored. Moreover, the user can explicitly control
the points in which non-determinism is explored. This allows one to focus on exploration of
one or more specific sources of non-determinism and ignore the rest.
There are two sources of non-determinism in P4K. The first is due to our approach to

model the most general behavior. Examples are order of deparsing, order of update and/or

21

verification of calculated fields, and order of update of direct stateful elements. The second is
due to the existence of multiple threads of execution. These include the threads of execution
inside a single P4 program, as well as the execution of multiple nodes in a P4 network. Both
sources can be explored using the search mode. We have already shown in Chapter 4 how
exploration of the order of deparsing can be useful. The benefits of exhaustive analysis of
thread interleavings in concurrency analysis are well known.

5.3 SYMBOLIC EXECUTION

K allows the configuration to be symbolic – i.e., to contain mathematical variables and
logical constraints over them. During execution with a symbolic configuration, K accumulates
and checks (using Z3 [34]) all the logical constraints over the execution path – i.e the
conditions under which the rules are applicable to respective states. Under the hood, there is
no difference between symbolic and concrete execution. Symbolic execution powers some
of the other K tools such as the program verifier (Section 5.4) and the equivalence checker
(Section 5.5). It can also be useful on its own, say, to search for bugs in P4 programs and
data planes.

5.3.1 Search for Bugs

To illustrate one application, we choose a community provided sample P4 program which
defines a very basic L3 router [35]. Using symbolic execution, we find input packets for which
the program fails to specify the egress specification, leading to unspecified behavior.
To do so, we prepopulate the tables with entries from the unit test provided along with

the program. We then simply start the program with a single symbolic packet (P) from a
symbolic port in the input packet stream (the in cell). Our goal is to find an input packet that
leads the program to a state in which neither packet is dropped, nor its egress specification
is set. We run the program in the (symbolic) search mode. The search returns multiple
inputs which can lead to undefined egress specification. Here we only discuss one of the more
interesting ones: the search result suggests that if "P has ethernet as its first header and
ethernet.etherType != 0x0800", then the program will end up with an undefined egress.

Figure 5.1 shows the relevant snippet of the program. A simple manual inspection confirms
the finding. The parser extracts the ethernet header and checks etherType. If it is equal
to 0x0800 (i.e the IPv4 ether type), the parser then proceeds to extracting the ipv4 header
(not shown). Otherwise, instead of, say, dropping the packet, the program starts the ingress
pipeline. At the beginning of the ingress, the program checks the validity of the ipv4 header.

22

...
parser start {

return parse_ethernet;
}
parser parse_ethernet {

extract(ethernet);
return select(latest.etherType) {

0x0800 : parse_ipv4;
default: ingress;

}
}
control ingress {

if (valid(ipv4)) {
...

}
}

Figure 5.1: Part of a basic L3 router [35]

If valid, the pipeline applies a sequence of tables that may set the egress specification (not
shown). Otherwise the program does not apply any tables and the egress specification remains
undefined. Thus, under the given constraints, packet is not dropped, ipv4 is invalid, and the
egress specification is undefined.

5.3.2 Data Plane Verification

There is a growing interest towards data plane verification tools such as [4, 5, 6, 7, 36].
These tools analyze the table entries in a snapshot of the data plane and look for violation of
properties of interest. The verification of these properties usually requires answer to queries
of the following form: What kind of packets from node A will reach node B? While using
various smart ideas to achieve better performance, all these tool are based on the same basic
idea: symbolic reasoning over the space of packet headers.
Using our semantics, we can answer such queries by inserting a symbolic packet at, say,

node A and using symbolic execution to find the constraints on the packets that end up
at node B. The tools mentioned above use simplified hardcoded/adhoc models of packet
processors in their analysis and miss the internal details of such devices. They need to be
re-engineered to change their model of packet processors. There is no such need in our case.
Moreover, as will be shown in the next section, these tools can verify a very restricted class
of properties. We eliminate these limitations.

23

5.4 PROGRAM VERIFICATION

K features a language independent program verification infrastructure based on Reachability
Logic [8]. It can be instantiated with the semantics of a programming language such as P4
to automatically provide a sound and relatively complete program verifier for that language.
In this system, properties to be verified are given using a set of reachability assertions, where
each reachability assertion is written as a rewrite rule. A reachability assertion asserts that
starting from any configuration matching the left hand side of the assertion, by execution
using the input semantics, one will either eventually reach a configuration that matches the
right hand side of the assertion or never terminate.

