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ABSTRACT 

Reinforced concrete walls are commonly used as the lateral force resisting system for mid-rise 

buildings in regions of low and high seismicity.  Wall geometries in buildings are generally 

complex configurations to accommodate architectural constraints during new construction or 

existing conditions in seismic retrofit applications.  A typical configuration for seismic regions is 

the concrete core-wall system in which coupling beams link a pair of C-shaped walls.  While a 

prevalent structural system, few experimental research programs have examined this wall type and 

codes of practice have focused on design provisions for planar walls which do not fully account 

for the effects of non-planar geometry and multi-directional loading. 

To improve the understanding of the three-dimensional and asymmetric response of coupled 

core walls, an experimental testing program of C-shaped walls subjected to uni-directional and bi-

directional cyclic loading was completed.  Three C-shaped walls representative of a ten-story core 

wall building were tested at the University of Illinois Newmark Structural Engineering Laboratory.  

Each wall test was subjected to progressively complex loading conditions, and a new stiffness-

based loading algorithm was developed to conduct the experiment.  Analysis of the experimental 

data studied the energy dissipation, progression of yielding, components of deformation to total 

wall drift, base deformations, strain fields generated from displacement field data, and overall 

displacement profiles of the prototype ten-story building.  Subsequent evaluations using prior 

experimental tests of planar, coupled and non-planar walls identified the aspects of behavior 

unique to C-shaped walls. 

The experimental tests exhibited a ductile failure resulting from loss of boundary element 

confinement, bar buckling, and rupture of the longitudinal bars.  However, the ductile failure 

mechanism was precipitated by increased shear deformation and undesirable shear related damage 

of base sliding and web crushing.  The onset of damage mechanisms, propagation of damage, and 

drift capacity at failure was identified to be path dependent, and bi-directional loading decreased 

drift capacity.  Effective flexural and shear stiffness values for the elastic analysis of non-planar 

walls were recommended for design.  Design variables and demand to capacity ratios were 

parametrically studied for non-planar walls as a means to correlate drift capacity and ductility.  To 

supplement the experimental data, a series of non-linear finite element analyses were conducted 

using a layered shell element model with comprehensive constitutive models capturing the cracked 

response of reinforced concrete in cyclic biaxial loading conditions.  Model validation is conducted 
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using reinforced concrete panel tests, and the impact of crack spacing on prediction is quantified.  

The resulting analytical models of the C-shaped walls provide a validation of the experimental 

results and a characterization of shear stress distribution as a function of drift level for strong axis 

and weak axis loading. 
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CHAPTER 1:  INTRODUCTION 

Reinforced concrete walls are commonly used as the lateral force resisting system for buildings 

around the world in regions of low and high seismicity.  Wall geometries in buildings are generally 

complex configurations to accommodate architectural constraints during new construction or 

existing conditions in seismic retrofit applications.  The plan layout of walls often results in non-

planar wall configurations with walls that are interconnected by beams and floor slabs.  

Furthermore, these walls often include openings in elevation to accommodate architectural and 

mechanical equipment needs. In combination, the resulting wall configurations are complex and 

believed to induce three-dimensional effects, unintended coupling between walls, and reduced 

ductility due to bi-directional loadings.  Observations of damage after earthquakes, large-scale 

experimental testing, and numerical modeling provide opportunities to improve the understanding 

of how wall and building behavior are influenced by these effects. 

Earthquake damage to structural walls has resulted in an evolution of building code provisions 

throughout their history (Massone et al. 2012).  Modern detailing of walls in seismic regions often 

requires confined boundary elements and constraints on the maximum reinforcement ratios with a 

desire for high stiffness during service loading and a ductile response in seismic events (Lowes et 

al. 2013).  However, limited test data exists for these types of structural walls to validate the design 

stipulations that exist in our codes of practice.  Furthermore, recent earthquakes have resulted in 

severe damage to concrete structures that were designed and built consistent with modern codes 

of practice.  In 2011, a magnitude 6.2 earthquake in Christchurch, New Zealand resulted in damage 

to more than 130 structural concrete buildings (Kam and Pampanin 2011).  In 2010, a magnitude 

8.8 earthquake in Maule, Chile resulted in severe damage to more than 40 structural concrete 

buildings (Maffei et al. 2014).  In particular, building configuration issues including vertical 

discontinuities, geometric changes and unintended coupling of walls through slabs, beams, and 

non-structural components were present in the damaged buildings (Wallace et al. 2012).  Figure 

1.1 provides an example of the earthquake damage to structural walls in Chile.  The evident 

damage in modern walled buildings reinforces the need for continued evolution of the building 

code and design practices.  
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(a) 15-story Edificio Centro Mayor in Concepcion (b) 16+ story Edificio Emerald in Santiago 

Figure 1.1:  Earthquake damage of modern mid-rise structural walls from the 8.8 magnitude 

earthquake in Chile on February 27, 2010 (Medina 2010) 

 

To  increase the understanding of modern wall performance, in mid-rise buildings, the 

Complex Walls experimental testing program was developed to study planar walls, coupled walls, 

and flanged walls with modern design detailing consistent with the ACI 318 building code (Lowes 

et al. 2012).  This project began in 2004 as a joint collaboration between researchers at the 

University of Washington and the University of Illinois, funded by the National Science 

Foundation (NSF) (CMMI-0421577).  Using an inventory of recently completed shearwall 

buildings along the West coast, the Building Code Requirements for Structural Concrete (ACI 

318), and an industry advisory panel, the goals of the testing program and details of each wall test 

specimen were developed.  The aims of the research program were to generate data for 

characterizing the response of structural walls to earthquake loads, validate and develop numerical 

models for predicting the response of structural walls, and develop recommendations for 

performance based-design of structural walls (Lowes et al. 2013).  Experimental tests of four 

planar walls and one planar coupled wall were conducted at the University of Illinois, Newmark 

Structural Engineering Laboratory (NSEL) between 2007 and 2011.  During this time, the Charles 

Pankow Foundation provided additional funding (CPF #03-09) to study the response of C-shaped 

walls subjected to bi-directional loading and the effects of coupled C-shaped walls.  Three tests of 

C-shaped walls were conducted at the NSEL between 2011 and 2013 to complete the experimental 

testing program.  The completion, analysis, and interpretation of those experimental tests represent 

the motivation for this dissertation study. 
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1.1 Research objectives 

This research study aims to characterize the behavior of C-shaped reinforced concrete walls 

through experimental testing, data analysis, and numerical modeling.  The characterization focuses 

on the observed and predicted response of the C-shaped walls during service level and ultimate 

level loads, the influence of loading direction, and the post-peak progression of damage 

precipitating failure.  Data from prior experimental tests are incorporated to make comparisons of 

the C-shaped wall response and define the unique characteristics.  For this assessment, three 

overall objectives were defined: 

 

Objective 1:  Characterize the response and damage mechanisms of cyclically loaded C-shaped 

walls using visual observations and quantitative analysis.  This objective is achieved by completing 

the following sub-objectives: 

1.1. Conduct experimental testing of three C-shaped walls at the Newmark Structural 

Engineering Laboratory. 

1.2. Analyze the experimental data and archive the results to an open access data repository. 

1.3. Characterize the damage mechanisms of C-shaped walls subjected to uni-directional and 

bi-directional loading. 

1.4. Determine the influence of bi-directional loading on strong axis response.  

 

Objective 2:  Characterize the response of C-shaped walls through the lens of prior experimental 

tests.  This objective is achieved by completing the following sub-objectives: 

2.1. Evaluate the C-shaped wall response in comparison to the prior planar and coupled wall 

tests in the Complex walls testing program. 

2.2. Develop recommendations of effective stiffness for the elastic analysis of non-planar 

reinforced concrete walls. 

2.3. Develop a database of prior non-planar wall experiments and conduct a parametric study 

of non-planar walls to determine if drift capacity, ductility or failure mechanism can be 

estimated using simplified design parameters 
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Objective 3:  Conduct finite element modeling of the C-shaped wall experiments for validation 

and exploration of the wall response in shear.  This objective is achieved by completing the 

following sub-objectives: 

3.1. Develop a database of reinforced concrete panel tests and conduct an element level 

validation of the constitutive models with a focus on the influence of crack spacing. 

3.2. Recommend a crack spacing model for continuum analysis of reinforced concrete in which 

cracks form non-orthogonal to the reinforcement. 

3.3. Conduct non-linear finite element analyses simulating the cyclic response of the C-shaped 

wall in both axes to validate the model performance and characterize the shear stress 

distribution. 

1.2 Organization 

Chapter 2 provides a literature review to support the research effort.  Prior experimental tests 

of non-planar walls, as well as the prior experimental tests in the Complex Walls testing program, 

are reviewed to create a context for the C-shaped wall response and damage patterns.  For the 

application of loading during the experimental testing, nonlinear solution methods are reviewed.  

To support the interpretation of behavior and numerical modeling effort, an overview of the 

relevant behavior of reinforced concrete, associated constitutive models, approaches to the 

numerical modeling the response of structural concrete in a continuum, and prior finite element 

studies of non-planar concrete walls are developed. 

Chapter 3 provides the experimental testing methodology for the three C-shaped walls.  The 

specimen design and construction are detailed.  The loading protocol for each test and laboratory 

methodology for applying mixed displacements and loads is described.  A bi-directional loading 

algorithm for testing the third C-shaped wall as part of a simulated coupled core wall system is 

developed.  

Chapter 4 provides an overview of the key qualitative observations and progression of damage 

in each of the three experimental tests.  Based on the visual observations, a comparison of the walls 

is made to understand the damage progression and key damage states.  The demand and capacity 

response of each wall is tabulated. 

Chapter 5 provides a comprehensive quantitative analysis of the C-shaped wall experiments 

comparing and contrasting the impact of loading history on wall response.  An overview of the 
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data processing and subsequent data archival to the NHERI Design-Safe cyberinfrastructure is 

provided.  The data is post-processed to evaluate the energy dissipation of the walls, progression 

of reinforcing yielding, base deformations, strain fields using non-contact displacement 

measurements, drift contributions, and displacement profiles.   

Chapter 6 extends the comparison of the C-shaped walls to prior planar, coupled and non-

planar walls.  A parametric study of design parameters for structural walls is conducted to identify 

trends in damage patterns, drift capacity, and ductility.  The results of the parametric study are 

subsequently applied to a recently proposed drift capacity equation for structural concrete walls 

and evaluated.  Finally, recommendations of effective stiffness values for the elastic analysis of 

non-planar walls are developed.   

Chapter 7 describes the non-linear finite element analysis of C-shaped walls conducted for 

model validation and the characterization of shear demand associated with flanged walls.  The 

finite element analysis is conducted using layered shell elements with smeared cracking and 

reinforcement in a continuum.  To validate the choice of constitutive models utilized in the shell 

element analysis, an element level study of the constitutive models is validated against 

experimentally tested reinforced concrete panels.  Six different models for predicting crack spacing 

are studied as part of the model validation.  The resulting finite element models of the C-shaped 

walls are used to assess the shear distribution in the web and flanges for monotonic and reverse 

cyclic loading.   

Chapter 8 provides a summary of the individual conclusions and recommendations on how 

non-planar wall geometry and complex loading history influence the wall response.  Future work 

stemming from these efforts is described.   
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Prior experimental tests of non-planar walls 

In order to establish damage progressions and failure mechanisms in non-planar walls, prior 

experimental tests of U-shaped, T-shaped, and H-shaped reinforced concrete walls are reviewed.  

Figure 2.1 provides the nomenclature of wall elements and the directional coordinate system used 

in the remainder of the document for C-shaped and U-shaped walls. While geometrically similar, 

U-shaped walls are defined as a subset of C-shaped walls in which the web and flanges are of 

approximately equal length.  Figure 2.2 and Figure 2.3 establish the nomenclature and coordinates 

of the T-shaped and H-shaped walls respectively.   

 

 

 

Figure 2.1:  Coordinates and nomenclature of C and U-shaped walls 

 

 

 

 

Figure 2.2:  Coordinates and nomenclature of T-shaped walls 
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Figure 2.3: Coordinates and nomenclature of H-shaped walls 

 

2.1.1 Dimensionless datasets for comparisons of test data 

The load-deformation response is presented using dimensionless ratios to facilitate comparison 

of data from different tests. The deformation is presented as the drift ratio at the effective height 

of the imposed load as shown in Figure 2.4.  The effective height is defined as the inflection point 

of the moment diagram.  The base moment is defined as the product of the shear and effective 

height:  

 

 base eM V h=    (2.1) 

 

The effective height is typically different from the specimen height due to the loading apparatus.  

The load is presented as the moment developed at the base of the wall divided by the predicted 

nominal flexural strength.  Nominal flexural strength was taken as the maximum strength predicted 

from section analysis using the Response2000 software (Bentz 2000) which can consider the 

impact of shear on section response using the modified compression field theory (see Section 

2.5.2.2).  The maximum strength corresponds to the predicted failure mechanism of concrete 

crushing ( 0.003cu = −  per ACI 318, or first rupture of a longitudinal bar or stirrup. 
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Figure 2.4:  Base moment determined from the height of the applied load  
 

2.1.2 U-shaped walls 

Three U-shaped walls (IleX, IleY, IleXY) were tested at the ELSA laboratory in Ispra (Ile and 

Reynouard 2005).  The three test specimens had the same geometry and reinforcing layout but 

were subjected to different uni-directional and bi-directional load histories. The in-plane 

dimensions of each wall specimen were 60 inches by 50 inches in plan with a 10-inch thickness.  

The specimens were defined by the researchers as being full-scale. Walls had aspect ratios in 

excess of 2.5 for both loading directions. The gross longitudinal reinforcement ratio for the 

specimen was 0.56%, the boundary element reinforcement ratio was 0.81% at the corners and 

1.21% at the toes. The gross horizontal reinforcement ratio for the specimens was 0.54% across 

the web for strong axis loading and 0.32% across each flange for weak axis loading. Specimens 

were subjected to cyclic lateral loading under displacement control and a constant axial load of 

10% of the gross section capacity. The imposed displacement history is shown in Figure 2.5.  No 

restraint of twisting was provided at the top of the specimen, and twisting was observed under 

loading in the strong axis direction.  

 

ehsh

baseM

V
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Figure 2.5:  Applied displacement history for bi-directional test, IleXY (Ile and Reynouard 

2005) 

 

Two U-shaped walls (TUA, TUB) were tested in Zurich (Beyer, Dazio, and Priestley 2008). 

The specimens were subjected to the same bi-directional loading history but had different 

geometries and reinforcement layouts. Specimen TUA had plan dimensions of 51 inches by 41 

inches with a 6 inch wall thickness; TUB had the same plan dimensions but a wall thickness of 4 

in.  Specimens were defined by the researchers as being half-scale. For both specimens, 

longitudinal reinforcement was concentrated in well-confined boundary elements at the corners 

and ends of the flanges. Specimen TUA had gross longitudinal and horizontal reinforcement ratios 

of 0.71% and 1.01%, respectively; reinforcement ratios for specimen TUB were approximately 

50% higher. Both specimens (particularly TUA) were constructed of relatively high strength 

concrete. Specimens were subjected to bidirectional lateral loading under displacement control and 

a constant axial load equal to ( )0.2 ' *c gf A  for TUA and ( )0.4 ' *c gf A  for TUB. Specimens were 

restrained from twisting under X direction loading, and the experiments measured up to 100 kN 

of force in the Y direction of each flange to restrain the twisting.  The total shear imposed in the 

Y direction by equilibrium was approximate 50 kN (approximately 10% of the X-direction shear).  

The two U-shaped walls tested by Beyer resulted in two different failure mechanisms.  Specimen 

TUA failed due to the fracturing of longitudinal bars in the flange toe BE’s, while Specimen TUB 

failed due to the crushing of unconfined concrete in the web between the boundary elements.   
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Figure 2.6:  Graphical representation of displacement history for specimen TUA and TUB 

(Beyer, Dazio, and Priestley 2008) 

 

Table 2.1: Summary of U-shaped wall test specimen geometry and reinforcement 

Reference: (Beyer, Dazio, and Priestley 2008) (Ile and Reynouard 2005) 

Specimen ID TUA TUB UW1 / UW2 / UW3 

Scale 1:2 1:2 1:1 

Shear span (M/V) 2.95m / 3.35m 2.95m / 3.35m 3.90m 

Spear span ratio (h/lw) 2.81 / 2.58 2.81 / 2.58 3.12 / 2.60 

Axial Load 169k (750kN) 175k (780kN) 477k (2120kN) 

Axial load ratio 0.02 0.04 0.1-0.12 

Compressive Strength 

at time of testing, f’c* 
11.3 ksi (78 MPa) 8 ksi (55 MPa) 3.5 ksi (24 MPa) 

Compactness ratios 

 lweb/tw 8.7 13 6 

 lfl/tw 7 10.5 5 

Vertical reinforcement ratios 

 total 0.71% 1.01% 0.56% 

 corner BE's 0.84% 1.88% 0.81% 

 toe BE's 2.11% 2.45% 1.21% 

Horizontal reinforcement ratios 

 web 0.30% 0.45% 0.54% 

 flanges 0.30% 0.45% 0.32% 

 Beyer et al. (2008): Specimen TUA and TUB 

The load-deformation response of each specimen under strong-axis, weak-axis, and diagonal 

loading are given in Figure 2.7 and Figure 2.9.  The damage states and influence of bi-directional 

loading on the test response are detailed in the following sections. 

x

y
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Specimen TUA damage narrative 

Specimen TUA was loaded bidirectional with cyclic displacements about the strong-axis, 

weak-axis and in a diagonal pattern.  Load-deformation response histories for the different loading 

directions are shown in Figure 2.7. After reaching theoretical yield around 0.25% drift, spalling 

initiated during cycles to 1% drift (All plots: DS1) and became widespread during cycles to 1.25% 

drift (All plots: DS2).  During cycles to 1.8% drift in X-direction, 2% drift in the positive weak 

axis, and 2% drift in the negative weak axis, sliding along the interface, buckling of the 

longitudinal bars in the flange toe BE’s, and minor spalling in the unconfined regions of the web 

adjacent to the corner BE’s was observed (All plots: DS3). The last cycle in the strong axis 

fractured the longitudinal bars in the West flange (Strong-Axis: Failure).  The positive-weak axis 

failed due to the fracture of previously buckled bars in the flange toe BE’s (Weak-Axis: Failure).   

A significant loss in load-carrying capacity was observed under subsequent loading in the diagonal 

direction.  The last cycle in the negative diagonal direction caused fracture of previously buckled 

web bars (Strong-Diagonal, Weak-Diagonal: DS4).  After load reversal to the positive diagonal, 

all remaining bars in the West flange web fractured as well as three additional longitudinal bars in 

the West flange toe BE (Strong-Diagonal, Weak-Diagonal: Failure).  

Boundary elements at the toes of flanges exhibited extensive spalling and rupture of the end 

boundary element bars.  However, concrete within the toe boundary elements remained well 

confined, and no concrete crushing was observed.  Sliding was observed at large displacements, 

even with shear keys used in the design of the specimens.  One of the shear keys was observed to 

have sheared off; other shear keys were not visible.  Some compressive damage was visible along 

the web between the corner boundary elements and on the east flange web, although the researchers 

did not observe an impact on the failure mechanism from this damage. 
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(a) Strong axis normalized moment vs. drift   (b) Weak axis normalized moment vs. drift 

 

 

(c) Diagonal axis normalized moment (square root of the sum of the squares) vs. drift 

Figure 2.7:  Specimen TUA load-deformation response 

Specimen TUA strength and ductility 

The load-deformation response for strong-axis loading TUA shows a well-defined yield 

plateau with minimal cyclic strength degradation.  Some pinching of the hysteretic response is 

observed, becoming pronounced as early as 1% drift. The specimen reached a maximum strength 

equal to approximately 83% of simulated nominal strength; drift capacity was 2.5%.  While no 

cyclic strength degradation is observed because of the bidirectional loading, the shortcoming to 

the predicted strength could be a consequence of the bi-directional loading.   

The weak-axis hysteresis in the positive direction (web in compression) has a defined yield 

plateau and ductile response reaching approximately 86% of the nominal moment capacity and a 

maximum drift of 3.5%.  After unloading in the positive direction, significant residual deformation 
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was observed at zero force after cycles to 1% drift.  The negative weak-axis direction (toe in 

compression) presents a slightly stiffer response with smaller energy dissipating loops.  The 

nominal moment strength is achieved and reaches a maximum drift of 2.8%.   

The hystereses of the diagonal loading path present reduced ductility, strength, and energy 

dissipation.  Both directions achieve less than 2% drift and have a strength loss of 20-25% when 

compared to the uni-directional response in each direction.  The positive diagonal (East flange 

corner in compression) performs marginally better than the negative diagonal (West flange toe in 

compression) which can be attributed to the smaller compressive region in the toe BE and 

consequential damage occurring. 

Specimen TUB damage narrative 

Specimen TUB was loaded with the same bidirectional pattern as specimen TUA with cyclic 

displacements about the strong-axis, weak-axis and in a diagonal pattern.  The hystereses are 

shown in Figure 2.9.  After reaching theoretical yield around 0.4% drift, spalling initiated during 

cycles to 1.25% drift (All plots: DS1).  The spalling exposed longitudinal reinforcement during 

cycles to 1.65% drift (All plots: DS2). Spalling spread into the unconfined web regions during 

subsequent cycles resulting in a significant loss of sectional width in some unconfined areas.  The 

web’s ability to carry compression across the damaged unconfined regions failed during the cycles 

at 2.5% drift in the strong axis.  The web-crushing failure resulted in a new load path for the lateral 

shear.  A frame mechanism developed to transfer the shear through bending of the corner boundary 

elements and transverse shear across the flange in compression.  The frame mechanism is shown 

in Figure 2.8.  Bar buckling was observed in the West flange toe BE during the final cycles.  No 

loss of confinement or crushing in the BE’s was observed.  No reinforcing bars fractured and the 

maximum sliding displacement was 4.4% of the total drift. 
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(a) Photo of interior of U-shaped wall web  (b) Photo of exterior of U-shaped wall web 

Figure 2.8:  Web crushing of specimen TUB (Beyer, Dazio, and Priestley 2008) 

 

 

(a) Strong axis normalized moment vs. drift   (b) Weak axis normalized moment vs. drift 

 

 

(c) Diagonal axis normalized moment (square root of the sum of the squares) vs. drift 

Figure 2.9:  Specimen TUB load-deformation response 
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Specimen TUB strength and ductility 

Specimen TUB presented a similar load-deformation response to TUA prior to failure.  The 

strong axis response has a defined yield plateau and no strength degradation reaching 86% of the 

nominal capacity and a maximum drift of 2.5%.  The weak-axis hysteresis in the positive direction 

(web in compression) reaches a higher strength at approximately 91% of the nominal moment 

capacity and a maximum drift of 3%.  Unloading from the positive direction resulted in significant 

residual deformations at zero force after cycles to 1.5% drift.  The negative weak-axis direction 

(toe in compression) presents more considerable energy dissipating loops, surpasses the nominal 

moment strength, and reaches a maximum drift of 2.8%.   

 Ile and Reynouard (2005): Specimen IleX, IleY and IleXY 

The three identical U-shaped walls tested by Ile and Reynouard under varying uni-directional 

and bi-directional loadings allowed the influence of bi-directional loading to be directly compared 

to the uni-directional response.  The load-deformation response of each specimen in the strong-

axis (lleX and IleXY) and the weak-axis (IleY and IleXY) are given in Figure 2.12 to Figure 2.12.  

The damage states and influence of bi-directional loading on the test response are detailed in the 

following sections. 

Specimen IleX damage narrative 

Specimen IleX was loaded uni-directionally about the strong axis.  Theoretical yield was 

identified at 0.43% drift.  Damage initiated during cycles to 2% drift with bar buckling at the toe 

BE’s of the flanges (IleX: DS1).  After two cycles to 3% drift, the damage was characterized by 

severe bar buckling, rupture of BE stirrups and longitudinal BE bars at the ends of both flanges 

and the corners (IleX: DS2).  In the final cycle to 3% drift, failure resulted from rupture of 

previously buckled longitudinal bars in the flange.  
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Figure 2.10:  Strong axis normalized moment vs. drift for specimen 'IleX' 

 

Specimen IleY damage narrative 

Specimen IleY was loaded uni-directionally about the weak axis.  Theoretical yield was 0.23% 

drift in the negative direction (toe in compression).  Damage initiated at 1% drift with bar buckling 

at the ends of both flange BE’s, similar to specimen IleX (IleXY: DS1).  The wall continued to 

perform well until 2% drift in the positive direction upon failure by bar buckling of one of the 

flange BEs causing a loss of confinement and concrete crushing.  The compressive failure of one 

flange BE was followed by a stirrup rupture of the other flange BE and rupture of web reinforcing 

bars.  Subsequent loading in the negative direction resulted in buckling of corner BE bars and loss 

of capacity.  

 

 

Figure 2.11:  Weak axis normalized moment vs. drift for specimen 'IleY' 
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Specimen IleXY damage narrative 

Specimen IleXY was loaded bi-directionally in a butterfly pattern.  Damage became 

widespread by the first cycle to 2% drift with extensive spalling, bar buckling and fracture 

occurring (IleXY: DS1).  The specimen failed in the last cycle while at 2% drift in the strong axis 

and 2% drift in the negative weak axis (East flange toe in compression).  Failure was caused by 

the fracture of three previously buckled BE bars on the West flange followed by a shear failure of 

the flange (IleXY: Failure).   

 

 

(a) Strong axis normalized moment vs. drift   (b) Weak axis normalized moment vs. drift 

Figure 2.12:  Load-deformation response for specimen ‘IleXY’ 

 

Strength and ductility of Ile test specimens 

 The IleXY test displays a reduction in strength, stiffness, and ductility as a result of the bi-

directional loading path.  In the uni-directional tests, minimal strength degradation is observed for 

both the strong and weak axis tests until nearing failure, while the bi-directional loading causes 

significant cyclic stiffness degradation in the strong axis and negative weak axis at 1% drift and 

2% drift in the positive weak axis direction.  The negative weak axis bending (toe in compression) 

shows the most substantial degradation as a result of the increased demand on the toe BE region.  

The initiation of damage at the toe BE degrades the subsequent strong and weak axis performance. 

Significant relaxation is observed in the weak axis response of the bi-directional test after 

reaching 1% drift.   The residual lateral force required to reach zero displacement is dissipated 

IleXY Strong Axis 
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during the subsequent loading about the strong axis with no change in weak axis displacement.  

This phenomenon was not observed for the strong axis. 

2.1.3 T-shaped walls 

 Thomsen and Wallace (1995, 2004): Specimen TW1 and TW2 

In the early 1990’s, displacement-based design had been developed to address the 

shortcomings of strength focused design provisions of structural walls in seismic regions 

(Thomsen IV and Wallace 2004).  A testing program of three rectangular, two T-shaped walls, and 

one barbell wall were tested at UCLA to further the understanding of the application of the new 

displacement-based design provisions.  This section reviews the T-shaped wall specimens only.   

The one quarter scale wall specimens were designed for a target drift of 1.5%.  Specimen TW1 

was detailed in the same manner as the planar wall specimens, with all four boundary elements 

identical in reinforcing and geometry.  The detailing design of TW1 purposefully did not consider 

the change in strain profile associated with the flange on one end.  Specimen TW2 utilized a deeper 

boundary element on the web toe with increased transverse reinforcing in order to address the 

deeper compression depth during loading with the flange in tension.  See Figure 2.13 and Figure 

2.14 for the specimen geometry and reinforcing of TW1 and TW2 respectively.  Table 2.2 provides 

the design parameters of the tests.  
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Table 2.2:  Specimen TW1 and TW2 design parameters 

Specimen ID: TW1 TW2 

Scale  1:4 1:4 

Shear span (M/V) 14.33 ft 14.33 ft 

Spear span ratio (h/lw) 3 3 

Axial Load 158 kip 164 kip 

Compressive strength at time of testing  6330 psi 6050 psi 

Axial load ratio 0.09 0.075 

Compactness ratios     

 lweb/tw 12 12 

Vertical reinf. ratios     

 total 1.17% 1.20% 

 unconfined webs 0.33% 0.45% 

 toe BE's 3.68% 2.67% 

Horizontal reinf. ratios     

 web 0.33% 0.45% 

 confining  0.84% 1.43% 

 

 

 

Figure 2.13:  Specimen TW1 geometry and reinforcing (Thomsen IV and Wallace 2004) 
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Figure 2.14:  Specimen TW2 geometry and reinforcing (Thomsen IV and Wallace 2004) 

 

The test specimens were subjected to a constant axial load using a hydraulic jack with a 

resulting axial load ratio of about ( )0.08 ' *c gf A .  A reverse cyclic lateral displacement history 

was imposed using an actuator mounted perpendicular to the top of the wall specimen.  The 

resulting load-deformation histories given in terms of drift and normalized base moment are 

presented in Figure 2.15. 

The complete progression of cracking and damage for the wall specimens is given by Thomsen 

and Wallace (1995).  For specimen TW1, flexural cracking initiated at 0.25% and shear cracking 

at 0.50% drift cycles.  Vertical splitting cracks in the web toe boundary element were observed 

during the cycle at -0.75% drift (noted as DS1). At the cycle to -1% drift, extensive vertical 

splitting cracks and minor crushing of the concrete over the bottom 12 inches were observed (noted 

as DS2).  Failure of the wall specimen was observed during the cycle to -1.25% drift resulting 

from a brittle buckling failure of the web toe boundary element.  The resulting damage to the 

bottom 36 inches of the web is shown in Figure 2.16. 
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 (a)  (b) 

Figure 2.15: (a) Specimen TW1 and (b) Specimen TW2 Load-Deformation Response for 

loading parallel to the web of the wall versus percent drift.  Positive drift represents the 

flange in compression and negative drift represents the web toe in compression. 

 

For specimen TW2, flexural cracking initiated at 0.25% and shear cracking at 0.50% drift 

cycles.  Vertical splitting cracks in the web toe boundary element were observed during the first 

cycle at -0.9% drift (noted as DS1).  The cycles to -1.3% (noted as DS2) resulted in cover spalling 

of the web toe boundary element over the bottom 12 inches. During the cycle to -1.8% drift, the 

cover spalling extended an additional 12 inches up the boundary element, but the core remained 

intact.  Core crushing and failure of confining reinforcement were observed during the cycle at -

2.25% drift (noted as DS3).  After positive displacement to 2.5% drift, the wall failure at -0.75% 

drift due to an out-of-plane buckling of the web boundary element as shown in Figure 2.17. 

 

 

Figure 2.16:  Specimen TW1 web failure (Thomsen IV and Wallace 2004) 
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Figure 2.17:  Specimen TW2 web failure (Thomsen IV and Wallace 2004) 

 

 Brueggen (2009): Specimen NTW1 and NTW2 

Two tests of T-shaped walls subjected to complex multi-directional loading were carried out 

at the University of Minnesota (Brueggen 2009).  Prior experimental tests of T-shaped walls had 

utilized uni-directional loading only due to laboratory constraints.  Multi-directional testing is a 

necessity to understand how wall damage during loading in one direction affects wall performance 

in other directions.  These tests of T-shaped walls also evaluated modern design detailing for the 

confinement region when subjected to non-orthogonal loading.  Both test specimens represented a 

six-story prototype building; however, specimen NTW1 was a four-story sub-assemblage, and 

specimen NTW2 was a two-story sub-assemblage.  Each of the sub-assemblies was subjected to a 

moment and axial load at the top of the wall in order to simulate the demands associated with the 

six-story building.  See Figure 2.18 (a) and (b) for the specimen geometry and reinforcing of 

NTW1 and NTW2 respectively.  Table 2.3 provides the design parameters of the tests. 
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Table 2.3:  Specimen NTW1 and NTW2 design parameters 

Specimen ID: NTW1 NTW2 

Scale  1:2 1:2 

Shear span (M/V) 26 ft 26 ft 

Spear span ration (h/lw) 
3.47 (web) / 

4.33 (flange) 

3.47 (web) / 

4.33 (flange) 

Axial Load 186.5kip 186.5kip 

Compressive strength at time of testing 6833 psi 6178 psi 

Axial load ratio 0.03 0.03 

Compactness ratios 
  

 lweb/tw 15 15 
 lfl/tw 12 12 

Vertical reinf. ratios 
  

 total 2.51% 2.16% 
 unconfined webs 0.59% uniform 
 corner BE's no BEs uniform 
 toe BE's 3.78% uniform 

Horizontal reinf. ratios 
  

 web 0.26% 0.41% 
 flanges 0.26% 0.41% 
 confining   

 

     

 (a) Specimen NTW1 (b) Specimen NTW2 

Figure 2.18:  Specimen NTW1 and NTW2 geometry and reinforcing (Brueggen 2009) 

 

The load-deformation response of specimen NWT1 is given in Figure 2.19.  Shear and flexural 

cracking of the specimen initiated during the first cycle to 25% yield in the web direction.  After 
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yielding, damage initiated at the 1.6% drift level when loading in the direction of the web.  Spalling 

of web BE over a 12” square area at the bottom of the wall was observed when loading with the 

flange in tension (see DS1).  At 2.2% drift, additional spalling of the web tip was observed, and 

loss of confinement was first observed through straightening of the 135-degree hooks enclosing 

the vertical bars (see DS2).  During the third cycle at this drift level, core crushing of the web 

boundary element was visible.  A subsequent loading in the skew direction up to 2.2% drift caused 

buckling of the vertical web reinforcing bars. 

Loading continued for the flange direction at cycles of 1.6%, 2.2% and 2.8% drift without any 

significant damage.  During the second cycle at 3.3% drift, spalling of the flange tips was observed 

(see DS4).  During the first cycle to 4% drift, crushing and buckling of the flange tip was observed, 

and three of the vertical bars subsequently fractured when loading to the negative of the flange 

direction (see flange Failure).  After the failure of the flange, the web direction was loaded again 

to 2.2% drift with the flange in compression.  The failure resulted from the fracture of four vertical 

bars in the web boundary element that had been previously buckled (see web Failure).  The final 

damage condition of NTW1 is shown in Figure 2.18. 

 

 

 (a) Web Axis  (b) Flange Axis 

Figure 2.19:  Specimen NTW1 load-deformation response 
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 (a) Web (b) Flange 

Figure 2.20:  Specimen NTW1 after failure (Brueggen 2009) 

 

The load-deformation response of specimen NWT2 is given in Figure 2.21.  After yielding, 

damage initiated at the 2.2% drift level when loading in the direction of the web with spalling of 

the web BE (see DS1).  Subsequently, skew loading of the specimen to 2.2% drift in the web 

direction and 0.66% in the skew direction resulted in additional spalling of the web BE and minor 

flaking/spalling was observed along shear cracks in the unconfined web.  A sliding deformation 

of 1/8” was noted.  At 2.7% drift, loss of confinement and fracture of the confinement hoops 

occurred.  Four longitudinal bars in the web tip buckled (see DS2).  Upon loading in the opposite 

direction with flange in compression at -1.9% drift, the four previously buckled bars fractured (see 

DS3).  Load carrying capacity was less than 50% of nominal upon reloading with the web tip in 

compression. 

Loading continued for the flange direction at cycles up to 2.3% drift without any significant 

damage.  During the cycle at 2.8% drift, spalling of the flange tips was observed (see DS4).  During 

the cycle to 4.1% drift, fracture of one BE bar occurred in the South tip and two BE bars in the 

North tip (see flange Failure).  The subsequent cycle at 4.1% drift resulted in additional fractures 

and loss of load carrying capacity.  The final damage condition of NTW2 is shown in Figure 2.22. 
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 (a) Web Axis  (b) Flange Axis 

Figure 2.21:  Specimen NTW2 load-deformation response 

 

       

 (a) Web (b) Flange 

Figure 2.22:  Specimen NTW2 after failure (Brueggen 2009) 

 

2.1.4 H-shaped walls 

 Oesterle et al. (1976, 1979): Specimen F1 and F2 

During the 1970’s, a series of nine wall tests were conducted by the Portland Cement 

Association to increase the understanding of their inelastic response during seismic loading 

(Oesterle et al. 1976, 1979).  Wall specimens were built at one-third scale and subjected to reverse 

cyclic loading histories.  The primary test parameters examined the influence of wall geometry 

(planar, barbell and H-shaped) and reinforcement ratio.  This section examines only the two H-

shaped wall specimens.   
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The two wall test specimens utilized the same geometry but different reinforcing patterns.  

Specimen F1 utilized a uniform distribution of reinforcement across the flange without confining 

reinforcement.  Specimen F2 utilized a confined boundary element at the intersection of the web 

and flange.  Overall vertical and horizontal reinforcing ratios were similar.  Figure 2.23 and Figure 

2.24 illustrate the specimen geometry and reinforcing of TW1 and TW2 respectively.  Table 2.4 

provides the design parameters of the tests. 

 
Table 2.4:  Specimen F1 and F2 design parameters 

Specimen ID: F1 F2 

Scale  1:3 1:3 

Shear span (M/V) 15 ft 15 ft 

Spear span ration (h/lw) 
2.4 (web),  

5 (flange) 

2.4 (web),  

5 (flange) 

Axial Load 0 482psi / 199 k 

Compressive strength at time of testing 5575 6610 

Axial load ratio N/A 0.03 

Compactness ratios     
 lweb/tw 18.75 18.75 
 lfl/tw 9 9 

Vertical reinf. ratios     
 total 1.55% 1.26% 
 unconfined webs 0.30% 0.31% 
 corner BE's 3.89% 4.35% 

 toe BE's 
uniform  

flange 
no BE's 

Horizontal reinf. ratios     
 web 0.71% 0.63% 
 flanges 0.71% 0.63% 
 confining  0% 1.43% 
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Figure 2.23:  Specimen F1 geometry and reinforcing (Oesterle et al. 1976) 

 

  

Figure 2.24:  Specimen F2 geometry and reinforcing (Oesterle et al. 1979) 
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The complete description of cracking and damage progression of specimen F1 is given by 

Oesterle et al. (1976).  The load-deformation response is shown in Figure 2.25 (a).  Cracking 

initiated during the cycles to 0.25% drift.  During the cycle to 1% drift (see DS1), minor spalling 

and flaking along construction joints and diagonal cracks in bottom three feet were observed.  In 

addition, horizontal bowing (reverse curvature) of flanges in the bottom two feet and caused 

vertical cracking due to the transverse shear in the flanges.  In the first cycle to 2.25% drift, the 

specimen experienced a brittle failure at -2% drift after reaching the positive peak.  The failure 

occurred due to web crushing about one foot above the base of the wall as shown in Figure 2.26 

(a).  At the point of failure, the base slip along the construction joint with the foundation reached 

0.3” equal to about 8% of the total wall deformation, see Figure 2.27 (a). 

 

 

 (a) Specimen F1 (Oesterle et al. 1976) (b) Specimen F2 (Oesterle et al. 1979)  

Figure 2.25:  H-shaped load vs. deformation 

 

The complete description of cracking and damage progression of specimen F2 is given by 

Oesterle et al. (1979).  The load-deformation response is shown in Figure 2.25 (b).  Cracking 

initiated during the cycle to 0.25% drift.  Damage initiated with spalling and flaking along the 

diagonal cracks during the cycle to 1% drift (see DS1).  During the cycle to 1.67% drift, web 

crushing was observed in the unconfined web.  Crossties and hooks in the confined portion of the 

web BE began to fail. (see DS2).  Web crushing increased during the cycle to 2.25% drift and 

reverse curvature of the first 12 inches of the flanges observed.  Transverse vertical cracks in lower 

2’6” of the flanges opened due to the transverse shear imposed by sliding of the web (see DS3).  

During the positive portion of the first cycle to 2.8% drift, extensive crushing of the unconfined 
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region of the flange occurred (see DS4).  On the negative loading to 2.8% drift, the lower portion 

of the web experienced a brittle crushing failure.  The compression flange sheared and a horizontal 

failure plane developed across the web with a fracture of one horizontal bar as shown in Figure 

2.26 (b).  While specimen F2 experienced base slip similar to F1, the magnitude of slip was less 

than one-third of that experienced by specimen F1, see Figure 2.27 (b).  The confined boundary 

elements may have contributed to the increased resistance to base slip. 

 

 

 (a) Specimen F1 (Oesterle et al. 1976) (b) Specimen F2 (Oesterle et al. 1979) 

Figure 2.26:  H-shaped wall failure due to web crushing 

 

 

      

 (a) Specimen F1 (Oesterle et al. 1976) (b) Specimen F2 (Oesterle et al. 1979)  

Figure 2.27:  H-shaped wall shear vs. base slip deformation 

 

Of the conclusions from the testing program, three key conclusions are noted here: (1) the 

presence of a horizontal construction joint in the plastic hinge region for walls may limit inelastic 
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response in walls subjected to high shear stress, (2) boundary elements in walls behave similar to 

dowels, increasing resistance to base slip and shear distortion, and (3) shear deformation is a 

significant portion of the overall non-planar wall displacement (Oesterle et al. 1976). 

2.2 Prior experimental tests of the Complex Walls test program 

As described in Chapter 1, the Complex Walls testing program was undertaken to increase the 

understanding of Four planar walls and one coupled wall were tested for the Complex Walls 

project prior to the C-shaped walls.  All tests were loaded representative of a ten-story building 

with either an inverted triangular distribution or by a uniform lateral load.  Design details were 

representative of modern construction and boundary elements.  All tests utilized dense 

instrumentation including non-contact displacement field data.   

The design variables of the four planar walls were the effective height of loading and resulting 

change in shear demand, the distribution of longitudinal reinforcement in boundary elements or 

uniformly distributed, and the use of a longitudinal reinforcement splice in the plastic hinge region 

of the wall.  Documentation and analysis of the planar walls specimens are provided in the 

following references (Birely 2012; Hart 2012; Lowes et al. 2012, 2011).  For subsequent 

comparison to the C-shaped wall testing, the results of planar wall specimen PW4 are summarized 

in Section 2.2.1. 

The second phase of the test program studied a coupled wall with geometry, loading, and 

reinforcing similar to the planar wall test specimens.  Documentation and analysis of the coupled 

wall are provided in the following references (Turgeon 2011; Lehman et al. 2013; Hart 2012).  The 

results of the coupled wall test are summarized in Section 2.2.2 for subsequent comparison to the 

C-shaped wall testing.   

 

Table 2.5:  Complex Wall experimental test matrix 

Specimen Configuration Loading Effective 

Height 

Axial Load  

( )% ' *c gf A  

Boundary 

Elements 

Splice in 

first story 

PW1 Planar Uni-directional 0.71 9.5% Yes Yes 

PW2 Planar Uni-directional 0.50 13% Yes Yes 

PW3 Planar Uni-directional 0.50 10% No Yes 

PW4 Planar Uni-directional 0.50 12% Yes No 

CPW Coupled Uni-directional 0.71 10% Yes No 



32 

2.2.1 Planar wall test specimen PW4 

The fourth planar wall test specimen, PW4, was distinguished from the prior tests primarily by 

the lack of vertical reinforcing bar lap splice in the first story.  At one-third scale, the planar wall 

specimen was 10’-0” long and 6” thick.  A heavily reinforced boundary element was detailed over 

the last 1’-8” of each end of the wall.  The story height was 4’-0” and the total specimen height 

was 12’-0” to represent the bottom three stories of the ten-story building.  The specimen geometry 

and detailing are shown in Figure 2.28.   

 

Figure 2.28:  Cross-section and boundary element detail of PW4 (Hart 2012) 

 

As previously noted, the imposed loads on the top of the third story were representative of the 

ten-story building through the application of overturning moment and axial load.  The imposed 

axial load was 360 kips or 11.7% of the gross compressive strength at time of testing.  The effective 

height of loading was at mid-height of the ten-story building, so ancillary actuators were provided 

at the top of the first and second floor in order to provide a uniform shear applied at each floor.  

The resulting load-deformation response for base shear (left) and base moment (right) is given in 

Figure 2.29. 
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Figure 2.29:  PW4 Load-deformation response (Birely 2012) 

 

For the damage progression, horizontal and diagonal cracking initiated at 0.06% and 0.07% 

drift respectively.  Yielding was first realized in compression of the extreme vertical boundary 

element bars at 0.19% drift.  Tensile yield of the same bars was noted at 0.30% drift.  Vertical 

splitting cracking in the boundary element compression region was observed during the cycle to 

0.50% drift and followed by spalling of the concrete cover in the same cycle.  As spalling extended, 

the vertical boundary element reinforcing became fully exposed at the cycle to 0.75% drift.  In the 

third cycle at 0.75% drift, the vertical boundary element bars began to buckle followed by evident 

core crushing inside the boundary element.  During the second cycle to 1.0% drift, extensive bar 

buckling and core crushing in the right boundary element at the bottom of the wall resulted in 

failure and loss of load-carrying capacity.  The resulting cracking and damage pattern are indicated 

in Figure 2.30. 
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(a) Photo of cracking and damage   (b) Crack pattern determined using photogrammetry 

Figure 2.30:  Planar wall PW4 damage and cracking pattern (Hart 2012) 

 

2.2.2 Coupled wall test specimen CPW 

The fifth experiment of the Complex Walls testing program evaluated a coupled wall.  The 

design of the was based on an inventory of West coast buildings ranging from ten to sixty stories 

tall where the coupled wall was part of a central core wall system (Turgeon 2011). The specimen 

scale and detailing were as similar to the planar wall tests as possible to facilitate comparison of 

wall response.  At one-third scale, each wall pier was 4’-0” long and 6” thick with a story height 

of 4’-0”.  The wall piers were connected by a 2’-0” long by 1’-0” deep coupling beam at each 

story.  This configuration resulted in an overall wall length and height equal to the planar wall 

specimens.  The geometry and reinforcing of the test specimen are shown in Figure 2.31 to Figure 

2.33.  
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Figure 2.31:  Elevation of coupled wall test specimen (Turgeon 2011) 

  

Figure 2.32:  Coupled wall coupling beam detail (Turgeon 2011) 
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Figure 2.33:  Coupling wall boundary element detail (Turgeon 2011) 

 

A summary of the damage progression from Turgeon (2011) is given below.  Additional details 

are provided by Hart (2012). Cracking initiated in the coupling beams at 0.1% drift.  Horizontal 

and diagonal cracking initiated in the wall piers at 0.125% drift and 0.25% drift respectively.   

Yielding of the outer boundary element bars of the wall piers and third-floor coupling beam 

occurred during the cycle to 0.5% drift.  Spalling of the outer boundary elements and third-floor 

coupling beam initiated during the cycle to 1.0% drift.  The progression of spalling at the outer 

boundary elements resulted in the exposure of the vertical reinforcement at 1.5% drift.  Spalling 

occurred at the second and first-floor coupling beams at 1.9% and 1.5% drift respectively.  The 

failure occurred at 2.27% drift in both directions resulting from a brittle compressive failure of the 

boundary element.  All 16 vertical boundary elements buckled and core crushing was extensive.  

The resulting wall damage is summarized graphically in Figure 2.34 and by a photo in Figure 2.35.  

Additional discussion of the coupled wall response and data is given in Section 6.2.2. 
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Figure 2.34:  Final regions of damage identified at the end of the coupled wall experiment 

(Lehman et al. 2013) 

 

  

Figure 2.35:  Photograph of the bottom story of the coupled wall failure at the end of the test 

 

2.3 Nonlinear solution techniques 

The goal of all nonlinear solution techniques in finite element methods is to find the load-

displacement relationship of a structure.  A load and/or displacement is applied to the structure 

and iterations are then performed to find a convergent solution marking a single point on the load-

deformation solution path.  All methods aim to solve static equilibrium     u F=K  after each 

increment of load or displacement in order to match the external forces of the system to the internal 
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forces of the system for equilibrium.  An incremental-iterative approach is used to solve these 

problems as shown in Figure 2.36.  In this figure, the structure is initially in equilibrium at point 

A, and an incremental-iterative approach is employed to reach equilibrium again at point B through 

the application of i

ju and 
i

i

j p  . 

 

 
Figure 2.36:  Incremental-iterative approach for the solution of a non-linear load-

deformation path (Leon 2011) 

 

In contrast to finite element modeling, the experimental test is always in equilibrium and is 

always on a solution path; however, the desired load on the structure is not always equal to the 

measured load.  This conceptual distinction prevents any existing methodology to be directly 

applied, but the existing methodologies solve a very similar problem and provide a basis for 

developing a solution. 

 

2.3.1 Displacement, load, and hybrid methodologies 

Incremental-iterative solution techniques can be classified in three categories based on the 

methodology of solution convergence:  displacement control, load control, and hybrid 

(displacement and load control) path-following methods (Crisfield 1991; Leon 2011).  

Displacement control methods iterate the displacement to change the load on the structure.  The 

primary advantage of displacement control methods is the ability to continue the solution path 

beyond limit points without snap-back behavior.   The stiffness matrix also cannot become singular 

(Crisfield 1991).  Load control methods iterate the force to change the displacement of the 

structure.  The Newton-Raphson method is a commonly used load-control method.  The primary 
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disadvantage of the load-control method is the failure at limit points where the stiffness matrix 

becomes singular as well as the inability to trace the solution path beyond the limit point as shown 

in Figure 2.37. 

 

 
Figure 2.37:  Divergence of a load-control methodology at a limit point of the load-

deformation path (Crisfield 1991) 

 

The decision to use load or displacement-based control is dependent primarily upon the 

structure being evaluated, and the loads applied to that structures.  To address a wider variety of 

structural problems with one solution, path-following methodologies where the displacement and 

force are iterated upon were developed.  A widely used path following method is known as the 

arc-length method using a spherical arc-length constraint as proposed by Crisfield (1981).  Bergan 

(1980), Crisfield (1991) and Leon (2011; 2012) provide a more comprehensive evaluation of these 

methods and their applications. 

The load and displacement of the ith increment of the jth iteration can be characterized by the 

following equations and by Table 2.6. 

 
1

i i i

j j ju u u− =  +   (2.2) 

 
1

i i i

j j jp p p− =  +   (2.3) 

 

 
Table 2.6:  Summary of control methodologies 

 Displacement control Load control Arc-length control 

1j =   2j    1j =   2j    1j =   2j    

i

ju  prescribed 0 prescribed iterated prescribed iterated 

i

jp  prescribed iterated prescribed 0 prescribed iterated 

 

The testing control methodology described in Section 3.3 falls somewhere between a true load 

control method and a true arc-length methodology.  The initial iteration will command the lateral 
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displacement with an axial force and overturning moments.  The load will then be iterated as 

needed without a change in displacement until convergence.   

2.3.2 Stiffness measurement methodology 

The tangent or secant stiffness measurement of the solution method can be done every iteration 

(standard stiffness update) or only on the first iteration of the increment (constant stiffness update).  

Crisfield illustrates the two stiffness methods in Figure 2.38 and Figure 2.39 in the case of a load-

control method.  In both figures, two increments on the solution path are completed denoted by ft1 

and ft2.  The standard stiffness update shows a tangent stiffness measurement after each point of 

convergence providing an increasing accurate stiffness to reach convergence of the increment in 

less iteration.  In the Newton method, the standard stiffness updates provide quadratic convergence 

on the solution (Crisfield 1991).  In contrast, the constant stiffness update shows a tangent stiffness 

measured at the first iteration of the increment; however, the stiffness is not updated again until 

after the increment is converged.  The constant stiffness update could result in significantly more 

iterations in a region of nonlinearity.  However, if the increment is sufficiently small, the initial 

tangent stiffness will be a reasonable value to use for the entire increment and reduce the 

computational cost of stiffness updating (Crisfield 1991).  The primary disadvantage and danger 

of constant stiffness updates are the inability to correct for nonlinearities that occur during the 

increment causing a significant change in stiffness. 

 

 
Figure 2.38:  Example of standard stiffness update at each iteration using a tangent stiffness 

measurement (Crisfield 1991) 
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Figure 2.39:  Example of constant stiffness update using the tangent stiffness measured at the 

first iteration of the step (Crisfield 1991) 

 

 In experimental testing of structures, only an approximate stiffness can be determined.  In 

addition, the solution path is non-smooth, and convergence tolerances are very large relative to 

those of numerical modeling.  Both of these issues are not accounted for in the nonlinear solution 

techniques presented.  As a result, an accurate stiffness measurement requires a significant change 

in both load and displacement.  The displacements of the iterations are very small relative to the 

displacement of the overall increment, so the concept of constant stiffness updates is more 

applicable to the algorithm.  Furthermore, a stiffness updating methodology will be employed to 

take advantage of the load-displacement data gathered in previous steps for evaluating the next 

step.   

 

2.3.3 Tangent and secant stiffness methods 

The mathematical problem of solving     u F=K  can be expanded by the following 

equations using a load-control methodology.  The expansion is based upon an iterative solution 

for each increment of loading:  

 

        
11

i i ii

jj jj
u P R

−−
= +K  (2.4) 
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Where, 

 

 

 

1

Increment

Iteration

Tangent stiffness of previous step

Displacement increment for th iteration of the th increment

Load increment parameter for th iteration of the th increment

Refe

i

j

i

j

i

j

u j i

j i

P

i

j



−

=

=

=

=

=

=

K

 
1

rence load vector

Unbalanced force vector
i

j
R

−
=

 

 

The solution of all the nonlinear solution techniques requires a tangent stiffness measurement.   

The tangent stiffness measures the slope of the nonlinear path at the previous step and captures the 

softening of the substructure for better prediction of the next converged solution.  For an 

adequately small discretization, the error between the actual and predicted converged solution 

would be small for a smooth linear or polynomial response (Sekulovic, Salatic, and Nefovska 

2002).  For discretized nonlinear solutions, a secant through the previous discretization step is 

often used as the tangent stiffness shown in Figure 2.40 as k2, k3, and k4.   

 
Figure 2.40: Secant stiffness update using the current and previous converged load-

displacement step (Sekulovic, Salatic, and Nefovska 2002) 

 

However, the tangent stiffness will be a poor predictor of the substructure response near 

singularities and at the unloading of the substructures for cyclic loadings.  One example of a 

singularity is the stiffness response due to damage of the substructures.  One or more reinforcing 

bar ruptures can result in a significant drop in stiffness and an incorrect stiffness measurement.  
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Figure 2.41 illustrates the discretized solution path with a sudden reduction in stiffness.  The 

dashed line represents the secant stiffness through that step. 

 

      
Figure 2.41:  Example of sudden drop in tangent stiffness between increments resulting from 

damage (i.e. reinforcing bar fracture) 

 

A pure secant stiffness method measures the stiffness or each step relative to force and 

displacement at the initial or starting point on the nonlinear path.  The secant stiffness method does 

not have any convergence issues with singularities but will always overpredict the response.  Drops 

in stiffness do not significantly affect the predicted response of the next increment.  Figure 2.42 

illustrates the secant stiffness method. 

 
Figure 2.42:  Secant stiffness method using a current and initial or predefined converged 

load-displacement point (Sekulovic, Salatic, and Nefovska 2002) 

 

A tangent stiffness measured by a secant approximation of the last discretized step would best 

characterize the changing stiffness of the test structure.  This type of stiffness measurement, falling 

into the class of ‘Quasi-Newton’ methods, will be further explored to determine its application to 

the problem.   

 

{u} 

{F} 
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2.3.4 Secant stiffness updating 

“Quasi-Newton methods” identify the class of nonlinear solution techniques that use the 

Newton-Raphson method with an approximate Jacobian stiffness matrix as opposed to 

mathematically forming and decomposing a tangent stiffness matrix (Crisfield 1981).  The secant 

approach described in 2.3.3 is commonly used.   

2.3.5 Broyden update 

The approximate tangent stiffness will be updated at each step to reflect the changing stiffness 

of the structure.  The aim is to update the Jacobian stiffness as little as possible while still 

maintaining the prescribed relationship given the load-deformation of the last step.  Fittingly, this 

minimization calls the method a “least change secant update.”  Mathematically prescribed as: 

 

Find a solution to the stiffness K: 

 
     ( )    ( )1 1

0 0 0 00

i i i i i
u u F F

− −
− = −K

 (2.5) 

 

While minimizing its solution: 

 
   

1

0 0
min

i i−
−K K

  (2.6) 

 

The derivation of the solution is given by Broyden (1965) as well as Dennis and Schnabel 

(1979).  The solution results stiffness will be a fully populated square matrix with the number of 

columns and rows equal to the number of prescribed degrees of freedom.  The solution is: 

  

 

   
     ( )  ( )

 ( )  

11 1 1

0 0 001

0 0 1 1

0 0

T
ii i i

measi i

T
i i

F u

u





−− − −

−

− −

 − 
= +



K
K K

 (2.7) 
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 

 

     

0

1

0

1 1 2

0 0 0

,

approximated tangential stiffness for the next increment

approximated tangential stiffness used in the last step

change in internal force during the previously comp

i

i

i i i

meas

Where

F F F

−

− − −

=

=

 = −

K

K

     

 

1 1 2

0 0 0

1

0

leted increment

change in displacement during the previously completed increment

"vector chosen to optimize the performance of the iteration method"

i i i

i

u u u



− − −

−

 = − =

=

Broyden proposed that the optimization vector, psi, be equal to the change in displacement 

(Crisfield 1991; Dennis and Schnabel 1979): 

    
1 1

0 0

i i
u

− −
=    (2.8) 

 

The resulting solution hereafter referred to as the “Broyden update” is given by: 

 

 

   
     ( )  ( )

 ( )  

11 1 1

0 0 001

0 0 1 1

0 0

T
ii i i

measi i

T
i i

F u

u





−− − −

−

− −

 − 
= +



K
K K

 (2.9) 

 

2.3.6 Davidon-Fletcher-Powell update 

A refinement of the Broyden method was found by applying a weighting factor pre and post-

multiplied to the stiffness update.  The weighting factor is chosen to represent the natural scaling 

of the problem, providing an update the better represents the actual tangential stiffness.  

Application of the weighting factor resulting in an updated minimization: 

 

 ( )    ( )( )
1 11 11

0 00 0
min

i ii i
− −− −−

   −   K K K K  (2.10) 

 

The derivation of the weighting factor and solution was completed by Davidon (1991) Fletcher 

and Powell (1963).   The resulting solution is given as: 
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   
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T
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F u u
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=
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+

 

 −  
−  

 
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 

K K

K K

K

(2.11) 

 

The solution is hereafter referred to as the Davidon-Fletcher-Powell (DFP) update.  For the 

specialized case of using the stiffness matrix to predict forces as opposed to displacements, no 

inversion of the stiffness matrix is required for either method of stiffness approximation. 

2.4 Behavior and constitutive modeling of structural concrete 

Detailed finite element modeling of structural concrete first requires an understanding of the 

physical behavior or each independent material as well as the interactions between the two 

materials.  The approximations and applicability of constitutive models designed to represent the 

physical phenomena of structural concrete must also be understood to evaluate the output of any 

finite element analysis properly.  This section provides a brief overview of the relevant phenomena 

observed in concrete, steel, and their interaction.   

2.4.1 Cracking 

Concrete is inherently weak in tension relative to its compressive capacity and exhibits quasi-

brittle fracturing.  Cracking occurs in concrete from time-dependent effects such as shrinkage, but 

will primarily be considered from a mechanically induced tensile stress that exceeds the tensile 

capacity of the concrete.  Cracking generally refers to macro-cracking, cracks that are visible to 

the naked eye (thousandth of an inch and larger).  However, macro-cracks are in fact the result of 

the propagation and coalescence of many micro-cracks that previously formed under lower levels 

of stress.   

Concrete is a heterogeneous material consisting of aggregates of varying sizes (fine and 

coarse), a cement paste, and voids of air or water.  For normal strength concretes, the aggregates 

are typically higher strength than the paste, and micro-cracks form in the paste between and around 

aggregates.  Higher strength concrete exhibits a more uniform strength distribution, and micro-
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cracks may pass through both the aggregates and paste.  As the micro-cracks propagate and 

coalesce, the material will begin to separate, and a macro-crack becomes visible.  A diagrammatic 

figure of the propagation of micro-cracks is shown in Figure 2.43.   

