
c© 2018 Bihan Wen

ADAPTIVE NONLOCAL AND STRUCTURED SPARSE SIGNAL
MODELING AND APPLICATIONS

BY

BIHAN WEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Yoram Bresler, Chair
Professor Minh N. Do
Professor Farzad Kamalabadi
Professor Zhi-Pei Liang

ABSTRACT

Features based on sparse representation, especially using the synthesis dictio-

nary model, have been heavily exploited in signal processing and computer

vision. Many applications such as image and video denoising, inpainting, de-

mosaicing, super-resolution, magnetic resonance imaging (MRI), and com-

puted tomography (CT) reconstruction have been shown to benefit from

adaptive sparse signal modeling. However, synthesis dictionary learning typ-

ically involves expensive sparse coding and learning steps. Recently, spar-

sifying transform learning received interest for its cheap computation and

its optimal updates in the alternating algorithms. Prior works on trans-

form learning have certain limitations, including (1) limited model richness

and structure for handling diverse data, (2) lack of non-local structure, and

(3) lack of effective extension to high-dimensional or streaming data. This

dissertation focuses on advanced data-driven sparse modeling techniques, es-

pecially with nonlocal and structured sparse signal modeling.

In the first work of this dissertation, we propose a methodology for learning,

dubbed Flipping and Rotation Invariant Sparsifying Transforms (FRIST),

to better represent natural images that contain textures with various ge-

ometrical directions. The proposed alternating FRIST learning algorithm

involves efficient optimal updates. We provide a convergence guarantee,

and demonstrate the empirical convergence behavior of the proposed FRIST

learning approach. Preliminary experiments show the promising performance

of FRIST learning for image sparse representation, segmentation, denoising,

robust inpainting, and compressed sensing-based magnetic resonance image

reconstruction.

Next, we present an online high-dimensional sparsifying transform learn-

ing method for spatio-temporal data, and demonstrate its usefulness with a

novel video denoising framework, dubbed VIDOSAT. The proposed method

is based on our previous work on online sparsifying transform learning, which

ii

has low computational and memory costs, and can potentially handle stream-

ing video. By combining with a block matching (BM) technique, the learned

model can effectively adapt to video data with various motions. The patches

are constructed either from corresponding 2D patches in successive frames

or using an online block matching technique. The proposed online video

denoising requires little memory and offers efficient processing. Numerical

experiments are used to analyze the contribution of the various components

of the proposed video denoising scheme by “switching off” these components

- for example, fixing the transform to be 3D DCT, rather than a learned

transform. Other experiments compare to the performance of prior schemes

such as dictionary learning-based schemes, and the state-of-the-art VBM3D

and VBM4D on several video data sets, demonstrating the promising perfor-

mance of the proposed methods.

In the third part of the dissertation, we propose a joint sparse and low-

rank model, dubbed STROLLR, to better represent natural images. Patch-

based methods exploit local patch sparsity, whereas other works apply low-

rankness of grouped patches to exploit image non-local structures. However,

using either approach alone usually limits performance in image restoration

applications. In order to fully utilize both the local and non-local image

properties, we develop an image restoration framework using a transform

learning scheme with joint low-rank regularization. The approach owes some

of its computational efficiency and good performance to the use of transform

learning for adaptive sparse representation rather than the popular synthe-

sis dictionary learning algorithms, which involve approximation of NP-hard

sparse coding and expensive learning steps. We demonstrate the proposed

framework in various applications to image denoising, inpainting, and com-

pressed sensing based magnetic resonance imaging. Results show promising

performance compared to state-of-the-art competing methods.

Last, we extend the effective joint sparsity and low-rankness model from

image to video applications. We propose a novel video denoising method,

based on an online tensor reconstruction scheme with a joint adaptive sparse

and low-rank model, dubbed SALT. An efficient and unsupervised online uni-

tary sparsifying transform learning method is introduced to impose adaptive

sparsity on the fly. We develop an efficient 3D spatio-temporal data recon-

struction framework based on the proposed online learning method, which

exhibits low latency and can potentially handle streaming videos. To the

iii

best of our knowledge, this is the first work that combines adaptive spar-

sity and low-rankness for video denoising, and the first work that solves the

proposed problem in an online fashion. We demonstrate video denoising

results over commonly used videos from public datasets. Numerical experi-

ments show that the proposed video denoising method outperforms compet-

ing methods.

iv

To my wife and parents, for their love and support.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . xi

CHAPTER 1 INTRODUCTION . 1
1.1 Sparse Modeling . 1
1.2 Learning Structured Transform for Diverse Data 2
1.3 Online Transform Learning for High-dimensional Data 3
1.4 Image Restoration via Joint Sparsifying Transform Learn-

ing and Low-Rank Modeling 4
1.5 Online Tensor Reconstruction Scheme for Video Denoising

by Joint Adaptive Sparsity and Low-Rankness 6
1.6 Organization . 7

CHAPTER 2 FRIST: FLIPPING AND ROTATION INVARIANT
SPARSIFYING TRANSFORM LEARNING 9
2.1 FRIST Model and Its Learning Formulation 9
2.2 FRIST Learning Algorithm and Convergence Analysis 12

CHAPTER 3 FRIST APPLICATIONS OF INVERSE PROBLEMS . 18
3.1 Image Denoising . 18
3.2 Image Inpainting . 20
3.3 Blind Compressed Sensing Based MRI 23
3.4 Experiment Results . 26

CHAPTER 4 HIGH-DIMENSIONAL SPARSIFYING TRANSFORM
LEARNING FOR ONLINE VIDEO DENOISING 43
4.1 Introduction to Video Denoising 43
4.2 Signal Denoising via Online Transform Learning 47
4.3 VIDOSAT Framework and Formulations 50
4.4 Denoising Algorithms . 52
4.5 Experiments . 61
4.6 Conclusions . 65

vi

CHAPTER 5 TRANSFORM LEARNING WITH NON-LOCAL
LOW-RANK CONSTRAINT FOR IMAGE RESTORATION . . . 71
5.1 Related Work . 71
5.2 STROLLR Model and Image Recovery 76
5.3 Algorithm . 78
5.4 Image Recovery Applications 83
5.5 Experiments . 87

CHAPTER 6 ONLINE TENSOR RECONSTRUCTION FOR VIDEO
DENOISING . 100
6.1 Related Methods . 100
6.2 SALT Video Denoising Framework 101
6.3 SALT Formulation . 104
6.4 Algorithm . 107
6.5 Experiment . 110
6.6 Conclusion . 113

REFERENCES . 121

vii

LIST OF TABLES

2.1 Computational cost comparison between SST (W ∈ Rn×n),
OCTOBOS (K clusters, each Wk ∈ Rn×n), FRIST and
KSVD (D ∈ Rn×m) learning. N is the amount of training data. 15

3.1 PSNR values for reconstruction of images from sparse rep-
resentations obtained using the 2D DCT, learned SST and
OCTOBOS, square and overcomplete K-SVD, and learned
FRIST. The first row of the table provides average PSNR
values computed over the 44 images from the USC-SIPI
database. The best PSNR values are marked in bold. 32

3.2 PSNR values (in dB) for denoising with 64 × 64 adaptive
FRIST along with the corresponding PSNR values for de-
noising using the 64 × 64 2D DCT, the 64 × 64 adaptive
SST, the 64× 256 overcomplete K-SVD, and the 256× 64
learned OCTOBOS. The best PSNR values are marked in bold. 35

3.3 PSNR values for image inpainting, averaged over six im-
ages, using the proposed adaptive FRIST based method,
along with the corresponding values obtained using cubic
interpolation (Cubic), patch smooth ordering (Smooth),
patch-based DCT, adaptive SST, and adaptive OCTOBOS
based methods, for various fractions of available pixels and
noise levels. The best PSNR value in each row is marked
in bold. 37

3.4 Comparison of the PSNRs corresponding to the zero-filling,
Sparse MRI, DL-MRI, PBDWS, PANO, TL-MRI, and the
proposed FRIST-MRI reconstructions for various images,
sampling schemes, and undersampling factors. The best
PSNR for each MRI image is marked in bold. 38

4.1 Comparison between video denoising methods, including
fBM3D, 3D DCT, sKSVD, VBM3D, VBM4D, as well as
VIDOSAT and VIDOSAT-BM proposed here. fBM3D is
applying BM3D algorithm for denoising each frame, and
the 3D DCT method is applying the VIDOSAT framework
but using the fixed 3D DCT transform. 46

viii

4.2 Comparison of video denoising PSNR values (in dB), av-
eraged over the ASU dataset, for the proposed VIDOSAT,
VIDOSAT-BM, and other competing methods. For each
dataset and noise level, the best denoising PSNR is marked
in bold. For each method, we list ∆ PSNR, which de-
notes the average PSNR difference (with its standard de-
viation included in parentheses) relative to the proposed
VIDOSAT-BM (highlighted in bold). 59

4.3 Comparison of video denoising PSNR values (in dB), aver-
aged over the LASIP dataset, for the proposed VIDOSAT,
VIDOSAT-BM, and other competing methods. For each
dataset and noise level, the best denoising PSNR is marked
in bold. For each method, we list ∆ PSNR, which de-
notes the average PSNR difference (with its standard de-
viation included in parentheses) relative to the proposed
VIDOSAT-BM (highlighted in bold). 60

5.1 Comparison between internal image denoising methods, in-
cluding ODCT, KSVD, OCTOBOS, NLM, BM3D, GSR ,
SAIST, and STROLLR (this work). 73

5.2 Comparison between various MRI reconstruction methods,
including SparseMRI, PBDWS, DLMRI, TLMRI, FRIST-
MRI, PANO and STROLLR-MRI (this work). 74

5.3 Comparison of gray-scale image denoising PSNR values (in
dB), averaged over the Kodak and USC-SIPI Misc datasets,
using the proposed STROLLR image denoising method,
versus other competing algorithms. For each dataset and
noise level, the best denoising PSNR is marked in bold.
For each method, ∆ PSNR denotes the PSNR loss relative
to the proposed STROLLR algorithm (highlighted in bold)
averaged over the five different noise levels. 90

5.4 PSNRs of gray-scale image denoising, using STROLLR and
its variants, averaged over the Kodak image dataset. For
each noise level, the best denoising PSNR is marked in
bold. For each variant, ∆PSNR denotes the PSNR loss
relative to the full STROLLR denoiser, averaged over the
four noise levels. 91

5.5 PSNR values of color image denoising, averaged over the
Kodak color image dataset, using the TNRD, MC-WNNM,
C-BM3D, and the proposed C-STROLLR image denoiser.
For each noise level, the best denoising PSNR is marked in
bold. For each method, ∆ PSNR denotes the PSNR loss
relative to the proposed STROLLR algorithm (highlighted
in bold), averaged over the four noise levels. 94

ix

5.6 PSNR values of image inpainting, using bicubic interpola-
tion, SKR, GSR, and the proposed STROLLR image in-
painting method. For each image and available pixel per-
centage, the best inpainting PSNR is marked in bold. 95

5.7 PSNRs, corresponding to the Zero-filling, Sparse MRI, DL-
MRI, and the proposed STROLLR-MRI reconstructions
for various images, sampling schemes, and undersampling
factors. The best PSNR for each case is marked in bold. . . . 99

6.1 Comparison of the key attributes between the proposed
SALT denoising, its variations, and the competing methods. . 101

6.2 Comparison of video denoising PSNR values, averaged over
TUT dataset, for the proposed SALT and competing meth-
ods. ∆P denotes the average PSNR difference (with its
standard deviation) relative to SALT. For each video and
noise level, the best denoising PSNR is marked in bold. 119

6.3 Comparison of video denoising PSNR values, averaged over
ASU dataset, for the proposed SALT and competing meth-
ods. For each video and noise level, the best denoising
PSNR is marked in bold. 120

x

LIST OF FIGURES

3.1 Testing images used in the image denoising and image in-
painting experiments. 26

3.2 Convergence of the FRIST objective, sparsification error,
and cluster size with various parent transform initializa-
tions, as well as the visualizations of the learned FRIST
parent transforms with DCT and random initializations. . . . 28

3.3 Image segmentation result of Wave (512×512) using FRIST
learning on the gray-scale version of the image. The col-
ors red, green, blue, and black in (b) represent pixels that
belong to the four classes. Pixels that are clustered into
a specific class are shown in gray-scale (using intensities
in the original gray-scale image), while pixels that are not
clustered into that class are shown in black for (c)-(f). 29

3.4 Image segmentation result of Field (256×512) using FRIST
learning on the gray-scale version of the image. The colors
red, green, blue, and Bblack in (b) represent pixels that
belong to the four classes. Pixels that are clustered into
a specific class are shown in gray-scale (using intensities
in the original gray-scale image), while pixels that are not
clustered into that class are shown in black for (c)-(f). 30

3.5 Visualization of the learned (a) parent transform, and (b)-
(e) children transforms in FRIST for the image Wave. The
rows of each child transform are displayed as 8× 8 patches. . . 31

3.6 Denoising PSNR for Peppers as a function of the number
of clusters (including flipping and rotations) K. 36

3.7 Illutration of image inpainting results for the Kodak 18
(80% pixels are missing) with regional zoom-in comparisons. . 40

3.8 Testing MRI images and their k -space sampling masks:
(a) Image 1 ; (b) k-space sampling mask (Cartesian with
7× undersampling) for Image 1 ; (c) Image 2 ; (d) k-space
sampling mask (2D random with 5× undersampling) for
Image 2. 41

xi

3.9 Visualization of the reconstruction of Image 3 using Carte-
sian sampling and 2.5× undersampling: (a) Image 3 ; (b)
sampling mask in k-space; (c) TL-MRI reconstruction (36.3
dB); (d) magnitude of TL-MRI reconstruction error; (e)
FRIST-MRI reconstruction (36.7 dB); and (f) magnitude
of FRIST-MRI reconstruction error. 42

4.1 Illustration of video streaming, tensor construction and
vectorization. 44

4.2 Illustration of online video streaming and denoising framework. 45
4.3 Illustration of the output buffer from time t to t+ (m− 1)

for generating the denoised frame output Ŷt. 51
4.4 Patch deposit R∗p vec−1(v̂p) (resp. B∗p vec−1(v̂p)) as an ad-

joint of patch extraction operator in 4.1 (resp. an adjoint
of BM operator in 4.2). 56

4.5 Illustration of the different 3D patch construction methods
in VIDOSAT (blue) and VIDOSAT-BM (red). The 3D
search window used in VIDOSAT-BM is illustrated in green. . 57

4.6 (a) The noisy version (σ = 50) of (b) one frame of the Akiyo
(288 × 352 × 300) video. We show the comparison of the
denoising results (resp. the magnitude of error in the de-
noised frame) using (c) VBM3D (33.30 dB), (e) VIDOSAT
(35.84 dB) and (g) VIDOSAT-BM (36.11 dB) (resp. (d),
(f) and (h)). The PSNR of the denoised frame is shown in
the parentheses. The zoom-in region is highlighted using
red box. 66

4.7 Frame-by-frame PSNR (dB) for (a) Akiyo with σ = 50, (b)
Salesman with σ = 20, and (c) Bicycle with σ = 20, de-
noised by VBM3D, VBM4D, and the proposed VIDOSAT
and VIDOSAT-BM schemes, respectively. 67

4.8 (a) The noisy version (σ = 20) of (b) one frame of the
Salesman (288 × 352 × 50) video. We show the compari-
son of the denoising results (resp. the magnitude of error
in the denoised frame) using (c) VBM4D (33.04 dB), (e)
VIDOSAT (33.43 dB) and (g) VIDOSAT-BM (34.01 dB)
(resp. (d), (f) and (h)). The PSNR of the denoised frame
is shown in the parentheses. The zoom-in regions are high-
lighted using red and green boxes. 68

4.9 Example atoms (i.e., 4 rows) of the initial 3D DCT (with
depth m = 9), and the online learned 3D sparsifying trans-
form using (a) VIDOSAT, and (b) VIDOSAT-BM, at times
10 to 40: the atoms (i.e., rows) of the learned Ŵ are shown
as m = 9 patches in each column. These 9 patches together
form the 8× 8× 9 3D atoms. 69

xii

4.10 (a) The noisy version (σ = 20) of (b) one frame of the Bicy-
cle (576× 720× 30) video. We show the comparison of the
denoising results (resp. the magnitude of error in the de-
noised frame) using (c) VBM4D (34.00 dB), (e) VIDOSAT
(32.07 dB) and (g) VIDOSAT-BM (35.33 dB) (resp. (d),
(f) and (h)). The PSNR of the denoised frame is shown in
the parentheses. The zoom-in region is highlighted using
red box. 70

5.1 The STROLLR image recovery algorithm framework. 79
5.2 Denoising result of the image Pentagon: the zoom-in re-

gions of (a) the ground truth, (b) the denoised image by
DnCNN (PSNR = 25.87 dB), and (c) the denoised image
by STROLLR (PSNR = 26.05 dB). 89

5.3 Denoising results of (a) the example color images Kodim07
at σ = 35, with the blue rectangles highlighting the zoom-
in regions of (b) the images denoised by C-BM3D (PSNR
= 31.64 dB), and (c) the images denoised by C-STROLLR
(PSNR = 32.08 dB), and (d) the ground truth. 92

5.4 Denoising results of (a) the example color images Kodim08
at σ = 35, with the blue rectangles highlighting the zoom-
in regions of (b) the images denoised by C-BM3D (PSNR
= 27.82 dB), and (c) the images denoised by C-STROLLR
(PSNR = 28.45 dB), and (d) the ground truth. 93

5.5 Testing anatomical and physical phantom MR images: (a)
is used in TL-MRI and FRIST-MRI, and (b) and (c) are
from a publicly available dataset. 96

5.6 Reconstruction of MR image d using (a) DL-MRI, (b)
FRIST-MRI, and (c) the proposed STROLLR-MRI. Top
row: reconstructions; bottom row: magnitude of the re-
construction error. 96

5.7 Example of CS MRI of the Brain Data 1 using the 5×
undersampled pseudo radial mask in K-space. Reconstruc-
tions using (a) TL-MRI, (b) ADMM-Net, and (c) the pro-
posed STROLLR-MRI (top row), and the magnitudes of
the corresponding reconstruction error (bottom row). 98

6.1 A diagram for SALT based video denoising 102
6.2 A simple illustration of the SALT model for video 105
6.3 Frame-by-frame (a) PSNR(dB) and (b) SSIM of the video

Gbicycle with σ = 20, denoised by the proposed SALT
denoising scheme, VIDOLSAT, VBM3D and VBM4D. 115

xiii

6.4 Denoising result: (a) One frame of the clean video Gbicy-
cle. (b) Frame corrupted with noise at σ = 20 (PSNR =
22.12 dB). (c) Denoised frame using the proposed SALT
denoising (PSNR = 35.67 dB). (d) Denoised frame using
VIDOSAT (PSNR = 31.80 dB). (e) Magnitude of error in
(c). (f) Magnitude of error in (d). 116

6.5 Frame-by-frame (a) PSNR(dB) and (b) SSIM of the video
Stefan with σ = 20, denoised by the proposed SALT de-
noising scheme, VIDOLSAT, VBM3D and VBM4D. 117

6.6 Denoising result: (a) One frame of the clean video Ste-
fan. (b) Frame corrupted with noise at σ = 20 (PSNR =
22.11 dB). (c) Denoised frame using the proposed SALT
denoising (PSNR = 29.69 dB). (d) Denoised frame using
VBM4D (PSNR = 28.56 dB). (e) Magnitude of error in
(c). (f) Magnitude of error in (d). 118

xiv

CHAPTER 1

INTRODUCTION

1.1 Sparse Modeling

Sparse representation of natural signals in a certain transform domain or

dictionary has been widely exploited. Various sparse signal models, such as

the synthesis model [1, 2] and the transform model [3], have been studied.