The standard pre/post conditions and loop invariants used in Hoare style program verifica-
tion can be encoded as reachability assertions. Intuitively, a Hoare triple {P}C{Q} becomes
"C ∧ P rewrites to . ∧Q" where “.” is the empty program [28].

5.4.1 The Load Balancer Program

To showcase the use of the program verifier, we provide a simple P4 program and verify a
simple property about it.
The program in Figure 5.2 is meant to balance its incoming packets (from any port)

between two output ports. This is done using a register whose value alternates between 0
and 1 across incoming packets. The program features a single register, a metadata instance,
and two tables. The parser starts ingress without extracting anything. We install a single
entry in read_reg_table to call action read_reg. The action copies the register value (at
index 0) into meta.reg_val 1. We install two rules in balance_table. One rule matches if
meta.reg_val = 1 and calls balance(1,0). The other rule matches if meta.reg_val = 0

and calls balance(0,1). balance(p,v) modifies the register (at index 0) with value v and
effectively sends the packet to port p. Our goal is to prove that this program (along with its
table entries) correctly balances the load. Specifically, we want to prove the following:
Property : For any input stream of packets, after processing all the packets, no packet is

dropped and no new packet is added; all the packets in the output are either sent to port 0
or port 1; and the absolute difference between the number of packets sent to ports 0 and 1 is
less than or equal to 1. Albeit simple, none of the data plane verification tools mentioned
above are capable of proving it. They lack either support for stateful data plane elements or
support for reasoning over an unbounded (i.e symbolic) stream of packets.

In K, the property is captured by the reachability assertion in Figure 5.3. For presentation
1This is done because register values can not directly be matched in tables.

24

header_type meta_t {
fields { reg_val : 8; }

}
metadata meta_t meta;
parser start {

return ingress;
}
register reg {

width: 8;
instance_count: 1;

}
action read_reg () {

register_read(meta.reg_val ,reg ,0);
}
table read_reg_table {

reads{ meta.valid : exact; }
actions{ read_reg; }

}
action balance(port ,val) {

modify_field(standard_metadata.egress_spec ,port);
register_write(reg , 0, val);

}
table balance_table {

reads{ meta.reg_val : exact; }
actions{ balance; }

}
control ingress{

apply(read_reg_table);
apply(balance_table);

}

Figure 5.2: A simple load balancer

purposes we have omitted the less relevant, mostly static parts of the specification which
hold the program and the table entries. The full specification can be found in [29].

In the specification, @excute is the program state right before the execution starts. @end
is state after all the input packets are processed2. I is a (universal) symbolic variable
representing the input packet stream and ?O is an existential symbolic variable representing
the output stream. Symbol “ .” in both in and out cells represents an empty packet stream.
The rewrite in the vals cell says that the value of the register reg (at index 0) is 0 at
start3, and its value at the end is not relevant to the assertion. The keyword ensures adds
logical constraints on the right hand side of the assertion (i.e the post condition). Function

2This state is only added due to technical reasons for verification purposes, as actual P4 programs never
terminate. We add a rule causing the program to jump to this state once the input packet stream becomes
empty.

3We made the assumption that registers are initialized to 0.

25

〈
@execute

@end

〉
k

〈
〈reg〉 name

〈
0 7→ 0

_

〉
vals

〉
stateful

〈
I

.

〉
in〈

.

?O

〉
out ensures

‖onPort(?O, 0)− onPort(?O, 1))‖ ≤ 1
∧onPort(?O, 0) + onPort(?O, 1)) = size(?O)
∧size(?O) = size(I)

Figure 5.3: A reachability assertion capturing the desired property

onPort(s,p) returns the the number of packets in stream s belonging to port p. Function
size(s) returns the length of stream s.
Our semantics of P4 contains a main loop over the stream of input packets. Since in our

property the input is a symbolic list with an unbounded length, similar to Hoare logic, we
need a loop invariant. To prove our property, we provide the loop invariant as the reachability
assertion in Figure 5.4.〈

@nextPacket

@end

〉
k

〈
〈reg〉 name

〈
0 7→ R

_

〉
vals

〉
stateful

〈
I

.

