
c© 2018 Mangesh Bendre

TOWARDS UNIFYING SPREADSHEETS WITH DATABASES FOR AD-HOC
INTERACTIVE DATA MANAGEMENT AT SCALE

BY

MANGESH BENDRE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Assistant Professor Aditya Parameswaran, Chair
Professor Kevin Chen-Chuan Chang
Professor ChengXiang Zhai
Associate Professor Arnab Nandi, Ohio State University

ABSTRACT

We are witnessing the increasing availability of data across a spectrum of domains, ne-

cessitating the interactive ad-hoc management and analysis of this data, in order to put

it to use. Unfortunately, interactive ad-hoc management of very large datasets presents a

host of challenges, ranging from performance to interface usability. This thesis introduces a

new research direction of manipulation of large datasets using an interactive interface and

makes several steps towards this direction. In particular, we develop DataSpread, a tool

that enables users to work with arbitrary large datasets via a direct manipulation interface.

DataSpread holistically unifies spreadsheets and relational databases to leverage the ben-

efits of both. However, this holistic integration is not trivial due to the differences in the

architecture and ideologies of the two paradigms: spreadsheets and databases. We have built

a prototype of DataSpread, which, in addition to motivating the underlying challenges,

demonstrates the feasibility and usefulness of this holistic integration. We focus on the fol-

lowing challenges encountered while developing DataSpread. (i) Representation—here, we

address the challenges of flexibly representing ad-hoc spreadsheet data within a relational

database; (ii) Indexing—here, we develop indexing data structures for supporting and main-

taining access by position; (iii) Formula Computation—here, we introduce an asynchronous

formula computation framework that addresses the challenge of ensuring consistency and

interactivity at the same time; and (iv) Organization—here, we develop a framework to best

organize data based on a workload, e.g., queries specified on the spreadsheet interface.

ii

To my parents, wife, and children, for their love and support.

iii

ACKNOWLEDGMENTS

This project would not have been possible without the support and generous help from

all the people around me.

First, I would like to express my sincere gratitude to my advisors Professor Kevin Chang

and Professor Aditya Parameswaran for their continuous support of my Ph.D. study and

related research, for their patience, motivation, and immense knowledge. I am thankful to

them for not only the insightful discussions but also the rigorous coaching I needed to dig

deeper and think bolder. Next, I would also like to thank the rest of my committee members

Professor ChengXiang Zhai and Professor Arnab Nandi for their insightful comments, which

helped me to widen my research from various perspectives. Finally, I want to thank Professor

Karrie Karahalios for enabling me to look at my research from a very different perspective.

I would also like to thank all the collaborators of DataSpread: Xinyan Zhou, Ding

Zhang, Vipul Venkataraman, Sajjadur Rahman, Tana Wattanawaroon, Kelly Mack, Pingjing

Yang, Himel Dev, Yu Lu, Yuyang Liu, Shichu Zhu, Shan Bai, Joon Park, Ti-Chung Cheng,

Shike Zhang, and Bofan Sun—this project would not be a reality without you all!

Additionally, I am also thankful for my lab mates for all the stimulating discussions that

I had over the years. I’d like to thank Long Pham, Amin Javari, Aravind Sankar, Tarique

Siddiqui, Mun-Thye Mak, Mianwei Zhou, Rui Li, Yuan Fang, among many others.

Last, but not least, I would like to thank my wife, Ketaki, and my children, Anvi and

Anay, for the encouragement and emotional support I needed to complete this challenging

process.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 OUR VISION AND SYSTEM DEVELOPMENT 12
2.1 Our Vision: Direct Manipulation at Scale . 14
2.2 First Prototype: Unifying Databases and Spreadsheets 18
2.3 Second Prototype: Interactive, Navigable, and Expressive UI 27

CHAPTER 3 SPREADSHEET STORAGE MODELING 35
3.1 Understanding Requirements for a Storage Engine 37
3.2 Data Presentation Manager . 45
3.3 Presentational Awareness . 47
3.4 Primitive Data Models: Optimality . 50
3.5 Presentational Access for Updates . 67
3.6 DataSpread’s Storage Architecture . 69
3.7 Experimental Evaluation . 72
3.8 Related Work . 87
3.9 Conclusions . 88

CHAPTER 4 ASYNCHRONOUS FORMULA COMPUTATION 89
4.1 Asynchronous Computation . 93
4.2 Fast Dependency Identification . 101
4.3 Computation Scheduling . 111
4.4 Supporting Asynchronous Computation in DataSpread 118
4.5 Additional Experiments . 123
4.6 Related Work . 125
4.7 Conclusions . 126

CHAPTER 5 RELATIONAL SCHEMA DESIGN 127
5.1 Quantitative Schema Design . 131
5.2 Conceptual Schema Description . 136
5.3 Search Space . 143
5.4 Pruning Design Space . 149
5.5 Experimental Evaluation . 154
5.6 Related Work . 161
5.7 Conclusion . 162

CHAPTER 6 FUTURE WORK: DIRECTED DATA MANAGEMENT 164
6.1 Towards Directed Data Management . 165
6.2 Multi-Perspective Representation . 166
6.3 Accelerated Actions . 167

v

6.4 Progressively Visible Feedback . 168
6.5 Conclusion . 169

CHAPTER 7 RELATED WORK . 170

CHAPTER 8 CONCLUSION . 173

REFERENCES . 174

vi

CHAPTER 1: INTRODUCTION

We are witnessing increasing availability of data across a spectrum of domains, neces-

sitating interactive and ad-hoc management of this data: a business owner may want to

manage customer data and invoices, a scientist experimental measurements, a professor stu-

dent grades, and a fitness enthusiast heart rate and activity traces. However, while there

are two dominant software paradigms for providing a direct manipulation interface and en-

abling effective management of big data—spreadsheets and databases respectively—neither

of them fulfill the desired requirements, as we illustrate below.

Paradigm 1.1: Spreadsheets. Spreadsheets, from the pioneering VisiCalc [1] to Microsoft

Excel [2] and Google Sheets [3], have found ubiquitous use in ad-hoc manipulation, manage-

ment, and analysis of tabular data. Recent estimates from Microsoft posit that there are over

750 million users of spreadsheets, specifically Microsoft Excel [4]. They provide a common

artifact and language for data to the billions who use them, enabling collaboration; they

provide statistical analysis functionality; and they provide visualization tools to make sense

of data. Above all, they provide this functionality in a direct manipulation interface [5, 6]

that caters to both novice as well as advanced users, spanning businesses, schools, organiza-

tions, and home. Spreadsheets have, in fact, been heralded as the pioneering example of a

direct manipulation interface.

This mass adoption of spreadsheets breeds new challenges. With the increasing number

of people using spreadsheets, size of data sets, types of analyses, and extent of collaboration,

we see a frenzy to push the limits: users are struggling to handle larger and more complex

data; they are trying to import large data sets into Excel (e.g., billions of gene-gene interac-

tions), compose complex operations not naturally supported (e.g., “joins” between multiple

tables), handle errors and inconsistencies resulting from manual entry or their own makeshift

strategies for collaboration (e.g., by emailing back and forth), with no data validation and

error recovery mechanisms [7, 8]. In response, spreadsheets are stretching the size of data

and functionality they can support. For example, Excel has lifted its size limits from 65k to 1

million rows and added Power Query and Power Pivot [9, 10] to import data from databases

1

in 2010; Google Sheets has expanded its size limit to 2 million cells and touted its support

of SQL, although restricted to one table. Despite these moves, spreadsheets are far from

the kind of scale (e.g., beyond memory limits) and functionality (e.g., relational operations,

transactional semantics) that databases natively provide. We describe a concrete example

of the limitations of spreadsheets from our collaborators below.

Example 1.1 (Using Spreadsheets for Genomic Data Analysis). During the course of ge-

nomic data analysis, biologists, such as our collaborators at the KnowEnG center at Mayo

Clinic, generate data describing genomic variants as VCF (variant cell format) files, akin to

CSV files. These VCF files are large, with tens of millions of rows and hundreds of columns,

plus a raw size of many gigabytes. Unfortunately, many biologists, like scientists in many

other domains, are adept at using spreadsheet software, but are not comfortable enough with

programming to use databases. To interactively explore or browse their VCF data, they strug-

gle to load such files into spreadsheet software. For example, Microsoft Excel limits datasets

to 1M rows and Google Sheets to 2M cells. And even when one can load large datasets, these

tools become sluggish and unresponsive. In fact, many biologists are unable to explore the

datasets they create, instead sending them to bioinformatics collaborators to analyze.

Similar to this example, a recent study of scalability issues in spreadsheet software via

analysis of Reddit posts [11] revealed 83 separate accounts of issues with Excel that were, at

least in part, due to the scale of data or operations on the spreadsheet. Anecdotal evidence

also indicates that users struggle with a variety of scalability problems on large and/or

complex spreadsheets. Many of the Reddit posts indicate scalability issues arising from as

few as tens of thousands of rows, well below the size limits of the spreadsheet software [12].

Thus, to summarize, even though recent attempts have spreadsheets increasingly sup-

porting database-like functionality, at their core, spreadsheets are facing inherent limitations

due to their lack of support for non-main-memory resident data, relational operations, and

transactional semantics, among others.

Paradigm 1.2: Relational Databases. Relational databases, such as Oracle, Microsoft

SQL Server, IBM DB2, MySQL, and PostgreSQL, being scalable, expressive, and transac-

tional, are the de-facto standard for large-scale data storage, processing, and management,

2

within most organizations. The decades of research and development since Codd’s relational

model [13] has validated relational algebra as a solid foundation for computation on tables,

with SQL as its realization, external-memory algorithms and indexing for scalable query pro-

cessing, and transaction processing for maintaining data consistency. However, databases

have their limitations, as the following example from our collaborators indicate.

Example 1.2 (Using Databases for Customer Management). The owner of a small retail

startup in Champaign, Illinois created a MySQL database for managing customers and sales,

organized in a schema comprising 15 tables. There are several actions that he and his staff

would like to routinely perform, such as insert (customers), modify (due dates of invoices),

filter (overdue invoices), join (invoices and payments), and aggregate (the total amounts).

To perform these operations without requiring SQL, he has to employ a programmer to de-

velop database applications. Instead, he wants to manipulate data for ad-hoc operations

interactively, but no such tools exist.

As the example demonstrates, this ubiquity and impact of databases comes at a price—

with SQL as its “interface”, databases are not naturally interactive [14, 15] and do not support

direct manipulation of tables, e.g., selecting or modifying a range of data on-demand, plac-

ing it in a location, ordering and accessing rows by position, adding “derived” columns and

computation in-situ via formulae, and propagating changes of formula-linked data through-

out the visible windows. Consequently, users access databases either via pre-programmed

database applications (Figure 1.1a), or SQL clients (Figure 1.1b), which only support oper-

ations on entire relations at a time, as opposed to directly interacting with data for updates

and analysis. Above all, such access is inflexible and does not cater to ad-hoc direct ma-

nipulation needs, thus locking data behind fixed applications. To this end, there have been

a number of papers on making databases usable, e.g., [14, 16, 17, 18, 19], but this research

has not witnessed widespread adoption.

Summary of Issues with Paradigms. Overall, we are critically lacking a solution for

interactive ad-hoc management of data. On the one hand, spreadsheet software, while being

heralded as a prime example of a direct manipulation [5] tool, lacks scalability, due to its in-

ability to operate on datasets that go beyond main memory capabilities, and expressiveness,

3

Customers Invoices Payments

Data Presentation Manager

Data Storage

Database

Orders

SQL

(a) Applications (b) SQL Clients

Spatial Access

Products

(c) Spreadsheet

Figure 1.1: Connecting spreadsheets and databases for enabling interactive ad-hoc data manage-
ment.

since its formulae only operate on one cell at a time, necessitating complicated means (e.g.,

VLOOKUP) to orchestrate simple operations like joins. On the other hand, while databases

provide both scalability and expressiveness, they lack support for direct manipulation vital

for interactive ad-hoc data management.

Vision. This thesis aims at addressing this challenge, by advocating a new research direction

of supporting a direct manipulation system for ad-hoc management of big data and taking

the first few steps towards this research direction. As a concrete goal of we are developing

DataSpread, a one-stop tool for interactive ad-hoc data management that enables users

to collaboratively work with arbitrarily large datasets via a direct manipulation interface.

Thus, DataSpread should (i) provide a continuous representation of data on an interac-

tive interface, (ii) provide physical actions (movement and selection by mouse, touch screen,

etc.) or labeled button presses instead of complex syntax, (iii) provide rapid, incremental,

reversible operations whose impact on the object of interest is immediately visible, (iv) pro-

vide a layered or spiral approach to learning that permits usage with minimal knowledge,

and (v) effectively work with arbitrarily large datasets that go beyond main-memory sizes.

To build DataSpread, rather than starting from scratch, we propose holistically inte-

4

grating spreadsheets and relational databases, the two dominant paradigms that provide a

direct manipulation interface and enable effective management of big data, respectively, to

leverage the benefits of both. We have two objectives in building DataSpread: (i) (database

objective) manipulating data within databases on a spreadsheet interface, without relying

on pre-programmed applications or SQL clients—thereby enabling interactive ad-hoc data

management for a database, while (ii) (spreadsheet objective) operating on datasets not

limited by main memory—thereby addressing a key limitation of present-day spreadsheets.

While our ultimate goal is to develop a spreadsheet-like interactive front-end interfaces for all

kinds of data stores, including row stores, column stores, and key-value stores, in this thesis,

we focus on relational row stores because they are mainstream and universally popular.

Using a system like DataSpread, users can view and manipulate data in a spatially or-

ganized tabular interface (Figure 1.1c), in addition to standard approaches (Figure 1.1a,b)—

here, the spreadsheet modality equips a database with ad-hoc querying and manipulation

capabilities while presenting data for browsing. They can work with large tables (e.g., VCF

files) presented on the interface and stored in the database. They can operate at various

granularities, embodying the principles of direct manipulation [5]—from cells (like a spread-

sheet) to tables (like a database)—and add computation in the form of formulae or queries

on the interface, alongside data. They can flexibly arrange data, from structured tables,

reports, and forms, to ad-hoc layouts combining data and queries. They can refer to data by

tables or attributes (as in a database) or position (as in a spreadsheet). While we primarily

focus on spreadsheets, the same capabilities can enable other spatial interfaces for interactive

ad-hoc data management.

Challenges. Developing DataSpread presents a host of engineering and research chal-

lenges, ranging from storage and indexing to interface usability. For example, supporting

interactive operations for large datasets necessitates not only an efficient storage mechanism

that is not bogged down by the size of data but also an indexing and computational frame-

work that enables updates to the data interactively. To go beyond main-memory limitations,

we need to ensure that DataSpread works with a two-tiered storage model, where the up-

per tier, i.e., main-memory, is limited in size and acts as a cache, and the lower tier, i.e.,

5

disk, acts as a persistent data store. In addition, representing and supporting operations

for a large dataset on an interactive interface in an interpretable manner is challenging.

Additionally, spreadsheets and relational databases adopt very different architectures and

ideologies, which makes the holistic integration challenging. In particular, we need to deal

with the following challenges:

• Schema: databases have a strict schema-first data model based on tables and tuples,

while the spreadsheet data model is based on sheets with rows and columns, and has no

explicitly defined schema.

• Addressing: spreadsheets treat rows and columns as equivalent, while databases operate

on sets of tuples.

• Window: spreadsheets have the notion of the current window, i.e., is the portion of the

spreadsheet that a user is currently looking at; there is no such notion in databases.

• Modifications: spreadsheets support updates at any level and granularity: rows or columns,

while databases only support modifications that correspond to SQL queries.

• Updates: spreadsheets do not support automatic updates to underlying data, while databases

support automated SQL commands (generated from, say, a program).

• Computation: spreadsheets support value-at-a-time formulae to support computation of

derived data, while databases support arbitrary SQL queries operating on groups of tuples

at once.

• Interface: the interfaces and semantics of spreadsheets are not designed to work with large

datasets. For example, scrolling through billion row spreadsheets is impossible.

While addressing all of the aforementioned challenges is non-trivial and goes beyond

the scope of a single thesis, our goal in this thesis is to demonstrate the feasibility of the

overall unification vision and make several useful steps towards the holistic unification. In

particular, in Chapter 2, we describe prototypes we have developed that make two impor-

tant contributions: (i) enabling spreadsheets to act as a relational database front-end, and

(ii) supporting the manipulation of large datasets in a spreadsheet interface. In Chap-

ters 3–5, we address key challenges encountered along the way, namely (i) representation,

(ii) indexing, (iii) formula computation, and (iv) organization. Then, in Chapter 6, we

6

outline what is lacking in our prototypes and outline a vision for the future to truly address

all of the aforementioned challenges and others—a vision we term directed data management.

We now describe each chapter in more detail:

Chapter 2: System Development Overview and Motivation. Here, we describe our

first prototype of DataSpread, using Microsoft Excel as the front-end and PostgreSQL as

the back-end. We identify the key challenges of this method of holistic integration, focusing

on the limitations of relational databases in supporting a spreadsheet-like direct manipulation

interface, and propose a high-level architecture for DataSpread. We describe the following

novel features of DataSpread that essentially enables spreadsheets to act as a relational

database frontend: (i) querying a relational database via a spreadsheet interface using SQL,

(ii) importing of data from a relational database to the spreadsheet interface and exporting

of data from the spreadsheet interface to a relational database, and (iii) linking a region on

the spreadsheet interface to a table in the underlying relational database, thereby enabling

a two-way synchronization between the region on interface and the back-end table.

We build on lessons learned from our first prototype to develop our second one. This

prototype introduces features enhancing the user experience, beyond our previous prototype

and what traditional spreadsheets provide, with a goal to enable users to work with large

spreadsheets efficiently. Here, instead of using Microsoft Excel as a front-end, we used ZK

(open-source) spreadsheet frontend [20]. We specifically describe: (i) an asynchronous and

lazy computational model to address the issue of poor interactivity on large and complex

spreadsheets; (ii) a navigation interface to enable users to drill-down to desired areas while

examining a summarized view of the data to improve navigability; and (iii) support for table-

oriented formulae, a simple but effective means to express relational operations on tabular

regions to improve expressiveness.

Chapter 3: Spreadsheet Storage Modeling. To enable DataSpread to efficiently

work with datasets that go beyond main-memory sizes, it fetches data on-demand from the

underlying database when triggered by a user action (like scrolling) or from a system action

(like calculating a formula). This requires DataSpread’s storage engine to address two

challenges.

7

The first challenge is how to flexibly represent spreadsheets in a relational database. A

user may manage several table-like regions within a spreadsheet, interspersed with empty

rows or columns, along with formulae. Storing such a spreadsheet, a mix of sparse and dense

regions, as a single relation is not only wasteful in terms of storage space but also detrimental

for access performance (e.g., during scrolling or formula computation). Thus, we adopt a

hybrid scheme that takes storage and access patterns into account and stores dense regions

as tables, with tuples as spreadsheet rows, and attributes as spreadsheet columns; and sparse

regions as tables with tuples as key-value pairs. Unfortunately, it is NP-Hard to identify

the optimal hybrid representation scheme.

To address this limitation, we develop an efficient approach to identify the optimal repre-

sentation from an important and intuitive subclass of representations. In particular, we focus

on hybrid data models that can be obtained by recursive decomposition. For this subclass,

we can obtain the optimal representation in PTIME by using a dynamic programming-based

algorithm. We extend this algorithm to make it even more efficient, at a small cost to op-

timality. We empirically show that our solutions are close to optimal and can be obtained

efficiently.

Our second challenge is in supporting and maintaining spatial access. Storing positional

information, i.e., row and column numbers, as-is can lead to expensive cascading updates

(as we will describe in Chapter 3) during insert/delete operations. Moreover, we need “posi-

tional” indexes that allow range based accesses. Cascading updates make it hard to maintain

a traditional index for recording position, e.g., B+ Tree, across edit operations. We intro-

duce positional access mechanisms along with corresponding data structures that don’t suffer

from the issue of cascading updates, leading to almost sub-linear access and modification

performance—this is crucial to ensure interactivity while working with large spreadsheets.

Chapter 4: Asynchronous Formula Computation. Traditional spreadsheets, e.g.,

Microsoft Excel, adopt a synchronous computation model, where users are kept waiting until

formula computation is complete—this disrupts interactivity for large and computationally

heavy spreadsheets. To address this, DataSpread adopts an asynchronous computational

model instead, returning control back to the user immediately, while masking the cells whose

8

values have not been computed yet. To quantitatively evaluate the different computation

model, we introduce a novel metric of unavailability, which we define as the area under the

curve, for a computation model, plots the number of cells unavailable to users to act upon.

The primary challenge for enabling asynchronous computation is to maintain both con-

sistency and interactivity at the same time. This requires addressing two problems both of

which are NP-Hard: (i) identifying the impacted cells after an update on a spreadsheet in

a bounded period of time and (ii) determining a schedule for computing the impacted cells.

To ensure interactivity, we compress the formula dependency graph lossily and propose tech-

niques for compression and maintenance. For scheduling computation of the impacted cells,

we propose an on-the-fly scheduling technique. We experimentally show that out techniques

ensure interactivity, i.e., returning control to the user in about 100 ms, and perform 12x

better over the synchronous computation model as evaluated by our unavailability metric

on a real world spreadsheet.

Chapter 5: Relational Schema Design. In Chapter 3, we described how we design a

storage manager for ad-hoc spreadsheet data—this can result in many tables stored in the

backend database. In this chapter, we complement the discussion by focusing on optimizing

the schema of these relational tables. We develop a framework, along with the relevant

theory and algorithms, for “quantitatively” designing a schema, i.e., designing a schema that

minimizes the execution cost for a workload (e.g., access patterns from formulae).

Quantitatively designing a relational schema is essential not only in the context of

DataSpread for efficiently representing backend tabular data, but is also in generic database

settings. Among all of the factors that determine the performance of a relational database

system, the schema is not just highly important, but also often overlooked. Also, the trend of

using databases as an invisible “back-end” demands high performance from a schema as op-

posed to the normalization or intuitiveness, as is traditionally emphasized. In DataSpread,

in particular, we additionally enable users to persist tabular data on the spreadsheet inter-

face as relational tables within the underlying database. Also, on a spreadsheet interface,

users can embed queries in the form of formulae along with tabular and non-tabular data.

To ensure the interactivity of the interface, efficient execution of these queries is necessary.

9

Furthermore, the spreadsheet interface acts as an abstraction, isolating users from the un-

derlying database. Thus, it is possible to optimize the schema of the relational tables stored

in the underlying database in a transparent manner while still being able to service the

queries.

We formulate the goal of quantitatively designing a relational schema as an optimization

problem, where we select a schema from a set of possible candidates, i.e., a search space

of candidates, that minimizes the execution cost for a workload. We need to address two

main challenges: (i) Search Space: Defining our search space of candidates requires new

semantics to describe the requirements of schema faithfully. Traditionally, dependencies,

both functional and multivalued, were introduced to capture database constraints using

which appropriate schema can be designed [21, 22, 23, 24, 25]. Unfortunately, they fall

short for describing many-to-many relationships. We address this limitation by introducing

a novel concept of attribute associations to describe schema requirements, thereby enabling

us to define our search space. Unfortunately, our search space is exponential with respect

to the number of associations. (ii) Optimization: To find the optimal schema, i.e., one

that minimizes the cost of a workload, within our exponential search space, we develop an

anti-monotonic property to efficiently prune the schema search space. The anti-monotonic

property makes very few assumptions about the underlying database, and thus we can

use it across a variety of relational databases. We experimentally demonstrate up to

2x speedups on three datasets, a significant improvement over the current state-of-the-art

schema optimization methods.

Chapter 6: Future Work: Directed Data Management. In previous chapters, we

introduced the idea of holistically integrating spreadsheets and databases to enable direct

manipulation at scale. However, due to the scaling limitations of the spreadsheet interface,

this version of holistic integration does not completely address our goal of interactive ad-hoc

data management at scale. So to fully address this goal, we propose a new research direction,

termed directed data management, to effectively bring the usability benefits of spreadsheets

to databases, while not sacrificing the power and scalability of databases. We argue that on

extremely large datasets the vanilla direct manipulation capabilities offered by spreadsheets

10

are no longer effective, necessitating extensions to support multiple perspectives, accelerated

actions, and progressive feedback. In this chapter, we describe the challenges underlying

directed data management.

11

CHAPTER 2: OUR VISION AND SYSTEM DEVELOPMENT

As we argued in the introduction, ad-hoc interactions with databases are challenging.

This is due to two reasons: operations and representation. First, even if it is easier to issue

correct SQL queries using recent work such as gestures [26, 18], natural language [17], and

auto-completion [19, 27], SQL is still an indirect means for operating on data, requiring users

to issue declarative queries in “batch mode” on relations at a time, waiting until the entire

query is crafted and issued before seeing any results. Second, databases do not persist the

state of the analysis, nor can users organize and represent their analysis results in a way that

is easy to understand and share.

While the usability of databases for ad-hoc interactions is questionable, spreadsheet

software is incredibly popular for such tasks. Spreadsheets provide direct manipulation

capabilities, as defined by Shneiderman [5], allowing users to interact with a continuous

representation of the object of interest (data in a collection of cells) via incremental, reversible

operations (updates, filters) by performing physical actions (clicks, scrolling)—addressing the

same two aspects that were problematic for databases. Shneiderman attributes the success

and usability of spreadsheets to its direct manipulation capabilities. Nardi and Miller [28]

attribute the success of spreadsheets to these same two aspects that were problematic for

databases, operations—actions that match user tasks and shield them from cumbersome

programming—and representation—a table-oriented interface that allows users to spatially

organize their data along with the analysis.1

Our first goal is to bring the usability benefits of a spreadsheet-like interface—the di-

rect manipulation capabilities and ease-of-use—to relational databases, thereby providing a

solution to database usability for ad-hoc interactions. Unfortunately, we find that adding

spreadsheet-based direct manipulation capabilities to databases is not straightforward, in

part due to fundamental incompatibilities between direct manipulation and the declarative

querying paradigm, as we discuss below.

From Declarative Queries to Direct Manipulation. To make databases more usable,
1Nardi and Miller referred to these notions as computation and presentation respectively, but we use the terminology from

Shneiderman [5] for uniformity.

12

S1 S2 S3

S1 S2 S3

SQL queries,
via command line or IDE

Small, incremental,
reversible actions

From Declarative Querying
To Direct Manipulation

Figure 2.1: From Declarative Queries to Direct Manipulation.

we need to equip databases with direct manipulation capabilities via a spreadsheet-like

front-end, while applications requiring SQL access to the database continue to have such

unfettered access to the underlying data, as shown in Figure 2.1. Unlike traditional data

management, where there are irreversible transitions between database states (depicted as

drums), based on coarse-grained SQL queries on entire relations (depicted as unidirectional

thick arrows), our goal is to support a spreadsheet representation (depicted as a grid) as well

as the database state at each juncture, and supports incremental, reversible, and fine-grained

operations (depicted as bidirectional thin arrows) to change the representation along with

data. However, databases do not natively support an ad-hoc spatial representation, with

13

operations that impact one or more cells at a time, referred to by their position on the

sheet. From a representation standpoint, data on spreadsheets is organized in an ad-hoc,

task-dependent manner, with tables interspersed with whitespace and formulae; databases

instead organize data in uniform unordered relations. Moreover, the organization heavily

relies on position—but maintaining position within a database is hard: adding or deleting

a row can lead to cascading updates to row numbers of subsequent rows, necessitating

indexing structures that can maintain positional information efficiently. From an operation

standpoint, direct manipulation encourages the embedding of formulae along with data,

leading to new optimization challenges: we need to provide databases with the ability to

execute a complex network of formulae, prioritizing for what the user is seeing. Overall,

we need to equip databases with what we’re calling representation-awareness and operation-

awareness. Moreover, databases are not optimized for human-centered objectives that go

beyond the typical latency and throughput metrics, such as ease-of-use, response time, lack

of frustration, and lack of errors. We describe our vision along with the challenges in detail

in Section 2.1.

We are building DataSpread as a concrete attempt towards realizing the goal of equip-

ping databases with direct manipulation capabilities via a spreadsheet-like front-end. We

envision that DataSpread will serve as a one-stop tool for interactive ad-hoc data manage-

ment that enables users to work with arbitrarily large datasets via a spreadsheet-like direct

manipulation interface. In the rest of the chapter, we discuss our development of various

prototypes of DataSpread. Our first prototype, as discussed in Section 2.2, serves as a

proof-of-concept demonstrating the feasibility and usefulness of holistically unifying spread-

sheets with relational databases. Our second prototype, as discussed in Section 2.3, focuses

on features that enhance the user experience beyond what traditional spreadsheets provide

with a goal to enable the users to work with large spreadsheets efficiently.

2.1 OUR VISION: DIRECT MANIPULATION AT SCALE

As we argued earlier, direct manipulation on a spreadsheet-like interface hinges on

human-interpretable representations of the state of the data and intuitive operations that

14

allow transitions between states: users “view a concrete, visible representation of data as a

tabular layout of cells, upon which to perform incremental operations” [28]. As it turns out,

adding support for direct manipulation to a database requires every layer of the database

stack to be more aware of human-centered needs.

On the one hand, to allow users to interact with a “concrete, visible representation of

data in a tabular layout of cells”, this requires the data to be ordered in either dimension, and

positioned on a grid. Moreover, this representation is a “model of the problem of interest” [29].

Such a task-specific representation is necessarily irregular, with multiple modularized regions

of data, interspersed with whitespace, all on a single sheet. Unfortunately, these notions of

ordered, positional, and irregular data representations are in sharp contrast to the relational

model in a database, which is set-oriented, not organized in a grid, regular (i.e., each tuple

has the same set of attributes), and often normalized and thus disallows redundancy (no

derived values). Thus, in order to support direct manipulation, databases must be equipped

with representation-awareness—a new notion.

On the other hand, to support rapid, incremental, and reversible operations, we should

provide small operations with guaranteed responsiveness (e.g., sub-second) to cater to the

fact that users are impatient. Once again, we find that these notions are very different

from the declarative querying paradigm in a database, where a query is a “batch” command,

with non-guaranteed response time. To support direct manipulation, databases must also

be equipped with operation-awareness.

2.1.1 Supporting Representation Awareness

We now consider some of the key challenges in bringing representation-awareness to

databases.

Irregularity. Direct manipulation of data requires the flexibility to develop a concrete and

visual representation of data, for a specific activity. For example, a realtor may want to

organize a set of Airbnb listings by region to prepare a report. The database should persist

this layout, along with the data, enabling the realtor to recall where specific data or analysis

is located in order to complete a task, and create multiple such layouts for different tasks.

15

This imposes a new challenge: How do we support irregular layouts of data using the rigid

relational model?

Our insight here is that we may use a hybrid representation by carving out dense tabular

regions of the spreadsheet, directly stored as database tables, and the remaining sparse cells,

stored as key-value pairs, with the position as the key. We can also take into account access

patterns, e.g., via formulae. Unfortunately, identifying the optimal hybrid representation

is NP-Hard; however, we have developed near-optimal approaches that yield substantial

reductions in storage (up to 50%), and formula evaluation time (up to 50%)—see Chapter 3.

Order and Position. In a spreadsheet-like interface, users can organize the data in very

specific ways, tailored to their task. For example, our realtor can manipulate the order of

the listings (e.g., by sorting the listings by district), and then drag the rows corresponding

to “Queens” to be next to “Brooklyn” to compare those listings on other attributes. Users

expect these changes to be persistent and expect to be able to able to refer to the data by

position, e.g., by scrolling to or selecting a region of interest. We call these orders as implicit,

as they are user-defined and do not correspond to any natural ordering based on attribute

values. Thus, how do we support the notion of order (both implicit and explicit) and position

within a database, which is unordered in both rows and columns? One simple approach is

to simply support this by adding an attribute that captures the position, e.g., the row, for

each row in the interface. However, even a small change, such as the addition of a row, can

cause the cascading updates of the row numbers of all subsequent rows.

To address this, we can encode the position attribute via monotonically increasing proxies

such that the insertion or deletion does not impact subsequent tuples. Then, we can use a

hierarchical B+tree-like indexing structure that appends each node with the counts of nodes

in the subtree below, allowing us to identify the tuple in the k-th position in O(log n). In

practice, our encoding and indexing scheme ensures interactivity (≈a few ms) for billions of

cells—see Chapter 3.

16

2.1.2 Supporting Operation Awareness

We now discuss how to enable operation awareness in a database, via small operations

with guaranteed responsiveness.

Guaranteed Responsiveness on Small Operations. Direct manipulation presents new

challenges for query optimization and execution. Rather than writing complex SQL queries,

users perform computations in small, incremental steps using formulae, embedded along with

data— often as many formulae as items of data. Formulae can refer to the results of other

formulae, introducing dependencies. The scale of queries and the notion of dependencies

introduce new challenges, not found in traditional query optimization. Even on present-

day spreadsheets that have many formulae, formula computation ends up leading to system

unresponsiveness spanning from minutes to even hours [12].

To facilitate formula computation, we need to capture formula dependencies in a depen-

dency graph, which could be arbitrarily deep and wide. One open question here is: how and

where do we maintain this graph as users add or delete formulae? Given such a representa-

tion, we can make formula computation more responsive if we incorporate two techniques:

asynchronous computation—as described in Chapter 4, allowing computation to happen in

the background while users can still interact with the sheet, and lazy computation—since

users are only viewing a window at a time, prioritizing for what they are seeing over what

they are not. While enabling these techniques, we need to ensure that users see a consistent

view of the analysis—no stale values should be shown.

Enabling both of these techniques leads to a number of challenges: (i) How do we identify

and optimize for the dependencies? To prioritize for the user window, we need to quickly

traverse the large dependency graph to find the formulae that are impacted. One approach

is to store a compressed version of this dependency graph that can be traversed efficiently

to identify dependent formulae, with minimizing false positives (identifying a formula as a

dependent, when it is not), but no false negatives. (ii) How do we identify and optimize

for the redundancies? When executing these formulae, since many of them have a similar

structure and refer to the same data, we can share access and computation. This challenge,

like the previous one, is reminiscent of multi-query optimization. However, the new structural

17

characteristics, in terms of the dependencies and redundancies, make the challenges distinct

and novel, necessitating new techniques—see Chapter 4.

2.2 FIRST PROTOTYPE: UNIFYING DATABASES AND SPREADSHEETS

We build the first version of DataSpread to explore the research issues discussed in

the previous section. Externally, DataSpread retains many of the front-end user interface

aspects of spreadsheets that make it as easy to use, while at the same time enhanced and

supported by a back-end relational database, providing efficiency and expressiveness. In the

front-end, in addition to all the traditional spreadsheet commands, DataSpread supports

the use of arbitrary SQL via custom DBSQL and DBTable commands, enabling the import,

and constant updating of data from relational databases, as well as the computation of

selections and joins of data contained in the spreadsheets. Conceptually, these commands,

along with other spreadsheet commands, are stored as interface views in the underlying

database. In the back-end, an optimizer, optimizes for keeping the user window up-to-date

and in-sync with the underlying relational database. Even though the spreadsheet can only

support a few rows, as the user pans through the spreadsheet, the burden of supplying or

refreshing the current window is placed on the relational database, which is very efficient.

In the next section we propose a desired design by developing a unification semantics.

We then use the semantics to propose an architecture for DataSpread. Finally, we discuss

usage scenarios for our DataSpread prototype.

2.2.1 Design of DataSpread

In this section, we describe the semantics for DataSpread. In particular, we discuss

some important concepts and challenges that arise due to the unification of the two disparate

ideologies: spreadsheets and databases.

18

DataSpread Overview

With a goal of unifying databases and spreadsheets, we now propose a framework for

DataSpread based on two key ideas. First, to leverage the intuitiveness and the richness

of a spreadsheet interface, rather than changing it significantly, we enhance it with concepts

borrowed from databases. Underneath the interface, we propose to have a relational database

that is enhanced to support the spreadsheet interface. Second, to improve the expressiveness

of the interface, we expose some database features, for example, declarative querying, from

the underling database to the interface. Using these two key ideas, we enable users to

leverage the strengths of both spreadsheets and databases for dealing with tabular data.

Semantics and Syntax

Although spreadsheets and databases have both been designed to manage data in form

of tables, their treatment of this data is vastly different. Spreadsheets have been developed

primarily with presentation of data in mind and hence their design focuses primarily on

simplicity, intuitiveness and a rich user interface. On the other hand databases have been

designed with powerful data management capabilities to work with large tables. Hence,

certain data manipulation operations, e.g., queries, joins, summarization, are very naturally

expressed as SQL statements in databases.

We propose semantics for DataSpread such that we are able to naturally leverage the

strengths of both systems. Since we plan to enrich databases to effectively support interfaces,

we use the strong points of spreadsheets to motivate our semantics.

Support for Dynamic Schema. Spreadsheets enable users to effortlessly create tables

and update their schema. A user typically structures data on a spreadsheet as tables, with

columns and rows, where columns generally correspond to attributes and rows to tuples.

Here, adding an attribute, which is essentially a change to schema, is as natural and con-

venient as adding a tuple. This is due to the fact that spreadsheets do not treat columns

and rows differently when we consider the operations possible on each. On the other hand,

relational databases have a schema-first data model. Relational tables, which belong to a

database’s schema, need a predefined structure in terms of attributes. Since changing the

19

structure of a table in a database requires an update to all its tuples, it is not efficient as

adding, deleting or updating the tuples of the table.

To make relational table creation as effortless as table creation on a spreadsheet, we

propose the ability for a user to select an arbitrary range on the spreadsheet and use it to

define the structure and the data for a table within the database. Once created it should

behave like a regular table within the database, and the user should be able to refer to it

and use it in queries.

To streamline the concept of a dynamic schema, we propose that a user is able to update

a table’s schema and tuples that are displayed on a spreadsheet, which in turn updates the

schema and tuples of the underlying table in the database. Further, the database should be

able to handle this schema change with an efficiency similar to tuple updates. This makes

table updates within a database as natural as updating them on a spreadsheet.

Make Databases Interface Aware. Since spreadsheets have been designed with an in-

terface in mind, they very naturally lay out data that is both consumed and manipulated

by users. This interface has a very strong influence on functionality offered to the user. Fea-

tures like laying out a table in a desired format and obtaining the totals of some attributes

beneath the table (using a spreadsheet formula) feel natural. Thus, the interface provides a

context to the operations performed on a spreadsheet.

Positional addressing, which enable users to address data based on its position on a

spreadsheet, is an intuitive and effective way to refer to presented data. By laying out data

on a spreadsheet, a position gets implicitly assigned to the displayed data, due to which

a spreadsheet is able to use positional referencing, e.g., a cell reference of A2 from cell C2

implies a cell that is two columns left and in the same row. The positional referencing is a

commonly used feature while building expressions as it enables us to copy expressions across

cells while still maintaining the relative references.

Conversely, databases completely lack interface aspects. Once a query result is output,

the database is no longer cognizant of how that result is consumed. This disconnect is a key

weakness due to which a database cannot be used as-is to effectively support a spreadsheet

interface. For instance, when a user wants to update a specific attribute of a displayed

20

table, the database is unable to help because it is not aware of the tuple or attribute being

modified.

We propose to make databases aware of the interface’s data layout. This enables them

to understand interactions on the presented data, e.g., for a join using displayed tuples, the

database is able to identify the tuples just based on their implicit context. This further

enables the databases to optimize the query execution by prioritizing the displayed tuples

over the ones that are not displayed.

After making the database interface aware, we propose to leverage this to enable posi-

tional addressing in databases. This implies that the user should be able to refer to a value

by its location on the spreadsheet and use it in any arbitrary query.

Novel Spreadsheet Constructs. We now describe how the positional addressing is lever-

aged in the front-end spreadsheet, enabling users to pose rich SQL queries while referring to

data in the spreadsheet as well as the underlying relational table.

We encapsulate SQL references within the spreadsheet using one of two formulae: DBSQL

and DBTable. DBSQL enables users to pose arbitrary queries combining data present on the

spreadsheet, and data stored in the relational database. DBTable enables users to declare

a portion of the spreadsheet as being either exported to or imported from the relational

database, i.e., that portion of the spreadsheet directly reflects the contents of a relational

database table.

