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Abstract

To have transitive preferences, for any options x, y, and z, one who prefers x to y and y to z must prefer x

to z. Transitivity of preferences is a very fundamental element of utility and plays an important role in many

major contemporary theories of decision making under risk or uncertainty. One has to be very careful about

claiming violations of transitivity of preferences. In my thesis, I present a comprehensive analysis of several

decision heuristics that permit intransitive preferences: the lexicographic semiorder model (Tversky, 1969),

the similarity model (Rubinstein, 1988), and perceived relative argument model (PRAM, Loomes, 2010a),

as well as several transitive decision theories: the linear order model and 49 versions of Cumulative Prospect

Theory (CPT, Tversky and Kahneman, 1992a). For each decision theory, I use two kinds of probabilistic

specifications to explain choice variability: a distance-based probabilistic specification models preferences

as deterministic and response processes as probabilistic, and a mixture specification models preferences as

probabilistic and response processes as deterministic. I test these probabilistic models on data sets from

different experiments, using both frequentist (Davis-Stober, 2009, Iverson and Falmagne, 1985, Silvapulle

and Sen, 2005) and Bayesian (Myung et al., 2005) order-constrained, likelihood-based statistical inference

methods. This thesis is one of the largest scale projects for a systematic evaluation of both transitive and

intransitive decision theories. The quantitative analyses in this paper consumed about 822,000 CPU hours

on Pittsburgh Supercomputer Center’s Blacklight, Greenfield, and Bridges supercomputers, as an Extreme

Science and Engineering Discovery Environment project (see also, Towns et al., 2014). Individual model

selection using Bayes factors shown extensive heterogeneity across participants and stimulus sets. In general,

the overall conclusion is that Cumulative Prospective Theory and Perceived Relative Argument Model was

systematically violated, and the intransitive heuristics performed reasonable well.

ii



To my parents,

Yumei Ding and Zhizhong Guo,

And my husband,

Weihua Zheng,

And my kids,

Tyler and Staci,

For making me who I am today.

iii



Acknowledgments

I thank Dr. Michel Regenwetter for his insights and assistance in the preparation of this paper. I thank
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Chapter 1

A Literature Review of Intransitive
Theories of Decision Making under
Risk or Uncertainty

1.1 Introduction

To have transitive preferences, for any options x, y, and z, one who prefers x to y and y to z must prefer x

to z. Transitivity of preferences plays an important role in many major contemporary theories of decision

making under risk or uncertainty, including nearly all normative, prescriptive, and even descriptive theories.

Most theories use an overall utility value for each gamble and assume that a decision maker prefers gambles

with higher utility values; in other words, most theories imply transitivity of preferences. These theories

include expected utility theory (Bernoulli, 1738), prospect theory (Kahneman and Tversky, 1979), and

Cumulative Prospect Theory (CPT, Tversky and Kahneman, 1992b). Transitivity of preferences is a very

fundamental element of utility, and abandoning it means questioning nearly all theories that rely on this

element. Moreover, transitivity of preferences is important because when a decision maker’s preferences are

not transitive (i.e., intransitive or irrational), he risks becoming a “money pump” (Bar-Hillel and Margalit,

1988, Block et al., 2012) and losing his entire wealth. However, in the past few decades, researchers have

provided much empirical evidence and seem to have agreed that transitivity of preferences is violated in

human and animal decision makers (see, e.g., Brandstätter et al., 2006, González-Vallejo, 2002, Loomes

and Sugden, 1987, Tversky, 1969). Transitivity of preferences is very central to many prominent theories

in psychology and economics, and we have to be very careful about claiming violations of transitivity of

preferences.

Overall, this paper reviews several major intransitive theories of decision making under risk or uncertainty,

summarizes the empirical studies testing these theories, and discusses some methodological problems with

these studies. I start with the latter.

1



1.2 Methodological Problems

In this section, I will discuss some common methodological flaws in the studies testing transitivity and/or

intransitivity of preferences. As I mention above, many scholars have claimed that transitivity of preferences

is violated in human and animal decision makers. However, in the studies where researchers concluded

violations of transitivity of preferences, there are pervasive methodological problems in collecting, modeling,

and analyzing the empirical data. In fact, by default, it is easier to violate transitivity of preferences

(i.e., satisfy intransitivity of preferences). For example, when people choose from all ten possible pairwise

comparisons of five objects, there are only 120 transitive preferences whereas there are 904 intransitive

preferences; there are much more intransitive preference patterns than transitive ones (Regenwetter et al.,

2011a). When we collect no data, the “a priori” is that people have intransitive preferences. Therefore, any

claims of empirical violations of transitivity of preferences require rigorous evidence.

Before I discuss the methodological problems, I will illustrate one example of rigorous testing of tran-

sitivity of preferences. Preference is defined as people’s attitude towards a set of items and used by many

theories in psychology and economics (Lichtenstein and Slovic, 2006); it is a theoretical concept that we

cannot directly observe. What we can observe and study in an experimental paradigm are pairwise choices.

As Tversky (1969) mentioned, when a person is faced with the same choice options repeatedly, he does

not always choose the same option. Tversky modeled choices as probabilistic. We need to figure out how

variable choices are related to the underlying preferences.

To be more specific, transitivity of preferences is an algebraic property and decision theories are usually

stated in deterministic terms. At the same time, experimental research collects variable choice data. How

can one test an algebraic theory using probabilistic data? Luce (1959, 1995, 1997) presented a two-fold

challenge for studying algebraic decision theories. The first part of the challenge is to specify a probabilistic

extension of an algebraic theory, a problem that has been discussed by many scholars (Carbone and Hey,

2000, Harless and Camerer, 1994, Hey, 1995, 2005, Hey and Orme, 1994, Loomes and Sugden, 1995, Starmer,

2000, Tversky, 1969). The second part of the challenge is to test the probabilistic specifications of the theory

with rigorous statistical methods, a problem that was only solved in the past decade with a breakthrough

in order-constrained, likelihood-based inference (Davis-Stober, 2009, Myung et al., 2005, Silvapulle and Sen,

2005). In order to perform an appropriate and rigorous test of transitivity of preferences, researchers have

to solve Luce’s challenges. However, very few studies in the existing literature offer convincing solutions.

Regenwetter et al. (2014) provided a general and rigorous quantitative framework for testing theories

of binary choice, which one can use to test transitivity of preferences. To solve the first part of Luce’s

challenge, they presented two kinds of probabilistic specifications of algebraic models to explain choice
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variability: the distance-based probabilistic specification models preferences as deterministic and views the

observed variation in binary choice as errors/trembles, which is also called an error model; the mixture-

based probabilistic specification (i.e., random preference) models preferences as probabilistic and views the

observed variation in binary choice as variation in preferences or a reflection of uncertain preferences. For

the second part of Luce’s challenge, Regenwetter et al. (2014) employed order-constrained, likelihood-based

statistical tests, with both the frequentist and Bayesian likelihood-based statistical inference framework

for binary choice data with order-constraints on each choice probability (Davis-Stober, 2009, Iverson and

Falmagne, 1985, Myung et al., 2005, Silvapulle and Sen, 2005).

Now, I go back to the methodological problems in the existing literature about transitivity. One problem-

atic approach some studies employed is pattern counting, which involves counting suspicious observations,

such as the number of cyclical choice triplets among a group of participants — this number is used to

represent the degree of intransitivity (Bradbury and Nelson, 1974, Chen and Corter, 2006, Gonzalez-Vallejo

et al., 1996, Mellers et al., 1992, Riechard, 1991). Regenwetter et al. (2010, 2014) showed that the degree

of intransitivity is not monotonically related to the goodness of fit of a probabilistic model of transitivity.

In other words, a large number of cyclical choice patterns does not mean a significant violation of a model

of transitivity. Thus, any conclusions derived from pattern counting as the data analysis method are in

question.

Other studies combine pattern counting with hypothesis testing, in which the hypotheses are wrongly

specified. For example, one commonly used hypothesis is that certain intransitive patterns occur significantly

more often than expected by chance. Regenwetter et al. (2010) showed that this approach could lead to a

conclusion that preferences are intransitive, and at the same time, to the conclusion that they are consistent

with transitivity on the same data, which is paradoxical. Another commonly used hypothesis is that a

predicted cyclical pattern occurs significantly more often than its reverse (Loomes et al., 1991). Regenwetter

et al. (2010) pointed out that the probability of the predicted cyclical pattern could be close to zero, but

as long as the predicted cycle occurs significantly more often than its reverse, researchers would conclude

that there is evidence for violations of transitivity. However, such evidence does not seem to tell how well

transitive theories can account for people’s choices.

Another common problematic approach is to conduct multiple binomial tests. For example, one could

use two separate binomial tests to see: whether the probability of x chosen over y is larger than 1
2 and

the probability of y chosen over z is larger than 1
2 . Such tests would inflate Type I error (McNamara

and Diwadkar, 1997, Schuck-Paim and Kacelnik, 2002, Shafir, 1994, Waite, 2001); in other words, one may

accumulate false significant results. One may use the Bonferroni correction to fix Type I error, but doing
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so would reduce the power rapidly (Hays, 1988). The solution is to test all constraints simultaneously

(Regenwetter et al., 2014).

Another mistake that many empirical decision studies have made is that researchers often use between-

participant modal choice (i.e., which choice alternative do most participants choose?). The Condorcet

Paradox of social choice theory shows that even when each individual in a group has transitive preferences,

the aggregated preferences by the majority rule can be intransitive and, therefore, the majority choices

can be cyclical (Condorcet, 1785). In other words, a group can choose A over B, B over C and C over

A, even though no individuals would make these choices. Hence, any conclusions derived from aggregating

data among participants are not trustworthy. Theories of individual decision making would best be tested

separately for each individual. Overall, scholars who doubt that preferences are transitive should formulate

parsimonious alternatives and test those rigorously. We now proceed to consider such theories.

There are six major prominent intransitive theories of decision making under risk and uncertainty in

the literature. The rest of the paper reviews each one of them: Section 1.3 reviews the additive difference

model (Tversky, 1969) and its special cases; Section 1.4 discusses Regret Theory (Loomes and Sugden, 1982,

1987); Section 1.5 reviews three different heuristic models: lexicographic semiorder models (Tversky, 1969),

similarity models (Leland, 1994, Rubinstein, 1988), and the priority heuristic (Brandstätter et al., 2006);

Section 1.6 discusses the perceived relative argument model (Loomes, 2010b).

1.3 Additive Difference Model

Tversky (1969) introduced an additive difference model (also proposed by Morrison, 1962) to describe peo-

ple’s preferences when making decisions under uncertainty. The additive difference model predicts intran-

sitive preferences for alternatives with multiple attributes/dimensions. The model is compensatory in the

sense that the attractive attributes of an alternative can compensate for the less attractive ones.

Let x and y be two alternatives with elements of the form x = (x1, . . . , xn) and y = (y1, . . . , yn),

where xi (i = 1, . . . , n) is the value of alternative x on dimension i and yi is the value of alternative y on

dimension i. For example, a dimension/attribute of a gamble can be a monetary outcome or a probability

of a monetary outcome. Suppose that ui is a real-valued utility function, φi is a real-valued, increasing,

and continuous difference function, and x � y means that the decision maker prefers x to y. The additive

difference model predicts the following:

x � y ⇔
n∑

i=1

φi

(
ui(xi)− ui(yi)

)
> 0, (1.1)
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where φi(−r) = −φi(r), for all i.

In the additive difference model, the alternatives are first processed by making within-attribute evaluations.

Next, the results of these within-attribute comparisons are added up to determine the preference.

Let ε > 0 be a threshold value. One example of step functions works as follows:

f(r) =

{
1, when r > ε;

0, when r ≤ ε.

When one or more of the difference functions φi in Display 1.1 are step functions, the similarity model (which

will be discussed in Section 1.5) is a special case of the additive difference model.

Tversky (1969) stated the following theorems to indicate when transitivity holds for the additive difference

model.

• For n ≥ 3, transitivity holds if and only if all the difference functions φi in Display 1.1 are linear (i.e.,

φi(r) = tir, for some positive ti and for all i).

• For n = 2, transitivity holds if and only if the difference functions φ1 and φ2 applied to the two

dimensions are identical except for a change of unit (i.e., φ1(r) = φ2(sr)).

• For n = 1, transitivity is always satisfied.

In other words, if none of the three conditions specified above holds, transitivity must be violated somewhere

for the additive difference model.

Both Luce (1978) and Fishburn (1980) proposed the lexicographic additive difference model for alter-

natives with two attributes, because they did not think that the additive difference model captures the

lexicographic character of some choices. The lexicographic additive difference model imposes a lexicographic

ordering on the attributes while also using the additive difference model. When the within-attribute differ-

ence does not exceed the threshold on that attribute, the decision maker uses an additive difference structure.

Suppose x = (x1, x2) and y = (y1, y2), where x1 and y1 are the dominant attribute (the first considered

attribute by a lexicographic ordering) of x and y, respectively. Luce (1978) used within-threshold additivity

for the following representation, in which δ is a real-valued function of dominant attribute x1 and y1, and

the difference function φ in Display 1.1 is linear:
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x � y ⇔





u1(x1) > u1(y1) + δ(y1),

or

u1(x1) ≤ u1(y1) + δ(y1) & u1(y1) ≤ u1(x1) + δ(x1) & u1(x1) + u2(x2) > u1(y1) + u2(y2).

Fishburn (1980) used the within-threshold additive differences for the following representation, in which

ε is a positive threshold value.

x � y ⇔





u1(x1) > u1(y1) + ε,

or

|u1(x1)− u1(y1)| ≤ ε & φ1(u1(x1)− u1(y1)) + φ2(u2(x2)− u2(y2)) > 0.

Luce (1978) used a “variable” lexicographic threshold (i.e., a function δ of x1 and y1) and Fishburn

(1980) used a “constant” lexicographic threshold (i.e., a fixed threshold ε).

Bouyssou and Vansnick (1986), Fishburn (1990, 1991), and Vind (1991) considered the mathemati-

cal properties of the earlier models and showed that those models can be generalized to a more general

class. The nontransitive additive skew symmetric model is obtained by relaxing the subtractivity re-

quirements in Display 1.1. Suppose wi is a real-valued function on attribute i and skew symmetric (i.e.,

wi(xi, yi) + wi(yi, xi) = 0). The nontransitive additive skew symmetric model predicts:

x � y ⇔
n∑

i=1

wi(xi, yi) > 0. (1.2)

Fishburn (1992) added a positive weight πi for each dimension where
∑n

1 πi = 1, and assumed the same

utility function u for all the attributes. Hence, Display 1.1 becomes the following:

x � y ⇔
n∑

i=1

πiφi

(
u(xi)− u(yi)

)
> 0. (1.3)

Fishburn explained a topological approach to derive Display 1.3 from Display 1.2.

Butler (1998) adapted the additive difference model to the case of gambles with state-contingent conse-

quences. This special case of the additive difference model works in the following way. First, Butler defined

each attribute i as a “state of the world” and assumed that each attribute i has a probability πi. Second,

Butler interpreted each φi in Display 1.1 as a product of the form φi = πiφ, using a fixed φ. The difference

utility function φ is constant across attributes and is assumed to take the form of a power function, such

as φ(r) = rβ , where β > 0. Third, Butler assumed the subjective utility function u to be linear. Fourth,
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Butler normalized the magnitudes of the differences of two gambles on an attribute as fractions of the largest

attribute in the gamble pairs (i.e., max = max
{
∪ni=1{xi, yi}

}
). Still using the two alternatives x and y, the

special case predicts:

x � y ⇔
∑

i:xi>yi

πi

(
xi − yi
max

)β
>

∑

i:yi>xi

πi

(
yi − xi
max

)β
. (1.4)

Butler (1998) derived a n-act version of Display 1.4 and demonstrated that the n-act version is the choice-

rule equivalent of a generalized form of “Regret Theory” (for details of “Regret Theory,” please refer to

Section 1.4).

Bouyssou and Pirlot (2002, 2004) studied the additive difference model while replacing additivity and

subtractivity by decomposability requirements. Suppose F is a function that increases in all its arguments.

The decomposable model predicts the following:

x � y ⇔ F
(
u1(x1), . . . , un(xn)

)
> F

(
u1(y1), . . . , un(yn)

)
.

Bouyssou and Pirlot (2002, 2004) proposed the nontransitive decomposable model, where wi is a real-valued

function on the attribute i and skew symmetric. The model works as follows:

x � y ⇔ F
(
w1(x1, y1), . . . , wn(xn, yn)

)
> 0.

The nontransitive decomposable model could be viewed both as a generalization of the decomposable model

by dropping transitivity and as a generalization of the nontransitive additive skew symmetric model by

dropping additivity. Bouyssou and Pirlot (2002, 2004) stated several axioms for this model.

In sum, this section introduced the additive difference model and its variations. The family of additive

difference models only models preferences and is purely algebraic and deterministic. I have not found any

studies testing these models empirically; therefore, no data have been collected to test these models. One

paper, Tversky (1969), specified a probabilistic specification for the additive difference model. Let F be any

normal or logistic distribution function, and the probabilistic model works as follows:

P (x, y) = F

(
n∑

i=1

φi[ui(xi)− ui(yi)]
)
.

However, Tversky did not collect any data or perform any statistical tests for this model. All of these

papers in this section focus on theoretical aspects, mathematical structure, and properties of the family of

the additive difference models. Because no data have been ever collected and no statistical analysis has

ever been performed, we have yet to investigate whether these models can help better understand human
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behavior.

1.4 Regret Theory

Loomes and Sugden (1982) started from the premise that a decision maker feels disappointed and experiences

regret when he makes a choice and finds out that the other choice would have led to a better outcome. They

tried to model this idea and named their theory Regret Theory. Almost at the same time, Bell (1982,

1983) independently suggested that incorporating regret into decision theory would help predict a decision

maker’s behavior better than expected utility theory. Both Loomes and Sugden (1982) and Bell (1982, 1983)

developed Regret Theory to explain some paradoxes and effects that cannot be explained by prospect theory

(Kahneman and Tversky, 1979), such as the Allais paradox. In the Allais paradox, there are two gamble

pairs:

Gamble 1A: ($1 million, 100%) vs. Gamble 1B: ($5 million, 11%; $1 million, 89%; $0, 1%)

Gamble 2A: ($1 million, 11%; $0, 89%) vs. Gamble 2B: ($5 million, 10%; $0, 90%)

Allais paradox within a person is defined as choosing 1A and 2B or choosing 1B and 2A. Most people choose

Gamble 1A over Gamble 1B, whereas a majority of people select Gamble 2B over Gamble 2A. Loomes and

Sugden (1982) and Bell (1982) used Regret Theory to explain the Allais paradox. They stated that in

the first choice, people may feel angry or regret if they take the gamble over the sure $1 million; however,

in the second choice, regret plays little or no role. Please note that in published analyses of the Allais

paradox, researchers typically use the aggregated data among a group of participants. This is susceptible to

aggregation artifacts. We do not know how many people actually make individual choices like those in the

Allais paradox.

In Regret Theory, preferences are defined over actions. An action is an n-tuple of consequences (one

consequence for each state of the world) and decision makers know all possible consequences. Regret theory

applies to a very specific type of decision: no matter what decision people make, they find out the consequence

of their choice as well as those of the other choice options that they have not picked. For example, people

decide whether to take an umbrella before they go outside. In either case, they find out what the result

would have been otherwise. For instance, if a person does not take an umbrella and it rains, he gets wet and

regrets not having the umbrella. Often in our daily life, we find out the consequences of both the choices we

made and the choices we could have made.

Suppose there are a finite number n states of the world. Each state i has probability πi, where 0 < πi ≤ 1

and
∑n

1 πi = 1. These probabilities may be subjective probabilities that represent the decision maker’s
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confidence in the occurrence of the states or objective probabilities which the decision maker knows about.

I write zji for the consequence of action j in the event that state i occurs. Suppose a decision maker faces

the choice between two actions A1 = (z11, π1; . . . ; z1n, πn) and A2 = (z21, π1; . . . ; z2n, πn). If he chooses A1

and state i occurs, then he receives the consequence z1i. The decision maker experiences z1i and knows that

he has missed out on z2i (i.e., the forgone act) because of his decision. If he had chosen A2, he would have

received z2i. The decision maker experiences regret or rejoicing based on the comparison of z1i and z2i. If z1i

is smaller than z2i , he experiences the unpleasant sensation of regret due to the feeling of a loss; otherwise,

he experiences the pleasant sensation of rejoicing when he has done better than he might have otherwise.

Regret theory can predict some effects/paradoxes that could not be explained by prospect theory, such as

the Allais paradox, the certainty effect (Tversky and Kahneman, 1986), and certain kinds of intransitive

preferences.

Suppose there is a difference function ψ, and Z represents a set of consequences. For all r and s ∈ Z ,

r � s ⇔ ψ(r, s) ≥ 0. Regret theory (Loomes and Sugden, 1982) predicts that

A1 � A2 ⇔
n∑

i=1

πiψ(z1i, z2i) ≥ 0. (1.5)

If ψ is linear, Regret Theory is equivalent to expected utility theory. The function ψ also satisfies three

restrictions.

• ψ is strictly increasing in its first argument and non-decreasing in its second: for all r, s and t ∈ Z,

if ψ(r, s) ≥ 0, then ψ(r, t) ≥ ψ(s, t). In other words, ψ(s, t) increases when the consequence s is

substituted with a prefered consequence r.

• ψ is skewed symmetrically: for all r and s ∈ Z, ψ(r, s) = −ψ(s, r).

• ψ is a convex function: for all r, s, and t ∈ Z, if ψ(r, s) > 0, ψ(r, t) > 0, and ψ(s, t) > 0, then

ψ(r, t) > ψ(r, s) + φ(s, t). This property is also referred to as regret aversion and it postulates a

disproportionate aversion to large regrets.

Let g, h ∈ (1, . . . , n). Suppose ag and bh are consequences of gambles, where ag and bh ∈ Z. Let pg be

the probability of the consequence ag, and qh be the probability of the consequence bh. Now, a decision

maker has to choose between two gambles, G = (a1, p1; . . . ; an, pn) and H = (b1, q1; . . . ; bn, qn). Using the

function ψ in Display 1.5, the skew-symmetric bilinear function (Fishburn, 1991) is defined as follows:

G � H ⇔
n∑

g=1

n∑

h=1

pgqhψ(ag, bh) ≥ 0. (1.6)
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When a decision maker chooses between two gambles, G and H, one needs to define the matrix of

state-contingent consequences in order to use Regret Theory to predict his choice. Please recall that the

probability πi in Display 1.5 represents the probability for each state i. If the probability distributions of

the consequences of Gambles G and H — (p1, . . . , pn) and (q1, . . . , qn) — are statistically independent, one

can define n × n states of the world. For a state where Gamble G yields ag and Gamble H yields bh, the

state occurs with the probability pgqh. Putting together all the information in Display 1.5,

G � H ⇔
n∑

g=1

n∑

h=1

pgqhψ(ag, bh) ≥ 0.

This formula is exactly the same as Display 1.6. The skew-symmetric bilinear function is equivalent to Regret

Theory when the probability distributions of the consequences of a gamble pair are statistically independent

(Loomes and Sugden, 1987).

Loomes et al. (1991), Loomes and Taylor (1992), Starmer and Sugden (1998), and Humphrey (2001)

reported experimental results supporting Regret Theory. They tested Regret Theory against empirical data

by providing evidence that the regret cycle predicted by Regret Theory occurs more often than its reverse

among all the participants. As mentioned in Section 1.2, this hypothesis is problematic and cannot tell

whether Regret Theory accounts for those participants’ choices. Also, these studies used the aggregated

data from a group of participants. Pooled data are susceptible to aggregation artifacts and do not tell us

about the individual performance. Therefore, we cannot conclude anything about whether Regret Theory

can explain people’s behavior.

The key component of Regret Theory is that it assumes that regret and rejoicing can influence the

satisfaction a decision maker experiences from his choice. Researchers have suggested that when participants

learn about a forgone act, they feel better if their outcome is better and they feel worse if their outcome

is worse. This claim has been supported using psychological (Inman et al., 1997, Mellers et al., 1999),

physiological (Camille et al., 2004), and neurophysiological evidence (Coricelli et al., 2005).

Humphrey (2004) provided a modified version of Regret Theory, the feedback-conditional Regret

Theory. Image a decision maker still faces the option of two actions, A1 = (z11, π1; . . . ; z1n, πn) and

A2 = (z21, π1; . . . ; z2n, πn). There are two different utility functions in feedback-conditional Regret The-

ory, m(·, ·) and o(·, ·). The function m(·, ·) shows the anticipated utility when the chosen option fully reveals

the state of the world, which is what Regret Theory models. The function o(·, ·) describes the anticipated

utility when the chosen option does not fully reveal the state of the world. Three restrictions are imposed

on these two utility functions.
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1. For all r, s ∈ Z (where Z represents a set of consequences), if r > s, then m(r, s) > o(r, s). This

property means that people experience more rejoicing when the state of the world is fully revealed.

2. For all r, s ∈ Z, if r > s, then m(s, r) < o(s, r). This property means that people experience more

regret when the state of the world is not fully revealed.

3. For all r, s ∈ Z, if r > s, then o(s, r)−m(s, r) > m(r, s)− o(r, s). This property means that revealing

the state of the world has greater impact on the anticipated regret than rejoicing.

The feedback-conditional Regret Theory describes a modified function M(·, ·), which describes the modified

anticipated utility of having chosen z1i and having missed out on z2i as the forgone act, when state i

occurs. Humphrey (2004) described the difference function ψ in Display 1.5 as ψ(z1k, z2k) = M(z1k, z2k)−

M(z2k, z1k). The modified function M(·, ·) in feedback-conditional Regret Theory is written as M(·, ·) =

m(·, ·) + o(·, ·). Humphrey reported the empirical implications of feedback-conditional Regret Theory but

did not provide any statistical tests of this theory.

Birnbaum and Schmidt (2008) tested Regret Theory and a special case of Regret Theory. They considered

the case when the difference function ψ in Display 1.5 becomes

ψ(z1i, z2i) =





1, when z1i > z2i,

0, when z1i = z2i,

−1, when z1i < z2i.

This special case of Regret Theory is called the majority rule or the most probable winner model. Birnbaum

and Schmidt employed a model to test both Regret Theory and the majority rule, called a “true and error

model.” A true and error model assumes that each choice has a different but fixed error rate and each person

has a different but fixed true preference pattern. The error rate for a choice is estimated from preference

reversals between repeated presentations of the same choice using a chi-square statistical test. Birnbaum and

Schmidt used 15 gamble pairs in their experiment and repeated each pair twice. They concluded that the

occasional errors that occurred during the participants’ decision processes could explain the cyclical choices

of the participants. Birnbaum and Schmidt found that few participants showed a repeated intransitive

pattern. They concluded that their data did not support Regret Theory. However, Birnbaum and Schmidt

used a true and error model to analyze his data, which requires knowing which observations to glue together

to make a pattern. In other words, the true and error model requires artificial “blocking.” The analysis

results can change with different ways of blocking (Cha et al., 2013). Because this true and error model is
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problematic, we do not know much about the performance of Regret Theory and majority rule from the

study by Birnbaum and Schmidt (2008).

Raeva et al. (2010) studied how regret and rejoicing impact people’s decisions for intertemporal choices.

They asked participants to make a risky decision prior to choosing between an intertemporal pair. They

provided feedback on the risky decision, triggering the decision maker to experience regret or rejoicing before

choosing between these intertemporal choice options. Raeva et al. (2010) concluded that regret and rejoicing

experienced prior to an intertemporal choice influence the way people relate to the future; the experience of

regret makes people more unwilling to wait, whereas the experience of rejoicing makes people more willing

to wait.

Baillon et al. (2015) investigated Regret Theory using a true and error model (Birnbaum and Schmidt,

2008) on both pooled and individual data.. They found that the pooled data showed regret aversion, whereas

the individual data showed both regret aversion and rejoicing seeking. Baillon et al. found no evidence that

a regret cycle occurred more often at either the pooled or the individual level. They reported that there

was no correlation between the number of regret cycles and regret aversion, and concluded there was little

evidence of intransitive choices when a true and error model was used. The conclusions in the studies of

Baillon et al. (2015) are not trustworthy, as they employed some problematic test methods, such as pattern

counting with a wrong hypothesis that regret cycles occur more often than its reverse, and a true and error

model with arbitrary blocking.

In summary, most of the papers studying Regret Theory tested the hypothesis that the regret cycle

occurs more often than its reverse, and used data pooled across participants. As discussed in Section 1.2,

the hypothesis that the regret cycle occurs more often than its reverse is problematic. The probability of the

predicted cyclical pattern could be close to zero, but as long as the predicted cyclical pattern occurs signifi-

cantly more often than its reverse cycle, researchers would conclude that there is evidence to support Regret

Theory. Aggregating data among participants is also problematic because of the potential for aggregation

artifacts. Thus, we still do not know much about whether Regret Theory can explain human behavior.

Regret theory models deterministic hypothetical constructs. Birnbaum and Schmidt (2008) and Baillon

et al. (2015) specified a probabilistic model of Regret Theory and tested the probabilistic specification using

a true and error model (Birnbaum, 2004, Birnbaum and Gutierrez, 2007). However, the assumption of

blocking in the true and error model has been questioned (Cha et al., 2013, Regenwetter et al., 2011b).

Even though Regret Theory models decisions under uncertainty and is specified in terms of the state of

the world, one could still use gamble pairs to test Regret Theory. I have shown that when the probability

distributions of the consequences of a gamble pair are independent, then the skew-symmetric bilinear function
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is equivalent to Regret Theory (Loomes and Sugden, 1987). In general, one could design an experiment with

appropriate stimuli, collect repeated choices for each participant, specify different probabilistic models of

Regret Theory, and test the probabilistic models of Regret Theory against laboratory data using order-

constrained, likelihood-based inference methods (Regenwetter et al., 2014).

1.5 Heuristic Models

In this section, I review three intransitive heuristic models, including lexicographic semiorder models (Tver-

sky, 1969), similarity models (Leland, 1994, Rubinstein, 1988), and the priority heuristic (Brandstätter et al.,

2006). These three intransitive heuristic models are illustrated using Tversky’s (1969) stimulus set (for de-

tails, see Panel A of Table 1.1). Tversky’s stimulus set comprises five different gambles: a, b, c, d, and e.

Alternative x is written as x = (x1, . . . , xn) , where xi (i = 1, . . . , n) is the value of alternative x on di-

mension i. In Tversky’s stimulus set, there are four dimensions (n = 4) in each gamble—(x1, x2, x3, x4)—in

which x1 is the maximum gain, x2 is the probability of the maximum gain, x3 is the minimum gain (x3 = $0

in Tversky’s gambles), and x4 is the probability of minimum gain (x4 = 1− x2). For example, Gamble a is

written as
(
$5, 7

24 ; $0, 1724
)
, which states that a decision maker has a 7

24 chance winning $5 and a 17
24 chance

winning nothing. The gambles are designed such that the expected values increase in the probabilities of

maximum gains, whereas they decrease in the maximum gains. The probability of maximum gain of each

gamble increases in equal steps
(

1
24

)
, whereas the maximum gain of the corresponding gamble decreases in

equal steps ($0.25). Employing these gambles, Tversky attempted to learn whether intransitive preferences

could be produced and whether the participants would satisfy a lexicographic semiorder model.

1.5.1 Lexicographic Semiorder Model

Tversky (1969) defined a lexicographic semiorder model as follows: a semiorder (Luce, 1956) or a just

noticeable difference structure is imposed on a lexicographic ordering. Lexicographic semiorder models are

intransitive heuristic decision models.

In this paragraph, I will explain how a lexicographic semiorder works. Suppose a decision maker is asked

to choose between two alternatives x and y, where x = (x1, . . . , xn) and y = (y1, . . . , yn). I use x �i y to

denote that a decision maker prefers x to y on attribute i, x ≺i y to denote that the decision maker prefers y

to x on attribute i, and x ∼i y to denote that the decision maker is indifferent between x and y on attribute

i. A lexicographic semiorder model works as follows:

1. The decision maker considers gamble attributes sequentially, for example, first the maximum gain and

then the probability of maximum gain, or first the probability of maximum gain and then the maximum
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Table 1.1: Tversky’s (1969) gambles. Panel A shows the probabilities of maximum gains, maximum gains, and
expected values for each of the five gambles. Panel B shows the differences in the probabilities of maximum gains
among pairs. Panel C shows the differences of the maximum gains among pairs. Panel D shows an example of the
binary preference relation predicted by a lexicographic semiorder model. Panel E shows an example of the binary
preference relation predicted by a similarity model.

Panel A: Tversky’s (1969) gambles

Lottery Prob. of gain Gain (in $) Expected value (in $)
a 7/24 5.00 1.46
b 8/24 4.75 1.58
c 9/24 4.50 1.69
d 10/24 4.25 1.77
e 11/24 4.00 1.83

Panel B: The probability of maximum gain differences (column-row)

Lottery a b c d e
a - 1/24 2/24 3/24 4/24
b - 1/24 2/24 3/24
c - 1/24 2/24
d - 1/24

Panel C: The maximum gain differences (row-column)

Lottery a b c d e
a - $.25 $.50 $.75 $1
b - $.25 $.50 $.75
c - $.25 $.50
d - $.25

Panel D: A lexicographic semiorder1

Binary preference relation
Lottery a b c d e

a - ∼ � � ≺
b - ∼ � �
c - ∼ �
d - ∼

Panel E: A similarity model2

Preferences by probability
lottery a b c d e

a - ∼ ∼ ∼ ≺
b - ∼ ∼ ∼
c - ∼ ∼
d - ∼

Preferences by gain
lottery a b c d e

a - ∼ � � �
b - ∼ � �
c - ∼ �
d - ∼

Binary preference relation
Lottery a b c d e

a - ∼ � � ∼
b - ∼ � �
c - ∼ �
d - ∼

1. It is the binary preference pattern predicted by a lexicographic semiorder model if a decision maker considers the probabilities
before the maximum gains, and uses a probability threshold of 3.5

24
and a gain threshold of $.3.

2. It is the binary preference pattern predicted by a similarity model if a decision maker uses a probability threshold of 3.5
24

and a gain threshold of $.3.
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gain. For each attribute i, the decision maker uses a threshold εi > 0.

2. The decision maker stops the pairwise comparison decision process between two gambles whenever the

values of the currently considered attribute i differ by more than the threshold εi. He then prefers the

more attractive gamble on that attribute (either x �i y or x ≺i y.) Otherwise, the decision maker has

no preference on that attribute (x ∼i y), and proceeds to the next attribute i+ 1.

3. If the decision maker cannot reach a decision after comparing these two gambles for all attributes

(i.e., the values on all attributes do not differ by more than their corresponding thresholds), then he

is indifferent between x and y, that is, x ∼ y.

Consider the ten gamble pairs that comprised all possible pairwise combinations in the five gambles in

Tversky (1969). In Tversky’s study, each gamble was displayed as a wheel of chance in which a shaded

area represented the probability of maximum gain and in which the value of maximum gain was shown

on top of the shaded area. Because the probabilities were not displayed in numerical form, it was not

possible for decision makers to calculate the exact expected values. Tversky (1969) predicted that for the

“adjacent pairs”, that is, for pairs (a, b), (b, c), (c, d), and (d, e), decision makers would prefer gambles with

higher maximum gains, because the probabilities of maximum gains were visually very similar. In other

words, the differences in the probabilities of maximum gain may not have exceeded their thresholds. For the

extreme pair, pair (a, e), however, he predicted that decision makers would prefer the gamble with higher

probability of maximum gain, because the difference in the probabilities would be large enough to exceed

the corresponding threshold and the decision maker would determine his preference before considering the

reward sizes.

An example may serve to further clarify how a lexicographic semiorder model works. Assume that a

decision maker considers, in order, first the probabilities of maximum gain and then the maximum gain for

the ten gamble pairs in Tversky’s stimulus set. Suppose that he uses a linear utility function for all the

attribute values, such as for example, u(r) = r, where r ∈ IR, that he uses 3.5
24 as the threshold for the

probability of maximum gain for all pairs. Panel B in Table 1.1 shows the differences of probabilities of

maximum gain in all ten pairs from Tversky (1969). It shows that the decision maker prefers e to a for

pair (a,e) based on the probability of maximum gain, because the probability difference is 4
24 , larger than

the threshold. For the remaining pairs, he does not have a preference, moves on to the next attribute, the

maximum gain, and uses $0.35 as the threshold for all ten pairs. Panel C in Table 1.1 shows the maximum

gain difference in each pair. It shows that for pairs (a, c), (a, d), (b, d), (b, e), and (c, e), the differences

between the maximum gains exceed $0.35; therefore, he prefers the gambles with higher maximum gains
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for those pairs. For adjacent pairs, pairs (a, b), (b, c), (c, d), and (d, e), he still cannot make decisions after

comparing the values of the two possible attributes; thus, he is indifferent on those pairs.

In Table 1.1, Panel D shows one of the decision maker’s binary preference relations (a preference pattern)

for the ten gamble pairs in Tversky (1969)—if he uses a lexicographic semiorder model, considers the

probability of maximum gain before considering the maximum gain, uses a probability threshold of 3.5
24 , and

a maximum gain threshold of $.3. The preference pattern for the ten gamble pairs is a ∼ b, a � c, a � d,

a ≺ e, b ∼ c, b � d, b � e, c ∼ d, c � e, and d ∼ e. In particular, a � c, c � e, and e � a forms an

intransitive preference cycle.

Ever since the lexicographic semiorder model was proposed by Tversky (1969), the lexicographic heuristic

has been discussed in many studies of decision making across a number of different fields: in psychology

(Birnbaum, 2010, Tversky, 1972), in marketing science (Kohli and Jedidi, 2007, Yee et al., 2007), and in

economics (Fishburn, 1980, Luce, 1978, Manzini and Mariotti, 2007, 2012). For example, in the area of

consumer research, Yee et al. (2007) reported in their study that about two-thirds of the participants used

the lexicographic rules for evaluating smart phones. Kohli and Jedidi (2007) studied whether people used the

lexicographic rules on personal computer references and reported that the lexicographic rules were widely

used by consumers. Both studies used the aggregated data among a group of participants. This is susceptible

to aggregation artifacts.

Birnbaum (2010) described three implications of the family of lexicographic semiorder models as follows:

priority dominance is the property that when a person prefers a choice option based on a dimension with

priority, variations of other attributes should never reverse that preference; attribute integration is the

property that when two changes in attributes, independently, are too small to reverse a preference, combining

them cannot reverse a preference; attribute interaction is the property that when an attribute is the same in

both gambles, changing its value should not change the preference between the two gambles. Birnbaum tested

these three properties, as well as transitivity, with four different experiments using a true and error model.

He reported violations of priority dominance, violations of attribute integration, violations of attribute

interaction, and acceptance of transitivity. Therefore, Birnbaum concluded that the family of lexicographic

semiorders does a poor job of describing how people make decisions. Birnbaum used a true and error model,

results of which may vary with different artificial blockings. Thus, the conclusions in Birnbaum (2010) are

questionable.

Davis-Stober (2012) described the convex polytope of simple lexicographic semiorder models (i.e., the

convex hull of all simple lexicographic semiorders). He demonstrated that this polytope is equivalent to

a ‘mixture model’ of probabilistic choices, which greatly constrains the set of permissible ternary choice
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probabilities. This paper focuses on the mathematical properties of the mixture model of lexicographic

semiorders; it does not perform any statistical analysis on the mixture model of lexicographic semiorders.

Regenwetter et al. (2011b) tested the mixture model of the lexicographic semiorder models using individ-

ual data sets, which are two-alternative forced choices, from Tversky (1969) and Regenwetter et al. (2011a).

They found that the lexicographic semiorder model was rejected by about half of the participants. They

suspected model mimicry between the lexicographic semiorders and linear orders.

Lexicographic semiorder models are purely algebraic. Tversky (1969), Birnbaum (2010), and Regenwetter

et al. (2011b) all recast lexicographic semiorder models as probabilistic models and tested the resulting

probabilistic models using different statistical methods. Tversky (1969) tested weak stochastic transitivity

(Luce and Suppes, 1965) with likelihood ratio statistical tests (Mood, 1950). Birnbaum (2010) used a true

and error model (Birnbaum, 2004, Birnbaum and Gutierrez, 2007) Regenwetter et al. (2011b) specified a

mixture model and used order-constrained, likelihood-based statistical methods.

In my dissertation, I plan to test lexicographic semiorder models using rigorous statistical tests on

individual data. I will specify distance-based and mixture-based probabilistic models of lexicographic

semiorders, and test them with order-constrained, likelihood-based statistical tests using both the frequentist

and Bayesian methods (Davis-Stober et al., 2015, Regenwetter and Davis-Stober, 2012, Regenwetter et al.,

2014).

1.5.2 Similarity Model

Rubinstein (1988) proposed a type of intransitive heuristic model called a similarity model to explain some

phenomena that cannot be explained by expected utility theory. Unlike a lexicographic semiorder model,

which imposes a lexicographic order on gamble attributes, a similarity model assumes that the decision

maker considers all attributes simultaneously.

Rubinstein (1988) defines two types of similarity, the ε-difference similarity and λ-ratio similarity. Sup-

pose that ε > 0 is the threshold value. For any m, n ∈ R, Rubinstein defined the difference similarity

by m ∼ n if |m − n| ≤ ε, and the ratio similarity by m ∼ n if 1/λ ≤ m/n ≤ λ. Rubinstein described

how a similarity model works for gambles with two outcomes as follows: Suppose there are two gambles,

x = (x1, x2) and y = (y1, y2), where x1, x2, y1, and y2 are attributes of the gambles, e.g., the maximum

gains or the probabilities of maximum gains.

Step 1. If both x1 > y1 and x2 > y2 , then x � y. Or, if both x1 < y1 and x2 < y2 , then x ≺ y. Otherwise,

the decision maker proceeds to Step 2.

Step 2. If x2 ∼ y2 and x1 > y1 (and not x1 ∼ y1), then x � y. If x2 > y2 (and not x2 ∼ y2) and x1 ∼ y1,
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then x � y. Otherwise, the decision maker moves to Step 3, which is not specified in Rubinstein (1988).

Extending Rubinstein’s model, Leland (1994) proposed a new decision process for a more generalized case

(i.e., gambles with more than two outcomes). He assumed that the decision maker employs the following

three-step decision procedure. Suppose a decision maker has to choose between two gambles x and y. The

expected utility value of a gamble z is written as EU(z), and the threshold value for the expected utility

value is written as εEU .

1. If |EU(x) − EU(y)| > εEU , then the decision maker prefers the gamble with higher expected utility

value. Otherwise, the decision maker goes to Step 2.

2. Compare gains and probabilities in terms of their equality and inequality. The decision maker compares

each pair of gains and their corresponding probabilities. He decides one or more of the following: (a)

whether each comparison of gains and their corresponding probabilities “favor” one gamble over the

other (e.g., one gamble has a larger gain at a higher probability for a given comparison); (b) whether

the comparison is “inconclusive” (e.g., one gamble has a larger gain but a lower probability); and (c)

whether the comparison is “inconsequential” (e.g., the two gambles have identical gains and proba-

bilities). After considering all pairwise comparisons for the two gambles, the decision maker prefers

the gamble that is favored in one or more comparisons and inconsequential in the rest. Otherwise, he

proceeds to Step 3.

3. Compare gains and probabilities in terms of their similarity and dissimilarity. Again, the decision

maker repeats the set of comparisons in Step 2 in terms of similarity/dissimilarity. He prefers the

gamble when it is favored in one or more paired comparisons (e.g., when one gamble has a higher and

dissimilar gain at a similar probability with the other gamble) and inconclusive or inconsequential in

the remaining comparisons. Otherwise, the decision maker does not form a preference and, instead,

chooses at random.

Leland (1994) reported that the similarity model specified above violates transitivity of preferences. He

compared the similarity model to Regret Theory, and concluded that both models are good alternatives to

expected utility theory. Leland (2002) used a similarity model on intertemporal choice and concluded that

the similarity model was able to explain some violations of the standard discounting utility model in the

intertemporal study. However, both papers used pattern counting as the data analysis method, which is

problematic.

Vilà (1998) generalized the similarity model by Rubinstein (1988) and applied it to alternatives with

three attributes. Vilà used λ-ratio similarity and studied the mathematical properties of the model and
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reported that this similarity model could predict intransitivity for alternatives with three attributes. This

paper is purely theoretical and provides no empirical evidence.

Buschena and Zilberman (1999) studied the effects of similarity on risky choices by fitting two probit

regression models of the observed choices between risky pairs on each of the perceived and objective similarity

rankings. They used ε-difference similarity and reported that the more similar a gamble pair is, the more

likely a decision maker will make a riskier choice; the more dissimilar a gamble pair is, the more likely he

will make a safer choice.

Lorentziadis (2013) extended Rubinstein’s similarity model and proposed a model named the indistin-

guishable probability model. In that model, for gamble probabilities, a decision maker has a clearly defined

partition ς = (Ij , j = 1, . . . , J) of [0, 1], where the Ij are disjoint intervals of the form [fj−1, fj) with

0 ≤ fj−1 ≤ fj ≤ 1 and IJ = 1. The probabilities belonging to the same interval of partition ς are indis-

tinguishable (i.e., within each given interval, the decision maker is unable to discern the differences in the

probabilities and treat them as equal). Lorentziadis (2013) defined a representative point via a transforma-

tion to represent indistinguishable probabilities in a unique manner:

B(p) =





0, for p in I1,

fj−1, for p in Ij ,

1, for p in IJ .

The model assumes that the decision maker views the probability in each probability interval as the minimum

of the probability interval he employs (i.e. he transforms the probability to the lower endpoint of the interval

to which the probability belongs). For example, for gamble v = (v1, p1; . . . ; vn, pn), the decision maker views

it as
(
v1, B(p1); . . . ; vn, B(pn)

)
, if he uses the indistinguishable probability model. Then the decision maker

computes an expected utility value for the gamble after the transformation of the probabilities. In sum,

Lorentziadis (2013) used both the ε-difference similarity and λ-ratio similarity, but did not provide any

empirical tests of the indistinguishable probability model.

In my dissertation, for lack of empirical tests of similarity models, I plan to test similarity models

against laboratory individual data with order-constrained, likelihood-based statistical tests (Regenwetter

et al., 2014). I use the two types of similarity defined by Rubinstein (1988): difference similarity and ratio

similarity. The similarity models I will test work as follows: the decision maker picks a threshold for each

attribute/dimension of a gamble pair and forms a preference for that attribute. The decision maker derives

his final preferences from integrating all the preferences on all the attributes. To illustrate, suppose the

decision maker considers two gambles x and y, each with two attributes, attributes 1 and 2, and proceeds

19



through the following decision making process:

• (x �1 y and x �2 y) or (x �1 y and x ∼2 y) or (x ∼1 y and x �2 y)⇒ x � y,

• (x ≺1 y and x ≺2 y) or (x ≺1 y and x ∼2 y) or (x ∼1 y and x ≺2 y)⇒ x ≺ y,

• (x �1 y and x ≺2 y) or (x ≺1 y and x �2 y) or (x ∼1 y and x ∼2 y]⇒ x ∼ y.

Here I show an example of how a similarity model works using Tversky’s (1969) gambles. Suppose a

decision maker satisfies a similarity model with difference similarity. He uses 3.5
24 as the threshold of the

probability of maximum gain, and $.35 as the threshold of the maximum gain for all ten pairs. He forms

preferences for the ten gamble pairs (all pairwise combinations of the five gambles in Tversky’s stimulus set)

in terms of both the probabilities of maximum gains and the maximum gains, as shown in the top two tables

of Panel E in Table 1.1. When considering the probabilities of maximum gains, he prefers e over a, and he

is indifferent about the remaining pairs. When considering the maximum gains, he is indifferent about the

adjacent pairs, and prefers gambles with higher maximum gains for the other pairs. After integrating his

preferences on both attributes, the decision maker derives his final preference, which is shown in the bottom

table of Panel E in Table 1.1. The decision maker is indifferent about all adjacent pairs and the extreme

pair, pair (a, e). Of the remaining pairs, the decision maker prefers the gambles with higher maximum gains.

For pair (a, e), the decision maker prefers e to a (e � a) based on the probabilities of maximum gains and

prefers a to e (a � e) based on the maximum gains. Thus, after integrating preferences on both attributes,

the decision maker is indifferent between a and e (a ∼ e). Here, a � c, c � e, and e ∼ a form an intransitive

preference.

I plan to test the similarity models specified above using a rigorous quantitative framework for test-

ing theories of binary choice proposed by Regenwetter et al. (2014). I consider two different probabilistic

specifications, including the distance-based and mixture-based probabilistic specifications. I will test these

probabilistic specifications against laboratory data at the individual level, with order-constrained statistical

inferences that use both frequentist and Bayesian methods (Davis-Stober, 2009, Myung et al., 2005, Regen-

wetter et al., 2014, Silvapulle and Sen, 2005). The stimulus sets I plan to use are from Experiment I in

Tversky (1969), Cash I and Cash II in Regenwetter et al. (2011a), and an experiment that I conducted in

2012.

1.5.3 Priority Heuristic

Brandstätter et al. (2006) proposed a theory of decision making under risk, the priority heuristic, which

models decision makers’ cognitive processes and predicts intransitivity. The priority heuristic consists of
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three parts. The first part is the priority rule. A decision maker considers first the minimum gains, then the

probabilities of minimum gains, and lastly, the maximum gains. The second part is the stopping rule. The

decision maker stops to make a decision when the minimum gains differ by 1/10 (or more) of the maximum

gains, or when the probabilities of minimum gains differ by 1/10 (or more) of the probability scale. The

third part is the decision rule. The decision maker prefers the gamble with the more attractive gains or

probabilities.

The priority heuristic was motivated by the stimulus set in Tversky (1969) to explain alleged intransitive

choices in that experiment. The priority heuristic is similar to a lexicographic semiorder model in that both

models impose a lexicographic decision rule on the gamble attributes and have thresholds associated with

all of the gamble attributes. There are two differences between a lexicographic semiorder model and the

priority heuristic. The first difference is that the priority heuristic imposes a specific lexicographic rule on

the gamble attributes, whereas a lexicographic semiorder model allows all possible lexicographic rules. The

second difference is that the priority heuristic specifies the thresholds as 1/10 of the maximum values of the

two alternatives for a given attribute, whereas a lexicographic semiorder model allows the thresholds to be

any value.

Suppose the decision maker uses the priority heuristic to form preferences on the ten gamble pairs in

Tversky’s (1969) stimulus set. He first considers the minimum gains, which are all zeros. Then he moves

to the probabilities of minimum gains with the threshold value 0.1, or 2.4
24 . The differences between the

probabilities of the minimum gains for pairs (a, d), (a, e), and (b, e) exceed 2.4
24 . Thus, the decision maker

prefers the gambles with lower probabilities of minimum gains in these three pairs, a ≺ d, a ≺ e, and b ≺ e.

For the remaining pairs, he proceeds to the next attribute, the maximum gains. He prefers the gamble with

higher maximum gains. Now, the decision maker has derived the one and only preference pattern predicted

by the priority heuristic on the ten gamble pairs from Tversky (1969), which is, a � b, a � c, a ≺ d, a ≺ e,

b � c, b � d, b ≺ e, c � d, c � e, and d � e. Here, a � b, b � d, and a ≺ d form an intransitive preference.

Brandstätter et al. (2006) reported that the priority heuristic could account for some violations of ra-

tionality (e.g., violations of transitivity) that expected utility theory cannot explain, and concluded that

the priority heuristic has descriptive accuracy. Brandstätter et al. (2006) also reported that the priority

heuristic outperformed other simple heuristics, such as minimax, maximal, tallying, and most-likely, in that

the priority heuristic correctly predicted the participants’ modal choices most of the time. In other words,

the priority heuristic correctly predicted which choice the majority of participants preferred more often than

the other heuristics. However, using modal choice as an indicator for model performance is susceptible to

aggregation artifacts, and as stated in Section 1.2, it does not tell anything about individual performance.
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Glöckner and Betsch (2008) tested the priority heuristic and Cumulative Prospect Theory (CPT) empiri-

cally by analyzing individual choice patterns, decision times, and information search parameters in diagnostic

decision tasks. They used a Bayesian strategy classification method to classify individual choice patterns

to see which theories could explain the choice patterns better, the priority heuristic or CPT. Glöckner and

Betsch (2008) reported that the data are better explained by CPT than the priority heuristic. They sug-

gested that the decision tasks in the previous study by Brandstätter et al. (2006), which supported the

priority heuristic over CPT might not have provided the diagnostic tasks to compare the priority heuristic

with CPT. Glöckner and Herbold (2011) also studied the priority heuristic, CPT, and decision field theory

using eye-tracking methods. They concluded that individuals used compensatory strategies (e.g., CPT)

rather than a non-compensatory heuristic model (e.g., the priority heuristic).

Johnson et al. (2008) used a computer-based information-search tracing tool, MouselabWeb, to trace how

participants searched for information when presented with a gamble pair on a computer screen. Johnson

et al. have specific expectations about how different model types relate to tracing patterns: according to a

process decision model, such as the priority heuristic, the decision maker compares the gains and probabilities

between the two gambles; that is, he searches for information across gambles. According to an integrative

model, such as CPT, the decision maker looks for information within gambles. Johnson et al. reported that

participants mostly searched for information within gambles, and compared information between gambles

less often. Johnson et al. (2008) concluded that this result serves as evidence supporting integrative decision

models, rather than the priority heuristic.

Messner and Regenwetter (2009) submitted the priority heuristic for testing on 267 different individual

data sets, of which 22 data sets were cherry-picked for generating intransitive choices. As I mentioned earlier,

the priority heuristic is motivated to account for data from Tversky (1969). All the 22 individual data sets are

either the original data from Tversky (1969) or from studies using the gambles in Tversky (1969). Messner

and Regenwetter (2009) used a probabilistic specification to model variability in the participants’ choices,

the modal choice probabilistic specification, which assumes that a decision maker has a fixed preference

and makes errors up to 50% of the time. They tested the modal choice probabilistic specification of the

priority heuristics using order-constrained inference statistics (Davis-Stober, 2009) at individual level. The

modal choice model is a very lenient model, but the priority heuristic reportedly accounted for 10 of the 22

cherry-picked participants (about 45%) and only 20 of the 245 non-cherry-picked participants (about 8%).

The priority heuristic does a fair job to explain the data that it is designed for (i.e., to explain data using

gambles from Tversky, 1969), and does a poor job to explain the other data. The lack of consistency to

fit the data with the priority heuristic suggests that the priority heuristic is not a good model to describe
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people’s decision processes.

Birnbaum and Bahra (2007), Birnbaum (2008a), Birnbaum and LaCroix (2008), and Birnbaum (2010)

reported evidence against the priority heuristic. Again, all four papers used a true and error model as the

statistical model, which uses an artificial “blocking” assumption.

Rieger and Wang (2008) tested the validity of the priority heuristic on the empirical data from Tversky

and Kahneman (1992a) by computing the average deviation between the estimated certainty equivalent

and the measured one. They showed that the priority heuristic did not perform well at all on these data.

Rieskamp (2008) provided a probabilistic generalization for the priority heuristic, CPT, and decision field

theory; he added an error term in each gamble pair to explain the participants’ choice variabilities; and then

he tested these models by using a maximum likelihood ratio test. He concluded that the probabilistic versions

for all three models were always better than the deterministic versions in describing decisions under risk.

When comparing all three probabilistic models, decision field theory did the best and the priority heuristic

did the worst. However, both papers used pooled data rather than individual data in their analysis. Hence,

any conclusions from these two papers do not inform us of individuals’ performances.

Arló-Costa and Pedersen (2013) proposed a modification of the priority heuristic by extending it from

choices under risk to uncertainty. The central change was to use upper and lower probabilities with uncer-

tainty. The priority rule was modified and assumed that a decision maker goes through a reasoning process

in the following order: minimum gain, upper probability of minimum gain, maximum gain, and lower prob-

ability of maximum gain. The stopping rule and decision rule remained the same. The authors did not

provide any empirical tes of the modified priority heuristic; instead, the study focused on the descriptive

accuracy of the new model in explaining, for example, the Allais paradox (Allais, 1953) and the Ellsberg

paradox (Ellsberg, 1961).

Brandstätter and Gussmack (2013) tested expected utility theory and the priority heuristic by applying

a new process-tracing method: the predict-aloud protocols. They concluded that when a task was difficult,

the decision maker used the priority heuristic the most, but when the task was easy, he tended to use the

similarity rule instead. The study also revealed that the decision maker tended to compare between gambles

rather than within gambles—which is opposite of what Johnson et al. (2008) reported.

Pachur et al. (2013) used Mouselab to measure the direction of the participants’ information searching

(i.e., within gambles or between gambles) and acquisition frequencies (i.e., how frequently individual reasons

are looked up). Pachur et al. compared the priority heuristic with expectation models (e.g., expected value

theory, expected utility theory, and prospect theory). They reported that the priority heuristic predicted

the direction of information searching better than the expectation model. However, only the similarity rule
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could account for the number of times that the participants attempted to acquire information. Pachur et al.

also concluded that participants were more likely to use the priority heuristic when the task was difficult,

which is consistent with what Brandstätter and Gussmack (2013) reported. Brandstätter and Gussmack

(2013), Johnson et al. (2008), and Pachur et al. (2013) did not provide any statistical tests for how well the

priority heuristic explains the participants’ choices.

The priority heuristic is a deterministic heuristic theory. Many papers have specified probabilistic spec-

ifications of the priority heuristic and tested the probabilistic specifications using some statistical tests, in-

cluding Birnbaum (2008a), Birnbaum (2010), Birnbaum and Bahra (2007), Birnbaum and LaCroix (2008),

Glöckner and Betsch (2008), Messner and Regenwetter (2009), and Rieskamp (2008). Again, most studies

suffer from some methodological problems.

I plan to test the priority heuristic using the statistical methods discussed in Regenwetter et al. (2014) on

the following stimulus sets: gambles from Experiment I in Tversky (1969), Cash I and Cash II in Regenwetter

et al. (2011a), and an experiment I conducted in 2012.

1.6 Perceived Relative Argument Model (PRAM)

Loomes (2010, Psychological Review) developed a descriptive model of individual decision making under

risk, the Perceived Relative Argument Model (PRAM). PRAM describes how decision makers choose among

lotteries in which one can win various gains with various probabilities. According to PRAM, the decision

maker compares the perceived argument favoring one lottery based on probabilities with the perceived argu-

ment favoring the other lottery based on gains. She prefers one lottery over the other based on the perceived

relative argument in its favor. PRAM violates several key axioms of rational behavior, e.g., independence,

betweenness, and transitivity. PRAM applies to a specific domain. It models pairwise preference among two

lotteries S,R of a particular form. Writing xi for the ith monetary outcome and pi, qi for the probability

of the ith monetary outcome in S and R, respectively, the ‘safer’ lottery S and the ‘riskier’ lottery R must

satisfy the following properties:

S = (x3, p3;x2, p2;x1, p1)

R = (x3, q3;x2, q2;x1, q1)
with

x3 > x2 > x1 ≥ 0;

q3 > p3; q2 < p2; q1 > p1.
(1.7)

According to PRAM, a decision maker faced with the choice between S and R evaluates the relative

argument in favor of S in terms of probabilities using a perception function for probabilities, φ(bS , bR), via:

φ(bS , bR) =

(
bS
bR

)(bS+bR)α

, where bS = q1 − p1; bR = q3 − p3. (1.8)

This function has a real-valued free parameter α. The decision maker also relies on a perception function
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for outcomes, ξ(yR, yS), to determine the relative argument in favor of R regarding the outcomes:

ξ(yR, yS) =

(
cS
cR

)δ
, where cS = c(x3)− c(x2); cR = c(x2)− c(x1). (1.9)

Here, δ ≥ 1 is a free parameter and c(x) is the utility for money.

Let S ≺ R denote that R is preferred to S, S ∼ R denote that a person is indifferent between S and

R, and S � R denote that S is preferred to R. PRAM compares the perception of probabilities with the

perception of gains and makes the following predictions:

〈 ≺

S ∼ R

�

〉
⇐⇒

〈 <

φ(bS , bR) = ξ(yR, yS)

>

〉
. (1.10)

PRAM is similar to the additive difference model in that they both compare gambles in terms of the

gamble attributes. In other words, they all use between-gamble comparisons. The differences are specified as

follows: PRAM specifies different functions for the gains and the probabilities of gains, whereas the additive

difference model uses the same function for the gains and the probabilities of gains.

Loomes (2010b) also mentioned a more general predecessor to PRAM, which was reported in Loomes

(2006). This model, referred to here as PRAM 2006, featured one more person-specific parameter γ in the

function ω of Eq. 1.8, in addition to α. Letting γ ≥ 0, PRAM 2006 assumes that

ω =

[(
1− p1

q1

)(
1− q2

p2

)(
1− p3

q3

)]γ (
q1 − p1
q3 − p3

)(q1−p1+q3−p3)α

.

Loomes (2010b) used descriptive, across-participants, modal choice (“what did most people choose on

this pair?”) to provide qualitative evidence in support of PRAM’s ability to explain data. There are

major shortcomings to both, descriptive methods, and modal choice analyses across participants (see, e.g.,

Regenwetter et al., 2014, for a recent discussion). Loomes (2010b) used empirical illustrations to suggest

that PRAM was able to predict the choice tendency of the majority of the participants. Thus, Loomes did

not provide quantitative statistical tests of PRAM.

Buschena and Atwood (2011) specified a probabilistic specification of PRAM 2006 by adding an error

term for the choice probability of each gamble pair and assuming that the error is a random draw from a

logistic distribution (Hey and Orme, 1994), and tested that probabilistic specification of PRAM 2006 using

a likelihood ratio test and Bayesian information criteria, and reported that PRAM 2006 was not supported

by their data.

Baillon et al. (2015) analyzed their data against PRAM using a true and error model. They reported that

the data did not support the existence of the regret cycle, which both PRAM and Regret Theory predicted
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for their experimental stimuli. However, Baillon et al. used a different gamble format from what Loomes

(2010) specified. The gambles in Baillon et al. (2015) had the same probabilities of gains and different gains

for a gamble pair; yet Loomes (2010) required different probabilities of gains and the same gains for a gamble

pair.

Guo and Regenwetter (2014) reported a new experiment and an individual-level analysis using both

frequentist and Bayesian order-constrained statistical inference. In their experiment, 67 people participated

in the first session, and 54 returned for a second, identical session the next day. The second session served as

a replication of the first. There were 20 gamble pairs, which were designed to test PRAM in the experiment,

and each pair was repeated 20 times per session. Guo et al. considered two types of “stochastic specification”

of PRAM. In one, a decision maker has a fixed preference and choice variability is caused by occasional

errors/trembles. In the other, the parameters of the perception functions for outcomes and for probabilities

are random, with no constraints on their joint distribution. The results suggested that PRAM accounted

poorly for individual subject laboratory data of nearly all 67 participants.

PRAM is an algebraic model. Buschena and Atwood (2011), Baillon et al. (2015), and Guo and Regen-

wetter (2014) all provided probabilistic specifications of PRAM and tested the probabilistic specifications

of PRAM using statistical methods. All three papers concluded that PRAM did a poor job in explaining

the participants’ choices.

1.7 Conclusions

There are many transitive theories for decision making under risk and uncertainty, but only a few intransitive

theories in the literature. I have reviewed six major intransitive decision theories in this paper: the additive

difference model, Regret Theory, the lexicographic semiorder models, the similarity models, the priority

heuristic and the perceived relative argument model. Intransitive theories attempt to explain reported

behavioral violations of expected utility theory or prospect theory. However, for many intransitive theories,

there are either no data collected or no data analyzed. For some intransitive theories, there are some data

analyses but those data analyses usually have some methodological problems. The empirical evidence for and

against all of these intransitive theories is weak. Moreover, there are pervasive methodological problems in

the behavioral studies. Therefore, violation of transitivity is not very well documented. The entire literature

on intransitivity of preferences should be reconsidered.

Therefore, the question is how to test these transitive and intransitive decision theories using a

systematic and rigorous approach. The answer is to collect appropriate data (repeated choices from each
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individual participant) and perform rigorous statistical analyses. Regenwetter et al. (2014) provided a

novel and rigorous quantitative diagnostic framework for testing theories of binary choice. Their theoretical

framework provided a solution to Luce’s two-fold challenge and linked deterministic algebraic decision

theory with observed variability in behavioral binary choice data. Regenwetter and Davis-Stober (2012)

tested two transitive heuristic models, the weak order model and the linear order model, on individual

data using order-constrained statistical methods. They have concluded that transitive theories account for

decision makers’ choices very well. I plan to test several major intransitive decision theories reviewed in this

paper: the lexicographic semiorder models, the similairy models, the priority heuristic, and the perceived

relative argument model. My results will help us understand to what extent these intransitive theories

are adding value to behavioral decision research. For now, based on the lack of data for some intransitive

decision theories and the poor methodology employed to test intransitive theories, we still do not know how

well intransitive decision theories account for human behavior.
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Chapter 2

Rationality or Irrationality of
Preferences? A Quantitative Test of
Intransitive Decision Heuristics
2.1 Introduction

To have transitive preferences, for any options x, y, and z, one who prefers x to y and y to z must prefer x to z.