〉
in〈

O1

?O2

〉
out requires

(R = 1 ∧ onPort(O1, 0) = onPort(O1, 1)) + 1∨
R = 0 ∧ onPort(O1, 0) = onPort(O1, 1)))
∧onPort(O1, 0) + onPort(O1, 1) = size(O1)

ensures
‖onPort(?O2, 0)− onPort(?O2, 1))‖ ≤ 1
∧onPort(?O2, 0) + onPort(?O2, 1) = size(?O2)
∧size(I) + size(O1) = size(?O2)

Figure 5.4: The loop invariant

Here, @nextPacket is the head of the main loop over the input packet stream. Keyword
requires puts logical constraints on the left hand side of the assertion (i.e the precondition).
The assertion reads as: starting from the head of the main loop, given the constraints in
requires are satisfied, if the program terminates, it will reach an @end state that satisfies
the constraints in ensures.

We gave the two assertions to the K’s program verifier instantiated with our P4 semantics.
The verifier successfully proved the loop invariant and the first reachability assertion (i.e.,
the desired property). The verification took about 80s.

In this example, we used concrete table entries as the entries are part of the functionality
that we aimed to verify. In general, depending on the property, the tables – as well as
anything else – can be symbolic. Weassumedn example in thinitializedtion.

26

5.5 TRANSLATION VALIDATION

P4 programs eventually need to be compiled into the instruction set (i.e the language)
of the target hardware for execution. With any compilation, there is the question of
whether or not the semantics of the input program is preserved by the compiler. Currently
the compilers usually lack formal semantic preservation guarantees since providing such
guarantees requires a significant effort. The issue is even more pronounced when sophisticated
compiler optimizations are involved. A promising alternative approach is to verify each
instance of compilation instead of the whole compiler. This approach, known as tranlation
validation [37], aims to verify the semantic equivalence of a program and its compiled
counterpart, potentially using hints from the compiler.

Recently, K has introduced a prototype tool (named KEQ [38]) for cross language program
equivalence checking using a generalized notion of bisimulation. The notion enables us to
mask irrelevant intermediate states and consider only the relevant states in comparing two
program executions. KEQ takes the K semantics of the two programming languages, two
input programs written in the respective languages, and a set of synchronization points as
input, and checks whether or not the two programs are equivalent.
Each synchronization point is a pair of symbolic states (called cuts) in the two input

programs. The meaning of synchronization is defined by the user as a logical constraint
over the given pair of symbolic states. It usually consists of checking the equality of certain
relevant values. Each cut in the pair is essentially a pattern over the configurations of the
semantics of the respective languages (similar to the right or left hand side of rewrite rules).
The user labels one or more synchronization points as trusted. These points are assumed
to already be bisimilar. Usually one (and the only one) such point is the end of the two
programs and the constraint is the equality of the respective output values.

For the rest of the synchronization points, the equivalence checker checks whether the given
points are bisimilar. It basically means that starting from the two cuts in a synchronization
point, using the semantics of the respective languages, all reachable synchronization points
are respectively bisimilar. Normally one such point is the start of the two programs. The
constraint is the equality of the respective input values. Additional synchronization points
may be needed as well, such as the beginning of unbounded loops. We refer the interested
readers to [38] for more details on KEQ.

27

5.5.1 P4 → IMP+ Translation Validation

We illustrate KEQ through a small example. We check the equivalence of a simple P4
program with a program written in another language. For this purpose, we developed a very
simple imperative language called IMP+. The language syntactically resembles C, although
semantically it is much simpler. We also developed the semantics of IMP+ in K. We provide
a set of API functions for the language to send and receive packets, read tables, etc. The
name of these functions are prefixed with the “#” symbol. For simplicity, we directly provide
semantics to such functions in our semantics. We chose the simple P4 program in Figure 2.1
for translation. Figure 5.5 shows our manual translation of it into IMP+.4

int h1_f1; int h1_f2; bool h1_valid;
int sm_egress_spec;
bool parse(){

return start();
}
bool start(){

if (! #has_next (8))
return false;

h1_f1 = #extract_next (8, false);
if (! #has_next (8))

return false;
h1_f2 = #extract_next (8, false);
h1_valid = true;
return true;