In order to support arbitrary positional addressing or referencing of data on the spread-

sheet for DBSQL, we add two new constructs: RangeValue and RangeTable. This enables users

to refer to a cell and a table on a sheet respectively relative to the cell where the query is

entered. RangeValue enables a user to refer to scalar values contained in a cell, e.g., SELECT

FROM Actors WHERE ActorId = RangeValue(A1), referring to the value in cell A1. RangeTable on

the other hand enables a user to refer to a range, and perform operations on it assuming it is

a regular database table. This enables any range on a spreadsheet to be potentially a table,

and all the operations, e.g., join, that the database allows on a table can be performed, e.g.,

SELECT FROM Actors NATURAL JOIN RangeTable(A1:D100).

Other Semantic Issues. Although we have discussed two important concepts, there are

21

still many semantics that require attention if we want to realize a complete unification.

Due to the space restriction, rather than discussing them in detail we have listed a few of

them below: a) SQL support on spreadsheets: To leverage the expressiveness of SQL and

the simplicity of formulae we propose to support both, and give flexibility to the user to

interchangeably use either. b) Real-time sync: Using spreadsheets users are accustomed

to having an always updated copy with them. For this we propose a real time two way

synchronization of the displayed on the spreadsheet with the underlying database. c) Data

typing: Spreadsheets dynamically type the data stored as cells. To make this work with

databases, we propose the idea of automatically assigning data types within the databases

based on the tuples. d) Computation optimization: By scaling up the amount of data, which

can be presented on a spreadsheet, efficient computation become a necessity. We propose

to leverage the presentation information for prioritizing computations for the data that is

displayed. e) Lazy Computation: To maintain interactivity, we propose that the calculations

of the visible cells should be prioritized and the remaining long running computations should

be performed in background.

Challenge. Realizing the unified semantics is not a trivial task, since it stretches the

capabilities of today’s relational databases beyond what is available. For example, consider

the semantics of schema, for today’s databases a table’s schema change requires an update

to all the tuples of the table. Further, the activity is considered as “data definition language”

and generally cannot participate in transactions. This requires us to propose the architecture

of DataSpread by radically rethinking the databases’ architecture.

2.2.2 Proposed Database Architecture

Since relational databases are not designed to be interface-aware, when we unify the

presentation layer of spreadsheets with databases, we need to redesign the underlying archi-

tecture of the database, as well as the interaction with the front-end interface.

To enable databases to support the semantics described earlier, we propose a redesigned

database architecture as shown in Figure 2.2, where the shaded blocks represent new or

enhanced components. The interface manager is tasked with the goal of making databases

22

Query Processor

Records Indexes
Positional
Indexes

Buffer Manager

Relational Storage
Manager

Interface Storage
Manager

Physical Storage

Compute Engine

Interface Manager Transactional
Manager

Concurrency
Control

Main
Memory

Buffers: data,
index, log, etc.

Figure 2.2: DataSpread Architecture.

interface-aware. The query processor is enhanced to support and optimize the execution for

positional addressing, a natural way to locate data presented on the interface. The compute

engine leverages interface aspects, e.g., windowing, to optimize execution. We introduce

a new type of index, positional, which makes interface-oriented operations, e.g., ordered

presentation, efficient. The interface storage manager stores data that is presented on the

interface but not designated as a relational table. The relational storage manager is enhanced

to effectively support interface related operations such as schema changes.

While we have identified the extent of modifications needed for databases to effectively

support an interface, our current implementation and discussion focuses on enhancing some

core components. Naturally, there are other components that require modification, such as

the transaction manager, and we leave them for future work.

Interface Storage Manager. In this unified framework, a spreadsheet not only has tab-

ular data, corresponding to relational tables in the underlying database, but also has other

interface data, e.g., formulae or data entered by the user. This interface data requires spe-

cial treatment as it does not have a schema. The interface storage component stores this

23

Figure 2.3: Executing SQL with relative referencing.

data as a collection of cells. To enable efficient retrieval for a given range, the component

groups the cells together by proximity and splits the groups into data blocks as required

by the underlying storage. To enable efficient access, the blocks are further indexed by a

two-dimensional indexing method.

Relational Storage Manager. Our unification semantics demand that the schema changes

to the tabular data, which we persist in the database as relational tables, should be very

efficient, almost as efficient as changes to tuples. With an insight to reduce the disk blocks

to update during a schema change, the relational storage manager uses a hybrid of column-

store and row-store to physically store the table. Here, data is structured along a collection

of attribute groups, thereby radically reducing the disk blocks that need an update during

a schema change.

Interface Manager. The interface manager keeps close tabs on the data presented to the

user. For every data item, e.g., the output of a query, a table imported from the database,

that is displayed on the interface, the presentation manager assigns a context; a context

comprises a positional address along with a reference to the sheet. This context can then be

utilized to enable functionalities such as two-way sync and relative addressing.

Along with positional addressing, the interface manager allows a two-way synchronization

for the tables displayed on the interface. Since primary keys are a natural way to identify

24

tuples in a relational database, the interface manager maintains a mapping between a tuple’s

key attribute and its corresponding location. This enables translation of an update on the

interface, having a locational context, to the underlying relational database, which requires

a key to uniquely identify a tuple.

Compute Engine. To optimally support interface interactions and data updates, we intro-

duce a new component termed as “compute engine”. By using ideas like shared computation,

the compute engine enables efficient handling of formulae and queries with positional refer-

encing, e.g., DBSQL. It performs computations asynchronously, free from a user’s context, as

updates are made to either the interface or the database. It further improves the interface’s

interactivity by prioritizing the computation for visible cells.

2.2.3 Usage Scenarios

Our DataSpread prototype is implemented using Microsoft Excel (that presumably

most conference attendees as well as eventual users are already familiar with) as the front-

end spreadsheet application, backed by PostgreSQL as the relational database back-end. All

the screenshots we depict are from our current prototype.

We describe the following features of the DataSpread prototype: a) Analytic queries

that reference data on the spreadsheet, as well as data in other database relations. b) Im-

porting or exporting data from the relational database. c) Keeping data in the front-end

and back-end in-sync during modifications at either end.

Feature 2.1: Querying. Consider Figure 2.3. Here, expressed using the DBSQL spread-

sheet function, the SQL query in B3 uses data from three relations in the database (movies,

movies2actors, actors), and references the two cells above (B1 and B2), via special relative

referencing commands (RangeValue(B1) and RangeValue(B2)). The output of the query is not

limited to a single cell, but spans the range B3:B10. This enables the collection of cells to be

computed collectively in a single pass (as opposed to traditional spreadsheet formulae that

are one-per-cell). Thus, DataSpread provides the ability to naturally query the underlying

database, and other data in the spreadsheet.

Feature 2.2: Import/Export. Consider Figure 2.4a. Here, on selecting a range in

25

Figure 2.4: (a) Table creation. (b) Two-way table sync.

the sheet and selecting the create table command from the add-ins menu, we provide the

ability to users to transform it into a relational database table. The schema of this table

is automatically inferred using the column heading and the data. Optionally, users will be

allowed to specify constraints on the table, such as primary keys. On completion, the table is

created in the underlying database. The data on the sheet is replaced by DBTable, which is a

spreadsheet function that selects data from the database and displays it on the spreadsheet.

DBTable could also be used to directly import data already present in the relational database

into the spreadsheet. Thus, DataSpread allows us to import or export data to and from

the relational database.

Feature 2.3: Modifications. Consider Figure 2.4b. Here, after a table is displayed on

the spreadsheet using DBTable, and formatted in cells A3 to B5, as modifications are made

to the table on the front-end the data in the relational database is updated, and the data

displayed in cells from A10 to B12 (corresponding to a DBSql command referencing that data)

is immediately updated. Thus, DataSpread provides the ability to keep data in-sync during

modifications at both the front-end and back-end

26

A B C

D
D*

C*

Figure 2.5: Navigation Panel: (a) multi-perspective representation, (b) accelerated action through
formula (chart) computation, (c) spreadsheet-like interface, and (d) navigation context.

2.3 SECOND PROTOTYPE: INTERACTIVE, NAVIGABLE, AND EXPRESSIVE UI

In this chapter, we identify three key shortcomings of traditional spreadsheet tools re-

lated to the scale of the data, using Microsoft Excel as a concrete example. (i) Interactivity.

Excel ceases to be interactive when dealing with computationally heavy spreadsheets. One

user posted on Reddit that complex calculations on Excel can take as long as four hours

to finish during which the user interface is unresponsive: “approximately 90% of the time I

spend with the spreadsheet is waiting for it to recalculate”2. (ii) Navigability. While Excel

supports basic browsing, its tabular representation of data does not support quick nav-

igation to desired areas of the spreadsheet, or provide a high-level understanding of the

data distribution within a spreadsheet. One Reddit user commented: “Inexperienced Excel

users are unable to navigate data efficiently”1. (iii) Expressiveness. Excel uses a cell-at-

a-time-based formula query model—this makes it cumbersome to express the much more

convenient and powerful table-oriented (or relational) operations when working with tabu-

lar data. For example, to filter records that occur between two dates, one of the Reddit

users suggested the following Excel formula: IFERROR(INDEX(A:A, SMALL(IF((A20:A1000

>=E40) * (A20:A1000<=F40),ROWS (A20:A1000)), ROWS (C5:$C5))),"")1, which

is a cumbersome way to express the simple relational operation.
2 All Reddit quotes are paraphrased to preserve anonymity.

27

DataSpread addresses the above limitations, making it interactive, navigable, and ex-

pressive while working with large spreadsheets, with the following features: (i) an asyn-

chronous and lazy computational model to address the issue of poor interactivity; (ii) a

navigation interface to enable users to drill-down to desired areas while examining a sum-

marized view of the data to improve navigability; (iii) support for table-oriented formulae, a

simple but effective means to express relational operations on tabular regions to improve ex-

pressiveness. For example, the complex formula described earlier can be expressed using the

following table-oriented formula: SELECT(A20:A1000, ATTR_DATE ≤ F40 && ATTR_DATE ≥

E40), which is cleaner and easier to understand than the INDEX function.

Challenges. Developing the aforementioned features presents a host of engineering and

research challenges, ranging from storage and indexing to interface usability. First, main-

taining a balance between interactivity and consistency of the asynchronous, lazy computa-

tion model requires us to compactly encode the dependencies across formulae to “hide” cells

that need recomputation, as well as schedule computation in a way that takes advantage of

shared context and locality. Second, seamlessly integrating the navigation interface within

the spreadsheet ecosystem introduces design challenges in both the data-structure that can

capture changing orders as a first-class citizen, and simultaneously provide summarized

representations of the data. Third, introducing table-oriented formulae akin to relational

algebra requires careful design to ensure consistency with the cell-at-a-time model of Excel,

and the fact that the multi-cell results of table-oriented formulae, when left unchecked, can

“overwrite” other data in the spreadsheet.

In this section, we describe a scalable web-based prototype that introduces features that

enhance the user experience beyond what traditional spreadsheets provide with a goal to

enable the users to work with large spreadsheets efficiently.

2.3.1 Overview of New Features

We now discuss in-depth the new features we developed to address the shortcomings of

traditional spreadsheet tools with respect to interactivity, navigability, and expressiveness

and the challenges we solved along the way.

28

Figure 2.6: Asynchronous formula execution: (a) user writes formula and make copies by dragging
the autofill handle, (b) display partial results, and (c) formula execution completed.

Figure 2.7: JOIN operation in DataSpread: (a) user writes the JOIN formula, (b) user writes the
INDEX formula to retrieve JOIN results, and
(c) results displayed.

Asynchronous Computational Model

In Excel, each change the user makes (e.g., changing values or formulae), triggers a

sequence of recomputation of formulae, which may take minutes to complete, depending on

the size of the data. Excel only returns control to the user when the computation is complete,

adopting a synchronous computation model—here, the user is kept waiting until the control

29

returns, disrupting interactivity. DataSpread adopts an asynchronous computation model

instead, returning control back to the user immediately, while masking the “dirty” cells (i.e.,

those whose values have not been computed yet) using ellipsis (“. . .”) on the interface (see

Figure 2.6), and computing them lazily in the background, exploiting shared computation,

and prioritizing for what is seen over what is not seen. Thus, this model ensures interactivity

by bounding the time for which the system remains unresponsive after an update.

Instead of masking the “dirty” cells, a simpler approach would be to display the current

(stale) values of these cells, and not mark them inaccessible with a “ . . .” on the interface.

However, this approach can confuse the user by showing them inconsistent data, hence one

of our goals is to ensure consistency of data shown to the user at all times. Thus, we adopt

the approach of using “ . . .” to indicate cells whose values have not been computed yet.

Challenges. The primary challenge for enabling asynchronous computation is to maintain

consistency and interactivity at the same time. This requires addressing two problems both

of which are NP-Hard: identifying the impacted cells after an update on a spreadsheet in

a bounded period of time, and determining how to compute the impacted cells. To quickly

return control of the spreadsheet back to the user, we also require indexing mechanisms that

can support positional (i.e., row and column number based) access, which is required by the

formulae embedded within spreadsheets.

Insight. Spreadsheet formulae introduce dependencies between different cells on a spread-

sheet, which DataSpread captures via a dependency graph. The dependency graph can

tolerate false positives, i.e., identifying a region as being impacted by an update, even when

it is actually not, and can be compressed lossily; false negatives are not permitted, as they

violate consistency. We develop a greedy compression algorithm to tackle the NP-Hard

problem of dependency graph compression to minimize false positives. Using this lossily

compressed graph, DataSpread can identify the impacted cells in a bounded time, ensur-

ing interactivity. Scheduling the computation of the impacted cells is also an NP-Hard

problem. We implement a variant of the weighted shortest job first problem [30] to com-

pute the dirty cells efficiently in a cache-friendly manner and prioritize visible cells, thereby

minimizing the time that users see dirty cells. These execution algorithms are aided by

30

novel data models that minimize the amount of data accessed, as well as positional indexing

mechanisms that allow rapid access of data by position, as described in Chapter 3.

Navigation Interface

Say a user wants to access a specific area of interest within a spreadsheet. At present,

the user would have to resort to scrolling to skim over the spreadsheet to arrive at the

desired area, which can be painful if the spreadsheet is large. Thus, present spreadsheet

tools such as Excel lack a navigation interface. In DataSpread, we have developed a

navigation interface, which presents a hierarchical view of the spreadsheet, thereby providing

an interactive and effective alternative to basic spreadsheet operations such as scrolling and

filtering. DataSpread’s navigation interface organizes and summarizes the spreadsheet so

that users can skip over irrelevant regions and access the desired area via simple clicks as

opposed to scrolling endlessly (see Figure 2.5a).

Challenges. The primary challenge in introducing such an interface alongside the tradi-

tional interface is to seamlessly integrate both interfaces: this integration should allow users

to effortlessly perform interactions on both interfaces, enabling rapid interactive exploration

and drill-down. In addition, we need a data structure that satisfies the requirements of such

an interactive navigation interface, e.g., for dynamic reordering and summarization of data.

As the scale of the data grows, maintaining the data structure such that the navigation

interface remains interactive is an added challenge.

Insight. Similar to the idea adapted by online maps, e.g., Google Maps, the hierarchi-

cal navigation interface abstracts the tabular data at different levels of granularity, where

users can freely move across different granularities. To enable seamless integration of the

navigation interface with the spreadsheet data, we leverage our earlier work on hierarchical

positional indexes for tabular data on a spreadsheet. Each level in the positional index maps

to a corresponding level in the hierarchical navigation interface. At the lowest level of hi-

erarchy, we display the raw spreadsheet data. At each level of the hierarchy, DataSpread

abstracts the spreadsheet by a group of blocks—the grouping is determined based on the

distribution the data. Each block contains aggregated information corresponding to the

31

spreadsheet region it spans. Each block contains the block name, number of rows, range

of the rows, and a histogram depicting the distribution of the corresponding data (see Fig-

ure 2.5a). Users can get an overview via the navigation interface (Figure 2.5a) and organize

the data by different attributes (Figure 2.5b). The blocks on the interface are shortcuts that

enable users to quickly jump to areas of interest within the spreadsheet.

Table Oriented Formulae

Present spreadsheet tools such as Excel do not support computation that go beyond

the cell-at-a-time metaphor: for example, relational algebra operations such as general joins

are not permitted or are at least not straightforward (e.g., VLOOKUPs for key-foreign key

joins). In DataSpread, we aim to support both SQL as well as general-purpose relational

computation via table-oriented formulae, supporting operations such as joins, on both tables

from the underlying database or spreadsheet regions, e.g., A3:D4, which are treated as tables.

Table-oriented formulae retain the semantics of typical formulae on spreadsheets, while also

empowering users to use relational primitives.

Challenges. The primary challenge is to ensure that the table-oriented formulae work seam-

lessly with the cell-at-a-time formula model of Excel in spite of the differences in ideologies

and semantics of spreadsheets and databases. Specifically, a table-oriented formula can re-

turn multiple records, which makes it incompatible with the standard spreadsheet formula

semantics of returning results in a single cell. Returning multiple records is also problematic

because unless we are careful, these records can overflow and overwrite other data present

on the spreadsheet.

Insight. We support table oriented operations via the following spreadsheet functions:

UNION, DIFFERENCE, INTERSECTION, CROSSPRODUCT, JOIN, FILTER, PROJECT, and RE-

NAME. These functions return a single composite table value representing the tabular result

of an operation, but this value is not displayed in the cell. We instead show the dimensions

of the composite value (similar to matrix dimensions). To retrieve the individual rows and

columns within the tabular result encoded as the composite value, we have an INDEX(cell, i,

j) function that looks up the (i, j)-th row and column in the composite table value in location

32

cell, and places it in the current location. By forcing users to use INDEX to look up entries

in the composite table value, we can avoid the issue of overflow of records, since only the

cells that use an INDEX formula will ever refer to data corresponding to the tabular result.

Since the input and output of all these functions is a table, the functions can be arbitrarily

nested to obtain complex expressions. So for instance, to do a union of three tables, the user

would use UNION(table1, UNION(table2,table3)). Alternatively, users can issue SQL queries on

DataSpread using the SQL(query, [param1], ...) function, where the first parameter is the

SQL query, and the further parameters replace ?’s within the query string. The SQL function

is directly executed by the underlying database.

2.3.2 Usage Scenarios

To describe our usage scenarios we consider interactions with DataSpread on a dataset

from Airbnb [31], utilizing the new user interface constructs, and contrast their user ex-

perience with Microsoft Excel. The Airbnb dataset contains publicly available information

about Airbnb listings (e.g., listing type, location, reviews, price, availability) of different

cities across the world and has ≈570k rows and 16 columns. Our usage scenarios will sim-

ulate the experience of a journalist analyzing the rent price distribution of Airbnb listings

using spreadsheets.

Feature 2.3: Asynchronous computation. Suppose the journalist finds out that the

rent price of listings in European cities are in e and she wants the price in $. She creates a

new column USD in the spreadsheet with appropriate formulae to convert the “rent price”

to $. The journalist then wants to update the $ to e conversion rate. This impacts all of

the cells in the USD column of the sheet. As soon as the attendees update the cell on Excel,

the interface will be unresponsive until the computation is complete. On the other hand,

the attendees can perform this update in DataSpread interactively; i.e., the control of the

sheet is returned back to the user almost immediately. They will notice that some of the

impacted cells show ellipses (. . .), meaning they are under computation 2.6. The ellipses will

be computed in the background and eventually, will be replaced with correct values.

Feature 2.4: Navigation Interface. Suppose the journalist now wants to compute the

33

average price of the listings in Chicago. We will ask the attendees to perform similar oper-

ations. With Excel, the attendees have to first sort the data by “City” and then filter out

the listings belonging to Chicago and finally, compute the average by providing the range of

the Chicago listings to the AVERAGE function. Readers will agree how tedious this approach

can be for large spreadsheets as it involves scrolling through thousands of rows or move up

and down the scrollbar to find the range of the Chicago listings. DataSpread, on the other

hand, groups multiple cities based on the alphabetical order to form the highest level of

granularity. Figure 2.5a shows two such groups: Ashville-Boston and Chicago-Denver. The

attendees can utilize this navigation interface to quickly jump to the region of interest by

clicking a block. For example, in Figure 2.5a, clicking on the Chicago-Denver block (high-

lighted in light blue), enables users to quickly navigate to the corresponding region. Users

can drill down further by expanding a block (circled in orange in Figure 2.5c) if required.

Using the range information of the region of interest, the attendees can then calculate the

aggregate value.

Feature 2.5: Table-oriented Formulae. Assume that our journalist finds another data

set that contains average ratings of all the listings in Airbnb. Suppose the journalist wants

to see all the listings in NYC that has average rating above some threshold along with their

ratings. We will provide a “Ratings” spreadsheet to the attendees and ask them complete the

task. The task corresponds to a natural join, which is not possible natively in Excel. The

closest solution is an outer join, which can be done by a combination of VLOOKUP and IF

statements which must then be applied to multiple listings by dragging the autofill handle.

Using DataSpread, the attendees can use the following two formulae to complete the task:

JOIN(A1:P142857, Ratings, City==“NYC” & Rating > 3) and INDEX(O1,0,1) (see Figure 2.7). Note

INDEX can be applied to multiple cells by dragging the autofill handle, just like traditional

spreadsheet formulae.

34

CHAPTER 3: SPREADSHEET STORAGE MODELING

In this chapter, we focus on the following fundamental question—how do we develop a

storage manager to support interactive ad-hoc data management at scale?

Requirements for a Storage Engine. We conducted a survey and user study, described

in more detail in Section 3.1, to characterize two key functional requirements for such a

storage engine to support the direct manipulation of data in a spatial interface:

(i) Presentational Awareness. Our storage engine must be aware of the layout of data within

the spreadsheet interface and be flexible enough to adapt to various ad-hoc modalities users

might choose to lay out and manage data (and queries) on spreadsheets, ranging from fully

structured tables, to data scattered across the spreadsheet, along with formulae.

(ii) Presentational Access. Our storage engine must support access of a range of data by

position: for example, users may scroll to a certain region of the spreadsheet, or a formula

may access a range of cells; this access must be supported as a first-class primitive.

Challenges in Supporting a Spatial Interface. In supporting these functional require-

ments, our first set of challenges emerge in how we can flexibly represent spatial in-

formation within a database. A user may manage several table-like regions within a

spreadsheet, interspersed with empty rows or columns, along with formulae. One option is

to store the spreadsheet as a single relation, with tuples as spreadsheet rows, and attributes

as spreadsheet columns—this can be very wasteful for storage and computation due to spar-

sity. Another option is to store the filled-in cells as key-value pairs: [(row #, column #),

value]; this can be effective for sparse spreadsheets, but is wasteful for dense spreadsheets

with well-defined tables. One can imagine hybrid representation schemes using both “dense”

and “sparse” schemes, as well as those that take access patterns into account. Unfortunately,

we show that it is NP-Hard to identify the optimal representation.

Our second set of challenges emerge in supporting and maintaining spatial access.

Say we use a single relation to record information about a sheet, with one tuple for each

spreadsheet row, and one attribute for each spreadsheet column; with an additional attribute

that records the spreadsheet row number. Now, inserting a single row in the spreadsheet

35

can lead to an expensive cascading update of the row numbers of all subsequent rows; thus,

we must develop techniques that allow us to avoid this issue. Moreover, we need positional

indexes that can access a range of rows at a time, say, when a user scrolls to a certain region

of the spreadsheet. While one could use a traditional index such as a B+ tree, on the row

number, cascading updates makes it hard to maintain such an index across edit operations.

Our Contributions. In this chapter, we address the aforementioned challenges in devel-

oping a scalable storage manager for an interactive ad-hoc data management tool. Our

contributions are the following:

1. Understanding Present-day Solutions. We perform an empirical study of four

spreadsheet datasets plus a user survey to understand how spreadsheets are presently used

for data manipulation and analysis (Section 3.1).

2. Abstracting the Functional Requirements. Based on our study, we define our

conceptual data model, as well as the operations necessary for interactive ad-hoc data man-

agement (Section 3.2).

3. Primitive Representation Schemes. We propose four primitive data models that

implement the conceptual data model, and demonstrate that they represent “optimal extreme

choices” (Section 3.3.2).

4. Near-Optimal Hybrid Representation Schemes. We develop a space of hybrid

data models, utilizing these primitive data models, and demonstrate that identifying the

optimal hybrid is NP-Hard (Section 3.4.1); we further develop multiple PTIME solutions

that provide near-optimality (Section 3.4.2), plus greedy heuristics (Section 3.4.3), and show

that they can be incrementally maintained (Section 3.4.4).

5. Presentational Access Schemes. We develop solutions to maintain positional infor-

mation, while reducing the impact of cascading updates (Section 3.5).

6. Storage Engine of DataSpread. We have designed the storage engine of DataSpread

based on the ideas discussed in this chapter (Section 3.6).

36

Dataset Sheets
Formulae Distribution Density Distribution Tabular Regions

Sheets with Sheets with %formulae Sheets with Sheets with Tables %Coverageformulae > 20% formulae coverage < 50% density < 20% density
Internet 52,311 29.15% 20.26% 1.30% 22.53% 6.21% 67,374 66.03%
ClueWeb09 26,148 42.21% 27.13% 2.89% 46.71% 23.8% 37,164 67.68%
Enron 17,765 39.72% 30.42% 3.35% 50.06% 24.76% 9,733 60.98%
Academic 636 91.35% 71.26% 23.26% 90.72% 60.53% 286 12.10%

Table 3.1: Spreadsheet Datasets: Preliminary Statistics.

0

5 K

10 K

15 K

20 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density

0

2 K

4 K

6 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density

0

1 K

2 K

3 K

4 K

0.2 0.4 0.6 0.8 1

#
Sh

ee
ts

Density

0

100

200

300

0.2 0.4 0.6 0.8 1

#
Sh
ee
ts

Density
Figure 3.1: Data Density—(a) Internet (b) ClueWeb09 (c) Enron (d) Academic

7. Experimental Evaluation. We evaluate our data models and spatial access schemes

on a variety of real-world and synthetic datasets, demonstrating that our storage engine

is scalable and efficient. We also conduct a small qualitative evaluation to illustrate how

DataSpread handles the use-cases described earlier (Section 3.7).

3.1 UNDERSTANDING REQUIREMENTS FOR A STORAGE ENGINE

We now perform an empirical study to characterize the functional requirements for a

storage engine. We focus on two aspects: (i) identifying how users structure data on the

interface, and (ii) understanding common interface operations. To do so, we first retrieve

spreadsheets from four sources and quantitatively analyze them on different metrics. We

supplement this analysis with a small-scale user survey to understand the spectrum of oper-

ations frequently performed. The latter is necessary since we do not have a readily available

37

�

����

����

����

� � � � � � ���

�
�
�
�
�
��

�������

�

���

����

����

� � � � � � ���

�
�
�
�
�
��

�������

�

���

���

���

���

� � � � � � ���

�
�
�
�
�
��

�������

�

���

���

���

���

� � � � � � ���
�
�
�
�
�
��

�������

Figure 3.2: Tabular Region Distribution—(a) Internet (b) ClueWeb09 (c) Enron (d) Academic

trace of user operations, e.g., how often do users add rows.

We first describe our methodology for both these evaluations, before diving into our

findings.

3.1.1 Methodology

As described above, we have two forms of evaluation described below.

Real Spreadsheet Datasets

For our evaluation of real spreadsheets, we assemble the following four datasets from a variety

of sources.

Internet. This dataset of 53k spreadsheets was generated by using Bing to search for .xls

files, using a variety of keywords. As a result, these 53k spreadsheets vary widely in content,

ranging from tabular data to images.

ClueWeb09. This dataset of 26k spreadsheets was generated by extracting .xls file URLs

from the ClueWeb09 [32] crawl.

38

�

����

����

��� ��� ��� ��� �

�
�
�
�
�
��
�
�
�
�
�

�������

�

����

����

����

��� ��� ��� ��� �

�
�
�
�
�
��
�
�
�
�
�

�������

�

���

���

���

��� ��� ��� ��� �

�
�
�
�
�
��
�
�
�
�
�

�������

�

��

��

��

��

��� ��� ��� ��� �

�
�
�
�
�
��
�
�
�
�
�

�������

Figure 3.3: Connected Component Data Density—(a) Internet (b) ClueWeb09 (c) Enron (d) Aca-
demic

Enron. This dataset was generated by extracting 18k spreadsheets from the Enron email

dataset [33]. These spreadsheets were used to exchange data within the Enron corporation.

Academic. This dataset was collected from an academic institution using spreadsheets to

manage administrative data.

We list these four datasets in Table 3.1. The first two datasets are primarily meant for data

publication: thus, only about 29% and 42% of these sheets (column 3) contain formulae,

with the formulae occupying less than 3% of the total number of non-empty cells for both

datasets (column 5). The third dataset is primarily meant for email-based data exchange,

with a similarly low fraction of 39% of these sheets containing formulae, and 3.35% of the

non-empty cells containing formulae. The fourth dataset is primarily meant for data analysis,

with a high fraction of 91% of the sheets containing formulae, and 23.26% of the non-empty

cells containing formulae.

39

�

�����

�����

�����

�����

�����

�����

����� �� �� ����� ��� �� ���

�
�
�
��
�
��
�

�������

0

0.4 M

0.8 M

1.2 M

1.6 M

2.0 M

ARITH IF SUM NUM SEARCH AND

#
Fo
rm
ul
ae

Formula

�

�����

�����

�����

�����

����� ��� �� ����� ��� ���� ���

�
�
�
��
�
��
�

�������

0

10 k

20 K

30 K

ARITH SUM LOG ROUND LN FLOOR ...
#

Fo
rm

ul
ae

Formula

Figure 3.4: Formulae Distribution—(a) Internet (b) ClueWeb09 (c) Enron (d) Academic

User Survey

To evaluate the kinds of operations performed on spreadsheets, we solicited 30 participants

from industry who exclusively used spreadsheets for data management, for a qualitative user

survey. This survey was conducted via an online form, with the participants answering a

small number of multiple-choice and free-form questions, followed by the authors aggregating

the responses.

3.1.2 Structure Evaluation

We begin by asking: how do users structure data in a spatial interface like that of spread-

sheets? Is the data typically organized and structured into tables, or is it largely unstruc-

tured? Does the type of structure depend on the intended use-case?

Across Spreadsheets: Data Density. To evaluate whether real spreadsheets are similar

to structured relational data, we first we estimate the density of each sheet, defined as the

ratio of the number of filled-in cells to the number of cells within the minimum bounding

rectangular box enclosing the filled-in cells. We depict the results in the last two columns

40

of Table 3.1: the spreadsheets in Internet, Clueweb09, and Enron are typically dense, i.e.,

more than 50% of the spreadsheets have density greater than 0.5. On the other hand, for

Academic, a high proportion (greater than 60%) of the spreadsheets have density values less

than 0.2. This low density is because the latter dataset embeds many formulae and uses

forms to report data in a user-accessible interface.

Takeaway 3.1 (Presentational Awareness). Structure of data in an spatial interface like

that of spreadsheets can vary widely, from highly sparse to highly dense, necessitating data

models that can adapt to such variations.

Within a Spreadsheet: Tabular regions. We further analyzed the sparse spreadsheets

to evaluate whether there are regions within them with high density—essentially indicating

that these are structured tabular regions. To do so, we first constructed a graph of the

filled-in cells within each spreadsheet, where two cells (i.e., nodes) have an edge between

them if they are adjacent. We then computed the connected components of this graph. We

declare a connected component to be a tabular region if it spans at least two columns and

five rows, and has a density of at least 0.7, defined as before. In Table 3.1, for each dataset,

we list the total number of identified tabular regions (column 8) and the fraction of the total

filled-in cells that are captured within these tabular regions (column 9). In Figure 3.2 we

plot the distribution of tables across our datasets. For Internet, ClueWeb09, and Enron, we

observe that greater than 60% of the cells are part of tabular regions. For Academic, where

the sheets are rather sparse, there still are a modest number of regions that are tabular (286

across 636 sheets).

We next characterize the connected components by understanding how they conform to

a tabular structure. To study this, we estimate the density of each connected component,

defined as the ratio of the number of filled-in cells to the number of cells within the mini-

mum bounding rectangular box enclosing the connected component. Figure 3.3 depicts the

density distribution of connected components. We note that across all the four data sets the

connected components are very dense, specifically more than 80% of the spreadsheets have

density greater than 0.8.

Takeaway 3.2 (Presentational Awareness). Even within a single spreadsheet, there is often

41

high skew, with areas of high and low density, indicating the need for fine-grained data models

that can treat these regions differently.

3.1.3 Operation Evaluation

We now ask: What kinds of operations do users naturally perform in a spatial inter-

face like that of spreadsheets? How often do users employ data manipulation operations?

Or analysis operations, e.g., formulae? How do users refer to the portions of data in the

operations?

Popularity: Formulae Usage. Formulae use is common, but there is a high variance in

the fraction of cells that are formulae (see column 5 in Table 3.1), ranging from 1.3% to

23.26%. We note that Academic embeds a high fraction of formulae since their spreadsheets

are used primarily for data management as opposed to sharing or publication. Despite that,

all of the datasets have a substantial fraction of spreadsheets where the formulae occupy

more than 20% of the cells (column 4)—20.26% and higher for all datasets.

Takeaway 3.3 (Presentational Access). Formulae are very common, with over 20% of the

spreadsheets containing a significant fraction of over 1
5
of formulae. Optimizing for the access

patterns of formulae when developing data models is crucial.

Formulae Distribution and Patterns. Next, we study the distribution of formulae used

within spreadsheets—see Figure 3.4. Not surprisingly, arithmetic operations (ARITH, LN,

SUM) are very common, along with conditional formulae (IF, ISBLK). Overall, there is a

wide variety of formulae that span both a small number of cell accesses (e.g., arithmetic),

as well as a large number of them (e.g., SUM, VL short for VLOOKUP). Moreover, these

formulae typically access a small number of rectangular region, i.e., an area defined by a set

of contiguous rows and columns, at a time (column 11). Many of the formulae used ended

up reproducing relational operations (e.g., VLOOKUP for joins).

To gain a better understanding of how much effort is necessary to execute these formulae,

we measure the number of cells accessed by each formula. Then, we tabulate the average

number of cells accesses per formula in column 10 of Table 3.1 for each dataset. As we

42

 0

 10

 20

 30

Scrolling Changing Formula Row/Col Tabular Ordering

U
sa

ge

Spreadsheet Operations

1
2
3
4
5

Figure 3.5: Operations performed on spreadsheets.

can see in the table, the average number of cells accesses per formula is not small—with

up to 300+ cells per formula for Internet, and about 140+ cells per formula for Enron and

ClueWeb09. Academic has a smaller average number—many of these formulae correspond

to derived columns that access a small number of cells at a time. Next, we check if the

accesses made by these formulae were spread across the spreadsheet, or could exploit spatial

locality. To measure this, we considered the set of cells accessed by each formula, and

then generated the corresponding graph of these accessed cells as described in the previous

subsection for computing the number of tabular regions. We then counted the number of

connected components, shown in column 11. Even though the number of cells accessed may

be large, these cells stem from a small number of connected components; as a result, we can

exploit spatial locality to execute them more efficiently.

Takeaway 3.4 (Presentational Access and Awareness). Formulae on spreadsheets access

cells on the spreadsheet by position; some common formulae such as SUM or VLOOKUP

access a rectangular range of cells at a time. The number of cells accessed by these formulae

can be quite large, and most of these cells stem from contiguous areas of the spreadsheet.

User-Identified Operations. We now analyze the common spreadsheet operations per-

formed by users via a small-scale online survey of 30 participants. This qualitative study

is valuable since real spreadsheets do not reveal traces of user operations. Our questions in

this study were targeted at understanding (i) how users perform operations on spreadsheets

and (ii) how users organize data on spreadsheets.

43

We asked each participant to answer a series of questions where each question corre-

sponded to whether they conducted the specific operation under consideration on a scale of

1–5, where 1 corresponds to “never” and 5 to “frequently”. For each operation, we plotted

the results in a stacked bar chart in Figure 3.5, with the higher numbers stacked on the

smaller ones.

We find that all the thirty participants perform scrolling, i.e., moving up and down the

spreadsheet to examine the data, with 22 of them marking 5 (column 1). All participants

reported to have performed editing of individual cells (column 2), and many of them reported

to have performed formula evaluation frequently (column 3). Only four of the participants

marked < 4 for some form of row/column-level operations, i.e., deleting or adding one or

more rows or columns at a time (column 4).

Takeaway 3.5 (Presentational Access and Awareness). There are several common opera-

tions performed by spreadsheet users including scrolling, row and column modification, and

editing individual cells.

Our second goal for performing the study was to understand how users organize their

data. We asked each participant if their data is organized in well-structured tables, or if

the data scattered throughout the spreadsheet, on a scale of 1 (not organized)–5 (highly

organized)—see Figure 3.5. Only five participants marked < 4 which indicates that users

do organize their data on a spreadsheet (column 5). We also asked the importance of

ordering of records in the spreadsheet on a scale of 1 (not important)–5 (highly important).

Unsurprisingly, only five participants marked < 4 for this question (column 6). We also

provided a free-form textual input where multiple participants mentioned that ordering

comes naturally to them and is often taken for granted while using spreadsheets.

Takeaway 3.6 (Presentational Awareness). Spreadsheet users typically try to organize their

data as far as possible on the spreadsheet, and rely heavily on the ordering and presentation

of the data on their spreadsheets.

44

Figure 3.6: Sample Spreadsheet (DataSpread screenshot).

3.2 DATA PRESENTATION MANAGER

Given our findings on spatial awareness and access, we now abstract out the functional

requirements of the storage engine. We abstract out the spatial interface of a spreadsheet, as

a conceptual data model, as well as the operations supported on it; concrete implementations

will be described in subsequent sections.

Conceptual Data Model. A spreadsheet consists of a collection of cells, referenced by two

dimensions: row and column. Columns are referenced using letters A, . . ., Z, AA, . . .; while

rows are referenced using numbers 1, . . . Each cell contains a value, or formula. A value is a

constant; e.g., in Figure 3.6 (a DataSpread screenshot), B2 (column B, row 2) contains the

value 10. In contrast, a formula is a mathematical expression that contains values and/or

cell references as arguments, to be manipulated by operators or functions. For example, in

Figure 3.6, cell F2 contains the formula =AVERAGE(B2:C2)+D2+E2, which unrolls into the

value 85. In addition to a value or a formula, a cell could also additionally have formatting

associated with it; e.g., width, or font. For simplicity, we ignore formatting aspects, but

these aspects can be easily captured without significant changes.

Spreadsheet-Oriented Operations. We now describe the spreadsheet-like operations,

drawing from our survey (takeaway 3-5).

1. Retrieving a Range. Our most basic read-only operation is getCells(range), where we

retrieve a rectangular range of cells. This operation is relevant in scrolling, where the user

moves to a specific position and we need to retrieve the rectangular range of cells visible at

45

that position, e.g., range A1:F5, is visible in Figure 3.6. Similarly, formula evaluation also

accesses one or more ranges of cells.

2. Updating an Existing Cell: The operation updateCell(row, column, value) corresponds to

modifying the value of a cell.

3. Inserting/Deleting Row/Column(s): This operation corresponds to inserting/deleting

row/column(s) at a specific position, followed by shifting subsequent row/column(s) appro-

priately: (i) insertRowAfter(row) (ii) insertColumnAfter(column) (iii) deleteRow(row) (iv) deleteCol-

umn(column).

Database-Oriented Operations. We now describe the database-like operations, enabling

users to effectively use the interface to manage and interact with database tables.

1. Link an existing table/Create a new table: This operation, invoked as linkTable(range,

tableName), enables users to link a region on a spreadsheet with an existing database re-

lation, establishing a two way correspondence between the spreadsheet interface and the

underlying table, such that any operations on the spreadsheet interface are translated by

the data presentation manager into table operations on the linked table. Thus, a user can

use traditional spreadsheet operations such as updating a cell’s value to update a database

table. If tableName does not exist, it will be created in the database, and then linked to the

spreadsheet interface.