 

 

Figure 2.43:  Load-induced micro-cracking (Reynouard et al. 2013), originally from van Mier 

Ph.D. thesis (1984) 

 

Macro-cracking of concrete has been categorized into three distinct “modes” of fracture (van 

Mier 2013).  A crack opening due to direct tension such as a flexural crack is called mode I.  A 

crack opening due to in-plane shear stress is mode II.  A crack opening due to out-of-plane shear 

stress is mode III.  Planar structures are primarily limited to Mode I and Mode II fractures, but 

non-planar structures can exhibit all three modes of fracture.   

Multiple approaches from fracture mechanics have been employed in research to describe the 

transition of micro-cracks to macro-cracks including the cohesive crack model (also called the 

fictitious crack model) (Hillerborg, Modéer, and Petersson 1976), and the crack band theory 

(Bažant and Oh 1983).  The quasi-brittle cracking was idealized by a region of micro-cracking that 

exhibits a softening stress distribution.  The region of micro-cracking then progresses to an open 

macro-crack, as shown in Figure 2.45.  Comprehensive reviews of these methods, as well as 

traditional linear elastic fracture mechanics approaches to the problem, are provided by Shi (2009) 

and Bazant (2002).   
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Figure 2.44:  Fracture modes of reinforced concrete:  (a) mode I – flexural cracking, (b) mode 

II – in-plane shear cracking, and (c) mode III – out-of-plane shear cracking (van Mier 2013) 

 

 

Figure 2.45:  Hillerborg's cohesive crack model (Hillerborg, Modéer, and Petersson 1976; 

Reynouard et al. 2013) 

 

In finite element modeling, macro-cracks can be discretely modeled as a geometric 

discontinuity, using fracture mechanics approaches such as those listed above to predict the 

formation and propagation of individual cracks.  Discrete crack modeling where the response is 

governed by a small number of discrete cracks, such as un-reinforced members, shear-critical 

members, or members with widely spaced.  The biggest barrier to the discrete approach is the 

necessity to know where the cracks will form in order to have an adequate FE mesh in that region.  

Automatic re-meshing techniques have been developed to create new finite elements at the tip of 

a crack allowing it to freely propagate (Ingraffea and Saouma 1984); however, this technique 

comes at a considerable computational cost (Reynouard et al. 2013).  Another approach to 

answering this problem is the use of the Extended Finite Element Method to model the 

discontinuity without modifying the existing finite element mesh (Belytschko and Black 1999; 

Tejchman and Bobiński 2013).  The discrete crack modeling approach is physically appealing for 
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modeling the discontinuities of cracking; however, the computational complexity in modeling 

specimens with widespread distributed cracking remains a significant barrier.  An alternative 

approach known as smeared crack modeling has proven successful in predicting members with 

widespread cracking.  The smeared crack modeling approach is treated in detail in Section 2.5 

2.4.2 Compressive response of concrete 

Concrete subjected to uniaxial compression exhibits a softening response up to a peak 

compressive stress denoted as 'cf .  The concrete exhibits a linear elastic behavior up to 

approximately one-third the peak compressive stress.  Nonlinear softening of the response 

gradually increases due to the formation of micro-cracks.  After reaching a peak compressive 

stress, macro-cracks develop and propagate reducing the stress capacity of the material until 

reaching a splitting failure.   

 Biaxial response of concrete and compressive softening 

The biaxial response of concrete exhibits a dependency of the compressive strength on the 

transverse loading.  The response of concrete to biaxial compression, compression-tension, and 

biaxial compression were evaluated experimentally by Kupfer (1969).  The key conclusions of 

these experiments are central themes to models of the constitutive response of concrete.   

For a state of biaxial compression, the compressive stress capacity increases as shown in Figure 

2.46.  A proportional compressive loading resulted in about a 16% increase in capacity.  The peak 

increase in capacity of about 25% is realized for a non-proportional loading with a compressive 

stress ratio of 2:1. Furthermore, biaxial compression resulted in an increased tensile ductility in 

the out-of-plane direction and a consequent increase in compressive strain ductility.  For a state of 

biaxial tension, the response was not distinctly different from a uniaxial response.   For a state of 

biaxial compression and tension, the compressive stress capacity and ductility decrease as shown 

in Figure 2.47.  The experimental results revealed a nearly linear relationship between decreasing 

compressive capacity and increasing tensile stress (Chen 1982).  The reduction of compressive 

capacity is often referred to as compression softening.   
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Figure 2.46: Plot of normalized compressive strength versus normal strains on an element of 

plain concrete subjected to uniaxial and biaxial compression (Kupfer, Hilsdorf, and Rüsch 

1969) 

 

 

Figure 2.47:  Plot of normalized compressive strength versus normal strains on an element of 

plain concrete subjected to uniaxial compression and biaxial tension (Kupfer, Hilsdorf, and 

Rüsch 1969) 
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 Pre-peak compressive response of concrete 

The base curve of the concrete stress-strain relationship for the initial linear regime and 

nonlinear softening up to the peak compressive stress was first approximated using a parabolic 

relationship by Hognestad (1955).  The peak compressive strength is limited by a maximum stress 

given as a function of the transverse tension on the element to base upon the effect of compression 

softening.   

   (2.12) 

While the parabolic relationship is a commonly utilized assumption, it does not fit compressive 

response test data as well as some later methods.  Smith and Young (1956) proposed the following 

exponential model, 

   (2.13) 

Subsequent experiments through the work of Thorenfeldt (1987), Popovics (1973), Collins and 

Porasz (1989) developed a model applicable to normal and high-strength concretes as follows.  

The model is shown in Figure 2.48 and the relationship given as, 

   (2.14) 

Where 
2,maxcf  is the softened peak compressive stress for the biaxial strain state and the 

modification parameters are, 
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   (2.17) 

 

 

Based upon the finite element modeling of 21 structural walls, Palermo and Vecchio (2007) 

recommended the following concrete models:  For compressive strength greater than 45 MPa (6.53 

ksi), the high-strength modified Popovics (Equations (2.14) and (2.16)). For compressive strength 

between 22 to 45 MPa (3.2 to 6.53 ksi), the normal-strength Popovics (Equations (2.14) and (2.15)

).  In addition, for concretes with compressive strength less than 22 MPa (3.2 ksi), the Smith-

Young base curve was recommended (Equation (2.14)). 

 

 

Figure 2.48:  Base curve of modified Popovics high-strength concrete constitutive model (from 

Selby (1997) with modified variable names) 

 Compressive softening 

The first experimental investigation of the effect of compression softening response was 

completed by Robinson and Demorieux (1977).  This investigation tested slender panels that were 

loaded in compression in one axis and in tension in the transverse axis.  Reinforcement was 

provided in the transverse direction and was used the means of applying tension to the specimen.  

Reinforcement was examined for the orthogonal and skewed configuration.  A 14% reduction in 
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compressive strength was observed when the panel was pulled in tension in the transverse direction 

up to the yield strength of the bars (Nielsen 2011). 

The softened peak compressive stress, 
2,maxcf  is defined by a scaling parameter,  .  A variety 

of empirical models have been developed to quantify this scaling factor for describing the strength 

and stiffness prior to reaching the peak compressive stress.  A review, comparison, and 

recommendation of up to eight different compression softening models based on the ten years of 

experimental data from both universities were completed by Vecchio and Collins (1993).  Based 

upon the experimental data of 116 panel tests, the work concluded that the most important factor 

influencing compression softening was the principal tensile strain followed by the concrete 

strength.  The test data of these panels is shown in Figure 2.50.  Two models were proposed from 

the statistical analysis of the results defined by the influence of transverse straining ( )sK  and the 

concrete strength ( )fK  (Vecchio and Collins 1993).  Model A” is a two-parameter model based 

on the biaxial strain state and compressive strength: 

  (2.18) 

Where, n and k are defined in (2.15) and (2.16) 
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“Model B” is a simplified one-parameter model based on principal tensile strain and the 

compressive strength of the concrete.  The correlation of Model B to the data was only slightly 

better for Model A, providing Model B as a reasonable alternative for numerical simplification. 
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Figure 2.49:  Compression softening models, "Model A" (left) and "Model B" (right) (Vecchio 

and Collins 1993) 

 

 

 

Figure 2.50:  Ratio of experimental compressive stress in a biaxial strain state to the uniaxial 

compressive strength versus the ratio of principal strains.  The model A compressive softening 

model (Vecchio and Collins 1993) is plotted against the data to illustrate the fit of data. 

 

 Triaxial response of concrete resulting from passive confinement 

Triaxial compression of concrete results in increased compressive strength and ductility 

beyond that previously described for biaxial compression (Figure 2.46).  In practice, triaxial 
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compression is most prevalent in structure within soils, rock, and water due to lateral earth 

pressures and hydrostatic pressures that “actively” confine the structure.  However, confinement 

can also be provided by taking advantage of the Poisson’s effect and restricting the lateral 

expansion of the concrete when it is subjected to uniaxial compression.  This “passive” 

confinement can be provided in compressive members with closely spaced longitudinal and 

transverse steel, usually used in columns and boundary elements of walls.  A separate constitutive 

relationship of the stress-strain relationship is then desired to describe the increased strength and 

ductility of a region with longitudinal and confining steel. 

The Modified Kent-Park model (Scott, Park, and Priestley 1982) was developed using 

experimental tests on square columns with a variety of reinforcement layouts at low and high strain 

rates.  A strength enhancement factor, K , is used to describe the peak compressive stress and 

corresponding strain.  Modifying Equation (2.14) to reflect the strength enhancement (where the 

compression softening factor is one), the pre-peak confined response is, 

   (2.24) 

From the paper of Scott (1982), the post-peak response and parameters are defined as follows, 
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Where, s  is the ratio of confining steel to the gross volume contained by the confining steel 

including the area up to the outside edge of the confining steel, ''h  is the width of the confined 

area of concrete measured to the outside edge of the confining steel, and bs  is the center-to-center 

spacing of the confining steel. 
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Figure 2.51:  Modified Kent and Park model of passive confinement (from Selby (1997) with 

modified variable names)  

2.4.3 Tensile response of concrete 

As concrete is a heterogeneous material, it is weak in tension due to the limited bond strength, 

existing micro-cracks from shrinkage and hardening, as well as flaws that form during casting of 

the concrete.  The tensile strength of concrete is typically between 8 to 15% of its compressive 

capacity (Shi 2009).  In engineering practice, the tensile response is often considered negligible; 

however, it will be important to consider the tensile stresses in the concrete when aiming to 

describe the complete response of a structure.  Prior to cracking, the tensile response is considered 

to behave linear elastic. From Hooke’s law, the response is defined as, 
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Where, cr  and crf  are the strain and stress at cracking respectively.  The value of crf  and the 

initial elastic modulus, cE , will be prescribed as a function of the material properties and the 

desired criterion for cracking. 

After the complete development of a crack in the concrete, the tensile stress of the concrete 

will be zero. However, due to the quasi-brittle cracking process as previously described in Section 

2.4.1, the reduction from the stress at cracking to zero stress is not instantaneous.  For small crack 

widths, the concrete is still able to resist some direct tensile stress across the crack for a width of 

the crack termed the “fracture process zone” (FPZ).  Figure 2.52 (a) shows the transition of the 

fracture process zone with two idealized regions.  The region of “bridging” refers to the arrest of 
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the developing crack by the aggregates that ‘bridge’ the crack.  The degrading tensile stress across 

the FPZ is shown in Figure 2.52 (b), and this inelastic phenomenon is referred to as tension 

softening (Shi 2009).   

 

(a) 

 

(b) 

Figure 2.52:  Concept of tension softening from fracture mechanics, (a) illustrates the presence 

of microcracking around the tip of the open crack and associated fracture process zone (FPZ), 

and (b) the approximation of the fracture process zone using a tension softening model (Shi 

2009) 

 

Experimental uniaxial tension tests conducted at Delft University of Technology (Cornelissen, 

Hordijk, and Reinhardt 1986; Hordijk 1991) developed constitutive relationships for the tension 

softening observed in normal weight and lightweight concrete.  The relationship of best fit from 

the experiments of normal weight concrete is shown in Figure 2.53.  It provided the following 

relationship as a function of the current crack width, W , with adaptation from Wong (Cornelissen, 

Hordijk, and Reinhardt 1986; Wong, Vecchio, and Trommels 2013), 

   (2.30) 
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 1 3c =   (2.31) 
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Where, 
fG  is the fracture energy released per unit area in the cracking process.  From Figure 2.52 

(b) the fracture energy can be defined by Equation (2.34) (Shi 2009), although it is commonly 

assumed to be 75 N/m (Wong, Vecchio, and Trommels 2013) 
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Figure 2.53:  Plot of the ratio of tensile stress to nominal tensile strength versus the ratio of 

principal tensile displacement.  Solid line represents the correlation of test data for the 

nonlinear tension softening model (Cornelissen, Hordijk, and Reinhardt 1986).   

2.4.4 Reinforcement response 

The Seckin (1981) and Menegotto-Pinto (1973) both proposed hysteretic models for steel 

reinforcement that include the Bauschinger effect are considered in this study.  The Bauschinger 

effect results in a reduction of the compressive capacity after load reversal when the bar has 

undergone plastic straining.  Both models are based upon an elastic-plastic base curve of the stress-

strain response with linear or nonlinear strain hardening.  The primary difference between the two 

models is the Seckin model is a function of the maximum historical stress/strain point, and the 

Menegotto-Pinto is a function of the stress-strain response in the previous cycle.  A comparison of 

the two hysteretic models is shown in Figure 2.54 followed by their numerical implementation. 



59 

   

 (a) (b) 

Figure 2.54:  (a) Seckin hysteretic steel model with trilinear base curve (b) Menegotto-Pinto 

hysteretic steel model with trilinear base curve (Wong, Vecchio, and Trommels 2013) 

 Seckin hysteretic steel model 

Reloading model 

The Seckin reloading model is based upon the Ramberg-Osgood power formula with stiffness 

degradation.  The stiffness degradation is a function of the strain variation between the current 

cycle and the previous cycle beyond yield.  The reloading stress was defined as, 
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Where, 
j  is the current strain, m is the maximum strain in the material history,  o  is the 

plastic strain offset of the current cycle, sE  is the elastic modulus, mE  is the tangent stiffness at 

m , and rE  is the unloading modulus.  The Ramberg-Osgood power term, N, is used to represent 

the Bauschinger effect in response, 
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Where, mf  is the maximum historic stress.  The unloading modulus, rE , is varied based upon 

the magnitude of plastic straining ever experienced. 
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   (2.37) 

Unloading model 

The unloading relationship is linear and based upon the elastic modulus of the steel. 

 ( )( 1) 1s s j r j jf f E  − −= + −   (2.38) 

2.4.5 Buckling of reinforcement in compression 

Dhakal and Maekawa (2002a) examined the buckling response of bars in compression using a 

parametric study by finite element using previous experimental results.  The parametric study 

identified the response to be sensitive to the effective length and the yield strength of the bar.  The 

effective length is defined as the quotient of the “unbraced” length of the bar and its diameter.  As 

the yield strength and diameter are known, the problem becomes determining the effective length.  

The test results revealed that an unsupported length to diameter ratio exceeding 5.0 would induce 

buckling beyond the compressive yield, and if the ratio is less than 5.0, the response is consistent 

with that of the local stress-strain.  The tests also revealed the decreasing compressive capacity 

with increasing strain was approximately equal to 2% of the bar modulus. The model assumes this 

stiffness starting from an intermediate stress-strain point ( )* *,   that signifies the onset of 

buckling.  The intermediate stress point is defined as, 
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Where, the local stress-strain refers to the material response, i.e. elastic-plastic or trilinear.  The 

model is then defined as follows, 
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The model is shown in Figure 2.55.  A hysteretic implementation of this model is based on the 

Menegotto-Pinto model (Dhakal and Maekawa 2002b).  The model was validated against 

monotonic and cyclic experimental results for multiple L/D ratios. 

 

 

Figure 2.55:  Stress-strain response of reinforcing bars in compression utilizing the post-yield 

buckling model (Dhakal and Maekawa 2002b) 

 

 Determination of L/D ratio from elastic buckling analysis 

An elastic buckling analysis will be carried out to determine the effective buckling length of 

the #4 boundary element bars based on the work of Maekawa (2003).  Each determination is 

dependent on the stiffness of the longitudinal bar, the stiffness of the lateral tie, and the spacing of 

the lateral ties, all of which are known with the assumption of elasticity and the measured material 

properties.  The “buckling mode” defined as the number of bar spacings that buckling will occur 

over is the unknown of the problem.  Buckling the bar over a short distance requires high lateral 

tie stiffness while buckling the bar over a longer distance decreases the required stiffness in each 

tie.  The buckling modes are iterated upon until the required spring stiffness for the current 

buckling mode is less than or equal to the provided tie stiffness.  The elastic buckling analysis is 

summarized in Figure 2.56. 
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Figure 2.56:  Elastic buckling analysis for determination of effective buckling length (Maekawa 

2003) 

2.4.6 Interactions of steel and concrete 

The ability for reinforced concrete to transfer stresses across a crack are dependent on the 

multiple interactions occurring between the steel rebar and its surrounding concrete.  The shear 

stress is transferred by the aggregates on each crack face bearing against each other, friction 

between the contact points of each surface, and the resistance of the steel bar to be laterally 

deformed (dowel action).  The crack width and its variation between rebars, the lateral stiffness of 

the rebar, the local damage to the concrete around the reinforcing bar, as well as the concrete 

strength and grading all impact the shear resistance at any point in time. 

At a crack, the normal stress is transferred by the steel rebar alone.  However, in-between 

cracks normal stress is carried by both the steel and concrete.  The stress will transfer to the stiffer 

element.  The ability for the stress to transfer to the concrete from the steel bars is dependent on 

the bond between the two materials and the local degradation occurring near the crack.  As normal 
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stress increases, the rebar will begin to pull out of the concrete due to bond degradation and crack 

dilatancy.  

 

Figure 2.57:  Deformations and forces at a reinforcing of a crack interface (Maekawa 2003) 

 

 Bond between steel and concrete 

Chemical bond, mechanical bearing, and friction between the concrete and steel resist the 

tensile stress in a reinforcing bar.  For the case of deformed bars, the lugs mechanically bear on 

the surrounding concrete and are the primary resistance to bar slip (Figure 2.58 (a)).  As demand 

increases, the concrete surrounding each lug will begin to crush, and the resistance by mechanical 

bearing degrades.  The compressive stress developed in the concrete from bearing is equilibrated 

by radial tensile stresses (Figure 2.58 (b)).  As demand increases, cracks will open and propagate 

around the bar lugs.  If the cover concrete is thin, the splitting cracks can propagate through to the 

exterior surface (Figure 2.58 (c)).  A splitting failure results in decreased bond strength capacity.  

If significant cover is provided or if the concrete is subject to a confining pressure, the cracks will 

not propagate, and the concrete will crush between the bar lugs and the primary resistance 

mechanism becomes friction (Figure 2.58 (d)).  In the case of reversed cyclic loading, the 

degradation of concrete around the bar lugs is more severe, and splitting cracks will form in both 

directions.  Both results in lower bond strengths (Lowes, Moehle, and Govindjee 2004).  
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Figure 2.58:  Bond stresses and failure mechanisms in reinforced concrete, (a) the mechanical 

resistance to bond slip from the lugs on deformed bar reinforcement, (b) the radial tensile 

stresses (hoop stresses) resulting from compressive stresses bearing on the lugs, (c) the 

degradation of bond due to splitting cracks through the concrete cover, and (d) the crushing of 

concrete between lugs when reinforcement is sufficiently confined (ACI Committee 408 2003)  

 

Many numerical bond models have been developed for monotonic and cyclic loading 

applications based on experimental tests.  The primary variables are the concrete compressive 

strength, bar spacing and diameter, concrete clear cover, and confinement condition (Cervenka, 

Jendele, and Cervenka 2007).  The CEB-FIP Model Code (1993) proposes a bond model that 

smears the resistive effects together based and is suitable only for monotonic loading conditions 

(Figure 2.59 (a)).  A more general model was proposed by Lowes (2004) that considers the 

individual contributions of mechanical bearing and friction to the total bond resistance as well as 

the effects of cyclic loading (Figure 2.59 (b)).   
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 (a) (b) 

Figure 2.59:  (a) Simplified monotonic model of bond (Comité euro-international du béton 

1993)  (b) Cyclic bond model proposed by Lowes et al. (2004) 

 

 Crack dilatancy, friction, and aggregate interlock  

Aggregate interlock is the resistance of at a crack interface to resist slip by bearing of the 

aggregates.  Aggregate can only be assumed for a “rough” crack in the concrete, one that has 

propagated naturally as opposed to a crack at a geometric discontinuity or construction joint.  The 

experimental work of Walraven (1981) characterized the shear, civ , vs. slip, a

s , relationship as 

a function of the crack width, w , and the concrete compressive strength.  The average shear strain, 

a

s , is then calculated as the ratio of total slip to the average crack spacing.  The shear slip 

relationship was developed based upon monotonic loadings of rough cracks and does not consider 

the degradation of aggregate interlock during cyclic loadings nor does it consider smooth 

interfaces. 
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Rough cracks resisting an imposed shear stress tend to increase the crack width as the 

aggregates slide over each other, referred to as crack dilatancy.  Crack dilatancy has been found to 

have different relationships for plain and reinforced concrete and is largely dependent on the crack 

roughness (Maekawa 2003).  The result of crack dilatancy is an increase in the normal stress that 

must be carried by the steel bars and a consequent increase of bar pull out at the interface.  A study 
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of cyclic shear transfer and dilatancy of rough and smooth interfaces was conducted by Tassios 

and Vintzeleou (1987).  The results of rough interfaces and smooth interfaces are shown below in 

Figure 2.60 and Figure 2.61 respectively.  The shear resistance and resulting dilatancy are of an 

order of magnitude different.  The maximum shear resistance of the smooth interface was 0.22 

MPa while the rough interface resisted in excess of 2.0 MPa. 

   

(a) Cyclic shear stress vs slip    (b) Cyclic crack dilatancy 

Figure 2.60:  Cyclic response of rough interfaces (Tassios and Vintzēleou 1987) 

 

  

(a) Cyclic shear stress vs slip    (b) Cyclic crack dilatancy 

Figure 2.61:  Cyclic response of smooth interfaces (Tassios and Vintzēleou 1987) 

 

The results were used to develop the following relationships for smooth and rough interface 

resistance: 
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  (2.45) 

Where, n = the cycle number, cif  = normal stress across the interface, 
ns is the slip of the nth 

cycle, 
us  is the maximum slip in the displacement history.  A hysteretic model for this relationship 

is shown in  

 

Figure 2.62:  Hysteretic model for shear transfer by aggregate interlock (Tassios and 

Vintzēleou 1987) 

 

The same researchers carried out an experimental investigation to characterize the shear resistance 

by dowel action and the mechanisms of failure by dowel action (Tassios and Vintzēleou 1986).  

The study identified failure due to crushing of the concrete and yielding of the bar, or by side-

splitting of the concrete for sections where inadequate concrete cover is available to develop the 

full strength when bearing against the cover.  For this experimental study, the first failure mode 

will be the controlling case in general.  The cyclic dowel response was characterized by the 

following relationship, similar to that for aggregate interlock: 
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Where, the monotonic response is, 
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Where, k is an experimental parameter to fit the data.  This factor was set as 1.3 in the 

experimental data of Rasmussen (1963).  The hysteretic model developed for the dowel action is 
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shown in Figure 2.63.  The drawback of this model is the assumption that concrete crushing and 

bar yielding will occur simultaneously to define the monotonic curve.  These studies by Tassios 

also do not consider any coupling effects between the aggregate interlock and dowel action.  

 

 

Figure 2.63:  Hysteretic model of dowel action (Tassios and Vintzēleou 1986) 

 Tension stiffening 

At a crack in reinforced concrete, the stiffness is governed by the stiffness of the bare steel 

bar(s).  However, the average stiffness of a cracked reinforced concrete member will be greater 

than that of a bare steel bar as a result of the portions of reinforced concrete between cracks having 

a stiffness near that of the un-cracked section.  This phenomenon is referred to as the ‘tension 

stiffening’ effect.  Figure 2.64 displays a plot of the tensile stress in the concrete normalized to its 

rupture strength against the principal tensile strain and shows a spread of data with a tensile stress 

subtlety decreasing with increasing tensile strain.  The data was used to develop the model of 

Equation Figure 2.64 and identified in the figure by the solid line. 
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Figure 2.64:  Plot of the ratio of average principal tensile stress to tensile stress at a crack versus 

the principal tensile strain.  Solid line indicates the correlation of the 1986 tension stiffening 

model (Vecchio and Collins 1986) 

 

Bentz (2000) evaluated a series of tension stiffening models developed from experimental test 

data at the University of Toronto and the University of Houston.   While the individual expressions 

were observed to fit the data at each institution, a substantial variation was observed when 

evaluated against the experimental data of both institutions.  Bentz recognized that the tension 

stiffening effect is largely influenced by the bond transfer length on each side of an open crack.  

To account for the effect of bond, the parameter, m , was introduced to represent the relative 

changes in bond characteristics based on the ratio of perimeter bar area in contact with concrete to 

the total area of concrete: 
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The resulting expression incorporating the bond parameter is given as: 

  (2.50) 

While this expression increases the spread of data relative to the individual panels, the overall 

fit of data between both institutions and all available data sets increased substantially (Bentz 2000).  

This relationship was modified by Sato and Vecchio (2003) to account for the inclination of 

principal strain relative to the orientation of each reinforcing bar. 
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The tensile behavior is dominated by either tension softening or tension, two distinctly different 

phenomena.  Tension softening models the reduction in tensile strength due to the fracture process 

zone, while tension stiffening models the increased tensile strength on average due to smearing 

the cracked and un-cracked portions of the element.  The stiffness of the continuum element is 

controlled by the smaller value predicted from either model but is not a function of both 

phenomena.  For coarse mesh discretization, the tension stiffening model dominates the response 

because many cracks exist over the large element size.  For fine mesh discretization, single cracks 

will exist in only selected elements, and elements without cracks will exist in-between cracked 

elements.  In this case, the tension stiffening relationship is captured without a constitutive model, 

and the cracked element stiffness is based on the tension softening model. 

 

2.5 Numerical analysis of structural concrete 

Treating cracked concrete as a continuous orthotropic material was first proposed by Rashid 

(1968).  To describe the response of reinforced concrete in a continuum, the phenomena associated 

with cracking and the nonlinear material response of the concrete and steel are smeared together 

in a single material model.  This approach is commonly referred to as a “smeared crack” model.  

For the continuum approach, an element of reinforced concrete can only be solved globally in 

terms of average stresses and strains.  The local stresses and strains in each material, at cracks and 

in-between cracks, are determined based on the features of the constitutive models for the concrete 

and steel. 

The primary advantage of smeared crack modeling is the ability to adopt continuum mechanics 

approaches for finite element analyses.  The primary disadvantage is the requirement that all the 

nonlinear interactions of an element of structural concrete be “lumped” together, including the 

effect of cracking on stiffness, strength and the ductility of the element (Fédération internationale 

du béton and Task Group 4.4 2008).  As the stress-strain state increases during the loading of a 

structure, the discontinuities imposed at cracks as well as the damage and yielding of the materials 

locally increases.  Predicting the damaged conditions of structural concrete in a continuum has 

been based primarily on empirical relationships and is thus limited in scope (Comité euro-

international du béton 1996).  Consequently, the continuum modeling approach becomes “further 

from reality” as the demand increases to the post-peak response.   
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The section describes the general formulation of reinforced concrete for a 2-D continuum 

followed by a summary of total strain and strain decomposition models developed for NLFEA. 

2.5.1 Membrane element formulation for reinforced concrete 

A membrane element is defined as a 2-D continuum element of a single material subjected to 

in-plane normal and shear stresses.  In general, these stresses are assumed to act uniformly along 

the mid-plane of each edge of the element.  The out-of-plane normal and shear stresses are assumed 

negligible.  Furthermore, strains and stresses across the thickness are assumed uniform.  The 

principle of stress transformation provides the ability to describe the stress state or strain state of 

any element in multiple coordinate systems, commonly achieved using Mohr’s circle for graphical 

analysis (Mohr 1882).  The stress transformation is used here to convert an element’s configuration 

in a finite element mesh to the configuration of principal stresses or principal strains. 

A membrane element of reinforced concrete is assumed as a two-part composite consisting of 

concrete as an isotropic material and a grid of orthogonal uniformly distributed reinforcing bars.  

The reinforcing bars are assumed to have axial stiffness only.  Based on these assumptions, the 

following variables exist, 
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The development of continuum models for reinforced concrete is based on equilibrium of the 

element in-plane shear and normal stresses by the concrete and steel, strain compatibility whereby 

the concrete and steel components are subjected to the same strain states throughout the element, 

and the use of appropriate constitutive relationships for the steel and concrete components.  For 
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analyzing an element, the reinforcing ratios are known, and the total stress to be carried by the 

element would have been determined from a global analysis.  Therefore, the known variables are, 

 , , , ,x y x y xyf f v   

The fifteen (15) unknown variables are, 

 , , , , , , , , , , , , , ,x y xy cx cy cxy cx cy cxy sx sy sx sy cf f v f f            

For strain compatibility, perfect bond is assumed to exist between the concrete and reinforcing 

bars (no slip) providing that the average strains in the concrete and average strains in the steel must 

be equal.   

 x cx sx  = =   (2.51) 

 
xy cxy =   (2.52) 

With equal strains in the two materials, Mohr’s circle of strain was used to derive relationships 

between the normal, shear and principal strains as shown in Figure 2.65. 

  

    

 

 

Figure 2.65:  Mohr’s circle for total strains (left) and net concrete strains (right) 
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Similarly, equations (2.53) to (2.56) can be produced for the net concrete strains.   

Three equations of equilibrium were derived for the cracked reinforced concrete element 

pictured in Figure 2.66.  The first equation of equilibrium relates the shear stress to the two 

principal stresses.  The second equation of vertical equilibrium relates the applied normal and shear 

stresses to the first principal stress and the stress in the vertical reinforcement.  The third equation 

of horizontal equilibrium relates the applied normal and shear stresses to the second principal stress 

and the stress in the horizontal reinforcement.   

 

 

 

1cotx sx x xy cf f f  = + −    (2.57) 

1tany sy y xy cf f f  = + −   (2.58) 

( )2 1 tan cotc c xyf f    = − +   (2.59) 

 

 

     

 
Figure 2.66:  Equilibrium of the RC membrane element 

 

The fifteen unknown variables have now been reduced to only six: 

 
1 2, , , ,  and c c sx sy cf f f f    

This problem remained unsolved until the development of the Compression Field Theory 

(CFT) (Collins and Mitchell 1980). Drawing from the much earlier work of Wagner (1929) for 

thin-webbed steel members, this work produced the needed compatibility equation for solving the 

orientation of the compression strut based on the assumption that concrete had no tensile strength:  
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The remaining five relationships required are the constitutive models for relating the stresses and 

strains of the concrete and steel.   

For un-cracked concrete, the constitutive relationships for steel and concrete can be defined by 

Hooke’s law and the orientation of total strain and net concrete strains will be coincident.  For 

cracked concrete, the response becomes nonlinear for both materials. The steel will still be 

described by Hooke’s law, but the modulus will be considered a function of the strain to capture 

the nonlinear stress-strain response:  

 
sx s sxf E =   (2.61) 

 
sy s syf E =   (2.62) 

As the principal tensile stress of the un-cracked concrete reaches its capacity, a crack will form 

perpendicular to the angle of principal tensile stress.  After cracking, the angle between principal 

concrete stress and principal stress of the element will not remain coincident when the element is 

non-proportionally reinforced (
x y  ) and/or when subsequent loadings are not increased 

proportionally. Subsequent cracks may form at different angles than the initial crack.  In all these 

cases, shear stress in the concrete develops along the crack interfaces that must be included in the 

equilibrium equations.  Multiple theories have emerged to address how the angle of cracking, the 

angle of principal stress of the element, and the angle of principal concrete stress are related.  

 Fixed crack model 

The first theory is called the ‘fixed crack’ model which assumes the orientation of a crack is 

fixed upon the first fracture and remains unchanged for all subsequent loadings (Darwin 1974).  

The orientation of principal stresses becomes fixed to the orientation of total strain at the time of 

fracturing: 

 ( )at fracture

c  =   (2.63) 

The fixed angle of cracking based on the loading history directly affects the behavior of the element 

to all subsequent loads.  Subsequent loading after cracking results in the development of shear and 

normal forces across the crack plane because the principal stress and strain are no longer 

coincident.  In the fixed crack model, strains are decomposed into the elastic strain and the strain 

at the crack.  The stresses and strains are thus evaluated based on the stress-strain response of the 

un-cracked material and on the stress-strain response of each crack.  These models often have 
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multiple cracks with varying angles.  The stress-strain response at each crack is then transformed 

to the global coordinates to evaluate the global stress and strain in the cracked reinforced concrete 

element.   

For the fixed crack approach, the assumption that only a single crack can form in the element 

is rarely applicable to members with cyclic loads.  For reversed cyclic loadings, cracks will often 

form in at least two planes at opposing orientations.  A common assumption is that second crack 

forms orthogonal (90˚), or quasi-orthogonal (90˚ ± 22.5˚) to the first crack (Maekawa 2003).  For 

multi-directional cyclic loadings or cyclic loadings with large changes in the orientation of 

principal stresses after cracking, cracks may form in many different planes.  The two-way quasi-

orthogonal crack model was extended by Maekawa have a second co-ordinate frame for a total of 

four distinct cracks, referred to as a four-way fixed crack model (Maekawa 2003). 

 Rotating crack model 

For the “rotating crack” theory (Vecchio and Collins 1986), the principal stress and strain state 

are coincident (same orientation and coordinate frame) resulting in no shear stress development 

over the element on average.  Therefore, 

 c =   (2.64) 

The rotating crack model is further broken down into the “rotating angle” and “fixed angle” 

models.   

The rotating angle model assumes the principal concrete stress remains coincident with the 

principal stress of the element so that no shear stress develops in the concrete.  The constitutive 

matrix for the rotating angle theory in terms of the net concrete stresses and strains, 

   (2.65) 

The shear modulus is shown as approximately equal to zero.  In some numerical implementations, 

the shear modulus is given a very small value to provide numerical stability (Hsu and Mo 2010).   

The fixed angle model assumes that the principal concrete stress and principal element stress 

are no longer coincident but separated by a fixed deviation angle.  The deviation angle is based on 

the distribution of reinforcement in each direction.  This deviation results in the development of 

shear stresses along the crack interfaces.  Experimental tests have indicated that the deviation angle 
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between principal concrete stress and principal stress will decrease as loading increases and 

subsequent cracks form (Hsu and Mo 2010).  This can be attributed to increasing crack widths and 

increasing stress demands softening the shear stress-shear slip relationship along the crack.  At 

ultimate load, Hsu and Mo observed the deviation angle to be only one half of the theoretical value.  

In the case that the element is orthogonally reinforced with equal reinforcing ratios in each 

direction, the deviation angle will be zero and the fixed angle model will be equal to the rotating 

angle model. The constitutive matrix for the fixed angle theory in terms of the net concrete stresses 

and strains, 

   (2.66) 

2.5.2 Total strain models 

A total strain model of reinforced concrete is defined to have only one state of stress for each 

state of strain.  The total strain approach has been the most widely adopted approach in professional 

practice because of its conceptual simplicity, implementation, and success in predicting the 

response of a variety of structures.  The approach allows defining separate constitutive relationship 

between the compressive and tensile response.  The constitutive models can be considered as 

simple uniaxial relationships or more complex biaxial relationships that consider the nonlinear 

response, compression softening, tension stiffening, confinement, and other behavior.  

 Compression Field Theory (CFT) / Mohr Compatibility Truss Model (MCTM) 

The Compression Field Theory (CFT) applied to reinforced concrete (Collins and Mitchell 

1980) was originally developed for modeling the shear and torsional response of beams.  The 

model has also been referred to as the Mohr Compatibility Truss Model (MCTM) by Hsu (1993).  

In the context of continuum analysis, the CFT is a rotating crack approach with uniaxial 

constitutive models.  For solving equilibrium of the model, the CFT assumes the concrete to act 

as plain concrete in compression and to have zero capacity in tension.  All biaxial phenomena are 

neglected.  The constitutive relationships for the steel and concrete can be any linear or nonlinear 

relationship assuming they are a function only of the uniaxial strain: 

 ( ) 0c c c cf E  =    (2.67) 
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 ( )s s s sf E  =   (2.68) 

 Modified Compression Field Theory (MCFT) 

An experimental study conducted at the University of Toronto (Vecchio 1982) subjected 

slender reinforced concrete panels to various combinations of in-plane shear and normal stresses 

and found that the concrete did not behave as assumed in the CFT.  In particular, the experiments 

showed that tensile stresses exist in the un-cracked regions of concrete between cracks.  The tensile 

concrete stresses significantly increase the overall stiffness of the panel and should not be 

neglected.  The Modified Compression Field Theory (MCFT) (Vecchio and Collins 1986) 

extended the CFT to use experimentally verified constitutive relationships that describe that tensile 

response of the concrete as well as new constitutive relationships for the compressive response to 

characterize the effect of compression softening.  

Building on the previous models, the MCFT assumes there is only one state of stress for each 

state of strain. Stresses and strains are considered as an average across the element, and the element 

is taken over an area large enough to capture multiple cracks.  Perfect bond is assumed between 

the concrete and reinforcing bars, and the reinforcing bars are evenly distributed across the element 

in both directions.  Based on these assumptions, the MCFT is best applied to short-term, monotonic 

loadings.  Cyclic loading effects and loading history are not considered.  Furthermore, the model 

is less suited to lightly reinforced and/or widely spaced reinforcing bars where the response of a 

single crack may govern the overall response. 

The panel test data utilized in the development of the MCFT was evaluated in terms of the 

angle of deviation between principal stress and strain.  Figure 2.67 displays the data and resulting 

deviations of up to ±10 degrees.  The MCFT assumes the orientation of principal stresses and 

strains to be coincident.  This assumption restricts the ability for shear stress or shear deformation 

(slip) to develop along a crack plane, and the crack plane orientation rotates with the direction of 

principal stress.  The total average strains equal the net average strains in the concrete. 
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Figure 2.67:  Test data of the orientation of total stains and stresses of an element (Vecchio 

and Collins 1986) 

Constitutive models 

Constitutive models relate the average strains to average stresses.  Independent models are used 

for steel reinforcing bars and the concrete.  Simple constitutive models of the concrete in 

compression and tension, and for the steel reinforcing bars are shown in Figure 2.68.  The 

compressive response of concrete was modeled by the Hognestad parabola, equation (2.12).  The 

concrete in tension is modeled using a linear elastic theory until cracking with a nonlinear tension 

stiffened response, equation (2.48).  The reinforcement was modeled as elastic-perfectly plastic. 

 

    
 

 (a) (b) (c) 

Figure 2.68:  Constitutive relationships of the MCFT, (a) non-linear compression, (b) non-

linear tension stiffening, and (c) elastic-plastic reinforcement response 
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In conjunction with modeling the effect of tension stiffening, the local stress variation at a 

crack and between cracks must be considered in the equilibrium formulation.  At the crack plane, 

the local stresses in the steel reinforcing bars will be of greater magnitude than the average steel 

stresses.  Conversely, the concrete stresses will be zero at a crack but much greater than average 

in-between cracks.  The steel’s ability to transmit the local tension across a crack will be limited 

by its material properties.  Furthermore, local shear stress will develop at the crack plane outside 

of the situation that the reinforcement orientation is coincident to the direction of principal tensile 

stress.  As stresses increase, the response of the element may be limited by the yielding of the 

reinforcement locally at the crack.  To maintain equilibrium, it is necessary to check that the 

average tensile stress can be transmitted across the crack. 

To enforce the first limitation, on the principal tensile stress in the concrete, the average stresses 

in the element determined from equilibrium (Figure 2.66) are used to calculate the local stresses 

that must be transmitted by the steel across the critical crack plane (assumed to be a plane in the 

direction of the principal tensile strain).  The average and local stresses at a crack must be statically 

equivalent and are shown in Figure 2.69. 

 

(a) Average stresses at crack  (b) Local stresses at crack 

Figure 2.69:  (a) The average stresses at a crack interface, and (b) the local stresses at a crack 

interface (Vecchio and Collins 1986) 

 

The principal tensile stress developed from equilibrium of the average stresses must be 

statically equivalent to the principal tensile stress developed from equilibrium of the local stresses 

at the crack plane.  This provides the following relationship, 

 ( ) ( ) ( ) ( )2 2

1 , ,cos cosc x sx cr sx nx y sy cr sy nyf f f f f   = − + −   (2.69) 
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Where, nx  and 
ny  are the angles from the principal tensile stress to the horizontal and vertical 

component of reinforcing, respectively.  Using an elastic-plastic assumption of the reinforcing bar 

response, the steel stress cannot exceed its yield stress, 

 , ,sx cr sx yieldf f   (2.70) 

 , ,sy cr sy yieldf f   (2.71) 

Imposing this restraint into equation (2.69) provides a limit to the post-cracking concrete 

tensile stress, 

 ( ) ( ) ( ) ( )2 2

1 , ,cos cosc x sx yield sx nx y sy yield sy nyf f f f f    − + −   (2.72) 

To enforce the second limitation on the shear stress, the shear stress in the concrete at the crack 

plane was determined from static equivalency of the average and local stresses to provide the 

following, 

 ( ) ( ) ( ) ( ) ( ) ( ), ,cos sin cos sinci x sx cr sx nx nx y sy cr sy ny nyf f f f      = − + −   (2.73) 

The MCFT assumes the shear stress is transmitted across a crack plane solely by interlock of 

the aggregates in the concrete.  The crack’s ability to transmit shear stress is thus limited by a 

function of concrete strength, the crack width, and the maximum aggregate size, a.  Based upon 

experimental test data (Walraven 1981), the shear stress is limited by the following, 
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Where the crack width, w, is defined by the principal tensile strain and average crack spacing 

in the current orientation, 

 1cw s=   (2.75) 
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If the principal tensile stress of the concrete and/or the shear stress in the concrete is exceeded, 

the strains state in the element must be iterated upon until a converged solution of lower stress is 

found. 
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The reinforcing steel is modeled using an elastic-plastic assumption as shown in Figure 2.68 

(c).   The steel bars behave linear elastic until reaching the yield stress/strain.   The response is 

then plastic with no increase in stress for increasing strain, 

   (2.77) 

The resulting performance of the MCFT indicated three distinct regions of behavior based on 

the in-plane shear and normal stress interaction diagrams shown in Figure 2.70.  The first region 

is where high biaxial tension exists. In this region, the yielding of reinforcing bars at cracks 

controls the response.  The second region is where normal stresses are moderate and concrete shear 

governs the response.  In this region, it is important to note that the concrete fails at compressive 

stresses significantly lower than the uniaxial compressive strength of the concrete, f’c.  The third 

region is where high biaxial compression exists.  In this region, the failure is governed by the 

principal compressive stress reaching the uniaxial compressive strength (or beyond due to the 

strength enhancement of biaxial compression).  The study indicated that the most difficult panels 

to predict were those subjected to high shear demand with high levels of reinforcing because the 

response was increasingly dependent on the constitutive model of the concrete. 

  

Figure 2.70:  In-plane shear stress and normal stress interaction diagram (Vecchio and 

Collins 1986) 

 

Modeling lateral expansion and confinement 

Years after the publishing of the MCFT, additional test data from the University of Toronto 

and University of Houston revealed that in concrete elements subjected to biaxial compression or 

low tensile strains, the lateral expansion of the concrete during loading (Poisson’s effect) impacted 

f
E

Es

s s s y

s y y

for

for 1



82 

the element response and should not be neglected (Vecchio 1992).  In these cases, the strain due 

to Poisson’s effect became a significant portion of the total strain, and furthermore as the 

compressive stress demand increases the Poisson’s ration also increases and magnifies this effect.  

To address this shortcoming, Vecchio expanded the formulation of the MCFT to include the effects 

of lateral expansion. 

In addition to the Poisson’s effect, for concrete subjected to biaxial compression or low tensile 

strains, the presence of confinement steel will increase the compressive stress capacity.  In the 

same work, Vecchio extended the MCFT to permit modeling of triaxial stresses within the plane 

stress formulation for confined concrete (Vecchio 1992).  The out-of-plane concrete strain is 

defined as a function of the initial and secant moduli of the concrete, the moduli and reinforcement 

ratio of the confinement steel, the Poisson’s ratio of the concrete, and the imposed principal 

stresses in the concrete.  Prior to yielding of the confinement reinforcement, a linear elastic 

response of the steel is assumed.  After yielding of the confinement steel, the steel is assumed to 

have a perfectly plastic response.  Based on the elastic-plastic assumption, the following 

definitions of the out-of-plane strain and stress result, 

   (2.78) 

   (2.79) 

The out-of-plane concrete stress is then, 

 cz z szf f= −   (2.80) 

A constitutive model of concrete in the boundary element regions is used that represents in 

the increased compressive stress available beyond 
2,maxcf  when passively confined.  The model 

implemented was presented by Mander, Priestly, and Park (1988).  The strength enhancement 

due to the passive pressure is based upon the experimental data of Kupfer (1969).   
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 Softened Membrane Model (SMM) 

The Softened Membrane Model (SMM) is a rotating crack model proposed Hsu and Zhu 

(2002).  The SMM differs primarily from the MCFT in its treatment of lateral expansion and by 

the assumption of a fixed angle between the principal concrete stress and principal element stress.  

In contrast to the MCFT, the SMM assigns a constitutive model to the reinforcing bars based on 

their average response across and in-between cracks.   Because the steel response is based on the 

average, it is not possible to explicitly check the local equilibrium conditions at the crack in the 

SMM.  However, the SMM has provided good agreement with test data of panels up to 100 MPa 

and reinforcing ratios from 0.6% to 5.24% in each direction. 

The SMM directly includes the Poisson’s effect with the constitutive matrix becoming the 

following:  

   (2.81) 

Similar, to the previously described methods the moduli of the concrete in compression and tension

( )1 2,c cE E  represent secant moduli of the biaxial nonlinear stress-strain relationships. The SMM 

takes the shear modulus from Zhu, Hsu, and Lee (2001): 
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The Poisson’s ratios ( )12 21,   present in (2.81) represent the smeared Poisson’s effect for the 

element in an average sense.  Due to the smeared cracks, these ratios may exceed 0.5.  The authors 

refer to these ratios as the “Hsu/Zhu ratios” which were developed from experimental panel test 

data conducted at the University of Houston (Zhu and Hsu 2002). 
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Figure 2.71:  Hsu/Zhu ratios determined from panel test data, 
12  (left), 

21  (right) (Hsu and 

Mo 2010) 

 

From the results, the following relationships for the ratios were defined, 

   (2.83) 

   (2.84) 

Where, 
sf corresponds to the steel strain in the bar that yielded first in the panel.  This recognizes 

the test data for a panel with orthogonal and skewed reinforcement layouts relative to the loading. 

The constitutive matrix of Equation (2.81) represents the strains and material moduli based 

upon the biaxial strain condition with the effect of the Hsu/Zhu ratios.  By redefining the strain 

state to the strain state without the effect of the Hsu/Zhu ratios, the constitutive matrix is rewritten 

in terms of the material moduli without the effect of the Hsu/Zhu ratios.  These material moduli 

are denoted with a hat, 
1

ˆ
cE ,

2
ˆ

cE .  In this context, the material moduli can be considered consistent 

with the previous research and development of biaxial stress-strain relationships that did not 

consider the smeared Poisson’s effect.  The resulting constitutive matrix is, 

   (2.85) 
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Similarly, the constitutive matrix for the response of the steel bars is redefined resulting in the 

following, 

   (2.86) 

 

The tensile response of the concrete considered the effect of tension stiffening based on the 

work of Belarbi and Hsu (1995).  The compressive response of concrete was based on a parabolic 

relationship with a two-parameter model of compression softening.  For the fixed crack 

assumption, the compression softening relationship was determined to be influenced by the 

difference between the orientations of principal stress and principal strain,  .  The linear 

relationship fitting the data follows and the plot of the fit to the experimental panel data is shown 

in Figure 2.72. 
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Figure 2.72:  Increase of compression softening effect with increasing   (Hsu and Mo 2010) 

 

The experimental panel data identified that the average stress-strain response of the steel bar 
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achieved locally at the crack interfaces, so when the steel bar yields at the crack interface, the bar 

may remain well below the yield in the un-cracked region of the concrete.  A simplified bilinear 

relationship was implemented to capture the reduction in smeared steel stress: 

   (2.88) 

 

Where, the parameters are given by the following, 
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 ( )' 0.93 2y yf B f= −   (2.90) 
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2.5.3 Strain decomposition models 

The total strain model limits the definition of material response to single moduli of the concrete 

that contains all nonlinearities.  Decomposing the total strain of the body into the strains occurring 

over different portions of the material can allow for a more physical material description.  This 

concept of strain decomposition for structural concrete can be described as follows (De Borst 

1987), 

 
co cr= +ε ε ε   (2.92) 

Where, ε is the total strain rate, 
co
ε  is the concrete strain rate, and 

cr
ε  is the crack strain rate. The 

crack strain rate can be composed of one or more crack strains, cr

iε , each composed of the normal 

strains to a crack plane and shear strains across the crack plane (de Witte and Kikstra 2005).   

 
1 2, , ,cr cr cr cr

i=ε ε ε ε   (2.93) 

The concrete strain rate can be decomposed into multiple components, such as an elastic 

component, 
,co el

ε , and a plastic component, 
,co pl

ε , as follows. 

 
, ,co co el co pl= +ε ε ε   (2.94) 

In addition, the concrete elastic strain can be further decomposed into volumetric and deviatoric 

components (Maekawa et al. 1993).  Clearly, many strain decompositions are possible for 
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providing an open-ended framework for constitutive model definitions.  The strain decomposition 

allows combinations of elasticity, plasticity, and fracture mechanics to describe the material 

response with one or more crack planes at multiple orientations.  For this study, the decomposition 

of concrete strain and crack strain is of greatest interest and will be taken in the context of total 

strain models.   

 Distributed Stress Field Model (DSFM) 

The Distributed Stress Field Model (DSFM) (Vecchio 2000, 2001) was an extension of the 

MCFT developed to address deficiencies identified from experimental validations.  Vecchio 

identified that heavily reinforced sections, section subjected to biaxial compression and shear, as 

well as sections subjected to proportional loadings, the principal stress, and strain fields had limited 

rotation, and the MCFT underestimated their strength and stiffness due to excessive compressive 

softening.  In addition, sections with very light reinforcement and/or shear-critical members where 

the slip along a crack plane was significant, the members exhibited a lag of the principal stress 

fields relative to the principal strains.  Figure 2.67 displayed the lag of compressive stress 

orientation in a significant portion of the data points ( c =  to o10c = + ).  In these sections, the 

MCFT overestimated the strength and stiffness.  To address these shortcomings of the MCFT, the 

DSFM abandoned the assumption that the principal stresses and strains are coincident but instead 

have a lag between their orientations after cracking with a calculated shear slip at the critical crack 

plane.  The DSFM also overcame the necessity of limiting the local shear stress development at a 

crack plane because the crack slip was now calculated.  The resulting model is a hybrid of the 

fixed-crack approach and the rotating crack approach.  This hybrid formulation is subsequently 

described. 

Strain compatibility 

The strain compatibility conditions of the DSFM are described in Figure 2.73.  The total strain 

of the element was redefined from the MCFT of Equation (2.140) to include a component of strain, 

 s , representing the shear slip along a crack, 

          s o p

c c c    = + + +   (2.95) 
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Figure 2.73(c) displays the Mohr’s circle construction of the apparent total strains on the 

element defined at an orientation of,  :   
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Figure 2.73(a) displays the Mohr’s circle construction of the net concrete strains on the element 

defined at an orientation of,  : 
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  (2.97) 

From this definition, the principal stresses “lag” the apparent principal strains defined by the 

following, 

     = −   (2.98) 

Figure 2.73(b) displays the Mohr’s circle construction of the local strains at a crack.  The 

DSFM adds this compatibility condition of the slip at a crack plane defined as, s .  The slip is 

reduced to an average shear slip strain, s , relative to the average crack spacing: 

 s
s

s


 =   (2.99) 

The orthogonal components of the average shear slip strain, s , are defined by the Mohr’ 
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x s  =   (2.100) 

 ( )
1

sin 2
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s

y s  = −   (2.101) 

 ( )cos 2s

xy s  =   (2.102) 

Furthermore, the orientation of concrete strains was related to the apparent total stains by the 

following, 

 ( ) ( ) ( )cos 2 sin 2s xy y x      = + −   (2.103) 
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Figure 2.73:  Strain compatibility of the DSFM, top indicates net concrete strains, middle 

indicates slip strain at crack, bottom indicates average strains (Vecchio 2000) 

 

Equilibrium 

The average stress equilibrium is formulated with no differences from the MCFT (Section 

2.5.2.2).  The DSFM also performs the check of the ability to transmit the required principal 

tension across a crack.  However, the DSFM does not need to check the shear stress limit of the 

concrete the slip deformation at a crack is being explicitly calculated in this formulation. 
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Constitutive relationships 

The constitutive relationships of the DSFM follow the same implementation as the MCFT and 

can support a wide variety of constitutive models to characterize the stress-strain response of the 

concrete and steel.  The DSFM added two additional constitutive models to the formulation, a 

model of tension softening and a model of slip along a crack.   

Tension softening model 

Cracking of reinforced concrete is a process starting with the initiation of micro-cracking and 

ending with the discrete separation of the material.  During this process at small crack widths, the 

concrete is still able to resist some direct tensile stress across the crack.  As the crack grows, the 

stress diminishes to zero.  Tension softening can be considered a local phenomenon analogous to 

the tension stiffening effect that is observed at the member level.  The DSFM uses a linear tension 

softening relationship based upon fracture mechanics.  The model is shown in Figure 2.74 and 

given in equation (2.104), 

 

   

 

Figure 2.74:  Tension stiffening model (left) and tension softening model (right) in the DSFM 

 

   (2.104) 

The terminal strain, ts , where the concrete tensile contribution becomes zero is,  
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Where 
fG  is the fracture energy released in the cracking process (assumed 75 N/m) and rL  is the 

characteristic length (assumed as half the average crack spacing).    
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After computation of the principal tensile stress in the concrete in the tension softening model and 

the tension stiffening model, the greater value is taken for equilibrium as well as the secant moduli. 

 ( )1 1 1max ,a b

c c cf f f=   (2.106) 

Shear slip model 

The formulation of the DSFM is based upon the crack slip occurring in the element.  A 

constitutive relationship is needed to crack slip as a function of the element’s material properties 

and the imposed loading.  The slip was determined using both a stress-based approach and a 

rotation-lag based approach.  The shear stress was subsequently determined using the aggregate 

interlock relation developed by Walraven (1981), see Section 2.4.6.2. 

The author (Vecchio 2000) identified two cases where this model of crack slip had analytical 

shortcomings.   First, the equation of equilibrium for the shear stress at a crack (2.73) is a function 

of the reinforcement crossing the crack.  For an unreinforced element, the shear stress would be 

zero, and consequently the prediction of shear slip displacement would also be zero.  In reality, 

shear stress will develop along a crack of unreinforced concrete primarily from aggregate interlock 

and the friction between contact surfaces.  In addition, some initial slip will occur along the crack 

plane before these mechanisms can develop.  The shear slip relationship does not account for this 

initial deformation.  To address these shortcomings, the second approach based upon the lag of 

principal stress and strain orientations was developed. 

The rotation-lag approach is based upon determining the change in rotation of principal stress 

and strain after the initiation of cracking in the element.  The calculated change in the rotation, as 

well as empirical equations founded in the experimentally observed lag (See Figure 2-63), are used 

to determine the orientation of the principal stresses.  The change in rotation is defined as the 

difference between the current orientation of principal strains,  , and the orientation of principal 

strains at the initial cracking, ic , 

 ic    = −   (2.107) 
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The observed lag ranged from 5˚ to 10˚ before yielding of the panels, and the author characterized 

this constant lag, 
L , as follows: 

   (2.108) 

The post-cracking rotation of the stress field,   , is given as, 

   (2.109) 

The orientation of principal stresses is then the sum of the orientation at initial cracking and 

the post-cracking rotation, and then Equation (2.103) can determine the average crack shear strain.   

 ic   = +    (2.110) 

The rotation lag-approach is limited by its basis on empirical evidence of the orientation lag as 

well as the assumption of a constant orientation lag over the entire response.  In reality, the 

orientation will have escalating variations when subjected to higher demands.   

The stress-based approach and rotation-lag approach have now provided two values of the 

shear slip strain, s .  By using both approaches, the deficiencies of both shear-slip methods can 

be reduced, and the shear strain is taken as the maximum value, 

 ( )max ,a b

s s s  =   (2.111) 

The finite element implementation of the DSFM is based directly upon that of the MCFT 

described in Section 2.5.3.3; however, complete treatment is given in the following references, 

(Vecchio 2001; Wong, Vecchio, and Trommels 2013) 
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 Strain decomposition for hysteretic modeling 

The simplest hysteretic model is to use the total strain relationship in loading and reloading 

and for unloading to follow a secant line from the current stress-strain state to the undeformed 

stress-strain state.  In general, this is an underestimation of energy dissipation because some 

residual deformation (plastic offset) will exist in the material after unloading.  An improved model 

considers the plastic straining in the material during the current load cycle or based upon the entire 

load history.  To achieve this, total strain models have been decomposed into the elastic and plastic 

strain components.  Empirical relationships have used to identify what plastic strain offset will 

exist in the material after unloading as a function of the peak strain state imposed during the load 

cycle.  For the uni-axial case, test data as shown in Fig. 2.44 was used to associate the plastic strain 

offset with the maximum principal compressive or tensile strain imposed during the load cycle.  

The relationship between the current stress-strain state and the zero stress-plastic strain state has 

been modeled linear, multi-linear and non-linear.   

Figure 2.75 (a) shows the use of the monotonic loading base curve for any new strain state.  A 

secant unloading relationship to the plastic offset is utilized.  The model reloads along a secant 

line from the undeformed state to the previous stress-strain state achieved of the base curve.  

Similarly, Figure 2.76 (b) shows the cyclic tensile model with no change except that the model 

unloads along to secant to the undeformed configuration.  Refined approaches based on this have 

been completed with a multi-linear unloading and reloading relationship as shown in Figure 2.77 

as well as with nonlinear unloading and linear reloading relationships.  A detailed description of 

one nonlinear unloading and reloading model and its determination of the plastic strain offset is 

subsequently described based on the work of Palermo (2003). 
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Figure 2.75:  Linear unloading and reloading for (a) concrete compression response, and (b) 

concrete tension stiffened response (Vecchio 1999) 

 

 

Figure 2.76:  Multi-linear unloading and reloading for concrete in compression (Sittipunt 1994) 

 

Nonlinear hysteretic model of concrete 

A hysteretic model for the response of the concrete in a total strain format was proposed by 

Palermo and Vecchio (2003, 2004).  The model explicitly describes relationships for unloading 

and reloading based upon quasi-static experimental data.  The model uses a nonlinear unloading 

relationship to improve the prediction of energy dissipated in each cycle and a linear reloading 

relationship with stiffness degradation based upon a one-parameter scalar damage model.  The 

monotonic uniaxial response in compression and tension is used as a backbone curve for the model.  

Consequently, the model does not predict any strength degradation due to cyclic loading.  This 

approach in reloading and unloading is used for both the compressive and tensile response of the 
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concrete and is shown in Figure 2.77.  Finite element validations of walls utilizing this model are 

given in Section 2.6.2.3.  