}
void a(int n){

h1_f2 = n;
sm_egress_spec = 1;

}
void b(){ sm_egress_spec = 2; }
void apply_t (){

//p2
while (# get_next_entry ()) {

if (# entry_matches(h1_f1)){
#call_entry_action ();
return;

}
}
if (# has_default_action ())

#call_default_action ();
}
bool process_packet (){

#reset();
sm_egress_spec = -1;
h1_valid = false;
if (! parse())

return false;
if (sm_egress_spec == -1)

return false;
return true;

}
void deparse (){

#emit(h1_f1);
#emit(h1_f2);
#add_payload ();

}
void main(){ //p0

//p1
while (# get_next_packet ()){

if (! process_packet ()){
#drop();

}else{
deparse ();
#output_packet ();

}
}

}
//p3 [trusted]

Figure 5.5: Manual translation of the P4 program in Figure 2.1 into IMP+

The goal is to prove the equivalence of the two programs. Our notion of equivalence is
defined as follows: for any input stream of packets, and for any table entries in table t, at the

4We assume packets with undefined egress specification will be dropped.

28

p0 p1 p2

p3

Figure 5.6: Abstract transition relation between p0, p1, p2, and p3.

end of processing all the input packets, the two programs generate the same output stream of
packets. To do so, we manually provide a few synchronization points. We have annotated the
IMP+ program with the points. Next we informally describe the points and their constraints.
The full specification can be found in [29].

p0 is the start of the two programs. The condition associated with this points is the equality
of the respective input streams, table entries, and table default actions.
p1 is the main loop over the input packets. Its condition is same as p0’s condition plus the

equality of the respective current output packet streams.
p2 is the loop over table entries. The condition is p1’s condition plus the equality of the

field values in the parsed representation of the P4 program and the corresponding variables
in the IMP+ program, plus the equality of the index of iteration of the tables entries5, and
the equality of the current packet payloads.
p3 is the end of execution6. The condition is the equality of the respective output packet

streams. p3 is trusted.
Figure 5.6 illustrates the abstract transition relation between the points. Each arrow

represents multiple rewrite steps in each program, ignoring the irrelevant (possibly non-
equivalent) intermediate states of the programs. Note how this abstraction enables us
to establish the equivalence even though the programs are written in two quite different
programming languages.
Given the synchronization points, KEQ was able to prove the equivalence. Although the

program is very simple, we believe it captures the essence of many of the programs that are
used in practice. In addition, note that we provided the synchronization points by hand. In
practice, the compiler can automatically provide this information as it has enough knowledge
during the translation.

5Note that in our semantics of both P4 and IMP+, the table entries are sorted in the descending order of
their priority.

6For technical reasons we assume both programs terminate once the input packet stream becomes empty.

29

Chapter 6: Related Work

6.1 SEMANTICS OF PROGRAMMING LANGUAGES IN K

The K framework has been used to provide complete executable semantics for several
programming languages. Here we briefly overview the more relevant work.
KCC [22] formalizes the semantics of C11, passing 99.2% of GCC torture test suit, more

than what the GCC and Clang could pass. Later work [39] develops the "negative" semantics
of C11 and is able to identify programs with undefined behavior. In our work, we identify
unspecified behavior by lack of semantics.

K-Java [23] formalizes Java 1.4 and follows a test-driven methodology to manually provide
a suite of 800+ tests.
KJS [24] provides semantics for JavaScript passing all 2700+ tests in a conformance test

suite [40]. The authors introduce the notion of semantic coverage for test suites which has
inspired our work.
In these works, the language design predates the formalization effort by several years.

Consequently, although more complex, these languages are quite stable. P4 is still at the early
stages of the language design process and is relatively unstable. This made the formalization
effort challenging.

Recently, KEVM [28] formalizes the Etherium Virtual Machine [41], successfully passing a
suite of 40K official tests. Like P4K, KEVM targets a new language and reveals problems in
its specification.
These works (except K-Java) rely heavily on existing tests to provide semantics. In our

case, such a comprehensive test suite still does not exist. The only test suite that we found
covers less than 54% of our semantics.