2. Relational Operators: Users can interact with the linked tables and tabular regions via

relational operators and SQL, using the following spreadsheet functions: union, difference,

intersection, crossproduct, join, filter, project, rename, and sql. These functions return a single

composite table value; to retrieve the individual rows and columns within that table value,

we have an index(cell, i, j) function that looks up the (i, j)th row and column in the composite

table value in location cell, and places it in the current location as described in Sections 2.3.1.

Given the functional requirements for our data presentation manager, in Section 3.3, we

develop concrete mechanisms for representing our conceptual data model in a database

back-end, and in Section 3.5, we develop data structures that enable efficient access in the

presence of updates.

46

RowID Col1 ... Col6

1 ID, NULL ... Total, NULL
2 Alice, NULL ... 85, AVERAGE(B2:C2)+D2+E2
...

ColID Row1 ... Row5

1 ID,NULL ... Dave,NULL
2 HW1,NULL ... 8,NULL
...

RowID ColID Value
1 1 ID, NULL
..., ...
2 6 85, AVERAGE(B2:C2)+D2+E2
..., ...

Figure 3.7: (a) Row-Oriented Model (b) Column-Oriented Model (c) Row-Column-Value Model for
Figure 3.6.

3.3 PRESENTATIONAL AWARENESS

We now describe the high-level problem of representation of spreadsheet data within a

database. We focus on one spreadsheet, but our techniques seamlessly carry over to the

multiple spreadsheet case.

3.3.1 High-level Problem Description

The conceptual data model corresponds to a collection of cells, represented as C =

{C1, C2, . . . , Cm}; as described previously, each cell Ci corresponds to a location (i.e., a

specific row and column), and has some contents—either a value or a formula. Our goal is

to represent and store C, via one of the physical data models, P. Each T ∈ P corresponds

to a collection of relational tables {T1, . . . , Tp}. Each table Ti records the data in a certain

portion of the spreadsheet. Given C, a physical data model T is said to be recoverable with

respect to C if for each Ci ∈ C, ∃ precisely one Tj ∈ T such that Tj records the data in Ci.

Our goal is to identify physical data models that are recoverable.

At the same time, we want to minimize the amount of storage required to record T , i.e.,

we would like to minimize size(T) =
∑p

i=1 size(Ti). Moreover, we would like to minimize the

time taken for accessing data using T , i.e., the access cost, which is the cost of accessing a

rectangular range of cells for formulae (takeaway 4) or scrolling (takeaway 5), both common

47

operations. And we would like to minimize the time taken to perform updates, i.e., the

update cost, which is the cost of updating cells, and the insertion and deletion of rows and

columns.

Problem 3.1. Given a collection of cells C, our goal is to identify a physical data model

T such that: (i) T is recoverable with respect to C, and (ii) T minimizes a combination of

storage, access, and update costs, among all T ∈ P.

We begin by considering the setting where the physical data model T has a single rela-

tional table, i.e., T = {T1}. We develop three simple ways of representing this table, called

primitive data models all drawn from prior work, each of which works well for a specific

structure of spreadsheet (Section 3.3.2). Then, we extend this to |T | > 1 by defining hybrid

data models with multiple tables each of which uses one of the primitive data models to

represent a certain spreadsheet region (Section 3.4.1). Given the high diversity of structure

within spreadsheets and high skew (takeaway 2), having multiple primitive data models, and

the ability to use multiple tables, gives us substantial spatial awareness.

3.3.2 Primitive Data Models

Our primitive data models represent trivial solutions for spreadsheet representation with

a single table, stored in a relational row store. This enables DataSpread to support

relational algebra primitives and SQL seamlessly, while also providing an interactive front-

end for the ubiquitous and popular row stores. Before we describe these data models, we

discuss a small wrinkle that affects all of these models. To capture a cell’s position we need

to record a row and column number with each cell. Say we use an attribute to capture the

row number for a cell. Then, any insertion or deletion of rows requires cascading updates

to the row number attribute for cells in all subsequent rows. As it turns out, all of the

data models we describe here suffer from performance issues arising from cascading updates,

but the solution to deal with this issue is similar for all of them, and will be described in

Section 3.5. Thus, we focus here on storage and access cost. Also, note that the access

and update cost of data models depends on whether the underlying database is a row or a

columnar store. We now describe the primitive data models:

48

Row-Oriented Model (ROM). The row-oriented data model is akin to the traditional

relational data model. We represent each row from the sheet as a separate tuple, with an

attribute for each column Col1, . . ., Colcmax, where Colcmax is the largest non-empty column,

and an additional attribute for explicitly capturing the row number, i.e., RowID. The schema

for ROM is: ROM(RowID, Col1, . . ., Colcmax)—we illustrate the ROM representation of

Figure 3.6 in Figure 3.7(a): each entry is a pair corresponding to a value and a formula, if

any. For dense spreadsheets that are tabular (takeaways 1 and 2), this data model can be

quite efficient in storage and access, since each row number is recorded only once, independent

of the number of columns. Overall, ROM shines when entire rows are accessed at a time. It

is also efficient for accessing a large range of cells at a time.

Column-Oriented Model (COM). The second representation is the transpose of ROM.

Often, we find that certain spreadsheets have many columns and relatively few rows, neces-

sitating such a representation. For example, there could be tables where the attributes are

laid out vertically, one per row, and the tuples are laid out horizontally, one per column. For

our Internet spreadsheet dataset, described in Section 3.7, the number of columns dominate

the number of rows for 8% of spreadsheets. The schema for COM is: COM(ColID, Row1,

. . ., Rowrmax). Figure 3.7(b) illustrates the COM representation of Figure 3.6. Note that

COM does not correspond to a traditional column store, which is an orthogonal storage

mechanism, but is a rather a transpose of ROM where the tuples are the columns—such

spreadsheets can contain over a hundred columns and a handful of rows, which correspond

to attributes.

Row-Column-Value Model (RCV). The Row-Column-Value Model is inspired by key-

value stores, where the Row-Column number pair is treated as the key. The schema for

RCV is RCV(RowID, ColID, V alue). The RCV representation for Figure 3.6 is provided in

Figure 3.7(c). For sparse spreadsheets often found in practice (takeaway 1 and 2), this model

is quite efficient in storage and access since it records only the filled in cells, but for dense

spreadsheets, it incurs the additional cost of recording and retrieving the row and column

numbers for each cell as compared to ROM and COM, and has a much larger number of

tuples. RCV is also efficient when it comes to retrieving specific cells at a time.

49

Table-Oriented Model (TOM). Spreadsheet regions linked via our linkTable operation,

which sets up a two-way synchronization between the spreadsheet interface and the back-end

database, are stored as native tables in the database. The schema of such tables is defined

on the spreadsheet interface. We refer to this representation as Table-Oriented Model.

3.4 PRIMITIVE DATA MODELS: OPTIMALITY

Readers may be wondering why we chose these data models (ROM, COM and RCV).

As it turns out, these three data models represent extremes in a space of data models that

we identify and refer to as rectangular data models. We can further demonstrate that these

three models do not dominate each other, i.e., there are settings where each of them prevails

and are optimal within the space of rectangular data models.

Characteristics. We require each primitive data model in our class to have the following

characteristics: (i) The data model should correspond to storing a rectangular region in the

spreadsheet. This constraint naturally stems from the way we perceive tables in a two-

dimensional interface, in the sense that tables are rectangular, and our data models are

stored as rectangular tables on disk. (ii) The tuples in each table should correspond to a

uniform geometric structure, and be contiguous in the sheet. The first part of the constraint

arises because we store our tables in a relational database, necessitating all tuples to have

the same number of attributes. Additionally, we want our tuples to correspond to contiguous

regions in the spreadsheet, i.e., they should not have any “holes” in them.

Rectangular and Non-Rectangular Data Models. The data models which satisfy

the aforementioned requirements fall into the following two classes: (i) Rectangular. In

rectangular data models, each tuple corresponds to a rectangle in the sheet. Clearly, they are

uniform geometric units, and are contiguous. A typical example is provided in Figure 3.8(a).

(ii) Non-rectangular. Non-rectangular data models are essentially data-models where each

tuple does not correspond to a rectangle. For instance, each tuple can either be diagonal

with a fixed length, or have a “zig-zag” shape. A typical example where each tuple has

zig-zag shape is provided in Figure 3.8(b).

Updates as Optimality Criterion. We now discuss our optimality criterion. Since we

50

Figure 3.8: Data Model: (a) Rectangular (b) Non-rectangular

consider a single table, storage is not a concern since every data model has to store all of the

data in a table. Furthermore, with any vanilla index, e.g., B+ tree, access can be supported

in all models in a similar manner, and likewise for single cells updates. Hence, we focus on

updates on the sheet, and how they correspond to reorganizations in backend. Specifically,

we focus on row/column inserts/deletes since changing values of existing data in the sheet

would result in the same time complexity across all data models.

As we shall soon describe, row/column inserts/deletes can greatly influence the perfor-

mance of our data models.

Theorem 3.1 (Optimality). Our primitive data models, coupled with our hierarchical posi-

tional mapping schemes, are the only models which do not result in cascading updates from

the class of data models discussed above.

Proof. Consider any data model which can be rectangular or otherwise. We know all tuples

are uniform in shape, and are contiguous in the sheet. Let say the tuple spans p row and q

columns.

There are two possibilities: these tuples are either stored in row major form in the table

or in column major form. If we use the former, then a row insert would result in data from

p rows to be shifted in the worst case. Equivalently, if the data is stored in column major

form, then a column insert would result in data from q columns to be shifted in the worst

case. Therefore, cascading updates can be avoided only when one among p and q equals 1.

There are three cases now:

51

A B C D E F G H I
1 ✕ ✕ ✕ ✕

2 ✕ ✕ ✕

3 ✕ ✕ ✕

4 ✕ ✕ ✕

5 ✕ ✕ ✕

6 ✕ ✕ ✕ ✕

7 ✕ ✕ ✕

23

1

45
Figure 3.9: Hybrid Data Model: Recursive Decomposition.

1. p = 1, q 6= 1: This corresponds to ROM.

2. p 6= 1, q = 1: This corresponds to COM.

3. p = 1, q = 1: This corresponds to RCV.

This completes our proof.

3.4.1 Hybrid Data Model: Intractability

So far, we developed the primitive data models to represent a spreadsheet using a single

table in a database. We now develop better solutions by decomposing a spreadsheet into

multiple regions, each represented by one of the primitive data models. We call these hybrid

data models.

Definition 3.1 (Hybrid Data Models). Given a collection of cells C, we define hybrid data

models as the space of physical data models that are formed using a collection of tables T

such that T is recoverable with respect to C, and further, each Ti ∈ T is either a ROM,

COM, RCV, or a TOM table.

52

As an example, for the spreadsheet in Figure 3.9, we might want the dense areas, i.e.,

B1:D4 and D5:G7, represented via a ROM table each and the remaining area, specifically, H1

and I2 to be represented by an RCV table.

Cost Model. As discussed earlier, the storage, access, and update costs impact our choice

of data model. We now focus on storage. We will generalize to access cost in Section 3.4.4.

The update cost will be the focus of Section 3.5. We begin with ROM; we will generalize to

RCV and COM in Section 3.4.4.

Given a hybrid data model T = {T1, . . . , Tp}, where each ROM table Ti has ri rows and

ci columns, the cost of T is

cost(T) =

p∑
i=1

s1 + s2 · (ri × ci) + s3 · ci + s4 · ri. (3.1)

Here, the constant s1 is the cost of initializing a new table, while the constant s2 is the cost of

storing each individual cell (empty or not) in the ROM table. The non-empty cells that have

content require additional storage; however, this is a constant cost that does not depend on

the data model. The constant s3 is the cost corresponding to each column, while s4 is the

cost corresponding to each row. The former is necessary to record schema information per

column, while the latter is necessary to record the row information in the RowID attribute.

Overall, while the specific costs si may differ across databases, what is clear is that all of

these costs matter.

Formal Problem. We now state our formal problem below.

Problem 3.2 (Hybrid-ROM). Given a spreadsheet with a collection of cells C, identify the

hybrid data model T with only ROM tables that minimizes cost(T).

Unfortunately, Problem 3.2 is NP-Hard, via a reduction from minimum edge length

partitioning of rectilinear polygons [34]; see below.

Theorem 3.2 (Intractability). Problem 3.2 is NP-Hard.

We show that Problem 3.2 is NP-Hard; for the decision version of the problem, a value

k is provided, and the goal is to test if there is a hybrid data model with cost(T) ≤ k.

53

Figure 3.10: Minimum number of rectangles (– – –) does not coincide with minimum edge length
(· · ·).

We use a reduction from the minimum edge length partitioning problem of rectilinear

polygons [34]. A rectilinear polygon is one in which all edges are either aligned with the

x-axis or the y-axis. The minimality criterion is the total length of the edges (lines) used to

form the internal partition. Notice that this doesn’t necessarily correspond to the minimality

criterion of reducing the number of components. We illustrate this in Figure 3.10, which

is borrowed from the original paper [34]. The following decision problem is shown to be

NP-Hard in [34]: Given any rectilinear polygon P and a number k, is there a rectangular

partitioning whose total edge length does not exceed k?

Proof. Consider an instance P of the polygon partitioning problem with minimum edge

length required to be at most k. We now represent the polygon P in a spreadsheet by filling

the cells interior of the polygon with arbitrary values, and not filling any other cell in the

spreadsheet. Let C = {C1, C2, . . . , Cm} represent the set of all filled cells in the spreadsheet.

We claim that a minimum edge length partition of the given rectilinear polygon P of length

at most k exists iff there is a solution for the following setting of the optimal hybrid data

model problem: s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1, where the storage cost should not exceed

k′ = k + Perimeter(P)
2

+ (2|C|+ 1)|C| for some decomposition of the spreadsheet.

⇒ Say the spreadsheet we generate using P has a decomposition of rectangles whose storage

54

cost is less than k′ = k + Perimeter(P)
2

+ s2|C|. We have to show that there exists a partition

with minimum edge length of at most k.

First, notice that there exists a valid decomposition that doesn’t store any blank cell.

Say there is a decomposition that stores a blank cell. Since we are now storing |C|+1 cells at

minimum, k′ > s2(|C|+1) = |C|s2 +s2 = |C|s2 +2|C|+1 and thus k′ > |C|(s2 +1+1), which

is the cost of storing each cell in a separate table. Therefore, if we have a decomposition

that stores a blank cell, we also have a decomposition that does not store any blank cell and

has lower cost. Second, there exists a decomposition of the spreadsheet where all the tables

are disjoint. The argument is similar to the previous case since storing the same cell twice

in different tables is equivalent to storing an extra blank cell.

From our above two observations, we conclude that there exists a decomposition where

all tables are disjoint, and no table stores a blank cell. Therefore, this decomposition corre-

sponds to partitioning the given spreadsheet into rectangles. We represent this partition of

the spreadsheet by T = {T1, T2, . . . , Tp}. We now show that this partition of the spreadsheet

corresponds to a partitioning of the rectilinear polygon P with edge-length less than k. On

setting s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1, we get:

cost(T) =

p∑
i=1

0 + s2|C|+ 1 ·

(
p∑

i=1

ci +

p∑
i=1

ri

)
(3.2)

since cost(T) ≤ k′ = k + Perimeter(P)
2

+ s2|C|,

p∑
i=1

(ri + ci) ≤ k +
Perimeter(P)

2
(3.3)

=⇒
p∑

i=1

Perimeter(Ti) ≤ 2× k + Perimeter(P) (3.4)

Since the sum of perimeters of all the tables Ti counts the boundary of P exactly once, and the

edge length partition of P exactly twice, the partition of the spreadsheet T = {T1, T2, . . . , Tp}

corresponds to an edge-length partitioning of the given rectilinear polygon P with edge-

length less than k.

⇐ Let us assume that the given rectilinear polygon P has a minimum edge length partition

55

of length at most k. We have to show that there exists a decomposition of the spreadsheet

whose storage cost is at most k′ = k+ Perimeter(P)
2

+s2|C|. Let us represent the set of rectangles

that corresponds to an edge length partition of P of at most k as T = {T1, T2, . . . , Tp}. We

shall use the partition T of P as the decomposition of the spreadsheet itself:

cost(T) =

p∑
i=1

s1 + s2 · (ri × ci) + s3 · ci + s4 · ri (3.5)

cost(T) =

p∑
i=1

s1 + s2

p∑
i=1

·(ri × ci) + s3

p∑
i=1

ci + s4

p∑
i=1

ri (3.6)

substituting s1 = 0, s2 = 2|C|+ 1, s3 = s4 = 1, we get:

cost(T) =

p∑
i=1

0 + s2|C|+ 1 ·

(
p∑

i=1

ci +

p∑
i=1

ri

)
(3.7)

cost(T) = s2|C|+
p∑

i=1

(ri + ci) (3.8)

cost(T) = s2|C|+
p∑

i=1

Perimeter(Ti)

2
(3.9)

since
∑p

i=1 Perimeter(Ti) = 2× k + Perimeter(P), we have:

cost(T) = s2|C|+ k +
Perimeter(P)

2
= k′ (3.10)

=⇒ cost(T) = k′ (3.11)

Therefore, the decomposition of the spreadsheet using T corresponds to a decomposition

whose storage cost equals k′. Note that our reduction can be done in polynomial time.

Therefore we can solve the minimum length partitioning problem in polynomial time, if

we have a polynomial time solution to the optimal storage problem. However, since the

minimum length partitioning problem is NP-Hard [34], the optimal hybrid data model

problem is NP-Hard. This completes our proof.

56

3.4.2 Optimal Recursive Decomposition

Instead of directly solving Problem 1, which is intractable, we instead aim to make

it tractable, by reducing the search space of solutions. In particular, we focus on hybrid

data models that can be obtained by recursive decomposition. Recursive decomposition is

a process where we repeatedly subdivide the spreadsheet area from [1 . . . rmax, 1 . . . cmax] by

using a vertical cut between two columns or a horizontal cut between two rows, and then

recurse on the resulting areas. For example, in Figure 3.9, we cut along line 1 horizontally,

giving us two regions from rows 1 to 4 and rows 5 to 6. We then cut the top portion along

line 2 vertically, followed by line 3, separating out one table B1:D4. By cutting the bottom

portion along line 4 and line 5, we can separate out the table D5:G7. Further cuts can help

us carve out tables out of H1 or I2, not depicted here.

As the example illustrates, recursive decomposition captures a broad exponential space of

hybrid models; basically, anything that can be obtained via recursive cuts along the x and y

axis. Unfortunately, there is an exponential number of such models. Now, a natural question

is: what sorts of hybrid data models cannot be composed via recursive decomposition?

Observation 3.1 (Counterexample). In Figure 3.11(a), the tables: A1:B4, D1:I2, A6:F7, and

H4:I7 cannot be obtained via recursive decomposition.

To see this, note that any vertical or horizontal cut that one would make at the start would

cut through one of the four tables, making the decomposition impossible. Nevertheless, we

expect this form of construction to not be frequent, whereby the hybrid data models obtained

via recursive decomposition form a natural class of data models.

Despite the space of recursively decomposed hybrid data models being exponential, as

it turns out, identifying the optimal data model in this space to Problem 3.2 is PTIME

using dynamic programming. Our algorithm makes the most optimal “cut” horizontally or

vertically at every step, and proceeds recursively; details below.

Consider a rectangular area formed from x1 to x2 as the top and bottom row num-

bers respectively, both inclusive, and from y1 to y2 as the left and right column numbers

respectively, both inclusive, for some x1, x2, y1, y2. Now, the optimal cost of representing

this rectangular area, which we represent as Opt((x1, y1), (x2, y2)) is the minimum of the

57

A B C D E F G H I
1 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

2 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

3 ✕ ✕

4 ✕ ✕ ✕ ✕

5 ✕ ✕

6 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

7 ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

A C D G H
1 ✕ ✕ ✕ ✕

3 ✕

4 ✕ ✕

5 ✕

6 ✕ ✕ ✕ ✕2	

2	
1	
1	
1	

2			1			3			1		2	

Figure 3.11: (a) Counterexample. (b) Weighted Representation.

following possibilities:

• If there is no filled cell in the area (x1, y1), (x2, y2), then we do not use any data model,

and the cost is 0.

• Do not split, i.e., store as a ROM model (romCost()):

romCost((x1, y1), (x2, y2)) = s1 + s2 · (r12 × c12) + s3 · c12 + s4 · r12, (3.12)

where number of rows r12 = (x2− x1 + 1), and the number of columns c12 = (y2− y1 + 1).

• Perform a horizontal cut (CH):

CH = min
i∈{x1,...,x2}

Opt((x1, y1), (i, y2)) + Opt((i+ 1, y1), (x2, y2)) (3.13)

• Perform a vertical cut (CV):

CV = min
j∈{y1,...,y2}

Opt((x1, y1), (x2, j)) + Opt((x1, j + 1), (x2, y2)) (3.14)

Therefore, when there are filled cells in the rectangle,

Opt((x1, y1), (x2, y2)) = min
(

romCost((x1, y1) , (x2, y2)), CH , CV

)
. (3.15)

The base case is when the rectangular area is of dimension 1× 1. Here, we store the area

as a ROM table if it is filled. That is, Opt((x1, y1), (x1, y1)) = c1 + c2 + c3 + c4, if filled, and

0 if not.

58

We have the following theorem:

Theorem 3.3 (Dynamic Programming Optimality). For the exponential space of ROM-

based hybrid data models based on recursive decomposition, we can obtain the optimal solution

via dynamic programming in PTIME.

Time Complexity. Our dynamic programming algorithm runs in polynomial time with

respect to the size of the spreadsheet. Let the length of the larger side of the minimum

enclosing rectangle of the spreadsheet be of size n. Then, the number of candidate rectangles

is O(n4). For each rectangle, we have O(n) ways to perform the cut. Therefore, the running

time of our algorithm is O(n5). However, this number could be very large if the spreadsheet

is massive–which is typical of the use-cases we aim to tackle.

Approximation Bound. Even though our dynamic programming algorithm only identifies

the best recursive decomposition based hybrid data model, we can derive a bound for its

cost relative to the best hybrid data model overall.

Theorem 3.4 (Approximation Bound). Say there are k rectangles in the optimal decom-

position with cost c. Then, the recursive decomposition algorithm identifies a decomposition

with cost at most c+s1× k(k−1)
2

, where s1 is the cost of storing a new table as in Equation 3.1.

Proof. Let the optimal decomposition consist of a set of five rectangles R as in Figure 3.12.

Starting from R, we will construct a recursive decomposition solution with cost c+s1× k(k−1)
2

,

denoted as R′, using the following steps. Sort the rectangles from the optimal solution in

the increasing order of their bottom edge. Pick the first rectangle, and use a line through its

bottom edge to cut or partition the remaining rectangles. This is the first “partitioning” step,

denoted as 1 in Figure 3.12. This partitioning step leads to two portions. We handle the

top portion with vertical partitions, while for the bottom portion we recurse. This partition

introduces at most k − 1 new rectangles in the top half and eliminates one rectangle.

Thus, at every step, we have k − 1 new rectangles and reduce the total number of

rectangles by 1. That is, the next partition will introduce at most k − 2 rectangles; and

so on. So, we in total we (k − 1) + (k − 2) + . . . + 1 = k(k−1)
2

new rectangles. Since the

dynamic programming algorithm explores the entire space of recursive decomposition based

59

1

2

Figure 3.12: Obtaining a recursive decomposition from the optimal solution.

data models, it also considers R′ as one of the candidates. Thus; its solution must be at

least as good. Hence proved.

Typically k is small, so this is a small additive approximation. In our experiments, we

compare the solution obtained from recursive decomposition with a lower bound of the opti-

mal solution (Section 3.7.2), and show that it is near-optimal. As observed from Figures 3.2

and 3.3, typically spreadsheets have a small number of highly dense connected components.

By deriving an upper bound for the number of tables in the optimal solution for each con-

nected component, we can get an upper bound for k. The following theorem implies that the

high density of the connected components makes it sub-optimal to split them in the optimal

decomposition, thereby suggesting that the number of tables in the optimal decomposition,

i.e., k, is small.

Theorem 3.5 (Connected Component Solution). The optimal solution to Problem 3.2 for

a minimum bounding rectangle of a connected component will have at most
⌊
e×s2
s1

+ 1
⌋
rect-

angles, where e is the number of empty cells in the bounding rectangle.

Proof. Let the optimal decomposition for a minimum bounding rectangle of a connected

component C have k′ tables. Therefore, we have the cost representing the minimum bounding

60

rectangle using a single table is higher than the optimal decomposition into k′ tables, i.e.,

k′∑
i=1

s1 + s2 · (ri × ci) + s3 · ci + s4 · ri ≤ s1 + s2 · (r0 × c0) + s3 · c0 + s4 · r0, (3.16)

where r1, .., rk′ and c1, .., ck′ are the number of rows and columns respectively for each of the

tables in the optimal decomposition and r0 and c0 are number of rows and columns for the

minimum bounding rectangle.

Since our region of focus is a minimum bounding rectangle encapsulating a connected

component, we do not have any empty rows or columns. Thus, each row and column should

be captured by at least one rectangle in the optimal decomposition. Hence, we have,

k∑
i=1

s3 · ci + s4 · ri ≥ s3 · c0 + s4 · r0 (3.17)

Subtracting Equation 3.17 from 3.16 we have,

k∑
i=1

s1 + s2 · (ri × ci) ≤ s1 + s2 · (r0 × c0). (3.18)

Since the optimal solution should represent all the filled-in cells at least once, we have∑k
i=1(ri × ci) ≥ r0 × c0 − e, where e is the number of empty cells in the bounding box.

Subtracting this from Equation 3.18 and simplifying, we get

k · s1 ≤ s1 + e× s2. (3.19)

k ≤ 1 +
e× s2

s1

. (3.20)

Since k is an integer, we have

k ≤
⌊

1 +
e× s2

s1

⌋
. (3.21)

Hence proved.

We empirically show in Section 3.7.2 that the upper bound of k is small by obtaining

61

the distribution of
∑⌊

e×s2
s1

+ 1
⌋
across our datasets. Additionally, we compare the solu-

tion obtained from our recursive decomposition with a lower bound of the optimal solution

(Section 3.7.2), and demonstrate that it is in fact, near-optimal.

Weighted Representation. Notice that in many real spreadsheets, there are many rows

and columns that are very similar to each other in structure, i.e., they have the same set

of filled cells. We exploit this property to reduce the effective size n of the spreadsheet.

Essentially, we collapse rows that have identical structure down to a single weighted row,

and similarly collapse columns. Consider Figure 3.11(b) which shows the weighted version

of Figure 3.11(a). Here, we can collapse column B down into column A, which is now

associated with weight 2; similarly, we can collapse row 2 into row 1, which is now associated

with weight 2. The effective area of the spreadsheet now becomes 5×5 as opposed to 7×9.

Now, we apply the same dynamic programming algorithm to the weighted representation:

in essence, we are avoiding making cuts “in-between” the weighted edges, thereby reducing

the search space. This does not sacrifice optimality.

Theorem 3.6 (Weighted Optimality). The optimal hybrid data model obtained by recursive

decomposition on the weighted spreadsheet is no worse than the optimal hybrid data model

obtained by recursive decomposition on the original spreadsheet.

3.4.3 Greedy Decomposition Algorithms

Greedy Decomposition. To improve the running time even further, we propose a greedy

heuristic that avoids the high complexity but sacrifices somewhat on optimality. The greedy

algorithm essentially repeatedly splits the spreadsheet area in a top-down manner iden-

tifying the operation that results in the lowest local cost. We have three alternatives

for an area (x1, y1), (x2, y2): Either we do not split, with cost from Equation 3.12, i.e.,

romCost((x1, y1), (x2, y2)). Or we split horizontally (vertically), with cost CH (CV) from

Equation 3.13 (Equation 3.14), but with Opt() replaced with romCost(), since we are mak-

ing a locally optimal decision. The smallest cost decision is followed, and then we continue

recursively decomposing using the same rule on the new areas, if any.

Complexity. This algorithm has a complexity of O(n2), since each step takes O(n) and

62

there are O(n) steps. While the greedy algorithm is sub-optimal, its local decision is optimal

assuming the worst case about the decomposed areas, i.e., with no further information about

the decomposed areas this is the best decision to make at each step.

Aggressive Greedy Decomposition. Since it is based on the worst case, the greedy

algorithm may halt prematurely, even though further decompositions may have helped to

reduce cost. An alternative, with the same complexity as greedy, is one where we don’t stop

subdividing, i.e., we always choose to use the best horizontal or vertical cut, until we end up

with rectangular areas where all of the cells are non-empty. After this point, we backtrack

up the tree of decompositions, assembling the best solution that was discovered, considering

whether to not split, or perform a horizontal or vertical split.

Complexity. The aggressive greedy approach also has complexity O(n2), but takes longer

since it considers a larger space of data models than the greedy approach.

3.4.4 Extensions: Maintenance, Cost, Models

In this section, we discuss a number of extensions to the cost model of the hybrid data

model. We will describe these extensions to the cost model, and then describe the changes

to the basic dynamic programming algorithm; modifications to the greedy and aggressive

greedy decomposition algorithms are straightforward.

RCV, COM and TOM. The cost model can be extended in a straightforward manner

to allow each rectangular area to be a ROM, COM, or an RCV table. (We deal with the

TOM case later.) First, note that it doesn’t benefit us to have multiple RCV tables—we can

simply combine all of these tables into one, and assume that we’re paying a fixed up-front

cost to have one RCV table. Then, the cost for a table Ti, if it is stored as a COM table is:

comCost(Ti) = s1 + s2 · (ri × ci) + s4 · ci + s3 · ri.

This equation is the same as Equation 3.1, but with the last two constants transposed. And

63

the cost for a table Ti, if it is stored as an RCV table is simply:

rcvCost(Ti) = s5 ×#cells.

where s5 is the cost incurred per tuple. Once we have this cost model set up, it is straightfor-

ward to apply dynamic programming once again to identify the optimal hybrid data model

encompassing ROM, COM, and RCV. The only step that changes in the dynamic program-

ming equations is Equation 3.12, where we have to consider the COM and RCV alternatives

in addition to ROM. To handle TOM tables, we assume that the corresponding cells are

empty; while also setting the romCost() and comCost() of any tables overlapping with these

cells as ∞. We have the following theorem.

Theorem 3.7 (ROM, COM, TOM, and RCV). The optimal ROM, COM, TOM, and RCV-

based hybrid data model based on recursive decomposition can be determined in PTIME.

Incremental Decomposition. So far, we have focused on finding an optimal decompo-

sition given a static spreadsheet. We now consider how we can support incremental main-

tenance of the decomposition across updates. Here, along with the storage cost, we also

consider the cost of migrating cells from an existing decomposition To to a new decompo-

sition T . We define the migration cost as migCost((x1, y1), (x2, y2)) = #cells, where #cells

denotes the number of populated cells in the rectangular region defined by (x1, y1), (x2, y2).

To migrate a region of a spreadsheet into a new decomposition, we assume that we only

use an existing table if it exactly covers the region; for all other cases we migrate all of

the populated cells within the region to the new decomposition. In other words, we do not

consider the cases when an existing table needs to be modified either to accommodate or

eliminate rows or columns. We introduce a factor η to enable users to balance the trade-off

between the migration cost and storage cost; our objective is thus find a data model T such

that cost(T) + η ·migCost() is minimized.

For incremental decomposition, we update the dynamic programming formulation by

adding an additional case that retains the decomposition as is and updates the romCost()

to include the migration cost in terms of the number of cells that need to be migrated from

64

the existing model into a new model. As the migration cost for a region is defined as the

number of populated cells, the migration cost of a region can be computed independently of

the remaining regions. This enables us to employ dynamic programming once again.

• Keep the decomposition as-is. This is permissible only if the there exists a ROM model

at (x1, y1), (x2, y2) in To.

romCost((x1, y1), (x2, y2)) = s1 + s2 · (r12 × c12) + s3 · c12+

s4 · r12, (3.22)

• Store the area as ROM by migrating the non-empty cells into the new model.

romCost((x1, y1), (x2, y2)) = s1 + s2 · (r12 × c12) + s3 · c12 + s4 · r12+

η ·migCost((x1, y1), (x2, y2)) (3.23)

Note that we may be able to migrate a region more efficiently by leveraging existing tables

that partially cover the region; however, this will lead to complications in leveraging tables

that span more than one region, and any reorganization costs involved. For simplicity, we

do not consider such migrations. As we will demonstrate in Section 3.7, this still leads to

adequate performance.

Access Cost. So far, we have only been focusing on storage. Our cost model can be

extended in a straightforward manner to handle access cost—both scrolling-based operations,

and formulae, and our dynamic programming algorithms can similarly be extended to handle

access cost without any substantial changes. We focus on formulae since they are often the

more substantial cost of the two; scrolling-based operations can be similarly handled. For

formulae, there are multiple aspects that contribute to the time for access: the number of

tables accessed, and within each table, since data is retrieved at a tuple level, the number

of tuples that need to be accessed, and the size of these tuples. Once again, each of these

aspects can be captured within the cost model via constants similar to s1, . . . , s5, and can

be seamlessly incorporated into the dynamic programming algorithm. Thus, we have:

65

Theorem 3.8 (Optimality with Access Cost). The optimal ROM, COM, and RCV-based

hybrid data model based on recursive decomposition, across both storage and access cost, can

be determined via dynamic programming.

Even though in this thesis we focus on relational row stores for hybrid data models, our

techniques are general—making as few assumptions on the underlying physical storage as

possible. Thus, our techniques can be easily extended to work with all kind of data stores,

including column stores and key-value stores.

Size Limitations of Present Databases. Current databases impose limitations on the

number of columns within a relation1; since spreadsheets often have an arbitrarily large

number of rows and columns (sometimes 10s of thousands each), we need to be careful when

trying to capture a spreadsheet area within a collection of tables that are represented in a

database.

This is relatively straightforward to capture in our context: in the case where we don’t

split (Equation 3.12), if the number of columns is too large to be acceptable, we simply

return ∞ as the cost.

Theorem 3.9 (Optimality with Size Constraints). The storage optimal ROM, COM, and

RCV-based hybrid data model, with the constraint that no tables violate size constraints,

based on recursive decomposition, can be determined via dynamic programming.

Incorporating the Costs of Indexes. Within our cost model, it is straightforward to

incorporate the costs associated with storage of indexes, since the size of the indexes are

typically proportional to the number of tuples for a given table, and the cost of instantiating

an index is another fixed constant cost. Since our cost model is general, by suitably re-

weighting one or more of s1, s2, s3, s4, we can capture this aspect within our cost model, and

apply the same dynamic programming algorithm.

Theorem 3.10 (Optimality with Indexes). The storage optimal ROM-based hybrid data

model, with the costs of indexes included, based on recursive decomposition, can be determined

via dynamic programming.
1Oracle column number limitations: https://docs.oracle.com/cd/B19306_01/server.102/b14237/limits003.htm\#i288032;

MySQL column limitations: https://dev.mysql.com/doc/mysql-reslimits-excerpt/5.5/en/column-count-limit.html; Post-
greSQL column limitations: https://www.postgresql.org/about/

66

3.5 PRESENTATIONAL ACCESS FOR UPDATES

For all of our data models, storing the row and/or column numbers may result in sub-

stantial overheads due to cascading updates—this makes working with large spreadsheets

infeasible. To eliminate the overhead of cascading updates, we introduce positional mapping.

For our discussion we focus on row numbers; the techniques can be analogously applied to

columns—we use the term position to refer to this number. In addition, row and column

numbers can be dealt with independently.

Problem. We require a data structure to capture a specific ordering among the items

(here, tuples) and efficiently support: (i) fetch items based on a position, (ii) insert items

at a position, and (iii) delete items from a position. The insert and delete operations

require updating the positions of the subsequent items. For example, inserting an item at

the nth position requires us to first increment by one the positions of all the items that have

a position greater than or equal to n, and then add the new item at the nth position. Due

to the interactive nature of DataSpread, our goal is to perform these operations within a

few hundred milliseconds.

Operation RCV ROM
Insert 87,821 ms 1,531 ms
Fetch 312 ms 244 ms

Table 3.2: The performance of storing Position-as-is.

Naïve Solution: Position as-is. The simplest approach is to store the position along

with each tuple: this makes fetch efficient at the expense of insert/delete operations. With

a traditional index, e.g., a B+ tree, the complexity to access an arbitrary row identified by

a position is O(logN). Insert and delete operations require updating the positions of subse-

quent tuples, which need to be propagated in the index, and therefore it results in a worst

case complexity of O(N logN). To illustrate the impact of these complexities in practice,

in Table 3.2, we display the performance of storing the positions as-is for two operations—

fetch and insert—on a spreadsheet containing 106 cells. We note that irrespective of the data

model used, the performance of inserts is beyond our acceptable threshold whereas that of

the fetch operation is acceptable.

67

1 2 3 1

3 4

Non-Leaf
nodes
(counts
& child

pointers)

Leaf nodes
(tuple

pointers)

Figure 3.13: Hierarchical Positional Mapping.

Hierarchical Positional Mapping. To improve the performance of inserts and deletes for

ordered items, we introduce the idea of positional mapping. At its core, the idea is simple:

we do not store positions explicitly but instead obtain them on the fly. Formally, positional

mapping M is a bijective function that maintains the relationship between the position r

and tuple pointers p, i.e., M(r)→ p.

We now describe hierarchical positional mapping, which is an indexing structure that

adapts classical work on order-statistic trees [35]. Just like a typical B+ tree is used to

capture the mapping from keys to records, we can use the same structure to map positions

to tuple pointers. Here, instead of storing a key we store the count of elements stored within

the entire sub-tree. The leaf nodes store tuple pointers, while the remaining store children

pointers along with counts. We show an example hierarchical positional mapping structure in

Figure 3.13. Similar to a B+ tree of order m, our structure satisfies the following invariants.

(i) Every node has at most m children. (ii) Every non-leaf node (except root) as at-least

dm/2e children. (iii) All leaf nodes appear at the same level. Again similar to B+ tree, we

ensure the invariants by either splitting or merging nodes, ensuring that the height of the

tree is at most logdm/2eN .

Our hierarchical mapping structure makes accessing an item at the nth position efficient,

by starting from the root node with n′ = n, and traversing downwards; at each node, given

our current count n′, we subtract the counts of as many of the children nodes from left-

68

to-right (representing counts of sub-trees) as long as n′ stays positive, and then follow the

pointer to that child node, and repeat the process until we reach a leaf node and access a

pointer to a tuple. Overall, the complexity of this operation is O(logN).

Insert/delete are similar, where we start at the appropriate leaf node (as before), insert

or delete appropriate tuple pointers, and then update the counts of all nodes on the path to

the modified leaf node. Once again, the complexity of this operation is O(logN).

Overall, we find that the complexity of the hierarchical positional mapping isO(logN) for

all operations, while the Position-as-is approach has O(logN) for access, but O(N logN)

for insert/delete. We empirically evaluate the impact of the difference in complexities in

Section 3.7.

3.6 DATASPREAD’S STORAGE ARCHITECTURE

To support interactive, scalable data access by integrating relational databases and

spreadsheets, we have implemented a fully functional DataSpread prototype as a web-

based tool using the open-source ZK Spreadsheet frontend [20] on top of a PostgreSQL

database. Along with standard spreadsheet features, the prototype supports all the spreadsheet-

like and database-like operations discussed in Section 3.2. Screenshots of DataSpread in

action can be found in Section 3.7.4.