 

 

 

 (a) Compressive model (b) Tensile model 

Figure 2.77:  Palermo and Vecchio hysteresis model in (a) compression and (b) tension 

(Palermo and Vecchio 2003) 

 

The nonlinear unloading and linear reloading functions define the hysteretic response 

dependent primarily on a plastic strain offset.  The plastic strain offset is the residual strain at zero 

stress after unloading.  This offset reflects the unrecovered damage in the material due to the 

loading history. Palermo proposed the following relationships for the plastic offset in compressive 

straining, p

c , in Eqn. (2.112) and for tensile straining, p

t , in Eqn. (2.113).  The fit of these 

models to the experimental data is shown in Figure 2.78.  The experimental data for the 

compressive plastic strain exhibits a considerable spread and the Palermo modeled is skewed 

toward the lower end.  The prediction of smaller plastic strain offsets may predict more pinching 

in the hysteretic response than other models (Palermo and Vecchio 2003). 

   (2.112) 
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t c c  = +   (2.113) 

Where, 
p is the peak compressive strain, 2c  is the principal compressive strain at the start 

of compressive unloading, and 1c  is the principal tensile strain at the start of tensile unloading. 
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 (a) Compressive plastic strain model (b) Tensile plastic strain model 

Figure 2.78:  Palermo model for plastic strain offset (Palermo and Vecchio 2003) 

 

Determination of plastic strains 

The hysteretic response of the concrete and steel models presented are a function of the current 

strains and plastic strain offsets, maximum historic strains and maximum historic stresses (Vecchio 

1999).   The plastic strain offsets are recorded in the element x,y, coordinate space.  The changing 

directions of the principal strains due to the rotating crack model requires the plastic strain offsets 

to be transformed from the global coordinates to the current principal axes of the element.  Mohr’s 

circle of strain provides the transformation to principal plastic strains as follows, 

 ( ) ( )1 cos 2 sin 2
2 2

p p p p
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+ −
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For a load step of plastic straining, the plastic strain offsets in x,y space are updated as a 

function of the incremental principal concrete strains and the previous plastic strain offsets: 

 ( )( ) ( )( )1 2' 1 cos 2 1 cos 2
2 2

p p
p p c c
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 
   

 
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 
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 
= + − + +   (2.117) 

 ( ) ( )1 2' sin 2 sin 2p p p p

cxy cxy c c     = + −   (2.118) 

The maximum principal strains and principal stresses in the concrete are also desired for input 

to hysteretic constitutive relationships.  While the plastic strain offsets are an incremental function 
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of the strain history, the maximum stresses and strains represent only an envelope value of the 

loading history.  The maximum compressive strains 

 ( )( ) ( )( )1 2' 1 cos 2 1 cos 2
2 2

cm cm
cmx cmx

 
   

 
= + + + −   (2.119) 
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 
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 
= + − + +   (2.120) 

 ( ) ( )1 2' sin 2 sin 2cmxy cmxy cm cm     = + −   (2.121) 

Using the Mohr’s circle and the incremental changes, the maximum tensile strains and as well 

as the corresponding maximum tensile stresses and compressive stresses can be developed. 

Reloading model in compression 

The concrete stress of cyclic reloading is a function of a degrading Young’s modulus.  The 

degradation of stiffness is a function of the stress/strain state at the end of the last unloading curve.  

The compressive stress in reloading, cf , and the associated degraded modulus, 
cmE + , are, 

 ( )c ro cm c rof f E  += + −   (2.122) 
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Where, rof  and  ro  are the principal stress/strain state at the end of unloading, cmf and cm  

are the maximum principal stress and strain, and c  is the current strain on the reloading path.  

The damage parameter d  and the recovered (or elastic) strain are, 

   (2.124) 

 rec cm ro  = −   (2.125) 

Unloading model in compression 

The elastic unloading relationship to the determined plastic strain offset is defined by the 

Ramberg-Osgood (1943) power formulation.  The initial unloading stiffness is the elastic modulus 
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of the concrete and reduces to 7.1% of the elastic modulus at the end of the unloading branch.  The 

compressive stress in unloading, 
cf , and the power term 

cN  were defined as, 

 ( )
( ) ( )

( )
1

0.071 1 c

c

N

c c cm

c cm c c cm N
p

c c cm

E
f f E

N

 
 

 
−

− −
= + − +

−
  (2.126) 
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Reloading model in tension 

The tensile concrete stress of cyclic reloading is a function of a degrading Young’s modulus, 

following a similar form to the reloading model in compression.  The tensile stress in reloading, 

cf , and the associated degraded modulus, 
tmE + , are, 

 ( )c t tm tm tm cf f E  += − −   (2.128) 

 t tm ro
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f f
E
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 

+ −
=

−
  (2.129) 

Where, tmf and tm  are the maximum principal stress and strain.  The tensile damage parameter 

t  and the recovered (or elastic) strain are, 
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  (2.130) 

 rec cm ro  = −   (2.131) 

Unloading model in tension 

The unloading relationship  in tension is also based on the Ramberg-Osgood (1943) power 

formulation and calibrated to a set of experimental data.  The compressive stress in unloading, cf

, the power term, cN , and the unloading modulus, f

cE , defined as, 
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   (2.134) 

 Cyclic Softened Membrane Model (CSMM) 

The Cyclic Softened Membrane Model (CSMM) is an extension of the SMM proposed by 

Mansour (2001)  to model the effects of reversed cyclic loading.  The changes to the SMM are 

encompassed by a hysteretic model for the concrete and steel.  The cyclic hysteretic model of 

concrete utilizes the compression softened monotonic curve (as used in SMM) for the initial 

loading and any loading into a new strain state.  A multi-linear unloading and reloading 

relationship is defined in both compression and tension.  The transitions compression and tension 

consider the effects of crack reopening and crack closure.  This model is graphically represented 

in Figure 2.79, and the associated relationships are given in the reference. 

 

Figure 2.79:  Hysteretic model of concrete in the CSMM (Hsu and Mo 2010) 

 

The cyclic response of concrete subjected to cyclic shear loading results in a degradation of the 

compression softened backbone curve.  The CSMM models this degradation by a damage 

E
E

E
c

f c tm tm

c tm tm

0 071 0 001 0 001

0 053 0 001 0 001

. . .

. . .



100 

parameter, D, that is a function of the maximum compression strain achieve in the stress-strain 

history as follows,  

 

max

1 1.0c

co

D





= −    (2.135) 

The value of   is taken as 0.4 to fit the experimental cyclic shear stress-strain response of panels 

(Mansour 2001).  This damage parameter is applicable only in the compressive response. 

The cyclic response of the steel bars is based upon the bilinear smeared stress relationship 

developed for the SMM.  That model is extended to hysteretic response to account for the 

Bauschinger effect using a Ramberg-Osgood power formula (Yokoo and Nakamura 1977), 

   (2.136) 

 0.11.9 pA k −=   (2.137) 

 0.210 pR k −=   (2.138) 
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Where, ˆ
si , and sif  represent the smeared-stress strain state at the point of load-reversal.  The 

value 
pk  controls the magnitude of the Bauschinger effect.  Increasing the magnitude of 

pk  

increases the Bauschinger effect, effectively increasing the size of the hysteretic loop with 

increasing plastic strain after the steel bars have yielded. 

2.5.4 Finite element implementations 

The implementation of the aforementioned models to finite element analysis tools varies 

widely with respect to the solution methodology and overall complexity.  In general, NLFEA 

methods have favored a tangent stiffness formulation as opposed to a secant stiffness formulation.  

They have also favored higher order elements (such as those with additional nodes and polynomial 

shape functions) instead of simpler elements in a larger quantity (Vecchio 1989).  An international 

competition to predict the behavior of cracked reinforced concrete elements (Collins, Vecchio, and 

Mehlhorn 1985) indicated no direct correlation between analytical complexity and performance.  

Instead, the performance was driven by the constitutive modeling of the cracked reinforced 
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concrete. As a result, researchers have focused on the constitutive models and utilized the finite 

element implementation that has provided the best convergence and numerical stability (Vecchio 

1990). In addition, the models have utilized triangular and rectangular plane stress elements with 

linear shape functions.  These element types provide a closed form solution for the element 

stiffness matrices and do not require numerical integration.  This section provides an overview of 

the secant stiffness formulation utilized to implement the models of this study in finite element 

analysis programs.   

 Secant stiffness formulation 

The finite element implementation of the MCFT and its variants utilizes a secant stiffness 

formulation (Vecchio and Collins 1986) including pre-strains (Vecchio 1990) and plastic strain 

offsets (Vecchio 2000, 2001).  The benefits of a secant stiffness formulation are numerical 

simplicity and the ability to easily adapt a linear finite element analysis program to have nonlinear 

capability.   

The global coordinate frame sign convention is shown in Figure 2.80(a), the local coordinate 

frame of the concrete and steel are given in (b) and (c) respectively. 

 

 

Figure 2.80:  Sign convention of the MCFT FE implementation (Vecchio 1990) 

 

The total average strain   on the element is then described by the summation of the net strains 

due to imposed stress  c , the stain due to initial or elastic offsets,  o

c , and the strains due to 

plastic deformation in the material  p

c . 

        o p

c c c   = + +   (2.140) 
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 And similarly, the steel strain of each reinforcement component is a function of the total strain, 

initial offsets, and plastic offsets, 

        o p

s s si i i
   = + +   (2.141) 

The solution must then solve the nodal displacements as a function of the externally imposed 

loads, 

     K u F=   (2.142) 

Determination of global stiffness 

To describe the nonlinear response of a reinforced concrete element the stiffness matrix must 

be updated as a function of the strain.  The MCFT decomposes the global element stiffness of the 

concrete and the contribution of smeared steel reinforcing in one or more directions. 
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= +   (2.143) 

The global stiffness contributions rewritten in terms of the local stiffness’s and the 

transformation matrices becomes, 
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The transformation matrix is formed for the concrete and each contribution of smeared steel 

reinforcing as follows, 

   (2.145) 

   (2.146) 

The local stiffness matrix of the concrete is given in plane stress.  The Poisson’s effect is 

considered negligible in cracked reinforced concrete, and the corresponding terms of the stiffness 

are dropped.  The resulting stiffness given in terms of the secant moduli is, 

   (2.147) 

T

cos sin cos sin

sin cos cos sin

cos sin cos si

2 2

2 2

2 2 nn cos sin2 2

for

for

T

T

c

i s i

D

E

E

G

c

c

c

c

2

1

0 0

0 0

0 0



103 

The local stiffness matrix of each reinforcing bar is given with a uniaxial response in terms of 

the reinforcement ratio in the given direction and the secant moduli of the steel. 

   (2.148) 

The secant moduli are defined as follows and solved using the constitutive relationship defined 

for each component,  
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After solution of the secant stiffness, the element stiffness is determined by, 

       
Te

A
k t B D B dA=    (2.153) 

The independent components of the concrete and steel to the element stiffness can also be 

evaluated, 
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The element stiffnesses are then assembled to form the global stiffness matrix,  
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Determination of nodal load vector 

The global stiffness matrix operates on a nodal load vector to solve the nodal displacements.  

However, the nodal displacements include free strains due to elastic and plastic offsets.  To impose 

the externally applied forces to the displaced configuration, a ‘pseudo’ nodal load vector was 

developed to represent the forces required to impose the free strains in the elements as a function 
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of the current stiffness of the structure (Vecchio 2001).  The pseudo nodal load vector is added to 

the externally applied loads to solve the system. 

The elastic and plastic strain offsets are described as follows, 

   (2.157) 

   (2.158) 

The elastic and plastic offsets of the ith component of smeared steel are described in terms of 

the angle, i , of the reinforcement relative to the x-axis. 

   (2.159) 

   (2.160) 

The nodal displacements due to the strain offsets can subsequently be found from integrating 

the strains over the element. 
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s si iA
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s si A i
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From the resulting displacements, the corresponding forces for the pseudo nodal load vector 

can be evaluated, 
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The is then the sum of the externally applied loads and the pseudo nodal load vector, 
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      *extF F F= +   (2.166) 

After solving the nodal displacements and strains, element stresses are evaluated by, 

          ( )        ( )
1

n
o p o p

c c c s s si i i
i

f D D     
=

= − − + − −   (2.167) 

 Tangent stiffness formulations of the MCFT 

The tangent stiffness formulation for NLFEA is the solution methodology found in nearly all 

commercial finite element programs, including those focused on the modeling of reinforced 

concrete.  The following provides a high-level review of the applicability of secant stiffness models 

such as the MCFT to be solved using a tangent stiffness formulation. 

The earliest known implementation of the MCFT using a tangent stiffness formulation was 

completed by Adeghe (1986).  The MCFT was utilized into the finite element program ADINA 

developed by K. J. Bathe.  It assumed uniaxial response in principal strain directions and the 

tangent stiffness was based on the tangent stiffness for each principal strain direction using a 

weighting scheme.  The Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Fletcher 1987) algorithm 

was reported to provide better convergence than the modified Newton method. 

A second implementation was completed by Stevens (1987; Stevens et al. 1991) as an 

independent program using Fortran.  This approach utilized a modified version of the MCFT.  

High-powered (24 DOF) rectangular elements were selected so that a single element could 

represent the full depth of a beam.  The non-linear solution scheme utilized the Modified-Newton 

method.  An energy-based convergence criterion was found to require more accuracy at DOFs that 

are sensitive to small load changes.  The non-symmetry of the material stiffness resulted in 

difficulties to solve the tangent stiffness.  A non-symmetric solver with ‘frontal’ approach was 

utilized including numerical integration on the full matrix.  This approach more than doubled the 

solution time, but reduced convergence time and solution time overall.  The stress transfer at cracks 

was reported to be destabilizing to the solution due to the large changes in tensile stiffness.  The 

crack check was eliminated from the MCFT to improved performance.  Elimination of the crack 

check requires the tensile response to consider the amount and distribution of reinforcing.  An 

empirical relation was developed based on the assumptions that the bond stress is proportional to 

cracking stress and uniform steel distribution.  Additional empirical factors were included model 

the biaxial response for cracks non-orthogonal to the reinforcement.  The model was calibrated to 
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achieve the best numerical stability even though it did not properly represent all test data 

(unreinforced concrete and low reinforcement ratios).  Consequently, this implementation did not 

accurately predict panels subjected to biaxial compression and shear. 

A third implementation was created by Cook (1987; Cook and Mitchell 1988).  This approach 

included the original features of the MCFT with the crack check.  This approach utilized triangular 

and rectangular elements up to nine nodes and evaluated with up to sixteen Gauss points and the 

Newton-Raphson solution method. The tangent stiffness matrix was determined by incrementing 

the existing strains to determine the corresponding changes in stress.  Details of the incremental 

solution were not provided in the literature.  One shortcoming of this implementation was that the 

post-peak compressive strength resulted in negative tangent stiffness terms an caused numerical 

instability.  As a workaround, a small positive stiffness was used for strains beyond the peak strain, 

'c , equal to 10,000cE  . 

The final and most successful approach was completed by Aquino and Erdem (2007).  The 

authors acknowledge the previous approaches of Stevens and Cook and the necessity to eliminate 

sharp changes in stiffness in order to achieve convergence in their implementations.  Furthermore, 

the primary challenge of calculating the material tangent stiffness matrix was implementing the 

check for load transmission at the cracks.  The approach of this paper included all features of the 

MCFT in their original form and added the available compressive stress increase due to biaxial 

compression (Vecchio 1992). The concrete contribution to the tangent stiffness matrix Jacobian is 

solved using an iterative finite difference approach.  Each strain is incremented forward and 

backward solving the concrete stresses at each step.  The relative change in stresses divided by the 

total strain increment is used to define each column of the Jacobian.  By incrementing each strain 

component in sequence, each column of the Jacobian can be determined.  The steel contribution 

to the tangent stiffness is solved in a closed form based on an elastic-perfectly plastic material 

model.  The resulting stiffness matrix is generally non-symmetric and requires a non-symmetric 

FE solver. A user-defined subroutine for the tangent stiffness was utilized within ABAQUS to 

validate the approach.  In general, the results are equal to the previously documented results of the 

MCFT using secant stiffness solutions.  
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2.6 Numerical approaches to predicting the response of structural walls 

Modeling the inelastic response of structural walls has been approached in three primary ways: 

lumped plasticity models, sectional fiber analysis models, and finite element models. The lumped 

plasticity models utilize a combination of elastic beam and column elements connected by plastic 

rotational springs (hinges) (Figure 2.81 (a)).  This type of model is termed “lumped plasticity” 

because all the inelasticity is contained within these springs.  Parameters of this model are the 

effective stiffness values assigned to the elastic beam / column elements and the constitutive 

relationship of the hinge.  This simplified model is limited by its inability to capture cyclic effects, 

any variation of axial or shear forces, and its dependence on the user-defined locations of the 

plastic hinges (Pugh 2012). 

A more comprehensive approach is the use of fiber elements to perform a sectional fiber 

analysis at each discretized section of a wall (Figure 2.81 (b)).  A sectional analysis splits the 

section into fibers of concrete and steel each with an area defined by the discretization for the fiber 

analysis and material properties.  Uniaxial constitutive relationships for the steel and concrete are 

defined to determine the resistance of the section to any imposed strain profile.  This approach can 

consider the effects of axial load, moment and shear.  The sectional analysis assumes that plane 

sections remain plane and a uniform strain distribution through the thickness of each fiber.  These 

assumptions can become unreasonable in non-planar or non-slender sectional geometries.  

Nevertheless, a detailed study of finite line elements using fiber analysis by Pugh (2012) 

successfully predicted the stiffness up to and beyond yielding and the ultimate strength of planar 

and non-planar walls subjected to cyclic loadings.  While not the focus of that effort, it is important 

to note that this approach did not always capture the cyclic strength and stiffness degradation due 

to damage, the energy dissipated in the hysteretic loops or the ultimate failure mode of the walls. 

Finally, detailed finite element analyses have been employed to predict the response of walls.  

The member can be discretized by plane, shell or solid elements each with increasing complexity.  

An example of each type of discretization is shown in Figure 2.82.  Static or dynamic analysis can 

be carried out each for a wide variety of material definitions that can be provided for the concrete 

and steel.  A comprehensive overview of finite element analysis of structural concrete is provided 

in the fib guide (Fédération internationale du béton and Task Group 4.4 2008).  This study focuses 

on the use of static nonlinear finite element analysis of structural concrete and will be subsequently 

described in detail. 
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 (a) (b) 

Figure 2.81:  (a) Lumped plasticity approach (b) sectional analysis approach (Moehle, Mahin, 

and Bozorgnia 2010) 

 

    

 (a) (b) (c) 

Figure 2.82:  Finite element models of structural concrete (a) plane stress elements (b) shell 

elements (Ile and Reynouard 2005) (c) solid elements (Maekawa and Fukuura 2010) 

 

2.6.1 Nonlinear finite element analysis of structural concrete 

Nonlinear finite element analysis (NLFEA) represents a set of methods to approximate the 

response of structures with complex or irregular geometries that remain difficult or impossible to 

solve with classical mechanics.  Nonlinearity of a structure stems from the geometry of structures 

undergoing large deformations and/or the material response exhibiting inelasticity under an 

applied load.  NLFEA is used in the analysis and design of many structures including, buildings, 

bridges, automobiles, airplanes, as well as countless mechanical/industrial/electrical components.  

NLFEA was first developed in the mid-1960s with its first application to structural concrete 
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published by Ngo (1967).  Since that time, NLFEA of structural concrete has been a focus of 

research and applied to a wide variety of concrete structures.   

Five primary steps are required to conduct NLFEA (Belytschko, Liu and Moran 2000). The 

first is the conceptual development of the finite element model. Second, the governing equations 

for the model are formulated from nonlinear continuum mechanics.  Third, the governing equations 

are discretized using finite element methods.  Fourth, the nonlinear system of equations must be 

solved using one or more methods to achieve convergence, stability of the solution, and a 

meaningful solution.  Fifth, the results of the NLFEA must be interpreted. 

In practice, the formulation, discretization, and solution of the NLFEA is contained within the 

multitude of finite element packages available.  The user of NLFEA is tasked primarily with the 

development of the model and the interpretation of its results.  The development of the model 

consists of choosing the conceptual framework (smeared/discrete cracking), constitutive 

relationships (elasticity/plasticity/damage), the discretization of structural elements, and the 

idealization of the boundary conditions and imposed loadings.  Interpreting the results might 

consist of the evaluation of displacements, strains, and stresses that are output for individual 

elements to examine the local response as well as groups of elements to examine sectional or global 

response characteristics.  Interpretation evaluates not only the output but also the ‘correctness’ of 

the output which requires understanding the expected behavior of the structure and the assumptions 

being made in the NLFEA to approximate its response.  Execution of these steps is not 

straightforward and varies widely from one application of NLFEA to the next. 

2.6.2 Previous finite element studies of structural walls  

 Overview of previous work 

The review of previous FE validations of structural walls subject to reverse cyclic loading 

identified widespread use of continuum-based models.  Both fixed and rotating smeared crack 

remain at the forefront of research in continuum analysis.  A summary of FE validations of walls 

subject to cyclic loadings using continuum analysis is given in   
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Table 2.7.  Key conclusions regarding the approaches of these studies are summarized below 

followed by some selected results of individual studies. 

The conceptual approaches of nonlinear elasticity and elasto-plasticity were most common.  

These conceptual approaches primarily used plane stress and fiber shell element formulations.  

Only one study used a three-dimensional solid element.  In 1993, Sittipunt and Wood identified a 

700% increase of computational cost for the modeling of a C-shaped wall in-plane stress vs. fiber 

shell elements.  Since that time, massive increases in computing power and computational 

robustness of finite element solution methods have eliminated the prohibitive nature of doing shell 

and solid finite element analyses.  A significant increase in 3-D formulations during the 2000’s is 

identified in the table.   However, the necessity of a full three-dimensional analysis over a plane 

stress analysis for non-planar wall structures remains unclear. 

The primary mechanism for modeling the hysteretic response is the inclusion of unloading and 

reloading relationships with plastic offsets.  Within this approach, cyclic stiffness degradation can 

be captured in the reloading relationship defined often as a function of the plastic offset and 

previously attained maximum stresses and strains.  The use of linear or nonlinear unloading 

relationships significantly affects the prediction of energy dissipation.  However, energy 

dissipation capability is generally unreliable because the unloading stiffness is not based on the 

physics of the actual degradation of the material.  Explicit modeling of material degradation using 

damage mechanics in compression and fracture mechanics in tension was identified in only one 

study based on the work of Maekawa (Kitada et al. 2007; Ono et al. 2001; Maekawa 2003).  

The hysteretic response is also highly influenced by the choice of crack model.  Rotating and 

fixed crack approaches were both used.  Fixed crack approaches included the orthogonal crack 

models (cracks at right angles) as well as multiple non-orthogonal crack models.  While the fixed 

crack models are physically motivated, the significant rotations of cracks, cracks in multiple 

directions, and transfer of shear stress across a crack greatly increase the complexity and reduce 

the reliability of the model.  Fixed crack models based upon shear retention require a degrading 

response based on the cyclic shear degradation along a crack plane to prevent overprediction of 

stiffness (Kwan and Billington 2001). Nevertheless, fixed crack models retain great potential to 

better model the physics of the problem. 

All models identified modeled the interface between the wall and footing with full fixity, 

restraining horizontal and vertical displacement.  The experimental results and earthquake 
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observations previously identified have invalidated this assumption due to sliding along this 

interface as well as significantly greater crack width at the interface compared to other cracks.  

Furthermore, strain penetration of the longitudinal steel bars into the footing cannot be captured 

with an assumption of vertical fixity.  One study explicitly identified that the assumption of no 

interface deformations affected the predicted global response and deviation between the 

experimental and analytical results (Ile and Reynouard 2005). 

Model validation is limited to the global response and does not evaluate the element level 

response.  The deficiency of this approach was addressed by multiple authors including Sittipunt 

(Sittipunt 1994) and Constantin (2012).  In addition, the validation of global response is limited 

primarily to the prediction through yielding and nominal strength.  Evaluation of the failure mode 

and damage states is limited and revealed unreliability in the ability to correctly predict the 

mechanism of failure and degradation of the materials.  Furthermore, each study typically only 

evaluates the performance of a single model. 
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Table 2.7:  Table of previous continuum based finite element studies of wall subjected to reverse 

cyclic loading.  Adapted from the work of Kwan and Billington (2001) 
Researchers 2d/3d Element 

Type 

(concrete) 

Element 

type 

(steel) 

Fixed / 

rotating 

Framework 

for 

constitutive 

relations 

Tension 

model 

(cracking) 

Normal 

stress 

transfer 

between 

cracks 

Shear 

transfer 

across crack 

faces 

Bondslip 

representation 

Damage 

modeling 

Base 

condition 

Okamura and 

Maekawa 

(1991) 

3d 

shell 

8-node plate 

elements 

Smeared fixed Orthotropic, 

equivalent 

uniaxial 

model 

Smeared, 

fixed 

orthogonal 

cracks 

Tension 

stiffening 

Cyclic shear 

transfer 

model 

Joint element 

between 

concrete 

elements 

Not 

specified. 

Not 

specified. 

Sittipunt 

(1995) 

2d 

plane 

4-node plane-

stress 

elements 

Discrete fixed Orthotropic, 

equivalent 

uniaxial 

model 

Smeared, 

fixed 

orthogonal 

cracks 

Tension 

stiffening.  

8-parameter 

model for 

cyclic 

normal stress 

function 

Cyclic shear 

transfer 

function (9-

parameter) 

Perfect bond Plastic 

offsets 

Full fixity 

at base 

Elmorsi et al. 

(1998) 

2d 

plane 

12-node 

quadrilateral 

plane stress 

elements.  

Smeared fixed Orthotropic, 

equivalent 

uniaxial 

model 

Smeared, 

fixed 

orthogonal 

cracks 

Tension 

stiffening.  

3-parameter 

model for 

cyclic 

normal stress 

function 

Cyclic shear 

transfer 

function 

Perfect bond Plastic 

offsets 

Full fixity 

at base 

Vecchio 

(1999) 

2d 

plane 

4-node plane 

stress 

rectangular 

elements 

Smeared rotating MCFT Smeared, 

rotating 

cracks 

Considered 

with and 

without 

tension 

stiffening 

Aggregate 

interlock 

Perfect bond Plastic 

offsets 

Full fixity 

at base 

Kitada et al. 

(2007) / Ono 

et al. (2001) 

3d 

shell 

8-node 

quadrilateral 

layered shell 

elements 

Discrete fixed Elasto-plastic 

damage 

Four-way 

non-

orthogonal 

crack model 

Tension 

stiffening 

Nonlinear 

cyclic shear 

transfer 

model 

Not specified. Damage 

and fracture 

mechanics 

for concrete 

and plastic 

offsets 

Full fixity 

at base 

Kitada et al. 

(2007) / Ono 

et al. (2001) 

3d 

shell 

4-node 

quadrilateral 

layered shell 

elements 

Discrete fixed Orthotropic 

elasto-

plasticity 

Smeared 

fixed 

orthogonal 

cracks 

Tension 

stiffening 

Bilinear 

aggregate 

interlock and 

dowel action 

relationship 

Not specified. Plastic 

offsets 

Full fixity 

at base 

Palermo and 

Vecchio 2004 

2d 

plane 

4-node plane 

stress 

rectangular 

elements 

Smeared rotating MCFT Smeared, 

rotating 

cracks 

Not specified Aggregate 

interlock 

Not specified. Plastic 

offsets 

Full fixity 

at base 

Ile and 

Reynouard 

2005 

3d 

shell 

3-node 

discrete 

Kirschoff 

shell elements 

with nine 

layers 

Discrete fixed Orthotropic 

elasto-

plasticity 

Smeared 

fixed 

orthogonal 

cracks 

Tension 

stiffening 

Degrading 

shear 

modulus 

Perfect bond Plastic 

offsets 

Full fixity 

at base 

Xu et al. 

(2007) 

3d 

soild 

20 node brick 

element 

Discrete   Orthotropic 

elasto-

plasticity 

Smeared, 

fixed 

orthogonal 

cracks 

Nonlinear 

tension 

stiffening 

Degrading 

shear 

modulus 

Perfect bond Plastic 

offsets 

Full fixity 

at base 

Palermo and 

Vecchio 2007 

2d 

plane 

4-node plane 

stress 

rectangular 

elements 

Smeared rotating MCFT Smeared, 

rotating 

cracks 

Tension 

stiffening of 

Vecchio 

(2000) 

Aggregate 

interlock 

Perfect bond Plastic 

offsets 

Full fixity 

at base 

Constantin 

and Beyer 

(2012) 

3d 

shell 

Rectangular 

shell elements 

with eight 

layers 

Smeared rotating MCFT Smeared, 

rotating 

cracks 

Not specified Aggregate 

interlock 

Perfect bond Plastic 

offsets 

Full fixity 

at base 

 

 Ile and Reynouard 2005 

Ile and Reynouard (2005) utilized an elasto-plastic three-dimensional shell element 

formulation to predict the response of the U-shaped walls that were tested.  The experimental and 

predicted global response of the three test specimens are shown in Figure 2.83 and Figure 2.84.  
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The IleX test adequately predicts the response up to nominal.  In the damaged state, the model 

clearly does not capture the cyclic strength degradation occurring in the final three cycles at the 

same displacement level.  In addition, the IleY and IleX models do not adequately predict the 

pinching of the hysteretic loops as a consequence of the assumption of base fixity when significant 

interface deformations were observed experimentally.  The IleXY test illustrates that the 3-D 

modeling with shell elements successfully captured the reduced strength and stiffness due to the 

bi-directional loading.  None of the predictions adequately captured the web crushing or bar 

buckling that was observed experimentally. 

 

  

 (a) IleX response (b) IleY response 

Figure 2.83:  Predicted response of unidirectional tests IleX and IleY (Ile and Reynouard 2005) 

 

 

Figure 2.84:  Predicted response of bidirectional test IleXY (Ile and Reynouard 2005) 
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 Palermo and Vecchio 2007 

The MCFT and DSFM were extended to cyclic response based upon the work of Palermo and 

Vecchio.  Extending this effort, twenty-one previously experimentally tested structural walls of 

various configurations subjected to reverse cyclic loading were simulated using the MCFT.  This 

selection included planar walls, barbell walls, and flanged walls of varying aspect ratios, but was 

limited to uni-directional loading only.  The objective of the study was to find evidence that the 

smeared crack formulation of the MCFT in conjunction with low powered finite elements could 

provide reasonable predictions of response at low computational cost.  Indeed, their effort found 

substantial agreement in the ability to predict strength, ductility, energy dissipation, and failure 

mechanisms.  The shortcomings identified were a common “flat-topped” response indicative of 

predicting flexural yielding only, when in reality the experiments had a combination of concrete 

damage and steel yielding in the post-peak regime.  Along with this same idea, cyclic strength 

degradation that is experimentally observed due to the concrete damage was not well predicted.  

Furthermore, the mechanisms were not correctly predicted in all cases.  These shortcomings are 

apparent in the test results shown in Figure 2.85. 

 

 

Figure 2.85:  Experimental and predicted response using a hysteretic implementation of the 

MCFT (Palermo and Vecchio 2007) 
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CHAPTER 3:  EXPERIMENTAL TESTING OF C-SHAPED WALLS 

3.1 Introduction 

Chapter 3 summarizes the design, instrumentation, and loading of the three C-shaped walls 

tested as part of the NSF and CPF funded study introduced in Chapter 1.  The specimen design 

and loading were based on a ten-story prototype structure representing a mid-rise structure with 

central core wall construction.  The test specimens represent the bottom three stories of the 

prototype building at one-third scale.  A plan of the prototype building is shown in Figure 3.1 with 

the test specimen emphasized in red.  In addition, an isometric of the prototype structure is shown 

in Figure 3.2 with the test specimen similarly emphasized.  To represent the ten-story building 

experimentally, axial, shear and moment demands at the third story are imposed on the specimen 

to simulate the loads from the upper seven stories of the structures.  The detail of the specimen 

design and construction are given in Section 3.2. 

The first C-shaped wall test (CW1) was subjected the specimen to a uni-directional cyclic 

loading history about the strong axis. The second C-shaped wall test (CW2) was subjected to a 

cyclic cruciform bi-directional loading history in the plane of the strong and weak axis of the 

specimen. The third C‐shaped wall test (CW3) investigated the bidirectional performance of the 

test specimen when considered part of a coupled core wall system.  Details of the loading 

methodology and imposed displacement history are detailed in Section 3.3.   

For CW3, the complexity of the bi-directional loading with coupled core wall simulation 

required a new loading algorithm to be developed.  The loading algorithm utilizes incremental 

measurements of stiffness during the loading history to predict the target load of future steps.  The 

algorithm improves step convergence while minimizing unintended demands on the specimen.  

The development and implementation of this loading algorithm are given in Section 3.4. 

The wall specimens were densely instrumented with more than three hundred ninety channels 

of data on each test.  Global displacements of the test specimen were measured with displacement 

transducers and string potentiometers.  Global loads were measured from load cells in the 

actuators.  Local displacements were measured from an array of displacement transducers as well 

as two non-contact measurement systems, the Metris Krypton system and the use of 

photogrammetric methods.   Local strains were measured with concrete surface strain gauges and 

from steel strain gauges embedded in the wall on the longitudinal, horizontal, and confining steel 
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bars.  High-resolution still cameras placed around the specimen capture the damage and cracking 

patterns at each load step.  A complete description of the wall instrumentation is detailed by 

Behrouzi et al. (2015a).  Conclusions on the resulting methodology for experimental testing are 

summarized in Section 0. 

 

  

Figure 3.1:  Prototype building plan with prototype specimen shown in red 
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Figure 3.2:  Prototype building isometric with prototype specimen shown in red 

 

3.2 Specimen design and construction  

3.2.1 Specimen design 

The geometry of the wall specimens was decided based on the inventory of West coast 

buildings, and sized to represent the walls in mid-rise construction appropriately1.  The constraints 

of the experimental testing facility were also considered.  The specimens were designed to carry 

the maximum shear stress allowed in the ACI 318-08 ( )8 'n c cvV f A=  and horizontal 

reinforcement was placed to meet this demand.  Based on this shear demand, the longitudinal 

reinforcement was designed for the base moment corresponding to the ASCE 7 Equivalent Lateral 

Force procedure.  The boundary element confining reinforcement was designed in accordance with 

ACI 318-08.  The specimens were designed for a nominal concrete compressive strength of 5,000 

psi and nominal yield strength in the steel of 60 ksi.  Additional details of the West coast building 

inventory are given by Turgeon (2011) and additional details of the design rationale are given by 

Lowes (2013). 

                                                 

 

1 Section 3.2 was taken in part from project grant deliverables written for the National Science Foundation (Mock et al. 2013).  

I was the primary or sole author of the content included herein.  Furthermore, this content has been updated and amended since the 

deliverable. 
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The overall geometry and reinforcing of the C-shaped walls are shown in Figure 3.3.  The 

boundary element details are shown in Figure 3.4.  It is noted that for CW1, the J-hook in the toe-

boundary element was inadvertently left out during the construction process.  The boundary 

element details of CW2 and CW3 were constructed as designed. 

Figure 3.5 shows a schematic drawing of the wall footing design. The footing was 14 ft. by 

8.75 ft. by 2 ft. and heavily reinforced with two horizontal mats of #4 bars and vertical #4 bars. 

The footing was post-tensioned to the strong floor with approximately 100 kips per point of 

anchorage. A void was left for each post-tensioning rod using PVC tubing with spiral 

reinforcement in the surrounding concrete. In addition, two lifting ducts were left open through 

the depth of the footing to allow the specimen to be lifted into place using an overhead crane.  

The wall cap was constructed similarly to the footing using two heavily reinforced mats of #4 

horizontal and vertical bars. To connect the cap to the loading device, PVC tubing was again used 

to leave voids for post-tensioning rods. The wall cap is 18 inches high. A schematic drawing of 

the cap is shown in Figure 3.6. 

 

 

Figure 3.3:  CW1/2/3 overall wall geometry and reinforcing 
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Figure 3.4:  CW1/2/3 boundary element details 

 

 

 

Figure 3.5:  Footing construction drawing 
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Figure 3.6:  Cap construction drawing 

3.2.2 Construction process 

Construction and casting of the three wall specimens were completed at UIUC. The foundation 

was constructed by machine shop employees using wooden formwork, tied rebar mats and PVC 

tubing as previously described. The longitudinal rebars for the wall specimen were placed 

continuous from the bottom of the footing through the specimen and terminating in the wall cap 

without splice. The wall specimen rebar cage was constructed and tied by students in the laboratory 

as shown in Figure 3.7. Steel formwork was used to maintain the six-inch thickness and cover 

distances to the reinforcing bars. The wall cap was constructed similarly to the footing using 

wooden formwork, tied rebar mats, and PVC tubing as shown in Figure 3.9. The concrete was cast 

in three separate pours (foundation, specimen, and cap) after completing each respective stage of 

the process. The casting of the wall specimen is pictured in Figure 3.8 
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Figure 3.7:  Nearing completion of CW3 rebar cage 

 

 

Figure 3.8:  Casting of CW3 specimen 
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Figure 3.9:  Rebar mats and completed formwork for CW2 cap 

 

3.2.3 Material properties 

 Concrete Properties 

A self-consolidating concrete mix design was selected for the C-shaped wall specimens attain 

proper consolidation in the tightly reinforced boundary elements given the one-third scale design 

of the test specimen (Lowes et al. 2013).  The target strength was 5,000 psi, and coarse aggregates 

were limited to 3/8” diameter also to accommodate the scale of the specimen.  Higher cement 

content, flyash, and fines were used in substitution of some coarse aggregate.  A relatively high 

water to cement ratio of 0.5 was needed to reach the design concrete strength.  Table 3.1 shows 

the material quantities of the concrete mix. 

 

Table 3.1:  Concrete mix design for C-shaped wall specimens 

Material Quantity 

Sand (FA-01) 1,383 lb 

Coarse Aggregate (Chips CM-

16) 

1,340 lb 

Portland Cement 450 lb 

Flyash 150 lb 

Water 36.7 gal 

Air 0.5 oz 
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Four inch by eight inch (4x8) cylinders, six inch by twelve inch (6x12) cylinders and modulus 

of rupture (MOR) beams were cast with every wall pour.  The ultimate compressive strength at 

the time of testing was derived from the average of the three 6x12 cylinder breaks conducted in a 

Forney testing machine according to ASTM C39. The ultimate compressive strain is derived from 

the average of the three 4x8 cylinder breaks. The strain measurement came from two longitudinal 

strain gauges attached to opposite sides of the cylinder. The modulus of rupture was measured 

from standard MOR beam breaks.  The modulus of elasticity was estimated as 
57,000 ' *cf

 . 

Direct measurements of Poisson's ratio and tensile strength were not conducted. The same concrete 

was used for the cap and foundation portion of the specimen, but the entire specimen was cast in 

three separate lifts, foundation, wall, and then cap.  Table 3.2 lists the tested material properties of 

the concrete for each of the three wall specimens. 

 

Table 3.2:  Concrete properties of C-shaped wall specimens 

Wall Specimen ID: CW1 CW2 CW3 

Type of Concrete: Self 

Consolidating 

Concrete 

Self 

Consolidating 

Concrete 

Self 

Consolidating 

Concrete 

Compression Strength (f'c*): 4937 psi 5254 psi 5119 psi 

Age on day of the test: 513 days 296 days 101 days 

Ultimate Compression Strain 

(εcu): 

0.0024 0.0022 0.0028 

Modulus of Rupture (fr): 700 psi 711 psi 1009 psi 

Modulus of Elasticity (Ec): 4000 ksi 4100 ksi 4100 ksi 

 

 Steel Properties 

For the one third scale design of the test specimens, number four and number two reinforcing 

bars were selected (Lowes et al. 2013).  No. 4 (0.5 inch dia.) grade 60 (ASTM A706) deformed 

reinforcing bars comprised the longitudinal steel in the boundary elements.   No. 2 (0.25 inch dia.) 

deformed grade 60 bars are not a readily available construction material and required custom 

fabrication for the testing program.  0.25” diameter smooth bars were stamped with a helical 

pattern to develop a deformed pattern comparable to the lugs on conventional deformed bars.  To 

attain a ductile stress-strain response consistent with the No. 4 bars, the No. 2 bars were heat treated 

at a temperature of 1,024 F for one hour.  The No. 2 reinforcement was used for all horizontal 

reinforcement, vertical reinforcement in the unconfined portions of the web wall and flanges, and 



124 

the confining reinforcement of the boundary elements.  Table 3.3 lists the measured material 

properties of the No. 2 and No. 4 reinforcing bars used in all three C-shaped wall tests. 

 

Table 3.3:  Reinforcing bar properties of all C-shaped wall specimens 

Type of Rebar: No. 2 No. 4 

Diameter of Bar: 0.25 in 0.5 in 

Area of bar: 0.0491 in2 0.20 in2 

Yield Stress (fy): 75.7 ksi 63.8 ksi 

Ultimate Stress (fu): 76.3 ksi 91.3 ksi 

Yield Strain (εsy): 0.0026 0.00228 

Strain Hardening (εsh): 0.015 0.00775 

Ultimate Strain (εu): 0.058 0.16518 

 

3.3 Test setup & loading protocol 

3.3.1 Introduction 

The University of Illinois at Urbana-Champaign (UIUC) houses the Multi-Axial Full-Scale 

Sub-Structure Testing & Simulation (MUST-SIM) facility and conducts large-scale and small-

scale experimental testing in the Newmark Structural Engineering Laboratory (NSEL)2.  The 

UIUC site.  The large-scale facility utilizes a unique loading system known as Load and Boundary 

Condition Boxes (LBCBs) that allows control of load and displacement in all six degrees of 

freedom.  The LBCB pictured in Figure 3.10 consists of six actuators with one end attached to a 

steel reaction frame and the other attached to a steel platen.  The reaction frame is post-tensioned 

to an L-shaped strong wall for support, and the test specimens are attached to the strong floor and 

the movable steel platens. The strong floor consists of a 17 foot (5.2m) deep reinforced concrete 

box girder that provides approximately 100 kips of anchorage capacity every three feet on center. 

The L-shaped strong wall dimensions are 50 ft (15.2m) long x 30 ft (9.1m) wide x 28 ft (8.5m) 

high x 5 ft (1.5m) deep. The strong wall has anchorage points at every two feet on center. The C-

shaped wall testing was conducted at the Northwest end of the strong wall along the long portion 

                                                 

 

2 Section 3.3 was taken in part from project grant deliverables written for the National Science Foundation (Mock et al. 2013).  

I was the primary or sole author of the content included herein.  Furthermore, this content has been updated and amended since the 

deliverable. 
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of the L. To apply the six degree-of-freedom loading, two “Load and Boundary Condition Boxes” 

(LBCB) were post-tensioned to the strong wall 22 feet above the floor. The LBCBs are spaced 

approximately 36 inches apart. The test specimen was placed beneath the LBCBs, and a series of 

steel connection plates and beams were utilized to attach the LBCB and wall specimen together. 

Overall plan and sectional drawings of the experimental test setup are shown in Figure 3.11 to 

Figure 3.13. 

 

 

 
Figure 3.10:  Load and boundary condition box used to apply displacements and measure 

applied loads on the test specimen.  Coordinate system and actuator nomenclature are 

identified. 

 

Steel reaction 

box attached 

to strong wall 

Movable steel 

platen attached 

to test specimen 
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Figure 3.11:  Plan drawing of the experimental test setup 
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Figure 3.12:  Front elevation drawing (Section A) of the experimental test setup 
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Figure 3.13:  Cross-sectional drawing (Section B) of the experimental test setup 

3.3.2 Connection beams description 

The footing of the wall specimen was post-tensioned to the strong floor using (12) 2” diameter 

rods with approximately 100 kips of clamping force in each rod. An assembly of steel beams and 

plates are used to mate the wall specimen cap to the LBCB platens. Three wide flange beams 

(W14x211) are connected to the LBCB platens using (84) 1” diameter high-strength bolts, each 

with a clamping force of approximately 40 kips. The beams are connected to 2” thick steel plates 

using (60) 1” diameter high-strength bolts, each with a clamping force of approximately 40 kips. 

The plates were countersunk to allow the bolt heads to lay flush with the face of the plate. To 

complete the connection, the plates are connected to the specimen wall cap using (34) 1.5” 
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diameter steel rods, each with a clamping force of approximately 45 kips. Figure 3.14 

diagrammatically depicts the connection beam assembly. 

 

 

Figure 3.14:  Connection beam diagram in plan (top) and elevation (bottom) 

 

The connection assembly is attached to the LBCB platens and then lowered down onto a 

mixture of Hydrocal/grout on specimen wall cap as shown in Figure 3.15 (a). The Hydrocal/grout 

creates a flat and even surface for uniform transfer of load between the steel plates and wall cap. 

Hydrocal is a gypsum cement and was used for connection of CW1 and CW2. A high-strength 

grout was used in CW3. Grout was used on CW3 to allow more working time in making the 

connection. The mix was allowed to cure prior to connecting and post-tensioning the 1.5” diameter 

steel rods.  The completed connection is pictured in Figure 3.15 (b). 
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 (a) Pouring Hydrocal for connection of CW2            (b) Completed connection of CW2  

Figure 3.15:  Connection process of C-shaped wall specimens 

3.3.3 Application of loading 

The LBCB described introduced in Section 3.3.1 is a six DOF loading device that imposes the 

displacements on the test specimen. The LBCB consists of six 330 kip actuators attached to a steel 

reaction frame (blue) and steel platen (orange) shown in Figure 3.10. Each actuator has a linear 

displacement transducer and load cell that provides that position and force carried in each of the 

six actuators. Mathematical transformation allows the six DOF position of the platen to be 

determined in Cartesian coordinates from the displacement transducer readings.  Similarly, the 

forces and moments being imposed by the platen can also be determined in the six DOF Cartesian 

coordinates from the load cell readings. The Cartesian force and moment readings are the sole 

means of determining the loads imposed on the test specimen.  Figure 3.10 shows the LBCB platen 

and each of the six actuators identified as “X1” and “X2” for the X-direction, “Y1” for the Y-

direction, and “Z1”, “Z2”, and “Z3” for the Z-direction.  

The Operations Manager (OM) software written in Labview provides the controlled six degree-

of-freedom movements of the steel platen at any point in Cartesian space.  This transformation of 

actuator displacements and forces allows the test specimen to be displaced in all six DOFs about 

a control point defined by the researcher as well as providing the measured forces and moments 

applied to the specimen at that point.  The OM provides “mixed-mode” control allowing the ability 

to command displacements and forces to the test specimen simultaneously.  This enables the 

control of a selection of the six DOFs to be in displacement control and other DOFs in force 

control.  Since the actuators are controlled by displacement, the OM uses small iterative 

displacements in conjunction with a measured stiffness of the test set up to achieve the commanded 

force or moment on the specimen.  Additional description of these capabilities is described in 
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section 3.4.2 and Nakata et al. (2007).  While the OM software is utilized to apply the target loads 

and displacements, the target loads and displacements are sent from the LbcbPlugin software.   

The LbcbPlugin software was also written at UIUC performing many functions for the 

coordinated stepwise testing of structures.  In the case of cyclic displacement histories, the operator 

defines an input file of displacement and load steps.  Advanced loading protocols can be 

implemented into the LbcbPlugin to generate a target load protocol based on the measured loads 

and deformations of the structure to be achieved at each step.  The LbcbPlugin also coordinates 

the data acquisition from all systems for each step.  The adaptability of this software to generate 

advanced loadings specific to an experimental test and its response were utilized for testing the C-

shaped walls. 

3.3.4 Loading protocol 

The loading protocol for all three C-shaped wall specimens was based on the prototype ten-

story core-wall system subjected to the ASCE 7-05 equivalent lateral force (ELF) distribution for 

design for earthquake loading and gravity load. The test specimens represent the bottom three 

stories of this ten-story prototype structure at one-third scale. The performance of the upper stories 

of the wall was assumed non-critical to the global system performance, and thus the upper stories 

were not tested in the laboratory. The effects of the gravity and lateral loads acting on the upper 

seven stories of the wall were simulated in the laboratory through the application of an overturning 

moment, shear force and axial force on the top of the test specimen.  

Each specimen was subjected to a quasi-static cyclic displacement history along one or both 

horizontal principal axes of the test specimen. Each step of the displacement history included the 

application of a lateral translation as well as an axial force and overturning moment. The target 

axial force and overturning moment were a function of the measured lateral shear from the applied 

displacement, thus requiring an incremental-iterative approach for determining the converged state 

of the wall at the end of each step. The displacement history was discretized into thousands of 

displacement steps to facilitate convergence at each step. The displacement step size varied from 

approximately five thousands of an inch (0.005 in.) in the elastic range to four-hundredths of an 

inch (0.04 in.) in the post-yielding regime. The loading rate also varied but did not exceed one-

hundredth of an inch per second (0.01 in/sec). 
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The coordinate system for controlling the test about the two principal axes of the test specimen 

is given in Figure 3.16. The control point corresponds to the geometric centroid of un-cracked wall 

specimen at the top of the third story. Using the LBCB control all translations and rotations are 

commanded about this point and the resulting forces and moments are measured about this point. 

The command DOFs for the three separate wall tests are given in Table 3.4. The following sections 

provide a detailed description of each test’s loading protocol. 

 

 

Figure 3.16:  C-shaped wall coordinate system 

 

Table 3.4:  Loading control DOFs 

 Dx / Fx Dy / Fy Dz / Fz Rx / Mx Ry / My Rz / Mz 

CW1 Displacement 

Control 

Zero 

Displacement 

Force Control Zero 

Displacement 

Force Control Zero 

Displacement 

CW2 Displacement 

Control 

Displacement 

Control 

Force Control Force Control Force Control Zero 

Displacement 

CW3 Displacement 

Control 

Displacement 

Control 

Force Control Force Control Force Control Zero 

Displacement 

 

 CW1 Loading Protocol 

The first C-shaped wall test investigated the performance of the test specimen under strong-

axis bending. A cyclic unidirectional displacement history was executed with an associated 

constant axial load and moment representative of the prototype structure shown in Figure 3.17. 

The axial load was held constant at 5% of the gross axial capacity ( ( )0.05 ' *c gf A ), equal to 306 

kips. The overturning moment to shear ratio was held constant at 196.8 in at the third story 

boundary; this follows from the ASCE 7-05 ELF distribution. Two cycles of displacement were 
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completed at each drift level in the x-direction, which corresponded to strong axis bending as 

shown in Figure 3.18. Maximum displacement demands for displacement cycles were intended to 

target limit states of concrete cracking, yielding of longitudinal reinforcement, nominal flexural 

strength, concrete spalling and subsequent damage states. The displacement history is shown in 

Table 3.5 and Figure 3.19. 

 

 

Figure 3.17:  CW1 loading with the ten-story test with triangular load-distribution (left) and 

the three-story test specimen with equivalent loading (right) 

 

 

Figure 3.18: Strong axis unidirectional displacement pattern for CW1 
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Table 3.5:  CW1 Displacement History 

Target Limit State Disp(in) Disp (% Drift) # of Cycles 

Elastic 0.02 0.014% 1 

Cracking 0.04 0.028% 1 

25% Yield 0.1 0.069% 2 

50% Yield 0.2 0.139% 2 

75% Yield 0.3 0.208% 2 

100% Yield 0.5 0.347% 2 

150% Yield 0.72 0.5% 2 

Nominal 1.08 0.75% 2 

Damage 1.44 1% 2 

Damage 2.16 1.5% 2 

Damage 3.24 2.25% 2 

Pushover 5.057 3.512% +X only 

 

 

Figure 3.19:  CW1 plot of displacement history in x- and y-directions 

 

 CW2 Loading Protocol 

The second C-shaped wall test investigated the bidirectional performance of the test specimen. 

A cyclic cruciform displacement history was executed with an associated constant axial load and 

constant moment-to-shear ratio as shown in Figure 3.20. The axial load was held constant at 5% 

of the gross axial capacity ( ( )0.05 ' *c gf A ), equal to 306 kips. The overturning moment to shear 

ratio was held constant at 196.8 in., which follows from the ASCE 7-05 ELF distribution, in both 

principal directions. 

For most of the test, two displacement cycles were completed in each direction at each drift 

level following the cruciform history shown in Figure 3.21. Following this cruciform history, 

cycles 1 and 3 displace the wall in the direction of the web of the wall, which is the x-direction 

and activates strong-axis bending of the wall; cycles 2 and 4 displace the wall in the directions of 

the flanges, which is the y-direction and activates weak-axis bending of the wall. Towards the end 
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of the test, the displacement capacity of the loading apparatus was reached in the positive and 

negative y-directions. To enable application of increasing demand on the boundary elements of 

the wall, which are severely loaded under weak-axis / y-direction loading, the cruciform 

displacement history was replaced with the bi-directional displacement history shown in Figure 

3.22. This displacement pattern consisted of a full displacement cycle in x-direction while 

maintaining a constant y-direction displacement. Maximum displacement demands for 

displacement cycles in both the x- and y-directions were intended to target limit states of concrete 

cracking, yielding of longitudinal reinforcement, nominal flexural strength, concrete spalling and 

subsequent damage states. The displacement history is shown in Table 3.6 and Figure 3.23. 

 

 

Figure 3.20:  CW2 bi-directional loading with the ten-story test with triangular load-

distribution (left) and the three-story test specimen with equivalent loading (right) 

 



136 

 

 

Figure 3.21:  Strong and weak axis cruciform displacement pattern for CW2 

 

 
Figure 3.22:  Strong axis unidirectional displacement pattern at constant weak axis 

displacement for CW2 
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Table 3.6:  CW2 Displacement History 

Target Limit 

State 

Loading 

Pattern 

Dx 

(in) 

+Dy 

(in) 

-Dy 

(in) 

Dx 

(% drift) 

+Dy 

(% drift) 

-Dy 

(% drift) 

# of 

Cycles 

Elastic Cruciform ±0.02 0.02 -0.02 0.014% 0.014% -0.014% 1 

Cracking Cruciform ±0.04 0.08 -0.12 0.028% 0.056% -0.083% 2 
 

Cruciform ±0.1 0.2 -0.3 0.069% 0.14% -0.21% 2 

50% Yield Cruciform ±0.2 0.4 -0.6 0.14% 0.28% -0.42% 2 

75% Yield Strong Axis ±0.3 --- --- 0.21% --- --- 1 

100% Yield Cruciform ±0.5 0.6 -0.9 0.35% 0.42% -0.63% 2 

1/2 Nominal Cruciform ±0.72 1.8 -1.05 0.50% 1.25% -0.73% 2 

Nominal Cruciform ±1.08 3.24 -1.22 0.75% 2.25% -0.85% 1 
 

Cruciform ±1.08 3.24 -2.14 0.75% 2.25% -1.49% 1 

Damage 1 Cruciform ±1.44 3.24 -2.14 1% 2.25% -1.49% 1 
 

Strong Axis ±1.44 --- --- 1% --- --- 1 

Damage 2 Constant Dy ±1.44 2.88 --- 1% 2% --- 1 
 

Constant Dy ±1.44 --- -1.584 1% --- -1.1% 1 

Damage 3 Strong Axis ±2.16 --- --- 1.5% --- --- 1 

Damage 4 Constant Dy ±2.16 2.88 --- 1.5% 2% --- 1 

Pushover +X Constant Dy 2.81 2.88 --- 1.95% 2% --- 1 

 

 

Figure 3.23:  CW2 plot of displacement history in x- and y-directions 

 

 CW3 Loading Protocol 

The third C-shaped wall test investigated the bidirectional performance of the test specimen 

when considered part of a coupled core wall system. A cyclic cruciform displacement history was 

executed with axial load and moment applied at the top of the specimen determined from the ASCE 

7-05 ELF and gravity loads applied to the complete coupled core-wall system as shown in Figure 

3.24. For displacement cycles in the x-direction, parallel to the webs of the c-shaped walls, 

coupling beams are not activated, and the response of the c-shaped walls is essentially identical to 
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the response of an isolated c-shaped wall. Thus, for displacement cycles in the x-direction, a 

constant axial load equal to 5% of the gross axial capacity ( ( )0.05 ' *c gf A ), equal to 306 kips, was 

applied and a constant moment-to-shear ratio of 196.8 in., which follows from the ASCE 7-05 

ELF distribution was used.  

Lateral loading of the core wall system in the y-direction, parallel to the flanges of the c-shaped 

walls, activates coupling beams resulting in “coupling” of the c-shaped walls. The flexural 

response of the coupling beams results in tensile loads being applied to one of the c-shaped walls, 

identified as the tension pier, and compression loads being applied to the other c-shaped wall, 

identified as the compression pier. These tension/compression loads affect the flexural stiffness 

and strength of the c-shaped walls and result in the individual wall piers developing different 

internal moments and shears at each story. To simulate this in the laboratory test, axial load and 

moment applied to the top of the specimen were varied for displacement cycles in the y-direction. 

The following is a detailed discussion of the process employed to determine an appropriate 

protocol for y-direction loading of the test specimen.   

  

 

Figure 3.24:  CW2 bi-directional loading with the ten-story test with triangular load-

distribution (left) and the three-story test specimen with equivalent loading (right) 
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Details of y-direction loading and simulation of demands resulting from coupling  

Specification of the y-direction loading protocol comprised specification of (1) the ratio of 

shear, axial and moment demand to be applied to the specimen for loading in the positive and 

negative y-directions and (2) the maximum displacement demands in the positive and negative y-

directions for each cycle. The following paragraphs explain the process employed to develop these 

specifications as well as the control logic employed to implement these specifications in the 

laboratory.     

Y-direction loading activates coupling between the wall piers resulting in the individual wall 

piers carrying significantly different shear, axial load and moment at each story. The distribution 

of total story shear, axial load and moment between the individual wall piers, and thus the ratio of 

shear, axial and moment demand for an individual wall pier, varies as a function of wall stiffness. 

Numerical analyses of the ten-story prototype core-wall system subjected to the increasing lateral 

load and constant gravity load were conducted to establish appropriate demand ratios (i.e., the ratio 

of shear, axial and moment demand) for use in testing. The demand ratio versus roof drift 

developed from these analyses was simplified for application to experimental testing; ultimately, 

seven different ratios were used at different stages of the test. Demand ratios were varied during 

the test on the basis of measured response quantities and observed damage.  

It should be noted that the laboratory test specimen represents the bottom three stories of one 

c-shaped wall pier without coupling beams. Without coupling beams, the demands that develop in 

a c-shaped wall in the coupled core-wall system cannot be simulated in the laboratory specimen 

over the entire three-story height of the laboratory specimen. Consequently, demands were applied 

at the top of the laboratory specimen to achieve representative demands in the critical first story of 

the specimen. This is illustrated in a free-body-diagram of the coupled walls individual and system 

demands in Figure 3.25. 
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Figure 3.25:  Coupled core wall free body diagram for the system (left) and individual wall 

piers acting as the test specimen (right) 

 

Analysis results indicated that under lateral loading of the core-wall system, lateral 

displacements for the individual wall piers differed due to axial elongation of coupling beams. 

Initially, it was assumed that this difference in wall displacements could be ignored and 

displacement demands in the positive and negative y-directions could be of equal magnitude. As 

testing progressed, the stiffness of the specimen under positive y-direction loading began to differ 

substantially from the stiffness of the specimen under negative y-direction loading (this would be 

analogous to the stiffness of the compression wall pier in the coupled wall system differing 

substantially from the stiffness of the tension wall pier), and it was observed that the loads applied 

at the maximum and minimum y-direction displacement demands did not, when combined, 

represent an equilibrium state for the core-wall system. In the core-wall system, loads applied to 

the specimen under positive and negative y-direction loading would be applied simultaneously to 

the individual wall piers; thus, applied loads, when combined, should approximately represent an 
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equilibrium state for the core-wall system. Thus, for subsequent displacement cycles, a force-based 

approach was used to determine maximum displacements in the positive and negative y-directions.  