6.2 NETWORK VERIFICATION

Bugs happen frequently in networks and lead to performance problems, service disruptions,
security vulnerabilities, etc. Scale and complexity of networks make answering even the
simplest functional correctness queries prohibitively hard to answer manually. This has
ignited research into automating the process of network verification which can be broadly
categorized as follows:
Data plane verification reactively checks network wide properties in a data plane by

analyzing snapshots of it. We have already discussed the work in this area in Chapter 5.

30

Most of these tools do not readily supports P4, with the exception of the ones discussed in
the next section.
Control plane verification proactively ensures a network is free of latent bugs by analyzing

its control plane logic. The literature targets both traditional and SDN control planes. The
techniques include static analysis (e.g. [42]), simulation and emulation (e.g. [43, 44]), model
checking (e.g. [45]), SMT solving (e.g. [46]), testing (e.g. [47, 48]), control plane abstractions
(e.g. [49, 50]), and deductive verification (e.g. [51]). Most of these works (except the ones
mentioned in the next section) assume a fixed and simple model for the data plane elements
which misses the internal details of the devices.

Although control plane is out of the scope of this work, it it worth mentioning that SDN
controllers are usually written using mainstream programming languages 1 for which K
semantics exist (e.g. ONOS [55] is in Java and P4Runtime [56] is in C). By combining the
K semantics of controller programs with our semantics of P4 data planes, we can analyze a
complete model of the whole network. We leave this as future work.

6.3 SEMANTICS AND ANALYSIS OF P4

We are not aware of any extensive efforts to formalize the P4 language.
P4NOD [57] provides a big step operational semantics of a subset of the P4 language (on

paper). The authors use the semantics to provide a translator from P4 to Datalog. The result
is used in P4 data plane verification using a Datalog engine optimized for this purpose [58].
The authors also use the tool to catch a class of bugs, called well-formedness bugs, that are
unique to P4 networks. Finally, the authors show an example of P4 to P4 equivalence check.

Vera [59] translates P4 into SEFL, a language designed for network verification, and uses
symbolic execution (with SymNet [60]) to uncover bugs including parsing errors, invalid
memory accesses, and loops and tunneling errors. Vera focuses on the efficiency of verification
using specialized data structures. The authors of Vera provide big step operational semantics
of a small subset of the P4 language as well as the SEFL language (on paper) and use it to
prove the the correctness of their translation.

p4v [61] translates P4 into the Guarded Command Language (GCL), and enables deductive
verification by generating verification conditions from the resulting GCL program and a set
of user-provided pre-conditions and post-conditions capturing the property to be verified.
The formulas are then checked using Z3. In p4v, the assumptions about the control plane
are encoded as symbolic constraints provided via a domain specific language. The authors of

1Though there is a recent progress towards high level programming languages for controllers [52, 53, 54].

31

p4v do not provide explicit semantics for P4. The semantics is defined by the translation. In
order to gain confidence in the translation, the resulting GCL code is symbolically executed
to generate a suite of tests. The tests are then verified against the official P4 compiler and a
software simulator.

p4pktgen [62] takes an intermediate representation of a P4 program generated by the P4
compiler as input and uses symbolic execution to generate test cases for the given program.
The tool only supports a subset of the P4 language features.

p4-assert [63] provides a language for annotating P4 programs with assertions capturing
the desired properties. It then translates the intermediate representation of the given program
into a C-like program and uses symbolic execution (with KLEE [64]) to uncover assertion
failures.
The primary focus of our work is the language itself and its problems. We provide a

modular small step operational semantics for all language features of P4. Using K tools,
among other things, we too are able to perform all the analysis that the other tools perform.
In addition, we have also shown an example of translation validation between P4 and an
arbitrary programming language formalized in K. Unlike the rest of these works, the analysis
is directly based on the formal semantics. We leave a quantitative comparison of P4K with
these works as a future work.

32

Chapter 7: Conclusion, Discussion, Future Work

We have presented P4K, the first complete semantics of P414. Through our formalization
process, we have identified many problems with the language specification. We automatically
provide a suite of analysis tools derived directly from our semantics. We have discussed and
demonstrated the applications of some of the tools for P4 developers and designers.