Figure 3.14 illustrates DataSpread’s architecture, which at a high level can be divided

into three layers, (i) user interface, (ii) execution engine, and (iii) storage engine. The

user interface is a spreadsheet widget, which presents a spreadsheet on a web-based interface

and handles the interactions on it. The execution engine is a Java web application residing

on an application server. The controller accepts user interactions in the form of events and

identifies the corresponding actions. For example, a formula update is sent to the formula

parser and a cell update to the cell cache. The positional mapper translates the row and

column numbers into the corresponding stored identifiers. The ROM/TOM, COM, RCV,

and hybrid translators use their corresponding spreadsheet representations and provide a

“collection of cells” abstraction to the upper layers. ROM/TOM, COM, and RCV trans-

lators service getCells by using the tuple pointers, obtained from the positional mapper, to

69

View Controller

LRU Cell Cache

Hybrid Translator

ROM/TOM
Translator

COM
Translator

RCV
Translator

Evaluator ParserDependency

Positional Mapper

Web Browser

Database

Spreadsheet Data

ROM COM RCV

TOM Pos. Index

Metadata

User
Interface

Execution
Engine

Storage
Engine

Hybrid
Optimizer

Ajax
Requests

Ajax
Responses

Figure 3.14: DataSpread’s Storage Architecture.

fetch required tuples. For a hybrid model, the mapping from a range to model is stored as

metadata. A region requested by the getCells operation on hybrid data model might span

one or more primitive data models, in which case the hybrid translator delegates the call to

all relevant primitive data models and aggregates their output. The returned cells are then

cached in memory via the LRU cell cache. The storage engine is a relational database respon-

sible for persisting data using a combination of ROM, COM, RCV, and TOM (Section 3.3)

along with positional mapping indexes, which map row/column numbers to tuple pointers

70

(Section 3.5), and metadata, which records information about the hybrid data model. The

hybrid optimizer determines the optimal hybrid data model and migrates data across data

models.

Two-way synchronization. The two-way synchronization setup by the linkTable operation

is captured as metadata in the database. The updates on the linked region are propagated to

the underlying table in a write-through manner by the controller. The linkTable operation also

creates a database trigger to monitor updates to the underlying linked table. Whenever the

trigger fires, the controller invalidates the updated records from the cache; thereby signaling

the user interface to fetch the updated cells from the underlying layers.

SQL and Relational Operations. In addition to supporting standard spreadsheet func-

tions, DataSpread leverages the SQL engine of the underlying database to seamlessly

supports SQL queries and relational operators on the front-end spreadsheet interface.

DataSpread supports executing of SQL queries via a spreadsheet function sql(query,

[param1], . . .), which takes a SQL statement along with parameters values as arguments.

The query parameter is a single SQL SELECT statement, possibly containing ‘?’s. When

one or more ‘?’s exists in the query, DataSpread treats the query like a SQL prepared

statement, where each ‘?’ is substituted by the values param1, . . . in order. The number of

parameters must match the number of ‘?’s in the query. Each parameter must evaluate to

a single value, i.e., it cannot refer to a range.

The sql function and the other functions that we discuss in this section return a single

composite table value; to retrieve the individual rows and columns within that composite

table value, we have an index(table, row, [column]) function that looks up the (row, column)th

cell in the composite table value in location table, and places it in the current location.

In addition, DataSpread supports relational operators via the following spreadsheet

functions: union(table1, table2), difference(table1, table2), intersection(table1, table2), crossprod-

uct(table1, table2), select(table, filter), join(table1, table2, [filter]), project(table, attribute1, [attribute2],

...), and rename(table, oldAttribute, newAttribute). Since the input and output of all these func-

tions is a table, they can be arbitrarily nested to obtain complex expressions.

The arguments table1 and table2 can either refer to a composite table value or a (con-

71

tiguous) range of non-table values, which is treated as a table. The filter argument must

be a Boolean expression which may utilize standard spreadsheet functions and can refer to

attributes in tables.

3.7 EXPERIMENTAL EVALUATION

In this section, we present an evaluation of the storage engine of DataSpread.

3.7.1 Experimental Setup

Environment. We have implemented the data models and positional mapping techniques

using PostgreSQL 9.6, configured with default parameters. We run all of our experiments on

a workstation running Windows 10 on an Intel Core i7-4790K 4.0 GHz with 16 GB RAM.

Our test scripts are single-threaded applications developed in Java. While we have a fully

functional prototype, our test scripts are independent of it, so that we can isolate the back-

end performance implications. We ensured fairness by clearing the appropriate cache(s)

before every run.

Datasets. We evaluate our algorithms on a variety of real and synthetic datasets. Our real

datasets are the ones listed in Table 3.1. To test scalability we constructed large synthetic

spreadsheet datasets. We identify several goals for our experimental evaluation:

Goal 1: Presentational Awareness and Access on Real and Synthetic Datasets.

We evaluate the hybrid data models selected by our algorithms against the primitive data

models, when the cost model is optimized for storage. We compare our algorithms: DP (Sec-

tion 3.4.2), and Greedy and Agg (greedy and aggressive-greedy from Section 3.4.3) against

ROM, COM, and RCV, which represent our best current database approach. We evaluate

these data models on both storage, as well as formulae access cost, based on the spread-

sheet formulae. In addition, we evaluate the running time of the algorithms for of DP,

Greedy, and Agg. We additionally evaluate hybrid data models optimized for formula ac-

cesses (Agg-formulae) and contrast it with storage-optimized ones. Finally, we drill-down

into the performance of hybrid data models and investigate incremental maintenance of

72

��

���

���

���

���

����

�������� ��������� ����� ��������

�
�
��
�
���
�
�

�
�
��
��
�
� ���

���
���
��

������
���
���

��

���

����

�������� ��������� ����� ��������

�
�
��
�
���
�
�

�
�
��
��
�
�

Figure 3.15: (a) Storage Comparison for PostgreSQL. (b) Storage Comparison on an Ideal Database.

hybrid data models.

73

�

����

����

����

����

� � � � � ���

�
�
�
�
�
��

�����������������

�

���

����

����

� � � � � ���

�
�
�
�
�
��

�����������������

�

���

���

���

���

���

� � � � � � ���

�
�
�
�
�
��

�����������������

�

���

���

���

���

� � � � � ���
�
�
�
�
�
��

�����������������

Figure 3.16: Upper bound for #Tables in the optimal decomposition—(a) Internet. (b) ClueWeb09.
(c) Enron. (d) Academic.

Goal 2: Presentational Access (With Updates) on Synthetic Datasets. We eval-

uate the impact of our positional mapping schemes in aiding access on the spreadsheet.

We focus on Position-as-is, Monotonic, and Hierarchical positional mapping schemes (intro-

duced later) applied on the ROM primitive model, and evaluate the performance of fetch,

insert, and delete operations on varying the number of rows. We additionally study the

impact of varying parameters of synthetic spreadsheets on positional mapping.

Goal 3: Qualitative Evaluation. We evaluate the user experience of DataSpread

relative to Excel, and study whether it’s storage engine enables users to effectively work

with large datasets in two different scenarios.

3.7.2 Presentational Awareness and Access

Takeaway 3.7. Hybrid data models provide substantial benefits over primitive data models,

with up to 20% reductions in storage, and up to 50% reduction in formula evalu-

ation time on PostgreSQL on real and synthetic spreadsheet datasets, compared to the best

primitive data model. While DP has better performance on storage than Greedy and Agg, it

74

suffers from high running time; Agg bridges the gap between Greedy and DP, while

taking only marginally more running time than Greedy; both Agg and Greedy are within 10%

of the optimal storage. Lastly, if we were to design a database storage engine from scratch,

the hybrid data models would provide up to 50% reductions in storage compared to the

best primitive data model. By optimizing for formula accesses, hybrid data models provide

on average a 85% reduction in formula evaluation time compared to the best primitive

data model. Overall, our hybrid data models bring scalability to spreadsheets: effi-

ciently support storage across a range of spreadsheet structures, and access data

via position in an efficient manner.

The goal of this section is to evaluate spatial access and awareness (without updates) by

evaluating our data models—on real and synthetic datasets.

a. Real Dataset: Storage Evaluation on PostgreSQL. We begin with an evaluation of

storage for different data models on PostgreSQL. The schemas for the different models are

as described in Section 3.3.2. The costs for storage on PostgreSQL as measured by us is as

follows: s1 is 8 KB, s2 is 1 bit, s3 is 40 bytes, s4 is 50 bytes, and s5 (RCV’s tuple cost) is 52

bytes. We plot the results in Figure 3.15(a): here, we depict the average normalized storage

across sheets; in addition to the aforementioned data models, we also plot a lower bound

for the optimal hybrid data model (denoted OPT)—the cost of storing only non-empty cells

in a single ROM, i.e., the cost ignoring the overhead of extra tables and empty cells. For

Internet, ClueWeb09, and Enron, we found RCV to have the worst performance, and hence

normalized it to a cost of 100, and scaled the others accordingly; for Academic, we found

COM to have the worst performance, and hence normalized it to a cost of 100, and scaled the

others. The first three datasets are primarily used for data sharing, and as a result are quite

dense. As a result, ROM and COM do well, using about 40% of the storage of RCV. At the

same time, DP, Greedy and Agg perform roughly similarly, and better than the primitive

data models, providing an additional reduction of 15–20%. On the other hand, since the

last dataset (primarily used for computation) is very sparse, RCV does better than ROM

and COM, while DP, Greedy, and Agg once again provide additional benefits. We finally

observe that DP, Greedy, and Agg are all very close (within 10%) of OPT. From this we

75

conclude that the solution give by Agg is close to the optimal in terms of cost.

We next show that the error bound of using a recursive decomposition based algorithms

(DP, Greedy, and Agg) is small as compared to the optimal solution. For this we plot the

upper bound for the number of tables in the optimal solution, i.e.,
∑⌊

e×s2
s1

+ 1
⌋
, for the

four data sets in Figure 3.16. Here, we observe the the number of tables in the optimal

solution is typically small—90% of spreadsheets have fewer than 10 tables in the optimal

decomposition. From the above observation and Theorem 3.4, we conclude that the error

bound of using the search space of recursive decomposition for practical purposes is small.

b. Real Dataset: Storage Evaluation on an Ideal Database. The reason why RCV

does so poorly for the first three datasets is because PostgreSQL imposes a high overhead per

tuple, of 50 bytes, considerably larger than the amount of storage per cell. So, to explore this

further, we investigated the scenario if we could redesign our storage engine from scratch. We

consider a theoretical “ideal” cost model, where the cost of a ROM or COM table is equal to

the number of cells, plus the length and breadth of the table (to store the data, the schema,

as well as position), while the cost of an RCV row is simply 3 units (to store the data, as

well as the row and column number). We plot the results in Figure 3.15(b) in log scale for

each of the datasets—we exclude COM for this chart since it is identical to ROM. Here, we

find that ROM has the worst cost since it no longer leverages benefits from minimizing the

number of tuples. For Internet, ROM and RCV are similar, but RCV is slightly worse. As

before, we normalize the cost of the worst model to 100 for each sheet, and scaled the others

accordingly. As an example, we find that for the ClueWeb09 corpus, RCV, DP, Greedy and

Agg have normalized costs of about 36, 14, 18, and 14 respectively—with the hybrid data

models more than halving the cost of RCV, and getting 1/7
th the cost of ROM. Furthermore,

DP provides additional benefits relative to Greedy, and Agg ends up bringing us close to DP

performance; finally, we find that Agg and DP are both very close to OPT (within 10%).

c. Real Dataset: Running Time of Hybrid Optimization Algorithm. Our next

question is how long our hybrid data model optimization algorithms for DP, Greedy, and

Agg, take on real datasets. In Figure 3.17(a), we depict the average running time for the

algorithms. The results for all datasets are similar. For example, for Enron, DP took 6.3s on

76

 10

 100

 1000

 10000

Internet ClueWeb09 Enron Academic

Av
g

tim
e

(m
s)

DP
Greedy

Agg

 0.1

 1

 10

Internet ClueWeb09 Enron Academic

Fo
rm

ul
ae

 A
cc

es
s

Ti
m

e
(m

s) ROM
RCV
Agg

Figure 3.17: (a) Hybrid optimization algorithms: Running time. (b) Average access time for
formulae.

average, Greedy took 45ms (a 140× reduction), while Agg took 345ms (a 20× reduction).

Thus DP has the highest running time for all datasets, since it explores the entire space of

models that can be obtained by recursive partitioning. Between Greedy and Agg, Greedy

turns out to take less time. Note that these observations are consistent with our complexity

analyses from Section 3.4.3. That said, Agg allows us to trade off running time for improved

performance on storage (as we saw earlier). We note that for the cases where the spreadsheets

were large, we terminated DP after about 10 minutes, since we want our optimization to be

relatively fast. (Note that using a similar criterion for termination, Agg and Greedy did not

have to be terminated for any of the real datasets.) To be fair across all the algorithms, we

excluded all of these spreadsheets from this chart—if we had included them, the difference

between DP and the other algorithms would be even more stark.

d. Real Dataset: Formulae Access Evaluation on PostgreSQL. We next evaluate

if our hybrid data models, optimized only on storage, have any impact on the access cost

for spreadsheet formulae. Our hope is that spreadsheet formulae focus on “tightly coupled”

tabular areas, which our hybrid data models are able to capture and store in separate tables.

For this evaluation, we focus on Agg, since it provided the best trade-off between running

time and storage costs. Given a sheet in a dataset, for each data model, we measured the

time taken to evaluate all the formulae in that sheet, and averaged this time across all sheets

and all formulae. Thus, the workload simply comprise all the formulae that are present in

a sheet. We plot the results in Figure 3.17(b) in log scale in ms. As a concrete example, on

77

Figure 3.18: Genomics Use Case: VCFs in DataSpread.

Internet, ROM has a formula access time of 0.23, RCV has 3.17, and Agg has 0.13. Thus,

Agg provides a substantial reduction of 96% over RCV and 45% over ROM—even though Agg

was optimized for storage and not for formula access. Even though a region access in Agg

can span multiple primitive data models, for real datasets the access is generally confined

to a single data model—thereby leading to a significant benefit for Agg. Specifically, for

Internet, about 98.47% of formulae access only access a single primitive data model, 1.43%

between 2 and 10, and only 0.1% formulae access more than 10 primitive data models.

When the number of accessed tables is more then one, ROM has an edge as compared to

Agg—concretely for one such formula the access times (in ms) are 0.62, 0.31, and 0.99 for

RCV, ROM, and Agg respectively. This validates our design of hybrid data models to store

spreadsheet data. While the performance numbers for real spreadsheet datasets are small

for all data models (due to the size limitations in present spreadsheets), when scaling up to

large datasets, and formulae on them, these numbers will increase proportionally, at which

point it is even more important to opt for hybrid data models, as we will see next.

To better understand the gains of the hybrid data model, we plot the access times of

78

 0.01

 0.1

 1

 10

Formula 1 Formula 2 Formula 3 Formula 4

A
v
g

tim

e

(m
s
)

ROM
RCV
Agg

Agg-Formula

Figure 3.19: Access time for individual formulae.

some representative formulae from Internet in Figure 3.19. Here, in addition to plotting the

access times for ROM, RCV, and Agg, we plot Agg-formula, which is the hybrid data model

optimized for formula accesses, as discussed in Section 3.4.4. The Agg-formula is able to

substantially reduce the access time across all the formulae. For example, for Formula 4,

the access time for Agg-formula is 7% of ROM and 15% of Agg. For a sample of forty

spreadsheets from Internet, the formula access times for ROM, Agg, and Agg-formula were

67% of RCV, 52% of RCV, and 10% of RCV respectively.

��

��

��

��

��

��

������� ������� ������� �������

�
��
��
�
�

�
��
�
�

���
���
���

��

����

����

����

����

����

������� ������� ������� �������

�
�
��
�
��
�

�
�
�
�
�
�
�
�
�
��
�

�
��
�
� ���

���
���

Figure 3.20: Synthetic sheets (a) Storage. (b) Access time.

e. Synthetic Dataset: Storage and Formula Access Evaluation We now run our

tests on large synthetic spreadsheets with 100+ million cells to evaluate our techniques in

large dataset scenarios. We create synthetic spreadsheets by populating an empty sheet

with twenty dense rectangular regions to simulate randomly placed tables. We add 100

randomly generated formulae that access rectangular ranges of these tables. Figures 3.20(a)

79

����

��

���

����

��� ��� ��� ��� ���

�
��
�

�
��
�
�

��������

����������������
�����������

��������������

����

��

���

����

��� ��� ��� ��� ���

�
��
�

�
��
�
�

��������

����������������
�����������

��������������

����

��

���

����

��� ��� ��� ��� ���

�
��
�

�
��
�
�

��������

����������������
����������

��������������

Figure 3.21: Positional mapping performance for (a) Select. (b) Insert. (c) Delete.

and 3.20(b) depict the storage requirements and the formulae access time respectively for

four synthetic spreadsheets, which are in the decreasing order of density (the fraction of

cells that are filled-in in the minimum bounding rectangle). For both storage and access,

we find that Agg is better than ROM, which is better than RCV; as density is decreased,

RCV’s performance becomes closer to ROM. Agg performs the best, providing substantial

reductions of up to 50-75% of the time taken for access with ROM or RCV.

�

��

��

��

��

���

����� � ����� � ����� � ����� �

�
��
�
��
��
��

��
��
��
� ���

���
���
��

������
���

Figure 3.22: Storage comparison for sample spreadsheets.

f. Drill-Down of storage optimization algorithmsWe now drill deeper into the storage

optimization algorithms and understand their behavior with respect to the characteristics

of spreadsheets. We selected four sample sheets from our dataset to represent variations in

terms of data density and layout of data, which is either horizontal for most part or vertical

for most part. For these sheets, we contrast their storage requirements for the different data

models. We plot the results in Figure 3.22, where we depict the normalized storage across

sheets. For each sheet we have normalized the data model that performs the worst to 100,

and scaled the others accordingly.

The four spreadsheets show the variation among the different models in terms of storage

requirements. Sheets 1 and 2 have substantial storage savings for ROM and COM when

80

��

��

��

��

��

��

���� ��� ��� ��� ���
��

��

��

��

�
��
�

�
��
��
�
��
�
�

�
��
��
�
�

�
��
�
�

�

����������������
���������

 25

 30

 35

 40

 0 2 4 6 8 10

St
or

ag
e

(M
B)

User Actions (thousands)

 Actual
 Optimal

Figure 3.23: Incremental Hybrid Decomposition: (a) Trade-off with respect to η. (b) User operations
vs. Storage.

compared with RCV since they are relatively high density. On the other hand, Sheet 4 has

has substantial storage savings for RCV as compared to ROM and COM due to its relatively

low density. For Sheet 3 (4), ROM’s (COM’s) storage requirement is less then that of COM

(ROM). This is due to the distribution of the cells, which span for the most part in the

vertical direction for Sheet 3 and in the horizontal direction for Sheet 4. Except for Sheet 3,

for all other sheets, the solution provided by Agg is close to DP. For Sheet 3, the optimization

algorithms are not able to perform much better in terms of cost saving than the primitive

data models. This is due to the fact that the sheet has both dense and sparse regions.

g. Incremental Maintenance We now evaluate whether our representation schemes can

be maintained efficiently in the face of edits. Note that in practice there will be periods

where the DataSpread is idle, and so we can run the hybrid optimization algorithms then,

but it is still valuable to ensure that the choice of data model is aware of the existing

layout. To illustrate our incremental decomposition approach from Section 3.4.4, For this,

we consider a synthetic spreadsheet as described in part e. of Section 3.7.2. We store

the spreadsheet using the Agg-based hybrid data model. In the absence of user operation

traces, we develop a generative model for update operations. We consider the following four

operations. (i) Change the value of an existing cell. (ii) Add a new cell at an arbitrary

location. (iii) Add a new row. (iv) Add a new column. Motivated from our user study,

we consider that the above four operations are performed with probabilities 0.6, 0.2, 0.1999,

and 0.0001 respectively. We fix the value of η (the trade-off factor between migration and

storage) to 1.0 and run incremental maintenance with Agg after each batch of 1000 user

81

updates are performed. We plot the storage requirement against the number of user updates

in Figure 3.23(b). The actual line in the graph indicates the storage requirement, which

has a saw-tooth like behavior. The drop in the graph correspond to the points where the

incremental maintenance algorithm chose a new decomposition and migrated to it: thus,

there was no migration performed at batch 1, 2, 3, but there was one at batch 4. We

also plot the storage for the non-incremental variant of Agg, which we obtain by running

incremental decomposition and setting η to 0. Overall, we find that a policy of this form (with

η = 1) only performs migration when the structure within the spreadsheet has substantially

changed.

To study the impact of η, we consider one such point where the spreadsheet has diverged

from its original Agg-based data model. We run the Agg variant of incremental maintenance

algorithm on varying η. We plot η’s impact of the time taken to migrate and the storage

requirement of the final decomposition in Figure 3.23(a). Here, as we increase the value of η

we observe that the migration time decreases and the storage requirement increases. At lower

values of η, the algorithm gives preference to finding the optimal solution while ignoring the

migration cost. We can observe this from the low storage cost, and the high time required

to migrate the data in to the new decomposition. When η > 100, the optimization aims at

minimizing the migration cost at the expense of sacrificing the optimality of storage. Here,

we observe a zero migration time, as the algorithm returns the original decomposition, and

has the worst storage requirement.

3.7.3 Presentational Access with Updates

Takeaway 3.8. Hierarchical positional mapping retains the rapid fetch benefits of position-

as-is, while also providing rapid inserts and updates. Thus, hierarchical positional map-

ping is able to perform positional operations within a few milliseconds, while the

other schemes often take seconds on large datasets. Overall, our hierarchical positional

mapping schemes support spatial access with updates, validating the fact that

our storage engine can support interactivity.

We now evaluate spatial access (with updates) by studying our positional mapping meth-

82

Figure 3.24: Customer Management in DataSpread.

ods (Section 3.5) on synthetic datasets. We compare our hierarchical positional mapping

(denoted hierarchical), with position as-is (denoted position-as-is): this is the approach a

traditional database with a B+ tree would use. In addition, motivated by the online dynamic

reordering technique [36, 37], we consider another baseline (denoted monotonic), where we

store a monotonically increasing sequence of identifiers (with gaps) to capture the position.

Using this sequence we dynamically order the tuples at run-time (by sorting); whereas the

gaps in the sequence enable efficient insert/delete operations. The dynamic reordering sac-

rifices the performance of the fetch operation as it needs to discard n− 1 tuples to fetch nth

tuple.

We operate on a dense synthetic dataset ranging from 103 to 107 rows, with 100 columns

with all cells filled; and repeat this 1000 times. We evaluate the performance of a single

ROM table with all of the data; evaluations for other data models are similar. Figure 3.21

displays the average time taken to perform a fetch, insert, and delete of a single (random)

row.

83

 10

 100

 1000

0.2 0.4 0.6 0.8 1.0

Ti
m

e
(m

s)

Sheet Density

 RCV
 ROM

 10

 100

 1000

30 50 70 90 100

Ti
m

e
(m

s)

#Columns

 RCV
 ROM

100

1000

104 105 106 107

Ti
m

e
(m

s)

#Rows

 RCV
 ROM

Figure 3.25: Update range performance vs (a) Sheet Density (b) Column Count (c) Row Count

 1

 10

 100

0.2 0.4 0.6 0.8 1.0

Ti
m

e(
m

s)

Sheet Density

 RCV
 ROM

 1

 10

 100

10 30 50 70 90 100

Ti
m
e(
m
s)

#Column

 RCV
 ROM

 1

 10

 100

104 105 106 107

Ti
m
e(
m
s)

#rows

 RCV
 ROM

Figure 3.26: Insert row performance vs (a) Sheet Density (b) Column Count (c) Row Count

We see that position-as-is performs well for fetch. However, the insert and delete time

increases rapidly with the data size, due to cascading updates; thus, beyond a data size of

105, position-as-is is no longer interactive (> 500ms) for insert and delete. Conversely, the

response time of monotonic for fetch increases rapidly with data size. This is again expected,

as we need to linearly search through the monotonic keys to retrieve the required records—

making it infeasible for large datasets. Lastly, we find that hierarchical performs well for

all operations and the performance does not degrade even with data sizes of 109 tuples. In

comparison with the other schemes, hierarchical performs all of the three aforementioned

operations in few milliseconds, which makes it the practical choice for spatial access with

updates.

Finally, we perform an evaluation of spatial access with updates on varying various

parameters of the synthetic spreadsheets. For this evaluation, we focus on the two primitive

data models, i.e., ROM and RCV with the spreadsheet being represented as a single table

in these data models. Since we use synthetic datasets where cells are “filled in” with a

certain probability, we did not involve hybrid data models, since they would (in this artificial

context) typically end up preferring the ROM data model. These primitive data models are

augmented with hierarchical positional mapping. We consider the performance on varying

several parameters of these datasets: the density (i.e., the number of filled in cells), the

84

 0

 50

 100

 150

 200

 250

 300

0.2 0.4 0.6 0.8 1.0

Ti
m

e
(m

s)

Sheet Density

 RCV
 ROM

50

100

150

200

250

300

10 30 50 70 90 100

Ti
m

e
(m

s)

#Columns

 RCV
 ROM

50

100

150

200

250

300

104 105 106 107

Ti
m

e
(m

s)

#Rows

 RCV
 ROM

Figure 3.27: Select performance vs — (a) Sheet Density (b) Column Count (c) Row Count

number of rows, and the number of columns. The default values of these parameters are 1,

107 and 100 respectively. We repeat each operation 500 times and report the averages.

In Figure 3.27, we depict the charts corresponding to average time to perform a random

select operation on a region of 1000 rows and 20 columns. This is, for example, the operation

that would correspond to a user scrolling to a certain position on our spreadsheet. As can

be seen in Figure 3.27(a), ROM starts dominating RCV beyond a certain density, at which

point it makes more sense to store the data in as tuples that span rows instead of incurring

the penalty of creating a tuple for every cell. Nevertheless, the best of these two models

takes less than 150ms across sheets of varying densities. In Figure 3.27(b)(c), since the

spreadsheet is very dense (density=1), ROM takes less time than RCV. Overall, in all cases,

even on spreadsheets with 100 columns and 107 rows and a density of 1, the average time to

select a region is well within 500ms.

Figures 3.25 and 3.26 depict the corresponding charts for updating a region of 100 rows

and 20 columns, and inserting one row of 100 columns for the primitive data models. In

Figure 3.25, we find that the update time taken for RCV is a lot higher than the time for

inserts or selects. This is because in this benchmark, DataSpread assumes that the entire

region update happens at once, and fires 100× 20 = 2000 update queries one at a time. In

practice, users may only update a small number of cells at a time; and further, we may be

able to batch these queries or issue them in parallel to further save time. In Figure 3.26, we

find that like in Figure 3.25, the time taken for updates on ROM is faster than RCV since it

only needs to issue one query, while RCV needs to issue multiple queries. However, in this

case, since the number of queries issued is small, the response time is always within 100ms.

Overall, for both RCV and ROM, for inserting a row, the time is well below 500ms for

all of the charts; for updates of a large region, while ROM is still highly interactive, RCV

85

ends up taking longer since 1000s of queries need to be issued to the database. In practice,

users won’t update such a large region at a time, and we can batch these queries.

3.7.4 Qualitative Evaluation

Takeaway 3.9. DataSpread enables users to interactively work on large spread-

sheets. The direct manipulation and database-oriented features of DataSpread enable

interactive management of data via database tables on a spreadsheet interface.

We now evaluate DataSpread to see how it can handle the use cases described earlier.

With our genomics use case, we evaluate the scalability of DataSpread, and with our

customer management use case, we evaluate the functionality.

a. Evaluating Scale for Genomics: For this evaluation, we used a VCF file provided

by our biology collaborators, as described in Example 1, and used it to perform basic ex-

ploration. We contrast the performance of DataSpread with Excel. Our VCF file has

1.3M rows and 284 columns. Unfortunately, we were unable to load this file in Excel since

it exceeds Excel’s limits. Importing the file in DataSpread takes about a minute. On the

other hand, even after reducing the VCF file to 1M rows, Excel is unable to import the file

within an hour. After substantially reducing the file size to 130K rows, we were able to

import it into Excel in about 10 minutes. After loading the 1.3M VCF file, we were able to

take advantage of DataSpread’s efficient positional access to scroll up and down to explore

the data with interactive (sub-second) response times. Figure 3.18 shows a screenshot of the

file in DataSpread, having scrolled to the millionth row.

b. Evaluating Functionality for Customer Management: For evaluating function-

ality, as described in Example 2, we leverage the database-oriented operations discussed

in Section 3.2. Using linkTable, we first establish a two-way synchronization between the

spreadsheet regions and the invoice and supp tables in the database (Figure 3.24). These

linked regions enable us to directly manipulate the underlying tables via spreadsheet oper-

ations such as cell updates; this is not possible in spreadsheet tools that only allow one-way

import of data from a backend database to a spreadsheet. We used the sql function in cell

A8 to join the two tables and perform grouping and aggregation; this is less cumbersome and

86

more efficient compared to Excel’s vlookup and pivot tables, and indexed into the composite

value in A8 to display the results in A9:B11. Finally, we use the project and select functions

to get the top supplier in cell G8; any updates to the underlying tables are automatically

reflected in the function’s output.

3.8 RELATED WORK

Our work draws on related work from multiple areas: (i) order or array-based database

management systems, and (ii) hybrid storage schemes.

1. Order-aware database systems. Some limited aspect of spatial awareness, in par-

ticular, order, has been studied. The early work of online dynamic reordering [36] supports

data reordering based on user preference, citing a spreadsheet-like interface [37] as an ap-

plication. More recently, there has been work on array-based databases, but most of these

systems do not support edits, like SciDB [38] which supports an append-only, no-overwrite

data model or TileDB [39], which supports only restricted forms of edits where values in

cells are modifiable but new rows or columns cannot be added. Our position-aware access

efficiently supports general updates as required by our spatial interface.

2. Hybrid, access-optimized storage schemes. Utilizing query workloads to select

appropriate physical designs has been a long-standing research problem, with work on auto

tuning [40, 41], cracking [42], and materialized views [43] targeting the selection and or-

ganization of indexes and views to match queries. Other work examines the use of hy-

brid row-column stores for mixed OLAP-OLTP workloads [44, 45]. Some work focuses on

partitioning—vertical [46, 47], horizontal [48], or both [49, 50]. While we similarly consider

vertical and horizontal partitioning, in addition to transposing the data (COM) and storing

the data in a key-value fashion (RCV), in contrast, our work emphasizes the structure and

skew of data to determine appropriate models for positional access and update, a first-class

citizen in a spatial interface.

87

3.9 CONCLUSIONS

In this chapter, we focused on developing a storage engine for our prototype DataSpread,

characterizing key requirements in the form of spatial awareness and access. We addressed

spatial awareness by proposing three primitive data models for representing spreadsheet

data, along with algorithms for identifying optimal hybrid data models from recursive de-

composition. Our hybrid data models provide substantial reductions in terms of storage (up

to 20–50%) and formula evaluation (up to 50%) over the primitive data models. For spatial

access, we couple our hybrid data models with a hierarchical positional mapping scheme,

making working with large spreadsheets interactive.

88

CHAPTER 4: ASYNCHRONOUS FORMULA COMPUTATION

Formula computation enables end-users with little programming experience to be able

to interrogate their data, and compute derived statistics. However, the sheer volume of data

available for analysis in a host of domains exposes the limitations of traditional formula

computation. A recent study exploring Microsoft Excel forum posts on Reddit describes

several instances of Excel becoming unresponsive while computing formulae [12]. One user

posted1 that complex calculations on Excel can take as long as four hours to finish, during

which time the user interface is unresponsive:

“. . . approximately 90% of the time I spend with the spreadsheet is waiting for it

to recalculate . . . ”

Another user reported using spreadsheets to track their entire life, and periodically cull data

to keep the size manageable, but they still have trouble with formula computation:

“. . . the spreadsheet locks up during basic calculations—the entire screen freezes

. . . ”

The chief culprit for this unresponsiveness is that in traditional spreadsheet systems,

every change, be it changing values or formulae, triggers a sequence of computation of

dependent formulae. This sequence could take minutes to complete, depending on the size

of the data and complexity of the formulae. Since these systems aim to present a “consistent”

view after any update, i.e., one with no stale values, they forbid users from interacting with

the spreadsheet while the computation is being performed, limiting interactivity. They only

return control to the user after the computation is complete: the only indication to the user

is a bar at the bottom, as in Figure 4.1(c), with no viewing, scrolling, or edits allowed.

Recent studies have shown that even delays of 0.5s can lead to fewer hypotheses explored

and insights generated [51], so this synchronous computation approach is not desirable.

One workaround that traditional spreadsheet systems provide is a manual computation

approach, wherein computation of dependent formulae is performed only when triggered
1All Reddit quotes are paraphrased to preserve anonymity.

89

(a) (b)

(c)
Figure 4.1: (a) Our proposed asynchronous computation maintains interactivity and consistency by
showing computation status instead of a stale value. (b) Manual computation mode in traditional
spreadsheets achieve interactivity but violate consistency. (c) Automatic calculation mode in tra-
ditional spreadsheets achieve consistency but keep user interface non-responsive for the duration of
the computation.

manually by users. This method breaks consistency, as stale values are visible to the users,

as in Figure 4.1(b), potentially leading to users drawing incorrect conclusions.

Towards Interactivity and Consistency. As we introduced in Section 2.3, we describe an

asynchronous computation approach that preserves both interactivity and consistency. After

updates, we return control to the user almost immediately, “blur out” cells that are not yet

up-to-date or consistent, and compute them in the background, incrementally making them

available once computed. Users are able to continue working on the rest of the spreadsheet.

We show an example in Figure 4.1(a) where the formula in B2 summing up one million values

is “blurred out”, with a progress bar indicating the computation progress, while users can

still interact with the rest of the sheet. For example, a user can add a new formula to cell

B3, after which both formulae are computed in the background.

We can quantify the benefit of this approach using a new metric we developed, called

unavailability, i.e., the number of cells that are not available for the user to operate on,

at any given time. Synchronous computation has the highest unavailability, since all of

the sheet is inaccessible while computation is being performed. In contrast, asynchronous

computation allows users to interact with most of the sheet while computation happens in

the background, leading to low unavailability, while still respecting consistency.

90

While the asynchronous computation approach is appealing and natural, and dramat-

ically minimizes the time during which users cannot interact with the spreadsheet, and

consequently the unavailability, it requires a fundamental redesign of the formula compu-

tation engine, thanks to two primary challenges: dependencies, and scheduling. Next, we

describe these challenges along with our approaches to address them.

Dependencies: Challenges and Approach. Since we need to preserve both interactivity

and consistency, once a change is made, we need to quickly identify cells dependent on that

change, and therefore must be “blurred out”, or made unavailable, as in B2 in Figure 4.1(a).

One simple approach is to traverse the network or graph of formula dependencies to find

all dependent cells, and then make them unavailable. However, during this period, the

entire spreadsheet is unavailable, so we aim to minimize the time spent in identifying depen-

dent cells. Unfortunately, for computationally heavy spreadsheets, a traditional dependency

graph that captures formula dependencies at the cell level [52] can be quite large, so iden-

tifying dependencies can be computationally intensive and cannot be done in a bounded

time. Ideally, we would like to do this within interactive timescales (less than 500 ms [51]),

without sacrificing consistency.

To enable fast lookups of dependencies, we introduce the idea of compression. Depen-

dency graphs can tolerate false positives, i.e., identifying a cell as being impacted by an

update, even when it is not. However, false negatives are not permitted, since they violate

consistency. The goal of compression is to represent the dependencies of each cell by using a

bounded number of regions. Using this representation, we can quickly identify the impacted

cells after a user updates a cell, ensuring interactivity and consistency.

When compressing our representation of the dependency graph, we trade off the size of

the representation and the number of false positives. The size impacts the dependency lookup

time, and the false positives impact the formula computation time, and thus both impact the

unavailability. We show that graph compression is NP-Hard. Thus, formally, our challenge

is to find an optimal way to compress the dependencies such that the unavailability metric

is optimized.

We propose techniques and data structures for compressing the dependency graph and

91

its maintenance.

Scheduling: Challenges and Approach. Once we have identified cells that are dependent

on the change that was made (with possibly a few false positives), we then need to compute

them efficiently, so that we can decrease unavailability as much and as quickly as possible. In

the asynchronous computation model, we incrementally return the values of the dependent

cells to users as soon as they are computed, as opposed to waiting for all cells to be computed,

as is done in a synchronous computation model. When adhering to a schedule, or an order

in which the cells are computed, the time that a dependent cell is unavailable essentially

comprises of (i) time waiting for prior cells in the schedule to complete, and (ii) computing

of the cell itself. Therefore, choosing the schedule is crucial because it directly impacts the

unavailability. For example, if we compute a cell that takes more time to compute early in the

schedule, all other cells pay the penalty of being unavailable during this time. A computation

schedule must respect dependencies: the computation of a cell must be scheduled only after

all the cells that it depends on are computed.

We find that not only is determining an optimal schedule NP-Hard, merely obtaining

a schedule can be prohibitively expensive as it requires traversal of the entire dependency

graph—this is undesirable and can negate the benefits gained from incrementally returning

the computed values within the asynchronous computation model. We propose an on-the-fly

scheduling technique that reduces the up-front scheduling time by performing local optimiza-

tion.

We incorporate our asynchronous computation model in DataSpread. As discussed

earlier DataSpread achieves scalability by utilizing a two-tiered memory model, where data

resides in an underlying relational database and is fetched on-demand into main-memory,

which is limited in size. This introduces additional challenges that go beyond those found in

traditional spreadsheets which are completely main-memory resident. Note, however, that

our techniques for decreasing unavailability apply equally well to traditional spreadsheets

as well as DataSpread. We additionally discuss how we support this two-tiered memory

model in this chapter. For the two-tiered memory model, the computation schedule impacts

not only the unavailability metric but also the total computation time significantly.

92

Contributions. The following list describes our contributions and also serves as the outline

of this chapter.

1. Asynchronous Computation. In Section 4.1, we introduce the asynchronous com-

putation model ensuring interactivity and consistency. Additionally, we propose a novel

unavailability metric to quantitatively evaluate our model.

2. Fast Dependency Identification. In Section 4.2, we propose the idea of lossily

compressing the dependency graph to identify dependencies in a bounded time. We show

that the problem is NP-Hard, and develop techniques for compression and maintenance of

this graph.

3. Computation Scheduling. In Section 4.3, we discuss the importance of finding an

efficient schedule for computing formulae. Since, not only is finding the optimal schedule

NP-Hard but also obtaining a schedule expensive, we propose an on-the-fly scheduling

technique.

4. Supporting Asynchronous Computation in DataSpread. In Section 4.4, we de-

scribe the incorporation of the asynchronous formula computation model within DataSpread.

5. Supporting Asynchronous Computation at Scale. In Section 4.4.2, we describe

supporting the asynchronous computation at scale.

6. Experimental Evaluation. Throughout the chapter, we provide illustrative experi-

ments to demonstrate individual ideas. In Section 4.5, we discuss our experimental setup

and provide evaluation with real-world spreadsheets.

4.1 ASYNCHRONOUS COMPUTATION

We propose an asynchronous computation model to address the interactivity issues of

traditional spreadsheet systems when operating on complex spreadsheets. We first define

key spreadsheet terminology. We then introduce two principles that influence the design

of our model, and conclude with new concepts for our proposed model. We also define

unavailability to formally quantify spreadsheet usability and evaluate the performance of

our computation models.

93

For simplicity, we explain the concepts and techniques in the context of standard spread-

sheet tools, which are main-memory-based, where once loaded the cost of data retrieval is

negligible compared to the cost of formula evaluation. The techniques, as described for main-

memory systems, are beneficial even if used in systems with different memory settings. In

Section 4.4.2, we extend our techniques to two-tier memory systems wherein data retrieval

cost is significant.

While the techniques discussed in this chapter extend to normal usage of spreadsheets

where multiple update events happen throughout the timeline, for ease of exposition, we

focus on changes resulting from a single update to a cell u.

4.1.1 Standard Spreadsheet Terminology

We now formally introduce spreadsheet terminology that we utilize throughout the chap-

ter; some content is from Chapter 3 is repeated to keep this chapter relatively self contained.

Spreadsheet Components. A spreadsheet consists of a collection of cells. A cell is refer-

enced by its column and its row. Columns are identified using letters A, . . ., Z, AA, . . . in

order, while rows are identified using numbers 1, 2, . . . in order. A range is a collection of

cells that form a contiguous rectangular region, identified by the top-left and bottom-right

cells of the region. For instance, A1:C2 is the range containing the six cells A1, A2, B1, B2,

C1, C2.