Numerical analyses indicated that for moderate to large displacement demands, the 

compression pier determines core-wall strength. This is because at these displacement demands 

the tension pier has minimal stiffness relative to the compression pier and carries relatively little 

shear and moment relative to the compression pier. Given this, a force-based approach to 

determining displacement demands was developed in which (1) the test specimen was first loaded 

to a target drift demand in the positive y-direction, such that it became the compression pier, (2) 

the axial force and moment demands at the target drift demand were recorded, and (3) the specimen 

was loaded in the negative y-direction until the axial force and moments required for equilibrium 

of the core-wall system were achieved. No consideration was given to the magnitude of the shear 

force applied at the peak displacement in the negative y-direction; thus, this loading protocol did 

not maintain the moment-to-shear ratio associated with the ASCE 7-05 ELF distribution for the 

core-wall system. 

The displacement history for CW3 is given in Table 3.7, and Figure 3.26; Table 3.7 also lists 

the moment, shear, and axial load ratios for the pier walls, where 

,base CompRatio
V = Portion of system base shear to the compression pier 

,base TensRatio
V = Portion of system base shear to the tension pier 

,base CompRatio
M = Portion of system moment to the compression pier 

,base TensRatio
M = Portion of system moment to the tension pier 

,base CoupleRatio
M = Portion of system moment to coupling  

  



142 

Table 3.7:  CW3 Displacement History 

Target 

Limit State 

Loading 

Pattern 

Dx 

(in) 

Dy 

(in) 

Dx  

(% 

drift) 

Dy  

(% 

drift) 

# of 

Cycles 

Mbase 

Couple

Ratio 

MbaseC

Ratio 

MbaseT

Ratio 

VbaseT

Ratio 

Vbase

CRatio 

Elastic Cruciform ±0.02 ±0.02 0.027% 0.027% 1 0.65 0.25 0.1 0.35 0.65 
Cracking Cruciform ±0.04 ±0.04 0.027% 0.027% 2 "" "" "" "" ""  

Cruciform ±0.1 ±0.1 0.067% 0.067% 2 0.65 0.25 0.1 0.2 0.8 

50% Yield Cruciform ±0.2 ±0.2 0.14% 0.14% 2 "" "" "" "" "" 
75% Yield Cruciform ±0.35 ±0.35 0.24% 0.24% 1 "" "" "" "" ""  

Weak axis 0 ±0.44 0% 0.30% 2 "" "" "" "" "" 

100% 

Yield 

Cruciform ±0.5 ±0.65 0.35% 0.35% 2 "" "" "" "" "" 

 
+Y only 0 0.711 0% 0.49% 1 "" "" "" "" "" 

  Weak axis 0 ±0.8 0% 0.55% 1 0.6 0.32 0.08 0.3 0.7 

Logic change to force target for tension pier 

1/2 

Nominal 

Strong Axis ±0.72 0 0.50% 0% 1 0.6 0.33 0.07 0.15 0.65 

 
Comp. Pier 0 0.8 0% 0.55% 1 "" "" "" "" ""  
Tension Pier 0 -0.178 0% -0.12% 1 "" "" "" "" ""  
Strong Axis ±0.72 0 0.50% 0% 1 "" "" "" "" ""  
Comp. Pier 0 1.2 0% 0.83% 1 "" "" "" "" ""  
Tension Pier 0 -0.14 0% -0.09% 1 "" "" "" "" "" 

Nominal Strong Axis ±1.08 0 0.75% 0% 1 "" "" "" "" ""  
Comp. Pier 0 1.2 0% 0.83% 1 "" "" "" "" ""  
Comp. Pier 0 1.6 0% 1.11% 1 0.6 0.28 0.12 0.25 0.65  
Tension Pier 0 0.067 0% 0.05% 1 "" "" "" "" ""  
Comp. Pier 0 1.6 0% 1.11% 1 "" "" "" "" ""  
Tension Pier 0 -0.4 0% -0.28% 1 "" "" "" "" "" 

Damage 1 Strong Axis ±1.44 0 1.0% 0% 1 "" "" "" "" ""  
Comp. Pier 0 1.6 0% 1.11% 1 "" "" "" "" ""  
Tension Pier 0 -0.223 0% -0.16% 1 "" "" "" "" ""  
Comp. Pier 0 2.4 0% 1.67% 1 "" "" "" "" ""  
Tension Pier 0 -0.168 0% -0.11% 1 "" "" "" "" "" 

Damage 2 Strong Axis ±2.16 0 1.5% 0% 1 "" "" "" "" ""  
Comp. Pier 0 2.84 0% 1.94% 1 "" "" "" "" ""  
Tension Pier 

 
-2.84 0% 1.94% 1 0.6 0.28 0.26 0.6 0.65 

Damage 3 Strong Axis ±2.56 0 1.777% 0% 1 "" "" "" "" ""  
Comp. Pier 0 2.84 0% 1.97% 1 "" "" "" "" ""  
Tension Pier 0 -3.01 0% -2.09% 1 0.6 0.28 0.24 0.6 0.65 

Damage 4 Comp. Pier 0 2.95 0% 2.05% 1 0.6 0.2 0.24 0.6 0.8  
Tension Pier 0 -3 0% -2.08% 1 0.6 0.2 0.23 0.6 0.8 

Damage 5 Comp. Pier 0 2.95 0% 2.05% 1 Fz = 1,000 kips 

 Tension Pier 0 -2.745 0% -1.91% 1 Fz = -250 kips 
 Comp. Pier 0 2.33 0% 1.62% 1 Fz = 1,000 kips 

 

 

Figure 3.26:  CW3 plot of displacement history 

 



143 

Control logic of coupled core wall simulation 

The y-direction loading protocol described above was implemented using the following logic. 

The external control loop performs these steps at each displacement step with iteration as needed 

to reach a converged equilibrium state for the specimen: 

1. Impose weak axis displacement (Dy) 

 

2. Measure base shear of the wall specimen (
,base CV ) 

 

3. Determine if compression pier or tension pier based on measured shear 

If Fy > 0 then consider as Compression Pier.  

If Fy < 0 then consider as Tension Pier 

 

4. Calculate equilibrium target 

i. Calculate system base shear from measured shear of the specimen 

   (2.168) 

 

ii. Calculate system base moment from system base shear 

 ( ), , 0.71base system base system effM V h=   (2.169) 

 

iii. Calculate moment at the base of the specimen 

  (2.170) 
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iv. Calculate moment due to the coupling 

 ( ), , ,base couple base system base CoupleRatio
M M M=   (2.171) 

 

v. Calculate axial load from moment due to the coupling 

 
,

,

base couple

base couple
couple

M
P

L
=  (2.172) 

 

vi. Calculate total axial force from gravity and coupling 

 
, ,top C gravitybase couple

PP P= +  (2.173) 

 

vii. Calculate total moment to be applied at the third story 

( ), , , specimentop C base C base C
M M V h= −   (2.174) 

 

5. Impose calculated 
,top CP  and 

,top CM on the specimen 

 

3.4 Development of a bi-directional loading algorithm  

During the testing for CW1 and CW2, two shortcomings in the procedure for applying the 

loading to each test specimen were identified.  The first shortcoming identified was the variation 

in loading that occurred in-between converged load steps.  The second shortcoming was the 

difficulty to achieve convergence for the target load step when controlling multiple degrees of 

freedom that are interdependent.  Section 3.4 explores the source of each of these shortcomings, 

and a new loading algorithm is developed that considers the load-deformation curve of a reinforced 

concrete structure.  Small-scale testing was conducted to validate the proposed algorithm prior to 

testing in the large-scale laboratory to ensure the proposed algorithm was conservative and 

sufficiently robust.  After successful testing in the small-scale laboratory, the algorithm was 

implemented for testing CW3.  A final validation was conducted during elastic testing of CW3, 

and the algorithm subsequently conducted the remainder of the test.   
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3.4.1 Motivation and background 

As described in Section 3.3.4.3, the loading protocol for the final C-shaped wall test consists 

of a cruciform cyclic displacement history with a varying axial force and overturning moment in 

each direction.  The variable axial force simulates a coupled core wall system in the weak-axis 

direction.  The cyclic displacement history for the test is discretized into a series of equal 

displacement steps.    Each step commands a lateral translation with an axial force and overturning 

moments.  The axial force and overturning moment are a function of the lateral shear response 

from the applied displacement as given by Lowes (2012).  The overturning moment in each 

direction is a function of the measured shear in each direction: 

 

 ( ) ( )( ), ,M x y C V x y=   (2.175) 

 

Where, 

( )

( )

, overturning moments corresponding to both lateral translations  and 

, shear forces corresponding to both lateral translations  and 

constant moment-to-shear ratio, 

zero if top of specimen

M x y x y

V x y x y

C

=

=

=

 is equal to top of building

non-zero if simulating building structure above being subjected to lateral force

 

 

As a direct function of the lateral shears, the prediction of overturning moment also requires 

the prediction of the lateral shears resulting from the displacement.  The stiffness of the test 

structure and displacement step size determine how well the commanded axial force and 

overturning moment relationships are maintained during the test.  Within the mixed mode control 

algorithm of the OM, the displacements are commanded first and independently of the forces and 

moments.  As a result, the size of the lateral translation has a direct impact on the level of error 

between the initial and subsequently converged axial force and overturning moments.  In addition, 

the correction of the moment based on the prescribed moment to shear ratio is completed after the 

displacement has occurred and the resulting shear has been measured.  The test structure is stiffer 

when displaced without rotation (conceptually a fixed-fixed condition) resulting in a lateral shear 

that is larger than the lateral shear after the moment to shear ratio solution has converged.  Figure 

3.27 plots the overshoot of lateral shear resulting from this problem using the data of the first C-

shaped wall test (CW1).   
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Figure 3.27:  Scatter plot of CW1 shear force overshoots (kips) versus displacement step size 

(inches) 

 

This constantly changing shear and applied moment have physical implications of the inelastic 

response of the test structure.  To reduce the error between the actual and idealized forces and 

moments, each step can be discretized into substeps of smaller displacements.  The force 

relationships can then be converged at each substep of displacement as opposed to only at the end 

of the step.  Figure 3.28 illustrates substep discretization and points of load control convergence. 

 

 

 
Figure 3.28:  Breakdown of displacement step into substeps and subsequent breakdown of 

substeps into iterative steps to converge on the target displacement 

 

The substep can be considered to have three phases:  one initial displacement command, any 

number of correction steps of setup deformation (correcting for deformations that occur in any 

element outside of the test specimen), and any number of correction steps of the overturning 

moment.  The number of correction steps due to setup deformation, axial force correction, and 

overturning moment correction has a direct impact on the efficiency of the test and the 

minimization of error between the idealized and actual forces.  The ideal substep would require no 
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correction steps.  Eliminating correction steps requires predicting both the setup deformation that 

will occur during the step as well as the change in lateral shear relative to the change in 

displacement to predict the axial force and overturning moment.  In this ideal case, the initial 

displacement command of the substep will command the displacement of the step combined with 

the setup deformation that will occur with that displacement, the axial force resulting after the 

lateral translation, and the overturning moment that will correspond to the lateral shear measured 

after the lateral translation.  The workflow of this process is given in the flowchart in Figure 3.29. 

 

 

 
 

Figure 3.29:  Flowchart of displacement step convergence using substeps and correction steps 
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For the existing implementation in the Operations Manager software, the initial displacement 

command predicts the setup deformation that will occur with the lateral displacement, but it does 

not make any prediction of the overturning moment.  The setup deformation is predicted based on 

the setup deformation of the previous steps and a parameter ranging from zero to one that allows 

the operator to command only a portion of the predicted setup deformation.  The axial force and 

overturning moment commanded with the initial displacement are held at the current value.  

Therefore, the initial displacement command contains the intended lateral displacement, the setup 

deformation predicted for the intended lateral displacement, and the overturning moments and 

axial forces from the end of the previous step.   

The C-shaped reinforced concrete specimen has three lateral stiffness characteristics of 

interest:  1) the stiffness about the strong axis (pos. X and neg. X stiffness are equal due to 

symmetry), 2) the stiffness about the weak axis in the positive direction (toe in tension), and 3) the 

stiffness about the weak axis in the negative direction (toe in compression).  For the experimental 

test, the X and Y coordinates define the lateral translations as shown in Figure 3.16. 

 

 
Figure 3.30:  C-shaped wall coordinate system with control point at the geometric centroid of 

the cross-section 

 

Each stiffness of interest includes the effects of the applied overturning moment and axial 

force.  For any inelastic loading of reinforced concrete, the neutral axis will be changing location 

based on the applied forces and moments.  For a bi-directional loading, the neutral axis will be a 

function of three DOFs:  the axial force Fz, and the two overturning moments Mx and My.  Four 

primary issues are present for the bi-directional control problem: 

 

a. The progression of shear and flexural cracking, as well as cyclic damage, will result in 

a highly nonlinear response of the specimen and constantly changing stiffness. 
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b. For control of multiple DOFs, the coupling terms of the measured stiffness matrix 

cannot be determined.  As a result, the influence of each DOF on the other is unknown, 

and the combined actions on the specimen must be applied in an incremental-iterative 

approach for convergence. 

c. The current inability to command the lateral translation with the corresponding rotation 

and vertical translation required for the axial force and overturning moment 

simultaneously results in a non-smooth solution path.  In addition, the required error 

tolerances for solution convergences along the path will cause further deviations to the 

smoothness of the solution path. 

d. Stiffness components in a bi-directional loading cannot be considered additive (Beyer, 

Dazio, and Priestley 2008).  The stiffness of the specimen is a direct function of the 

direction in which it is being displaced requiring each cycle to be considered 

independently of any previous history. 

 

To expand on point c, data from the second C-shaped wall test is used as an example.  This test 

used a control methodology as described in Section  3.3.4.2.  In this test, the bi-directional moment 

was commanded, but the axial force remained constant.  Figure 3.31 shows the iterative, 

incremental approach for a portion of a displacement cycle post-yielding.  The displacement 

increment was approximately 0.04” followed by iterative load control to find convergence.  The 

spikes of the “iterations” path correspond to the overshoots in lateral shear previously described.  

The key observation of this figure is that the solution path (identified by the “Increments” line) is 

not smooth.  The solution path generally observed to be non-smooth when looking at the data from 

any part of the inelastic loading. 
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Figure 3.31:  Plot of shear force (kip) versus displacement (inch) during strong axis loading 

indicating converged and non-converged steps 

 

Figure 3.32 shows the same approach during the unloading phase of the same cycle.  The initial 

unloading step is accompanied by a significant drop in stiffness.  Because the current approach 

maintains the applied moment of the previous converged step (the shear at 173 kips) with the initial 

displacement increment, the deviation between the converged solution (151 kips) and the start of 

the step (134 kips) is large. The non-smooth solution path and change in stiffness for unloading 

must both be accounted for in the proposed algorithm.   

 

   

 
Figure 3.32:  Plot of shear force (kip) versus displacement (inch) during strong axis unoading 

indicating converged and non-converged steps 

 

3.4.2 Existing control software methodology 

The Operations Manager described in 3.3.3 employs the ability to command displacements and 

forces to a test specimen known as ‘mixed-mode’ control.  As previously described, force targets 

are converted to displacements based upon a measured tangent stiffness.  The displacement target 
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is achieved by the LBCBs, and the resulting force is compared to the force target.  Prescribed error 

tolerance for each DOF is used to compare the resulting force to the force target.   If the force is 

within the prescribed tolerance, the force command is complete; otherwise, multiple iterations are 

completed until the resulting force is within the tolerance. 

The OM employs the Broyden update (see Section 2.3.5) to maintain the approximate 

tangential stiffness of each DOF.  Currently, the force control works with only one DOF at a time, 

and each column of the stiffness matrix is updated only when new information about the load-

displacement history is available.  Each column is updated after it has been commanded a 

displacement to achieve a force target and all other columns are left unchanged. 

 

A series of features were added to the force control to add robustness to the solution technique: 

1. Stiffness bounding – an upper and lower bound of the stiffness matrix is employed to 

prevent a poor approximation of the tangential stiffness causing the solution to be a large 

undesirable value. 

2. Maximum increment – the maximum increment limits the magnitude of change in any one 

iteration. 

3. Jacobian gain – the gain is a factor applied to the target to assume some loss of stiffness 

with each step as well as accounting for some error in the approximate stiffness.  The gain 

for each DOF forms the diagonal of the ‘gain’ matrix, [G], applied to the displacement 

solution as follows: 

 

        ( )    ( )
1

1 1

0 0 0 00

ii i i i
u u F F

−
− −

= + −KG  (2.176) 

 

Figure 3.33 shows the implementation of these features in the interface of the operations 

manager.  Furthermore, a complete description and methodology of the Operations Manager force 

control can be found in the work of Nakata et al. (2007).  
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Figure 3.33:  Operation Manager graphical user interface with load-control features 

indicated 

  

In previous experimental tests of the complex walls project, correction steps were used to 

command the overturning moment throughout the test.  A load parameter, λ, was applied to the 

calculated correction of each step to prevent overshoot of the target.   The load parameter functions 

the same as the gain matrix in the OM.  The parameter is applied as follows: 

 

         ( )
1

target target 000 0
     for any 0,1

i ii i

meas

i

oF u F 
−

=  + K   (2.177) 

3.4.3 Proposed solution techniques 

The prediction algorithm seeks the solution to the lateral shears after the completion of the 

target lateral displacement.  Mathematically described as: 

 

          
1

target target 00 00 0

i ii i i

measF u F
−

=  +G K  (2.178)
 

Jacobian stiffness 

1. Stiffness bounds 

3.  Jacobian gain 

2.  Max increment 
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The stiffness matrix will be approximated using two primary techniques:  least change secant 

updates from the literature as well as straight line linear regression proposed in this study.  See the 

following: 

1. The Broyden least change secant update per section 2.3.5 

2. The Davidon-Fletcher-Powell least change secant update per section 2.3.6 

3. The straight-line linear regression methods proposed in section 3.4.3.1  

 Methodology of line fitting 

The least change secant updates are highly sensitive to the load-deformation data of the 

previous increment (substep).  The sensitivity can cause the predictions to be poor if the data is 

non-smooth.  An example of non-smooth data points is illustrated in Figure 3.34 by the diamond 

points connected by dashed lines.  To better address the non-smooth data, a linear fit can be 

implemented to capture the stiffness based on a history of converged loads and deformation from 

previous substeps.  The next point on the load-deformation can then be predicted using the line 

fitting as shown by the example in Figure 3.34. 

Since the load-deformation path is highly nonlinear, it might seem justifiable to use a curve 

fitting method with a higher order polynomial or sine wave approximation.  Curve fitting solutions, 

in general, do not have a closed form solution requiring iteration to minimize the residuals (S. L. 

Meyer 1975).  This adds significant computational cost, complexity to the solution, and a 

consequent loss of robustness.  A brief simulation performed using curve fitting methods within 

MATLAB showed that a significant history of data points might be required to ensure the curve is a 

negative quadratic for the loading and positive quadratic unloading.  The added complexity in 
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providing the constraints to properly bound the solution eliminated this method as a reasonable 

option.  Furthermore, the straight-line fitting will be adequate to predict the next step with a small 

error only if the discretization of the load-deformation is small enough.  The implementation of 

prediction only with small substeps will allow the test to meet this criterion. 

 

 
Figure 3.34:  Example of line fitting to predict the future load-displacement point using prior 

converged steps in the load-deformation history 

 

 Load-deformation history 

The linear regression requires a history of data points to fit a line to.  The number of points 

used for the history will influence the robustness of the solution as well as defining how well the 

line approximates the tangent stiffness.  Using a large number of data points will result in a poorer 

approximation of a nonlinear load-deformation path but a more robust solution as it will have a 

reduced sensitivity to irregular data points.  Fewer data points will provide a closer approximation 

of the load-deformation path but with a higher sensitivity to irregular data points.  The number of 

data points used is expected to be critical to the success of a line fitting technique.  From three to 

six or more steps of history are used in the simulations to determine the influence of history on the 

fitting of the data. 
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The matrices of load and displacement history are defined as: 

 

 
 

The displacement data is based on the commanded displacements of the LBCB and not the 

measured displacement.  Using commanded displacements eliminates the effect of noise in the 

measured displacement data, which can be appreciable for small displacements. 

Weighting functions can be applied to the data history to control the influence each data point 

has on the line fitting.  Weighting could provide a better approximation of the tangent stiffness by 

giving more weight to the most recent data points.  Figure 3.35 through Figure 3.37 provide three 

weighting functions that were evaluated.  Unless explicitly stated, equal weighting is used where 

each data point has an equal influence on the solution. 

 

 
Figure 3.35:  Linear weighting function for the previous steps in the loading history used for 

the least squares line fitting 
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Figure 3.36:  Quadratic weighting function for the previous steps in the loading history used 

for the least squares line fitting 

 

 

 
Figure 3.37:  Inverse hyperbolic cosine weighting function for the previous steps in the 

loading history used for the least squares line fitting 

 

 

 Least squares line fitting 

Straight-line fitting requires a solution of the parameters for a first-order polynomial: 

 

 y b mx= +  (2.179) 

 

If more than two data points are used to fit a line, the system of equations is over-determined and 

requires a minimization approach to find the best solution.  The least squares minimization is one 

approach to solving the problem.  The least squares method minimizes the sum of the squared 

residuals. As a topic of extensive study, many forms of the least squares method exist with 

variations on what variables are minimized and the corresponding mathematics as well as using 

weighting functions on the residuals.   

The most common form is the “Ordinary Least Squares” (OLS) which seeks to minimize the 

error in the Y variable (S. L. Meyer 1975).  Mathematically given by: 
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which is then minimized with respect to m and b.    

The OLS assumes no uncertainty in the X variable.  Figure 3.38 shows a line fit using least 

squares to minimize only the vertical residuals as indicated by the dashed lines. 

 

 
Figure 3.38:  Schematic example of ordinary least squares line fitting (Markovsky and Van 

Huffel 2007)  

 

Another more complex form of the least squares method assumes uncertainties in both 

variables.  Many sources refer to this method as “total least squares” (TLS).  This method does not 

have a closed form solution for most minimizations and requires an iterative method to solve 

(Markovsky and Van Huffel 2007).  Figure 3.39 illustrates the TLS method.   

 

 
Figure 3.39:  Schematic example of total least squares line fitting (Markovsky and Van Huffel 

2007) 
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For this study, the X variable is the displacement for which we do not have uncertainty.  The 

only uncertainty of the problem is the load at each displacement; therefore, only ordinary least 

squares methodologies are further investigated. 

Four methods of least squares lines fitting were evaluated for the algorithm:  ordinary least 

squares (OLS), weighted least squares, robust ordinary least squares, and weighted robust ordinary 

least squares. OLS is described in 3.4.3.3.  The weighted least squares approach has only one 

mathematical change to OLS.  A weight, wi, for each data point is used when calculating the 

residual of that data point.  Mathematically given as: 
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In the OLS the weight is equal for all points and consequently falls out of the equation.  The 

weighted least squares use weights to give more or less priority to the data points for the fitting.  

Applicable weighting functions to this study are given in 3.4.3.2.  The robust OLS is used to reduce 

the sensitivity of the algorithm to outlying data points.  The implementation uses a weighted least 

squares approach with a weight defined by the magnitude of residual to the fitted line (Holland 

and Welsch 1977).  The robust solution requires iteration to find a solution.  The weighted robust 

OLS combines the previous two methods.  A weight is applied based on the residual of the point 

as well as a weighting factor based upon a given weighting function. 

3.4.4 Unloading stiffness model 

For cyclic loading of reinforced concrete, a distinct change in stiffness occurs between the 

loading and unloading of the specimen, particularly for inelastic loadings.  In the linear elastic 

regime, the loading stiffness could be used as the unloading stiffness with no undesirable result.  

However, beyond the limit point of the structure, the stiffness is negative (load decreases with 

increasing displacement) and using the loading stiffness would actually increase the load on the 

unloading step due to the negative tangent stiffness.  This example illustrates the importance of 

accounting for the unloading stiffness to predict. 
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Figure 3.40:  Idealized reinforced concrete hysteresis (C. Meyer 1998)  

 

An idealized behavior of reinforced concrete is shown in Figure 3.40.  The inelastic loading 

stiffness reduces from the elastic loading stiffness on each cycle of displacement.  The inelastic 

unloading represents a much larger stiffness than that of the inelastic loading.  From this, we can 

say with certainty that the inelastic loading will exhibit stiffness less than the maximum inelastic 

unloading.  This idea is employed in the compressive model of concrete given by Mander (1988) 

shown in Figure 3.41.  The model uses the initial tangent stiffness of the cycle (Ec) as equivalent 

to the initial unloading stiffness of the cycle (Eu). 

 

 
Figure 3.41:  Mander and Park (1988) stress-strain response of concrete during unloading 
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The proposed methodology extends this idea for use in a multiple cycle displacement history.  

The maximum inelastic loading stiffness is used as the unloading stiffness of the positive peak of 

the cycle.  The inelastic unloading of the first peak is used as the unloading stiffness of the negative 

peak.  No unloading history is saved between cycles.  Each cycle is treated as an independent 

entity.  Figure 3.42 shows one complete displacement of experimental data from the second C-

shaped wall test after yielding of the reinforcement in the inelastic regime.  A tangent to the 

maximum inelastic loading and inelastic unloading 

 

 
Figure 3.42:  Example of hysteretic loop for CW2 indicating the inelastic loading and 

unloading using the load-prediction algorithm 

 

Figure 3.43 shows a close up of the transition from inelastic loading to inelastic unloading at 

the positive peak.  The maximum inelastic loading stiffness is applied at the unloading step.  In 

this example, it predicts only about one-third of the drop-in force from the actual.  This is not 

unexpected given the hysteresis in Figure 3.40. 
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Figure 3.43:  Example of inelastic loading and unloading transition at the positive peak for 

CW2 indicating the actual and predicted response using the load-prediction algorithm 

 

Figure 3.44 shows a close up of the transition from inelastic loading to inelastic unloading at 

the negative peak.  Here, the maximum inelastic unloading from the positive peak is applied at the 

unloading step.  This prediction provides a close approximation of the actual behavior 
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Figure 3.44:  Example of inelastic loading and unloading transition at the negative peak for 

CW2 indicating the actual and predicted response using the load-prediction algorithm 

3.4.5 Testing and results 

 Numerical testing 

The experimental test data from the first and second C-shaped wall test provides an ideal data 

set to use for simulating the performance of the prediction methods.  A Matlab script was written 

for performing the simulation of the prediction algorithm utilizing these datasets with the ability 

to vary the length of displacement history that is used.  The experimental dataset consisted of the 

target deformations of each step, the commanded displacement at each step, and the measured load 

at each step.  Simulations were performed on both CW1 and CW2 data sets, and all nine methods 

were run for each dataset.  Methods one through six iterated through four maximum history lengths 

for the fitting:  3 steps, 4 steps, 5 steps, and 6 steps.  Methods seven and eight used a nonlinear 

weighting function and employed the entire available load-displacement history.   
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Table 3.8:  Summary of simulated methods 

# Method Weighting function Max. load-def. history 

1 Broyden update n/a 3, 4, 5 or 6 steps 

2 Davidon-Fletcher-Powell update n/a 3, 4, 5 or 6 steps 

3 Ordinary Least Squares n/a 3, 4, 5 or 6 steps 

4 Weighted Least Squares linear 3, 4, 5 or 6 steps 

5 Robust Least Squares n/a 3, 4, 5 or 6 steps 

6 Weighted Robust Least Squares linear 3, 4, 5 or 6 steps 

7 Weighted Robust Least Squares quadratic no limit 

8 Weighted Robust Least Squares inverse hyperbolic cosine no limit 

 

A qualitative and quantitative evaluation of the proposed methods of moment prediction is 

presented and examined in this section based on the numerical simulations utilizing the previous 

C-shaped wall test data. 

Quantitative analysis of all methods 

The quantitative evaluation utilizes the data from all steps of each method using experimental 

test data from both the first and second C-shaped wall test for both lateral translations.  The first 

series of bar plots show the relative errors of each method for each data set. 

 

 
( )errors > 5 kips

%
total # of steps

error =


 (2.182) 

 

Figure 3.45 illustrates the success of the least squares methods using only a short history of 

load-displacement data.  In addition, the percentage of errors in the CW2 test is significantly lower 

than the errors from the CW1 test.  The difference is a direct result of the displacement step size.  

The step size in CW1 exceeded fifteen-hundredths of an inch in the strong axis direction while the 

CW2 test was limited to approximately five-hundredths of an inch.  Figure 3.46 shows the error in 

the weak-axis direction yielding the same result.  CW1 was a unidirectional test, so the weak axis 

response is limited to the CW2 dataset only. 
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Figure 3.45:  Bar plot of % error in strong axis shear as predicted using each method 

 

 

 
Figure 3.46:  Bar plot of % error in weak axis shear as predicted using each method 

 

A closer inspection of the percentage of errors in the least squares methods is shown in Figure 

3.47.  While the methods are performed at a similar level, some distinct trends and expectations 

are realized.  For all four methods, the smallest history of load-deformation steps results in the best 

performance of each method.  If the data is well conditioned using fewer steps will better 

approximate the tangent stiffness of the structure.   It also appears that the weighted least squares 
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provided slightly better performance than the ordinary least squares.  The robust OLS and robust 

WLS showed no significant improvement in performance. 

 

 
Figure 3.47:  Bar plot of % error in strong axis shear as predicted using methods 3-6 

  

The errors greater than 5 kips are broken into smaller categories in Figure 3.48 for CW1 and 

Figure 3.49 for CW2.  All prediction errors greater than five kips could significantly affect the 

experimental test.  The CW1 data shows errors exceeding twenty kips but with the majority under 

10 kips.  CW2 has a similar result but also shows that the errors above 10 kips are essentially 

constant for all four prediction methods.  In both cases, the weighted least squares reduce the errors 

as compared to the constant weighting OLS. 
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Figure 3.48:  Bar plot of CW1 force error (kips) as predicted using each method 

 

 

 
Figure 3.49:  Bar plot of CW2 force error (kips) as predicted using each method 
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not fully predict the reduction in load for the first step in unloading.  Only a portion of the drop is 

captured resulting in a large error that would be seen at all peaks in the nonlinear regime. 

Qualitative analysis of least change vs. straight-line fitting 

The qualitative evaluation uses plots of the actual and predicted wall response to visually 

examine the successes and failures of the proposed methods during the test.  A selection of 

summarized results is presented for the numerical test here comprises the strong axis shear 

response for the second C-shaped wall test.  A plot of the lateral shear versus the applied stepwise 

displacement is provided with a line of the actual and predicted response within a ±2% confidence 

interval.  A second corresponding plot of the residual at each step is also given, where the residual 

is calculated as follows: 

 

 
Fx predicted actualResidual Fx Fx= −  (2.183) 

 

The wall specimen is evaluated at key points of behavior.  The linear response is evaluated 

using a displacement cycle during cracking and a displacement cycle during the first yielding.  The 

non-linear response is evaluated using a displacement cycle nearing the limit point of the wall and 

a displacement cycle beyond the limit point.  Method 1, the “Broyden stiffness update” and method 

3, the “Ordinary least squares” method using a history of four data points are used for the 

qualitative evaluation.  Furthermore, the unloading stiffness model is used only in the OLS method 

to show the benefit of its implementation. 

Cracking response 

The cracking cycle elicits a fully linear response that both methods respond well to.  The 

Broyden method exhibited some issues when starting the cycle, changing direction and ending the 

cycle as shown in Figure 3.50.  The ordinary least squares approach performs well without any 

spikes as shown in Figure 3.51.  Notice the first step of the cycle has a large error due to no 

prediction being performed as there is no load-deformation history. 
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Figure 3.50:  Broyden method cracking response 

 

 
Figure 3.51:  Ordinary least squares cracking response 
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First Yielding:  

The cycle at first yielding of the specimen also has a fully linear response but with a much 

larger number of steps to the peak.  Both methods perform well with no spiking as shown in Figure 

3.52 and Figure 3.53. 

 

 
Figure 3.52:  Broyden first yielding response 

 

 
Figure 3.53: Ordinary least squares first yielding response 
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Approaching the limit point:  

As the response reached the nominal strength, the majority of vertical rebars have yielded, and 

the response has flattened.  The residuals graph indicates significant errors near the peak 

displacements for the Broyden method as shown in Figure 3.54.  The ordinary least squares 

approach is shown in Figure 3.55.  A close up on each peak will provide a better understanding of 

the prediction. 

 

 
Figure 3.54:  Broyden approaching limit point response 

 

 
Figure 3.55:  Ordinary least squares approaching limit point response 

  

1600 1650 1700 1750 1800 1850 1900
-200

-100

0

100

200

F
x

 (
k

ip
)

CW7 Fx Step 1595 to 1926

 

 
Fx Actual

98% CI

102% CI

Fx Predicted

1600 1650 1700 1750 1800 1850 1900

-20

0

20

Step

R
e

s
id

u
a

l 
(k

ip
)

1600 1650 1700 1750 1800 1850 1900
-80

-60

-40

-20

0

20

40

F
y

 (
k

ip
)

CW7 Fy Step 1595 to 1926

 

 

Fy Actual

98% CI

102% CI

Fy Predicted

1600 1650 1700 1750 1800 1850 1900

-10

0

10

Step

R
e

s
id

u
a

l 
(k

ip
)

1600 1650 1700 1750 1800 1850 1900
-200

-100

0

100

200

F
x

 (
k

ip
)

CW7 Fx Step 1595 to 1926

 

 

Fx Actual

98% CI

102% CI

Fx Predicted

1600 1650 1700 1750 1800 1850 1900
-10

0

10

Step

R
e

s
id

u
a

l 
(k

ip
)

1600 1650 1700 1750 1800 1850 1900
-80

-60

-40

-20

0

20

40

F
y

 (
k

ip
)

CW7 Fy Step 1595 to 1926

 

 

Fy Actual

98% CI

102% CI

Fy Predicted

1600 1650 1700 1750 1800 1850 1900

-10

0

10

Step

R
e

s
id

u
a

l 
(k

ip
)



171 

The peak response shows a non-smooth solution path that causes clear issues for the Broyden 

method as shown in Figure 3.56.  As the stiffness update directly reflects the previous step, the 

update becomes erroneous if the solution path is non-smooth.  The use of multiple data points in 

the OLS continues to provide a good approximation as shown in Figure 3.57. 

In addition, the unloading step in the nonlinear causes a significant error for the Broyden 

method.  The unloading stiffness model employed in the OLS method reduces the error in the 

initial unloading step. 

 

 
Figure 3.56: Broyden approaching limit point peak response 

 

 

 
Figure 3.57:  Ordinary least squares approaching limit point peak response 
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Beyond limit point:  

Post-peak, the observed behavior is similar to the response at the limit point.  The solution path 

continues to be non-smooth around the peak responses causing significant errors in the Broyden 

stiffness update as shown in Figure 3.58 and Figure 3.60.  The OLS continues to perform well with 

spikes at only the initial cycle step and the unloading step as shown in Figure 3.59 and Figure 3.61. 

 

 
Figure 3.58:  Broyden beyond limit point response 

 

 

 
Figure 3.59:  Ordinary least squares beyond limit point response 
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Figure 3.60:  Broyden beyond limit point peak response 

 

 

 
Figure 3.61:  Ordinary least squares beyond limit point peak response 
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Numerical Testing Conclusions 

The numerical simulation provides an evaluation of the least squares approach for measuring 

the average tangent stiffness as well as the Broyden method to sequentially update the tangent 

stiffness matrix.  A summary of the residual errors in loading measured in the test, and from the 

simulation of each method are given in Table 3.9 for CW1, Table 3.10 for CW2 strong axis 

loading, and Table 3.11 for CW2 weak axis loading.   

The simulation results show that the Broyden update poorly predicts the load-deformation 

response as a result of the non-smooth solution path.  The non-smooth solution path is a 

consequence of commanding multiple degrees of freedom at different times that affect the 

specimen response.  In contrast, the implementation of the Broyden update in the OM is more 

successful because each DOF is commanded independently.  While converging on each load target 

for a given DOF, the other DOFs are held constant decreasing the sensitivity of stiffness matrix to 

the loading and resulting non-smooth characteristics. 

The results also show that the OLS methods work very well for extrapolating the load-

deformation curve with significant errors occurring only at the first step of the algorithm (whereby 

no history yet exists), the unloading step of each cycle, and from test restarts.  In all three cases, 

these errors are acceptable as they would be conservative to the change in load.  The OLS does not 

over-predict the response as was observed with the Broyden update. 

The use of the C-shaped wall data is conservative for evaluating the prediction methods.  No 

sub-stepping was used in either test, so the increment of displacement is larger than might be used 

in a future test.  A smaller displacement substep will allow the loading protocol to be better 

achieved, which should result in a smoother solution path and a better approximation of the 

stiffness at each step.  In addition, smaller displacement substeps will require a smaller prediction 

of the change in shear that also reduces the possible error in the prediction. 

The numerical simulations suggest using a weighted least squares approach with a history of 

three steps.  However, the knowledge that the study uses a maximum displacement increment 

implies that the future test will use a displacement substep of smaller magnitude.   The sum of four 

smaller substeps might be equal to two or three displacements steps in the previous test.  Therefore, 

the proposed algorithm shall use four data points for performing the least squares fitting.  The use 

of a weighting function only marginally improves the algorithm performance.  Without more 

confidence in the ability to always be a better predictor, the use of a more complex function is not 
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justifiable.  Consequently, the proposed algorithm utilizes the Ordinary Least Squares method with 

a displacement history of four steps. 

 

Table 3.9:  CW1 Strong Axis (Fx) Residual Errors 

 Absolute value of residuals (kips) 

Method: Min: Max: Mean: Median: Std: Var: 0 - 5 5 - 10 10 - 15 15 - 20 20+ 5+ 

None -47.89 42.81 -0.00 0.98 11.77 138.6 393 411 315 183 89 998 

Broyden -50.11 45.57 -0.01 -0.05 8.47 71.76 872 273 138 56 52 519 

Line Fit -19.58 23.12 0.09 0 2.34 5.47 1350 20 13 6 2 41 

 

Table 3.10: CW2 Strong Axis (Fx) Residual Errors 

 Absolute value of residuals (kips) 

Method: Min: Max: Mean: Median: Std: Var: 0 - 5 5 - 10 10 - 15 15 - 20 20+ 5+ 

None -39.47 30.31 0.00 0.12 6.23 38.79 2102 730 319 44 28 1121 

Broyden -37.55 39.58 0.06 0.00 3.76 14.17 2904 210 67 25 17 319 

Line Fit -41.43 17.72 0.02 0.05 1.93 3.72 3174 21 16 8 4 49 

 

Table 3.11:  CW2 Weak Axis (Fy) Residual Errors 

 Absolute value of residuals (kips) 

Method: Min: Max: Mean: Median: Std: Var: 0 - 5 5 - 10 10 - 15 15 - 20 20+ 5+ 

None -27.16 14.89 0.00 0.10 2.56 6.58 3046 155 15 6 1 177 

Broyden -27.92 21.46 0.07 0.02 2.73 7.47 2972 215 28 6 2 251 

Line Fit -27.07 10.17 0.02 0.07 1.45 2.11 3177 37 8 0 1 46 

 

 Small-scale experimental testing 

To validate the numerical simulation in practice, the algorithm was experimentally evaluated 

in the MUST-SIM small-scale facility.  The small-scale facility utilizes a miniature version of the 

LBCB which is controlled by the same Operations Manager and LbcbPlugin software used in the 

large-scale facility.  The test specimen used for validation was an elastic rubber column that is 

stiffened in one direction as shown in Figure 3.62.  A series of bi-directional loadings in a 

cruciform and diagonal pattern was used to validate the method and understand the influence of 

commanding multiple DOFs simultaneously.   



176 

 

Figure 3.62:  Small-scale facility rubber test specimen 

 

The commanded displacement history shown in Figure 3.63 consisted of a cruciform 

displacement pattern followed by a diagonal displacement pattern.  The x-direction loading utilized 

a constant axial load and moment to shear ratio.  The Y-direction loading utilized a variable axial 

load consistent with the coupling procedure described in Section 3.3.4.3.  The displacement 

magnitude was two-tenths of an inch in both directions. 

 

 

Figure 3.63:  Rubber specimen displacement history 
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The measured shear forces, axial force, and moments are plotted in Figure 3.64, Figure 3.65, 

Figure 3.66 respectively.  One hundred twenty displacement steps were imposed, and eleven 

correction steps were required.  Each step averaged 27 seconds in duration.  The performance of 

the algorithm was excellent with minimal errors between the measured and predicted forces.  The 

largest deviations are observed at the unloading step and the initial loading step.  

 

 

Figure 3.64:  Rubber specimen measured shear force (lb) 
 

 

Figure 3.65:  Rubber specimen measured axial force (lb) 
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Figure 3.66:  Rubber specimen measured moments (lb-in) 

 

 Large-scale testing results 

After successful completion of small-scale testing, the algorithm was implemented in the large-

scale laboratory for testing specimen CW3.  The initial elastic loading cycles were utilized to verify 

the algorithm again before proceeding with inelastic loading.  The load-step history and predicted 

stiffness values are shown in Figure 3.67 and Figure 3.68.  The dashed green boxes indicate where 

the prediction was performed.   The measured response is smooth, and the corrections steps have 

been reduced.  The algorithm initiates during the unloading steps after the first peak.  There are 

two requirements for the simultaneous movement to be performed:  1) it must have enough 

converged data points (the data history resets at peaks and the start of new cycles) and 2) the 

displacement history must be greater than a prescribed delta to ensure the history of converged 

data points are meaningful.  The measured stiffness indicates where the algorithm was allowed to 

run and predict the forces for the combined movements.  Only a limited number of steps were 

predicted during this trial based on the number of steps in the load cycle (40 in Dx, 20 in Dy).  

Cycles with more steps between the onset of loading and peak loading will benefit more from the 

algorithm.   

 

 

 

100 120 140 160 180 200 220

-40

-20

0

20

Step Index

M
o

m
e

n
t 

(k
ip

-i
n

)

StepIndex vs. Mx

 

 

Meas

Prop

100 120 140 160 180 200 220

-40

-20

0

Step Index

M
o

m
e

n
t 

(k
ip

-i
n

)

StepIndex vs. My

 

 

Meas

Prop



179 

 

Figure 3.67:  Predicted strong axis and weak axis stiffness during intial loading of CW3 

 

 

 

Figure 3.68:  Impact of load-prediction algorithm for strong axis response (top) and weak axis 

response (bottom) during intial loading of CW3 
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3.5 Conclusions 

Chapter 3 summarizes the development of the specimen design, construction and loading 

methodology for the C-shaped wall experiments.  Three one-third scale test specimens were 

constructed for testing at the Newmark Structural Engineering Laboratory. The loading protocol 

utilized the six DOF capability of two Load and Boundary Condition Boxes to impose mixed 

displacements and loads that simulated the upper seven stories of a ten-story building acting on 

the test specimen.  A loading methodology and displacement history for uni-directional loading, 

bi-directional loading, and a coupled core-wall system in bi-directional loading were outlined.   

To conduct the coupled core wall simulation, the ability to predict mixed-mode displacements 

in multiple degrees of freedom simultaneously was evaluated.  The existing methods for 

application of loading resulted in increased shear demand prior to the convergence of the load step.  

Furthermore, the convergence of the load step took many iterations when the load target was 

dependent on the specimen response.  To address these shortcomings, a stiffness-based loading 

algorithm was developed, tested and implemented in the laboratory.  The algorithm recommended 

measurement of the tangent stiffness of each degree of freedom using a least squares line fitting of 

previous points on the load-deformation history.  The hysteretic aspects of response were 

considered by measurement of the stiffness during loading and unloading to improve predictions 

at changes in the loading direction.  The algorithm yielded a 94% reduction in shear force 

overshoot and enhanced convergence to improve testing efficiency based on numerical testing.   
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CHAPTER 4:  QUALITATIVE EXPERIMENTAL OBSERVATIONS 

4.1 Introduction 

Chapter 43 presents a qualitative damage narrative of the response from each of the C-shaped 

wall tests.  Observations of key limit and damage states are described including cracking, yielding, 

nominal strength, spalling, buckling, rupture, and failure.  Section 4.2, 4.3, and 4.4 summarize the 

experimental response for CW1, CW2, and CW3 respectively.  All three walls ultimately lost load 

carrying capacity due to rupture of the BE reinforcing bars that had been previously buckled in 

compression as a consequence of the cyclic loading.  Section 4.5 provides a comparison of the 

wall damage states identifies the key damage states leading to failure.  A quantitative comparison 

is made of the strength and drift capacities as well as the drift levels corresponding to each limit 

state.  Conclusions of the qualitative evaluation are given in Section 4.6. 

4.2 CW1 Experimental results 

4.2.1 Overall observations 

The first C-shaped wall test provides insight into the strong axis behavior of the specimen. The 

response was governed by flexure as the loss in load carrying capacity was precipitated by rupture 

of the longitudinal #4 bars in the boundary elements. Nearly all longitudinal #2 bars in the web 

and center of each flange are believed to have been ruptured. After the rupture of #2 bars, a 

significant portion of the deformation was observed to be carried by sliding along the web. The 

sliding component is clearly visible in the load-deformation hysteresis and is responsible for 

significant damage to the centers of each flange and a very large separation between the web and 

corner boundary element. 

                                                 

 

3 Sections 4.2 through 4.5 were taken in part from project grant deliverables written for the National Science Foundation 

(Mock et al. 2013).  I was the primary or sole author of the content included herein.  Furthermore, this content has been updated 

and amended since the deliverable. 
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4.2.2 Overall hysteresis and key points of behavior 

The load-deformation hysteresis of CW1 is presented in Figure 4.1. The Figure also shows the 

key points along the load-deformation curve corresponding to first yielding, spalling, buckling and 

fracture. 

 

Figure 4.1:  CW1 load deformation with key points of history 

 

A plot of the base moment normalized to the section nominal moment is shown in Figure 4.2. 

The calculated nominal moment strengths using the measured material properties are provided in 

Table 4.1.  

 

Figure 4.2:  CW1 normalized moment hysteresis 
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4.2.3 Damage narrative and photos 

 Substantial Yield 

Dx = 0.5” (0.35%), Shear, Fx = 177 kips, Base Moment, My = 4,979 kip-ft 

 

The cracking pattern developed primarily in the cycles up to yielding. Cracking was initiated 

by flexural cracks in the first and second stories of the flanges. Inclined shear cracking then 

developed shortly after as well as additional uniformly spaced flexural cracks along the boundary 

elements in the web. The 0.35% drift cycle marked yielding of multiple #4 bars in the boundary 

elements in each direction as well as #2 bars in the flanges. 

 

 

Figure 4.3:  CW1 substantial yield hysteresis 
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(a) West Flange (b) Web (c) East Flange 

Figure 4.4:  CW1 substantial yield photos 

 

 Nominal 

Dx = 1.08” (0.75%), Shear, Fx = 212 kips, Base Moment, My = 5,914 kip-ft  

 

The nominal cycle at 0.75% drift marked flattening of the load-deformation curve and first 

significant softening of the wall specimen. The crack pattern is now fully developed, and new 

steeply inclined compressive cracking was marked heading into each corner boundary elements. 

Vertical cracking has developed along the interior edges of the flange boundary elements; also, 

separation at the wall and footing interface was observed. 

 

Figure 4.5:  CW1 nominal hysteresis 
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(a) West Flange (b) Web (c) East Flange 

Figure 4.6:  CW1 nominal photos 

 

 Onset of Spalling 

Dx = 2.16” (1.5%), Shear, Fx = 201 kips, Base Moment, My = 5,765 kip-ft  

 

The cycle to 1.5% drift was highlighted by numerous ruptures of #2 vertical reinforcing bars 

along the web and centers of the flanges. Some loss of strength was associated with these ruptures. 

A significant component of the deformation was observed as sliding along the web and a 

pronounced separation between the web and Southwest boundary element. The horizontal bars 

ruptured along this separation. Significant spalling of the clear cover was removed along both 

corner boundary elements; at this point #4 bars have begun to buckle in the East flange boundary 

element 
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Figure 4.7:  CW1 onset of spalling hysteresis 

 

 

(a) West Flange (b) Web (c) East Flange 

Figure 4.8:  CW1 onset of spalling photos 

 

 Bar buckling and rupture 

Dx = 3.24” (2.25%), Shear, Fx = 198 kips, Base Moment, My = 5,612 kip-ft  

 

The cycle at 2.25% drift marked the rupturing of #4 longitudinal bars and a failure of the 

specimen on the second cycle in the negative X direction. Continued buckling of longitudinal rebar 

in the spalled portions of the corner boundary elements and some loss of confinement was 

observed. New vertical compressive cracking is marked along the flanges flowing into the corner 

boundary elements. The spalled cover was removed at the boundary element toes and along the 
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web. Significant sliding along the web resulted in spalling along the middle of the flanges due to 

out of plane shear. On the second cycle of 2.25% drift in the negative direction, a large number of 

#4 bars were ruptured in the East flange resulting in a significant drop in lateral load carrying 

capacity. 

 

 

Figure 4.9:  CW1 bar buckling and rupture hysteresis 

 

  

(a) West Flange (b) Web (c) East Flange 

Figure 4.10:  CW1 bar buckling and rupture photos 
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 Pushover failure  

Dx = 5.1” (3.52%) 

 

After observing a failure in the negative X-direction during the second cycle at 2.25% drift, a 

pushover was performed in the positive X-direction until reaching failure at 3.5% drift. The 

separation between the web and Southwest boundary element grew large enough to see through 

the specimen with all horizontal bars ruptured in the bottom foot of the wall. The sliding behavior 

is evident in the offset between the bottom and top portion of fractured #2 bars along this diagonal 

opening. The wall exhibited severe buckling of longitudinal rebars along the East flange and a loss 

of confinement in both the corner and toe boundary elements. Successive rupturing of longitudinal 

rebars in the West flange resulted in the loss of load carrying capacity.  

 

 

Figure 4.11:  CW1 failure hysteresis 
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(a) West Flange (b) Web (c) East Flange 

Figure 4.12:  CW1 failure photos 

 

4.3 CW2 Experimental results 

4.3.1 Overall observations 

The second C-shaped wall test provides great insight into the bidirectional behavior of the 

specimen. The response was governed again by flexure with the loss in load carrying capacity 

precipitated by the rupture of longitudinal #4 bars in the boundary elements. Nearly all longitudinal 

#2 bars in the web and center of each flange are believed to have been ruptured. The specimen 

exhibited less ductility in the X-direction due to the Y-direction loading and the fact that the 

boundary elements were subjected to twice as many cycles of loading as compared to the first test. 

4.3.2 Overall hysteresis and key points of behavior 

The load-deformation hysteresis of CW2 is presented in Figure 4.1. The figure also shows the 

key points along the load-deformation curve corresponding to first yielding, spalling, buckling and 

fracture. 
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 (a) Strong Axis (b) Weak Axis 

Figure 4.13:  CW2 load deformation with key points of history 

 

A plot of the base moment normalized to the section nominal moment is shown for each 

direction in Figure 4.14. The calculated nominal moment strengths using the measured material 

properties are provided in Table 4.1.  

 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.14:  CW2 normalized moment overall hysteresis 

 

 

 



191 

4.3.3 Damage narrative and photos 

 Substantial Yield 

Dx = 0.5” (0.35%), +Dy = 0.6” (0.42%), -Dy = -0.9” (-0.63%) 

 

The cracking pattern developed primarily in the cycles up to yielding. Cracking was initiated 

by flexural cracks in the lower two floors of the flanges in the X-direction. The cracking pattern 

in both Y-directions consisted of reopening of X-direction flexural cracks. The 0.35% drift cycle 

marked yielding of multiple #4 bars in the lower two floors of the boundary elements in each 

direction as well as #2 bars in the flanges and web. Separation at the wall and footing interface 

across the entire span of the web was observed. 

 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.15:  CW2 substantial yield hysteresis 
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(a) West Flange (b) Web (c) East Flange 

Figure 4.16:  CW2 substantial yield photos 

 Nominal 

Dx = 1.08” (0.75%), Dy = +3.24” (2.25%), -Dy = -2.135” (-1.49%) 

 

The nominal cycle at 0.75% drift marked flattening of the load-deformation curve in the X-

direction and positive Y-direction, but no significant flattening in negative Y-direction. Significant 

softening of the wall specimen was observed in both directions. The nominal cycle resulted in 

spalling on both toes of the flanges at approximately two feet from the base. Some #2 bar buckling 

noted at the rear of the wall resulting in spalling of cover. 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.17:  CW2 nominal hysteresis 
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(a) West Flange (b) Web (c) East Flange 

Figure 4.18:  CW2 nominal photos 

 

 Bar buckling and rupture 

Dx = 1.44” (1.0%), Dy = +2.88” (2.0%), -Dy = -1.584” (-1.1%)  

 

Due to reaching displacement capacity in the Y-direction, a cycle in the X-direction was 

completed at a constant Dy of 2.0% drift and a second cycle at a constant Dy of -1.1% drift.  The 

goal of these cycles was to increase the demand on the corner and toe boundary elements. During 

the X-direction cycle, the separation between the flanges and the footing increased. There was also 

significant spalling on the corner boundary elements during the cycle at positive Dy. Additional 

spalling was also observed on the toes of the flanges during the cycle at negative Dy, particularly 

on the East flange. Furthermore, this cycle showed significantly less stiffness than when 

completing at zero Dy and positive Dy. Rupturing of #2 bars observed along the center of the web, 

and buckling began to occur in the vertical bars of the boundary elements. Sliding of the web at 

the interface between wall and footing was noted when evaluating Krypton displacement readings. 
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 (a) Strong Axis (b) Weak Axis 

Figure 4.19:  CW2 bar buckling and rupture hysteresis 

 

 

(a) West Flange (b) Web (c) East Flange 

Figure 4.20:  CW2 bar buckling and rupture photos 

 

 Pushover failure 

Dx = 2.80” (1.9%), Dy = +2.88” (2.0%) 

 

The X-direction pushover held at the positive 2% drift in the Y and resulted in the additional 

rupture of approximately five #4 bars in the West flange boundary elements as well as additional 

spalling on the East flange. Minimal confined concrete remained in the corner boundary elements, 

and the vertical rebar was extensively buckled. One of the ties in the Northeast corner boundary 
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element ruptured.  The toe boundary element exhibited some additional spalling but not the same 

level of severe buckling or loss of confinement. 

 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.21:  CW2 failure hysteresis 

 

 

(a) West Flange (b) Web (c) East Flange 

Figure 4.22:  CW2 failure photos 
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4.4 CW3 Experimental results 

4.4.1 Overall observations 

The pseudo-hybrid test of a coupled core wall system illustrated the significant impact that 

straining in the X-direction loading has on degrading the Y-direction stiffness. The X-direction 

response was unaffected by the Y-direction movements and with a damage pattern consistent with 

the previous tests. The weak axis response was governed by the compression pier and yielded 

much higher stiffness than the first bidirectional test due to the high axial load and reduced point 

of inflection. Failure was precipitated by rupturing of the #4 bars in the tension pier and a minor 

compressive failure in the compression pier. 

4.4.2 Overall hysteresis and key points of behavior 

The load-deformation hysteresis of CW3 is presented in Figure 4.23. The Figure also shows 

the key points along the load-deformation curve corresponding to key damage states of first 

yielding, spalling, buckling and fracture. 

 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.23:  CW3 load deformation with key points of history 

 

The nominal moment capacity was calculated using a sectional analysis at the applied axial 

load.  For CW3, the axial load varied in the weak axis direction due to the coupling moment and 

consequently has a varying nominal moment throughout the loading history.  A moment – axial 

interaction curve is given in Figure 4.24 for the weak axis response of CW3.  The heavy red line 

labeled “Comp. Pier Axial” represents the range of axial load imposed on the compression pier.  
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A line was then fit to the range of axial load imposed on the compression pier to have a continuous 

function for evaluation of the nominal moment on the compression pier represented by the dashed 

red line labeled “Comp. Linear Fit”.  Similarly, the heavy blue line labeled “Tens. Pier Axial” 

represents the axial load imposed on the tension pier with a dashed blue line of best fit labeled 

“Tens. Pier Fit”. 

 

 

Figure 4.24:  CW3 Moment and axial force interaction curve with linear fit to compression and 

tension envelope in the range of loading applied in the experiment 

 

For each step of the loading history, the normalized moment about for the weak axis was then 

calculated as follows: 

  

For any load step :

If compression pier (Fy > 0):

0.762 1472( )

If tension pier (Fy < 0):

1.904 1945( )

Normalized base moment = 

i i

i i

i

i

i

Mn Fz k ft

Mn Fz k ft

Mbase

Mn

= + −

= − − −

  

 

A plot of the base moment normalized to the section nominal moment is shown for each 

direction in Figure 4.25.  

   

0.762 1472( )n zM F k ft= + −

1.904 1945( )n zM F k ft= − − −



198 

  

 (a) Strong Axis (b) Weak Axis 

Figure 4.25:  CW3 normalized moment overall hysteresis 

 

4.4.3 Damage narrative and photos 

 Substantial Yield 

Dx = 0.5” (0.35%), +Dy = 0.65” (0.45%), -Dy = -0.65” (-0.45%) 

 

Yielding across the flange boundary element vertical reinforcement was reached at the 0.35% 

drift level in the X and 0.45% drift in the Y. Higher strains were achieved in the X-direction cycle 

than the Y-direction. Yield was reached in the #2 bars in the web prior to yielding the boundary 

elements. The cracking pattern developed primarily in the cycles up to yielding, initiated primarily 

by horizontal and diagonal cracking from the X-direction loading. The cracking pattern in the 

positive Y-direction consisted of reopening of X-direction flexural cracks as well as new diagonal 

cracking.  
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 (a) Strong Axis (b) Weak Axis 

Figure 4.26:  CW3 substantial yield hysteresis 

 

 

(a) West Flange (b) Web (c) East Flange 

Figure 4.27:  CW3 substantial yield photos 

 

 Nominal 

Dx = 1.08” (0.75%), Dy = +1.6” (1.11%), -Dy = -0.4” (-0.28%) 

 

The nominal cycle at 0.75% drift marked reaching the yield plateau of the load-deformation 

curve in the X-direction, but no significant flattening in Y-direction. Significant softening of the 

wall specimen was observed in both directions. New inclined compressive and diagonal cracking 

was marked in the positive Dy cycle as well as the initiation of diagonal cracking in the negative 
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Dy. Minor spalling was also observed on the Southeast corner boundary element where the 

concrete cover had been patched. 

 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.28:  CW3 nominal hysteresis 

 

 

(a) West Flange (b) Web (c) East Flange 

Figure 4.29:  CW3 nominal photos 
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 Significant spalling 

Dx = 2.16” (1.5%), Dy = +2.84” (1.9%), -Dy = -2.84” (-1.9%)  

 

The X-direction cycle to 1.5% drift resulted in additional vertical splitting cracking proceeding 

into the corner regions of the wall and the onset of significant spalling in the corners and flanges. 

Similar to previous tests, the sliding of the web caused an out-of-plane shearing between the two 

boundary element regions on each flange resulting in spalling up the bottom two feet of each side. 

Bar buckling and rupture was observed in #2 rebar in the center of the web and the west flange. 

 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.30:  CW3 spalling hysteresis 
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(a) West Flange (b) Web (c) East Flange 

Figure 4.31:  CW3 spalling photos 

 

 Bar buckling and Rupture 

Dx = 2.56” (1.78%), Dy = +2.84” (1.9%), -Dy = -2.84” (-1.9%)  

The X-direction cycle to 1.8% drift resulted in additional out-of-plane shearing of the flanges 

with spalling extending over three feet from the base. Additional crushing and loss of confinement 

were observed in the corners. The cycles to 1.9% drift in Y resulted in spalling along the base of 

the web and the first spalling of the toe boundary elements. The first negative Y cycles resulted in 

one #4 rupture. The second negative Y cycle resulted in the rupture of approximately (10) #4 bars. 