Transitivity of preferences plays an important role in many major contemporary theories of decision-making

under risk or uncertainty, including nearly all normative, prescriptive, and even descriptive theories. Most

theories use an overall utility value for each gamble and assume that a decision maker prefers gambles with

higher utility values; in other words, most theories imply transitivity of preferences. These theories include

expected utility theory (Bernoulli, 1738), prospect theory (Kahneman and Tversky, 1979), and Cumulative

Prospect Theory (Tversky and Kahneman, 1992b). Transitivity of preferences is a fundamental element

of utility, and abandoning it means questioning nearly all theories that rely on this element. Moreover,

transitivity of preferences is important because when a decision maker’s preferences are not transitive (i.e.,

intransitive or irrational), he risks becoming a “money pump” (Bar-Hillel and Margalit, 1988, Block et al.,

2012) and losing his entire wealth.

In the past few decades, researchers have provided a great deal of empirical evidence that suggests

that both human and animal decision makers violate transitivity of preferences (see, e.g., Brandstätter

et al., 2006, González-Vallejo, 2002, Loomes and Sugden, 1987, Tversky, 1969). However, these studies

contain pervasive methodological problems in collecting, modeling, and analyzing empirical data. Some

common problematic approaches are pattern counting, pattern counting with hypothesis testing in which

the hypotheses are wrongly specified, conducting multiple binomial tests, and using between-participant

modal choice (see Section 2 of Guo (2018b) for details on these methodological problems). Thus, there is

still little evidence of intransitivity (Davis-Stober et al., 2015, Regenwetter et al., 2011a, Regenwetter and

Davis-Stober, 2012). Transitivity of preferences is central to many prominent theories in psychology and

economics, and we have to be very careful about claiming violations of transitivity of preferences. This paper

reviews and tests two prominent intransitive decision heuristics, and compares these intransitive heuristics to

the transitive linear order model and two simple transitive heuristics to find out if transitivity of preferences

is violated and which model can best explain participants’ behavior.
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The rest of the paper is organized as follows: Section 2.2 describes two intransitive decision heuristics:

lexicographic semiorder models and similarity models; Section 2.3 describes the transitive linear order model

and introduces two simple transitive heuristics; Section 2.4 introduces two kinds of probabilistic specifications

for the algebraic models: distance-based models and mixture models. It also describes the statistical tools;

Section 2.5 describes the five stimulus sets used in this paper: Experiment I in Tversky (1969), Cash I and

Cash II in Regenwetter et al. (2011a), and Session I and Session II in an experiment I conducted in 2012;

Section 2.6 reports the data analysis results and Section 2.7 concludes the paper.

2.2 Intransitive Heuristic Models

In this section, I describe two intransitive heuristics, including the lexicographic semiorder model (Tversky,

1969) and the similarity model (Leland, 1994, Rubinstein, 1988). These two intransitive heuristics are

illustrated using Tversky’s (1969) stimulus set (see Panel A of Table 2.1). Tversky’s stimulus set comprises

five different gambles: a, b, c, d, and e. For example, Gamble a is written as
(
$5, 7

24 ; $0, 1724
)
, which states

that a decision maker has a 7
24 chance of winning $5 and a 17

24 chance of winning nothing. The gambles are

designed such that the expected values increase in the probabilities of winning, whereas they decrease in

the payoffs. The probability of winning of each gamble increases in equal steps
(

1
24

)
, whereas the payoff of

the corresponding gambles decreases in equal steps ($0.25). Employing these gambles, Tversky attempted

to learn whether intransitive preferences could be produced and whether the participants would satisfy a

lexicographic semiorder model.

2.2.1 Lexicographic Semiorder Models

Tversky (1969) defined a lexicographic semiorder model as follows: a semiorder (Luce, 1956) or a just

noticeable difference structure is imposed on a lexicographic ordering. Lexicographic semiorder models

predict transitive and intransitive preferences.

A lexicographic semiorder works as follows. Suppose a decision maker is asked to choose between two

alternatives x and y, where x = (x1, . . . , xn) and y = (y1, . . . , yn). I use x �i y to denote that a decision

maker prefers x to y on attribute i; I use x ≺i y to denote that the decision maker prefers y to x on attribute

i; and I use x ∼i y to denote that the decision maker is indifferent between x and y on attribute i. I write

� for strict preference and ∼ for indifference. According to a lexicographic semiorder model:

1. The decision maker considers gamble attributes sequentially, for example, first payoffs and then proba-

bilities of winning, or first probabilities of winning and then payoffs. For each attribute i, the decision

maker uses a threshold εi, and εi > 0.
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Table 2.1: Tversky’s (1969) gambles. Panel A shows the probabilities of winning, payoffs, and expected values for
each of the five gambles. Panel B shows the differences in the probabilities of winning among pairs. Panel C shows
the differences of the payoffs among pairs. Panel D shows an example of the binary preference relation predicted by a
lexicographic semiorder model. Panel E shows an example of the binary preference relation predicted by a similarity
model.

Panel A: Tversky’s (1969) gambles

Lottery Prob. of winning Payoff (in $) Expected value (in $)
a 7/24 5.00 1.46
b 8/24 4.75 1.58
c 9/24 4.50 1.69
d 10/24 4.25 1.77
e 11/24 4.00 1.83

Panel B: The probability of winning differences (column-row)

Lottery a b c d e
a - 1/24 2/24 3/24 4/24
b - 1/24 2/24 3/24
c - 1/24 2/24
d - 1/24

Panel C: The payoff differences (row-column)

Lottery a b c d e
a - $.25 $.50 $.75 $1
b - $.25 $.50 $.75
c - $.25 $.50
d - $.25

Panel D: A lexicographic semiorder1

Binary Preference Relation
Lottery a b c d e

a - ∼ � � ≺
b - ∼ � �
c - ∼ �
d - ∼

Binary Choice Probabilities3

Gamble a b c d e
a - 1

2
1 1 0

b - 1
2

1 1

c - 1
2

1

d - 1
2

Panel E: A similarity model2

Preferences by Probability
lottery a b c d e

a - ∼ ∼ ∼ ≺
b - ∼ ∼ ∼
c - ∼ ∼
d - ∼

Preferences by Payoff
lottery a b c d e

a - ∼ � � �
b - ∼ � �
c - ∼ �
d - ∼

Binary Preference Relation
Lottery a b c d e

a - ∼ � � ∼
b - ∼ � �
c - ∼ �
d - ∼

Binary Choice Probabilities
Gamble a b c d e

a - 1
2

1 1 1
2

b - 1
2

1 1

c - 1
2

1

d - 1
2

1. It is the binary preference pattern predicted by a lexicographic semiorder model if a decision maker considers the probabilities
before the payoffs and uses a probability threshold of 3.5

24
and a payoff threshold of $0.35.

2. It is the binary preference pattern predicted by a similarity model if a decision maker uses a probability threshold of 3.5
24

and a payoff threshold of $0.35.
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2. The decision maker stops the pairwise comparison decision process between two gambles whenever the

values of the currently considered attribute i differ by more than the threshold εi. He then prefers the

more attractive gamble on that attribute (either x �i y or x ≺i y). Otherwise, the decision maker has

no preference on that attribute (x ∼i y) and proceeds to the next attribute i+ 1.

3. If the decision maker cannot decide after comparing these two gambles for all attributes (i.e., the values

on all attributes do not differ by more than their corresponding thresholds), then he is indifferent

between x and y, that is, x ∼ y.

Consider the ten gamble pairs that comprise all possible pairwise combinations of the five gambles in

Tversky (1969). In Tversky’s study, each gamble was displayed as a wheel of chance in which a shaded area

represented the probability of winning and in which the value of payoff was shown on top of the shaded

area. Because the probabilities were not displayed in the numerical form, it was not possible for decision

makers to calculate the exact expected values. Tversky (1969) predicted that for “adjacent pairs,” that is,

for pairs (a, b), (b, c), (c, d), and (d, e), decision makers would prefer gambles with higher payoffs, because

the probabilities of winning were visually very similar. In other words, the differences in the probabilities

of winning may not have exceeded their thresholds. For the extreme pair, pair (a, e), however, he predicted

that decision makers would prefer the gamble with higher probability of winning, because the difference in

the probabilities would be large enough to exceed the corresponding threshold and the decision maker would

determine his preference before even considering the reward sizes.

An example may serve to further clarify how a lexicographic semiorder model works. Assume that a

decision maker considers, in order, first probabilities of winning and then payoffs for the ten gamble pairs

in Tversky’s stimulus set. Suppose that he uses an identity function for all attribute values, u(x) = x, and

he uses 3.5
24 as the threshold for the probabilities of winning for all pairs. Panel B in Table 2.1 shows the

differences of probabilities of winning in all ten pairs in Tversky (1969). It shows that the decision maker

prefers e to a for pair (a, e) based on the probability of winning, because the probability difference is 4
24 ,

larger than the threshold. For the remaining pairs, he does not have a preference based on the probability

of winning, so he moves on to the next attribute, the payoff. Suppose he uses $0.35 as the threshold for

payoffs. Panel C in Table 2.1 shows the payoff difference in each pair. It shows that for pairs (a, c), (a, d),

(b, d), (b, e), and (c, e), the differences between the payoffs exceed $0.35; therefore, he prefers the gambles

with higher payoffs for those pairs. For adjacent pairs, pairs (a, b), (b, c), (c, d), and (d, e), he still cannot

make decisions after comparing the values of the two possible attributes; thus, he is indifferent on those

pairs.

In Table 2.1, the table on the left side of Panel D shows one of the decision maker’s binary preference
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relations (a preference pattern) for the ten gamble pairs in Tversky (1969)—if he uses a lexicographic

semiorder model, considers the probability of winning before the payoff, uses a probability threshold of 3.5
24 ,

and a payoff threshold of $0.35. The preference pattern for the ten gamble pairs is a ∼ b, a � c, a � d,

a ≺ e, b ∼ c, b � d, b � e, c ∼ d, c � e, and d ∼ e. In particular, a � c, c � e, and e � a forms an

intransitive preference cycle.

For any pair (x, y), the binary choice probability θxy is the probability of choosing x over y. When

a decision maker strictly prefers x to y and performs deterministically, he chooses x over y all the time

(θxy = 1); when a decision maker prefers y to x and choose deterministically, he never chooses x over y

(θxy = 0); when a decision maker is indifferent about x and y, suppose for now, for simplicity, that he

chooses x or y with probability one half (θxy = 1
2 ). The table on the right side of Panel D depicts the binary

choice probabilities of a decision maker whose preference pattern is shown on the left.

The example above uses an identity function u(x) = x for utility. One could posit, alternatively, that

decision makers psychophysically transforms money amount in question via a log transformation (Anderson,

1970); e.g., instead of xi− yi, the difference becomes log(xi)− log(yi) or log xiyi ; and in this case, a log utility

function u(x) = log(x) is used. In this paper, I consider two kinds of lexicographic semiorder models, one

uses an identity function u(x) = x for utility (represented as LSO-Diff), and the other one uses a log function

u(x) = log(x) for utility (represented as LSO-Ratio).

2.2.2 Similarity Models

Rubinstein (1988) proposed a type of intransitive heuristic model called a similarity model to explain some

phenomena that cannot be explained by expected utility theory. Unlike a lexicographic semiorder model,

which orders gamble attributes lexicographically, a similarity model assumes that the decision maker con-

siders all attributes simultaneously.

Rubinstein (1988) defined two types of similarity, the ε-difference similarity and λ-ratio similarity.

Suppose that ε > 0 is the threshold. For any m, n ∈ IR, Rubinstein defined the difference similarity by

m ∼ n if |m − n| ≤ ε, and the ratio similarity by m ∼ n if 1
λ ≤ m/n ≤ λ. In other words, the difference

similarity uses an identity function u(x) = x for the utility of money rewards x, and the ratio similarity

uses a log function u(x) = log(x) for utility. Rubinstein described how a similarity model works for gambles

with two outcomes as follows: Suppose there are two gambles, x = (x1, x2) and y = (y1, y2), where x1, x2,

y1, and y2 are attributes of the gambles, e.g., the payoff or the probability of winning.

Step 1. If both x1 > y1 and x2 > y2 , then x � y. Or, if both x1 < y1 and x2 < y2 , then x ≺ y.
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Otherwise, the decision maker proceeds to Step 2.

Step 2. If x2 ∼ y2 and x1 > y1 (and not x1 ∼ y1), then x � y. If x2 > y2 (and not x2 ∼ y2) and x1 ∼ y1,

then x � y. Otherwise, the decision maker moves to Step 3, which is not specified in Rubinstein (1988).

Based on the procedures proposed by Rubinstein (1988), the similarity models I test in the current

paper work as follows: a decision maker picks a threshold for each attribute of a gamble pair and forms a

preference for that attribute. The decision maker derives his final preferences from integrating all preferences

on all attributes. To illustrate, suppose the decision maker considers two gambles x and y, each with two

attributes, Attributes 1 and 2, and proceeds through the following decision making process:

• (x �1 y and x �2 y) or (x �1 y and x ∼2 y) or (x ∼1 y and x �2 y)⇒ x � y,

• (x ≺1 y and x ≺2 y) or (x ≺1 y and x ∼2 y) or (x ∼1 y and x ≺2 y)⇒ x ≺ y,

• (x �1 y and x ≺2 y) or (x ≺1 y and x �2 y) or (x ∼1 y and x ∼2 y)⇒ x ∼ y.

Here I show an example of how a similarity model works using Tversky’s (1969) gambles: suppose a

decision maker uses a similarity model with an identity function, u(x) = x. He uses 3.5
24 as the threshold of

probabilities of winning, and $0.35 as the threshold of payoffs. He forms preferences for the ten gamble pairs

regarding probabilities of winning and payoffs, as shown in the top two tables of Panel E in Table 2.1. When

considering the probabilities of winning, he prefers e over a, and he is indifferent about the remaining pairs.

When considering the payoffs, he is indifferent about the adjacent pairs and prefers the gambles with higher

payoffs for the other pairs. After integrating his preferences on both attributes, the decision maker derives

his final preferences, which are shown in the bottom table of Panel E in Table 2.1. The decision maker is

indifferent about all adjacent pairs and the extreme pair, pair (a, e). Of the remaining pairs, the decision

maker prefers the gambles with higher payoffs. For example, for pair (a, e), the decision maker prefers e to

a (a ≺ e) based on the probabilities of winning and prefers a to e (a � e) based on the payoffs. Thus, after

integrating his preferences across both attributes, the decision maker is indifferent between a and e (a ∼ e).

Here, a � c, c � e, and e ∼ a form intransitive preferences.

In this paper, I consider two types of similarity models, one uses an identity function u(x) = x for utility

(represented as SIM-Diff), and the other one uses a log function u(x) = log(x) for utility (represented as

SIM-Ratio).

For a more detailed review of lexicographic semiorder models and similarity models, see Guo (2018b).
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2.3 Transitive Models

2.3.1 Linear Order Models

In this paper, I also test linear order models, which contain all permissible transitive strict linear orders.

The five gambles in Tversky’s experiment generate 5! = 120 linear orders. All of these 120 linear orders

are transitive. The linear order model does not consider gamble specifics and only depends on the number

of gambles under consideration. Regenwetter et al. (2017, 2011a,b) tested linear order models on risky and

intertemporal data, and reported that the linear order model could explain the participants’ behavior very

well.

2.3.2 Two Simple Transitive Heuristics

One simple transitive heuristic, labeled Payoff-only, is that a decision maker prefers the gamble with larger

payoff, regardless of the probabilities of winning. For example, taking Tversky’s gambles, this heuristic

predicts that the decision maker’s preference pattern is: a � b, a � c, a � d, a � e, b � c, b � d, b � e,

c � d, c � e, and d � e (Ranking abcde). One other simple transitive heuristic, labeled Prob-only, is

that a decision maker prefers the gamble with larger probability of winning, regardless of the payoffs. For

Tversky’s gambles, this heuristic predicts that the decision maker’s preference pattern is: a ≺ b, a ≺ c,

a ≺ d, a ≺ e, b ≺ c, b ≺ d, b ≺ e, c ≺ d, c ≺ e, and d ≺ e (Ranking edcba). Both of these preference

patterns, Rankings abcde and edcba, are among the 120 linear orders. Both are also special cases of LSO-Diff,

LSO-Ratio, SIM-Diff, and SIM-Ratio for Tversky’s stimuli.

2.4 Probabilistic Specifications

What do rigorous tests of algebraic decision theories look like? To answer this question, I want to discuss

the relationship between preferences and choices first. Preference is defined as people’s attitude towards a

set of items (Lichtenstein and Slovic, 2006). It is used by many theories in psychology and economics, and it

is a theoretical concept that we cannot directly observe. What we can observe and study in an experimental

paradigm are pairwise choices. As Tversky (1969) mentioned, when a person is faced with the same choice

options repeatedly, he does not always choose the same option. Therefore, one needs to figure out how

variable choices are related to underlying preferences.

To be more specific, transitivity of preferences is an algebraic property, and decision theories are usually

stated in deterministic terms. At the same time, experimental research collects variable choice data. How

can one test an algebraic theory using probabilistic data? Luce (1959, 1995, 1997) presented a two-fold

challenge for studying algebraic decision theories. The first part of the challenge is to specify a probabilistic
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extension of an algebraic theory, a problem that has been discussed by many scholars (Carbone and Hey,

2000, Harless and Camerer, 1994, Hey, 1995, 2005, Hey and Orme, 1994, Loomes and Sugden, 1995, Starmer,

2000, Tversky, 1969). The second part of the challenge is to test the probabilistic specifications of the theory

with rigorous statistical methods, which was only solved in the past decade with a breakthrough in order-

constrained, likelihood-based inferences (Davis-Stober, 2009, Myung et al., 2005, Silvapulle and Sen, 2005).

In order to perform an appropriate and rigorous test of transitivity of preferences, researchers have to solve

Luce’s challenge. However, very few studies in the existing literature offer convincing solutions.

Regenwetter et al. (2014) provided a general and rigorous quantitative framework for testing theories

of binary choice, which one can use to test transitivity of preferences. To solve the first part of Luce’s

challenge, they presented two kinds of probabilistic specifications of algebraic models to explain choice

variability: a distance-based probabilistic specification models preferences as deterministic and response

processes as probabilistic, and a mixture specification models preferences as probabilistic and response

processes as deterministic. Sections 2.4.1 and 2.4.2 provide details of these two probabilistic specifications.

For the second part of Luce’s challenge, Regenwetter et al. (2014) employed frequentist likelihood-based

statistical inference methods for binary choice data with order-constraints on each choice probability (Davis-

Stober, 2009, Iverson and Falmagne, 1985, Silvapulle and Sen, 2005). Myung et al. (2005) and Klugkist and

Hoijtink (2007) provided Bayesian order-constrained statistical inference techniques. In this paper, I specify

two kinds of probabilistic models for each algebraic theory and test those probabilistic models with both

frequentist and Bayesian order-constrained statistical methods.

2.4.1 Distance-Based Models

A distance-based model, which is also called the error model, assumes that a decision maker has a fixed

preference throughout the experiment. It allows the decision maker to make errors/trembles in a binary

pair with some probability that is bounded by a maximum allowable error rate. Formally, a distance-based

model requires binary choice probabilities to lie within some specified distances of a point hypothesis that

represents a preference state. More precisely, let τ ∈ (0, 0.50] be the upper bound on the error rate for each

probability. For any pair (x, y), the probability of choosing x over y, θxy, is given by

x � y ⇔ θxy ≥ 1− τ

x ≺ y ⇔ θxy ≤ τ

x ∼ y ⇔ 1−τ
2 ≤ θxy ≤ 1+τ

2

When a decision maker prefers x to y, he chooses x over y with probability at least 1−τ . When a decision

maker prefers y to x, he chooses x over y with probability at most τ . As mentioned before, when a decision
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maker is indifferent about x and y and chooses without errors, the “true” probability θxy is 1
2 . When this

decision maker chooses with errors and the upper bound on the error rate is τ , the probability of choosing

x over y is bounded by 1−τ
2 and 1+τ

2 . When τ = 0.50, this is also named as modal choice, which assumes

a decision maker has a deterministic preference and allows the decision maker to make errors on each pair

with probability at most 0.50. In other words, when τ = 0.50, it means that the modal choice for each pair

is consistent with the predictions of an algebraic theory (up to sampling variability). When τ = 0.90, the

decision maker chooses the preferred prospect with probability at least 0.90. Consider the example of the

lexicographic semiorder model shown in Panel D of Table 2.1. That lexicographic semiorder model predicts

a ∼ b, a ≺ e, and b � e. The distance-based model with upper bound τ = 0.50 means that a decision maker

chooses a over b with probability ranging from 0.25 to 0.75, a over e with probability at most 0.50, and b

over e with probability at least 0.50. However, a distance-based model with upper bound τ = 0.50 assumes a

decision maker chooses his preferred prospect more often than not and might be too lenient. To compensate

for this, one could place a more restrictive constraint on τ for each binary pair. Still using a ∼ b, a ≺ e, and

b � e as an example, the distance-based model with upper bound τ = 0.10 means that the decision maker

chooses a over b with probability ranging from 0.45 to 0.55, a over e with probability at most 0.10, and b

over e with probability at least 0.90. In this paper, I use three different upper bounds, τ = 0.50, 0.25, and

0.10, on the error rate.

2.4.2 Mixture Models

A mixture model assumes that a decision maker’s preferences are probabilistic. Variations in observed choice

behavior are no longer due to errors but rather to decision makers’ uncertain preferences. A decision maker

might fluctuate in his preferences during the experiment, making a choice based on one of the decision

theory’s predicted preference patterns on each given trial. A mixture model treats parameters of algebraic

theory as random variables with unknown joint distribution; it does not make any distributional assumptions

regarding the joint outcomes of the random variables. Geometrically, a mixture model forms the convex hull

of the point hypotheses that capture the various possible preference states.

Take LSO-Diff and Tversky’s stimuli (given in Table 2.1, Panel A), for example. There are three different

parameters to consider in the algebraic model:

• The gambles’ attribute order. There are two possible orders:

– first payoff then probability of winning,

– first probability of winning then payoff.
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• The threshold for the probability of winning (εprob). There are five possible scenarios for the threshold

regarding the probability of winning (εprob):

– εprob < 1/24 (strict linear order according to the probability of winning),

– εprob ≥ 4/24 (complete indifference according to the probability of winning),

– 1/24 ≤ εprob < 2/24, 2/24 ≤ εprob < 3/24, 3/24 ≤ εprob < 4/24 (i.e., three more semiorders

according to the probability of winning).

• The threshold for the payoff (εpay). There are five possible scenarios for the threshold regarding the

payoff (εpay):

– εpay < .25 (strict linear order according to the payoff),

– εpay ≥ 1 (complete indifference according to the payoff),

– .25 ≤ εpay < .5, .5 ≤ εpay < .75, .75 ≤ εpay < 1 (i.e., three more semiorders according to the

payoff).

As one considers different attribute orders and different values for εprob and εpay, one obtains many

preference patterns. I obtain 21 different preference patterns for Tversky’s gambles (shown in Table 2.2), as

I vary the sequence of attributes and the threshold values. Row 16 in Table 2.2 shows the preference pattern

that is depicted on the left side of Panel D in Table 2.1.

A mixture model treats the three parameters in the lexicographic semiorder model (the attribute orders

and the threshold values) as random variables with any joint distribution whatsoever, hence permitting all

possible probability distributions over the various permissible preference patterns.

As mentioned before, I write � for strict preference and ∼ for indifference. I define LSO as a set

of lexicographic semiorders and P (�LSO) as the probability of lexicographic semiorder �LSO in LSO.

According to the mixture model, for any pair (x, y), the binary choice probability θxy is

θxy =
∑

�LSO∈LSO
in which x�y

P (�LSO) +
1

2

∑

�′
LSO

∈LSO
in which x∼y

P (�′LSO).

This equation shows that the probability of choosing x over y equals the total probability of those lexico-

graphic semiorders in which x is strictly preferred to y plus half of the probability of those lexicographic

semiorders in which x is indifferent to y.

The mixture LSO-Diff model for Tversky’s gambles can be cast geometrically as the convex hull (poly-

tope) of 21 vertices in a suitably chosen 10-dimensional unit hypercube of binary choice probabilities. Each
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Table 2.2: The 21 Preference patterns predicted by the LSO-Diff model for Tversky (1969)’s gambles.

(a, b) (a, c) (a, d) (a, e) (b, c) (b, d) (b, e) (c, d) (c, e) (d, e)

1 ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺
2 ≺ ≺ ≺ � ≺ ≺ ≺ ≺ ≺ ≺
3 ≺ ≺ � � ≺ ≺ � ≺ ≺ ≺
4 ≺ � � � ≺ � � ≺ � ≺
5 ∼ ≺ ≺ ≺ ∼ ≺ ≺ ∼ ≺ ∼
6 ∼ ≺ ≺ � ∼ ≺ ≺ ∼ ≺ ∼
7 ∼ ≺ � � ∼ ≺ � ∼ ≺ ∼
8 ∼ ∼ ≺ ≺ ∼ ∼ ≺ ∼ ∼ ∼
9 ∼ ∼ ≺ � ∼ ∼ ≺ ∼ ∼ ∼
10 ∼ ∼ ∼ ≺ ∼ ∼ ∼ ∼ ∼ ∼
11 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
12 ∼ ∼ ∼ � ∼ ∼ ∼ ∼ ∼ ∼
13 ∼ ∼ � ≺ ∼ ∼ � ∼ ∼ ∼
14 ∼ ∼ � � ∼ ∼ � ∼ ∼ ∼
15 ∼ � ≺ ≺ ∼ � ≺ ∼ � ∼
16 ∼ � � ≺ ∼ � � ∼ � ∼
17 ∼ � � � ∼ � � ∼ � ∼
18 � ≺ ≺ ≺ � ≺ ≺ � ≺ �
19 � � ≺ ≺ � � ≺ � � �
20 � � � ≺ � � � � � �
21 � � � � � � � � � �

vertex encodes the binary choice probabilities when the probability mass is concentrated on a signal lex-

icographic semiorder. I provide a minimal description of the mixture polytope of LSO-Diff for Tversky’s

gambles in terms of its facet-defining equalities and inequalities, via the public-domain software PORTA 1:

Equalities:

θab = θbc = θcd = θde, (2.1)

θac = θbd = θce, (2.2)

θad = θbe. (2.3)

1For more information, please see http://comopt.ifi.uni-heidelberg.de/software/PORTA/)
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Inequalities:

0 ≤ θae, θbe, θce, θde ≤ 1, (2.4)

0 ≤ θbe + θce − 2θde ≤ 2, (2.5)

0 ≤ θae + θce − 2θde ≤ 2, (2.6)

0 ≤ θae + θbe − 2θde ≤ 2, (2.7)

0 ≤ θae + θbe − 2θce ≤ 2, (2.8)

0 ≤ −θae + 2θbe − 2θce + 2θde ≤ 2. (2.9)

Equalities 2.1 to 2.3 show equal probabilities for certain gamble pairs. For example, Equality 2.1 shows

equal probabilities for adjacent pairs in Tversky’s stimuli. Equalities 2.1 to 2.3 show that this mixture

polytope has four free parameters, θae, θbe, θce, and θde, which are restricted by Inequalities 2.4 to 2.9.

In this case, the mixture model is not full dimensional. It is a 4-dimensional polytope within in a 10-D

space. I cannot test this mixture model with frequentist order-constrained statistical methods because the

frequentist methods only work for full dimensional models. The Bayesian methods, on the other hand, can

handle non full dimensional polytopes, such as the mixture LSO-Diff model described above.

Unlike a lexicographic semiorder model which has three parameters, a similarity model has two param-

eters: the threshold for the payoff (εpay) and the threshold for the probability of winning (εprob). Take

SIM-Diff and Tversky’s gambles as an example, as one varies the values for εpay and εprob, the SIM-Diff

model permits 21 preference patterns (not the same 21 patterns as those predicted by the LSO-Diff model).

The mixture SIM-Diff model treats these two parameters (εpay and εprob) in the similarity model as random

variables with any joint distribution whatsoever, hence permitting all possible probability distributions over

these 21 preference patterns. I provide the minimal descriptions of the mixture polytope for each decision

heuristic in the supplemental materials.

2.4.3 Summary of Models

Table 2.3 summarizes all of the models in this paper. The first column lists the model names. For the model

names, I use the word noisy for distance-based models, and the word random for mixture models. The

second column lists the core theory for each model, and the third column gives a label for each core theory.

This paper tests seven core theories, including four intransitive decision heuristics (LSO-Diff, LSO-Ratio,

SIM-Diff, and SIM-Ratio) and three transitive heuristics (LO, Prob-only, and Payoff-only). In addition

to these seven decision heuristics, I also consider a saturated model that is unconstrained that places no

constraints whatsoever on binary choice probabilities. The fourth column describes the utility function for
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each intransitive heuristic. The fifth and sixth columns summarize whether preferences and responses are

each deterministic or probabilistic. For each distance-based model, I consider three different upper bounds

on the error rate. Because Prob-only and Payoff-only predict only one preference pattern each, there are no

mixture models for these two heuristics. Altogether I test 26 models in this paper.

2.4.4 Statistical Methods

In the current study, I report results using both frequentist (Davis-Stober, 2009, Iverson and Falmagne, 1985,

Silvapulle and Sen, 2005) and Bayesian (Myung et al., 2005) order-constrained statistical inference methods.

For frequentist tests, the decision models under consideration are null hypotheses, and I report frequentist

goodness-of-fit test results with a significance level of 0.05. For the distance-based models, the predicted

preference pattern with the largest p-value is called a best-fitting preference pattern. For each participant,

the frequentist test finds the best-fitting preference pattern and tests whether the data are compatible with

the constraints on binary choice probabilities.

For Bayesian tests, I compute Bayes factors (BF, Kass and Raftery, 1995) for each model. The Bayes

factor measures the empirical evidence for each decision model while appropriately penalizing the complexity

of the model. The complexity of a model refers to the volume of the parameter space that a decision theory

occupies relative to the saturated model.

For distance-based models, the order constraints are orthogonal within each model, and the priors on each

dimension are independent and conjugate to the likelihood function. Thus, I can obtain analytical solutions

for the Bayes factors of the distance-based models, compared to the saturated model. For mixture models,

the order constraints are not orthogonal, so I use a Monte Carlo sampling procedure. I use supercomputing

resources to complete the analyses in this paper2.

I use Bayes factors to compare each model to the saturated model and select among models at both

individual and group levels. To interpret the individual level Bayes factor results, I use the rule-of-thumb

cutoffs for “substantial” evidence and “decisive” evidence, according to Jeffreys (1998). I use BFA to

represent the Bayes factor of model A; I use BFB to represent the Bayes factor for model B; and I use

BFAB = BFA
BFB

to represent the Bayes factor for model A over model B. When BFAB > 3.2, it means that

there is “substantial” evidence in favor of model A; when BFAB > 100, it means that there is “decisive”

evidence in favor of model A. I will say that a decision model “fails” if its Bayes factor against the saturated

model is less than 1.0; I will say that a decision model “substantially fits” if its Bayes factor against the

saturated model is larger than 3.2; I will say that a decision model “decisively fits” if its Bayes factor against

2I ran analyses on Pittsburgh Supercomputer Center’s Blacklight, Greenfield, and Bridges supercomputers, as an Extreme
Science and Engineering Discovery Environment project (see also (Towns et al., 2014)). The analyses in this paper used about
140,000 CPU hours on the supercomputer.
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Table 2.4: Cash I and Cash II stimuli in Regenwetter et al. (2011a).

Cash I Cash II
Gamble Prob. of Winning Payoff (in $) Gamble Prob. of Winning Payoff (in $)

a 7/24 28 a 0.28 31.43
b 8/24 26.6 b 0.32 27.50
c 9/24 25.2 c 0.36 24.44
d 10/24 23.8 d 0.40 22
e 11/24 22.4 e 0.44 20

the saturated model is higher than 100; I will say that a decision model is “best” (or a “winner”) if its Bayes

factor against the saturated model is higher than 3.2 and it has the highest Bayes factor among the models

under consideration.

For the group level comparison, I use the group Bayes factor (GBF, Stephan et al., 2007) to select among

models. The GBF aggregates likelihoods across participants and is the product of individual-level Bayes

factors. The model with the highest GBF is the one that best accounts for all participants’ data jointly.

2.5 Experiments

In this paper, I analyze datasets from three different studies: Experiment I in Tversky (1969), Cash I and

Cash II in Regenwetter et al. (2011a), and Session I and Session II in an experiment I conducted in 2012.

Experiment I in Tversky (1969). In this experiment, Tversky used five gambles, shown in Table 2.1. Each

gamble was displayed on a card with a wheel of chance in which the black area represented the probability.

The experiment used a 2AFC paradigm. Tversky pre-selected eight participants who made cyclical choices

in a preliminary session. All eight participants then made repeated choices for each gamble pair over five

sessions, four times each session.

Cash I and Cash II in Regenwetter et al. (2011a). This study replicated the study in Tversky (1969),

except: (a) in the set labeled Cash I, the authors adjusted the amount of payoffs to their current dol-

lar equivalent by adjusting for inflation; (b) in the set labeled Cash II, the authors created a new set of

monetary gambles that each have an expected value equal to $8.80 (see Table 2.4). Participants were 18

undergraduates at the University of Illinois at Urbana-Champaign. Gambles were presented as wheels of

chance on computers, similar to Figure 2.1. Each gamble pair was repeated 20 times, separated by decoys

to minimize memory effects.

Session I and Session II in an experiment I conducted in 2012. This experiment was conducted over two

sessions held on two consecutive days. Session II replicated Session I. In Session I, 67 adults participated; of

these, 54 returned for Session II. The stimulus set had 20 gamble pairs, ten gamble pairs from Cash I and ten
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gamble pairs from Cash II in Regenwetter et al. (2011a). Participants made repeated choices (20 times for

each pair per session) over gamble pairs that were presented via computers using a 2AFC paradigm. Each

gamble was displayed as a wheel of chance (see Figure 2.1), with colored areas to represent probabilities and

numbers next to the wheels to represent payoffs. These 20 gamble pairs are only a fraction of all stimuli used

in this experiment. The analysis results of another stimulus set in this experiment were published in Guo

and Regenwetter (2014). From now on, I refer to this experiment from in 2012 as the Guo and Regenwetter

(2014) experiment.

Figure 2.1: A gamble pair displayed in the experiment that I conducted in 2012.

2.6 Results

2.6.1 Distance-Based Model Results

Tables 2.5, 2.6, and 2.7 summarize the results for the distance-based models using both frequentist and

Bayesian methods (Tables 1 - 16 in the supplemental materials provide individual-level p-values and Bayes

factors for each stimulus set). The first two columns of Tables 2.5, 2.6, and 2.7 display the core theory and

the upper bound τ on the error rate; Columns 3 - 5 and 7 - 8 report the total number of people who are

fit by the distance-based models for Tversky’s data, Cash I, Cash II, Session I, and Session II; Column 6

reports the number of people who are simultaneously fit for Cash I and Cash II; and Column 9 reports the

number of people who are simultaneously fit for Session I and Session II.

Table 2.5 shows that, as expected, for each decision theory, the number of people who are fit is the

highest for the distance-based models with τ = 0.50 and decreases when the upper bound τ on the error rate

decreases. Overall, the distance-based models with τ = 0.50 for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio,

and LO perform very well and fit the data of almost all participants. Please note that the distance-based

model with τ = 0.50 for LO is also labeled weak stochastic transitivity, which is one of the most influential
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probabilistic models used for testing transitivity of preferences in the literature (Tversky, 1969). The results

show that the data of almost all participants in all stimulus sets satisfy weak stochastic transitivity, and

imply very little evidence against transitivity. When τ = 0.10, the distance-based models for LSO-Diff,

LSO-Ratio, SIM-Diff, SIM-Ratio, and LO account for almost none of Tversky’s data and for the data of

about half of the participants in the other stimulus sets. Thus, the number of people who are fit by the

distance-based models decreases a lot when the upper bound τ decreases to 0.10 for all stimulus sets.

The noisy-Payoff-only and noisy-Prob-only models fit the data of fewer participants compared to the

other distance-based models. These two models explain almost none of Tversky’s data. For Cash I, the

noisy-Prob-only models fit at most 13 (out of 18) participants’ data, while the noisy-Payoff-only models fit

at most three (out of 18) participants’ data. For Cash II, Session I, and Session II, the noisy-Payoff-only

and noisy-Prob-only models explain at most half of the participants’ data. This result shows that there are

some participants in all stimulus sets who might take “shortcuts” and form their preferences based on only

one gamble attribute.

For Session I and Session II, the linear order model lives in 20-dimensional space, and it has 14,400 linear

orders. There is a total number of (67 + 54)×14, 400×3 = 5, 227, 200 order-constrained frequentist tests for

the noisy-LO model with three different upper bounds on the error rate for all participants. Computing all

of these tests is computationally expensive. For each participant, instead of computing all frequentist tests, I

use the following procedure: first, I pre-select the linear orders which substantially fit according to the Bayes

factor analysis; second, I find the best-fitting linear order with the highest p-value among the preselected

linear orders (note that the p-value of the best-fitting vertex is also the highest among all the 14,400 linear

orders); and last, I check if the highest p-value is larger than the significance level of 0.05, and if so, I count

it as a fit. Take the noisy-LO model with τ = 0.50 for Session I as an example, the Bayes factor analysis

shows that the noisy-LO model substantially wins over the saturated model for 67 (out of 67) participants.

Of those 67 participants, the frequentist tests show that this noisy-LO model fits the data of 66 participants.

For Session II, the noisy-LO model with τ = 0.50 fits the data of all 54 participants. Again, these results

show that the data of almost all of the participants in Sessions I and II satisfy weak stochastic transitivity.

When the frequentist tests of the distance-based models show that a participant is best described by a

model with the same set of parameter values in two stimulus sets, I call it a consistent fit. For an intransitive

heuristic, I count the number of people who are consistently fit by a model for two stimulus sets; and for a

transitive heuristic, I count the number of people who are simultaneously fit by the same preference pattern

predicted by a decision heuristic for two stimulus sets. Columns 6 and 9 in Table 2.5 report such results. Take

the noisy-LSO-Diff model with τ = 0.50 for Cash I and Cash II as an example, 18 (out of 18) participants
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in Cash I and 18 (out of 18) in Cash II are fit by the noisy-LSO-Diff model with τ = 0.50, but only eight

(out of 18) replicate across Cash I and Cash II. For the four intransitive models and the linear order model,

the number of participants who replicate across Cash I and Cash II is much smaller than the number of

participants who are fit in each set of Cash I and Cash II separately. In other words, when a model fits the

data of some participants in Cash I, the estimated best-fitting parameters of that model need not predict the

data of the same participants in Cash II. This shows that there might be some degree of ‘over-fitting’ for the

distance-based models for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO for Cash I and Cash II. The

number of participants who replicate across Session I and Session II do not differ much from the number of

participants who are fit in separate sessions. This result shows that the distance-based models for Session

I and Session II do not seem to ‘over-fit’. One interpretation might be that the distance-based models for

Session I and Session II live in 20-dimensional space, and these models are much more parsimonious and are

less likely to ‘over-fit’.

Tables 2.6 and 2.7 shows the Bayes factor analysis results for the distance-based models. Panel A shows

the results with substantial evidence and Panel B shows the results with decisive evidence. The results of

the Bayes factor analyses with substantial evidence for the distance-based models are in alignment with the

results of the corresponding frequentist analyses. When I consider the decisive evidence, the distance-based

models with τ = 0.50 for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO fit for none of the participants

in Cash I and Cash II; and the distance-based models with τ = 0.75 or τ = 0.90 for these five heuristics

fit for about half of the participants in Cash I and Cash II. These results might be explained by the fact

that the Bayes factor rewards parsimonious models and penalizes complex models. Thus, the distance-based

model with τ = 0.50 gets penalized for being more complex than the distance-based models with τ = 0.75

or τ = 0.90.

For the Bayes factor analyses, I also count the number of people who are simultaneously fit by the same

model for two stimulus sets. Columns 6 and 9 in Tables 2.6 and 2.7 summarize such results. The number of

fits that replicate across two stimulus sets is similar to the number of fits for separate sets. As I mentioned

earlier, the frequentist analysis shows some evidence of ’over-fitting’ for some distance-based models. In

contrast, the Bayes factor analysis seems to be less forgiving. One interpretation is that the Bayes factor

takes model complexity into account and successfully penalizes the more complex models.

2.6.2 Mixture Model Results

Table 2.8 shows the mixture model analysis results. It is made up of three panels. Each panel lists the

number of permissible preference patterns, the number of inequality constraints, whether a polytope is full
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Table 2.8: The results for the mixture models of LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO using
both frequentist and Bayesian methods. Each panel shows the number of permissible predicted patterns,
the number of inequality constraints, whether a polytope is full dimensional, the number of participants who
are successfully fit by the mixture models using frequentist tests (labeled “Freq Fits”), Bayes factor methods
with substantial evidence (labeled “BF Fits (Substantial)”), and Bayes factor methods with decisive evidence
(labeled “BF Fits (Decisive)”). Panel A shows results for Tversky’s set, Panel B shows results for Cash I
and Cash II in Regenwetter et al. (2011a), and Panel C shows results for Sessions I and II in the Guo and
Regenwetter (2014) experiment. The maximum Bayes factor for the random-LO model for Tversky’s set,
Cash I, and Cash II is less than 100, so the Bayes factor analysis with decisive evidence is not applicable.

Panel A: Tversky’s set, 8 participants.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
Number of Patterns 21 111 21 101 120

Number of Constraints 18 24 30 36 40
Full Dimensional? No Yes No Yes Yes

Freq Fits - 5 - 7 6
BF Fits (Substantial) 8 5 8 6 2

BF Fits (Decisive) 3 0 3 1 -

Panel B: Cash I (C1) and Cash II (C2) in Regenwetter et al. (2011a), 18 participants.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Number of Patterns 21 51 111 111 21 51 101 111 120
Number of Constraints 18 39 24 1956 30 37 36 2046 40

Full Dimensional? No Yes Yes Yes No Yes Yes Yes Yes
Freq Fits - 13 9 11 - 13 14 7 17 17

BF Fits (Substantial) 16 11 5 11 17 9 9 12 12 12
BF Fits (Decisive) 10 5 0 1 12 5 3 3 - -

The number of participants who are simultaneously fit in both Cash I and Cash II
Fits Freq - 5 - 5 17

BF Fits (Substantial) 10 4 9 6 8
BF Fits (Decisive) 1 0 1 2 -

Panel C: Session I (S1) and Session II (S2) in the Guo and Regenwetter (2014) experiment, 67 participants in S1 and
54 in S2.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Number of Patterns 135 401 128 339 14400
Number of Constraints 189(201) 32015 59(71) 625 80

Full Dimensional? No Yes No Yes Yes
Freq Fits - - 46 30 - - 30 18 64 54

BF Fits (Substantial) 54 37 47 33 56 47 49 46 62 51
BF Fits (Decisive) 42 24 35 22 49 36 48 35 34 33

The number of participants who are simultaneously fit in both Session I and Session II
Fits Freq - 22 - 9 51

BF Fits (Substantial) 30 27 40 37 48
BF Fits (Decisive) 14 13 28 28 22
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dimensional, the number of people who are successfully fit using frequentist methods, and the number of

people who are substantially (and decisively) fit using Bayes factor methods. Because Prob-only and Payoff-

only predict only one preference pattern each, there are no mixture models for these two heuristics. No

frequentist tests of the random-LSO-Diff and random-SIM-Diff models for Tversky’s set and Cash I are

performed because their polytopes are not full dimensional. I cannot consider decisive evidence for the

random-LO model for Tversky’s set, Cash I and Cash II, because the maximum possible Bayes factor for

that model is less than 100.

Panel A reports the results for Tversky’s set. The frequentist analyses show that the random-LSO-Ratio,

random-SIM-Ratio, and random-LO models all account for the data of more than half of the participants.

The Bayesian analyses show that the mixture models for the four intransitive heuristics substantially fit for

more than half of the participants, whereas the random-LO model only substantially fits for two (out of

eight) participants. It seems that the random-LO model gets penalized by the Bayes factor for being too

complex. The random-LSO-Diff and random-SIM-Diff models fit for the highest number of participants both

substantially (eight out of eight participants) and decisively (three out of eight participants). These results

show that, when using an identity function for utility, the mixture models for the intransitive heuristics fit

for more participants than those with a log function for utility.

Panel B reports the results for Cash I and Cash II in Regenwetter et al. (2011a). The frequentist

analyses show that the mixture models for LSO-Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO perform well

and account for at least half of the participants’ data, except that the random-SIM-Ratio model fits the

data of seven (out of 18) participants for Cash II. The random-LO model fits the data of the highest number

of participants (17 out of 18) for each set of Cash I and Cash II, suggesting very little evidence against

transitivity. The Bayesian analyses show that the random-LO fits 12 participants for each set of Cash I and

Cash II. Again, it seems like that random-LO model is penalized for being too complex.

Panel B also shows the number of participants who are simultaneously fit for both Cash I and Cash II.

The random-LO model accounts for the data of the highest number of participants (17 out of 18) by the

frequentist standard and beats the saturated model substantially for eight participants. The Bayes factor

analyses show that the random-LSO-Diff, random-SIM-Diff, and random-LO models substantially fit for at

least half of the participants for Cash I and Cash II simultaneously. When considering decisive evidence,

the mixture models of all four intransitive heuristics fit for almost none of the participants.

Panel C reports the results for Session I and Session II in the Guo and Regenwetter (2014) experiment.

The frequentist tests and Bayes factor analyses with substantial evidence show that the random-LO model

performs the best and fits the data of almost all participants for each session. These results mean that
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almost all participants in Session I and Session II behave consistently with transitivity from the frequentist

test point of view. The Bayes factor analyses with substantial evidence show that all five mixture models

perform well and explain the data of more than half of the participants in each session. The mixture models

for the two similarity heuristics for Cash I and Cash II decisively fit for more participants than the mixture

models for the other three decision heuristics.

Panel C also shows the number of participants who are simultaneously fit by the mixture models for both

sessions. The number of fits that replicate across sessions is similar to the number of fits for each session.

Using the frequentist tests and the Bayes factor analyses with substantial evidence, the random-LO model

simultaneously fits across two sessions for the most participants (51 out of 54 for frequentist test and 48

out of 54 for Bayes factor analysis with substantial evidence). The random-SIM-Diff and random-SIM-ratio

models beat the saturated model decisively for the most participants (28 out of 54) for both Session I and

Session II simultaneously.

Overall, I find a close alignment of results between the frequentist methods and the Bayesian methods,

no matter whether I consider distance-based models or mixture models, although these statistical methods

involve dramatically distinct concepts and computational procedures.

2.6.3 Model Comparison: Individual Level

I use Bayes factors to compare models. As I discuss in Section 2.4.4, for each participant, a decision model

is “best” (or a “winner”) if its Bayes factor against the saturated model is higher than 3.2 and it has the

highest Bayes factor among a group of models. This section reports the best model at the individual level

for each stimulus set.

Table 2.9 shows the best models for Tversky’s experiment (top panel) and Regenwetter et al.’s experiment

(bottom panel). For each panel, the first column shows the participant ID. The second column shows the core

theory of the best model. The third column shows the stochastic form and the upper bound τ on the error

rate (when applicable). I use “Fixed” to represent the distance-based model and “Random” to represent the

mixture model. This column also reports the upper bound τ on the error rate for the distance-based model.

The fourth column shows the Bayes factor for the best model compared to the saturated model. The fifth

column shows the Bayes factor between the best and second-best models. I refer to LSO-Diff, LSO-Ratio,

SIM-Diff, and SIM-Ratio as “intransitive” theories because they permit intransitive preference patterns (as

well as transitive ones)

For Tversky’s experiment, the core theories of the best models for all eight participants are models that

permit intransitive preferences. Four of the eight best models are lexicographic semiorder models, and four
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are similarity models. For Cash I, among the core theories of the best models for all 18 participants, ten are

transitive theories (of which, eight are Prob-only, and two are Payoff-only) and seven are intransitive theories

(of which, six are similarity models, and one is a lexicographic semiorder model). For Cash II, among the

core theories of the best models for all 18 participants, 11 are transitive theories (of which, five are Prob-only;

four, Payoff-only; and two, LO) and seven are intransitive theories (of which, two are similarity models, and

five are lexicographic semiorder models). For Participant 4 in Cash I, no models under consideration win over

the saturated model substantially. For both Cash I and Cash II, four participants are simultaneously best

fit by Prob-only as core theory; two participants, Payoff-only; and one participant, SIM-Ratio. Therefore,

six participants in Regenwetter et al. (2011)’s experiment prefer the gambles with larger reward or prefer

the gambles with larger probability all the time.

Regarding probabilistic specifications, seven out of eight winners are mixture models for Tversky’s sets,

five out of 18 for Cash I, and eight out of 18 for Cash II. The distance-based models win out less often than

the mixture models for Tversky’s set, but more often for Cash I and Cash II. These results suggest that

across different stimulus sets, there are a lot of individual indifferences regarding their choice behavior.

Overall, no core theory is the best across the board. For Tversky’s set, all participants are best fit by the

intransitive heuristics. Almost all participants in Tversky’s experiment seem to employ the mixture model,

that is, they have variable preferences and make no mistakes when making choices during the experiment.

For Regenwetter et al.’s stimuli, the transitive theories win out the most. Unlike Tversky’s participants, most

of the participants in Regenwetter et al.’s experiment tend to match the distance-based models, according to

which they have deterministic preferences but make errors when making choices during the experiment. The

results show that the participants in Tversky’s experiment behave much differently from the participants

in Regenwetter et al.’s experiment. The participants in Tversky’s experiment were pre-selected for making

cyclical choices in the preliminary sessions. It is not surprising that the intransitive heuristics explain

Tversky’s data well.
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Table 2.10 shows the best model for each participant in Session I and Session II. For Session I, among

the 67 winners, 28 are transitive theories (of which, 11 are Prob-only; 16 are Payoff-only; and one is LO)

and 38 are intransitive theories (of which, 29 are similarity models, and nine are lexicographic semiorder

models). For Session II, among the 54 winners, 21 are transitive theories (of which, seven are Prob-only; 11

are Payoff-only; and four are LO) and 32 are intransitive theories (of which, 27 are similarity models, and

five are lexicographic semiorder models). For both Session I and Session II, 10 (out of 54) participants are

simultaneously best fit by transitive theories (of which, six are Payoff-only and four are Prob-only) and 17

by intransitive theories (of which, 16 are similarity models, and one is a lexicographic semiorder model). For

Participant 33, no substantive models beat the saturated model substantially for Session I. Therefore, more

participants in Session I and Session II are best fit by the intransitive theories. The models that best fit the

data of the most participants are the similarity models (with u(x) = x in Session I and with u(x) = log(x)

in Session II).

As for the probabilistic specifications, for Session I, 40 out of 67 participants are best fit by the distance-

based models and 27 by the mixture models; and for Session II, 40 out of 54 participants are best fit by

the distance-based models and 14 by the mixture models. For Session I and Session II, there are more

participants who seem to employ the distance-based models than the mixture models.

It is notable that for all three studies, when the intransitive heuristics are the best models, the probabilis-

tic specifications are often the mixture models. In other words, when a participant employs an intransitive

heuristic, he tends to vary his preferences during the experiment. There is no single core theory or proba-

bilistic specification that is robust across all participants and all stimulus sets.

2.6.4 Model Comparison: Group Level

Table 2.11 reports the results of the model comparison at the group level using the group Bayes factor

(GBF). The first column shows the model name; the second column shows the upper bound τ on the error

rate, which is only applicable to the distance-based model; Columns 3 - 7 report the ranking of each model

from the best (highest GBF) to worst (lowest GBF) for each stimulus set. The model with the highest

group Bayes factor is the model that will generalize best to data from a randomly selected participant in

a group for a stimulus set. For both Tversky’s set and Cash I, the random-LSO-Diff and random-SIM-Diff

models are among the top three models. For Cash II, Session I, and Session II, the noisy-SIM-Diff and

noisy-SIM-Ratio models with τ = 0.75 are among the top three models. The noisy-LO models with τ = 0.75

and τ = 0.90 and all noisy-Payoff-only and noisy-Prob-only models perform very badly; because they do not

beat the saturated model for any of the stimulus sets. For a stimulus set, the distance-based Payoff-only
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Table 2.11: Ranking of each model from best (highest GBF) to worst (lowest GBF) in each stimulus set.
Rankings in parentheses are worse than the saturated model on the same stimulus set. The first three best
models are marked in boldfaced font.

Model Name τ Tversky Cash I Cash II Session I Session II
noisy-LSO-Diff 0.50 4 12 7 6 10
noisy-LSO-Diff 0.25 11 4 3 3 2
noisy-LSO-Diff 0.10 (18) 6 17 15 6

noisy-LSO-Ratio 0.50 7 14 11 8 12
noisy-LSO-Ratio 0.25 (13) 8 5 4 4
noisy-LSO-Ratio 0.10 (19) 11 (18) 14 8
noisy-SIM-Diff 0.50 3 10 6 5 9
noisy-SIM-Diff 0.25 6 2 1 1 1
noisy-SIM-Diff 0.10 (15) 5 4 11 5

noisy-SIM-Ratio 0.50 5 13 10 7 11
noisy-SIM-Ratio 0.25 9 7 2 2 3
noisy-SIM-Ratio 0.10 (17) 9 8 12 7

noisy-LO 0.50 (14) 15 15 16 17
noisy-LO 0.25 (20) (18) (19) (18) (19)
noisy-LO 0.10 (23) (21) (20) (21) (22)

noisy-Payoff-only 0.50 (16) (23) (22) (19) (20)
noisy-Payoff-only 0.25 (22) (25) (24) (22) (23)
noisy-Payoff-only 0.10 (24) (26) (26) (24) (25)
noisy-Prob-only 0.50 (21) (20) (21) (20) (21)
noisy-Prob-only 0.25 (25) (22) (23) (23) (24)
noisy-Prob-only 0.10 (26) (24) (25) (25) (26)

random-LSO-Diff - 1 3 9 10 16
random-LSO-Ratio - 10 (19) 14 17 (18)
random-SIM-Diff - 2 1 12 9 13

random-SIM-Ratio - 8 17 16 13 14
random-LO - (12) 16 13 (26) 15

and Prob-only models could best fit for some individual participants, but they could not fit for some other

participants at all. With these huge individual differences, the noisy-Payoff-only and noisy-Prob-only models

do not generate well to data from a randomly selected participant in a group. Overall, the results reveal

that the similarity model and the lexicographic semiorder model are the core theories of the top three most

generalizable models for all five stimulus sets.

2.7 Conclusions and Discussions

Transitivity of preferences is essential for nearly all normative, prescriptive, and descriptive theories of deci-

sion making. Almost any theory that uses utility functions implies transitivity. There are studies reporting

intransitive choice behavior in the literature. However, most of those studies contain pervasive methodologi-

cal problems as explained in Guo (2018b). To explain the intransitive choice behavior, several contemporary

theories are developed in the literature. The lexicographic semiorder model and the similarity model are
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two examples of those theories permitting intransitive preferences. This paper presents a comprehensive

analysis of the lexicographic semiorder model and the similarity model and compares them to the transitive

linear order model and two simple transitive heuristics. This paper tries to find out if there is much evi-

dence against transitivity and which model can explain human choice behavior better, transitive models or

intransitive models.

In this paper, I employ a rigorous quantitative framework for testing decision theories. I consider two

types of probabilistic specifications of algebraic theories: the distance-based model and the mixture model.

The distance-based model assumes that the decision maker has a deterministic preference and makes errors

when making choices. I use three upper bounds τ on the error rate. The mixture model assumes that

the decision maker has probabilistic preferences and chooses deterministically when making choices. The

mixture model allows any probability distribution whatsoever over preference patterns that are consistent

with the decision theory or the algebraic structure of interest. When a mixture model is rejected, it means

that there does not exist a probability distribution over those preference patterns that would describe well

the decision maker’s data. All in all, I test 26 different probabilistic models in this paper.

I use both frequentist and Bayesian order-constrained statistical methods. The frequentist order-

constrained method provides a goodness-of-fit test for the probabilistic model from a classical statistical

perspective. I find some evidence of ’over-fitting’ for some distance-based models using the frequentist

analysis. The Bayesian order-constrained method allows me to put all 26 probabilistic models in direct

comparison with one another at both the individual and group levels. Moreover, the Bayes factor measures

the empirical evidence for each model while appropriately penalizing for the complexity of the model. The

Bayes factor analysis is less forgiving than the frequentist methods.

I test all 26 models on the data from three different experiments. The frequentist goodness-of-fit tests

show that the distance-based models for all seven decision heuristics with modal choice well-describe the

participants’ data in all stimulus sets. The mixture model analyses show that all five decision theories (LSO-

Diff, LSO-Ratio, SIM-Diff, SIM-Ratio, and LO) perform well and can explain the data of more than half of

the participants. The Bayesian analysis with substantial evidence provides similar results to the frequentist

analysis.

The model comparison at the individual level shows that for Tversky’s set, the intransitive heuristics

win out for all participants; for Cash I and Cash II, the transitive heuristics win out for most participants;

and for Session I and Session II, the intransitive heuristics win out for most participants. This result shows

heterogeneity across participants and stimulus sets. Moreover, I do not find a single core theory, type of

preference, or type of response process that best explains all participants’ data in all stimulus sets. This
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reinforces earlier warnings that one needs to be cautious about a “one-size-fits-all” approach, as pointed out

previously by Davis-Stober et al. (2015), Hey (2005), Loomes et al. (2002), and Regenwetter et al. (2014).

The model comparison at the individual level also shows that Payoff-only and Prob-only are the core

theories of the best models for some participants in Cash I, Cash II, Session I, and Session II. This result

means that there is a small group of participants who simplify the task and prefer the gambles with a higher

payoff or the gambles with a higher probability of winning during the entire experiment. Unlike Cash I, Cash

II, Session I and Session II, all of the best models in Tversky’s experiment are intransitive. This result could

be explained by the fact that all eight participants in Tversky’s experiment were pre-selected for making

cyclical choices in a preliminary session. The model comparison at the group level tells a somewhat different

story: for all five stimulus sets, the similarity model and the lexicographic semiorder model are the core

theories of the top three most generalizable models for all five stimulus sets.

Looking at the frequentist results, the linear order model explains well almost all participants’ data in

all stimulus sets. The frequentist tests of the random-LO model on Cash I and Cash II replicate the results

in Regenwetter et al. (2011a). Thus, from a classical statistical perspective, I do not find much evidence

against transitivity. However, the linear order model hardly wins out in the Bayesian model comparison.

The results show that even when a participant doesn’t violate transitivity from the frequentist test point of

view, the intransitive heuristics can still give more parsimonious explanations of the participant’s behavior

than the linear order model. The results show that even though the lexicographic semiorder model and

the similarity model allow intransitivity, they are not just models of intransitivity; both transitive and

intransitive preferences can be consistent with these models. This speaks directly to Birnbaum (2011)’s

concern about model mimicry. My analyses show that many participants are fit by both the intransitive

heuristics and the linear order model. One explanation for this finding might be that many preference

patterns predicted by the intransitive heuristics are transitive, and some are linear orders. Regenwetter

et al. (2011b) report that the lexicographic semiorder model can mimic parts of the linear order model, and

both models fit a large proportion of the participants. Future research might use more diagnostic stimuli to

minimize overlap between intransitive decision heuristics and the linear order model.

2.8 One Published Article

The analysis results for the mixture model of LSO-Ratio for Tversky (1969)’s set and Cash I and Cash

II in Regenwetter et al. (2011a) were reported in the published paper below, under Section “Alternative

Intransitive Models.”

Regenwetter, M., Dana, J., Davis-Stober, C. P., and Guo, Y. (2011b). Parsimonious testing of transitive
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or intransitive preferences: Reply to Birnbaum (2011). Psychological Review, 119(2):408-4163.

Please see Appendix A for the full published article.

2.9 Supplement Materials

The tables in the Supplement Materials report individual frequentist p-value and Bayes factors in each

stimulus set.

Table 2.12: The frequentist and Bayes factor results for the distance-based models of LO, LSO-Diff, LSO-
Ratio, SIM-Diff, and SIM-Ratio for Tversky (1969) data.

Panel A: The frequentist results.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
τ = τ = τ = τ = τ =

0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10
1

√
? ?

√
? ? 0.28 0.08 ? 0.34 0.08 ? ? ? ?

2
√

0.34 ?
√

0.34 ?
√

0.34 ?
√

0.59 ? 0.13 ? ?
3 0.35 ? ? 0.54 ? ?

√
0.36 ?

√
0.46 ? ? ? ?

4
√

0.08 ?
√

0.08 ? 0.14 0.08 ? 0.28 0.08 ? 0.2 ? ?
5 0.51 0.26 ? 0.51 0.26 ?

√
0.64 ?

√
0.64 ? 0.11 ? ?

6
√

0.14 ?
√

0.14 ? 0.52 0.28 ? 0.52 0.28 ? ? ? ?
7

√
0.36 0.15

√
0.36 0.15

√
0.36 0.15

√
0.75 0.15 0.55 ? ?

8
√

0.77 ?
√

0.77 ?
√

0.77 ?
√

0.77 ?
√

0.09 ?
Fits 8 6 1 8 6 1 8 8 1 8 8 1 5 1 0

Panel B: The Bayes factors.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
τ = τ = τ = τ = τ =

0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10 0.50 0.25 0.10
1 21 0 0 9 0 0 12 5 0 8 2 0 0 0 0
2 18 6 0 7 1 0 23 6 0 32 8 0 0 0 0
3 13 0 0 5 0 0 30 19 0 25 24 0 0 0 0
4 18 9 1 25 2 0 8 9 1 4 2 0 0 0 0
5 15 1 0 5 0 0 46 5 0 33 2 0 0 0 0
6 27 1 0 6 0 0 24 12 0 7 3 0 0 0 0
7 41 27 16 21 5 3 61 28 16 77 49 5 2 0 0
8 45 95 0 23 43 0 54 97 0 29 48 0 7 0 0

Fits 8 4 1 8 2 0 8 8 1 8 4 1 1 0 0

3Copyright c©2011 American Psychological Association. Reproduced with permission. The official citation that should be
used in referencing this material is Regenwetter, M., Dana, J., Davis-Stober, C. P., and Guo, Y. (2011b). Parsimonious testing
of transitive or intransitive preferences: Reply to Birnbaum (2011). Psychological Review, 119(2):408-416. This article may not
exactly replicate the authoritative document published in the APA journal. It is not the copy of record. No further reproduction
or distribution is permitted without written permission from the American Psychological Association.
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Table 2.15: The frequentist and Bayes factor results for the distance-based models for the linear order model
with τ = 0.50, 0.25, and 0.10. There are 18 participants (# is the participant id). Rejections at a 0.05
level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their p-values listed.

“Consistent Fits” are marked in typewriter.

Panel A: The frequentist results.

τ = 0.50 τ = 0.25 τ = 0.10
Cash I Cash II Cash I Cash II Cash I Cash II

1
√

? ? ? ? ?
2

√ √
0.22

√
? 0.51

3
√ √ √ √ √

0.73

4 ?
√

? ? ? ?
5

√ √ √ √
0.99 0.57

6 0.81 0.44 ? ? ? ?
7

√ √ √
0.06 0.81 ?

8
√ √ √ √

0.95 0.90

9
√ √

? ? ? ?
10

√ √ √ √
0.72 0.30

11
√ √ √ √

0.95
√

12 0.63 0.33 ? ? ? ?
13 0.67

√
? ? ? ?

14
√ √ √ √ √ √

15
√ √

? ? ? ?
16

√
0.28 0.89 ? ? ?

17 0.31
√

? 0.45 ? ?
18

√
0.23 ? ? ? ?

Fits 17 17 9 9 7 7
Panel B: The Bayes factors.

τ = 0.50 τ = 0.25 τ = 0.10
Cash I Cash II Cash I Cash II Cash I Cash II

1 4 0 0 0 0 0
2 8 9 17 3137 0 47165
3 9 9 8250 4176 13308311 47953
4 0 4 0 0 0 0
5 9 9 6982 2544 1479575 551
6 2 1 0 0 0 0
7 9 6 3659 0 2651 0
8 9 9 6798 6573 3183531 1619865
9 3 7 0 0 0 0

10 9 9 4003 4461 18620 56822
11 9 9 6306 7100 1256821 2074207
12 1 3 0 0 0 0
13 3 1 0 0 0 0
14 9 9 8250 8533 13308311 26154900
15 7 5 0 0 0 0
16 8 0 441 0 31 0
17 0 8 0 47 0 0
18 5 0 0 0 0 0

Fits 12 12 9 8 8 7
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Table 2.16: The frequentist results for the distance-based models for LSO-Diff and LSO-Ratio with τ = 0.50,
0.25, and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).
Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their

p-values listed. Nonsignificant violations where Session II replicates Session I are marked in typewriter.

LSO-Diff LSO-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1
√ √

0.09 0.15 ? ? 0.97
√

? 0.44 ? ?

2
√ √

0.30 0.30 ? ?
√ √

0.30 0.30 ? ?

4
√

0.35 0.11 ? ? ?
√

0.46 0.42 ? ? ?

5 0.79
√

? 0.49 ? ? 0.81
√

? 0.49 ? ?

7
√ √

0.11 0.06 ? ?
√

0.88 0.14 0.07 ? ?

9 0.31
√

?
√

? 0.65
√ √

0.17
√

? 0.65

11
√ √

0.08 0.59 ? 0.12
√ √

0.08 0.59 ? 0.12

12
√

? 0.59 ? ? ?
√

? 0.59 ? ? ?