A cell may contain content that is either a value or a formula. A value is a constant

belonging to some fixed type. For example, in Figure 4.1(b), cell A1 (column A, row 1)

contains the value HW1. In contrast, a formula is a mathematical expression that contains

values and/or cell/range references as arguments to be manipulated by operators or func-

tions. A formula has an evaluated value, which is the result of evaluating the expression, with

cell references substituted by their values or evaluated values. For the rest of the chapter,

we shall use the term “value” to refer to either the value or the evaluated value of a cell,

depending on what the cell contains. In addition to a value or a formula, a cell could also

additionally have formatting associated with it, e.g., width, or font. For the purpose of this

chapter, we focus only on computation.

94

A1

A2

A3

B1

B2

B3

B4

C1

C2

C4

D2

E2

Figure 4.2: A dependency graph that captures the dependencies of Example 4.1 at the granularity
of cells.

Dependencies. In spreadsheets, cell contents may change, and maintaining the correct

evaluated values of formulae is necessary for consistency. Consider the following example.

Example 4.1. A spreadsheet with the following formulae: (i) B1=A1*C1,

(ii) B2=A2*C1, (iii) B3=A3*C1, (iv) B4=SUM(B1:B3), (v) C4=B3+B4, and (vi) E2=SUM(B2:D2).

The cell B4 has a formula SUM(B1:B3), which indicates that B4’s value depends on B1:B3’s

value. Any time a cell is updated, the spreadsheet system must check to see whether other

cells must have their values recalculated. For example, if B2’s value is changed, B4’s value

must be recalculated using the updated value of B2. We formalize the notion of dependencies

as follows.

Definition 4.1 (Direct Dependency). For two cells u and v, u→ v is a direct dependency

if the formula in cell v references cell u or a range containing cell u. Here, u is called a

direct precedent of v, and v is called a direct dependent of u.

Definition 4.2 (Dependency). For two cells u and v, u ⇒ v is a dependency if there is a

sequence w0, w1, . . . , wn of cells where w0 = u, wn = v, and for all i ∈ [n], wi−1 → wi is a

direct dependency. Here, u is called a precedent of v, and v is called a dependent of u. We

denote the set of dependents of a cell u as ∆u.

One can construct a conventional dependency graph of direct dependencies [52]. Fig-

ure 4.2 depicts the graph for the formulae in Example 4.1 at the granularity of cells. Here,

each vertex corresponds to a single cell, e.g., A1. The edges in the graph indicate direct

95

dependencies. For example, the directed edge from A1 to B1 indicates a direct dependency

due to formula A1*C1 in cell B1. The dependencies of a cell u are therefore the vertices

that are reachable from u in the dependency graph. For example, cell B1 has B4 and C4 as

dependents. As this dependency graph captures dependencies at the granularity of cells, this

graph grows quickly when the ranges mentioned in the formulae are large [52]. For example,

a formula SUM(A1:A1000) in cell F2 will require 1,001 vertices and 1,000 edges to capture the

dependencies.

4.1.2 Design Principles

We introduce consistency and interactivity as two fundamental principles that any system

should maintain during formula computation. Spreadsheets should be consistent, i.e., they

should not display stale values. For example, if a cell B2 contains the formula SUM(A1:A225500)

and the user updates the value in cell A1, the user should not see the stale value in B2 until

the corresponding formula is recomputed. Along with consistency, spreadsheet systems must

ensure interactivity, meaning they should react to user events, such as cell updates, rapidly,

and provide users with results as soon as possible—this is crucial for the usability of any

interactive exploration systems [51]. Thus, we introduce the following two design principles

by which our solution must abide.

Principle 4.1 (Consistency). Never display an outdated or incorrect value on the user

interface.

Principle 4.2 (Interactivity). Return control to users within a bounded time after any cell

update user event.

With respect to these two principles, we describe the computation model adopted by tradi-

tional spreadsheet systems, and then discuss our proposed model.

Synchronous Computation Model. Traditional spreadsheet systems adopt a synchronous

computation model, where, upon updating u, the entire spreadsheet becomes unavailable dur-

ing the evaluation of cells that are dependent on u. The spreadsheet system waits for all

of the computation to complete before providing updated values and returning control back

96

to the user—thereby adhering to the consistency principle. However, the waiting time can

be substantial for computationally intensive spreadsheets. According to our recent Reddit

study [12], waiting for formula computation is one of the primary sources of poor interactiv-

ity. In other words, when the number of cells dependent on u is large, this model sacrifices

interactivity, with often minutes to hours of unresponsiveness.

Asynchronous Computation Model. To adhere to interactivity in addition to consis-

tency, we propose an asynchronous computation model. Here, upon updating u, the cells

dependent on u are computed asynchronously in the background without blocking the user

interface.

One naïve asynchronous approach could be to merely modify the synchronous model

to return control to the user immediately after an update, even before all the dependent

cells are computed. However, similar to the manual computation option found in traditional

spreadsheet systems, this approach violates consistency. Consider Figure 4.1(b), where even

after updating the value of cell B1 from 80 to 40, the cell B3 is not updated to the correct

value of 90 unless a full computation of the spreadsheet is triggered manually—violating

consistency, cell B3 shows 130, a stale value.

To satisfy the consistency principle within the asynchronous computation model, we

instead provide users with the cells that the system can ensure to have correct values in a

short time, while notifying users of cells that have stale values—see Figure 4.1(a), where upon

updating A1 the computation of cell B2 is performed in the background and the computation

progress is depicted by a progress bar. Our solution is to add a “dependency identification”

step before computation of any dependent formulae. The goal of this step is to efficiently

identify the cells that do not depend on an updated cell, so that they can be quickly marked

clean and “control” of them can be returned to the user.

4.1.3 New Concepts

We now introduce new concepts that help us describe and quantify the benefits of the

asynchronous computation model.

Partial Results. Within the asynchronous computation model, we introduce the notion

97

of partial results : providing users with the cells that the system can ensure to have correct

(or consistent) values and notifying users of cells that have stale values. Thus, within these

partial results, each cell on the spreadsheet is determined by the computation model to be

in the “clean” or the “dirty” state, defined as follows.

Definition 4.3 (Clean Cell). We consider a cell u to be clean if and only if (i) all of u’s

precedents are clean and (ii) u’s evaluated value is determined to be up-to-date.

Definition 4.4 (Dirty Cell). We consider a cell u to be dirty if and only if (i) at least one

of u’s precedents are dirty or (ii) the u’s evaluated value is determined to be not up-to-date.

Adhering to the consistency principle, (i) for clean cells, the evaluated value is displayed

on the user interface (like in existing spreadsheet systems), and (ii) for dirty cells, the cell

displays a progress bar depicting the status of its computation, thus preventing users from

acting on stale values. Note that a dirty cell is one that is determined by the computation

model to be dirty, and therefore requires recomputation. As we will see later, a dirty cell

may be a false positive, but we will treat both false positives and true positives equivalently

since they will both be recomputed—and are therefore both dirty from the perspective of

the computation model.

Finally, we introduce one last term to describe the state of a cell: the unavailable state.

A cell is unavailable if it cannot be used by the user for various reasons, defined as follows.

Definition 4.5 (Unavailable Cell). We consider a cell c to be unavailable if and only if a

user cannot act on c either because (i) c is determined to be dirty or (ii) the system has not

yet determined if c is in the clean or dirty state or (iii) the user interface is unresponsive.

Utilizing the idea of partial results within the asynchronous computation model, we

propose to provide users with the cells that are being computed as soon as they are ready

(moving them from the dirty to the clean state), without waiting for all of the cells to

be computed. This idea of incrementally computing and marking cells as clean allows the

number of unavailable cells to gradually decrease over time.

Unavailable and Dirty Time. Quantifying the time a cell is unavailable to the user to act

upon is an important factor for understanding the usability of the spreadsheet. Similarly, the

98

 0

 5000

 10000

 15000

 0 1000 2000 3000 4000 5000 6000

tdep texec

|Δu|#
 o

f
un

av
ai

la
bl

e
ce

lls

Time (ms)

Synchronous
Asynchronous

Figure 4.3: Unavailability comparing synchronous and asynchronous models. For the asynchronous
model, tdep denotes dependency identification time, ∆u is the set of cells that are determined to
be dependent on u and therefore need computation, and texec denotes computation time for these
cells.

dirty time is the time a cell spends in the dirty state. We formalize the notion of unavailable

and dirty time as below.

Definition 4.6 (Unavailable Time). The unavailable time of a cell c, denoted as unavailable(c),

is the amount of time that c remains in the unavailable state after an update.

Definition 4.7 (Dirty Time). The dirty time of a cell c, denoted as dirty(c), is the amount

of time that c remains in the dirty state after an update.

Unavailability. To quantitatively evaluate different computation models, we introduce the

metric of unavailability, which we define as the area under the curve that, for a computation

model, plots the number of unavailable cells in a spreadsheet with respect to time.

Definition 4.8 (Unavailability). The unavailability UM for a computation model M is given

by UM =
∫ t

0
D(t) dt =

∑
c∈S unavailable(c), where D(t) denotes the number of unavailable

cells at time t and S is the set of all spreadsheet cells.

Simply put, unavailability measures the effectiveness of a computation model by quanti-

fying the number of cells that a user cannot act upon over time. Therefore, a computation

99

model with lower unavailability is more usable than a model with a higher value. For the syn-

chronous computation model, for the entire time the user interface is unresponsive, all of the

cells within the spreadsheet are unavailable. On the other hand, by incrementally returning

results in the asynchronous computation model, for a cell c, unavailable(c) = tdep + dirty(c),

where tdep is the time taken by the system to determine if c is in the clean or dirty state.

Illustrative Experiment 1: Asynchronous vs. Synchronous Computation. The

goal of this experiment is to quantitatively compare the asynchronous and synchronous

computation models using unavailability. We describe the experimental setup later in Sec-

tion 4.5. Here, we adopt a conventional dependency identification mechanism as described

in Section 4.1.1 and a naïve schedule for computing cells—we will build on this and develop

better variants later. We use a synthetic spreadsheet with a total of 10,000 cells out of

which 5,000 cells are formulae dependent on a cell u. We update the value of u and plot

the number of unavailable cells on the y-axis with respect to time on the x-axis for both

computation models—see Figure 4.3. The synchronous computation model (in red) performs

poorly under unavailability, since it keeps the interface unresponsive for the entire duration

of computation of all of the dependent cells. The asynchronous computation model (in green)

performs better in terms of unavailability, since it allows users to interact with most of the

spreadsheet cells while performing calculations asynchronously in the background, with the

cells incrementally returned to the user interface as they are complete.

We now describe how the computations proceed with respect to time for both models—

refer to Figure 4.3. Upon updating u (at time = 0), the asynchronous model identifies

dependents of u, as is marked by tdep on the graph. For both models, all 10,000 cells in

the sheet are unavailable for the first 890 ms, as the sheet is unresponsive. After this point,

the asynchronous model has determined which cells are clean and which cells are dirty, and

it returns the clean cells to the user. Thus, the number of unavailable cells drops down to

5,000 from 10,000 after 890 ms. However, under the synchronous model, control has not

been returned to the user, and thus all cells are still unavailable. Under the asynchronous

model, at the 5,700 ms mark, all of the cells have been computed and marked clean—this is

slightly after the 4,900 ms mark, which is when the synchronous model returns control of all

100

of the cells to the user. This time difference is due to the fact that the asynchronous model

takes some time to identify dependent cells in a separate step from computing them, while

the synchronous model does not have to have this separate step. Note that the area under

the green curve is greater than that under the red curve, and therefore the asynchronous

model performs better under unavailability.

Takeaway 4.1. The asynchronous computation model improves usability of spreadsheets,

without forgoing correctness, by (i) quickly returning control to the user and (ii) incremen-

tally making cells available.

Thus, while this experiment shows that the asynchronous computation model already

has a lower unavailability than the synchronous one, it can be reduced even further; in the

remainder of this chapter, we discuss approaches for doing so.

4.2 FAST DEPENDENCY IDENTIFICATION

In this section, we propose our first technique for decreasing unavailability: identifying

dependencies in a bounded time. Upon updating u, our strategy is to quickly identify u’s

dependencies, ideally, within a bounded time—this enables us to promptly identify the cells

that do not depend on u as clean and return their control to the user. Our strategy, the

dependency table, aims to reduce tdep in Figure 4.3, which is the time during which the

user interface is non-responsive for the asynchronous computation model. Reducing tdep

is particularly crucial when the update affects a small number of cells relative to the size

of the spreadsheet. We propose compression to accelerate dependency identification by

grouping a large number of dependent cells into a smaller number of regions. We then

discuss construction and maintenance of the compressed dependency table.

4.2.1 Motivation and Problem Statement

After a user updates a cell u in a spreadsheet, to minimize the number of unavailable cells

over time, we need to quickly identify the cells that depend on u. Until we can determine

that a cell c is independent of u or not, we cannot designate c as clean and return its control

101

to the user. For example, within the asynchronous computation model in Figure 4.3, we

return the control to the user in 890 ms, which corresponds to the time it takes dependency

identification to finish.

A naïve approach to identify the cells that depend on u is to individually check whether

each cell is reachable from u in the dependency graph. However, this strategy is time

consuming for large and complex spreadsheets, since all cells will remain in the unavailable

state for a long period of time.

Our goal is to efficiently identify the cells that do not depend on an updated cell, so that

they can be quickly marked clean and their control can be returned to the user. Thus, we

formalize our problem as follows:

Problem 4.1 (Dependency Identification). Design a data structure that, upon updating u,

quickly (preferably in bounded time) identifies u’s dependencies. Additionally, modifications

to the data structure, i.e., inserts and deletes, should be quick (again, preferably in bounded

time).

Our proposed method of capturing dependencies is to maintain a dependency graph.

Rather than the conventional method of recording dependencies between individual cells

(Figure 4.2), we capture dependencies between regions—this substantially reduces the size

of the dependency graph. Figure 4.4 shows the dependency graph for Example 4.1. Our

dependency graph has the following four components. (i) A cell vertex corresponding to

each cell, in gray, e.g., A1, B1. (ii) A range vertex corresponding to each range that appears

in at least one formula, in red, e.g., B1:B3. (iii) A formula edge from u to v if u is an operand

in the formula of cell v, e.g., the edge from A1 to B1. (iv) An inherent edge from u to v if

cell u is contained in range v, e.g., the edge from B1 to B1:B3.

In the dependency graph, the cells that depend on a cell u are those represented by

vertices reachable from the vertex representing u. For example, the dependencies of the cell

C1 are B1, B2, B3, B4, C4, and E2.

We can persist the formula edges in the dependency graph as adjacency lists. Thus, the

number of dependent regions within formulae is a good proxy for storage cost. For example,

we can represent the formula A1*C1 within cell B1 using two directed edges: (i) from A1 to

102

A1

A2

A3

B1

B2

B3

B4

C1

C2

C4

D2 E2

B1:B3

B2:D2

=A1*C1

=A2*C1

=A3*C1

=SUM(B1:B3) =B3+B4

=SUM(B2:D2)

formula edge

inherent edge

Figure 4.4: Dependency graph capturing dependencies between regions thus reducing the graph
size.

B1 and (ii) from C1 to B1. Rather than storing the inherent edges explicitly, which can

be expensive, we can infer these edges from the cell and ranges they represent. To enable

efficient lookups for inherent edges, we can use a spatial index, such as R-tree [53]. To find

outgoing edges from a cell c, we can issue a query to the R-tree to find all ranges containing

c. For example, to infer the outgoing edges from B2, we can search for all the nodes that

overlap with B2—for B2 we have B1:B3 and B2:D2.

Challenges With Dependency Traversal. The lookup of dependencies by traversing

a full dependency graph takes time proportional to the number of dependencies, which

is inefficient when the number of dependencies is large. Consider the scenario depicted

in Figure 4.5—looking up dependencies of A1 takes Ω(n) time, where n is the number of

dependencies. For example, the tdep of 890 ms in Figure 4.3 will increase linearly with the

number of dependencies. Therefore, to perform the dependency identification in a bounded

time, we cannot traverse the dependency graph on-the-fly.

A1 A2 A3 · · · An
A1=0 A2=A1+1 A3=A2+1 An=A(n− 1)+1

Figure 4.5: Long Dependency Chain

103

 0

 5000

 10000

 15000

 20000

 10 100 1000 10000

#
 o

f
un

av
ai

la
bl

e
ce

lls

Time (ms) on log scale

Kcomp=20
Kcomp=200

Kcomp=2000
Dependency Graph

Figure 4.6: Comparing unavailability for by using dependency graph vs dependency table with
varying Kcomp.

4.2.2 Compressed Dependency Table

To overcome the aforementioned challenge, we propose an alternate manner to capture

dependencies. In addition to the dependency graph, we maintain a “cache” of dependents for

each cell, in a dependency table—see Figure 4.7(a). The dependency table stores key-value

pairs of cells and their dependents, and thus allows us to query a cell u and quickly identify

all of the cells that depend on u. We can construct the dependency table from scratch by

traversing the dependency graph multiple times, starting from every vertex.

cell dependents
A1 B1, B4, C4
A2 B2, B4, C4, E2
A3 B3, B4, C4
B3 B4, C4
C1 B1, B2, B3, B4, C4, E2
...

...
(a)

cell dependents
A1 B1, B4:C4
A2 B2:C4, E2
A3 B3, B4:C4
B3 B4, C4
C1 B1:C4, E2
...

...
(b)

Figure 4.7: Compressing dependency table to bound the number of dependents: (a) original before
compression (b) after compression with Kcomp = 2.

As discussed, the number of dependencies of a cell is Θ(n) in the worst case, where n is

104

the number of cells on the spreadsheet, and thus even recording each dependency at a cell

level could take too long and be expensive to store. Therefore, we propose compression to

reduce both the dependency identification time and the dependency output size.

Recall that to ensure consistency, we must recalculate all the dependent cells on a cell

update. If the dependency table includes a “false positive”, i.e., a cell cFP that is not an actual

dependency of u, the system will trigger a recalculation of cFP, whose value will remain the

same. In other words, the dependency table is false positive tolerant—the presence of a false

positive does not affect correctness, but can cause unnecessary calculations. On the other

hand, a “false negative”, a cell cFN that is an actual dependency of u but is missing from

the table, is unacceptable, because a update to u would not trigger a recalculation of cFN,

leading to a possibly incorrect value for cFN.

A compressed dependency table, or CDT for short, is a variation of a dependency table

that enables identifying dependencies in O(1) time—see Figure 4.7(b). As ranges naturally

represent a group of cells, we express the dependents in a compressed dependency table as

ranges. For example, dependents of C1 can be expressed as B1:B3, B4:C4, E2 with no false

positives, or as B1:C4, E2 with three false positives (C1, C2, C3). For a set of cells C to be

expressed as a set of regions R, we require that the regions in R can collectively “cover” the

set C. We formalize the notion of a cover as follows.

Definition 4.9 (Cover). For a set C of cells, a set R = {R1, . . . , Rm} of ranges is a cover

of C if C ⊆ R∪, where R∪ denotes the set of cells that are in at least one of the ranges

R1, . . . , Rm. The size of the cover R, denoted by size(R), is |R|. The cost of the cover R,

denoted by cost(R), is |R∪|.

To ensure that dependents of a cell u can be retrieved and reported in constant time, we

limit the size of the cover to a constant Kcomp. In Figure 4.7(b), the Kcomp is 2. Varying the

value of Kcomp can significantly impact the unavailability, due to the following: there is a

trade-off between the time it takes to perform dependency identification (tdep in Figure 4.3)

and the number of cells that remain when dependency identification is complete (∆u in

Figure 4.3). This trade-off is because the less time we spend identifying dependencies, the

smaller the Kcomp and the more false positives we introduce into the dependency table. This

105

increase in false positives causes the cost of the cover, and therefore the total number of dirty

cells at the time immediately following dependency identification, to increase. Ultimately,

we need a value of Kcomp that minimizes unavailability.

Illustrative Experiment 2: Impact of Kcomp. In this experiment we quantitatively

demonstrate the benefit of using a dependency table instead of a traditional dependency

graph using unavailability. Additionally, we also demonstrate the impact of varying Kcomp

for the dependency table. We consider a synthetic spreadsheet having 10,000 cells out of

which 5,000 cells contain formulae. Out of the 5,000 formulae cells, 50% of the cells are

dependent on a cell u, which we intersperse with cells that are independent of u. For this

synthetic spreadsheet, we update the value of u and plot the number of unavailable cells on

the y-axis with respect to time on the x-axis for the asynchronous computation model—see

Figure 4.6. Due to a large number of dependencies, dependency identification using the

dependency graph (in purple) takes a significant time of 1.4 seconds. The three remaining

curves show the benefit of using a dependency table—here, we vary Kcomp and observe its

impact on the time for identifying dependencies. At one extreme, we have the blue curve

where Kcomp is 2,000—the dependency identification takes around 60 ms. On the other

hand, the green curve, when Kcomp is 20, remains in the dependency identification step for

very little time (20 ms). However, to compress all of the dependents of a cell into 20 regions,

the number of false positives grow to 2,400 cells. Therefore, even though the green curve

returns control to the user in a few milliseconds, it takes more time to clean all the dirty

cells. In this example, Kcomp = 2,000 (in blue) performs the best under the unavailability

metric, as its curve encloses the least area.

Takeaway 4.2. Dependency table with lossy compression of dependencies bounds the time

for which user interface is unresponsive.

4.2.3 Construction of the Compressed Dependency Table

When constructing the compressed dependency table, our goal is to group dependents of

each cell intoKcomp groups while allowing for the fewest false positives and no false negatives.

We formalize the problem as follows:

106

Problem 4.2 (Dependents Compression). Given a set C of cells and a size parameter k,

find the cover of C whose size does not exceed k with the smallest cost.

Grouping the dependents of a cell u into Kcomp regions amounts to solving Problem 4.2

with a set ∆u of cells and a size parameter Kcomp, where ∆u is the set of cells dependent

on u. For a cover R, the number of false positives is |R∪| − |∆u|. Thus, minimizing the

number of false positives is equivalent to minimizing the cost of the cover. It turns out that

the aforementioned problem is NP-Hard—see Theorem 4.1.

Theorem 4.1. The decision version of Dependents Compression is NP-Hard.

We shall prove Theorem 4.1 by providing polynomial-time reduction from the Polygon

Exact Cover problem, a known NP-Hard problem, defined as follows [54].

Problem 4.3 (Polygon Exact Cover). Given a simple and holeless orthogonal polygon P

and an integer k, is there a set of at most k axis-aligned rectangles whose union is exactly

P?

Proof. Given a simple and holeless orthogonal polygon P and an integer k in a Polygon

Exact Cover instance, perform a rank-space reduction on the coordinates of P ; that

is, change the actual coordinates into values in {1, . . . , n}, where n is the size (number of

vertices) in P , such that the coordinates are in the same order. Translate the polygon

in the new coordinates into a set C of cells. (Note that the representation size goes up

quadratically.) There is a set of at most k axis-aligned rectangles whose union is precisely

P if and only if C has a cover whose size does not exceed k and cost is at most |C| (has no

false positives), following the natural coordinate mapping between rectangles and ranges.

Greedy Heuristic. Since efficiently finding the best compression is hard, we propose a

greedy algorithm for graph compression: while the number of ranges representing dependents

of a cell exceeds Kcomp, two of those ranges are selected and replaced by the smallest range

enclosing them; repeat until the number of ranges reduce to Kcomp. We can use various

heuristics for selecting the two ranges to combine. One such simple heuristic is to select

two ranges such that replacing them with their enclosing range introduces the fewest false

107

Algorithm 4.1 Incremental Greedy Compression
Input: a set of rectangular regions R, and an integer k
Output: a cover R′ of the union of rectangular regions in R, where |R′| ≤ k
1: R′ ← R
2: while |R′| > k do
3: Let r1 and r2 be two rectangular regions in R′ where the bounding box of r1 ∪ r2

introduces the smallest false positives out of all such combinations.
4: Let r be the smallest of such a bounding box.
5: R′ ← (R′ − {r1, r2}) ∪ r
6: end while
7: return R′

positives, which, as we will see, does well in practice. Note that due to the incremental

nature of our compression algorithm, we can use it for the maintenance of the dependency

table when we add a new dependency, as we will see next. The pseudocode for the greedy

compression algorithm is given as Algorithm 4.1.

4.2.4 Maintenance of the Compressed Dependency Table

We now discuss how to update the compressed dependency table when formulae are

changed. Adhering to the interactivity principle, our goal is to return control to the user

quickly after an update. Therefore, the time taken to modify the dependency table must

be small. Finding all dependents of a cell by traversing the dependency graph again, for

example, is infeasible. We now introduce techniques for inserting into and deleting elements

from the dependency table.

Deleting dependencies. Deleting a dependent from the dependency table can potentially

introduce false negatives. To illustrate this, consider the example provided in Figures 4.4

and 4.7. Here, C4 is a dependent of B3. Suppose the formula in C4 is changed to =B4+3,

and thus the direct dependency B3 → C4 is deleted. However, we cannot remove C4 from

the dependent list of B3, because C4 remains a dependent of B3, albeit no longer a direct

one. In other words, the dependency between C4 and B3 is due to more than one formula.

Another issue is deleting a single dependent cell from one represented by a range, which is

difficult to do efficiently without leading to a highly fragmented, inefficient R-tree.

A simple way to circumvent deletion issues in the compressed dependency table is to

108

make no changes to the table upon direct dependency deletion. If d is a dependent that

is supposed to be deleted but is instead ignored and kept, then d becomes a false positive,

which, as previously discussed, does not affect correctness but adds to computation time.

Over time, however, false positives resulting from deletion accumulate. We combat this issue

by periodically reconstructing the compressed dependency table from scratch, particularly

during spreadsheet idle time. Such a method is also beneficial because the dependents of a

cell can change drastically over the lifetime of a spreadsheet, and an entirely new grouping

of cells into ranges may lead to a significant decrease in the number of false positives.

Adding dependencies. Adding a direct dependency can be quite time-consuming in the

worst case. Consider the example in Figure 4.8, where the formula of B1 is changed from =0

to =A3+1, and thus a new direct dependency A3→ B1 is added. Because of this change, A3

and its precedents must have their entries changed in the dependency table by adding B1,

B2, B3 as their dependents, which is quite time consuming.

A1 A2 A3 B1 B2 B3
A1=0 A2=A1+1A3=A2+1 B1=0

B1=A3+1
B2=B1+1B3=B2+1

Figure 4.8: Adding a new direct dependency in a dependency chain.

To get around the aforementioned issue, we introduce lazy dependency propagation. The

idea is to only add the direct dependency (A3 → B1) to the dependency table. Such direct

dependencies have a must-expand status (indicated as a single bit), indicating that the

dependency is recently added and not fully processed. Also, the dependency table is put

into a special unstable state (another bit), indicating that at least one dependency has

the must-expand status, because we can no longer perform the dependency lookup in the

dependency table in the same manner. We propagate the must-expand dependencies in the

background, say, during idle time. More precisely, for a must-expand dependency u → v,

dependents of v are added as dependents of u and all its precedents (in the example above,

adding B1, B2, and B3 as dependents to cells A1, A2 and A3). The dependency table leaves

the unstable state once we are done propagating all must-expand dependencies.

To identify dependents of u in an unstable dependency table, one must look up depen-

dents recursively, similar to traversing a dependency graph. However, a lookup requires no

109

further recursive steps if none of its dependents have a must-expand dependent.

cell dependents
A1 A2, A3, B1, B2, B3
A2 A3, B1, B2, B3
A3 B1, B2, B3
B1 B2, B3
B2 B3
B3

(a)

cell dependents
A1 A2, A3
A2 A3
A3* B1*
B1 B2, B3
B2 B3
B3

(b)

Figure 4.9: Adding dependencies to dependency table: (a) naïve method (b) lazy dependency
propagation (must-expand dependencies are marked by asterisks)

For example, instead of updating all entries as in Figure 4.9(a), B1 is added as a must-

expand dependent of A3, as in Figure 4.9(b). At this unstable state, to identify dependents

of A1, it is insufficient to just report A2, A3 as dependents, even if neither of the cells are

must-expand dependents. Since A3 has a must-expand dependent B1, the recursive lookup

continues, to include B2 and B3. Since neither of the dependents of B1 (which are B2 and

B3) has a must-expand dependent, recursion can stop there. Eventually, the must-expand

dependent is resolved by a background thread and the dependency table becomes similar to

that shown in Figure 4.9(a).

The downside of this approach is that dependency identification does not have a constant

time guarantee until all must-expand dependencies are propagated and the table leaves the

unstable state. However, this approach quickly returns control to the user and allows users

to perform other spreadsheet operations while we update the dependency table, potentially

at the expense of speed of subsequent operations, if they come in rapid succession.

Note that adding dependents to a cell can push the number of dependents beyond the

Kcomp limit. To ensure constant lookup time when the dependency table leaves the unstable

state, we reduce the number of ranges representing the dependents down to Kcomp using the

method of repeated merging of ranges described in Section 4.2.3.

110

4.3 COMPUTATION SCHEDULING

In this section, we propose our second technique for decreasing unavailability: computa-

tion scheduling. After updating a cell u, we need to find an efficient schedule for the computa-

tion of the cells that depend on u to reduce the amount of time they spend being unavailable.

We explain the significance of scheduling, discuss how obtaining a complete scheduling up

front can be prohibitively expensive, and provide a solution, on-the-fly scheduling. We dis-

cuss the extension, weighted computation scheduling, that prioritizes computation based on

what users are currently interacting.

Recall that, for asynchronous computation, we incrementally provide users with cell

values as soon as they are computed, without waiting for the formula engine to compute the

remaining dirty cells. We motivate scheduling by experimentally demonstrating its impact

on unavailability.

 0

 2

 4

 6

 8

 0 10000 20000 30000 40000 50000

#
 o

f
un

av
ai

la
bl

e
ce

lls

Time (ms)

Schedule 1
Schedule 2

Best Schedule

Figure 4.10: Unavailability varying the computation schedule (dependency identification time of 20
ms is not pictured on the graph)

Illustrative Experiment 3: Computation Schedule. The goal of this experiment is

to demonstrate the impact of scheduling. Here, we consider a synthetic spreadsheet with

six formula cells. The formulae perform summation using the SUM function of varying sized

ranges to simulate varying complexities. In this case, as the complexity of a formula in

111

increases, the time to compute it increases as well. These formula cells are independent of

each other but dependent on a cell u. For this sample spreadsheet, we update the value of u

and plot the number of formula cells that are unavailable on the y-axis with respect to time

on the x-axis—see Figure 4.10. Even though the total time required to complete cleaning

all the cells is the same across all possible schedules (around 40,000 ms), the time spent by

each cell in the dirty state varies, which impacts unavailability. Schedule 1 and 2 adopt a

random schedule, and thus differ in terms of unavailability. The best schedule computes the

cells in the increasing order of complexity, thereby minimizing unavailability.

Takeaway 4.3. Computation scheduling is important within the asynchronous computation

model and impacts the number of cells that are available to users over time.

4.3.1 Motivation and Problem Statement

The computation scheduling problem naturally arises from the idea of partial results (Sec-

tion 4.1.3): if we are displaying the computed cell values to the user as we finish computing

them, in what order should we compute cells? For our computation scheduling problem,

we define cost(c) to quantify the time taken for computing a cell c. For now we assume a

simple independent computation model where we ignore the impact of caching cells ; we will

discuss its impact later and relax this assumption. Their formal definitions are as follows.

Definition 4.10 (Cost). The cost of a cell c, denoted by cost(c), is the amount of time

needed to compute the evaluated value of c, assuming the values of its precedents are already

computed.

Assumption 4.1 (Independent Computation Model). We assume that the cost of computing

a cell c, i.e., cost(c), is independent of the computation schedule. In other words, c takes the

same time to evaluate, regardless of when we compute c.

Note that for a synchronous computation model, computation scheduling is unimportant.

The total evaluation time for all cells dependent on u is
∑

c∈∆u
cost(c), where ∆u is the set of

cells dependent on u. Therefore, in the synchronous model, since all cells in the sheet remain

unavailable until all of the computations are completed, the unavailable time for every cell in

112

the spreadsheet is equal to tdep +
∑

c∈∆u
cost(c), where tdep is the dependency identification

time, and thus unavailability is Usync = |S| ·
(
tdep +

∑
c∈∆u

cost(c)
)
, where S is the set of

cells in the spreadsheet, regardless of the order in which the cells in ∆u are computed.

On the other hand, when we incrementally return cells in the asynchronous model,

dirty(c) is not the same across all cells because a cell becomes clean as soon as its value

is evaluated. Therefore, choosing the order in which cells are computed is crucial because it

affects unavailability. For example, one simple intuition is to avoid calculating cells with a

high cost early in the schedule, since all other cells must incur this cost in their unavailable

time. We will now formally define the computation scheduling problem.

Computation Scheduling Problem. Upon updating u, our goal is to decide the order

of evaluation of dependents of u, i.e., ∆u, such that the order minimizes unavailability.

The primary constraint for scheduling the computation of a cell c is that the cells that are

precedents of c, if they are dirty, need to be become clean before c itself can be evaluated.

Otherwise, the computation would rely on outdated values resulting in incorrect results.

Note that because cyclic dependencies are forbidden in spreadsheet systems, there is always

at least one order that follows the dependency constraint of the problem: a topological order.

Formally, we define the dependency constraint as follows.

Definition 4.11 (Dependency Constraint). A computation order c1, . . . , cn of cells is valid

only if the following holds: if i < j, then ci is not a dependent of cj.

Recall that the dirty time of a cell c is the amount of time until its value is computed,

which includes the time waiting for the earlier elements in the scheduled order to be computed

as well as the cost of computing c itself, as follows.

Definition 4.12 (Dirty Time with respect to a Schedule). In a computation order c1, . . . , cn,

the dirty time for the cell ci is dirty(ci) =
∑i

j=1 cost(cj) = dirty(ci−1) + cost(ci).

We formalize our scheduling problem as follows, which is shown as NP-Hard by Lawler [55].

Problem 4.4 (Computation Scheduling). Given a set of dirty cells (∆) along with the

dependencies among them, determine a computation order c1, . . . , cn of all the cells in ∆

that minimizes unavailability, i.e.,
∑

ci∈∆ dirty(ci), under the dependency constraint.

113

4.3.2 On-the-fly Scheduling

In addition to the fact that Computation Scheduling is NP-Hard, upon updating

u, merely obtaining a schedule can be prohibitively expensive. The dirty time defined in

the previous subsection (Definition 4.12) only takes into account computation time, but not

the time to perform the scheduling itself. If there are n dirty cells in ∆u, then the amount

of time to obtain any complete schedule satisfying the dependency constraints is Ω(n), as

each of the n cells must be examined at least once to determine dependency and the cost of

computation. If the scheduling algorithm takes time ts, then performing scheduling up front

increases the dirty time of each cell in ∆u by ts, and no progress towards their computation

is made during that time. Such an effect is undesirable and potentially negates any gains

from incrementally computing and showing results to the users.

To overcome this issue, upon updating u, we do not determine the complete order of

all dependents of u up front—instead, we utilize the heuristic of performing scheduling “on-

the-fly” by prioritizing a small sample of cells at a time based on their costs. A cell’s exact

computation cost can be difficult to determine exactly; the number of precedents provides

a good approximation. We can easily determine the number of precedents by looking at a

cell’s formula.

Upon updating u, we perform on-the-fly scheduling as follows. We draw k cells from

∆u and put them in the pool P . In each step, we choose m cells from P , where m � k,

whose costs are the smallest among those in the pool. The system schedules computation

for the chosen m cells. Then, we replenish P by drawing cells from ∆u that still requires

computation until P has k cells again (or until no cells remain). We repeat the steps until

all cells in ∆u are computed.

To properly schedule the chosen m cells for computation obeying the dependency con-

straint, precedents of each of the m cells must be computed before the cell itself can be

computed. Thus, the precedents of the m cells must also be scheduled for computation, in

topological order.

The on-the-fly scheduling heuristic attempts to postpone computing high cost cells for as

long as possible, because computing low cost cells first allows for more results to be quickly

114

Algorithm 4.2 On-the-fly Scheduling algorithm
Input: a set dirty cells ∆u, and two integers k and m
Output: a computation schedule of the cells in ∆u

1: D ← ∆u

2: P ← ∅
3: while |D| > 0 do
4: P ′ ← subset of k − |P | cells drawn from D
5: D ← D − P ′
6: P ← P ∪ P ′
7: Compute cost of each element in P .
8: M ← the m elements of P with lowest cost
9: P ← P −M

10: Let M ′ be the union of the dirty precedents of c for c ∈M
11: Append M ∪M ′, in topological order, to S
12: end while
13: return S

shown to the user. In fact, without dependency requirements, scheduling computation in

increasing order of cost yields the optimal schedule [56]. Our heuristic is based on the same

principle, but adapted to obey the dependency constraint and to make decisions without

looking at the entire workload. The pseudocode for the on-the-fly scheduling procedure is

given as Algorithm 4.2.

4.3.3 Weighted Computation Scheduling

Due to limited screen real estate, users often do not see all the cells of a spreadsheet

at the same time. Typically, spreadsheet systems allow users to interact with spreadsheets

through a viewport, which we define as a rectangular range of cells that a user can interact

with, i.e., read values or update cell content. The user can change the viewport either by

scrolling or jumping to the desired part of the spreadsheet.

Since users can only view the cells that are within the viewport, it is desirable to prioritize

the computation of cells that the user is currently viewing—for this purpose we introduce a

weighted variation of unavailability. Here, each cell c is given a weight, denoted as weight(c).

The more important a cell is, the higher its weight. For example, we can prioritize com-

putation of cells in the viewport by assigning a high weight, w � 1, to cells within the

115

viewport and a low weight, 1, to other cells. It may also be desirable to assign a medium

weight to cells just outside the viewport, as scrolling to these cells is likely. The following

formalization of a weighted unavailability modifies our previously defined unavailability (see

Definition 4.8) such that if a high-weight cell is left dirty, and therefore unavailable, for an

extended period, the metric’s value is much higher.

Definition 4.13 (Weighted Unavailability). The weighted unavailability WM for a compu-

tation model M over a spreadsheet S is

WM =
∑

c∈S (weight(c) · unavailable(c)), where weight(c) is the weight of c, unavailable(c)

is the unavailable time for c, and S is the set of all cells within the spreadsheet.

 0

 20000

 40000

 60000

 0 1000 2000 3000 4000 5000 6000

W
ei

gh
te

d
un

av
ai

la
bi

lit
y

Time (ms)

Synchronous
Asynchronous with a random schedule

Asynchronous priotized for viewport

Figure 4.11: Weighted unavailability comparing synchronous computation models and asynchronous
computation model with and without viewport prioritization.

4.3.4 Weighted Computation Scheduling

Using the weighted unavailability, we now formalize a weighted variation of our compu-

tation scheduling problem that aims at minimizing weighted unavailability while adhering

to dependency constraint.

Problem 4.5 (Weighted Computation Scheduling). Given a set of dirty cells (∆) along

with their weights and the dependencies among them, determine an order c1, . . . , cn of all the

116

cells in ∆ that minimizes weighted unavailability, i.e.,
∑

ci∈∆ (weight(ci) · dirty(ci)), where

dirty(ci) =
∑i

j=1 cost(cj) = dirty(ci−1) + cost(ci) and weight(c) is the weight of c, under the

Dependency constraint.

Weighted Computation Scheduling is trivially NP-Hard, since it is a generaliza-

tion of Computation Scheduling discussed in Section 4.3.1, which is NP-Hard.

Illustrative Experiment 4: Weighted Scheduling. This experiment demonstrates

a weighted variation of Experiment 1, with Figure 4.11 showing a weighted variation of

Figure 4.3. Here, we assign a weight of 1,000 for 30 formula cells within the user’s viewport

and 1 for the remaining. We plot time on the x-axis and weighted unavailability (the

product of the number of unavailable cells and their weights) on the y-axis. Past the 890 ms

mark, the red curve, which represents the synchronous model, maintains the same level of

weighted unavailability until all of the cells have been computed and marked clean at around

5,000 ms. For the asynchronous model (in blue) that prioritizes cells in the viewport when

scheduling, the weighted unavailability drops off very quickly between 890 ms and 1,000 ms,

and then slowly decreases to 0 afterwards. This sharp decline represents the time when

the system is computing the highly-weighted cells within the viewport. The remaining,

lower-weighted cells outside the viewport are computed afterwards. On the other hand, the

asynchronous computation model that uses random scheduling, slowly decreases over time,

as high-weighted cells are left in the dirty state due to randomized scheduling. As can be

clearly seen in Figure 4.11, the model which prioritizes cells in the viewport when scheduling

performs the best under weighed availability.