 

 (a) Strong Axis (b) Weak Axis 

Figure 4.32:  CW3 bar buckling and rupture hysteresis 
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(a) West Flange (b) Web (c) East Flange 

Figure 4.33:  CW3 bar buckling and rupture photos 

 

 Failure 

Dy = +2.3” (1.62%), -Dy = -2.75” (-1.9%)  

 

The final cycles in the positive Y direction were completed at a constant axial load of 1000 

kips. The positive Y direction cycles resulted in widespread spalling along the face of the web and 

further loss of confinement and core crushing in the corner regions. In-plane shearing was observed 

in the center of both flanges causing further spalling and splitting up the height of the flange. The 

negative Dy cycle was completed with an axial tension of up to 250 kips. At -1.53% drift multiple 

#4 bars ruptured along the East flange, and the specimen could no longer carry the full axial 

tension. The final positive cycle ended at 1.62% drift where the specimen exhibited a minor 

compressive failure dropping 133 kips of the axial load and 20 kips of shear. 
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 (a) Strong Axis (b) Weak Axis 

Figure 4.34: CW3 failure hysteresis 

 

 

(a) West Flange (b) Web (c) East Flange 

Figure 4.35:  CW3 failure photos 
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4.5 Comparison of experimental results 

In this section, the results of the three c-shaped wall tests are synthesized and compared.  The 

common patterns of observed damages are identified. The demands and capacities for each wall 

in each loading direction are presented. The drift levels at initiation of critical damage states are 

tabulated.  Last, a comparison of the global strong-axis response of the three tests is provided. 

4.5.1 Damage comparison 

The three wall specimens exhibited similar damage and failure patterns. These observations 

can be grouped into three major damage types: deterioration of the boundary elements, effects of 

web sliding, and rupture of #2 bars accompanied by separation of the wall from the footing. The 

failure of all three tests was ultimately precipitated by rupture of the boundary element #4 bars 

even after the complete loss of confinement in the corner boundary elements. 

 Boundary element damage 

For all of the test specimens, damage to the boundary elements at the end of the test was severe 

and included yielding and rupture of transverse reinforcement, crushing of core concrete and 

buckling and rupture of #4 longitudinal reinforcement. For all three test specimens, damage to the 

toe boundary elements (at the ends of the flanges) initiated at higher drift levels and was less severe 

than for corner boundary elements.  

For corner boundary elements, compression damage initiated as vertical splitting cracks on 

both the web and flange faces. This was followed by spalling of cover concrete and buckling of 

boundary element #4 bars. Bar buckling and the cyclic action of bar buckling and straightening 

ultimately resulted in the loss of core confinement. Bar buckling eventually caused severe yielding, 

slip, and rupture of the boundary element hoops as shown in Figure 4.36. For all three tests, the 

bottom one to two hoops in the corner boundary elements were ruptured at the end of the tests.  



206 

 

         

 (a) Southwest corner (b) Southeast corner 

Figure 4.36:  CW2 ruptured and buckled bars in corner boundary elements 

 

For all three tests, the toe boundary elements at the ends of the flanges were not as severely 

damaged as the corner boundary element but still sustained yielding of hoops, crushing of core 

concrete, and buckling and rupture of #4 longitudinal reinforcement. Damage to the toe boundary 

elements was most severe in the CW1 test; Figure 4.37 shows the toe boundary elements for CW1 

at the end of the test.  This result is due to the larger drift demands achieved in the strong axis 

loading of CW1.  Figure 4.37(a) shows the four ruptured #4 bars in the boundary element at the 

toe of the west flange that resulted in the loss of load carrying capacity for the specimen. Figure 

4.37(b) shows the outward buckling of the #4 longitudinal reinforcement and crushing of core 

concrete in the boundary element at the toe of the east flange. 

 

        

 (a) West flange toe (b) East flange toe 

Figure 4.37:  CW1 ruptured and buckled bars in toe boundary elements 
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 Rupture of #2 bars along the web and flanges 

For all three tests, it is believed that all of longitudinal #2 bars in the web and flanges of the 

walls had ruptured at or near the footing and wall interface. Rupture of this reinforcement resulted 

in a large separation between the wall and footing. For the flanges, the separation between the wall 

and footing was most pronounced when the wall was subjected to displacement demands in the x-

direction activating strong-axis bending; for CW2, measured separation of the East flange and 

footing exceeded one-half inch (Figure 4.38(a)). For the web of the c-shaped walls, the separation 

between the wall and footing was most pronounced when the wall was subjected to displacement 

demands in the negative y-direction. For CW3, displacement in the negative y-direction included 

the application of tensile axial loading, and the separation between the wall and footing exceeded 

one inch (Figure 4.38(b)). 

 

         

 (a) CW2 East flange base separation (b) CW3 web separation 

Figure 4.38:  Interface separation at base 

 

Outward buckling of the vertical and horizontal bars and cover spalling followed the rupture 

of the #2 longitudinal reinforcement. However, for all of the tests, the interior concrete of the web 

remained largely intact throughout the test. For CW3, displacement in the positive y-direction, 

which put the web of the c-shaped wall in compression, was accompanied by the application of an 

axial load reaching 1000 kips. Even after core crushing and complete loss of confinement in the 

boundary elements, the largely intact web of CW3 was able to carry this large compressive load.  

A picture of CW3 near the end of the test (Figure 4.39) indicates the resulting damage to the web. 

For all of the tests, while the web of the wall remained largely intact, the interior of the flanges did 

not due to the out-of-plane shearing discussed in Section 4.5.1.3. 

 



208 

 

Figure 4.39:  Photo of CW3 web crushing at the base of wall at the end of the test 

 Web compressive damage and sliding 

Compressive damage in the unconfined web was observed in all three tests, but particularly in 

the bi-directional tests.  Spalling quickly spread from the boundary elements into the unconfined 

web and crushing of the unconfined web near the BE interface was observed.  At the same time, 

the rupture of the #2 longitudinal bars allowed the web to slide freely along the wall-footing 

interface. The combination of web compressive damage and sliding resulted in the development 

of a frame mechanism across the web.  The frame-mechanism resists shear in the web by the intact 

BE’s acting as columns.  The damaged concrete in the unconfined web no longer contributes to 

carrying the shear to the footing.  Dowel action of the BE bars was observed by severe lateral 

deformation at the interface.  A separation between the corner BE and the unconfined web formed 

in all three tests that contributed to the compressive damage and loss of cross-sectional area at this 

location.  Finally, out-of-plane shearing of the flanges was observed as the shear was trying to be 

carried across the flange to the toe BE.  Ultimately, the flange could not support the out-of-plane 

shear that developed between the corner and toe boundary elements. Cover spalling was observed 

along both flanges from the base of the wall to a height of two to three feet.  Figure 4.40 shows 

spalling of the East flange for each test specimen near the end of the test; Figure 4.41 shows a 

close-up of the East flange of CW3. For all specimens, East and West flange damage was similar. 
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 (a) CW1 (b) CW2 (c) CW3 

Figure 4.40: East flange damage attributed to out-of-plane shear demand 

 

 

Figure 4.41:  East flange damage attributed to out-of-plane shear demand in CW3 

 

For each test, web sliding was also considered to result in separation between the corner 

boundary element and the interior of the web of the c-shaped wall. The larger drift demands 

employed in the unidirectional CW1 test exacerbated this separation resulting in a large inclined 

opening in the web and the rupturing of horizontal reinforcing across this interface as shown in 

Figure 4.42(a).  The separation was also present in CW2 and 3 although not as pronounced as 

shown in Figure 4.42(b). 
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 (a) CW1 (b) CW3 

Figure 4.42:  Boundary element and web separation 

4.5.2 Evaluation of demand and capacity 

The shear and moment strengths were calculated per ACI 318 and compared with the maximum 

shear and moment applied to each c-shaped wall specimen. Given the geometry of the specimen, 

three capacities/demands can be compared: strong axis response (loading in the x-direction), weak 

axis response with toe in tension (loading in the positive y-direction), and weak axis response with 

toe in compression (loading in the negative y-direction).  The comparison is tabulated in Table 

4.1Table 4.3, Table 4.2, and Table 4.3 respectively. 

 

Table 4.1:  Strong axis demands and capacities 

Specimen  

ID 

ACI shear  

strength, Vn
A 

Max shear demand,  

Vmax
A 

Vmax/

Vn 

Design 

strength, 

Mn, k -ft (kN m) 

Max moment,  

Mbase, k -ft (kN 

m) 

Mbase/Mn 

CW1 10.0√f'c*Acv (0.83√f'cAcv) 4.3√f'c*Acv(0. 36√f'cAcv) 0.43 6414 6080 0.95 

CW2 9.7√f'c*Acv (0.81√f'cAcv) 4.0√f'c*Acv (0.33√f'cAcv) 0.41 6426 5949 0.93 

CW3 9.8√f'c*Acv (0.82√f'cAcv) 4.0√f'c*Acv (0.33√f'cAcv) 0.41 6421 5851 0.91 

A Units: f'c in psi (f'c in MPa)      

 

Table 4.2:  Weak axis (+Y, toe in tension) demands and capacities 

Specimen  

ID 

ACI shear  

strength, Vn
A 

Max shear demand,  

Vmax
A 

Vmax/

Vn 

Design strength,  

Mn, k -ft (kN m) 

Max moment,  

Mbase, k -ft (kN 

m) 

Mbase/Mn 

CW2 9.7√f'c*Acv (0.81√f'cAcv) 2.6√f'c*Acv (0.22√f'cAcv) 0.27 1733 1525 0.88 

CW3 9.8√f'c*Acv (0.82√f'cAcv) 8.2√f'c*Acv (0.68√f'cAcv) 0.84 2048 B 1613 B 0.79 B 
A Units: f'c in psi (f'c in MPa) 

B Axial load = 746 kip compression     

 

 



211 

Table 4.3:  Weak axis (-Y,toe in compression) demands and capacities 

Specimen  

ID 

ACI shear  

strength, Vn
A 

Max shear demand,  

Vmax
A 

Vmax/Vn Design strength,  

Mn, k -ft (kN m) 

Max moment,  

Mbase, k -ft (kN 

m) 

Mbase/

Mn 

CW2 9.7√f'c*Acv (0.81√f'cAcv) 4.4√f'c*Acv (0.37√f'cAcv) 0.45 2538 2549 1.0 

CW3 9.8√f'c*Acv (0.82√f'cAcv) 5.7√f'c*Acv (0.47√f'cAcv) 0.58 1717 B 1434 B 0.84 B 
A Units: f'c in psi (f'c in MPa) 

B Axial load = 114 kip tension     

 

4.5.3 Damage state comparison 

Table 4.4 presents the cracking response of the wall specimens for the strong and weak axis 

directions. The drift at which flexural cracking was first observed is given in terms of drift of the 

3-story specimen in conjunction with a ratio of the base moment demand to the calculated cracking 

moment at this drift. For determination of the cracking moment, the tensile strength was taken as 

the sum of the concrete strength (7.5√f’c where f’c is in psi (0.63√f’c where f’c is in MPa)) and the 

quotient of axial load demand and transformed section area. Horizontal cracking at 30% to 80% 

of the calculated cracking moment.  Diagonal cracking initiated at slightly larger drifts in the strong 

axis, while much larger drifts were required in the weak axis.  An increased number of weak axis 

diagonal cracks were observed in CW3 due to the reduced effective height of the specimen. The 

strong axis movements dictated the cracking and softening of the wall specimens. Relative to the 

strong axis, very little cracking was marked for the weak axis movements. The strong axis 

horizontal and diagonal cracks were observed to reopen when displacing about the weak axis. 

 

Table 4.4:  Cracking response of tests 

State Value Strong Axis Weak Axis 

(+Y, toe in tension) 
Weak Axis 

(-Y, toe in compression)   
CW1 CW2 CW3 CW2 CW3 CW2 CW3 

Horizontal  Specimen Drift 0.02% 0.03% 0.02% 0.06% 0.05% 0.07% 0.07% 

Cracks Mb/Mcr
1 0.31 0.54 0.39 0.81 0.82 0.39 0.52 

Diagonal 

Cracks 

Specimen Drift 0.10% 0.07% 0.07% 0.14% 0.22% 0.60% 0.42% 

Vb/(Ag√f'c*) 1.09 1.04 1.06 0.23 1.12 0.85 0.59 

 

Table 4.5 presents the drift at the onset of damage states beyond initial cracking, including the 

initiation of cover spalling, exposed reinforcement, crushing of the confined boundary element 

core, reinforcement bar buckling, and reinforcement bar fracture in the boundary element.  Bar 

slip and fracture of the longitudinal #2 bars in the web and flanges typically occurred without cover 

spalling and was difficult to confirm. Drift in Table 4.5 is defined as the drift at the top of the 3-
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story specimen. The drifts provide in Table 4.5 are the drifts at the first occurrence of each damage 

state in any of the three loading directions; the loading direction is provided. 

 

Table 4.5:  Damage response of tests 

Damage State Value CW1 CW2 CW3 

Cover Spalling Drift 1.49% X 1.44% -Y 0.75% +Y 1 

Exposed Reinforcement Drift 1.49% X 1% X and 2% +Y 1.50% +X 

Bar buckling Drift 1.49% X 2.25% +Y 1.50% +X 

Core crushing Drift 2.19% X 1.50% X 1.98% +Y 

Boundary Element Bar fracture Drift 2.19% X 2.50% X 1.64% -Y 
1 Spalling occurred in a patched area    

 

4.6 Conclusions 

Three C-shaped walls were successfully tested using the methods and loading criteria outlined 

in Chapter 3.  This chapter has summarized the global load-deformation response of each test and 

progression of cracking, yielding, damage states, and failure.  While the walls ultimately failed in 

a ductile manner, the damage mechanisms leading to failure were precipitated by shear associated 

damage of base sliding and web crushing.  Based on the visual observations, the damage 

mechanism progression was concluded to be the following: 

• The onset of sliding and rupture of web vertical reinforcing bars result in a loss of shear 

resistance along the web.   

• The loss of web shear resistance shifts the load path to the corner boundary element 

and compression flange.  As a result, the unconfined concrete of the web adjacent to 

the corner boundary elements begins to spall and crush.   

• As base slip increases, visible deformation and lateral buckling of the longitudinal bars 

was observed at the interface of the corner boundary elements and foundation.  In 

addition, base slip deformation creates out-of-plane shear in the flanges that ultimately 

results in vertical cracking and splitting up the height of the first story.   

• Significant core crushing of the unconfined web resulted in loss of section and 

separation of the web from the corner boundary elements. 

• The increasing demand on the corner boundary elements and lateral buckling resulted 

in failure of the confinement ties and extensive core crushing.   
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• The vertical and lateral buckling of the longitudinal reinforcing bars in the corner 

boundary elements is followed by straightening when loading in the opposite direction.  

This cycle of plastic deformation results in fracture and loss of load-carrying capacity. 

 

Regarding the behavior of the uni-directionally loaded test versus the bi-directionally loaded 

tests, the following conclusions are made: 

• For the strong axis response, all three C-shaped walls reached 91 to 95% of the nominal 

moment strength and 41 to 43% of the nominal shear strength.  The bi-directional 

loading did not impact the strong axis response prior to nominal.  

• The damage mechanisms observed were the same for all three tests independent of the 

specific changes in loading direction and axial loading; however, bi-directional loading 

results in earlier onset of damage and reduced drift capacity. 
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CHAPTER 5:  DATA ANALYSIS OF C-SHAPED WALL EXPERIMENTS 

5.1 Introduction 

Chapter 5 presents the data processing and analytical evaluation of the C-shaped wall tests.  

Section 5.2 summarizes the processing and structuring of the raw data from the experimental tests. 

Using the processed data, Sections 5.3 to 5.5 describe the data analysis and results for 

displacements profiles of the ten-story specimen, spread of reinforcement yielding, and cumulative 

energy dissipation of the wall at failure.  Section 5.6 analyzes the non-contact displacement field 

measurements of the web and flange to produce strain fields of the wall in each direction of 

loading.  Section 5.7 presents the deformation of each wall test in each axis through the relative 

contributions of shear, flexure, base slip, and base rotation to the total wall deformation at each 

story over the course of the loading history.  The test specimen represented the bottom three stories 

of the ten-story building, so the measured deformations do not capture the upper seven stories of 

the simulation. Section 5.8 describes the determination of the ten-story displacements using a 

model of beam theory for the upper stories, and Section 5.9 utilizes the ten-story displacements to 

evaluate the global-load deformation response of the full wall height. 

5.2 Data processing 

The C-shaped wall experiments were densely instrumented and produced more than 390 

channels of data output.  Data was measured through three sources: the mixed-mode control 

software for application of the loading, the data acquisition system for the physical instruments, 

and the Metris Krypton system for non-contact measurements of the wall.  Data from each source 

was captured at each step of the loading protocol and output to individual tab-delimited text files.  

Combining the step data for all instruments of all three walls results in a dataset of approximately 

5 million data points.  In order to manage this data, the text files were input into a series of data 

structures using Matlab.  Metadata for each instrument is added to the data structure to identify the 

sources, location, and changes to the data.  Furthermore, the metadata is used to create relationships 

between groups of instruments to aid in the analysis of the overlapping and adjacent instruments.  

The data is subsequently processed to remove errors and non-pertinent data. 
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5.2.1 Raw data processing 

The raw test data is imported from the text files into the data structure using Matlab in 

combination with the metadata associated with each instrument.  The instrument type, channel 

name, three-dimensional coordinate position, units of measure, and zero step/offset are saved in 

the data structure for each instrument imported.  A similar data structure was utilized by Birely 

(2012) and Turgeon (2011) for the planar and coupled wall experiments; however, the C-shaped 

wall tests required key changes to this structure to accommodate the three-dimensional geometry 

of the specimens as well as the multi-directional loading history applied.  Instrument positions 

were recorded in three-dimensions and associated to each flange or the web of the wall as well as 

the story.  Relationships between adjacent instruments are recorded to accommodate future 

evaluations of data measurements at the same location.  A graphical representation of the wall 

instruments in the resulting data structure is shown in Figure 5.1. 
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Figure 5.1:  Graphical representation of wall instruments in the data structure. Dotted lines 

represent the extents of the wall, foundation, and cap.  Solid dots and lines indicate 

instrument locations plotted in 3-D coordinates.  Coordinates shown are in inches. 

 

After the initial import of data and metadata, the instruments are processed to remove errors in 

the data acquisition, steps associated with starting and stopping the test, and invalid sensor data 

from malfunctions before or during the test.  Before starting the test, approximately 20% of the 

steel strain gauges for each test were not functional.  These gauges were likely damaged as a result 

of the wall construction through tieing adjacent reinforcing bars, the placement of concrete, or 

damage to wires or wire splices.  In addition, the inclinometers were found to be non-functional 

and produced erroneous data after analysis of CW1 data.  The sensors could not be repaired; 

consequently, inclinometers were excluded from CW2 and CW3.  Furthermore, a number of 

Krypton LEDs were determined to have erroneous data during post-processing associated with the 

limitations of Krypton camera volume.  Despite these shortcomings, over 92% of instrument 

channels were maintained for each test.  During the course of testing, some instruments become 
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compromised due to wall damage associated with the loading history.  The data associated with 

these instruments after being compromised is identified in the data and removed to prevent 

erroneous results in future analyses.  A summary of the instrument processing was documented 

for the project deliverable to the data repository (Mock 2013). 

To measure the relative changes in displacement from the start of the test, all instruments are 

set with a zero-offset value.  String potentiometer, linear potentiometer, linear variable 

displacement transducer, and Metris Krypton LED readings are zeroed at the first step of loading.  

The zero step of each sensor and the corresponding offset value are recorded with each sensor’s 

metadata.  Concrete strain gauges are zeroed before the specimen is connected to the loading units 

in order to capture straining during the connection process and are already represented in the 

unprocessed data.  Similarly, steel strain gauges are zeroed after connection and just prior to the 

initial loading within the data acquisition software. 

A data verification document (Mock, Birely, and Turgeon 2013a, 2013b, 2013c) containing 

the response of each instrument and its associated metadata was produced to verify and examine 

the data for errors prior to performing subsequent analyses.  An example of the data document 

output shown in Figure 5.2. 
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Figure 5.2:  Example of data verification document indicating the metadata for the 

instrument and measured loading history with key drift levels of the test notated. 

 

5.2.2 Data archival 

The complete dataset of each test was archived on the Design Safe Cyber-Infrastructure 

initiative for use by future researchers (Birely et al. 2014; Behrouzi et al. 2014; Mock et al. 2014).  

The archived data included the raw unprocessed data, the processed data, and metadata of each 

instrument.  In addition, drawings of wall geometry, reinforcing, and instrument locations were 

provided as well as material test results for the concrete and steel.  An example of the metadata to 

associate the data with the physical instruments is shown in Figure 5.3.  Photographs, videos, and 

testing notes associated with each data of testing were also uploaded.  In total, more than 850 GB 

of data were archived.  
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Figure 5.3:  Metadata example of LEDs for data archival 

5.3 Energy dissipation 

Hysteretic energy dissipation is a measure of the structural wall’s ability to absorb energy 

through inelastic deformations (Elnashai and Di Sarno 2008).  Energy dissipation is measured as 

the total area contained inside the hysteric loop of base shear versus third-story displacement.  For 

U.S. customary units, the resulting measure of energy is kip-inches.  The energy dissipation is 

measured for each direction of loading and each load cycle independently.  The energy dissipation 

is measured cumulatively throughout the loading history to assess the total inelastic response of 

the wall.  Figure 5.4 provides the cumulative strong axis energy dissipation at each drift level.  

Figure 5.5 provides the cumulative weak axis energy dissipation at each drift level.  Figure 5.6 

provides the combined cumulative energy dissipation for the bi-directional loading history per 

strong axis drift level. 

Observing the strong axis response in Figure 5.4, the unidirectional test CW1 exhibits 50% to 

100% greater energy dissipation than CW2 and CW3 respectively.  The bi-directional loading of 
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the wall effectively reduces the strong axis energy dissipation capability as a result of the damage 

during weak axis loading and the relative number of strong axis load cycles versus weak axis drift 

cycles.  For the weak axis response in Figure 5.5, the variation in axial load for CW3 results in a 

measurable increase in energy dissipation with drift.  Examining the energy dissipation in 

conjunction with the load-deformation response, the hysteretic loops for the positive displacement 

are generally reduced for CW3 relative to CW2 due to the increased stiffness associated with high 

axial load and reduced effective height of loading.  Conversely, the hysteretic loops in the negative 

displacement are increased due to the reduced stiffness and tension-controlled response when 

acting as the tension pier.   

Since the boundary elements resist the loading in both directions, it is most useful to evaluate 

the energy dissipation based on the combination of loading in both directions.  Figure 5.6 shows 

that all three walls are able to dissipate approximately the same overall amount of energy when 

the post-failure pushover of CW1 is neglected.  For bi-directionally loaded walls, the weak-axis 

energy dissipation contribution is modest at low strong-axis drift levels but becomes increasingly 

significant beyond 1% drift in the strong-axis. A consequence of wall deterioration due to weak-

axis loading, which can be observed in Figure 5.4, is a reduction in strong-axis drift capacity 

compared to the uni-directionally loaded CW1.  

 

  

Figure 5.4:  Plot of cumulative strong axis energy dissipation (kip-inches) versus each strong-

axis drift level (% drift) 
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Figure 5.5:  Plot of cumulative weak axis energy dissipation (kip-inches) versus each weak-

axis drift level (% drift) 

 

  

Figure 5.6:  Plot of cumulative bi-directional energy dissipation (kip-inches) versus each 

strong-axis drift level (% drift) 

 

5.4 Yielding 

Steel strain gauges used in the experiments provide information on the progression of local 

rebar yielding.  Each wall test was instrumented with 129 steel strain gauges: 91 gauges on the 

vertical bars, 26 gauges on the horizontal bars, and 12 gauges on the confinement hoops of the 

boundary elements.  The layout of the vertical strain gauges is shown in Figure 5.7. 
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Figure 5.7:  Vertical steel strain gauge layout 

 

As noted in Section 5.2.1, about 20% of the strain gauges were not functional at the time of 

testing.  For the functional gauges, the strains were measured at each load step.  a constitutive 

model was thn applied to the strain history to evaluate the stress response.  The hysteretic stress-

strain relationship of the reinforcing bars is based upon the cyclic bar model developed by Hoehler 

and Stanton (2006).  Example results for a strain gauge in the toe BE of the West flange at 15 

inches above the base for CW2 are shown in Figure 5.8 and Figure 5.9. 
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Figure 5.8:  Total strain and decomposed strain components determined from the Hoehler-

Stanton model using data from specimen CW2 

 

 

Figure 5.9:  Stress-strain history determined from Hoehler-Stanton model using data from 

specimen CW2 

 

The resulting yield of vertical reinforcing bars is plotted at the nominal strength in the strong 

axis (0.75% drift) in Figure 5.10 and Figure 5.11.  Figure 5.10 shows the progression of tension 

yielding, strain hardening, and gauges which yielded in compression prior to yielding in tension.  

Similarly, Figure 5.11 shows the progression of compression yielding, strain hardening, and 

gauges which yielded in tension prior to yielding in compression.  The same plots are provided for 

the yield progression after significant damage in Figure 5.12 and Figure 5.13.  For the comparison 

of the yield progression after damage, CW1 and CW3 are plotted at the end of the tests but prior 

to the pushover, and CW2 is plotted at the end of the standard cyclic loading but prior to the 

simultaneous loading the strong and weak axis directions (see Section 3.3.4.2). 

For a direct comparison of yielding relative to drift level, the strain gauge history is considered 

first at the point of nominal strength.  At this point, tension yielding is widespread across the entire 
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first floor and the boundary element of the second floor.  In addition, strain hardening in tension 

was observed primarily in the boundary element at the first floor.  When comparing CW1 to CW2 

to assess the impact of bi-directional loading, additional yielding and strain hardening is observed 

in both the East and West flanges and toe boundary elements.  Compression yielding after yielding 

in tension is also observed in the toe boundary elements in CW2 that was not present in CW1.  For 

the impact of axial loading, CW3 does not reveal a significant difference in yield progression.  In 

fact, CW3 exhibits reduced yielding overall when compared to CW1 and CW2 which is believed 

to be a result of the reduced number of strong axis load cycles prior to reaching the nominal 

strength.   

At the end of the standard loading protocol, tension yielding is observed for the majority of 

gauges in the bottom two floors for all three tests.  Strain hardening along the boundary elements 

has spread, but the general yield pattern is not significantly different from the pattern at nominal 

strength.  However, the pattern of compression yielding progressed during the damage cycles of 

the wall loading.  Post-peak, a majority of the boundary elements gauges in first-floor yield in 

compression after having yielded in tension for all three tests.  Comparing CW1 to CW2, the web 

of CW1 exhibits increased compression yielding as a result of the larger drift demands imposed.  

The sliding and compression damage of the unconfined web is evident with the addition of yielded 

gauges adjacent to the corner boundary elements.  Comparing CW3 to CW1 and CW2, the vertical 

bars along the center of the web have yielded in compression as a result of the increased axial load 

when acting as the tension pier.   

For the strain gauges on the horizontal reinforcing bars, four bars in the web yielded in tension 

for CW1, no bars yielded in tension for CW2, and three bars in the web one bar on the East flange 

yielded in tension for CW3.  For the strain gauges on the confinement hoops, yielding in tension 

was observed in the corner boundary elements for CW3 only consistent with high axial load and 

extensive crushing observed during the test. 
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 (a) CW1 (b) CW2 

  

 (c) CW3 (d) Legend 

Figure 5.10:  Tension yield at nominal strength  

 

 

  

 (a) CW1 (b) CW2 

  

 (c) CW3 (d) Legend  

Figure 5.11:  Compression yield at nominal strength 
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 (a) CW1 (b) CW2 

  

 (c) CW3 (d) Legend 

Figure 5.12:  Tension yield post-peak  

 

 

  

 (a) CW1 (b) CW2 

  

 (c) CW3 (d) Legend  

Figure 5.13:  Compression yield post-peak 
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5.5 Base slip 

The experimental tests indicated that base slip accounted for a significant portion of the total 

deformation post-peak.  The base slip was measured using string potentiometers at each end of the 

wall and by a row or Krypton LEDs along the base of the web and East flange.  The base slip 

measured from each source varied as a result of the local damage occurring where the individual 

instruments were anchored.  

The Krypton LED measurements were averaged across the length of the wall; however, the 

LEDs attached to the corner boundary elements became compromised after the onset of spalling.  

As spalling progressed, the measurement of base slip using the Krypton LEDs becomes limited to 

those attached to the unconfined web only.  As shown in Figure 4.42, the base sliding resulted in 

a separation between the boundary elements and the unconfined web.  This results in a base slip 

measurement along the unconfined web that is significantly larger than the base slip at the 

boundary elements.  While this measurement of slip between the boundary elements is an 

important local damage phenomenon, the global displacement of the wall is limited by the 

boundary elements acting as dowels to the foundation.  Consequently, the Krypton LEDs provide 

information on the global base slip only up to the point of spalling.   

String potentiometers were anchored into the corner boundary elements at each end of the web 

wall for measuring the strong axis base slip.  A single string potentiometer at each toe boundary 

element was provided for measuring the weak axis base slip.  These instruments became 

compromised during core crushing of the boundary elements at which point the anchorage was 

dislodged.  As the string potentiometers provided a more stable measurement of the base slip for 

a longer duration of the tests, these instruments were utilized for assessing the global base slip.  

The average base slip, as well as the base slip at each end of the web, is plotted by step for CW1, 

CW2, and CW3 in Figure 5.14, Figure 5.15, and Figure 5.16 respectively. 
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Figure 5.14:  CW1 Base slip measured by string potentiometers 

 

 
Figure 5.15:  CW2 Base slip measured by string potentiometers 

 

 
Figure 5.16:  CW3 Base slip measured by string potentiometers 
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The base slip measured pre-peak is small, and there is not a meaningful difference between the 

base slip measured at each end of the wall.  However, as the wall becomes damaged post-peak, the 

base slip measurements begin to deviate from each other indicating a lateral elongation between 

the instruments.  Elongation of structural concrete is a known phenomenon resulting from inelastic 

deformations in the plastic hinge zone.  Vertical elongation associated with flexural response and 

lateral elongation associated with shear response has been observed in prior tests of structural walls 

(Palermo and Vecchio 2002).  In these C-shaped wall tests, the elongation is a result of the dowel 

action occurring in the corner boundary elements with the foundation.  While loading in one 

direction, the boundary element bars buckle in the direction of the sliding; however, these same 

bars straighten in tension after load reversal, and minimal slip is observed.  Thus, a larger measure 

of base slip is observed in the boundary element in compression when compared to the boundary 

element in tension.  While this second order phenomenon does not directly impact the global 

response of the wall, it is a representative measure of the damage the precipitates the loss of load 

carrying capacity (buckling-rupture failure).  The average base slip maintains a value of 

approximately zero at the points of zero displacement throughout the loading.  For subsequent 

evaluations considering base slip, the average measurement of the string potentiometers is utilized.  

The resulting hystereses of base versus base slip for each wall test are shown in Figure 5.17. 
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 (a) CW1 Base Shear vs. Base Slip (b) CW2 Base Shear vs. Base Slip 

 

 

 (c) CW3 Base Shear vs. Base Slip (d) Envelope of Base Shear vs. Base Slip 

 

Figure 5.17:  C-Wall Base Shear versus Base Slip 

 

5.6 Strain fields 

The high-resolution measurements collected using the Nikon Metrology/Krypton system 

enabled the calculation of average strain fields for the lower two floors of both the web and east 

flange.  Three-dimensional displacement data were measured at 155 discrete points on the bottom 

two stories of the web and East flange of each specimen for each load step.  The coordinate 

positions are shown in Figure 5.3.  The grid of displacements points is analogous to a finite element 

mesh and can be analyzed in a similar manner.   
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The initial position was measured for each LED prior to loading and the relative displacement 

of each LED during the loading history was measured at each step.  Using this displacement data, 

the average strains across each region is determined using a bilinear quadrilateral finite element 

(Hughes 2000).  A similar approach was utilized by Birely (2012) and Turgeon (2011) for the 

planar and coupled wall experiments; however, the C-shaped walls required consideration of the 

two separate planes of LED targets with a three-dimensional coordinate system.  The bilinear 

element formulation is utilized to produce measurements of the horizontal, vertical, and shear 

strain for each region.  Subsequently, the principal strains and maximum shear strain are 

determined: 

 ( )
2

2

1,2
2 2

x z x z
xz

   
 

+ − 
=  + 

 
  (4.1) 

 ( )
2

2

max
2

x z
xz

 
 

− 
= + 

 
  (4.2) 

The finite element mesh is coarse relative to the dimensions of the test specimen.  As a result, 

significant discontinuities of the strain field are observed between elements.  In order to provide a 

continuous strain field, the data is smoothed by averaging the measures of strain at each node from 

the surrounding elements.  A weighting is applied to the individual measurements corresponding 

to the tributary area of the area of each element from which the strains were determined. 

A comparison of the principal compressive strain during strong axis loading in the uni-

directional test (CW1) versus the bi-directional test (CW3) is given in Figure 5.18.  The 

comparison at 0.75% drift reveals increased compressive stress demand in the corner boundary 

element of the web as well as a more non-linear strain distribution across the flange.  The formation 

of compressive struts across the web are apparent in both walls.  The comparison at 1.50% drift 

reveals significantly lower compressive stress demands in CW3 overall due to the loss of load 

carrying capacity at this point in the loading history.  Loss of confinement and crushing of the 

corner boundary element (BE) in CW3 results in the compressive stress being carried in the 

unconfined web and toe boundary element of the flange.  While the compressive strain demand 

across the flange of CW1 remains largely uniform, the demand across the flange of CW3 is 

increasingly nonlinear as a result of the bi-directional loading. 
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 (a) CW1 at 0.75% drift (b) CW3 at 0.75% drift 

 
 (c) CW1 at 1.50% drift (d) CW3 at 1.50% drift 

 
Figure 5.18: Plot of second principal strain during strong axis loading.  Color-bar ranges 

from zero millistrain (grey) to negative six millistrain (purple). 

 

A comparison of the vertical strain during weak axis loading with the web in compression for 

CW2 and CW3 is given in Figure 5.19.  The comparison at ~1.2% drift reveals relatively uniform 

vertical strain distribution across the web for both walls.  The comparison at ~2.0% drift reveals a 

non-linear strain distribution across the web for both walls as a result of the damage during bi-

directional loading.  CW2 indicates increased compressive stress to the left corner BE after the 

right corner BE experienced damage.  Similarly, the loss of confinement and crushing of the corner 

boundary element on both sides of CW3 results in demand being carried in the unconfined web 

between the boundary elements.   
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 (a) CW2 at +1.25% drift (b) CW3 at +1.10% drift 

 
 (c) CW2 at +2.25% drift (d) CW3 at +1.90% drift 

 
Figure 5.19: Plot of vertical strain during weak axis loading with the web in compression.  

Color-bar ranges from twenty millistrain (yellow) to negative ten millistrain (purple). 

 

A comparison of the vertical strain during weak axis loading with the toe in compression for 

CW2 and CW3 is given in Figure 5.20.  The comparison at ~0.6% drift reveals relatively uniform 

vertical tensile strain distribution across the web for both walls; however, the flange reveals a large 

disparity in vertical compressive strain for CW3 due to the net tension loading and reduced 

overturning moment on the wall when acting as the tension pier of the coupled wall system.  The 

comparison at 1.50% drift reveals a non-linear strain distribution across the web for both walls as 

a result of the damage during bi-directional loading.  The loss of bond and rupture of the vertical 

web reinforcement results in increased tensile demand at the corner boundary elements. The 

reduced tensile in the web of CW3 between boundary elements indicates a significant loss of 

reinforcement consistent with the experimental observations.   
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 (a) CW2 at -0.75% drift (b) CW3 at -0.56% drift 

 
 (c) CW2 at -1.50% drift (d) CW3 at -1.50% drift 

 

Figure 5.20: Plot of vertical strain during weak axis loading with the toe in compression.  

Color-bar ranges from twenty millistrain (yellow) to negative ten millistrain (purple). 

 

There are several observations that can be made by comparing the aforementioned C-shaped 

wall tests to planar walls from Birely (2012). First, vertical strain fields indicate that for all C-

shaped wall specimens, and particularly the bi-directionally loaded CW2 and 3, the neutral axis 

depth when loaded in the strong-axis direction is considerably shallower than for the planar walls, 

especially at higher drift levels.  Second, the onset of substantial compressive straining occurs at a 

lower drift demand for the planar walls compared to the C-shaped wall web.  The differences in 

response between planar and C-shaped wall types can be attributed to the contribution of the flange 

in carrying compressive demand.  

From the strain fields the following conclusions can be drawn for the C-shaped wall tests:   

• The wall flanges contribute to carrying a rather significant portion of the compression 

demand thus reducing the demand on the wall web. As a result, the overall wall failure 

is tension-controlled rather than compression-controlled as observed in the planar 

walls; 

• There is significant shear demand in the wall web, particularly in tension regions. With 

increasingly drift level, the shear demand in the flange becomes more significant along 

the base of the wall and in the boundary elements. Nonlinear strain distribution in the 

flanges appears to have a more rapid onset and greater magnitude in the bi-directionally 

loaded walls. 
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• The stiffness discontinuity in transitioning from a lightly-reinforced web to boundary 

element/flange results in a region of tensile straining (and high shear straining) along 

the edge of the compression boundary element.  

5.7 Components of deformation 

Another metric to evaluate the wall response is to compare the individual contributions of base 

slip, base rotation, shear deformation, and flexural deformation to the total deformation throughout 

the loading history.  The non-contact displacement data from the Krypton system in conjunction 

with an array of linear potentiometers on the back face of the wall are utilized to determine these 

components of deformation.  Methods of measuring the rotations, flexural deformations and shear 

deformations using these instruments are described herein and compared.  The resulting 

components of deformation are produced for each wall experiment and compared. 

5.7.1 Rotations 

Rotations at each floor of the wall were determined using the measured vertical displacements 

at various points on the wall.  Vertical displacements were measured by the Krypton system on 

the bottom two stories of the web and East flange.  Rotations were determined from the slope of a 

line of best fit to the vertical displacement measurements across the web or flange.  Vertical 

displacements were also measured by an array of nine vertical linear potentiometers located at key 

locations around the wall geometry as shown in Figure 5.21.  Considering the small angle 

approximation, the rotation,  , is measured from the linear potentiometers as the difference in 

vertical displacement, ( )1 2,V V , across the panel divided by the panel length, : 

 

  
1 2V V


− 

=  
 

 (4.3) 
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Figure 5.21:  Vertical linear potentiometer positions at each story of the C-shaped wall 

specimen 

 

The prior tests of the planar walls also utilized Krypton measurements and linear 

potentiometers for measuring rotation (Birely 2012); however, the C-shaped walls proved more 

challenging due to the non-symmetric geometry and shallow depth of compression associated with 

a flanged wall. The third method of rotation calculation was devised to take advantage of all nine 

measures of vertical displacement.  A planar surface was fit to the data using the three-dimensional 

plan positions and vertical displacements of each discrete point.  The slope of the surface in the X-

direction and Y-direction are used as the measure of rotation in the strong axis and weak axis 

loading respectively.  Figure 5.22 illustrates an example of the surface fitting to the nine 

displacement measures. 

 

Figure 5.22:  Plane of best fit for vertical displacement measurements 

 

For a comparison of the measurements using each method, Figure 5.23 plots the first-floor 

rotation at 0.75% drift in the strong axis and similar magnitudes of rotations in the weak axis 

(0.83% drift for CW2 and 1.24% drift for CW3).  The traditional method of measurement using 

the linear potentiometers does not consistently match the measurements of the Krypton nor the 

plane rotation.  This is particularly true for the bi-directionally loaded tests in which there are some 
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residual strains during strong axis loading that result from loading in the weak axis and vice versa.  

The plane approach to the linear potentiometers is more successful for the weak axis than the 

strong axis.  In the strong axis, the plane of best fit also inconsistently under-predicts or over-

predicts the rotation when compared to the Krypton measurements.  This is a result of the non-

symmetry of the nine data points in the strong axis.  Future work should consider a weighting 

scheme in the surface fitting to give equal emphasis between the web measurements and flange 

measurements.   

 

Figure 5.23: Comparison of first-floor rotation measurements at similar drift levels 

 

The linear potentiometers provide relative changes in deformation and cannot provide absolute 

measures of displacement without knowing the deformation of the base point.  The base rotation, 

base , was measured using the bottom row of Krypton LEDs on the web and East flange.  Linear 

variable displacement transducers were instrumented on the wall to provide a traditional 

measurement of base rotation; however, these instruments did not read correctly throughout the 

course of the experiment and could not be relied upon.  Therefore, the base rotation was measured 

only from the Krypton displacements.  To provide the absolute rotation measurements at each 

floor, the relative story rotations are added to the base rotation: 
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  (4.4) 
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An example of the resulting base rotation and rotations for each floor are shown for CW3 in Figure 

5.24. 

 

Figure 5.24:  CW3 absolute floor rotations using linear potentiometers 

 

5.7.2 Flexural and shear deformations 

Using the strain data from the Krypton displacement measurements (see Section 5.6), the shear 

deformation from each row of finite elements can be determined by a summation of the average 

shear strain in the element integrated over each element’s area.  The total shear deformation of a 

story is then defined by the from the base of the wall up to the height at which the shear deformation 

is desired.  Using the four-node quadrilateral approach, the shear strain of a row is defined by the 

summation of the product of shear strain in each finite element and ratio of element length to wall 

length.   
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The shear deformation of each row is determined by the average shear deformation of the row 

multiplied by the height of the elements in the row.  The total shear deformation of the story is 

obtained by the summation of shear deformation in each row of elements. 

 

#

,

1

rows
r r

x shear avg e

r

h
=

 =    (4.6) 



239 

Similarly, the flexural deformation can be determined by integrating the average curvature of the 

cross section over the height of interest.  The average curvature and flexural deformation are 

obtained by, 
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For the second and third story of the wall specimens, the Krypton LEDs did not extend over 

the full height of those stories.  As a result, the Krypton could only be used to determine shear and 

flexural deformations in the first story.  The upper two stories utilized the array of vertical and 

diagonal displacement transducers along the backside of the web and flange as shown in Figure 

5.25. 

 

 

Figure 5.25:  Array of linear potentiometers utilized for determining shear and flexural 

deformations in the second and third story of the wall specimen 

 

The determination of shear and flexural deformations using linear potentiometers has 

historically neglected the interaction of shear and flexure on the displacement measurements.  

Figure 5.26 indicates the idealized flexural and shear deformation of a given panel of vertical and 

diagonal displacement transducers.   
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 (a) Flexure  (b) Shear 

Figure 5.26:  Idealized shear and flexural deformation (adapted from Massone and Wallace 

(2004)) 

 

The flexural deformation is determined as the product of the story rotation and height.  The story 

rotation is considered to be the difference in vertical deformation divided the panel length using 

the small angle approximation:  

  

1 2

,flex original

V V
h h

− 
 = =  

   (4.9) 

The average shear deformation across the panel is determined using the change in length of the 

diagonals and the height of the panel:   
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 (4.10) 

Two problems are observed for this approach, first the flexural deformation assumes a uniform 

distribution of curvature over the height of the panel.  The uniform distribution is generally a false 

assumption in the plastic hinge region of reinforced concrete wall.  Second, the measurement of 

displacement in the diagonal transducers will include a component of the vertical deformation 

associated with flexure.  To account for these issues, a correction factor,   alpha, was introduced 

(Massone and Wallace 2004). 

The correction factor represents the normalized distance from the top of the story to the 

centroid of curvature.  A value of 0.5 indicates a uniform curvature distribution while a value of 

0.67 indicates a triangular distribution.  For reinforced concrete outside the elastic range, the 

neutral axis depth will be shallow and triangular distribution is a better approximation of the 
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curvature.  Massone and Wallace (2004) conducted a parametric study of the value of the 

correction factor to verify that the value 0.67 is appropriate in slender concrete walls.  Utilizing a 

uniform curvature distribution was observed to overestimate shear deformations.  After 

introducing the correction factor, the corrected measures of shear and flexural deformations are 

given by the following equations: 

 
( ),flex flex original = 

 (4.11) 
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5.7.3 Results 

For evaluating the drift contributions, the Krypton data was only available for measuring the 

base deformations and first-floor deformations.  The Krypton LEDs on the second floor only 

covered the bottom 36 inches of the 48-inch story height.  At the second floor and third floor, shear 

and flexure components are calculated using the linear potentiometers previously described.  

Figure 5.27, Figure 5.28, and Figure 5.29 display the resulting deformation components of the 

walls up to 1% drift.  The components of deformation during the initial phases of loading do not 

equal the total deformation due to instrumentation’s limitations of measuring small displacements 

measured during elastic and cracking phases of the wall loading.  Similarly, the components do 

not equal the total deformation after wall damage compromises the anchorage of the instruments 

into the wall which is observed in CW3 between the 0.5% and 1.0% drift level.   

A general comparison of strong axis response in Figure 5.27 reveals that shear and flexural 

deformations contribute nearly equally up to about 0.5% drift.  During yielding of the 

reinforcement and up to the nominal strength at 0.75% drift, the flexural deformation of the first 

floor begins to dominate the response.  Shear deformations remain relatively constant throughout 

the loading history tapering off only marginally during the formation of the plastic hinge in the 

first floor.  In addition, the base slip and base rotation begin increasing around the nominal strength 

and have become a significant portion (20%) of the deformation at 1% drift.   

When comparing the uni-directional test to the bi-directional tests, increased base slip and base 

rotation are observed in CW3.  The tensile loading to the tension pier of the coupled wall system 

creates increased demand on the vertical reinforcement of the wall web leading to an earlier 
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separation along the interface and higher contribution to the total deformation.  Otherwise, no 

significant observations are apparent in the shear and flexural components up to the nominal 

strength.  It is observed that beyond nominal at 1% drift the flexural deformation in the first floor 

is higher in the bi-directional test than the uni-directional test indicated the increased demand 

resulting from bi-directional loading. 

 

 

 

 
Figure 5.27:  Components of deformation for the strong axis 

 

The components of deformation for the weak axis with web in compression is shown in Figure 

5.28. For the web in compression, CW2 and CW3 are both dominated by flexural deformation in 

the response.  CW2 indicates larger flexural deformations in the upper two stories as compared to 

CW3 due to the difference in effective height.  CW3 had negligible flexural deformation in the 

third story due to the moment inflection point imposed in this story level as part of the coupled 

core wall simulation.  In addition, CW3 exhibited higher shear deformation than CW2 as a result 

of the reduced effective height.  

The components of deformation for the weak axis with toe in compression is shown in Figure 

5.29.  CW3 indicates increased base rotation associated with the net tensile demand on the wall 

section as part of the coupled core wall simulation.  Otherwise, both CW2 and CW3 exhibit a 

flexurally dominated response with minimal shear deformation. 
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Figure 5.28:  Components of deformation for the weak axis with web in compression 

 

 

 

 
Figure 5.29:  Components of deformation for the weak axis with toe in compression 

 

5.8 Displacement profiles  

The global deformations of the wall were measured at the base and top of each story using 

string potentiometers.  In addition, the third story drifts and rotations were determined from seven 

high-resolution linear potentiometers placed at various locations around the wall cap.  The six-

degree-of-freedom Cartesian displacements and rotations are determined from the changes in the 
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length of the seven sensors relative to the control point indicated in Figure 3.16.  Furthermore, the 

non-contact displacement measurements from the Krypton system are utilized to supplement and 

validate the displacement fields at each story and in-between. 

Since the experimental load-displacement history is available only for the bottom three stories, 

the load-displacement history of the upper seven stories is determined using Timoshenko beam 

theory based on the work of Birely (2012) for the planar walls.  From the experimentally measured 

base moment and base shear, the ASCE 7 Equivalent Lateral Force distribution can be back-

calculated to determine the theoretical load distribution imposed over the ten-story building, as 

shown in Figure 5.30 (a).  From statics, the resulting shears and moments at each story are 

determined and shown in Figure 5.30 (b) and (c) respectively.     

The imposed theoretical shear and moment distribution are used to approximate the 

displacements of the upper seven stories from beam theory. The fixed-end (interface) deformations 

and the deformations in the bottom three stories are known from the experimental measurements.  

The base slip is considered a rigid-body motion of the structure and is not included in the beam 

theory formulation.  After calculation, the base slip is added to each of the calculated displacements 

of the upper seven stories. The upper seven stories are considered as a cantilever beam extending 

from the deformed configuration of the third story with the theoretically imposed shear and 

moment distribution.  Figure 5.30 (d) reveals the displacement when considered as a rigid member, 

the additional flexural displacement when evaluated with Euler-Bernoulli beam theory, and the 

additional shear displacement when evaluated with the Timoshenko beam theory.   
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 (a) (b) (c) (d) 

Figure 5.30:  Example of displacement profile determination (Specimen CW2 at 0.35% drift) 

 

The use of beam theory depends upon the selected flexural and shear stiffness values for the 

cross-section.  The use of gross section properties would underestimate the deflection due to the 

presence of cracking.  Various values of flexural and shear stiffness for the upper seven stories 

were compared to select ratios of these values from the gross section properties (Birely 2012).  A 

comparison of two ratios and their representative effects on the ten-story drifts for the normalized 

moment envelope is given in Figure 5.31 for each wall specimen.  The plot reveals a negligible 

difference between these selections, consistent with the previous work of Birely for the planar 

walls.  Subsequent use of the ten-story drifts is based upon using 35% of the gross flexural stiffness 

and 15% of the gross shear stiffness. 
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Figure 5.31:  Comparison of stiffness values for estimation of ten story drifts 

   

5.8.1 Determination of Timoshenko shear coefficient 

Application of Timoshenko beam theory requires determination of a “shear coefficient” to 

account for the variation of shear strain and stress over the cross-section (Cowper 1966). This 

section presents the derivation of the shear coefficient for the section geometry.  Resulting values 

of the shear coefficient for strong and weak axis bending are in close agreement with values 

provided in the literature for channel sections of similar, but unequal, geometries (Dong, 

Alpdogan, and Taciroglu 2010). 

 Strong-axis bending 

The shear coefficient for strong axis bending was considered for the C-shaped (channel) section 

with the load applied at the shear center to produce torsion-less bending.  Cowper presents a 

methodology for determining the shear coefficient based upon three-dimensional elasticity 

formulations.  For thin-walled cross sections with an assumption that the shear strain and stress is 

constant over the wall thickness is derived with the following result (Cowper 1966), 
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The geometric properties are easily determined, however, the warping function, 


, must be 

determined for the cross-section.  The discretization and elastic shear stress distribution shown in 

Figure 5.32 was employed for the determination of the shear coefficient (Bachau and Craig 2009). 

 

 

Figure 5.32:  Channel discretization and shear flow (Bachau and Craig 2009) 

 

Based upon this sign convention and shear stress distribution an equation of the shear stress 

for each element of the channel can be written.  The derivation is provided in the literature 

(Timoshenko 1945; Bachau and Craig 2009), 
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Substituting the assumption that 
2xy = − − for thin-walled sections (Cowper 1966) into the 

shear stress equations gives, 
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For the upper flange and lower flange, 1,3 xz =
, and for the web 2 yz =

.  Combining these 

equations and integrating provides the three functions of 


 . 

  (4.19) 

  (4.20) 

  (4.21) 

 

These functions can be substituted into Cowper’s derivation with the proper limits and change 

of variables resulting in the final formula for the shear coefficient, 

 

(4.22) 

 

Using the gross section properties and 0.3 =  the resulting shear coefficient is, 
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 Weak-axis bending 

 The shear coefficient for weak axis bending was considered equivalent to a T-section with 

a stem width of twice the flange width.  A formulation for this section is given by Cowper (1966), 

  (4.23) 

1

Where,

;

For, 0.3

0.2277

m bI ht n b h

v

K

= =

=

=

 

1 1 1

2
2

1
2 4

hts b x s
h

2 2 2 21
2

t bh s h s x
h

s

3 3 3

2
2

1
2 4

hts b x s
h

K
I

I I A

I
b x s t ds x t ds b x

x

y x

x

h

2 1

2
1 1 1 2 2

0
ss t ds

bb

3 3 3
00

K
m

m m m m m m

10 1 1 4

12 96 276 192 11 88 248 216

2

2 3 2 3

30 10 4 52 2 2 2 3n m m n m m m



249 

5.8.2 Displacement profiles of the ten-story building 

Displacement profiles for the ten-story building are assembled by combining the measured 

base deformations and story deformations up to the third floor with the extrapolated story 

deformations up to the tenth floor using beam theory as described in Section 5.8.  For the measured 

deformations up to the third floor, the base slip was determined from the string potentiometer data 

described in Section 5.5.  The base rotations were determined from the Krypton data as described 

in Section 5.7.1. First story and second story displacement were directly measured using string 

potentiometers.  The third story displacement was measured using high-resolution linear 

potentiometers.  At low-level displacements, the test specimen has not fully developed the crack 

pattern and remains relatively stiff.  For the procedure used to determine the deformations in the 

upper seven stories of the wall specimen, it is assumed that those stories are cracked, and a reduced 

flexural and shear stiffness is applied.  Consequently, the ten-story displacement profile is invalid 

at low displacement levels where the test specimen is stiffer than the upper seven stories.  For this 

reason, displacement profiles shown have been limited to drift levels after cracking starting at 

approximately 0.25% drift in both strong and weak axes. 

The resulting displacement profiles for the strong axis response of each wall test are presented 

in Figure 5.33 through Figure 5.35 for each drift level.  Drift levels are given in terms of the 

imposed third-story drifts.  The displacement profiles from 0.21% to 0.5% indicate a relatively 

uniform progression of the deformation over the height of the wall.  This correlates with the 

minimal change in relative contributions of shear and flexural deformations given in Figure 5.27.  

After 0.5% drift, the yielding results in the formation of the plastic hinge in the first story which 

progressively dominates the wall response as drift increases.  The cycle to 1.0% drift for CW1, 

0.75% drift for CW2, and 0.75% drift for CW3 represents this turning point in the response.  After 

reaching the nominal strength, the sliding deformation at the base becomes apparent in the 

displacement profiles and substantially changes the ten-story drifts.  Sliding becomes apparent in 

the 2.25% drift cycle for CW1, 1.5% drift for CW2 and 1.0% drift for CW3.  As a consequence of 

the base sliding, the rotation at the third story is reduced when compared to the same deformation 

without sliding.  Consequently, the displacement profile of the upper seven stories is reduced and 

the ten-story displacement actually is reduced with the increasing drift levels.  For example, at the 

1.5% drift cycle of CW2, the approximate sliding displacement of 1” at the base results in a tenth-

story displacement that is approximately the same as the 0.75% drift cycle. 
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Figure 5.33:  CW1 strong axis displacement profiles 

 

  

Figure 5.34:  CW2 strong axis displacement profiles 
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Figure 5.35:  CW3 strong axis displacement profiles 

 

For a direct comparison of the ten-story displacement profiles between the tests, the 

displacement profiles for all three specimens are plotted together for each key drift level in Figure 

5.36.  CW1 and CW3 have nearly identical displacement profiles through 1% drift.  CW2 reveals 

a similar but marginally stiffer response. Since the load-deformation response was comparable 

between the three walls at this drift level, the change in ten-story displacement for CW2 is a result 

of a slightly smaller measurement of third-story rotation relative to CW1 and CW3.  With a similar 

response in the displacement profiles, the comparison provides additional evidence to support the 

hypothesis that weak axis bending up to nominal strength does not influence the strong axis 

response.  For all three tests, displacement profiles begin to diverge after 1% drift when damage 

mechanisms begin to develop, particularly due to base sliding as previously noted.   
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Figure 5.36:  Comparison of displacement profiles for strong axis bending 

 

The displacement profiles for the weak axis loading of CW2 is shown in Figure 5.37.  For 

reference, the positive displacement corresponds to loading with the web in compression while 

negative displacement corresponds to loading with the toe in compression.  The displacement 

profiles for CW2 indicate that the web in compression loading develops a flexural dominated 

response with the formation of a plastic hinge in the first story after 0.5% drift.  As previously 

indicated by the components of deformation in Figure 5.28, the base slip is negligible, and the 

shear deformations are small for loading this direction.  The displacement profiles for the toe in 

compression reveal a relatively stiffer response consistent the global load-deformation.  While the 

CW1 CW2 CW3 
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first floor contains the majority of the deformation, additional inter-story drift is visible at the 

second and third floors consistent with the components of deformation.  

The displacement profiles for the weak axis loading of CW3 is shown in Figure 5.38.  The 

displacement profiles for loading with the toe in compression is difficult to ascertain due to the 

change in loading logic described in Section 3.3.4.3.  For loading with the web in compression, 

the displacement profiles are also difficult to interpret because the change in loading logic resulted 

in a variation in the effective height of loading and relative moment to shear demand for different 

drift levels.   

 

  

Figure 5.37:  CW2 weak axis displacement profiles 

 

Figure 5.38:  CW3 weak axis displacement profiles 
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5.9 Global response of ten-story building 

The hysteretic response of the building given in Chapter 4 used the third-story drift of the 

building rather than the ten-story drift of the prototype structure.  For comparison of the test results 

to other experiments, the hysteretic response is evaluated based on both the effective height of the 

structure and the top of the tenth story of the prototype building.  The resulting hystereses of the 

strong axis response and weak axis response are given in Figure 5.39 and Figure 5.40 respectively.  

In general, the response is not noticeably different from the third story drift for the majority of the 

experiments; however, the drift begins to deviate after 1% strong axis drift due to the sliding.  As 

the base of the wall slides, the rotation at the top of the wall decreases for the same third story 

deformation.  With reduced rotation at the third story, the rigid-body rotation in the upper seven 

stories is also reduced.     

 

 

Figure 5.39:  Strong-axis ten-story drift versus normalized base moment for CW1 (left), CW2 

(middle), and CW3 (right) 

 

  

Figure 5.40:  Weak-axis ten-story drift versus normalized base moment for CW1 (left), CW2 

(middle), and CW3 (right) 
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5.10 Conclusions 

This chapter presents a summary of the quantitative analysis of the three C-shaped wall 

experiments.  To perform the analysis, more than 390 channels of raw data and 850 GB of 

photographs, videos, and data files were processed, cleaned and archived for use in this project 

and future projects by other researchers.  The complete dataset for each test was archived to the 

NHERI Design Safe Cyber-Infrastructure with accompanying metadata to describe each 

instrument and the organization of the data.  The subsequent analysis of the C-shaped wall 

experiments studied the energy dissipation of the walls, the progression of yielding, the 

components of deformation to total wall drift including an analysis of base slip, strain fields 

generated from displacement field data, and overall displacement profiles of the prototype ten-

story building.  From this work, the following conclusions are made: 

1. The energy dissipation capacity of the uni-directionally loaded and bi-directionally 

loaded walls is approximately equivalent for equal levels of damage to the boundary 

elements.  This conclusion builds on the idea that the individual damage and tension-

compression cycles to each boundary element precipitates the failure of the wall as a 

whole irrespective of loading direction. 

2. The bi-directionally loaded test indicates tension yielding and strain hardening in the 

flanges and toe boundary elements that were not present in the uni-directional test.  

However, there is no evidence that the increased demand in the toe-boundary elements 

directly impacts the strong axis response. 