13
√

0.50 0.28 ? ? ?
√

0.50 0.28 ? ? ?

14
√ √ √ √ √

0.94
√ √ √ √ √

0.94

15 0.85 0.50 ? 0.11 ? ? 0.87
√

? 0.16 ? ?

16
√ √

?
√

? 0.15
√ √

?
√

? 0.15

17 0.57 0.83 ? 0.11 ? ? 0.70
√

0.13 0.96 ? 0.09

18 0.52
√

0.07 0.56 ? 0.34
√ √

0.78 0.93 ? 0.34

19
√ √

0.79 0.52 0.67 0.29
√ √

0.79 0.52 0.67 0.29

20
√ √ √ √ √ √ √ √ √ √ √ √

21 0.71 ? ? ? ? ? 0.59 ? ? ? ? ?

22 0.91 0.90 0.37 0.06 0.08 ? 0.91 0.91 0.37 0.06 0.08 ?

23 0.83 0.68 ? ? ? ? 0.83 0.68 ? ? ? ?

24
√ √ √ √

0.51 0.97
√ √ √ √

0.51 0.97

25 0.70 0.96 0.06 0.29 ? ?
√ √

0.73 0.55 0.21 0.13

26
√ √ √ √ √ √ √ √ √ √ √ √

27
√ √

0.38 0.38 ? ?
√ √

0.38 0.45 ? ?

28
√ √

0.66 0.76 0.67 0.19
√ √

0.66 0.76 0.67 0.19

29 0.71
√

0.16 0.25 ? ? 0.71
√

0.16 0.25 ? ?

30
√ √

0.32 0.60 0.18 0.23
√ √

0.32 0.60 0.18 0.23

31 ? 0.78 ? 0.18 ? ? ? 0.78 ? 0.28 ? ?

32
√ √ √ √

0.94
√ √ √ √ √

0.94
√

33 ? 0.47 ? ? ? ? ? 0.23 ? ? ? ?

34 0.98
√

0.10 0.77 ? 0.62 0.98
√

0.10 0.77 ? 0.62

35
√ √

0.97
√

? 0.09
√ √ √ √

0.36 0.09

36
√ √ √

0.31 0.62 0.12
√ √ √

0.31 0.62 0.12

37
√

0.90
√

0.07 0.98 ?
√

0.90
√

0.07 0.98 ?

38
√ √

0.36 0.17 ? ?
√ √

0.36 0.73 ? ?

39
√

0.81 0.28 0.38 ? 0.26
√

0.81 0.28 0.38 ? 0.26

41 0.55
√

0.09 ? ? ?
√ √

0.57 ? ? ?

42
√ √

? 0.76 ? ?
√ √

0.44 0.93 ? 0.29

43 0.71 0.71 ? 0.13 ? ? 0.71
√

? 0.16 ? ?

Continued on next page
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Table 2.16 – continued from previous page

LSO-Diff LSO-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

44 0.74
√

0.34 0.25 ? ? 0.74
√

0.34 0.77 ? 0.29

46
√ √

0.07
√

? 0.09
√ √

?
√

? 0.09

47
√ √ √

0.26 0.98 ?
√ √ √

0.26 0.98 ?

48
√

0.88 0.36 0.19 ? 0.12
√

0.89 0.36 0.19 ? 0.12

49 0.74
√

? 0.6 ? 0.24 0.74
√

? 0.6 ? 0.24

50 0.84
√

0.16 0.30 ? 0.28
√ √

0.29 0.30 ? 0.28

52
√ √

0.26 0.42 0.22 0.79
√ √

0.26 0.42 0.22 0.79

53
√ √

0.22 0.50 ? 0.15
√ √

0.22 0.50 ? 0.15

55 0.23
√

?
√

?
√

0.23
√

?
√

?
√

56
√ √

0.92 0.79 0.34 0.59
√ √

0.92 0.79 0.34 0.59

58
√ √ √ √

0.90
√ √ √ √ √

0.90
√

59
√ √

0.53 0.52 0.26 0.16
√ √

0.53 0.52 0.26 0.16

61
√ √

0.12 0.8 ? 0.8
√ √

0.66 0.8 ? 0.8

65
√ √

0.6
√

?
√ √ √

0.6
√

?
√

66
√ √ √

0.43
√

0.1
√ √ √

0.89
√

0.28

67
√ √ √ √

0.98 0.99
√ √ √ √

0.98 0.99

3
√

0.16 ? 0.9 0.16 ?

6
√ √

0.85
√ √

0.85

8
√

0.37 ?
√

0.37 ?

10 0.7 0.37 ?
√

0.87 ?

40
√

0.75 0.49
√

0.75 0.49

45
√

0.18 ?
√

0.69 ?

51
√

0.44 0.5
√

0.44 0.5

54
√

0.21 ?
√

0.21 ?

57
√

0.65 0.69
√

0.65 0.69

60
√

0.23 0.75
√

0.23 0.75

62
√

0.09 ?
√

0.09 ?

63
√ √

0.97
√ √

0.97

64 0.99 0.11 ? 0.99 0.11 ?

Fits 65 52 56 48 24 30 65 52 57 48 26 34
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Table 2.17: The frequentist results for the distance-based models for SIM-Diff and SIM-Ratio with τ = 0.50,
0.25, and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).
Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their

p-values listed. Nonsignificant violations where Session II replicates Session I are marked in typewriter.

SIM-Diff SIM-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1
√ √

0.09 0.15 ? ? 0.97
√

? 0.44 ? ?

2
√ √

0.43 0.30 ? ?
√ √

0.50 0.30 ? ?

4
√

0.38 0.11 ? ? ?
√

0.46 0.42 ? ? ?

5 0.19
√

? 0.49 ? ? 0.19
√

? 0.49 ? ?

7
√ √

0.48 0.22 ? ?
√

0.88 0.48 0.27 ? ?

9
√ √

0.17
√

? 0.65
√ √

0.28
√

? 0.65

11
√ √

0.08 0.59 ? 0.12
√ √

0.08 0.69 ? 0.12

12
√

? 0.59 ? ? ?
√

? 0.59 ? ? ?

13
√

0.50 0.28 ? ? ?
√

0.50 0.28 ? ? ?

14
√ √ √ √ √

0.94
√ √ √ √ √

0.94

15
√

0.50 0.53 0.11 ? ?
√

0.50 0.53 0.16 ? ?

16
√ √

0.17
√

? 0.15
√ √

0.32
√

? 0.15

17 0.57 0.83 ? 0.11 ? ? 0.65
√

0.13 0.8 ? 0.09

18 0.52
√

0.07 0.56 ? 0.34
√ √

0.78 0.93 ? 0.34

19
√ √

0.79 0.52 0.67 0.29
√ √

0.79 0.52 0.67 0.29

20
√ √ √ √ √ √ √ √ √ √ √ √

21 0.21 ? ? ? ? ? 0.18 ? ? ? ? ?

22 0.85 0.90 0.37 0.08 0.08 ?
√

0.90 0.37 0.14 0.08 ?

23
√

0.68 ? ? ? ?
√

0.68 ? ? ? ?

24
√ √ √ √

0.51 0.97
√ √ √ √

0.51 0.97

25 0.70 0.96 0.06 0.29 ? ?
√ √

0.73 0.55 0.21 0.13

26
√ √ √ √ √ √ √ √ √ √ √ √

27
√ √

0.38 0.45 ? ?
√ √

0.38 0.6 ? ?

28
√ √

0.66 0.76 0.67 0.19
√ √

0.66 0.76 0.67 0.19

29 0.80
√

0.16 0.25 ? ?
√ √

0.34 0.27 0.1 ?

30
√ √

0.32 0.60 0.18 0.23
√ √

0.32 0.60 0.18 0.23

31 0.08 0.85 ? 0.13 ? ? 0.06 0.85 ? 0.13 ? ?

32
√ √ √ √

0.94
√ √ √ √ √

0.94
√

33 0.12 0.47 ? ? ? ? 0.13 0.23 ? ? ? ?

34
√ √

0.20 0.77 ? 0.62
√ √

0.20 0.77 ? 0.62

35
√ √

0.97
√

? 0.09
√ √ √ √

0.36 0.09

36
√ √ √

0.31 0.62 0.12
√ √ √

0.31 0.62 0.12

37
√ √ √

0.19 0.98 ?
√ √ √

0.37 0.98 ?

38
√ √

0.36 0.16 ? ?
√ √

0.36 0.68 ? ?

39
√

0.83 0.28 0.38 ? 0.26
√ √

0.29 0.38 ? 0.26

41 0.55
√

0.09 ? ? ?
√ √

0.57 ? ? ?

42
√ √

? 0.76 ? ?
√ √

0.44 0.93 ? 0.29

43 0.71 0.71 ? 0.22 ? ? 0.71 0.71 ? 0.22 ? ?

Continued on next page
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Table 2.17 – continued from previous page

SIM-Diff SIM-Ratio

τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

44 0.53
√

0.34 0.25 ? ? 0.53
√

0.34 0.77 ? 0.29

46
√ √

0.07
√

? 0.09
√ √

?
√

? 0.09

47
√ √ √

0.39 0.98 ?
√ √ √

0.39 0.98 ?

48
√

0.87 0.36 0.19 ? 0.12
√

0.87 0.36 0.19 ? 0.12

49 0.79
√

? 0.6 ? 0.24 0.80
√

? 0.6 ? 0.24

50 0.84
√

0.16 0.30 ? 0.28
√ √

0.29 0.30 ? 0.28

52
√ √

0.26 0.42 0.22 0.79
√ √

0.26 0.42 0.22 0.79

53
√ √

0.40 0.50 ? 0.15
√ √

0.68 0.50 ? 0.15

55 ?
√

?
√

?
√

?
√

?
√

?
√

56
√ √

0.92 0.79 0.34 0.59
√ √

0.93 0.98 0.34 0.59

58
√ √ √ √

0.90
√ √ √ √ √

0.90
√

59
√ √

0.53 0.52 0.26 0.16
√ √

0.53 0.52 0.26 0.16

61
√ √

0.12 0.8 ? 0.8
√ √

0.66 0.8 ? 0.8

65
√ √

0.83
√

?
√ √ √

0.83
√

?
√

66
√ √ √

0.43
√

0.1
√ √ √

0.89
√

0.28

67
√ √ √ √

0.98 0.99
√ √ √ √

0.98 0.99

3
√

0.17 ?
√

0.2 ?

6
√ √

0.85
√ √

0.85

8
√

0.6 ?
√

0.6 ?

10 0.7 0.37 ?
√

0.87 ?

40
√

0.75 0.49
√

0.75 0.49

45
√

0.18 ?
√

0.69 ?

51
√

0.44 0.5
√

0.44 0.5

54
√

0.6 ?
√

0.73 ?

57
√

0.65 0.69
√

0.73 0.69

60
√

0.23 0.75
√

0.23 0.75

62
√

0.13 ?
√

0.13 ?

63
√ √

0.97
√ √

0.97

64 0.88 0.28 ? 0.88 0.19 ?

Fits 66 52 59 48 24 30 66 52 59 48 27 34
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Table 2.18: The frequentist results for the distance-based models for linear order model with τ = 0.50, 0.25,
and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2). Rejections
at a 0.05 level are marked ?. Perfect fits are checkmarks (

√
). Nonsignificant violations have their p-values

listed. Nonsignificant violations where Session II replicates Session I are marked in typewriter. Frequentist
p-values are computed only for vertices whose The Bayes factors are larger than 3.2.

τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2

1
√ √

0.18 0.11

2 0.57
√

4
√ √

0.11

5 0.11 0.36

7
√ √

?

9 ?
√ √

0.65

11
√

0.99 0.08

12
√ √

0.59 0.95 ? ?

13
√ √

0.28 0.31 ? ?

14
√ √ √ √ √

0.94

15 0.55 0.84

16 0.21
√ √

0.15

17
√ √

0.07 0.86 ?

18 0.45
√

?

19 0.88 0.94

20
√ √ √ √ √ √

21 0.95 0.88

22 0.69 0.94

23 0.37 0.85

24
√ √ √ √

0.51 0.97

25
√

0.95 ?

26
√ √ √ √ √ √

27
√ √

0.38

28 0.88
√

29 0.69 0.66

30 0.89 0.97

31
√

0.97

32
√ √ √ √

0.94
√

33 0.15
√

0.76 ?

34 0.27 0.93

35
√ √

0.97
√

? 0.09

36
√ √ √

0.31 0.62 0.12

37
√

0.56
√

0.99

38
√ √

?

39
√

0.96

41 0.67
√

?

42
√ √

? 0.76 ?

43
√

0.97

44 0.39
√

0.07

Continued on next page
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Table 2.18 – continued from previous page

τ = 0.50 τ = 0.25 τ = 0.10

S1 S2 S1 S2 S1 S2

46
√ √

?
√

0.09

47
√ √ √

0.26 0.98

48
√

0.95

49 0.87 0.97

50
√

0.98

52 0.84
√

53
√

0.82

55
√ √

?
√ √

56 0.97 0.89

58
√ √ √ √

0.90
√

59
√

0.57

61
√

0.95 0.12

65 0.18
√

?
√ √

66
√ √ √

?
√

67
√ √ √ √

0.98 0.99

3
√

6
√ √

0.85

8
√

0.37 ?

10 0.83

40
√

45
√

0.18

51 0.86

54
√

0.21

57 0.98

60 0.99

62 0.19

63
√ √

0.97

64 0.70

Fits 66 54 25 22 13 14
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Table 2.19: The Bayes factors for the distance-based models for LSO-Diff with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LSO-Diff
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 1610 2831 27 29774 0 905322
2 2198 3274 41 8481 1 1114
4 3127 11 67 0 0 0
5 495 3200 0 5745 0 7
7 3076 1561 560 0 0 0
9 395 7462 0 1760182509 0 38423721779020

11 3480 5878 589 15751 0 17363
12 6224 0 23666734 0 6440 0
13 4980 1964 16545431 85782 98140 324
14 7763 7732 5112328732 3210053087 166566466964153 29422217255642
15 522 1216 43 22 6 0
16 650 7563 1 324675856 0 6827952
17 150 285 56 3287 1 2
18 932 4381 5962 12550819 0 20271587
19 4518 5009 165901 89746 385725 159105
20 7767 7767 7139015495 7260177363 1347595495416320 18891855275831140
21 158 1 0 0 0 0
22 1846 1424 5521 423 3993 125
23 314 193 5 7 0 1
24 7661 7732 2238292336 3319938407 1771801409029 57823651933818
25 2646 1000 48930 37429 1088 276
26 7766 7766 6849450022 6965697447 10455726266521210 14657815947195730
27 5415 2087 1825 39 0 2
28 17584 14845 327136 431368 669816 133171
29 1523 1674 523 165 100 4
30 9457 6456 31533 18926 28538 14300
31 16 1428 0 307 0 1
32 7754 7767 3406191657 7508705001 13449528546369 37128271277524150
33 0 68 0 1146 0 7
34 196 6037 3 336698 0 1036167
35 6875 7469 81406683 91886485 5612044 4917
36 7644 7344 1201461621 38547349 18817761875 2
37 7758 796 4317354679 0 36632280081557 0
38 5886 4902 107 26616 0 3
39 2557 4276 546 43602 130 71135
41 1075 1178 196 44 0 0
42 1271 6687 8469 36030731 606421 38499
43 582 2152 0 944 0 0
44 1664 3652 393 175094 0 10936312
46 3325 7594 2549 186315530 0 9503281
47 7757 3107 4005136235 47 14462004307998 0
48 3295 2176 1079 10328 311 9833
49 1685 7179 1 26922 0 18764
50 1460 4185 11 100547 0 209291
52 3318 11089 41794 1708981 66201 10786236
53 1839 4593 44 11551 4 4706
55 110 7767 68 7636141162 0 520498866316045
56 9403 4948 81867 186621 103874 460692
58 7736 7766 3187567485 6403539275 6957820180480 2707035601786514
59 10716 2925 81304 9590 32406 4615
61 3976 16381 40422 740836 0 2191633
65 5743 7760 379 4977987334 0 358393110785141
66 7765 3736 6143805440 1957413 2100335252104813 682524055
67 7739 7759 4761179599 4894911917 2174229652568243 255649291523146
3 1207 1 0
6 7720 1922363623 241249785900
8 6079 1403979 3

10 929 23 0
40 23582 301759 251198
45 3282 1710 0
51 7506 309349 985662
54 4741 104 0
57 11001 304292 872552
60 6853 473816 1870149
62 4353 59 0
63 7760 4932983840 167656278060078
64 2307 18 0

Fits 66 52 57 49 34 39
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Table 2.20: The Bayes factors for the distance-based models for LSO-Ratio with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LSO-Ratio
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 367 4235 1 94296 0 385476
2 1081 1516 14 2860 0 375
4 4257 40 1349 0 0 0
5 801 2269 0 2870 0 18
7 3255 418 202 0 0 0
9 2788 2518 17 592610856 0 12935717429928

11 1882 3364 144 5313 0 5846
12 3206 0 8788265 0 2720 0
13 1804 825 5597928 29149 33091 109
14 2823 3651 1729725686 1182856254 56162644326473 12141021059537
15 250 3434 14 115 2 0
16 545 3348 0 112796422 0 2454094
17 1677 9012 5549 11670516 92 1150137
18 10095 9917 1010190 18481880 15 9628327
19 1818 2000 55852 30215 129858 53564
20 2665 2665 2405132964 2445951209 4537241111735642 6360729308037096
21 10 2 0 0 0 0
22 913 717 1859 142 1344 42
23 132 87 2 2 0 0
24 2786 2798 757312753 1123253730 597413478031 19496850457761
25 3269 3262 3281898 286263 237655 226145
26 2621 2621 2306044072 2345181767 3520021336981464 4934695455148333
27 3709 1748 1371 20 0 1
28 7105 7448 110205 161231 225499 44835
29 1433 937 176 65 34 1
30 3872 2665 10610 6372 9608 4814
31 7 864 0 220 0 0
32 2617 2621 1146782344 2527999270 4527913821222 1249959149376280
33 0 7 0 0 0 0
34 93 2334 1 113353 0 348834
35 6215 3230 148831040 31751180 1686321050 1696
36 3412 2991 417461995 13291239 6768849571 1
37 2619 582 1453549216 0 12332611336333 0
38 3444 3138 99 371586 0 4
39 2674 2724 211 14673 44 23948
41 3866 5734 38737 33748 1 0
42 5566 6912 402375 96578909 1118401 89322090
43 319 1290 0 578 0 0
44 1602 6865 361 4625889 0 198418867
46 1299 4346 358 71167527 0 9783316
47 2666 1954 1349333874 22 4869236375834 0
48 3599 857 383 3477 105 3310
49 1248 2942 0 9065 0 6317
50 3183 2084 29 33853 0 70460
52 1121 4489 14070 575347 22287 3631276
53 1402 1594 15 3889 1 1584
55 40 2621 22 2570903942 0 1.752309756973707e+16
56 3553 1725 27562 62828 34970 155096
58 3593 2665 1174137566 2157351166 2870367432697 911436203603761
59 5341 1119 32054 3229 10910 1554
61 6010 7358 1051610 249589 1 737832
65 3007 2619 141 1675967932 0 120656505852415
66 2664 14100 2069845899 26929803 707165273061241 1291442707
67 2655 2619 1604039738 1647998447 732044898268241 86066805723560
3 814 0 0
6 3109 662768293 82814940101
8 2597 485114 1

10 4912 345 0
40 10271 101925 84568
45 5634 226423 0
51 2573 104145 331831
54 2198 38 0
57 4961 102447 293752
60 2843 159515 629601
62 2622 29 0
63 3117 1700705396 57552047888802
64 997 6 0

Fits 66 52 56 47 34 39
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Table 2.21: The Bayes factors for the distance-based models for SIM-Diff with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

SIM-Diff
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 1096 2886 24 31385 0 954836
2 5305 5497 183 9104 1 1175
4 4901 23 80 0 0 0
5 1 1484 0 5896 0 7
7 9488 2627 25726 13 0 0
9 1577 8020 2312 1857773071 0 40529023106031

11 7381 18191 1390 21642 0 18313
12 9211 0 27321874 0 8326 0
13 6274 2112 17870580 90538 105541 342
14 8207 8312 5392188638 3388031065 175676256409322 31034311070190
15 4736 1240 18906 31 10 0
16 3704 8571 45 344137688 0 7212466
17 166 301 59 3467 1 2
18 973 3769 6288 13229642 0 21380272
19 12963 8349 181353 95420 406820 167806
20 8211 8211 7529820866 7657615137 14212976728830790 19925081392276660
21 3 0 0 0 0 0
22 4709 5170 5840 888 4211 132
23 2139 1300 6 10 0 1
24 8099 8174 2360821369 3501678999 1868704094092 60986120968964
25 1468 1048 39920 39478 1145 291
26 8210 8210 7224403696 7347014755 11027566844762140 15459475605581420
27 7665 8894 2106 80 0 2
28 32618 24099 354071 456942 706447 140454
29 2368 3439 553 184 106 4
30 27734 9550 36603 20054 30099 15082
31 8 1233 0 194 0 1
32 9744 8211 3678941408 7919747714 14463800575590 39158876476553460
33 1 34 0 105 0 1
34 5490 11590 18 364900 0 1092834
35 7268 7898 85863060 96916574 5918976 5186
36 8081 9514 1267232222 41657522 19846935703 2
37 8202 6761 4553696146 6 38635758734288 0
38 4204 2513 113 14709 0 3
39 7320 9669 624 46166 137 75025
41 1247 1341 208 47 0 0
42 1330 7070 8931 38003140 639587 40605
43 1571 2603 4 3753 0 0
44 873 3818 416 184795 0 11535531
46 3567 8024 2970 196514844 0 10023031
47 8340 7327 4227196753 296 15254402361779 0
48 7730 3531 1187 10922 328 10371
49 3782 16395 2 30771 0 19791
50 3121 6080 15 106290 0 220737
52 7031 14513 48056 1802480 69822 11376108
53 15401 6670 274 12973 4 4964
55 0 8211 0 8054160005 0 54896579105191460
56 17614 9365 89000 196855 109555 485887
58 8768 8210 3378637755 6754082832 7349648130325 2855087756594834
59 17480 3482 89026 10115 34179 4867
61 4273 28822 42663 799464 0 2311491
65 11873 8795 7086 5276379569 0 378575931581731
66 8346 3790 6484439107 2064487 2215416207012147 719852399
67 8182 8203 5021816844 5162869957 2293141788374076 269631164705841
3 3102 1 0
6 8749 2037594606 254835708870
8 11385 17127535 8444

10 1484 35 0
40 36536 320827 264935
45 3745 1812 0
51 12559 326321 1039566
54 13441 16432 0
57 20159 321863 920270
60 17681 514000 1972426
62 4447 207 0
63 8204 5203026198 176825671102010
64 5378 322 0

Fits 64 52 60 51 35 38
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Table 2.22: The Bayes factors for the distance-based models for SIM-Ratio with τ = 0.50, 0.25, and 0.10.
There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

SIM-Ratio
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 345 4042 1 94759 0 387410
2 3715 6847 168 3099 0 377
4 6648 113 1525 0 0 0
5 1 1095 0 2816 0 18
7 7781 815 8767 20 0 0
9 2444 2579 3208 596008212 0 13001842628587

11 3921 23178 324 91650 0 5877
12 4512 0 9667695 0 3351 0
13 2166 844 5761500 29317 33910 110
14 2844 3730 1738486079 1189637765 56444381681181 12203084019224
15 8958 1533 9451 162 13 0
16 5615 3613 94 113926627 0 2470201
17 576 4392 5418 5540871 92 1155327
18 4715 7493 1006865 18564433 15 9676626
19 13412 11500 58794 31837 130509 53835
20 2685 2684 2417314119 2458339009 4560001977408838 6392637617746312
21 1 0 0 0 0 0
22 5930 8314 1947 867 1351 42
23 2338 922 5 3 0 0
24 2807 2818 761148276 1128942577 600410375835 19594655522657
25 1941 2867 2551704 287554 238298 227281
26 2640 2640 2317723297 2357059209 3537679364161072 4959450130796080
27 5067 8261 1508 63 0 1
28 23140 19973 142827 164813 227500 45108
29 5410 3773 1619 103 185 1
30 18331 11930 13958 10435 9693 4859
31 3 689 0 65 0 0
32 3133 2640 1180272984 2540802612 4640034339692 125622951268380
33 0 7 0 0 0 0
34 6219 14697 12 155713 0 351946
35 5875 3251 149565687 31911995 1694780397 1704
36 3434 3698 419576273 13687158 6802805198 1
37 2638 8408 1460910933 16 12394477325624 0
38 2954 1680 104 192952 0 4
39 8223 10615 369 15389 44 24069
41 3183 4505 38815 34063 1 0
42 4042 6535 402940 97054942 1124012 89770170
43 874 992 1 1641 0 0
44 899 5751 365 4650583 0 199433150
46 1348 4355 397 71527941 0 9832393
47 2731 4342 1357070063 130 4894127134158 0
48 11320 3304 588 3604 105 3327
49 3259 12451 1 12013 0 6351
50 5370 4604 42 34601 0 70813
52 7994 12289 17113 588063 22408 3649506
53 29799 2861 1157 4227 2 1592
55 0 2641 0 2583924580 0 1.761100139290613e+16
56 15838 8990 122698 84947 49709 156479
58 3870 2685 1185902077 2168277318 2889206071463 916008381927407
59 13226 1890 34926 3248 10971 1561
61 5044 30267 1049212 272045 1 741563
65 6767 2828 3616 1692760927 0 121448392043037
66 2728 10273 2081712038 27049856 710780182278217 1297921170
67 2675 2638 1612163581 1656344924 735717168255501 86498555945857
3 2002 1 0
6 3356 669409143 83358466592
8 4645 5640120 2773

10 3350 540 0
40 24754 108954 85026
45 5284 228560 0
51 8971 114550 333622
54 7912 19653 0
57 23891 229564 306883
60 17585 170211 632782
62 2552 96 0
63 3138 1709318855 57840755144812
64 3297 69 0

Fits 62 52 58 50 36 39
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Table 2.23: The Bayes factors for the distance-based models for the linear order model with τ = 0.50, 0.25,
and 0.10. There are 67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LO
τ = 0.50 τ = 0.25 τ = 0.10
S1 S2 S1 S2 S1 S2

1 58 72 1 15 0 0
2 2 3 0 0 0 0
4 64 15 0 0 0 0
5 0 0 0 0 0 0
7 34 30 0 0 0 0
9 0 70 0 16501711 0 360222391678

11 53 2 3 0 0 0
12 72 66 223317 209489 59 1728
13 73 72 167805 34451 929 0
14 73 73 47928082 30094254 1561560627789 275833286772
15 0 9 0 0 0 0
16 0 72 0 3043846 0 64012
17 35 69 0 39507 0 0
18 12 35 0 0 0 0
19 0 1 0 0 0 0
20 73 73 66928270 68064163 126337077695290 177111143210931
21 4 6 0 0 0 0
22 0 3 0 0 0 0
23 0 1 0 0 0 0
24 73 73 20984051 31124429 16610638202 542096736880
25 63 24 0 0 0 0
26 73 73 64213594 65303414 98022433748644 137417024504971
27 68 14 13 0 0 0
28 1 1 0 0 0 0
29 0 0 0 0 0 0
30 2 1 0 0 0 0
31 40 5 0 0 0 0
32 73 73 31933047 70394109 126089330122 348077543226816
33 0 72 0 37438 0 9
34 0 1 0 0 0 0
35 73 72 763574 861440 52544 46
36 73 69 11263735 361381 176416517 0
37 73 4 40475201 0 343427625765 0
38 41 59 0 0 0 0
39 12 1 0 0 0 0
41 10 54 0 0 0 0
42 64 73 1 337936 0 354
43 11 3 0 0 0 0
44 0 64 0 3 0 0
46 43 73 0 1746305 0 86812
47 73 29 37548153 0 135581290387 0
48 10 1 0 0 0 0
49 12 3 0 0 0 0
50 24 1 0 0 0 0
52 0 1 0 0 0 0
53 6 1 0 0 0 0
55 42 73 0 71588823 0 487967687171330
56 1 1 0 0 0 0
58 73 73 29883451 60033181 65229564192 25378458766751
59 2 0 0 0 0 0
61 69 1 383 0 0 0
65 11 73 0 46668632 0 3359935413611
66 73 54 57598176 0 19690642988484 0
67 73 73 44636067 45889800 20383402992845 2396712108029
3 17 0 0
6 73 18022163 2261716743
8 46 13076 0

10 1 0 0
40 5 0 0
45 61 17 0
51 0 0 0
54 36 1 0
57 1 0 0
60 1 0 0
62 4 0 0
63 73 46246724 1571777606813
64 3 0 0

Fits 45 36 20 20 16 16
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Table 2.24: The frequentist and Bayes factor results for the mixture models for Tversky (1969) data.

Panel A: The frequentist results for the mixture models.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

1
√

0.68 0.14 0.40 0.34
2 0.28 0.13 0.36 0.22 0.63
3 0.62 0.31 0.06 0.14 ?
4 0.91 0.44 ? 0.10 0.30
5 0.70 ? 0.81 0.73 0.20
6 0.45 ? 0.47 ? ?
7 0.20 0.10 0.20 0.10

√
8 0.67 ? 0.67 0.22

√

Fits 8 5 7 7 6

Panel B: The Bayes factors for the mixture models.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
1 1119 11 333 6 0
2 7 6 19 43 3
3 27 53 14 22 0
4 60 42 21 1 1
5 588 2 1042 20 2
6 25 0 8 0 0
7 18 23 57 395 16
8 226 3 706 48 18

Fits 8 5 8 6 2
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Table 2.25: The frequentist and Bayes factor results for the mixture models for Cash I and Cash II from
Regenwetter et al. (2011a.)

Panel A: The frequentist results for the mixture models.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II

1 0.09 0.86 ? 0.64 0.09 0.21 0.11 ?
√

0.30
2 ? 0.77 ? 0.26 ? 0.53 ? 0.13

√ √

3
√

0.85 0.93 0.48
√

0.64 0.89 0.19
√ √

4 ? ? ? ? ? ? ? ? 0.10 0.76
5

√
0.32 ? 0.08

√
0.32 0.08 ?

√ √

6 0.50 0.39 ? 0.21 0.50 0.12 0.15 ? 0.64 0.38
7

√
? 0.53 ?

√
? 0.53 ?

√ √

8
√

0.22 0.51 ?
√

0.19 0.51 ?
√ √

9 0.16
√

?
√

0.16 0.31 ? 0.09
√ √

10
√

0.31
√

0.24
√

0.14 0.98 0.24
√

0.54
11

√
0.11 0.71 ?

√
0.10 0.61 ?

√
0.58

12 0.17 ? ? ? 0.17 ? 0.07 ?
√ √

13 0.19 0.41 ?
√

0.19 0.64 0.07 0.50
√ √

14
√ √

0.92
√ √ √

0.92
√ √ √

15 0.54 ? 0.41 ? 0.54 ? 0.41 ?
√ √

16 0.08 ? ? ? 0.08 ? ? ? ? ?
17 0.11 0.43 0.09 0.23 0.11 0.17 0.09 ? 0.17

√

18 0.64 0.60 0.79
√

0.64 0.74 0.88 0.36
√

0.45

Fits 16 13 9 11 16 13 14 7 17 17

Panel B: The Bayes factors for the mixture model analysis.

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO
Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II Cash I Cash II

1 62 220 0 26 168 1 4 1 13 0
2 9 62 0 8 29 477 0 26 13 28
3 712711 3 0 12 1963269 1 18 15 1 11
4 0 0 0 0 0 0 0 0 0 4
5 15073 7 0 5 35234 8 1 13 3 10
6 57 243 0 12 106 219 0 20 5 4
7 7077 0 1 0 17366 0 17 0 8 15
8 83525 1 0 1 242219 0 3 4 2 5
9 2 1843 0 75 7 1255 0 43 9 20

10 6330 1 47 13 18985 2 733 142 10 2
11 84610 3 0 1 245758 1 14 6 5 2
12 9 1 0 2 16 0 0 0 4 8
13 11 138 0 93 30 510 1 356 13 13
14 707556 0 18 0 1916996 20 97 11 1 0
15 336 163 34 3 1053 4 280 0 19 17
16 315 7 0 0 966 0 1 0 0 0
17 7 69 4 9 22 117 35 8 1 13
18 135 21 98 130 415 30 449 166 19 3

Fits 16 11 5 11 17 9 9 12 12 12
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Table 2.27: The frequentist analysis results for the mixture models for the 2012 experiment data. There are
67 participants in Session I (S1) and of which, 54 returned for Session II (S2).

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

1 0.23 0.07 ? 0.07 ? 0.06 ? ?
√ √

2 0.53 0.10 ? ? 0.43 0.12 ? ?
√ √

4 0.91 ? 0.40 ? 0.63 ? ? ?
√ √

5 0.58 0.37 0.14 0.09 ? 0.09 ? ? ? 0.32

7 0.47 0.33 0.49 0.17 0.38 ? 0.38 ? 0.27
√

9 ? 0.07 ? ? ? ? ? ? ? 0.26

11 0.46 0.44 0.21 0.76 0.24 0.44 ? 0.73
√ √

12 0.34 ? 0.11 ? 0.18 ? ? ? 0.99 0.97

13 ? ? ? ? ? ? ? ? 0.74 0.70

14 0.63 0.24 0.41 0.82 0.78 0.38 0.21 0.73
√

0.69

15 0.37 0.07 0.23 0.28 0.51 ? 0.19 ? 0.68 0.32

16 0.13 0.37 0.20 0.09 0.16 0.48 0.09 ? 0.12
√

17 ? ? 0.22 0.13 ? ? ? ?
√ √

18 ? 0.20 0.15 0.30 ? 0.22 ? 0.09 0.37
√

19 0.62 0.28 0.13 ? 0.55 0.15 0.13 ?
√ √

20 0.93 0.40 0.93 0.17 0.91 0.34 0.65 0.19 0.78
√

21 ? ? ? ? ? ? ? ? 0.69
√

22 0.35 0.26 0.12 ? 0.37 0.32 0.09 0.06
√ √

23 ? ? ? ? ? ? ? ? 0.38
√

24 0.32 ? 0.14 ? 0.38 ? ? ?
√ √

25 0.26 ? 0.40 ? 0.16 ? ? ?
√ √

26 0.30 0.29 0.21 0.19 0.44 0.16 0.06 ?
√

0.99

27 0.64 0.52 0.28 0.08 0.74 0.50 0.21 ?
√ √

28 0.69 0.49 0.67 0.64 0.78 0.57 0.60 0.40
√ √

29 0.06 0.08 0.21 ? 0.08 0.08 0.09 ?
√

0.13

30 0.60 0.12 0.36 0.07 0.63 0.12 0.17 ?
√ √

31 ? 0.19 ? 0.11 ? ? ? ?
√ √

32 0.20 0.91 ? 0.41 0.27 0.92 ? ? 0.57
√

33 ? ? ? ? ? ? ? ? 0.15
√

34 0.19 0.29 ? 0.15 0.19 0.36 ? 0.11 0.29
√

35 ? 0.84 0.06 ? 0.19 0.51 ? ?
√ √

36 0.16 0.92 0.06 0.83 0.09 0.95 ? 0.74
√

0.36

37 0.10 0.58 ? 0.38 0.06 0.49 ? 0.23
√ √

38 0.38 0.84 0.28 0.22 0.12 0.30 0.13 0.07
√ √

39 0.17 0.24 0.12 0.13 0.17 0.43 0.06 0.08
√ √

41 ? ? 0.06 0.14 ? ? ? ? 0.39
√

42 0.10 ? 0.11 0.11 0.09 ? ? ?
√ √

43 0.29 0.09 0.07 ? 0.26 0.09 0.07 ? 0.57
√

44 0.49 0.08 0.08 ? 0.28 0.13 ? ? 0.15
√

46 0.69 0.41 0.18 0.49 0.39 0.29 0.06 0.48
√ √

47 0.18 0.39 0.19 0.32 0.27 0.39 0.07 0.26
√ √

Continued on next page
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Table 2.27 – continued from previous page

LSO-Diff LSO-Ratio SIM-Diff SIM-Ratio LO

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

48 0.09 0.14 0.11 ? 0.10 0.17 0.06 ?
√ √

49 0.10 0.35 0.09 ? 0.10 0.37 ? ? ?
√

50 0.10 0.21 0.18 ? 0.12 0.26 0.11 ?
√ √

52 ? 0.20 ? 0.21 ? 0.23 ? 0.07
√ √

53 0.72 ? 0.81 ? 0.78 ? 0.65 ?
√

0.29

55 ?
√

? 0.67 ?
√

? 0.37 0.17
√

56 0.28 0.09 0.26 ? 0.35 0.18 0.21 ?
√ √

58 0.20 ? 0.10 ? 0.12 0.07 ? ? 0.74 0.91

59 0.66 ? 0.17 ? 0.57 ? 0.08 ?
√

0.39

61 0.28 0.45 0.24 0.56 0.12 0.43 0.21 0.55
√ √

65 0.72 0.32 0.81 ? 0.61 0.29 0.78 ? 0.40 0.67

66 0.30 0.69 ? 0.88 0.57 0.91 ? 0.88 0.32
√

67 0.26 0.26 0.20 0.29 0.13 0.19 ? 0.07
√ √

3 0.11 0.16 0.14 0.08
√

?

6 ? ? ? ?
√

?

8 0.12 ? ? ? 0.69 ?

10 ? 0.24 ? 0.14 0.32 ?

40 0.34 0.19 0.34 0.36
√

?

45 ? ? ? ?
√

?

51 0.28 ? 0.45 ?
√

?

54 0.23 ? 0.15 ? 0.73 ?

57 0.69 0.43 0.66 0.40
√

?

60 0.66 0.12 0.45 0.08
√

?

62 ? ? ? ? 0.41 ?

63 0.06 ? 0.25 ?
√

?

64 0.46 0.44 0.58 0.16
√

?

Fits 51 40 46 30 49 37 30 18 64 54

81



Chapter 3

Quantitative Tests of the Perceived
Relative Argument Model
Commentary on Loomes (2010)
3.1 Published Paper

A published paper:

Guo, Y. and Regenwetter, M. (2014). Quantitative tests of the Perceived Relative Argument Model: com-

ment on loomes (2010). Psychological Review, 121(4):696-705 1.

Please see Appendix B for the full published article.

3.2 Online Supplement Materials

This section reports the online supplement materials for the following paper:

Guo, Y. and Regenwetter, M. (2014). Quantitative tests of the Perceived Relative Argument Model: com-

ment on loomes (2010). Psychological Review, 121(4):696-705.

It includes the analytical proofs for deterministic choice under PRAM. It reports participants’ data and

various tables of results.

Please see Appendix C for the full published supplement materials.

1Copyright c©2014 American Psychological Association. Reproduced with permission. The official citation that should
be used in referencing this material is Guo, Y. and Regenwetter, M. (2014). Quantitative tests of the Perceived Relative
Argument Model: comment on loomes (2010). Psychological Review, 121(4):696-705. This article may not exactly replicate
the authoritative document published in the APA journal. It is not the copy of record. No further reproduction or distribution
is permitted without written permission from the American Psychological Association.
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Chapter 4

Heterogeneity and Parsimony in
Intertemporal Choice

A published paper:

Regenwetter, M., Cavagnaro, D. R., Popova, A., Guo, Y., Zwilling, C., Lim, S. H., & Stevens, J. R. (2018).

Heterogeneity and parsimony in intertemporal choice. Decision, 5(2), 63-94.

http://dx.doi.org/10.1037/dec00000691

Please see Appendix D for the full published article.

1Copyright c©2018 American Psychological Association. Reproduced with permission. The official citation that should
be used in referencing this material is Regenwetter, M., Cavagnaro, D. R., Popova, A., Guo, Y., Zwilling, C., Lim, S. H., &
Stevens, J. R. (2018). Heterogeneity and parsimony in intertemporal choice. Decision, 5(2), 63-94. This article may not exactly
replicate the authoritative document published in the APA journal. It is not the copy of record. No further reproduction or
distribution is permitted without written permission from the American Psychological Association.
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Chapter 5

Testing 49 Different Forms of
Cumulative Prospect Theory

5.1 Introduction

Tversky and Kahneman (1992b) proposed Cumulative Prospect Theory, henceforth CPT, to describe how

people make decisions under risk. It is one of the most influential decision theories in the past few decades.

Tversky and Kahneman (1992b) has been cited more than 4,700 times and CPT has been applied to many

different contexts, for example, management (Becker and Gerhart, 1996, Steel and König, 2006), psychology

(Lopes and Oden, 1999, Trepel et al., 2005), and transportation (Gao et al., 2010, Xu et al., 2011). The

following describes how CPT works. For a gamble G = (x1, p1; . . . ;xn, pn), where x1 ≤ . . . ≤ xk ≤ 0 ≤

xk+1 ≤ . . . ≤ xn, let w+(p) and w−(p) be the probability weighting function to capture the subjective

perception of the probabilities of gains and losses respectively. Let u+(x) and u−(x) be the utility function

to capture the subjective perception of gains and losses respectively. CPT states that:

CPT (G) =

k∑

i=1

w−i u
−(xi) +

n∑

i=k+1

w+
i u

+(xi)

where

w−1 = w−(p1), w−i = w−(p1 + ...+ pi)− w−(p1 + ...+ pi−1), for 2 ≤ i ≤ k;

w+
n = w+(pn), w+

i = w+(pi + ...+ pn)− w+(pi+1 + ...+ pn), for k + 1 ≤ i ≤ n− 1.

In the current study, I only consider gambles with gains. I use w(p) for the probability weighting

function and u(x) for the utility function. For example, for a two-outcome gamble with positive rewards,

G = (x1, p1;x2, p2), where 0 ≤ x1 ≤ x2, CPT states that

CPT (G) = (1− w(p2))u(x1) + w(p2)u(x2).

There has been a lot of work on fine-tuning the mathematical specifics of the theory (see, e.g., Stott,

2006, for a summary). The theory is algebraic, and hence inherently deterministic. Over time, there have

been many different approaches to connect CPT to probabilistic data generating processes and, hence, to

connect it to the statistical analysis of observations in the laboratory. Various papers, such as Stott (2006),
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Blavatskyy and Pogrebna (2010), and Regenwetter et al. (2014) have highlighted that empirically evaluating

CPT involves many moving parts: the outcome of such an analysis can strongly hinge on:

• the mathematical specification of the utility function for money

• the mathematical specification of the probability weighting function

• the probabilistic specification

• the stimuli used

• how observations are aggregated into data

• the statistical method

Stott (2006) investigated “Cumulative Prospect Theory’s Functional Menagerie” by considering seven dif-

ferent functional forms for the utility function for gains, seven functional forms for the probability weighting

function, and four probabilistic response mechanisms based on the assumption that the decision maker has

a deterministic preference and that uncertainty in choice is due to noise/error. In this paper, I consider

the same 49 combinations for functional forms on new stimuli, and with more general and more diverse

non-parametric probabilistic specifications.

The rest of the paper is organized as follows: Section 5.2 describes two different stimulus sets used in

this paper, from Experiment 2009 and Experiment 2012; Section 5.3 describes different functional forms

for the probability weighting function and the utility function; Section 5.4 introduces two different proba-

bilistic specifications and the relevant statistical methods; Section 5.5 reports the data analysis results; and

Section 5.6 concludes the paper.

5.2 Experiments

I used two different stimulus sets in this paper, from Experiment 2009 and Experiment 2012. All gambles

in Experiment 2009 have only two rewards, whereas gambles in Experiment 2012 have up to four rewards.

Because the mathematical form of CPT is simple for two-outcome gambles, it is natural to start with two-

outcome gambles when testing CPT. However, CPT makes richer and more restrictive predictions for more

complicated gambles. Thus, it is important to test CPT with different kinds of stimuli.
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Table 5.1: The 20 gamble pairs in Experiment 2009.

Monetary gamble: Gamble 1 Monetary gamble: Gamble 0
Pair x1 p1 x2 p2 y1 q1 y2 q2

1 $1.19 0.35 $29.38 0.65 $3.21 0.32 $18.00 0.68
2 $18.89 0.58 $27.98 0.42 $3.90 0.53 $25.44 0.47
3 $1.92 0.48 $26.44 0.52 $5.77 0.66 $26.03 0.34
4 $24.01 0.76 $25.05 0.24 $10.56 0.34 $25.32 0.66
5 $10.78 0.29 $23.64 0.71 $6.86 0.02 $25.03 0.98
6 $11.61 0.20 $20.76 0.80 $8.14 0.07 $12.42 0.93
7 $2.46 0.77 $19.38 0.23 $0.73 0.04 $12.57 0.96
8 $4.97 0.61 $18.02 0.39 $14.26 0.51 $15.01 0.49
9 $9.03 0.40 $16.66 0.60 $10.87 0.81 $16.32 0.19
10 $15.17 0.52 $19.58 0.48 $10.07 0.55 $26.39 0.45
11 $5.05 0.59 $13.88 0.41 $8.67 0.30 $8.91 0.70
12 $12.47 0.62 $29.83 0.38 $22.74 0.15 $25.10 0.85
13 $11.16 0.28 $21.78 0.72 $20.91 0.34 $21.30 0.66
14 $6.49 0.83 $9.61 0.17 $4.17 0.69 $9.87 0.31
15 $8.10 0.80 $16.11 0.20 $6.18 0.87 $22.75 0.13
16 $6.69 0.47 $6.88 0.53 $0.96 0.10 $13.86 0.90
17 $5.02 0.10 $24.08 0.90 $14.41 0.93 $23.74 0.07
18 $1.70 0.01 $18.56 0.99 $2.16 0.03 $27.68 0.97
19 $0.00 0.12 $22.51 0.88 $0.73 0.29 $19.30 0.71
20 $0.12 0.30 $22.57 0.70 $2.81 0.21 $11.53 0.79

5.2.1 Experiment 2009

The Experiment 2009 was conducted on a laptop in our lab at the University of Illinois at Urbana-Champaign

in the summer of 20091. There were 40 participants in the experiment2. The experiment was conducted in

two one-hour sessions on two different days. The participants first read instructions on the laptop, and then

they were presented with a practice session. They were instructed to ask any questions whenever necessary.

Following this, participants were presented with a sequence of gamble pairs, one pair at a time. The gamble

pairs that were presented via computers using a two-alternative forced-choice (2AFC) paradigm, in which

they were not allowed to state any preference or indifference. The gamble was shown as a wheel of chance.

Probabilities were displayed in a colored area. At the end of the session, one of the choices made by the

participants would randomly be selected and played for real. The average payment was $20.97 per session.

Gamble pairs were ordered by the computer in a quasi-random fashion with the condition that the same

gamble pair was never presented twice in succession. For each session, each gamble pair was repeated 30

times. Participants made a total of 1200 choices across both sessions. Table 5.1 shows the 20 gamble pairs

in Experiment 2009.

1The study was approved by the Institutional Review Board (IRB) of the University of Illinois under No. 08387.
2Due to a data-writing error, the data from Participants 11 and 35 were never analyzed. There remain 40 participants.
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5.2.2 Experiment 2012

The Experiment 2012 were conducted at the University of Illinois at Urbana-Champaign in the summer of

20123. This experiment was conducted over two sessions held on two consecutive days. Session II replicated

Session I. In Session I, 67 adults participated; of these, 54 returned for Session II. The stimulus set has

20 gamble pairs, shown in Table 5.2. The gamble pairs in this stimulus set were adapted from Birnbaum

(2008b), with rewards adjusted to fit in the experimental paradigm. The gambles have two, three, or four

positive rewards. Participants made repeated choices (20 times for each pair per session) over gamble pairs

that were presented via computers using a 2AFC paradigm. Each gamble was displayed as a wheel of chance,

with colored areas to represent probabilities and numbers next to the wheels to represent payoffs. Before

starting the experiment, participants were informed that one of their choices was randomly selected and

played for real at the end of each session. The average payment was $21.76 per session. These 20 gamble

pairs are only a fraction of all stimuli used in this experiment. The analysis results of another stimulus set in

this experiment were published in Guo and Regenwetter (2014). The analysis results of one other stimulus

set in this experiment were reported in my master thesis (Guo, 2018a).

5.3 Functional Forms

Table 5.3 reports seven different probability weighting functions w(p) and seven different utility func-

tions u(x) (see also Tables 2 and 3 in Stott, 2006). Thus, there are 49 different versions of CPT. In

particular, Tversky and Kahneman (1992b) used Tversky-Kahneman probability weighting function and

power utility function, labeled CPT-KT in this paper.

5.4 Probabilistic Specifications

While CPT is a deterministic theory, experimental research collects variable choice data. How can one

test an algebraic theory like CPT using probabilistic data? Luce (1959, 1995, 1997) presented a two-fold

challenge for studying algebraic decision theories. The first part of the challenge is to specify a probabilistic

extension of an algebraic theory, a problem that has been discussed by many scholars (Carbone and Hey,

2000, Harless and Camerer, 1994, Hey, 1995, 2005, Hey and Orme, 1994, Loomes and Sugden, 1995, Starmer,

2000, Tversky, 1969). The second part of the challenge is to test the probabilistic specifications of the theory

with rigorous statistical methods. This challenge was only solved in the past decade with a breakthrough in

order-constrained, likelihood-based inferences (Davis-Stober, 2009, Myung et al., 2005, Silvapulle and Sen,

3The study was approved by the Institutional Review Board (IRB) of the University of Illinois under No. 12632.
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Table 5.3: Summary of seven functional forms of the probability weighting function w(p) and the utility
function u(x).

(a) Seven functional forms of the probability weighting function w(p).

Name Abbreviation Equation
Linear Lin w(p) = p
Power Pwr w(p) = pγ

Goldstein-Einhorn GE w(p) = spγ

spγ+(1−p)γ
Tversky-Kahneman TK w(p) = pγ

(pγ+(1−p)γ)(
1
γ

)

Wu-Gonzalez WG w(p) = pγ

(pγ+(1−p)γ)s
Prelec I Prl-I w(p) = e−(− ln p)γ

Prelec II Prl-II w(p) = e−s(− ln p)γ

(b) Seven functional forms of the utility function u(x).

Name Abbreviation Equation
Linear Lin u(x) = x
Logarithmic Log u(x) = ln(α+ x)
Power Pwr u(x) = xα

Quadratic Quad u(x) = αx− x2
Exponential Expo u(x) = 1− e−αx
Bell Bell u(x) = βx− e−αx
HARA Hara u(x) = −(β + x)α

2005). To perform an appropriate and rigorous test of CPT, researchers have to solve Luce’s challenge.

However, only a few studies in the existing literature offer convincing solutions.

Regenwetter et al. (2014) provided a general and rigorous quantitative framework for testing theories of

binary choice, which one can use to test CPT. To solve the first part of Luce’s challenge, they presented

two kinds of probabilistic specifications of algebraic models to explain choice variability: a distance-based

probabilistic specification models preferences as deterministic and response processes as probabilistic, and

a mixture specification models preferences as probabilistic and response processes as deterministic. Sec-

tions 5.4.1 and 5.4.2 provide details of these two probabilistic specifications. For the second part of Luce’s

challenge, Regenwetter et al. (2014) employed frequentist likelihood-based statistical inference methods for

binary choice data with order-constraints on each choice probability (Davis-Stober, 2009, Iverson and Fal-

magne, 1985, Silvapulle and Sen, 2005). Myung et al. (2005) and Klugkist and Hoijtink (2007) provided

Bayesian order-constrained statistical inference techniques. In this paper, I specify two kinds of probabilis-

tic models for each form of CPT and test those probabilistic models with both frequentist and Bayesian

order-constrained statistical methods.

5.4.1 Distance-Based Models

A distance-based model, which is also called an error model, assumes that a decision maker has a fixed

preference throughout the experiment. It allows the decision maker to make errors/trembles in a binary
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pair with some probability that is bounded by a maximum allowable error rate. Formally, a distance-based

model requires binary choice probabilities to lie within some specified distances of a point hypothesis that

represents a preference state. More precisely, let τ ∈ (0, 0.50] be the upper bound on the error rate for each

probability. For any pair (x, y), the probability of choosing x over y, θxy, is given by

x � y ⇔ θxy ≥ 1− τ
x ≺ y ⇔ θxy ≤ τ

When a decision maker prefers x to y, he chooses x over y with probability at least 1 − τ . When a

decision maker prefers y to x, he chooses x over y with probability at most τ . When τ = 0.50, this model

is also named modal choice, which assumes a decision maker has a deterministic preference and allows the

decision maker to make errors on each pair with probability at most 0.50. In other words, when τ = 0.50,

it means that the modal choice for each pair is consistent with the predictions of an algebraic theory (up to

sampling variability).

Consider the two gambles in Pair 1 in Experiment 2009, Gamble 1 = ($1.19, 0.35; $29.38, 0.65) and

Gamble 0 = ($3.21, 0.32; $18.00, 0.68). In Gamble 1, the decision maker has a 35% chance of winning

$1.19 and a 65% chance of winning $29.38; In Gamble 0, the decision maker has a 32% chance of winning

$3.21 and a 68% chance of winning $18.00. I consider a specific theoretical prediction of CPT-KT. For

G = (x1, p1;x2, p2), where 0 ≤ x1 ≤ x2, CPT-KT states that

CPT (G) =

(
1− pγ2

(pγ2 + pγ1)(
1
γ )

)
xα1 +

pγ2

(pγ2 + pγ1)(
1
γ )
xα2

There are two parameters in CPT-KT, the weighting parameter γ and risk attitude α. I consider one

specific prediction of CPT-KT with α = 0.88 and γ = 0.61. In this case, the subjective value attached to

Gamble 1 is

(
1− 0.650.61

(0.650.61 + 0.350.61)(
1

0.61 )

)
1.190.88 +

0.650.61

(0.650.61 + 0.350.61)(
1

0.61 )
29.380.88 = 10.42.

The subjective value attached to Gamble 0 is

(
1− 0.680.61

(0.680.61 + 0.320.61)(
1

0.61 )

)
3.210.88 +

0.680.61

(0.680.61 + 0.320.61)(
1

0.61 )
18.000.88 = 7.97.

Therefore, Gamble 1 is preferred to Gamble 0. Applying CPT-KT with α = 0.88 and γ = 0.61 to the

other pairs in Experiment 2009. For Pairs 1, 2, 4, 6, 9, 10, 14, 15, 17, 19, and 20, Gamble 1 is preferred to

Gamble 0; for the other pairs, Gamble 0 is preferred to Gamble 1. When Gamble 1 is preferred to Gamble

0, I write the predicted gamble as 1; when Gamble 0 is preferred, I write the predicted gamble as 0. Thus

a decision maker who satisfies CPT-KT with α = 0.88 and γ = 0.61 has the following preference pattern:
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1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, and 1. For Pair 1, the distance-based model with upper

bound τ = 0.50 means that a decision maker chooses Gamble 1 over Gamble 0 with probability at least 0.50.

However, a distance-based model with upper bound τ = 0.50 assumes that a decision maker chooses his

preferred prospect more often than not, and might be too lenient. To compensate for this, one could place

a more restrictive constraint on τ for each binary pair. Still using Pair 1 as an example. The distance-based

model with upper bound τ = 0.10 means that the decision maker chooses Gamble 1 over Gamble 0 with

probability at least 0.90. In this paper, I use three different upper bounds, τ = 0.50, 0.25, and 0.10, on the

error rate.

5.4.2 Mixture Models

A mixture model assumes that a decision maker’s preferences are probabilistic. Variations in observed choice

behavior are no longer due to errors, but rather to the decision maker’s uncertain preferences. A decision

maker might fluctuate in his preferences during the experiment, making a choice based on one of the decision

theory’s predicted preference patterns on each given trial. A mixture model treats parameters of algebraic

theory as random variables with unknown joint distribution; it does not make any distributional assumptions

regarding the joint outcomes of the random variables. Geometrically, a mixture model forms the convex hull

of the point hypotheses that capture the various possible preference states.

Take CPT-KT as an example. A mixture model treats the two parameters, α and γ, as random variables

with any joint distribution whatsoever, hence permitting all possible probability distributions over the various

permissible preference patterns.

I write � for strict preference. I define CPT as a set of preference patterns predicted by CPT and

P (�CPT ) as the probability of preference pattern �CPT in CPT . According to the mixture model, for any

pair (x, y), the binary choice probability θxy is

θxy =
∑

�CPT∈CPT
in which x�y

P (�CPT ).

This equation shows that the probability of choosing x over y equals the total probability of those preference

patterns predicted by CPT in which x is strictly preferred to y.

Take CPT-KT and the Experiment 2009 stimuli as an example. When allowing α and γ to be random

variables with any joint distribution, I obtain 54 different preference patterns4. The mixture model of CPT-

KT for gambles in Experiment 2009 can be cast geometrically as the convex hull (polytope) of 54 vertices

4I used the grid search to get predicted preference patterns. The grid search for α considered all values in the range [0.01,
10] with a step-size of 0.01 and the range [10.05, 50] with a step-size of 0.05. The grid search for γ considered all values in the
range [0.279, 1] with a step-size of 0.01.
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in a suitably chosen 20-dimensional unit hypercube of binary choice probabilities. Each vertex encodes

the binary choice probabilities when the probability mass is concentrated on a single preference pattern

predicted by CPT-KT. I provide the minimal description of the mixture polytope of CPT-KT for gambles

in Experiment 2009 regarding its facet-defining equalities and inequalities presented in Section 5.7, via the

public-domain software PORTA 5. For equalities, I get P18 = 0 and P2 = P6 = 1. These equalities mean that

this mixture polytope has 17 free parameters that are restricted by Inequalities (3) to (54)) in the Section.

In this case, the mixture model is not full dimensional. It is a 17-dimensional polytope in a 20-dimensional

space. I cannot test this mixture model with frequentist order-constrained statistical methods because the

frequentist methods only apply for full dimensional models. The Bayesian methods, on the other hand, can

handle non-full-dimensional polytopes, such as the mixture CPT-KT model described above. I provide the

minimal descriptions of the mixture polytope for all 49 versions of CPT for Experiments 2009 and 2012 in

the Supplemental Materials. I only use the Bayesian order-constrained methods to test the mixture model

in this paper.

For the Experiment 2012 stimuli, the equalities P1 = P2 and P3 = P4 are obtained. The reason is

that gambles in Pair 1 were generated by the branch splitting of gambles in Pair 2, and Pairs 1 and 2 are

essentially the same gamble pair (for more information about the branch splitting, see Birnbaum, 2008b).

So are Pairs 3 and 4.

I computed the preference patterns6 and obtained the facet-defining inequalities for different CPT forms.

For CPT with the linear utility function and the linear probability weighting function, there is only one

preference pattern, and there is no mixture model in this case. There are also three other CPT forms7 of

which mathematical models are so complex that I could not have their mathematical descriptions computed

within a reasonable of amount time. Therefore, there are only 45 mixture models of CPT for Experiments

2009 and 2012 respectively.

In sum, I test four different probabilistic specifications of 49 forms of CPT, the distance-based models

with τ = 0.50, 0.25, and 0.10, and the mixture model. Therefore, I test a total of 49× 3 + 45 = 192 models

on each of the two stimulus sets from Experiment 2009 and Experiment 2012.

5For more information, please see http://comopt.ifi.uni-heidelberg.de/software/PORTA/)
6I used the grid search to get predicted preference patterns. The grid search for α and s considered all values in the range

[0.01, 10] with a step-size of 0.01 and the range [10.05, 50] with a step-size of 0.05.; the grid search for β and γ considered all
values in the range [.01, 1] with a step-size of 0.01; for “TK” probability weighting function, the grid search for γ considered
all values in the range [0.279, 1] with a step-size of 0.01.

7For Experiment 2009, the three CPT forms are “Quad” utility function with “GE”, “WG”, and “Prl-II” probability
weighting function; and for Experiment 2012, the three CPT forms are “Quad” utility function with “WG” and “Prl-II”
probability weighting function, and “Bell” utility function with “GE” probability weighting function.
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5.4.3 Statistical Methods

In the current study, I report results using both frequentist (Davis-Stober, 2009, Iverson and Falmagne, 1985,

Silvapulle and Sen, 2005) and Bayesian (Myung et al., 2005) order-constrained statistical inference methods.

For frequentist tests, the decision models under consideration are null hypotheses, and I report frequentist

goodness-of-fit test results with a significance level of 0.05. For the distance-based models, the predicted

preference pattern with the largest p-value is called a best-fitting preference pattern. For each participant,

the frequentist test finds the best-fitting preference pattern and tests whether the data are compatible with

the constraints on binary choice probabilities.

For Bayesian tests, I compute Bayes factors (BF; Kass and Raftery, 1995) for each model. The Bayes

factor measures the empirical evidence for each decision model while appropriately penalizing the complexity

of the model. The complexity of a model refers to the volume of the parameter space that a decision theory

occupies relative to the saturated model, which permits all conceivable binary choice probabilities and

additionally places a uniform prior on them.

For distance-based models, the order constraints are orthogonal within each model, and the priors on each

dimension are independent and conjugate to the likelihood function. Thus, I can obtain analytical solutions

for the Bayes factors of the distance-based models, compared to the saturated model. For mixture models,

the order constraints are not orthogonal, so I use a Monte Carlo sampling procedure (Gelfand and Smith,

1990, Myung et al., 2005, Sedransk et al., 1985). I completed all the analyses in this paper on Pittsburgh

Supercomputer Center’s Blacklight, Greenfield, and Bridges supercomputers, as an Extreme Science and

Engineering Discovery Environment project (see also, Towns et al., 2014)8.

I use Bayes factors to compare each model to the saturated model and select among models at both

individual and group levels. To interpret the individual level Bayes factor results, I use the rule-of-thumb

cutoffs for “substantial” evidence according to Jeffreys (1998). I use: BFA to represent the Bayes factor of

model A; BFB to represent the Bayes factor for model B; and BFAB = BFA
BFB

to represent the Bayes factor

for model A over model B. When BFAB > 3.2, it means that there is “substantial” evidence in favor of

model A. I will say that a decision model “fits” if its Bayes factor against the saturated model is larger than

3.2. I will say that a decision model is “best” (or a “winner”) if its Bayes factor against the saturated model

is higher than 3.2 and it has the highest Bayes factor among all the models under consideration.

For the group level comparison, I use the group Bayes factor (GBF, Stephan et al., 2007) to select among

models. The GBF aggregates likelihoods across participants and is the product of individual Bayes factors.

The model with the highest GBF is the one that best accounts for all participants’ data jointly.

8The analyses were supported by XSEDE Grant NSF SES No. 130016 (PI: Michel Regenwetter).
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5.5 Results

5.5.1 The Distance-Based Models

Tables 5.4 and 5.5 summarize the results for the distance-based models using both frequentist and Bayesian

methods for Experiment 2009. Tables 5.6 and 5.7 summarize the frequentist and Bayesian analyses for the

distance-based models for Experiment 2012. The first two columns of Tables 5.4 - 5.7 display the utility

function and the probability weighting function. Columns 3, 4, 6, 7, 9, and 10 report the total number

of people who are fit by the distance-based models with the error rate upper bounds 0.50, 0.25, and 0.10

for each session. Columns 5, 8, and 11 in Tables 5.4 and 5.6 report the total number of people who are

consistently fit by the distance-based models across both sessions with three different values of τ . By a

consistent fit of the distance-based model, I mean that there exists a set of parameter values of CPT for

which the distance-based model fits in both sessions using frequentist methods. Columns 5, 8, and 11 in

Tables 5.5 and 5.7 report the total number of people who are simultaneously fit by the distance-based models

for both sessions with three different values of τ using Bayes factor analyses.

Tables 5.4 - 5.7 show that, as expected, for each form of CPT, the number of people who are fit is the

highest for the distance-based models with τ = 0.50, and decreases when the upper bound τ on the error

rate decreases.

The frequentist analysis in Table 5.4 shows that most of the distance-based models with τ = 0.50 of

CPT explain more than half of the participants’ data in the separate analysis for Experiment 2009. The

distance-based CPT models with τ = 0.50 explain no more than half of the participants’ data consistently

for both sessions. This result shows that there might be some degree of “over-fitting” for the distance-based

models with τ = 0.50. The number of participants who replicate across Session I and Session II is much

smaller than the number of participants who are fit in the separate analysis. In other words, when a model

fits the data of some participants in Session I, the estimated best-fitting parameters of that model need

not predict the data of the same participants in Session II. Another reason why the distance-based CPT

models with τ = 0.50 involve extensive “over-fitting” is that the rejection rates leap up when I place stronger

restrictions on error rates, and there are barely any successful replications (at most two for τ = 0.25 and at

most one for τ = 0.10). Table 5.5 shows the Bayes factor analysis results for Experiment 2009 by comparing

each model to the saturated model. The Bayes factor results are very similar to the frequentist analyses in

Table 5.4.

Results in Table 5.6 and 5.7 indicate that the Experiment 2012 results are similar to the Experiment

2009 results. The number of outcomes in gambles does not seem to affect the analysis results.

All of these findings tell us that the distance-based models of CPT do not perform very well, and it is
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Table 5.4: Results of the frequentist analysis of the distance-based models for Experiment 2009. The
column labeled “S1” reports the number of people who are fit in Session I, the column labeled “S2” reports
the number of people who are fit in Session II, and the column labeled “Consis” reports the number of people
who are consistently fit in both sessions. There are 40 participants in each session.