It has been shown in many image processing and vision tasks, including

image and video denoising, that data-adaptive representations usually lead

to superior performance [4–6].

1.1.1 Synthesis Model

The popular synthesis model suggests that a signal y ∈ Rn can be sparsely

represented as y = Dx+η, where D ∈ Rn×m is a synthesis dictionary, x ∈ Rm

is a sparse code, and η is small approximation error in the signal domain.

Synthesis dictionary learning methods [7,8] that adapt the dictionary based

on training data typically involve a synthesis sparse coding step which is,

however, NP-hard [9], so that approximate solutions [10–12] are widely used.

Various dictionary learning algorithms [7, 13–15] have been proposed and

are popular in numerous applications such as denoising, inpainting, deblur-

ring, and demosaicing [4,16,17]. For example, the well-known K-SVD method

[8] generalizes the K-means clustering process to a dictionary learning algo-

rithm, and alternates between updating the sparse codes of training signals

(sparse coding step) and the dictionary (dictionary or codebook update step).

K-SVD updates both the dictionary atoms (columns) and the non-zero en-

tries in the sparse codes (with fixed support) in the dictionary update step

using singular value decompositions (SVD). However, the dictionary learn-

ing algorithms such as K-SVD are usually computationally expensive for

1

large-scale problems. Moreover, methods such as KSVD lack convergence

guarantees, and can get easily caught in local minima, or saddle points [18].

1.1.2 Transform Model and Transform Learning

The alternative transform model suggests that the signal y is approximately

sparsifiable using a transform W ∈ Rm×n, i.e., Wy = x + e, with x ∈ Rm

sparse and e a small approximation error in the transform domain (rather

than in the signal domain). It is well known that natural images are sparsifi-

able by analytical transforms such as the discrete cosine transform (DCT), or

wavelet transform [19]. Furthermore, recent works proposed learning square

sparsifying transforms (SST) [20], which turn out to be advantageous in vari-

ous applications such as image denoising, magnetic resonance imaging (MRI),

and computed tomography (CT) [5, 20–22]. Alternating minimization algo-

rithms for learning SST have been proposed with cheap and closed-form

updates [23].

Since SST learning is restricted to one adaptive square transform for all the

data, the diverse patches of natural images, or dynamically changing data,

may not be sufficiently sparsified in the SST model.

1.2 Learning Structured Transform for Diverse Data

Recent work focused on learning a union of unstructured sparsifying trans-

forms [5,24], dubbed OCTOBOS (for OverComplete TransfOrm with BlOck

coSparsity constraint – cf. [5]), to sparsify images with diverse contents,

features and textures. Given a signal y ∈ Rn and a union of transforms

{Wk}Kk=1, where each Wk ∈ Rm×n, the OCTOBOS model selects the best

matching transform for y as the one providing the minimum modeling error.

The OCTOBOS sparse coding problem is the following:

(P0) min
1≤k≤K

min
xk

∥∥Wk y − xk
∥∥2

2
s.t.

∥∥xk∥∥
0
≤ s ∀ k,

where xk denotes the sparse representation for y in the transform Wk, the `0

“norm” counts the number of non-zeros in a vector, and s is a given sparsity

level. However, learning such an unstructured OCTOBOS model [5] (that

2

has many free parameters), especially from noisy or limited data, could suffer

from overfitting to noise/artifacts, thereby degrading performance in various

applications and inverse problem settings.

Instead, we consider the use of transformation symmetries to constrain the

multiple learned transforms, thus reducing the number of free parameters and

avoiding overfitting. While previous works exploited transformation symme-

tries in synthesis model sparse coding [25], and applied rotational operators

with analytical transforms [26], the usefulness of the rotational invariance

property in learning adaptive sparse signal models has not been explored.

Here, we propose a Flipping and Rotation Invariant Sparsifying Transform

(FRIST) learning scheme, and show that it can provide better sparse rep-

resentations by capturing the “optimal” orientations of patches in natural

images. As such, it serves as an effective regularizer for image recovery in

various inverse problems. Preliminary experiments in this dissertation show

the usefulness of adaptive sparse representation by FRIST for image sparse

representation, segmentation, denoising, robust inpainting, and compressed

sensing-based magnetic resonance image (MRI) reconstruction with promis-

ing performances.

1.3 Online Transform Learning for High-dimensional

Data

Prior work on batch transform learning [5, 20, 23, 24, 27] adapted the trans-

form using all the training data, which usually renders the batch method

computationally and memory inefficient. Our recent work [28,29] introduced

online sparsifying transform learning (OSTL) which iteratively adapts the

sparsifying transform and sparse codes for signals that arrive sequentially.

Preliminary results demonstrated the usefulness of online adaptive 2D trans-

form for large-scale image denoising [28]. Compared to the work of online

synthesis dictionary learning [15], the online adaptation of the sparsifying

transform allows for much cheaper computations, and thus is more suitable

of extending to high-dimensional data applications.

While the data-driven adaptation of synthesis dictionaries for the purpose

of denoising image sequences or volumetric data [30,31] has been studied in

some recent papers, the usefulness of learned sparsifying transforms has not

3

been explored in these applications. Video data typically contains correlation

along the temporal dimension, which will not be captured by learning spar-

sifying transforms for the 2D patches of the video frames. We focus on video

denoising using high-dimensional online transform learning. We refer to our

proposed framework as VIdeo Denoising by Online SpArsifying Transform

learning (VIDOSAT). Spatio-temporal (3D) patches are constructed using

local 2D patches of the corrupted video, and the sparsifying transform is

adapted to these 3D patches on-the-fly. To the best of our knowledge, this

is the first video denoising method using online sparse signal modeling, by

applying high-dimensional sparsifying transform learning for spatio-temporal

data.

1.4 Image Restoration via Joint Sparsifying Transform

Learning and Low-Rank Modeling

Image reconstruction refers to the process of forming an image from a collec-

tion of measurements. Despite today’s vast improvement in camera sensors,

digital images are often still corrupted by severe noise in low-light conditions.

Furthermore, in modern computed imaging applications, in order to reduce

the system complexity, data-acquisition time, or radiation dose, it is usually

required to reconstruct high-quality images from incomplete or corrupted

measurements. Under such settings, image reconstruction corresponds to a

challenging inverse problem. We aim to estimate the underlying image x

from its degraded / noisy measurement y, which has the general form of

y = Ax + e, where A and e denote the sensing operator and additive noise,

respectively. This framework encompasses various important problems, in-

cluding image denoising, deblurring, inpainting, super-resolution, compressed

sensing (CS), and more advanced linear computed imaging modalities. For

such problems, and especially for those that are ill-posed, an effective reg-

ularizer is key to a successful image reconstruction algorithm. Most of the

popular methods take advantage of either sparsity or non-local image struc-

tures.

It is well known that natural images contain local structures, such that

image patches are typically sparsifiable or compressible under certain trans-

forms, or over certain dictionaries. Early works exploited the sparsity in a

4

fixed transform domain, e.g. discrete cosine transform (DCT) [32, 33] and

wavelets [34]. Comparing to fixed sparse models, recent works have shown

that the data-driven adaption of sparse signal models leads to promising

results in various image recovery problems [5, 35–39]. Among them, synthe-

sis dictionary learning [35,36] is the most popular adaptive sparse modeling

technique. However synthesis model based methods typically involve the ap-

proximate solution of an NP-hard sparse coding step [9]. The widely used

approximate methods [36,40] are not efficient for large-scale problems.

As an alternative, the transform model provides cheap and exact sparse

coding. Recent works on sparsifying transform learning proposed efficient

learning algorithms with convergence guarantees [5, 38], which turn out to

be advantageous in applications including video denoising [6, 41], magnetic

resonance imaging (MRI) [42–44], and computational tomography (CT) [45],

with state-of-the-art performances.

Apart from sparsity, images also contain non-local structures such as self-

similarity: patches are typically similar to other non-local structures within

the same image. Recent image restoration algorithms investigated the group-

ing of similar patches, and exploited the correlation within each group [32,

37, 46–52]. Among them, the algorithms based on low-rank (LR) modeling

have demonstrated superior performance in image recovery tasks [48,50,51].

A successful approach of this nature comprises four major steps:

1. For each overlapping image patch ui, apply block matching to find its

similar patches.

2. Construct a data matrix Ui whose columns are the vectorized patches

closest to ui.

3. Denoise Ui by calculating its low-rank approximation.

4. Aggregate the denoised Ui’s to form the image estimate.

Similar to adopting sparsity-promoting “norms” as penalties in sparse cod-

ing, several types of norms have been introduced to impose low-rankness,

including nuclear norm, Schattern p-norm [51], weighted nuclear norm [50],

etc.

In summary, transform learning, and low-rankness in groups of similar

patches, respectively, capture the sparsity, and non-local self-similarity in

5

natural images. Each of them has been applied as an effective regularizer in

various image restoration algorithms. However, to the best of our knowledge,

no 2D image recovery algorithm has to date utilized both transform learning

and low-rank approximation jointly. In this work, we propose a flexible

Sparsifying TRansfOrm Learning and Low-Rank (STROLLR) model [39,53].

Instead of using nuclear norms, we directly minimize the rank of data matrix

as the regularization term, which leads to a more efficient algorithm.

1.5 Online Tensor Reconstruction Scheme for Video

Denoising by Joint Adaptive Sparsity and

Low-Rankness

Denoising is one of the most important problems in video processing. Despite

today’s vast improvement in camera sensors, videos captured at high speed

and in low light conditions are still corrupted by severe noise due to high

sensitivity (i.e., ISO). The problem of noise in videos is gaining prominence

with the ubiquitous use of relatively low-quality cameras in smart phones and

other devices. Therefore, recovering high-quality videos from noisy footage is

of great interest as a low-level vision problem, and also improves robustness

in high-level vision tasks [54,55].

Video denoising presents challenges that are distinct from other multi-

frame image data, such as volumetric data (e.g., 3D medical image) or hyper-

spectral data. Hyperspectral images, in particular, typically exhibit strong

correlation in a small spatial window along the spectral dimension [56–58].

In video, however, objects can move throughout or exit the scene, and such

long-term correlations may not exist [59]. Furthermore, many video denoising

applications are of a streaming nature and a low-latency denoising method

is required. In this environment a denoising algorithm can depend only on a

small number of frames [6].

Most video denoising methods take advantage of local or non-local struc-

tures present in video data. While some of the previous algorithms leverage

sparsity in the denoising stage, they do so in a fixed transform domain.

However, it has been shown in many low-level vision tasks, including im-

age and video denoising, that data-adaptive representations usually lead

6

to superior performance over fixed sparse representations [4–6]. Synthesis

dictionary learning is the most well-known adaptive representation learning

scheme [4, 8, 60]. Unfortunately, dictionary learning features typically NP-

hard sparse coding steps [61], for which commonly-used greedy approximate

algorithms still involve relatively expensive computations [40, 62]. As an al-

ternative, sparsifying transform learning [20] with cheap sparse coding steps

has been proposed and shown to be efficient and effective in finding sparse

approximations of image data [5, 27, 63]. The recent online variants of the

transform learning [28] are especially applicable to streaming large scale, or

high-dimensional data, and have demonstrated promising performance for

video denoising [6].

In summary, transform domain sparsity and low-rankness in groups of sim-

ilar patches capture local and non-local structures in video data, respectively.

Similar observations are also true for images, and the combination of these

two priors has been exploited in single-frame and hyperspectral image de-

noising algorithms [39, 57]. However, to the best of our knowledge, no video

denoising algorithm has to date utilized both data-adaptive sparse and low-

rank priors. We introduce an online video denoising scheme called Sparse

And Low-rank Tensor (SALT) reconstruction, which exploits both local and

non-local structures.

1.6 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we present

the FRIST model, and the FRIST learning formulations, associated with ef-

ficient learning algorithms to solve the proposed learning problem along with

convergence analysis. In Chapter 3, we describe various applications based

on FRIST learning, including image denoising, inpainting and compressed

sensing-based (MR) image reconstruction. Experimental results demonstrat-

ing the promise of FRIST learning, including for image segmentation, sparse

representation, denoising, inpainting, and MRI are illustrated. In Chapter

4, we introduce an online denoising formulation based on the online and

mini-batch transform learning [28, 64]. We then propose a video denoising

method using high-dimensional online transform learning, which we refer to

as VIdeo Denoising by Online SpArsifying Transform learning (VIDOSAT).

7

In Chapter 5, we propose an image restoration framework using multiple

complementary regularizers. We propose a joint adaptive patch sparse and

group low-rank model, dubbed STROLLR, for better representing natural

images using transform learning. In Chapter 6, we introduce an online video

denoising scheme called Sparse And Low-rank Tensor (SALT) reconstruction,

which exploits both local and non-local structures, and achieves state-of-the-

art video denoising results.

8

CHAPTER 2

FRIST: FLIPPING AND ROTATION
INVARIANT SPARSIFYING TRANSFORM

LEARNING

2.1 FRIST Model and Its Learning Formulation

2.1.1 FRIST Model

The learning of the sparsifying transform model [20] has been proposed re-

cently. Extending this approach, we propose a FRIST model that first ap-

plies a flipping and rotation (FR) operator Φ ∈ Rn×n to a signal y ∈ Rn,

and models Φy as approximately sparsifiable by some sparsifying transform

W ∈ Rm×n, i.e., WΦy = x+e, with x ∈ Rm sparse, and e is a small deviation

term. A finite set of flipping and rotation operators {Φk}Kk=1 is considered,

and the sparse coding problem in the FRIST model is as follows:

(P1) min
1≤k≤K

min
xk

∥∥W Φk y − xk
∥∥2

2
s.t.

∥∥xk∥∥
0
≤ s ∀ k.

Thus, xk denotes the sparse code of Φk y in the transform W domain, with

maximum sparsity s. Equivalently, the optimal x̂k̂ is called the sparse code

in the FRIST domain. We further decompose the FR matrix as Φk , Gq F ,

where F can be either an identity matrix or (for 2D signals) a left-to-right

flipping permutation matrix. Though there are various methods of formu-

lating the rotation operator G with arbitrary angles [65, 66], rotating image

patches by an angle θ that is not a multiple of 90◦ requires interpolation,

and may result in misalignment with the pixel grid. Here, we adopt the ma-

trix Gq , G(θq) that permutes the pixels in an image patch approximating

rotation by angle θq without interpolation. Constructions of such {Gq} have

been proposed before [26, 67, 68]. With such implementation, the number of

possible permutations {Gq} denoted by Q̃ is finite and grows linearly with the

signal dimension n. Accounting for the flipping operation, the total number

9

of possible FR operators is K̃ = 2Q̃.

In practice, one can select a subset {Φk}Kk=1, containing K < K̃ of FR

candidates, from which the optimal Φ̂ = Φk̂ is chosen in (P1). For each

Φk, the optimal sparse code x̂k in Problem (P1) can be solved exactly as

x̂k = Hs(WΦky), where Hs(·) is the projector onto the s-`0 ball [69], i.e.,

Hs(b) zeros out all but the s elements of largest magnitude in b ∈ Rm. The

optimal FR operator Φk̂ is selected to provide the smallest sparsification

(modeling) error ‖W Φk y −Hs(WΦky)‖2
2 over k in Problem (P1).

The FRIST model can be interpreted as a structured union-of-transforms

model, or a structured OCTOBOS model [5, 24]; i.e., compared to a general

overcomplete dictionary or OCTOBOS, FRIST is much more constrained,

with fewer free parameters. In particular, the OCTOBOS model involves a

collection (or union) of sparsifying transforms {Wk}Kk=1 such that for each

candidate signal, there is a transform in the collection that is best matched

(or that provides the lowest sparsification error) to the signal. The FRIST

model involves a collection of transforms {WΦk}Kk=1 (as in Problem (P1))

that are related to each other by rotation and flip operators (and involving

a single parent transform W). The transforms in the collection all share a

common transform W . We call the shared common transform W the parent

transform, and each generated Wk = WΦk is called a child transform.