With the introduction of P416, P414 may sooner or later be deprecated, especially because
P416 addresses many of P414’s issues through backwards-incompatible changes. Nevertheless,
we think that formalizing P414 was a worthwhile effort. There are still important applications
written in P414 (e.g. [65]) that do not have a P416 equivalent. The language consortium
provides a translator from P414 to P416. However, without a clear semantics of P414, the
translation itself might be problematic. We are aware of at least one instance [27] in which
the translator’s P416 output is not equivalent to its P414 input.
We plan to formalize P416 in near future. We believe transition to P416 will be straight

forward. P416 has actually a smaller core language compared to P414.
Beside other future directions discussed throughout the thesis, we also plan to use our

semantics to analyze real world P4 programs (specially [65, 3]) and networks.
Another interesting use case of our semantics which we leave as a future work is to

automatically generate a test suite that covers all of our semantic rules. Such a test suite
can be very useful for P4 compiler developers, because they can regenerate the tests each
time the language changes.

We conclude by a lesson we learned. It is relatively easy and extremely beneficial to rapidly
apply formal methods at the early stages of a language design process. Not only it helps the
designers quickly identify problems in their design and produce more robust languages, but
also (in case a framework like K is employed) it can save time and effort by automatically
providing various useful tools for the language.

33

References

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese et al., “P4: Programming protocol-independent
packet processors,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 3,
pp. 87–95, 2014.

[2] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker, “In-band network
telemetry via programmable dataplanes,” in ACM SIGCOMM, 2015.

[3] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-y,” ACM SIG-
COMM Computer Communication Review, vol. 46, no. 1, pp. 18–24, 2016.

[4] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis: Static checking
for networks,” in NSDI, vol. 12, 2012, pp. 113–126.

[5] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and S. Whyte, “Real time
network policy checking using header space analysis,” in NSDI, 2013, pp. 99–111.

[6] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” in NSDI, 2013.

[7] A. Horn, A. Kheradmand, and M. R. Prasad, “Delta-net: Real-time network verification
using atoms,” in NSDI, 2017, pp. 735–749.

[8] A. Ştefănescu, D. Park, S. Yuwen, Y. Li, and G. Roşu, “Semantics-based program
verifiers for all languages,” in OOPSLA. ACM, Nov 2016, pp. 74–91.

[9] T. P. L. Consortium, “P414 language specification version 1.0.4,” https://p4lang.github.
io/p4-spec/p4-14/v1.0.4/tex/p4.pdf, May 2017.

[10] A. Kheradmand, “P4 lang. spec. repository issue #398,” https://github.com/p4lang/
p4-spec/issues/398, 2017.

[11] A. Kheradmand, “P4 lang. spec. repository issue #411,” https://github.com/p4lang/
p4-spec/issues/411, 2017.

[12] A. Kheradmand, “P4 lang. spec. repository issue #412,” https://github.com/p4lang/
p4-spec/issues/412, 2017.

[13] A. Kheradmand, “P4 lang. spec. repository issue #414,” https://github.com/p4lang/
p4-spec/issues/414, 2017.

[14] A. Kheradmand, “P4 lang. spec. repository issue #429,” https://github.com/p4lang/
p4-spec/issues/429, 2017.

[15] A. Kheradmand, “P4 lang. spec. repository issue #430,” https://github.com/p4lang/
p4-spec/issues/430, 2017.

34

 https://p4lang.github.io/p4-spec/p4-14/v1.0.4/tex/p4.pdf
 https://p4lang.github.io/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://github.com/p4lang/p4-spec/issues/398
https://github.com/p4lang/p4-spec/issues/398
https://github.com/p4lang/p4-spec/issues/411
https://github.com/p4lang/p4-spec/issues/411
https://github.com/p4lang/p4-spec/issues/412
https://github.com/p4lang/p4-spec/issues/412
https://github.com/p4lang/p4-spec/issues/414
https://github.com/p4lang/p4-spec/issues/414
https://github.com/p4lang/p4-spec/issues/429
https://github.com/p4lang/p4-spec/issues/429
https://github.com/p4lang/p4-spec/issues/430
https://github.com/p4lang/p4-spec/issues/430

[16] A. Kheradmand, “P4 lang. spec. repository issue #431,” https://github.com/p4lang/
p4-spec/issues/431, 2017.