τ = 0.50 τ = 0.25 τ = 0.10
u(x) w(x) S1 S2 Consis S1 S2 Consis S1 S2 Consis
Lin Lin 9 2 1 2 1 0 0 1 0
Lin Pwr 10 7 3 3 1 0 0 1 0
Lin GE 24 23 13 9 10 2 2 8 1
Lin TK 17 16 9 5 9 2 2 7 1
Lin WG 22 23 13 9 10 2 2 8 1
Lin Prl-I 18 17 10 6 8 2 2 7 1
Lin Prl-II 24 22 12 9 9 2 2 7 1
Log Lin 13 14 9 4 7 2 2 6 1
Log Pwr 18 21 12 8 10 2 2 9 1
Log GE 27 25 14 10 13 2 2 10 1
Log TK 15 18 10 4 10 2 2 7 1
Log WG 25 25 14 10 13 2 2 10 1
Log Prl-I 17 18 11 4 9 2 2 6 1
Log Prl-II 27 25 14 10 13 2 2 10 1
Pwr Lin 18 19 10 6 8 2 2 7 1
Pwr Pwr 18 20 11 6 9 2 2 8 1
Pwr GE 30 27 18 11 11 3 3 9 2
Pwr TK 22 23 14 8 9 2 2 7 1
Pwr WG 27 24 15 10 10 2 2 8 1
Pwr Prl-I 22 22 14 10 9 2 2 7 1
Pwr Prl-II 30 27 18 11 11 3 3 9 2

Quad Lin 4 1 1 0 0 0 0 0 0
Quad Pwr 10 7 3 3 1 0 0 1 0
Quad GE 19 16 9 7 6 2 0 1 0
Quad TK 4 2 1 0 0 0 0 0 0
Quad WG 17 12 6 5 1 0 0 1 0
Quad Prl-I 6 3 1 0 0 0 0 0 0
Quad Prl-II 18 12 6 5 1 0 0 1 0
Expo Lin 14 14 9 4 7 2 2 6 1
Expo Pwr 19 22 12 8 10 2 2 9 1
Expo GE 30 30 18 12 16 4 3 10 2
Expo TK 18 17 10 4 8 2 2 6 1
Expo WG 27 24 14 10 11 2 2 9 1
Expo Prl-I 19 17 11 4 8 2 2 6 1
Expo Prl-II 27 24 14 10 11 2 2 9 1

Bell Lin 17 15 9 6 8 2 2 7 1
Bell Pwr 18 21 12 8 10 2 2 9 1
Bell GE 31 31 19 14 18 4 3 11 2
Bell TK 22 20 10 6 11 2 2 8 1
Bell WG 28 26 15 12 13 2 2 10 1
Bell Prl-I 24 22 12 7 11 2 2 8 1
Bell Prl-II 28 26 15 12 13 2 2 10 1

HARA Lin 1 0 0 0 0 0 0 0 0
HARA Pwr 1 0 0 0 0 0 0 0 0
HARA GE 1 0 0 0 0 0 0 0 0
HARA TK 1 0 0 0 0 0 0 0 0
HARA WG 1 0 0 0 0 0 0 0 0
HARA Prl-I 1 0 0 0 0 0 0 0 0
HARA Prl-II 1 0 0 0 0 0 0 0 0

important to perform analyses at the individual level and use replications in this kind of decision research.

5.5.2 Mixture Model

Tables 5.8 and 5.9 show the number of people who are fit by the mixture model of CPT by Bayes factor

on the data of Experiment 2009 and Experiment 2012, separately and simultaneously. Most of the mixture

models of CPT fails to win over the saturated model for all of the participants for both stimulus sets. For

Experiment 2009, the model that fits the highest number of participants’ data uses Tversky-Kahneman

probability weighting function and the power utility function (seven out of 40 for Session I, five out of 40 for

Session II, and zero out of 54 for both sessions); for Experiment 2012, the model that fits the highest number

of participants’ data uses the Goldstein-Einhorn probability weighting function and the quadratic utility

95



Table 5.5: Results of the Bayesian analysis of the distance-based models for Experiment 2009. The column
labeled “S1” reports the number of people who are fit in Session I, the column labeled “S2” reports the
number of people who are fit in Session II, and the column labeled “Both” reports the number of people
who are simultaneously fit in both sessions. There are 40 participants in each session.

τ = 0.50 τ = 0.25 τ = 0.10
u(x) w(x) S1 S2 Both S1 S2 Both S1 S2 Both
Lin Lin 10 2 1 3 1 0 0 1 0
Lin Pwr 11 5 2 6 3 1 1 1 0
Lin GE 24 22 17 16 15 11 6 8 4
Lin TK 18 16 9 9 11 5 4 7 3
Lin WG 22 22 16 15 15 11 6 8 4
Lin Prl-I 18 15 10 10 10 6 5 7 3
Lin Prl-II 24 21 16 16 13 9 6 7 3
Log Lin 16 14 9 9 10 6 5 6 3
Log Pwr 19 18 11 14 15 9 6 9 4
Log GE 27 23 18 17 16 10 7 11 6
Log TK 17 17 11 9 12 7 5 8 4
Log WG 25 23 17 16 16 10 7 11 6
Log Prl-I 18 17 12 9 12 7 5 7 3
Log Prl-II 26 23 18 17 16 10 7 11 6
Pwr Lin 19 16 9 12 12 6 5 7 3
Pwr Pwr 18 17 10 11 14 8 5 8 4
Pwr GE 29 25 21 19 20 14 8 9 5
Pwr TK 22 22 15 15 15 10 7 7 3
Pwr WG 26 22 17 17 17 12 7 8 4
Pwr Prl-I 23 21 16 15 15 10 7 7 3
Pwr Prl-II 29 25 21 19 20 14 8 9 5

Quad Lin 2 0 0 0 0 0 0 0 0
Quad Pwr 9 6 3 4 1 0 3 1 0
Quad GE 18 13 9 8 7 3 5 4 1
Quad TK 3 0 0 0 0 0 0 0 0
Quad WG 16 8 6 7 1 1 4 1 0
Quad Prl-I 4 1 0 1 0 0 0 0 0
Quad Prl-II 16 7 5 6 1 0 4 1 0
Expo Lin 15 12 8 9 10 6 5 6 3
Expo Pwr 19 19 11 13 14 8 6 9 4
Expo GE 29 27 22 20 20 14 9 13 7
Expo TK 18 16 11 10 11 7 5 6 3
Expo WG 26 22 17 17 14 9 7 9 5
Expo Prl-I 19 16 12 10 11 7 5 6 3
Expo Prl-II 26 22 18 17 14 9 7 9 5

Bell Lin 17 13 8 10 12 7 5 7 3
Bell Pwr 18 18 11 13 15 9 6 9 4
Bell GE 30 28 24 20 21 13 9 15 8
Bell TK 20 18 11 12 14 8 5 9 4
Bell WG 27 23 19 18 16 10 7 11 6
Bell Prl-I 23 20 15 13 14 9 6 9 4
Bell Prl-II 27 23 19 18 16 10 7 11 6

HARA Lin 0 0 0 0 0 0 0 0 0
HARA Pwr 0 0 0 0 0 0 0 0 0
HARA GE 0 0 0 0 0 0 0 0 0
HARA TK 0 0 0 0 0 0 0 0 0
HARA WG 0 0 0 0 0 0 0 0 0
HARA Prl-I 0 0 0 0 0 0 0 0 0
HARA Prl-II 0 0 0 0 0 0 0 0 0
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Table 5.6: Results of the frequentist analysis of the distance-based models for Experiment 2012. The
column labeled “S1” reports the number of people who are fit in Session I, the column labeled “S2” reports
the number of people who are fit in Session II, and the column labeled “Consis” reports the number of people
who are consistently fit in both sessions. There are 67 participants in Session I and 54 in Session II.

τ = 0.50 τ = 0.25 τ = 0.10
u(x) w(x) S1 S2 Consis S1 S2 Consis S1 S2 Consis
Lin Lin 8 12 3 0 0 0 0 0 0
Lin Pwr 9 13 3 1 0 0 1 0 0
Lin GE 29 29 16 5 5 2 3 2 1
Lin TK 13 19 7 0 0 0 0 0 0
Lin WG 19 20 8 1 0 0 1 0 0
Lin Prl-I 14 17 7 0 0 0 0 0 0
Lin Prl-II 30 34 16 6 9 2 3 4 1
Log Lin 24 27 14 5 7 2 2 3 1
Log Pwr 28 32 15 6 7 2 3 3 1
Log GE 30 33 16 6 8 2 3 4 1
Log TK 24 29 15 5 7 2 2 3 1
Log WG 30 32 16 6 7 2 3 3 1
Log Prl-I 25 29 15 5 7 2 2 3 1
Log Prl-II 35 37 18 6 8 2 3 4 1
Pwr Lin 26 29 14 6 7 2 3 3 1
Pwr Pwr 29 32 15 6 7 2 3 3 1
Pwr GE 30 33 17 6 8 2 3 4 1
Pwr TK 29 32 16 6 7 2 3 3 1
Pwr WG 31 32 17 6 7 2 3 3 1
Pwr Prl-I 29 31 16 6 7 2 3 3 1
Pwr Prl-II 31 35 17 6 9 2 3 4 1

Quad Lin 24 26 14 4 5 2 2 2 1
Quad Pwr 28 28 16 4 7 2 2 3 1
Quad GE 29 30 16 4 7 2 2 3 1
Quad TK 27 29 16 4 5 2 2 2 1
Quad WG 31 32 17 4 7 2 2 3 1
Quad Prl-I 26 29 16 4 5 2 2 2 1
Quad Prl-II 35 36 20 4 8 2 2 4 1
Expo Lin 24 27 14 5 7 2 2 3 1
Expo Pwr 27 31 15 6 7 2 3 3 1
Expo GE 36 35 18 6 8 2 3 4 1
Expo TK 24 30 15 5 7 2 2 3 1
Expo WG 34 35 19 6 7 2 3 3 1
Expo Prl-I 31 32 17 5 7 2 2 3 1
Expo Prl-II 35 37 18 6 8 2 3 4 1

Bell Lin 25 29 14 5 7 2 2 3 1
Bell Pwr 29 32 15 6 7 2 3 3 1
Bell GE 30 33 17 6 8 2 3 4 1
Bell TK 26 32 15 5 7 2 2 3 1
Bell WG 26 29 17 4 5 2 2 2 1
Bell Prl-I 26 31 15 5 7 2 2 3 1
Bell Prl-II 30 35 16 6 9 2 3 4 1

HARA Lin 20 20 11 0 0 0 0 0 0
HARA Pwr 22 20 11 0 0 0 0 0 0
HARA GE 26 21 13 0 0 0 0 0 0
HARA TK 22 20 11 0 0 0 0 0 0
HARA WG 23 21 12 0 0 0 0 0 0
HARA Prl-I 22 20 11 0 0 0 0 0 0
HARA Prl-II 23 22 12 0 0 0 0 0 0
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Table 5.7: Results of the Bayes factor analysis of the distance-based models for Experiment 2012. The
column labeled “S1” reports the number of people who are fit in Session I, the column labeled “S2” reports
the number of people who are fit in Session II, and the column labeled “Both” reports the number of people
who are simultaneously fit in both sessions. There are 67 participants in Session I and 54 in Session II.

τ = 0.50 τ = 0.25 τ = 0.10
u(x) w(x) S1 S2 Both S1 S2 Both S1 S2 Both
Lin Lin 2 0 0 0 0 0 0 0 0
Lin Pwr 5 3 2 1 0 0 1 0 0
Lin GE 14 14 6 8 7 4 4 5 2
Lin TK 2 2 0 0 0 0 0 0 0
Lin WG 4 2 0 1 0 0 1 0 0
Lin Prl-I 3 2 0 0 0 0 0 0 0
Lin Prl-II 17 17 8 10 11 6 4 9 3
Log Lin 17 20 10 9 11 5 3 7 2
Log Pwr 16 17 8 10 9 5 4 7 2
Log GE 14 16 8 10 9 5 4 8 2
Log TK 13 17 8 9 9 5 3 7 2
Log WG 15 15 8 10 9 5 4 7 2
Log Prl-I 13 19 9 9 9 5 3 7 2
Log Prl-II 21 21 11 10 11 5 4 8 2
Pwr Lin 18 20 10 10 10 5 4 7 2
Pwr Pwr 17 17 8 10 9 5 4 7 2
Pwr GE 14 15 8 10 9 5 4 8 2
Pwr TK 15 17 8 10 9 5 4 7 2
Pwr WG 14 13 8 10 9 5 4 7 2
Pwr Prl-I 15 16 7 10 9 5 4 7 2
Pwr Prl-II 17 18 9 10 11 6 4 9 3

Quad Lin 19 22 11 8 9 5 3 6 2
Quad Pwr 18 20 12 7 10 5 3 7 2
Quad GE 18 16 8 7 8 4 3 7 2
Quad TK 17 20 11 7 8 5 3 5 2
Quad WG 21 16 9 7 9 4 3 7 2
Quad Prl-I 18 21 12 7 8 5 3 5 2
Quad Prl-II 21 24 10 8 12 4 3 8 2
Expo Lin 15 19 9 8 10 4 3 7 2
Expo Pwr 16 16 7 9 9 4 4 7 2
Expo GE 21 19 9 10 11 5 4 8 2
Expo TK 14 17 7 8 9 4 3 7 2
Expo WG 21 19 10 9 10 4 4 7 2
Expo Prl-I 20 20 10 9 10 4 3 7 2
Expo Prl-II 21 21 12 10 12 6 4 9 3

Bell Lin 16 18 10 9 10 5 3 7 2
Bell Pwr 16 17 8 10 9 5 4 7 2
Bell GE 13 15 8 10 9 5 4 8 2
Bell TK 13 16 7 9 9 5 3 7 2
Bell WG 13 11 8 7 7 4 3 5 2
Bell Prl-I 13 15 7 9 9 5 3 7 2
Bell Prl-II 18 18 9 10 11 6 4 9 3

HARA Lin 16 14 4 2 2 1 0 1 0
HARA Pwr 9 6 3 1 1 0 0 0 0
HARA GE 8 7 2 1 2 0 0 0 0
HARA TK 8 6 3 1 1 0 0 0 0
HARA WG 9 6 2 1 1 0 0 0 0
HARA Prl-I 9 6 3 1 1 0 0 0 0
HARA Prl-II 7 7 1 1 1 0 0 0 0
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Table 5.8: Results of the Bayes factor analysis for the mixture models for Experiment 2009. It shows the
number of people who are fit by the mixture model, separately and simultaneously. There are 40 participants
in each session.

u(x) w(x) Session I Session II Both Sessions
Lin Pwr 0 0 0
Lin GE 3 2 0
Lin TK 2 4 0
Lin WG 2 1 0
Lin Prl-I 1 4 0
Lin Prl-II 2 2 0
Log Lin 0 0 0
Log Pwr 0 4 0
Log GE 3 1 0
Log TK 1 2 0
Log WG 1 1 0
Log Prl-I 2 2 0
Log Prl-II 1 1 0
Pwr Lin 0 3 0
Pwr Pwr 0 4 0
Pwr GE 4 2 1
Pwr TK 7 5 0
Pwr WG 3 1 0
Pwr Prl-I 4 2 0
Pwr Prl-II 5 2 0

Quad Lin 0 0 0
Quad Pwr 0 0 0
Quad TK 0 0 0
Quad Prl-I 0 0 0
Expo Lin 0 3 0
Expo Pwr 0 1 0
Expo GE 3 3 0
Expo TK 1 3 0
Expo WG 2 1 0
Expo Prl-I 2 2 0
Expo Prl-II 1 1 0
Bell Lin 0 2 0
Bell Pwr 0 3 0
Bell GE 2 2 0
Bell TK 2 5 0
Bell WG 1 1 0
Bell Prl-I 3 4 0
Bell Prl-II 2 1 0
Hara Lin 0 0 0
Hara Pwr 0 0 0
Hara GE 0 0 0
Hara TK 0 0 0
Hara WG 0 0 0
Hara Prl-I 0 0 0
Hara Prl-II 0 0 0

function (12 out of 67 for Session I, 21 out of 54 for Session II, and nine out of 54 for both sessions). Overall,

the Bayes factor analysis shows that none of the mixture models of CPT could explain the participants’ data

very well.

5.5.3 Model Comparison: Individual Level

I use Bayes factors to compare models. As I discuss in Section 5.4.3, for each participant, a decision model

is “best” (or a “winner”) if its Bayes factor against the saturated model is higher than 3.2, and it has the

highest Bayes factor among a group of models. This section reports the best model at the individual level

for Experiments 2009 and 2012.

Table 5.10 and 5.11 report the results of the model comparison by Bayes factor for Experiments 2009 and

2012. The first column shows the participant ID. The second and third columns show the utility function

and the probability weighting function of the best form of CPT. The fourth column shows the stochastic
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Table 5.9: Results of the Bayes factor analysis for the mixture models for Experiment 2012. The table
shows the number of people who are fit by the mixture model, separately and simultaneously. There are 67
participants in Session I and 54 in Session II.

u(x) w(x) Session I Session II Both Sessions
Lin Pwr 0 0 0
Lin GE 0 0 0
Lin TK 0 0 0
Lin WG 0 0 0
Lin Prl-I 0 0 0
Lin Prl-II 1 2 0
Log Lin 0 0 0
Log Pwr 0 0 0
Log GE 0 0 0
Log TK 0 1 0
Log WG 0 0 0
Log Prl-I 0 1 0
Log Prl-II 3 1 0
Pwr Lin 0 2 0
Pwr Pwr 0 0 0
Pwr GE 0 0 0
Pwr TK 0 0 0
Pwr WG 0 0 0
Pwr Prl-I 0 0 0
Pwr Prl-II 2 3 0

Quad Lin 0 0 0
Quad Pwr 0 1 0
Quad GE 12 21 8
Quad TK 3 1 0
Quad Prl-I 2 1 1
Expo Lin 0 1 0
Expo Pwr 0 0 0
Expo GE 4 2 1
Expo TK 0 1 0
Expo WG 4 3 0
Expo Prl-I 1 3 0
Expo Prl-II 4 1 1
Bell Lin 0 1 0
Bell Pwr 0 0 0
Bell TK 0 0 0
Bell WG 0 0 0
Bell Prl-I 0 0 0
Bell Prl-II 1 0 0

HARA Lin 0 0 0
HARA Pwr 0 0 0
HARA GE 0 0 0
HARA TK 0 0 0
HARA WG 0 1 0
HARA Prl-I 0 0 0
HARA Prl-II 0 6 0
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form and the upper bound τ on the error rate (when applicable). I use the value of the upper bound τ

for the distance-based model and “Mixture” to represent the mixture model. The fifth column shows the

Bayes factor for the best model compared to the saturated model. The sixth column shows the Bayes factor

between the best and second-best models. There are two sessions in each experiment.

In Experiment 2009, for eight out of 40 participants in Session I and 11 out of 40 participants in Session

II, none of the 192 probabilistic models of CPT win over the saturated model. For Session I, out of the

32 participants who are best fit by CPT, five are best fit by the mixture model, and 27 are best fit by the

distance-based model. For Session II, out of the 29 participants who are best fit by CPT, six are best fit by

the mixture model, and 23 are best fit by the distance-based model. There are many variations regarding

the functional forms of the utility function and the probability weighting function of the best CPT. Overall,

there is no particular form of CPT that is the best across the board.

In Experiment 2012, for 28 out of 67 participants in Session I and 12 out of 54 participants in Session

II, none of the 192 probabilistic models of CPT win over the saturated model. For Session I, out of the

39 participants who are best fit by CPT, ten are best fit by the mixture model and 29 are best fit by the

distance-based model. For Session II, out of the 32 participants who are best fit by CPT, 16 are best fit by

the mixture model, and 16 are best fit by the distance-based model. One thing to note is that CPT with

the quadratic utility function and the Goldstein-Einhorn probability weighting function is the core theory

of the winners for all ten participants who are best fit by a mixture model in Session I, and 13 out of 16

participants who are best fit by a mixture model in Session II. The distance-based model of CPT with the

quadratic utility function and the linear probability weighting function wins out for the highest number of

participants separately in each session and simultaneously for both sessions (15 in Session I, 13 in Session II,

and eight for both sessions simultaneously). For Experiment 2012, the distance-based model of CPT with

the quadratic utility function and the linear probability weighting function, and the mixture model of CPT

with the quadratic utility function and the Goldstein-Einhorn probability weighting function, are the two

best performing theories 9.

Overall, there is much evidence for heterogeneity across individuals and stimulus sets in terms of the

best model. No single form of CPT, or type of probabilistic specifications, is robust across all participants

and stimulus sets.

9The mixture model of CPT with the quadratic utility function and the Goldstein-Einhorn probability weighting function
is not available for Experiment 2009.
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Table 5.10: The individual model comparison results for Experiment 2009 by Bayes factor. The Bayes
factors larger than one billion are shown in scientific form. There are 40 participants in each session.

Session I Session II
ID u(x) w(p) Form Best BF Best/Second u(x) w(p) Form Best BF Best/Second
1 Log Lin 0.1 6.84E+16 2 Log Lin 0.1 2.85E+18 2
2 - - - - - - - - - -
3 Log Pwr 0.25 236564122 2 - - - - -
4 Pwr Prl-I Mixture 4677359 1 Pwr TK 0.5 1737 1
5 Log Prl-I Mixture 25716519529 27 Log Lin 0.1 1.50E+15 2
6 Log TK Mixture 4704363370 16 Lin Prl-I Mixture 9.03E+19 11
7 Pwr Prl-II 0.1 2249404552328 1 Pwr Prl-II 0.1 1.54E+17 1
8 Log Prl-I 0.5 22969 1 Lin TK 0.5 70164 2
9 - - - - - Expo GE 0.1 576801 2
10 Log Prl-I 0.5 36 2 Log Prl-I 0.5 148 1
11 Lin Prl-I 0.1 21961380736 4 Log Pwr 0.1 137649511683 2
12 Log Lin 0.5 106300 1 Lin GE Mixture 96634843 1
13 - - - - - - - - - -
14 - - - - - Lin Lin 0.1 2.41E+17 8
15 Expo GE 0.25 12237507 2 Expo GE 0.25 3342184 2
16 Log Lin 0.5 5010 2 Expo GE 0.25 19300 2
17 Log Lin 0.25 621875 2 Log Lin 0.5 2470 2
18 Lin TK Mixture 1.85E+18 30 Bell Lin Mixture 1.93E+23 906
19 - - - - - Bell Lin Mixture 1.97E+23 739
20 Lin Lin 0.5 26834 7 Expo GE 0.5 92 2
21 Lin Lin 0.5 67023 1 Expo GE 0.25 43176 2
22 Expo WG Mixture 9343129 3 Quad GE 0.25 45629 6
23 Pwr Prl-II 0.5 8 1 Lin Pwr 0.5 7651 2
24 Lin Lin 0.5 36332 1 - - - - -
25 Bell Prl-II 0.25 2148589 1 Bell TK Mixture 68043073655810 1581179
26 Log Lin 0.5 5757 1 Log Lin 0.5 113 2
27 Pwr Prl-II 0.5 2479 1 Log Lin 0.25 3138476 2
28 Expo TK 0.5 21 1 - - - - -
29 Quad Pwr 0.25 1169080 4 - - - - -
30 Lin WG 0.5 10307 1 Expo WG 0.5 4627 3
31 Lin Lin 0.25 134117784 8 Log Lin 0.1 4.87E+16 2
32 Expo WG 0.5 744 1 - - - - -
33 Lin Pwr 0.25 85519818 2 Log Pwr 0.1 2.81E+17 1
34 Lin Lin 0.25 11594220 8 - - - - -
35 Expo TK 0.25 7489 1 Pwr Prl-II Mixture 44069 37
36 - - - - - - - - - -
37 - - - - - - - - - -
38 - - - - - - - - - -
39 Quad GE 0.25 15469 2 Quad GE 0.1 2288266172 47
40 Log Lin 0.25 13518355372 1 Log TK 0.1 26135885021292 3
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Table 5.11: The individual model comparison results for Experiment 2012 by Bayes factor. The Bayes
factors larger than one billion are shown in scientific form. There are 67 participants in Session I and 54 in
Session II.

Session I Session II
ID u(x) w(p) Form Best BF Best/Second u(x) w(p) Form Best BF Best/Second
1 Quad Lin 0.25 3.21E+09 3 Quad Lin 0.1 1.84E+10 3
2 Pwr Prl-II 0.5 9 1 Lin Pwr 0.5 11 2
4 Quad Lin 0.25 6706 3 Quad Lin 0.25 74 1
5 - - - - - - - - - -
7 Quad Lin 0.5 405 5 Quad Lin 0.5 18621 3
9 Quad Lin 0.25 1.09E+10 3 Quad Lin 0.5 74 3
11 - - - - - - - - - -
12 - - - - - - - - - -
13 - - - - - Lin Pwr 0.5 491 2
14 Log Lin 0.5 4813 2 Expo Lin 0.1 6.04E+12 1
15 - - - - - Quad Lin 0.5 22 6
16 - - - - - Log Lin 0.5 42629 1
17 Quad Lin 0.5 22046 2 Log Lin 0.25 43441100 1
18 - - - - - Quad Lin 0.5 53 3
19 Quad GE Mixture 37 55 Pwr Prl-II Mixture 5 2
20 - - - - - - - - - -
21 Hara Lin 0.25 13 1 Hara Lin 0.25 5301 6
22 Quad Lin 0.5 244 2 Quad GE Mixture 72 3
23 Quad GE Mixture 252 122 Quad GE Mixture 903 60
24 - - - - - Expo Prl-I 0.5 124 2
25 - - - - - Quad Lin 0.5 59 3
26 Quad Lin 0.1 2.25E+16 3 Quad Lin 0.1 9.10E+17 3
27 - - - - - Quad GE Mixture 1614 1
28 Quad GE Mixture 3479 34 Quad GE Mixture 1039 6
29 Quad GE Mixture 2020 40 Quad WG 0.5 9 1
30 - - - - - Hara Prl-II Mixture 31 12
31 - - - - - - - - - -
32 - - - - - - - - - -
33 - - - - - - - - - -
34 Quad Lin 0.5 419 1 Quad GE Mixture 6391 763
35 - - - - - Expo TK 0.5 340 1
36 Quad Lin 0.5 609 5 - - - - -
37 Quad Pwr 0.5 260 1 Quad TK 0.5 45 1
38 Quad Lin 0.5 569 5 Quad Lin 0.5 166 3
39 Quad GE Mixture 11 3 Quad GE Mixture 488 158
41 - - - - - Quad Lin 0.25 1.30E+09 3
42 Quad Lin 0.5 32274 1 Quad Lin 0.25 103029067 3
43 - - - - - - - - - -
44 Quad Lin 0.5 478 6 Log Lin 0.5 19 1
46 - - - - - - - - - -
47 Quad Lin 0.25 5664441 3 Quad Lin 0.5 10551 3
48 Expo Prl-I 0.5 5344 3 Quad GE Mixture 403 81
49 Hara Lin 0.5 18 6 Hara Prl-II Mixture 140 3
50 Quad Lin 0.5 32928 3 Quad GE Mixture 64024 21
52 Quad GE Mixture 8 3 Quad GE Mixture 16 11
53 - - - - - Quad GE Mixture 20 33
55 - - - - - Quad Lin 0.1 3.51E+18 3
56 Quad GE Mixture 4333 370 Quad GE Mixture 1972 174
58 Lin Pwr 0.5 254 3 - - - - -
59 Quad GE Mixture 2409 701 Quad GE Mixture 285 78
61 - - - - - Quad GE Mixture 154 29
65 - - - - - - - - - -
66 Lin Pwr 0.1 1.52E+15 3 Lin Prl-II 0.25 8645523 2
67 Lin Prl-II 0.1 2.58E+10 1
3 Quad GE Mixture 157 13
6 - - - - -
8 - - - - -
10 Quad Lin 0.5 21 3
40 - - - - -
45 Quad TK 0.5 298 1
51 Quad GE Mixture 464 358
54 - - - - -
57 Hara Lin 0.5 4 3
60 Lin Prl-I 0.5 11 1
62 Hara Lin 0.25 2730 6
63 Log Lin 0.5 56408 1
64 Expo TK 0.5 40 1
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Table 5.12: The top five models by GBF in Session I and Session II of Experiment 2009.

Session I Session II
Ranking u(x) w(p) Form Log(GBF) u(x) w(p) Form Log(GBF)

1 Pwr Prl-II 0.5 43.07 Expo GE 0.5 12.81
2 Pwr GE 0.5 41.90 Bell GE 0.5 9.38
3 Bell GE 0.5 40.24 - - - -
4 Expo GE 0.5 39.44 - - - -
5 Lin Prl-II 0.5 35.54 - - - -

5.5.4 Model Comparison: Group Level

I use group Bayes factor (GBF; Stephan et al., 2007) to select among models at the group level. The GBF

aggregates likelihoods across participants and is the product of the individual-level Bayes factors. Table 5.12

shows the top five models by GBF for Experiment 2009. The first column shows the ranking of each

model; the second and third columns show the functional forms of the utility function and the probability

weighting function; the fourth column shows the stochastic form of the model; and the fifth column shows

the log10 value of GBF for each model. For Session II, only two models beat the saturated model by GBF.

The distance-based models with τ = 0.50 of CPT with the exponential and Bell utility function, and the

Goldstein-Einhorn probability weighting function rank top five in terms of accounting for all participants’

choices jointly for each session of Experiment 2009. For Experiment 2012, none of the 192 models of CPT

win over the saturated model for Session I or Session II. In other words, all of the 192 models of CPT perform

poorly in terms of accounting for all participants’ choices jointly for Experiment 2012.

5.6 Conclusions

Cumulative Prospect Theory is the most famous contemporary theory of risky choice. Many papers studying

CPT used only one specific form of the utility function and the probability weighting function, and some

even only used one specific set of parameter values for the utility function and the probability weighting

function (e.g., Birnbaum, 2008b, Harrison et al., 2010, Rieger et al., 2017). In this paper, I consider 49

combinations for functional forms with four different probabilistic specifications, the distance-based models

with the error rate upper bound τ =0.50, 0.25, 0.10, and the mixture model, on two different stimulus sets.

The analysis shows the distance-based model of CPT have been systematically violated by the partic-

ipants, no matter whether using frequentist or Bayesian methods and no matter for Experiment 2009 or

Experiment 2012. Out of the 49 forms of CPT, the most lenient distance-based model could consistently

account across two sessions for only at most 1
2 of the participants from Experiment 2009 and 1

3 of the par-

ticipants from Experiment 2012 in the frequentist tests, and for at most 1
2 of participants from Experiment

2009 and 1
5 of the participants from Experiment 2012 in the Bayesian analysis. When the error rate bound
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τ goes down to 0.25 or less, the distance-based model could only account (with replication) for around 1
7

of the participants from Experiment 2009 and around 1
25 of the participants from Experiment 2012 in the

frequentist tests, and at most 1
3 of the participants from Experiment 2009 and 1

10 of the participants from

Experiment 2012 in the Bayesian tests. In sum, the distance-based model analysis of CPT consistently

shows poor model performance, regardless of which functional form of CPT, whether I permit high or low

error rate upper bound, whether I use frequentist or Bayesian methods, and whether I use gambles with

only two rewards or gambles with up to four rewards. Most of the mixture models of CPT fails to win over

the saturated model for all of the participants using the Bayes factor analysis for both Experiment 2009 and

Experiment 2012, suggesting poor performance. One thing to mention is that the distance-based model and

mixture model analysis depends on the assumption that the grid search of the parameter space identified all

preference patterns of interest.

The model comparison at the individual level shows heterogeneity across participants and stimulus sets.

Moreover, I do not find a single core theory, type of preference, or type of response process that best explains

all participants’ data in all stimulus sets. This reinforces earlier warnings that one needs to be cautious about

a “one-size-fits-all” approach, as pointed out previously by Davis-Stober et al. (2015), Guo (2018a), Hey

(2005), Loomes et al. (2002), and Regenwetter et al. (2014).

The model comparison at the group level shows that the distance-based models with τ = 0.50 of CPT

with the exponential and Bell utility function, and the Goldstein-Einhorn probability weighting function

rank top 5 for each session of Experiment 2009; and all of the 192 probabilistic models of CPT perform

poorly in terms of accounting for all participants’ choices jointly for Experiment 2012.

The paper also shows the dangers of overfitting and the need for replication in decision-making research.

Last but not least, I would like to point out that the paper is the largest-scale project for a systematic test of

CPT. All the quantitative analysis in this paper consumed about 307,000 CPU hours on the supercomputer

at the Pittsburgh Supercomputing Center.

5.7 Supplement Materials

The following provides the minimal description of the mixture polytope of CPT-KT for gambles in Experi-

ment 2009 in terms of its facet-defining equalities and inequalities.

Equalities:

P18 = 0 (5.1)
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P2 = P6 = 1 (5.2)

Inequalities:

P5 − P7 − P10 − P14 − P17 ≤ −2 (5.3)

P1 + P5 − P7 − P10 − P14 − P17 − P19 ≤ −2 (5.4)

−P3 − P10 ≤ −1 (5.5)

−P4 − P8 ≤ −1 (5.6)

−P4 − P12 ≤ −1 (5.7)

−P9 − P14 ≤ −1 (5.8)

−P11 − P14 ≤ −1 (5.9)

−P15 − P20 ≤ −1 (5.10)

P5 − P7 − P14 ≤ −1 (5.11)

P1 − P9 − P14 − P19 ≤ −1 (5.12)

−P5 ≤ 0 (5.13)

−P13 ≤ 0 (5.14)

−P1 + P20 ≤ 0 (5.15)

−P14 + P15 ≤ 0 (5.16)

−P19 + P20 ≤ 0 (5.17)

P11 − P17 ≤ 0 (5.18)

P5 − P16 ≤ 0 (5.19)

P3 − P20 ≤ 0 (5.20)

−P9 − P14 + P16 + P17 ≤ 0 (5.21)

P3 − P9 − P14 + P15 ≤ 0 (5.22)

P3 − P14 + P15 − P17 ≤ 0 (5.23)

P1 + P11 − P17 − P19 ≤ 0 (5.24)

P1 − P9 − P14 + P16 + P17 − P19 ≤ 0 (5.25)

P1 + P3 − P9 − P14 + P15 − P19 ≤ 0 (5.26)
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P1 + P3 − P14 + P15 − P17 − P19 ≤ 0 (5.27)

P19 ≤ 1 (5.28)

P7 ≤ 1 (5.29)

P12 + P14 ≤ 1 (5.30)

P10 + P11 ≤ 1 (5.31)

P8 + P14 ≤ 1 (5.32)

P5 + P17 ≤ 1 (5.33)

P5 + P9 ≤ 1 (5.34)

P4 + P13 ≤ 1 (5.35)

P3 + P16 ≤ 1 (5.36)

P1 + P5 ≤ 1 (5.37)

−P3 + P7 + P17 ≤ 1 (5.38)

P9 − P17 + P19 ≤ 1 (5.39)

P7 + P15 − P16 ≤ 1 (5.40)

P7 + P9 − P11 ≤ 1 (5.41)

P1 + P7 − P19 ≤ 1 (5.42)

P1 + P5 + P9 − P17 ≤ 1 (5.43)

P1 + P3 + P16 − P19 ≤ 1 (5.44)

P3 − P9 − P14 + P15 + P16 + P17 ≤ 1 (5.45)

P1 + P3 − P9 − P14 + P15 + P16 + P17 − P19 ≤ 1 (5.46)

P16 + P17 + P19 ≤ 2 (5.47)

P9 + P16 + P19 ≤ 2 (5.48)

P7 + P15 + P17 ≤ 2 (5.49)

P7 + P9 + P15 ≤ 2 (5.50)

P1 + P5 + P16 + P17 ≤ 2 (5.51)

P1 + P5 + P9 + P16 ≤ 2 (5.52)

P3 + P7 + P9 + P15 − P17 ≤ 2 (5.53)

P1 + P3 + P7 + P9 + P15 − P17 − P19 ≤ 2 (5.54)
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Chapter 6

Testing Cumulative Prospect Theory
and Intransitive Heuristics for
Gambles With Gains and Losses
6.1 Introduction

To have transitive preferences, for any options x, y, and z, one who prefers x to y and y to z must prefer x to z.

Transitivity of preferences plays an important role in many major contemporary theories of decision making

under risk or uncertainty, including nearly all normative, prescriptive, and even descriptive theories. Most

theories use an overall utility value for each gamble and assume that a decision maker prefers gambles with

higher utility values; in other words, most theories imply transitivity of preferences. These theories include

expected utility theory (Bernoulli, 1738), prospect theory (Kahneman and Tversky, 1979), and Cumulative

Prospect Theory (Tversky and Kahneman, 1992b).

In the past few decades, researchers have provided a great deal of empirical evidence that suggests that

both human and animal decision makers violate transitivity of preferences (see, e.g., Brandstätter et al.,

2006, González-Vallejo, 2002, Loomes and Sugden, 1987, Tversky, 1969). However, these studies contain

pervasive methodological problems in collecting, modeling, and analyzing empirical data (see Section 2 of

Guo (2018b) for details on these methodological problems). Transitivity of preferences is central to many

prominent theories in psychology and economics, and we have to be very careful about claiming violations

of transitivity of preferences.

In this paper, I test the leading theory of risky choice, Cumulative Prospect Theory (Tversky and

Kahneman, 1992b), which only permits transitive preferences. I also test two kinds of intransitive decision

heuristics, the lexicographic semiorder model and the similarity model. I test these theories on three different

types of gambles, i.e., gambles with gains only, gambles with losses only, and gambles with a mixture of

gains and losses.

In Guo (2018a), I tested the lexicographic semiorder model and the similarity model, and compared them

with the linear order model and two simple transitive heuristics. The results showed that the intransitive

heuristics perform well and win over the linear order model for most participants in model comparison.

One interpretation is that Bayes factor rewards parsimonious models and penalizes complex models. The

linear order model gets penalized for being complex because it permits all possible transitive linear orders.
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Cumulative Prospect Theory, on the other hand, allows only transitive preference patterns, and it is more

parsimonious compared to the linear order model. In this paper, I test 49 different versions of Cumulative

Prospect Theory and compare them with the two intransitive heuristics to find out which theory performs

the best, the transitive Cumulative Prospect Theory or the intransitive heuristics.

The rest of the paper is organized as follows: Section 6.2 introduces the 49 different forms of Cumulative

Prospect Theory and two kinds of intransitive heuristics, the lexicographic semiorder model and the similarity

model; Section 6.3 describes five different stimulus sets used in this paper, including two sets of gambles

with gains only, two sets of gambles with losses only, and one set of gambles with a mixture of gains and

losses; Section 6.4 introduces two different probabilistic specifications and the statistical methods employed

in this paper; Section 6.5 reports the data analysis results; and Section 6.6 concludes the paper.

6.2 Decision Theories

In this section, I introduce the transitive theory, Cumulative Prospect Theory, and describe two kinds of

intransitive heuristics, the lexicographic semiorder model and the similarity model.

6.2.1 Cumulative Prospect Theory

Tversky and Kahneman (1992b) proposed Cumulative Prospect Theory, henceforth CPT, to describe how

people make decisions under risk. It is one of the most influential decision theories in the past few decades.

Tversky and Kahneman (1992b) has been cited more than 4,700 times and CPT has been applied to many

different contexts, for example, management (Becker and Gerhart, 1996, Steel and König, 2006), psychology

(Lopes and Oden, 1999, Trepel et al., 2005), and transportation (Gao et al., 2010, Xu et al., 2011). The

following describes how CPT works. For a gamble G = (x1, p1; . . . ;xn, pn), where x1 ≤ . . . ≤ xk ≤ 0 ≤

xk+1 ≤ . . . ≤ xn, let w+(p) and w−(p) be the probability weighting function to capture the subjective

perception of the probabilities of gains and losses respectively. Let u+(x) and u−(x) be the utility function

to capture the subjective perception of gains and losses respectively. CPT states that:

CPT (G) =

k∑

i=1

w−i u
−(xi) +

n∑

i=k+1

w+
i u

+(xi)

where

w−1 = w−(p1), w−i = w−(p1 + ...+ pi)− w−(p1 + ...+ pi−1), for 2 ≤ i ≤ k;

w+
n = w+(pn), w+

i = w+(pi + ...+ pn)− w+(pi+1 + ...+ pn), for k + 1 ≤ i ≤ n− 1.

Stott (2006) investigated “Cumulative Prospect Theory’s Functional Menagerie” by considering seven
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different functional forms for the utility function for gains, seven functional forms for the probability weight-

ing function, and four probabilistic response mechanisms based on the assumption that the decision maker

has a deterministic preference and that uncertainty in choice is due to noise/error. In this paper, I consider

the same 49 combinations for functional forms on new stimuli, and with more general and more diverse

non-parametric probabilistic specifications.

Table 6.1: Summary of seven functional forms of the probability weighting function and the utility function,
for gains and losses.

(a) Seven functional forms of the probability weighting function for gains and losses.

Name Abbreviation Equation for Gains Equation for Losses
Linear Lin w+(p) = p w−(p) = p
Power Pwr w+(p) = pγ

+

w−(p) = pγ
−

Goldstein-Einhorn GE w+(p) = s+pγ
+

s+pγ++(1−p)γ+ w−(p) = s−pγ
−

s−pγ−+(1−p)γ−

Tversky-Kahneman TK w+(p) = pγ
+

(pγ++(1−p)γ+ )
( 1
γ+

)
w−(p) = pγ

−

(pγ−+(1−p)γ− )
( 1
γ−

)

Wu-Gonzalez WG w+(p) = pγ
+

(pγ++(1−p)γ+ )s+
w−(p) = pγ

−

(pγ−+(1−p)γ− )s−

Prelec I Prl-I w+(p) = e−(− ln p)γ
+

w−(p) = e−(− ln p)γ
−

Prelec II Prl-II w+(p) = e−s
+(− ln p)γ

+

w−(p) = e−s
−(− ln p)γ

−

(b) Seven functional forms of the utility function for gains and losses.

Name Abbreviation Equation for Gains Equation for Losses
Linear Lin u+(x) = x u−(x) = x
Logarithmic Log u+(x) = ln(α+ + x) u−(x) = −ln(α− − x)
Power Pwr u+(x) = xα

+

u−(x) = −(−x)α
−

Quadratic Quad u+(x) = α+x− x2 u−(x) = α−x+ x2

Exponential Expo u+(x) = 1− e−α+x u−(x) = −1 + eα
−x

Bell Bell u+(x) = β+x− e−α+x u−(x) = β−x+ eα
−x

HARA Hara u+(x) = −(β+ + x)α
+

u−(x) = (β− − x)α
−

Table 6.1 reports seven different functional forms of the probability weighting functions and seven different

functional forms of the utility functions for both gains and losses (see also Tables 2 and 3 for the functional

forms of gains in Stott, 2006). Thus, there are 49 different versions of CPT. One thing to point out is that

parameters in the probability weighting function and the utility function are different for gains and losses.

In particular, Tversky and Kahneman (1992b) used Tversky-Kahneman probability weighting function and

power utility function, labeled CPT-KT in this paper.

6.2.2 Lexicographic Semiorder Model

Tversky (1969) defined a lexicographic semiorder model as follows: a semiorder (Luce, 1956) or a just

noticeable difference structure is imposed on a lexicographic ordering. Lexicographic semiorder models are

intransitive decision models.
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In this paragraph, I explain how a lexicographic semiorder works. Suppose a decision maker is asked to

choose between two alternatives x and y, where x = (x1, . . . , xn) and y = (y1, . . . , yn). I use x �i y to denote

that a decision maker prefers x to y on attribute i, x ≺i y to denote that the decision maker prefers y to x

on attribute i, and x ∼i y to denote that the decision maker is indifferent between x and y on attribute i.

A lexicographic semiorder model works as follows:

1. The decision maker considers gamble attributes sequentially, for example, first the maximum gain and

then the probability of maximum gain, or first the probability of maximum gain and then the maximum

gain. For each attribute i, the decision maker uses a threshold εi > 0.

2. The decision maker stops the pairwise comparison decision process between two gambles whenever the

values of the currently considered attribute i differ by more than the threshold εi. He then prefers the

more attractive gamble on that attribute (either x �i y or x ≺i y.) Otherwise, the decision maker has

no preference on that attribute (x ∼i y), and proceeds to the next attribute i+ 1.

3. If the decision maker cannot reach a decision after comparing these two gambles for all attributes

(i.e., the values on all attributes do not differ by more than their corresponding thresholds), then he

is indifferent between x and y, that is, x ∼ y.

One may use the linear utility function in Table 6.1. One could posit, alternatively, that decision makers

psychophysically transforms money amount in question via a log transformation (Anderson, 1970); e.g.,

instead of xi − yi, the difference becomes log(xi)− log(yi) or log xiyi ; and in this case, the log utility function

in Table 6.1 is used. In this paper, I consider two kinds of lexicographic semiorder models, one uses the

linear function for utility (labeled as LSO-Diff), and the other one uses the log utility function (labeled as

LSO-Ratio). For details of the lexicographic semiorder model, please see Section 2 of Chapter 3.

6.2.3 Similarity Models

Rubinstein (1988) proposed a type of intransitive heuristic model called a similarity model to explain some

phenomena that cannot be explained by expected utility theory. Unlike a lexicographic semiorder model,

which orders gamble attributes lexicographically, a similarity model assumes that the decision maker con-

siders all attributes simultaneously.

Based on the procedures proposed by Rubinstein (1988), the similarity models I test in the current

paper work as follows: a decision maker picks a threshold for each attribute of a gamble pair and forms a

preference for that attribute. The decision maker derives his final preferences from integrating all preferences

on all attributes. To illustrate, suppose the decision maker considers two gambles x and y, each with two
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attributes, Attributes 1 and 2, and proceeds through the following decision making process:

x �1 y and x �2 y x ≺1 y and x ≺2 y x �1 y and x ≺2 y

x �1 y and x ∼2 y x ≺1 y and x ∼2 y x ≺1 y and x �2 y

x ∼1 y and x �2 y x ∼1 y and x ≺2 y x ∼1 y and x ∼2 y

x � y x ≺ y x ∼ y

The first column shows all three conditions to derive x � y, the second column shows all three conditions

to derive x ≺ y, and the third column shows all three conditions to derive x ∼ y.

In this paper, I consider two types of similarity models, one uses the linear utility function (labeled as

SIM-Diff), and the other one uses the log utility function (labeled as SIM-Ratio). For details of the similarity

model, please see Section 2 of Chapter 3.

6.3 The 2010 Experiment

The 2010 experiment was conducted at the University of Illinois at Urbana-Champaign using laptop com-

puters 1. There were 50 participants in the experiment (29 were males, and 21 were females). There are

five stimulus sets in the experiment, each with five different gambles. Participants made repeated choices

(20 times for each pair) over gambles pairs that were presented via computers using a two-alternative

forced-choice paradigm. Each gamble was displayed as a wheel of chance, with colored areas to represent

probabilities and numbers next to the wheels to represent payoffs. At the end of the experiment, two of the

participants’ chosen prospects were drawn at random and played out for real money. These two prospects

were obtained with constraints; the first prospect only involved a positive monetary outcome and the second

involved at least one negative monetary outcome. The average payment for this experiment was $21.10.

Table 6.2 shows the five different stimulus sets in the experiment. In each stimulus set, people choose

from all ten possible pairwise comparisons of five gambles. All of the gambles in the experiment have only

two outcomes. There are five different types of gambles in the experiment. Set 1 has gambles with only

non-negative monetary outcomes, and one of the two outcomes for each gamble is $0. Set 2 has gambles

with only positive monetary outcomes. Set 3 has gambles with only non-positive monetary outcomes, and

one of the two outcomes for each gamble is $0. Set 4 has gambles with only negative monetary outcomes.

Set 5 has gambles with a mixture of positive and negative outcomes.

6.4 Probabilistic Specifications

CPT, the lexicographic semiorder model, and the similarity model are all deterministic theories. At the

same time, experimental research collects variable choice data. How can one test an algebraic theory using

1The study was approved by the Institutional Review Board (IRB) of the University of Illinois under No. 10718.
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Table 6.2: The five gamble sets in the 2010 experiment.

x1 p1 x2 p2

Set 1

$0.00 0.23 $8.75 0.77
$0.00 0.33 $9.00 0.67
$0.00 0.37 $9.50 0.63
$0.00 0.39 $10.50 0.61
$0.00 0.40 $12.50 0.60

Set 2

$4.75 0.30 $7.00 0.70
$3.75 0.40 $8.00 0.60
$2.75 0.44 $9.00 0.56
$1.75 0.46 $10.00 0.54
$0.75 0.47 $11.00 0.53

Set 3

-$2.50 0.27 $0.00 0.73
-$2.75 0.17 $0.00 0.83
-$3.25 0.13 $0.00 0.87
-$4.25 0.11 $0.00 0.89
-$6.25 0.10 $0.00 0.90

Set 4

-$5.00 0.29 -$2.25 0.71
-$5.25 0.19 -$1.75 0.81
-$5.75 0.15 -$1.25 0.85
-$6.75 0.13 -$0.75 0.87
-$8.75 0.12 -$0.25 0.88

Set 5

-$0.50 0.13 $5.00 0.87
-$1.50 0.23 $6.00 0.77
-$2.50 0.27 $7.00 0.73
-$3.50 0.29 $8.00 0.71
-$4.50 0.30 $9.00 0.70

probabilistic data? Luce (1959, 1995, 1997) presented a two-fold challenge for studying algebraic decision

theories. The first part of the challenge is to specify a probabilistic extension of an algebraic theory, a problem

that has been discussed by many scholars (Carbone and Hey, 2000, Harless and Camerer, 1994, Hey, 1995,

2005, Hey and Orme, 1994, Loomes and Sugden, 1995, Starmer, 2000, Tversky, 1969). The second part of

the challenge is to test the probabilistic specifications of the theory with rigorous statistical methods, which

was only solved in the past decade with a breakthrough in order-constrained, likelihood-based inferences

(Davis-Stober, 2009, Myung et al., 2005, Silvapulle and Sen, 2005). To perform an appropriate and rigorous

test of the deterministic decision theory, researchers have to solve Luce’s challenge. However, only a few

studies in the existing literature offer convincing solutions.

Regenwetter et al. (2014) provided a general and rigorous quantitative framework for testing theories

of binary choice. To solve the first part of Luce’s challenge, they presented two kinds of probabilistic

specifications of algebraic models to explain choice variability: a distance-based probabilistic specification

models preferences as deterministic and response processes as probabilistic, and a mixture specification

models preferences as probabilistic and response processes as deterministic. Sections 6.4.1 and 6.4.2 provide

details of these two probabilistic specifications. For the second part of Luce’s challenge, Regenwetter et al.

(2014) employed frequentist likelihood-based statistical inference methods for binary choice data with order-
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constraints on each choice probability (Davis-Stober, 2009, Iverson and Falmagne, 1985, Silvapulle and Sen,

2005). Myung et al. (2005) and Klugkist and Hoijtink (2007) provided Bayesian order-constrained statistical

inference techniques. In this paper, I specify two kinds of probabilistic models for each decision theory and

test those probabilistic models with both frequentist and Bayesian order-constrained statistical methods.

6.4.1 Distance-Based Models

A distance-based model assumes that a decision maker has a fixed preference throughout the experiment. It

allows the decision maker to make errors/trembles in a binary pair with some probability that is bounded by

a maximum allowable error rate. Formally, a distance-based model requires binary choice probabilities to lie

within some specified distances of a point hypothesis that represents a preference state. More precisely, let

τ ∈ (0, 0.50] be the upper bound on the error rate for each probability. For any pair (x, y), the probability

of choosing x over y, θxy, is given by

x � y ⇔ θxy ≥ 1− τ
x ≺ y ⇔ θxy ≤ τ
x ∼ y2 ⇔ 1−τ

2 ≤ θxy ≤ 1+τ
2

When a decision maker prefers x to y, he chooses x over y with probability at least 1− τ . When a decision

maker prefers y to x, he chooses x over y with probability at most τ . As mentioned before, when a decision

maker is indifferent about x and y and chooses without errors, the “true” probability θxy is 1
2 . When this

decision maker chooses with errors and the upper bound on the error rate is τ , the probability of choosing

x over y is bounded by 1−τ
2 and 1+τ

2 . When τ = 0.50, this is also named as modal choice, which assumes

a decision maker has a deterministic preference and allows the decision maker to make errors on each pair

with probability at most 0.50. In other words, when τ = 0.50, it means that the modal choice for each pair

is consistent with the predictions of an algebraic theory (up to sampling variability). However, a distance-

based model with upper bound τ = 0.50 might be too lenient. To compensate for this, one could place a

more restrictive constraint on τ for each binary pair, for example, τ = 0.10, which means that the decision

maker chooses the preferred prospect with probability at least 0.10. In this paper, I use three different upper

bounds, τ = 0.50, 0.25, and 0.10, on the error rate.

6.4.2 Mixture Models

A mixture model assumes that a decision maker’s preferences are probabilistic. Variations in observed choice

behavior are no longer due to errors but rather to decision makers’ uncertain preferences. A decision maker

might fluctuate in his preferences during the experiment, making a choice based on one of the decision

2The lexicographic semiorder models and the similarity models predict indifferences. The 49 forms of CPT do not predict
indifferences.
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theory’s predicted preference patterns on each given trial. A mixture model treats parameters of algebraic

theory as random variables with unknown joint distribution; it does not make any distributional assumptions

regarding the joint outcomes of the random variables. Geometrically, a mixture model forms the convex hull

of the point hypotheses that capture the various possible preference states.

Take CPT-KT as example, a mixture model treats the two parameters, risk attitude α and weighting

parameter γ, as random variables with any joint distribution whatsoever, hence permitting all possible

probability distributions over the various permissible preference patterns. I write � for strict preference. I

define CPT as a set of preference patterns predicted by CPT and P (�CPT ) as the probability of preference

pattern �CPT in CPT . According to the mixture model, for any pair (x, y), the binary choice probability

θxy is

θxy =
∑

�CPT∈CPT
in which x�y

P (�CPT ).

This equation shows that the probability of choosing x over y equals the total probability of those preference

patterns predicted by CPT in which x is strictly preferred to y.

For theories that predict indifferences, like the lexicographic semiorder models, I define the binary choice

probability θxy as the following. I define LSO as a set of lexicographic semiorders and P (�LSO) as the

probability of lexicographic semiorder �LSO in LSO. According to the mixture model, for any pair (x, y),

the binary choice probability θxy is

θxy =
∑

�LSO∈LSO
in which x�y

P (�LSO) +
1

2

∑

�′
LSO

∈LSO
in which x∼y

P (�′LSO).

This equation shows that the probability of choosing x over y equals the total probability of those lexico-

graphic semiorders in which x is strictly preferred to y plus half of the probability of those lexicographic

semiorders in which x is indifferent to y.

To get the mixture model of a theory, a researcher needs to get the permissible preference patterns

predicted by that theory. Here I use CPT-KT and Set 1 as an example. When allowing α and γ to be

random variables with any joint distribution, I get 11 different preference patterns3. The mixture model

of CPT-KT for Set 1 can be cast geometrically as the convex hull (polytope) of 11 vertices in a suitably

chosen ten dimensional unit hypercube of binary choice probabilities. Each vertex encodes the binary choice

probabilities when the probability mass is concentrated on a single preference pattern predicted by CPT-KT.

I provide the minimal description of the mixture polytope of CPT-KT for Set 1 in terms of its facet-defining

3I used the grid search to get predicted preference patterns. The grid search for α considered all values in the range [0.01,
10] with a step-size of 0.01 and the range [10.05, 50] with a step-size of 0.05. The grid search for γ considered all values in the
range [0.279, 1] with a step-size of 0.01.
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inequalities, via the public-domain software PORTA4.

Pbc ≤ Pad ≤ Pac ≤ Pab ≤ 1 (6.1)

0 ≤ Pde ≤ Pce ≤ Pcd ≤ Pbe ≤ Pbd ≤ Pae (6.2)

This mixture model has ten free parameters that are restricted by Inequalities (1) and (2). In this case, the

mixture model is full dimensional. I can test this mixture model with both frequentist and Bayesian order-

constrained statistical methods. However, when the mixture model is not full dimensional5, the frequentist

methods do not work. The Bayesian methods, on the other hand, can handle non-full-dimensional models.

I provide the minimal descriptions of the mixture models for all of the theories tested in this paper in the

Supplemental Materials. I only use the Bayesian order-constrained methods to test the mixture models in

this paper.

I computed the predicted pattens6 and obtained the facet-defining inequalities of the lexicographic

semiorder model and the similarity model for Sets 1 - 5, and of the 49 forms of CPT for Sets 1 - 4. Because

the gambles in Set 5 have both gains and losses, the parameter number of CPT for Set 5 doubles compared

to the parameter number of CPT for gambles with only gains or losses. Due to limitations on computation

ability and resources, I selected and computed predicted patterns for six forms of CPT for Set 57, based

on their performance for Sets 1 - 4 and their parameter numbers for Set 5 (no more than four parameters).

Table 6.3 shows different forms of CPT (in each block) that make identical predictions for each stimulus set.

In sum, I test four different probabilistic specifications, the distance-based models with τ =0.50, 0.25,

and 0.10 and the mixture model of the lexicographic semiorder model, the similarity model, and the 49 forms

of CPT on Sets 1 - 5 (as applicable). Altogether, I test a total of 864 probabilistic models in this paper.

6.4.3 Statistical Methods

In the current study, I report results using both frequentist (Davis-Stober, 2009, Iverson and Falmagne, 1985,

Silvapulle and Sen, 2005) and Bayesian (Myung et al., 2005) order-constrained statistical inference methods.

For frequentist tests, the decision models under consideration are null hypotheses, and I report frequentist

4For more information, please see http://comopt.ifi.uni-heidelberg.de/software/PORTA/.
5Some of the mixture models of the 49 forms of CPT are not full dimensional. See Supplemental Materials for more details.
6I used the grid search to get predicted preference patterns. The grid search for α and s considered all values in the range

[0.01, 10] with a step-size of 0.01 and the range [10.05, 50] with a step-size of 0.05.; the grid search for β and γ considered all
values in the range [.01, 1] with a step-size of 0.01; for Tversky-Kahneman probability weighting function, the grid search for
γ considered all values in the range [0.279, 1] with a step-size of 0.01.

7The six CPT forms are: CPT with the linear utility function with the linear probability weighting function, CPT with the
linear utility function and the power probability weighting function, CPT with the linear utility function and Tversky-Kahneman
probability weighting function, CPT with the linear utility function and Wu-Gonzalez probability weighting function, CPT with
the linear utility function and Prelec II probability weighting function, and CPT with the power utility function and the linear
probability weighting function.
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Table 6.3: Different CPT forms that make identical predications. The different CPT forms in each block
have the same predictions.

Set 1 Set 2 Set 3 Set 4
u(x) w(p) u(x) w(p) u(x) w(p) u(x) w(p)
Lin Pwr Lin Lin Lin Pwr Lin Lin
Lin Prl-I Lin TK Lin TK Lin TK
Lin Prl-II Lin Prl-I Lin WG Log Lin
Log GE Log Lin Lin Prl-I Log TK
Pwr Lin Log TK Lin Prl-II Expo Lin
Pwr Pwr Log Prl-I Log Pwr Expo TK
Pwr GE Quad Lin Log TK Bell Lin
Pwr TK Quad Prl-I Log Prl-I Bell TK
Pwr WG Expo Lin Pwr Lin Lin Pwr
Pwr Prl-I Expo TK Pwr Pwr Lin GE
Pwr Prl-II Expo Prl-I Pwr TK Lin WG
Log Lin Bell Lin Pwr Prl-I Lin Prl-II
Bell Lin Bell TK Pwr Prl-II Pwr Lin
Log Pwr Bell Prl-I Log Lin Pwr TK
Log Prl-I Log Pwr Expo Lin Pwr Prl-I
Bell Prl-I Log GE Log GE Lin Prl-I

Quad Pwr Log WG Pwr GE Expo Prl-I
Quad Prl-I Log Prl-II Bell Pwr Log GE
Expo Pwr Pwr WG Bell GE Log Prl-II
Expo WG Pwr Prl-II Quad Pwr Expo Lin
Expo Prl-I Bell GE Quad TK Expo TK
Expo GE Bell WG Quad WG Bell Lin
Expo Prl-II Hara TK Quad Prl-I Bell TK
Hara Lin Hara Prl-I Hara Lin Expo GE
Hara Pwr Hara WG Hara Pwr Expo Prl-II
Hara TK Hara Prl-II Hara TK Bell Pwr
Hara Prl-I Hara Prl-I Bell WG

Hara Lin
Hara Prl-I
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goodness-of-fit test results with a significance level of 0.05. For the distance-based models, the predicted

preference pattern with the largest p-value is called a best-fitting preference pattern. For each participant,

the frequentist test finds the best-fitting preference pattern and tests whether the data are compatible with

the constraints on binary choice probabilities.

For Bayesian tests, I compute Bayes factors (BF, Kass and Raftery, 1995) for each model. The Bayes

factor measures the empirical evidence for each decision model while appropriately penalizing the complexity

of the model. The complexity of a model refers to the volume of the parameter space that a decision theory

occupies relative to the saturated model, which permits all conceivable binary choice probabilities and

additionally places a uniform prior on them.

For distance-based models, the order constraints are orthogonal within each model, and the priors on each

dimension are independent and conjugate to the likelihood function. Thus, I can obtain analytical solutions

for the Bayes factors of the distance-based models, compared to the saturated model. For mixture models,

the order constraints are not orthogonal, so I use a Monte Carlo sampling procedure (Gelfand and Smith,

1990, Myung et al., 2005, Sedransk et al., 1985). I completed all the analyses in this paper on Pittsburgh

Supercomputer Center’s Blacklight, Greenfield, and Bridges supercomputers, as an Extreme Science and

Engineering Discovery Environment project (see also, Towns et al., 2014)8.

I use Bayes factors to compare each model to the saturated model and select among models at both

individual and group levels. To interpret the individual level Bayes factor results, I use the cutoffs for

“substantial” evidence according to Jeffreys (1998). I use BFA to represent the Bayes factor of model A; I

use BFB to represent the Bayes factor for model B; and I use BFAB = BFA
BFB

to represent the Bayes factor

for model A over model B. When BFAB > 3.2, it means that there is “substantial” evidence in favor of

model A. I will say that a decision model “fits” if its Bayes factor against the saturated model is larger than

3.2. I will say that a decision model is “best” (or a “winner”) if its Bayes factor against the saturated model

is higher than 3.2 and it has the highest Bayes factor among all the models under consideration.

For the group level comparison, I use the group Bayes factor (GBF, Stephan et al., 2007) to select among

models. The GBF aggregates likelihoods across participants and is the product of the individual Bayes

factors. The model with the highest GBF is the one that best accounts for all participants’ data jointly.
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Table 6.4: The total number of people who are fit by the distance-based models using the frequentist analysis
for Sets 1 and 2 (gambles with non-negative outcomes). There are 50 participants in the experiment.

Set 1 Set 2
Decision Theory τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

LSO-Diff 49 41 20 49 46 25
LSO-Ratio 49 40 20 50 47 28
SIM-Diff 45 40 25 49 35 20

SIM-Ratio 45 39 25 50 36 20

CPT

Lin Lin 4 0 0 24 18 10
Lin Pwr 35 24 12 43 31 20
Lin GE 42 24 12 47 32 20
Lin TK 20 6 0 24 18 10
Lin WG 45 25 13 47 32 20
Lin Prl-I 35 24 12 24 18 10
Lin Prl-II 46 28 14 48 32 20
Log Lin 15 2 1 24 18 10
Log Pwr 45 26 13 42 31 20
Log GE 46 28 14 42 31 20
Log TK 26 6 1 24 18 10
Log WG 49 33 14 42 31 20
Log Prl-I 45 26 13 24 18 10
Log Prl-II 49 33 14 42 31 20
Pwr Lin 46 28 14 46 32 20
Pwr Pwr 46 28 14 47 32 20
Pwr GE 46 28 14 49 32 20
Pwr TK 46 28 14 48 32 20
Pwr WG 46 28 14 49 32 20
Pwr Prl-I 46 28 14 47 32 20
Pwr Prl-II 46 28 14 49 32 20

Quad Lin 16 4 2 24 18 10
Quad Pwr 49 33 14 42 31 20
Quad GE 49 33 14 42 31 20
Quad TK 27 8 2 28 18 10
Quad WG 49 33 14 42 31 20
Quad Prl-I 49 33 14 24 18 10
Quad Prl-II 49 33 14 42 31 20
Expo Lin 16 4 2 24 18 10
Expo Pwr 49 33 14 42 31 20
Expo GE 49 33 14 42 31 20
Expo TK 31 10 2 24 18 10
Expo WG 49 33 14 42 31 20
Expo Prl-I 49 33 14 24 18 10
Expo Prl-II 49 33 14 42 31 20
Bell Lin 15 2 1 24 18 10
Bell Pwr 45 26 13 44 32 20
Bell GE 46 28 14 49 33 20
Bell TK 30 8 1 24 18 10
Bell WG 49 33 14 49 33 20
Bell Prl-I 45 26 13 24 18 10
Bell Prl-II 49 33 14 50 34 20

HARA Lin 7 3 1 45 32 20
HARA Pwr 7 3 1 50 34 20
HARA GE 32 20 13 50 34 20
HARA TK 7 3 1 45 32 20
HARA WG 32 20 13 50 34 20
HARA Prl-I 7 3 1 45 32 20
HARA Prl-II 32 20 13 50 34 20
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Table 6.5: The total number of people who are fit by the distance-based models using the frequentist analysis
for Sets 3 and 4 (gambles with non-positive outcomes). There are 50 participants in the experiment.