Clearly, the collection of transforms in FRIST is more constrained than in

the OCTOBOS model. The constraints that are imposed by FRIST are

devised to reflect commonly observed properties of natural image patches,

i.e., image patches tend to have edges and features at various orientations,

and optimally rotating (or flipping) each patch would allow it to be well-

sparsified by a common sparsifying transform W (as in (P1)). This property

turns out to be useful in inverse problems such as denoising and inpainting,

preventing the overfitting of the model in the presence of limited or highly

corrupted data or measurements.

Problem (P1) is similar to the OCTOBOS sparse coding problem [5], where

each Wk corresponds to a block of OCTOBOS. Similar to the clustering

procedure in OCTOBOS, Problem (P1) matches a signal y to a particular

child transform Wk with its directional FR operator Φk. Thus, FRIST is

potentially capable of automatically clustering a collection of signals (e.g.,

image patches), but according to their geometric orientations. When the

parent transform W is unitary, FRIST is also equivalent to an overcomplete

10

synthesis dictionary with block sparsity [70], with W T
k denoting the kth block

of the equivalent overcomplete dictionary.

2.1.2 FRIST Learning Formulation

Generally, the parent transform W can be overcomplete [5, 20, 21]. In this

work, we restrict ourselves to learning FRIST with a square parent transform

W (i.e., m = n), which leads to a highly efficient learning algorithm with

optimal updates. Note that the FRIST model is still overcomplete, even

with a square parent W , because of the additional FR operators. Given

the training data Y ∈ Rn×N , we formulate the FRIST learning problem as

follows:

(P2) min
W,{Xi},{Ck}

K∑
k=1

{∑
i∈Ck

‖WΦkYi −Xi‖2
2

}
+ λQ(W)

s.t. ‖Xi‖0 ≤ s ∀ i, {Ck} ∈ Γ ,

where {Xi} represent the FRIST-domain sparse codes of the corresponding

columns {Yi} of Y , and X ∈ Rn×N with columns Xi denotes the sparse

code matrix of Y . The {Ck}Kk=1 indicate a clustering of the signals {Yi}Ni=1

such that Cj contains the indices of signals in the jth cluster (corresponding

to the child transform WΦj), and each signal Yi is associated with exactly

one FR operator Φk. The set Γ is the set of all possible partitions (into K

subsets) of the set of integers {1, 2, ..., N}, which enforces all of the Ck’s to

be disjoint [5].

Problem (P2) is to minimize the FRIST learning objective that includes the

modeling or sparsification error
∑K

k=1

{∑
i∈Ck ‖WΦkYi −Xi‖2

2

}
for Y as well

as the regularizer Q(W) = − log |detW |+ ‖W‖2
F to prevent trivial solutions

[20]. Here, the log-determinant penalty − log |detW | enforces full rank on

W , and the ‖W‖2
F penalty helps remove a ‘scale ambiguity’ in the solution.

The regularizer Q(W) fully controls the condition number and scaling of

the learned parent transform [20]. The regularizer weight λ is chosen as

λ = λ0 ‖Y ‖2
F , in order to scale with the first term in (P2). Previous works [20]

showed that the condition number and spectral norm of the optimal parent

transform Ŵ approach 1 and 1/
√

2 respectively, as λ0 →∞ in (P2).

Problem (P2) imposes an `0 sparsity constraint ‖Xi‖0 ≤ s on the sparse

11

code of each signal or image patch. One can also impose an overall sparsity

constraint on the entire sparse code matrix X to allow variable sparsity levels

across the signals (see Section 3.3). Alternatively, a sparsity penalty method

can be used, instead of imposing sparsity constraints, which also leads to

efficient algorithms (see Section 3.2.2).

Note that in the overcomplete synthesis dictionary model, sparse coding

with an `0 “norm” constraint is NP-hard in general, and convex `1 relaxations

of the synthesis sparse coding problem have been popular, and solving such

an `1 (relaxed) problem is known to provide the sparsest solution under

certain conditions on the dictionary. On the other hand, in the sparsifying

transform model (including in the FRIST model), the sparse coding problem

can be solved exactly and cheaply by thresholding operations, irrespective

of whether an `0 penalty or constraint (resulting in hard thresholding-type

solution) or an `1 penalty (resulting in soft thresholding solution) is used.

Thus there is not really a computational benefit for employing the `1 norm

in the case of the transform model. More importantly, in practice, we have

observed that transform learning with `0 sparsity leads to better performance

in applications compared to `1 norm-based learning.

2.2 FRIST Learning Algorithm and Convergence

Analysis

2.2.1 FRIST Learning Algorithm

We propose an efficient algorithm for solving (P2), which alternates between

a sparse coding and clustering step and a transform update step.

Sparse Coding and Clustering

Given the training matrix Y , and a fixed parent transform W , we solve the

following Problem (P3) for the sparse codes and clusters:

(P3) min
{Ck},{Xi}

K∑
k=1

∑
i∈Ck

‖WΦkYi −Xi‖2
2 s.t. ‖Xi‖0 ≤ s ∀ i, {Ck} ∈ Γ.

12

The modeling error ‖WΦkYi −Xi‖2
2 serves as the clustering measure corre-

sponding to signal Yi, where the best sparse code with FR permutation Φk
1

is Xi = Hs(WΦkYi). Problem (P3) is clearly equivalent to finding the “opti-

mal” FR permutation Φk̂i
independently for each data vector Yi by solving

the following optimization problem:

min
1≤k≤K

‖WΦkYi −Hs(WΦkYi)‖2
2 ∀ i , (2.1)

where the minimization over k for each Yi determines the optimal Φk̂i
, or

the cluster Ck̂i to which Yi belongs. The corresponding optimal sparse code

for Yi in (P3) is thus X̂i = Hs(WΦk̂i
Yi). Given the sparse code, 2 one can

also easily recover a least squares estimate of each signal as Ŷi = ΦT
k̂i
W−1X̂i.

Since the Φk’s are permutation matrices, applying and computing ΦT
k (which

is also a permutation matrix) is cheap.

Transform Update Step

Here, we solve for W in (P2) with fixed {Ck} and {Xi}, which leads to the

following problem:

(P4) min
W

∥∥∥WỸ −X
∥∥∥2

F
+ λQ(W) ,

where Ỹ =
[
Φk̂1

Y1 | Φk̂2
Y2 | ... | Φk̂N

YN

]
contains signals after applying

their optimal (as determined in the preceding sparse coding and clustering

step) FR operations, and the columns of X are the corresponding sparse

codes Xi’s. Problem (P4) has a simple solution involving a singular value

decomposition (SVD), which is similar to the transform update step in SST

[23]. We first decompose the positive-definite matrix Ỹ Ỹ T + λIn = UUT

(e.g., using Cholesky decomposition). Then, denoting the full singular value

decomposition (SVD) of the matrix U−1Ỹ XT = SΣV T , where S,Σ, V ∈
Rn×n, an optimal transform Ŵ in (P4) is

Ŵ = 0.5V
(

Σ + (Σ2 + 2λIn)
1
2

)
STU−1 , (2.2)

1The FR operator is Φk = GqF , where both Gq and F are permutation matrices.
Therefore the composite operator Φk is a permutation matrix.

2The sparse code includes the value of X̂i, as well as the membership index k̂i which
adds just log2K bits to the code storage.

13

where (·) 1
2 above denotes the positive definite square root, and In is the n×n

identity.

Initialization Insensitivity and Cluster Elimination

Unlike the previously proposed OCTOBOS learning algorithm [5], which re-

quires initialization of the clusters using heuristic methods such as K-means,

the FRIST learning algorithm only needs initialization of the parent trans-

form W . In Section 3.4.1, numerical results demonstrate the fast convergence

of the proposed FRIST learning algorithm, which is typically insensitive to

the parent transform initialization. In practice, we apply a heuristic cluster

elimination strategy in the FRIST learning algorithm, to select the desired

K FR operators. In the first iteration, all possible FR operators Φk’s [26,67]

(i.e., all possible child transforms Wk’s) are considered for sparse coding and

clustering. After each clustering step, the learning algorithm eliminates half

of the operators with smallest cluster sizes, until the number of selected op-

erators drops to K, which only takes a few iterations. For the rest of the

iterations, the algorithm only considers the selected K Φk’s in the sparse

coding and clustering steps.

Computational Cost Analysis

The sparse coding and clustering step computes the optimal sparse codes and

clusters, with O(Kn2N) cost. In the transform update step, we compute the

optimal solution for the square parent transform in (P4). The cost of com-

puting this solution scales as O(n2N), assuming N � n, which is cheaper

than the sparse coding step. Thus, the overall computational cost per iter-

ation of FRIST learning using the proposed alternating algorithm scales as

O(Kn2N), which is typically lower than the cost per iteration of the over-

complete K-SVD learning algorithm [8], with the number of the dictionary

atoms m = Kn. FRIST learning also converges quickly in practice as illus-

trated later in Section 3.4.1. The computational costs per iteration of SST,

OCTOBOS, FRIST, and KSVD learning are summarized in Table 2.1.

14

Table 2.1: Computational cost comparison between SST (W ∈ Rn×n),
OCTOBOS (K clusters, each Wk ∈ Rn×n), FRIST and KSVD (D ∈ Rn×m)
learning. N is the amount of training data.

SST. OCTOBOS FRIST KSVD

Cost O(n2N) O(Kn2N) O(Kn2N) O(mn2N)

2.2.2 Convergence Analysis

We analyze the convergence behavior of the proposed FRIST learning algo-

rithm for (P2), assuming that every step in the algorithms (such as SVD) is

computed exactly.

Notation

Problem (P2) is formulated with sparsity constraints, which is equivalent to

an unconstrained formulation with sparsity barrier penalties φ(Xi) (which

equals +∞ when the constraint is violated, and is zero otherwise). Thus, the

objective function of Problem (P2) can be rewritten as

f (W,X,Λ) =
K∑
k=1

∑
i∈Ck

{
‖WΦkYi −Xi‖2

2 + φ(Xi)
}

+ λQ(W) , (2.3)

where Λ ∈ R1×N is the vector whose ith element Λi ∈ {1, .., K} denotes

the cluster label k corresponding to the signal Yi, i.e., i ∈ Ck. We use

{W t, X t,Λt} to denote the output in each iteration (consisting of the sparse

coding and clustering, and transform update steps) t, generated by the pro-

posed FRIST learning algorithm.

Main Results

Since FRIST can be interpreted as a structured OCTOBOS, the convergence

results of the FRIST learning algorithm take a form similar to those obtained

for the OCTOBOS learning algorithm [5] in our recent work. The conver-

gence result for the FRIST learning algorithm for (P2) is summarized in the

following theorem and corollaries.

15

Theorem 1. For each initialization (W 0, X0,Λ0), the following conclusions

hold:

(i) The objective sequence {f t = f(W t, X t,Λt)} in the FRIST learning al-

gorithm is monotone decreasing, and converges to a finite value, f ∗ =

f ∗(W 0, X0,Λ0).

(ii) The iterate sequence {W t, X t,Λt} is bounded, with all of its accumula-

tion points equivalent, i.e., achieving the exact same value f ∗.

(iii) Every accumulation point (W,X,Λ) of the iterate sequence satisfies the

following partial global optimality conditions:

(X,Λ) ∈ arg min
X̃,Λ̃

f
(
W, X̃, Λ̃

)
(2.4)

W ∈ arg min
W̃

f
(
W̃ ,X,Λ

)
. (2.5)

(iv) For each accumulation point (W,X,Λ), there exists ε = ε(W) > 0 such

that

f (W + dW,X + ∆X,Λ) ≥ f (W,X,Λ) = f ∗, (2.6)

which holds for all dW ∈ Rn×n satisfying ‖dW‖F ≤ ε, and all ∆X ∈
Rn×N satisfying ‖∆X‖∞ < mink mini∈Ck {ψs(WΦkYi) : ‖WΦkYi‖0 > s}.
Here, we define ‖∆X‖∞ , maxi,j |∆Xi,j|, and the operator ψs(·) re-

turns the sth largest magnitude in a vector.

Conclusion (iv) provides a partial local optimality condition for each ac-

cumulation point with respect to (W,X), where the local perturbation dW

in Equation (2.6) is sufficiently small, and ∆X is specified by a finite re-

gion, which is determined by a scalar κ that limits the amplitudes of en-

tries in ∆X (i.e., ‖∆X‖∞ < κ). Here, we have κ = mink κk, and each

κk = mini∈Ck {ψs(WΦkYi) : ‖WΦkYi‖0 > s} is computed by (i) choosing the

vectors with sparsity > s from {WΦkYi} where i ∈ Ck, (ii) selecting the sth

largest magnitude in each of those vectors, and (ii) returning the smallest of

those values.

Corollary 1. For a particular initial (W 0, X0,Λ0), the iterate sequence in the

FRIST learning algorithm converges to an equivalence class of accumulation

points, which are also partial minimizers satisfying (2.4), (2.5), and (2.6).

16

Corollary 2. The iterate sequence {W t, X t,Λt} in the FRIST learning al-

gorithm is globally convergent (i.e., it converges from any initialization) to

the set of partial minimizers of the non-convex objective f (W,X,Λ).

For reasons of space, we only provide an outline of proofs. The conclusion

(i) in Theorem 1 is obvious, as the proposed alternating algorithm solves the

sub-problem in each step exactly. The proof of Conclusion (ii) follows the

same arguments as in the proofs in Lemma 3 and Lemma 5 in [5]. In Conclu-

sion (iii), Condition (2.4) can be proved using the arguments for Lemma 7

from [5], while Condition (2.5) can be proved with the arguments for Lemma

6 from [23]. The last conclusion in Theorem 1 can be shown using arguments

similar to those in the proof of Lemma 9 in [23].

Theorem 1 and Corollaries 1 and 2 establish that with any initialization

(W 0, X0,Λ0), the iterate sequence {W t, X t,Λt} generated by the FRIST

learning algorithm converges to an equivalence class (corresponding to a

common objective value f ∗ – that may depend on initialization) of partial

minimizers of the objective. Note that no assumptions are made about the

initialization to establish these results. We leave for future work the inves-

tigation of stronger convergence results (e.g., convergence to global minima)

with additional assumptions, including on the algorithm initialization, or

using a probabilistic analysis framework.

17

CHAPTER 3

FRIST APPLICATIONS OF INVERSE
PROBLEMS

Natural or biomedical images typically contain a variety of directional fea-

tures and edges; thus, the FRIST model is particularly appealing for applica-

tions in image processing and inverse problems. In this chapter, we consider

three such applications, namely image denoising, image inpainting, and blind

compressed sensing (BCS)-based magnetic resonance imaging (MRI).

3.1 Image Denoising

Image denoising is one of the most fundamental inverse problems in image

processing. The goal is to reconstruct a 2D image represented as a vector

y ∈ RP , from its measurement z = y + h, corrupted by a noise vector

h. Various denoising algorithms have been proposed recently, with state-of-

the-art performance [32, 33]. Similar to previous dictionary and transform

learning based image denoising methods [4,5], we propose the following patch-

based image denoising formulation using FRIST learning:

(P5) min
W,{yi,xi,Ck}

K∑
k=1

∑
i∈Ck

{
‖WΦkyi − xi‖2

2 + τ ‖Ri z − yi‖2
2

}
+ λQ(W)

s.t. ‖xi‖0 ≤ si ∀ i, {Ck} ∈ Γ ,

where Ri ∈ Rn×P denotes the patch extraction operator, i.e., Riz ∈ Rn

represents the ith overlapping patch of the corrupted image z as a vector. We

assume N overlapping patches in total. The data fidelity term τ ‖Ri z − yi‖2
2

measures the discrepancy between the observed patch Riz and the (unknown)

noiseless patch yi, and uses a weight τ = τ0/σ that is inversely proportional

to the given noise standard deviation σ [4, 20], and τ0 > 0. The vector

xi ∈ Rn represents the sparse code of yi in the FRIST domain, with an

18

a priori unknown sparsity level si. We follow the previous SST-based and

OCTOBOS-based denoising methods [5,69], and impose a sparsity constraint

on each yi.

We propose a simple iterative denoising algorithm based on (P5). Each

iteration involves the following steps: (i) sparse coding and clustering, (ii)

sparsity level update, and (iii) transform update. Once the iterations com-

plete, we have a denoised image reconstruction step. We initialize the {yi} in

(P5) using the noisy image patches {Riz}. Step (i) is the same as described

in Chapter 2. We then update the sparsity levels si for all i, similar to the

SST learning-based denoising algorithm [69]. With fixed W and clusters

{Ck}, we solve for yi (i ∈ Ck) in (P5) in the least squares sense,

yi = ΦT
k

[√
τ I

W

]† [√
τ vi

Hsi(Wvi)

]
= G1vi +G2Hsi(Wvi) , (3.1)

where G1 and G2 are appropriate matrices in the above decomposition,

and vi , ΦkRi z are the rotated/flipped noisy patches, which can be pre-

computed in each iteration. We choose the optimal si to be the smallest

integer that makes the reconstructed yi in (3.1) satisfy the error condition

‖Riz − yi‖2
2 ≤ nC2σ2, where C is a constant parameter [69]. Once step

(ii) is completed, we proceed to the transform update based on the method

in Chapter 2. The algorithm alternates between steps (i)-(iii) for a fixed

number of iterations, and eventually the denoised image patches {yi} are

obtained using (3.1). Each pixel in the reconstructed patch is projected onto

the underlying intensity range (image pixel is typically stored as 8-bit integer,

which corresponds to the intensity range [0, 255]). The denoised image is re-

constructed by averaging the overlapping denoised patches at their respective

image locations.

For improved denoising, the algorithm for (P5) is repeated for several

passes by replacing z with the most recent denoised image estimate in each

pass. The noise standard deviation σ decreases gradually in each such pass,

and is found (tuned) empirically [5].