[17] A. Kheradmand, “P4 lang. spec. repository issue #433,” https://github.com/p4lang/
p4-spec/issues/433, 2017.

[18] A. Kheradmand, “P4 lang. spec. repository issue #442,” https://github.com/p4lang/
p4-spec/issues/442, 2017.

[19] A. Kheradmand, “Suggested revision for P414 language specification,” https://github.
com/kheradmand/p4-spec, 2017.

[20] T. P. L. Consortium, “P4 reference compiler (p4c),” https://github.com/p4lang/p4c,
2017.

[21] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic framework,” Journal of
Logic and Algebraic Programming, vol. 79, no. 6, pp. 397–434, 2010, http://kframework.
org/.

[22] C. Ellison and G. Roşu, “An executable formal semantics of c with applications,” in
POPL. ACM, January 2012, pp. 533–544.

[23] D. Bogdănaş and G. Roşu, “K-Java: A Complete Semantics of Java,” in POPL. ACM,
January 2015, pp. 445–456.

[24] D. Park, A. Ştefănescu, and G. Roşu, “KJS: A complete formal semantics of JavaScript,”
in PLDI. ACM, June 2015, pp. 346–356.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[26] T. P. L. Consortium, “P416 language specification version 1.0.0,” https://p4lang.github.
io/p4-spec/docs/P4-16-v1.0.0-spec.pdf, May 2017.

[27] A. Fingerhut, “Operations on header stacks in P414, P416, and bmv2,” https://github.
com/jafingerhut/p4-guide/blob/master/README-header-stacks.md, 2017.

[28] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, D. Guth, P. Daian, and G. Roşu,
“Kevm: A complete semantics of the ethereum virtual machine,” University of Illinois at
Urbana-Champaign, Tech. Rep., 2017.

[29] A. Kheradmand, “P4k,” https://github.com/kframework/p4-semantics, 2017.

[30] B. S. Davie and Y. Rekhter, MPLS: technology and applications. Morgan Kaufmann
Publishers Inc., 2000.

[31] T. P. L. Consortium, “P414 language specification version 1.0.3,” https://p4lang.github.
io/p4-spec/p4-14/v1.1.0/tex/p4.pdf, January 2016.

35

https://github.com/p4lang/p4-spec/issues/431
https://github.com/p4lang/p4-spec/issues/431
https://github.com/p4lang/p4-spec/issues/433
https://github.com/p4lang/p4-spec/issues/433
https://github.com/p4lang/p4-spec/issues/442
https://github.com/p4lang/p4-spec/issues/442
https://github.com/kheradmand/p4-spec
https://github.com/kheradmand/p4-spec
https://github.com/p4lang/p4c
http://kframework.org/
http://kframework.org/
https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://github.com/jafingerhut/p4-guide/blob/master/README-header-stacks.md
https://github.com/jafingerhut/p4-guide/blob/master/README-header-stacks.md
https://github.com/kframework/p4-semantics
https://p4lang.github.io/p4-spec/p4-14/v1.1.0/tex/p4.pdf
https://p4lang.github.io/p4-spec/p4-14/v1.1.0/tex/p4.pdf

[32] T. P. L. Consortium, “P414 language specification version 1.0.3,” https://p4lang.github.
io/p4-spec/p4-14/v1.0.3/tex/p4.pdf, November 2016.

[33] D. Guth, C. Hathhorn, M. Saxena, and G. Roşu, “Rv-match: Practical semantics-based
program analysis,” in CAV, ser. LNCS, vol. 9779. Springer, July 2016, pp. 447–453.

[34] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in TACAS, 2008.

[35] A. Bas, “Basic routing example,” https://github.com/p4lang/p4factory/tree/master/
targets/basic_routing, 2016.

[36] H. Yang and S. S. Lam, “Real-time verification of network properties using atomic
predicates,” in ICNP, 2013.

[37] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in TACAS, 1998, pp.
151–166.

[38] T. K. F. D. Team, “Keq,” https://github.com/kframework/k/tree/keq, 2017.

[39] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of c,” in PLDI. ACM,
June 2015, pp. 336–345.

[40] Ecma TC39, “Standard ECMA-262 ECMAScript Language Specification Edition 5.1,”
June 2011.

[41] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” 2014.