Set 3 Set 4
Decision Theory τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

LSO-Diff 50 47 20 50 47 25
LSO-Ratio 49 44 19 50 45 25
SIM-Diff 49 46 21 50 22 15

SIM-Ratio 49 43 19 45 23 13

CPT

Lin Lin 10 1 0 38 23 13
Lin Pwr 41 29 6 49 33 15
Lin GE 42 30 6 49 33 15
Lin TK 41 29 6 38 23 13
Lin WG 41 29 6 49 33 15
Lin Prl-I 41 29 6 47 33 15
Lin Prl-II 46 33 7 49 33 15
Log Lin 14 4 1 38 23 13
Log Pwr 46 33 7 50 33 15
Log GE 46 33 7 50 33 15
Log TK 46 33 7 38 23 13
Log WG 46 33 7 50 33 15
Log Prl-I 46 33 7 45 33 15
Log Prl-II 48 35 7 50 33 15
Pwr Lin 46 33 7 49 33 15
Pwr Pwr 46 33 7 50 33 15
Pwr GE 46 33 7 50 33 15
Pwr TK 46 33 7 49 33 15
Pwr WG 48 35 7 50 33 15
Pwr Prl-I 46 33 7 49 33 15
Pwr Prl-II 46 33 7 50 33 15

Quad Lin 14 4 1 38 23 13
Quad Pwr 48 35 7 50 33 15
Quad GE 48 35 7 50 33 15
Quad TK 48 35 7 38 23 13
Quad WG 48 35 7 50 33 15
Quad Prl-I 48 35 7 45 33 15
Quad Prl-II 48 35 7 50 33 15
Expo Lin 14 4 1 38 23 13
Expo Pwr 48 35 7 50 33 15
Expo GE 48 35 7 50 33 15
Expo TK 48 35 7 38 23 13
Expo WG 48 35 7 50 33 15
Expo Prl-I 48 35 7 47 33 15
Expo Prl-II 48 35 7 50 33 15
Bell Lin 14 4 1 38 23 13
Bell Pwr 46 33 7 50 33 15
Bell GE 46 33 7 50 33 15
Bell TK 48 35 7 38 23 13
Bell WG 48 35 7 50 33 15
Bell Prl-I 48 35 7 48 33 15
Bell Prl-II 48 35 7 50 33 15

HARA Lin 36 24 7 41 23 13
HARA Pwr 36 24 7 41 23 13
HARA GE 36 24 7 41 23 13
HARA TK 36 24 7 41 23 13
HARA WG 36 24 7 41 23 13
HARA Prl-I 36 24 7 41 23 13
HARA Prl-II 36 24 7 41 23 13
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Table 6.6: The total number of people who are fit by the distance-based models using the frequentist analysis
for Set 5 (gambles with a mixture of gains and losses). There are 50 participants in the experiment.

Set 5
Decision Theory τ = 0.50 τ = 0.25 τ = 0.10

LSO-Diff 50 47 30
LSO-Ratio 50 47 30
SIM-Diff 50 38 23

SIM-Ratio 50 38 23

CPT

Lin Lin 6 0 0
Lin Pwr 48 37 23
Lin TK 49 38 23
Lin WG 50 38 23
Lin Prl-II 50 38 23
Pwr Lin 50 38 23

6.5 Results

6.5.1 The Distance-Based Models

Tables 6.4 - 6.6 summarize the results for the distance-based models using frequentist methods for all five

stimulus sets. The first three columns display the decision theories, including two kinds of lexicographic

semiorder model and the similarity model, and the utility function and probability weighting function of the

49 forms of CPT. The following columns report the total number of people who are fit by the distance-based

models with τ =0.50, 0.25, and 0.10 for each stimulus set.

Tables 6.4 - 6.6 show that, as expected, for each decision theory, the number of people who are fit is the

highest for the distance-based models with τ = 0.50 and decreases when the upper bound τ on the error

rate decreases. The frequentist analyses show that most of the distance-based models of CPT with τ = 0.50

explain almost all of the participants’ data for every stimulus set. When I put higher restrictions on the

error rate bound, for example, τ = 0.10, the number of fits decreases a lot compared to when τ = 0.50. The

frequentist analysis of distance-based model shows that the numbers of fits are similar for different stimulus

sets, except for the 49 forms of CPT for Set 3 when τ = 0.10. For the distance-based models of CPT, the

number of fits for Set 3 is much smaller than the other stimulus sets when τ = 0.10. Overall, for all three

error rate bounds, the intransitive heuristics explain equal or more participants’ data than the 49 forms of

CPT.

Tables 6.7 - 6.9 summarize the results for the distance-based models using the Bayes factor analysis for

all five stimulus sets. I find a close alignment between frequentist and Bayesian results. In sum, for all three

error rate bounds, the intransitive heuristics explain more participants’ data than the 49 forms of CPT for

Sets 1 - 4, and the intransitive heuristics and CPT have a similar number of fits for Set 5.

Table 6.10 summarizes the number of people who are fit consistently and simultaneously across different

stimulus sets by the distance-based models with three different values of τ , using the frequentist and Bayes

8The analyses were supported by XSEDE Grant NSF SES No. 130016 (PI: Michel Regenwetter).
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Table 6.7: The total number of people who are fit by the distance-based models using the Bayesian analysis
for Sets 1 and 2 (gambles with non-negative outcomes). There are 50 participants in the experiment.

Set 1 Set 2
Decision Theory τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

LSO-Diff 46 36 21 48 43 25
LSO-Ratio 46 35 21 25 38 22
SIM-Diff 38 41 31 48 46 24

SIM-Ratio 37 40 31 29 42 22

CPT

Lin Lin 4 1 0 25 17 11
Lin Pwr 34 23 15 41 29 21
Lin GE 39 24 15 41 29 21
Lin TK 18 5 1 25 17 11
Lin WG 42 25 16 41 29 21
Lin Prl-I 34 23 15 25 17 11
Lin Prl-II 44 28 17 41 29 21
Log Lin 14 4 1 25 17 11
Log Pwr 44 26 16 38 29 21
Log GE 44 28 17 38 29 21
Log TK 24 7 1 25 17 11
Log WG 49 32 17 38 29 21
Log Prl-I 44 26 16 25 17 11
Log Prl-II 49 32 17 38 29 21
Pwr Lin 44 28 17 41 29 21
Pwr Pwr 44 28 17 41 29 21
Pwr GE 44 28 17 40 29 20
Pwr TK 44 28 17 44 29 21
Pwr WG 44 28 17 40 29 20
Pwr Prl-I 44 28 17 41 29 21
Pwr Prl-II 44 28 17 40 29 20

Quad Lin 14 6 2 25 17 11
Quad Pwr 48 31 16 38 29 21
Quad GE 48 31 16 38 29 21
Quad TK 19 9 2 22 16 11
Quad WG 48 31 16 38 29 21
Quad Prl-I 48 31 16 25 17 11
Quad Prl-II 48 31 16 38 29 21
Expo Lin 14 6 2 25 17 11
Expo Pwr 49 33 17 38 29 21
Expo GE 49 33 17 37 29 21
Expo TK 27 10 3 25 17 11
Expo WG 49 33 17 37 29 21
Expo Prl-I 49 33 17 25 17 11
Expo Prl-II 49 33 17 37 29 21
Bell Lin 14 4 1 25 17 11
Bell Pwr 44 26 16 38 30 20
Bell GE 44 28 17 40 30 20
Bell TK 29 8 2 25 17 11
Bell WG 49 33 17 40 30 20
Bell Prl-I 44 26 16 25 17 11
Bell Prl-II 49 33 17 41 30 20

HARA Lin 4 3 1 39 30 21
HARA Pwr 4 3 1 47 30 20
HARA GE 28 20 14 47 30 20
HARA TK 4 3 1 39 30 21
HARA WG 28 19 14 47 30 20
HARA Prl-I 4 3 1 39 30 21
HARA Prl-II 28 19 14 47 30 20
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Table 6.8: The total number of people who are fit by the distance-based models using the Bayesian analysis
for Sets 3 and 4 (gambles with non-positive outcomes). There are 50 participants in the experiment.

Set 3 Set 4
Decision Theory τ = 0.50 τ = 0.25 τ = 0.10 τ = 0.50 τ = 0.25 τ = 0.10

LSO-Diff 49 37 19 49 37 22
LSO-Ratio 46 34 18 40 35 22
SIM-Diff 44 37 21 34 41 25

SIM-Ratio 40 35 19 27 39 23

CPT

Lin Lin 10 1 0 36 25 16
Lin Pwr 40 23 14 46 31 19
Lin GE 41 24 12 46 31 19
Lin TK 40 23 14 36 25 16
Lin WG 40 23 14 46 31 19
Lin Prl-I 40 23 14 42 32 19
Lin Prl-II 45 27 14 46 31 19
Log Lin 12 4 2 36 25 16
Log Pwr 45 27 14 48 31 19
Log GE 44 27 14 47 31 19
Log TK 45 27 14 36 25 16
Log WG 44 27 14 49 31 19
Log Prl-I 45 27 14 42 32 19
Log Prl-II 47 29 14 47 31 19
Pwr Lin 45 27 14 46 31 19
Pwr Pwr 45 27 14 49 31 19
Pwr GE 44 27 14 47 31 19
Pwr TK 45 27 14 46 31 19
Pwr WG 44 27 11 47 31 19
Pwr Prl-I 45 27 14 46 31 19
Pwr Prl-II 45 27 14 47 31 19

Quad Lin 12 4 2 33 25 15
Quad Pwr 45 29 11 47 29 18
Quad GE 44 29 11 46 29 18
Quad TK 45 29 11 33 25 15
Quad WG 45 29 11 46 29 18
Quad Prl-I 45 29 11 39 31 19
Quad Prl-II 44 29 11 45 29 18
Expo Lin 12 4 2 36 25 16
Expo Pwr 46 29 12 47 30 19
Expo GE 45 29 11 47 29 18
Expo TK 47 29 14 36 25 16
Expo WG 44 29 11 47 29 18
Expo Prl-I 46 29 13 42 32 19
Expo Prl-II 44 29 11 47 29 18
Bell Lin 12 4 2 36 25 16
Bell Pwr 44 27 14 46 29 18
Bell GE 44 27 14 45 29 18
Bell TK 47 29 15 36 25 16
Bell WG 47 29 12 46 29 18
Bell Prl-I 47 29 15 44 32 19
Bell Prl-II 47 29 14 45 29 18

HARA Lin 31 19 13 34 23 15
HARA Pwr 31 19 13 33 23 15
HARA GE 31 19 13 30 23 15
HARA TK 31 19 13 33 23 15
HARA WG 30 19 13 32 23 15
HARA Prl-I 31 19 13 34 23 15
HARA Prl-II 30 19 13 30 23 15
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Table 6.9: The total number of people who are fit by the distance-based models using the Bayesian analysis
for Set 5 (gambles with a mixture of gains and losses). There are 50 participants in the experiment.

Set 5
Decision Theory τ = 0.50 τ = 0.25 τ = 0.10

LSO-Diff 49 41 29
LSO-Ratio 28 37 24
SIM-Diff 49 42 28

SIM-Ratio 32 45 27

CPT

Lin Lin 7 0 0
Lin Pwr 48 31 26
Lin TK 49 32 27
Lin WG 45 32 24
Lin Prl-II 45 32 24
Pwr Lin 47 32 25

factor analysis. For the frequentist analysis, I report the total number of people who are consistently fit

across different stimulus sets by the distance-based models. By a consistent fit of the distance-based model,

I mean that there exists a set of parameter values of decision theories for which the distance-based model

fits in different stimulus sets. For the Bayes factor analysis, I report the total number of people who are

simultaneously fit across different stimulus sets by the distance-based models. The column labeled ‘Gains’

represents fits across Sets 1 and 2, which have only non-negative monetary outcomes; the column labeled

‘Losses’ represents fits across Sets 3 and 4, which have only non-positive monetary outcomes; the column

labeled ‘All’ represents fits across Sets 1 - 49.

Results in Tables 6.4 - 6.10 show that there might be some degree of ‘over-fitting’ for the distance-based

models. For both the frequentist and Bayes factor analysis, the number of participants who replicate across

different stimulus sets is much smaller than the number of participants who are fit in separate stimulus set.

For the frequentist analysis, it means that when a model fits the data of some participants in one stimulus

set, the estimated best-fitting parameters of that model need not predict the data of the same participants

in another stimulus set. For the Bayes factor analysis, it means that the model cannot explain the data of

a participant simultaneously across different stimulus sets, even though the model might explain the data

well for some stimulus sets separately. Again, the results of the frequentist and Bayes factor analysis are in

close alignment with each other.

In sum, the results show that the distance-based models of intransitive heuristics fit more participants’

data than the 49 forms of CPT for each stimulus set, no matter whether using the frequentist or the Bayes

factor analysis.

9I exclude Set 5 in this analysis, since the predicted patterns for most forms of CPT are not computed. Also, because CPT
has different parameters for gains and losses, I only consider consistent fits separately for gains and losses for the frequentist
analysis.
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6.5.2 Mixture Model

Table 6.11 shows the number of people who are fit by the mixture model of the lexicographic semiorder,

the similarity model, and the 49 forms of CPT by the Bayes factor analysis for Sets 1 - 5, separately for

each stimulus set and simultaneously across all stimulus sets. The first column shows the name of each

theory; Columns 2 - 6 shows the number of people who are fit by the mixture model for each stimulus set;

Column 7 represents the number of simultaneous fit across Sets 1 and 2; Column 8 represents the number

of simultaneous fit across Sets 3 and 4; and Column 9 represents the number of simultaneous fit across

Sets 1 - 4. The cell with “-” means that the mixture model is not available for that stimulus set.

The mixture models of the lexicographic semiorder and the similarity models explain at most 52% of

the participants’ data for different stimulus sets. The mixture models of intransitive heuristics explain at

most 14 out of 50 participants simultaneously for gains, at most five for losses, and at most two across five

stimulus sets, suggesting that these models could not explain the participants’ data very well simultaneously

across different stimulus sets.

The 49 forms of CPT differ a lot in terms of their numbers of fit for different stimulus sets. The numbers

of fit for different CPT are similar for every stimulus set, except for Set 2, of which the number of fits is much

smaller. The mixture model of CPT that perform the best for Set 1 is CPT with the exponential utility

function and Prelec I probability weighting function, which explains 34 out of 50 participants’ data; for Set

2, CPT with Hara utility function and Goldstein-Einhorn probability weighting function, which explains 35

out of 50 participants’ data; for Set 3, CPT with the power utility function and Wu-Gonzalez probability

weighting function, which explains 36 out of 50 participants’ data; for Set 4, CPT with Bell utility function

and the power probability weighting function, which explains 44 out of 50 participants’ data. No mixture

models of one single form of CPT could explain the data of the most participants well across all stimulus

sets.

Most of the CPT forms fail to win over the saturated model for all of the participants simultaneously

across Sets 1 and 2. The mixture model of CPT with Hara utility function and Prelec II probability weighting

function explains the most participants’ data (23 out of 50) simultaneously across Sets 1 and 2. There are

more mixture models of CPT that could explain more than half of the participants’ data simultaneously

across Sets 3 and 4. The mixture model of CPT with the exponential utility function and the power

probability weighting function explains the most participants’ data (29 out of 50) simultaneously across Sets

3 and 4. The mixture model of CPT with Hara utility function and Prelec II probability weighting function

explains the most participants’ data (15 out of 50) simultaneously across all five stimulus sets. Most mixture

models of CPT could not explain any participants’ data simultaneously across Sets 1 - 4.
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Table 6.11: The number of people who are fit by the mixture model using the Bayes factor analysis.

Theory Set 1 Set 2 Set 3 Set 4 Set 5 Gains Losses All
LSO-Diff 23 25 2 10 26 10 0 0

LSO-Ratio 26 30 11 20 22 14 5 2
SIM-Diff 26 20 13 21 19 10 5 2

SIM-Ratio 25 9 14 14 16 2 5 2

CPT

Lin Lin - - - - - - - -
Lin Pwr 0 0 0 25 8 0 0 0
Lin GE 0 3 0 24 - 0 0 0
Lin TK 0 - 0 - 10 - - -
Lin WG 0 3 0 25 31 0 0 0
Lin Prl-I 0 - 0 0 - - 0 -
Lin Prl-II 24 6 30 26 31 4 17 0
Log Lin 0 - 0 - - - - -
Log Pwr 0 2 31 26 - 0 18 0
Log GE 25 1 34 23 - 0 18 0
Log TK 0 - 32 - - - - -
Log WG 30 2 32 23 - 0 14 0
Log Prl-I 0 - 28 0 - - 0 -
Log Prl-II 32 2 35 24 - 0 18 0
Pwr Lin 22 0 30 25 35 0 17 0
Pwr Pwr 23 15 29 23 - 6 14 1
Pwr GE 26 27 31 23 - 14 16 3
Pwr TK 24 8 32 23 - 4 18 1
Pwr WG 23 31 36 22 - 14 17 5
Pwr Prl-I 23 5 31 27 - 3 19 0
Pwr Prl-II 24 28 31 25 - 15 17 5

Quad Lin 0 - 0 0 - - 0 -
Quad Pwr 27 1 28 42 - 0 25 0
Quad GE 30 3 31 41 - 1 26 0
Quad TK 0 0 28 0 - 0 0 0
Quad WG 27 1 26 43 - 0 24 0
Quad Prl-I 28 - 27 0 - - 0 -
Quad Prl-II 29 2 30 41 - 0 26 0
Expo Lin 0 - 0 - - - - -
Expo Pwr 31 3 33 43 - 0 29 0
Expo GE 32 1 32 41 - 0 26 0
Expo TK 0 - 32 - - - - -
Expo WG 31 2 30 42 - 1 27 0
Expo Prl-I 34 - 31 0 - - 0 -
Expo Prl-II 32 2 32 40 - 0 25 0
Bell Lin 0 - 0 - - - - -
Bell Pwr 0 2 30 44 - 0 27 0
Bell GE 25 6 31 39 - 2 22 1
Bell TK 0 - 33 - - - - -
Bell WG 33 7 27 43 - 3 23 3
Bell Prl-I 0 - 31 0 - - 0 -
Bell Prl-II 33 33 35 40 - 23 27 15

HARA Lin 0 3 0 0 - 0 0 0
HARA Pwr 0 29 0 2 - 0 0 0
HARA GE 0 35 0 0 - 0 0 0
HARA TK 0 3 0 1 - 0 0 0
HARA WG 0 34 0 3 - 0 0 0
HARA Prl-I 0 3 0 1 - 0 0 0
HARA Prl-II 0 33 0 1 - 0 0 0

128



Overall, there are a lot of variations in terms of model performance within each stimulus set and across

different stimulus sets.

6.5.3 Model Comparison: Individual Level

I use Bayes factors to compare models. As I discuss in Section 6.4.3, for each participant, a decision model

is “best” (or a “winner”) if its Bayes factor against the saturated model is higher than 3.2 and it has the

highest Bayes factor among a group of models. This section reports the best model at the individual level

for every stimulus set.

Tables 6.12 - 6.16 report the results of model comparison by Bayes factor for Sets 1 - 5. The first column

shows the participant ID. The second column shows the best probabilistic model with the decision theory

and the stochastic form. I use the value of the upper bound τ for the distance-based model and “Mix’ to

represent the mixture model. The third column shows the Bayes factor for the best model compared to

the saturated model. The fourth and fifth columns show the second best probabilistic model and its Bayes

factor. The last column shows the Bayes factor between the best and second-best models.

For Set 1, the best models are transitive for 34 out of 50 participants. Out of these 34 transitive models,

18 models are the distance-based models of CPT with the linear utility function and the power probability

weighting function10. The best models are the mixture models for 17 out of 50 participants and are the

distance-based models for 33 participants.

For Set 2, the best models are transitive for 39 out of 50 participants. Out of these 39 transitive models,

18 models are the distance-based models of CPT with the linear utility function and the linear probability

weighting function10, which is equivalent to the expected value theory. The best models are the mixture

models for 12 out of 50 participants and are the distance-based models for 38 participants.

For Set 3, the best models are transitive for 39 out of 50 participants. Out of these 39 transitive models,

20 models are the distance-based models of CPT with the linear utility function and the power probability

weighting function10. The best models are the mixture models for 19 out of 50 participants and are the

distance-based models for 31 out of 50 participants.

For Set 4, the best models are transitive for 46 out of 50 participants. Out of these 46 transitive models,

22 models are the distance-based models of CPT with the linear utility function and the linear probability

weighting function10, which is equivalent to the expected value theory. The best models are the mixture

models for 12 out of 50 participants and are the distance-based models for 38 participants.

For Set 5, the best models are transitive for 43 out of 50 participants. Out of these 43 transitive models,

31 models are the distance-based models of CPT with the linear utility function and the power probability

10See Table 6.3 for other CPT forms that make the same predictions.
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weighting function. The best models are the mixture models for 10 out of 50 participants and are the

distance-based models for 40 participants.

For Sets 2 and 4, which involve only positive or negative outcomes, the distance-based model of CPT that

makes a single predicted pattern (for example, CPT with the linear utility function and the linear probability

weighting function) wins out for the most participants. Moreover, CPT with the linear utility function and

the linear probability weighting function is equivalent to computing the expect value of a gamble. For Sets

1, 3, and 5, the distance-based model of CPT with the linear utility function and the power probability

weighting function wins out for the most participants.

Overall, regarding the core decision theory, there are more transitive theories, CPT, winning out than the

intransitive heuristics for Sets 1 - 5. Regarding the probability specification, there are more distance-based

models winning out than mixture models for Sets 1 - 5. There is a lot of evidence for heterogeneity across

individuals and stimulus sets in terms of the best model. No single decision theory, or type of probabilistic

specifications, is robust across all participants and stimulus sets.

6.5.4 Model Comparison: Group Level

I use group Bayes factor (GBF, Stephan et al., 2007) to select among models at the group level. The GBF

aggregates likelihoods across participants and is the product of individual-level Bayes factors. The model

with the highest group Bayes factor is the model that will generalize best to data from a randomly selected

participant in a group for a stimulus set. Table 6.17 shows the top ten models ranked by GBF for every

stimulus set. The top panel shows the top ten models for each stimulus set and the bottom panel shows the

log10 value of GBF for the corresponding model. For the top panel, the first column shows the ranking of

a model; the second to sixth columns show the name of the probabilistic model and its stochastic form.

The distance-based models of the intransitive heuristics rank among top ten for Sets 1 - 4, especially

for Set 2, the top four models are all distance-based models of the intransitive heuristics. For example, the

distance-based model of LSO-Diff with τ = 0.25 ranks the 10th for Set 1, the 9th for Set 2, the 4th for Set

3, the 1st for Set 4. For Set 5, the top ten models are all probabilistic models of CPT. There does not seem

to be one form of CPT that ranks consistently among top ten across all stimulus sets.

For Sets 2 and 4, none of the distance-based models of CPT that makes a single predicted pattern rank

among the top ten by GBF, even though these models explain the data of the most participants in those

two stimulus sets. This result means that the distance-based models of those CPT could fit for a lot of

individual participants in a given stimulus set, but they could not fit for some other participants at all in

the same stimulus set. With these substantial individual differences, these CPT models could not account

for all participants’ data jointly.
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Table 6.12: The best and second-best models and their Bayes factors for Set 1.

ID Best Theory Best BF Sec. Theory Sec. BF Sec./Best
1 SIM-Diff-Mix 272 SIM-Ratio-Mix 270 1
2 Lin-Pwr-0.10 1019813 Lin-GE-0.10 728438 1
3 Lin-Pwr-0.25 6401 Lin-GE-0.25 4572 1
4 LSO-Diff-0.10 6134 LSO-Ratio-0.10 6134 1
5 Lin-TK-0.25 2334 Lin-Pwr-0.25 1400 2
6 Lin-Pwr-0.10 555095 Lin-GE-0.10 396496 1
7 Pwr-Pwr-Mix 5381 Pwr-Prl-I-Mix 5363 1
8 LSO-Diff-0.25 375 LSO-Ratio-0.25 375 1
9 Lin-Pwr-0.10 169050506 Lin-GE-0.10 120750361 1

10 SIM-Diff-Mix 2706 Expo-Pwr-Mix 2534 1
11 Lin-Pwr-0.50 87 SIM-Ratio-Mix 86 1
12 Lin-Pwr-0.25 60026 Lin-GE-0.25 42876 1
13 Expo-WG-Mix 3244 Bell-Prl-II-Mix 2732 1
14 Lin-Pwr-0.25 65449 Lin-GE-0.25 46750 1
15 SIM-Diff-0.10 70441 SIM-Diff-0.25 613 115
16 Lin-Pwr-0.25 760 Lin-GE-0.25 543 1
17 Quad-Prl-I-Mix 67 SIM-Ratio-Mix 66 1
18 Lin-Pwr-0.25 5372 Lin-GE-0.25 3837 1
19 Lin-Pwr-0.25 397 Lin-GE-0.25 284 1
20 Expo-Prl-II-Mix 80 Expo-GE-Mix 73 1
21 Expo-Prl-II-Mix 4990 Expo-GE-Mix 4753 1
22 SIM-Diff-0.10 242640 LSO-Ratio-0.10 240462 1
23 Quad-GE-Mix 202 Quad-Pwr-Mix 178 1
24 Lin-Pwr-0.50 102 Lin-GE-0.50 73 1
25 Pwr-Prl-I-Mix 8260 Pwr-TK-Mix 8241 1
26 Lin-Pwr-0.10 627717597 Lin-GE-0.10 448369712 1
27 Lin-Pwr-0.10 597923 Lin-GE-0.10 427088 1
28 Expo-Prl-II-Mix 96 Expo-GE-Mix 96 1
29 Bell-Prl-II-Mix 3588 Bell-WG-Mix 2410 1
30 LSO-Diff-0.25 153 LSO-Ratio-0.25 153 1
31 Expo-Pwr-0.50 60 Bell-Prl-II-0.50 56 1
32 SIM-Diff-0.10 17216 LSO-Diff-0.10 17061 1
33 Expo-WG-Mix 22959 Pwr-Lin-Mix 22554 1
34 Expo-Lin-0.10 230945490 Expo-TK-0.10 179624270 1
35 Lin-Pwr-0.10 6829808 Lin-GE-0.10 4878434 1
36 LSO-Diff-Mix 842 LSO-Ratio-Mix 791 1
37 Expo-WG-Mix 189 Expo-Pwr-Mix 187 1
38 SIM-Ratio-Mix 690 SIM-Diff-Mix 638 1
39 Lin-Pwr-0.10 92928 Lin-Pwr-0.25 66783 1
40 Lin-TK-0.25 206 Lin-TK-0.50 168 1
41 SIM-Diff-0.25 77 Expo-Pwr-0.50 66 1
42 LSO-Ratio-0.25 297 LSO-Diff-0.25 297 1
43 Lin-Pwr-0.10 447764073 Lin-GE-0.10 319831481 1
44 SIM-Diff-0.10 348 LSO-Ratio-0.10 344 1
45 Lin-Pwr-0.25 24961 Lin-GE-0.25 17829 1
46 log-Lin-0.25 19662 log-TK-0.25 16854 1
47 Lin-Pwr-0.10 275305 Lin-GE-0.10 196647 1
48 SIM-Diff-0.10 2555 SIM-Diff-0.25 1092 2
49 SIM-Ratio-Mix 131 SIM-Diff-Mix 118 1
50 SIM-Diff-Mix 2136 Expo-Prl-I-Mix 1160 2
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Table 6.13: The best and second-best models and their Bayes factors for Set 2.

ID Best Theory Best BF Sec. Theory Sec. BF Sec./Best
1 SIM-Diff-0.50 97 HARA-GE-Mix 88 1
2 HARA-Pwr-Mix 55 HARA-GE-Mix 48 1
3 Lin-Pwr-0.25 19086 Pwr-Lin-0.25 10604 2
4 Lin-Lin-0.10 630476240 Lin-Pwr-0.10 126095248 5
5 SIM-Diff-0.25 83 LSO-Diff-0.25 71 1
6 Pwr-Prl-I-Mix 22846 Pwr-TK-Mix 11646 2
7 SIM-Diff-Mix 42 LSO-Diff-Mix 36 1
8 LSO-Ratio-0.10 24129 Lin-Lin-0.25 11841 2
9 Lin-Pwr-0.10 177579 Pwr-Lin-0.10 98655 2

10 LSO-Diff-Mix 917 Pwr-TK-Mix 372 2
11 Pwr-WG-Mix 64 Pwr-Prl-II-Mix 64 1
12 Lin-Pwr-0.25 53427 Pwr-Lin-0.25 29682 2
13 HARA-GE-Mix 105 HARA-WG-Mix 102 1
14 Lin-Pwr-0.25 14508 Pwr-Lin-0.25 8060 2
15 HARA-Lin-0.25 205 HARA-TK-0.25 133 2
16 Lin-Pwr-0.50 128 Lin-Pwr-0.25 84 2
17 Lin-Lin-0.25 312041 Lin-Lin-0.10 309644 1
18 Lin-Lin-0.25 420468 Lin-Lin-0.10 190253 2
19 Lin-Pwr-0.50 155 Lin-Pwr-0.25 95 2
20 Lin-Lin-0.10 106113391 Lin-Pwr-0.10 21222678 5
21 SIM-Diff-0.50 23 LSO-Diff-0.50 12 2
22 Lin-Pwr-0.25 45909 Lin-Pwr-0.10 32294 1
23 Lin-Lin-0.50 818 Lin-Lin-0.25 296 3
24 HARA-GE-Mix 77 HARA-WG-Mix 75 1
25 Lin-Lin-0.25 2937 Lin-Lin-0.50 925 3
26 Lin-Pwr-0.10 627717597 Pwr-Lin-0.10 348731998 2
27 Lin-Pwr-0.10 4294098 Pwr-Lin-0.10 2385610 2
28 Lin-Lin-0.10 387645 Lin-Lin-0.25 376708 1
29 LSO-Diff-Mix 80 LSO-Ratio-0.25 67 1
30 Lin-Lin-0.50 191 Quad-TK-0.50 58 3
31 SIM-Diff-0.50 50 LSO-Diff-Mix 41 1
32 Lin-Lin-0.10 871794696 Lin-Pwr-0.10 174358939 5
33 LSO-Diff-Mix 169 SIM-Diff-0.50 39 4
34 Lin-Lin-0.10 630476240 Lin-Pwr-0.10 126095248 5
35 Lin-Pwr-0.10 319399465 Pwr-Lin-0.10 177444147 2
36 Lin-Lin-0.25 1706 Lin-Lin-0.50 788 2
37 Lin-Lin-0.25 18858 Lin-Pwr-0.25 3772 5
38 Lin-Lin-0.25 1553 Lin-Lin-0.50 847 2
39 Lin-Pwr-0.25 53427 Pwr-Lin-0.25 29682 2
40 Lin-Lin-0.50 533 LSO-Diff-Mix 169 3
41 Lin-Lin-0.50 411 LSO-Diff-Mix 101 4
42 Lin-Lin-0.25 166436 Lin-Pwr-0.25 33287 5
43 Lin-Pwr-0.10 1706352 Pwr-Lin-0.10 947974 2
44 Lin-Lin-0.10 15593636 Lin-Pwr-0.10 3118727 5
45 Lin-Pwr-0.25 1522 Pwr-Lin-0.25 846 2
46 Lin-Lin-0.10 2238820364 Lin-Pwr-0.10 447764073 5
47 Pwr-WG-Mix 57 Pwr-Prl-II-Mix 54 1
48 Pwr-Prl-II-Mix 79 Pwr-WG-Mix 78 1
49 LSO-Diff-Mix 425 SIM-Diff-Mix 86 5
50 LSO-Diff-0.10 719 LSO-Diff-0.25 695 1
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Table 6.14: The best and second-best models and their Bayes factors for Set 3.

ID Best Theory Best BF Sec. Theory Sec. BF Sec./Best
1 SIM-Diff-0.50 65 SIM-Ratio-Mix 63 1
2 Lin-Pwr-0.25 9632 Lin-GE-0.25 7224 1
3 Lin-Pwr-0.25 713 Lin-GE-0.25 535 1
4 Bell-TK-Mix 14256 Bell-Prl-I-Mix 11250 1
5 Lin-Pwr-0.25 6023 Lin-GE-0.25 4517 1
6 LSO-Diff-0.50 18 LSO-Ratio-0.50 17 1
7 log-Prl-II-Mix 3381 Bell-Prl-I-Mix 1564 2
8 log-Prl-II-Mix 1047 Expo-TK-Mix 653 2
9 Lin-Pwr-0.10 1681126 Lin-GE-0.10 1260844 1

10 Bell-Prl-I-Mix 462 Bell-TK-Mix 326 1
11 Lin-Pwr-0.50 81 Lin-GE-0.50 61 1
12 Lin-Pwr-0.25 10325 Lin-GE-0.25 7744 1
13 Lin-Pwr-0.50 126 Expo-TK-Mix 125 1
14 Lin-Pwr-0.50 65 Lin-GE-0.50 49 1
15 Bell-Prl-I-0.25 2758 Bell-TK-0.25 2561 1
16 Lin-Pwr-0.50 85 Lin-GE-0.50 64 1
17 Lin-Pwr-0.25 8465 Lin-GE-0.25 6349 1
18 SIM-Diff-0.10 11157 LSO-Diff-0.10 11056 1
19 SIM-Ratio-Mix 1398 SIM-Diff-Mix 643 2
20 Lin-Pwr-0.10 22119333 Lin-GE-0.10 16589500 1
21 Bell-Prl-I-0.25 2255 Bell-TK-0.25 2094 1
22 Lin-Pwr-0.25 7399 Lin-GE-0.25 5549 1
23 Lin-Pwr-0.25 1189 Lin-GE-0.25 891 1
24 Pwr-TK-Mix 111 Lin-Prl-II-Mix 110 1
25 Pwr-GE-Mix 5554 log-GE-Mix 4785 1
26 Lin-Pwr-0.10 373136727 Lin-GE-0.10 279852546 1
27 SIM-Ratio-Mix 585 SIM-Diff-Mix 370 2
28 Bell-Prl-I-Mix 944 log-TK-Mix 921 1
29 Bell-Prl-I-Mix 13207 Bell-TK-Mix 9182 1
30 Lin-Pwr-0.25 2216 Lin-GE-0.25 1662 1
31 LSO-Ratio-0.50 15 LSO-Diff-0.50 13 1
32 log-Lin-0.25 20856 Bell-Lin-0.25 17380 1
33 Expo-Prl-I-Mix 217 Expo-Pwr-Mix 190 1
34 Lin-Pwr-0.10 49156125 Lin-GE-0.10 36867094 1
35 log-WG-Mix 90 log-Prl-II-Mix 82 1
36 LSO-Diff-0.25 1503 LSO-Ratio-0.25 1502 1
37 log-Lin-0.50 28 Quad-WG-Mix 27 1
38 SIM-Ratio-Mix 182 Quad-TK-Mix 181 1
39 SIM-Ratio-Mix 606 SIM-Diff-Mix 338 2
40 Pwr-TK-Mix 347 log-Prl-I-Mix 340 1
41 SIM-Ratio-Mix 152 SIM-Diff-0.25 115 1
42 Pwr-Prl-II-Mix 523 Pwr-Pwr-Mix 515 1
43 Lin-Pwr-0.10 262532683 Lin-GE-0.10 196899512 1
44 SIM-Diff-0.10 348442 LSO-Diff-0.10 345301 1
45 Lin-Pwr-0.25 3515 Lin-GE-0.25 2636 1
46 Lin-Pwr-0.25 8500 Lin-GE-0.25 6375 1
47 Lin-Pwr-0.25 5599 Lin-GE-0.25 4199 1
48 Bell-Prl-I-Mix 334 Pwr-Prl-I-Mix 311 1
49 Expo-Prl-I-Mix 210 Expo-Pwr-Mix 198 1
50 log-WG-Mix 200 Lin-Pwr-0.50 133 2
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Table 6.15: The best and second-best models and their Bayes factors for Set 4.

ID Best Theory Best BF Sec. Theory Sec. BF Sec./Best
1 Quad-Prl-II-Mix 33 SIM-Diff-0.50 33 1
2 Lin-Lin-0.25 6892 log-Prl-I-0.25 1379 5
3 Lin-Lin-0.25 739 Lin-Lin-0.50 659 1
4 Lin-Lin-0.10 4037249 log-Prl-I-0.10 807450 5
5 Lin-WG-Mix 1672 Lin-Prl-II-Mix 1619 1
6 LSO-Diff-0.50 16 LSO-Diff-0.25 9 2
7 Lin-Lin-0.25 30500 log-Prl-I-0.25 6100 5
8 LSO-Diff-0.10 2599503 SIM-Diff-0.10 1313653 2
9 log-Prl-I-0.25 3039 Lin-Prl-I-0.25 2532 1

10 Lin-Lin-0.10 390181 Lin-Lin-0.25 363493 1
11 Expo-Pwr-Mix 147 Lin-Lin-0.50 101 1
12 Lin-Lin-0.25 29213 log-Prl-I-0.25 5843 5
13 Lin-Lin-0.50 716 log-Prl-I-0.50 158 5
14 Lin-Lin-0.10 23202820 log-Prl-I-0.10 4640564 5
15 log-Prl-I-0.10 106901 Lin-Prl-I-0.10 89084 1
16 Expo-Pwr-Mix 26 Expo-GE-Mix 22 1
17 SIM-Diff-0.50 45 Pwr-TK-Mix 26 2
18 SIM-Diff-0.10 11530 SIM-Diff-0.25 469 25
19 Lin-Lin-0.50 707 log-Prl-I-0.50 175 4
20 Pwr-Lin-Mix 3950 Lin-Prl-II-Mix 3921 1
21 log-Prl-I-0.25 12296 Lin-Prl-I-0.25 10246 1
22 log-Prl-I-0.10 18704016 Lin-Prl-I-0.10 15586680 1
23 log-WG-Mix 186 Expo-Pwr-Mix 177 1
24 log-Prl-I-0.50 160 Lin-Lin-0.50 141 1
25 Pwr-Prl-I-Mix 4124 Lin-Prl-II-Mix 4106 1
26 Lin-Lin-0.10 2266327066 log-Prl-I-0.10 453265413 5
27 Lin-Lin-0.10 1917294 Lin-Lin-0.25 436877 4
28 Lin-Lin-0.25 99520 LSO-Diff-0.10 47471 2
29 Pwr-Prl-I-Mix 537 Lin-WG-Mix 509 1
30 Lin-Lin-0.10 1139171549 log-Prl-I-0.10 227834310 5
31 Expo-Pwr-Mix 167 Expo-WG-Mix 103 2
32 Lin-Lin-0.10 1596997327 log-Prl-I-0.10 319399465 5
33 Lin-Lin-0.25 2266 Lin-Lin-0.50 781 3
34 Lin-Prl-I-0.50 48 Bell-Pwr-Mix 44 1
35 Lin-Lin-0.10 15415553 log-Prl-I-0.10 3083111 5
36 Lin-WG-Mix 5152 Pwr-Prl-I-Mix 5142 1
37 Lin-Lin-0.50 481 log-Prl-I-0.50 193 2
38 Expo-Pwr-Mix 121 log-Prl-I-0.50 83 1
39 Lin-Lin-0.10 22371287 log-Prl-I-0.10 4474257 5
40 Lin-Lin-0.10 2266327066 log-Prl-I-0.10 453265413 5
41 Expo-Pwr-Mix 215 Quad-Pwr-Mix 137 2
42 log-Prl-I-0.25 573 Lin-Prl-I-0.25 478 1
43 Lin-Lin-0.10 1593866 Lin-Lin-0.25 472358 3
44 Lin-Lin-0.10 20097919 log-Prl-I-0.10 4019584 5
45 Lin-Pwr-0.50 25 SIM-Diff-0.50 25 1
46 log-Prl-I-0.25 396 Lin-Prl-I-0.25 330 1
47 Lin-Lin-0.50 113 Quad-Lin-0.50 34 3
48 Lin-Lin-0.10 8587583 log-Prl-I-0.10 1717517 5
49 log-Prl-I-0.25 265 Lin-Prl-I-0.25 221 1
50 Lin-WG-Mix 5935 Pwr-Prl-I-Mix 5925 1
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Table 6.16: The best and second-best models and their Bayes factors for Set 5.

ID Best Theory Best BF Sec. Theory Sec. BF Sec./Best
1 Pwr-Lin-Mix 242 SIM-Diff-0.50 43 6
2 Pwr-Lin-Mix 140 LSO-Diff-Mix 87 2
3 Lin-Pwr-0.25 141 Lin-TK-0.50 79 2
4 Lin-Pwr-0.10 43863283 Pwr-Lin-0.10 16083204 3
5 Lin-Pwr-0.25 2883 Pwr-Lin-0.25 1064 3
6 Lin-Pwr-0.10 145181575 Pwr-Lin-0.10 53233244 3
7 SIM-Diff-0.10 9666 SIM-Diff-0.25 2774 3
8 Lin-Pwr-0.10 104833427 Pwr-Lin-0.10 38438923 3
9 Lin-Pwr-0.50 49 Lin-TK-0.50 49 1

10 Lin-Pwr-0.25 5416 Pwr-Lin-0.25 1986 3
11 Pwr-Lin-Mix 105 SIM-Diff-0.50 49 2
12 Lin-Pwr-0.25 11516 Pwr-Lin-0.25 4223 3
13 Lin-Pwr-0.25 2307 LSO-Diff-0.25 915 3
14 LSO-Diff-Mix 89 LSO-Ratio-Mix 58 2
15 Pwr-Lin-Mix 35 Lin-Pre-II-Mix 18 2
16 Lin-Lin-0.50 94 Lin-Pwr-0.50 45 1
17 Lin-Pwr-0.10 53852 Lin-Pwr-0.25 24643 2
18 Lin-Pwr-0.10 145181575 Pwr-Lin-0.10 53233244 3
19 Lin-Pwr-0.25 97 Lin-Lin-0.50 90 1
20 Lin-Pwr-0.10 285326180 Pwr-Lin-0.10 104619600 3
21 LSO-Diff-0.25 759 SIM-Diff-0.25 575 1
22 Pwr-Lin-Mix 29 SIM-Diff-0.50 13 2
23 Lin-Pwr-0.10 7550673 Pwr-Lin-0.10 2768580 3
24 Pwr-Lin-Mix 38 Lin-TK-0.50 24 2
25 Lin-Pwr-0.25 14714 Pwr-Lin-0.25 5395 3
26 Lin-Pwr-0.10 200750669 Pwr-Lin-0.10 73608579 3
27 SIM-Diff-0.50 20 LSO-Ratio-Mix 19 1
28 Lin-Pwr-0.10 16140817 Pwr-Lin-0.10 5918300 3
29 LSO-Diff-0.25 195 SIM-Diff-0.25 147 1
30 Lin-Pwr-0.10 1880441 Pwr-Lin-0.10 689495 3
31 Lin-Pwr-0.25 2993 Pwr-Lin-0.25 1097 3
32 Lin-Pwr-0.10 145181575 Pwr-Lin-0.10 53233244 3
33 Lin-Lin-0.50 42 SIM-Diff-0.50 24 1
34 Lin-Pwr-0.10 139007231 Pwr-Lin-0.10 50969318 3
35 Lin-Pwr-0.10 9780185 Pwr-Lin-0.10 3586068 3
36 LSO-Diff-0.10 531554 SIM-Diff-0.10 410190 1
37 Lin-Pwr-0.25 7172 Pwr-Lin-0.25 2630 3
38 Pwr-Lin-Mix 298 LSO-Diff-Mix 196 2
39 Lin-Pwr-0.10 93793 Lin-Pwr-0.25 46480 2
40 Lin-Pwr-0.25 27691 Lin-Pwr-0.10 11895 2
41 Lin-Pwr-0.25 100 Lin-Pwr-0.50 79 1
42 Lin-Pwr-0.10 39145953 Pwr-Lin-0.10 14353516 3
43 Pwr-Lin-Mix 320 Lin-Pre-II-Mix 20 16
44 Lin-Pwr-0.10 40884716 Pwr-Lin-0.10 14991062 3
45 Lin-Pwr-0.10 601784 Pwr-Lin-0.10 220654 3
46 Lin-Pwr-0.10 288831769 Pwr-Lin-0.10 105904982 3
47 Pwr-Lin-Mix 373 LSO-Diff-0.25 84 4
48 Lin-TK-0.50 42 Lin-Pwr-0.50 42 1
49 LSO-Diff-0.25 187 SIM-Diff-0.25 130 1
50 Lin-Pwr-0.25 16007 Pwr-Lin-0.25 5869 3
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Table 6.17: The top ten models ranked by GBF in each stimulus set, i.e., the best model (highest GBF) to
worst model (lowest GBF). The bottom panel shows the log10 value of GBF for the corresponding model.

Set 1 Set 2 Set 3 Set 4 Set 5
Ranking Probabilistic Models

1 Expo-Pwr-0.50 SIM-Diff-0.25 Bell-Prl-I-0.50 LSO-Diff-0.25 log-Lin-0.50
2 Expo-WG-0.50 SIM-Ratio-0.25 Bell-TK-0.50 Lin-Pwr-0.50 log-Pwr-0.50
3 Expo-Prl-I-0.50 LSO-Diff-0.25 Bell-Prl-II-0.50 Lin-GE-0.50 Lin-Prl-I-0.50
4 Bell-Prl-II-0.50 LSO-Ratio-0.25 LSO-Diff-0.25 Lin-WG-0.50 Pwr-GE-0.50
5 SIM-Diff-0.25 Pwr-Lin-0.50 Lin-Prl-II-0.50 Lin-Prl-II-0.50 Pwr-TK-0.50
6 SIM-Ratio-0.25 Lin-Pwr-0.50 log-Pwr-0.50 Pwr-Lin-0.50 Lin-Prl-II-0.50
7 Expo-GE-0.50 HARA-Pwr-0.50 log-TK-0.50 Pwr-TK-0.50 Lin-Pwr-0.50
8 Expo-Prl-II-0.50 HARA-Lin-0.50 log-Prl-I-0.50 Pwr-Prl-I-0.50 Lin-Lin-0.50
9 Bell-WG-0.50 SIM-Diff-0.50 Pwr-Lin-0.50 SIM-Diff-0.25 Pwr-Lin-0.50
10 LSO-Diff-0.25 SIM-Ratio-0.50 Pwr-Pwr-0.50 SIM-Ratio-0.25 Lin-WG-0.50

Ranking The log10 value of GBF for each model
1 84.34 97.11 81.75 86.00 120.65
2 84.34 97.11 80.27 81.83 120.65
3 84.34 87.77 78.99 81.83 108.06
4 82.63 70.84 78.02 81.83 94.40
5 82.59 56.99 77.18 81.83 94.40
6 82.59 56.36 77.18 81.83 85.94
7 81.33 56.16 77.18 81.83 81.05
8 81.33 55.99 77.18 81.83 78.53
9 81.04 54.79 77.18 80.64 70.12
10 79.48 54.79 77.18 80.64 66.22

6.6 Conclusions

Transitivity of preferences is essential for nearly all normative, prescriptive, and descriptive theories of

decision making. Almost any theory that uses utility functions implies transitivity. There are studies

reporting intransitive choice behavior in the literature. To explain the intransitive choice behavior, several

contemporary theories are developed in the literature. The lexicographic semiorder model and the similarity

model are two examples of those theories permitting intransitive preferences. On the other hand, CPT is

the most famous contemporary theory of risky choice. This paper presents a comprehensive analysis of the

lexicographic semiorder model, the similarity model, and 49 forms of CPT, and compares the intransitive

heuristics with the transitive CPT. This paper tries to find out which model can explain human choice

behavior better, transitive theories or intransitive heuristics.

In this paper, I employ a rigorous quantitative framework for testing decision theories. I consider two

types of probabilistic specifications of algebraic theories: the distance-based model and the mixture model.

The distance-based model assumes that the decision maker has a deterministic preference and makes errors

when making choices. I use three upper bounds τ on the error rate. The mixture model assumes that

the decision maker has probabilistic preferences and chooses deterministically when making choices. The

mixture model allows any probability distribution whatsoever over preference patterns that are consistent

with the decision theory or the algebraic structure of interest. When a mixture model is rejected, it means

that there does not exist a probability distribution over those preference patterns that would describe well
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the decision maker’s data. All in all, I test 864 different probabilistic models in this paper.

I use both frequentist and Bayesian order-constrained statistical methods. The frequentist order-

constrained method provides a goodness-of-fit test for the probabilistic model from a classical statistical

perspective. The Bayesian order-constrained method allows me to put all of the probabilistic models in

direct comparison with one another at both the individual and group levels. Moreover, the Bayes fac-

tor measures the empirical evidence for each model while appropriately penalizing for the complexity of the

model. Overall, there is a close alignment between frequentist and Bayes factor results for the distance-based

models, even though these two methods are conceptually and computationally quite distinct.

The analysis of the distance-based models shows that the intransitive heuristics fit more participants’

data than CPT. The mixture model analysis shows that the number of fits differs a lot among different

theories within the same stimulus set and across different stimulus sets.

The model comparison at the individual level shows that for Sets 2 and 4, the distance-based model of

CPT that makes a single predicted pattern, for example, CPT with the linear utility function and the linear

probability weighting function, wins out for the most participants. This result means that there is a group

of participants who might simplify the task and compute the expected value of gambles for Sets 2 and 4.

However, these models do not win out at the model comparison at the group level by GBF, which means

that these CPT models could not account for all participants’ data jointly.

For Sets 1, 3, and 5, the distance-based model of CPT with the linear utility function and the power

probability weighting function wins out for the most participants. For each stimulus set, there are more

probabilistic models of CPT winning out than the intransitive heuristics. In this sense, it seems that CPT

is doing a better job in terms of explaining the participants’ data.

Moreover, the model comparison result shows heterogeneity across participants and stimulus sets. More-

over, I do not find a single core theory, type of preference, or type of response process that best explains all

participants’ data in all stimulus sets. This result reinforces earlier warnings that one needs to be cautious

about a “one-size-fits-all” approach, as pointed out previously by Davis-Stober et al. (2015), Guo (2018a),

Hey (2005), Loomes et al. (2002), and Regenwetter et al. (2014).

In this paper, I use five different stimulus sets, two of which have only non-negative outcomes, two of

which have only non-positive outcomes, and one of which have both gains and losses. Overall, the analysis

results for different stimulus sets do not differ a lot. I do not see much difference regarding model performance

for various stimulus sets.

One thing to point out is that even though the lexicographic semiorder model and the similarity model

allow intransitivity, they are not just models of intransitivity; both transitive and intransitive preferences
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can be consistent with these models. This result speaks directly to Birnbaum (2011)’s concern about model

mimicry. My analyses show that many participants are fit by both the intransitive heuristics and different

forms of CPT. One explanation for this finding might be that many preference patterns predicted by the

intransitive heuristics are transitive. Regenwetter et al. (2011b) report that the lexicographic semiorder

model can mimic parts of the linear order model, and both models fit a large proportion of the participants.

In this case, the model comparison by Bayes factor is very important since Bayes factor appropriately

penalizes the complexity of the model. In this study, there are more probabilistic models of CPT winning

out than the intransitive heuristics for each stimulus set.

Last but not the least, I would like to point out that the paper is a large scale project for a systematic test

of both transitive and intransitive decision theories. All the quantitative analyses in this paper consumed

about 304,000 CPU hours on the supercomputer at Pittsburgh Supercomputing Center.
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Birnbaum (2011) raised important challenges to testing transitivity. We summarize why an approach based on
counting response patterns does not solve these challenges. Foremost, we show why parsimonious tests of
transitivity require at least 5 choice alternatives. While the approach of Regenwetter, Dana, and Davis-Stober
(2011) achieves high power with modest sample sizes for 5 alternatives, pattern-counting approaches face the
difficulty of combinatoric explosion in permissible response patterns. Even for fewer than 5 alternatives, if the
choice of how to “block” individual responses into response patterns is slightly mistaken, intransitive
preferences can mimic transitive ones. At the same time, statistical tests on proportions of response patterns
rely on similar “independent and identically distributed” sampling assumptions as tests based on response
proportions. For example, the hypothetical data of Birnbaum (2011, Tables 2 and 3) hinge on the assumption
that response patterns are properly blocked, as well as sampled independently and with a stationary distribu-
tion. We test an intransitive lexicographic semiorder model on Tversky’s (1969) and Regenwetter et al.’s data
and, consistent with Birnbaum’s (2011) concern, we find evidence for model mimicry in some cases.

Keywords: parsimonious testing, random utility, rationality, transitivity of preferences

Regenwetter, Dana, and Davis-Stober (2011) investigated tran-
sitivity of preferences through powerful and parsimonious quanti-
tative tests. Regenwetter et al. (2010, 2011) made extensive efforts
to spell out and eliminate unnecessary and, in many cases, un-
wanted assumptions in the literature. To protect against serious
aggregation paradoxes that create the false appearance of intran-
sitivity, they moved from aggregation across people to individual
choice data. By collecting repeated choices from the same indi-
vidual, they avoided the assumption, implicit in single observa-
tions, that preferences are fixed. These repeated choices were
interspersed with rich and similar-looking distractors to keep re-
spondents from recognizing choice alternatives, in an effort to
approximate independent and identically distributed (iid) sam-
pling.

Birnbaum (2011) described an alternative quantitative ap-
proach to testing transitivity on within-subject data. He agreed
with the substantive conclusion of Regenwetter et al. (2011),
henceforth RDDS, that evidence for intransitivity is lacking and
also with their criticism of weak stochastic transitivity. He
argued, however, that RDDS did not go far enough in criticizing
past approaches, particularly because they analyzed proportions
of binary responses. He contrasted their approach with that of
Birnbaum and Gutierrez (2007), who, instead, analyzed propor-
tions of binary response patterns. A response pattern is the
series of responses that a respondent makes across a complete
repetition of all unique gamble pairs. Using a hypothetical
example, Birnbaum showed how using the RDDS approach
could suggest that choices are transitive when in fact the
decision maker has intransitive preferences, a phenomenon we
call model mimicry. His example showed how analyzing pat-
terns, as Birnbaum and Gutierrez did, could diagnose this true
intransitivity, because their approach identifies a preference
distribution and that of RDDS does not. Birnbaum’s comment
also questioned the untested RDDS assumption that a respon-
dent’s choices form iid draws from a probability distribution
over preference orders, finding it “empirically doubtful” that
responses to the same gamble pair or to related gamble pairs by
the same respondent are statistically independent.

Our reply focuses on a small number of key points. We start and
end with a central question: How can we test transitivity of
preferences in a parsimonious and statistically powerful fashion?
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The Importance of Considering at Least Five
Choice Alternatives

If one is going to draw conclusions from failing to reject
transitivity, as both Birnbaum (2011) and RDDS did, it is crucial
that transitivity be a strong hypothesis that we would expect to
overturn if untrue. Looking at Birnbaum’s Table 2, one can see
that with three gambles, there are eight possible response patterns.
Six of these 8 patterns (75%) are transitive. We can frame this
problem in terms of the RDDS approach by imagining a cube (see
Regenwetter et al., 2010, for a visualization) in which the proba-
bility of choosing A over B, from 0 to 1, is one dimension, and the
probabilities of choosing B over C and A over C, from 0 to 1, are
the other two dimensions. Inside this unit cube, 67% of the space
satisfies the triangle inequalities that RDDS used to test transitiv-
ity. Retaining transitivity with three gambles is not very informa-
tive because most conceivable data sets will support transitivity.

On the other hand, if one uses five gambles, as RDDS did, there
are 10 unique gamble pairs and 210 ! 1,024 possible response
patterns. Of these, only 120 patterns (12%) are transitive. In terms
of the RDDS tests, the 10 binomial choice probabilities create a
10-dimensional unit hypercube, inside of which only 5% of the
space satisfies the triangle inequalities (see Regenwetter et al.,
2010). Thus, in either approach, moving from three gambles to five
gambles transforms transitivity from an almost meaninglessly lax
hypothesis to a strong hypothesis with serious potential for rejec-
tion. For this reason, it is crucial that any approach that retains
transitivity be able to do so with at least five choice alternatives.

Because there are 1,024 possible response patterns for five gam-
bles, combinatoric explosion will pose a formidable problem for any
pattern-counting approach. Consider again Birnbaum’s (2011) Table
2. The example data used 200 repetitions, so that there are 25 obser-
vations for each of the eight possible response patterns. To obtain an
average of 25 observations per pattern with five gambles, one would
now need 1,024 patterns times 10 decisions (there are 10 gamble pairs
per pattern) times 25 observations per pattern ! 256,000 decisions in
this hypothetical experiment, not including any filler choices between
blocks. The RDDS approach estimates 10 binomials for the 10 unique
gamble pairs and thus requires only 250 decisions for an experiment
with a comparable number of 25 observations per cell. A similar
combinatoric explosion occurs when respondents are allowed to ex-
press indifference, because then there are many more permissible
patterns (see Table 1).

Because a strong test of transitivity requires five gambles, the
RDDS approach has a major advantage over pattern-counting
approaches in that it scales comfortably to that many choice
alternatives. It does so, however, because it makes certain iid
sampling assumptions that Birnbaum (2011) questioned, espe-
cially because these assumptions are not tested. If pattern counting
will prove difficult in parsimonious testing environments, does it at
least free us of such assumptions? To answer this question, let us
explicate what each approach assumes.

What Does Each Approach Assume About
iid Sampling?

Consider Table 2 of Birnbaum (2011). Model 1 tests the iid
assumptions of RDDS on hypothetical data. The table summarizes
information about 200 observed response patterns, with each pattern

consisting of three decisions, for a total of 600 decisions. Because we
could assign a 0 or 1 to each item (as Birnbaum did for patterns of
three in his Table 2) and all sequences of 600 responses are allowable,
there are 2600 degrees of freedom in the data, representing all possible
temporal series of responses in the experiment.

Birnbaum’s chi-squared test, his Equation 3, for Model 1 has 4
degrees of freedom. RDDS’s goodness-of-fit test would assume 3
degrees of freedom for these data. How do both approaches reduce
the degrees of freedom so dramatically?

Birnbaum’s test in Table 2 uses a blocking assumption that classi-
fies decisions as response patterns using the temporal sequencing of
the data: Responses to the three unique choice pairs constitute a block,
and the response made on the first replicate of a choice (e.g., between
A and B) cannot be swapped with the response made on the second
replicate. The chi-squared test does not, however, consider the tem-
poral sequence in which the 200 patterns were observed but simply
counts how often each of the eight kinds of patterns occur, reducing
the data to 7 degrees of freedom (the number is 7 because once seven
pattern frequencies are observed, the eighth is determined, as we
know the total number of patterns observed). The chi-squared test,
then, assumes that these 200 response patterns are iid draws from a
distribution over eight binary relations. The three choice probabilities
in Model 1 (the probabilities of choosing A over B, B over C, and A
over C) are free parameters consuming 3 more degrees of freedom,
leaving 7 " 3 ! 4 degrees of freedom in the chi-squared test. For
brevity we skip similar calculations for other tests in Birnbaum’s
(2011) Tables 2 and 3.

RDDS differed in that they did not preserve any temporal
information about the sequence of these decisions. They assumed
that the 600 individual responses are iid draws from a probability
distribution over preference rankings. The 3 binomial probabilities
of choosing A over B, B over C, and A over C are the only things
to be estimated, and, hence, RDDS reduced the data complexity
from 2600 to 3 degrees of freedom. RDDS’s iid assumption is
stronger than the one used in Birnbaum’s Table 2 because iid
sampling of 600 responses implies iid sampling of 200 response
patterns but not vice versa.

Birnbaum’s Model 1 uses the assumptions of blocking and iid
sampling of patterns to show how one would test and reject iid
sampling of preferences underlying individual decisions. If applied
to real data, this would imply a significant rejection of RDDS’s
iid assumption, but it would not evaluate the blocking and iid
pattern assumptions that it uses. Our Table 1 summarizes these and
other insights. Pattern-counting approaches such as Birnbaum’s
(2011), then, necessarily require their own iid assumption. We are
unsure how these assumptions would be tested, and Birnbaum
(2011) does not appear to provide suggestions.

If pattern-counting approaches also involve untested iid, as well
as blocking, assumptions, do they at least free us from model
mimicry because they actually identify preference states? This is
the question we consider next.

Does Analyzing Response Patterns Solve the Problem
of Model Mimicry?

Although RDDS estimated binary choice probabilities and
tested transitivity, they did not estimate the unique distribution
of preferences that their model assumes exists. Birnbaum
(2011) gave a hypothetical mixture of intransitive states that
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RDDS would falsely diagnose as supporting transitivity while
an analysis of response patterns would detect intransitivity.

What if the data are incorrectly blocked? We give a simple
example using three choice alternatives where pattern counting
is vulnerable to model mimicry, much as Birnbaum’s (2011)
thought experiment showed potential model mimicry in the
RDDS approach. Imagine a decision maker had only intransi-
tive true preferences, which with three gambles means either a
! b, b ! c, c ! a, coded by Birnbaum (2011) as 001, or its
reverse, b ! a, c ! b, a ! c, coded as 110. This decision
maker is presented the following sequence of paired compari-
sons: (a, b)1, (b, c)2, (a, c)3, (a, b)4, (b, c)5, (a, c)6, (a, b)7, (b,
c)8, (a, c)9, where the subscript denotes the trial number.
According to the blocking assumption, this decision maker

remains in a fixed preference state throughout each complete
replication of all unique choice pairs (i.e., the trial intervals
1–3, 4 – 6, and 7–9). But imagine that the blocking assumption
is slightly incorrect in that the first block is shortened by a
single trial. Thus, the decision maker is in a fixed preference
state, say, 001 for Trials 1–2 and 6 – 8 but 110 for Trials 3–5 and
9. The sequence of nine responses, 000111000, when blocked,
will appear as follows:

Block 1: Trials 1–3 ! 000 (i.e., a ! b, b ! c, and a ! c).
Block 2: Trials 4–6 ! 111 (i.e., b ! a, c ! b, and c ! a).
Block 3: Trials 7–9 ! 000 (i.e., a ! b, b ! c, and a ! c).

An analysis of response patterns would mistakenly conclude
that this decision maker is transitive and makes no errors. Hence,

Table 1
Commonalities (Centered) and Differences (Split) Between Birnbaum’s (2011) and Regenwetter et al.’s (2010, 2011) Approaches to
Testing Transitivity of Preferences, as Well as Key Strengths and Weaknesses

Note. Birnbaum (1984) used similar calculations to count patterns. iid ! independent and identically distributed.
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an intransitive process would have mimicked a transitive one. The
problem is not attributable to the simplicity of this example. For
five gambles there are 1,024 possible patterns. If preferences
switch at times other than between blocks, then the real preference
patterns may be unrecoverable. If the decision maker’s true pref-
erence states do not last equally long, nearly any response pattern
(transitive or not) is mathematically possible, even if the decision
maker expresses her true preference with no error and has only a
few true preference states. Birnbaum (2011, p. 676) raised the
possibility of a pattern-counting approach in which the blocks and
their lengths are estimated from the data. Such an approach,
however, would introduce a great deal of model complexity, as
each change in true preference is a parameter to estimate and each
additional observation provides one more possible transition be-
tween preference states.

Birnbaum (2011) has hit upon an important problem in model
mimicry that we agree warrants investigation. But pattern-counting
approaches do not solve the problem. The choice of how to block
data into patterns always creates the possibility of model mimicry.
Detecting and accommodating violations of the blocking assump-
tion seems to us a major challenge. Within the approach of RDDS,
we now show how one can test for specific intransitive processes
to try to identify model mimicry.

Alternative Intransitive Models

We ask whether certain alternative models may provide an
alternative account for Tversky’s (1969) and RDDS’s data on five
choice alternatives. We formalize Tversky’s idea of lexicographic
semiorders. We focus on one probabilistic heuristic model for
choices among two outcome cash gambles with one nonzero
positive outcome and one zero outcome, such as RDDS’s Cash I
and Cash II gambles and Tversky’s (1969) gambles (see Figure 1).

Attribute Order

The decision maker sequentially considers the attributes: With
some unknown probability, she first considers the chance of win-
ning, otherwise payoff.

Threshold of Discrimination

Each attribute has a threshold. If two gambles differ by a factor
greater than the threshold on the attribute under consideration, then
the decision maker chooses the option that is “better” on that
attribute. Otherwise, he moves to the next attribute. We allow the
two thresholds to be random variables with any joint distribution
whatsoever, hence permitting many preference states.

Indifference

If the decision maker has considered both attributes without a
conclusion, then we assume, for simplicity, that he chooses either
alternative with probability one half.

Figure 1 shows Tversky’s (1969) gambles and the ratios for
each attribute. If the decision maker always considers payoff
before chance, with fixed payoff and chance thresholds of 1.18 and
1.2, then, writing ! for strict preference and # for indifference,
she has the preferences on the left of Panel C (from top). Notice the
intransitive cycle a ! e, e ! c, c ! a. The right side of Panel

C shows the choice probabilities for a decision maker with just that
one preference.