19

3.2 Image Inpainting

The goal of image inpainting is to recover missing pixels in an image. The

given image measurement, with missing pixel intensities set to zero, is de-

noted as z = Ξy+ε, where ε is the additive noise on the available pixels, and

Ξ ∈ RP×P is a diagonal binary matrix with zeros at locations corresponding

to missing pixels. We propose the following patch-based image inpainting

formulation using FRIST learning:

(P6) min
W,{yi,xi,Ck}

K∑
k=1

∑
i∈Ck

{
‖WΦkyi − xi‖2

2 + τ 2 ‖xi‖0 + γ ‖Piyi − zi‖2
2

}
+ λQ(W),

where zi = Riz and yi = Riy. The diagonal binary matrix Pi ∈ Rn×n captures

the available (non-missing) pixels in zi. The sparsity penalty τ 2 ‖xi‖0 is used,

which leads to an efficient algorithm. The fidelity term γ ‖Piyi − zi‖2
2 for the

ith patch has the coefficient γ that is chosen inversely proportional to the

noise standard deviation σ (in the measured pixels). The parameter τ is

chosen proportional to the number of pixels that are missing in z.

Our proposed iterative algorithm for solving (P6) involves the following

steps: (i) sparse coding and clustering, and (ii) transform update. Once the

iterations complete, we have a (iii) patch reconstruction step. The sparse

coding problem with a sparsity penalty has closed-form solution [28], and

thus step (i) is equivalent to solving the following problem:

min
1≤k≤K

‖WΦkyi − Tτ (WΦkyi)‖2
2 ∀ i , (3.2)

where the hard thresholding operator Tτ (·) is defined as

(Tτ (b))j =

{
0 , |bj| < τ

bj , |bj| ≥ τ
, (3.3)

where the vector b ∈ Rn, and the subscript j indexes its entries. Step (ii) is

similar to that in the denoising algorithm in Section 3.1. In the following,

we discuss step (iii) by considering two cases.

20

3.2.1 Ideal Image Inpainting without Noise

In the ideal case when the noise ε is absent, i.e., σ = 0, the coefficient of

the fidelity term γ → ∞. Thus the fidelity term can be replaced with hard

constraints Pi yi = zi ∀ i. In the noiseless reconstruction step, with fixed

{xi, Ck} and W , we first reconstruct each image patch yi by solving the

following linearly constrained least squares problem:

min
yi
‖WΦkiyi − xi‖

2
2 s.t. Pi yi = zi . (3.4)

We define zi = Piyi , yi − ei, where ei = (In − Pi)yi. Because Φk only

rearranges pixels, Φkei has the support Ωi = supp(Φkei) = {j| (Φkei)j 6= 0},
which is complementary to supp(Φkzi). Since the constraint leads to the

relationship yi = zi + ei with zi given, we solve the equivalent minimization

problem over ei as follows:

min
ei
‖WΦkiei − (xi −WΦki zi)‖

2
2 s.t. supp(Φkiei) = Ωi . (3.5)

Here, we define WΩi to be the submatrix of W formed by columns indexed

in Ωi, and (Φkei)Ωi to be the vector containing the non-zero entries of Φkei.

Thus, WΦkei = WΩi(Φkei)Ωi , and we define ξi , Φkei. The reconstruction

problem is then re-written as the following unconstrained problem:

min
ξiΩi

∥∥WΩiξ
i
Ωi
− (xi −WΦk zi)

∥∥2

2
∀ i . (3.6)

The above least squares problem has a simple solution given as ξ̂iΩi = W †
Ωi

(xi−
WΦkzi). Accordingly, we can calculate êi = ΦT

k ξ̂
i, and thus the reconstructed

patches ŷi = êi + zi.

3.2.2 Robust Image Inpainting

We now consider the case of noisy z, and propose a robust inpainting algo-

rithm (i.e., for the aforementioned Step (iii)). This is useful because real

image measurements are inevitably corrupted with noise [16]. The robust

21

reconstruction step for each patch is to solve the following problem:

min
yi
‖WΦkiyi − xi‖

2
2 + γ ‖Piyi − zi‖2

2 . (3.7)

Let z̃i , Φkizi, ui , Φkiyi, and P̃i , ΦkiPiΦ
T
ki

, where Φki is a permutation

matrix. The rotated solution ûi in optimization problem (3.7) is equivalent

to

ûi = arg min
ui

‖Wui − xi‖2
2 + γ

∥∥∥P̃iui − z̃i∥∥∥2

2
, (3.8)

which has a least squares solution ûi = (W TW + γP̃i)
−1(W Txi + γP̃iz̃i).

As the matrix inversion (W TW + γP̃i)
−1 is expensive with a cost of O(n3)

for each patch reconstruction, we apply the Woodbury matrix identity and

rewrite the solution to (3.8) as

ûi = [B −BT
Υi

(
1

γ
Iqi + Ψi)

−1BΥi](W
Txi + γP̃iz̃i) , (3.9)

where B , (W TW)−1 can be pre-computed, and the support of z̃i is denoted

as Υi , supp(z̃i). The scalar qi = |Υi| counts the number of available

pixels in zi. Here, BΥi is the submatrix of B formed by BΥi-indexed rows,

while Ψi is the submatrix of BΥi formed by BΥi-indexed columns. Thus, the

matrix inversion (1
γ
Iqi + Ψi)

−1 has cost of O((qi)3), compared to computing

(B + γP̃i)
−1 with cost of O(n3) for the reconstruction of each patch. For

an inpainting problem with most pixels missing (qi � n), this represents

significant savings. On the other hand, with few pixels missing (qi ≈ n), a

similar procedure can be used with I−Pi replacing Pi. Once ûi is computed,

the patch in (3.7) is recovered as ŷi = ΦT
ki
ûi.

Similar to Section 3.1, each pixel in the reconstructed patch is projected

onto the (underlying) intensity range (e.g., [0, 255] for image pixel stored us-

ing 8-bit integer). Eventually, we output the inpainted image by averaging

the reconstructed patches at their respective image locations. We perform

multiple passes in the inpainting algorithm for (P6) for improved inpaint-

ing. In each pass, we initialize {yi} using patches extracted from the most

recent inpainted image. By doing so, we indirectly reinforce the dependency

between overlapping patches in each pass.

22

3.3 Blind Compressed Sensing Based MRI

Compressed sensing (CS) enables accurate MRI reconstruction from lim-

ited k -space or Fourier measurements [44, 71, 72]. However, CS-based MRI

suffers from various artifacts at high undersampling factors, when using

non-adaptive or analytical sparsifying transforms [73]. Recent works [44]

proposed blind compressed sensing (BCS)-based MR image reconstruction

methods using learned signal models, and achieved superior reconstruction

results. The terminology blind compressed sensing (or image model-blind

compressed sensing) is used because the dictionary or sparsifying transform

for the underlying image patches is assumed unknown a priori, and is learned

simultaneously with the image from the undersampled (compressive) mea-

surements themselves. MR image patches also typically contain variously

oriented features [26], which have recently been shown to be well sparsifiable

by directional wavelets [68]. As an alternative to approaches involving direc-

tional analytical transforms, here, we propose an adaptive FRIST-based ap-

proach that can adapt a parent transform W while clustering image patches

simultaneously based on their geometric orientations. This leads to more

accurate modeling of MR image features.

Similar to the previous TL-MRI work [44], we propose a BCS-based MR

image reconstruction scheme using the (adaptive) FRIST model, dubbed

FRIST-MRI. For computational efficiency, we restrict the parent W to be a

unitary transform in the following. The FRIST-blind image recovery problem

with a sparsity constraint is formulated as

(P7) min
W,y,{xi,Ck}

µ ‖Fuy − z‖2
2 +

K∑
k=1

∑
i∈Ck

‖WΦkRiy − xi‖2
2

s.t. WHW = I, ‖X‖0 ≤ s, ‖y‖2 ≤ L, {Ck} ∈ Γ ,

where WHW = I is the unitary constraint, y ∈ CP is the MR image to

be reconstructed, and z ∈ CM denotes the measurements with the sensing

matrix Fu ∈ CM×P , which is the undersampled (single-coil) Fourier encoding

matrix. Here M � P , so Problem (P7) is aimed to reconstruct an MR image

y from highly undersampled measurements z. The constraint ‖y‖2 ≤ L with

L > 0, represents prior knowledge of the signal energy/range. The sparsity

term ‖X‖0 counts the number of non-zeros in the entire sparse code matrix

23

X, whose columns are the sparse codes {xi}. This sparsity constraint enables

variable sparsity levels for individual patches [44].

We use a block coordinate descent approach [44] to solve Problem (P7).

The proposed algorithm alternates between (i) sparse coding and clustering,

(ii) parent transform update, and (iii) MR image update. We initialize

this algorithm, dubbed FRIST-MRI, with an image (estimate for y) such as

the zero-filled Fourier reconstruction FH
u z. Step (i) solves Problem (P7) for

{xi, Ck} with fixed W and y as

min
{xi,Ck}

K∑
k=1

∑
i∈Ck

‖WΦkRiy − xi‖2
2 s.t. ‖X‖0 ≤ s, {Ck} ∈ Γ . (3.10)

The exact solution to Problem (3.10) requires calculating the sparsification

error (objective) for each possible clustering. The cost of this scales as

O(Pn2KP) for P patches,1 which is computationally infeasible. Instead,

we present an approximate solution here, which we observed to work well in

our experiments. In this method, we first compute the total sparsification

error SEk, associated with each Φk, by solving the following problem:

SEk =
P∑
i=1

SEi
k , min
{βki }

P∑
i=1

∥∥WΦkRiy − βki
∥∥2

2
s.t.

∥∥Bk
∥∥

0
≤ s , (3.11)

where the columns of Bk are
{
βki
}

. The optimal Bk above is obtained by

thresholding the matrix with columns
{
WΦkRiy

}P
i=1

and retaining the s

largest magnitude elements. The clusters {Ck} in (3.10) are approximately

computed by assigning i ∈ Ck̂ where k̂ = arg min
k

SEi
k. Once the clusters are

computed, the corresponding sparse codes X̂ in (3.10) (for fixed clusters) are

easily found by thresholding the matrix
[
WΦk̂1

R1y | ... | WΦk̂P
RPy

]
and

retaining the s largest magnitude elements [44].

Step (ii) updates the parent transform W with the unitary constraint

(and with other variables fixed). The optimal solution, which is similar to

previous work [23], is computed as follows. First, we calculate the full SVD

AXH = S̃Σ̃Ṽ H , where the columns ofA are {ΦkRiy}Pi=1. The optimal unitary

parent transform is then Ŵ = Ṽ S̃H .

1The number of patches is P when we use a patch overlap stride of 1 and include
patches at image boundaries by allowing them to ‘wrap-around’ on the opposite side of
the image [35].

24

Step (iii) solves for y with fixed W and {xi, Ck} as

min
y

K∑
k=1

∑
i∈Ck

‖WΦkRiy − xi‖2
2 + µ ‖Fuy − z‖2

2 s.t. ‖y‖2 ≤ L. (3.12)

As Problem (3.12) is a least squares problem with an `2 constraint, it can

be solved exactly using the Lagrange multiplier method [74]. Thus (3.12) is

equivalent to

min
y

K∑
k=1

∑
i∈Ck

‖WΦkRiy − xi‖2
2 + µ ‖Fuy − z‖2

2 + ρ(‖y‖2
2 − L) , (3.13)

where ρ ≥ 0 is the optimally chosen Lagrange multiplier. An alternative

approach to solving Problem (3.12) is by employing the iterative projected

gradient method. However, because of the specific structure of the matrices

(e.g., partial Fourier sensing matrix in MRI) involved, (3.12) can be solved

much more easily and efficiently with the Lagrange multiplier method as

discussed next.

Similar to the previous TL-MRI work [44], the normal equation for Prob-

lem (3.13) (for known multiplier ρ) can be simplified as follows, where F

denotes the full Fourier encoding matrix assumed normalized (FHF = I):

(FEFH + µFFH
u FuF

H + ρI)Fy = F
K∑
k=1

∑
i∈Ck

RH
i ΦH

k W
Hxi + µFFH

u z

(3.14)

where E ,
∑K

k=1

∑
i∈Ck R

H
i ΦH

k W
HWΦkRi =

∑P
i=1R

H
i Ri. When the patch

overlap stride is 1 and all wrap-around patches are included, E = nI, with I

the P × P identity. Since FEFH , µFFH
u FuF

H [44], and ρI are all diagonal

matrices, the matrix pre-multiplying Fy in (3.14) is diagonal and invertible.

Hence, (3.14) can be solved cheaply. Importantly, using a unitary constraint

for W leads to an efficient update in (3.14). In particular, the matrix E is

not easily diagonalizable when W is not unitary. The problem of finding

the optimal Lagrange multiplier reduces to solving a simple scalar equation

(see, for example, equation (3.17) in [44]) that can be solved using Newton’s

method. Thus, the approach based on the Lagrange multiplier method is

much simpler compared to an iterative projected gradient scheme to estimate

25

Cameraman Peppers Man Couple

kodak 5 kodak 9 kodak 18

Figure 3.1: Testing images used in the image denoising and image
inpainting experiments.

the (typically large) vector-valued image in Problem (3.12).

3.4 Experiment Results

We present numerical convergence results for the FRIST learning algorithm

along with image segmentation examples, as well as some preliminary results

demonstrating the promise of FRIST learning in applications including image

sparse representation, denoising, robust inpainting, and MRI reconstruction.

We work with 8 × 8 non-overlapping patches for the study of convergence

and sparse representation, 8×8 overlapping patches for image segmentation,

denoising, and robust inpainting, and 6 × 6 overlapping patches (including

patches at image boundaries that ‘wrap around’ on the opposite side of the

image) for the MRI experiments. Figure 3.1 lists the testing images that are

used in the image denoising and inpainting experiments.

3.4.1 Empirical Convergence Results

We first illustrate the convergence behavior of FRIST learning. We ran-

domly extract 104 non-overlapping patches from the 44 images in the USC-

26

SIPI database [75] (the color images are converted to gray-scale images), and

learn a FRIST model, with a 64 × 64 parent transform W , from the ran-

domly selected patches using fixed sparsity level s = 10. We set K = 2, and

λ0 = 3.1× 10−3 for visualization simplicity. In the experiment, we initialize

the learning algorithm with different square 64 × 64 parent transform W ’s,

including the (i) Karhunen-Loève Transform (KLT), (ii) 2D DCT, (iii) ran-

dom matrix with i.i.d. Gaussian entries (zero mean and standard deviation

0.2), and (iv) identity matrix.

Figures 3.2(a) and 3.2(d) illustrate that the objective and sparsification

error in (P2) converge to similar values from various initializations of W ,

indicating that the algorithm is reasonably insensitive or robust to initializa-

tions in practice. Figures 3.2(b) and 3.2(c) show the cluster size changes over

iterations for the 2D DCT and KLT initializations. The final values of the

cluster sizes are also similar (although, not necessarily identical) for various

initializations. Figure 3.2(e) and 3.2(f) display the learned FRIST parent

W ’s with DCT and random matrix initializations. They are non-identical,

and capture features that sparsify the image patches equally well. Thus we

consider such learned transforms to be essentially equivalent as they achieve

similar objective values and sparsification errors for the training data and

are similarly conditioned (the learned parent W ’s with the DCT and random

matrix initializations have condition numbers 1.04 and 1.06, respectively).

The numerical results demonstrate that our FRIST learning algorithm is

reasonably robust, or insensitive to initialization. Good initialization for the

parent transform W , such as the DCT, leads to faster convergence during

learning. Thus, we initialize the parent transform W using the 2D DCT in

the rest of the experiments.

3.4.2 Image Segmentation and Clustering Behavior

The FRIST learning algorithm is capable of clustering image patches ac-

cording to their orientations. In this subsection, we illustrate the FRIST

clustering behavior by image segmentation experiments. We consider the

images Wave (512 × 512) and Field (512 × 512) shown in Fig. 3.3(a) and

Fig. 3.4(a) as inputs. Both images contain directional textures, and we aim

to cluster the pixels of the images into one of four classes, which represent

27

10
0

10
1

10
2

Iteration Number

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

×10
8

KLT

DCT

Random

Identity

1 200 400 600 800

Iteration Number

1000

3000

5000

7000

9000

C
lu

s
te

r
S

iz
e

Cluster 1

Cluster 2

(a) FRIST Objective (b) DCT initialization

1 200 400 600 800

Iteration Number

2000

4000

6000

8000

C
lu

s
te

r
S

iz
e

Cluster 1

Cluster 2

10
0

10
1

10
2

Iteration Number

1

2

3

4

5

6

S
p

a
rs

if
ic

a
ti
o

n
 E

rr
o

r

×10
7

KLT

DCT

Random

Identity

(c) KLT initialization (d) FRIST
Sparsification Error

(e) FRIST parent W (f) FRIST parent W
with DCT initialization with random initialization

Figure 3.2: Convergence of the FRIST objective, sparsification error, and
cluster size with various parent transform initializations, as well as the
visualizations of the learned FRIST parent transforms with DCT and
random initializations.

28

(a) Wave (c) Class 1 (e) Class 3

(b) Pixel memberships (d) Class 2 (f) Class 4

Figure 3.3: Image segmentation result of Wave (512× 512) using FRIST
learning on the gray-scale version of the image. The colors red, green, blue,
and black in (b) represent pixels that belong to the four classes. Pixels that
are clustered into a specific class are shown in gray-scale (using intensities
in the original gray-scale image), while pixels that are not clustered into
that class are shown in black for (c)-(f).

29

(a) Field (b) Pixel memberships

(c) Class 1 (d) Class 2

(e) Class 3 (f) Class 4

Figure 3.4: Image segmentation result of Field (256× 512) using FRIST
learning on the gray-scale version of the image. The colors red, green, blue,
and Bblack in (b) represent pixels that belong to the four classes. Pixels
that are clustered into a specific class are shown in gray-scale (using
intensities in the original gray-scale image), while pixels that are not
clustered into that class are shown in black for (c)-(f).