3. Prior to reaching the nominal strength at 0.75% drift, the base slip deformation is 

negligible; however, beyond 1% drift post-peak the base slip deformation becomes 

significant and is one mechanism of damage that results in the loss of load carrying 

capacity.  This conclusion provides confirmation of the visually observed sliding during 

the test and rupture of vertical reinforcing bars in the unconfined web. 

4. The bi-directional loading and variation in axial load during weak axis loading do not 

change the relative drift contributions of the strong axis response prior to reaching the 

nominal strength.  Up to 0.75% drift, the strong axis response of the three tests is nearly 

the same with approximately 40% of the total deformation in the bottom three stories 

to be shear deformation.   
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5. While all three tests developed a concentration of the flexural deformation in the first 

floor (plastic hinge), the bi-directionally loaded tests developed the plastic hinge at 

earlier drift levels than the uni-directionally loaded test.   

6. For the coupled core wall simulation, increased base slip and base rotation were 

observed in the drift contributions beyond 0.5% drift.  The increased tensile demand on 

the web of the wall associated with loading in the negative weak axis direction as the 

tension pier of the simulation resulted in increased yielding and earlier rupture of the 

vertical reinforcement.  The increased yielding in the web of CW3 relative to the prior 

tests was also observed in the strain gauges.  As noted in the visual observations, the 

yielding and rupture of the vertical web reinforcing precipitated the interface separation 

between the wall and foundation element that causes web sliding and damage to the 

unconfined web. 

7. An analysis of the displacement profiles of the ten-story building reveals that the 

response at the effective height of loading is not significantly different from the 

response at the top of the third story up to 1% drift.  After 1% drift, sliding in the strong 

axis impacts the response of the ten-story building because the third-story rotation with 

base sliding is reduced when compared to the rotation at the same level of displacement 

without base sliding.   
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CHAPTER 6:  NON-PLANAR WALL PERFORMANCE 

6.1 Introduction 

Chapter 6 presents a comparative study of the C-shaped wall tests to prior experiments in order 

to validate conclusions that are specific to C-shaped walls or that are generally applicable to non-

planar walls of different geometries.  Section 6.2 evaluates the impact of non-planar wall geometry 

on response using the prior experiments of the Complex Walls testing program described in the 

literature review, Section 2.2.  Section 6.3 conducts a study of effective stiffness values for the 

elastic analysis of non-planar walls during design.  Section 6.4 utilizes the planar wall drift capacity 

equation that has been proposed for inclusion to the ACI 318 to evaluate its ability to predict drift 

capacity in non-planar walls.  Section 6.6 provides a parametric study of non-planar walls 

identified in the literature review in conjunction with the C-shaped wall data.  The study evaluates 

design and demand parameters of the walls with respect to drift capacity and ductility.  Trends are 

also evaluated with respect to wall shape and failure mechanism.     

6.2 Comparison of wall geometry  

A unique contribution of the Complex Wall testing program described in Section 2.2 is the 

ability to directly compare the performance of different wall types with similar geometries, 

reinforcing and loading.  This section evaluates the strong axis response of the first C-shaped wall 

with the fourth planar wall experiment.  This evaluation highlights the impact of the flange on the 

wall response.  Similarly, the weak axis response of the coupled C-shaped wall is compared to the 

planar coupled wall test.  This evaluation highlights the influence of the web and also serves as a 

metric for the performance of the coupled core wall simulation. 

6.2.1 Planar wall versus C-shaped wall 

The four planar wall tests utilized the same geometry but different reinforcement, splicing, and 

loading distribution.  Planar wall test specimen, PW4, was selected for comparison to the C-shaped 

wall.  The length of the web and wall thickness were the same for both walls.  Both walls contained 

confined boundary elements; however, the length and shape of the boundary element differed.  The 

planar wall utilized a 1’-8” by 6” rectangular boundary element while CW1 utilized an L-shaped 

boundary element extending 10” each direction.  While both tests intended to represent the bottom 
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three stories of a ten-story building, the axial load ratio and lateral loading distribution differed.  

The axial load ratio was ( )0.12 ' *c gf A for PW4 and ( )0.05 ' *c gf A in CW1.  While a significant 

difference in axial load ratio, the actual magnitude of the axial load was similar with an applied 

force of 360 kips for PW4 and 306 kips for CW1. The effective height of loading differed as well.  

PW4 utilized an effective height of 50% of the overall wall height, simulating a uniform lateral 

load distribution.  Two ancillary actuators were utilized at the top of the first floor and second floor 

during testing to apply the shear at each story in conjunction with the LBCBs.  Conversely, CW1 

utilized an effective height of 71% of the wall height, simulating a triangular load distribution. 

 Load-deformation response 

The load-deformation responses of PW4 and CW1 are shown in Figure 6.1.  The drifts at the 

onset of each cracking and damage state are summarized in Table 6.1.  The stress demands at 

nominal strength summarized in Table 6.2. Both tests approximately achieved the nominal 

moment strength of the section.  While the nominal moment strength of PW4 was approximately 

50% less than CW1, the shear demand on the walls was nearly the same due to the reduced 

effective height of loading in PW4 (uniform load distribution).  The area of web concrete and 

compressive strength of concrete were nearly the same, but the shear reinforcing was spaced at 

2.25” on center for CW1 and 6” on center for PW4.  The resulting shear demand on PW4 was 

approximately twice that of CW1.  The damage patterns in both tests included spalling of the 

boundary element concrete, bar buckling, and core crushing; however, the onset of each damage 

state occurs at significantly larger drifts in the C-shaped wall.  The planar wall failed due to a 

brittle compression failure of the boundary element at 1.0% drift.  The C-shaped wall failed due 

to a ductile buckling-rupture mechanism of the corner boundary elements at 2.25% drift.  This 

response concludes that a C-shaped wall of similar geometry and loading demand exhibits more 

ductile response with increased drift capacity.   
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Figure 6.1:  Load-deformation response of PW4 and CW1 

 

Table 6.1:  Cracking and damage state comparison of PW4 and CW1 

Damage State PW4 CW1 

Horizontal cracking 0.06% 0.02% 

Diagonal cracking 0.07% 0.10% 

Tension yielding 0.30% 0.35% 

Spalling exposing BE reinf. 0.75% 1.49% 

Bar buckling 0.75% 1.49% 

Core crushing 0.75% 2.19% 

Failure 
Shear-compression @ 

1.0% 

Buckling-rupture @ 

2.25% 

 

Table 6.2:  PW4 and CW1 demands and capacities 

Test  

ID 

ACI shear  

strength, Vn
A 

Max shear demand,  

Vmax
A 

Vb/Vn 

Nominal 

moment, 

Mn
B 

Max base 

moment,  

Mb
B 

Mb/Mn 
Drift at 

Failure 

CW1 10.0√f'cAcv (0.83√f'cAcv) 4.3√f'cAcv(0.36√f'cAcv) 0.43 6,414 (8,696) 6,080 (8,243) 0.95 2.25% 

PW4 5.14√f'cAcv (0.43√f'cAcv) 4.6√f'cAcv (0.38√f'cAcv) 0.87 4,335 (5,877) 4,248 (5,759) 0.98 1.00% 

A Units: f'c in psi (f'c in MPa)      
 

B Units: Mn and Mb kip-ft (kN-m) 

 

 Strain fields 

The strain demands on the web of the wall are compared using the strain fields developed in 

Section 5.6 for the C-shaped walls and those developed by Birely (2012) for the planar walls.  

Since the walls resisted similar shear demands at the nominal strength, an evaluation of principal 

compressive stress and shear strain is made for the 0.75% drift level in Figure 6.2 and Figure 6.3.  

The 0.75% drift level capture the nominal strength but is prior to extensive damage and wall 
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failure.  The vertical strain profiles at the same drift level are also provided in Figure 6.4.  

Similarities and differences between the planar wall and C-shaped wall are summarized below: 

• The largest compressive strain demand for both walls is located at the end of the web 

and along the base of the wall; however, the compressive strain demand in the planar 

wall is nearly twice that of the C-shaped wall. 

• Based on the vertical strain profile, the depth of compression in the C-shaped wall is 

shallow compared to the planar wall with a corresponding uniform compressive strain 

distribution across the flange. 

• With a shallow depth of compression, the compressive strain demand in the web of the 

C-shaped wall is due primarily to shear since it occurs in the tension region of the wall.  

The shear strain demand and compressive strain demand show a direct correlation 

across the web of the C-shaped wall.   

• Conversely, the planar wall exhibits distributed compressive strain in the web 

extending up the height of the boundary element and beyond the length of the boundary 

element from a combination of moment and shear demand.  

• The shear strain in the tension region of the planar wall does correlate with compressive 

strain in the web; however, distinct compressive struts across the web are not apparent 

as they are for the c-shaped wall.  In addition, the overall magnitude and average 

magnitude of shear strain across the web is higher for the C-shaped wall. 

 

In conclusion, it is observed that the ability of the C-shaped wall to distribute and re-distribute 

compressive stress across the flange increases the drift capacity of the wall and provides the 

opportunity for a ductile failure mechanism.  The C-shaped wall exhibits increased shear strain 

demand and the formation of compressive struts across the web that are not apparent in the planar 

wall. 
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 (a) PW4  (b) CW1 web (c) CW1 flange  Legend 

Figure 6.2:  Comparison of second principal strain during strong axis loading at 0.75% drift. 

Color-bar ranges from zero millistrain (grey) to negative six millistrain (purple). 

 

             

 (a) PW4  (b) CW1 web (c) CW1 flange  Legend 

Figure 6.3:  Comparison of pure shear strain during strong axis loading at 0.75% drift.  

Color-bar ranges from six millistrain (orange) to zero millistrain (grey). 

 

      

 (a) PW4  (b) CW1 web (c) CW1 flange  Legend 

Figure 6.4:  Comparison of vertical strain during strong-axis loading at 0.75% drift. Color-

bar ranges from twenty millistrain (yellow) to negative ten millistrain (purple). 

 

 Drift components 

The drift contributions of base slip, base rotation, flexure and shear for PW4 and CW1 are 

compared in Figure 6.5.  The C-shaped wall drift contributions provided in Section 5.7 are 
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compared to those of the planar wall developed by Birely (2012).  The similarities and differences 

are summarized below: 

• Base slip in both walls represents less than 10% of the overall deformation up to the 

nominal strength; however, during the post-peak response the C-shaped wall exhibits 

significant base slip that was not observed in the planar wall.   

• Base rotation represented ~25% of the planar wall deformation, but only 5-10% of the 

C-shaped wall deformation.  This is attributed to the ability of the C-shaped wall to 

distribute the tension demand across the flange.  In addition, the C-shaped wall activates 

a greater portion of the web vertical reinforcing bars due to the shallow depth of 

compression. 

• The flexural component of deformation represents ~50% of the planar wall deformation 

and C-shaped wall deformation.  Both walls exhibit increasing flexural deformation in 

the first story as drift increases corresponding to the idea of plastic hinge formation in 

the first story.  

• The shear deformation represents approximately 40% of the C-shaped wall deformation 

but only 20% of the planar wall deformation.  This corresponds to the prior observation 

of increased shear strain demand across the web of the CW1 when compared to PW4.   

 

In conclusion, the shear deformation of the C-shaped wall is nearly twice that of the planar 

wall when subjected to the same shear demand.  This is present even when the planar wall was 

tested with a lower moment to shear ratio than the C-shaped wall.  
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Figure 6.5:  Components of deformation for the planar wall, PW4, and strong-axis response 

of  CW1 

 

6.2.2 Planar coupled wall versus coupled C-shaped wall 

The planar coupled wall test of the Complex Walls testing program described in Section 2.2.2 

is compared to the third C-shaped wall experiment that simulated a coupled core wall system as 

described in Section 3.3.4.3.  The coupled wall utilized two 4’-0” by 6” thick wall piers separated 

by a 2’-0” long coupling beam.  The overall pier width of 4’-0” and thickness matched that of the 

C-shaped wall flanges.  Both walls contained confined boundary elements; however, the length 

and shape of the boundary element differed.  The coupled wall utilized a 1’-2” by 6” rectangular 

boundary element at each end of each wall pier while CW1 utilized an L-shaped boundary element 

extending 10” each direction at the corner and 10” by 6” boundary element at the toe.  The constant 

axial load was higher for the coupled wall with a ratio of ( )0.1 ' *c gf A as compared to 

( )0.05 ' *c gf A in CW1. The loading of the coupled wall and coupled core wall system were the 

same, utilizing an effective height of 71% of the total wall height for triangular load distribution.   

The specific application of loading to the top of the wall and wall piers varied due to the 

simulation of the upper seven stories for both tests and the opposing C-shaped wall for the coupled 

core wall test.  In addition, the C-shaped wall simulation did not include the coupling beams at 

each story as part of the experiment.  The loading simulation was created to simulate the correct 

demands in the first story only, anticipating that the demands in the upper two stories would not 

control the overall wall response.  The subsequent comparison of response focuses on the first 
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floor.  The details of these loading simulation procedures are described by Turgeon (2011) for the 

coupled wall and in Section 3.3.4.3 for the C-shaped wall.   

 Load-deformation response 

The load-deformation responses of CPW and CW3 are shown in Figure 6.6.  The load-

deformation response is plotted in terms of system base shear.  For the coupled wall, the system 

base shear is directly measured but the shear resisted by each pier is estimated using instruments.  

For the coupled core wall, the shear resisted by the pier is directly measured, and the system base 

shear is estimated based on the assumed degree of coupling and shear distribution.  The drift 

capacity of both tests is comparable, reaching 2.2% for the coupled wall and 2.0% for the C-shaped 

wall.  While the coupled wall appears to have greater drift capacity, the drift capacity of the C-

shaped wall experiment is impacted by the bi-directional loading which was not present in the 

coupled wall.  Prior observations in Chapter 4 indicate that the bi-directional loading reduced the 

drift capacity as a result of the combined cycles of tension and compression on the boundary 

elements.   

 

  

Figure 6.6:  Load-deformation response of CPW and CW3 

 

The drifts at the onset of each cracking and damage state are summarized in Table 6.3.  

Reported drifts for the coupled wall damage correspond to the onset of damage in the wall pier.  

Damage onset initiated in the coupling beams at earlier drifts, but a comparison cannot be made 

because coupling beams were not present in the C-shaped wall.  The coupled wall failed at 2.27% 
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drift in both directions after a brittle compression failure of the boundary element.  All of the 

vertical bars in boundary element buckled and the core crushing upon loss of confinement.  

Conversely, the coupled core wall exhibited extensive damage to the corner boundary elements, 

but the compressive demand was redistributed across the unconfined web.  With the ability to 

redistribute the compressive demand, the C-shaped wall still failed in a buckling-rupture 

mechanism as a result of the combined bi-directional loading.  

 

Table 6.3:  Cracking and damage state comparison of CPW and CW3 

Damage State CPW CW3 

Horizontal cracking 0.13% 0.06% 

Diagonal cracking 0.25% 0.22% 

Tension yielding 0.50% % 

Spalling exposing BE reinf. 1.50% 1.12% 

Bar buckling 2.27% 1.12% 

Core crushing 2.27% 1.98% 

Failure 
Shear-compression @ 

2.27% 

Buckling-rupture @ 

2.0% 

 

The stress demands at nominal strength summarized in Table 6.4 and Table 6.5 for the 

compression pier and tension pier respectively.  The compression pier of both experiments exhibits 

a high shear demand with combined axial load.  The axial load demand on the coupled wall was 

39% of the gross compressive strength while only 10% for the C-shaped wall.  In both cases, the 

axial load associated with coupling significantly exceeds the axial force inducing high compressive 

demand and net tensile demand, but the large area of concrete in the web of the C-shaped wall 

allows distribution of the compressive stress and overall reduction of demand. Similarly, the tensile 

demand of the coupled wall as 69% of the gross tensile capacity of the reinforcement at yield while 

only 14% for the C-shaped wall.  Similar to comparison with the planar wall, the C-shaped wall 

geometry provides an outlet for overall load redistribution and helps ensure a ductile failure 

mechanism. 

 

 

 



266 

Table 6.4:  Weak axis compression pier demands and capacities 

Specimen  

ID 

ACI shear  

strength, Vn
A 

Max shear demand,  

Vmax
A 

Vmax/Vn Axial Demand 

CPW 7.5√f'cAcv (0.63√f'cAcv) 7.3√f'cAcv (0.61√f'cAcv) B 0.97 641k (0.39 f'cAg) 

CW3 9.8√f'cAcv (0.82√f'cAcv) 8.2√f'cAcv (0.68√f'cAcv) 0.84 746k (0.10 f'cAg) 
A Units: f'c in psi (f'c in MPa) 

B Shear resisted by comp. pier equal to 90% of system base shear 

 

Table 6.5:  Weak axis tension pier demands and capacities 

Specimen  

ID 

ACI shear  

strength, Vn
A 

Max shear demand,  

Vmax
A 

Vmax/Vn Axial Demand 

CPW 7.5√f'cAcv (0.63√f'cAcv) 0.9√f'cAcv (0.07√f'cAcv) B 0.12 304 kips (0.69 ∑AsFy) 

CW3 9.8√f'cAcv (0.82√f'cAcv) 5.7√f'cAcv (0.47√f'cAcv) 0.58 114 kips (0.14 ∑AsFy) 
A Units: f'c in psi (f'c in MPa)  

B Shear resisted by tens. pier equal to 10% of system base shear 

 

 Strain fields 

To compare the strain demands, the strain fields developed in Section 5.6 for the C-shaped 

walls are compared to the coupled wall strain fields developed by Turgeon (2011).  A comparison 

is made at the 1.0% drift level to capture the response at nominal strength prior to extensive 

damage.  A comparison is also made at the 1.5% drift level to capture how the strain field change 

as damage progression increases prior to reaching failure.  A comparison of the principal 

compressive strain at 1.0% and 1.5% drift is given in Figure 6.7 and Figure 6.8 for the purpose of 

comparing the wall response when acting as the compression pier.  Similarities and differences 

between the compression pier of the coupled wall and C-shaped wall are summarized below: 

• The compressive strain demand in the coupled wall extends up the height of the 

boundary element with a deep neutral axis located at approximately half the depth of 

the wall pier (Turgeon 2011).  The compressive strain demand is a combination of axial 

coupling, moment in the wall pier, and shear demand resisted primarily by the 

compression pier.   Compressive strain demand in the boundary element approaches 

the crushing strain up the height of the wall.   

• Conversely, the compressive strain demand in the C-shaped wall is well distributed 

primarily across the web of the wall with modest strain demands.  Locally higher 

compressive strain demand in the bottom corner of the flange and web in the corner 

boundary elements is associated primarily with the shear demand resisted by the 

flanges. 
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• At the 1.50% drift level, the corner boundary elements have been damaged as a result 

of the bi-directional loading.  The compressive strain field indicates a redistribution of 

the compressive strain to the unconfined web.  In the case of the coupled wall, the 

compressive strain field is not remarkably different in distribution, but the magnitude 

of strain has increased to equal or exceeds the crushing strain.  This is a precursor to 

the subsequent brittle compressive failure of the coupled wall. 

 

          

 (a) CW3 Web  (b) CW3 Flange (c) CPW (d) Legend 

Figure 6.7:  Comparison of second principal strain at 1.00% drift.  Color-bar ranges from 

zero millistrain (grey) to negative six millistrain (purple). 

 

              

 (a) CW3 Web  (b) CW3 Flange (c) CPW (d) Legend 

Figure 6.8:  Comparison of second principal strain at 1.50% drift.  Color-bar ranges from 

zero millistrain (grey) to negative six millistrain (purple). 

 

A comparison of the vertical strain at 1.0% and 1.5% drift is given in Figure 6.9 and Figure 

6.10 for the purpose of comparing the wall response when acting as the tension pier.  For the 

tension pier of the coupled core simulation, the load target was set based upon the imposed 

demands on the system during loading of the compression pier.  This logic maintained the 

equilibrium of the overall system demand but resulted in unequal drift demands.  The strain fields 
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given are based on the drift demand of the compression pier with an equal target load on the tension 

pier.  Further details of this logic are described in Section 3.3.4.3.  Similarities and differences 

between the tension pier of the coupled wall and C-shaped wall are summarized below: 

• The tensile strain demand is nearly uniformly distributed across the C-shaped wall web 

and flange.  The tensile strain demand of the coupled wall is well distributed across the 

tension pier, but a moment gradient is visible with higher tensile strains at the outer 

boundary element.  In both cases, the vertical strain on the tension pier is all in the 

tensile direction corresponding to the net tensile stress demand resulting from the 

coupling. 

• As drift level increases, the overall distribution does not notably change for either wall 

test.  The overall magnitude of tensile strain remains similar between the coupled wall 

and coupled core wall tension piers. 

 

The comparison indicates that the demands imposed on the tension pier of the coupled core 

wall simulation are representative of those imposed on the coupled wall, and the C-shaped wall 

does activate the entire width of the web and flanges to resist the tensile load associated with 

coupling.  The lack of coupling beams presents inconsistencies for comparing drift demand of the 

tension pier as well as the shear demand in the tension pier. 

 

       

 (a) CW3 Web  (b) CW3 Flange (c) CPW (d) Legend 

Figure 6.9:  Comparison of vertical strain at 1.00% drift (0.28% CW3 equivalent). Color-bar 

ranges from twenty millistrain (yellow) to negative ten millistrain (purple). 
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 (a) CW3 Web  (b) CW3 Flange (c) CPW (d) Legend 

Figure 6.10:  Comparison of vertical strain at 1.50% drift (0.12% CW3 equivalent). Color-bar 

ranges from twenty millistrain (yellow) to negative ten millistrain (purple). 

  

 Drift components 

The drift contributions of base slip, base rotation, flexure and shear for CPW and CW3 are 

compared in Figure 6.11 for the compression pier and Figure 6.12 for the tension pier.  The C-

shaped wall drift contributions provided in Section 5.7 are compared to those of the coupled wall 

developed by Turgeon (2011).  The similarities and differences are summarized below: 

• Neither wall pier of either test exhibited a measured base slip. 

• Base rotation represented ~15-20% of the overall deformation of the coupled wall 

compression pier and ~25-30% of the C-shaped wall compression pier.  The increase 

in the base rotation for the C-shaped wall is attributed to the shallow depth of 

compression resulting from the distribution of the compressive strain across the web of 

the wall. 

• Base rotation represented ~20-30% of the overall deformation of the coupled wall and 

C-shaped wall tension pier.  The C-shaped wall exhibits slightly higher base rotation. 

• The overall flexural deformation and shear deformation of the coupled wall and C-

shaped wall compression and tension piers were similar.  The C-shaped wall exhibited 

higher flexural deformation in the first story but reduced flexural deformation in the 

second story when acting as the compression pier.  Conversely, the C-shaped wall 

exhibited lower shear deformation in the upper two stories than the coupled wall.  These 

variations in deformation distribution between the stories may be significant or may be 

a consequence of the C-shaped wall lacking coupling beams in the experiment. 
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In conclusion, the drift contributions of the wall piers are remarkably similar providing 

validation to the approach to the coupled core wall simulation.  However, direct conclusions are 

limited with respect to the variations in shear and flexural demand in the upper stories due to the 

lack of coupling beams in the C-shaped wall experiment. 

 

 

 
Figure 6.11:  Components of deformation for the coupled wall compression pier 

 

 

 

 
Figure 6.12:  Components of deformation for the coupled wall tension pier 
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6.3 Effective stiffness of walls 

Analyses to determine component demands for seismic design of concrete buildings often 

employ elastic models in which reduced component stiffnesses are used to account for additional 

flexibility resulting from concrete cracking4. Accurate representation of component stiffness is 

required to ensure accurate estimation of earthquake demand, drifts and accurate modeling of load 

distribution within the structure. This section investigates the stiffness of non-planar walls 

subjected to varying load histories. Existing recommendations for defining the effective flexural, 

shear and axial stiffness of concrete walls are reviewed, and data from recently completed 

experimental tests are employed to compute effective stiffness values. The results of this study 

include recommendations for defining the effective stiffness of walls for use in seismic design. 

6.3.1 Review of existing recommendations and past research   

Elastic analysis remains the most common method of analysis for determining the demands 

and deformations of a structure. Because reinforced concrete behaves inelastically under service-

level loading, the section properties will differ significantly from the gross uncracked section 

properties. Effective stiffness values are prescribed reductions to the gross section properties to 

account for the inelastic response of the section and can be applied to the flexural, shear, and axial 

stiffness. Proper application of effective stiffness values to an elastic model can provide a more 

accurate representation of load distribution for determining demands as well as the expected 

deformation of the structure. While the application of effective stiffness values is analytically 

straightforward, the rational selection of effective stiffness values has been a research focus within 

experimental tests of a wide variety of building components.  

Codes of practice and research publications typically include recommended effective stiffness 

values for use in the design of concrete members.  Table 6.6 lists the flexural, shear and axial 

stiffness recommendations for walls included in eight selected publications. Recommended 

effective stiffness values typically represent the onset of yielding in the wall and prescribe a 

reduction of the flexural rigidity only. Five of the recommended flexural stiffness included in Table 

                                                 

 

4 Section 6.3 was taken in part from project grant deliverables written for the Charles Pankow Foundation (Mock et al. 2015).  

I was the primary or sole author of the content included herein.  Furthermore, this content has been updated and amended since the 

deliverable. 
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6.6 are given as a function of the axial to account for the increase in stiffness associated with 

increasing axial load. An axial load of ( )0.05 ' *c gf A  was applied to the C-shaped walls tested as 

part of this study; the effective flexural stiffness values corresponding to this axial load are shown 

in Table 6.6. Most codes of practice acknowledge the presence of shear deformations but do not 

provide recommendations for reduced shear stiffness; only PEER/ATC-72-1 (2010) and Birely 

(2012) include a recommendation for effective shear stiffness. Only the CSA A23.3 (2004) 

addresses axial stiffness; a reduction in axial stiffness equal to the reduction in flexural stiffness 

based on the upper bound relationship of Adebar (2007) is recommended.  

Specific recommendations are not made for planar or non-planar walls. Non-planar walls are 

prescribed to determine the moment of inertia based upon the effective flange width requirements 

of ACI 318 (2016). Similarly, the shear area is prescribed based upon the guidance of ACI 318. 

 

Table 6.6: Effective stiffness values for walls  
ASCE 

41 

(2007) 

NZS: 

3101 

(2006) 

PEER/AT

C-72-1 

(2010) 

CSA 

A23.3 

(2004) 

Paulay 

(2002) 

FIB 27 

(2003) 

ACI 

318-14 

(2016) 

Birely 

(2012) 

Flexure 0.5EcIg
1 0.32EcIg

1 0.33EcIg
1,2 0.65EcIg

1,3 0.29EcIg
1 0.3EcIg 0.35EcIg 0.35EcIg 

Shear    0.1GcAcv     0.15GcAcv 

Axial     0.65EcAg     

Notes: 1. Adebar lower-bound relationship. 2. Adebar upper-bound relationship 

6.3.2 Previous research addressing effective stiffness 

Recommendations for effective stiffnesses for use in analysis of concrete walls and walled 

buildings has been addressed by researchers at the University of Washington as part of the on-

going research program. Brown (2008) developed an effective flexural stiffness model based on 

previous experimental tests of planar walls. The experimental data exhibited a wide scatter of data 

points and a rapid drop in effective stiffness for low drift levels, so the model a constant effective 

flexural stiffness for low drift levels up to 0.3% drift. The constant stiffness was based upon the 

average flexural stiffness for all data points less than 0.3% drift. Subsequently, an exponential 

relationship was calibrated to fit the data points beyond 0.3% drift. Brown proposed the following 

nonlinear relationship: 

   (5.1) 

E I
H

E I E Ic eff

roof

c g c g0 3 1 2 0 3 0 3. exp . . .
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Two shortcomings of the nonlinear relationship proposed by Brown were the underprediction 

of stiffness for very low drift levels and a stiffness nearing zero at large drift levels (beyond 3%). 

Doepker (2008) examined shake table and quasi-static test results of walls and observed a stiffness 

not reducing below 0.05EcIg. Doepker proposed the following relationship for an effective 

flexural stiffness to address both shortcomings: 

   (5.2) 

6.3.3 Determination of effective stiffness values 

Effective stiffness values for the planar and non-planar walls were determined from the 

experimental data using a Timoshenko beam model.  The effective flexural and shear stiffness 

values from Timoshenko beam theory are given below.  A complete derivation of these is given 

by Birely (2012). 

Effective flexural stiffness: 

   (5.3) 

 

eff

flex

g

EI

EI
 =

  (5.4) 

Effective shear stiffness:  

   (5.5) 

 

eff

shear

cv

GA

GA
 =

  (5.6) 

The planar and c-shaped wall test program utilized experimental specimens that represented 

the bottom three stories of a ten-story building as described in Section 0.  A combination of shear, 

moment and axial force was applied at the top of the third story to simulate the upper seven stories 

of the building.  For this reason, the experimental data set provided measurements of story 

displacements and rotations from only the base of the wall to the third story.  The story 

displacements and rotations from the fourth story to the tenth story are then extrapolated from the 
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measured displacement and rotation and the third story and applied loading.  The additional 

displacement consists of the rigid body rotation and the flexural and shear deformation due to the 

theoretical shear and moment in the upper seven stories.  The measured displacement, rotation, 

shear and moment were used to evaluate the additional deformation in the upper seven stories of 

the structure. 

The effective stiffness values for the planar walls, C-shaped walls, and non-planar walls from 

other researchers are reported as the effective stiffness from the base of the wall to the effective 

height of loading.  This is analogous to a cantilever beam with a single point load at its end as 

shown in Figure 6.13 along with the corresponding shear, moment and deflection diagrams.  The 

length of the cantilever beam is the distance from the base of the wall to the effective height of 

loading.  The measured shear and moment are used to determine the effective load and its height.  

The experimental data provided the deflection and rotation at the third story.  The following 

equations were used to extrapolate the deflection and rotation at the effective height of loading: 

 

( )
2

3 3
2

eff eff

flex g

P
h h

EI
 


= + −

  (5.7) 

 

( )

( ) ( )

3 3

3

3 3 3               
3

eff eff

shear g

eff eff

flex g

P
h h

GA

P
h h h h

EI






 =  + −

+ − + −

  (5.8)  

 

 

  (a) Loading (b) Shear (c) Moment (d) Deflection 

Figure 6.13:  Effective stiffness model at top of specimen and effective height of loading 
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Various ratios of the flexural stiffness, flex
, and shear stiffness, shear

 , used in the above 

equations for the stiffness of the upper seven stories were evaluated separately for the planar walls 

and the C-shaped walls.  A comparison of two given ratios and their representative effects on the 

ten-story drifts for the normalized moment envelope of the C-shaped walls is given in Figure 6.14.  

The flexural and shear stiffness of the upper stories are shown to have a small influence on the 

total story deformation.  The primary component of deformation in the upper stories is the rigid-

body rotation.  Therefore, subsequent evaluations of the drifts above the third-story are determined 

using 50% of the gross flexural stiffness and 20% of the gross shear stiffness (
0.50flex =

 , 

0.20shear =
). 

 

 

Figure 6.14:  Comparison of stiffness values for drift computation 

6.3.4 Effective stiffnesses computed from C-shaped wall test data  

The effective stiffness values of the C-shaped walls were determined separately for each 

direction of strong and weak axis loading for all drift levels.  The story stiffnesses were evaluated 

at each story and at the effective height determined using the methodology previously described.  

Attention is given to the stiffness values in the first story which contains the initial cracking, 

yielding, damage, and failure.  Attention is also given to the stiffness at the effective height of 

loading to provide an average stiffness up the height of the cracked wall.  The experimental 
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observations and measurements revealed lateral deformation (sliding) in the strong axis loading 

and vertical strain penetration in both directions of loading.  The effect of these base deformations 

was determined by calculating the effective stiffness with the base deformations considered as well 

as the effective stiffness with the base deformations not considered by assuming the base of the 

wall to be fixed.  The first story effective stiffness for loading in the East and West strong axis 

loading directions are presented with base deformation considered in Figure 6.15 and assuming a 

fixed base in Figure 6.16. 

 

 

Figure 6.15:  C-shaped wall stiffness at first floor considering base deformation 

 

 

Figure 6.16:  C-shaped wall stiffness at first floor assuming a fixed base 

 

As expected, the assumption of a fixed base results in lower effective stiffness values.  While 

considering base deformation separately is a more realistic model of the wall response, those 

effects are generally not included in an elastic analysis model.  Therefore, the effective stiffness 
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values are subsequently presented based upon the assumption of a fixed base to include the effects 

of base deformation in the elastic analysis.  In addition, the effective flexural and shear stiffness 

values from these plots showed no significant variations between the East and West directions for 

all three tests.  Subsequent values of strong axis stiffness are presented as an average of the East 

and West directions at each drift level.  The average effective flexural and shear stiffness values 

at the first story and effective height of loading are presented in Figure 6.17 and Figure 6.18 

respectively. 

 

Figure 6.17:  Averaged effective flexural stiffness values for C-shaped walls 

 

 

Figure 6.18:  Averaged effective shear stiffness values for C-shaped walls 

 

A comparison of the average effective stiffness values at the effective height of loading for 

each wall and direction of loading are presented with the ATC 72 and CSA A23.3 code 

recommendations and the non-linear models proposed by Brown and Doepker in Figure 6.19.  

With respect to the flexural stiffness, the strong axis response and weak axis response for the web 
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in compression (South) are in close agreement with the nonlinear models.  The weak axis response 

for the toe in compression (North) exhibits a higher effective stiffness with respect to drift; 

however, the flexural stiffness at yield for all directions falls just below the ATC 72 yield definition 

with an average effective flexural stiffness of 0.28.  With respect to the shear stiffness, the strong 

axis had an average effective shear stiffness at yield of 0.17, while the weak axis had an average 

effective shear stiffness of approximately 0.08 at yield.  The strong axis response exhibited little 

deviation in the strong axis response.  For the weak axis response prior to yield, loading with the 

web in compression (South) was softer than the strong axis, and loading with the toe in 

compression (North) was stiffer than the strong axis.  The variation in the weak axis response 

compared to the strong axis is attributed to the much larger shear span ratio and corresponding 

flexure dominated response.   

All three C-shaped walls exhibited little deviation in the effective flexural and shear stiffness 

during strong axis loading indicating that the presence of bi-directional loading and/or vary axial 

load has no impact on the effective stiffness values to be used in an elastic analysis and provides 

confidence in the use of the non-linear models or ATC 72 recommendations for seismic design.  

Additional tests of bi-directional walls would be needed to evaluate the impact of bi-directional 

loading on the weak axis wall response. 

 

 

Figure 6.19:  Effective stiffness values of C-shaped walls 



279 

 

Table 6.7:  Effective stiffness of C-shaped walls 

Wall Yield Drift Flexural Shear 

CW1-Strong 0.31% 0.28 0.19 

CW2-Strong 0.29% 0.29 0.17 

CW3-Strong 0.32% 0.27 0.16 

CW2-North 0.96% 0.29 0.07 

CW2-South 0.59% 0.26 0.08 

 

6.3.5 Effective stiffness of planar walls 

Four planar walls were tested in the experimental program with varying reinforcement and 

loading conditions.  Their effective stiffness values were determined using the same methodology 

previously described for the C-shaped walls.  The impact of base deformations was also considered 

for the planar walls.  In contrast to the C-shaped walls, no significant lateral deformation (sliding) 

was observed for these tests.    However, a significant strain penetration into the footing was 

observed that impacts the effective stiffness of the first floor.  The first story effective stiffness for 

loading in the East and West strong axis loading directions are presented with base deformations 

considered in Figure 6.20 and assuming a fixed base in Figure 6.21. 

 

 

Figure 6.20:  Planar wall stiffness at first floor considering base deformations 
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Figure 6.21 :  Planar wall stiffness at first floor assuming a fixed base 

 

The assumption of a fixed base results in lower flexural and shear stiffness values.   For all 

four walls, the flexural stiffness is similar in both directions of loading.  The first planar wall that 

was subjected to the ASCE 7 load distribution, in accordance with the C-shaped walls, had a shear 

stiffness of similar magnitude between the two directions of loading.  However, the second, third 

and fourth planar walls which were subjected to a uniform lateral load distribution show some 

variation in the shear stiffness between the two directions of loading.  The variation in the shear 

stiffness is attributed to the increased shear demand and associated cracking that occurs in one 

direction before the other.  The average effective flexural and shear stiffness values for each wall 

are plotted with the non-linear models and ATC 72 and CSA A23.3 code recommendations in 

Figure 6.22.  The average effective stiffness values at yield are presented in Table 6.8. 
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Figure 6.22:  Effective stiffness values of planar walls 

 

Table 6.8:  Effective stiffness of planar walls 

Wall Yield Drift Flexural Shear 

PW1 0.35% 0.42 0.15 

PW2 0.42% 0.39 0.13 

PW3 0.17% 0.44 0.21 

PW4 0.19% 0.45 0.20 

 

6.3.6 Effective stiffness of non-planar walls 

A select number of other researchers in the literature measured and provided the experimental 

displacements and rotations of non-planar walls.  The C-shaped walls of this study were compared 

the U-shaped walls tested by Beyer, Dazio, and Priestley (2008) and the H-shaped walls tested by 

Oesterle (1976, 1979), see Section 2.1.2.1 and 2.1.4.1 respectively for details of these experiments.  

The effective stiffness values were determined from the provided experimental data using the same 

methodology described for the planar and C-shaped walls.  The effective stiffness values were 

calculated at all drift points provided in each direction of loading.  The presented values are an 

average of the effective stiffness values measured at each drift level.  For symmetric directions of 

loading (i.e., strong-axis loading of C-shaped walls and planar walls), the effective stiffness values 

were also averaged between the two directions of loading.  Effective stiffness values of walls 
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loaded in directions of asymmetry were reported independently.  The results are provided in Figure 

6.23, and the corresponding values of effective stiffness at first yielding are presented in Table 6.9. 

The strong-axis response of the C-shaped walls and the strong axis response of the U-shaped 

wall TUA provide nearly identical effective flexural and shear stiffness values beyond 0.5% drift.  

The weak axis response of all C-shaped and U-shaped walls was stiffer than the strong axis 

response indicating that shear span ratio may influence effective stiffness estimation.  In addition, 

the PCA H-shaped walls which also had shallower shear span ratios provided higher effective 

flexural stiffness ratios.  However, the PCA tests provided limited test measurements and 

resolution for making this evaluation.  In contrast to the flexural stiffness, the shear stiffness 

dropped to approximately 25% or less by 0.5% drift and subsequently to 10% or less by 1% drift 

for most tests.  

 

 

Figure 6.23:  Effective stiffness values of non-planar walls 
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Table 6.9 :  Effective stiffness at first yield 

Wall Yield Drift Flexural Shear 

CW1-Strong 0.31% 0.28 0.19 

CW2-Strong 0.29% 0.29 0.17 

CW3-Strong 0.32% 0.27 0.16 

CW2-North 0.96% 0.29 0.07 

CW2-South 0.59% 0.26 0.08 

TUA-Strong 0.31% 0.39 0.23 

TUA-North 0.33% 0.46 0.18 

TUA-South 0.44% 0.47 0.43 

TUB-Strong 0.40% 0.49 0.13 

TUB-North 0.43% 0.73 0.19 

TUB-South 0.51% 0.67 0.25 

 

6.3.7 Summary and Conclusions 

The evaluation of effective flexural and shear stiffness values for the planar and non-planar 

walls garnered the four primary conclusions listed below.  Each conclusion is subsequently 

described in detail. 

1. Non-planar walls exhibited lower effective stiffness than planar walls 

2. Bi-directional loading did not impact the effective stiffness up to 1% drift 

3. Most codes of practice provide un-conservative estimations of effective stiffness of walls 

First, the effective stiffness computed for the c-shaped wall specimens and non-planar walls 

specimens, in general, are significantly lower than those computed from the planar wall test data. 

Preliminary evaluation of the experimental data suggests that the low effective flexural stiffness 

of the c-shaped walls is attributed to the nonlinear strain distribution across the wall cross section 

where tensile strain at the toe BE’s are lower than at the corner BEs, also known as the shear lag 

effect. Figure 6 of the load-deformation response for C-shaped CW2 shows the onset of measured 

yield (A), theoretical yield assuming a linear strain profile across the cross-section (B) and nominal 

strength (C). Without the shear lag effect, points A and B would theoretically coincide. Thus, for 

the c-shaped walls, the reduced flexural strength is attributed to the fact that at the drift demand 

associated with measured yield (A) relatively little of the flange steel had reached yield strength 

and thus the strength of the wall was less than the theoretical yield strength (B) and the computed 

flexural stiffness was reduced. The theoretical yield strength (B) was not achieved until much 

larger drift demands were imposed, at which point corner boundary element reinforcement 

experienced tensile strains far in excess of the yield strain and the wall exhibited a further reduced 

flexural stiffness.   
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Figure 6.24:  Comparison of onset of yield to nominal strength for specimen CW2 

 

Second, bi-directional loading did not impact the effective stiffness up to 1% drift. The second 

and third C-shaped walls (CW2, CW3) which were subjected to a bi-directional loading history.  

Furthermore, the third C-shaped wall (CW3) was subjected to a varying axial load from the 

simulation of a coupled core wall system.  These tests showed no variation in effective flexural 

and shear stiffness in the strong axis response between the two bi-directionally load tests and to 

the uni-directionally loaded test.  The influence of bi-directional loading on the ductility and 

strength of the C-shaped walls was observed to occur beyond the nominal strength during the onset 

and progression of damage.  The complete activation of tension steel and achievement of nominal 

strength occurs at a significantly higher drift than the onset of yielding.  At the drift level of 

nominal strength, the effective stiffness value is already less than 10% of the gross value, and the 

additional reduction due to the bi-directional response is negligible.  Furthermore, evaluations of 

wall response beyond the nominal strength are not applicable to the types of elastic analyses 

intended for this study.  This conclusion reinforces the use of the effective stiffness values herein 

for both bi-directionally and uni-directionally loaded specimens.   

Third, most codes of practice provide un-conservative recommendations of effective flexural 

stiffness values.  Effective flexural stiffness recommendations ranged from approximately 30% to 

65% for a cracked wall at yield, while the experimental data supported only the lower bound 

recommendations around the 30% level.  The NZS, FIB, and ACI codes provide reasonable 
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estimations of flexural stiffness but neglect the influence of shear stiffness degradation.  Only the 

ATC 72 code provided reasonable estimations of flexural and shear stiffness consistent with the 

test results evaluated in this study.  The degradation of shear stiffness was significant in all tests 

examined here with values approaching 20% or less at the onset of yielding.  This overestimation 

of stiffness results in an un-conservative estimation of earthquake demands and story drifts as well 

as an inaccurate estimation of load distribution between walls in a building.  While additional 

research on the effects neglecting the shear stiffness degradation on demands and load distribution 

is needed, it is recommended to include the effects of both flexural and shear stiffness degradation. 

6.4 Non-planar wall database 

Section 2.1 identified eleven non-planar wall experiments tested prior to the C-shaped walls.  

This data was combined with the C-shaped wall experiments to create a database of fourteen non-

planar walls that were loaded in a total of 42 directions.  A data structure and graphical-user-

interface were developed to combine information of each test’s geometry, reinforcing, loading, 

drift capacity, ductility, and failure mechanism.  The experimental load-deformation response is 

stored in the database to permit calculation of design variables such as drift capacity and ductility 

with a consistent methodology for all tests.  Furthermore, section analysis results for each loading 

direction of each test can be stored to permit additional evaluation of how wall design parameters 

correlate with other variables.   The resulting non-planar wall database is shown in Figure 6.10. 

 

 

Table 6.10:  Non-planar wall database graphical user interface 
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6.4.1 Description of wall design and response parameters 

Eighteen metrics were utilized in this study to evaluate the non-planar wall experiments5.  Nine 

design parameters listed in Table 6.11 were included to evaluate the influence of wall geometry, 

wall reinforcement, and loading conditions. 

 

Table 6.11:  Definitions of design parameters 

Parameter Symbol Definition 

Scale Scale The scale of the experiment defined as the thickness of the wall parallel to the 

direction of loading divided by the thickness of a full-scale wall.  For all tests, a 

full-scale wall was considered to be 12 inches thick. 

Shear span ratio ( )/ wM V  
The ratio of the effective height of loading (M/V) to the length of the wall parallel 

to the direction of loading. For bi-directionally loaded tests, this value was defined 

separately for each direction of loading. 

Axial load ratio 
N  The applied axial load (N) divided by the gross axial capacity (Agf’c*) at the time 

of testing.  For walls with varying axial load, this parameter was based upon the 

gravity load only, i.e. the axial load applied at zero drift.  

Compressive 

strength 
' *cf  The experimentally measured compressive strength at time of testing.  

Vertical 

reinforcement 

ratio 

total  The area of vertical reinforcing steel divided by the gross sectional area. 

Boundary 

element vertical 

reinforcement 

ratio 

be  The area of vertical reinforcing in the boundary element divided by the area 

enclosed by the boundary element.  For walls with multiple boundary elements in 

one or more flanges, this value was defined as the sum of the boundary elements 

in compression for that direction of loading.   

Boundary 

element 

volumetric 

reinforcement 

ratio 

con  The volume of horizontal confining steel contained the boundary element divided 

by the volume of concrete enclosed by the boundary element.  For walls with 

multiple boundary elements in one or more flanges, this value was defined as the 

sum of the boundary elements in compression for that direction of loading.   

Horizontal 

reinforcement 

ratio 

h   The area of horizontal reinforcing steel divided by the area of concrete in the web 

wall parallel to the direction of loading.  For bi-directionally loaded tests, this value 

was defined separately for each direction of loading. 

Nominal shear 

stress ( )/ ' *n cv cV A f  
The nominal shear stress where the nominal shear strength, Vn, and shear area, 

Acv, are defined by ACI 318.  For bi-directionally loaded tests, the value of Vn 

and Acv was defined separately for each direction of loading. 

Normalized 

shear strength 
/u nV V  The maximum measured shear, Vu, divided by the nominal shear strength per ACI 

318, Vn. 

 

The remaining parameters of the study correspond to the moment-curvature analysis.  The 

analyses utilized constitutive models considering the non-linear response of both the steel and 

concrete.  The compressive model for the concrete included the effects of compression softening 

and tension stiffening.  The reinforcing steel model considered the effects of yielding and strain-

                                                 

 

5 Sections 6.4.1 and 6.4.2 were taken in part from project grant deliverables written for the Charles Pankow Foundation 

(Behrouzi et al. 2015b).  I was the primary or sole author of the content included herein.  Furthermore, this content has been updated 

and amended since the deliverable. 
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hardening with a trilinear approximation.  In the aim of a simplified analysis, the influence of 

confinement, cyclic loading, bi-directional loading, and shear-flexure interaction were not 

considered in the models.  Table 6.12 contains the parameters drawn from the results of the 

moment-curvature analysis.  For these parameters, the nominal moment strength was the strength 

at which the strain in the extreme compression fiber was -0.003 consistent with ACI 318.  The 

results of the moment-curvature analysis for each experiment and loading direction in the database 

is given in Table 6.13. 

 

Table 6.12:  Definitions of moment-curvature parameters 

Parameter Symbol Definition 

Normalized 

moment strength 
/u nM M  The maximum measured shear, Mu, divided by the nominal moment strength. 

Compressive 

strain at yield c  Strain in extreme concrete compression fiber at first measured yield extreme tensile 

reinforcement. 

Depth of 

compression at 

yield 

yield wc  The depth of compression at first measured yield of the extreme tensile 

reinforcement divided by the length of the wall parallel to the direction of loading.  

Curvature at 

yield 
y  The curvature at the first measured yield of the extreme tensile reinforcement. 

Tensile strain at 

nominal t  Strain in the extreme tensile reinforcement at the nominal moment strength of the 

analysis.   

Normalized 

tensile strain at 

nominal 

t y   The tensile strain at nominal divided by the reported yield strain of the reinforcing 

bars. 

Depth of 

compression at 

nominal 

wc  The depth of compression at the nominal moment strength divided by the length of 

the wall parallel to the direction of loading. 

Curvature at 

nominal n  The curvature at nominal moment strength. 

 

These metrics were compared to the drift capacity of the walls.  Drift capacity was defined as 

the drift at which the experiment dropped in strength to 80% of its maximum or the maximum drift 

measured if a strength loss was not present.  However, drift capacity was found to be a poor metric 

for comparison due to the wide variety of wall geometries and loading conditions present.  The 

study was revised to utilize ductility as the metric of comparison.   The ductility ratio was 

calculated from the experimental data using two different methods.   
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Table 6.13:  Non-planar wall moment-curvature analysis 

Researcher Name 
Mu/

Mn 

Vu/

Vn 

εt 

(ms) 
εt/εy c / lweb 

φNom 

(rad) 

εc 

(ms) 

cyield / 

lweb 

φYield 

(rad) 

 TUA_Strong 0.92 0.78 88.87 46.529 0.033 1.79E-03 0.40 0.173 4.52E-05 

Beyer et al. 

(2008) 

TUA_WeakPositive 0.91 0.41 83.36 42.531 0.035 2.09E-03 0.40 0.169 5.72E-05 

TUA_WeakNegative 1.04 0.47 24.07 15.529 0.111 6.55E-04 0.75 0.326 5.56E-05 

TUB_Strong 0.98 0.99 76.29 38.726 0.038 1.55E-03 0.51 0.206 4.84E-05 

TUB_WeakPositive 0.95 0.48 68.55 34.797 0.042 1.73E-03 0.46 0.189 6.93E-05 

 TUB_WeakNegative 1.03 0.57 12.84 7.598 0.189 3.78E-04 1.05 0.383 8.74E-05 

 IleX_Strong 1.11 0.68 26.86 13.297 0.100 4.94E-04 0.67 0.249 5.65E-05 

Ile and 

Reynouard 

(2005) 

IleY_WeakPositive 1.13 0.45 25.72 11.431 0.104 5.81E-04 0.68 0.232 6.73E-05 

IleY_WeakNegative 1.11 0.50 9.18 4.613 0.246 2.25E-04 1.22 0.380 8.17E-05 

IleXY_Strong 1.05 0.65 24.51 11.956 0.109 4.65E-04 0.70 0.255 5.72E-05 

IleXY_WeakPositive 1.08 0.44 23.34 10.327 0.114 5.54E-04 0.71 0.239 6.80E-05 

 IleXY_WeakNegative 0.83 0.37 8.15 4.137 0.269 2.14E-04 1.28 0.394 8.25E-05 

 CW1_Strong 1.00 0.43 74.45 40.027 0.039 6.45E-04 0.57 0.235 2.02E-05 

Lowes et al. 

(2013) 

CW2_Strong 0.97 0.41 77.24 41.751 0.037 6.69E-04 0.55 0.229 2.00E-05 

CW2_WeakPositive 1.01 0.06 67.08 36.656 0.043 1.46E-03 0.34 0.157 4.70E-05 

CW2_WeakNegative 1.03 0.10 6.42 3.508 0.318 1.96E-04 1.45 0.442 6.84E-05 

 CW3_Strong 0.95 0.41 76.09 41.353 0.038 6.59E-04 0.56 0.233 2.00E-05 

 NTW1_WebPositive 1.12 0.69 8.15 4.075 0.269 1.24E-04 1.46 0.422 3.85E-05 

Brueggen 

(2009) 

NTW1_WebNegative 0.92 0.36 111.3 57.412 0.026 1.27E-03 0.31 0.138 2.50E-05 

NTW1_Flange 0.97 0.63 6.20 3.316 0.326 1.28E-04 1.27 0.404 4.36E-05 

NTW2_WebPositive 1.19 0.74 7.39 3.469 0.289 1.15E-04 1.53 0.418 4.07E-05 

NTW2_WebNegative 0.98 0.41 98.91 48.724 0.029 1.13E-03 0.33 0.140 2.62E-05 

 NTW2_Flange 1.04 0.58 5.99 3.169 0.334 1.25E-04 1.24 0.396 4.36E-05 

Oesterle et al. 

(1976, 1979) 

F1_Strong 0.99 1.02 76.19 34.475 0.038 1.06E-03 0.57 0.205 3.71E-05 

F2_Strong 1.03 1.19 53.25 26.894 0.053 7.50E-04 0.75 0.275 3.65E-05 

Thomsen and 

Wallace 

(1995) 

TW1_WebPositive 0.74 0.86 4.37 2.441 0.407 1.54E-04 1.80 0.501 7.48E-05 

TW1_WebNegative 0.99 0.58 81.82 47.570 0.035 1.77E-03 0.38 0.181 4.36E-05 

TW2_WebPositive 0.94 0.89 3.85 2.127 0.438 1.43E-04 1.88 0.509 7.69E-05 

 TW2_WebNegative 0.97 0.46 77.97 50.630 0.037 1.69E-03 0.36 0.189 3.96E-05 

 

The two ductility methods considered are based upon a bilinear elastic/plastic approximation 

of the wall response from the experimental hysteresis.  The plastic portion of the curve is taken as 

a horizontal tangent to the point of maximum load.  The methods then differ in the determination 

of the linear elastic response from zero load to yield.  The first method, as shown in Figure 6.25 

(a) is to form a secant line between zero and the point in the force envelope where 75% of the 

maximum experimental force applied.  The second method, as shown in Figure 6.25 (b), is to 

determine the line for which the elastic energy (the area above the secant line and below the force 

envelope) is equal to the plastic energy (area below the secant line and above the force envelope).  

An iterative method was utilized to solve the slope of this secant line.  The two methods were 

found to provide similar results with good agreement to the experimentally measured yield drifts.  

Neither method was statistically more accurate in predicting the experimental yield.  Therefore, 

the 75% method was utilized due to the simplicity of its calculation.  
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 (a) 75% Method (b) Energy Equivalence Method 

Figure 6.25:  Comparison of Ductility Methods 

 

6.4.2 Failure mechanisms of non-planar walls 

The failure mechanism of each non-planar was determined by examination of the researchers’ 

photos and damage narratives.  A failure mechanism was only assigned for directions of loading 

in which a 20% strength loss was measured in the experimental hysteresis.   Three primary failure 

mechanisms were classified as “buckling-rupture,” “crushing-buckling,” and “shear-

compression.”  In addition, three secondary failure mechanisms that were observed to contribute 

significantly to the failure were classified as “framing action,” “sliding,” and “stirrup slip.”  These 

mechanisms are subsequently described in detail. 

 Primary failure mechanisms 

Buckling-rupture (BR) 

The buckling-rupture failure is characterized by the rupture of BE vertical reinforcing bars 

during straightening after being buckled in compression in the opposite direction of loading.  The 

BR failure may or may not exhibit compressive crushing in the BE.  For this failure, the loss of 

load carrying capacity is a direct result of the reinforcing bar fractures.  An example of the buckling 

of vertical BE reinforcing bars followed by rupture during straightening in shown in Figure 6.26. 
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Figure 6.26:   Example of buckling-rupture failure from Specimen TUA (Constantin and 

Beyer 2016) 

 

Crushing-buckling (CB) 

The crushing-buckling failure is characterized by crushing of the BE core and buckling of the 

vertical BE reinforcing bars.  The CB failure is typically preceded by the loss of confinement in 

the boundary element due to rupture or slip of the confining stirrup(s).   Two examples of a CB 

failure are shown in Figure 6.27 

 

  

(a) Paulay and Goodsir (1985)   (b) Brueggen (2009) - Specimen NTW2 

 
Figure 6.27:   Examples of crushing-buckling failures 
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Shear-compression (SC) 

The shear compression failure is characterized by the crushing of a diagonal compression strut 

in the web of the wall specimen.  Two examples of a shear-compression failure are shown in Figure 

6.28. 

 

  

(a) Oesterle (1979) - Specimen F2  (b) Beyer et al. (2008) - Specimen TUB 

 
Figure 6.28:   Examples of shear-compression failures 

 Secondary failure mechanisms 

Framing action 

Damage due to spalling in the unconfined web wall causes reduced stiffness and reduced 

compressive strut capacity in the spalled regions.  Spalling in the unconfined web is particularly 

detrimental due to the larger spacing of horizontal and vertical reinforcing bars that allow the 

concrete spalls to penetrate deeper than the clear cover.  As damage increases, the boundary 

element zones begin to act as columns joined by the upper portion of the wall that is significantly 

stiffer than the damaged portion of the web wall as shown in Figure 6.28 (b).  The increased 

demand due to the additional moment and shear being transferred through the boundary element 

“columns” contributes significantly to BE damage and ultimately to failure.  The corresponding 

failure mechanism is typically shear-compression; however, it was also observed in walls with 

buckling-rupture failures.  Framing action was observed in specimens with significant sliding as 

well as negligible sliding indicating this to be a separate and independent failure mechanism. 
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Sliding 

Sliding is the interface slip occurring between the base of the wall and wall foundation.  

Typically, this interface is a cold-joint in the concrete making it susceptible to a large crack at this 

location.  Furthermore, the separate concrete pours result in little to no aggregate interlock across 

this interface.  The shear resistance at this interface is provided primarily through friction and 

dowel action of the vertical reinforcing bars.  Therefore, the onset of sliding in a web wall increases 

the shear demand to the BE zones and transverse flanges, if present.  Dowel action at the BE results 

in an increased deformation of the vertical bars with an evident reverse curvature in the bottom 

few inches above the interface.  The cyclic loading history results in the dowel action reversing 

directions and degrading the concrete around the vertical BE bars.  The degraded concrete around 

the vertical bars causes a loss of confinement, reduces the buckling capacity of the bars, and 

ultimately contributes to a BR or CB failure at the boundary element(s).   An example of sliding 

is shown in Figure 6.29. 

  

 (a) Dowel action of the BE bars (b) Transverse shear in flange 

Figure 6.29:  Examples of damage due to sliding 

 

Confinement hoop damage 

The secondary failure mechanism of damage to the confinement hoops at boundary elements 

results in a loss of confinement, unrestrained bar buckling, and core crushing.  After spalling of 

the concrete and high compressive demand in the boundary element, the confinement hoops were 
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observed to deform outward with the buckling of the reinforcement.  This was particularly notable 

where vertical bars were not individually restrained with a hook or corner of a tie.  Compromised 

confining hoops also resulting from sliding of the wall section dislodging the concrete inside and 

around the boundary element at the interface.  As the concrete became loose, the bond of the 

confinement hoops and their hooks became compromised and failed. 

 

 

 (a) Deformed confinement hoops  (b) Post-test evaluation of hoops (Brueggen 2009) 

Figure 6.30:  Example of confinement hoop damage 

 

 Summary of failure mechanisms 

Each experiment was classified to have the primary and secondary failure mechanisms using 

the definitions of Section 6.4.2.  The classifications for each test are summarized in Table 6.14. 

 

Table 6.14:  Non-planar wall failure mechanisms 

Researcher Specimen 
Primary 

Mechanism 

Secondary Mechanisms 

Beyer et al. 
TUA BR Sliding 

TUB SC Frame mech. 

Ile and 

Reynouard 

IleX BR  

IleY BR  

IleXY BR  

 CW1 BR Sliding, frame mech., stirrup slip 

Lowes et al. CW2 BR Sliding, frame mech., stirrup slip 

 CW3 BR Sliding, frame mech., stirrup slip 

Brueggen 
NTW1 CB Stirrup slip 

NTW2 CB Stirrup slip 

Oesterle et al. 
F1 SC Sliding, frame mech. 

F2 SC Sliding, frame mech. 