For brevity, we only sketch the model and its test. The lexico-
graphic semiorder given in Panel C of Figure 1 is but one of 111
such preferences one can derive for Tversky’s gambles as one
varies the sequence of attributes and the threshold values. Like-
wise, for RDDS’s Cash I and Cash II gambles, there are similar
collections of 111 distinct lexicographic semiorders. The model
states that the probability of choosing i over j equals the proba-
bility that the decision maker currently strictly prefers i to j plus
1/ 2 times the probability that she is indifferent between i and j.
This mixture model is similar to that of RDDS, with two main
differences:

1. We consider 111 lexicographic semiorders instead of 120
linear orders.

2. This model does not force “complete” preferences;
rather, it permits indifference among choice alternatives.

Just as the linear ordering model translates geometrically into a
convex polytope, so do these lexicographic semiorder models
translate into polytopes. We leave a formal discussion for else-
where. Figure 1 summarizes a number of interesting findings. For
Tversky’s data, we found the model to be rejected for three out of

Figure 1. Tversky’s (1969) gambles. Panel A shows the chance of
winning and payoff value for each of the five gambles. Panel B shows the
chance ratios (left) and the payoff ratios (right) as decimals. Panel C
provides one of the 111 lexicographic semiorders one can obtain this way
(left) and the choice probabilities of a decision maker who has only that
single preference. Panel D shows the result of testing the lexicographic
semiorder mixture model on Tversky’s eight participants and on RDDS’s
18 participants for Cash I and Cash II (with $ ! .05). The last column of
Panel D shows the number of simultaneous inequality constraints tested.
PH denotes the priority heuristic. RDDS ! Regenwetter, Dana, & Davis-
Stober (2011).
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eight participants, whereas we found it rejected in nine out of 18
participants in RDDS’s Cash I replication of Tversky (1969) and in
seven out of the same 18 in Cash II. This speaks directly to
Birnbaum’s (2011) concern about model mimicry: Several partic-
ipants are fit by both the linear ordering model and the lexico-
graphic semiorder model. Is there an explanation for this finding?
It is important to realize that many lexicographic semiorders are
transitive, and some are linear orders. We therefore determined the
collection of binomial distributions that form the overlap between
the linear ordering model and the lexicographic semiorder model
and tested those intersections, too. We rejected that overlapping
model on only three out of eight participants for Tversky’s data
and on only nine out of 18 participants for Cash I as well as only
six out of 18 participants for Cash II. Hence, we agree with
Birnbaum’s concern about model mimicry: Parts of the lexico-
graphic semiorder model can mimic parts of the linear order
model, and, indeed, both models fit a large proportion of the
participants.

If we give positive probability only to the 104 intransitive cases
among the 111 lexicographic semiorders, then we reject the model
on 15 out of 18 participants in both Cash I and Cash II. Inciden-
tally, the priority heuristic (Brandstätter, Gigerenzer, & Hertwig,
2006) is one of the 104 intransitive preference states in this model
for each gamble set. We thus reject a broad generalization of that
intransitive heuristic in which the order of the “reasons” and the
thresholds may, but need not, vary on 15 out of 18 participants.

This analysis also addresses Birnbaum’s (2011) concern about
the stationarity component of RDDS’s iid sampling assumption. If
the binomial probabilities change over time but always satisfy a
given mixture model, then the average binary choice probabilities
will also satisfy that model because mixture models form convex
polytopes. Hence, we expect that a false fit of the linear order
model caused by nonstationary probabilities in the lexicographic
semiorder model requires that the latter model also fit. For a
pattern-counting approach, protection against violations of its sta-
tionarity assumptions appears to us more complex, due to the
complicated interplay among blocking, iid sampling, many de-
grees of freedom, and limitations in the amount of data one
individual can provide.

How Can We Achieve Parsimonious Testing of
Transitivity?

Table 1 and Figure 1 summarize our findings. Both Birnbaum
(Birnbaum, 2011) and Regenwetter et al. (2010, 2011) deliberately
eliminated common and often undesirable assumptions in the
literature. Both made related iid sampling assumptions to reduce
the complexity inherent in a binary sequence of hundreds or
thousands of decisions in an experiment, so as to achieve statistical
testability. Birnbaum also made blocking and independent error

assumptions that RDDS did not make. RDDS could enlarge their
polytopes to allow additional errors. Such extensions would reduce
the parsimony of their test, making transitivity easier to fit.

Much of Regenwetter et al. (2010, 2011) aimed at classifying
and dissecting the implicit or explicit assumptions made in various
approaches and developing parsimonious quantitative tests. Every
test makes some assumptions, so testing these assumptions is
valuable. Even more valuable is to use assumptions that only need
to hold approximately for the substantive conclusions to be valid.
We have provided some evidence that RDDS’s conclusions are
somewhat robust to possible violations of stationarity. More work
is needed to evaluate the robustness of either approach to viola-
tions of all their respective assumptions, such as the independent
sampling assumption in each approach. Another avenue to enhance
parsimonious testing is methodological innovation. Sophisticated
statistical methods may help pattern-counting approaches over-
come some of the formidable challenges posed by combinatoric
explosion. Within the RDDS approach, where limits on mathemat-
ical knowledge pose a greater obstacle than attainable sample size,
novel efforts are under way to test polytopes without having to
fully characterize their mathematical properties.
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COMMENT

Quantitative Tests of the Perceived Relative Argument Model:
Comment on Loomes (2010)

Ying Guo and Michel Regenwetter
University of Illinois at Urbana-Champaign

Loomes (2010, Psychological Review) proposed the Perceived Relative Argument Model (PRAM) as a novel
descriptive theory for risky choice. PRAM differs from models like prospect theory in that decision makers do not
compare 2 prospects by first assigning each prospect an overall utility and then choosing the prospect with the higher
overall utility. Instead, the decision maker determines the relative argument for one or the other prospect separately
for outcomes and probabilities, before reaching an overall pairwise preference. Loomes (2010) did not model
variability in choice behavior. We consider 2 types of “stochastic specification” of PRAM. In one, a decision maker
has a fixed preference, and choice variability is caused by occasional errors/trembles. In the other, the parameters
of the perception functions for outcomes and for probabilities are random, with no constraints on their joint
distribution. State-of-the-art frequentist and Bayesian “order-constrained” inference suggest that PRAM accounts
poorly for individual subject laboratory data from 67 participants. This conclusion is robust across 7 different utility
functions for money and remains largely unaltered also when considering a prior unpublished version of PRAM
(Loomes, 2006) that featured an additional free parameter in the perception function for probabilities.

Keywords: error model, Perceived Relative Argument Model, order-constrained inference, random
preference model, quantitative testing

Supplemental materials: http://dx.doi.org/10.1037/a0036095.supp

Loomes (2010, Psychological Review) developed a descriptive
model of individual decision making under risk, the Perceived
Relative Argument Model (PRAM). PRAM describes how de-
cision makers choose among lotteries in which one can win vari-
ous payoffs with various probabilities. According to PRAM, the
decision maker compares the perceived argument favoring one
lottery based on probabilities with the perceived argument favor-
ing the other lottery based on payoffs. She prefers one lottery over
the other depending on the perceived relative argument in its favor.
PRAM violates several key axioms of rational behavior, for ex-
ample, independence, betweenness, and transitivity. PRAM ap-

plies to a specific domain. It models pairwise preference among
two lotteries S, R of a particular form. Writing xi for the ith
monetary outcome and pi, qi for the probability of the ith monetary
outcome in S and R, respectively, the ‘safer’ lottery S and the
‘riskier’ lottery R must satisfy the following properties:

S � (x3, p3; x2, p2; x1, p1)

R � (x3, q3; x2, q2; x1, q1)
with

x3 � x2 � x1 � 0;

q3 � p3; q2 � p2; q1 � p1.
(1)

According to PRAM, a decision maker faced with the choice
between S and R evaluates the relative argument in favor of S in

Ying Guo and Michel Regenwetter, Quantitative Division, Department
of Psychology, University of Illinois at Urbana-Champaign.

MATLAB computer code available at https://app.box.com/s/
bqrttg9fswc6hzaft7e3
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terms of probabilities using a perception function for probabil-
ities, �(bS, bR), via:

�(bS, bR) � �bS

bR
�(bS�bR)�

, where bS � q1 	 p1; bR � q3 	 p3. (2)

This function has a real-valued free parameter �. The decision maker
also relies on a perception function for outcomes, �(yR, yS), to
determine the relative argument in favor of R regarding the outcomes:


(yR,yS)��cS

cR
��

, where cS � c(x3) 	 c(x2);cR � c(x2) 	 c(x1). (3)

Here, � � 1 is a free parameter. We consider seven different utility
functions c( ) for money (see Table 1).

Let S � R denote that R is preferred to S, S � R denote that a
person is indifferent between S and R, and S � R denote that S is
preferred to R. PRAM compares the perception of probabilities
with the perception of payoffs and makes the following predic-
tions:

�
�

S ~ R

�
� ⇔ �

�

�(bS, bR) � 
(yR, yS)

�

�. (4)

Loomes (2010) used descriptive, across-participants, modal
choice (“what did most people choose on this pair?”) to provide
qualitative evidence in support of PRAM’s ability to explain data.1

There are major shortcomings to both, descriptive methods, and
modal choice analyses across participants (see, e.g., Regenwetter
et al., 2014, for a recent discussion). Starting more or less with
Thurstone’s (1927) Law of Comparative Judgment and Luce’s
famous Choice Axiom in the 1950s (Luce, 1959, 1995), scholars
have discussed how to model formally the ubiquitous variability
within and between decision makers. There are essentially three
classes of probabilistic models (“stochastic specifications,” in the
terminology of, e.g., Loomes & Sugden, 1995). One class of
models typically assumes that a given decision maker has a fixed
preference, possibly different from another decision maker’s pref-
erence, and within-person variability is caused by occasional errors
or ‘trembles’ (e.g., Birnbaum, 2011; Block & Marschak, 1960;
Harless & Camerer, 1994; Tversky, 1969). A second class of
models assumes that a decision maker has a fixed deterministic
strength of preference, and that within-person variability is a
monotonic function of the strength of preference, with weak/strong
strength of preference entailing high/low variability (e.g., Blav-
atskyy & Pogrebna, 2010; Hey & Orme, 1994; Luce, 1959; Thur-
stone, 1927). A third class of models treats preferences and/or
utilities themselves as uncertain (e.g., Block & Marschak, 1960;
Regenwetter, Dana, & Davis-Stober, 2011). There is a decades-
old, and ongoing, discussion about the relationships among these
models and their relative merits (see, e.g., Birnbaum, 2011; Blav-
atskyy & Pogrebna, 2010; Carbone & Hey, 2000; Loomes &
Sugden, 1995; Luce & Suppes, 1965; Regenwetter & Marley,
2001; Rieskamp, Busemeyer, & Mellers, 2006; Stott, 2006; Wil-
cox, 2008). We employ two very general probabilistic models that,
jointly, encompass all three major notions of variability. We col-
lect and analyze data at the individual level using novel “order-
constrained” likelihood-based inference (Davis-Stober, 2009;

Myung, Karabatsos, & Iverson, 2005; Regenwetter et al., 2014;
Silvapulle & Sen, 2005).

Stimuli, Models, and Empirical Predictions

Our empirical analysis used 20 lottery pairs (see Table 2) that were
embedded in a larger experiment. Pairs 1 to 6 are pairwise combina-
tions of Lotteries F, G, H, and J in the left Marschak–Machina triangle
in Figure 6 of Loomes (2010), and Pairs 7 to 12 are pairwise com-
binations of Lotteries F, G, H, and J in the right Marschak–Machina
triangle in the same figure. The incentive structure of the experiment
was that one choice was played for real money at the end of each
session. We used lower payoffs than Loomes (2010), namely, $20,
$10, and $0 for reasons of budgeting and comparability with other
experiments in our lab. The payoffs of Pairs 13 to 20 were $15, $10,
and $5. These 20 lottery pairs also lead to particularly strong predic-
tions under PRAM. The probabilities of Pairs 13 to 20 were generated
by setting q2 � 0 and generating eight randomly selected stimulus
pairs with fixed payouts and with the constraints that q3 � p3, q2 �
p2, and q1 � p1, so as to satisfy PRAM’s requirements.

Two Models of Variability

We use two probabilistic models that, jointly, incorporate
three classical modeling approaches to variability in choice.
The error model assumes that a person has a fixed preference
(either S � R or S � R) and occasionally makes errors, but not
too often. Let 0 �  � 1

2 denote the upper bound on the
probability of an error/tremble. The probability PRS of choosing
R over S and PSR � 1 	 PRS are given by

��(bS, bR)
�

�

(yR, yS)�⇔�S

�

�
R�⇔�PRS

PSR
� 1 	  �

1

2�.

(5)

This model is an example of an “aggregation-based” model in
Regenwetter et al. (2014).2 When  � 1

2 this is (probabilistic,
within-person) modal choice, where the decision maker may mis-
takenly choose the ‘wrong’ prospect up to 50% of the time, in each
prospect pair, up to sampling variability. Most econometric spec-
ifications where the choice probability is a monotonic function of
the strength of preference, �(bS, bR) 	 �(yR, yS), imply that a
decision maker chooses his/her preferred prospect more often than
not, hence, they imply the error model (5) with  � 1

2. Similarly,
most models that assume fixed and equal error rates across lotter-
ies will imply the error model. In our model, error rates can vary

1 We understand that the empirical illustration in Loomes (2010) was
more a “proof of concept” than a full-fledged empirical test. Future
extensions or modifications of PRAM can be tested in similar ways as we
have tested this version.

2 The frequentist data analysis was carried out with the public-domain
QTEST software of Regenwetter et al. (2014); the Bayesian analysis used a
prototype of the Bayesian extension of QTEST.
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across respondents and across stimuli.3 We report analyses of the
error model for upper bounds  � 1

2,  � 1
4, and  � 1

10 on error
rates. Figure 1 gives an illustration (top three panels) of this model
for Pairs 1, 2, 4, for PRAM with c(x) � x.

The random preference model allows a decision maker to
waiver in his use of different parameters in c, �, and �. Here, the
parameters 
, �, and � of the utility and perception functions in
Equations 2–3 become random variables. We place no constraints
whatsoever on their joint distribution. For instance, when using the
utility function c(x) � x, where PRAM only has two parameters �
and �, this joint distribution could look like a bivariate normal, like
the illustration in the lower left hand side of Figure 1; or some
other distribution, say, like the illustration in the lower right hand
side of Figure 1. When the utility function is a power function, the
joint distribution of 
, �, and � could be any trivariate distribution
on the permissible range of values.4 According to the random
preference model, writing Prob for the probability measure gov-
erning the joint distribution of values of 
, �, and �, PRS �
Prob({all values 
, �, � for which �(bS, bR) � �(yR, yS)}).

The stimuli (see Table 2) yield restrictive predictions under the
error model, and prohibitively restrictive predictions under the ran-
dom preference model. In addition to the functional forms for c( ), the
top half of Table 1 provides the number of distinct preference patterns
we found for each of seven different utility functions using, in six
cases, a numerical grid search. It also shows some restrictive predic-
tions derived analytically from the random preference specification.

1) If c(x) � x, then, as we vary the values of � and �, the
predicted preference according to PRAM never changes in any of
our lottery pairs! The table shows this by reporting only one single
“Pattern.” PRAM always predicts preference of the risky lottery R
in Pairs 1–6, 13–17, and 19–20, and always predicts preference

for the safe lottery S in Pairs 7–12 and 18, regardless of the
parameters � and � (for an analytical proof, see the online sup-
plemental materials). Therefore, the error model predicts that R
must be chosen with high probability in Pairs 1–6, 13–17, and
19–20, and S must be chosen with high probability in Pairs 7–12
and 18, no matter what parameter values for � and � are used in the
perception functions. For example, when we permit no more than
10% error, each person must choose R in each of Pairs 1–6, 13–17,
and 19–20 at least 90% of the time, up to sampling variability, and
the same person must choose S at least 90% of the time in each of
the remaining pairs, up to sampling variability. The random pref-
erence model makes an even far stronger prediction: Even though
the decision maker can waiver in his or her use of perception
functions for probabilities and outcomes by randomly drawing
values of � and � from any bivariate distribution on the range of
these parameters, she must always choose R in Pairs 1–6, 13–17,
and 19–20, and always choose S in the remaining pairs.

As we move to other utility functions, four of the remaining six
functional forms for c( ) still lead the random preference model to
predict deterministic behavior for some pairs. The other two pre-

3 Error rates can drift over time, within the given range, as long as the
preference remains the same. The parameters 
, �, and � can also vary as
long as they produce the same preference pattern.

4 Note that the joint distribution over 
, �, and � can vary a great deal
without affecting the corresponding distribution over preference patterns,
because each preference pattern can be generated by many combinations of
parameter values. In the statistical analysis, even a changing distribution
over preference patterns is permissible because the average of several
random preference models over the same collection of permissible prefer-
ence states is again a random preference model.

Table 1
Seven Different Functional Forms for the Utility c( ) of Money and Their Predictions Under PRAM

Model
Utility for

money
Functional

form c(x) �
Range for


 (grid search)

# of distinct
preference
patterns

Random preference predicts deterministic
choice for certain pairs

Random preference
predicts equal probabilities
for certain groups of pairs

PRS � 1 PRS � 0 PRS � PR=S=

PRAM 2010 Id x N/A 1 Pairs 1–6, 13–17, 19, 20 Pairs 7–12, 18 —
Log log(
 � x) .01 � 
 � 100 52° — Pairs 7–12, 18 Pairs 1 & 6; 2 & 5
Pwr x
 .01 � 
 � 100 66° — — Pairs 1 & 6; 2 & 5;

8 & 11; 7 & 12
PwrA x
 .01 � 
 � 1 55° — Pairs 7–12, 18 Pairs 1 & 6; 2 & 5
PwrS x
 1 � 
 � 100 12° Pairs 1–6, 13–17, 19, 20 — Pairs 8 & 11; 7 & 12
Quad 
x 	 x2 .01 � 
 � 100 89° — — Pairs 1 & 6; 2 & 5;

8 & 11; 7 & 12
Exp 1 	 e	
x .01 � 
 � 100 50° — Pairs 7–12, 18 Pairs 1 & 6; 2 & 5

PRAM 2006 Id x N/A 17° Pairs 1–6, 13–17, 19, 20 Pair 9 —
Log log(
 � x) .01 � 
 � 100 209° — Pair 9 —
Pwr x
 .01 � 
 � 100 208° — — —
PwrA x
 .01 � 
 � 1 195° — Pair 9 —
PwrS x
 1 � 
 � 100 30° Pairs 1–6, 13–17, 19, 20 — —
Quad 
x 	 x2 .01 � 
 � 100 453° — — —
Exp 1 	 e	
x .01 � 
 � 100 203° — Pair 9 —

Note. The number of distinct preference patterns (when marked with °) was computed using a fine-grained grid search, all other results are analytical and
do not depend on a grid search. In the utility functions c(x), the grid search considered all values of 
 that are (where applicable) multiples of 0.01 in the
range [0.01, 2] and multiples of 1 in the range [2, 100]. For the Perceived Relative Argument Model (PRAM) parameter �, the grid search considered all
values in the range [	25, 25] with a step-size of 0.05. For �, it covered the range [1, 25] with a step-size of 0.05. For the additional parameter  in the
2006 version of PRAM, it considered all multiples of 0.01 in the range [0.01, 2] and all multiples of 1 in the range [2, 100].
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dict that certain choice probabilities are constant (but not neces-
sarily 0 or 1) across certain pairs, as we see next.

2) For c(x) � x
 with .01 � 
 � 1, a so called “risk averse power
utility” representation for money, we found 55 different predicted
preference patterns that are compatible with PRAM, depending on
the values of 
, �, and � that we substituted in c, �, and �, using
a fine-grained grid search. However, even here, PRAM still always
predicts preference for the safe lottery S in Pairs 7–12 and 18,
regardless of the parameters 
, �, and � within their permissible
(continuous) range (for an analytical proof that does not depend on
a grid search, see the online supplemental materials). Even though
we now permit all trivariate distributions over the values of 
, �,
and �, the random preference model still predicts deterministic
choice for Pairs 7–12 and 18. It also predicts that the probability of
choosing R over S is identical in Pairs 1 and 6, as well as in Pairs
2 and 5 (for an analytical proof that does not depend on a grid
search, see the online supplemental materials). In this random
preference model, a single person can probabilistically use differ-
ent “risk attitudes” 
 at different moments in time with the con-
straint that he is risk averse (including the possibility of risk
neutral) at all times.

3) As we render the utility function for money even more
flexible by dropping the above constraint and allowing also “risk
seeking” in the “power utility” representation, that is, for c(x) � x


with .01 � 
 � 100, the random preference model no longer
predicts deterministic behavior. This PRAM model, which permits
a single person to fluctuate between various “risk seeking” and
“risk averse” behaviors by allowing 
 to have any distribution
across a very large range, nonetheless still predicts that choice
probabilities must be constant across certain pairs. We derived that
the probability of choosing R over S is identical in Pairs 1 and 6,
in Pairs 2 and 5, in Pairs 8 and 11, as well as in Pairs 7 and 12, but
no longer restricted to be either zero or one. This information is
shown in the last column of Table 1 for each version of PRAM we
considered.

Loomes (2010) mentioned a more general predecessor version
of PRAM reported in Loomes (2006). This model, which we refer
to as PRAM 2006, featured one more person-specific parameter 
in the function �(bS, bR) of Equation 2, in addition to �. Letting

f � 1 	
p1

q1
, g � 1 	

q2

p2
, h � 1 	

p3

q3
, and  � 0, PRAM 2006

assumes that ��bS, bR� � �fgh���bS

bR
��bS�bR��

. The bottom half of
Table 1 shows the number of predicted preference patterns (using
a grid-search) as well as some analytically derived restrictive
predictions for the random preference model of PRAM 2006. Two
striking features stand out: On the one hand, the extra parameter 
leads to a sharp increase in allowable preference states. On the
other hand, for five of the seven functional forms of the utility for
money, PRAM 2006 nonetheless implies deterministic behavior in
random preference models, for certain stimuli (see the online
supplemental materials for an analytical proof).

Experiment and Findings

Participants

Altogether, 67 adults (36 males, 31 females) responded to a
campus advertisement for a paid study at the University of Illinois
at Urbana-Champaign. Of these, 54 returned for a second, identical
session, the next day, which served as a replication. Participants
gave informed consent before proceeding with the experiment in
private rooms. We analyzed the data for each session and each
participant separately.

Procedures

The participants made repeated choices (20 times for each
pair per session) over lottery pairs that were presented via
computers using a two-alternative forced choice (2AFC) para-
digm. Each lottery was displayed as a wheel of chance with

Table 2
Lottery Pairs in the Experiment

Pair

‘Safe’ lottery (S) ‘Risky’ lottery (R)

x3 p3 x2 p2 x1 p1 x3 q3 x2 q2 x1 q1

1 20 0 10 1 0 0 20 0.2 10 0.75 0 0.05
2 20 0 10 1 0 0 20 0.6 10 0.25 0 0.15
3 20 0 10 1 0 0 20 0.8 10 0 0 0.2
4 20 0.2 10 0.75 0 0.05 20 0.6 10 0.25 0 0.15
5 20 0.2 10 0.75 0 0.05 20 0.8 10 0 0 0.2
6 20 0.6 10 0.25 0 0.15 20 0.8 10 0 0 0.2
7 20 0 10 1 0 0 20 0.05 10 0.75 0 0.2
8 20 0 10 1 0 0 20 0.15 10 0.25 0 0.6
9 20 0 10 1 0 0 20 0.2 10 0 0 0.8

10 20 0.05 10 0.75 0 0.2 20 0.15 10 0.25 0 0.6
11 20 0.05 10 0.75 0 0.2 20 0.2 10 0 0 0.8
12 20 0.15 10 0.25 0 0.6 20 0.2 10 0 0 0.8
13 15 0.39 10 0.33 5 0.28 15 0.68 10 0 5 0.32
14 15 0.16 10 0.47 5 0.37 15 0.56 10 0 5 0.44
15 15 0.36 10 0.50 5 0.14 15 0.76 10 0 5 0.24
16 15 0.385 10 0.404 5 0.211 15 0.70 10 0 5 0.30
17 15 0.3356 10 0.4168 5 0.2467 15 0.72 10 0 5 0.28
18 15 0.384 10 0.431 5 0.185 15 0.58 10 0 5 0.42
19 15 0.495 10 0.442 5 0.063 15 0.76 10 0 5 0.24
20 15 0.395 10 0.267 5 0.338 15 0.659 10 0 5 0.341
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colored areas to represent probabilities and numbers next to the
wheels as payoffs (see Figure 2). The lottery pairs in Table 2 are
only a fraction of all the stimuli used in the entire experiment.
There were two other lottery sets (each with 20 pairs) designed
for other purposes and serving as distractors for this study. In
each session, participants made 1,600 choices, including addi-
tional distractors, in total. Repeated presentations of any given
lottery pair were separated by at least 80 trials. Trials involving
one same lottery (but not the same pair of lotteries) were
separated by 3 or more trials.

Before starting the experiment, participants were informed that
they had a chance to win a maximum of $31.43 and one of their
choices was randomly selected and played for real at the end of
each session. The actual payments ranged from $12.28 to $31, per
session.5 This incentivization strategy aimed to elicit true prefer-
ences from the participants. The participants first made choices for
some lottery pairs in a training session, and they were prompted to
ask the host if they had any questions about the task. During the
experiment, the participants were encouraged to take breaks as
needed. The lottery pairs were drawn randomly from different

stimulus sets (that of Table 2 and three others), and the sequence
of different sets remained fixed to keep prospects from a given set
maximally apart. The experimental paradigm was very similar to
that of Regenwetter et al. (2011). The detailed choice frequencies
for each participant, lottery pair, and session are provided in the
online supplemental materials.

Results

For brevity, all frequentist tests concentrate on PRAM as a Null
Hypothesis, and all Bayesian analyses compare PRAM to an
unconstrained model. We provide a detailed analysis for PRAM

5 Telling them that they could win a maximum of $31.43 rather than $31
was an error of the experimenter. The payment range was a result of
constraining the random draw to a uniform distribution over trials where
the participant would receive at least $12.28, in order to include an implicit
show up payment. We thereby circumvented telling participants before-
hand that they would earn at least $12.28 no matter what their choices.
Regarding these payment amounts, recall that the stimuli in Table 2 are
only a fraction of all stimuli used in the experiment.

Figure 1. Probabilistic specifications. Top: Error model of the Perceived Relative Argument Model (PRAM),
with c(x) � x, with three different upper bounds on error rates,  � 1

2,  � 1
4,  � 1

10, from left to right. Each
axis is a binary choice probability of choosing S in a given pair (for Pairs 1, 2, and 4 in Table 2). The highlighted
regions are the choice probabilities permitted by each error model. Each graph shows a 3D projection of a
20-dimensional parameter space. Bottom: Examples of joint distributions of � and � for a random preference
model of PRAM.
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2010 with c(x) � x
, with .01 � 
 � 100. The online supplemental
materials offer 28 different tables detailing the results for all
versions. Table 3 shows our frequentist goodness-of-fit findings of
the error models for 67 participants. We report results for  � 1

2
(modal choice), for  � 1

4 (no more than 25% errors allowed in
each pair, up to sampling variability) and  � 1

10. If a person
chooses the predicted option more than 10 times out of 20 when
the model predicts that the person chooses that option with prob-
ability 0.50, and this holds for every lottery pair, then the error
model cannot be rejected no matter what significance level we use
in the likelihood test. We call this a perfect fit, but it does not
imply that the model holds. Perfect fits are indicated by a check
mark ✓. The results for modal choice show perfect fits in 20
participants (out of 67) in the first session and 14 participants (out
of 54) in the second session. Out of 54 participants who attended
both sessions, six are perfectly fit by the error model with  � 1

2
in both sessions (two have inconsistent perfect fits). Rejections at
a 0.05 statistical significance level are indicated by �. When
PRAM fits the data of a person for both sessions, we give the
p-value in typewriter and/or ✓ to indicate a consistent fit. By
a consistent fit of an error model, we mean that there exists a set
of parameter values 
, �, and � of PRAM for which the error
specification fits in both sessions. In that case, we also say that the
two sessions replicate each other. When we bound error rates by
25%, 4 out of 54 participants are fit by PRAM consistently in both
sessions.6

The next table summarizes the (frequentist) performance of the
2010 and 2006 versions of PRAM for seven utility functions, four
different probabilistic specifications, and two sessions. Table 4
reports the total number of people who are fit by each PRAM
model, by session (out of 67 and 54, respectively), in the top panel,
and the number of people who are consistently fit by a model in
both sessions (out of 54), in the bottom panel. For example, for the
error model with c(x) � x, with  � 1

2, that is, modal choice, 28 of
67 people in the first session and 17 of 54 people in the second
session are fit at a 0.05 significance level (i.e., 39 and 37 are
rejected). Ten are consistently fit across both sessions, that is, 44
are not. As we move to the much more flexible general power
function c(x) � x
, which we also discussed in detail in Table 3, 57
of 67 and 45 of 54 are fit by modal choice in separate analyses, but
there appears to be some degree of ‘over-fitting’ since only 34 out
of 54 replicate across sessions (see Harless & Camerer, 1994, for
related warnings). Another reason why we may suspect that modal
choice involves extensive ‘over-fitting’ is that the rejection rates
leap up when we place stronger restrictions on error rates, that is,
 � 1

4 or  � 1
10, and successful replications become extremely

rare. All of these findings highlight the importance of individual
subject analyses and of replications in this domain.

The Bayesian analysis uses order-constrained methods of
Myung et al. (2005). For brevity, we take the simplest nontrivial
approach by comparing each model to the “unconstrained” model
in which there is no constraint whatsoever on the binary choice
probabilities. This is also a conservative approach in that PRAM
does not need to compete against alternative theories. We “dis-
card” a PRAM model whenever its Bayesian p-value is smaller
than 0.05. If the Bayesian p-value exceeds 0.05, then we compare
the model against the unconstrained model according to the De-
viance Information Criterion (DIC). We declare a “fit” of a PRAM
model when two criteria are met: the Bayesian p-value of the
model exceeds 0.05 and the model is favored over the uncon-
strained model by DIC. In all other cases, we “reject” the model.
Table 5 shows that the Bayesian analysis is less forgiving than the
frequentist analysis. Even fewer cases are classified as “fits.” As
we mentioned earlier, the frequentist analysis shows some evi-
dence of ‘over-fitting’ for modal choice. One interpretation of the
Bayesian results is that the Bayesian analysis, which takes model
complexity into account, successfully ‘punishes’ the modal choice
model for its flexibility and favors the unconstrained model more
often. Overall, however, we find remarkably close alignment be-
tween frequentist and Bayesian results throughout, even though
they are conceptually and computationally quite distinct (see the
28 analysis tables in the online supplemental materials). We omit
further details in the interest of brevity.7

The random preference model specifications for PRAM vary
widely in their properties, their complexity, and the availability
of statistical tests, depending on the utility for money and
whether we consider PRAM 2010 or PRAM 2006. As Table 1
shows, the random preference model for c(x) � x predicts
completely deterministic behavior. As Tables 4 –5 show, this
prediction does not hold empirically for even a single partici-
pant. Several random preference models predict deterministic
behavior for some but not all pairs. This means that some choice
is predicted to be deterministic and some is predicted to be
probabilistic with order-constraints on the choice probabilities.
Unfortunately, to our knowledge, neither frequentist nor Bayes-
ian likelihood based methods are currently available for such
models. To the extent that the deterministic predictions are
violated, we can give upper bounds on the number of people
who could be consistent with these models at best. These are
marked with � and with R in Tables 4 –5. Some random
preference models for PRAM predict nondeterministic choices
but imply simultaneous equality and inequality restrictions on
choice probabilities. For these, the current state of order-
constrained frequentist inference does not yet apply, but the
Bayesian methods do apply. This is why Table 4 lists in some

6 Note that we use advanced customized statistical methods as discussed
in Davis-Stober (2009) and Myung et al. (2005).

7 If we were to compare multiple competing models, and if two of more
of these models were to account for the data well, it would be informative
to supplement these analyses with Bayes factors to select the best models.
We omit model competitions for brevity. Given the poor performance of
PRAM, we believe that the Bayesian p-value analysis is sufficient. Com-
puting Bayes factors for restrictive models like these in 20-dimensional
space is also computationally expensive and ultimately warranted only for
selection among well performing models.

Figure 2. Screen shot of one trial.
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cases that a full test is unavailable where Table 5 reports results.
Finally, for one random preference model, the mathematical
model was so complex that we did not have its mathematical
description (“facet-defining inequalities,” aka FDIs) computed
at the time of submission to the journal. This is indicated in the
tables as “Facet-defining inequalities unavailable.” To us, the
random preference model with the most promise is the random
preference specification of PRAM 2006 with a general power
utility function. It does not appear to predict equality con-
straints on parameters (we could not derive any such constraints
analytically and a grid-search based analysis did not reveal any
either), and it fits 12 of 54 participants consistently in frequen-
tist tests. However, this is clearly a very general and flexible
model: It permits 208 distinct preference states (based on our
grid-search) for our stimuli. Yet, the Bayesian analysis does not
punish the model severely: It also favors this model over an
unconstrained model, consistently across experimental ses-
sions, for 10 participants. Hence, it closely matches the fre-
quentist analysis.

Conclusion

PRAM 2010 and PRAM 2006 are designed as descriptive
models of risky choice. Loomes (2010) reported no quantitative
predictions or statistical tests. Baillon, Bleichrodt, and Cillo
(2012) previously obtained evidence against one version of
PRAM using a different approach than ours. We reported a new
experiment and an individual-level analysis using both frequen-
tist and Bayesian order-constrained statistical inference. The
error model of PRAM generated highly restrictive predictions
that our analysis shows to have been systematically violated by
the participants. We used two different core formulations of
PRAM, combined with seven different utility functions for
money. The most lenient error model could consistently account
across two sessions for only at best 2/3 of participants in the
frequentist tests, and at best about 1/3 of participants in the
Bayesian analysis. Error models with error rates bounded above
by 1

4 could only account (with replication) for about 10% of
participants. We conclude that error model analyses of PRAM

Table 3
Frequentist Results for the Error Model of the Perceived Relative Argument Model (PRAM) 2010 With c(x) � x
 Where
� � �0.01,100	 and With  � 1

2 (Within-Person Modal Choice),  � 1
4 and  � 1

10

#

 �
1

2
 �

1

4
 �

1

10

#

 �
1

2
 �

1

4
 �

1

10

E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2

1 0.62 � � � � � 39 ✓ 0.92 � � � �
2 � 0.17 � � � � 41 0.22 � � � � �
4 � 0.05 � � � � 42 0.15 0.38 � � � �
5 0.36 � � � � � 43 0.82 0.46 � � � �
7 ✓ 0.49 � � � � 44 � 0.09 � � � �
9 0.35 0.97 � 0.17 � � 46 0.05 0.70 � � � �

11 ✓ 0.25 0.30 � � � 47 0.56 0.23 � � � �
12 0.96 ✓ � 0.06 � � 48 0.31 0.40 � � � �
13 � ✓ � 0.53 � � 49 0.45 0.82 � � � �
14 ✓ ✓ 0.98 ✓ 0.39 0.68 50 ✓ 0.58 0.06 � � �
15 0.56 0.33 � � � � 52 0.72 0.71 � � � �
16 ✓ ✓ � 0.99 � 0.51 53 0.26 0.34 � � � �
17 ✓ ✓ ✓ ✓ 0.55 0.89 55 � � � � � �
18 0.09 0.98 � � � � 56 0.26 0.80 � � � �
19 � 0.62 � � � � 58 ✓ ✓ 0.37 0.89 � 0.14
20 0.15 ✓ � ✓ � .999 59 0.90 0.95 � � � �
21 0.10 0.22 � � � � 61 0.42 0.56 � � � �
22 ✓ 0.55 � � � � 65 ✓ ✓ 0.25 0.53 � �
23 0.92 0.51 � � � � 66 ✓ � 0.81 � � �
24 0.88 � � � � � 67 0.87 � � � � �
25 ✓ ✓ � 0.35 � � 3 0.46 � �
26 ✓ ✓ 0.61 � � � 6 0.88 � �
27 0.19 ✓ � � � � 8 ✓ ✓ 0.94
28 0.33 0.79 � � � � 10 ✓ � �
29 0.74 0.61 � � � � 40 0.55 � �
30 0.30 0.92 � � � � 45 � � �
31 � � � � � � 51 0.14 � �
32 0.78 0.77 � � � � 54 ✓ � �
33 0.05 0.68 � � � � 57 0.17 � �
34 0.19 0.51 � � � � 60 0.66 � �
35 � � � � � � 62 ✓ ✓ 0.27
36 ✓ ✓ 0.97 ✓ � 0.95 63 ✓ 0.86 0.14
37 � ✓ � 0.59 � � 64 ✓ � �
38 0.19 ✓ � � � �

Note. Of the 67 participants in the first session, 54 returned (# is the participant ID). Rejections at a 0.05 level are marked �. Perfect fits are checkmarks
(✓). Nonsignificant violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or ✓.
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consistently show poor model performance, regardless of
whether we use the 2006 or 2010 version, which of seven utility
functions for money we use, whether we permit high or low
error/tremble rates, and whether we use frequentist or Bayesian
tools for evaluating performance. This error model based anal-
ysis depends on the assumption that our grid search of the
parameter space identified all preference patterns of interest.

Most of our random preference model analysis did not de-
pend on the grid-search: The deterministic choice predictions
and the equal probability predictions in Table 1 were derived

analytically. All deterministic choice predictions were violated
by more than half of the participants. For some models, we
currently lack the statistical tools for a full likelihood-based
analysis. The Bayesian analysis, which is the most broadly
applicable, finds that none of the random preference models
for PRAM 2010 accounted consistently for more than three
individuals (out of 54). We are not optimistic that the 2006
version does much better, but limitations in statistical tools
currently prevent a full-fledged test. We omit partial tests for
brevity.

Table 4
Top Panel: Total Number of Fits for the Error and Random Preference Models of the Perceived Relative Argument Model (PRAM)
by Session (E1: First Experimental Session With 67 Respondents; E2: Second Experimental Session With 54 Respondents). Bottom
Panel: Total Number of People, Out of 54, Who Are Fit by PRAM in Both Sessions

Session (# participants)

E1 (67) E2 (54) E1 (67) E2 (54) E1 (67) E2 (54) E1 (67) E2 (54)

Error model  �
1

2
Error model  �

1

4
Error model  �

1

10
Random preference

model

Frequentist: Fits (out of 67 or 54)
PRAM 2010

Id 28 17 6 1 2 1 0 0
Log 50 41 10 10 3 5 �2� �2�

Pwr 57 45 12 12 5 6 Full test unavailable
PwrA 50 40 10 9 3 4 �2� �2�

PwrS 36 23 8 4 4 3 0 0
Quad 60 47 14 13 5 7 Full test unavailable
Exp 50 41 10 10 3 5 �2� �2�

PRAM 2006
Id 34 21 8 2 4 2 0 0
Log 56 48 17 19 5 7 �23R �22R

Pwr 58 50 17 20 5 7 23 23
PwrA 56 47 17 18 5 6 �23R �22R

PwrS 36 24 8 4 4 3 0 0
Quad 61 52 18 21 5 8 Facet-defining inequalities

unavailable
Exp 56 48 17 19 5 7 �23R �22R

Error model  �
1

2
Error model  �

1

4
Error model  �

1

10

Random preference
model

Frequentist: Consistent Fits (out of 54)

PRAM 2010
Id 10 1 1 0
Log 29 3 2 0
Pwr 34 4 2 Full test unavailable
PwrA 29 3 2 0
PwrS 15 2 1 0
Quad 35 4 2 Full test unavailable
Exp 29 3 2 0

PRAM 2006
Id 14 2 1 0
Log 39 7 2 �17R

Pwr 41 7 2 12
PwrA 39 7 2 �17R

PwrS 16 2 1 0
Quad 42 7 2 Facet-defining

inequalities unavailable
Exp 39 7 2 �17R

Note. This frequentist analysis uses order-constrained likelihood methods of Davis-Stober (2009) with a significance level of 5%. For � and R: These
constitute upper bounds. In each of these cases, a full statistical test is unavailable. � In Session E1 (but not E2), Participants 26 and 67 satisfied the
deterministic constraints (in Pairs 7–12, 18), as did Participants 12 and 55 in Session E2 (but not E1). R The indicated number of people were consistent
with the predicted deterministic choice (in Pair 9).
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The history of models in this domain is characterized by
step-wise generalizations, for example, the gradual shift from
Expected Value via Expected Utility and various other models
to Cumulative Prospect Theory and beyond. Naturally, one can
consider modifications to the current structure of PRAM and
maintain the central idea that attributes are compared sepa-
rately, and overall comparisons among prospects are secondary.
Based on our findings, we are not optimistic that changes in the
shape of the utility function for money alone will make much
difference. We cannot tell a priori whether either an error model
is more likely to accommodate future extensions than a random

preference model or vice-versa. Whatever they may be, future
extensions and modifications of PRAM can be tested, on an
individual subject basis, quantitatively, in the same fashion. We
also documented the dangers of overfitting and the need for
replication.
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Materials for Quantitative tests of the
Perceived Relative Argument Model:
comment on loomes (2010)
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Online Supplement

A Quantitative Test of the Perceived Relative Argument Model

Commentary on Loomes (Psychological Review, 2010)

Ying Guo

Michel Regenwetter

Proofs of the analytic results underlying Table 1 of the manuscript.

Figure 1: Exponential function bx, for b > 0, as a function of x, when b > 1 or b < 1 (left graph). Exponential

function φ(bS , bR), as a function of (bS + bR)α, for bS
bR

> 1 or bS
bR

< 1 (right graph).

To explain PRAM’s predictions about preferences among stimuli in Table 1 of the manuscript, we review

some properties of the function: f(x) = bx for b > 0, as illustrated by the left panel of Figure 1:

1. f(x) > 0;

2. when b < 1, f(x) is decreasing;

3. when b > 1, f(x) is increasing.
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Therefore, the quantity (bS + bR)α > 0 and the perception function for probabilities yield the following

properties (see also the right side of Figure 1):

φ(bS , bR) =

(
bS
bR

)(bS+bR)α





> 1, when bS
bR

> 1,

= 1, when bS
bR

= 1,

∈ (0, 1), when 0 < bS
bR

< 1.

(1)

1 Deterministic Choice in Random PRAM 2010 with ξ(yR, yS) = 1

In the perception function of payoffs, if c(x) = x, then for Pairs 1 to 12, regardless of the value of δ we

obtain ξ(yR, yS) =
(

20−10
10−0

)δ
= 1. For Pairs 13 to 20, ξ(yR, yS) =

(
15−10
10−5

)δ
= 1. So ξ(yR, yS) = 1 for all 20

choice pairs. Every pairwise preference in the experiment is uniquely determined, no matter what the values

α and δ are. In Pairs 1 to 6, 13 to 17 and 19 to 20, bS
bR
∈ (0, 1), based on Equation 1, so φ(bS , bR) < 1. Since

ξ(yR, yS) = 1, we have φ(bS , bR) < ξ(yR, yS) and PRAM predicts the risky lotteries as preferable. By the

same token, for Pairs 7 to 12 and 18, where bS
bR

> 1, PRAM predicts the safe lotteries as preferable. �

2 Deterministic Choice in Random PRAM 2010 with ξ(yR, yS) ≤ 1

For Pairs 7 to 12 and 18, we have bS
bR

> 1, hence, by Equation 1, φ(bS , bR) > 1. If we can prove that

ξ(yR, yS) ≤ 1, then we obtain φ(bS , bR) > ξ(yR, yS). Then, PRAM predicts the safe lotteries as preferable

in Pairs 7 to 12 and 18, as reported in Table 1 of the manuscript, for Log, PwrA and Exp. Since ξ(yR, yS) =

(
cS
cR

)δ
with δ ≥ 1, we will use the fact that we have ξ(yR, yS) ≤ 1⇔ cS

cR
≤ 1.

1. c(x) = log(ρ+ x) with ρ > 0 (Log utility)

For Pairs 7 to 12 this yields

ξ(yR, yS) =

(
log(ρ+ 20)− log(ρ+ 10)

log(ρ+ 10)− log(ρ+ 0)

)δ
=



log
(
ρ+20
ρ+10

)

log
(
ρ+10
ρ

)



δ

=



log
(

1 + 10
ρ+10

)

log
(

1 + 10
ρ

)



δ

.

Since ρ > 0, we have 10
ρ+10 < 10

ρ . Since log() is increasing, it follows that
log(1+ 10

ρ+10 )
log(1+ 10

ρ )
∈ (0, 1), and

therefore, likewise, ξ(yR, yS) ∈ (0, 1).
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For Pair 18, we have similarly

ξ(yR, yS) =



log
(

1 + 5
ρ+10

)

log
(

1 + 5
ρ+5

)



δ

.

Since ρ > 0, it follows that
log(1+ 5

ρ+10 )
log(1+ 5

ρ+5 )
∈ (0, 1) in a similar way as the previous result, and therefore,

likewise, ξ(yR, yS) ∈ (0, 1). �

2. c(x) = xρ with 0 < ρ ≤ 1 (PwrA utility)

For Pairs 7 to 12 this yields

ξ(yR, yS) =

(
20ρ − 10ρ

10ρ − 0ρ

)δ
= (2ρ − 1)δ.

Since ρ ∈ (0, 1], 20 − 1 = 0, 21 − 1 = 1, and since (2ρ − 1) is increasing , it follows that 2ρ − 1 ≤ 1, and

therefore, likewise, ξ(yR, yS) ≤ 1.

For Pair 18.

ξ(yR, yS) =

(
15ρ − 10ρ

10ρ − 5ρ

)δ
=

(
15ρ − 5ρ

10ρ − 5ρ
− 1

)δ
=

(
3ρ − 1

2ρ − 1
− 1

)δ
.

Since 3ρ increases faster than 2ρ, the function 3ρ−1
2ρ−1 − 1 is increasing in ρ with an upper bound of

31−1
21−1 − 1 = 1 when ρ ≤ 1. Therefore, 3ρ−1

2ρ−1 − 1 ≤ 1 and consequently ξ(yR, yS) ≤ 1. �

3. c(x) = 1− e−ρx with ρ > 0 (Exp utility)

For Pairs 7 to 12 this yields

ξ(yR, yS) =

(
(1− e−20ρ)− (1− e−10ρ)

(1− e−10ρ)− (1− e−0ρ)

)δ
=

(−e−20ρ + e−10ρ

−e−10ρ + e−0ρ

)δ
=

(
e−10ρ(−e−10ρ + 1)

−e−10ρ + 1

)δ
= e−10ρδ.

The function e−10ρ is decreasing in ρ with a lower bound of 0 and an upper bound of 1 when ρ > 0.

Therefore, e−10ρ ∈ (0, 1) and hence, ξ(yR, yS) ∈ (0, 1).

For Pair 18, by a similar argument,

ξ(yR, yS) =

(
(1− e−15ρ)− (1− e−10ρ)

(1− e−10ρ)− (1− e−5ρ)

)δ
=

(
e−10ρ(e−5ρ − 1)

e−5ρ(e−5ρ − 1)

)δ
= e−5ρδ,

and e−5ρ ∈ (0, 1), since ρ > 0. As a result, ξ(yR, yS) ∈ (0, 1). �
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3 Deterministic Choice in Random PRAM 2010 with ξ(yR, yS) > 1

Based on Equation 1, for Pairs 1 to 6, 13 to 17, 19 and 20, 0 < bS
bR

< 1, hence φ(bS , bR) < 1. If we can

prove that ξ(yR, yS) > 1, then we obtain φ(bS , bR) < ξ(yR, yS). Then, PRAM predicts the risky lotteries

as preferable in Pairs 1 to 6, 13 to 17, 19 and 20 as reported in Table 1 of the manuscript, for PwrS. Since

ξ(yR, yS) =
(
cS
cR

)δ
with δ ≥ 1, we have ξ(yR, yS) > 1⇔ cS

cR
> 1.

We only need to consider c(x) = xρ with ρ > 1 (PwrS utility)

For Pairs 1 to 6 this yields

ξ(yR, yS) = (2ρ − 1)δ.

Since 2ρ − 1 is an increasing function with lower bound 21 − 1 = 1 when ρ > 1, it follows that 2ρ − 1 > 1

and ξ(yR, yS) > 1.

By the same token, for Pairs 13 to 17, 19 and 20,

ξ(yR, yS) =

(
3ρ − 1

2ρ − 1
− 1

)δ
.

Since 3ρ increases faster than 2ρ, the function 3ρ−1
2ρ−1 − 1 is increasing in ρ with a lower bound of 31−1

21−1 − 1 = 1

when ρ > 1. Therefore, 3ρ−1
2ρ−1 − 1 > 1 and ξ(yR, yS) > 1. �

4 Equal Probabilities in Random PRAM 2010

We show four other strong implications of the random preference model for PRAM 2010 with arbitrary

utility function, listed in Table 1 of the manuscript. For both Pair 1 and Pair 6, bS = .05 and bR = .2.

Therefore,

φ(bS , bR) =

(
bS
bR

)(bS+bR)α

=

(
.05

.2

)(.05+.2)α

=

(
1

4

).25α
.

Both lottery pairs have the same payoffs: x3 = $20, x2 = $10 and x1 = $0, thus they give the same

value in the perception function for payoffs ξ(yR, yS), regardless of the value of δ and regardless of the utility

function for money. Therefore, in Pairs 1 and 6, PRAM 2010 uses the same values for φ(bS , bR) and ξ(yR, yS),

regardless of the values of α, δ and regardless of the utility function. Hence, for any joint distribution of the

values of the parameters α, δ, ρ in PRAM 2010, the random preference model of PRAM predicts the same
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probability of choosing S over R for Pairs 1 and 6, no matter what the utility function is. Likewise, for Pairs

2 and 5, PRAM uses the same φ(bS , bR) =
(
1
4

).75α
and the same ξ(yR, yS). Therefore, it predicts the same

choice probability for Pairs 2 and 5. Analogous reasoning applies for Pairs 8 and 11 (with φ(bS , bR) = 4.75
α

),

as well as for Pairs 7 and 12 (with φ(bS , bR) = 4.25
α

). �

5 Random PRAM 2006

The 2006 version of PRAM has one more person-specific parameter β in the function φ(bS , bR), in addition

to α. Let f = 1− p1
q1

, g = 1− q2
p2

, h = 1− p3
q3

and β ≥ 0. In this version,

φ(bS , bR) = (fgh)β
(
bS
bR

)(bS+bR)α

.

In Pair 9, PRAM 2006 reduces to PRAM 2010, regardless of β:

(fgh)β
(
bS
bR

)(bS+bR)α

=

[(
1− 0

.8

)(
1− 0

1

)(
1− 0

.2

)]β (
bS
bR

)(bS+bR)α

=

(
bS
bR

)(bS+bR)α

.

Hence, for Pair 9, all the above results of Random PRAM 2010 carry over to Random PRAM 2006.

For Pairs 1-6, 13-17, 19 and 20, we proved that
(
bS
bR

)(bS+bR)α

< 1. Since PRAM requires that

q3 > p3, q2 < p2, q1 > p1 we have 0 < f, g, h ≤ 1, and therefore, likewise, 0 < fgh ≤ 1. Thus,

(fgh)β
(
bS
bR

)(bS+bR)α

< 1. As a consequence, for Pairs 1-6, 13-17, 19 and 20, φ(bS , bR) < ξ(yR, yS), fol-

lowing the same proof as that used in Section 3 for Random PRAM 2010. �

Data.
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Frequentist and Bayesian error model analyses of PRAM 2010

and PRAM 2006 with seven utility functions for money.

Table 2: Frequentist results for the error model of PRAM 2010 with c(x) = x and with τ = 1
2

(within-person modal

choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the participant id). Rejections

at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant violations have their p-values listed.

Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? 0.29 ? ? ? ?
2 ? ? ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 0.35 ? ? ? ? ? 43 0.82 0.27 ? ? ? ?
7 ? ? ? ? ? ? 44 ? 0.66 ? ? ? ?
9 ? ? ? ? ? ? 46 ? ? ? ? ? ?
11

√
0.12 0.30 ? ? ? 47 0.49 ? ? ? ? ?

12 ? ? ? ? ? ? 48 ? 0.34 ? ? ? ?
13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14

√ √
0.98

√
0.39 0.67 50 ? 0.55 ? ? ? ?

15 0.73 ? ? ? ? ? 52 0.57 0.20 ? ? ? ?
16 0.71 ? ? ? ? ? 53 ? ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 0.61 ? ? ? ? ?
19 ? ? ? ? ? ? 58 0.95 0.90 0.12 ? ? ?
20 ? ? ? ? ? ? 59 0.71 0.12 ? ? ? ?
21 ? ? ? ? ? ? 61 ? ? ? ? ? ?
22

√
0.33 ? ? ? ? 65

√
0.57 0.25 ? ? ?

23 0.55 ? ? ? ? ? 66
√

? 0.81 ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 0.65 ? ?
26 ? ? ? ? ? ? 6 ? ? ?
27 ? 0.50 ? ? ? ? 8 0.53 ? ?
28 ? 0.19 ? ? ? ? 10 ? ? ?
29 0.84 ? ? ? ? ? 40 0.18 ? ?
30 0.28 0.91 ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 ? ? ?
32 0.77 0.62 ? ? ? ? 54

√
? ?

33 ? ? ? ? ? ? 57 0.24 ? ?
34 ? 0.13 ? ? ? ? 60 0.57 ? ?
35 ? ? ? ? ? ? 62 0.15 ? ?
36 ? ? ? ? ? ? 63

√
0.16 0.15

37 ? ? ? ? ? ? 64
√

? ?
38 0.11 ? ? ? ? ?
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Table 3: Frequentist results for the error model of PRAM 2010 with c(x) = log(ρ + x) where ρ ∈ [.01, 100] and

with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned

(# is the participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant

violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.62 ? ? ? ? ? 39

√
0.92 ? ? ? ?

2 ? 0.06 ? ? ? ? 41 0.22 ? ? ? ? ?
4 ? 0.05 ? ? ? ? 42 0.15 0.38 ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.31 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.07 ? ? ? ?

9 0.72
√

? 0.56 ? ? 46 0.05 ? ? ? ? ?

11
√

0.12 0.30 ? ? ? 47 0.56 0.15 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.24 0.37 ? ? ? ?

13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.58 0.06 ? ? ?

15 0.56
√

? ? ? ? 52 0.72 0.71 ? ? ? ?

16
√ √

? 0.99 ? 0.51 53 ? 0.34 ? ? ? ?
17

√ √ √ √
0.55 0.89 55 ?

√
?

√
? 0.46

18 0.09 0.98 ? ? ? ? 56 0.12 0.80 ? ? ? ?
19 ? 0.62 ? ? ? ? 58 0.95 0.78 0.10 ? ? ?
20 ? ? ? ? ? ? 59 0.74 0.16 ? ? ? ?
21 ? ? ? ? ? ? 61

√
0.56 ? ? ? ?

22
√

0.38 ? ? ? ? 65
√ √

0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24 0.88 ? ? ? ? ? 67 0.87 ? ? ? ? ?
25

√ √
? 0.35 ? ? 3 0.24 ? ?

26
√ √

0.61 ? ? ? 6 ? ? ?

27 ? 0.19 ? ? ? ? 8 0.05 ? ?
28 ? 0.79 ? ? ? ? 10

√
? ?

29 0.74 0.61 ? ? ? ? 40 0.52 ? ?
30 0.30 0.92 ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 0.09 ? ?
32 0.78 0.77 ? ? ? ? 54

√
? ?

33 0.05 0.68 ? ? ? ? 57 0.06 ? ?
34 0.19 0.51 ? ? ? ? 60 0.66 ? ?
35 ? ? ? ? ? ? 62 0.15 ? ?
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.19

√
? ? ? ?
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Table 4: Frequentist results for the error model of PRAM 2010 with c(x) = xρ where ρ ∈ [.01, 100] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant violations

have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.62 ? ? ? ? ? 39

√
0.92 ? ? ? ?

2 ? 0.17 ? ? ? ? 41 0.22 ? ? ? ? ?
4 ? 0.05 ? ? ? ? 42 0.15 0.38 ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.46 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.09 ? ? ? ?

9 0.35 0.97 ? 0.17 ? ? 46 0.05 0.70 ? ? ? ?
11

√
0.25 0.30 ? ? ? 47 0.56 0.23 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.31 0.40 ? ? ? ?

13 ?
√

? 0.53 ? ? 49 0.45 0.82 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.58 0.06 ? ? ?

15 0.56 0.33 ? ? ? ? 52 0.72 0.71 ? ? ? ?
16

√ √
? 0.99 ? 0.51 53 0.26 0.34 ? ? ? ?

17
√ √ √ √

0.55 0.89 55 ? ? ? ? ? ?

18 0.09 0.98 ? ? ? ? 56 0.26 0.80 ? ? ? ?
19 ? 0.62 ? ? ? ? 58

√ √
0.37 0.89 ? 0.14

20 0.15
√

?
√

? 1.00 59 0.90 0.95 ? ? ? ?

21 0.10 0.22 ? ? ? ? 61 0.42 0.56 ? ? ? ?
22

√
0.55 ? ? ? ? 65

√ √
0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24 0.88 ? ? ? ? ? 67 0.87 ? ? ? ? ?
25

√ √
? 0.35 ? ? 3 0.46 ? ?

26
√ √

0.61 ? ? ? 6 0.88 ? ?

27 0.19
√

? ? ? ? 8
√ √

0.94

28 0.33 0.79 ? ? ? ? 10
√

? ?
29 0.74 0.61 ? ? ? ? 40 0.55 ? ?
30 0.30 0.92 ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 0.14 ? ?
32 0.78 0.77 ? ? ? ? 54

√
? ?

33 0.05 0.68 ? ? ? ? 57 0.17 ? ?
34 0.19 0.51 ? ? ? ? 60 0.66 ? ?
35 ? ? ? ? ? ? 62

√ √
0.27

36
√ √

0.97
√

? 0.95 63
√

0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.19

√
? ? ? ?

173



Commentary on Loomes (2010) 11

Table 5: Frequentist results for the error model of PRAM 2010 with c(x) = xρ where ρ ∈ [.01, 1] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant violations

have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.62 ? ? ? ? ? 39

√
0.92 ? ? ? ?

2 ? 0.06 ? ? ? ? 41 0.22 ? ? ? ? ?
4 ? 0.05 ? ? ? ? 42 0.15 0.38 ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.31 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.07 ? ? ? ?

9 0.35 0.97 ? 0.17 ? ? 46 0.05 ? ? ? ? ?
11

√
0.12 0.30 ? ? ? 47 0.56 0.23 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.31 0.40 ? ? ? ?

13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.58 0.06 ? ? ?

15 0.56 0.33 ? ? ? ? 52 0.72 0.71 ? ? ? ?
16

√ √
? 0.99 ? 0.51 53 ? 0.34 ? ? ? ?

17
√ √ √ √

0.55 0.89 55 ? ? ? ? ? ?

18 0.09 0.98 ? ? ? ? 56 0.12 0.80 ? ? ? ?
19 ? 0.62 ? ? ? ? 58 0.95 0.78 0.10 ? ? ?
20 ? ? ? ? ? ? 59 0.74 0.16 ? ? ? ?
21 ? ? ? ? ? ? 61 0.42 0.56 ? ? ? ?
22

√
0.38 ? ? ? ? 65

√ √
0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24 0.88 ? ? ? ? ? 67 0.87 ? ? ? ? ?
25

√ √
? 0.35 ? ? 3 0.46 ? ?

26
√ √

0.61 ? ? ? 6 ? ? ?

27 ? 0.19 ? ? ? ? 8 0.05 ? ?
28 ? 0.79 ? ? ? ? 10

√
? ?

29 0.74 0.61 ? ? ? ? 40 0.55 ? ?
30 0.30 0.92 ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 0.09 ? ?
32 0.78 0.77 ? ? ? ? 54

√
? ?

33 0.05 0.68 ? ? ? ? 57 0.08 ? ?
34 0.19 0.51 ? ? ? ? 60 0.66 ? ?
35 ? ? ? ? ? ? 62 0.15 ? ?
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.19

√
? ? ? ?
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Table 6: Frequentist results for the error model of PRAM 2010 with c(x) = xρ where ρ ∈ [1.01, 100] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant violations

have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? 0.36 ? ? ? ?
2 ? 0.17 ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.46 ? ? ? ?
7 ? ? ? ? ? ? 44 ? 0.09 ? ? ? ?
9 ? ? ? ? ? ? 46 ? 0.70 ? ? ? ?
11

√
0.25 0.30 ? ? ? 47 0.50 ? ? ? ? ?

12 ? ? ? ? ? ? 48 ? 0.38 ? ? ? ?
13 ?

√
? 0.53 ? ? 49 0.45 0.82 ? ? ? ?

14
√ √

0.98
√

0.39 0.68 50 ? 0.06 ? ? ? ?

15 0.09 ? ? ? ? ? 52 0.61 0.36 ? ? ? ?
16 0.71 ? ? ? ? ? 53 0.26 ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 0.26 ? ? ? ? ?
19 ? ? ? ? ? ? 58

√ √
0.37 0.89 ? 0.14

20 0.15
√

?
√

? 1.00 59 0.90 0.95 ? ? ? ?

21 0.10 0.22 ? ? ? ? 61 ? ? ? ? ? ?
22

√
0.55 ? ? ? ? 65

√
0.56 0.25 ? ? ?

23 0.56 ? ? ? ? ? 66
√

? 0.81 ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 0.07 ? ?
26 ? ? ? ? ? ? 6 0.88 ? ?
27 0.19

√
? ? ? ? 8

√ √
0.94

28 0.33 0.19 ? ? ? ? 10 ? ? ?
29 0.10 ? ? ? ? ? 40 0.18 ? ?
30 0.28 0.92 ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 0.14 ? ?
32 0.78 0.62 ? ? ? ? 54

√
? ?

33 ? ? ? ? ? ? 57 0.17 ? ?
34 ? 0.20 ? ? ? ? 60 0.62 ? ?
35 ? ? ? ? ? ? 62

√ √
0.27

36 ? ? ? ? ? ? 63
√

0.86 0.14
37 ? ? ? ? ? ? 64

√
? ?

38 0.11 ? ? ? ? ?
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Table 7: Frequentist results for the error model of PRAM 2010 with c(x) = ρx − x2 where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned

(# is the participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant

violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.62 ? ? ? ? ? 39

√
0.92 ? ? ? ?

2 ? 0.17 ? ? ? ? 41 0.22 ? ? ? ? ?
4 ? 0.05 ? ? ? ? 42 0.15 0.38 ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.46 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.09 ? ? ? ?

9 0.72
√

? 0.56 ? ? 46 0.05 0.70 ? ? ? ?

11
√

0.26 0.30 ? ? ? 47 0.56 0.23 ? ? ? ?

12 0.97
√

? 0.06 ? ? 48 0.29 0.61 ? ? ? ?

13 ?
√

? 0.53 ? ? 49 0.45 0.82 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.58 0.06 ? ? ?

15 0.61
√

? ? ? ? 52 0.81 0.71 ? ? ? ?

16
√ √

? 0.99 ? 0.51 53 0.26 0.22 ? ? ? ?
17

√ √ √ √
0.55 0.89 55

√ √
0.92

√
? 0.46

18
√

0.98 0.72 ? ? ? 56 0.26 0.84 ? ? ? ?

19 0.06 0.62 ? ? ? ? 58
√ √

0.37 0.89 ? 0.14

20 0.15
√

?
√

? 1.00 59 0.90 0.95 ? ? ? ?

21 0.10 0.22 ? ? ? ? 61
√

0.56 ? ? ? ?

22
√

0.55 ? ? ? ? 65
√ √

0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

0.51 0.81 ? ? ?
24 0.88 ? ? ? ? ? 67 0.87 ? ? ? ? ?
25

√ √
? 0.35 ? ? 3 0.52 ? ?

26
√ √

0.61 ? ? ? 6 0.88 ? ?

27 0.19
√

? ? ? ? 8
√ √

0.94

28 0.33 0.79 ? ? ? ? 10
√

? ?
29 0.74 0.61 ? ? ? ? 40 0.52 ? ?
30 0.37 0.95 ? ? ? ? 45 0.07 ? ?
31 ? ? ? ? ? ? 51 0.17 ? ?
32 0.78 0.77 ? ? ? ? 54

√
? ?

33 0.05 0.68 ? ? ? ? 57 0.17 ? ?
34 0.19 0.51 ? ? ? ? 60 0.66 ? ?
35 ? ? ? ? ? ? 62

√ √
0.27

36
√ √

0.97
√

? 0.95 63
√

0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.45

√
? ? ? ?

176
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Table 8: Frequentist results for the error model of PRAM 2010 with c(x) = 1− e−ρx where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned

(# is the participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant

violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.62 ? ? ? ? ? 39

√
0.92 ? ? ? ?

2 ? 0.06 ? ? ? ? 41 0.22 ? ? ? ? ?
4 ? 0.05 ? ? ? ? 42 0.15 0.38 ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.31 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.07 ? ? ? ?

9 0.72
√

? 0.56 ? ? 46 0.05 ? ? ? ? ?

11
√

0.12 0.30 ? ? ? 47 0.56 0.15 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.24 0.37 ? ? ? ?