30

(a) Parent transform

(b) (c)

(d) (e)

Figure 3.5: Visualization of the learned (a) parent transform, and (b)-(e)
children transforms in FRIST for the image Wave. The rows of each child
transform are displayed as 8× 8 patches.

different orientations or flips. For each input image, we convert it into gray-

scale, extract the overlapping mean-subtracted patches, and learn a FRIST

while clustering the patches using the algorithm in Chapter 2. As overlap-

ping patches are used, each pixel in the image belongs to several overlapping

patches. We cluster a pixel into a particular class by majority voting among

the patches that contain it.

We set s = 10, and K = 4 in the clustering experiments. Figures 3.3 and

3.4 illustrate the segmentation results of images Wave and Field, respec-

tively. Figures 3.3(b) and 3.4(b) illustrate the pixel memberships with four

different colors (blue, red, green, and black, for classes 1 to 4, respectively).

Figures 3.3(c)-(f) and 3.4(c)-(f) each visualize the image pixels clustered into

a specific class in gray-scale, and the pixels that are not clustered into that

class are shown in black. Each class captures edges at specific orientations.

The parent transform W and its children transforms Wk’s in the learned

FRIST for the Wave image are visualized in Fig. 3.5 with the rows of each Wk

displayed as 8 × 8 patches. We observe that each child transform contains

distinct directional features that were adaptively learned to sparsify edges

with specific orientations better. The parent W turns out to be identical to

31

Table 3.1: PSNR values for reconstruction of images from sparse
representations obtained using the 2D DCT, learned SST and OCTOBOS,
square and overcomplete K-SVD, and learned FRIST. The first row of the
table provides average PSNR values computed over the 44 images from the
USC-SIPI database. The best PSNR values are marked in bold.

Methods
2D DCT

SST OCTOBOS K-SVD FRIST

Model Size 64× 64 128× 64 64× 64 64× 128 64× 64

USC-SIPI 34.36 34.20 33.62 34.11 35.08 35.14

Cameraman 29.49 29.43 29.03 29.09 30.16 30.63

House 36.89 36.36 35.38 36.31 37.41 37.71

the child transform shown in Fig. 3.4(e), implying that the corresponding

FR operator is the identity matrix.

The preliminary image segmentation results here demonstrate some po-

tential for the FRIST scheme for directional classification or segmentation.

More importantly, we wish to illustrate why FRIST can provide improve-

ments over SST or OCTOBOS in various inverse problems. As natural im-

ages usually contain a variety of directional features and edges, FRIST is

capable of grouping those patches with similar orientations/flips, and thus

provides better sparsification in each cluster using directional children trans-

forms, even while learning only a single small parent transform W (which

could be learned even in cases of very limited or corrupted data).

3.4.3 Sparse Image Representation

Most of the popular image compression methods make use of analytical spar-

sifying transforms. In particular, the commonly used JPEG uses the 2D DCT

to sparsify image patches. Data-driven adaptation of dictionaries using the

K-SVD scheme has also been shown to be beneficial for image compression,

compared to fixed analytical transforms [76]. In this section, we show that the

proposed FRIST learning scheme provides improved sparse representations

of images compared to related adaptive sparse modeling methods. While we

focus here on a simple study of the sparse representation abilities of adaptive

FRIST, the investigation of a complete adaptive image compression frame-

work based on FRIST and its comparison to benchmarks is left for future

32

work.

We learn a FRIST, with a 64 × 64 parent transform W , from the 104

randomly selected patches (from USC-SIPI images) used in Section 3.4.1.

We set K = 32, s = 10 and λ0 = 3.1 × 10−3. We compare the learned

FRIST with other popular adaptive sparse signals models. In particular, we

train a 64 × 64 SST [23], a 128 × 64 OCTOBOS [5], as well as a 64 × 64

square (synthesis) dictionary and a 64 × 128 overcomplete dictionary using

KSVD [4], using the same training patches and sparsity level as for FRIST.

With the learned models, we represent each image from the USC-SIPI

database as well as some other standard images. Each image is represented

compactly by storing its sparse representation including (i) non-zero coeffi-

cient values in the sparse codes of the 8 × 8 non-overlapping patches, (ii)

locations of the non-zeros (plus the cluster membership if necessary) in the

sparse codes for each patch and (iii) the adaptive sparse signal model (e.g.,

the dictionary or transform matrix – this would typically involve negligible

overhead). For each method, the patch sparsity (or equivalently, the number

of non-zero coefficients per patch) is set to s = 10 (same as during training).

The adaptive SST, square KSVD, and adaptive FRIST methods store only

a 64× 64 square matrix in (iii) above, whereas the overcomplete KSVD and

OCTOBOS methods store a 128× 64 matrix.

The images (i.e., their non-overlapping patches) are reconstructed from

their sparse representations in a least squares sense, and the reconstruc-

tion quality for each image is evaluated using the peak-signal-to-noise ratio

(PSNR), expressed in decibels (dB). We use the average of the PSNR val-

ues over all 44 USC-SIPI images as the indicator of the quality of sparse

representation of the USC-SIPI database.

Table 3.1 lists the sparse representation reconstruction results for the USC-

SIPI database and the images Cameraman (256×256) and House (256×256).

We observe that the learned FRIST model provides the best reconstruction

quality compared to other adaptive sparse signal models or the analytical 2D

DCT, for both the USC-SIPI images and the external images. Compared to

unstructured overcomplete models such as KSVD and OCTOBOS, the pro-

posed FRIST provides improved PSNRs, while achieving potentially fewer

bits for sparse representation.2 Additionally, dictionary learning based repre-

2Assuming for simplicity that L bits are used to describe each non-zero coefficient value
in each model, the total number of bits for storing the sparse code (non-zero locations,

33

sentation requires synthesis sparse coding, which is more expensive than the

cheap and exact sparse coding in the transform model-based methods [20].

As mentioned before, the investigation of an image compression system based

on learned FRIST models, and its analysis as well as quantitative comparison

to other compression benchmarks, are left for future work.

3.4.4 Image Denoising

We present denoising results using our FRIST-based framework in Section

3.1. We simulate i.i.d. Gaussian noise at four different noise levels (σ = 5,

10, 15, 20) for seven standard images in Fig. 3.1. Denoising results obtained

by our proposed algorithm in Section 3.1 are compared with those obtained

by the adaptive overcomplete K-SVD denoising scheme [4], adaptive SST

denoising scheme [23] and the adaptive OCTOBOS denoising scheme [5].

We also compare to the denoising result using the SST method, but with

fixed 2D DCT (i.e., no learning).

We set K = 64, n = 64, C = 1.04 for the FRIST denoising method. For

the adaptive SST and OCTOBOS denoising methods, we follow the same

parameter settings as used in the previous works [5, 23]. The same param-

eter settings as for the SST method are used for the DCT-based denoising

algorithm. A 64 × 256 learned synthesis dictionary is used in the synthesis

K-SVD denoising method, and for the OCTOBOS denoising scheme we use

a corresponding 256×64 learned OCTOBOS. For the K-SVD, adaptive SST,

and adaptive OCTOBOS denoising methods, we used the publicly available

implementations [77,78] in this experiment.

Table 3.2 lists the denoised image PSNR values for the various methods for

the seven tested images at several noise levels. The proposed FRIST scheme

provides consistently better PSNRs compared to the other fixed or adaptive

sparse modeling methods including DCT, SST, K-SVD, and OCTOBOS.

The average denoising PSNR improvements provided by adaptive FRIST

over DCT, adaptive SST, K-SVD, and adaptive OCTOBOS are 0.48 dB,

0.26 dB, 0.47 dB, and 0.04 dB respectively, and the standard deviations in

these improvements are 0.26 dB, 0.11 dB, 0.22 dB, and 0.03 dB, respectively.

non-zero coefficient values, cluster membership) of a patch is 6s+Ls+5 in 64×64 FRIST
(K = 32), and 7s+Ls in 64× 128 KSVD. For the setting s = 10, FRIST requires 5 fewer
bits per patch compared to KSVD.

34

Table 3.2: PSNR values (in dB) for denoising with 64× 64 adaptive FRIST
along with the corresponding PSNR values for denoising using the 64× 64
2D DCT, the 64× 64 adaptive SST, the 64× 256 overcomplete K-SVD, and
the 256×64 learned OCTOBOS. The best PSNR values are marked in bold.

Image σ
Noisy

DCT SST K-SVD OCTOBOS FRIST
PSNR

Peppers
5 34.14 37.70 37.95 37.78 38.09 38.16

10 28.10 34.00 34.37 34.24 34.57 34.68

(256× 256) 15 24.58 31.83 32.14 32.18 32.43 32.54

20 22.12 30.06 30.62 30.80 30.97 31.02

Cameraman
5 34.12 37.77 38.01 37.82 38.16 38.16

10 28.14 33.63 33.90 33.72 34.13 34.16

(256× 256) 15 24.61 31.33 31.65 31.51 31.95 31.97

20 22.10 29.81 29.91 29.82 30.24 30.33

Man
5 34.15 36.59 36.64 36.47 36.73 36.82

10 28.13 32.86 32.95 32.71 32.98 33.06

(768× 768) 15 24.63 30.88 30.96 30.78 31.07 31.10

20 22.11 29.42 29.58 29.40 29.74 29.76

Couple
5 34.16 37.25 37.32 37.29 37.40 37.43

10 28.11 33.48 33.60 33.50 33.73 33.78

(512× 512) 15 24.59 31.35 31.47 31.44 31.71 31.71

20 22.11 29.82 30.01 30.02 30.34 30.36

Kodak 5
5 34.17 36.72 36.96 36.32 37.10 37.17

10 28.12 32.03 32.33 31.86 32.57 32.62

(768× 512) 15 24.60 29.51 29.84 29.49 30.13 30.16

20 22.13 27.79 28.09 27.89 28.40 28.47

Kodak 9
5 34.14 39.35 39.45 38.85 39.53 39.53

10 28.15 35.66 35.98 35.39 36.23 36.26

(512× 768) 15 24.60 33.36 33.89 33.39 34.27 34.28

20 22.11 31.66 32.30 31.90 32.73 32.76

Kodak 18
5 34.17 36.75 36.72 36.50 36.83 36.83

10 28.12 32.40 32.44 32.20 32.59 32.59

(512× 768) 15 24.62 30.02 30.06 29.88 30.27 30.31

20 22.12 28.42 28.49 28.35 28.72 28.77

Performance vs. Number of Clusters. In applications such as im-

age denoising, when OCTOBOS or FRIST are learned from limited noisy

35

1 2 4 8 16 32 64 128

Number of Clusters

37.8

37.9

38

38.1

38.2

D
e

n
o

is
e

d
 P

S
N

R
OCTOBOS

FRIST

1 2 4 8 16 32 64 128

Number of Clusters

31.8

32

32.2

32.4

32.6

D
e

n
o

is
e

d
 P

S
N

R

OCTOBOS

FRIST

(a) σ = 5 (b) σ = 15

Figure 3.6: Denoising PSNR for Peppers as a function of the number of
clusters (including flipping and rotations) K.

patches, OCTOBOS with many more degrees of freedom is more likely to

overfit the data and learn noisy features, which can degrade the denoising

performance. Figure 3.6 provides an empirical illustration of this behavior,

and plots the denoising PSNRs for Peppers as a function of the number of

child transforms or number of clusters K for σ = 5 and σ = 15. In both

cases, the denoising PSNRs of the OCTOBOS and FRIST schemes increase

with K initially. However, beyond an optimal value of K, the OCTOBOS

denoising scheme suffers from overfitting the noise. Thus the OCTOBOS

performance in Fig. 3.6 quickly degrades as the number of transforms (in

the collection/union) or clusters to be learned from a set of noisy image

patches is increased [5]. In contrast, the structured FRIST-based denoising

scheme (involving much fewer degrees of freedom) is more robust or resilient

to noise. As K increases, adaptive FRIST denoising provides continually

monotonically increasing denoising PSNR in Fig. 3.6. For example, while

the FRIST PSNR achieves a peak value for K = 128, the PSNR for adaptive

OCTOBOS denoising is significantly lower at such a large K.

Although we focused our comparisons here on related adaptive sparse

modeling methods, a very recent work [39] shows that combining transform

learning based denoising with non-local similarity models leads to better de-

noising performance, and outperforms the state-of-the-art BM3D denoising

method [32]. A further extension of the work in [39] to include FRIST learn-

ing is of interest and could potentially provide even greater advantages, but

we leave this detailed investigation to future work.

36

Table 3.3: PSNR values for image inpainting, averaged over six images,
using the proposed adaptive FRIST based method, along with the
corresponding values obtained using cubic interpolation (Cubic), patch
smooth ordering (Smooth), patch-based DCT, adaptive SST, and adaptive
OCTOBOS based methods, for various fractions of available pixels and
noise levels. The best PSNR value in each row is marked in bold.

Avail.
σ

Corrupt.
Cubic Smooth DCT SST OCTOBOS FRIST

pixels PSNR

20%

0 6.41 25.86 27.99 28.32 28.49 28.60 28.65

5 6.39 6.40 27.86 28.26 28.44 28.53 28.61

10 6.36 6.37 26.46 27.46 27.98 28.25 28.41

15 6.33 6.33 25.02 26.60 27.38 27.71 27.92

10%

0 5.89 23.19 24.87 25.21 25.25 25.25 25.31

5 5.88 5.89 24.81 24.98 25.19 25.30 25.38

10 5.86 5.87 24.10 24.40 24.44 24.69 24.80

15 5.81 5.82 23.28 23.62 23.87 24.11 24.22

3.4.5 Image Inpainting

We present preliminary results for our adaptive FRIST-based inpainting

framework (based on (P6)). We randomly remove 80% and 90% of the pixels

of the entire images in Fig. 3.1, and simulate i.i.d. additive Gaussian noise

for the sampled pixels with σ = 0, 5, 10, and 15. We set K = 64, n = 64,

and apply the proposed adaptive FRIST inpainting algorithm to reconstruct

the images from the corrupted and noisy measurements. For comparison, we

replace the adaptive FRIST in the proposed inpainting algorithm with the

fixed 2D DCT, adaptive SST [23], and adaptive OCTOBOS [5] respectively,

and evaluate the inpainting performance of these alternatives. The image

inpainting results obtained by the FRIST based methods are also compared

with those obtained by the cubic interpolation [79, 80] and patch smooth-

ing [81] methods. We used the Matlab function “griddata” to implement the

cubic interpolation, and we used the publicly available implementation of

the patch smoothing method. For the DCT, SST, OCTOBOS, and FRIST

based methods, we initialize the image patches using the cubic interpolation

method in noiseless cases, and using the patch smoothing method in noisy

cases.

37

Table 3.4: Comparison of the PSNRs corresponding to the zero-filling,
Sparse MRI, DL-MRI, PBDWS, PANO, TL-MRI, and the proposed
FRIST-MRI reconstructions for various images, sampling schemes, and
undersampling factors. The best PSNR for each MRI image is marked in
bold.

Im.
Sampl. Under- Zero- Sparse DL- PBD

PANO
TL- FRIST-

Scheme sampl. filling MRI MRI -WS MRI MRI

1 Cartesian 7× 27.9 28.6 30.9 31.1 31.1 31.2 31.4

2 Random 5× 26.9 27.9 30.5 30.3 30.4 30.6 30.7

3 Cartesian 2.5× 24.9 29.9 36.6 35.8 34.8 36.3 36.7

Table 3.3 lists the image inpainting PSNR results, averaged over the im-

ages shown in Fig. 3.1, for various fractions of sampled pixels and noise

levels. The proposed adaptive FRIST inpainting scheme provides better

PSNRs compared to the other inpainting methods based on interpolation,

transform-domain sparsity, and spatial similarity. The average inpainting

PSNR improvements achieved by FRIST over DCT, SST, and OCTOBOS

are 0.56 dB, 0.28 dB, and 0.11 dB respectively, and the standard devia-

tions in these improvements are 0.39 dB, 0.16 dB, and 0.05 dB respectively.

Importantly, adaptive FRIST provides bigger improvements than the other

methods including the learned OCTOBOS, at higher noise levels. Figure 3.7

provides an illustration of the inpainting results, with regional zoom-in for

visual comparisons. We observe that the cubic interpolation produces blur in

various locations. The FRIST result is much improved, and also shows fewer

artifacts compared to the patch smoothing [81] and adaptive SST results.

Table 3.3 shows that the cubic Interpolation method is extremely sensitive

to noise, whereas the FRIST based method is the most robust. These results

indicate the benefits of adapting the highly constrained yet overcomplete

FRIST data model.

3.4.6 MRI Reconstruction

We present preliminary MRI reconstruction results using the proposed FRIST-

MRI algorithm. The three complex-valued images and the corresponding

k -space sampling masks used in this section are shown in Fig. 3.8, Fig.

38

3.9(a), and Fig. 3.9(b).3 We retrospectively undersample the k-space of the

reference images using the displayed sampling masks. We set K = 32, the

sparsity level s = 0.05 × nP , and the other parameters were set similarly

as for TL-MRI in [44]. We used a higher sparsity level s = 0.085 × nN for

reconstructing Image 3, which worked well. To speed up convergence, lower

sparsity levels are used in the initial iterations [44]. We compare our FRIST-

MRI reconstruction results to those obtained using conventional or popular

methods, including naive Zero-filling, Sparse MRI [72], DL-MRI [73], PB-

DWS [82], PANO [83], and TL-MRI [44]. The parameter settings for these

methods are as mentioned in [44]. We separately tuned the sparsity parame-

ter for TL-MRI [44] for reconstructing Image 3.4 The reconstruction PSNRs

(computed for image magnitudes) for various approaches are compared in

Table 3.4.

First, the proposed FRIST-MRI algorithm provides significant improve-

ments over the naive zero-filling reconstruction (the initialization of the al-

gorithm) with 6.4 dB better PSNR on average, as well as 4.2 dB better PSNR

(on average) over the non-adaptive sparse MRI reconstructions. Compared

to recently proposed popular MRI reconstruction methods, the FRIST-MRI

algorithm demonstrates reasonably better performance for each testing case,

with an average PSNR improvement of 0.8 dB, 0.5 dB, and 0.3 dB over

the non-local patch similarity-based PANO method, the partially adaptive

PBDWS method, and the adaptive dictionary-based DL-MRI method.