[42] N. Feamster and H. Balakrishnan, “Detecting bgp configuration faults with static
analysis,” in NSDI, 2005, pp. 43–56.

[43] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and
T. Millstein, “A general approach to network configuration analysis,” in NSDI, 2015.

[44] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes, A. Rybalchenko,
G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating large production networks,” in
SOSP, 2017, pp. 599–613.

[45] S. Prabhu, A. Kheradmand, B. Godfrey, and M. Caesar, “Predicting network futures
with plankton,” in APNet. ACM, 2017, pp. 92–98.

[46] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach to network
configuration verification,” in SIGCOMM, 2017, pp. 155–168.

[47] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A NICE way to test
openflow applications,” in NSDI, 2012.

[48] S. K. Fayaz and V. Sekar, “Testing stateful and dynamic data planes with FlowTest,” in
HotSDN, 2014.

36

https://p4lang.github.io/p4-spec/p4-14/v1.0.3/tex/p4.pdf
https://p4lang.github.io/p4-spec/p4-14/v1.0.3/tex/p4.pdf
https://github.com/p4lang/p4factory/tree/master/targets/basic_routing
https://github.com/p4lang/p4factory/tree/master/targets/basic_routing
 https://github.com/kframework/k/tree/keq

[49] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar, and G. Varghese,
“Efficient network reachability analysis using a succinct control plane representation.” in
OSDI, 2016, pp. 217–232.

[50] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast control plane
analysis using an abstract representation,” in SIGCOMM, 2016, pp. 300–313.

[51] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv, M. Schapira, and
A. Valadarsky, “VeriCon: Towards verifying controller programs in software-defined
networks,” in PLDI, 2014.

[52] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and
D. Walker, “Netkat: Semantic foundations for networks,” in POPL, 2014, pp. 113–126.

[53] R. Beckett, M. Greenberg, and D. Walker, “Temporal netkat,” in PLDI, 2016, pp.
386–401.

[54] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker, “Snap: Stateful
network-wide abstractions for packet processing,” in SIGCOMM, 2016, pp. 29–43.

[55] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow et al., “Onos: towards an open, distributed sdn os,” in HotSDN.
ACM, 2014, pp. 1–6.

[56] T. P. L. Consortium, “P4 runtime,” https://github.com/p4lang/pi, 2017.

[57] N. Lopes, N. Bjørner, N. McKeown, A. Rybalchenko, D. Talayco, and G. Varghese,
“Automatically verifying reachability and well-formedness in p4 networks,” Microsoft
Research, Tech. Rep., 2016.

[58] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese, “Checking beliefs
in dynamic networks,” in NSDI, 2015.

[59] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu, “Debugging p4
programs with vera,” in SIGCOMM, 2018.

[60] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet: Scalable symbolic
execution for modern networks,” in SIGCOMM, 2016.

[61] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang, C. Caşcaval,
N. McKeown, and N. Foster, “P4v: Practical verification for programmable data planes,”
in SIGCOMM, 2018.

[62] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas, “P4pktgen: Automated
test case generation for p4 programs,” in SOSR, 2018.

[63] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos,
“Uncovering bugs in p4 programs with assertion-based verification,” in SOSR, 2018.

37

https://github.com/p4lang/pi

[64] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs.” in OSDI, 2008.

[65] T. P. L. Consortium, “switch.p4,” https://github.com/p4lang/switch, 2016.

38

https://github.com/p4lang/switch

	Chapter 1 Introduction
	Chapter 2 Background and Challenges
	Software Defined Networks
	P4
	Challenges in Formalizing P4
	The K Framework

	Chapter 3 P4K
	Syntax
	Configuration
	Semantics
	Execution Phases
	Language Constructs and Semantics

	Concurrency Model
	Limitations
	Network Semantics

	Chapter 4 Evaluation
	Chapter 5 Applications
	Detecting Unportable Code
	State Space Exploration
	Symbolic Execution
	Search for Bugs
	Data Plane Verification

	Program Verification
	The Load Balancer Program

	Translation Validation
	P4 IMP+ Translation Validation

	Chapter 6 Related Work
	Semantics of Programming Languages in K
	Network Verification
	Semantics and Analysis of P4

	Chapter 7 Conclusion, Discussion, Future Work
	References