13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.58 0.06 ? ? ?

15 0.56
√

? ? ? ? 52 0.74 0.71 ? ? ? ?

16
√ √

? 0.99 ? 0.51 53 ? 0.34 ? ? ? ?
17

√ √ √ √
0.55 0.89 55 ?

√
?

√
? 0.46

18 0.09 0.98 ? ? ? ? 56 0.12 0.80 ? ? ? ?
19 ? 0.62 ? ? ? ? 58 0.95 0.78 0.10 ? ? ?
20 ? ? ? ? ? ? 59 0.74 0.16 ? ? ? ?
21 ? ? ? ? ? ? 61

√
0.56 ? ? ? ?

22
√

0.38 ? ? ? ? 65
√ √

0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24 0.88 ? ? ? ? ? 67 0.87 ? ? ? ? ?
25

√ √
? 0.35 ? ? 3 0.24 ? ?

26
√ √

0.61 ? ? ? 6 ? ? ?

27 ? 0.19 ? ? ? ? 8 0.05 ? ?
28 ? 0.79 ? ? ? ? 10

√
? ?

29 0.74 0.61 ? ? ? ? 40 0.52 ? ?
30 0.30 0.92 ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 0.09 ? ?
32 0.78 0.77 ? ? ? ? 54

√
? ?

33 0.05 0.68 ? ? ? ? 57 0.06 ? ?
34 0.19 0.51 ? ? ? ? 60 0.66 ? ?
35 ? ? ? ? ? ? 62 0.15 ? ?
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.19

√
? ? ? ?
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Table 9: Frequentist results for the error model of PRAM 2006 with c(x) = x and with τ = 1
2

(within-person modal

choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the participant id). Rejections

at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant violations have their p-values listed.

Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? 0.34 ? ? ? ?
2 ? 0.17 ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.29 ? ? ? ?
7 ? ? ? ? ? ? 44 ? 0.09 ? ? ? ?
9 ? ? ? ? ? ? 46 ? 0.70 ? ? ? ?
11

√
0.24 0.30 ? ? ? 47 0.50 ? ? ? ? ?

12 ? ? ? ? ? ? 48 ? 0.34 ? ? ? ?
13 ? ? ? ? ? ? 49 0.45 0.81 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50 ? 0.07 ? ? ? ?

15 0.09 ? ? ? ? ? 52 0.61 0.44 ? ? ? ?
16 0.71 ? ? ? ? ? 53 0.26 ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 0.23 ? ? ? ? ?
19 ? ? ? ? ? ? 58

√ √
0.37 0.89 ? 0.14

20 ? ? ? ? ? ? 59 0.71 0.95 ? ? ? ?
21 0.10 ? ? ? ? ? 61 ? ? ? ? ? ?
22

√
0.62 ? ? ? ? 65

√
0.56 0.25 ? ? ?

23 0.62 0.07 ? ? ? ? 66
√

? 0.81 ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 0.07 ? ? ? ? ?
26 ? ? ? ? ? ? 6 ? ? ? ? ? ?
27 0.19

√
? ? ? ? 8

√
?

√
? 0.94 ?

28 0.35 0.19 ? ? ? ? 10 ? ? ? ? ? ?
29 0.08 ? ? ? ? ? 40 0.18 ? ? ? ? ?
30 0.28 0.99 ? ? ? ? 45 ? ? ? ? ? ?
31 ? ? ? ? ? ? 51 0.10 ? ? ? ? ?
32 0.78 0.62 ? ? ? ? 54

√
? ? ? ? ?

33 ? ? ? ? ? ? 57 0.14 ? ? ? ? ?
34 ? 0.16 ? ? ? ? 60 0.57 ? ? ? ? ?
35 ? ? ? ? ? ? 62

√
?

√
? 0.27 ?

36 ? ? ? ? ? ? 63
√

? 0.86 ? 0.14 ?
37 ? ? ? ? ? ? 64

√
? ? ? ? ?

38 0.11 ? ? ? ? ?
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Table 10: Frequentist results for the error model of PRAM 2006 with c(x) = log(ρ + x) where ρ ∈ [.01, 100] and

with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned

(# is the participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant

violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.88

√
? 0.30 ? ? 39

√
0.92 ? ? ? ?

2 ? 0.92 ? ? ? ? 41 0.36 0.81 ? ? ? ?
4 ? 0.05 ? ? ? ? 42

√ √
0.63 0.31 ? ?

5 0.36 ? ? ? ? ? 43 0.82 0.31 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.09 ? ? ? ?

9 0.72
√

? 0.56 ? ? 46 0.05 0.70 ? ? ? ?

11
√

0.24 0.30 ? ? ? 47
√

0.57 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.24 0.43 ? ? ? ?

13 ? ? ? ? ? ? 49 0.45 0.81 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.62 0.06 ? ? ?

15 0.56
√

? ? ? ? 52 0.82 0.71 ? ? ? ?

16
√ √

? 0.99 ? 0.51 53 0.26 0.22 ? ? ? ?
17

√ √ √ √
0.55 0.89 55 ?

√
?

√
? 0.46

18
√ √

0.72 0.08 ? ? 56 0.24 0.85 ? ? ? ?

19 ? 0.62 ? ? ? ? 58
√ √

0.37 0.89 ? 0.14

20 ? ? ? ? ? ? 59 0.74 0.95 ? ? ? ?
21 0.10 ? ? ? ? ? 61

√
0.56 ? ? ? ?

22
√

0.77 ? ? ? ? 65
√ √

0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24

√ √
? 0.58 ? ? 67 0.99

√
0.11 0.20 ? ?

25
√ √

? 0.35 ? ? 3
√

? ?
26

√ √
0.61 ? ? ? 6 ? ? ?

27 0.19
√

? ? ? ? 8
√ √

0.94

28 0.49 0.81 ? ? ? ? 10
√

? ?
29 0.74 0.61 ? ? ? ? 40 0.55 ? ?
30 0.32 0.99 ? ? ? ? 45 ? ? ?
31

√ √
0.51 0.07 ? ? 51 0.10 ? ?

32 0.78
√

? 0.97 ? 0.07 54
√

? ?

33
√ √

0.19 0.89 ? ? 57 0.14 ? ?

34
√

0.51 ? ? ? ? 60 0.66 ? ?

35 ? ? ? ? ? ? 62
√ √

0.27
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.23

√
? ? ? ?
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Table 11: Frequentist results for the error model of PRAM 2006 with c(x) = xρ where ρ ∈ [.01, 100] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant violations

have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.88

√
? 0.30 ? ? 39

√
0.92 ? ? ? ?

2 ? 0.92 ? ? ? ? 41 0.36 0.81 ? ? ? ?
4 ? 0.05 ? ? ? ? 42

√ √
0.63 0.31 ? ?

5 0.36 ? ? ? ? ? 43 0.82 0.46 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.09 ? ? ? ?

9 0.35 0.97 ? 0.17 ? ? 46 0.05 0.70 ? ? ? ?
11

√
0.24 0.30 ? ? ? 47

√
0.57 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.24 0.43 ? ? ? ?

13 ?
√

? 0.53 ? ? 49 0.45 0.82 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.58 0.06 ? ? ?

15 0.56 0.47 ? ? ? ? 52 0.82 0.71 ? ? ? ?
16

√ √
? 0.99 ? 0.51 53 0.26 0.22 ? ? ? ?

17
√ √ √ √

0.55 0.89 55 ? ? ? ? ? ?

18
√ √

0.72 0.08 ? ? 56 0.26 0.85 ? ? ? ?

19 ? 0.62 ? ? ? ? 58
√ √

0.37 0.89 ? 0.14
20 0.15

√
?

√
? 1.00 59 0.90 0.95 ? ? ? ?

21 0.10 0.22 ? ? ? ? 61 0.42 0.56 ? ? ? ?
22

√
0.77 ? ? ? ? 65

√ √
0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24

√ √
? 0.58 ? ? 67 0.99

√
0.11 0.20 ? ?

25
√ √

? 0.35 ? ? 3
√

? ?
26

√ √
0.61 ? ? ? 6 0.88 ? ?

27 0.19
√

? ? ? ? 8
√ √

0.94

28 0.49 0.81 ? ? ? ? 10
√

? ?
29 0.74 0.61 ? ? ? ? 40 0.55 ? ?
30 0.32 0.99 ? ? ? ? 45 ? ? ?
31

√ √
0.51 0.07 ? ? 51 0.14 ? ?

32 0.78
√

? 0.97 ? 0.07 54
√

? ?

33
√ √

0.19 0.89 ? ? 57 0.17 ? ?

34
√

0.51 ? ? ? ? 60 0.66 ? ?

35 ? ? ? ? ? ? 62
√ √

0.27
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.23

√
? ? ? ?
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Table 12: Frequentist results for the error model of PRAM 2006 with c(x) = xρ where ρ ∈ [.01, 1] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant violations

have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.88

√
? 0.30 ? ? 39

√
0.92 ? ? ? ?

2 ? 0.92 ? ? ? ? 41 0.36 0.81 ? ? ? ?
4 ? 0.05 ? ? ? ? 42

√ √
0.63 0.31 ? ?

5 0.36 ? ? ? ? ? 43 0.82 0.31 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.09 ? ? ? ?

9 0.35 0.97 ? 0.17 ? ? 46 0.05 0.70 ? ? ? ?
11

√
0.24 0.30 ? ? ? 47

√
0.57 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.24 0.43 ? ? ? ?

13 ? ? ? ? ? ? 49 0.45 0.81 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.58 0.06 ? ? ?

15 0.56 0.47 ? ? ? ? 52 0.82 0.71 ? ? ? ?
16

√ √
? 0.99 ? 0.51 53 0.26 0.22 ? ? ? ?

17
√ √ √ √

0.55 0.89 55 ? ? ? ? ? ?

18
√ √

0.72 0.08 ? ? 56 0.24 0.85 ? ? ? ?

19 ? 0.62 ? ? ? ? 58
√ √

0.37 0.89 ? 0.14

20 ? ? ? ? ? ? 59 0.74 0.95 ? ? ? ?
21 0.10 ? ? ? ? ? 61 0.42 0.56 ? ? ? ?
22

√
0.77 ? ? ? ? 65

√ √
0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24

√ √
? 0.58 ? ? 67 0.99

√
0.11 0.20 ? ?

25
√ √

? 0.35 ? ? 3
√

? ?
26

√ √
0.61 ? ? ? 6 ? ? ?

27 0.19
√

? ? ? ? 8
√ √

0.94

28 0.49 0.81 ? ? ? ? 10
√

? ?
29 0.74 0.61 ? ? ? ? 40 0.55 ? ?
30 0.32 0.99 ? ? ? ? 45 ? ? ?
31

√ √
0.51 0.07 ? ? 51 0.10 ? ?

32 0.78
√

? 0.97 ? 0.07 54
√

? ?

33
√ √

0.19 0.89 ? ? 57 0.14 ? ?

34
√

0.51 ? ? ? ? 60 0.66 ? ?

35 ? ? ? ? ? ? 62
√ √

0.27
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.23

√
? ? ? ?
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Table 13: Frequentist results for the error model of PRAM 2006 with c(x) = xρ where ρ ∈ [1.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned

(# is the participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant

violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? 0.36 ? ? ? ?
2 ? 0.17 ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 0.36 ? ? ? ? ? 43 0.82 0.46 ? ? ? ?
7 ? ? ? ? ? ? 44 ? 0.09 ? ? ? ?
9 ? ? ? ? ? ? 46 ? 0.70 ? ? ? ?
11

√
0.24 0.30 ? ? ? 47 0.50 ? ? ? ? ?

12 ? ? ? ? ? ? 48 ? 0.38 ? ? ? ?
13 ?

√
? 0.53 ? ? 49 0.45 0.82 ? ? ? ?

14
√ √

0.98
√

0.39 0.68 50 ? 0.07 ? ? ? ?

15 0.09 ? ? ? ? ? 52 0.61 0.44 ? ? ? ?
16 0.71 ? ? ? ? ? 53 0.26 ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 0.26 ? ? ? ? ?
19 ? ? ? ? ? ? 58

√ √
0.37 0.89 ? 0.14

20 0.15
√

?
√

? 1.00 59 0.90 0.95 ? ? ? ?

21 0.10 0.22 ? ? ? ? 61 ? ? ? ? ? ?
22

√
0.62 ? ? ? ? 65

√
0.56 0.25 ? ? ?

23 0.62 0.07 ? ? ? ? 66
√

? 0.81 ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 0.07 ? ?
26 ? ? ? ? ? ? 6 0.88 ? ?
27 0.19

√
? ? ? ? 8

√ √
0.94

28 0.35 0.19 ? ? ? ? 10 ? ? ?
29 0.10 ? ? ? ? ? 40 0.18 ? ?
30 0.28 0.99 ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 0.14 ? ?
32 0.78 0.62 ? ? ? ? 54

√
? ?

33 ? ? ? ? ? ? 57 0.17 ? ?
34 ? 0.20 ? ? ? ? 60 0.62 ? ?
35 ? ? ? ? ? ? 62

√ √
0.27

36 ? ? ? ? ? ? 63
√

0.86 0.14
37 ? ? ? ? ? ? 64

√
? ?

38 0.11 ? ? ? ? ?
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Table 14: Frequentist results for the error model of PRAM 2006 with c(x) = ρx− x2 where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned

(# is the participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant

violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.88

√
? 0.30 ? ? 39

√
0.92 ? ? ? ?

2 ? 0.92 ? ? ? ? 41 0.36 0.81 ? ? ? ?
4 ? 0.05 ? ? ? ? 42 0.99

√
0.24 0.31 ? ?

5 0.36 ? ? ? ? ? 43 0.82 0.46 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.09 ? ? ? ?

9 0.72
√

? 0.56 ? ? 46 0.05 0.70 ? ? ? ?

11
√

0.26 0.30 ? ? ? 47
√

0.57 ? ? ? ?

12 0.97
√

? 0.06 ? ? 48 0.29 0.65 ? ? ? ?

13 ?
√

? 0.53 ? ? 49 0.45 0.82 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.62 0.06 ? ? ?

15 0.61
√

? ? ? ? 52 0.81 0.93 ? ? ? ?

16
√ √

? 0.99 ? 0.51 53 0.26 0.22 ? ? ? ?
17

√ √ √ √
0.55 0.89 55

√ √
0.92

√
? 0.46

18
√ √

0.72 0.08 ? ? 56 0.26 0.85 ? ? ? ?

19 0.06 0.67 ? ? ? ? 58
√ √

0.37 0.89 ? 0.14

20 0.15
√

?
√

? 1.00 59 0.90 0.95 ? ? ? ?

21 0.10 0.22 ? ? ? ? 61
√

0.59 ? ? ? ?

22
√

0.77 ? ? ? ? 65
√ √

0.25 0.53 ? ?

23 0.92 0.55 ? ? ? ? 66
√

0.51 0.81 ? ? ?
24

√
0.92 ? 0.05 ? ? 67 0.99

√
0.11 0.20 ? ?

25
√ √

? 0.35 ? ? 3
√

? ?

26
√ √

0.61 ? ? ? 6 0.88 ? ?

27 0.19
√

? ? ? ? 8
√ √

0.94

28 0.49 0.81 ? ? ? ? 10
√

? ?
29

√
0.61 ? ? ? ? 40 0.55 ? ?

30 0.37 0.99 ? ? ? ? 45 0.07 ? ?
31

√ √
0.51 0.07 ? ? 51 0.17 ? ?

32 0.78
√

? 0.97 ? 0.07 54
√

? ?

33
√ √

0.19 0.89 ? ? 57 0.17 ? ?

34
√

0.34 ? ? ? ? 60 0.66 ? ?

35 ? ? ? ? ? ? 62
√ √

0.27
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.45

√
? ? ? ?
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Table 15: Frequentist results for the error model of PRAM 2006 with c(x) = 1 − e−ρx where ρ ∈ [.01, 100] and

with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned

(# is the participant id). Rejections at a 0.05 level are marked ?. Perfect fits are checkmarks (
√

). Nonsignificant

violations have their p-values listed. Successful replications across sessions are marked in typewriter and/or
√

.

τ = 1
2 τ = 1

4 τ = 1
10 τ = 1

2 τ = 1
4 τ = 1

10
# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 0.88

√
? 0.30 ? ? 39

√
0.92 ? ? ? ?

2 ? 0.92 ? ? ? ? 41 0.36 0.81 ? ? ? ?
4 ? 0.05 ? ? ? ? 42 0.99

√
0.24 0.31 ? ?

5 0.36 ? ? ? ? ? 43 0.82 0.31 ? ? ? ?
7

√
0.49 ? ? ? ? 44 ? 0.09 ? ? ? ?

9 0.72
√

? 0.56 ? ? 46 0.05 0.70 ? ? ? ?

11
√

0.24 0.30 ? ? ? 47
√

0.57 ? ? ? ?

12 0.96
√

? 0.06 ? ? 48 0.24 0.43 ? ? ? ?

13 ? ? ? ? ? ? 49 0.45 0.81 ? ? ? ?
14

√ √
0.98

√
0.39 0.68 50

√
0.62 0.06 ? ? ?

15 0.56
√

? ? ? ? 52 0.82 0.71 ? ? ? ?

16
√ √

? 0.99 ? 0.51 53 0.26 0.22 ? ? ? ?
17

√ √ √ √
0.55 0.89 55 ?

√
?

√
? 0.46

18
√ √

0.72 0.08 ? ? 56 0.24 0.85 ? ? ? ?

19 ? 0.62 ? ? ? ? 58
√ √

0.37 0.89 ? 0.14

20 ? ? ? ? ? ? 59 0.74 0.95 ? ? ? ?
21 0.10 ? ? ? ? ? 61

√
0.56 ? ? ? ?

22
√

0.77 ? ? ? ? 65
√ √

0.25 0.53 ? ?

23 0.92 0.51 ? ? ? ? 66
√

? 0.81 ? ? ?
24

√
0.92 ? 0.05 ? ? 67 0.99

√
0.11 0.20 ? ?

25
√ √

? 0.35 ? ? 3
√

? ?
26

√ √
0.61 ? ? ? 6 ? ? ?

27 0.19
√

? ? ? ? 8
√ √

0.94

28 0.49 0.81 ? ? ? ? 10
√

? ?
29 0.74 0.61 ? ? ? ? 40 0.55 ? ?
30 0.32 0.99 ? ? ? ? 45 ? ? ?
31

√ √
0.51 0.07 ? ? 51 0.10 ? ?

32 0.78
√

? 0.97 ? 0.07 54
√

? ?

33
√ √

0.19 0.89 ? ? 57 0.14 ? ?

34
√

0.51 ? ? ? ? 60 0.66 ? ?

35 ? ? ? ? ? ? 62
√ √

0.27
36

√ √
0.97

√
? 0.95 63

√
0.86 0.14

37 ?
√

? 0.59 ? ? 64
√

? ?
38 0.23

√
? ? ? ?
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Table 16: Bayesian results for the error model of PRAM 2010 with c(x) = x and with τ = 1
2

(within-person modal

choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the participant id). Here, each

case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins against the unconstrained

model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 ? ? ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? ? ? ? ? ?
11 PRAM PRAM PRAM ? ? ? 47 PRAM ? ? ? ? ?
12 ? ? ? ? ? ? 48 ? PRAM ? ? ? ?
13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14 PRAM PRAM PRAM PRAM PRAM PRAM 50 ? ? ? ? ? ?
15 ? ? ? ? ? ? 52 PRAM PRAM ? ? ? ?
16 PRAM ? ? ? ? ? 53 ? ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 ? ? ? ? ? ?
19 ? ? ? ? ? ? 58 PRAM ? ? ? ? ?
20 ? ? ? ? ? ? 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 ? ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM ? PRAM ? ? ?
23 PRAM ? ? ? ? ? 66 PRAM ? ? ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 ? ? ?
26 ? ? ? ? ? ? 6 ? ? ?
27 ? PRAM ? ? ? ? 8 ? ? ?
28 ? ? ? ? ? ? 10 ? ? ?
29 ? ? ? ? ? ? 40 PRAM ? ?
30 PRAM PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 ? ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 PRAM ? ?
34 ? PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? ? ?
36 ? ? ? ? ? ? 63 PRAM PRAM ?
37 ? ? ? ? ? ? 64 PRAM ? ?
38 ? ? ? ? ? ?
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Table 17: Bayesian results for the error model of PRAM 2010 with c(x) = log(ρ+ x) where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is

the participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model

wins against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM ? ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? ? ? ? ? ?
11 PRAM PRAM PRAM ? ? ? 47 ? ? ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14 PRAM ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? PRAM ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 ? ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? PRAM ? PRAM
18 ? PRAM ? ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? ? ? ? ?
20 ? ? ? ? ? ? 59 PRAM ? ? ? ? ?
21 ? ? ? ? ? ? 61 PRAM ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM ? ? ? ? ? 67 ? ? ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 ? ? ?
27 ? PRAM ? ? ? ? 8 ? ? ?
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 ? ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 ? ? ?
34 ? PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? ? ?
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?
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Table 18: Bayesian results for the error model of PRAM 2010 with c(x) = xρ where ρ ∈ [.01, 100] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins

against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? PRAM ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 ? ? ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? PRAM ? PRAM ? ? 49 PRAM PRAM ? ? ? ?
14 ? ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? ? ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 PRAM ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? ? ? ?
18 ? PRAM ? ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? PRAM ? PRAM ? PRAM 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 ? PRAM ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM ? ? ? ? ? 67 ? ? ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 ? ? ?
26 PRAM PRAM ? ? ? ? 6 PRAM ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 PRAM ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 ? ? ?
34 ? PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 PRAM PRAM PRAM
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?
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Table 19: Bayesian results for the error model of PRAM 2010 with c(x) = xρ where ρ ∈ [0.01, 1] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins

against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM ? ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? PRAM ? ? ? ? 46 ? ? ? ? ? ?
11 PRAM PRAM PRAM ? ? ? 47 ? ? ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14 PRAM ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? PRAM ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 ? ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? ? ? ?
18 ? PRAM ? ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? ? ? ? ?
20 ? ? ? ? ? ? 59 PRAM ? ? ? ? ?
21 ? ? ? ? ? ? 61 ? PRAM ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM ? ? ? ? ? 67 ? ? ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 ? ? ?
26 PRAM PRAM ? ? ? ? 6 ? ? ?
27 ? PRAM ? ? ? ? 8 ? ? ?
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 ? ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 ? ? ?
34 ? PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? ? ?
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?
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Table 20: Bayesian results for the error model of PRAM 2010 with c(x) = xρ where ρ ∈ [1.01, 100] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins

against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 ? ? ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM ? ? ? ? ?
12 ? ? ? ? ? ? 48 ? ? ? ? ? ?
13 ? PRAM ? PRAM ? ? 49 PRAM PRAM ? ? ? ?
14 ? PRAM PRAM PRAM PRAM PRAM 50 ? ? ? ? ? ?
15 ? ? ? ? ? ? 52 PRAM ? ? ? ? ?
16 PRAM ? ? ? ? ? 53 PRAM ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 ? ? ? ? ? ?
19 ? ? ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? PRAM ? PRAM ? PRAM 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 ? ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM ? PRAM ? ? ?
23 PRAM ? ? ? ? ? 66 PRAM ? ? ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 PRAM ? ?
26 ? ? ? ? ? ? 6 PRAM ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? ? ? ? ? ? 10 ? ? ?
29 ? ? ? ? ? ? 40 PRAM ? ?
30 PRAM PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 PRAM ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 ? ? ?
34 ? ? ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 PRAM PRAM PRAM
36 ? ? ? ? ? ? 63 PRAM PRAM ?
37 ? ? ? ? ? ? 64 PRAM ? ?
38 ? ? ? ? ? ?
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Table 21: Bayesian results for the error model of PRAM 2010 with c(x) = ρx − x2 where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is

the participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model

wins against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 ? PRAM ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? PRAM ? PRAM ? ? 49 PRAM PRAM ? ? ? ?
14 ? ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? ? ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 PRAM ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 PRAM ? PRAM PRAM ? PRAM
18 PRAM PRAM PRAM ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? PRAM ? PRAM ? PRAM 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 PRAM ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM ? ? ? ? ? 67 ? ? ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 PRAM ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 PRAM PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 PRAM ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 ? ? ?
34 ? PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 PRAM PRAM PRAM
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 PRAM PRAM ? ? ? ?
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Table 22: Bayesian results for the error model of PRAM 2010 with c(x) = 1 − e−ρx where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is

the participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model

wins against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM ? ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? ? ? ? ? ?
11 PRAM PRAM PRAM ? ? ? 47 ? ? ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? ? ? ? ? ? 49 ? ? ? ? ? ?
14 PRAM ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? PRAM ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 ? ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? PRAM ? PRAM
18 ? PRAM ? ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? ? ? ? ?
20 ? ? ? ? ? ? 59 PRAM ? ? ? ? ?
21 ? ? ? ? ? ? 61 PRAM ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM ? ? ? ? ? 67 ? ? ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 ? ? ?
27 ? PRAM ? ? ? ? 8 ? ? ?
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 ? ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 ? ? ?
34 ? PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? ? ?
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?
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Table 23: Bayesian results for the error model of PRAM 2006 with c(x) = x and with τ = 1
2

(within-person modal

choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the participant id).Here, each

case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins against the unconstrained

model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 ? ? ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM ? ? ? ? ?
12 ? ? ? ? ? ? 48 ? ? ? ? ? ?
13 ? ? ? ? ? ? 49 PRAM PRAM ? ? ? ?
14 ? PRAM PRAM PRAM PRAM PRAM 50 ? ? ? ? ? ?
15 ? ? ? ? ? ? 52 PRAM PRAM ? ? ? ?
16 PRAM ? ? ? ? ? 53 PRAM ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 ? ? ? ? ? ?
19 ? ? ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? ? ? ? ? ? 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 ? ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM ? PRAM ? ? ?
23 PRAM ? ? ? ? ? 66 PRAM ? ? ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 ? ? ? ? ? ?
26 ? ? ? ? ? ? 6 ? ? ? ? ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM ? PRAM ? PRAM ?
28 ? ? ? ? ? ? 10 ? ? ? ? ? ?
29 ? ? ? ? ? ? 40 PRAM ? ? ? ? ?
30 PRAM PRAM ? ? ? ? 45 ? ? ? ? ? ?
31 ? ? ? ? ? ? 51 ? ? ? ? ? ?
32 ? ? ? ? ? ? 54 PRAM ? ? ? ? ?
33 ? ? ? ? ? ? 57 ? ? ? ? ? ?
34 ? PRAM ? ? ? ? 60 PRAM ? ? ? ? ?
35 ? ? ? ? ? ? 62 ? ? PRAM ? PRAM ?
36 ? ? ? ? ? ? 63 PRAM ? PRAM ? ? ?
37 ? ? ? ? ? ? 64 PRAM ? ? ? ? ?
38 ? ? ? ? ? ?
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Table 24: Bayesian results for the error model of PRAM 2006 with c(x) = log(ρ+ x) where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is

the participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model

wins against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 PRAM PRAM ? PRAM ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? PRAM ? ? ? ?
4 ? ? ? ? ? ? 42 ? PRAM ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM PRAM ? ? ? ?
12 ? PRAM ? ? ? ? 48 ? ? ? ? ? ?
13 ? ? ? ? ? ? 49 PRAM PRAM ? ? ? ?
14 ? ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 PRAM ? ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 PRAM ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? PRAM ? PRAM
18 PRAM PRAM PRAM ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? ? ? ? ? ? 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 PRAM ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM PRAM ? PRAM ? ? 67 PRAM PRAM ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 ? ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 PRAM PRAM PRAM ? ? ? 51 ? ? ?
32 ? PRAM ? PRAM ? PRAM 54 PRAM ? ?
33 PRAM PRAM ? PRAM ? ? 57 ? ? ?
34 PRAM PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? PRAM PRAM
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?
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Table 25: Bayesian results for the error model of PRAM 2006 with c(x) = xρ where ρ ∈ [.01, 100] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins

against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 PRAM PRAM ? PRAM ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? PRAM ? ? ? ?
4 ? ? ? ? ? ? 42 ? PRAM ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? PRAM ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM PRAM ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? PRAM ? PRAM ? ? 49 PRAM PRAM ? ? ? ?
14 ? ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? ? ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 PRAM ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? ? ? ?
18 PRAM PRAM PRAM ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? PRAM ? PRAM ? PRAM 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 ? ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM PRAM ? PRAM ? ? 67 PRAM PRAM ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 PRAM ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 PRAM PRAM PRAM ? ? ? 51 PRAM ? ?
32 ? PRAM ? PRAM ? PRAM 54 PRAM ? ?
33 PRAM PRAM ? PRAM ? ? 57 ? ? ?
34 PRAM PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? PRAM PRAM
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?

194



Commentary on Loomes (2010) 32

Table 26: Bayesian results for the error model of PRAM 2006 with c(x) = xρ where ρ ∈ [0.01, 1] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins

against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 PRAM PRAM ? PRAM ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? PRAM ? ? ? ?
4 ? ? ? ? ? ? 42 ? PRAM ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? PRAM ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM PRAM ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? ? ? ? ? ? 49 PRAM PRAM ? ? ? ?
14 ? ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 PRAM ? ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 PRAM ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? ? ? ?
18 PRAM PRAM PRAM ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? ? ? ? ? ? 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 ? ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM PRAM ? PRAM ? ? 67 PRAM PRAM ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 ? ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 PRAM PRAM PRAM ? ? ? 51 ? ? ?
32 ? PRAM ? PRAM ? PRAM 54 PRAM ? ?
33 PRAM PRAM ? PRAM ? ? 57 ? ? ?
34 PRAM PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? PRAM PRAM
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?
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Table 27: Bayesian results for the error model of PRAM 2006 with c(x) = xρ where ρ ∈ [1.01, 100] and with τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is the

participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model wins

against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 ? ? ? ? ? ? 39 ? PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? ? ? ? ? ?
4 ? ? ? ? ? ? 42 ? ? ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 ? ? ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM ? ? ? ? ?
12 ? ? ? ? ? ? 48 ? ? ? ? ? ?
13 ? PRAM ? PRAM ? ? 49 PRAM PRAM ? ? ? ?
14 ? PRAM PRAM PRAM PRAM PRAM 50 ? ? ? ? ? ?
15 ? ? ? ? ? ? 52 PRAM PRAM ? ? ? ?
16 PRAM ? ? ? ? ? 53 PRAM ? ? ? ? ?
17 ? ? ? ? ? ? 55 ? ? ? ? ? ?
18 ? ? ? ? ? ? 56 ? ? ? ? ? ?
19 ? ? ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? PRAM ? PRAM ? PRAM 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 ? ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM ? PRAM ? ? ?
23 PRAM ? ? ? ? ? 66 PRAM ? ? ? ? ?
24 ? ? ? ? ? ? 67 ? ? ? ? ? ?
25 ? ? ? ? ? ? 3 ? ? ?
26 ? ? ? ? ? ? 6 PRAM ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? ? ? ? ? ? 10 ? ? ?
29 ? ? ? ? ? ? 40 ? ? ?
30 PRAM PRAM ? ? ? ? 45 ? ? ?
31 ? ? ? ? ? ? 51 PRAM ? ?
32 ? ? ? ? ? ? 54 PRAM ? ?
33 ? ? ? ? ? ? 57 ? ? ?
34 ? ? ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? PRAM PRAM
36 ? ? ? ? ? ? 63 PRAM PRAM ?
37 ? ? ? ? ? ? 64 PRAM ? ?
38 ? ? ? ? ? ?
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Table 28: Bayesian results for the error model of PRAM 2006 with c(x) = ρx − x2 where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is

the participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model

wins against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 PRAM PRAM ? PRAM ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? PRAM ? ? ? ?
4 ? ? ? ? ? ? 42 ? PRAM ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM PRAM ? ? ? ?
12 PRAM PRAM ? ? ? ? 48 PRAM ? ? ? ? ?
13 ? PRAM ? PRAM ? ? 49 PRAM PRAM ? ? ? ?
14 ? ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? ? ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 PRAM ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 PRAM ? PRAM PRAM ? PRAM
18 PRAM PRAM PRAM ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? PRAM ? PRAM ? PRAM 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 PRAM ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM ? ? ? ? ? 67 PRAM PRAM ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 PRAM ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 PRAM PRAM ? ? ? ? 45 ? ? ?
31 PRAM PRAM PRAM ? ? ? 51 ? ? ?
32 ? PRAM ? PRAM ? PRAM 54 PRAM ? ?
33 PRAM PRAM ? PRAM ? ? 57 ? ? ?
34 PRAM ? ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? PRAM PRAM
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 PRAM PRAM ? ? ? ?
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Table 29: Bayesian results for the error model of PRAM 2006 with c(x) = 1 − e−ρx where ρ ∈ [.01, 100] and with

τ = 1
2

(within-person modal choice), τ = 1
4

and τ = 1
10

. Of the 67 participants in the first session, 54 returned (# is

the participant id). Here, each case listed as “PRAM” is a case where the Bayesian p value is ≥ 0.05 and the model

wins against the unconstrained model by DIC. All other cases are “rejections,” marked with ?.

τ = 1
2

τ = 1
4

τ = 1
10

τ = 1
2

τ = 1
4

τ = 1
10

# S1 S2 S1 S2 S1 S2 # S1 S2 S1 S2 S1 S2
1 PRAM PRAM ? PRAM ? ? 39 PRAM PRAM ? ? ? ?
2 ? PRAM ? ? ? ? 41 ? PRAM ? ? ? ?
4 ? ? ? ? ? ? 42 ? PRAM ? ? ? ?
5 ? ? ? ? ? ? 43 PRAM PRAM ? ? ? ?
7 PRAM PRAM ? ? ? ? 44 ? ? ? ? ? ?
9 ? ? ? ? ? ? 46 ? PRAM ? PRAM ? ?
11 PRAM ? PRAM ? ? ? 47 PRAM PRAM ? ? ? ?
12 ? PRAM ? ? ? ? 48 ? ? ? ? ? ?
13 ? ? ? ? ? ? 49 PRAM PRAM ? ? ? ?
14 ? ? PRAM PRAM PRAM PRAM 50 PRAM PRAM ? ? ? ?
15 PRAM PRAM ? ? ? ? 52 ? ? ? ? ? ?
16 PRAM ? ? PRAM ? PRAM 53 PRAM ? ? ? ? ?
17 ? ? PRAM PRAM PRAM PRAM 55 ? ? ? PRAM ? PRAM
18 PRAM PRAM PRAM ? ? ? 56 ? PRAM ? ? ? ?
19 ? PRAM ? ? ? ? 58 PRAM ? PRAM PRAM ? ?
20 ? ? ? ? ? ? 59 PRAM PRAM ? ? ? ?
21 ? ? ? ? ? ? 61 PRAM ? ? ? ? ?
22 PRAM PRAM ? ? ? ? 65 PRAM PRAM PRAM PRAM ? ?
23 PRAM PRAM ? ? ? ? 66 PRAM ? ? ? ? ?
24 PRAM ? ? ? ? ? 67 PRAM PRAM ? ? ? ?
25 PRAM PRAM ? ? ? ? 3 PRAM ? ?
26 PRAM PRAM ? ? ? ? 6 ? ? ?
27 PRAM PRAM PRAM ? ? ? 8 PRAM PRAM PRAM
28 ? PRAM ? ? ? ? 10 PRAM ? ?
29 PRAM PRAM ? ? ? ? 40 ? ? ?
30 ? PRAM ? ? ? ? 45 ? ? ?
31 PRAM PRAM PRAM ? ? ? 51 ? ? ?
32 ? PRAM ? PRAM ? PRAM 54 PRAM ? ?
33 PRAM PRAM ? PRAM ? ? 57 ? ? ?
34 PRAM PRAM ? ? ? ? 60 PRAM ? ?
35 ? ? ? ? ? ? 62 ? PRAM PRAM
36 PRAM ? PRAM PRAM ? PRAM 63 PRAM PRAM ?
37 ? PRAM ? PRAM ? ? 64 PRAM ? ?
38 ? PRAM ? ? ? ?
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A dieter must choose between the immediate
gratification of a waistline-expanding piece of
cake or the longer term health benefits of fruit.
A business manager must choose between de-
veloping projects with “low-hanging fruit” or
investing time, personnel, and money into
achieving long-term goals of the firm. From
diet choices to large-scale organizational de-
cisions, all such intertemporal choices in-
volve options available at different points in
time (Read, 2004). In this article, we consider
binary choice between one delayed reward
and another that is larger in size but also
requires a longer wait. Such pairwise choices
are highly heterogeneous in that they vary
across decision makers and within a given
decision maker over repeated decisions
within even short time periods.

Economists and psychologists have devel-
oped dozens of models for intertemporal
choices aimed at understanding how decision
makers trade off between smaller, sooner and
larger, later rewards. Most of these are
temporal discounting models that generate a
subjective present value for an option dis-
counted by the time delay to receiving the re-
ward. For instance, $100 in a year is less valu-
able than $100 in a week, which, in turn, is still
less valuable than $100 today. Discounting
models that map rewards and time delays to
numerical subjective values of time-delayed re-
wards, such as exponential and hyperbolic dis-
counting, imply transitive preferences accord-
ing to which a person preferring x to y and y to
z must prefer x to z (see, e.g., Doyle, 2013;
Doyle & Chen, 2012; Ebert & Prelec, 2007;
Frederick, Loewenstein, & O’Donoghue, 2002;
Green & Myerson, 2004; Killeen, 2009; Laib-
son, 1997; Loewenstein & Prelec, 1992; Ma-
zur, 1987; McClure, Ericson, Laibson, Loew-
enstein, & Cohen, 2007; Samuelson, 1937).1

The study of the fundamental nature of
intertemporal preferences faces a profound
challenge. Existing tests of intertemporal
choice theories rarely account explicitly for
heterogeneity in behavior within and between
people. It may not be possible to select a
‘good’ theory of intertemporal choice unless
this theory jointly accounts for core prefer-
ences and heterogeneity in behavior. In our
view, if we are to understand intertemporal
choices, we should develop a rigorous ap-
proach that incorporates individual differ-

ences, variability in choices, and generaliz-
ability across stimuli. Therefore, rather than
attend to the specifics of core preferences,
such as the functional form of discounting
curves, and rather than seek out a ‘best’ the-
ory, we focus in this article on the compli-
cated interplay between parsimony and em-
pirical variability. We also concentrate on
transitive intertemporal preference and how it
manifests itself in probabilistic choice. Com-
bining transitivity of preferences with the
trade-off between parsimony and variability
fills a gap in the existing literature in inter-
temporal choice by zooming out to a broad
class of theories while zooming in to the
sources and types of heterogeneity.

Accounting for heterogeneity comes at the
cost of reducing model parsimony. Intui-
tively, an excessively parsimonious model
may only account for one choice made by one
person at one time point for one particular
stimulus. Such an overly specific model is
unlikely to generalize to other stimuli pre-
sented to the same person, to other occasions
on which the same person is presented with
the same stimulus, to other individuals, and/or
to other stimuli. At the other end of the spec-
trum, a model that universally accounts for
the behavior of all of humanity, at all times,
and over all conceivable intertemporal stimuli
may have to be overly flexible. Clearly, we
need to aim for some sort of middle ground. It
is therefore not surprising that much of the
literature in decision research, and intertem-
poral choice in particular, aims merely at
modeling the prototypical decision maker or
at documenting trends and significant effects.
Though this may be useful, it could also be
inherently misleading in that almost no actual
person might act like that ‘prototypical’ de-
cision maker. We unpack the intimate connec-
tion between models of heterogeneity in prefer-
ences and in responses for transitive theories of
intertemporal preference. We also explore how

1 Other models, such as the “similarity” and “tradeoff”
models, permit intransitive preferences (see, e.g., Leland,
2002; Manzini & Mariotti, 2006; Read, 2001; Rubinstein,
2003; Scholten & Read, 2006, 2010; Stevens, 2016).
Here, a person may prefer x to y and y to z, yet prefer z
to x for some x, y, z. A separate article tests nontransitive
heuristic models on different stimuli and different re-
spondents.
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adequate theoretical accounts may vary with the
stimuli used. We believe that careful attention
to the nature and sources of heterogeneity is
essential to advancing our understanding of in-
tertemporal choice.

Without a good theory of heterogeneity,
scholars risk making too many modifications
in the functional forms of core theories in an
effort to accommodate “discrepancies” be-
tween theory and data, when, instead, they
should model the sources of heterogeneity of
behavior more explicitly. This article pro-
vides a roadmap for accomplishing the latter
by formally spelling out two major sources of
heterogeneity: probabilistic responses and
probabilistic preferences. We then show that
these sources of heterogeneity can be incor-
porated into theories of intertemporal choice
at an abstract level. We take a big-picture
perspective and tackle intertemporal choice at
a somewhat abstract level. We consider gen-
eral classes of core models that share one or
more of the features that (a) preferences are
transitive linear orders, (b) choice options are
represented by numerical utilities, and (c)
strengths of preferences are consistent with
transitive preferences. Likewise, we consider
general classes of probabilistic mechanisms
for pairwise choice, namely (a) aggregation-
based models that encompass various re-
sponse error models as special cases and (b)
distribution-free random preference, random
function and random utility models that
model the preferences themselves as uncer-
tain. This approach to heterogeneity is con-
ceptually and mathematically different from
the common approach that aims to accommo-
date individual differences through refining
the core functional form of a theory, for ex-
ample, by adding extra parameters that permit
specific kinds of flexibility in the core theory.
Instead, our approach resembles the literature
on axiom testing in decision making in that
we consider the general axiom of transitivity
together with general classes of probabilistic
specifications.

A major strength of our approach is that it
allows triage of entire classes of theories. None-
theless, even within this general and abstract
paradigm of transitivity of intertemporal prefer-
ence, the number of models to consider is sub-
stantial, and different models differ dramati-
cally in their parsimony. Furthermore,

investigating the tradeoff between parsimony
and heterogeneity is computationally costly.
Because we consider 20 probabilistic models
separately for 61 individual decision makers on
six different stimulus sets, because we employ
both frequentist and Bayesian analysis methods,
and because many of our analyses utilize either
grid search or Monte Carlo sampling methods,
our analyses necessitated the use of supercom-
puting resources.2

We first discuss how to spell out a model of
binary choice behavior for a person with tran-
sitive preferences. We emphasize that, in con-
trast to the risky choice literature, the inter-
temporal choice literature has largely
neglected modeling the sources and types of
uncertainty that underlie probabilistic behav-
ioral data. We fill this gap by introducing
eight types of probabilistic choice models of
transitive intertemporal preference. After we
review suitable statistical analysis methods
and two experiments, we give an in-depth
report on quantitative analyses at the individ-
ual and group level. We particularly highlight
how parsimony trades off with accounting for
within- and between-person heterogeneity. In
contrast to previous such projects, we concen-
trate on intertemporal choice.

Transitive Intertemporal Preference
and Choice

In behavioral science, it is crucial not to
mistake models of hypothetical constructs for
models of observable behavior. The literature
on intertemporal choice engages in a thorough
discussion about hypothetical constructs such as
preference or utility, while usually omitting a
detailed model of observable behavior such as
choice. We review probabilistic choice models
aimed at formally representing the uncertainty
that is inherent in overt behavior. We then walk
through the step-by-step approach to design and
test an explicitly specified theory of pairwise
intertemporal choice. Because any real collec-

2 We ran the most computationally expensive analyses
on Pittsburgh Supercomputer Center’s Blacklight and
Greenfield supercomputers, as an Extreme Science and
Engineering Discovery Environment project (see also
Towns et al., 2014). The analyses in this article expended
about 24,000 CPU hr on the supercomputer and more
than 1,000 hr on the PC.
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tion of experiments can only utilize finitely
many stimuli, we assume throughout, and with-
out much loss of generality, that the set of all
choice alternatives under consideration is finite.
We also concentrate on the common experi-
mental paradigm of pairwise choice between a
larger reward available with a longer delay and
a smaller reward available with less delay.

Preference

Many models of binary preference between a
larger, later reward L and a smaller, sooner
reward S characterize a three-component cogni-
tive process: They specify implicitly or explic-
itly how a decision maker (a) subjectively per-
ceives time, (b) subjectively perceives rewards,
and (c) subjectively perceives the interaction
between time and rewards. This permits them to
define such hypothetical constructs as the pair-
wise preference among choice options, the sub-
jective value of an option, or the subjective
strength of preference among pairs of options.
In addition, to actually predict or explain behav-
ior, a model must specify how hypothetical con-
structs such as subjective values or preferences
translate into something one can observe, such
as overt choice behavior. Before discussing
choice, we start by reviewing models of transi-
tive intertemporal preference.

A broad class of theories for intertemporal
preference uses numerical functions and opera-
tions on numbers to model either subjective
values of options or subjective strengths of pref-
erence among options. Suppose that x is the
option of receiving a monetary or nonmonetary
reward A after a time delay t � 0 (with t � 0
denoting an immediate reward). Many numeri-
cal models, especially many discounting mod-
els, assume that reward A is mapped into a
numerical value via some value function v, that
time delay t is mapped into a numerical value
via some time weighting function �, and that
these numerical values are combined into an
overall numerical value for x via some mathe-
matical operation J, to yield an overall subjec-
tive numerical value u(x) for option x as

u(x) � v(A) � �(t). (1)

Using this representation, many models of
intertemporal preference model the prefer-
ence � as

L � S ⇔ u(L) � u(S), (2)

where L � S denotes that L is strictly preferred to
S (see also Doyle, 2013, for similar formulations).
Such a binary preference relation � is transitive
in that, for any options x, y, z, whenever x � y and
y � z, it follows from the right hand side of
Condition 2 that x � z as well. The general ap-
proach (1) – (2) encompasses the vast majority of
theories for intertemporal choice, including the
bulk of discounting models. Different implemen-
tations of such theories vary in their assumptions
about the specific functional forms of v and � and
the operation J: Different theories use different
functions v(A), oftentimes focusing on quantita-
tive rewards A � ��, such as money,

v(A) ���A (often with � � 1, Samuelson, 1937;
Mazur, 1984),

A� (Killeen, 2009),

. . . ,
(3)

different functions �(t),

�(t) �

�t (Samuelson, 1937),

�t� (Killeen, 2009),

1

1 	 �t
(Mazur, 1984),

1

1 	 �t�
(Mazur, 1987),

1

(1 	 �t)�⁄�
(Loewenstein & Prelec, 1992;

Green & Myerson, 2004),

e
(�t)�
(Ebert & Prelec, 2007),

�e
�t 	

(1 
 �)e
�t
(McClure et al., 2007),

. . . ,
(4)

and different operations J,

v(A) � �(t) �

v(A) � �(t)

(Samuelson, 1937;

Laibson, 1997;

Mazur, 1984),

v(A) 
 �(t) (Killeen, 2009,
Doyle & Chen, 2012),

. . . .
(5)

(The cited articles also provide permissible ranges
for the parameters �, �, �, and � in these functions.)
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Even the two examples of v in Equation 3,
seven examples of � in Equation 4, and two
operators J in Equation 5 permit 2 	 7 	 2 � 28
different combinations. The intertemporal
choice literature has generated a panoply of
such models for preferences, subjective values,
or strengths of preferences. Most studies stop
with the derivation of these constructs and do
not specify response mechanisms that convert
hypothetical constructs into predictions about
heterogeneous overt choice behavior. Some
scholars have recently started to incorporate
stochastic specifications of response processes
into theories of intertemporal choice (Arfer &
Luhmann, 2015; Dai & Busemeyer, 2014; Er-
icson, White, Laibson, & Cohen, 2015).

The fact that most theories of intertemporal
choice are silent about the response mechanism is
problematic. Scholars in other domains, most no-
tably in risky choice, have warned not to think of
response mechanisms as a mere optional add-on
that one selects based on convenience or subjec-
tive taste of what constitutes an elegant model
(Carbone & Hey, 2000; Hey, 2005; Hey & Orme,
1994; Loomes, Moffatt, & Sugden, 2002; Loomes
& Sugden, 1995; Luce, 1959, 1995; Luce & Na-
rens, 1994; Luce & Suppes, 1965; McCausland &
Marley, 2014). Misspecification of response pro-
cesses substantially affects conclusions about pa-
rameter values and readily distorts the functional
form of the underlying core algebraic model
(Blavatskyy & Pogrebna, 2010; Stott, 2006; Wil-
cox, 2008). Mis- and overspecification also com-
promise one’s ability to predict future choices
based on best-fitting parameter values in a current
study. An additional formidable challenge, com-
pounded with the suitable selection of response
models, often lies in finding suitable statistical
methods (Davis-Stober, 2009; Iverson & Fal-
magne, 1985; Myung, Karabatsos, & Iverson,
2005). Our models and methods tackle these chal-
lenges at a high level of generality. Rather than
look for a ‘best’ model, we focus on the interplay
between heterogeneity and parsimony.

Preference and Choice

We now review major model classes of prob-
abilistic choice. We assume throughout the rest
of the article that there are only finitely many
choice options under consideration; hence, we
always only consider finitely many binary
choice probabilities.

Tremble models build on the hypothetical
construct of binary preference. They start from
the premise that the decision maker has a fixed
“true” preference �, and that choice probabili-
ties reflect a tendency to make occasional errors
in revealing the underlying hypothetical construct.
In a tremble model, it is usually assumed that the
error rate for a given pair of options (x, y) is a free
parameter ϵxy (Birnbaum, 2008; Birnbaum &
Navarrete, 1998; Harless & Camerer, 1994), so
that the probability Pxy of choosing x over y is

Pxy �� 1 
 ϵxy if x � y,

ϵxy if y � x,
with, usually,

0  ϵxy �
1

2
.

Similarly, Fechnerian models are based on
the notion that a decision maker has a fixed
“true” utility function, but because of random
noise, the decision maker reveals the underlying
hypothetical construct only probabilistically. In
contrast to tremble models, Fechnerian models
explicitly model error rates as a monotonically
decreasing function of the strength of prefer-
ence, �xy, with choices for strongly preferred
options (large values of |�xy|) being close to
deterministic and choices for extremely weakly
preferred options (small values of |�xy|) resem-
bling the toss of a fair coin (Hey & Orme, 1994;
Manski & McFadden, 1981; McFadden, 2001;
Thurstone, 1927). According to a Fechnerian
model, the binary choice probability is given by

Pxy � F(�xy),

with F a cumulative distribution function

and F(0) �
1

2
.

A logistic cumulative distribution function (CDF)
yields the well-known logit model and a normal
CDF yields the probit model, respectively.3

The strength of preference �xy, in turn, is an-
other hypothetical construct, often derived from u
using another operation, C, via �xy � u(x) C u(y).

3 One can also derive binary logit and probit models
within a random utility framework, discussed below, by
assuming that random utilities have extreme value or nor-
mal distributions, respectively.
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Examples include �xy � u(x) 
 u(y) or, for u � 0,

�xy � ln�u�x�
u�y��. The latter is used in a historically

prominent Fechnerian model called Luce’s choice
axiom (Luce, 1959; Yellott, 1977), together with

a unit-scaled logistic CDF, F�x� �
1

1	e
x, giving

Pxy �
u(x)

u(x) 	 u(y)
, with u(x), u(y) � 0.

These two response models, tremble and
Fechner, treat the decision maker’s hypothetical
constructs (preference, utility, strength of pref-
erence) as deterministic, and they create re-
sponse probabilities through the introduction of
various concepts of “error.” Conceptually, they
model heterogeneity in responses but not in
preferences. The Fechnerian models, because
they are quite specific, work most naturally with
a theory that is, likewise, highly specific in its
mathematical form, that is, a model in which
every component is spelled out in its full and
precise functional form. They also are only well
defined if they are given a numerical hypothet-
ical construct as input, such as the function u or
the strength of preference � we have discussed
above. Tremble models are less specific and
require no numerical input; binary preference
relations suffice. In that sense, tremble models
are more flexible.4

The response models we reviewed so far have
been generalized to a single broader class of
“aggregation-based” specifications, according
to which binary choice probabilities yield the
hypothetical core deterministic preference at a
suitably defined aggregate level (Regenwetter et
al., 2014), such as “majority” (modal choice) or
“supermajority” aggregation. Here, a hypothet-
ical construct is only describing aggregate be-
havior, not necessarily every single choice
made by a person. The key feature is that one or
both of the following equivalences hold in trem-
ble and Fechner models:

x � y ⇔ Pxy �
1

2
⇔ u(x) � u(y). (6)

A person is more likely to choose what he
prefers than what he does not prefer. In the most
general case where we consider all possible
one-to-one functions u and, equivalently, all

linear orders �, this representation is called the
weak utility model (Luce & Suppes, 1965). It
is equivalent to

�Pxy �
1

2���Pyz �
1

2�) �Pxz �
1

2�
(for all distinct options x, y, z), (7)

labeled weak stochastic transitivity, because
the right hand side of Condition 6 forces � in
the left hand side to be transitive, and therefore
Condition 7 must hold for the central term of
Condition 6. Regarding the right hand side
equivalence of Condition 6, it is worth noting
that it only requires that one specify the function
u up to a monotonic transformation. Hence, for
testing, the weak utility model (6) is very gen-
eral and inclusive. But for estimation and pre-
diction, it is not sufficiently specific to uniquely
identify the function u used in most theories.

Another class of models, whose predictions
overlap with, yet also differ from, aggregation-
based specifications, and which is built on dif-
ferent conceptual and theoretical primitives, are
“random preference,” “random utility,” and
“random function” models (Becker, DeGroot,
& Marschak, 1963; Block & Marschak, 1960;
Loomes & Sugden, 1995; Marschak, 1960; Re-
genwetter & Marley, 2001). These follow from
the premise that the preferences and utilities,
rather than the responses, are probabilistic.

In a random preference model, one considers
the collection R of all permissible preference
relations, say, for instance, R might denote the
collection of all binary preference relations �
that are consistent with Equation 1 and Condi-
tion 2 using some core family of functions v,
�, and some core operation J, such as, say,
v�A� � A�, ��t� � 1

1	�t, and 	 for J. According
to such a random preference model, there ex-
ists a probability measure � on the set of all
parameter values for � and �, such that, for x
giving A with time delay t and y giving B with
time delay s,

Pxy � ��{�, � | u(x) � u(y)}�

� �	��, � | A�

1 	 �t
�

B�

1 	 �s
�. (8)

4 This makes them compatible with simple nonnumeric
heuristics, for which Fechnerian models are ill-defined.
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The most natural interpretation of a random
preference model is that the decision maker,
while fully consistent with a given core theory,
is uncertain about her preferences and acts in
accordance with a probability distribution over
preference states that are consistent with that
core theory, say, by sampling discount rates
from a latent distribution. The formulation in
Equation 8 makes it clear that this model can
also be interpreted as a random function
model (Regenwetter & Marley, 2001), because
Equation 8 effectively makes � a probability
measure on an appropriately defined measur-
able space of utility functions.

To see how much random preference models
differ from tremble and Fechner models, con-
sider, for a moment, the unusual choice between
a larger, sooner and a smaller, later reward, a
type of stimulus that is sometimes inserted into
a study for quality control. If the respondent
does not select the larger, sooner reward, this is
sometimes interpreted as suggesting that he is
not being attentive. Indeed, the random prefer-
ence model predicts deterministic behavior in
such a case because, no matter what the specific
parameter values � and �, the larger, sooner
reward is preferred to the smaller, later reward:
When A � B, t � s in Equation 8, then the
random preference model in Equation 8 yields
Pxy � 1, regardless of the joint distribution on
the values of � and �. However, neither tremble
nor Fechner models predict deterministic choice
for such stimuli. Simply put, whereas a Fechner
model derives probabilistic choice predictions
from deterministic hypothetical constructs, a
random preference model may, in certain cases,
derive deterministic choice predictions from
probabilistic hypothetical constructs.

A closely related random utility model
specifies that the subjective values assigned to
options x and y are uncertain. It captures this
formally by defining jointly distributed random
variables Ux, Uy to denote the random utilities
of options x and y. Using � to denote the
probability measure governing the joint distri-
bution of the random variables Ux (over all
options x), assuming �(Ux � Uy) � 0, @x  y,
according to the random utility model,

Pxy � �(Ux � Uy). (9)

If, at every sample point of the underlying sam-
ple space, the joint realization of these random

variables satisfies Conditions 1–2 with Ux sub-
stituted for u(x), using a core family of func-
tions v�A� � A�, ��t� � 1

1	�t, and 	 for J, then
the choice probabilities in Equations 8 and 9 are
the same. In particular, in such a random utility
model, Equation 9 gives Pxy � 1 when x is a
larger, sooner reward.

Just like many discounting models in the
literature specify particular functions v and �,
so do many random preference and random
utility models specify properties of the proba-
bility measures � and/or the joint distribution of
the random utilities. For example, the most
commonly used random utility models assume
multivariate normal distributions (probit) or ex-
treme value distributions (logit), oftentimes for
mathematical and statistical convenience. In
both cases, Pxy � 1 in ‘quality control’ stimuli
where x is a larger sooner reward. For very
‘similar’ stimuli, Pxy can, in fact, be ‘close’ to 1

2.
As we have seen earlier, these parametric ran-
dom utility models are also Fechner models.
However, the fully general class of random util-
ity models makes no distributional assumptions.

Interplay Between Preference, Choice,
and Heterogeneity

Even just within the paradigm of models of
the form u�x� � v�A� � ��t� of Equation 1, we
face a combinatorial explosion of possible mod-
els. A fully specified model of binary choice
probabilities for this paradigm states the per-
missible functions v and � and their permissible
parameter values, as well as the permissible
operations J, if it is to fully detail the deter-
ministic core hypothetical constructs. In addi-
tion, one needs to consider a suitable response
mechanism, such as, for example, upper bounds
on permissible error rates ϵxy, an operation C, a
distribution function F. Or, if considering a
probabilistic generalization of its core hypo-
thetical constructs, it may need to spell out
distributional assumptions about random
preferences or random utilities.5 The full
range of these considerations has received

5 For prior examples of such research programs, see Stott
(2006) or Blavatskyy and Pogrebna (2010). These articles
considered various combinations of core theory and proba-
bilistic specification in the domain of risky choice.
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little attention in intertemporal choice re-
search because the latter has primarily fo-
cused on the algebraic core only.

For example, for monetary rewards, and
u�x� � v�A� � ��t�, v�A� � A, letting J be
the 	 operation, �(t) � �t, letting C be the 

operation, and F a normal CDF � with mean 0,
we obtain a Thurstonian (probit) model of ex-
ponential discounting. Writing AL, AS for the
larger and smaller rewards of L and S respec-
tively, and tL, tS for the corresponding longer
and shorter time delays, preference among L
and S is deterministic, and responses probabi-
listic via

PLS � ��AL�tL 
 AS�tS�. (10)

In a random preference model, on the other
hand, using the same deterministic core (but
leaving out C, which it does not use), prefer-
ences are probabilistic, and responses determin-
istic, via

PLS � ���� | AL�tL � AS�tS�, (11)

possibly with some constraints on the distribu-
tion of values of �, say, a truncated normal
distribution. Even though they are both
grounded in standard exponential discounting,
these two models have very different motiva-
tions: One is derived from assuming determin-
istic preference and probabilistic responses; the
other is derived from deterministic responses
based on probabilistic preferences. These mod-
els also feature drastically different mathemati-
cal properties; hence, they make distinctly dif-
ferent predictions about behavior. In other
words, not only do they make different assump-
tions about the source and substantive meaning
of heterogeneity, they also generate different
predictions about the type of heterogeneity of
behavior one may observe.

Here, we are particularly interested in the
types of heterogeneity different models permit.
A probability mixture of models each satisfying
Equation 10 need not, itself, satisfy Equation
10: Consider 0 � p1, p2, . . . , pk � 1 with

�i�1
k pi � 1 and let �1, �2, . . . , �k be distinct

parameter values. Then, there generally does
not exist a parameter value � such that

��AL�tL 
 AS�tS� � �
i�1

k

pi ��AL�i
tL 
 AS�i

tS�,

which means that tests of this model cannot
let choice probabilities change/drift exces-
sively within a person over the course of an
experiment, and one cannot safely pool data
across respondents who differ in their core
preferences. In contrast, mixtures of models,
each satisfying the distribution-free form of Equa-
tion 11, do, in turn, satisfy Equation 11: Consider
0 � p1, p2, . . . , pk � 1 with �i�1

k pi � 1 and let
�1, �2, . . . , �k be distinct probability measures.
Then there always exists a probability measure
� such that

���� | AL�tL � AS �tS�

� �
i�1

k

pi �i ��� | AL�tL � AS �tS�,

namely, � � �i�1
k pi�i. This means that these

models permit high degrees of heterogeneity
within and across individuals. On the other
hand, distribution-free models like the one in
Equation 11 can be mathematically intractable
and most distribution-free random preference
models require “order-constrained” statistical
methods (Regenwetter, Dana, & Davis-Stober,
2011; Regenwetter et al., 2014).

There is, however, also much potential for
model mimicry among models that are, like
these, derived even from very different concep-
tual and mathematical primitives: While differ-
ent probabilistic choice models make different
predictions, it is important to note that some of
their predictions usually overlap. For example,
both Equation 10 and Equation 11 predict
near-certain choice of L if AL�tL 
 AS�tS is
very large in Equation 10 and if Equation 11
places nearly all probability mass on �-values
for which AL�tL 
 AS�tS is positive. In gen-
eral, however, neither Equation 10 implies
Equation 11 nor vice versa, that is, neither
model is a special case of the other.

The literature on discounting models has
made it quite clear that every detail about v, �,
and J matters, and many articles are dedicated
to discussing the details of the deterministic
core structure (Doyle, 2013; Frederick et al.,
2002). The literature on probabilistic response
mechanisms, much of which has operated in
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empirical paradigms outside intertemporal
choice, has likewise highlighted that every de-
tail about probabilistic response mechanisms
matters, because misspecified response mecha-
nisms lead to distortions of the deterministic
core in statistical tests and in statistical estima-
tion. Many articles are, in turn, dedicated to
discussing the details of response mechanisms,
primarily in risky choice (Birnbaum, 2011;
Blavatskyy, 2011; Blavatskyy & Pogrebna,
2010; Hey, 2005; Iverson, 1990; Loomes et al.,
2002; Luce, 1997; Stott, 2006; Wilcox, 2008).
The intertemporal choice literature has much to
gain from taking a similarly comprehensive
look at sources of heterogeneity and how to
model them beyond just refined deterministic
cores.

Using the framework we provided above, one
can select one or several specifications of hy-
pothetical constructs, and one or several proba-
bilistic specifications, to construct a collection
of competing models of pairwise choice proba-
bilities. One can then evaluate these competing
models on suitably designed stimuli using the
appropriate statistical methods. Exploring, test-
ing, and statistically estimating every possible
combination of fully specified deterministic and
probabilistic components, even among a modest
collection of cases like those we reviewed in the
previous two subsections, poses formidable
challenges. (a) Because of the many moving
parts in a fully explicit theory, there can easily
be thousands of combinations one may need to
consider in a comprehensive analysis. (b) Mod-
els grounded in different or similar conceptual
primitives need not imply the analogous simi-
larities and differences in their probabilistic and
statistical properties. (c) Different models differ
strongly in their a priori flexibility to accommo-
date potential empirical data. (d) Parsimony in
the model of hypothetical constructs can be
completely disconnected from parsimony of the
resulting choice model: Models with a larger
number of parameters in the deterministic core
need not be more flexible in their full probabi-
listic formulation. In fact, they can easily be
more parsimonious in the space of permissible
probabilistic responses. Hence, the standard ap-
proach of evaluating the parsimony of a theory
by counting the number of parameters used by
its deterministic functional specification is only
a coarse heuristic. (e) Allowing for individual
differences compounds the complexity and

computational cost of reconciling preference,
choice, and heterogeneity.

In light of these challenges, we proceed in a
manner different from typical model selection
approaches. Instead of considering specific
functional forms for preferences, as is common
in the literature, we abstract away to a core
property shared by a large class of models for
intertemporal preferences: transitivity of inter-
temporal preference. In other words, we follow
a long tradition of axiom testing as a method to
triage viable theories. Instead of considering
specific functional forms of probabilistic re-
sponse mechanisms, we abstract away to broad
classes of probabilistic choice models. We cre-
ate a collection of 20 models of pairwise choice
probabilities by (a) varying whether we allow
for one, some, or all transitive preferences; (b)
varying whether we consider preferences,
choices, or both to be probabilistic; and (c)
varying the upper bounds on error probabilities
where applicable. Applying these 20 models to
several different stimulus sets and investigating
their performance at both the individual and
collective level allows us to document in detail
the tradeoff between heterogeneity and parsi-
mony.

Probabilistic Choice Models of Transitive
Intertemporal Preference

We consider 20 probabilistic choice models
of transitive intertemporal preference at various
levels of parsimony (see also Figure 1). These
20 models form eight distinct model types. Four
of these model types build on the theoretical
premise that preferences, utilities, or strengths
of preference are deterministic and that re-
sponses are probabilistic. These are the noisy-P
(noisy patience), noisy-I (noisy impatience),
noisy-PI (noisy patience-impatience), and
noisy-LO (noisy linear order) models, each of
which we consider with three different bounds
on error rates. Two model types treat prefer-
ences as probabilistic and model responses as
deterministic reflections of those preferences.
These are the random-LO (random linear order)
and the random-LOT (random linear order with
tradeoffs) models. The other two model types
are hybrids derived from the assumption that
both preferences and responses are probabilis-
tic. These are the noisy-PI-mix (noisy patience-
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impatience mixture), and the noisy-LO-mix
(noisy linear order mixture) models, each of
which we consider with three different bounds
on error rates.