Takeaway 4.4. Weighted computation scheduling enables prioritization of important cells

such as those visible on the user interface.

On-the-fly Weighted Scheduling. For weighted computation scheduling, we adapt the

on-the-fly scheduling algorithm discussed in Section 4.3.2 by updating the cost calculation

to additionally consider the weight of the cell. Intuitively, we would like to prioritize cells

that have a higher weight but a lower cost. Thus, in Algorithm 4.2, we sort the cells by

cost(c)/weight(c), where cost(c) is the computation cost for c and weight(c) is the weight that

117

Session Manager

Formula
Parser

Computation
Scheduler

Formula
Evaluator

Dependency
Table

Dependency
Graph

Graph
Compressor

Application
Layer

Storage
Layer

(Database)

User Interface
(Web browser)

Dirty
Manager

LRU cell
cache

Spreadsheet
Data

Computation Status Manager

cache cache cache

Figure 4.12: DataSpread’s Formula Computation Architecture

we assign to c. Additionally, we dynamically update the cell weights when the user changes

their viewport by scrolling. Further more we can also modify Algorithm 4.2 to first pick up

the cells that are within the viewport.

4.4 SUPPORTING ASYNCHRONOUS COMPUTATION IN DATASPREAD

In this section, we discuss the incorporation of our asynchronous computation model

within DataSpread. In this chapter, until this point, our focus was on main-memory setting

for compatibility with existing spreadsheet tools. However, as we discussed in Chapter 3,

to handle spreadsheets at scale, DataSpread adopts a two-tiered memory model where

it persists the spreadsheet data in the back-end database and fetches it on-demand when

triggered by a user action (like scrolling) or a system action (like calculating a formula).

In Section 4.4.2, we discuss how the problems discussed in this chapter change when we

consider memory model such as one used by DataSpread, a two-tiered memory model, and

how the techniques can be adapted to account for different cost considerations.

118

4.4.1 Formula Computation Architecture

Figure 4.12 illustrates DataSpread’s formula computation architecture. The front-end

back-end communication designed using the Spring [57] framework uses (i) RESTful APIs

for non-latency critical communication, e.g., getting a list of spreadsheets, and (ii) web-

sockets for latency critical communication, e.g., updating cells on the user interface after an

event such as cell computation.

Partial Result Presentation Components. As discussed in Section 4.1, the ability to

present partial results is the main advantage of asynchronous computation. To determine

which values are available to the user, the dirty manager is responsible for maintaining a

collection of regions that are dirty and thus need computation.

The session manager keeps track of the user’s current viewport and the collection of

cells that are cached in the browser—thus upon a scroll event on the user interface, the

application layer can determine whether the browser already has the required cells or if new

cells need to be pushed. Its viewport information is also useful for viewport prioritization,

as discussed in Section 4.3.3.

It communicates with the dirty manager to determine which cells are shown to the

user, and make proper changes to the front-end when cells change their availability. It also

communicates with the computation status manager, which periodically checks the progress

of the computations and informs the front-end about the progress, and the front-end updates

the progress bars to reflect the progress.

Formula Evaluation Components. The dependency graph maintains dependencies be-

tween cells and regions. The compressed dependency table, maintained by the dependency

table compressor, allows the system to support fast dependency identification, as discussed

in Section 4.2.

Formula evaluation is triggered by updates to cells on the user interface. Upon a cell

update, fast dependency identification mark dependents of the updated cell as dirty in

the dirty manager. In addition, if the update involves adding, removing, or modifying a

formula, the formula parser interprets the formula and identifies what cells are required for

computation—this information is sent to the dependency graph and the dependency table to

119

make appropriate updates.

The computation scheduler coordinates the formula computation. It retrieves dirty cells

from the dirty manager and schedules their computation as discussed in Section 4.3. The

actual formula evaluation is done using the formula engine, which fetches the cells required

for computing the formula from the LRU cell cache in a read-through manner, i.e., the cache

fetches the cells that are not present on demand from the storage layer. The formula engine

then computes the result of the formula. Finally, it persists the calculated result by passing

it back to the LRU cell cache in a write-through manner, i.e., the cache pushes its updates

to the storage.

4.4.2 Handling Scale

While working with large datasets, the main-memory based design of current spreadsheet

systems fundamentally limits their scalability [58]. Thus, to achieve interactivity at scale,

systems must operate beyond main memory limits. In this section, we discuss a two-tier

memory model, wherein the cost of data retrieval from storage factors into the unavailable

time. Unlike the previous chapter where two tiers were handlied by the backend database,

here we need to explicitly decide how and where to do computation.

We discussed the asynchronous computation techniques in the earlier sections in the

context of main-memory systems, wherein computation time is the dominant concern. These

techniques still provide a significant improvement in a two-tier setting, but can be further

improved if fetching costs are taken into account. This section discusses how we adapt the

techniques described in the earlier sections to work with these additional cost concerns.

Two-tier Memory Model

We define the two-tier memory model as follows:

Definition 4.14. The two-tier memory model contains two tiers of memory:

• the main-memory, which is limited in size, but allows fast data access; the application

interfaces with this tier;

120

• the storage, which is large, but data access is slow; and the application does not directly

interact with this tier.

Under the two-tiered memory model, the spreadsheet data is persisted in the storage

tier—thus any changes must be eventually reflected there. We assume that the storage tier

is not accessed directly by a spreadsheet application but rather via the main-memory in

a read/write-through manner, meaning (i) if the application requires a data not present

in the main-memory, then the data is fetched from the storage tier, stored in the main-

memory, and returned to the application; and (ii) when the application updates data, it is

first updated in the main-memory, and the control is returned to the application only when

the update is also reflected in the storage. In particular, for DataSpread, as discussed

earlier, we use a relational database for the storage tier—this enables DataSpread to go

beyond main-memory limitations while working with large datasets.

Techniques under Fetching Cost

The data transfer between the two tiers is time consuming; we incur a fetching cost each

time we bring a cell from the storage tier into the main-memory tier. Often, these costs

dominate the computation cost. This section explores how the techniques of dependency

graph compression and scheduling change when the main cost concern is fetching.

Fast Dependency Identification. The dependency graph is asymptotically as large as the

the spreadsheet size, and therefore is persisted in the storage tier. Identifying dependencies

naively by traversing the graph is inefficient in main-memory systems, and can be even worse

in the two-tier memory model; each step of the traversal requires a query to the storage layer.

Even if the query is done in a breadth-first search fashion, such that each step (of the same

distance from the origin) is done in a batch, the number of steps required is equal to the

length of the longest chain in the graph. The result of fetching for each step in the chain

can be far too costly for our purposes.

The compressed dependency table, as presented for main-memory systems, can also be

used in the two-tier memory model. The dependency table can be stored as a relational table

in the storage layer. A query for dependents of a cell u is often a straightforward lookup in

121

the dependency table, avoiding the aforementioned issues with graph traversal.

Computation Scheduling. Here we introduce a new version of the scheduling problem,

which we adapt to include the cost of fetching the direct precedents of dirty cells from

storage, as those values are required for computation.

Problem 4.6 (Computation Scheduling with Fetching Costs). Given a set of dirty cells

(∆), their direct precedents

P = {p | the direct dependency p→ c exists for some c ∈ ∆}, along with the dependencies

among the cells in ∆+ = ∆ ∪ P , determine an order c1, . . . , cn of all the cells in ∆+ that

minimizes the unavailability metric, i.e.,
∑

ci∈∆ dirty(ci), where dirty(ci) =
∑i

j=1 cost(cj) =

dirty(ci−1) + cost(ci), under the Dependency constraint.

Because both the dirty cells and their precedents need to be fetched from storage, all cells

in ∆+ are relevant in the fetching order. However, the unavailability metric only concerns

those of the dirty cells ∆.

We shall show that the Computation Scheduling with Fetching Costs problem

is NP-Hard.

Theorem 4.2. Computation Scheduling with Fetching Costs is NP-Hard.

Problem 4.6 is a generalization of the Scheduling With Supporting Tasks prob-

lem [59], which is NP-Hard, defined as follows.

Problem 4.7 (SchedulingWith Supporting Tasks). Let A = {a1, . . . , am} and B = {b1, . . . , bn}

be sets of tasks, and R ⊆ A × B be a relation. All tasks take a unit time to complete. The

tasks in A and B are to be scheduled on a single machine that can perform one task at a

time, under the restriction that if (ai, bj) ∈ R, then task ai must be completed before task

bj. Tasks in A are supporting tasks and are not required to be completed (unless required

by other tasks in B). Let cost(bj) denote the time until task bj is completed in a schedule.

Given c, determine whether there is a schedule to complete all tasks in B within the stated

restrictions such that the total cost
∑

cost(bj) is at most c.

Proof of Theorem 4.2. To prove the theorem, we provide a polynomial-time reduction from

Scheduling With Supporting Tasks. For each task t in A∪B, create a corresponding

122

cell cell(t). For each (ai, bj) ∈ R, make cell(bj) dependent on cell(ai); in other words, if

ai1 , . . . , ai` are the elements of {a | (a, bj) ∈ R}, create a formula cell(bj) = cell(ai1) + · · · +

cell(ai`). Mark all cells corresponding to B dirty; that is, let D = {cell(bi) | bj ∈ B} and

P be their precedents. It follows that a valid schedule in one problem is also valid on the

other (given proper translations between tasks and cells), and the cost metrics of the two

problems are identical.

Scheduling for the two-tier memory model can be done in a similar fashion as on-the-fly

weighted scheduling for main-memory systems. However, the cost function cost(c) for a cell

c must be adjusted, since fetching costs dominates computation costs in the two-tier context.

In addition, “locality” becomes important. Systems often perform data fetching in blocks,

and therefore scheduling computation of formulae in the same block together can be benefi-

cial. Working on formulae whose operands are already fetched into the cache is less costly;

switching to completely unrelated formulae may result in cells being evicted from limited-

size cache, requiring re-fetching. These concerns can be factored into in the cost function.

It may require dynamic updates as the cache changes in the same way weights are updated

when the viewport moves.

4.5 ADDITIONAL EXPERIMENTS

Throughout the chapter, we have provided illustrative experiments along with takeaways

to demonstrate the individual aspects of our proposed asynchronous computation model.

In this section, we describe our setup and additionally provide an evaluation on real-world

spreadsheets. The experiments described in this chapter aim to demonstrate: (i) quantifica-

tion of the benefit of the asynchronous computation model, (ii) the necessity and the benefit

of compressing the dependencies, (iii) the necessity of finding an efficient computation sched-

ule, (iv) how the weighted variation of unavailability prioritizes the computations of cells in

a user’s viewport, and (v) the applicability of our ideas on real-world spreadsheets.

Environment. We have implemented the asynchronous model along with graph compres-

sion and computation scheduling within our scalable spreadsheet system, DataSpread,

which uses PostgreSQL 10.5 as a backend data store. We run all of our experiments on a

123

 0

 500

 1000

 1500

 0 200 400 600 800

#
 o

f
un

av
ai

la
bl

e
ce

lls

Time (ms)

Synchronous
Asynchronous

 0

 20000

 40000

 60000

 10 100 1000 10000 100000

#
 o

f
un

av
ai

la
bl

e
ce

lls

Time (ms) on logscale

Synchronous
Asynchronous

(a) (b)

Figure 4.13: Unavailability comparing synchronous and asynchronous computation models for two
real world spreadsheets of different sizes. (a) small (b) large

workstation running Windows 10 on an AMD Phenom II X6 2.7 GHz CPU with 16 GB

RAM. While we have a functional prototype, to eliminate the impact of communication

between front-end and back-end, we design our test scripts as single threaded independent

applications that directly utilize DataSpread’s back-end.

Dataset. We evaluate our algorithms on a variety of synthetic spreadsheets and some real-

world spreadsheets that we collected by a survey from spreadsheet users. We conducted the

survey across multiple colleges in a university asking users to send in their largest, most

complex spreadsheets. We received tens of spreadsheets, which we then examined one at a

time to find a few representative ones with complex and computationally intensive formulae.

Illustrative Experiment 5: Real-world Spreadsheets. In this experiment, we use two

real-world spreadsheets to compare the two computation models. For both spreadsheets, we

find a cell u that has the highest number of dependents. The first spreadsheet has complex

financial calculations, with a total of 917 cells, out of which 406 formula cells are dependent

on u. The second spreadsheet is targeted towards inventory management and had a total of

42,181 cells, out of which 6,803 formula cells are dependent on u. We use a naïve synchronous

computational model as described in Experiment 1. For the asynchronous model, we use a

compressed dependency table with Kcomp = 5000 (Section 4.2.2) and schedule computations

on-the-fly (Section 4.3.2). We update u and plot the number of unavailable cells on the

y-axis with respect to time on the x-axis—see Figure 4.13. Observations are similar to

Experiment 1. In terms of unavailability, for the asynchronous model, we see an improvement

124

of 2x and 12x over the synchronous model for the first and second spreadsheet respectively,

thus confirming the applicability of our ideas to real-world spreadsheets.

Takeaway 4.5. Our proposed asynchronous computation model maintains interactivity and

consistency thus improving usability of spreadsheet systems for large and complex spread-

sheets.

4.6 RELATED WORK

The asynchronous formula computation model presented in this chapter is a novel al-

ternative to the synchronous model adopted by traditional spreadsheet systems. Problems

similar to graph compression and scheduling are studied in various contexts with different

goals and constraints. We now discuss in more detail each of these categories of related

work.

Computation Models. Asynchrony has been used in operations with delayed actors, such

as in crowdsourcing [60, 61] and web search [62] but never for spreadsheets—their concerns

and objectives are very different. The synchronous model of traditional spreadsheets utilize

the idea of dependency graph [52, 63, 64] to avoid unnecessary computations, but it does not

avoid the performance degradation due to large and complex dependencies [65]. Our pro-

posed asynchronous computation model along with compressed dependency table alleviate

such issues as discussed in Section 4.2.

Graph Compression. Alternate representations of graph-structured data have been intro-

duced for numerous applications, including for web and social graphs. While some papers

focus on a high-level understanding of the network via clustering [66], those that obtain

a concise representation of graphs to improve query performance are related to our work.

Graph compression methods, surveyed by Liu et al. [67], have different focuses, such as com-

pactness with bounded errors [68], pattern matching queries [69], and dynamic graphs [70].

Our setting is different from these works because of (i) our goal of quickly obtaining a rep-

resentation of dependents of a cell, (ii) the one-sided (false positive only) tolerance, and

(iii) the spatial nature of cell ranges.

125

Scheduling. Scheduling under precedence constraints is a thoroughly studied problem,

especially in operations research, with various settings and metrics, including ones similar to

the unavailability metric [55]. Similar scheduling problems arise in this chapter, and some

hardness results are drawn from previous work. However, as discussed in Section 4.3, in the

prior work, schedules are built up front, whereas obtaining a complete schedule up front is

prohibitive in our setting. For this reason, we introduce on-the-fly scheduling.

4.7 CONCLUSIONS

Our proposed asynchronous computation model improves the interactivity of spread-

sheets without violating the consistency while working with large datasets. To support

asynchrony without violating consistency, we introduced the idea of partial results, which

blurs out the formulae that are being computed in the background. We ensured interactivity

by proposing a compressed dependency table to identify dependent cells after a cell update

in a bounded amount of time. For usability, we developed an on-the-fly scheduling technique

to minimize the number of cells that are pending computation. We have implemented the

aforementioned ideas in DataSpread and demonstrated improved interactivity compared

to traditional spreadsheet systems. Thus, our new computation model’s improved interac-

tivity allows the use of spreadsheet systems in data analysis situations where it was once

inconceivable.

126

CHAPTER 5: RELATIONAL SCHEMA DESIGN

In this chapter, we focus on the problem of quantitatively designing an optimal relational

schema for a workload. The discussion in Chapter 3 focused on representation of presentation

data within a relational database, which had a unique challenge of capturing the positional

information along with the data. In this chapter, we complement the discussion by focusing

on optimizing the schema of relational tables stored in the database. The challenges here are

orthogonal to that of spatial data, specifically in addition to the exponential search space,

we need to develop means to describe a schema’s requirements precisely.

Relational schema design is an essential problem for DataSpread to represent tabular

data within a database efficiently. As discussed in Chapter 2, in DataSpread we enable

users to persist tabular data on the spreadsheet interface as relational tables within the

underlying database. On a spreadsheet interface, a user embedded formulae in the form

of queries along with tabular and non-tabular data. To ensure the interactivity of the

interface, efficient execution of the queries is a necessity. Furthermore, the spreadsheet

interface acts as an abstraction isolating the users from the underlying database. Thus, it is

possible to optimize the schema of the relational tables stored in the underlying database in

a transparent manner while still being able to service the queries and formula. Additionally,

schema design relives users from the burdon of obtaining a schema based on an application’s

requirements. Data organized on a spreadsheet in the form of tables [71, 72] enables us

to identify the associations and constraints—thus enabling us to obtain the application’s

requirements. The formulae on spreadsheets serves as workload for quantitatively designing

an optimal schema.

Quantitatively designing an optimal relational schema is also important in a generic

database setting. With the advent of interactive data-driven applications everywhere, our

databases, which were originally designed for ad-hoc querying, are now facing a new sce-

nario. Rather than writing queries, users satisfy their information needs by interacting with

websites, e.g., IMDb [73]. For such user-facing, interactive, and high volume websites re-

sponse time is crucial for its usability [74] and success [75]. Since the response time of such

data-driven websites usually depends on the underlying database, improving the database’s

127

performance provides an instant boost for such applications.

Among all the factors that determine the performance of a database system, a schema is

an important one in physical design—which has not been fully explored and quite contrast

to traditional metrics. A schema impacts a database’s response time as it influences the

effort required answer queries. To motivate this, we consider query Q1 (Figure 5.4), where

the database performs a join, to gather the needed attributes, for each execution. If we avoid

the join, say by merging the tables, it usually improves the query’s performance. However,

such a merge might not always be beneficial as a query that accesses the merged table has

to deal with duplicated tuples, and increased record size resulted due to the merge. While

query performance is crucial, most traditional schema design works focus on obtaining an

intuitive schema [76] and reducing redundancy [77].

The trend of databases as invisible “back-end” demands high performance from a schema

much more than the normalization or intuitiveness as traditionally emphasized. In the now

ubiquitous website and application-driven scenarios, a database’s workload as a “back-end” is

rather well-defined—each page in a website is rendered using a fixed set of queries. Further,

based on a user’s purpose, he follows a series of “prescribed” actions [78]. Such navigation

patterns lead to a well-defined workload that characterizes the site’s usage. Meanwhile, such

well-defined workloads also mean much less ad-hoc interaction with the databases (e.g., by

command-line SQL), and thus schemas are much less directly exposed to database users. We

see an opportunity to boost the performance of a database by designing its schema optimized

for its application workload.

Thus, can we design a schema automatically—from only a conceptual model such as

ER or a “schema description”, to search for a quantitatively optimal schema? Later in this

chapter we advocate and formalize how we faithfully describe a schema. While the notion

of schemas has been essential from the dawn of relational databases [77], and the study

of schemas has been vast, this question is largely open. As Section 5.6 will review, most

schema normalization (for normal forms) or optimization (for query performance) techniques

require an initial schema as input—and thus solve a fundamentally different transformation

problem, instead of a design problem. They start with a physical schema, which already

captures the “requirements” of information storage, and transform it to make it better for

128

• MId→ Title
• MId→ Genre
• SId→ Nm,Addr
• DId→ DName
• AId→ Dob
• RId,Type→ Pay
• DId→ Genre

Figure 5.1: Conceptual data modeling—ER modelM.

some criteria. The reliance of an initial schema is a major shortcoming—Stonebraker in

his lecture notes [79] points out that the output of normalization is limited by the starting

schema, and asks how to come up with the initial set of tables? The reliance on such initial

schemas significantly limits the search space—since we only “transform” them—for finding

a quantitatively optimal design. This paper aims to qualitatively design a physical schema,

given a conceptual model—which to the best of our knowledge, is a novel and first attempt—

Section 5.1 formulates the problem.

Quantitative schema design is challenging due to many unaddressed issues. What does

a conceptual ER model convey, for a physical schema to carry out? We identify the notion

of essential associations as intended by a conceptual model, as the requirements for schema

design. What is a correct schema that we must consider, given an ER model? We identify a

correct schema as one that preserves all and only the “essential associations” intended by the

conceptual model, and define the search space accordingly. Based on these findings, we can

develop a framework that searches for best schemas in a space induced by only a conceptual

model.

Challenge. Quantitative schema design is challenging due to its EXPTIME complexity

compounded with a layer of query optimizer to determine the cost. Furthermore, existing

schema modeling techniques do not faithfully capture a schema’s requirements; this is crucial

129

• A1 : {MId,Title,Genre}
• A2 : {SId,Nm,Addr}
• A3 : {DId,DName}
• A4 : {AId,Dob}

• A5 : {RId,Type,Pay}
• A6 : {MId,DId}
• A7 : {MId, SId}
• A8 : {SId,DId}

• A9 : {MId,AId,RId}
• A10 : {MId,AId}
• A11 : {DId,Genre}

Figure 5.2: Associations from conceptual data modeling A.

Schema S0 Schema S1 Schema S2

• Movie(MId, Title,
Genre, DId)

• Director(DId, DName)
• Studio(SId,Nm, Addr)
• Actor(AId, Dob)
• Role(RId, Type)
• Produces(SId, MId)
• Supports(SId, DId)
• Cast(AId, RId, MId)

• Movie(MId, Title, Genre,
DId)

• Director(DId, DName)
• Studio(SId, Nm,
Addr)

• Actor(AId, Dob)
• Role(RId, Type)
• Produces(SId, MId)
• Cast(AId, RId, MId)

• MovieDir(MId, Title,
Genre, DId,
DName)

• Studio(SId, Nm,
Addr)

• Actor(AId, Dob)
• Role(RId, Type)
• Produces(SId, MId)
• Cast(AId, RId, MId)

Figure 5.3: Some possible schemas for input (M, F).

for understanding the search space of schema design as for correctness, we need to evaluate

every candidate from the space because by counter argument an unevaluated one can be

optimal. The traditional query cost models [80], which estimate a query’s cost for candidate

execution plans, cannot obtain a schema’s cost without an execution plan making them

unsuitable for cost speculation, without which every schema needs to be evaluated.

Contribution. Our contributions are: (i) We propose a novel concept of attribute asso-

ciation along with relevant theory to describe a schema’s functional requirements. (ii) We

provide a significant contribution for schema design by encompassing the major performance

related schema transformations, i.e., partitioning and merging. (iii) We develop a schema-

centric cost model, which is independent of a query optimizer’s implementation but works

in conjunction with it to predict its behavior while merging tables.

Insight. A query optimizer does not determine a query’s cost arbitrarily but rather chooses

an execution plan from possible alternatives to minimize the cost of execution. We leverage

130

Q1

SELECT Title, DName FROM Movie NATURAL JOIN Director

WHERE DName = "Larry"

E(S1)

3. Nested Loop(cost=0.0..34894.0 rows=10 width=41)

2. Seq Scan on director(cost=0.0..2084.00 rows=1 width=4)

Filter: (fn = ’Larry’::text)

1. Seq Scan on movie(cost=0.0..20310.0 rows=1000000 width=45)

E(S2)

1. Seq Scan on MovieDir (cost=0.00..26786.00 rows=11 width=41)

Filter: (fn = ’Larry’::text)

Figure 5.4: Query Q1 and its execution plans on S1 and S2.

this to speculate, i.e., estimate without evaluation, a query’s cost and develop an anti-

monotonic property to prune the sub-optimal schemas efficiently. Intuitively, if eliminating

a group of joins is helpful then eliminating some of those joins should also be useful. This

property is similar to the one used by pruning algorithms such as Apriori.

Evaluation. We experimentally evaluate our solution on three datasets with different con-

tent types to validate the performance gains. We show: (i) a speedup of 1.72, 1.27, and

2.22 across datasets by employing a workload in the design process, (ii) an improvement of

40% and 60% over two baselines, (iii) the ability of our method to work in conjunction with

indexes, and (iv) the impact of workload characteristics on performance gains.

5.1 QUANTITATIVE SCHEMA DESIGN

We now concretize our problem of quantitative schema design. Defining the problem is

novel : While the notion of a schema is essential for databases since their inception, the

quantitative schema design problem—which starts from only conceptual requirements and

constructs a concrete schema and finds the best schema with a quantitative, instead of

qualitative, objective—has not been formalized and studied.

Defining the problem is also challenging, which must consider the rising trends and needs

against traditional wisdom. As discussed earlier, our problem is motivated from the new

settings where the departure from ad-hoc querying (of arbitrary combinations of attributes)

131

Schema Designer

Rewrite

Navigator

Schema
Pruner

Query
Optimizer

(O)

Workload (W)

Associations (A)

Execution
 Plan &

Cost

Optimal
Schema (S*)

Schema

Attribute
Statistics (D)

Minimal-Basis
Finder

Constraints (F)

Minimal
Schema

Figure 5.5: Schema design framework.

is typical, the demand for high efficiency is crucial, and the burden of manual schema design

is hindering usability.

Schema design for a database application is the process of creating a schema that satisfies

the database’s requirements and has an optimal performance with respect to its workload.

We thus model the problem as a cost-based optimization framework: to find, for a database

D and workload W , a schema S∗ that has the minimum cost, where cost indicates the

workload’s expected execution time.

Workload W. A workload abstracts a collection of queries that capture the usage of the

database to optimize for. We represent a workload as a weighted set of queries, W =

{(Q1, w1), . . . , (Qn, wn)}, where weight wi indicates the importance (frequencies or prefer-

ences) of query Qi. A workload can be collected over time (e.g., for web applications) or in a

particular configuration (e.g., when queries are embedded with data such as in a spreadsheet

of tables).

Input: Schema Description I. As input, users give some schema description (including

the set of attributes A1, . . . , An and other characteristics) that constrains what a “correct”

schema should be. For example, a possible form of description is an ER model of the database

application, as Figure 5.1 shows. We advocate and formalize what the input should be in

132

our study.

Output: Optimal Schema S∗. We construct a schema, which is the structure of a

database that organizes data by use of tables. We formalize the notion of schema S as

a set of tables {T1, . . . , Tm}, where each table Ti is a set of attributes Aij, written as

Ti(Ai1, Ai2, . . . , Aiki), with underlined attributes indicating keys. To illustrate, Figure 5.3

shows S0, a possible schema for our running example (Figure 5.1), which structures infor-

mation in eight tables. Note that S0 is a direct translation from the ER modelM, following

the well-known textbook rules [81, 82]. For example, tables Movie, Director, Studio, Actors,

Roles represent the corresponding entities inM, and Produces, Supports, and Cast the rela-

tionships (while “Directs” is merged to Movie). As there are numerous possible schemas that

satisfy the input (e.g., S1 and S2 in addition), our goal of quantitative schema design is to

find an optimal schema S∗ in terms of its cost among those correct schemas.

With recent observations, we propose to define the new quantitative schema design prob-

lem with the following distinct characteristics—which are also challenges we must cope—as

distinguished from existing work.

• C1: Schema description should be conceptual and minimal. The mandatory input,

schema description, should be conceptual, without burdening users to design an “initial”

physical schema, andminimal, capturing only the “absolute” requirements, to maximize

the choices of schemas.

• C2: Search space should be comprehensive. To ensure optimality, we should consider

a comprehensive search space of schemas, with a formal guarantee of its completeness.

• C3: Objective criteria should be quantitative. To ensure preciseness, we should estab-

lish a quantitative objective to measure the performance w.r.t. desired workloads.

C1 Schema Description: Associations as Information Units. What essential schema

description I should be required—to be conceptual and minimal? As the purpose of a database

is to store data for applications, the question is then how to describe desired “capacity” in

terms of the basic “information units” to store. We propose associations of—or mappings

between—attributes as such units, and develop a systematic representation and inferencing

133

framework for their theoretical treatment. While few existing works (e.g., [21, 83]) also

identified using associations, surprisingly, the existing mechanisms are limited to functional

dependencies (e.g., MId and DId is a many-to-one mapping) and largely ignore general non-

functional associations (e.g., MId and AId is many-to-many)—thus, the following questions

are still open: Given a set A of associations, can a schema S store it? What is a “minimal

basis” Â that can imply all other associations in A?

As our first key result (Section 5.2), our study fills in this void: We identify the dual

components I = (A,F) with target associations A with respect to FDs F , as the input

to quantitative schema design—conceptual and minimal, where the former describes the

information units to be stored, and the latter provides sufficient and necessary constraints

to infer equivalence of such storage. We propose a general representation framework in

Section 5.2 and complete it with the inferencing mechanism in Section 5.3.

C2 Search Space: Minimal-Basis Spanning. How to span a correct and complete search

space X from a basic schema description (A, F)? We need a way to enumerate every correct

schema (which is able to store any instances of associations in A that satisfy FDs F).

As our second key result (Section 5.3), we develop a precise condition for a correct schema

which preserves desired associations: Any correct schema must store at least a minimal basis

Â of target associations A. Adding the no-redundancy requirement (no extra association

should be stored), a correct schema must store exactly a minimal basis Â—which leads to

a simple algorithm for spanning a correct and complete search space, by “losslessly” joining

the associations in such a minimal basis.

C3 Objective Criteria: Optimizer Driven. How do we estimate the cost of a schema S

for a workload W with respect to a database D? We do not wish to actually execute queries

in W over data in D, as it can be costly. There are several interesting issues: First, while

we are optimizing schemas, a database itself performs sophisticated query optimization to

determine a query plan and estimate its cost. As a query optimizer O dictates what query

plans will be run, our schema optimizer should interact with O as an autonomous black

box and respect its cost estimation—so we can deploy quantitative schema design to any

database systems. Second, at schema design time, depending on applications, the database

134

may not be fully populated. Fortunately, a query optimizer only needs data statistics instead

of actually materialized tables. Thus, we represent a database D = (D,O) with its query

optimizer O and statistics D, and we assume it will return a cost estimate CostD,O(Qi, S)

for each query Qi, and the workload cost is then CostD,O(W,S) =
∑n

i=1wi ·CostD,O(Qi, S).

However, using an optimizer O of a target database system as the quantitative estimator

is non-trivial: It is prohibitively expensive to invoke O for every schema S in X and every

query Qi in W to estimate CostD,O(Qi, S)—the search space is exponentially combinatorial,

and the optimizer invocation is expensive.

As our third key result (Section 5.4), we develop cost speculation—based on a set of

assertions that a reasonable query optimizer must conform to—to predict relative estima-

tions that the optimizer will make, for pruning the search space. With such speculation,

we can develop effective search-space pruning by an anti-monotonicity property of joining

associations in navigating the search space, which intuitively means: If merging an attribute

A with some attributes X (i.e., table AX) increases the cost, then merging A with X ′ (table

AX ′), a superset of X, will increase the cost too.

Putting together, we now summarize our problem as follows, and present an overview

our framework.

Problem. Given an input I that describes a target schema, over a search space X of

candidate schemas S, find an output schema S∗ that is optimal with respect to some cost

estimate CostD,O(W,S) over a database with data statistics D and query optimizer O and

workload W of queries, i.e.,

S∗ = arg min
S∈X

CostD,O (W,S) . (5.1)

Framework (Figure 5.5). The navigator coordinates the process. The schema designer

takes associations and constraints (in the form of functional dependencies) as input. After

eliminating the redundant associations, the minimal schema along with the input workload is

passed to the query optimizer O, which obtains the costs for each query from the workload.

The costs are used by the schema pruner to validate an anti-monotonic property, which if

not violated is used to prune the sub-optimal schemas. The leftover schemas are returned to

135

the navigator, which continues generating candidates by merging tables. Eventually, when

all the schemas are either evaluated or pruned, the navigator returns the optimal one.

5.2 CONCEPTUAL SCHEMA DESCRIPTION

To automate the design of schemas, what do we need to describe schemas that will

satisfy our database applications? For our objective to design a schema, as the physical

table organization of a database, we need a description that is conceptual in capturing the

essential requirements that all physical schemas must meet. In this section, we develop such

a specification (A, F) with two components: (i) target associations A and (ii) functional

dependencies F . As the “basic description” of a schema, it describes what a database can

store, i.e., information capacity [84].

5.2.1 Our Proposal

The purpose of relations and their organization as a schema is to store “associations” of

attributes. In an application, a set of attributes X = {A1, . . . , An} may form a (many-to-

many) mapping that should be stored, or an association, which we denote [A1, . . . , An]. For

example, for our Movie example, X = {MId, Title, Genre, DId} forms an association between

the attributes, which we denote [X]. A tuple x of an association [X] is a joint assignment of

its attributes, i.e., x ∈ DOM(A1)× . . .×DOM(An), e.g., x1 = (“001”, “Frozen”, “animation”,

“d1”) and x2 = (“120”, “The Avengers”, “action”, “d2”). An instance X of an association [X]

is a set of X-tuples to be stored, e.g., X = {x1, x2, ...}.

Such associations are essentially what a database must “remember” by storing their in-

stance values, and a correct schema must allow such storage of any instances in the database.

Depending on its semantics and purposes, an application determines—through conceptual

modeling— it’s intended or “target associations", i.e., what attributes are semantically re-

lated and thus their associations should be captured by the database. Different application

semantics may determine different target associations among attributes A, B, and C, as

Figure 5.6 summarizes.

136

 Correct schemas. : Correct and non assoc-redundant schemas.

[AB] [BC] [AC] A → B A → C B → C C → B S 1:

ABC

S 2 :

AB

BC, AC

S 3:

AB

BC

S 4:

AB

AC

S 5:

BC

AC
1

1a Movie has one director, and director has one name.

P P P P P P

1b Movie has multiple directors, and director has one name.

P P P P

1c Movie has one director, director has one distinct name.

P P P P P P P

2

2a Movie belongs to multiple studios and has multiple actors.

P P

2b Movie belongs to multiple studios and has multiple actors.

P P P

2c Movie belongs to one studio and has multiple actors. Actor belongs to one studio.

P P P P P

Case

A : MId, B : DId, C : DName

A : MId, B : SId, C : AId

Asssociations A Functional Dependencies F Candidate Schemas S

Figure 5.6: Candidate schemas for 3-attribute cases.

Example 5.1 (Target Associations). Consider different cases in Figure 5.6. (Case 1) As

a subset of the Movie application, consider A = MId, B = DId, and C = DName. This

application may require to store associations [AB] (a movie and its director), [AC] (a movie

and its director’s name), and [BC] (a director and her name), since these attributes are all

semantically related. (Case 2a) As another example, for A = MId, B = SId, C = AId, we

may need to store [AB] (a movie its studios) and [AC] (a movie and its actors) associations.

(Case 2b, 2c) If, in addition, actors are affiliated with studios, we also need association

[BC].

Our schema design must focus on schemas that satisfy the necessary storage capability

for storing intended associations, among which to find an optimal one. To describe such

capabilities and identify alternative schemas, we propose the input to be a conceptual schema

description consisting of two components (A, F).

Target Associations A, the set of associations that a schema must be able to store their

instances, or “preserve". Applications must determine target associations and thus are given

137

as an input to our framework. Example 5.1, our running example, shows the target associ-

ations are A1∗ = {[AB], [AC], [BC]} for Case 1, A2a = {[AB], [AC]} for Case 2a, and A2bc

= {[AB], [AC], [BC]} for 2b and 2c.

Functional Dependencies F , the set of FDs X → Y where X functionally determines Y .

By definition, an FD also indicates an association, i.e., X → Y implies [XY]. FDs allow us

to identify alternative or equivalent schemas, as we see later.

We note that our conceptual description (A, F) is necessary for capturing application

semantics—and thus is readily available as virtually part of any conceptual modeling. For

using a database, the process of conceptual modeling (such as ER or UML) determine and

generate, among other things, what and how attributes are associated. In particular, an ER

model (e.g., Figure 5.1) by modeling entities and relationships, essentially describes attribute

associations. In addition, as part of any conceptual modeling, FDs also imply associations.

Since an FD X → Y specifies a functional (i.e., many-to-one) mapping, [XY] is thus an

association by definition.

Example 5.2 (Conceptual Modeling). Consider Figure 5.1, what associations does it in-

duce? An entity is an association among its attributes, and thus [MId,Title,Genre] due to

entity Movie. A relationship specifies an association among the (key) attributes of the in-

volved entities; e.g., [MId, SId] due to the Produces relationship. Further, an FD associates

attributes at the two sides. E.g., DId → Genre indicates [DId,Genre]. Thus, the conceptual

model in Figure 5.1 will induce target associations A= {A1, . . . , A11}.

On the other hand, our conceptual description is quite minimal as input to capture

application semantics and thus can be obtained even without a formal conceptual modeling

process. In particular, the notion of association as simply a set of attributes is simpler than,

say, entity and relationship. The knowledge of necessary associations is often implicit and

embedded in any natural usage of data: We can observe this knowledge from users’ data

arrangement, such as in the common spreadsheet software [71, 72], where users naturally

put associated attributes in the adjacent columns of tabular areas in a worksheet. This

knowledge can also be observed from users’ queries in a workload, i.e., what attributes are

used (joined) together in queries. Thus, in many natural scenarios, users need not explicitly

138

model or specify target associations, which can be “observed” or “learned” simply from natural

usage of data or queries.

Association Preservation. Given a conceptual description A, our goal is to find schemas

that preserve every association in A w.r.t. constraints in F . We define a schema preserves

an association [X] w.r.t. F , if it can store any instance Xi of [Xi] that satisfies F . There

are two ways a schema can preserve an association.

On the one hand, an association [X] can be explicitly preserved in a schema S, with all

its attributes stored together in a table T . We can thus retrieve [X] by accessing T . For

example, in Case 1a, [AB] is explicitly preserved in S1 (or S2), being part of table ABC

(or table AB). Thus, those schemas that explicitly store every target association as part

of a table is obviously correct. For example, schema S1 = {ABC} would be correct for all

cases since the single table ABC can store all the combinations of attribute subsets and thus

preserves all such associations.

On the other hand, [X] can also be implicitly preserved in S, without being entirely

contained in one table. In the presence of FDs, an association may be stored across multiple

tables; e.g., [AC] is implicitly preserved in S3 = {AB, BC} although not entirely contained

in a table, since it can be “recovered” from tables AB and BC, i.e., AC = πACAB ./ BC.

In other words, the table AB and AC can be losslessly joined due to FD B → C. Similarly,

if also A→ B, then AC can be recovered from AB and AC, thus S4 = {AB, AC} is correct

for Cases 1a and 1c.

We note that, to determine association preservation, we need (and only need) FDs spec-

ified, which also justifies why they should be part of our conceptual description input.

Theorem 5.1. A schema may implicitly preserve an association if and only if there are

functional dependencies.

(Sufficient) On the one hand, if FDs are specified, we can determine if a target association

[X] can be preserved implicitly by the lossless join property of some tables Ti that together

preserves [X], i.e., ∃ U ⊆ {1, . . . , l}, such that ∪i∈UTi ⊇ X, and ./i∈U Ti is lossless [85].

Intuitively, since their join is lossless, storing any instance X in these separate Ti tables is

“as good as", or equivalent to, a table with attributes ∪i∈UTi, which explicitly preserves [X].

139

(Necessary) On the other hand, if FDs are not specified, i.e., there are no FDs, we cannot

assert any other equivalent schemas for storing [x] explicitly. Without FDs, according to

the Equivalence-implies-Equality theorem [84], under any natural notion of “information

capacity” equivalence, two relational schemata with no dependencies are equivalent if and

only if they are identical (up to reordering of the attributes and relations)—thus, without

FDs, there are no different schemas that can preserve A.