The proposed FRIST-MRI reconstruction quality is 0.2 dB better than TL-

MRI on average. As we followed a reconstruction framework and parameters

similar to those used by TL-MRI [44], the quality improvement obtained

with FRIST-MRI is solely because the learned FRIST can serve as a better

regularizer for MR image reconstruction compared to the single adaptive

square transform in TL-MRI. Figure 3.9 visualizes the reconstructions and

reconstruction errors (magnitude of the difference between the magnitudes of

the reconstructed and reference images) for FRIST-MRI and TL-MRI. The

FRIST-MRI reconstruction error map clearly shows fewer artifacts, especially

along the boundaries of the circles, compared to TL-MRI.

3The testing image data in this section were used and included in previous works [26,44]
with the data sources.

4We observed improved reconstruction PSNR compared to the result obtained using
the sparsity settings in [44].

39

Corrupted Cubic (24.58 dB)

Smoothing (25.02 dB) SST (25.22 dB)

FRIST (25.41 dB) Original

Figure 3.7: Illutration of image inpainting results for the Kodak 18 (80%
pixels are missing) with regional zoom-in comparisons.

40

(a) (b)

(c) (d)

Figure 3.8: Testing MRI images and their k -space sampling masks: (a)
Image 1 ; (b) k-space sampling mask (Cartesian with 7× undersampling)
for Image 1 ; (c) Image 2 ; (d) k-space sampling mask (2D random with 5×
undersampling) for Image 2.

41

(a) (b)

0

0.02

0.04

0.06

0.08

0.1

(c) (d)

0

0.02

0.04

0.06

0.08

0.1

(e) (f)

Figure 3.9: Visualization of the reconstruction of Image 3 using Cartesian
sampling and 2.5× undersampling: (a) Image 3 ; (b) sampling mask in
k-space; (c) TL-MRI reconstruction (36.3 dB); (d) magnitude of TL-MRI
reconstruction error; (e) FRIST-MRI reconstruction (36.7 dB); and (f)
magnitude of FRIST-MRI reconstruction error.

42

CHAPTER 4

HIGH-DIMENSIONAL SPARSIFYING
TRANSFORM LEARNING FOR ONLINE

VIDEO DENOISING

4.1 Introduction to Video Denoising

This chapter presents novel online data-driven video denoising techniques

based on learning sparsifying transforms for appropriately constructed spatio-

temporal patches of videos. This new framework provides high quality video

restoration from highly corrupted data. In the following, we briefly review

the background on video denoising and sparsifying transform learning, before

discussing the contributions of this work.

4.1.1 Video Denoising

Denoising is one of the most important problems in video processing. The

ubiquitous use of relatively low-quality smart phone cameras has also led to

the increasing importance of video denoising. Recovering high-quality video

from noisy footage also improves robustness in high-level vision tasks [37,84].

Though image denoising algorithms, such as the popular BM3D [32], can

be applied to process each video frame independently, most of the video

denoising techniques exploit the spatio-temporal correlation of the tensor

data. Natural videos have local structures that are sparse or compressible

in some transform domain, or over certain dictionaries, e.g., discrete cosine

transform (DCT) [85] and wavelets [86]. Prior works exploited this fact and

proposed video (or high-dimensional data) denoising algorithms by coefficient

shrinkage, e.g., sparse approximation [31] or Wiener filtering [87]. Since

there are typically motions involved in videos, objects can move throughout

the scene. Thus, state-of-the-art video and image denoising algorithms also

combine block matching (BM) to group local patches, and apply denoising

jointly [32,59,87].

43

Temporal Sliding Window, size = 𝑚, at 𝜏 = 𝑡

෩𝒀𝒕−𝒎+𝟏

෩𝒀𝒕−(𝒎−𝟏)/𝟐

… ෩𝒀𝒕

𝒏𝟏 × 𝒏𝟐
Spatial

Window

𝒎
𝑛2

𝑛1

𝒏

𝒏 = 𝒏𝟏 × 𝒏𝟐 ×𝒎

cascade

𝑴

Vectorized 𝒖𝒊

𝒊𝒕𝒉 3D tensor

Mini-batch ෩𝑼𝒋 =

[𝒖𝒋𝑴−𝑴+𝟏| … |𝒖𝒋𝑴]

෩Yt

…

Middle frame (odd 𝒎 for A2)

Extract 𝑹𝒊
෩Yt in A1

Construct 𝑽𝒊
෩Yt in A2 by BM

Input FIFO buffer:

Figure 4.1: Illustration of video streaming, tensor construction and
vectorization.

4.1.2 Sparsifying Transform Learning

Most of the aforementioned video denoising methods exploit sparsity in fixed

transform domain (e.g., DCT) as part of their framework. It has been shown

that the adaptation of sparse models based on training signals usually leads

to superior performance over fixed sparse representation in many applica-

tions. Synthesis dictionary learning is the most well-known adaptive sparse

representation scheme [4, 8]. However, the synthesis model sparse coding

problem is NP-hard. The commonly used approximate sparse coding algo-

rithms still involve relatively expensive computations. As an alternative, the

transform model suggests that the signal u is approximately sparsifiable us-

ing a transform W ∈ Rm×n, i.e., Wu = x + e, with x ∈ Rm sparse and e a

small approximation error in the transform domain (rather than in the signal

domain). Recent works proposed sparsifying transform learning [20,23] with

cheap and exact sparse coding steps, which turn out to be advantageous in

various applications such as natural data representations, image denoising,

inpainting, segmentation, magnetic resonance imaging (MRI), and computed

tomography (CT) [5, 21,22,27,44,88].

44

𝑌1 𝑌t 𝑌t+1

𝑌t−m+1| … |𝑌t =
Input FIFO

Buffer

VIDOSAT Mini-batch Denoising

ഥYt−m+1| … |ഥYt =
Output FIFO

Buffer

Y1Yt−m+1

Noisy Video
Stream

Denoised
Stream

tY
~

accumulate denoised patches

Normalize & Output the Oldest Frame

Figure 4.2: Illustration of online video streaming and denoising framework.

4.1.3 Contribution

While the data-driven adaptation of synthesis dictionaries for the purpose

of denoising image sequences or volumetric data [30,31] has been studied in

some recent papers, the usefulness of learned sparsifying transforms has not

been explored in these applications. Video data typically contains correlation

along the temporal dimension, which will not be captured by learning spar-

sifying transforms for the 2D patches of the video frames. Thus in this work,

we focus on video denoising using high-dimensional OSTL. We propose the

method of VIdeo Denoising by Online SpArsifying Transform learning (VI-

DOSAT). The sparsifying transform is adapted to the tensors formed by the

local patches of the corrupted video on-the-fly. Figure 4.1 illustrates how the

spatio-temporal tensors are constructed and vectorized from the streaming

video, and Fig. 4.2 is a flow-chart of the proposed VIDOSAT framework.

To our knowledge, this is the first video denoising method using online

sparse signal modeling, by applying high-dimensional sparsifying transform

learning for spatio-temporal data. Table 4.1 summarizes the key attributes of

some of the aforementioned related video denoising algorithm representatives,

45

Table 4.1: Comparison between video denoising methods, including fBM3D,
3D DCT, sKSVD, VBM3D, VBM4D, as well as VIDOSAT and
VIDOSAT-BM proposed here. fBM3D is applying BM3D algorithm for
denoising each frame, and the 3D DCT method is applying the VIDOSAT
framework but using the fixed 3D DCT transform.

Methods
Sparse Signal Model

BM
Temporal

Fixed Adaptive Online Correlation

fBM3D 3 3

3D DCT 3 3

sKSVD 3 3

VBM3D 3 3 3

VBM4D 3 3 3

VIDOSAT 3 3 3

VIDOSAT
3 3 3 3

-BM

as well as the proposed VIDOSAT algorithms. Our contributions can be

summarized as follows:

• We propose a video denoising framework, which processes noisy frames

in an online fashion. Within the framework, we present two meth-

ods of spatio-temporal tensor construction, one of which utilizes block

matching (BM) for motion compensation.

• We apply the OSTL for reconstruction of sequentially arrived tensors,

whose spatio-temporal structure is exploited using the adaptive 3D

transform-domain sparsity. The denoised tensors are aggregated to

reconstruct the streaming video frames.

• We evaluate the video denoising performance of the proposed algo-

rithms, which outperform the competing methods over several public

video datasets.

46

4.2 Signal Denoising via Online Transform Learning

The goal in denoising is to recover an estimate of a signal ũ ∈ Rn from

the measurement u = ũ + e, corrupted by additive noise e. Here, we con-

sider a time sequence of noisy measurements {ut}, with ut = ũt + et. We

assume noise et ∈ Rn whose entries are independent and identically dis-

tributed (i.i.d.) Gaussian with zero mean and possibly time-varying but

known variance σ2
t . Online denoising is to recover the estimates ût for ũt ∀ t

sequentially. Such time-sequential denoising with low memory requirements

would be especially useful for streaming data applications. We assume that

the underlying signals {ũt} are approximately sparse in an (unknown, or to

be estimated) transform domain.

4.2.1 Online Transform Learning

In prior work [28], we proposed an online signal denoising methodology based

on sparsifying transform learning, where the transform is adapted based on

sequentially processed data. For time t = 1, 2, 3, etc., the problem of up-

dating the adaptive sparsifying transform and sparse code (i.e., the sparse

representation in the adaptive transform domain) to account for the new

noisy signal ut ∈ Rn is

{
Ŵt, x̂t

}
= arg min

W,xt

1

t

t∑
τ=1

{
‖Wuτ − xτ‖2

2 + λτν(W)
}

+
1

t

t∑
τ=1

α2
τ ‖xτ‖0 s.t. xτ = x̂τ , 1 ≤ τ ≤ t− 1 (P1) ,

where the `0 “norm” counts the number of nonzeros in xτ , which is the

sparse code of uτ . Thus ‖Wuτ − xτ‖2
2 is the sparsification error (i.e., the

modeling error in the transform model) for uτ in the transform W. The

term ν(W) = − log |det W|+‖W‖2
F is a transform learning regularizer [20],

λτ = λ0 ‖uτ‖2
2 with λ0 > 0 allows the regularizer term to scale with the first

term in the cost, and the weight ατ is chosen proportional to στ (the standard

deviation of noise in ũτ). Matrix Ŵt in (P1) is the optimal transform at time

t, and x̂t is the optimal sparse code for ut.

Note that at time t, only the latest optimal sparse code x̂t is updated in

47

(P1)1 along with the transform Ŵt. The condition xτ = x̂τ , 1 ≤ τ ≤ t−1, is

therefore assumed. For brevity, we will not explicitly restate this condition

(or its variants) in the formulations in the rest of this chapter. Although

at each time t the transform is updated based on all the past and present

observed data, the online algorithm for (P1) [28] involves efficient operations

based on a few matrices of modest size, accumulated sequentially over time.

The regularizer ν(W) in (P1) prevents trivial solutions and controls the

condition number and scaling of the learned transform [20]. The condition

number κ(W) is upper bounded by a monotonically increasing function of

ν(W) [20]. In the limit λ0 → ∞ (and assuming the uτ , 1 ≤ τ ≤ t, are not

all zero), the condition number of the optimal transform in (P1) tends to 1.

The specific choice of λ0 (and hence the condition number) depends on the

application.

Denoising

Given the optimal transform Ŵt and the sparse code x̂t, a simple estimate

of the denoised signal is obtained as ût = Ŵ−1
t x̂t. Online transform learning

can also be used for patch-based denoising of large images [28]. Overlapping

patches of the noisy images are processed sequentially (e.g., in raster scan

order) via (P1), and the denoised image is obtained by averaging together

the denoised patches at their respective image locations.

Forgetting Factor

For non-stationary or highly dynamic data, it may not be desirable to uni-

formly fit a single transform W to all the uτ , 1 ≤ τ ≤ t, in (P1). Such

data can be handled by introducing a forgetting factor ρt−τ (with a constant

0 < ρ < 1) that scales the terms in (P1) [28]. The forgetting factor di-

minishes the influence of “old” data. The objective function in this case is

modified as

1

Ct

t∑
τ=1

ρt−τ
{
‖Wuτ − xτ‖2

2 + λτν(W) + α2
τ ‖xτ‖0

}
, (4.1)

1This is because only the signal ũt is assumed to be stored in memory at time t for the
online scheme.

48

where Ct =
∑t

τ=1 ρ
t−τ is the normalization factor.

4.2.2 Mini-Bsatch Learning

Another useful variation of Problem (P1) involves mini-batch learning, where

a block (group), or mini-batch of signals is processed at a time [28]. Assuming

a fixed mini-batch size M , the Lth (L ≥ 1) mini-batch of signals is UL =[
uLM−M+1 | uLM−M+2 | ... | uLM

]
. For L = 1, 2, 3, etc., the mini-batch

sparsifying transform learning problem is

(P2)
{

ŴL, X̂L

}
= arg min

W,XL

1

LM

L∑
j=1

‖WUj −Xj‖2
F

+
1

LM

LM∑
l=1

α2
l ‖xl‖0 +

1

LM

L∑
j=1

Λj ν(W) ,

where the regularizer weight is Λj = λ0

∥∥∥Uj

∥∥∥2

F
, and the matrix XL =[

xLM−M+1 | xLM−M+2 | ... | xLM
]

contains the block of sparse codes cor-

responding to UL.

Since we only consider a finite number of frames or patches in practice

(e.g., in the proposed VIDOSAT algorithms), the normalizations by 1/t in

(P1), 1/Ct in (4.1), and 1/LM in (P2) correspondingly have no effect on the

optimum
{

Ŵt, X̂t

}
or
{

ŴL, X̂L

}
. Thus we drop, for clarity,2 normalization

factors from (P3) and all subsequent expressions for the cost functions.

Once (P2) is solved, a simple denoised estimate of the noisy block of signals

in UL is obtained as ÛL = Ŵ−1
L X̂L. The mini-batch transform learning

Problem (P2) is a generalized version of (P1), with (P2) being equivalent

to (P1) for M = 1. Similar to (4.1), (P2) can be modified to include a

forgetting factor. Mini-batch learning can provide potential speedups over

the M = 1 case in applications, but this comes at the cost of higher memory

requirements and latency (i.e., delay in producing output) [28].

2In practice, such normalizations may still be useful to control the dynamic range of
various internal variables in the algorithm.

49

4.3 VIDOSAT Framework and Formulations

Prior work on adaptive sparsifying transform-based image denoising [5,23,28]

adapted the transform operator to 2D image patches. However, in video

denoising, exploiting the sparsity and redundancy in both the spatial and

temporal dimensions typically leads to better performance than denoising

each frame separately [31]. We therefore propose an online approach to

video denoising by learning a sparsifying transform on appropriate 3D spatio-

temporal patches.

4.3.1 Video Streaming and Denoising Framework

Figure 4.2 illustrates the framework of our proposed online denoising scheme

for streaming videos. The frames of the noisy video (assumed to be cor-

rupted by additive i.i.d. Gaussian noise) denoted as Yτ ∈ Ra×b arrive at

τ = 1, 2, 3, etc. At time τ = t, the newly arrived frame Yt is added to a

fixed-size FIFO (first in first out) buffer (i.e., queue) that stores a block of

m consecutive frames
{

Yi

}t
i=t−m+1

. The oldest (leftmost) frame is dropped

from the buffer at each time instant. We denote the spatio-temporal tensor

or 3D array obtained by stacking noisy frames along the temporal dimen-

sion as Yt =
[
Yt−m+1 | ... | Yt

]
∈ Ra×b×m. We denoise the noisy array

Yt using the proposed VIDOSAT mini-batch denoising algorithms (denoted

by the red box in Fig. 4.2) that are discussed in Sections 4.3.2 and 4.4.

These algorithms denoise groups (mini-batches) of 3D patches sequentially

and adaptively, by learning sparsifying transforms. Overlapping patches are

used in our framework.

The patches output by the mini-batch denoising algorithms are deposited

at their corresponding spatio-temporal locations in the fixed-size FIFO out-

put Ȳt =
[
Ȳt−m+1 | ... | Ȳt

]
by adding them to the contents of Ȳt. We

call this process patch aggregation. The streaming scheme then outputs the

oldest frame Ȳt−m+1. The denoised estimate Ŷt−m+1 is obtained by normal-

izing Ȳt−m+1 pixel-wise by the number of occurrences of each pixel in the

aggregated patches (see Section 4.4 for details).

Though any frame could be denoised and output from Ȳt instantaneously,

we observe improved denoising quality by averaging over multiple denoised

estimates at different time. Figure 4.3 illustrates how the output buffer varies

50

ഥ

ഥ
−(𝒎−𝟏)

ഥ
+(𝒎−𝟏)+(𝒎−𝟏)

m-1 past
adjacent frames

m-1 future
adjacent frames

3D Patch
Depth = m

3D Patch
Depth = m

3D Buffer
Depth = m

Output the denoised frame

 at time 𝒕 + (𝒎 − 𝟏)

is first denoised in
the FIFO buffer at time 𝒕

3D Buffer
Depth = m

Figure 4.3: Illustration of the output buffer from time t to t+ (m− 1) for
generating the denoised frame output Ŷt.

from time t to t+ (m−1), to output the denoised Ŷt. In practice, we set the

length of the output buffer Ȳ to be the same as the 3D patch depth m, such

that each denoised frame Ŷt is output by averaging over its estimates from

all 3D patches that group the tth frame with m − 1 adjacent frames. We

refer to this scheme as “two-sided” denoising, since the tth frame is denoised

together with both past and future adjacent frames (m − 1 frames on each

side), which are highly correlated. Now, data from frame Yt is contained in

3D patches that also contain data from frame Yt+m−1. Once these patches

are denoised, they will contribute (by aggregation into the output buffer)

to the final denoised frame Ŷt. Therefore, we must wait for frame Yt+m−1

before producing the final estimate Ŷt. Thus there is a delay of m−1 frames

between the arrival of the noisy Yt and the generation of its final denoised

estimate Ŷt.