Deterministic Preferences Revealed
Through a Probabilistic Response Process

We first consider a simple model in which a
decision maker’s preference corresponds to the
linear order �A that rank orders the choice

alternatives from most to least desirable reward,
no matter the time delay. A possible reason for
this could be that the differences in time delays
used in a given study might be perceived as
negligible, compared to the relative attractive-
ness of the rewards. Hence, this preference or-
dering could derive from a more highly struc-
tured mathematical model like the general class
of models, shown in Equations 1 and 2, that we
reviewed earlier: For example, the functions v

Figure 1. Eight types of probabilistic choice models for linear order intertemporal prefer-
ences and the saturated model. The coordinates are the choice probabilities PLM, PLS, PMS.
The shaded regions are the permissible choice probabilities for each model. The figure shows
the case when � � 0.25 in (a)–(d), (g)–(h). Considering different upper bounds on error rates
yields additional models in these cases. See the online article for the color version of this
figure.
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and � of u � v J � might yield the linear order
�A on the stimuli used in the study. For one
collection of stimuli in our experimental study
(our “Set 5” stimuli), this is the case, for exam-
ple, when v�A� � A, ��t� � 1

1	�t and J � 	,
regardless of the discount parameter � � 0:
Hyperbolic discounting makes very restric-
tive predictions about preferences for our
Set 5. Alternatively, it could capture a simple
“larger is better, no matter when” heuristic on
some domain of stimuli. It is natural to sus-
pect that the model may be limited to idio-
syncratic data, that is, it may only perform
well for certain stimuli and certain respon-
dents.

The noisy-P model. Suppose that possible
rewards are linearly ordered. An example would
be distinct cash rewards, ordered from largest to
smallest amounts. The noisy-P model (noisy
patience model) states that the decision maker
facing L versus S chooses the larger, later re-
ward, L, regardless of time delay, up to random
error. Formally, writing �A for the ordering of
the options from best to worst reward and set-
ting 0  � � 1

2 as upper bound on the permis-
sible error rate,

Pxy�� 1 
 � if x �A y,

� � if y �A x.
(12)

Special cases of noisy-P. One possibility is
a tremble model of �A, according to which a
decision maker has fixed preference �A and
fixed probabilities ϵxy of making an error, with
each 0 � ϵxy � �. The noisy-P model is more
general in that only the upper bound � on error
rates is fixed, and error rates are permitted to
vary, subject to the upper bound constraint.
Hence, the error rates are not assumed to be
statistically identifiable, nor are they assumed to
be constant over time or across respondents.
Alternatively, for monetary rewards, the de-
cision maker might have a (fixed) utility func-
tion u � v J �, which, when constrained to
the options used in the study, happens to be
monotonically increasing in the magnitude of
the rewards. If L involves receiving AL and S
involves receiving only AS, with u � 0,
a specific Fechnerian (probit) model could
state

Pxy � �	ln	AL
�

AS
���,

where � is a cumulative normal with mean
zero. Here, the core theory models a decision
maker consistent with a concave exponential
utility function for money with exponent � � 1,
whose strength of preference is the ratio of
subjective utilities. This model is also nested in
the noisy-P model with � � 1

2.
In sum, there are many possible ways to

construct examples of the noisy-P model from
either very specific or rather abstract assump-
tions about the subjective perception of re-
wards, the perception of time, the perception of
the interplay between rewards and time, as well
as a multitude of response mechanisms. No
matter the details of such a construction, the
model describes a patient decision maker with a
deterministic core preference �A and noisy re-
sponses.

The noisy-I model. The noisy-I model
(noisy impatience model) states that the deci-
sion maker chooses the smaller, sooner reward,
S, regardless of the reward magnitude, up to
random error. Formally, writing �t for the or-
dering of the options from soonest to latest, and
setting 0 � � � 1

2 as upper bound on the
permissible error rate,

Pxy�� 1 
 � if x �t y,

� � if y �t x.
(13)

Note that, for any S and L pair, we have S �t L
and L �A S. As was the case for the noisy-P
model, the noisy-I model includes a multitude
of nested submodels and, hence, abstracts away
from a multitude of models about subjective
perceptions of rewards, time, their interaction,
and response mechanisms. Despite these ab-
stractions, this model is rather restrictive in that
it only permits one single core deterministic
preference relation.

The noisy-PI model. The noisy-P model
and the noisy-I model are extreme cases where
either only the linear order of the options along
the dimension of the reward or the dimension of
time matters. A slight generalization, allows
either �A or �t to be the underlying core de-
terministic preference, that is, it has a free pa-
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rameter � that may take two ‘values,’ namely
either �A or �t .

The noisy-PI model (noisy patience or im-
patience model) states that the decision maker is
either consistently patient or consistently impa-
tient, for a given stimulus set. More precisely,
she either consistently prefers L to S, regardless
of the time delays, or consistently prefers S to L,
regardless of the monetary values, and chooses
the preferred option up to random error. Setting
0 � � � 1

2 as upper bound on the permissible
error rate,

∃ � � {�A, �t} such that

Pxy�� 1 
 � if x � y,

� � if y � x.

One attraction of this model is its potential to
account for different stimulus sets in a very
parsimonious fashion: A person may be patient
for all stimuli in some stimulus sets and impa-
tient for all stimuli in other stimulus sets. For
example, for four of our stimulus sets, this
model is a natural abstraction of hyperbolic
discounting, that is, ��t� � 1

1	�t, v(A) � A and
J � 	. For our experimental stimulus collec-
tions labeled “Set 1” through “Set 4,” hyper-
bolic discounting makes very restrictive predic-
tions: In each case, regardless of the discount
parameter �, the resulting preference is either
�A or �t. However, one can specify a multitude
of other models that would predict either �A or
�t, besides hyperbolic discounting.

The noisy-LO model. Moving beyond pa-
tience and impatience, we also consider richer
models that permit true trade-offs among re-
ward and time. The first model of this kind
permits every linear order as a core preference
(or, equivalently, permits every one-to-one util-
ity function u). Like the noisy-P and noisy-I
models, it features a free parameter � that can be
interpreted as the maximal permissible error
rate. With the most generous choice of error
bound, � � 1

2, this model becomes the weak
utility model (6), one of the staple probabilistic
models used for testing transitivity of prefer-
ences in the literature (Tversky, 1969).

The noisy-LO model (noisy linear order
model) states that there exists a fixed linear
order � of the options, such that the decision
maker chooses in accordance with �, up to

random error. The linear order in question is
unknown to the experimenter and must be in-
ferred from the data. Formally, writing LO for
the collection of all linear orders of the options,
and setting 0 � � � 1

2 as upper bound on the
permissible error rate,

∃ � � LO such that

Pxy�� 1 
 � if x � y,

� � if y � x.

The noisy-P model and the noisy-I model
are both nested in the noisy-LO model: Because
�A� LO and �t � LO, if a person satisfies the
noisy-P model or the noisy-I model then she
also satisfies the noisy-LO model. The noisy-P
model with � � 1

2 is called “weak stochastic
transitivity” (7) and the “weak utility model” (6)
in the literature (Becker et al., 1963; Block &
Marschak, 1960; Luce & Suppes, 1965;
Marschak, 1960). Weak stochastic transitivity
requires advanced order-constrained statistical
methods (Iverson & Falmagne, 1985; Myung et
al., 2005)6 for a direct test. Tsai and Böckenholt
(2006) tested a probabilistic intertemporal
choice model on data of Roelofsma and Read
(2000) and obtained choice probability esti-
mates consistent with weak stochastic transitiv-
ity.7 Dai (2014) tested weak stochastic transi-
tivity directly using order-constrained Bayesian
methods and found it to be well supported in an
intertemporal choice task.

The noisy-LO model is clearly far less par-
simonious than the noisy-P model, the noisy-I
model, or the noisy-PI model because it is
flexible enough to permit any linear order as
deterministic core preferences (and any one-to-
one utility function u). On the flip-side, this may
enable us to model more respondents and more
types of stimuli. At the same time, however, it is
important to note that this model is highly sen-
sitive to heterogeneity: Put simply, if we ran-
domly select decision makers who each satisfy

6 As Regenwetter et al. (2011) discuss in the context of
risky choice, there are many published articles with inade-
quate tests of weak stochastic transitivity.

7 Roelofsma and Read (2000) had interpreted their find-
ings as evidence for intransitivity. Our R&R stimulus set
uses stimuli similar to those of Roelofsma and Read (2000)
to bring all 20 of our models to bear on that debate.
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weak stochastic transitivity, and we let them
make intertemporal choices, then their overall
combined (pooled) choice probabilities typi-
cally violate weak stochastic transitivity.8 In
any probabilistic choice model with determin-
istic core preferences, heterogeneity across in-
dividuals and/or across time is a recipe for hav-
oc. The same problem applies to the special
cases in which linear orders are derived from
functional forms: If a person’s parameter values
within a fixed functional form for, say, a dis-
counting model, drift over the course of an
experiment, then the person’s overall choice
probabilities may violate the noisy-LO model,
even though every individual choice may have
originated from that model. The same applies to
interindividual differences: If two decision
makers satisfy, say, probit models of hyper-
bolic discounting (i.e., models that satisfy
weak stochastic transitivity), but they use dif-
ferent discount rates, then their averaged
choice probabilities need not satisfy a probit
model of hyperbolic discounting at all, and
typically do not even satisfy weak stochastic
transitivity.9

Probabilistic Preferences Revealed Through
a Deterministic Response Process

Random preference and certain distribution-
free random utility models start from funda-
mentally different premises than the four mod-
els we have just discussed. Here, the decision
maker is uncertain about which option is pref-
erable, yet, no matter which sample point of the
underlying sample space is realized, the core
theory is fully satisfied. Conditional on the mo-
mentary preference, the response is error-free.

The random-LO model. Binary choice
probabilities satisfy the random-LO model
(random linear order model) if there exists a
probability distribution over linear orders such
that the binary choice probability of choosing L
over S is the total probability of those linear
orders in which L is preferred to S. Formally, let
LO denote the collection of all linear orders on
a given set of choice options. Binary choice
probabilities satisfy the random-LO model if
there exists a probability distribution � on
LO, that is, 0 � ���� � 1, ∀ � � LO and

���LO ���� � 1, such that

Pxy � �
��LO

x�y

�(�) (for all distinct options x, y).

This model is mathematically equivalent to
the distribution-free random utility model (9) in
that binary choice probabilities satisfy one
model if and only if they satisfy the other
(Block & Marschak, 1960).

The random-LOT model. We consider
one more random preference model, namely the
case in which all linear orders, except �A and
�t are permissible preferences states. This
model rules out the extreme cases of completely
patient or completely impatient preference
states. Let LOT denote the collection of all linear
orders on a given set of choice options, except �A

and �t, that is, LOT � LO \ {�A, �t}. Binary
choice probabilities satisfy the random-LOT
model (random linear order with tradeoffs
model) if there exists a probability distribution
� on LOT, such that

Pxy � �
��LOT

x�y

�(�) (for all distinct options x, y).

(14)

This model can also be restated in random
utility terms. Binary choice probabilities satisfy
Equation 14 if and only if there exist jointly
distributed random variables, with Ux denoting
the random utility of option x and � denoting
the probability measure governing the joint distri-
bution, with ��Ux � Uy� � 0, ∀x � y, such that
��� r, s

r �A s
Ur � Us��0 and ��� v, w

v �t w
Uv � Uw��0.

Probabilistic Preferences Compounded
With Probabilistic Responses

We now consider a hybrid between the noisy-
P model and the noisy-I model, and a hybrid
of the random-LO model and the noisy-LO
model. They follow from the general theoretical
premise that preferences and responses are both
probabilistic. Within an individual, this premise

8 The weak utility model’s sensitivity to heterogeneous
populations is historically known as the famous Condorcet
paradox of social choice theory (Condorcet, 1785).

9 These observations follow trivially from the convexity
or nonconvexity of various probability spaces.
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can capture the idea that the individual is both
uncertain about his preference and responds in a
noisy fashion. At the group level, these models
describe a heterogeneous population of up to
three types of decision makers: those with de-
terministic preferences who respond in a noisy
fashion, those with uncertain preferences who
respond in a deterministic fashion, and those
with uncertain preferences who also respond
noisily. We limit ourselves to the two extreme
cases where either only the two preferences �A
and �t are permissible, or where all linear or-
ders are permissible.

The noisy-PI-mix model. Let 0  � � 1
2

be an upper bound on the permissible error rate.
Let Pxy

A denote the binary choice probabilities
according to the noisy-P model (12) and let Pxy

t

denote the binary choice probabilities according
to the noisy-I model (13). According to the
noisy-PI-mix model (noisy patience-impa-
tience mixture model), there exists a mixture
probability p such that, in any given pairwise
choice between L and S the person chooses
according to the noisy-I model with probability
p and according to the noisy-P model other-
wise.10

∃p � [0, 1] such that Pxy � pPxy
t 	 (1 
 p)Pxy

A ,

where Pxy
t �� 1 
 � if x �t y,

� � if y �t x,
and

Pxy
A�� 1 
 � if x �A y,

� � if y �A x,

�for all distinct options x, y).

This model could, for example, model a pop-
ulation consisting of patient and impatient indi-
viduals only, with each decision maker also
potentially making errors in his choices. Within
person, it can model an individual who, for
example, waivers between being patient and
impatient, compounded with errors in her choices.
This model is particularly interesting in that it
does not connect to, say, discounting models, as
easily as others. To satisfy this model, a popu-
lation would have to consist of individuals
whose discount rates are consistent with only
the two preference rankings �A and �t on a
given set of stimuli. As a discounting model of
an individual, this would only allow discount
rates according to which the individual either

has preference �A or �t. In our stimulus sets
Set 1 to Set 5 (but not R&R), this is indeed the
case for hyperbolic discounting: As we have
seen earlier, hyperbolic discounting predicts �A
or �t regardless of discount rate in those five
stimulus sets. Other discounting models predict
a larger variety of preferences.

The noisy-LO-mix model. Our most com-
plex (i.e., least statistically parsimonious)
model permits a probability distribution over all
possible linear order core preferences, com-
pounded with noisy responses. Let 0  � � 1

2 be
an upper bound on the permissible error rate,
and ∀ � � LO, let p� denote the probability of
making choices according to a noisy process
with � as core preference. Then the noisy-
LO-mix model (noisy linear order mixture
model) states that

Pxy � �
��LO

p�Pxy
� with Pxy

��� 1 
 � if x � y,

� � if y � x,

�for all distinct options x, y).

The noisy-PI-mix model is a nested sub-
model of the noisy-LO-mix model, in which
p�A

� p � 1 
 p�t
and P�A � PA, as well as

P�t � Pt.
Summary of models. Figure 1 visualizes

some of the similarities and differences between
these models. Suppose that L is larger and later
than M, which is, in turn, larger and later than S.
The coordinates of the three-dimensional (3D)
figure show binary choice probabilities PMS on
the vertical axis marked (M, S), PLM on the axis
marked (L, M) from the origin to the right, and
PLS on the axis marked (L, S) from the origin to
the left. The deterministic core preferences cor-
respond to corners (binary choice probabilities
equaling 0 or 1) of the 3D cube. Despite being
based on similar core premises about the hypo-
thetical constructs of preferences or utilities, the
models differ dramatically in their behavioral
predictions. At the same time, probabilistic
choice models that are built on different under-
lying premises overlap in complex ways. While

10 Note that our formulation of this model does not permit
p to vary with xy. However, because it forms a convex set,
the model does allow some variation of p over time, includ-
ing some degree of variation over repeated observations.
Likewise, viewed as a model of a population, it allows for
interindividual heterogeneity in the value of p.
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the figure shows correctly which models are
nested (such as noisy-PI in noisy-PI-mix), it is
important not to overinterpret the 3D visualiza-
tion with respect to the parsimony of these
models. Some of the models that appear to be
relatively large in Figure 1 (such as random-
LO) rapidly become very restrictive in higher
dimensions (i.e., they become more parsimoni-
ous when there are more than three choice prob-
abilities). Likewise, some models that are very
restrictive on just three choice probabilities may
be less so in higher dimensions (e.g., random-
LOT is only slightly more restrictive than ran-
dom-LO in higher dimensions).

Table 1 summarizes our models from a dif-
ferent perspective. The first column lists the
model names, whereas the second column
shows the set of core preference states permitted
by the core theory in each model. In addition to
the eight models above, we also consider a
saturated model that places no constraints
whatsoever on binary choice probabilities. Its
core theory is unconstrained in that it allows all
(asymmetric) binary preference relations as
preference states. We denote the set of all such
binary preferences by B. Columns 4 and 5 of
Table 1 summarize whether preferences and
responses are each deterministic or probabilis-
tic. The last column gives each model a label
that we use in our data analyses below. Models
derived from probabilistic core preferences are
shaded with a gray background. Models with
deterministic response processes are marked in
bold.

Model Specification for Bayesian
Statistical Analysis

The premise of this article is threefold. (a)
There are many moving parts to a fully specified
model of intertemporal binary choice behavior,
with much prior work discussing only unob-
servable hypothetical constructs in detail. (b)
Different transitive models of observable inter-
temporal choice behavior vary in their parsi-
mony. (c) We expect a tradeoff between the
parsimony of a model and the variety of indi-
viduals and stimuli for which it can account,
with the most parsimonious models likely
working only for specific individuals and spe-
cific stimuli, and a universal model for all indi-
viduals and stimuli likely requiring extreme

flexibility. In line with these conceptual expec-
tations, we analyze our data from multiple per-
spectives. In contrast with most of the literature,
our analyses are custom-designed to account
formally for various levels and types of hetero-
geneity and parsimony.

We report all our analyses in Bayesian terms
here and provide frequentist (hypothesis test-
ing) analyses in the supplementary materials.11

We use Bayesian p values (Gelman, Meng, &
Stern, 1996) to assess model viability, Bayes
factors (Kass & Raftery, 1995) to compare
models at the level of each individual respon-
dent, and group Bayes factors (GBFs; Stephan,
Weiskopf, Drysdale, Robinson, & Friston,
2007) to aggregate Bayes factors across respon-
dents. The magnitude of the Bayes factor be-
tween two models is the degree of evidence in
favor of one model over the other. Our applica-
tion of these methods to behavioral data follows
similar recent analyses in the context of risky
choice (Cavagnaro & Davis-Stober, 2014; Da-
vis-Stober, Brown, & Cavagnaro, 2015; Guo &
Regenwetter, 2014). In those studies, as in ours,
models were defined through systems of linear
inequality constraints on binary choice proba-
bilities. Because Bayesian model selection re-
quires that, in addition to constraints on choice
probabilities such as those visualized in Figure
1, the models be cast via a likelihood function
and a prior, we reformulate each set of inequal-
ity constraints using a prior distribution with
support over only those probability vectors that
are consistent with the model in question (see
also Myung et al., 2005).

Formally, let C denote a collection of d dis-
tinct unordered pairs of choice options. For each
pair �x, y � C, let Pxy denote the binary choice
probability of x being chosen from {x, y}, and

let P
¡

� �Pxy�x, y�C denote a binary choice prob-
ability vector (because each Pxy � 1 
 Pyx, we
only use/count one of these two probabilities for
each pair {x, y}). Then, for each model q de-
fined above, let �q � �0,1�d denote the subset of

11 Wherever both statistical approaches are applicable,
our Bayesian and frequentist analyses are well aligned in the
scientific conclusions that they support. The Bayesian ap-
proach is advantageous here: It naturally handles a situation
like ours, in which some but not all models are nested within
each other, and some models differ strongly in their parsi-
mony despite having the same number of free parameters
(here each model is characterized by 10 binomials).
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binary choice probability vectors P
¡

satisfying
the inequality constraints that characterize
model q, and let vq denote the Lebesgue mea-
sure (i.e., volume) of �q. We construct the
Bayesian model Mq with a uniform prior over
the model, that is, with the order-constrained
prior distribution

�(P
¡

| Mq) � �
1

vq
if P

¡

� �q,

0 otherwise,

(for all P
¡

� [0, 1]d).

Fully specified Bayesian models follow nat-
urally by combining each order-constrained
prior with a likelihood function, defined as fol-
lows. Let Nxy denote the number of times that
the pair of delayed rewards {x, y} is presented
to the decision maker, let nxy denote the number
of times that x was chosen from {x, y}, and let
n
¡

� �nxy�x,y�C. Assuming that repeated choices
from each option pair are identically distributed
and that all choices are mutually independent,12

the likelihood function f for a set of responses n
¡

takes the following product-of-binomials form:

f(P
¡

| n
¡

) � �
x,y�C

	Nxy

nxy
�Pxy

nxy(1 
 Pxy)
Nxy
nxy.

(15)

In addition to the models we have already
described, we also define a “saturated” model

to serve as a common baseline against which
to compare each substantive model. This
model puts no constraints on binary choice
probabilities, so it is defined by the prior �

�P
¡

� saturated model� � 1, P
¡

� �0, 1�d; that is, a
uniform prior over the entire space of all choice
probability vectors. This model is vacuous in
the sense that it is guaranteed to fit any set of
data perfectly. In model selection analyses that
penalize for complexity, this model will receive
the largest penalty because it is maximally com-
plex. The saturated model provides a common
benchmark for measuring the degree of evi-
dence supporting or contradicting each substan-
tive model. It also lets us define what it means
for a substantive model to fail: If a model’s
Bayes factor against the saturated model is less
than 1.0, then we are better off using the satu-
rated model (i.e., no model) than the substantive
model. If the Bayes factors of all our substan-
tive models were less than 1.0, this would sug-
gest that the data violated a fundamental as-
sumption shared by these models, such as, for
example, transitivity.

12 In a Bayesian framework, the same likelihood function
can be derived from different theoretical primitives about
the data generating process and the interpretation of Pxy. In
particular, one may assume that repeated choices on the
same option pair are infinitely exchangeable and that
choices on different choices pairs are independent. See
Bernardo (1996) for discussion.

Table 1
Summary and Notational Convention for the Models Under Consideration
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Experiments

We ran two studies aimed at evaluating the
eight types of probabilistic choice models of
transitive intertemporal preference. Decision
makers made pairwise choices between larger,
later and smaller, sooner options. The experi-
ments were run in two locations: Urbana–
Champaign, Illinois, USA and Berlin, Ger-
many. In each location, we used six different
stimulus sets to cover a range of different stim-
uli. One experiment collected enough repeated
choices for the same stimuli from each person
(mixed with a large number of distractors) to
permit individual subject analyses. The other
experiment drastically simplified the task by
asking each respondent to make each pairwise
choice only once. Hence, the second experiment
does not provide enough data from each respon-
dent for individual-level analyses.

Respondents

Respondent recruitment and testing took
place at both the University of Illinois at
Urbana–Champaign (UIUC) and the Max
Planck Institute for Human Development
(MPI). UIUC respondents were university stu-
dents and local residents. MPI respondents at-
tended a German university and chose to par-
ticipate through their institute’s experimental
respondent pool. All respondents received mon-
etary rewards based on choices they made dur-
ing the experiment and they only learned their
reward amount after completion of the experi-
ment. In accord with payment standards at the
University of Illinois, UIUC respondents also
received an additional base payment ($12 for
Experiment 1 and $8 for Experiment 2).

Before experimental testing, we selected a
subset of trials from which all rewards would be
paid. These preselected trials all had relatively
high reward amounts, thus ensuring sufficient
remuneration. Each respondent’s particular re-
ward was determined by randomly selecting
one of these preselected trials. Respondents
were not informed about the mechanism by
which we selected stimuli that were used for
payment and whether this selection was made
before or after data collection. Respondents
were explicitly instructed at the beginning of the
experiment to make choices based on their true
preferences because they would receive one of

their chosen time-delayed rewards as a real pay-
ment. We paid UIUC respondents with the ex-
act delay specified (even if the date fell on a
weekend or holiday) by implementing a pay-
ment system via an agreement between the uni-
versity and Amazon.com. After the experiment
was over, respondents provided an email ad-
dress to which an electronic Amazon gift code
(matching the U.S. dollar value of their chosen
reward) was sent on the specified calendar day
in the future (matching the delay of their re-
ward). The MPI offered respondents two op-
tions at the end of the study. If the real reward
was an option that included a positive time
delay, respondents could opt to receive 85% of
the amount in cash immediately instead of wait-
ing for the delayed full reward. Respondents
were not told that they could substitute this
immediate payment until they had completed all
choices. If they opted for the full delayed re-
ward, they received it after the specified delay
through a bank transfer in euros.13

For Experiment 1 (at UIUC), we tested 31
respondents (14 males, 17 females) from June to
October 2012 with a mean � SD age of 20.8 �
2.4 years (range 18–28). At MPI, we tested 30
respondents (16 males, 14 females) from June to
July 2012 with a mean � SD age of 25.6 � 3.7
years (range 20–34). For Experiment 2 (at UIUC),
we tested 34 respondents from September to No-
vember 2013. Age and gender of these respon-
dents was not recorded. At MPI, we tested 30
respondents (10 males, 20 females) from Novem-
ber to December 2013 with a mean � SD age of
25.3 � 2.6 years (range 20–30).

Experimental Procedure

The UIUC Institutional Review Board and
the Ethics Committee of the MPI reviewed and
approved both experiments.14

Procedure. Respondents completed the ex-
periments on computers. UIUC respondents
saw English text and U.S. dollars for currency,
whereas MPI respondents saw German text and
euros for currency but identical numbers as did
the U.S. respondents (not currency-converted
values). Respondents could first provide their

13 The supplementary materials provide the instructions
to respondents and the stimuli used for real payment.

14 University of Illinois at Urbana–Champaign Institu-
tional Review Board approval #11427.
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age, gender, and occupation.15 They then read
one set of instructions, completed 10 practice
trials, and then read a final set of instructions
before beginning the actual trials. This final
instruction set informed each respondent that
their reward at the end of the experiment would
be determined by one of the choices made dur-
ing the study. For each trial, the respondents
used a computer mouse to select one of two
options presented on the screen, each character-
ized by a specified reward amount and a time
delay. At the end of the experiment, respondents
were then shown the reward that they were
going to receive.16

Experiment 1 consisted of two sessions with
1,006 trials each (including six warm-up trials).
At UIUC, respondents completed the two ses-
sions of Experiment 1 on 2 different days. MPI
respondents completed the two sessions for Ex-
periment 1 on a single day, separated by a 5- to
15-min break. Each session of Experiment 1
took respondents 30–90 min to complete. While
Experiment 1 was designed to elicit enough
information from each person to permit within-
respondent data analyses, Experiment 2 was
aimed at collecting the same kind of data with a
much smaller number of trials, for a joint anal-
ysis of all respondents combined. It had a single
session with 106 questions (six of them
warm-up trials) and took respondents 10–30
min to complete. Respondents in Experiment 2
saw the same questions as respondents in Ex-
periment 1, except that none of the items were
repeated.

Stimuli. We created six option sets. Sets
1–5 each consisted of five intertemporal options
(top of Table 2). The sets varied in the magni-
tude and spread of monetary amounts (stated in
$ and €) and in the magnitude and spread of
time delays (stated in days). For each set of five
options, we created all 10 possible pairwise
combinations of options to create 10 different
option pairs per option set. Across all five sets
of stimuli, this resulted in a total of 50 option
pairs. We also used an additional collection of
nine option pairs. We adapted one triple from
stimuli in Roelofsma and Read’s (2000) study
of intransitivity in intertemporal choice, and
two additional such triples were similar but
varied and expanded the range of reward
amounts. This sixth stimulus set of nine option
pairs is labeled R&R (bottom of Table 2).

For Experiment 1, to permit within-respon-
dent statistical analysis, respondents saw each
of the 59 option pairs 20 times,17 yielding 1,180
experimental trials. These 1,180 trials were
mixed with another 832 pairs of stimuli, some
of which were designed to test other hypotheses
while others served as distractors. The 2,012
pairs of stimuli were divided into blocks, each
consisting of a series of five consecutive op-
tion pairs. Within each block, we randomized
the order of presentation across respondents.
The order of the blocks was constant across
respondents. Each block contained two or
three experimental pairs, but never from the
same stimulus set. We placed option pairs
from the same set in alternating blocks, so
respondents saw 5–13 other pairs between
experimental pairs from the same stimulus
set. Respondents were shown 95–103 option
pairs before experiencing a repetition of the
same pair.

It is natural to question whether making in
excess of 1,000 decisions per session could
bias a respondent’s behavior and yield unre-
alistic data. We tested this concern empirical
by running a second experiment with the
same stimuli, but with a small number of
individual trials per person. Hence, for Exper-
iment 2, where we did not aim to carry out
individual respondent statistical analyses, re-
spondents saw each of the 59 option pairs
exactly once. They were also given another
47 distractor pairs. The method of sequencing
the presentations of these option pairs
matched that of Experiment 1.

Results of Experiment 1

We tested all eight model types, as illustrated
three-dimensionally in Figure 1. For noisy-P,

15 This step was accidentally omitted by the person ad-
ministering Experiment 2 at UIUC.

16 The experimental software used was a custom-made
program called Disk’n’Risk, developed by Uwe Cziens-
kowski at MPI. The supplementary materials give further
experimental details.

17 We repeated each option pair 20 times to accommodate
a frequentist analysis. If we only ran the Bayesian analysis,
we could cut this by a factor of 3. For example, Davis-
Stober et al. (2015) used eight repetitions per option pair in
a ternary choice experiment. Some parametric models, such
as logit and probit models work without repetitions of the
same stimuli and, instead, use many different stimuli for
statistical convergence.
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noisy-I, noisy-PI, noisy-PI-mix, noisy-LO,
noisy-LO-mix, we furthermore used three dif-
ferent bounds � on error rates: � � 0.5 (modal
choice, which contains Fechnerian models,
such as logit and probit specifications, as spe-
cial cases), � � 0.25 (whose maximum error
rate is considered adequate by some scholars,
e.g., Harless & Camerer, 1994), and � � 0.1
(according to which errors are not a major
component of the response process). All in
all, therefore, we tested 20 different transitive
probabilistic models of intertemporal choice.
All of our analyses require order-constrained
statistical inference, implemented in the pub-
lic domain software QTest, programmed for
multiple computing platforms18 (Regenwetter
et al., 2014).

Are Transitive Models Viable?

We first assess the overall viability of each
model for each respondent and stimulus set by
computing the Bayesian p values (Gelman et al.,
1996). The Bayesian p value is a posterior pre-
dictive check of the descriptive adequacy of
each model. It is computationally inexpensive
and relatively easy to interpret. Essentially, the

Bayesian p value is computed by comparing the
observed data to the posterior predictive distri-
bution of the model. If the observed data are
consistent with the posterior predictive distribu-
tion, then the Bayesian p value is high; other-
wise, it is low (see Myung et al., 2005, for
details on computation). A standard approach is
to declare an adequate fit of a model to the data
whenever the Bayesian p value exceeds 0.05.
The Bayesian p value does not indicate the
probability that a model is correct. Bayesian p
values cannot be compared across models. We
use Bayesian p values only to determine the
proportion of respondents for whom each model
provides at least an adequate fit, and we leave
model selection for later.

We computed the Bayesian p value of each
model separately for each respondent and stim-
ulus set. Figure 2 shows, for each model and
stimulus set, the proportion of respondents for

18 The original (frequentist only) release of QTest is
available at www.regenwetterlab.org. A new multicore
compatible version with Bayesian capabilities is available
from the authors while it is being prepared for public
release.

Table 2
Six Stimulus Sets

Set 1 options Set 2 options Set 3 options Set 4 options Set 5 options

Money Days Money Days Money Days Money Days Money Days

3 4 1 1 14 23 1 1 9 80
5 28 5 21 15 27 3 4 11 83
7 52 9 41 16 31 5 7 13 86
9 76 13 61 17 35 7 10 15 89

11 100 17 81 18 39 9 13 17 92

R&R pairs

S L

Money Days Versus Money Days

7 7 vs. 8 14
7 7 vs. 10 49
8 14 vs. 10 49

10 16 vs. 12 18
10 16 vs. 15 25
12 18 vs. 15 25

4 13 vs. 5 16
4 13 vs. 11 22
5 16 vs. 11 22

Note. In Sets 1–5, we considered all 10 possible distinct S vs. L pairs among the five listed options. In R&R, we considered
the nine listed S vs. L pairs.
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whom that model provided an adequate fit (fre-
quentist fits are available in Figure S1 in the
supplementary materials). Overall, there seem
to be several transitive models that provide ad-
equate fits for most respondents and most stim-
ulus sets. The most complex model, in which all
linear orders are permissible preference states
and in which responses can be maximally noisy,
the noisy-LO-mix model with � � 1

2, provides
an adequate fit for nearly every respondent in
every stimulus set. On the one hand, this means
that transitive models can account almost uni-
versally for our data across respondents and
stimulus sets. On the other hand, the three in-
stances of the noisy-LO-mix are among the
most statistically complex of the models we
have tested, and the Bayesian p value does not
penalize models for complexity.

In contrast, the noisy-I models at all noise
bounds were inadequate for all but a few re-
spondents in each stimulus set, casting doubt on
this model’s viability as an explanation of the
data at any level of the error bounds. However,
because this model is especially parsimonious
relative to the others, especially at the 0.1 noise
bound, it is possible that a noisy-I model could
provide the best explanation for those respon-
dents and stimulus sets in which its Bayesian p
value exceeded 0.05.

The random-LO model fits a large proportion
of respondents. When the �A and �t options are
removed in the random-LOT model, however,
the fit drops dramatically. The large decrease in fit
caused by the removal of these preference states
suggests that linear orders based exclusively on
either amount or time played a key role in the
good performance of the random-LO model.

The noisy-P models seem to show the great-
est interaction across stimulus sets, especially at
the 0.25 and 0.1 noise bounds, as they are
adequate for most respondents in Stimulus Sets
3, 4, and 5, but fewer than half of the respon-
dents in Sets 1, 2, and R&R. Similar patterns of
interaction emerge for the noisy LO models,
noisy-PI models, and noisy-PI-mix models,
especially those with lower error bounds �. These
results raise the question whether respondents’
behavior may be best described by different mod-
els in different stimulus sets, with an overall
model across stimulus sets requiring some flexi-
bility. To answer this question more conclusively,
we proceed to the model selection analysis.

Model Selection Results: Individual Level
Analyses

Our next goal is to identify the best model at
the individual level, before we proceed to the

Figure 2. Bayesian p values in Experiment 1. Each panel shows the results for one model,
with the level of � indicated in the header after the model name (where applicable). Each panel
reports the proportion of respondents (out of 61) with adequate fits (Bayesian p value � 0.05),
on the vertical axis, separately for the six stimulus sets. See the online article for the color
version of this figure.
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group level. Our criterion for model selection is
the Bayes factor (Kass & Raftery, 1995), de-
fined as the ratio of the marginal likelihoods of
two models, derived from Bayesian updating.
The Bayes factor accounts for both goodness-
of-fit and complexity/parsimony. It selects
among models based on generalizability (Pitt &
Myung, 2002), in that the model with the high-
est Bayes factor is the one deemed to most
accurately predict future data samples from the
same process that generated the currently ob-
served sample (see, e.g., Liu & Aitkin, 2008).

To identify the best model at the individual
level, we computed the Bayes factor of each
model, relative to the saturated model, sepa-
rately for each respondent and stimulus set.19

With 20 models, 61 respondents, and six stim-
ulus sets in our study, this analysis yielded a
total of 7,320 respondent-level Bayes factors.
Our Bayes factors varied across many orders of
magnitude (the Bayes factors for each model,
respondent, and stimulus set are available in a
spreadsheet that is part of the supplementary
materials). Many Bayes factors were quite large
and, hence, provided strong evidence in favor of
the model in question. However, likewise, in
many cases, the evidence against a given model
was quite strong: Of the nearly 3,000 Bayes
factors that were smaller than 1.0, nearly half
(1,450) had log10 values between 
10 and

200. Of these, 984 were for the noisy-I, 223
were for the noisy-P, 131 were for the noisy-
PI, 58 were for the noisy-PI-mix and 54 were
for the noisy-LO. Table 3 summarizes the re-
sults by reporting key features of the best model
for each respondent and stimulus set. The fea-
tures are identified using the labels introduced
in Table 1. For example, the best model for
Respondent 1 in Set 1 in the UIUC sample is
noisy-PI-mix, which assumes probabilistic
preferences and choices. So, the corresponding
cell is shaded to indicate probabilistic prefer-
ences and it shows the core theory � � A, � t in
plain text (rather than bold) to indicate proba-
bilistic choices. For simplicity, the table uses
the same label for all models with the same core
theory, preferences, and response process, re-
gardless of error bound (e.g., noisy-PI-mix
with � � 0.5 and noisy-PI-mix with � � 0.1).

Perhaps the most prominent aspect of Table 3
is the apparent heterogeneity across respondents
and stimulus sets. No single core theory, type of

preference, or type of response process was
robust across all respondents and stimulus sets.
In fact, not only was there heterogeneity in
terms of the best model, there was also hetero-
geneity in terms of which models were ade-
quate. That is to say, no model had a Bayes
factor greater than 1.0 for every respondent and
stimulus set, meaning that every model failed
on at least one respondent and stimulus set,
relative to the saturated model (see the spread-
sheet in the supplementary materials for the
Bayes factor of each model, respondent, and
stimulus set). This does not mean all of the
models failed overall, as there were only very
few cases (eight out of 366 respondent-by-
stimulus combinations, indicated by the black
shaded boxes in Table 3) in which none of the
20 models had a Bayes factor greater than 1.0.
Nevertheless, the eight cases in which the sat-
urated model was favored represent instances in
which transitivity (a core assumption shared by
all 20 models under consideration) may have
been violated. In the current modeling frame-
work, a violation of transitivity means that the
core theory of the best model includes one or
more intransitive preferences. Interestingly,
four of the apparent violations involved just two
respondents: UIUC Respondent 14 and MPI
Respondent 22; and six of them involved just
one stimulus set: Set 2. This clustering of ap-
parent violations within certain experimental
conditions and respondents is consistent with
the findings of Cavagnaro and Davis-Stober
(2014) and suggests that the violations may
represent robust individual differences.

19 In general, Bayes factors of inequality constrained
models cannot be obtained analytically. However, in this
particular case, we were able to obtain analytical solutions
for the Bayes factors of noisy-P, noisy-I, noisy-PI, and
noisy-LO, relative to the saturated model. This is because
the inequality constraints are orthogonal within each of
these models, and the priors on each dimension are inde-
pendent and conjugate to the likelihood function. We ob-
tained respondent-level Bayes factors for the remaining
models, in which the order constraints are not orthogonal,
using Monte Carlo integration. To compute PBFs, we used
a specialized procedure developed by Klugkist and Hoijtink
(2007). In short, this algorithm yields the Bayes factor for
an order-constrained model versus the saturated model by
drawing a large sample from the posterior distribution of the
saturated model and computing the proportion of the sample
that satisfies the order constraints of the nested model (see
Cavagnaro & Davis-Stober, 2014, for additional details).
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Although no core theory was best across the
board, �A most frequently performed best (264
of 366 entries in Table 3), indicating that most
respondents seem to prefer the option with the
highest amount, regardless of the time delay.
This was especially the case in Stimulus Sets 4
and 5, in which all but eight respondents were
best described by a model assuming core theory
�A. In contrast, fewer than two thirds of respon-
dents were best described by �A in Stimulus
Sets 1, 2, and R&R. Despite these variations
across stimulus sets, we found that about half
(31 out of 61) respondents were best described
by the same core in all six stimulus sets (these
are marked in Table 3 with respondent numbers
enclosed in hyphens, e.g., -2-). This consistency
suggests that the best core theory may be some-
what robust across stimulus sets, within some
respondents.

Like any model selection analysis on exper-
imental data, our analysis is specific to the mod-
els, participants, and stimuli considered. The
fact that �A accounts well for some stimulus
sets but not others suggests that it is worthwhile
considering core theories that agree with �A on
some stimulus sets but not others. In our Road-
map section, we discuss how to evaluate a va-
riety of core theories using the same general
approach, and with appropriate stimuli.

Model Selection Results: Group-Level
Analyses

To select among models at the group level,
we use two measures: the GBF (Stephan et al.,
2007) and the pooled Bayes factor (PBF). Both
select among models at the group level, but they
differ in the mechanism by which respondent-
level results are aggregated: the PBF aggregates
data across respondents, whereas the GBF ag-
gregates likelihoods across respondents. The
PBF is the ratio of the marginal likelihoods of
two models given the pooled data from all re-
spondents, whereas the GBF is the product of
respondent-level Bayes factors. Thus, the model
with the highest PBF is the one that best ac-
counts for the pooled data, while the model with
the highest GBF is the one that jointly best
accounts for each respondent’s data.20

Table 4 ranks each model based on the GBF
and PBF, respectively, in each stimulus set (the
log10 transformed GBF and PBF values are re-
ported in Table S2). For pooled data, it only

makes sense to evaluate models which, if there
is more than one core deterministic preference,
can inherently accommodate heterogeneity of
preferences. Formally, these are models whose
parameter spaces form convex sets, that is, we
must omit the noisy-PI model and the noisy-
LO model (such as weak stochastic transitiv-
ity).

The noisy-PI-mix model was by far the most
successful, according to both the GBF and PBF,
in almost all stimulus sets. The exceptions were
Set 2, in which noisy-LO was best according to
GBF, and R&R, in which noisy-LO and noisy-
P were best according to the GBF and PBF,
respectively. What is most notable about this
result, besides the near-unanimity across stim-
ulus sets, is that noisy-PI-mix assumes proba-
bilistic preferences, whereas a vast majority of
respondents were best described as having de-
terministic preferences. These results are not
contradictory, as they may seem at first, because
probabilistic preferences at the group level need
not imply that every decision maker in the
group has uncertain preferences. Rather, prob-
abilistic preferences at the group level implies
that the sample comprises a heterogeneous mix
of up to three types of decision makers: those
with deterministic preferences who respond in a
noisy fashion, those who have uncertain prefer-
ences and respond in a deterministic fashion,
and those who have uncertain preferences and
respond in a noisy fashion. The group-level
analyses cannot identify the nature of the het-
erogeneity more precisely because they do not
distinguish between variability within respon-
dents (such as, preference uncertainty) and vari-
ability between respondents (such as, individual
differences in core preferences).

Despite the limitations of the group-level
analyses, they are essential for obtaining results
that generalize beyond each particular decision
maker. The current GBF results suggest that the
model that will generalize best to data from a
randomly selected respondent is noisy-PI-mix.
Although this model implies probabilistic pref-

20 This interpretation of the GBF rests on two assump-
tions: that every respondent has the same model (i.e., the
same set of restrictions on choice probabilities, but not
necessarily the same choice probabilities) and that the
model evidences are independent. The latter assumption is
tenable for GBFs as long as respondents are sampled inde-
pendently from the population.
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erences �A and �t, we can see from the respon-
dent-level results, in Table 3, that it is unlikely
for a randomly selected respondent to be best
described by such a model (most are best de-
scribed by models with deterministic preference
�A). However, because there are individual dif-
ferences, the randomly selected respondent may
be best described as having deterministic pref-
erence �A, or deterministic preference �t, both
of which are part of �A � �t. Thus, noisy-
PI-mix is selected by the GBF because it is
deemed to provide the most parsimonious ac-
count that is consistent with the behavior of
most respondents.

It also stands out that noisy-PI-mix does
well in only four of the six stimulus sets,
whereas noisy-LO does well in Set 2 and R&R.
In fact, the only models that beat the uncon-
strained model across all six stimulus sets are
noisy-LO with error rates of 0.25 and 0.5. This
suggests that generalizing across multiple stim-
ulus sets requires more preference patterns than

just �A and �t. This result highlights the im-
portance of the choice of stimulus sets when
testing models of intertemporal choice. If one is
only concerned with modeling choices on a
narrow set of stimuli, such as those in Sets 3–5,
then a small set of preference patterns may
suffice. However, generalizing to a broader set
of stimuli may require additional preference
patterns, perhaps even intransitive patterns.
Identifying the minimal set of preference pat-
terns that generalizes to any arbitrary stimulus
sets is beyond the scope of this article. Later, in
the Roadmap section, we provide additional
guidance on investigating this issue.

The PBF results suggest a slightly different
interpretation than the GBF results. Because the
PBF is based on pooled data, the model selected
by the PBF is the one that is deemed to gener-
alize best to future pooled data. That is, it may
not be representative of any particular respon-
dent, but it parsimoniously captures the aggre-
gate choice proportions. This distinction be-

Table 4
Experiment 1: Ranking of Each Model From Best to Worst, in Terms of the Joint (Group Bayes Factor
[GBF]) and Pooled (Pooled Bayes Factor [PBF]) Analyses, in Each Stimulus Set (Column), Combined
Across Locations

Joint (GBF) Pooled (PBF)

Model � Set 1 Set 2 Set 3 Set 4 Set 5 R&R Set 1 Set 2 Set 3 Set 4 Set 5 R&R

Noisy-P .10 (19) (18) (18) (17) (16) (18) (11) (9) (11) 2 1 (10)
Noisy-P .25 (17) (17) (17) (16) 9 (16) (10) (8) 2 3 3 (9)
Noisy-P .50 (16) (15) (15) 10 10 (13) 2 2 4 5 5 1
Noisy-I .10 (21) (21) (21) (21) (21) (21) (11) (9) (12) (12) (12) (10)
Noisy-I .25 (20) (20) (20) (20) (20) (20) (11) (9) (12) (12) (12) (10)
Noisy-I .50 (18) (19) (19) (19) (19) (19) (11) (9) (12) (12) (12) (10)
Noisy-PI .10 (15) (16) (14) 2 2 (17) — — — — — —
Noisy-PI .25 (12) (13) 3 3 3 (15) — — — — — —
Noisy-PI .50 3 3 4 7 7 (9) — — — — — —
Noisy-LO .10 (14) (12) (13) 4 5 5 — — — — — —
Noisy-LO .25 5 1 5 6 6 1 — — — — — —
Noisy-LO .50 6 2 7 9 11 2 — — — — — —
Random-LO 9 (11) (11) (14) (15) 4 4 (7) 6 7 7 4
Random-LOT (13) (14) (16) (18) (18) (12) 4 (9) (12) (12) (12) 3
Noisy-PI-mix .10 1 (10) 1 1 1 (14) (11) (9) 1 1 2 (10)
Noisy-PI-mix .25 2 (6) 2 5 4 (11) 1 (9) 3 4 4 (10)
Noisy-PI-mix .50 4 (5) 6 8 8 (10) 3 1 5 6 6 2
Noisy-LO-mix .10 7 (9) 8 11 13 3 6 3 7 8 8 5
Noisy-LO-mix .25 8 (7) 9 12 12 6 7 4 8 9 9 6
Noisy-LO-mix .50 (11) (8) (12) (15) (17) (8) 8 5 9 10 10 7
Saturated 10 4 10 13 14 7 9 6 10 11 11 8

Note. Rankings in parentheses are worse than the saturated model in the same stimulus set. Ties are given identical ranks.
For ease of reading, the three best models (1, 2, and 3) are marked in boldfaced font.
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tween the PBF and the GBF helps to explain
why the noisy-P model fares well according to
the PBF but not the GBF. The noisy-P model
fares well according to the PBF because, in the
pooled data, any influence from the minority of
respondents whose choices are not consistent
with noisy-P (i.e., those in Table 3 whose best
core theory was not �A) is washed out by the
vast majority of respondents whose choices are
best described by noisy-P. On the other hand,
the GBF is not based on pooled data, but rather
aims to simultaneously describe each respon-
dent’s choice proportions. Thus, the noisy-P
model does not fare well according to the GBF,
because the noisy-P model provides such an
extremely poor account of the choice data from
those respondents who were best described by
other models (e.g., those in Table 3 whose best
core theory was �t).

Results of Experiment 2

Experiment 2 aimed to diagnose systematic
changes in respondent behavior caused by the
number of questions. For instance, the large

number of choices in Experiment 1 might have
led decision makers to switch their decision-
making strategy from a compensatory strategy
to a simple heuristic of attending only to either
reward or time. Thus, in Experiment 2, each
respondent saw and made a choice on each
option pair only once, not 20 times as in Exper-
iment 1. The drawback is that these data do not
permit fine-grained individual level analyses.
We interpret the models as describing between-
subjects heterogeneity and we focus on pooled
analyses. Like in the pooled analysis of Exper-
iment 1, it only makes sense to evaluate convex
models (that inherently accommodate heteroge-
neity of preferences wherever multiple core
preferences are allowed).

Table 5 gives the model rankings in each
stimulus set, according to the PBF, for Experi-
ment 2 (the log transformed Bayes factor values
are available in Table S3). Notably, the rankings
in this table nearly match those of Experiment 1
in the right panel of Table 4. In particular, the
best model in each stimulus set in Experiment 2,
according to the PBF, is either noisy-P or noisy-
PI-mix. These models fare well at nearly all �

Table 5
Experiment 2: Ranking of Each Model From Best (Highest Pooled Bayes Factor) to Worst (Lowest Pooled
Bayes Factor) in Each Stimulus Set

Model � Set 1 Set 2 Set 3 Set 4 Set 5 R&R

Noisy-P .10 (13) (12) (12) 1 1 (12)
Noisy-P .25 (11) 4 3 3 3 (10)
Noisy-P .50 6 1 4 5 5 1
Noisy-I .10 (15) (15) (15) (15) (15) (15)
Noisy-I .25 (14) (14) (14) (14) (14) (14)
Noisy-I .50 (12) (13) (13) (13) (13) (13)
Noisy-PI .10 — — — — — —
Noisy-PI .25 — — — — — —
Noisy-PI .50 — — — — — —
Noisy-LO .10 — — — — — —
Noisy-LO .25 — — — — — —
Noisy-LO .50 — — — — — —
Random-LO 5 7 6 8 (8) 5
Random-LOT 4 (11) 8 (12) (12) (8)
Noisy-PI-mix .10 2 5 1 2 2 (11)
Noisy-PI-mix .25 1 2 2 4 4 (9)
Noisy-PI-mix .50 3 3 5 6 6 2
Noisy-LO-mix .10 7 6 7 7 (11) 3
Noisy-LO-mix .25 8 8 9 (10) (10) 4
Noisy-LO-mix .50 9 9 10 (11) (9) (7)
Saturated 10 10 11 9 7 6

Note. Rankings in parentheses are worse than the saturated model in the same stimulus set. Ties are given identical ranks.
For ease of reading, the three best models (1, 2, and 3) are marked in boldfaced font.
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levels. None of the other models fares particu-
larly well in any stimulus set or with any � level,
with the exception of noisy-P-mix in the R&R
stimulus set.

To put these results into perspective, recall
from Experiment 1 that we found heterogeneity
between subjects was best characterized by a
mixture of two types of respondents: those at-
tending only to time and those attending only to
reward amount (noisy-P and noisy-PI-mix
were the best explanations of the pooled data).
If this pattern were merely a consequence of the
large number of choices made by each respon-
dent in Experiment 1 then we would expect to
see a different pattern in Experiment 2. Because
model selection favors the same core in both
experiments, we see no reason to suspect a
dramatic change. Note that this evidence is only
suggestive and not a formal implication, be-
cause the aggregate choice proportions do not
uniquely identify the mixture components. This
is an inherent weakness of analyzing pooled
data and the key reason why one can only draw
conclusions about individual behavior if one
gathers sufficient data from the individual. For
instance, choice proportions that are consistent
with noisy-PI-mix are also consistent with
mixtures of other core theories besides just �A

and �t. It is possible for noisy-PI-mix to be the
best model according to the GBF even when the
data are generated by some mixture of compen-
satory strategies. This problem is particularly
vexing for models like noisy-PI-mix, because
vectors of choice proportions that are near one
half on every dimension can be generated by
nearly limitless combinations of deterministic
components. However, in Experiment 2 we ac-
tually found that noisy-P was the best model in
four out of six stimulus sets, with � � 0.1 in one
case. The geometry of the parameter space
makes it implausible that aggregate data could
favor noisy-P with � � 0.1 unless the vast
majority of individual respondents actually
chose according to that model.

Roadmap

This article has been about the interplay be-
tween heterogeneity and parsimony in modeling
intertemporal preferences. To highlight how
this issue affects model selection, we have fo-
cused specifically on transitive intertemporal

preference. Furthermore, instead of considering
the menagerie of specific, parametric, transitive
theories, we have considered a handful of more
general, parameter-free models that are charac-
terized by subsets of viable linear ordered pref-
erences. In particular, we have considered the
‘extreme’ cases where either just one or two, or
all linear orders were considered viable. How-
ever, for a given set of stimuli, a parametric
theory of the form u�x� � v�A� � ��t� typically
falls between these two extremes by predicting
potentially many, but not all, linear orders as
permissible preferences. Other types of theories
furthermore predict preferences other than lin-
ear orders, such as intransitive preferences.
Next, we briefly discuss a roadmap for studying
competing theories in a way that formally
accounts for heterogeneity. Future analyses of
discounting models and intransitive models
alike can emulate our approach of modeling
either the core preferences, or the responses, or
both, as probabilistic processes. Future work
can also leverage order-constrained inference
methods for statistical inferences and model
selection to tackle the complex trade-off be-
tween parsimony and heterogeneity. Without
much loss of generality and for ease of exposi-
tion for rest of this section, we concentrate on
the scenario in which two or more theories of
the form u�x� � v�A� � ��t� compete against
each other.

Stimulus Design

Our Stimulus Sets 1–5 are ‘standard’ intran-
sitivity stimuli in which two attributes trade-off
against each other in equal steps as we move
through the list of stimuli (similar to the lotter-
ies of Tversky, 1969, in risky choice). Stimulus
Set R&R was based on a prior article on intran-
sitivity of intertemporal preference. If, instead
of transitivity, one were rather interested in spe-
cific theories of the form u�x� � v�A� � ��t�,
then stimulus design could leverage the specif-
ics of those theories to create choice options that
are diagnostic among the theories under consid-
eration. To distinguish these theories, one
should use stimuli for which different theories
predict minimally overlapping sets of prefer-
ence patterns. In addition, if the primary goal is
to test competing theories (i.e., to either validate
or falsify each theory in its own right), one
should design the stimuli in such a way that
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each theory under consideration would also per-
mit as few distinct preference patterns as pos-
sible so as to create maximally parsimonious
predictions. On the other hand, if the goal is to
estimate and identify parameters, say, discount
rates, with maximal precision, then one should
design stimuli that are maximally diagnostic in
that regard, namely, stimuli that lead to many
different preference patterns as one varies the
discount rate of each theory. In so doing, one
ensures that each preference pattern is consis-
tent with only a small range of parameter values
of the core theory, say, a narrow range of dis-
count rates. In addition, stimulus design also
depends on the type of heterogeneity one wants
to either accommodate or critically test.

Heterogeneity

The type of heterogeneity one wants to ac-
count for has strong implications for the type of
probabilistic model and level of data aggrega-
tion that are suitable. For example, if each in-
dividual decision maker satisfies a logit model,
but there are individual differences in the pa-
rameters of this logit model, then the population
generally does not satisfy a logit model because
the average of logit probabilities need not be
logit probabilities. More generally, if each indi-
vidual has a core deterministic preference or
utility function and only responses are probabi-
listic, it usually does not make sense to model
the population with a single deterministic core
preference or utility function, unless it makes
sense to treat preferences or utilities as unani-
mous.

If one were to compare, say, exponential and
hyperbolic discounting, it would be advisable to
consider multiple different specifications. The
first step would be to identify, for the given
stimulus set, the set of linear orders that are
consistent with exponential and hyperbolic dis-
counting by varying their free parameters.
Then, one could consider probabilistic models
of the following types.

1. Like our noisy-P, noisy-I, noisy-PI, and
noisy-LO models, it would make sense to
consider models with deterministic core
preferences that are defined by precisely
those linear orders that are consistent with
the discounting model at hand, and re-
sponses are modeled probabilistically. In

addition to the distribution-free error
specifications we used, many models of
the form u�x� � v�A� � ��t�, including
discounting models, interface naturally
with Fechnerian specifications, such as
logit and probit models. It is important to
reiterate that many of these specifications
can be hard to interpret as models of in-
dividual behavior if applied exclusively to
data pooled across individuals, unless one
is willing to assume that those individuals
are unanimous in their underlying prefer-
ences or utilities.

2. Like our random-LO and random-LOT
models, it would make sense to consider
random preference models that permit a
probability distribution over precisely
those preference states that are permitted
by a given core theory. Because these
models feature convex parameters spaces,
they can model both within and between
person heterogeneity. Interesting paramet-
ric special cases to consider, say for ex-
ponential and hyperbolic discounting, are
random preference models constructed via
a parametric distribution over the permis-
sible discount rates in each core theory.

3. Last but not least, like our noisy-PI-mix
and noisy-LO-mix models, it is worth
considering hybrid models that permit het-
erogeneity in the preference states consis-
tent with each given core theory, as well
as probabilistic error in responses.

Model Selection Criteria

In our analysis, we have emphasized the in-
terplay of heterogeneity and parsimony. In ad-
dition to multiple different criteria for good-
ness-of-fit, we have leveraged the Bayes factor
as a model selection tool that is well-suited to
quantify parsimony of probabilistic models and
to select among models that, like ours, are nei-
ther disjoint nor nested. The same methods are
useful also for model competitions more gener-
ally, including among models based on a core
representation of the form u�x� � v�A� � ��t�.
For parametrized theories like that, there are
many additional tools available for model selec-
tion. For example, some probabilistic models,
especially Fechnerian models, naturally plug

89HETEROGENEITY, PARSIMONY IN INTERTEMPORAL CHOICE

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

226



into adaptive design optimization methods
(Cavagnaro, Gonzalez, Myung, & Pitt, 2013) at
the individual level. Furthermore, when using
models to estimate core parameters, such as an
individual’s discount rate, it is natural to test the
validity of parameter estimates through predic-
tion to new data sets on different stimuli (e.g.,
the generalization criterion of Busemeyer &
Wang, 2000).

Sketch of a Model Selection Study

We briefly sketch how our roadmap would
help design a study aimed at diagnostic design
that facilitates replication studies while balanc-
ing heterogeneity with parsimony. Table 6
sketches an example of a model competition
between exponential and hyperbolic discount-
ing. Imagine that a lab plans a study consisting

of a three-stage competition between these two
core theories. In Stage I, the lab proposes a set
of stimuli that balances two types of diagnos-
ticity. (a) By permitting only few different pref-
erence patterns under either theory, it places
empirical pressure on both theories. (b) By pre-
dicting rather different collections of preference
patterns from the two theories, it helps distin-
guish exponential from hyperbolic discounting.
The lab includes several different nonparamet-
ric probabilistic models that broadly model
probabilistic preferences, or probabilistic re-
sponses, or both. The lab also plans frequentist
and Bayesian analyses on several different lev-
els, including individual level and group level
analyses. In Stage II, the study focuses on the
“best performing” core theory from Stage I to
attempt to estimate and identify discount rates.

Table 6
Sketch of an Example Model Competition Between Exponential and Hyperbolic Discounting

Theory, models, stimuli Considerations or Recommendations

Stage I: Theory testing and screening
Algebraic core Exponential versus hyperbolic discounting
Stimuli Permit few preference patterns overall

Preference patterns diagnostic between these theories
Deterministic preferences and probabilistic responses Supermajority specification with three different error

bounds
Probabilistic preferences and deterministic responses Random preference over permissible preference states
Probabilistic preferences and probabilistic responses Hybrid model (convex hull of the previous two)

Stage II: Identifying discount rates for best theory from Stage I

Algebraic core Best theory from Stage I
Stimuli Permit many preference patterns
Fixed discount rate and probabilistic responses Supermajority specification with three different error

bounds
Logit, probit, Luce, and other Fechnerian models

Probabilistic discount rate and deterministic responses Parametric random preference over permissible preference
states induced by a normal distribution over discount
rates

Probabilistic discount rate and probabilistic responses Hybrid models

Stage III: Generalizability to new stimuli

Algebraic core Same as Stage II
Stimuli Permit few patterns based on parameter estimates of

Stage II
Model of heterogeneity Best from Stage II

Data Statistical method

Types of analyses in each stage
Within subject Frequentist p, Bayes p, Bayes factor
Pooled Frequentist p, Bayes p, Bayes factor
Other Group Bayes factor, hierarchical Bayes models

Note. A study like this can be preregistered. It specifies how theories compete, what sources of heterogeneity are
permissible, and how they are modeled.
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The stimuli for this stage are designed to be
maximally diagnostic for that core theory by
permitting a broad array of preference patterns
as a function of the discount rate. The probabi-
listic specifications now also include a variety
of parametric special cases of the specifications
in Stage II. Parametric Fechnerian and random
preference models lend additional structure that
can help identify discount rates more precisely
than the earlier nonparametric models. Depend-
ing on the source of heterogeneity, the goal is to
obtain either a ‘best’ single discount rate from
each individual or a parametric distribution of
each individual’s discount rates, or to estimate a
population level distribution over discount rates
through a variety of probabilistic models and
statistical procedures. A major component of
Stage II is to evaluate whether and how the
‘best’ discount rate (point estimate or estimated
distribution) varies with the assumed source and
the model of heterogeneity. Finally, Stage III is
a generalizability study that critically tests the
‘best’ core theory, ‘best’ probabilistic specifica-
tion, and ‘best’ parameters from Stages I and II
on additional stimuli. These stimuli are depen-
dent on the results of Stages I and II and are
designed to place maximal pressure on the hy-
pothesized theory, model of heterogeneity, and
parameters from Stages I and II. The quantita-
tive performance in all three stages can be eval-
uated with similar methods.

Conclusions

Heterogeneity causes great challenges in
measuring and predicting individual prefer-
ences and choices. A common way to think of
heterogeneity is that different decision makers
might differ in their parameter values (such as
their discount rates) within a shared theoretical
account (such as exponential discounting) or
that a given decision maker might differ in her
parameter values for different types of stimuli.
Another common way of tackling heterogeneity
is to relax restrictions on the functional form of
a given theory without changing the probabilis-
tic specification or the response mechanism.
Rather than spelling out a refined theory of
choice behavior, such approaches pursue in-
creasingly complicated theories of hypothetical
constructs. The common practice of inferring
parameter values (e.g., discount rates) of a ‘pro-
totypical’ decision maker from pooled binary

choice data of heterogeneous decision makers is
rarely grounded in an explicit and compelling
model of heterogeneity.

A common way to think of parsimony of a
theory is to count the number of parameters in
the deterministic core of a theory (and to ear-
mark one or more additional parameters for
noise or for heterogeneity of parameter values).
Counting parameters is only a coarse heuristic
in characterizing how flexible or inflexible a
theory is in accounting for potential empirical
data. As a case in point, on our Set 5, hyperbolic
discounting with one free parameter in the al-
gebraic core permits just one preference state,
namely �A, regardless of the discount parame-
ter. On the other hand, for exponential discount-
ing, which also has one free parameter in the
algebraic core, we have found 11 different lin-
ear orders, depending on the discount rate.
Hence, if we are interested in testing theories
empirically, we must keep a close eye on the
interplay between the functional form, the prob-
abilistic specification, as well as the stimuli we
use in a given study, to account for parsimony
in a suitable fashion when analyzing our data. A
more rigorous account of model complexity,
rather than counting parameters of an algebraic
functional form, is to spell out the sources of
heterogeneity mathematically and to quantify
the flexibility with which the resulting probabi-
listic model accommodates possible data as a
function of the stimuli used.

Here, we aimed to abstract away from distri-
butional assumptions and parametric accounts
of heterogeneity and parsimony in intertempo-
ral choice. We focused instead on general char-
acterizations of two crucially important sources
of heterogeneity in choices on a given stimulus:
the latent intertemporal preferences and the re-
sponse process. In particular, we considered that
the latent preferences may be probabilistic or
the responses (based on a given preference) may
be probabilistic, or both processes may be prob-
abilistic. While these types of processes have a
long history of scientific study, they have been
largely neglected in intertemporal choice re-
search. Even though our models differ strongly
in their parsimony, every one can be character-
ized by 10 order-constrained binomial parame-
ters. We have taken a Bayesian approach to
quantifying model complexity.

We found that the core preferences �A and
�t appeared to drive the performance of the
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winning models in most cases, suggesting that
models draw most of their strength from being
able to predict simple patterns of behavior, such
as always preferring the highest reward or al-
ways preferring the shortest time. However, de-
veloping a robust model of intertemporal choice
requires attention to a number of issues besides
just the core preferences permitted by the un-
derlying theory. Our various levels and types of
analyses have shown that both model perfor-
mance and model selection are sensitive also to
the chosen stimulus set, the assumed response
process, and whether we analyze data within
each individual, jointly across many individuals
(GBF), or pooled from many individuals (PBF).
We did not find evidence for systematic differ-
ences between the U.S and the German study.
Also, even though respondents in Experiment 1
each had to handle 20 times as many questions
as respondents in Experiment 2, we did not find
evidence for systematic differences between the
two experiments.
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Appendix E: Supplementary File

In the ‘SupplementalFiles’ folder, the folder ‘Chapter5’ includes all the predicted patterns and facet-

defining inequalities and equalities for 49 versions of CPT for Experiments 2009 and 2012; the file ‘Chap-

ter6SupplementMaterials.pdf’ includes all the predicted patterns and facet-defining inequalities and equali-

ties of all the decision models.
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