Schema Correctness. Our conceptual description (A, F), as input, allows us to de-

termine if a schema is “correct”—for the purpose of storing information required by ap-

plications. For this purpose, we define a schema correct w.r.t. target associations A =

{[X1],. . . , [Xm]} if it can preserve every association [Xi] w.r.t. F . Figure 5.6 summarizes the

correct schemas (marked with squares and dots) for each case. For example, to preserve A1∗

= {[AB], [AC], [BC]}, Case 1a, given FDs F1a = {A → B,A → C,B → C}, has correct

schemas {S1, S2, S3, S4}. However, Case 1b, with only F1b = {B → C}, has fewer correct

schemas {S1, S2, S3}.

Equivalent Schemas. With respect to a conceptual description (A, F), the objective of

the schema design problem is to find, among those candidate schemas that are “equivalent,”

the best in terms of other physical considerations such as performance in our setting. Thus,

central in the schema design problem, we must determine the equivalence of schemas, to

form the search space of equivalent schemas.

In our setting, we consider an application-centric sense of schema equivalence: With

respect to (A, F), two schemas S and S ′ are equivalent if they are both correct. Since

our conceptual description captures the storage capacity required by an application, this

equivalence is application-centric—as intended by an application. That is, S and S ′ are

equivalent (e.g., Case 2a, S1 = {ABC} and S4={AB,AC}), if both can store the target

associations ([AB] and [AC]), even though one can store more (unintended) associations

than the other (S1 but not S4 can also store [BC]). The equivalence also depends on the

constraints of the application; e.g., in this example, S1 and S4 are equivalent due to A→ B,

which renders S4 (like S1) capable of storing BC.

140

5.2.2 Contrast with Literature

As schema design has been extensively studied—although mostly with an exclusive focus

on normal forms—our framework for schema normalization contains several concepts that

find parallels in the literature. In this section, we explain the need and novelty for our

proposed notions from a comparative perspective.

Associations. Our notion of association aims at capturing the “basic units” of information

that an application needs the database to store. Such a basic unit—being basic—should be

primitive and common in every data model (e.g., ER or UML), so that it does not depend on

the actual data models and is available in any. Association is similar to a table in the rela-

tional model; we can consider associations as a partial table (or multiple partial tables). As

discussed earlier, an association is more primitive than classic conceptual modeling concepts

such as entity and relationship in the ER-model—and can be induced from them.

For modeling such basic information units, there are some similar attempts in the litera-

ture, but a complete solution seems to remain open—and thus our proposal of associations.

To model information units, we need both a representation framework (which we proposed

the association notion) and an inference mechanism to determine minimal representations

(which Section 5.3 will discuss).

For representation, some early literature in schema design proposes to use functional

dependencies (FDs) as such a basic description [25, 86], where each FD X → Y (e.g., MId→

Title) describes the (functional) relationships between attribute sets X and Y . However,

not all associations among attributes are functional. Later, Bernstein [21] augmented the

description with θ-notation: a nonfunctional relationship f among attributes A1, A2, . . . , An

is represented by FD F : A1, . . . , An → θF , and θF is an imaginary attribute unique to F (it

does not appear in any other FD).

For inference, the problem of finding a minimal representation of information units is

mostly missing in the literature. While the θ-notation attempts to represent nonfunctional

associations, there is no corresponding inference. The closest may be the inference mech-

anism of FDs (Armstrong Axioms [87] for finding minimal covers)—but it only deals with

functional associations. Without proper representation and inference framework, classic al-

141

gorithms that construct schemas (say 3NF) may result in undesirable tables, as we show

below. As Example 5.3 shows, do we need all three relations to store the desired associa-

tions?

Example 5.3 (θ-Notation). Consider Case 1b, for attributes A:MId, B:DId, and C:DName

and FD B → C. In addition to association [BC] as the FD indicates, suppose there are

also [AB] and [AC], which are nonfunctional (movies and directors are associated many-to-

many). Bernstein’s 3NF schema-synthesis framework [21] will represent these nonfunctional

associations by the theta-notation as AB → θ1 and AC → θ2. The three FDs will result

in a 3NF schema with three tables S2 = {AB,AC,BC}—but will miss other correct (and

non-redundant) 3NF schemas like S3. Similarly, for Cases 1a and 1c, it will also synthesize

S2 and miss all others (S1, S3, S4, and S5).

In retrospect, the missing of a basic description of relational schemas seems inevitable,

due to the exclusive attention on normal forms. Most scheme design study focuses on

normalization to produce various normal forms, e.g., 3NF [21], BCNF [88], 4NF [89], or

PJ/NF [90]. As FDs fully determine normal forms, they are commonly assumed as a sufficient

description of a database for schema design [21, 25, 86]. There are two different types of

approaches to formal database design [91].

On the one hand, the decomposition approaches [92, 89] start with an initial schema

(or a universal relation [83]) to stepwise decompose it into simpler and smaller tables—

which thus avoids the need for explicitly describing basic requirements. On the other hand,

the opposite synthetic approaches directly group attributes into tables—however, again,

as dictated exclusively by functional relationships (e.g., [25, 86]), including the addition

θ-notation FDs to capture nonfunctional associations.

Correct Schemas. Note that our notion of schema correctness is orthogonal to the classic

notions of normal forms such as 3NF [21] or BCNF [88]. This is expected since our correct-

ness of a schema concerns only that the target information can be stored and not how it

is stored—so that we can further choose a physical schema based on the performance. For

Example, in Case 1, with B → C, S1 is not in BCNF, but we consider it correct since it can

store all target associations. It may have a performance advantage over a BCNF (such as

142

S3) for some workloads.

Schema Equivalence. Our notion of application-centric equivalence is novel, in contrast to

the traditional senses of equivalence, which is essentially the opposite. Schema equivalence

has been extensively explored in the literature, with multiple equivalence notions proposed,

such as representational equivalence between a relational schema and its decomposition [93],

data equivalence [83], θ-equivalence [94] or query equivalence [95], calculus equivalence and

more [84]. These various senses of equivalence compare schemas by the “amount” of appli-

cations (data or query capabilities) each can accommodate. For example, two schemas are

“data equivalent” if they can store the same set of instances [83], or “query equivalent” if

there is a query that maps an instance of the first schema to that of the second and vice

versa [95]. In other words, these equivalence senses measure the “absolute” capacity of a

schema, while we are only interested in the capacity with respect to an application.

5.3 SEARCH SPACE

In this section, we describe the search space of quantitatively designing a schema. That

is, starting from a conceptual description (A, F), we aim at finding a schema, among possible

alternatives (equivalent schemas), that minimizes the workload cost. We define our search

space as a set of schemas that precisely preserve A with respect to F . That is, our search

space consists of schemas that preserve (A, F) and do not preserve any “redundant” or

“unintended” association. Thus, to eliminate “redundant” or “unintended” associations, we

need inference rules to identify them. Starting from (A, F), after eliminating the redundant

associations using inference rules, we are left with a minimal basis, i.e., a minimal set of

associations that if preserved also preserves A. In other words, minimal basis helps us to

understand what associations need to be explicitly preserved by a schema. Additionally, the

minimal basis serves as a starting point, from which we navigate our search space.

We now discuss the two assumptions that we use to define the search space namely

(i) no association redundancy and (ii) no unintended associations. Our redundancy notion

is quite in the spirit of strong redundancy as Codd defines [77]: “A set of relations is strongly

redundant if it contains at least one relation that possesses a projection which is derivable

143

from other projections of relations in the set.”

No Association Redundancy. While a schema should preserve associations, it should

not store more than what is necessary. Various non-redundancy criteria can be meaningful

depending on specific applications—this has been studied by the literature of schema nor-

malization. However, as we aim to minimize query cost, we adopt a very basic notion where

no associations are repeated.

Formally, a schema S is non associations-redundant if there does not exist any attributes

or tables that we can eliminate from S and the resulted schema is still association preserving.

Consider S2, for Case 1a in Figure 5.6—S2 explicitly preserves [BC]. Preserving [BC], which

can be inferred from [AB], [AC], and A→ B, explicitly results in redundancy as [BC] can

be dropped from S2 without loosing the any associations. On the other hand, an interesting

case is S1, which also preserves [BC] explicitly—but in this case we cannot drop any attribute

(or table) without losing any essential association. Thus, S1 is non-associations-redundant.

No Unintended Associations. For correctness, a schema should also not introduce any

unintended associations. We consider an association as unintended if it associates attributes

in a way that is inconsistent with the input associations. Consider S2, for Case 2a in

Figure 5.6—S2 explicitly preserves [BC]. We consider [BC] as unintended as it can can

store inconsistent mapping between values of SId and AId that do not correspond to a tuple

given by {MId, SId} and {MId,AId} associations.

5.3.1 Inference Rules and Minimal Basis

In this section, we develop inference rules for associations and use them to develop the

notion of “minimal basis”.

Uniqueness. To enable inference, we assume that any two attributes can be associated

with each other in at most one way. For example, the associations between MId and AId

given by [MId,AId] and [MId,AId,Rid] is the same. Our assumption is in a similar sprite to

earlier work [25, 21] and is crucial to develop inference rules. Although this assumption is

quite strong, it can be easily circumvented by renaming or creating additional attributes.

We formalize this as follows:

144

Assumption 5.1 (Uniqueness). Between any two sets of attributes, there is at most one

association.

Inferring Associations. We now develop rules for inferring associations. We use these

rules in conjunction with the traditional interference rules for FDs to identify and eliminate

the redundant associations.

For the rules that infer an association from a FD, we ensure that the left-hand side of

the FD is irreducible. That is, the FD needs to be explicitly preserved by a schema and is

not implicitly preserved as a result of preserving other FDs. Formally, for two attribute sets

T and U , if T → U , then T ′ 9 U ′, where T ′ ⊂ T, U ′ ⊆ U .

To motivate our first rule, consider a FD F1 = MId → Title,Genre. For a schema to

preserve F1 it needs to preserve the association between MId, Title, and Genre. We formalize

this as:

1. T → U =⇒ [TU]

For the second rule, consider an association, A1 = [MId, Sid] and a FD, F2 = MId→ Did.

For a schema to preserve A1 with respect to F2 it requires: (i) a table T1 ⊇ {MId, Sid},

and (ii) a table T2 ⊇ {MId,Did}, with a constraint MId → Did. Since MId → Did,

πMId,Sid(T1) and πMId,Did(T2) are lossless decompositions of T = {MId,Did, Sid}, which

preserves [Sid,Did], i.e., the two tables implicitly preserve [Sid,Did]. Since [Sid,Did] can be

inferred from others, it is non-essential and can be eliminated. We formalize this as:

2. [TV] , T → U =⇒ [TUV]

By definition, if a schema preserves [T], where T = {A1, A2, . . .}, then it can store any

combination of the attribute values permitted by the constraints. Thus, it can also store

any combination of attribute values of U permitted by the constraints, where U ⊆ T , e.g.,

[MId,AId,Rid] =⇒ [MId,AId]. Therefore, we have,

3. [T] , U ⊆ T =⇒ [U].

We have the following two theorems for the correctness and completeness of the above

rules. To prove completeness, we show that, starting from a set of associations A and FDs

F , if an association between two attributes A and B, i.e., [AB], cannot be inferred based

145

on the rules then there exists a schema S that preserves A and F but cannot store at least

one tuple of DOM(A)×DOM(B) that satisfies F in a lossless manner.

Theorem 5.2 (Correctness). For a set of associations A and FDs F , if we can infer an

association A using the above rules then any schema that preserves A and F must also

preserve A.

Theorem 5.3 (Completeness). For a set of associations A and FDs F , if we cannot infer

an association [T] using the above rules, then there exists at least one schema that preserves

A and F but does not to preserve A or F .

Minimal Basis. By utilizing the interference rules, we establish equivalence between sets of

associations. Informally, we consider two association sets as equivalent (basis), with respect

to a set of FDs (FDs are imperative for inferring associations—see Section 5.2.1), if they can

be inferred from each other. Consider the associations, A1 = {[MId, Sid] , [MId,Did]} and

A2 = {[MId, Sid,Did]}. Here, A1 and A2 are equivalent if we have MId→ Did, and thus are

basis of each other. We formalize the notion of basis as:

Definition 5.1 (Basis). A set of associations A′ is a basis of another set of associations

A, with respect to a set of FDs F , if any schema S that preserves A with respect to F also

preserves A′ with respect to F and vice-versa.

We now use the notion of basis to define “minimal basis” for a set of associations. In-

formally, a minimal basis is a set of associations such that none of the associations can be

inferred from the remaining. Therefore, the associations described by a minimal basis are

essential building blocks that describe a schema. We formalize this as below.

Definition 5.2 (Minimal Basis). A minimal basis, denoted as Â, for a set of associations,

with respect to a set of FDs F , is a basis where: If any association or an attribute within

any association is removed then the result is no longer a basis.

Finding Minimal Basis: We use the aforementioned rules to eliminate the redundant

associations to obtain a minimal basis. For example, in Figure 5.6, for Case 1a, the minimal

basis is either {[AB] , [BC]} or {[AB] , [AC]}. One interesting aspect to note here is that

there can be more than one minimal basis for the same (A,F).

146

5.3.2 Search Space and its Navigation

In this section, we formalize our search space and propose a way to navigate it such that

it can be efficiently pruned.

Search Space. With respect to a set of associationsA and FDs F , we define our search space

as a set of schemas that preserve essential associations Â, and adhere to our assumptions,

i.e., (i) no attribute redundancy and (ii) no unintended associations. We limit our scope to

schemas obtained by regrouping the attributes—this naturally encompasses the search spaces

of the two major performance related schema transformations proposed in the literature:

(i) vertical partitioning, where a table is split into multiple tables and (ii) merging, where

multiple tables are merged.

Minimal Schema. We introduce “minimal schema”, a correct schema that cannot be

further decomposed, and use it as a starting point for navigating our search space. As the

associations in minimal basis are non-redundant and non-decomposable, if we synthesize a

schema from the minimal basis of (A,F) such that each table corresponds to one association

in the minimal basis Â then we term it as a the minimal schema. We formalize the notion

of minimal schema below:

Definition 5.3 (Minimal Schema (Sm)). Given a set of associations A with respect to FDs

F , a schema S is minimal if it has a table corresponding to every association in the minimal

basis of A with respect to FDs F .

We obtain the minimal schema for our example using the minimal basis of the associa-

tions. For example, for Case 1a in Figure 5.6, one minimal schema is:

{MovieDir(MId,DId),DirName(DId,DName)}

Navigation. We use minimal schema as a starting point to obtain the candidates by using

the primitive of “merging”—this enables us to efficiently prune the search space Section 5.4

will discuss. For correctness, we merge two tables T and U only if the merged table, i.e.,

T ./ U , preserves the same set of associations as preserved by T and U . Thus, as discussed

earlier not every merge is valid. Since merging two tables to obtain T ./ U does not add any

new constraints, the merged table always preserves the associations preserved by T and U .

147

However, since a natural join groups attributes together the resultant table can preserves

additional associations as seen earlier. Hence, we only choose to combine two tables if their

merge is valid as defined below.

Definition 5.4 (Valid Merge). We consider a merge of two tables T and U as valid if their

natural join, i.e., T ./ U , does not preserve any additional associations as compared to T

and U .

We next obtain the condition to check if a merge is valid. For a merge between T and U

to be valid, the two tables should be able to store all the tuples of the T ./ U and vice-versa.

That is, T and U should be lossless representation of T ./ U , e.g., MovieX. Therefore, we

use the idea of lossless join decomposition to determine that a merge is valid by checking

if the common attributes, i.e., T ∩ U functionally determine at least one of the two tables.

Note that since merge of Produces and Cast does not satisfy the lossless join decomposition

condition, it is not valid. We formalize this as the following theorem.

Theorem 5.4 (Merge Condition). A merge of two tables T and U is valid if and only if

T ∩ U → U or T ∩ U → T .

We formalize the primitive of merging as function M, which obtains a new schema S ′

from S by merging two of its tables T, U ∈ S, where T ∩ U → U or T ∩ U → T , i.e.,

M(S, T, U) = {T ./ U} ∪ (S − {T, U}) . (5.2)

We now define our search space using a recursive function fX that takes a schema as an

argument and recursively merges tables to obtain candidate schemas.

fX (S) = {S} ∪ {S ′|∀T, U ∈ S, T 6= U, T ∩ U → U

or T ∩ U → T, S ′ =M(S, T, U)} (5.3)

Using Equation 5.3, we obtain our search space by passing minimal schema Sm as an

argument, i.e., X = fX (Sm). Generating the search space using the above equation ensures:

148

Scenario Schema Execution Plan

1a (S1a)
• StudioNm (Sid, Nm)
• StudioAddr (Sid, Addr)
• ProGenre (Sid, MId, Genre)

5. Nested Loop (cost=0.00..26823.06 rows=11 width=76)

4. Seq Scan on StudioAddr (cost=0.00..2.00 rows=100 width=37)

3. Nested Loop (cost=0.00..26804.53 rows=11 width=51)

2. Seq Scan on StudioNm (cost=0.00..2.00 rows=100 width=10)

1. Seq Scan on ProGenre (cost=0.00..26786.00 rows=11 width=41)

Filter: (genre = ’SiFi’::text)

1b (S1b)
• StudioAddr (Sid, Addr)
• ProducesNm (Sid, MId,

Genre, Nm)

3. Nested Loop (cost=0.00..27903.53 rows=11 width=76)

2. Seq Scan on StudioAddr (cost=0.00..2.00 rows=100 width=37)

1. Seq Scan on ProducesNm (cost=0.00..27885.00 rows=11 width=47)

Filter: (genre = ’SiFi’::text)

2a (S2a)
• StudioNm (Sid, Nm)
• ProducesAddr (Sid, MId,

Genre, Addr)

3. Nested Loop (cost=0.00..30700.53 rows=11 width=76)

2. Seq Scan on StudioNm (cost=0.00..2.00 rows=100 width=10)

1. Seq Scan on ProducesAddr (cost=0.00..30682.00 rows=11 width=74)

Filter: (genre = ’SiFi’::text)

2b (S2b)
• ProducesAll (Sid, MId, Genre, Addr,

Nm)
1. Seq Scan on ProducesAll (cost=0.00..31731.00 rows=11 width=76)

Filter: (genre = ’SiFi’::text)

Figure 5.7: The impact of merging tables on the execution plan and cost of a query that accesses
the merged tables.

(i) correctness, i.e., all the schemas precisely preserve the input associations and (ii) com-

pleteness, i.e., all the schemas that are correct are generated. We formalize this as the

following two theorems.

Theorem 5.5 (Merge Correctness). All the schemas derived from minimal basis using

the merge primitive are correct and withhold our assumptions (non-redundant and non-

unintended associations).

Theorem 5.6 (Merge Completeness). If a schema satisfies our assumptions (non-redundant

and non-unintended associations), then it should be derivable from the minimal basis by

merging else it is not correct.

5.4 PRUNING DESIGN SPACE

In this section, we discuss the pruning of the schema design search space to obtain the

optimal one. Due to the exponential nature of the search space, using traditional cost

models [80], which are embedded in query optimizers, to evaluate every candidate from

the search space is prohibitive—our insight in addressing this challenge is to understand a

query optimizer’s behavior when merging two tables, thereby pruning the search space by

149

evaluating fewer candidates. To this end, we develop an anti-monotonic property, which

makes a few basic assumptions for the query optimizers, to efficiently and correctly prune

the search space.

5.4.1 Understanding Cost Behavior

To understand query optimizer’s behavior when merging two tables, we discuss how the

merge impacts a query’s cost. Similar to earlier work [80], but with a purpose to understand

the behavior of query optimizers, we classify an execution plan’s operators as table access and

in-memory. We term the cost incurred by a database to retrieve a table’s tuples from storage

as table access cost—this generally corresponds to the leaf operators on an execution plan.

We term the cost incurred by non-leaf nodes on execution plans, which generally correspond

to in-memory operations, e.g., aggregation, as in-memory cost. We further break down the

table access cost as “start-up” and “retrieval”, where the start-up cost accounts for the effort

spent by the database to obtain the first tuple, and the retrieval cost accounts for the effort

spent by the database to obtain the remaining tuples.

As a query optimizer strives to select an optimal execution plan, we capture the behavior

of the optimizer, and thus the cost, using the following two prepositions, for a query when

two tables joined by the query are merged. We can show the correctness of the prepositions

based on the Optimal Plan assumption. We develop our prepositions to specifically focus

on the cost increase as a result of merging as this will enable us to develop pruning rules for

the search space.

Assumption 5.2 (Optimal Plan). A database’s query optimizer chooses an optimal exe-

cution plan—thus, for accessing an individual table, it chooses the best table access method

among the possible alternatives.

Proposition 1 (Start-up Cost). For a query Q that accesses a table T , adding an attribute

to T does not increase the startup cost for T , but may increase or decrease the access cost

for T .

Proposition 2 (Access Cost). For a query Q that accesses a table T , adding an attribute

to T does not increase to the access cost of tables other than T .

150

Based on Proposition 1 and 2 we conclude that after merging two tables the reason for

increasing the cost of a query accessing the merged tables is one or more of the following:

(i) increased row size, (ii) change in table access operator, and (iii) duplicated tuples.

Not being aware of the actual reason for the cost increase, makes modeling the optimizer’s

behavior difficult.

However, if we merge tables in a controlled manner, we limit the impacted factors, thereby

enabling us to predict the behavior of a query optimizer. Instead of arbitrarily choosing tables

to merge, we choose one of the tables such that its attribute values are not duplicated. The

FD between key attributes of the merged tables determine attribute value duplication—we

capture this by defining a new notion of “table order”, such that if T is ordered before U ,

denoted as T ≤S U , then T ’s tuples are not duplicated when T and U are merged. We

formalize this as:

Definition 5.5 (Table Order). A schema S’s table order, with respect to functional depen-

dencies F , is a partial order among the tables within the schema such that for any two tables

T, U ∈ S, with a common set of attributes, i.e., V = T ∩U , there exists an order (i) T ≤S U

if V → U , (ii) U ≤S T if V → T , and (iii) T =S U if V → T, U .

5.4.2 Pruning using Anti-monotonicity

To demonstrate our intuition for anti-monotonicity, in Scenario 1, we first select a table,

i.e., StudioNm, which when merged with ProGenre results in increasing Q2’s cost as compared

to its cost on S1a. We then use Scenario 2 to show that the cost behavior, i.e., increase in cost,

persists when StudioNm is merged with a superset of ProGenre, i.e., ProducesAddr, which we

obtain by merging StudioAddr with ProGenre. To develop the anti-monotonic property, we

reason out that the cost behavior that we observe in Scenario 2 based on Scenario 1’s cost

behavior.

For the two scenarios, we use our cost model to understand the cost behavior by finding

out the responsible factors. We denote the three tables ProGenre, StudioNm, and StudioAddr

by T , U , and V respectively. From the keys of the table we can observe that the tables are

ordered as T ≤S U, V .

151

Scenario 5.1. Here, we obtain S1b from S1a by merging StudioNm with ProGenre to obtain

ProducesNm, we denote it as T1. Referring to E(S1b), we note that the query’s cost increases

despite eliminating a table access operator. Due to the table order of T ≤S U , the tuples

of ProGenre are not duplicated. The operator that accesses ProducesNm now bears an extra

burden of accessing an additional attribute StudioName indicated by a higher width of 47

in Step 1 for E(S1b) compared to that of 41 in Step 1 for E(S1a). Since the overall cost

increases, the cost increase due to the additional attribute is higher than the cost saving of

eliminating the table access operator.

Scenario 5.2. Here, we consider the table ProducesNmAll, which we obtain by merging

ProducesAddr and StudioNm. Due to the table order of T1 ≤S V , the tuples of ProducesAddr

are not duplicated. By comparing the costs for S2a and S2b, we observe that the cost increase

is similar to Scenario 5.1’s cost increase. Contrasting the starting point of Scenario 5.2, i.e.,

S2a, with the starting point of Scenario 5.1, i.e., S1a, we note that the table T has an

additional attribute, we denote it as T ′1. Since the additional attributes should not impact of

merging StudioNm, similar to Scenario 5.1, we attribute the cost increase to the additional

fields of ProducesAll, which we denote as T2, as compared to that of ProducesAdd, which

increase ProGenre’s record size.

Motivated from the cost behavior, we develop an anti-monotonic property. Intuitively, if

an attribute merged with a table increases a query’s cost, then the attribute merged with a

superset of the table with the same key will increase the query’s cost. Consider query Q2,

along with three tables from S, i.e., T = ProGenre, U = StudioNm, and V = StudioAddr,

such that T ≤S U, V . We observe from Scenario 1 that by merging U with T increases Q2’s

cost, i.e., S1 = {T1}∪(S − {T, U}), where T1 = T ./ U has a higher cost than S1a. With an

intuition that the cost increase observed in Scenario 2 is a consequence of the cost increase

observed in Scenario 1, we introduce the anti-monotonic property, which we formalize as

below.

Pruning Rule 5.1 (Anti-monotonicity). Suppose that we are given (i) a schema S, (ii) a

query Q, (iii) tables T, U, V ∈ S, and (iv) T ≤S U, V . Consider the schemas: (i) S1 =

{T1}∪(S − {T, U}), where T1 = T ./ U . (ii) S ′1 = {T ′1}∪(S − {T, V }), where T ′1 = T ./ V .

152

Algorithm 5.1 Schema search space traversal.
Input: Schema S, workload W , and sub-optimal mergesMO.
Output: List of candidate schemas.
1: function Traverse(S,W,MO)
2: if |S| = 1 then . Terminating Condition.
3: return {S}
4: end if
5: Initialize R← ∅ . Return Schema Set
6: for T, T ′ ∈ S, T 6= T ′ and (T ≤S T

′ or T ≤S T
′) do

7: if @(U,U ′) ∈MO | T =S U, T
′ ⊂ U ′, T ′ =S U

′ then
8: S ′ ←M(S, T, T ′) . (5.2)
9: Prune ← true

10: for each Q ∈ W do
11: if T ∩Q 6= ∅ and T ′ ∩Q 6= ∅ then
12: if CostS′(Q) < CostS(Q)) then
13: Prune ← false
14: end if
15: end if
16: end for
17: if not Prune then
18: R← R ∪ Traverse(S ′,W,MO)
19: else
20: MO ←MO ∪ {(T, T ′)}
21: end if
22: end if
23: end for
24: return R
25: end function

(iii) S2 = {T2}∪(S − {T, U, V }), where T2 = T ′1 ./ U . For query Q, if Cost(S1) > Cost(S),

then Cost(S2) > Cost(S ′1).

We now develop an algorithm to use the anti-monotonic property to prune the schema

search space efficiently. Although our goal is to optimize a schema for a workload, to simplify

our discussion without losing generality, we consider a single query. While optimizing for a

workload, we consider the cost of each query from the workload and prune a schema only

if it is sub-optimal for all queries. Although this reduces the pruned schemas, for realistic

workloads due to the similarity between the queries in terms of accessed attributes the impact

on the design time is not adverse, which is also evident from our experiments.

The idea for cost-based pruning is to keep track of merges that increase cost. Recall that

153

according to the anti-monotonic property, if an attribute merged with a table increases the

cost of a query then the attribute merged with a superset of the table, which has the same

primary key, will also increase the query’s cost. We term a merge that increases the cost of

a schema as sub-optimal, as the schema obtained by such a merge has a higher cost than its

parent, and can be pruned. We capture all such suboptimal merges as a setMO containing

pairs of tables that result in a sub-optimal merge. Consider a schema S, containing tables

T and U , which when merged results in increasing a query Q’s cost. Then for a schema

S ′, which contains table T ′, a superset of T , i.e., T ′ ⊃ T , merging T ′ with U will result in

increasing the cost of the query, and hence we skip such a schema. That is, before merging

two tables, we ensure that a subset of the tables has not resulted in a sub-optimal merge,

i.e., @(U,U ′) ∈ MO | T =S U, T
′ ⊂ U ′, T ′ =S U

′. If “no” then we do not merge the tables

thus eliminating their children; if “yes” then we merge the tables to obtain the child schema.

As the process described above navigates the space by incrementally merging tables,

we naturally represent it as a recursive algorithm, which we summarize as Algorithm 5.1.

The algorithm starts from minimal schema, traverses the space pruning the sub-optimal

candidates, and returns a substantially small set of candidates, out of which we merely pick

up the minimum cost schema as optimal.

5.5 EXPERIMENTAL EVALUATION

In this section, we experimentally validate our framework. We first describe our setting

and then demonstrate the effectiveness of our solution and validate core components.

5.5.1 Experimental Setting

For evaluation we choose PostgreSQL 9.2 [96] for our database along with three datasets.

To use PostgreSQL as a black box for schema evaluation, we tweak its source to return a

workload’s cost with respect to a schema solely based on table statistics. We choose the

datasets to represent the space of data-driven applications faithfully and to stress our frame-

work. Considering schema design as a combination of two orthogonal schema optimization

methods, i.e., partitioning and denormalization, we select two datasets such that they only

154

TPC-C Twitter IMDb
0

1

2

Sp
ee

du
p

Original Schema

Baseline 1 - Partitioning

Baseline 2 - Denormalization

Greedy

Quantitative schema design

Figure 5.8: Speedup of quantitative schema design.

benefit from one of the two methods while the third is in the middle of the two extremities.

We list the datasets in a descending order of their complexity in terms of attribute counts

and joins performed by their corresponding queries.

TPC-C. TPC-C [97] benchmark is a popular standard for comparing performances of OLTP

databases. It has a mixture of user and system generated content, which is similar to product

websites such as Amazon [98]. The system generated content, e.g., product information, is

read-only and has the corresponding user-generated content, e.g., reviews, which is frequently

updated along with reads. TPC-C’s well-defined workload resembles the activities of an

ordering application. The workload consists of select queries for reporting, which perform

complex joins across multiple tables, which have high multiplicity, accessing a few attributes

from each table, along with simple transaction queries. For our purpose, we capture 2.5k

queries from a benchmark run with a default setup.

Twitter. This dataset represents applications that primarily store and serve user-generated

content. A majority of the tables are transactional, which are frequently inserted into and

queried based on user actions. We have handwritten the schema based on traditional design

techniques, i.e., normalized to BCNF, to simulate the working of Twitter [99] and populated

155

W1 W2 W3 W4 W5 W6 W7 W8

0

1

2

3

4

5

Variations of TPCC workload

Sp
ee

du
p

Optimal Schema for TPC-C

W1 W2 W3 W4 W5 W6 W7 W8

0

1

2

3

Variations of IMDb workload

Sp
ee

du
p

Optimal Schema for IMDb

Figure 5.9: Performance gains variations across workloads.

with 1M randomly generated tweets from 10k users. For the workload we have 2k queries,

which have simple joins and access almost all attributes from the tables, to simulate Twitter

activities, e.g., reading tweets.

IMDb. This dataset represents applications that primarily serve read-only content. The

dataset is a dump from IMDb [73] for around 2M movies. The workload has handwritten

queries to depict different activities on IMDb, e.g., looking up a movie’s cast. These queries

are further duplicated, with different values, to obtain a total of 1k queries to simulate the

effect of various activities by multiple users.

Evaluation Metric. As the query optimizer’s cost estimate is a good indication of a query’s

response time, we use it for evaluation. We use speedup, which we calculate as a ratio of

the old cost to the new one, as our evaluation metric.

Platform. We run our experiments on a desktop computer equipped with an AMD Phenom

II 1045T processor and 16GB of RAM. The operating system is Ubuntu Linux 14, and the

schema design framework is a single threaded application developed in Java.

Baselines. We use the most relevant work, i.e., partitioning and merging, as our two

baselines. For partitioning, we choose Autopart [100], which is the current state-of-the-art.

Since the impact of merging tables has not been quantified previously in the literature, we

create a parallel work for it based on the greedy approach proposed by Autopart. The idea

is to greedily pick up two tables to merge such that they benefit the workload.

156

5.5.2 Schema Design Performance

We demonstrate the significance and practicality of quantitative schema design by eval-

uating it on aspects such as effectiveness, running time and workload.

Effectiveness. We demonstrate the effectiveness of our proposed method by contrasting

its gain with the two baselines as shown in Figure 5.8. We observe a speedup of 1.72, 1.27,

and 2.22 for TPC-C, Twitter, and IMDb respectively, which is an improvement over the

baselines. For TPC-C, due to the complex joins and the high multiplicity, merging by itself

is unable to benefit. Since the queries from the workload access relatively few attributes

from a table, a partitioning technique helps the workload by reducing the overhead incurred

from reading the unnecessary attributes. We perform better than partitioning by leveraging

the benefit of grouping attribute together. For Twitter, we observe that partitioning by itself

is unable to benefit as queries generally access all the attributes from the tables. The benefit

achieved by merging is leveraged by our method. Finally, for IMDb, our method reaps the

benefits of unifying partitioning and merging as compared to just one of them.

Design time. We ensure practicality of our method by validating that it completes in a

reasonable time. We observe a design time of 250, 20, and 10 seconds for TPC-C, Twitter,

and IMDb respectively. The design time is a vast improvement over the naïve method, which

we were unable to run to completion in a reasonable time of an hour due to its exponential

nature. The design time for the two baselines is considerably less due to a smaller search

space. The variation in the design time aptly corresponds to dataset complexity in terms

of attribute count. The main offender here is schema creation and the population of table

statistics, which is required by the query optimizer for schema evaluation. As schema design

is an off-line process the design time in the order of minutes is acceptable.

Workload Generality. We ensure that the gains shown in Figure 5.8 not incidental by

running our method against a few variations of the workload for two datasets. Here, we ran-

domly sample 20% of queries from each dataset’s workload to obtain eight distinct variations

of the workload. From the varied performance gains shown in Figure 5.9, we infer (i) quan-

titative schema design achieves significant gains across different variations and (ii) the gain

obtained, and hence the optimum schema is dependent on the workload.

157

Original Only
Indexes

Schema
Design

Schema
Design

w/ Indexes

0

2

4

6

Sp
ee

du
p

Schema Cost for TPC-C

Original Only
Indexes

Schema
Design

Schema
Design

w/ Indexes

0

2

4

6

8

Sp
ee

du
p

Schema Cost for IMDb

Figure 5.10: Speedup of Indexes vs Schema Design—(a) TPC-C. (b)IMDb.

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

Percentage of scan-bound queries

Sp
ee

du
p

TPC-C

1 2 3 4 5

1

1.1

1.2

1.3

Tables accessed by query

Sp
ee

du
p

TPCC-C

Figure 5.11: Workload Characteristics—(a) Scan-bound queries. (b) Join-bound queries.

Schema Design with Indexes. We now show how our method can work in conjunction

with indexes. As the benefit of indexes is orthogonal, when we combine them we observe from

Figure 5.10 a higher speedup than either of them. For TPC-C, we utilized the indexes that

were present in the original schema, whereas for IMDb we used the Index Tuning Wizard in

Microsoft SQL Server to recommend indexes. As IMDb’s workload is dominated by selection

queries, we observe that the indexes alone provide better speedups. We observe a contrary

behavior for TPC-C where the workload has a mix of selection and update queries.

Workload Characteristics. To obtain insight on the gains observed in Figure 5.9, we

study a workload’s influence on the gains. Based on our cost model, we identify the table

access operator and the accessed tables count as the factors that affect a query’s cost.

We study the effect of a table’s access method on performance gains by segregating the

TPC-C workload in two categories, to represent the extremities in terms of table accesses,

158

namely (i) scan-bound : access fewer tables and the cost of table access operator is domi-

nating, and (ii) join-bound : accesses relatively more tables and join cost is the dominating

component of the total cost.

Scan-bound queries generally access a large number of tuples due to which the table

access cost is the dominating factor. On the other hand, join-bound queries access relatively

more tables, but fewer tuples, and hence the join cost dominates. We obtain the workload

by selecting all the join-bound queries and varying the percentage of scan bound ones by

randomly sampling them from the original workload. We observe, as shown in Figure 5.11(a),

that the gain increases with scan-bound queries. A scan-bound query benefits more compared

to a join-bound one due to the reduction in table scan cost due to the decrease in the table’s

width.

We next study the benefit in terms of speedup with respect to the number of tables

accessed by the query as shown in Figure 5.11(b). Since the original workloads do not have

queries with all possible table counts, we synthetically generate the workload. To obtain a

query that accesses n tables, we first randomly select n naturally join-able tables and then

generate a query that performs joins among them. Using a collection of such queries, we

obtain the workload. We observe that the gain increases with the table count. Here, since

relatively few tuples accessed from each table, the join overhead is significant and the gain

is due to its reduction.

5.5.3 Qualitative Evaluation

We now present a qualitative evaluation of the ideas discussed in this paper with a goal to

demonstrate the following. (i) How we improve the usability of databases by automatically

designing a relational schema. (ii) How the notion of associations can be used to capture

the requirements of a schema and identify redundancy between associations. For this

evaluation, we used data organized on a spreadsheet in the form of tables as our starting

point. From there we use the tabular structure and the data to identify the associations and

constraints, which capture the requirements of the schema. These requirements along with

the workload, represented using spreadsheet formulae, are used to quantitatively design a

159

schema.

We consider a small business as a scenario for our evaluation. Here, the owner of a small

retail startup currently uses a spreadsheet to manage customers and sales. She would like to

routinely perform, such as insert (customers), modify (due dates of invoices), filter (overdue

invoices), join (invoices and payments), and aggregate (the total amounts). The updates are

done directly to the table in the spreadsheet and reporting, i.e., join and aggregate, is done

using spreadsheet formula on the data. As the scale of her operations increase, spreadsheets

are unable to handle the scale of the data, and she would like to migrate the data to a

relational database, but has trouble designing a database schema that not only serves her

requirement, i.e., captures the necessary information, but also is efficient for her reporting,

i.e., workload in form of queries.

Our overall work flow can be described as the following steps. (i) Explicit Association

Inference. Here, we detect the tables within the spreadsheet by identifying tabular regions

that are well structured. That is, we looks for areas that have a header corresponding to

attribute names and data corresponding to tuples. For example, we detect the Customer

table with attributes CustID and CustomerName. We consider the attributes in a table as

associated with each other. (ii) Key Inference. To detect keys, we check which attribute

values are distinct. For example, the CustID has distinct values for the Customer table. Note,

that there can be false positives, i.e., detecting an attribute as key when it is actually not—

we use user’s feedback to eliminate them. (iii) Implicit Association Inference. To understand

the implicit associations, we consider the similarity of the names and the value of attributes

across tables. For example, CustID in Customer and Invoice refer to the same attribute, and

and thus indicates a referral constraint. (iv) Association Redundancy. Once we have a list

of associations, we identify the redundant ones using the inference rules. For example, the

Invoice table has attributes CustID and CustomerName—this association is already captured

in the Customer table. We eliminate such redundant associations after confirming from the

user. (v) Design schema quantitatively. Finally, after all the requirements of the schema

are captured using the associations, we quantitatively design the optimal schema. Here,

we use the spreadsheet formula translated in SQL queries as our workload. For example,

join between invoices and payments, which is originally performed using a VLOOKUP on the

160

spreadsheet is translated to a join query.

5.6 RELATED WORK

We review the literature in several aspects. (i) With the objective of a “good” schema,

most efforts study schema normalization. (ii) For the target objective of query performance,

we are related to such work in physical design: First, and the closest to ours, schema

optimization attempts to transform a given schema to improve performance. Second, the

work on indexes and views focuses on building auxiliary data structures, which is orthogonal

and complementary to ours. Third, the efforts on rethinking storage models beyond the

traditional row stores target at improving performance.

1. Schema Normalization The study of schemas mostly focused on normalization: Given

a schema (or simply a table) R and set of dependencies F , transform R into another schema

R′ that satisfies certain normal-form criteria with respect to F (e.g., [77, 88, 21]). The

normalization problem is thus fundamentally different from our quantitative schema de-

sign: First, we perform “design” starting from only a conceptual model instead of a concrete

schema. Second, our metric of a target schema is quantitatively on query performance,

and not qualitatively on normal forms. We note that there is a line of efforts on schema

synthesis [21, 22, 23, 24, 25], which attempts to “synthesize” a normalized schema w.r.t.

a set of dependencies as the input, without an initial schema. We share the same syn-

thesis approach—but differ in the conceptual requirements—which we start with “essential

associations” (see Section 5.2) instead of dependencies—and the objective of quantitative

performance.