Thomsen and 

Wallace 

TW1 CB  

TW2 CB  



294 

6.5 Non-planar wall drift capacity prediction 

Section 6.5 utilizes the non-planar wall database to evaluate proposed equations of drift 

capacity for reinforced concrete structural wall with special boundary elements in accordance with 

ACI 318-14.  A recent parametric study of planar walls conducted by Abdullah and Wallace 

(2018a) completed using the UCLA RC Wall Database (Abdullah and Wallace 2018b) determined 

that planar wall drift capacity was primarily a function of the: 

• Ratio of wall length to wall thickness, w b  

• Wall neutral axis depth to wall thickness, c b  

• Level of wall shear stress, ( )/ 'u cv cV A f  

For comparison to that study, the same parameters and resulting drift capacity equations are studied 

for non-planar walls with C-shaped, U-shaped, T-shaped, and H-shaped geometries.  The tests 

included in the UCLA RC Wall Database were screened on the basis of nine different criteria as 

noted below to narrow the database to a selection of 164 experiments.  The non-planar wall 

database of 14 non-planar wall tests loaded in a total of 42 directions was evaluated against the 

same criteria for the comparative study.  The results are described below and shown in Table 6.15.  

Non-compliant values are highlighted in red text. 

 

Non-planar wall test compliance with UCLA RC Wall Database criteria: 

a) Quasi-static reversed cyclic loading 

• All walls included in the non-planar wall database complied. 

b) Measured concrete compressive strength ≥ 3 ksi (20 MPa)  

• All walls included in the non-planar wall database complied. 

c) Width of compression zone, b ≥ 3.5” (90 mm)  

• All walls included in the non-planar wall database complied. 

d) Specimens with a rectangular compression zone  

• All walls included in the non-planar wall database complied.  For non-planar 

walls with a flange or web in compression, the boundary elements are often 

non-rectangular; however, the predicted depth of compression from the 

sectional analysis was less than the flange wall thickness for all walls in the 

non-planar wall database resulting in a rectangular compression zone.   
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e) At least two curtains of web vertical and horizontal reinforcement  

• All walls included in the non-planar wall database complied. 

f) No shear failure (i.e., diagonal tension, diagonal compression, or sliding at the base) or 

splice failure  

• 27 of 42 loading direction included in the non-planar wall database complied.  

The 15 non-compliant loading directions exhibited shear sliding and/or 

crushing of the unconfined web.  These damage patterns were observed in the 

strong axis loading of the C-shaped, U-shaped and H-shaped walls.  Web 

crushing was also observed for the T-shaped wall specimen with the web toe in 

compression.  

g) Ratio of ultimate to yield stress of boundary longitudinal reinforcement 1.2u yF F    

• All walls included in the non-planar wall database complied.   

h) Ratio of provided-to-required boundary transverse reinforcement required 

, , 0.7sh provided sh requiredA A     

• 33 of 42 loading directions included in the non-planar wall database complied.  

The 9 non-compliant loading directions had a mean ratio of 0.53 with a 

minimum value of 0.28. 

i) Ratio of vertical spacing of hoops/crossties of boundary transverse reinforcement to 

boundary longitudinal bar diameter 7.0v bs d    

• 31 of 42 loading directions included in the non-planar wall database complied.  

The 11 non-compliant loading directions had a mean ratio of 7.9 with a 

maximum value of 10.7. 
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Table 6.15:  Non-planar wall database criteria compliance (non-compliant values in red) 

Reference S
h

a
p

e 

Wall ID F
la

n
g

e 
 i

n
 c

o
m

p
. 

W
eb

 i
n

 c
o
m

p
. 

F
la

n
g

e 
to

e 
in

 c
o

m
p

. 

W
eb

 t
o

e 
in

 c
o

m
p

. 

f'c* 
(psi) 

Total 

comp. 

width 

(in) 

Wall 

Thick- 

ness 

(in) 

Total 

width of 

BE in 

comp.  

(in) 

Boundary 

Element  

Fu / Fy 

Ash,prov / 

Ash, req'd 

sv / 

db 

(Lowes et 

al. 2013) 
C 

CW1_Strong 

Positive 
F    4937 48.0 6.0 20.00 1.43 1.45 4.5 

 
C 

CW1_Strong 

Negative 
F    4937 48.0 6.0 20.00 1.43 1.45 4.5 

 
C 

CW2_Strong 

Positive 
F    5254 48.0 6.0 20.00 1.43 1.36 4.5 

 
C 

CW2_Strong 

Negative 
F    5254 48.0 6.0 20.00 1.43 1.36 4.5 

 
C 

CW2_Weak 

Positive 
 W   5254 120.0 6.0 20.00 1.43 1.55 4.5 

 
C 

CW2_Weak 

Negative 
  FT  5254 12.0 6.0 12.00 1.43 1.40 4.5 

 
C 

CW3_Strong 

Positive 
F    5119 48.0 6.0 20.00 1.43 1.39 4.5 

 
C 

CW3_Strong 

Negative 
F    5119 48.0 6.0 20.00 1.43 1.39 4.5 

 
C 

CW3_Weak 

Positive 
 W   5119 120.0 6.0 20.00 1.43 1.59 4.5 

 
C 

CW3_Weak 

Negative 
  FT  5119 12.0 6.0 12.00 1.43 1.43 4.5 

(Beyer et al. 

2008) 
U 

TUA_Strong 

Positive 
F    11313 41.3 5.9 21.65 1.22 0.59 4.2 

 
U 

TUA_Strong 

Negative 
F    11313 41.3 5.9 21.65 1.22 0.59 4.2 

 
U 

TUA_Weak 

Positive 
 W   11313 51.2 5.9 23.62 1.22 0.61 4.2 

 
U 

TUA_Weak 

Negative 
  FT  11313 11.8 5.9 11.81 1.22 0.67 4.2 

 
U 

TUB_Strong 

Positive 
F    7934 41.3 3.9 19.69 1.22 1.06 4.2 

 
U 

TUB_Strong 

Negative 
F    7934 41.3 3.9 19.69 1.22 1.06 4.2 

 
U 

TUB_Weak 

Positive 
 W   7934 51.2 3.9 15.75 1.22 1.37 4.2 

 
U 

TUB_Weak 

Negative 
  FT  7934 7.9 3.9 7.87 1.22 1.16 4.2 

(Ile and 

Reynouard 

2005) 

U 

IleX_Strong 

Positive F    3442 49.2 9.8 29.53 1.19 1.42 7.5 

 
U 

IleX_Strong 

Negative 
F    3442 49.2 9.8 29.53 1.19 1.42 7.5 

 
U 

IleY_Weak 

Positive 
 W   3442 59.1 9.8 29.53 1.19 1.62 7.5 

 
U 

IleY_Weak 

Negative 
  FT  3442 19.7 9.8 19.69 1.19 1.24 7.5 

 
U 

IleXY_Strong 

Positive 
F    3021 49.2 9.8 29.53 1.19 1.61 7.5 

 
U 

IleXY_Strong 

Negative 
F    3021 49.2 9.8 29.53 1.19 1.61 7.5 

 
U 

IleXY_Weak 

Positive 
 W   3021 59.1 9.8 29.53 1.19 1.85 7.5 

 
U 

IleXY_Weak 

Negative 
  FT  3021 19.7 9.8 19.69 1.19 1.41 7.5 
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 Table 6.15 cont’d. 

Reference S
h

a
p

e 

Wall ID F
la

n
g

e 
 i

n
 c

o
m

p
. 

W
eb

 i
n

 c
o
m

p
. 

F
la

n
g

e 
to

e 
in

 c
o

m
p

. 

W
eb

 t
o

e 
in

 c
o

m
p

. 

f'c* 
(psi) 

Total 

comp. 

width 

(in) 

Wall 

Thick- 

ness 

(in) 

Total 

width of 

BE in 

comp.  

(in) 

Boundary 

Element  

Fu / Fy 

Ash,prov / 

Ash, req'd 

sv / 

db 

(Brueggen 

2009) 
T 

NTW1_Web 

Positive 
   WT 7260 6.0 6.0 6.00 1.45 1.14 3.0 

 
T 

NTW1_Web 

Negative 
F    7260 72.0 6.0 39.00 1.45 0.76 3.5 

 
T 

NTW1_Flange 

Positive 
  FT  7260 6.0 6.0 6.00 1.45 0.91 3.5 

 
T 

NTW1_Flange 

Negative 
  FT  7260 6.0 6.0 6.00 1.45 0.91 3.5 

 
T 

NTW2_Web 

Positive 
   WT 6570 6.0 6.0 6.00 1.51 1.53 3.2 

 
T 

NTW2_Web 

Negative 
F    6570 72.0 6.0 40.25 1.51 1.24 3.7 

 
T 

NTW2_Flange 

Positive 
  FT  6570 6.0 6.0 6.00 1.51 1.53 3.7 

 
T 

NTW2_Flange 

Negative 
  FT  6570 6.0 6.0 6.00 1.51 1.53 3.7 

(Thomsen 

and Wallace 

1995) 

T 

WallaceTW1_ 

WebPositive    WT 6330 4.0 4.0 4.00 1.48 0.60 8.0 

 
T 

WallaceTW1_ 

WebNegative 
F    6330 48.0 4.0 19.00 1.48 0.59 8.0 

 
T 

WallaceTW2_ 

WebPositive 
   WT 6050 4.0 4.0 4.00 1.48 1.26 4.0 

 
T 

WallaceTW2_ 

WebNegative 
F    6050 48.0 4.0 19.00 1.48 0.28 10.7 

(Oesterle et 

al. 1976) 
H 

F1_Strong 

Positive 
F    5575 36.0 4.0 36.0 1.59 0.42 7.0 

 

H 
F1_Strong 

Negative 
F    5575 36.0 4.0 36.0 1.59 0.42 7.0 

(Oesterle et 

al. 1979) 
H 

F2_Strong 

Positive 
F    6610 36.0 4.0 14.0 1.68 1.06 2.7 

 

H 
F2_Strong 

Negative 
F    6610 36.0 4.0 14.0 1.68 1.06 2.7 

 

Using the resulting non-planar wall database, each parameter considered to impact the drift 

capacity ( w b , c b , and ( )/ 'u cv cV A f ) is plotted against the measured drift capacity in Figure 

6.31 and Figure 6.32.  Drift capacity was defined as the drift at which 20% of the peak strength is 

lost in each loading direction. 
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 (a) (b) 

Figure 6.31: Non-planar wall parameters, (a) Drift vs. (lw / b),  (b) Drift vs. (c / b) 

 

  

 (a) (b) 

Figure 6.32: Non-planar wall parameters, (a) Drift vs. (lwc  /  b2),  (b) Drift vs. (Vu / (Acv√f'c)) 

 

While these parameters were found to be representative of drift capacity in planar walls, the 

same relationship is not observed for the non-planar walls as indicated in Figure 6.31 (a) and (b).  

In particular, the large width of compression combined with the shallow depth of compression 

present in flanged walls causes the c b  parameter to become very small.  The shear stress 

parameter ( )/ 'u cv cV A f  also does not indicate a direct correlation with drift capacity. 

The results of the UCLA RC Wall Database parametric study were utilized to develop 

empirical equations for predicting the drift capacity of planar walls as a function of the wall 
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thickness, wall length, neutral axis depth, and shear stress demand.  The first proposed equation 

given in terms of % drift:   

 Drift Capacity Equation 1:  ( )
2

% 3.85
50 8 '

c w u

w c cv

l c V

h b f A


= − −  (5.9) 

The first term of the equation is an upper bound on the drift prediction.  The second term represents 

the wall material properties, axial and moment demand, geometry, and longitudinal reinforcing.  

The third term represents the impact of wall shear stress.  The predicted drift capacity from 

Equation 1 plotted against the experimental drift capacity is given in Figure 6.33 (a).  The ratio of 

predicted drift from Equation 1 to experimental drift plotted against the experimental drift capacity 

is given in Figure 6.33 (b).  

 

  

 (a) (b) 

Figure 6.33:  Drift Capacity Equation 1: ( )
2

% 3.85
50 8 '

c w u

w c cv

l c V

h b f A


= − −  

 

The results of Figure 6.33(a) indicate there is no direct correlation between the predicted drift 

capacity and experimental drift capacity for Drift Capacity Equation 1.  For walls with a 

flange/web in compression (b >> t), the second term of the equation approaches zero as a result 

of the square of the compression width (b) in the denominator.  Consequently, the second term of 

the equation becomes negligible and the drift capacity becomes a function of only the shear 

stress demand on the web only.  Furthermore, Figure 6.33(b) indicates that the equation 

overpredicts the drift capacity for nearly all walls.  The only walls with an underpredicted drift 
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capacity are the T-shaped walls with the toe of the web in compression or the toe of the flange in 

compression. 

For further comparison of this subset of tests to the UCLA RC Wall Database, a reduced dataset 

including only the cases of non-planar walls with a toe in compression is given in Figure 6.34.  

These walls contain lwc / b2 ratios consistent with the tests of the UCLA database. 

 

   

 (a) (b) 

Figure 6.34:  Drift Capacity Equation 1 for walls with toe in compression only 

 

The results of the reduced dataset still indicate no direct correlation between the predicted drift 

capacity and experimental drift capacity for Drift Capacity Equation 1.  While the dimensions of 

the compression zone may be representative of the planar wall database, the effects of loading 

history and non-planar wall geometry in tension impact the drift capacity and are not represented 

in Equation 1. 

 

The second proposed equation given in terms of % drift:   

 Drift Capacity Equation 2:  ( )
2 2 '10

% 1.55
c cvc

w w u

f Ab

h l c V


= + +  (5.10) 

Drift Capacity Equation 2 utilizes a lower bound on the drift prediction in the first term.  The 

second term represents the wall material properties, axial and moment demand, geometry, and 

longitudinal reinforcing but in an inverse form to Equation 1.  The third term represents the impact 

of wall shear stress but again using the inverse of Equation 1.  The predicted drift capacity from 
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Equation 2 plotted against the experimental drift capacity is given in Figure 6.35 (a).  The ratio of 

predicted drift from Equation 2 to experimental drift plotted against the experimental drift capacity 

is given in Figure 6.35 (b).  

 

  

 (a) (b) 

Figure 6.35:  Drift Capacity Equation 2: ( )
2 2 '10

% 1.55
c cvc

w w u

f Ab

h l c V


= + +  

 

The results of Figure 6.35 indicate there is no direct correlation between the predicted drift 

capacity and experimental drift capacity for Drift Capacity Equation 2.  For walls with a 

flange/web in compression (b >> t), the second term of the equation becomes very large as a 

result of the square of the compression width (b) in the numerator.  Consequently, the second 

term of the equation overwhelms the other terms and produces unrealistic drift capacities.   

 

The third proposed equation given in terms of % drift is:   

 Drift Capacity Equation 3:  ( )
2

% 2.5
75 12 '

c w u

w c cv

l c V

h b f A


= − −  (5.11) 

The third equation is similar in form to Equation 1.  The upper bound on the drift capacity is 

reduced from 3.85% to 2.5%.  The scalar multipliers in the denominator of the second and third 

term have been increased 50% from 50 and 8 to 75 and 12 respectively.  The predicted drift 

capacity from Equation 3 plotted against the experimental drift capacity is given in Figure 6.36 
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(a).  The ratio of predicted drift from Equation 1 to experimental drift plotted against the 

experimental drift capacity is given in Figure 6.36 (b).  

 

  

 (a) (b) 

Figure 6.36:  Drift Capacity Equation 3: ( )
2

% 2.5
75 12 '

c w u

w c cv

l c V

h b f A


= − −  

 

Similar to Equation 1, the results of Figure 6.36 indicate there is no direct correlation between 

the predicted drift capacity and experimental drift capacity for Drift Capacity Equation 3.  The 

reduction in the upper bound of the drift equation to 2.5% does shift the data down, reducing the 

ratio of predicted drift to experimental drift.  Figure 6.36 (b) indicates that the equation 

underpredicts the drift capacity of the majority of walls.  The primary outlier is the bi-

directionally loaded C-shaped walls which remain overpredicted by up to 50%.  While the drift 

ratios are more reasonable for Equation 3, the results do not capture the variations in geometry, 

reinforcing, and loading as the second term approaches zero for large widths of compression. 

In conclusion, the drift capacity of non-planar walls cannot be reliably predicted using the same 

parameters as planar walls proposed by the ACI 318H drift capacity equations.  Furthermore, the 

experimental drift capacity of non-planar walls subjected to bi-directional loading is further 

reduced by the cumulative damage associated with the loading history.  Further research is needed 

to develop recommended drift capacity recommendations for non-planar walls. 
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6.6 Parametric study of non-planar walls 

Section 6.3 developed recommendations for the effective stiffness of non-planar walls for 

elastic analysis; however, these recommendations do not provide an estimate of the drift capacity 

or ductility ratio of the wall being designed.  Section 6.4 developed a database of non-planar walls 

containing the experimental data, metadata, and moment-curvature analysis results.  Section 6.5 

evaluated proposed drift capacity equations using the non-planar wall databased, but those 

expressions were found to be inadequate.  This section utilizes the full range of parameters in the 

non-planar wall database to determine if information about the strength, ductility and failure 

mechanism of a non-planar wall could be ascertained from wall design parameters and/or a 

simplified moment-curvature analysis6.   

The influence of cyclic loading damage, increasingly non-linear strain distribution in non-

planar walls, as well as the effects of bi-directionally loading provide uncertainty to the 

applicability and limitations of using simplified engineering analyses in the design of these walls.  

A moment-curvature analysis was conducted for each experimental test in each direction of 

loading.  The results of the analyses for all experimental tests in the study were evaluated in terms 

of the wall shape, failure mechanism, and uni/bi-directional loading history.  These results were 

then compared to a previous study of moment-curvature analyses of cyclically loaded planar walls 

to further identify the limitations of these analyses specific to non-planar and/or bi-directionally 

loaded walls. 

6.6.1 Shear span ratio 

The non-planar walls examined in this study had shear span ratios between two and four. The 

data points with larger aspect ratios corresponded to the weak axis loading of the T and C-shaped 

wall tests subjected to bi-directional loading.  The planar walls examined had an aspect ratio 

between two and four.  These walls exhibited a relationship between increasing drift capacity and 

increasing aspect ratio as shown in plot (f) of Figure 6.37.  The non-planar walls subjected to uni-

directional loading history show a weak correlation between increasing ductility with increasing 

                                                 

 

6 Sections 6.6 was taken in part from project grant deliverables written for the Charles Pankow Foundation (Behrouzi et al. 

2015b).  I was the primary or sole author of the content included herein.  Furthermore, this content has been updated and amended 

since the deliverable. 



304 

aspect ratio as shown in plot (c).  However, the non-planar walls subjected to bi-directional loading 

showed no relationship between ductility and aspect ratio.  The reduced ductility is believed to be 

a result of the damage and failure of the wall specimen due to loading in other directions indicating 

an important limitation in our predictions of wall response.  

 

 (a) Shape (b) Failure Mode 

 

 (c) Loading History (d) Bi-directional Failure Mode 

 

Figure 6.37:  Shear span ratio versus drift & ductility, figures (e) and (f) from Birely et al. 

(2011) 
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Figure 6.37 cont. 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

6.6.2 Axial load 

The non-planar walls examined in the study had axial load ratios between 0.2 and 3%.  The 

planar walls had axial loads between 0 and 1.3%.  Both data-sets indicate that specimens with 

lower axial load exhibit greater ductility.  They also indicate that the tests with higher axial load 

and reduced ductility had compressive failure mechanisms.  Nearly all of the walls with crushing-

buckling failures occurred in walls with higher levels of axial load, 1%f’cAg or more, with ductility 

ratios less than five.  The two outlying CB failures were T-shaped walls subjected to a bi-

directional loading history.  

 

 

 (a) Shape (b) Failure Mode 

Figure 6.38:  Axial load ratio versus drift & ductility, figures (e) and (f) from Birely et al. (2011)  
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Figure 6.38 cont. 

 

 (c) Loading History (d) Bi-directional Failure Mode 

 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

 

6.6.3 Boundary element reinforcing 

A strong correlation between boundary element reinforcing and ductility was observed for the 

non-planar walls in the directions of failure, shown in Figure 6.39 (b).  Increasing boundary 

element vertical reinforcing corresponded to decreasing ductility as well as the probability of a 

compressive failure mechanism.   
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 (a) Shape (b) Failure Mode 

 

 (c) Loading History (d) Bi-directional Failure Mode 

 

 (e) All Planar Walls  (f) ACI Compliant Planar Walls 

Figure 6.39:  Boundary element reinforcing ratio versus drift & ductility, figures (e) and (f) 

from Birely et al. (2011) 
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6.6.4 Volumetric BE reinforcing 

The evaluation of volumetric boundary element reinforcing does not indicate a significant trend 

in the data for the non-planar walls or planar walls as shown in Figure 6.40.  Increasing 

confinement reinforcement theoretically helps to resist compressive stress and reduce the 

likelihood of compressive failure; however, in practice, it appears that the other damage 

mechanisms in non-planar walls take precedence over confining reinforcement.  In conjunction, 

damage mechanisms such as sliding might compromise the boundary elements regardless of 

confining reinforcement ratio.  

 

 

 (a) Shape (b) Failure Mode 

 

 (c) Loading History (d) Bi-directional Failure Mode 

Figure 6.40:  Boundary element confinement reinforcement ratio versus drift & ductility, 

figures (e) and (f) from Birely et al. (2011) 
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Figure 6.40 cont. 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

 

6.6.5 Normalized shear strength 

The planar wall study indicated a strong correlation between increasing shear demand and 

decreasing drift capacity.  The plot of failure mechanisms in Figure 6.41 (b) correlates compressive 

failures with low ductility to walls with high shear demand.  The more ductile buckling-rupture 

failures corresponded to walls with an imposed shear demand between 0.5 and 0.75 Vn.  It is also 

observed that the uni-directionally loaded walls exhibit a weak trend between increasing shear 

demand and decreasing drift capacity similar to the planar walls; however, the bi-directionally 

loaded specimens show no trend.   

 (a) Shape (b) Failure Mode 

Figure 6.41:  Normalized shear strength versus drift & ductility, figures (e) and (f) from Birely 

et al. (2011)  
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Figure 6.41 cont. 

 

 (c) Loading History (d) Bi-directional Failure Mode 

 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

 

6.6.6 Compressive strain at yield 

Figure 6.42 relates the compressive strain at yield determined by moment-curvature analysis 

with drift for the planar walls and ductility for the non-planar walls.  For both planar and non-

planar walls, a trend is not observed.  However, it is observed in Figure 6.42 (b) that increasing 

compressive strain at yield correlates to an increased probability of a compressive failure. 
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 (a) Shape (b) Failure Mode 

 

 

 (c) Loading History (d) Bi-directional Failure Mode 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

Figure 6.42:  Compressive strain at yield versus drift & ductility, figures (e) and (f) from 

Birely et al. (2011) 
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6.6.7 Curvature at yield 

Figure 6.43 relates the curvature at yield determined by moment-curvature analysis with drift 

for the planar walls and ductility for the non-planar walls.  For both planar and non-planar walls, 

a weak trend is observed in Figure 6.43 (b) and (f) indicating that increased curvature results in 

increased ductility.  This result is a consequence of higher curvature correlating with a tension-

controlled section. 

 

 (a) Shape (b) Failure Mode 

 

 (c) Loading History (d) Bi-directional Failure Mode 

Figure 6.43:  Curvature at yield versus drift & ductility, figures (e) and (f) from Birely et al. 

(2011) 
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Figure 6.43 cont. 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

 

6.6.8 Tensile strain at nominal 

Figure 6.44 relates the ratio of tensile strain at nominal to tensile strain at yield as determined 

by moment-curvature analysis with drift for the planar walls and ductility for the non-planar walls.  

The planar walls indicated that a high ratio of tensile strain correlated with greater drift capacity, 

but a low ration of tensile strain was inconclusive.  For the non-planar walls, the same trend is not 

observed.  In fact, small and large ratios of tensile strain were observed with small and large 

ductility ratios. 

 

 (a) Shape (b) Failure Mode 

Figure 6.44:  Ratio of tensile strain at nominal to yield versus drift & ductility, figures (e) and 

(f) from Birely et al. (2011) 
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Figure 6.44 cont. 

 

 (c) Loading History (d) Bi-directional Failure Mode 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

 

6.6.9 Nominal curvature 

Figure 6.45 relates the curvature at nominal strength determined by moment-curvature analysis 

with drift for the planar walls and ductility for the non-planar walls.  For both planar and non-

planar walls, a weak trend is observed in Figure 6.45 (a) and (f) indicating that increased curvature 

results in increased ductility.  Similar to the curvature at yield, this correlates a tension-controlled 

section.  In contrast to the curvature at yield, the data points for failure directions only in Figure 

6.45 (b) does not indicate the same correlation.   
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 (a) Shape (b) Failure Mode 

 

 (c) Loading History (d) Bi-directional Failure Mode 

 

 (e) All Planar Walls (f) ACI Compliant Planar Walls 

Figure 6.45:  Curvature at nominal versus drift & ductility, figures (e) and (f) from Birely et 

al. (2011) 
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6.6.10 Recommendations 

The planar and non-planar walls indicate that walls with compressive failures exhibited less 

ductility than walls with tensile failures.  While some direct relationships between design 

parameters and ductility were observed for the planar walls, these relationships were weak to non-

existent for the non-planar walls.  However, this general conclusion leads to the idea that certain 

design parameters can indicate a higher or lower probability of a tensile or compressive failure 

mechanism in the non-planar walls that can then be attributed to a more or less ductile design. 

In contrast to the planar walls and uni-directionally load non-planar walls, the bi-directionally 

loaded walls show less correlation between the design or analysis parameters and ductility.  The 

increased scatter of data is attributable to damage and failures occurring in other directions of 

loading.  This conclusion is reinforced by the test programs for which one wall geometry was 

subjected to uni-directional and bi-directional loading histories that resulted in reduced ductility 

when the specimen was subjected to bi-directional loading.  

A strong trend between increasing boundary element vertical reinforcement ratio with 

decreasing ductility was observed in non-planar walls subjected to both uni-directional and bi-

directional loading.  This trend was not observed in the planar walls.  From the damage narratives 

the experiments, the loss of strength (and limit of drift capacity) corresponded to the progression 

of damage in the boundary elements.    

6.7 Conclusions 

This chapter presents a summary of the quantitative analysis of the three C-shaped wall 

experiments from the perspective of prior experimental tests.  The experiments were compared to 

the planar wall and coupled wall experiments previously completed in the Complex Wall testing 

program to inform how wall geometry affects response.  Comparisons were made utilizing the 

dense dataset available for each test including strain fields and components of deformation.  The 

experiments were also compared to eleven prior experimental tests of U-shaped, H-shaped and T-

shaped walls to inform how the C-shaped walls are unique among non-planar walls and to inform 

how non-planar walls can be characterized in general.  Comparisons were made through a 

parametric study of wall design and demand parameters as well as through the development of 

effective stiffness values for non-planar walls.  From this work, the following conclusions are 

made: 
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• A C-shaped wall of similar geometry and loading demand to a planar wall exhibits 

more ductile strong axis response with increased drift capacity.  The increased drift 

capacity is a result of lower compressive stress demand and the ability to redistribute 

compressive stress along the flange as the corner boundary element becomes damaged. 

• For both the planar wall and coupled wall, the failure mechanism was non-ductile with 

shear-compression damage to the boundary element.  While C-shaped walls 

experienced similar demands, the failure mechanism was ductile resulting from cyclic 

buckling and rupture of the vertical reinforcing bars.   

• A C-shaped wall exhibits reduced flexural deformation and base rotation, but nearly 

twice the shear deformation when compared to a planar wall.  The strain field of the C-

shaped wall indicates increased shear strain and principal compressive stress in the 

tension zone of the wall.  The combination of shear in the tension zone of the wall 

causes increased shear slip along cracks and an overall increase in shear deformation 

when compared to the planar wall. 

• Bi-directional loading does not impact effective stiffness recommendations for the 

elastic analysis of non-planar walls during yielding up to 1% drift.  This conclusion is 

consistent with the load-deformation response and visual observations described in 

Chapter 4 and the quantitative analysis of the data in Chapter 5.   

• Codes of practice generally provide un-conservative recommendations of effective 

flexural stiffness values.  Effective flexural stiffness recommendations in codes of 

practice ranged from approximately 30% to 65% for a cracked wall at yield, while the 

experimental data supported only the lower bound recommendations around the 30% 

level.  An effective flexural stiffness of 35%EcIg was recommended for design. 

• Codes of practice generally do not provide recommendations of effective shear stiffness 

values; however, the degradation of shear stiffness was significant in all tests examined.  

Effective shear stiffness values approached 20% or lower at the onset of yielding.  An 

effective shear stiffness of 15%GcAcv was recommended for design. 

• Drift capacity of non-planar walls cannot be estimated using the same design 

parameters as planar walls.  Specifically, the ratio of wall length to wall thickness, w b
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, the wall neutral axis depth to wall thickness, c b , and the level of wall shear stress, 

( )/ 'u cv cV A f  were not found to be statistically significant for non-planar walls. 

• A parametric study of eighteen design parameters for non-planar walls found that 

ductility is a better metric for estimating wall performance than drift capacity.  Ductility 

was determined using both the 75% method and energy equivalence method with 

comparable results.  The 75% method is recommended for ductility calculations due to 

its simplicity. 

• For non-planar walls, increasing the reinforcement ratio of the boundary elements 

results in reduced ductility, a trend which was not observed in planar walls.  This 

conclusion reinforces the idea that non-planar wall ductility is ultimately a function of 

the damage to the individual boundary elements in cycles of tension and compression.  

• The drift capacity and ductility of bi-directionally loaded non-planar walls cannot be 

estimated using design parameters and moment-curvature analysis alone, a more 

detailed evaluation considering the three-dimensional geometry and loading history is 

required. 
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CHAPTER 7:  FINITE ELEMENT ANALYSIS OF C-SHAPED WALLS 

7.1 Introduction 

Concrete structures do not exhibit a linear relationship between load and deformations due to 

the inelastic response of concrete in compression, the cracking of concrete in tension, the yielding 

and strain-hardening of reinforcements, path-dependent effects, and damage.  The effective design 

of concrete structures for all levels of performance, particularly for structures in regions of high 

seismicity, makes it critically important to be able to predict the complete inelastic response of 

these structures.  The prior chapters concluded that the shear demand in non-planar walls, 

particularly C-shaped walls, significantly affects wall response as compared to planar wall tests of 

similar geometry and reinforcing.  Prior experimental tests also concluded that the shear response 

impacted the behavior; however, a true understanding of how shear is distributed in a C-shaped 

wall after cracking, yielding and damage was not well understood. Chapter 7 seeks to improve the 

understanding of shear distribution in C-shaped walls. 

Finite element analysis methods that can account for geometric and material non-linearity 

provide the most versatile approach to predicting the response of C-shaped walls. The flexibility 

of FEA methods has enabled the incorporation of different conceptual theories, behavioral models, 

and constitutive relationships for cracked reinforced concrete.  Choosing from the wide array of 

NLFEA approaches for a specific structure requires an understanding of the underlying 

assumptions, the experimental data from which each model was calibrated, and the expected 

behavior of the member being analyzed.  Section 7.2 summarizes the constitutive modeling 

approach for the finite element study based on the literature review conducted in Section 2.4.  

Section 7.3 validates the selected constitutive models at the element level using a database of 

reinforced concrete panel tests.  In conjunction with the element level validation, the impact of 

crack spacing on model performance is evaluated.  Section 7.4 describes the finite element 

modeling approach using a three-dimensional layered shell element.  The results of the analysis 

for strong axis and weak axis loading are compared to the experimental response.  Section 7.5 

studies the results of the finite element analysis to determine the shear distribution in the C-shaped 

walls and a parametric study of the ratio of flange to web length is conducted.   
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7.2 Constitutive modeling 

Structural concrete is a highly anisotropic material and exhibits an inelastic response at even 

service level loading for most structures.  Section 2.4 illustrated that inelasticity results from the 

cracking of concrete in tension, the nonlinear response of concrete in compression, and the 

interactions between the concrete and steel.  Anisotropy is the dependence of the material response 

to the direction of loading, and is a consequence of the reinforcement layout and cracking of the 

concrete.  Selected challenges to the numerical modeling of structural concrete include:  

• the heterogeneous material structure of concrete 

• the discontinuities induced by the cracking of concrete,  

• the local interactions of the two materials at cracks and in-between cracks,  

• the non-perfect bond between concrete and reinforcement 

• load path dependency, 

• the effects of cyclic and/or non-proportional loadings,  

• and, the precipitation of failure due to local damage. 

While extensive progress has been made in addressing these challenges, many deficiencies still 

exist that have limited the widespread use of NLFEA for the design and analysis of concrete 

structures.   

As evidence of these challenges and to provide guidance in addressing them, an international 

competition for the blind prediction of the response of structural concrete was conducted in the 

mid-1980s. Predicting structural concrete elements subjected to a variety of in-plane shear and 

normal stresses revealed a wide disparity in numerical model predictions (Collins, Vecchio, and 

Mehlhorn 1985).  Of twenty-seven entries, the entries had an average error of 15% from the 

experimentally observed values.  The authors found no correlation between the complexity of an 

analytical model and the accuracy of its prediction.  Failure loads and deformations prior to 

yielding were generally overestimated.  The effects of non-proportional loading history were not 

well understood or predicted in the numerical models.  Moreover, mathematically rigorous models 

founded on theoretical basis did not always predict the actual concrete response.  From this, the 

authors recommended that all models support their theoretical basis with experimental test data.   

Existing models for structural concrete in the literature number in the hundreds, and many of 

those models available in commercial finite element analysis programs.  As evidence, the theory 

manuals for three NLFEA programs specific only to structural concrete are lengthy numbering 
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229p (Cervenka, Jendele, and Cervenka 2007), 347p (Wong, Vecchio, and Trommels 2013), and 

534p (de Witte and Kikstra 2005). Theory manuals of general NLFEA tools applicable to many 

materials have in excess of one thousand pages.  The choice of model and implementation of the 

model will each result in a different prediction of member response.  This lack of unique 

predictions and the unknown level of uncertainty associated with that prediction are undesirable 

traits.  Choosing from the wide array of models and their implementations requires understanding 

their underlying assumptions, the experimental data for which each model was calibrated, and the 

expected behavior of the member being analyzed before conducting any analysis.  A 

comprehensive assessment would parametrically study the influence of every model decision and 

compare predictions from multiple nonlinear analyses  (Lee 2009).  The associated effort of such 

an assessment and the required expertise create significant barriers to the adoption of NLFEA. 

7.2.1 Selection of constitutive models 

The constitutive models selected for the NLFEA were based upon the literature review in 

Section 2.4.  For compression response of the concrete, models were selected that capture the non-

linear stress-strain response, effects of confinement, biaxial strength enhancement, compression 

softening and hysteretic effects.  These models and their corresponding description in the literature 

review are summarized below: 

• The pre-peak concrete compression response is modeled using the stress-strain 

response proposed by Popovics (1973) described in Section 2.4.2.2.  This model was 

selected because of its wide applicability to capture the variation in stress-strain 

response for low, medium and high-strength concretes.   

• The post-peak response is based on the modified Kent-Park model (Park, Priestley, and 

Gill 1982) described in Section 2.4.2.4 in order to capture the increase in strength 

associated with passive confinement in the boundary elements.   

• The compression softening response utilizes the type B model proposed by Vecchio 

and Collins (1993) described in Section 2.4.2.3.  The type B model was selected 

because of its numerical simplicity over the type A model and performance against a 

wide array of experimental panel tests. 

• The strength enhancement associated with biaxial loading was considered based on the 

work of Kupfer described in Section 2.5.2.2. 
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• The hysteretic response of the concrete considers the plastic strain offsets associated 

with damage and the non-linear unloading and reloading curves to capture the cyclic 

load response.  This model is described in Section 2.5.3.2. 

 

For the response of concrete in tension, models were selected that capture the effects of tension 

stiffening, tension softening, and the behavior of shear and tension across open cracks.  These 

models and their corresponding description in the literature review are summarized below: 

• The tension stiffening response is based on the work of Bentz (2000) described in 

Section 2.4.6.3 as modified by Wong et al. (2013) to include the effect of principal 

stress inclination relative to the reinforcing bar angle. 

• The tension softening response is based on the work of Cornelissen, Hordijk, and 

Reinhardt (1986) described in Section 2.4.3.  While the tension softening relationship 

is included, the expected mesh discretization is not expected to sufficiently small such 

that the tension softening relationship would control the response. 

• The transmission of stress across a crack is modeled consistently with the MCFT and 

DSFM described in Section 2.5.2.2 and 2.5.3.1. 

 

For the response of the steel reinforcement, models were selected that capture the non-linear 

stress-strain response, hysteretic effects, and bar buckling.  These models and their corresponding 

description in the literature review are summarized below: 

• The hysteretic non-linear stress-strain response is based on the work of Seckin (1981) 

described in Section 2.4.4.1. 

• Analytically, the bond between the concrete and reinforcing is not explicitly 

considered.  The average strain in the concrete is equal to the average strain in the 

reinforcement.  However, the effect of bond degradation is implicitly considered in the 

constitutive model of tension stiffening.  The effect of bond degradation is also captured 

in the constitutive model for determination of crack width. 

• Bar buckling is considered based on the work of Dhakal and Maekawa described in 

Section 2.4.5 
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7.3 Element level model validation 

Model validation and verification represents the evaluation of a computational model’s 

predicted response to experimental results.  Model verification evaluates a numerical model’s 

implementation and reproduction of the intended physics, regardless of its ability to match any 

experimental data.  Model validation comprehensively compares the predicted response of the 

computational model to experimental data.  At the current stage of the development of NLFEA, 

the goal of a model validation remains limited to predicting the response of a specific type of 

structure (Fédération internationale du béton and Task Group 4.4 2008).     

One key challenge is the necessity of extensive and well-formulated experimental, structural, 

and material data to validate the numerical approaches that have been proposed.  Concrete exhibits 

a significant size effect (Bažant and Oh 1983) that inhibits the use of similitude relationships to 

conduct laboratory testing of concrete structures.  The size effect has been addressed by the testing 

of reinforced concrete panels with thicknesses and reinforcing representative of membrane and 

shell structures allowing validation of numerical models at the element level.  The size effect has 

also been addressed by large-scale experimental tests of structural concrete to validate numerical 

models at the global level.  However, limitations of laboratory testing equipment and the expense 

of large-scale tests have limited the number of experimental datasets that are available for model 

validation.  Furthermore, the boundary conditions and imposed loadings of these tests in a 

laboratory must be representative of reality.  This chapter will evaluate both methods of model 

validation at the element level and global level. 

7.3.1 Development of 2-D continuum analysis program 

For the validation of numerical models with experimental data, the largest barrier is the 

determination of the experimental stress state.  While measurements of displacements at discrete 

points are commonly used to develop strain fields in an experiment, the stress field is generally 

not available to measure.  To provide a means for validation of numerical models against 

membrane and shell elements of reinforced concrete, numerous panel tests of reinforced concrete 

have been conducted at the University of Toronto and the University of Houston since the 1980s.  

In these experiments, the panel is subjected to a constant state of stress and strain allowing.  These 

experiments have permitted validation of the experimental strain and stress field with constitutive 

models.   
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For the reinforced concrete panels, the loading is applied to create a uniform state of stress on 

average permitting the resulting data to include measured average stresses and strains in the 

concrete and steel.  While the literature identified more than 70 panel tests, the data set herein 

includes only those with reported crack widths at each step of loading to facilitate the evaluation 

of crack prediction.  The data from these panel tests and others were the primary basis for the 

development of the constitutive relationships implemented in the total strain models described in 

Section 2.5. The wide array of material properties, reinforcing and loading conditions creates an 

opportunity to determine the successes and shortcomings of the different analytical models.  

To perform this element level validation, a database of 25 experimentally tested reinforced 

concrete panels (Chan 1989; Aspiotis 1993; Zhang 1995; Xie 2009) was compiled and summarized 

in Table 7.1.  The panel database contains panels with reinforcement ratios varying from zero to 

5.98%.  In addition, the reinforcing ratios in 21 of the 25 panels utilized non-orthogonal reinforcing 

with a minimum reinforcing ratio to maximum ratio ranging from zero to one half. The concrete 

compressive strength varied from 24 to 103 MPa and the panels were subjected to various 

configurations of in-plane shear and normal stresses applied in a monotonic loading pattern.  A 

summary of the design parameters of each panel test included is given in Table 7.1. 

 

Table 7.1:  Panel test database 

Reference Panel ID Nx Ny Vxy f'c (MPa) ρx (%) ρy (%) ρmin / ρmax 

Zhang (1995) VA1 0 0 1 95.10 1.20 1.20 1.00 

Zhang (1995) VA2 0 0 1 98.20 2.39 2.39 1.00 

Zhang (1995) VA3 0 0 1 94.60 3.59 3.59 1.00 

Zhang (1995) VA4 0 0 1 103.10 5.24 5.24 1.00 

Zhang (1995) VB1 0 0 1 98.20 2.39 1.20 0.50 

Zhang (1995) VB2 0 0 1 97.60 3.59 1.20 0.33 

Zhang (1995) VB3 0 0 1 102.30 5.98 1.20 0.20 

Zhang (1995) VB4 0 0 1 96.90 1.80 0.60 0.33 

Aspiotis (1993) PA1 0 0 1 49.90 1.65 0.82 0.50 

Aspiotis (1993) PA2 0 0 1 43.00 1.65 0.82 0.50 

Aspiotis (1993) PHS1 0 0 1 72.20 3.23 0.00 0.00 

Aspiotis (1993) PHS2 0 0 1 66.10 3.23 0.41 0.13 

Aspiotis (1993) PHS4 0.25 0.25 1 68.50 3.23 0.82 0.25 

Aspiotis (1993) PHS5 0.25 0.25 1 52.10 3.23 0.41 0.13 

Aspiotis (1993) PHS8 0 0 1 55.90 3.23 1.24 0.38 

Aspiotis (1993) PHS9 -0.25 -0.25 1 56.00 3.23 0.41 0.13 
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 Table 7.1 cont. 

Reference Panel ID Nx Ny Vxy f'c (MPa) ρx (%) ρy (%) ρmin / ρmax 

Chan (1989) PC1A 0 0 1 27.91 1.65 0.82 0.50 

Chan (1989) PC4 -0.39 -0.39 1 24.89 1.65 0.82 0.50 

Chan (1989) PC7 0.32 0.32 1 28.73 1.65 0.82 0.50 

Xie (2009) PL1 -2 0 1 38.50 1.57 0.18 0.12 

Xie (2009) PL2 -1 0 1 38.20 1.58 0.19 0.12 

Xie (2009) PL3 1 0 1 42.00 1.57 0.18 0.12 

Xie (2009) PL4 -2.8 0 1 43.10 1.65 0.19 0.12 

Xie (2009) PL5 0 0 1 38.10 1.58 0.18 0.12 

Xie (2009) PL6 3 0 1 43.50 1.58 0.19 0.12 

 

A continuum analysis program was developed to evaluate and validate the choice of 

constitutive models for predicting the response of the reinforced concrete panels.  The overall 

workflow of the program consists of taking tabulated experimental data in the literature that was 

imported to excel and importing that data into a Matlab data structure.  The data structure contains 

the geometry, material properties, reinforcing, and loading parameters for each panel test as well 

as stepwise data for the experimental response and analytical simulations.  The response data 

includes all strains, concrete stresses, reinforcement stresses and cracking information.  To 

maximize the number of constitutive models available for analysis, two pre-existing finite element 

analysis programs, VecTor2 (Wong, Vecchio, and Trommels 2013) and OpenSees (McKenna, 

Fenves, and Scott 2000) were incorporated to perform the analysis of each panel.  The analytical 

model for each program is automatically generated based upon the panel parameters defined in the 

data structure.  After running an analysis, the output data files are imported back into the data 

structure and organized in the same manner as the experimental data.  This approach allows the 

ability to perform a large number of numerical analyses efficiently and subsequently perform 

statistical analyses as part of a parametric study.  The overall workflow is depicted in Figure 7.1.  

A snapshot of the continuum analysis program input and output is shown in Figure 7.2. 
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Figure 7.1:  Overview of 2D continuum analysis framework 

 

 

 

Figure 7.2:  Snapshot of 2D continuum analysis program 
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7.3.2 Parameters for evaluating model performance 

The parameters utilized in the panel database analysis are summarized in Table 7.2 and Table 

7.3.  The design parameters in Table 7.2 represent the input variables to crack spacing models that 

are independent of the predicted response.  The response parameters in Table 7.3 represent the 

ability of the analytical prediction to capture the experimental response at key points along the 

entire load-deformation history. 

 

Table 7.2:  Definitions of design parameters 

Parameter Symbol Definition 

Clear Cover 
cc  The clear cover is the distance from the face of concrete to outside face of rebar.  The 

clear cover is subject to construction tolerances and the layering of reinforcing bars.  

A common representation of the clear cover is to use 1.5 times the maximum 

aggregate size.   

Bar Diameter 
bd  The diameter of the reinforcing bar.  Each direction is considered separately. 

Compressive 

strength at testing 
' *cf  The experimentally measured compressive strength at the time of testing.  

Tensile strength 'tf  The experimentally measured direct tensile strength, in the absence of test data this 

value is taken as 4 'cf . 

Effective 

reinforcement ratio 
ef  The area of vertical reinforcing steel divided by the effective area of concrete. 

Mean bond stress 
bm  The nominal shear stress where the nominal shear strength, Vn, and shear area, Acv, 

are defined by ACI 318.  For bi-directionally loaded tests, the value of Vn and Acv 

was defined separately for each direction of loading. 

Bond ratio k  The ratio of mean bond stress to direct tensile strength of the concrete. 

 

Table 7.3:  Definitions of response parameters 

Parameter Symbol Definition 

Shear stress at 

cracking crv  The shear stress at onset of cracking given in megapascals. 

Shear strain at 

cracking cr  The shear strain at onset of cracking given in millistrain. 

Shear stress at 

25% yield 
25 yv  The shear stress at first 25% yield of the reinforcing bars in either direction based 

upon the average stress in the reinforcing bars given in megapascals. 

Shear strain at 

25% yield 
25 y  The shear strain at first 25% yield of the reinforcing bars in either direction based 

upon the average stress in the reinforcing bars given in millistrain. 

Secant stiffness at 

25% yield 
25 yE  The ratio of stress at 25% yield and strain at 25% yield given in megapascals. 

Shear stress at 

50% yield 
50 yv  The shear stress at first 50% yield of the reinforcing bars in either direction based 

upon the average stress in the reinforcing bars given in megapascals. 

Shear strain at 

50% yield 
50 y  The shear strain at first 50% yield of the reinforcing bars in either direction based 

upon the average stress in the reinforcing bars given in millistrain. 
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Table 7.3 cont. 

Parameter Symbol Definition 

Secant stiffness at 

50% yield 
50 yE  The ratio of stress at 50% yield and strain at 50% yield given in megapascals. 

Shear stress at 

75% yield 
75 yv  The shear stress at first 75% yield of the reinforcing bars in either direction based 

upon the average stress in the reinforcing bars given in megapascals. 

Shear strain at 

75% yield 
75 y  The shear strain at first 75% yield of the reinforcing bars in either direction based 

upon the average stress in the reinforcing bars given in millistrain. 

Secant stiffness at 

75% yield 
75 yE  The ratio of stress at 75% yield and strain at 75% yield given in megapascals. 

Maximum shear 

stress uv  The maximum shear stress given in megapascals. 

Shear strain at 

peak stress u  The shear strain at the maximum shear stress given in millistrain. 

Secant stiffness at 

peak stress uE  The ratio of maximum stress and strain at maximum stress given in megapascals. 

 

7.3.3 Crack spacing of reinforced concrete subjected to biaxial stress 

The tensile response and shear response of cracked reinforced concrete are directly related to 

the width and spacing of the cracks.  For numerical modeling of reinforced concrete in a 

continuum, the constitutive models are dependent on the width of cracks which is also dependent 

on the distribution or spacing of those cracks.  Consequently, the assumption of crack spacing 

input to the numerical model can significantly impact the predicted response.   

Prior research on cracking of reinforced concrete has focused on controlling crack width.  

Crack width has been the focus due to the desire to limit crack width during service level loading 

for appearance and durability (Beeby et al. 1985).  Prior research and models of crack spacing 

have indicated the primary variables to be the clear cover to reinforcing, the spacing of reinforcing 

bars, the diameter of reinforcing bars, the effective reinforcing ratio of the section in tension, the 

bond of the reinforcing bars to the concrete, and the mean tensile strength of the concrete.  A state 

of the art review of cracking conducted by Borosnyói and Balázs (2005) identified twenty-four 

different models for crack spacing proposed from 1950 to the present utilizing these parameters in 

various combinations.  The models range from a single parameter to five parameters and include 

both linear and non-linear functions of those parameters.  One of the key findings of this study was 

that there is not a universally accepted model for crack spacing in reinforced concrete.   
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A recent study (Lapi, Orlando, and Spinelli 2018) evaluated thirty models for crack width 

against 380 prior experimental tests from four different experimental campaigns.  These included 

tension members and flexural members.  For most cracking models, the coefficient of variance in 

the prediction exceeds 30%, and it was higher than 50% for some models.  The inherent scatter of 

the data is considered to be part of the cracking phenomenon in reinforced concrete in which the 

actual distributions of aggregates and paste around reinforcing bars at the mesoscale is not 

considered.  Building on the results of Borosnyói and Balázs (2005), Lapi et al. (2018) concluded 

that the ability to predict cracking does not necessarily increase with increased model refinement. 

Direct research regarding the influence of biaxial loading conditions and cracking non-

orthogonal to the reinforcing bars remains an open topic.  The Eurocode 2 (Comité Europé en de 

Normalisation 2004) addresses non-orthogonal cracks by taking decomposing the crack into its 

components orthogonal to the reinforcement.  For the case of crack spacing, the average spacing 

for a non-orthogonal crack is given as:  
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To study the primary input variables of clear cover to reinforcing, spacing of reinforcing bars, 

diameter of reinforcing bars, effective reinforcing ratio of the section in tension, the bond of the 

reinforcing bars to the concrete, and the mean tensile strength of the concrete, a statistical analysis 

of the experimental panel tests in the database was conducted to determine the influence of these 

parameters on crack spacing.  The data selected for this analysis omitted the panels with non-

orthogonal loading (PL-series) because the angle of principal stress and strain changed over the 

course of the loading.   In addition, panel PH1 was omitted because it was reinforced in one 

direction only.   

The experimental data for the panel test reported the average crack width and corresponding 

tensile strain for each step.  For steps where the crack widths were not reported, the crack width 

was interpolated.  The average crack spacing was determined from the data by the ratio of average 

crack width to average tensile strain: 

 1
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rm

w
s
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=

  (6.2) 
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The crack spacing models studied herein are a constant value throughout the loading history.  

This approach considers only the stabilized cracking phase and does not capture the crack 

formation phase.  The mean experimental crack spacing after crack formation was used for the 

parametric study and the comparison to the crack spacing predicted by the various crack spacing 

models.  Using the predicted and the measured crack spacings of the 18 panels, regression analysis 

and analysis of variance tests were performed to determine the significance of each parameter on 

crack spacing.  Table 7.4 provides the resulting statistics of each parameter.  Based on the 

distribution of experimental data, the tensile strength, reinforcement diameter, and reinforcement 

ratio utilized an inverse curve fitting relationship.  Similarly, the clear cover and reinforcement 

spacing utilized a linear fit.  The analysis of variance indicates that all but two variables were 

statistically significant (p < 0.05).   The reinforcement spacing was not statistically significant with 

a p-value of 0.19 indicating that this parameter is more closely related to the flexural response of 

crack spacing in beam bending.  In addition, the ratio of rebar diameter to effective reinforcement 

ratio was also not significant with a p-value of 0.56.  The ratio of reinforcing bar diameter to 

effective reinforcing was a primary variable in 13 of the 24 crack spacing models identified in the 

literature including all of the code-defined expressions (Borosnyói and Balázs 2005); however, the 

statistical analysis here indicates a large spread of data for this variable in the panel tests.  

Additional research is needed to evaluate this parameter and the assumed effective reinforcement 

ratio associated with non-orthogonal cracking. 

  

Table 7.4:  Regression analysis of crack spacings 

Parameter R R Square Adjusted R Square Std. Error of the Estimate F-Value Significance 

Tensile Strength 0.672 0.452 0.417 27.892 13.174 0.002 

Avg. Clear Cover 0.613 0.376 0.337 29.761 9.625 0.007 

Reinf. Spacing 0.326 0.106 0.050 35.610 1.898 0.187 

Reinf. Diameter 0.656 0.430 0.395 28.431 12.078 0.003 

Reinf. Ratio 0.511 0.261 0.215 32.367 5.665 0.030 

b efd 
 

0.147 0.022 -0.039 37.252 .355 0.560 
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Figure 7.3:  Crack spacing as a function of (a) tensile strength and (b) clear cover 
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Figure 7.4:  Crack spacing as a function of (a) reinf. spacing and (b) reinf. diameter 
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Figure 7.5:  Crack spacing as a function of (a) reinf. ratio and (b) db/ρ 

 

7.3.4 Crack spacing models for reinforced concrete  

The subsequent study utilizes the panel test data containing measured crack widths and load-

deformation response to evaluate the performance of six different crack spacing models identified 

in the literature.  Six models were selected with historical significance in the development of crack 

spacing and/or are present in building codes or model codes of practice.   

 Saliger (1950) 

One of the earliest empirical formulas for crack spacing was developed by Saliger (1950).  The 

approach utilized the product of the ratio of reinforcing bar diameter to effective reinforcing ratio 

and the ratio of compressive strength to average bond stress:  

 

'
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The average bond stress is generally assumed to be a constant value.  As recommended by 

Kauffman and Marti (1998), the average bond stress is taken as twice the direct tensile strength of 

the concrete: 

 
2bm tf =

  (6.4) 

However, the relationship was based on tests of low-strength concrete (Lapi, Orlando, and Spinelli 

2018).  At medium and high-strength concrete, the relationship is observed to over-predict the 

crack spacing.  The results of the panel test predictions using the Saliger crack spacing model are 

presented in Table 7.5.  The tabulated results indicate a meaningful prediction of strength and 

stiffness up to 75% yield.  The nominal stress and strain exhibited a large scatter.  To illustrate the 

limitations to predict stress and stiffness between these points of loading, scatter plots of the ratio 

of predicted to experimental response are given in Figure 7.6 and Figure 7.7.  The scatter plots 

indicate the large spread of data for predicting the nominal shear stress and stiffness. 

 

Table 7.5:  Regression analysis of Saliger crack spacing model  

Parameter Linear Regression of 

Predicted / Experimental 

R Squared 95% CI - 

Lower Bound 

95% CI - 

Upper Bound 

crv  1.01 0.19 0.93 1.09 

cr  0.73 0.28 0.61 0.85 

25 yv  1.00 0.15 0.92 1.07 

25 y  0.96 0.09 0.91 1.00 

25 yE  1.01 0.20 0.91 1.11 

50 yv  0.98 0.07 0.94 1.02 

50 y  0.96 0.10 0.91 1.01 

50 yE  1.01 0.11 0.95 1.07 

75 yv  0.98 0.07 0.94 1.02 

75 y  0.95 0.11 0.89 1.01 

75 yE  1.02 0.15 0.93 1.10 

uv  0.79 0.21 0.70 0.88 

u  0.43 0.43 0.25 0.62 

uE  1.79 4.19 0.03 3.56 
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Figure 7.6:  Shear stress prediction using the Saliger crack spacing model 

 

  

 

Figure 7.7:  Secant stiffness prediction using the Saliger crack spacing model 

 

 Broms (1965) 

Broms (1965) developed a simplified relationship for crack width and crack spacing based on 

tests of 37 tension members and 10 flexural members of varying geometries and material 

properties.  While prior empirical relationships had assumed a linear relationship for the bond-

stress distribution, Broms utilized an inscribed circle between cracks to represent the relative 

distributions of tensile and compressive stresses in the concrete.  The average crack spacing was 

observed to be a function of twice the distance from the face of concrete to the center of reinforcing 

bar: 
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The model generally underpredicted the crack spacing at low steel stresses and overpredicted 

the crack spacing at high steel stresses.  The results of the panel test predictions using the Broms 

crack spacing model are presented in Table 7.6.  The tabulated results indicate a meaningful 

prediction of strength up to nominal and stiffness up to 75% yield.  To illustrate the limitations to 

predict stress and stiffness between these points of loading, scatter plots of the ratio of predicted 

to experimental response are given in Figure 7.8 and Figure 7.9.  In general, the Broms crack 

spacing model overpredicted the strength and stiffness by 10% on average. 

 

Table 7.6:  Analysis of Broms crack spacing model  

Parameter Mean of Predicted / 

Experimental 

Root squared 

mean error 

Minimum 

Value 

Maximum 

Value 

crv  1.05 0.19 0.97 1.13 

cr  0.77 0.29 0.65 0.90 

25 yv  1.19 0.13 1.12 1.25 

25 y  1.07 0.16 0.99 1.14 

25 yE  1.08 0.19 0.99 1.16 

50 yv  1.17 0.10 1.13 1.22 

50 y  1.06 0.15 1.00 1.13 

50 yE  1.08 0.15 1.02 1.15 

75 yv  1.15 0.09 1.11 1.20 

75 y  1.03 0.14 0.96 1.09 

75 yE  1.09 0.17 1.02 1.17 

uv  1.12 0.22 1.02 1.21 

u  0.90 0.56 0.66 1.13 

uE  1.15 3.61 0.38 2.67 
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Figure 7.8:  Shear stress prediction using the Broms crack spacing model 

 

  

 

Figure 7.9:  Secant stiffness prediction using the Broms crack spacing model 

 

 CEB-FIP (1978) 

The 1978 Model Code (1978) introduced valuable procedures for the serviceability limit state 

design of concrete structures.  With respect to cracking, the CEB-FIP published the Design Manual 

for Cracking and Deformations (1985) to expand on these provisions and their application.  This 

work has served as the basis for crack spacing and crack width models in European building codes 

to date with relatively minor changes since its inception. The expression considers the clear cover, 

spacing of reinforcement, type of loading, bond, and the ratio of rebar diameter to reinforcing ratio: 
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The first parameter, 
1k  , represents the change in bond strength associated with the bar surface.  

For deformed bar reinforcing, this parameter is taken as 0.4.  For plain bar reinforcing, this 

parameter is taken as 0.8.  All test specimens utilized deformed bars or mechanically imprinted 

bars, so the value of 0.4 was used.  The second parameter, 2k , represents the strain distribution in 

the effective area of concrete.  For bending, this parameter is taken as 0.125.  For direct tension, 

this parameter is taken as 0.25.   

The results of the panel test predictions using the 1978 Model Code crack spacing model are 

presented in Table 7.7.  The tabulated results indicate a meaningful prediction of strength up to 

nominal and stiffness up to 75% yield.  To illustrate the limitations to predict stress and stiffness 

between these points of loading, scatter plots of the ratio of predicted to experimental response are 

given in Figure 7.10 and Figure 7.11.   

 

Table 7.7:  Regression analysis of 1978 CEB-FIP crack spacing model  

Parameter Linear Regression of 

Predicted / Experimental 

R Squared 95% CI - 

Lower Bound 

95% CI - 

Upper Bound 

crv  1.02 0.19 0.94 1.10 

cr  0.74 0.29 0.62 0.86 

25 yv  1.06 0.16 0.99 1.14 

25 y  1.01 0.13 0.95 1.07 

25 yE  1.01 0.20 0.91 1.10 

50 yv  1.04 0.08 1.00 1.08 

50 y  0.99 0.13 0.93 1.05 

50 yE  1.01 0.13 0.95 1.07 

75 yv  1.03 0.08 1.00 1.07 

75 y  0.98 0.14 0.91 1.04 

75 yE  1.05 0.20 0.95 1.14 

uv  0.93 0.15 0.87 0.99 

u  0.59 0.42 0.41 0.77 

uE  1.34 1.18 0.84 1.83 
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Figure 7.10:  Shear stress prediction using the 1978 CEB-FIP crack spacing model 

 

  

 

Figure 7.11:  Secant stiffness prediction using the 1978 CEB-FIP crack spacing model 

 

 Noakowski (1985) 

Noakowski (1985) utilized a nonlinear relationship for the crack spacing.  The expression is a 

function of the direct tensile strength of the concrete, average bond stress, effective reinforcing 

ratio, and bar diameter.  In contrast to most other models, this expression is not based on empirical 

data.  Instead, it was developed analytically using the differential equation of bond-slip in the 

transfer length on each side of an open crack (Lapi, Orlando, and Spinelli 2018). 
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For analysis of the panel tests, this expression overpredicted the average crack spacing 

measured experimentally by a factor of 4 to 10.  The regression analysis of the Noakowski model 

indicates a poor prediction of strength and deformation beyond 75% yielding as shown in Table 

7.8.  Figure 7.12 illustrates the model was unable to predict the nominal strength of the panel 

reliably, and the prediction captured only 80% of the nominal strength on average.  In addition, 

Figure 7.13 indicates that the prediction of secant stiffness degrades beyond 50% yielding with a 

wide scatter of data at 75%.   