4.3.2 VIDOSAT Mini-Batch Denoising Formulation

Here, we discuss the mini-batch denoising formulation that is a core part of

the proposed online video denoising framework. For each time instant t, we

denoise P partially overlapping size n1 × n2 × m 3D patches of Yt whose

vectorized versions are denoted as
{

vtp

}P
p=1

, with vtp ∈ Rn, n = mn1n2.

We sequentially process disjoint groups of M such patches, and the groups

51

or mini-batches of patches (total of N mini-batches, where P = MN) are

denoted as
{

ULtk

}N
k=1

, with ULtk
∈ Rn×M . Here, k is the local mini-batch

index within the set of P patches of Yt, whereas Ltk , N × (t − 1) + k is

the global mini-batch index, identifiying the mini-batch in both time t and

location within the set of P patches of Yt.
For each t, we solve the following online transform learning problem for

each k = 1, 2, 3, ..., N , to adapt the transform and sparse codes sequentially

to the mini-batches in Yt:

(P3)
{

ŴLtk
, X̂Ltk

}
= arg min

W,X
Lt
k

Ltk∑
j=1

ρL
t
k−j ‖WUj −Xj‖2

F

+

Ltk∑
j=1

ρL
t
k−j

{
Λj ν(W) +

M∑
i=1

α2
j,i

∥∥∥xj,i∥∥∥
0

}
.

Here, the transform is adapted based on patches from all the observed Yτ ,

1 ≤ τ ≤ t. The matrix Xj =
[
xj,1 | ... | xj,M

]
∈ Rn×M denotes the trans-

form sparse codes corresponding to the mini-batch Uj. The sparsity penalty

weight α2
j,i in (P3) controls the number of non-zeros in xj,i. We set αj,i =

α0σj,i, where α0 is a constant and σj,i is the noise standard deviation for each

patch. We use a forgetting factor ρL
t
k−j in (P3) to diminish the influence of

old frames and old mini-batches.

Once (P3) is solved, the denoised version of the current noisy mini-batch

ÛLtk
is computed. The columns of the denoised ÛLtk

are tensorized and

aggregated at the corresponding spatial and temporal locations in the output

FIFO buffer. Section 4.4 next discusses the proposed VIDOSAT algorithms

in full detail.

4.4 Denoising Algorithms

We now discuss two video denoising algorithms, namely VIDOSAT and

VIDOSAT-BM. VIDOSAT-BM uses block matching to generate the 3D patches

from Yt. Though these methods differ in the way they construct the 3D

patches, and the way the denoised patches are aggregated in the output

FIFO, they both denoise groups of 3D patches sequentially by solving (P3).

The VIDOSAT denoising algorithm (without BM) is summarized in Algo-

52

rithm 4.1.3 The VIDOSAT-BM algorithm, a modified version of Algorithm

4.1, is discussed in Section 4.4.2.

4.4.1 VIDOSAT

As discussed in Section 4.3.2, the VIDOSAT algorithm processes each mini-

batch Uj in Yτ sequentially. We solve the mini-batch transform learning

problem (P3) using a simple alternating minimization approach, with one

alternation per mini-batch, which works well and saves computation. Initial-

ized with the most recently estimated transform (warm start), we perform

two steps for (P3): Sparse Coding and Mini-batch Transform Update, which

compute X̂j and update Ŵj, respectively. Then, we compute the denoised

mini-batch Ûj, and aggregate the denoised patches into the output buffer

Ȳτ .
The major steps of the VIDOSAT algorithm 4.1 for denoising the kth

mini-batch ULtk
at time t and further processing these denoised patches are

described below. To facilitate the exposition and interpretation in terms of

the general online denoising algorithm described, various quantities (such as

positions of 3D patches in the video stream) are indexed in the text with

respect to absolute time t. On the other hand, to emphasize the streaming

nature of Algorithm 4.1 and its finite (and modest) memory requirements,

indexing of internal variables in the statement of the algorithm is local.

Noisy Mini-Batch Formation

To construct each mini-batch ULtk
, partially overlapping size n1 × n2 × m

3D patches of Yt are extracted sequentially in a spatially contiguous order

(raster scan order with direction reversal on each line).4 Let RpYt denote the

pth vectorized 3D patch of Yt, with Rp being the patch-extraction operator.

Considering the patch indices Sk =
{
M(k − 1) + 1, ...,Mk

}
for the kth mini-

batch, we extract
{

vtp = vec(RpYt)
}
p∈Sk

as the patches in the mini-batch.

Thus ULtk
=
[
vtM(k−1)+1 | ... | vtMk

]
. To impose spatio-temporal contiguity

3In practice, we wait for the first m frames to be received, before starting Algorithm
4.1, to avoid zero frames in the input FIFO buffer.

4We did not observe any marked improvement in denoising performance, when using
other scan orders such as raster or Peano-Hilbert scan [89].

53

Algorithm 4.1: VIDOSAT Denoising Algorithm
Input: The noisy frames Yτ (τ = 1, 2, 3, etc.), and the initial transform
W0 (e.g., 3D DCT).

Initialize: Ŵ = W0, Γ = Θ = 0, β = 0,
and output buffer Ȳ = 0.
For τ = 1, 2, 3, etc., Repeat
The newly arrived frame Yτ → latest frame in the input FIFO frame
buffer Y .
For k = 1, ..., N Repeat

Indices of patches in Y : Sk = {M(k − 1) + 1, ...,Mk}.
1. Noisy Mini-Batch Formation:

(a) Patch Extraction: vp = vec(RpY) ∀p ∈ Sk.
(b) U =

[
u1 | ... | uM

]
←
[
vMk−M+1 | ... | vMk

]
.

2. Sparse Coding: x̂i = Hαi(Ŵui) ∀i ∈ {1, ...,M}.

3. Mini-batch Transform Update:

(a) Define Λ , λ0‖U‖2
F and X̂ ,

[
x̂1 | ... | x̂M

]
.

(b) Γ← ρΓ + UUT .

(c) Θ← ρΘ + UX̂T .

(d) β ← ρβ + Λ.

(e) Matrix square root: Q← (Γ + βI)1/2.

(f) Full SVD: ΦΣΨT ← SVD(Q−1Θ).

(g) Ŵ← 0.5Ψ
(
Σ + (Σ2 + 2βI)

1
2

)
ΦTQ−1.

4. 3D Denoised Patch Reconstruction:

(a) Update Sparse Codes: x̂i = Hαi(Ŵui) ∀i.
(b) Denoised mini-batch: Û = Ŵ−1X̂.

(c)
[
v̂M(k−1)+1 | ... | v̂Mk

]
← Û

(d) Tensorization: V̂p = vec−1(v̂p) ∀p ∈ Sk.

5. Aggregation: Aggregate patches
{
V̂p
}

at corresponding locations:

Ȳ ←
∑

p∈Sk R
∗
pV̂p.

End
Output: The oldest frame in Ȳ after normalization → the denoised
frame Ŷτ−m+1.
End

54

of 3D patches extracted from two adjacent stacks of frames, we reverse the

raster scan order (of patches) between Yt and Yt+1.

Sparse Coding

Given the sparsifying transform W = ŴLtk−1 estimated for the most recent

mini-batch, we solve Problem (P3) for the sparse coefficients X̂Ltk
:

X̂Ltk
= arg min

X

∥∥∥WULtk
−X

∥∥∥2

F
+

M∑
i=1

α2
Ltk,i

∥∥∥xi∥∥∥
0
. (4.2)

A solution for (4.2) is given in closed-form as x̂Ltk,i = Hα
Lt
k
,i
(ŴLtk

uLtk,i) ∀
i [28]. Here, the hard thresholding operator Hα(·) : Rn → Rn is applied to a

vector element-wise, as defined by

(Hα(d))r =

{
0 , |dr| < α

dr , |dr| ≥ α
. (4.3)

This simple hard thresholding operation for transform sparse coding is similar

to traditional techniques involving analytical sparsifying transforms [19].

Mini-batch Transform Update

We solve Problem (P3) for W with fixed Xj = X̂j, 1 ≤ j ≤ Ltk, as follows:

min
W

Ltk∑
j=1

ρL
t
k−j
{∥∥∥WUj −Xj

∥∥∥2

F
+ Λjν(W)

}
. (4.4)

This problem has a simple solution (similar to Section III-B2 in [28]). Set

index J = Lkt , and define the following quantities: ΓJ ,
∑J

j=1 ρ
J−jUjU

T
j ,

ΘJ ,
∑J

j=1 ρ
J−jUjX̂

T
j , and βJ ,

∑J
j=1 ρ

J−jΛj. Let Q ∈ Rn×n be a square

root (e.g., Cholesky factor) of (ΓJ + βJI), i.e., QQT = ΓJ + βJI. Denoting

the full singular value decomposition (SVD) of Q−1ΘJ as ΦΣΨT , we then

have that the closed-form solution to (4.4) is

ŴJ = 0.5Ψ
(
Σ +

(
Σ2 + 2βJI

) 1
2

)
ΦTQ−1 , (4.5)

55

in A1

Reference
Patch

Ascending order
of Euclidean distance in A2

or in A2 Vectorization

Tensorization

Patch deposit in A1,
or in A2.

Figure 4.4: Patch deposit R∗p vec−1(v̂p) (resp. B∗p vec−1(v̂p)) as an adjoint of
patch extraction operator in 4.1 (resp. an adjoint of BM operator in 4.2).

where I denotes the identity matrix, and (·) 1
2 denotes the positive definite

square root of a positive definite (diagonal) matrix. The quantities ΓJ , ΘJ ,

and βJ are all computed sequentially over time t and mini-batches k [28].

3D Denoised Patch Reconstruction

We denoise ULtk
using the updated transform. First, we repeat the sparse

coding step using the updated ŴLtk
as x̂Ltk,i = Hα

Lt
k
,i
(ŴLtk

uLtk,i) ∀ i. Then,

with fixed ŴLtk
and X̂Ltk

, the denoised mini-batch is obtained in the least

squares sense under the transform model as

ÛLtk
= Ŵ−1

Ltk
X̂Ltk

. (4.6)

The denoised mini-batch is used to update the denoised (vectorized) 3D

patches as v̂tM(k−1)+i = ûLtk,i ∀i. All reconstructed vectors
{

v̂tp

}
p∈Sk

from

the kth mini-batch denoising result are tensorized as
{

vec−1(v̂tp)
}
p∈Sk

.

Aggregation

The denoised 3D patches
{

vec−1(v̂tp)
}
p∈Sk

from each mini-batch are sequen-

tially aggregated at their corresponding spatial and temporal locations in

the output FIFO buffer as
∑

p∈Sk R
∗
p vec−1(v̂tp) → Ȳt ∈ Ra×b×m, where the

56

Block
Matching

1tY tY 1tY

Patch
Reference

𝑩𝒑
෩Yt in

Direct
Extraction

𝑹𝒑
෩Yt in

VIDOSAT

VIDOSAT-BM
Search

Window

Figure 4.5: Illustration of the different 3D patch construction methods in
VIDOSAT (blue) and VIDOSAT-BM (red). The 3D search window used in
VIDOSAT-BM is illustrated in green.

adjoint R∗p is the patch deposit operator. Figure 4.4 illustrates the patch

deposit procedure for aggregation.

When all N denoised mini-batches for Yt are generated, and the patch

aggregation in Ȳt completes, the oldest frame in Ȳt is normalized pixel-wise

by the number of occurrences (which ranges from 2m − 1, for pixels at the

corners of a video frame, to n for pixels away from the borders of a video

frame) of that pixel among patches aggregated into the output buffer. This

normalized result is output as the denoised frame Ŷt−m+1.

4.4.2 VIDOSAT-BM

For videos with relatively static scenes, each extracted spatio-temporal tensor

RpYt in the VIDOSAT Algorithm 4.1 typically has high temporal correlation,

implying high (3D) transform domain sparsity. However, highly dynamic

videos usually involve various motions, such as translation, rotation, scaling,

etc. Figure 4.5 demonstrates one example when the 3D patch construction

strategy in the VIDOSAT denoising algorithm 4.1 fails to capture the prop-

erties of the moving object. Thus, Algorithm 4.1 could provide sub-optimal

denoising performance for highly dynamic videos. We propose an alternative

57

algorithm, dubbed VIDOSAT-BM, which improves VIDOSAT denoising by

constructing 3D patches using block matching.

The proposed VIDOSAT-BM solves the online transform learning prob-

lem (P3) with a different methodology for constructing the 3D patches and

each mini-batch. The Steps (2) − (4) in Algorithm 4.1 remain the same

for VIDOSAT-BM. We now discuss the modified Steps (1) and (5) in the

VIDOSAT-BM denoising algorithm, to which we also refer as Algorithm 4.2.

3D Patch and Mini-Batch Formation in VIDOSAT-BM: Here, we

use a small and odd-valued sliding (temporal) window size m (e.g., we set

m = 9 in the video denoising experiments in Section 4.5, which corresponds

to ∼ 0.2 s buffer duration for a video with 40 Hz frame rate). Within the

m-frame input FIFO buffer Yt, we approximate the various motions in the

video using simple (local) translations [90].

We consider the middle frame Yt−(m−1)/2 in the input FIFO buffer Yt, and

sequentially extract all 2D overlapping patches Zt
p ∈ Rn1×n2 , 1 ≤ p ≤ P

in Yt−(m−1)/2, in a 2D spatially contiguous (raster scan) order. For each

Zt
p, we form a h1 × h2 ×m pixel local search window centered at the center

of Zt
p (see the illustration in Fig. 4.5). We apply a spatial BM operator,

denoted Bp, to find (using exhaustive search) the (m − 1) patches, one for

each neighboring frame in the search window, that are most similar to Zt
p in

Euclidean distance. The operator Bp stacks the Zt
p, followed by the (m− 1)

matched patches, in an ascending order of their Euclidean distance to Zt
p,

to form the pth 3D patch BpYt ∈ Rn1×n2×m. Similar BM approaches have

been used in prior works on video compression (e.g., MPEG) for motion

compensation [90], and in recent works on spatiotemporal medical imaging

[51]. The coordinates of all selected 2D patches are recorded to be used

later in the denoised patch aggregation step. Instead of constructing the

3D patches from 2D patches in corresponding locations in contiguous frames

(i.e., RpYt in Algorithm 4.1), we form the patches using BM and work with

the vectorized vtp = vec(BpYt) ∈ Rn in VIDOSAT-BM. The k-th mini-batch

is defined, as in Algorithm 4.1 as ULtk
=
[
vtM(k−1)+1 | ... | vtMk

]
.

Aggregation: Each denoised 3D patch (tensor) of
{

vec−1(v̂tp)
}
p∈Sk

con-

tains the matched (and denoised) 2D patches. They are are sequentially

aggregated at their recorded spatial and temporal locations in the output

FIFO buffer Ȳt as
∑

p∈Sk B
∗
p vec−1(v̂tp)→ Ȳt ∈ Ra×b×m, where the adjoint B∗p

58

Table 4.2: Comparison of video denoising PSNR values (in dB), averaged
over the ASU dataset, for the proposed VIDOSAT, VIDOSAT-BM, and
other competing methods. For each dataset and noise level, the best
denoising PSNR is marked in bold. For each method, we list ∆ PSNR,
which denotes the average PSNR difference (with its standard deviation
included in parentheses) relative to the proposed VIDOSAT-BM
(highlighted in bold).

Data ASU Dataset (26 videos) ∆PSNR

σ 5 10 15 20 50 (std.)

fBM3D
38.78 34.66 32.38 30.82 26.13

3.89

[32] (1.41)

sKSVD
41.27 37.37 35.15 33.59 28.79

1.20

[31] (0.34)

3D DCT 41.26 37.14 34.73 33.03 27.59
1.69

(0.78)

VBM3D
41.10 37.82 35.78 34.25 28.65

0.92

[87] (0.72)

VBM4D
41.42 37.59 35.30 33.64 27.76

1.30

[59] (0.86)

VIDOSAT 41.94 38.32 36.13 34.60 29.87
0.27

(0.13)

VIDOSAT
42.22 38.57 36.42 34.88 30.09 0

-BM

is the patch deposit operator in 4.2. Fig. 4.4 illustrates the patch deposit

procedure for aggregation in 4.2. Once the aggregation of Ȳt completes, the

oldest frame in Ȳt is normalized pixel-wise by the number of occurrences of

each pixel among patches in the denoising algorithm. Unlike Algorithm 4.1

where this number of occurrences is the same for all frames, in Algorithm 4.2

this number is data-dependent and varies from frame to frame and pixel to

pixel. We record the number of occurrences of each pixel which is based on

the recorded locations of the matched patches, and can be computed online

as described. The normalized oldest frame is output by Algorithm 4.2 for

each time instant.

59

Table 4.3: Comparison of video denoising PSNR values (in dB), averaged
over the LASIP dataset, for the proposed VIDOSAT, VIDOSAT-BM, and
other competing methods. For each dataset and noise level, the best
denoising PSNR is marked in bold. For each method, we list ∆ PSNR,
which denotes the average PSNR difference (with its standard deviation
included in parentheses) relative to the proposed VIDOSAT-BM
(highlighted in bold).