2.1 Schema Optimization. For query performance, several efforts focus on schema op-

timization: Given a schema R, transform R to another schema R′, by partitioning and

denormalizing the tables in R, to improve query speed w.r.t. a workload. Partitioning [101,

100, 102] splits up a table into multiple fragments to optimize I/O performance. Denormal-

ization [103, 104, 105], a special case of “merging” (our primitive for generating new schemas;

Section 5.3), groups attributes or adds redundant data to improve read performance. While

we also target query performance, we fundamentally differ in that, first, we perform “design”

161

starting from only a conceptual model instead of a concrete schema and, second, we consider

a richer search space that subsumes partitioning and denormalization. Our problem formu-

lation and approach ensures finding quantitively optimal schemas not limited by an initial

schema and the smaller search space.

2.2 Indexes and Views. Indexes [80] and materialized views are auxiliary structures

that improve query performance. Chaudhuri et al. [106] presents index selection based on

query optimizer’s cost estimates for a workload. Agrawal et al. [107] additionally integrates

materialized view selection. Indexes and materialized views provide limited benefits in inter-

active application scenarios, where response time is critical and the original schema might be

sub-optimal, due to the overheads for update-heavy workloads [100]. While sharing similar

objectives, these efforts are complementary to ours—As our approach does not depend on a

specific query optimizer, it can accommodate auxiliary structures as long as the optimizer

supports them. Our work can thus work in conjunction with theirs.

2.3 Storage Models. Many efforts have proposed to rethink storage structures to tailor

to special workloads such as OLAP. For example, C-Store [108, 109] proposes a column-

oriented storage. Our schema design addresses the problem of “what attributes” should be

logically grouped into tables, rather than their physical storage, which can be accounted for

as we simply rely on a system’s native query optimizer. Like indexing and views, the work

on storage models thus addresses a distinct aspect of physical design and is orthogonal and

complementary to our focus.

5.7 CONCLUSION

In this chapter, we establish and solve the problem of schema design by involving a

workload in the process. We have developed the notion of attribute association to precisely

capture the requirements of a relational schema. This enables us to establish the search

space to encompass partitioning and merging. We develop a schema-centric cost model,

which enables us to develop an anti-monotonic property to efficiently and correctly prune

the search space. Finally, we experimentally demonstrate up to 2x speedups, which is a

significant improvement over the current state-of-the-art.

162

In conclusion, we have developed the notion of attribute association and a versatile

quantitative schema design method that significantly improves database performance for a

well-defined workload and can be used across different relational database systems. The

quantitative schema design techniques discussed in this chapter improve interactivity for

DataSpread by optimize the schema of the relational tables stored in the underlying

database.

163

CHAPTER 6: FUTURE WORK: DIRECTED DATA MANAGEMENT

While direct manipulation greatly increases the usability of databases, we discovered

that it is not as effective at scale. When dealing with data that is extremely large, direct

manipulation is only adequate for certain simple actions, like editing a cell or deleting a

row that is already visible, or adding a new row or column. On the other hand, it is hard

to envision scrolling through a billion row spreadsheet manually, without some ability to

navigate to the rows of interest. For example, our biology collaborators at Mayo Clinic, while

thrilled at the ability to examine their large genomics dataset in a spreadsheet, acknowledged

that they wouldn’t be able to scroll through all of it, limiting its usefulness. Cockburn and

others argue that mentally assimilating and manipulating a large information space can lead

to cognitive and mechanical burdens on users [110, 111]. It is also hard to expect users to

express computation on a billion row spreadsheet, such as dragging a formula through the

entirety of a column, which may span all billion rows. In fact, a single relational operator

may, in this case, be able to replace a number of formulae proportional to the size of the

data. Finally, some formulae can take a long time to execute with no feedback to the user

about the status of the computation.

To address these limitations, we identified three extensions to direct manipulation that

help us make a substantial leap towards our original research goal. We call this new paradigm

directed data management.1 Directed data management extends the direct manipulation

principles in various ways (in italics)—see Figure 6.1, allowing users (i) to interact with

a multi-perspective continuous representation of the object of interest—that is, allowing

operations at various organizations and granularities of the data (ii) via accelerated actions—

allowing users to skip fine-grained steps if necessary, using coarse-grained operations (such as

relational algebra and SQL), and (iii) by performing operations whose impact is progressively

visible—that is, the system constantly provides partial results to the user, even for expensive

computations.
1Directed data management is not just reliant on direct manipulation—computation can be “directed” by the user and the

system: users “direct” computation at a higher level if needed, aided by automation, so the system “directs” computation as
well.

164

S1 S2 S3

S1 S2 S3 S1 S2 S3

S1` S2` S3`

S1`` S2`` S3``

(ii) Accelerated Actions

(i)
 M

ul
tip

le
 P

er
sp

ec
tiv

es

(iii) Progressive FeedbackSQL queries,
via command line or IDE

Small, incremental,
reversible actions

(a) From Declarative Querying
To Direct Manipulation

(b) From Direct Manipulation
To Directed Data Management

Figure 6.1: Steps towards Directed Data Management.

6.1 TOWARDS DIRECTED DATA MANAGEMENT

Since a direct manipulation interface is unable to support certain types of operations

at scale, we propose a new paradigm called directed data management that extends direct

manipulation by including support for both user-directed and system-directed analysis of

very large datasets. We now discuss the motivation and the underlying challenges.

6.1.1 Enabling Direct Manipulation at Scale

Even though spreadsheets provide direct manipulation capabilities, given the scale of

data, such an interface introduces a discontinuity between the information displayed in

its limited window, creating a cognitive burden for the users in understanding the overall

structure of the data, and navigating through it [111]. We aim to instead allow users to make

165

sense of data using different perspectives, reducing the discontinuity, and allowing users to

rapidly jump between perspectives; for example, between a bird’s eye view of the entire

interface, and a close-up, as in online maps. Our insight at addressing this is to allow users

to manipulate data using different perspectives or via different granularities—this reduces

the discontinuity, allowing users to rapidly jump between perspectives; for example, between

a bird’s-eye view of the entire interface and a close-up, much like the idea adopted by online

maps.

Then, to manipulate data at scale, small, incremental actions to accomplish a given

task (e.g., manually selecting a range of a million cells, or filling out a column of a million

formulae) can be tedious and error-prone. Simplifying or accelerating such actions can greatly

improve the usability of the system.

Finally, even with actions that are easier to express, sometimes the computation time of

certain operations (e.g., a formula that aggregates a billion cells, or a sort operation) makes

it impossible to receive feedback immediately. Studies in HCI have shown that delays of

even half a second can severely affect the user experience, and may lead to users abandoning

the intended task [112]. Thus, there is a need to provide an immediate response to the user

through progressively visible feedback.

6.2 MULTI-PERSPECTIVE REPRESENTATION

To reduce the impact of information overload with data at scale, we propose to enable

data to be presented using multiple perspectives—where each perspective refers to both a

way of organizing the data, and a specific granularity (or “zoom” level) for that organization.

For example, a realtor, examining a list of Airbnb listings, may choose to view the listings

by price or reviews, or both, at various granularities, and may choose to view an aggregate

corresponding to the total number of rentals per month. Each perspective offers a unique

vantage point. Supporting multiple perspectives can be challenging since it impacts the

interface design, as well as the entire database stack.

From the interface standpoint, the primary challenge is to create an interpretable rep-

resentation that can be used in conjunction with the traditional spreadsheet-like interface,

166

allowing users to interact with both interfaces, enabling rapid exploration and drill-down.

Our navigation panel (see Figure 2.5) is a step towards this idea by enabling users to work

with data at different granularities on a hierarchical interface. Users can view data at dif-

ferent levels by “zooming in and out”. How can we automatically construct this hierarchical

interface that adapts to various data types and user needs? Presently, we use a simple

histogram-based equi-depth binning strategy. Automated techniques can be augmented by

learning user preferences through examples, as in Excel’s flash-fill [113].

From the backend standpoint, when and how do we construct the hierarchical interface?

One option is to do so lazily, when the user explores the data organized in a certain way and

granularity. However, this may take a long time—in which case we may need new storage

models and indexing schemes for data at various granularities. For this, pre-materialized

data cubes, as well as incremental approaches such as database cracking seem promising.

6.3 ACCELERATED ACTIONS

The goal of accelerated actions is to allow users to move to the desired state by skipping

a cumbersome sequence of small actions. Such accelerated actions can be either user or

system-directed, and can be issued within a given perspective, as well as across perspectives.

As a first step, we support SQL queries within a given perspective to allow users to go beyond

basic spreadsheet-like direct manipulation to operate on collections of data at a time (as in

Figure 2.7). For example, to filter out records that occur between two dates, our realtor can

simply use a relational operation, instead of either manually selecting the rows of interest,

or using the advanced spreadsheets filtering capabilities that requires multiple interactions.

However, to display the result of the relational operation, users still have to refer to the

results via an INDEX function that needs to be dragged across a rectangular region (as in

Figure 2.7) which can be tedious.

The challenge, therefore, is: how do we design intuitive and interpretable interactions

within a given perspective, complementary to declarative querying? Our navigation panel

introduces new actions to aggregate, format, and organize data within a given perspective.

For example, in Figure 2.5, computation of the charts for each price bucket is an accelerated

167

action that is directed by the user that would otherwise require manual selection of the

region in each price bucket, followed by formulae that operate on those regions. We can

further enrich the interactions by allowing the charts to be used as visual query interfaces in

order to support ad-hoc formula specification. For example, the realtor examining Airbnb

listings can use a slider to move along the histogram in Figure 2.5 to select different prices

within a price bucket, without typing out the corresponding formula.

The next challenge is to support accelerated actions across perspectives. For example, if

the user zooms out, DataSpread recomputes the charts from the new perspective. Multi-

perspective navigation can be overwhelming and users can lose context due to abrupt changes

in view. How do we design interface cues to provide users context for these transitions? For

example, by displaying a navigation history we can provide users a context of where they

were and where they are now. Then, to enable efficient query execution for actions across

perspectives, we can adopt view materialization schemes, so that repeated actions are not

recomputed, while staying within a storage budget.

There are other preliminary avenues to support accelerated actions. For example, having

queries or formulae embedded along with the data can be used by the system to identify errors

or recommend reorganization/cleaning actions. Example-driven interactions are another rich

avenue whose potential has only been explored within spreadsheets for data extraction [113,

114]. Our investigation of pain points in spreadsheets [12] reveals a lack of knowledge

of typical workflows as a primary contributor to errors in formulae: auto-suggestions of

next steps, or providing explanations for formulae can greatly increase understanding and

efficiency.

6.4 PROGRESSIVELY VISIBLE FEEDBACK

In addition to the interactive computation ideas discussed in Section 2.1.2, our goal is

to quickly provide users with approximate results that improve over time [115, 116]. For

example, our realtor may want to sort millions of listings by price, or compute an average

price of the listings. As the computation happens, the system can display the progress to

the user incrementally. However, it is not clear how to display this information in a way

168

that maximizes user understanding and allows users to make decisions early. Progressively

updating the interface while presenting a stable and consistent view can be challenging. A

natural approach would be to draw samples on the fly and update the interface periodically,

with probabilistic error guarantees. Conveying uncertainty for direct manipulation opera-

tions in an interpretable manner is an open problem. One approach for formula computation

is to display a progress bar as it is being computed (as the cell itself), with the current best

estimate being overlaid on top.

From a query optimization standpoint, how do we identify optimal sampling strategies for

progressive feedback, optimizing for the many computations currently underway? We need to

trade-off the benefit of a sample across these computations. Moreover, traditional progressive

approximation approaches [115, 116] only provide error guarantees for summary statistics.

However, for operations that impact the position of data, such as sort, how do we capture

and display the positional uncertainty of the data? For example, for a sort operation, we

can leverage the cardinality statistics of the sort column to model the positional uncertainty.

To be able to access data by position as it is sorted, we need to construct the positional

index progressively—one strategy can be to bulk load data in increments, and reconstruct

the indexes at each increment. However, such an approach may lead to a high degree of

positional error. We need schemes that can incrementally index the data while maintaining

the diversity of samples to be displayed to the user.

6.5 CONCLUSION

As this chapter indicates, there are many interesting challenges that remain in making

ad-hoc interactions with very large datasets feasible.

169

CHAPTER 7: RELATED WORK

Our work on DataSpread draws on related work from multiple areas: (i) that introduce

direct manipulation principles, (ii) that enhance database usability, and (iii) those that at-

tempt to merge spreadsheet and database functionalities, but without a holistic integration.

1. Direct Manipulation Principles. To support interactivity, we adopt direct ma-

nipulation guidelines that emphasize user control proposed in the field of human-computer

interaction, first coined by Shneiderman [5], and further characterized by Hutchins et al., [6].

The principles mandate continuous representation of the object of interest, physical actions

instead of complex syntax, and small, incremental units of operations. This thesis aims

to realize these principles to achieve the “feeling of directedness” of manipulation for data.

Direct manipulation interfaces are not without their caveats as Hutchins [6] explains. They

do not easily support repetitive operations and they often expect clear metaphors that map

to familiar practices. A creative designer can exploit semantic and articulatory directness to

handle newer, more abstract contexts. A relevant example is “data wrangling”—preparing

data for analysis. Kandel et al. created an interactive visual specification of data transfor-

mation [117], combining elements of direct manipulation and exploration to handle a task

traditionally difficult for direct manipulation interfaces—repetition.

2. Making Databases More Usable. There has been a lot of recent work on making

database interfaces more user friendly [118, 14]. This includes recent work on gestural query

and scrolling interfaces [26, 119, 16, 120, 18], visual query builders [121, 19], query sharing

and recommendation tools [122, 123, 27], schema-free databases [124], schema summariza-

tion [125], and visual analytics tools [126, 127, 128, 129]. However, none of these tools can

replace spreadsheet software which has the ability to analyze, view, and modify data via a

direct manipulation interface [5] and has a large user base [4].

3a. One-way Import of Data from Databases to Spreadsheets. There are various

mechanisms for importing data from databases to spreadsheets, and then analyzing this

data within the spreadsheet. This approach is followed by Excel’s Power BI tools, including

Power Pivot [10], with Power Query [9] for exporting data from databases and the web or

170

deriving additional columns and Power View [9] to create presentations; and Zoho [130] and

ExcelDB [131] (on Excel), and Blockspring [132] enabling the import from a variety of sources

including databases and the web. Unlike us, their import is one shot, with the data residing

in the spreadsheet from that point on, negating the scalability benefits from the database.

Indeed, Excel 2016 specifies a limit of 1M records that can be imported, illustrating that

the scalability benefits are lost. Zoho specifies a limit of 0.5M records. Furthermore, the

connection to the base data is lost: modifications made at either end are not propagated.

3b. One-way Export of Operations from Spreadsheets to Databases. There has

been some work on exporting spreadsheet operations into database systems, such as Ora-

cle [133, 134], 1010Data [135] and AirTable [136], to improve the performance of spreadsheets.

However, the database itself has no awareness of the existence of the spreadsheet, making

the integration superficial. These techniques do not consider the skew in structures, posi-

tional/ordering aspects, as well as the cascading problems caused due to row/column inserts.

In particular, positional and ordering aspects are not captured, and user operations on the

front-end, e.g., inserts, deletes, and adding formulae, are not supported. Indeed, the lack

of awareness makes the integration one-shot, with the current spreadsheet being exported

to the database, with no future interactions supported at either end: thus, in a sense, the

interactivity is lost. Other efforts in this space include that by Cunha et al. [137] to recog-

nize functional dependencies in spreadsheets. Other work has examined the extraction of

structured relational data from spreadsheets [138, 139].

3c. Using a Spreadsheet to Mimic a Database. There has been some work on using

a spreadsheet to pose as traditional database. For example, Tyszkiewicz [140] describes

how to simulate database operations in a spreadsheet. However, this approach loses the

scalability benefits of databases. Bakke et al. [141, 142, 143] support joins by depicting

relations using a nested relational model. Liu et al. [144] use spreadsheet operations to

specify single-block SQL queries; this effort is essentially a replacement for visual query

builders. Recently, Google Sheets [3] has provided the ability to use single-table SQL on its

frontend, without availing of the scalability benefits of database integration. Excel, with its

Power Pivot and Power Query [9] functionality has made moves towards supporting SQL

171

in the front-end, with the same limitations. Like this line of work, we support SQL queries

on the spreadsheet frontend, DataSpread’s functionality goes beyond this, in representing

and manipulating large datasets all on a spreadsheet-like interface.

172

CHAPTER 8: CONCLUSION

This thesis should convince readers of the importance of the advocated research direction

of unifying spreadsheets with databases for enabling ad-hoc interactive data management at

scale. Our system, DataSpread, a concrete realization of the research, offers a valuable

hybrid between spreadsheets and databases, retaining the ease-of-use of spreadsheets, and

the power of databases. The research challenges and their solutions discussed in this thesis

played a significant role in the realization of DataSpread. Chapter 2 discussed the over-

all architecture and system development. The remaining three chapters focused on three

major research challenges for DataSpread. In Chapter 3, we discussed the first problem

of designing a storage engine for persisting spreadsheet data within a relational database.

In Chapter 4, we discussed the problem of ensuing interactivity of computationally heavy

spreadsheets. In Chapter 5, we have generalized the storage problem by quantitatively de-

signing a relational schema based on a workload. In Chapter 6, we presented our vision that

goes beyond direct manipulation, thereby providing a roadmap for future work.

Although DataSpread uses a REACT based interface (originally ZK spreadsheet and

Microsoft Excel) as the front-end and a relational database, specifically PostgreSQL, as the

back-end database, the challenges and insights discussed in this thesis are not limited to this

setting. In fact, any user interface that supports management of big data via an interactive

interface will have to deal with similar challenges.

While we have made significant headway towards supporting direct manipulation on large

datasets, there are a number of challenges that need additional research and engineering

efforts as we discussed in Chapter 6.

173

REFERENCES

[1] B. Grad, “The creation and the demise of VisiCalc,” IEEE Annals of the History of
Computing, vol. 29, no. 3, pp. 20–31, 2007.

[2] https://products.office.com/en-us/excel, “Microsoft Excel, Spreadsheet Software,”

[3] http:/google.com/sheets, “Google Sheets (retrieved March 10, 2015),”

[4] “How finance leaders can drive performance.” https://enterprise.microsoft.com/
en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/.

[5] B. Shneiderman, “Direct Manipulation: A Step Beyond Programming Languages.,”
IEEE Computer, vol. 16, no. 8, pp. 57–69, 1983.

[6] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct Manipulation Interfaces,”
Hum.-Comput. Interact., vol. 1, pp. 311–338, Dec. 1985.

[7] S. G. Powell, K. R. Baker, and B. Lawson, “A critical review of the literature on
spreadsheet errors,” Decision Support Systems, vol. 46, pp. 128–138, Dec. 2008.

[8] R. R. Panko, “What We Know About Spreadsheet Errors,” J. End User Comput.,
vol. 10, pp. 15–21, May 1998.

[9] C. Webb, Power Query for Power BI and Excel. Apress, 2014.

[10] http://www.microsoft.com/en-us/download/details.aspx?id=43348, “Microsoft sql
server power pivot (retrieved march 10, 2015),”

[11] “Microsoft Excel spreadsheet subreddit.” https://www.reddit.com/r/excel/.

[12] K. Mack, J. Lee, K. Chang, K. Karahalios, and A. Parameswaran, “Characterizing
scalability issues in spreadsheet software using online forums,” in SIGCHI, 2018.

[13] E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Commun.
ACM, vol. 13, pp. 377–387, June 1970.

[14] H. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C. Yu,
“Making database systems usable,” in SIGMOD, pp. 13–24, ACM, 2007.

[15] B. Shneiderman, “Improving the human factors aspect of database interactions,” ACM
Transactions on Database Systems (TODS), vol. 3, no. 4, pp. 417–439, 1978.

[16] A. Nandi, “Querying Without Keyboards.,” in CIDR, 2013.

[17] F. Li and H. Jagadish, “Constructing an interactive natural language interface for
relational databases,” VLDB Endowment, vol. 8, no. 1, 2014.

[18] S. Idreos and E. Liarou, “dbTouch: Analytics at your Fingertips.,” in CIDR, 2013.

174

[19] A. Abouzied, J. Hellerstein, and A. Silberschatz, “DataPlay: interactive tweaking and
example-driven correction of graphical database queries,” in UIST, 2012.

[20] “ZK Spreadsheet.” https://www.zkoss.org/product/zkspreadsheet.

[21] P. A. Bernstein, “Synthesizing third normal form relations from functional dependen-
cies,” ACM Trans. Database Syst., vol. 1, no. 4, pp. 277–298, 1976.

[22] R. Fagin, “The decomposition versus synthetic approach to relational database design,”
in Proceedings of the Third International Conference on Very Large Data Bases -
Volume 3, VLDB ’77, pp. 441–446, VLDB Endowment, 1977.

[23] E. F. Codd, “Further normalization of the data base relational model,” IBM Research
Report, San Jose, California, vol. RJ909, 1971.

[24] E. C. Foster and S. V. Godbole, “Integrity rules and normalization,” in Database Sys-
tems, pp. 57–81, Springer, 2014.

[25] P. A. Bernstein, J. R. Swenson, and D. C. Tsichritzis, “A unified approach to functional
dependencies and relations,” Proceedings of the 1975 ACM SIGMOD international
conference on Management of data - SIGMOD ’75, p. 237, 1975.

[26] A. Nandi, L. Jiang, and M. Mandel, “Gestural Query Specification,” VLDB Endow-
ment, vol. 7, no. 4, 2013.

[27] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu, “SnipSuggest: Context-aware
autocompletion for SQL,” VLDB Endowment, vol. 4, no. 1, pp. 22–33, 2010.

[28] B. A. Nardi and J. R. Miller, The spreadsheet interface: A basis for end user program-
ming. Hewlett-Packard Laboratories, 1990.

[29] B. A. Nardi and J. R. Miller, “An ethnographic study of distributed problem solving in
spreadsheet development,” in Proceedings of the 1990 ACM conference on Computer-
supported cooperative work, pp. 197–208, ACM, 1990.

[30] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Scheduling computer
and manufacturing processes. springer science & Business media, 2013.

[31] M. Cox, “Inside Airbnb.” http://insideairbnb.com/get-the-data.html.

[32] J. Callan, M. Hoy, C. Yoo, and L. Zhao, “Clueweb09 data set,” 2009.

[33] B. Klimt and Y. Yang, “Introducing the enron corpus.,” in CEAS, 2004.

[34] A. Lingas, R. Pinter, R. Rivest, and A. Shamir, “Minimum edge length partitioning
of rectilinear polygons.,” in Annual Allerton Conference on Communication, Control,
and Computing, pp. 53–63, 1982.

[35] C. E. L. Cormen, Thomas H. and R. L. Rivest, Introduction to Algorithms. Cambridge.
MA: MIT, 1990.

175

[36] V. Raman, B. Raman, and J. M. Hellerstein, “Online dynamic reordering for interactive
data processing,” in VLDB, vol. 99, pp. 709–720, 1999.

[37] V. Raman, B. Raman, and J. M. Hellerstein, “Online dynamic reordering,” The VLDB
Journal, vol. 9, pp. 247–260, Dec. 2000.

[38] P. G. Brown, “Overview of SciDB: Large Scale Array Storage, Processing and Analy-
sis,” in SIGMOD, pp. 963–968, ACM, 2010.

[39] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The TileDB array data
storage manager,” VLDB, vol. 10, no. 4, pp. 349–360, 2016.

[40] N. Bruno and S. Chaudhuri, “An online approach to physical design tuning,” in ICDE,
pp. 826–835, IEEE, 2007.

[41] N. Bruno and S. Chaudhuri, “To tune or not to tune?: a lightweight physical design
alerter,” in VLDB, pp. 499–510, VLDB, 2006.

[42] S. Idreos, M. L. Kersten, S. Manegold, et al., “Database cracking.,” in CIDR, vol. 7,
pp. 68–78, 2007.

[43] A. Gupta, I. S. Mumick, et al., “Maintenance of materialized views: Problems, tech-
niques, and applications,” IEEE Data Eng. Bull., vol. 18, no. 2, pp. 3–18, 1995.

[44] M. Grund and Kothers, “Hyrise: a main memory hybrid storage engine,” VLDB, vol. 4,
no. 2, pp. 105–116, 2010.

[45] J. Schaffner, A. Bog, J. Krüger, and A. Zeier, “A hybrid row-column oltp database
architecture for operational reporting,” in BIRTE Workshop, pp. 61–74, Springer, 2008.

[46] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al., “C-store: a column-oriented DBMS,” in VLDB,
pp. 553–564, VLDB Endowment, 2005.

[47] S. Papadomanolakis and A. Ailamaki, “Autopart: Automating schema design for large
scientific databases using data partitioning,” in SSDBM, pp. 383–392, IEEE, 2004.

[48] J. Rao, C. Zhang, N. Megiddo, and G. Lohman, “Automating physical database design
in a parallel database,” in SIGMOD, pp. 558–569, ACM, 2002.

[49] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and horizontal partition-
ing into automated physical database design,” in SIGMOD, ACM, 2004.

[50] L. Sun, M. J. Franklin, J. Wang, and E. Wu, “Skipping-oriented partitioning for colum-
nar layouts,” VLDB, vol. 10, no. 4, pp. 421–432, 2016.

[51] Z. Liu and J. Heer, “The effects of interactive latency on exploratory visual analysis,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2014.

176

[52] C. Williams and L. Caputo, “Excel performance: Improving calculation performance.”
https://docs.microsoft.com/en-us/office/vba/excel/concepts/excel-performance/
excel-improving-calcuation-performance, 2017.

[53] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proceed-
ings of the 1984 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’84, (New York, NY, USA), pp. 47–57, ACM, 1984.

[54] J. Culberson and R. Reckhow, “Covering polygons is hard,” Journal of Algorithms,
vol. 17, no. 1, pp. 2 – 44, 1994.

[55] E. L. Lawler, “Sequencing jobs to minimize total weighted completion time subject to
precedence constraints,” in Annals of Discrete Mathematics, vol. 2, pp. 75–90, Elsevier,
1978.

[56] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of scheduling. Courier
Corporation, 2003.

[57] “Spring Framework.” https://spring.io/.

[58] “Memory usage in the 32-bit edition of Excel 2013 and
2016.” https://support.microsoft.com/en-us/help/3066990/
memory-usage-in-the-32-bit-edition-of-excel-2013-and-2016, 2017.

[59] A. V. Kononov, B. M. Lin, and K.-T. Fang, “Single-machine scheduling with supporting
tasks,” Discrete Optimization, vol. 17, pp. 69 – 79, 2015.

[60] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller, “Crowdsourced
databases: Query processing with people,” Cidr, 2011.

[61] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. Widom, “Deco:
declarative crowdsourcing,” in Proceedings of the 21st ACM international conference
on Information and knowledge management, pp. 1203–1212, ACM, 2012.

[62] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[63] D. Models, “Excel’s smart recalculation engine,” 2014.

[64] P. Sestoft, Spreadsheet Implementation Technology: Basics and Extensions. The MIT
Press, 2014.

[65] C. Williams and L. Caputo, “Speeding up calculations and reduc-
ing obstructions.” https://docs.microsoft.com/en-us/office/vba/excel/
concepts/excel-performance/excel-improving-calcuation-performance\
#speeding-up-calculations-and-reducing-obstructions, 2017.

[66] R. Cilibrasi and P. Vitanyi, “Clustering by compression,” IEEE Transactions on In-
formation Theory, vol. 51, no. 4, pp. 1523–1545, 2005.

177

[67] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization methods and
applications: A survey,” ACM Computing Surveys (CSUR), vol. 51, no. 3, p. 62, 2018.

[68] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization with bounded
error,” in Proceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data, pp. 419–432, ACM, 2008.

[69] A. Maccioni and D. J. Abadi, “Scalable pattern matching over compressed graphs via
dedensification,” in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1755–1764, ACM, 2016.

[70] N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From big bang to big
crunch,” in Proceedings of the 2016 International Conference on Management of Data,
pp. 1481–1496, ACM, 2016.

[71] “Overview of excel tables.” https://support.office.com/en-us/article/
overview-of-excel-tables-7ab0bb7d-3a9e-4b56-a3c9-6c94334e492c.

[72] “Excel databases: Creating relational tables.” https://www.pcworld.com/article/
3234335/software/excel-databases-creating-relational-tables.html.

[73] “Internet movie database..” http://www.imdb.com.

[74] J. W. Palmer, “Web site usability, design, and performance metrics,” Information
Systems Research, vol. 13, no. 2, pp. 151–167, 2002.

[75] S. Clemens, “5 Ways To Tell You Have Outgrown Excel.” http://www.insightsquared.
com/2011/06/5-ways-to-tell-you-have-outgrown-excel/.

[76] T. J. Teorey, D. Yang, and J. P. Fry, “A logical design methodology for relational
databases using the extended entity-relationship model,” ACM Comput. Surv., vol. 18,
pp. 197–222, June 1986.

[77] E. F. Codd, “A relational model of data for large shared data banks,” Communications
of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[78] S. McDonald, Y. Waern, and G. Cockton, eds., People and Computers XIV - Usability
or Else. London: Springer London, 2000.

[79] S. Madden, R. Morris, M. Stonebraker, and C. Curino, “6.830 Database Sys-
tems. Fall 2010. Massachusetts Institute of Technology: MIT OpenCourseWare.”
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-830-
database-systems-fall-2010/lecture-notes/MIT6_830F10_lec03.pdf.

[80] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price,
“Access path selection in a relational database management system,” in Proceedings of
the 1979 ACM SIGMOD international conference on Management of data, SIGMOD
’79, (New York, NY, USA), pp. 23–34, ACM, 1979.

178

[81] H. Garcia-Molina, Database systems: the complete book. Pearson Prentice Hall, 2009.

[82] R. Ramakrishnan and J. Gehrke, Database Management Systems. Berkeley, CA, USA:
Osborne/McGraw-Hill, 2nd ed., 2000.

[83] C. Beeri, A. O. Mendelzon, Y. Sagiv, and J. D. Ullman, “Equivalence of relational
database schemes,” in Proceedings of the Eleventh Annual ACM Symposium on Theory
of Computing, STOC ’79, (New York, NY, USA), pp. 319–329, ACM, 1979.

[84] R. Hull, “Relative information capacity of simple relational database schemata,” in
Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of database
systems, pp. 97–109, 1984.

[85] a. V. Aho, a. Beeri, and J. D. Ullman, “The theory of joins in relational data bases,”
18th Annual Symposium on Foundations of Computer Science (sfcs 1977), vol. 4, no. 3,
pp. 297–314, 1977.

[86] C. P. Wang and H. H. Wedekind, “Segment synthesis in logical data base design,” IBM
J. Res. Dev., vol. 19, pp. 71–77, Jan. 1975.

[87] W. W. Armstrong, “Dependency structures of data base relationships.,” in IFIP
Congress, pp. 580–583, 1974.

[88] E. F. Codd, “Recent investigations in relational data base systems,” in IFIP Congress,
pp. 1017–1021, 1974.

[89] R. Fagin, “Multivalued dependencies and a new normal form for relational databases,”
ACM Transactions on Database Systems (TODS), vol. 2, no. 3, pp. 262–278, 1977.

[90] R. Fagin, “Normal forms and relational database operators,” in Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, SIGMOD
’79, (New York, NY, USA), pp. 153–160, ACM, 1979.

[91] J. Biskup, U. Dayal, and P. A. Bernstein, “Synthesizing independent database
schemas,” in Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’79, (New York, NY, USA), pp. 143–151, ACM, 1979.

[92] E. F. Codd, “Further normalization of the data base relational model,” IBM Research
Report, San Jose, California, vol. RJ909, 1971.

[93] C. Beeri, P. A. Bernstein, and N. Goodman, “A sophisticate’s introduction to database
normalization theory,” in Readings in Artificial Intelligence and Databases (J. My-
lopolous and M. Brodie, eds.), pp. 468 – 479, San Francisco (CA): Morgan Kaufmann,
1989.

[94] E. F. Codd, “Further normalization of the data base relational model,” IBM Research
Report, San Jose, California, vol. RJ909, 1971.

179

[95] P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini, “Inclusion and equivalence between
relational database schemata,” Theoretical Computer Science, vol. 19, no. 3, pp. 267 –
285, 1982.

[96] “Postgresql..” http://www.postgresql.org.

[97] “Tpc-c benchmark..” http://www.tpc.org/tpcc/.

[98] “Amazon..” http://www.amazon.com/.

[99] “Twitter..” http://twitter.com/.

[100] S. Papadomanolakis and A. Ailamaki, “Autopart: Automating schema design for large
scientific databases using data partitioning,” in Scientific and Statistical Database Man-
agement, 2004. Proceedings. 16th International Conference on, pp. 383–392, IEEE,
2004.

[101] S. B. Navathe and M. Ra, “Vertical partitioning for database design: a graphical
algorithm,” SIGMOD Rec., vol. 18, pp. 440–450, June 1989.

[102] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and horizontal parti-
tioning into automated physical database design,” in Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, SIGMOD ’04, (New York,
NY, USA), pp. 359–370, ACM, 2004.

[103] G. Sanders and S. Shin, “Denormalization effects on performance of RDBMS,” in
Proceedings of the 34th Annual Hawaii International Conference on System Sciences,
2001, p. 9 pp., Jan. 2001.

[104] Z. Wei, J. Dejun, G. Pierre, C.-H. Chi, and M. van Steen, “Service-oriented data
denormalization for scalable web applications,” in Proceedings of the 17th international
conference on World Wide Web, pp. 267–276, ACM, 2008.

[105] W. H. Inmon, “Denormalize for efficiency,” Computerworld, vol. 21, p. 19, Mar. 1987.

[106] S. Chaudhuri and V. Narasayya, “An efficient, cost-driven index selection tool for
microsoft SQL server,” in Proceedings of the International Conference on Very Large
Data Bases, pp. 146–155, 1997.

[107] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection of material-
ized views and indexes in SQL databases,” in Proceedings of the 26th International
Conference on Very Large Data Bases, pp. 496–505, 2000.

[108] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik, “C-store:
A column-oriented dbms,” in Proceedings of the 31st International Conference on Very
Large Data Bases, VLDB ’05, pp. 553–564, VLDB Endowment, 2005.

180

[109] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear,
“The vertica analytic database: C-store 7 years later,” Proc. VLDB Endow., vol. 5,
pp. 1790–1801, Aug. 2012.

[110] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of overview+ detail, zooming,
and focus+ context interfaces,” ACM Computing Surveys (CSUR), vol. 41, no. 1, p. 2,
2009.

[111] S. Kruck, J. J. Maher, and R. Barkhi, “Framework for cognitive skill acquisition and
spreadsheet training,” Journal of Organizational and End User Computing (JOEUC),
vol. 15, no. 1, pp. 20–37, 2003.

[112] Z. Liu and J. Heer, “The effects of interactive latency on exploratory visual analysis,”
IEEE TVCG, no. 1, pp. 1–1.

[113] S. Gulwani, “Automating string processing in spreadsheets using input-output exam-
ples,” in ACM SIGPLAN Notices, vol. 46, pp. 317–330, ACM, 2011.

[114] V. Le and S. Gulwani, “Flashextract: a framework for data extraction by examples,”
in ACM SIGPLAN Notices, vol. 49, 2014.

[115] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in Acm Sigmod
Record, vol. 26, pp. 171–182, ACM, 1997.

[116] S. Rahman et al., “I’ve seen enough: incrementally improving visualizations to support
rapid decision making,” PVLDB, 2017.

[117] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive visual spec-
ification of data transformation scripts,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 3363–3372, ACM, 2011.

[118] S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey, S. Ceri, B. Croft, D. DeWitt,
M. Franklin, H. G. Molina, D. Gawlick, et al., “The lowell database research self-
assessment,” Commun. ACM, vol. 48, pp. 111–118, May 2005.

[119] A. Nandi and H. V. Jagadish, “Guided interaction: Rethinking the query-result
paradigm,” VLDB Endowment, vol. 4, no. 12, pp. 1466–1469, 2011.

[120] M. Singh, A. Nandi, and H. V. Jagadish, “Skimmer: rapid scrolling of relational query
results,” in SIGMOD, pp. 181–192, ACM, 2012.

[121] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini, “Visual query systems for
databases: A survey,” Journal of Visual Languages & Computing, vol. 8, no. 2, pp. 215–
260, 1997.

[122] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and D. Suciu, “A Case
for A Collaborative Query Management System.,” in CIDR, www.cidrdb.org, 2009.

181

[123] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou, A. Kalinin,
O. Papaemmanouil, and S. B. Zdonik, “Query Steering for Interactive Data Explo-
ration.,” in CIDR, 2013.

[124] L. Qian, K. LeFevre, and H. V. Jagadish, “CRIUS: user-friendly database design,”
VLDB Endowment, vol. 4, no. 2, pp. 81–92, 2010.

[125] C. Yu and H. V. Jagadish, “Schema summarization,” in VLDB Endowment, pp. 319–
330, 2006.

[126] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo,
“VisTrails: visualization meets data management,” in SIGMOD, pp. 745–747, ACM,
2006.

[127] J. Mackinlay, P. Hanrahan, and C. Stolte, “Show me: Automatic presentation for visual
analysis,” TVCG, vol. 13, no. 6, pp. 1137–1144, 2007.

[128] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system for query, analysis, and
visualization of multidimensional relational databases,” TVCG, vol. 8, no. 1, pp. 52–
65, 2002.

[129] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley,
W. Shen, and J. Goldberg-Kidon, “Google fusion tables: web-centered data manage-
ment and collaboration,” in SIGMOD, pp. 1061–1066, ACM, 2010.

[130] https://www.zoho.com/, “Zoho Reports (retrieved March 10, 2015),”

[131] http://www.excel-db.net/, “Excel-DB (retrieved March 10, 2015),”

[132] http://www.blockspring.com/, “Blockspring (retrieved March 10, 2015),”

[133] A. Witkowski, S. Bellamkonda, T. Bozkaya, N. Folkert, A. Gupta, J. Haydu, L. Sheng,
and S. Subramanian, “Advanced SQL modeling in RDBMS,” ACM Transactions on
Database Systems (TODS), vol. 30, no. 1, pp. 83–121, 2005.

[134] A. Witkowski, S. Bellamkonda, T. Bozkaya, A. Naimat, L. Sheng, S. Subramanian,
and A. Waingold, “Query by excel,” in VLDB, pp. 1204–1215, 2005.

[135] https://www.1010data.com/, “1010 Data (retrieved March 10, 2015),”

[136] https://www.airtable.com/, “Airtable (retrieved March 10, 2015),”

[137] J. Cunha, J. Saraiva, and J. Visser, “From Spreadsheets to Relational Databases and
Back,” in SIGPLAN, PEPM ’09, (New York, NY, USA), pp. 179–188, ACM, 2009.

[138] Z. Chen and M. Cafarella, “Automatic web spreadsheet data extraction,” in Proceedings
of the 3rd International Workshop on Semantic Search Over the Web, pp. 1:1–1:8,
ACM, 2013.

182

[139] Z. Chen, M. Cafarella, J. Chen, D. Prevo, and J. Zhuang, “Senbazuru: A prototype
spreadsheet database management system,” VLDB, vol. 6, no. 12, pp. 1202–1205, 2013.

[140] J. Tyszkiewicz, “Spreadsheet as a relational database engine,” in SIGMOD, pp. 195–
206, ACM, 2010.

[141] E. Bakke and D. R. Karger, “Expressive query construction through direct manipula-
tion of nested relational results,” in SIGMOD, ACM, 2016.

[142] E. Bakke et al., “A spreadsheet-based user interface for managing plural relationships
in structured data,” in CHI, pp. 2541–2550, ACM, 2011.

[143] E. Bakke and E. Benson, “The Schema-Independent Database UI: A Proposed Holy
Grail and Some Suggestions.,” in CIDR, 2011.

[144] B. Liu and H. V. Jagadish, “A spreadsheet algebra for a direct data manipulation
query Interface,” pp. 417–428, IEEE, Mar. 2009.

183