 

Table 7.8:  Regression analysis of Noakowski crack spacing model  

Parameter Linear Regression of 

Predicted / Experimental 

R Squared 95% CI - 

Lower Bound 

95% CI - 

Upper Bound 

crv  1.01 0.20 0.92 1.09 

cr  0.73 0.29 0.61 0.85 

25 yv  1.01 0.16 0.93 1.08 

25 y  0.95 0.11 0.90 1.00 

25 yE  1.01 0.20 0.91 1.10 

50 yv  0.99 0.09 0.94 1.03 

50 y  0.95 0.10 0.90 1.00 

50 yE  1.01 0.14 0.94 1.08 

75 yv  0.96 0.12 0.89 1.03 

75 y  0.95 0.16 0.85 1.04 

75 yE  1.01 0.24 0.87 1.15 

uv  0.77 0.19 0.69 0.85 

u  0.35 0.31 0.22 0.48 

uE  2.82 3.20 1.47 4.17 
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Figure 7.12:  Shear stress prediction using the Noakowski crack spacing model 

 

  

 

Figure 7.13:  Secant stiffness prediction using the Noakowski crack spacing model 

 

 CEB-FIP (1990)  

The CEB-FIP Model Code 1990 simplified the expression given in the CEB-FIP Model Code 

1978 expression to remove the dependence of clear cover, rebar spacing, and bond on crack 

spacing:  
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This simplified model has been observed to exhibit particularly poor performance when the clear 

cover becomes large (Lapi, Orlando, and Spinelli 2018).   
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The results of the panel test predictions using the Model Code 1990 crack spacing expression 

are presented in Table 7.9.  The tabulated results indicate a meaningful prediction of strength up 

to nominal and stiffness up to 75% yield.  To illustrate the limitations to predict stress and stiffness 

between these points of loading, scatter plots of the ratio of predicted to experimental response are 

given in Figure 7.14 and Figure 7.15.  While the simplified expression may reduce the accuracy 

of the prediction, it also reduces the sensitivity of the model to material properties and geometry 

outside the calibrated test data. 

 

Table 7.9:  Regression analysis of 1990 CEB-FIP crack spacing model  

Parameter Linear Regression of 

Predicted / Experimental 

R Squared 95% CI - 

Lower Bound 

95% CI - 

Upper Bound 

crv  1.02 0.18 0.95 1.10 

cr  0.74 0.28 0.63 0.86 

25 yv  1.09 0.18 1.00 1.18 

25 y  1.00 0.11 0.95 1.06 

25 yE  1.01 0.21 0.91 1.11 

50 yv  1.04 0.09 0.99 1.08 

50 y  0.99 0.11 0.94 1.04 

50 yE  1.02 0.13 0.96 1.08 

75 yv  1.03 0.08 0.99 1.07 

75 y  0.96 0.15 0.89 1.03 

75 yE  1.06 0.21 0.96 1.16 

uv  0.92 0.19 0.85 1.00 

u  0.61 0.46 0.41 0.80 

uE  1.31 3.73 -0.27 2.88 
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Figure 7.14:  Shear stress prediction using the 1990 CEB-FIP crack spacing model 

 

  

 

Figure 7.15:  Secant stiffness prediction using the 1990 CEB-FIP crack spacing model 

 

 Eurocode 2 (1992) 

The Eurocode 2 (Comité Europé en de Normalisation 2004) made minor modifications to the 

CEB-FIP 1978 expression.  The dependence on the spacing of reinforcement is removed, and the 

coefficients of the linear relationship are adjusted accordingly.   The resulting expression for crack 

spacing is a function of the rebar diameter and reinforcing ratio: 
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The first parameter, 
1k  , represents the change in bond strength associated with the bar surface.  

For deformed bar reinforcing, this parameter is taken as 0.8.  For plain bar reinforcing, this 

parameter is taken as 1.6.  All test specimens utilized deformed bars or mechanically imprinted 

bars, so the value of 0.8 was used.  The second parameter, 
2k , represents the strain distribution in 

the effective area of concrete.  For bending, this parameter is taken as 0.5.  For direct tension, this 

parameter is taken as 1.0.  For the purpose of finite element modeling, the element is cracking 

across its entire plane and is best represented by a uniform strain distribution.   

The results of the panel test predictions using the EC2 crack spacing model are presented in 

Table 7.10.  The tabulated results indicate a meaningful prediction of strength and stiffness up to 

75% yield.  To illustrate the limitations to predict stress and stiffness between these points of 

loading, scatter plots of the ratio of predicted to experimental response are given in Figure 7.16 

and Figure 7.17.   

 

Table 7.10:  Regression analysis of 1992 Eurocode 2 crack spacing model  

Parameter Linear Regression of 

Predicted / Experimental 

R Squared 95% CI - 

Lower Bound 

95% CI - 

Upper Bound 

crv  1.01 0.20 0.92 1.09 

cr  0.73 0.29 0.60 0.85 

25 yv  1.01 0.17 0.93 1.09 

25 y  0.96 0.10 0.91 1.00 

25 yE  1.01 0.18 0.92 1.11 

50 yv  0.99 0.08 0.95 1.03 

50 y  0.97 0.09 0.92 1.02 

50 yE  1.01 0.12 0.95 1.08 

75 yv  0.97 0.10 0.92 1.02 

75 y  0.94 0.17 0.86 1.03 

75 yE  1.03 0.23 0.91 1.15 

uv  0.80 0.19 0.72 0.88 

u  0.41 0.36 0.26 0.57 

uE  1.76 4.09 0.03 3.49 
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Figure 7.16:  Shear stress prediction using the Eurocode crack spacing model 

 

  

 

Figure 7.17:  Secant stiffness prediction using the Eurocode 2 crack spacing model 

 

 Recommendation 

The evaluation of crack spacing from experimental panel tests identified that the following 

parameters were significant: 

• Direct tensile strength 

• Effective reinforcing ratio 

• Bar diameter 

• Clear cover 
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Five crack spacing models were selected that utilized these four variables.  While not meeting 

these criteria, the CEB-FIP 1978 model was also included due to its recommendation by prior 

work and adoption in existing finite element software (Sato and Vecchio 2003; Wong, Vecchio, 

and Trommels 2013).  The six crack spacing models were evaluated with respect to their ability to 

predict stress, strain and secant stiffness during cracking, yielding and ultimate load.  A summary 

of the performance of the different crack spacing models is given in Table 7.11.  

 

Table 7.11:  Summary of element prediction performance 

Parameter 
R Squared Value 

Saliger Broms CEB-FIP78 Noakowski CEB-FIP90 EC2 

crv  0.19 0.19 0.19 0.2 0.18 0.2 

cr  0.28 0.29 0.29 0.29 0.28 0.29 

25 yv  0.15 0.13 0.16 0.16 0.18 0.17 

25 y  0.09 0.16 0.13 0.11 0.11 0.1 

25 yE  0.2 0.19 0.2 0.2 0.21 0.18 

50 yv  0.07 0.1 0.08 0.09 0.09 0.08 

50 y  0.1 0.15 0.13 0.1 0.11 0.09 

50 yE  0.11 0.15 0.13 0.14 0.13 0.12 

75 yv  0.07 0.09 0.08 0.12 0.08 0.1 

75 y  0.11 0.14 0.14 0.16 0.15 0.17 

75 yE  0.15 0.17 0.2 0.24 0.21 0.23 

uv  0.21 0.22 0.15 0.19 0.19 0.19 

u  0.43 0.56 0.42 0.31 0.46 0.36 

uE  4.19 3.61 1.18 3.2 3.73 4.09 

Mean 0.45 0.44 0.25 0.39 0.44 0.46 

 

In general, the crack spacing models performed equally up to 50% yield.  At 75% yield, the 

prediction of stiffness begins to degrade.  At the ultimate load, the models provided reasonable 

predictions of stress but could not reliably predict the secant stiffness.  The inability to predict the 

strain at ultimate is a result of two factors: first, the constitutive models are not well suited to 

failure conditions and damage in reinforced concrete, and second, the panels were analyzed in 

loading control in order to match the experimental response.  The use of load-control creates 

numerical instability as the load-deformation response becomes flat or negative, and this prevents 

the numerical model from capturing the peak and post-peak response.  The specific analyses of the 
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different crack spacing models identified the CEB-FIP 1978 crack spacing model yielded the best 

performance with respect to predicting stress, strain and secant stiffness up to 75% yielding.  

Furthermore, it gave a reasonable prediction of the ultimate stress without overpredicting the 

response.   

Table 7.12 summarizes the predicted crack spacing of each experiment relative to the 

experimental mean crack spacing.  The Saliger, Broms, and Noakowski models provided 

unacceptable results.  The CEB-FIP models performed best, but the models overpredicted crack 

spacing in experiments with high strength concrete and underpredicted crack spacing in 

experiments with a large difference in reinforcing ratio between orthogonal directions. 

 

Table 7.12:  Summary of experimental vs. predicted crack spacings 

Panel 

ID 

Experimental 

Mean Crack 

Spacing (mm) 

Predicted / Experimental Crack Spacing 

Saliger Broms CEB-FIP78 Noakowski CEB-FIP90 EC2 

VA1 68.7 6.9 1.1 2.1 6.5 1.8 2.5 

VA2 52.8 5.6 1.3 2.3 6.9 1.6 2.5 

VA3 37.8 7.7 1.8 2.8 8.1 1.9 3.0 

VA4 31.6 7.9 1.9 2.8 7.9 1.7 3.0 

VB1 82.1 4.7 0.9 1.6 5.0 1.2 1.8 

VB2 61.5 7.7 1.1 2.0 5.9 1.5 2.2 

VB3 48.1 9.5 1.3 2.4 6.7 1.6 2.5 

VB4 58.4 7.3 1.2 2.5 8.6 2.3 3.1 

PA1 79.1 1.2 0.2 0.5 2.1 0.5 1.0 

PA2 61.9 1.4 0.3 0.7 2.6 0.6 1.2 

PHS2 98.3 1.8 0.4 0.8 2.5 0.6 1.0 

PHS4 67.6 1.7 0.4 0.8 2.9 0.7 1.3 

PHS5 108.9 1.4 0.4 0.7 2.2 0.6 0.9 

PHS8 83.1 2.0 0.3 0.8 2.9 0.7 1.2 

PHS9 63.0 2.6 0.7 1.3 3.8 1.0 1.6 

PC1A 94.6 1.3 0.2 0.5 2.0 0.5 1.0 

PC4 188.0 0.6 0.1 0.3 1.0 0.3 0.5 

PC7 125.5 1.0 0.1 0.4 1.5 0.4 0.7 

Mean Pred/Exp 4.03 0.76 1.41 4.39 1.08 1.71 

Std. Deviation 3.08 0.58 0.90 2.55 0.62 0.85 
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7.4 Finite element modeling of C-shaped wall specimens 

To numerically study the C-shaped wall test specimen, a series of non-linear finite element 

analyses are conducted using a three-dimensional layered shell element formulation.   A true three-

dimensional analysis was required to capture the asymmetric response of the C-shaped wall.  As 

observed in the experimental data, the neutral is shallow, and a non-uniform stress/strain field is 

expected to be present in the compression flange during strong axis loading and similarly in the 

web during weak axis loading with the web in compression.  A layered shell was selected in lieu 

of a membrane element in order to capture this non-linear stress-strain response through the 

thickness of the wall.  The “VecTor4” software published by the University of Toronto was 

selected to conduct the non-linear finite element analysis with the desired capabilities.  The 

VecTor4 software for the analysis of reinforced concrete shell elements has been in development 

since the 1980s.  An overview of the software’s development and most recent capabilities are 

summarized by Hrynyk (2013).  The key features relevant to this chapter are summarized below.   

For generalized application to reinforced concrete shell structures, a formulation that could 

predict the nonlinear response of both think and thick shells was desired.  To accommodate both 

types of structures, the Heterosis element developed by Hughes and Cohen (1978) on the basis of 

Mindlin plate theory was implemented.  The Heterosis element is a nine-node element where the 

outer eight nodes have five degrees of freedom, and the central ninth node has two rotational 

degrees of freedom.  The resulting element has a total of 42 degrees of freedom.  The element is 

based on three-dimensional elasticity which allows the ability to include out-of-plane shear 

reinforcement and deformations.  A reduced integration scheme is utilized with 3x3 Gauss point 

integration for bending and 2x2 Gauss point integration for shear.  The reduced integration scheme 

reduces zero-energy modes and the problem of shear locking.  In addition, a total Lagrangian 

formulation is used to model geometric nonlinearity.  The first application of the MCFT in this 

software introduced by Polak and Vecchio (1993).  Since that time, a wide range of constitutive 

models, including those described in Section 7.2.1 have been implemented. 

The finite element mesh generation is defined by a parametric model of the C-shaped wall as 

shown in Figure 7.18.  The toe and corner boundary elements are defined by regions A, C and D 

are defined by their length, thickness and orthogonal reinforcement in two layers. In addition, the 

boundary elements include out-of-plane confining reinforcement.  The unconfined webs are 

defined by regions B and E in which there are two layers of orthogonal reinforcement.  By utilizing 
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a parametric definition, a maximum element width and height is defined such that each region is 

automatically meshed to meet the input geometry as well as the maximum element dimensions.  

Similarly, the elevation of the wall is defined parametrically by its foundation, first three floors, 

upper floors, and loading cap as indicated in Figure 7.19.  The height of each element is defined, 

and the maximum element sizes are used to generate the appropriate mesh. 

 

Figure 7.18:  Plan of parametric C-shaped wall FE model regions 

 

 

Figure 7.19:  Elevation of parametric C-shaped wall FE model regions 



349 

The assessment of drift contributions of the C-shaped walls in Section 5.7.3 revealed that the 

base rotation was up to 20% of the total deformation.  For inclusion of the base rotation in the 

finite element analysis, the foundation is modeled and restrained such that the strain penetration 

of the reinforcing bars into the footing can be captured in the analysis.   

The application of loading and restraint of the finite element model in strong axis and weak 

axis directions is shown in Figure 7.20.  For both directions, the bottom row of nodes is fixed in 

all three translational degrees of freedom.  Above the bottom row, the nodes of the foundation are 

fixed against horizontal translation but permit vertical translation.  For strong axis loading, the 

model is also restrained against out of plane displacement and rotation at the top of the third floor 

and at the wall cap.  The out-of-plane restraint mimics the displacement control procedure 

described in Section 3.3.4.  The impact of these restraints is further studied in Section 7.4.3.  

Displacements are imposed at the center of the wall along the web for strong axis loading and each 

flange for weak axis loading. 

 

 

 (a) Strong Axis Loading (b) Weak Axis Loading 

Figure 7.20:  Finite element model load application 
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7.4.1 Mesh sensitivity 

Three models of the C-shaped wall were created using the same geometry and restraints but 

varying element size to evaluate the mesh discretization for this finite element study.  Figure 7.21 

illustrates (a) the coarse discretization utilizing 210 elements and 899 nodes, (b) the medium mesh 

discretization utilizing 588 elements and 2,451 nodes, and (c) the fine mesh discretization utilizing 

1,189 elements and 4,897 nodes. 

 

     

 (a) Coarse (b) Medium (c) Fine 

Figure 7.21:  Finite element mesh discretization 

 

A monotonic analysis in the strong axis direction was conducted for each mesh discretization.  

The results of the model with a comparison to the C-shaped wall test is shown in Figure 7.22.  The 

computational effort increases by approximately a factor of four as the mesh density was double 

in each discretization.  All three models performed approximately equally up to 1.5% drift.  The 

coarse discretization did not capture the post-peak damage to the specimen as well as the medium 

and fine discretization.  All three models utilized the same convergence criteria, but the fine 
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discretization encountered challenges in convergence prior to failure that were not observed in the 

other models.  The medium mesh discretization was selected for the subsequent analyses due to 

its numerical stability and ability to capture the post-peak damage.   

 

 

Figure 7.22:  Shell element model mesh sensitivity 

 

7.4.2 Effect of initial shrinkage cracking 

Shrinkage strains associated with the placement and curing of the concrete are known to induce 

microcracking resulting in an overall reduction of stiffness prior to loading.  Cracking due to 

shrinkage is most evident at interfaces of the concrete with relatively stiffer elements such as 

between the wall and foundation element, and in heavily reinforced elements in which the 

reinforcement restrains the concrete inducing cracking.  Cracking of reinforced concrete due to 

shrinkage is observed to increase the strains induced by loading and in conjunction with slightly 

wider crack widths than estimated (Beeby et al. 1985).  In general, the effects of shrinkage cracking 

are not considered in finite element analyses; however, Palermo (2002) and Hart (2012) evaluated 

the use of a pre-strain to simulate the effect of shrinkage cracking in finite element modeling of 

concrete walls.  Palermo (2002) recommended a pre-strain of 0.4 millistrain prior to loading on 

the basis of experimental and analytical data.  Hart (2012) validated the use of the same magnitude 

of pre-strain for the planar wall test, PW4, in conjunction with the tension stiffening effect.  The 
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C-shaped wall response was evaluated with and without an initial pre-strain to determine the effect.  

Pre-strains were imposed in the VecTor4 analysis using a pseudo-temperature load.  

 

 

 (a) Planar wall (PW3) (Hart 2012) (b) C-shaped wall (CW2) 

Figure 7.23:  Effect of pre-strain and tension stiffening 

 

Figure 7.23 (a) illustrates the impact of pre-strain and tension stiffening for the planar wall 

specimen, PW3, based on the work of Hart (2012).  Similarly, Figure 7.23 (b) illustrates the same 

impact of the C-shaped wall specimen.  The black line represents the backbone curve of the 

experimental response.  The red line indicates the predicted response including the effect of tension 

stiffening but neglecting initial shrinkage cracking.  The blue line represents the predicted response 

including the effect of tension stiffening and an initial pre-strain of 4ms.  Finally, the green line 

represents the predicted response with an initial pre-strain but neglecting tension stiffening.  In 

both cases, the tension stiffened response overpredicts the experimental stiffness during yielding.  

Conversely, the prediction without tension stiffening significantly underpredicts the stiffness 

during yielding.  The addition of pre-strain to represent the initial shrinkage cracking present in 

the test specimen nearly corrected the response of the planar wall.  The C-shaped wall prediction 

is improved by considering a pre-strain for initial shrinkage cracking; however, the predicted 

response remains stiffer than the experimental.  Since the method of initial pre-strain to represent 

the shrinkage cracking was inconclusive for the C-shaped walls, the subsequent analyses 

considered the tension stiffening effect only. Furthermore, the empirical data used in the 

development of the constitutive models is based on reinforced concrete panels that would have 
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inherently had shrinkage cracking prior to performing the experiment (Bentz 2007).  In this 

perspective, the tension models already account for the effects of shrinkage after cracking.  

Additional research is needed to quantify and evaluate the methods of simulating initial shrinkage 

cracking in non-planar walls.  

7.4.3 Strong axis response 

Non-Linear finite element analysis of the strong axis response of the C-shaped wall test 

specimen was conducted using the parameters and constitutive models previously described in this 

chapter.  A reverse cyclic displacement history similar to that of the experimental test was imposed.  

The exact displacement history is difficult to impose because the experimental displacements were 

imposed at the third story and the displacement at the effective height was extrapolated from the 

results.  Conversely, the analytical model imposes the displacement at the effective height, and the 

displacement at the third story is a result of the wall behavior.  The resulting load-deformation 

response is shown in Figure 7.24.   

Overall, the analytical prediction provides a reasonable estimation of the strength, stiffness and 

post-peak drift capacity.  Regarding stiffness, the monotonic study of initial stiffness described in 

Section 7.4.2 indicated that the stiffness during cracking and yielding is overpredicted.  The reverse 

cyclic analysis revealed the same overprediction.  Regarding strength, the analytical model 

predicted a base shear of 202 kips and base moment of 5,736 kip-ft.  This represents 94%, 96% 

and 98% of the nominal moment strength of CW1, CW2, and CW3 respectively.  The strength of 

the test upon reaching the yield plateau is nearly identical; however, the peak strength including 

the effects of strain hardening is not fully captured in the analytical model.  The monotonic model 

had approximately the same strength as the experiment, so the difference in strength is believed to 

be related to the treatment of hysteretic loading and plastic offsets in the reinforcing steel.  The 

unloading stiffness and reloading stiffness approximate that of the experimental study.  Post-peak, 

the pinching response of the hysteresis is slightly underpredicted by the analytical prediction.  This 

difference is due to the sliding present in the experiment that is not explicitly captured in the 

analytical model.  However, the elements at the interface of the foundation exhibit a very high 

shear deformation in the analytical model indicating this same mode of deformation.  Ultimately, 

the model lost load carrying capacity and failed due to rupture of the longitudinal reinforcing and 

failure of confining reinforcement in the boundary elements.  This failure mechanism is consistent 
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with the analytical model.  The drift capacity at loss of load carrying capacity was 1.25% and 1.5% 

in the two loading directions for the analytical prediction and 1.5% for both directions of the 

experiment (CW2).   

  

Figure 7.24:  Predicted strong axis response 

 

For the strong axis loading protocol of the C-shaped wall experiments, Section 3.3.4 indicated 

the out-of-plane displacement and twist of the specimen were restrained during the loading.  This 

application of loading effectively loaded the test specimen through the shear center.  A 

consequence of the out-of-plane restraint is the development of an out-of-plane shear force that is 

resisted by the wall specimen.  The prototype building shown in Figure 3.1 has two opposing C-

shaped walls surrounded by a floor slab at each level.  This configuration would effectively load 

the C-shaped walls about the shear center; however, a tension/compression force would be present 

in the coupling beams between walls and/or floor slab to provide this restraint.  This restraining 

force has not been quantified by prior experiments and analytical studies.    

To assess the impact of the out-of-plane restraint, a second NLFEA was conducted that 

removed the out-of-plane restraints at the third floor and wall cap indicated in Figure 7.20.  The 

resulting response is evaluated in Figure 7.25.  This figure provides the load-deformation of CW1 

with the corresponding out-of-plane load-deformation response.  The analytical prediction with 

restraint (loading at shear center) is compared to the analytical prediction without restraint.  CW1 

had a maximum out-of-plane restraining force of 52 kips at 1.4% drift.  Similarly, the analytical 



355 

prediction had a maximum out-of-plane restraining force of 56 kips at 1.2% drift.  For both cases, 

the out-of-plane force exceeds 25% of the in-plane shear.  While the maximum magnitude of load 

is similar, it is observed that the restraining force at load cycles up to 1% drift is generally 

overpredicted by a factor of 1.5 to 2.  The analytical model will represent a conservative estimate 

of this out-of-plane force.  The difference in out-of-plane restraint is theorized to be a result of the 

out-of-plane elastic deformation of the test setup.  The restraint in the experimental test behaves 

more like a spring of high stiffness than a truly fixed degree of freedom, so the magnitude of force 

is reduced when compared to the analytical prediction.  Section 7.5.2 evaluates how the out-of-

plane shear is resisted during strong axis loading.   

 

 

Figure 7.25:  Influence and prediction of loading at the shear center 
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7.4.4 Weak axis response 

Non-Linear finite element analysis of the weak axis response of the C-shaped wall test 

specimen was conducted using the parameters and constitutive models previously described in this 

chapter and as utilized in the strong axis prediction.  The resulting load-deformation response is 

shown in Figure 7.26. 

Overall, the analytical prediction provides a reasonable estimation of the strength, stiffness and 

post-peak drift capacity.  The weak axis stiffness during cracking and yielding closely follows that 

of the experimental response with a slight overprediction of stiffness similar to the strong axis 

response.  Regarding strength, the analytical model predicted a base moment of 1,367 kip-ft for 

the web in compression and -2,766 kip-ft for the toe in compression.  When compared to the 

experimental nominal moment strength of CW2, the analysis represents 85% of the strength for 

loading with the web in compression and 106% of the strength for loading with the toe in 

compression.  Similar to the strong axis prediction, the strength with the web in compression is 

nearly the same as the experiment up to reaching the yield plateau; however, the peak strength 

beyond the yield plateau including the effects of strain hardening is not realized in the analytical 

model.  The unloading stiffness and reloading stiffness approximate that of the experimental study.  

Post-peak, the pinching response of the hysteresis is closely represented by the analytical 

prediction.  Ultimately, the model lost load carrying capacity due to concrete crushing for the toe 

in compression.  During loading the web in compression, the model failed to converge after the 

cycle to 2.2% drift.  The drift capacity at loss of load carrying capacity was 2.2% and -1.9% in the 

two loading directions for the analytical prediction and 2.25% and -1.49% of the experiment 

(CW2).   
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Figure 7.26:  Predicted weak axis response 

 

7.5 Shear distribution in C-shaped walls 

The prior chapters concluded that the shear demand in non-planar walls, particularly C-shaped 

walls, significantly affects wall response as compared to planar wall elements of similar geometry 

and reinforcing.  The relative proportion of shear deformation to flexural deformation is about 

40% larger in the C-shaped walls than the planar walls.  The presence of base sliding, crushing of 

the unconfined web, and the formation of compressive struts across the web indicated in the strain 

data are all indicative of high shear demand.  Out-of-plane shear damage was also observed in the 

wall flanges during strong axis loading post-peak resulting from the base sliding.  Shear design in 

the building code is based upon the wall in the area in the direction of loading only.  The shear 

design neglects any positive or negative interactions resulting from the presence of a wall flange 

perpendicular to the direction of loading.  To evaluate this assumption, this section characterizes 

the shear stress distribution in the C-shaped walls as a function of wall height and drift level. 

7.5.1 Integration of shear stresses 

The finite element analysis provides a measurement of shear stress in each layer at each Gauss 

point.  For nine gauss points and n layers, each element has a total of 9n shear stress measurements.  

To determine the average shear resisted across the element as a whole, these stresses must be 
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integrated appropriately.  First, the shear stresses at each Gauss point are integrated over the 

thickness of the layer and summed to determine the unit shear (kN/m) at each Gauss point. 
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To determine the average element shear (kN), the unit shear is then average over the total element 

by the summation of the product of the unit shear stress at each Gauss point with the normalized 

gauss point weighting.  The summation is multiplied by the length of the element to determine the 

shear resisted across each element. 
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The corresponding gauss point locations and weights for the nine-node shell element are given in 

Figure 7.27. 

  
(a) Gauss point locations (Hrynyk 2013)   (b)Gauss point weights (Paulino 2012) 

Figure 7.27:  Shell element gauss point locations and weights 

 

To validate the methodology of shear stress integration, the elastic response of the wall is 

compared to the theoretical shear distribution in an open channel.  The theoretical distribution of 

shear stress for an open-channel loaded about the strong axis has a triangular distribution across 

each flange and parabolic distribution across the web, refer to Figure 7.28.  For an elastic loading 

of the finite element model previously described, the element shear distribution and total shear 

resisted at the top of the first floor is plotted in Figure 7.29.  For this example, the applied shear 

was 478 kN, and the shear measured by integration of shear stresses was 477 kN.  Similarly, the 

response in the weak axis response is validated in Figure 7.30 for positive weak axis loading and 

Figure 7.31 for negative weak axis loading.  The parabolic shear stress distribution is evident along 
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each flange with a linear distribution across the web.  The sum of the flange shear is equal to the 

total shear without a significant residual.  For base cases, the difference between the applied and 

measured shear is a negligible difference, so this methodology is utilized moving forward to assess 

shear distribution during inelastic states. 

     
(a)Theoretical shear stress distribution (Bachau and Craig 2009) (b)FE model shear stress elastic distribution 

 

Figure 7.28:  Elastic shear stress distribution 

 

 
Figure 7.29:  Validation of shear stress integration for strong axis elastic loading 
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Figure 7.30:  Validation of shear stress integration for positive weak axis elastic loading 

 

 
Figure 7.31:  Validation of shear stress integration for negative weak axis elastic loading 

 

7.5.2 Strong-axis response  

The strong axis shear stress distribution as evaluated using the results of the model described 

in Section 7.4.3.  The shear stresses distribution was developed for each horizontal layer of 

elements at each peak drift step.  The resulting distributions are evaluated with respect to drift level 
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to provide insight on how shear stress distribution changes from the elastic state to the inelastic 

state at nominal strength.  The shear stress distributions are also evaluated with respect to height 

to provide insight on how shear stress distribution is impacted by restraint and near-field effects at 

the wall to foundation interface.  A sampling of the key results from this evaluation is described 

herein. 

The shear stress distribution was observed to be impacted by wall height over the bottom 24 to 

36” of the wall.  In this region, the shear stress is highly concentrated in the compression region 

of the wall and is a combination of in-plane shear along the web as well as out-of-plane shear along 

the compression flange.  Figure 7.35 documents the normalized distribution of in-plane and out-

of-plane shear in the web and flanges at different heights about the foundation.  Upon reaching the 

top of the first floor, the near-field effects and out-of-plane shear are nearly zero.  Subsequent 

evaluations are based on the stress distribution at the top of the first floor to remove these effects 

from the characterization.   

The in-plane shear stress distribution at the top of the first floor is shown for 0.44% drift in 

Figure 7.32.  The in-plane and out-of-plane shear stress distributions at 0.79% drift are shown in 

Figure 7.33 and Figure 7.34 respectively.  The tension flange does not contribute to resisting the 

shear demand.  The web carries nearly the entire shear demand in a non-linear distribution that 

increases from the tension flange to the compression flange.  However, the shallow depth of 

compression in the flanged wall results in the majority of shear stress being resisted across the 

portion of the wall in tension.  The combination of high shear demand in the tension zone is 

theorized to be the cause of higher shear deformation in the C-shaped walls when compared to the 

planar wall.  In addition, the compression flange is observed to resist a significant in-plane shear 

equal to approximately 25% of the in-plane shear.  The in-plane shear of the compression flange 

is a consequence of the out-of-plane restraint described in Section 7.4.3.  The stress distribution 

across the flange changes from a triangular distribution at 0.44% drift to a nearly uniform state at 

0.79% drift.  The change in distribution is attributed to the full activation of the flange length with 

increasing drift which has been previously observed in evaluations of effective flange width. 
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Figure 7.32:  Shear stress distribution at the top of the first floor at 0.44% drift 

 

 

Figure 7.33:  Shear stress distribution at the top of the first floor at 0.79% drift 
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Figure 7.34:  Out-of-plane shear for strong axis loading at 0.79% drift 

 

 

 (a) 6” above foundation (b) 18” above foundation  

 

Figure 7.35:  Strong axis shear stress distributions versus drift and height 
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Figure 7.35 cont. 

 

 

 (c) 42” above foundation (d) 90” above foundation 

 

7.5.3 Impact of flange length on strong axis shear distribution 

To quantify the restraining force as a function of flange width to web length, a series of analyses 

were conducted with a ratio flange to web length ranging from 20% to 70%. The wall thickness, 

height, and reinforcing ratios were held constant.  In this manner, all walls in the study had the 

same shear area in the web and moment to shear ratio.  Section 7.5.2 indicated that the out-of-

plane shear effects are limited to the first 24 to 36” of the wall height.  To remove these near-field 

effects of the wall to foundation interface, the shear is studied at the top of the first floor.  Figure 

7.36 illustrates the shear stress distribution for each wall at 0.8% drift.  At this drift level, the 

nominal strength is achieved and the flange is fully activated.  While a reduced effective flange 

width is observed at lower drift levels, the entire flange is active in resisting the strong axis loading 

at large drift levels consistent with prior research. 
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 (a) 0.2fl web=   (b) 0.3fl web=   (c) 0.4fl web=   

 

 (c) 0.5fl web=   (d) 0.6fl web=   (e) 0.7fl web=   

Figure 7.36:  Shear stress distribution at 0.8% drift at the top of first floor 

 

Section 7.5.2 also indicated that the out-of-plane shear resisted across the compression flange 

is approximately constant up the height of the wall to the point of restraint.  Using the assumption 

that the out-of-plane shear is independent of height but dependent on drift, the normalized ratio of 

shear in the flanges to the web is plotted at the top of the first story for each wall in Figure 7.37. 

 



366 

 

 (a) 0.2fl web=   (b) 0.3fl web=  

 

 (c) 0.4fl web=  (d) 0.5fl web=  

Figure 7.37:  Normalized shear distribution versus drift for strong axis loading 
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Figure 7.37 cont. 

 

 

 (d) 0.6fl web=  (e) 0.7fl web=  

 

 

Figure 7.37 reveals that the shear in the compression flange increases with increasing ratio of 

flange length to web length.  In addition, the shear in the compression flange is observed to be 

linearly dependent on drift ratio for flange length less than 40% of the web length.  Conversely, 

the shear in the compression flange is observed to be independent of drift ratio for flange length 

greater than 40% of the web length.  For quantifying the shear demand as a function of the web to 

flange length, Figure 7.38 provides the relationship and linear fit of the normalized flange to web 

shear versus the ratio of the flange to web length.   
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Figure 7.38:  Normalized flange to web shear versus the ratio of flange to web length 

 

For a coupled C-shaped wall subjected to strong axis loading, the flange should be designed to 

resist a minimum shear at all stories within the plastic hinge region given as: 
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For structural walls utilizing the same horizontal and vertical reinforcement ratio in the flange as 

the web, this requirement should be met inherently.  However, the out-of-plane restraining force 

can represent a significant load that needs to be considered in the load path through the coupling 

beams at each slab level as well as the foundation.  Additional research is needed to understand 

how this load is realized in the coupling beams and whether it has an impact on the design and 

performance of coupled C-shaped walls. 

7.5.4 Weak-axis web in compression response 

The weak axis shear stress distribution for the web in compression was evaluated using the 

results of the model described in Section 7.4.4.  The in-plane and out-of-plane shear stress 

distribution are given in Figure 7.39 and Figure 7.40 respectively.  While the flanges resist the 

majority of shear stress, a complex stress state is observed in the web.  The web resists a 

meaningful component of out-of-plane shear that is dependent on wall height.  As elevation 

decreases, the component of out-of-plane shear increases.  As noted in the strain field descriptions 

in Section 5.6, the compression is carried across the entire web of the wall, and an effective flange 
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width from each corner is not present.  Similarly, the shear stress appears to follow the compressive 

stress across the web.  One complication of this analysis is that the components of shear measured 

do not equal the total shear on the wall.  The integrated shear is 6.5% greater than the measured 

shear at 0.62% drift, and this error increases with increasing drift level and decreasing height.  The 

variation in out-of-plane shear is shown in Figure 7.41.  The integration of shear stresses described 

in Section 7.5.1 appears to break-down in the corner boundary elements.  The assumption of an 

average unit shear may not be appropriate in these corners where the out-of-plane shear stress is 

subject to what is likely a highly non-uniform distribution over the length of the first element.  

Future research is needed to assess this multi-axial stress state in the corner boundary elements.  

Nevertheless, the results indicate that out-of-plane shear in the web is meaningful and may 

contribute to the observed web damage. 

 

 

Figure 7.39:  Weak axis web in comp. in-plane shear response for the first floor at 0.62% drift 
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Figure 7.40:  Weak axis web in comp. out-of-plane shear response for the first floor at 0.62% 

drift 

 

  



371 

 

 (a) 6” above foundation (b) 18” above foundation 

 

 (c) 42” above foundation (d) 90” above foundation 

Figure 7.41:  Weak axis web in compression shear distribution versus drift 

 

7.5.5 Weak axis toe in compression response 

The weak axis shear stress distribution for the toe in compression was evaluated using the 

results of the model described in Section 7.4.4.  The in-plane shear stress distribution is shown in 

Figure 7.42.  The flanges are observed to carry the entire shear demand, and there is negligible 

out-of-plane shear in the web.  Furthermore, the near-field effects of out-of-plane shear observed 

in the strong axis and weak axis web in compression directions was not observed.  The normalized 
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distribution of shear stress along the wall height is shown in Figure 7.43.  In conclusion, for weak 

axis loading with the toe in compression, the shear response is not influenced by the non-planar 

wall geometry.   

 

Figure 7.42:  Weak axis toe in compression shear response for the first floor at 0.62% drift 

 

 

 (a) Shear distribution at interface (b) Shear distribution at first floor 

Figure 7.43:  Weak axis toe in compression shear distribution versus drift 
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7.6 Conclusions 

This chapter supplements the experimental data of the C-shaped walls with non-linear finite 

element analyses.  This effort utilized a layered shell element model with comprehensive 

constitutive models capturing the cracked response of reinforced concrete in cyclic biaxial loading 

conditions.  To validate the selection of constitutive models, a database of reinforced concrete 

panel tests containing the complete experimental stress-strain response and cracking 

measurements was compiled.  The database is accessed through the development of a non-linear 

continuum analysis program that allows comprehensive evaluation of the data against any number 

of analytical predictions using varying constitutive models.   The element level model validation 

focused on the impact of crack spacing prediction on model performance.  From this work, the 

following conclusions are made regarding crack spacing: 

• Empirical crack spacing models have been developed based on experimental tests of 

tension members and beams where the cracks form perpendicular to the tension 

reinforcement.  Membrane/shell elements of reinforced concrete are subject to biaxial 

loading conditions and crack formation non-orthogonal to the reinforcement which is 

inconsistent with the tests used to develop the crack spacing models.  To evaluate the 

parameters used in crack spacing models, a parametric study of panel tests identified 

that rebar diameter, clear cover, tensile strength (bond strength), and effective 

reinforcing ratio had a significant impact on crack spacing.  The reinforcement spacing 

and ratio of bar diameter to effective reinforcing ratio were not statistically significant. 

• Existing crack spacings models consistently overpredict of crack spacing in membrane 

elements subjected to shear by a factor ranging from 1 to 4 indicating a deficiency in 

the application of these models to finite element studies.  Additional experimental data 

and analytical evaluation are needed to develop a crack spacing model that inherently 

considers the non-orthogonality of cracking. 

• The predictions of stress and strain for the panel tests varied significantly on the basis 

of the crack spacing model selected.  However, the CEB-FIP 1978 crack spacing model 

is recommended based on its consistent performance in predicting stress, strain and 

secant stiffness up to 75% yielding.  Furthermore, it gave a reasonable prediction of the 

ultimate stress without overpredicting the response.   
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Using the recommended crack spacing model, subsequent NLFEA models of the C-shaped 

walls provided a validation of the experimental results and a characterization of shear stress 

distribution based on drift level for strong axis and weak axis loading.  The following conclusions 

are made regarding the results of the non-linear finite element analyses: 

• For strong axis loading, the web carries nearly the entire shear demand in a non-linear 

distribution that increases from the tension flange to the compression flange.  The 

shallow depth of compression in the flanged wall results in the majority of shear stress 

being resisted across the portion of the wall in tension.  This conclusion supports the 

observed shear strain distribution in the experimental tests that resulted in an increased 

shear deformation. 

• For strong axis loading, the compression flange is also observed to resist an in-plane 

shear of approximately 25% of the web shear due to the out-of-plane restraint of the C-

shaped wall.  The in-plane shear stress distribution across the flange changes from a 

triangular distribution at 0.44% drift to a nearly uniform distribution at 0.79% drift 

indicating full activation of the flange length with increasing drift. 

• A parametric study of flange width for strong axis loading indicated that the shear 

demand in the compression flange increases with increasing ratio of flange length to 

web length.  In addition, the shear in the compression flange is observed to be linearly 

dependent on drift ratio for flange length less than 40% of the web length.   

• For a coupled C-shaped wall subjected to strong axis loading, the flange should be 

designed to resist a minimum shear equal to: 0.6
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.  This out-of-plane 

restraining force should be considered in the load path through the coupling beams at 

each slab level as well as the foundation.  Future work is needed to evaluate how this 

force is shared between floor levels and whether there is a meaningful impact on the 

coupling beams. 

• For weak axis loading with the web in compression, the non-planar geometry has a 

significant impact of stress distribution.  While the flanges resist the majority of shear 

stress, the web resists a combination of in-plane and out-of-plane shear stress that varies 

with elevation and drift level.  As elevation decreases, the component of out-of-plane 
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shear increases.  An effective flange width was not observed, and stresses are 

distributed across the entire width of the web. 

• For weak axis loading with the toe in compression, the shear response is not influenced 

by the non-planar wall geometry.  The flanges carry the entire shear demand, and there 

is negligible out-of-plane shear in the web.    
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CHAPTER 8:  CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The research presented in this dissertation provides insight into the performance of C-shaped 

walls subjected to multi-directional loading through a combination of experimental testing, data 

analysis, and numerical modeling.  This effort has sought to improve the understanding of the 

three-dimensional and asymmetric response of C-shaped walls during both service level and 

ultimate loadings.  Recommendations and procedures for the simplified analysis of C-shaped walls 

using elastic analysis as well as the detailed analysis using non-linear finite elements were 

provided for predicting the wall response up to the nominal strength.  The impacts of bi-directional 

loading and coupling on damage patterns, drift capacity, and ductility were quantified.  

Furthermore, the limitations of existing numerical models and simplified predictions for non-

planar walls were identified.  The tasks associated with the completion of this work are 

summarized below: 

1. The design, construction, instrumentation, and loading control for three C-shaped walls 

specimens was developed and documented in Chapter 3.  This effort included the 

development and implementation of a new response-based loading algorithm for multi-

degree-of-freedom experimental testing.  The experimental tests were completed at the 

Newmark Structural Engineering Laboratory. 

2. The experimental results were documented in Chapter 4.  The complete progression of 

cracking observations, damage progression, hysteretic response, failure mechanisms, 

and final load-deformation response was described for each experiment. 

3. The instrument data from each of the three experimental tests was processed and 

cleaned to support additional analyses in Chapter 5.  Accompanying metadata was 

created to describe each set of instruments.  All resulting data and documentation were 

archived to the NHERI Design Safe Cyber Infrastructure where it is publicly available 

to the design and research community.  The processed data was utilized to 

quantitatively evaluate the displacement profiles, yielding, energy dissipation, strain 

fields, and deformation contributions of each wall test. 

4. The C-shaped wall response was evaluated through the lens of prior planar, coupled 

and non-planar wall tests in Chapter 6.  The strong axis response was compared and 
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contrasted with the planar wall response.  The weak axis response of the coupled core 

wall simulation was similarly compared to the planar coupled wall response.  A 

database of non-planar wall tests was created wherein parametric studies of wall 

geometry, reinforcing, loading, ductility, and sectional analysis metrics were 

conducted.  Derived measures of shear and flexural deformations for the C-shaped 

walls as well as prior tests were used to develop effective stiffness recommendations 

for the elastic analysis of non-planar concrete walls. 

5. The experimental data of the C-shaped walls was supplemented with non-linear finite 

element analyses in Chapter 7.  The analytical model utilized a layered shell element 

with comprehensive constitutive models capturing the cracked response of reinforced 

concrete in cyclic biaxial loading conditions.  The model was validated at the element 

level using a database of reinforced concrete panel tests with a focus on the influence 

of crack spacing on model prediction.  The resulting non-linear finite element analyses 

were used to characterize the shear distribution in C-shaped walls. 

 

The resulting conclusions from these five tasks are summarized in Sections 8.1.1, 8.1.2,  and 8.1.3 

with respect to the objectives outlined in Section 1.1.   

8.1.1 Conclusions of the testing and experimental response 

The first objective of the research was to characterize the response and damage mechanisms of 

cyclically loaded C-shaped walls using visual observations and quantitative analysis.  The key 

conclusions associated with each sub-objective of this work are described below: 

 

1.1. Conduct experimental testing of three C-shaped walls at the Newmark Structural 

Engineering Laboratory. 

• Three C-shaped walls were successfully constructed, instrumented and tested using 

the methods and loading criteria outlined in Chapter 3.  The loading protocol utilized 

the six DOF capability to impose mixed displacements and forces that simulated the 

upper seven stories of ten-story building acting on the test specimen.  The loading 

protocol included a uni-directional test, bi-directional test, and a simulated coupled 

core-wall system subjected to bi-directional loading. 
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• For conducting the coupled core wall simulation, the experiment required the efficient 

application of multiple degrees of freedom in mixed-mode control simultaneously with 

a load target that was dependent on the specimen response.  In addition, the existing 

methods for application of loading were observed to cause increased shear demand 

prior to the convergence of the load step.  Furthermore, the convergence of the load 

step took many iterations when multiple force-based degrees of freedom were imposed 

simultaneously.  To address these shortcomings, a stiffness-based loading algorithm 

was developed, tested and implemented in the small-scale and large-scale laboratory.  

The algorithm recommended measurement of the tangent stiffness of each degree of 

freedom using a least squares line fitting of previous points on the load-deformation 

history.  The hysteretic response of the reinforced concrete specimen is considered by 

measurement of the peak stiffness during loading and unloading to improve 

predictions at changes in the loading direction.  The resulting algorithm yielded a 94% 

reduction in shear force overshoot and enhanced convergence to improve testing 

efficiency.   

 

1.2. Analyze the experimental data and archive the results to an open access data 

repository. 

• The instrumentation of each C-shaped wall experiments included more than 390 

channels of raw data as well as photographs and videos.  These data files were 

processed, cleaned and archived for subsequent analysis in this research work and for 

future researchers.   

• The complete dataset for each test was archived to the NHERI Design Safe Cyber-

Infrastructure.  Accompanying metadata and drawings to describe each instrument and 

their configuration were developed to inform the engineering and research community 

on the use of the data.   

• The subsequent analysis of the C-shaped wall experiments studied the energy 

dissipation of the walls, the progression of yielding, the components of deformation to 

total wall drift, strain fields generated from displacement field data, and overall 

displacement profiles of the prototype ten-story building.  
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1.3. Characterize the damage mechanisms of C-shaped walls subjected to uni-directional 

and bi-directional loading. 

• The experimental tests exhibited a ductile failure resulting from loss of boundary 

element confinement, bar buckling, and rupture of the longitudinal bars.  However, the 

ductile failure mechanism was precipitated by increased shear deformation and 

undesirable shear related damage of base sliding and web crushing.   

• The onset of sliding and rupture of web vertical reinforcing bars resulted in a loss of 

shear resistance along the web.  The loss of web shear resistance resulted in a 

redistribution of shear demand to the corner boundary element and compression flange.  

Subsequently, the unconfined concrete of the web adjacent to the corner boundary 

elements spalled and crushed.   

• As base slip increased beyond 1% drift, visible deformation and lateral buckling of the 

longitudinal bars was observed at the interface of the corner boundary elements and 

foundation.  The base slip deformation created an out-of-plane shear in the flanges that 

ultimately results in vertical cracking and spalling up the height of the first story.   

• The increased demand on the corner boundary elements and lateral buckling resulted 

in the failure of the confinement ties and extensive core crushing.  The vertical and 

lateral buckling of the longitudinal reinforcing bars in the corner boundary elements is 

followed by straightening when loading in the opposite direction.  This cycle of plastic 

deformation results in fracture and loss of load-carrying capacity in each test. 

 

1.4. Determine the influence of bi-directional loading on strong axis response. 

• For the strong axis response, all three C-shaped walls reached 91 to 95% of the nominal 

moment strength and 41 to 43% of the nominal shear strength.  The bi-directional 

loading did not impact the strong axis response prior to the nominal strength.  

• The energy dissipation capacity of the uni-directionally loaded and bi-directionally 

loaded non-planar walls were approximately equivalent for equal levels of damage to 

the boundary elements.  The damage and tension-compression cycles at each boundary 

element precipitate the failure of the wall as a whole irrespective of loading direction. 

• The damage mechanisms observed were the same for all three tests independent of the 

specific changes in loading direction and axial loading; however, the bi-directional 
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loading results in earlier onset of damage and reduced drift capacity.  CW2 exhibited a 

strong axis drift capacity of only 1.5% when compared to a drift capacity of 2.25% for 

CW1. 

• The bi-directionally loaded test indicated tension yielding and strain hardening in the 

flanges and toe boundary elements that were not present in the uni-directional test.  

However, there was no evidence that the increased demand in the toe-boundary 

elements directly impacted the strong axis response. 

• The bi-directional loading and variation in axial load during weak axis loading do not 

change the relative drift contributions of the strong axis response prior to reaching the 

nominal strength.  Up to 0.75% drift, the strong axis response of the three tests is nearly 

the same with approximately 40% of the total deformation in the bottom three stories 

to be shear deformation.   

• For the coupled core wall simulation, increased base slip and base rotation were 

observed in the drift contributions beyond 0.5% drift.  The increased tensile demand 

on the web of the wall associated with loading in the negative weak axis direction as 

the tension pier of the simulation resulted in increased yielding and earlier rupture of 

the vertical reinforcement.   

 

8.1.2 Conclusions of the performance of non-planar walls 

The second objective of the research was to characterize the response of C-shaped walls 

through the lens of prior experimental tests.  Chapter 6 described the research conducted to study 

this objective.  The research included a quantitative evaluation of the impact of wall geometry and 

loading history through comparison of the planar wall tests, coupled wall test, and C-shaped wall 

tests.  The experimental data were analyzed to develop effective stiffness recommendations for the 

elastic analysis of non-planar concrete walls.  The C-shaped wall tests were also compared to 

previous and subsequent non-planar wall tests identified in the literature review through the 

development of a database of non-planar wall tests and parametric study of wall geometry, 

reinforcing, loading, ductility, and sectional analysis metrics.  The key conclusions associated with 

each sub-objective of this work are described below: 
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2.1. Evaluate the C-shaped wall response in comparison to the prior planar and coupled 

wall tests in the Complex walls testing program. 

• A C-shaped wall of similar geometry and loading demand to a planar wall exhibits 

increased ductility and increased drift capacity in the strong axis.  The improved 

performance is attributed to the lower compressive stress demand and ability to 

redistribute compressive stress along the flange as the corner boundary element 

becomes damaged.  The planar wall does not have the same ability to redistribute 

compressive stress and is more susceptible to non-ductile failure mechanisms. 

• In both experiments of the planar wall and coupled wall, the failure mechanism was 

non-ductile resulting from shear-compression damage to the boundary element.  While 

C-shaped walls experienced similar loading demands, the failure mechanism was 

ductile resulting from cyclic buckling and rupture of the vertical reinforcing bars.   

• The C-shaped wall exhibited reduced flexural deformation and base rotation, but nearly 

twice the shear deformation of the planar wall.  The strain field of the C-shaped wall 

indicates increased shear strain and principal compressive stress in the tension zone of 

the wall as compared to the planar.  For shear demand in the tension zone across open 

cracks, the shear slip along cracks is increased resulting in greater shear deformation. 

 

2.2. Develop recommendations of effective stiffness for the elastic analysis of non-planar 

reinforced concrete walls. 

• The measured shear deformation, flexural deformation, and base deformations were 

utilized to develop effective stiffness recommendations for the C-shaped walls.  These 

recommendations were evaluated against codes of practice and prior planar and non-

planar wall tests.  The effective flexural stiffness recommendations in codes of practice 

ranged from approximately 30% to 65% for a cracked wall at yield, while the 

experimental data supported only the lower bound of these recommendations at the 

30% level.  An effective flexural stiffness of 35%EcIg was recommended for design. 

• Codes of practice generally did not provide recommendations of effective shear 

stiffness values; however, the degradation of shear stiffness was significant in all tests 

examined.  Effective shear stiffness values approached 20% at the onset of yielding.  

An effective shear stiffness of 15%GcAcv was recommended for design. 
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• Bi-directional loading did not impact the effective stiffness values for the elastic 

analysis of non-planar walls during yielding up to 1% drift.  The effective stiffness 

recommendations are applicable to both uni-directional and bi-directional loaded walls. 

 

2.3. Develop a database of prior non-planar wall experiments and conduct a parametric 

study of non-planar walls to determine if drift capacity, ductility or failure 

mechanism can be estimated using simplified design parameters. 

• The drift capacity of planar walls have been effectively characterized using the ratio of 

wall length to wall thickness, w b , the wall neutral axis depth to wall thickness, c b , 

and the level of wall shear stress, ( )/ 'u cv cV A f  and a resulting expression has been 

proposed for the ACI 318 building code.  The same parameters and drift capacity 

expressions were applied to non-planar walls of C, U, H and T-shaped geometry.  These 

parameters were not statistically significant for non-planar walls, and the drift capacity 

expression did not have a meaningful correlation with the drift capacity of the 

experiments. 

• A parametric study of eighteen design parameters for non-planar walls found that 

ductility is a better metric for estimating non-planar wall performance than drift 

capacity.  Ductility was determined using both the 75% method and energy equivalence 

method with comparable results.  For simplicity, the 75% method is recommended for 

ductility calculations. 

• For non-planar walls, the parametric study indicated that increasing the reinforcement 

ratio of the boundary elements results in reduced ductility.  This trend is unique to non-

planar walls, and it reinforces the idea that non-planar wall ductility is ultimately a 

function of the damage to the boundary elements.  

• The drift capacity and ductility of bi-directionally loaded non-planar walls cannot be 

reliably estimated using design parameters and moment-curvature analysis alone.  The 

three-dimensional geometry and path dependency of the post-peak response require a 

more detailed evaluation using non-linear modeling tools. 
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8.1.3 Conclusions of the finite element analysis 

The third objective of the research was to conduct finite element modeling of the C-shaped 

wall experiments for validation and exploration of the wall response in shear. 

 

3.1. Develop a database of reinforced concrete panel tests and conduct an element level 

validation of the constitutive models with a focus on the influence of crack spacing.  

• The literature review of crack spacing models identified that the majority of models are 

empirically developed using experimental tests of tension members and beams where 

the cracks form perpendicular to the tension reinforcement.  Membrane/shell elements 

of reinforced concrete are subject to biaxial loading conditions and crack formation 

non-orthogonal to the reinforcement which is inconsistent with those tests.  To evaluate 

the parameters used in crack spacing models, a parametric study of crack spacing in 

reinforced concrete panel tests identified that rebar diameter, clear cover, tensile 

strength (bond strength), and effective reinforcing ratio had a significant impact on 

crack spacing.  The reinforcement spacing and ratio of bar diameter to effective 

reinforcing ratio were not statistically significant. 

• Existing crack spacings models consistently overpredict crack spacing in membrane 

elements subjected to shear by a factor ranging from one to four.  The overprediction 

is consistent with prior observations of the panel tests, and it confirms a deficiency in 

the application of these crack spacing models to finite element studies.  Additional 

experimental data and analytical evaluation are needed to develop a crack spacing 

model that inherently considers the non-orthogonality of cracking in shear. 

 

3.2. Recommend a crack spacing model for continuum analysis of reinforced concrete in 

which cracks form non-orthogonal to the reinforcement. 

• For finite element modeling, the effective reinforcement ratio input to the crack spacing 

model should be evaluated for each layer using the specific bar diameter, spacing, clear 

cover, and section thickness.  For a single reinforcing bar in a section with two layers 

of rebar each face, the effective area of concrete is recommended to be taken as a square 

area around the bar with a width equal to lessor of the bar spacing and 15 bar diameters 
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and a height equal to the lesser of one half the section thickness and the sum of clear 

cover and 7.5 bar diameters. 

• The predictions of stress and strain for the panel tests varied significantly on the basis 

of the crack spacing model selected; however, the CEB-FIP 1978 crack spacing model 

is recommended based on its consistent performance in predicting stress, strain and 

secant stiffness up to 75% yielding.  Furthermore, it gave a reasonable prediction of the 

ultimate stress without overpredicting the response.  This model is also readily available 

in existing finite element analysis software. 

 

3.3. Conduct non-linear finite element analyses simulating the cyclic response of the C-

shaped wall in both axes to validate the model performance and characterize the 

shear stress distribution. 

• The analytical prediction of strong axis loading indicated that the web carried nearly 

the entire shear demand in a parabolically shaped distribution with peak stress near the 

compression flange.  The shallow depth of compression in the flanged wall results in 

the majority of shear stress being resisted across the portion of the wall in tension.  The 

combination of shear and vertical tensile strain results in increased shear slip along 

cracks and increased shear deformation consistent with the experimental results. 

• For strong axis loading, the compression flange resisted an in-plane shear of 

approximately 25% of the web shear.  The out-of-plane demand was a consequence of 

the out-of-plane restraint of the C-shaped wall.  The stress distribution across the flange 

changes from a triangular distribution during yielding to a nearly uniform state at the 

nominal strength indicating full activation of the flange length with increasing drift. 

• A parametric study of flange width for strong axis loading indicated that the shear 

demand in the compression flange increases with increasing ratio of flange length to 

web length.  The shear in the compression flange is observed to be linearly dependent 

on drift ratio for flange length less than 40% of the web length but independent for 

flange lengths greater than 40% of the web length.   

• For a coupled C-shaped wall subjected to strong axis loading, the flange should be 

designed to resist a minimum shear equal to: 0.6
fl

fl web

web

V V
 

=  
 

.  The out-of-plane 
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restraining force should be considered in the load path through the coupling beams at 

each slab level as well as the foundation.  Future work is suggested to evaluate how this 

force is shared between floor levels and whether there is a meaningful impact on the 

coupling beam response. 

8.2 Future Work 

The experimental testing of C-shaped walls revealed a complex and interdependent structural 

response.  During service level loading and up to the nominal strength, shortcomings in the 

prediction of cracking and stiffness were identified.  The use of a continuum analysis with smeared 

cracking and reinforcement inherently links these effects, and the empirically based constitutive 

models utilized in this study do not separate these different aspects of the response.  Future work 

addressing the interdependence between cracking and stiffness is described below: 

• The bond between the concrete and reinforcing bars was not explicitly considered, and 

the analysis assumed the average strain in the concrete to be equal to the average strain 

in the reinforcement.  However, the effect of bond degradation is implicitly considered 

in the constitutive models of tension stiffening and crack spacing.  The interdependence 

of bond on these parameters needs further evaluation.  As part of this effort, the tension 

chord model (Marti et al. 1998) should be included since it directly considers the bond 

stress distribution and crack spacing with an analytical approach. 

• The application of initial shrinkage cracking in non-planar walls to correct the initial 

stiffness prior to loading was not successful.  The straining and cracking pattern was 

not consistent with the expected response due to the asymmetry of the specimen.  

Additional research is needed to evaluate initial shrinkage effects on asymmetric 

geometries.  In conjunction with this challenge, prior research has estimated that the 

inconsideration of time-dependent shrinkage in tension stiffening models can 

overpredict the stiffening effect by up to a factor of two (Bischoff 2001).  While these 

effects do not generally control the peak and post-peak response, the prediction of 

deformations at service level loading is critical for design engineering. 

• The crack spacing models utilized were empirically developed using experimental tests 

of tension members and beams where the cracks form perpendicular to the tension 

reinforcement.  The biaxial stress states and crack formation non-orthogonal to the 
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reinforcement in membrane/shell elements of reinforced concrete, and the evaluation 

of those models against experimental data indicated a large scatter of results with 

general overprediction of crack spacing.  Prior research has also noted that the 

formation of non-orthogonal cracks may be influenced by the location of transverse 

reinforcement and local stress transmission across existing cracks (Bentz 2007).  

Additional experimental data and analytical evaluation are needed to develop a crack 

spacing model that inherently considers the non-orthogonality of cracking. 
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