Data LASIP Dataset (8 videos) ∆PSNR

σ 5 10 15 20 50 (std.)

fBM3D
38.05 34.06 31.89 30.42 25.88

2.11

[32] (1.03)

sKSVD
38.87 34.95 32.80 31.33 26.89

1.21

[31] (0.38)

3D DCT 38.01 33.60 30.44 28.50 22.31
3.60

(1.28)

VBM3D
39.20 35.75 33.87 32.49 26.51

0.61

[87] (0.51)

VBM4D
39.37 35.73 33.70 32.24 26.68

0.63

[59] (0.49)

VIDOSAT 39.56 35.75 33.54 31.98 27.29
0.55

(0.29)

VIDOSAT
39.95 36.11 34.05 32.60 28.15 0

-BM

4.4.3 Computational Costs

In Algorithm 4.1, the computational cost of the sparse coding step is domi-

nated by the computation of matrix-vector multiplication Ŵui, which scales

as O(Mn2) [6,28] for each mini-batch. The cost of mini-batch transform up-

date step is O(n3+Mn2), which is dominated by full SVD and matrix-matrix

multiplications. The cost of the 3D denoised patch reconstruction step also

scales as O(n3 +Mn2) per mini-batch, which is dominated by the computa-

tion of matrix inverse Ŵ−1 and multiplications. As all overlapping patches

from a a× b× T video are sequentially processed, the computational cost of

Algorithm 4.1 scales as O(abTn3/M + abTn2). We set M = 15n in practice,

60

so that the cost of 4.1 scales as O(abTn2). The cost of the additional BM step

in Algorithm 4.2 scales as O(abTmh1h2), where h1×h2 is the search window

size. Therefore, the total cost of 4.2 scales as O(abTn2 + abTmh1h2), which

is on par with the state-of-the-art video denoising algorithm VBM3D [87],

which is not an online method.

4.5 Experiments

4.5.1 Implementation and Parameters

Testing Data

We present experimental results demonstrating the promise of the proposed

VIDOSAT and VIDOSAT-BM online video denoising methods. We evaluate

the proposed algorithms by denoising all 34 videos from 2 public datasets,

including 8 videos from the LASIP video dataset 5 [59, 87], and 26 videos

the Arizona State University (ASU) Video Trace Library 6 [91]. The test-

ing videos contain 50 to 870 frames, with the frame resolution ranging from

176 × 144 to 720 × 576. Each video involves different types of motion, in-

cluding translation, rotation, scaling (zooming), etc. The color videos are all

converted to gray-scale. We simulated i.i.d. zero-mean Gaussian noise at 5

different noise levels (with standard deviation σ = 5, 10, 15, 20, and 50) for

each video.

Implementation Details

We include several minor modifications of VIDOSAT and VIDOSAT-BM

algorithms for improved performance. At each time instant t, we perform

multiple passes of denoising for each Yt by iterating over Steps (1) to (5)

multiple times. In each pass, we denoise the output from the previous itera-

tion [5,28]. As the sparsity penalty weights are set proportional to the noise

level, αj,i = α0σ, the noise standard deviation σ in each such pass is set to an

5Available at http://www.cs.tut.fi/~lasip/foi_wwwstorage/test_videos.zip
6Available at http://trace.eas.asu.edu/yuv/. Only videos with less than 1000

frames are selected for our image denoising experiments.

61

empirical estimate [5, 6] of the remaining noise in the denoised frames from

the previous pass. These multiple passes, although increasing the computa-

tion in the algorithm, do not increase the inherent latency m−1 of the single

pass algorithm described earlier.

The following details are specifically for VIDOSAT-BM. First, instead of

performing BM over the noisy input buffer Yt, we pre-clean Yt using the

VIDOSAT mini-batch denoising Algorithm 4.1, and then perform BM over

the VIDOSAT denoised output. Second, when denoised 3D patches are ag-

gregated to the output buffer, we assign them different weights, which are

proportional to the sparsity level of their optimal sparse codes [39]. The

weights are also accumulated and used for the output normalization.

Hyperparameters

We work with fully overlapping patches (spatial patch stride of 1 pixel) with

spatial size n1 = n2 = 8, and temporal depth of m = 9 frames, which

also corresponds to the depth of buffer Y . It follows that for a video with

N1 × N2 frames, the buffer Y contains mN1N2 pixels, and P = (N1 − n1 +

1)(N2 − n2 + 1) 3D patches. We set the sparsity penalty weight parameter

α0 = 1.9, the transform regularizer weight constant λ0 = 10−2, and the

mini-batch size M = 15 × mn1n2. The transform W is initialized with

the 3D DCT W0. For the other parameters, we adopt the settings in prior

works [5,6,28], such as the forgetting factor ρ = 0.68, 0.72, 0.76, 0.83, 0.89, and

the number of passes Lp = 1, 2, 3, 3, 4 for σ = 5, 10, 15, 20, 50, respectively.

The values of ρ and Lp both increase as the noise level increases. The larger

ρ helps prevent overfitting to noise, and the larger number of passes improves

denoising performance at higher noise level. For VIDOSAT-BM, we set the

local search window size h1 = h2 = 21.

4.5.2 Video Denoising Results

Competing Methods

We compare the video denoising results obtained using the proposed VI-

DOSAT and VIDOSAT-BM algorithms to several well-known alternatives,

62

including the frame-wise BM3D denoising method (fBM3D) [32], the image

sequence denoising method using sparse KSVD (sKSVD) [31], VBM3D [87]

and VBM4D methods [59]. We used the publicly available implementations

of these methods. Among these competing methods, fBM3D denoises each

frame independently by applying a popular BM3D image denoising method;

sKSVD exploits adaptive spatio-temporal sparsity but the dictionary is not

learned online; and VBM3D and VBM4D are popular and state-of-the-art

video denoising methods. Moreover, to better understand the advantages of

the online high-dimensional transform learning, we apply the proposed video

denoising framework, but fixing the sparsifying transform in VIDOSAT to

3D DCT, which is referred as the 3D DCT method.

Denoising Results

We present video denoising results using the proposed VIDOSAT and VIDOSAT-

BM algorithms, as well as using the other aforementioned competing meth-

ods. To evaluate the performance of the various denoising schemes, we mea-

sure the peak signal-to-noise ratio (PSNR) in decibels (dB), which is com-

puted between the noiseless reference and the denoised video.

Tables 4.2 and 4.3 list the video denoising PSNRs obtained by the two

proposed VIDOSAT methods, as well as the five competing methods. It is

clear that the proposed VIDOSAT and VIDOSAT-BM approaches both gen-

erate better denoising results with higher average PSNR values, compared

to the competing methods. The VIDOSAT-BM denoising method provides

average PSNR improvements (averaged over all 34 testing videos from both

datasets and all noise levels) of 0.9 dB, 1.1 dB, 1.2 dB, 2.1 dB, and 3.5 dB,

over the VBM3D, VBM4D, sKSVD, 3D DCT, and fBM3D denoising meth-

ods. Importantly, VIDOSAT-BM consistently outperforms all the competing

methods for all testing videos and noise levels. Among the two proposed VI-

DOSAT algorithms, the average video denoising PSNR by VIDOSAT-BM is

0.3 dB higher than that using the VIDOSAT method, thanks to the use of

the block matching for modeling dynamics and motion in video.

We illustrate the denoising results and improvements provided by VI-

DOSAT and VIDOSAT-BM with some examples.

Figure 4.6 shows one denoised frame of the video Akiyo (σ = 50), which

involves static background and a relatively small moving region (the mag-

63

nitudes of error in Fig. 4.6 are clipped for viewing). The denoising results

by VIDOSAT and VIDOSAT-BM both demonstrate similar visual quality

improvements over the result by VBM3D. Figure 4.7(a) shows the frame-by-

frame PSNRs of the denoised Akiyo, in which VIDOSAT and VIDOSAT-BM

provide comparable denoising PSNRs, and both outperform the VBM3D and

VBM4D schemes consistently by a sizable margin.

Figure 4.8 shows one denoised frame of the video Salesman (σ = 20) that

involves occasional but fast movements (e.g., hand waving) in the foreground.

The denoising result by VIDOSAT improves over the VBM4D result in gen-

eral, but also shows some artifacts in regions with strong motion. Instead, the

result by VIDOSAT-BM provides the best visual quality in both the static

and the moving parts. Fig. 4.7(b) shows the frame-by-frame PSNRs of the

denoised Salesman. VIDOSAT-BM provides large improvements over the

other methods including VIDOSAT for most frames, and the PSNR is more

stable (smaller deviations) over frames. Figure 4.9 shows example atoms

(i.e., rows) of the initial 3D DCT transform, and the online learned trans-

forms using (a) VIDOSAT and (b) VIDOSAT-BM at different times t. For

the learned Ŵt’s using both VIDOSAT and VIDOSAT-BM, their atoms are

observed to gradually evolve, in order to adapt to the dynamic video content.

The learned transform atoms using VIDOSAT in Fig. 4.9(a) demonstrate lin-

ear shifting structure along the patch depth m, which is likely to compensate

the video motion (e.g., translation). On the other hand, since the 3D patches

are formed using BM in VIDOSAT-BM, such structure is not observed in Fig.

4.9(b) when Ŵt is learned using VIDOSAT-BM.

Figure 4.10 shows one denoised frame of the video Bicycle (σ = 20), which

contains a large area of complex movements (e.g., rotations) throughout the

video. In this case, the denoised frame using the VIDOSAT is worse than

VBM4D. However, VIDOSAT-BM provides superior quality compared to all

the methods. This example demonstrates the effectiveness of joint block

matching and learning in the proposed VIDOSAT-BM scheme, especially

when processing highly dynamic videos. Fig. 4.7(c) shows the frame-by-

frame PSNRs of the denoised Bicycle, in which VIDOSAT-BM significantly

improves over VIDOSAT, and also outperforms both VBM3D and VBM4D

for all frames.

64

4.6 Conclusions

We presented a novel framework for online video denoising based on effi-

cient high-dimensional sparsifying transform learning. The transforms are

learned in an online manner from spatio-temporal patches. These patches

are constructed either from corresponding 2D patches of consecutive frames

or using an online block matching technique. The learned models effectively

capture the dynamic changes in videos. We demonstrated the promising

performance of the proposed video denoising schemes for several standard

datasets. Our methods outperformed all compared methods, which included

a version of the proposed video denoising scheme in which the learning of the

sparsifying transform was eliminated and instead it was fixed to 3D DCT, as

well as denoising using learned synthesis dictionaries, and the state-of-the-art

VBM3D and VBM4D methods. While this work provides an initial study of

the promise of the proposed data-driven online video denoising methodolo-

gies, we plan to study the potential implementation and acceleration of the

proposed schemes for real-time video processing in future work.

65

(a) Noisy (b) Original

20

40

(c) VBM3D (33.30 dB) (d)

20

40

(e) VIDOSAT (35.84 dB) (f)

20

40

(g) VIDOSAT-BM (36.11 dB) (h)

Figure 4.6: (a) The noisy version (σ = 50) of (b) one frame of the Akiyo
(288× 352× 300) video. We show the comparison of the denoising results
(resp. the magnitude of error in the denoised frame) using (c) VBM3D
(33.30 dB), (e) VIDOSAT (35.84 dB) and (g) VIDOSAT-BM (36.11 dB)
(resp. (d), (f) and (h)). The PSNR of the denoised frame is shown in the
parentheses. The zoom-in region is highlighted using red box.

66

50 100 150 200 250 300
Frame Number

31

33

35

37

D
en

oi
se

d
P

S
N

R

(a)

10 20 30 40 50
Frame Number

32

33

34

35

D
en

oi
se

d
P

S
N

R

(b)

5 10 15 20 25 30
Frame Number

30

31

32

33

34

35

D
en

oi
se

d
P

S
N

R

VBM3D
VBM4D
VIDOSAT
VIDOSAT-BM

(c)

Figure 4.7: Frame-by-frame PSNR (dB) for (a) Akiyo with σ = 50, (b)
Salesman with σ = 20, and (c) Bicycle with σ = 20, denoised by VBM3D,
VBM4D, and the proposed VIDOSAT and VIDOSAT-BM schemes,
respectively.

67

(a) Noisy (b) Original

20

40

(c) VBM4D (33.04 dB) (d)

20

40

(e) VIDOSAT (33.43 dB) (f)

20

40

(g) VIDOSAT-BM (34.01 dB) (h)

Figure 4.8: (a) The noisy version (σ = 20) of (b) one frame of the Salesman
(288× 352× 50) video. We show the comparison of the denoising results
(resp. the magnitude of error in the denoised frame) using (c) VBM4D
(33.04 dB), (e) VIDOSAT (33.43 dB) and (g) VIDOSAT-BM (34.01 dB)
(resp. (d), (f) and (h)). The PSNR of the denoised frame is shown in the
parentheses. The zoom-in regions are highlighted using red and green boxes.

68

Initial
DCT

Learned W
t = 10

Learned W
t = 20

Learned W
t = 30

Learned W
t = 40

(a) Ŵt learned using VIDOSAT

Initial
DCT

Learned W
t = 10

Learned W
t = 20

Learned W
t = 30

Learned W
t = 40

(b) Ŵt learned using VIDOSAT-BM

Figure 4.9: Example atoms (i.e., 4 rows) of the initial 3D DCT (with depth
m = 9), and the online learned 3D sparsifying transform using (a)
VIDOSAT, and (b) VIDOSAT-BM, at times 10 to 40: the atoms (i.e.,
rows) of the learned Ŵ are shown as m = 9 patches in each column. These
9 patches together form the 8× 8× 9 3D atoms.

69

(a) Noisy (b) Original

20

40

(c) VBM4D (34.00 dB) (d)

20

40

(e) VIDOSAT (32.07 dB) (f)

20

40

(g) VIDOSAT-BM (35.33 dB) (h)

Figure 4.10: (a) The noisy version (σ = 20) of (b) one frame of the Bicycle
(576× 720× 30) video. We show the comparison of the denoising results
(resp. the magnitude of error in the denoised frame) using (c) VBM4D
(34.00 dB), (e) VIDOSAT (32.07 dB) and (g) VIDOSAT-BM (35.33 dB)
(resp. (d), (f) and (h)). The PSNR of the denoised frame is shown in the
parentheses. The zoom-in region is highlighted using red box.

70

CHAPTER 5

TRANSFORM LEARNING WITH
NON-LOCAL LOW-RANK CONSTRAINT

FOR IMAGE RESTORATION

5.1 Related Work

5.1.1 Image Denoising

Image denoising is one of the most important problems in image processing

and low-level computer vision. It is dedicated to recovering high-quality

images from their corrupted measurements, which also improves robustness

in various high-level vision tasks [54]. The image denoising algorithms can

be divided into internal and external methods [92–95].

Internal methods make use of only the noisy image to be reconstructed.

Classical algorithms exploit image local structures using total variation (TV)

[96, 97], or sparsity in fixed transforms [32–34]. Noise is reduced by various

types of coefficient shrinkage, e.g. sparse coding of the compressed represen-

tation [34,97]. More recently, data-driven approaches demonstrated promis-

ing results in image sparse modeling, including dictionary learning and trans-

form learning, and thus lead to better denoising performance compared to

those using analytical transforms [5,36,37,39]. Beyond these local structures,

images also contain non-local structures, such as non-local self-similarity.

Recent works proposed to group similar image patches, and denoise each

group explicitly by applying collaborative filtering [32,46], group-based spar-

sity [37, 49, 52, 98], joint sparsity [47], low-rankness [48, 50, 51, 99, 100], etc.

Yin et al. [101] proposed to use the row and column spaces of the stacked

patch matrix to capture the local and non-local properties of the image, re-

spectively, representing them by “convolution framelets” that capture both

properties simultaneously. This formulation was used to interpret and im-

prove upon the low dimensional manifold model (LDMM) [102]. However,

in this formulation, the local structure is represented in a linear way (not

71

by sparsity). This is different from our proposed approach, in which spar-

sity and low-rankness are simultaneously imposed in the image model. Table

5.1 summarizes the key attributes of some of the aforementioned related im-

age denoising algorithm representatives, as well as the proposed STROLLR

method.

In addition to exploiting image internal structures, external methods learn

the image model using a corpus of clean training images. The well-known

fields of experts (FoE) method [103], and the EPLL algorithm [104] proposed

to restore an image using a probabilistic model for image patches, which is

learned on a corpus of clean image patches. The PGPD [105] and PCLR [94]

algorithms construct Gaussian mixture models (GMM) using patch groups

from a training corpus, with additional sparsity and low-rank regularizers,

respectively, which achieved improved denoising results. More recently, deep

neural networks (DNN) have demonstrated remarkable potential to learn im-

age models from training dataset with an end-to-end approach [54,106–108].

The shrinkage field (SF) [107] and trainable nonlinear reaction diffusion

(TNRD) [108] networks unrolled iterative denoising algorithms that are based

on analysis sparse models. Besides networks derived by unrolling an iterative

algorithm for a variational formulation, other popular neural networks struc-

tures, such as fully connected networks (FCN), convolutional neural networks

(CNN), recurrent neural networks (RNN), and U-Net, have been applied to

image restoration with state-of-the-art results [54,106,109,110].

Although external methods often demonstrate superior denoising perfor-

mance, they are supervised algorithms that require training on a corpus of

images with distribution similar to the images to be denoised. It is expen-

sive, or sometimes impossible, to obtain a reliable training set of this kind

in applications such as remote sensing, biomedical imaging, scientific discov-

ery, etc. In this work, we restrict our attention to internal image denoising

algorithms, and leave the combination with external methods to future work.

5.1.2 Image Inpainting

The term image inpainting [111] refers to the process of recovering the miss-

ing pixels in an image. The inpainting problem is encountered in many image

applications, including image restoration, editing (e.g., object removal), tex-

72

Table 5.1: Comparison between internal image denoising methods,
including ODCT, KSVD, OCTOBOS, NLM, BM3D, GSR , SAIST, and
STROLLR (this work).

Methods
Sparse Model Collab. Joint Low-

Fixed Learned Filtering Sparse Rank

ODCT 3

KSVD 3

OCTOBOS 3

NLM 3

BM3D 3 3

GSR 3 3

SAIST 3

STROLLR 3 3

ture synthesis, content-aware image resizing (e.g., image enlargement), etc.

In this chapter, we restrict to inpainting problems in image recovery appli-

cation, in which the missing region is generally small (e.g., random pixels

missing), and the goal of inpainting is to estimate the underlying complete

image.

Similar to denoising, successful image inpainting algorithms exploit spar-

sity or non-local image structures. Popular inpainting methods exploit the

structure in a local neighborhood of the missing pixels. Bertalmio et al.

pioneered the work based on partial differential equations (PDEs) to prop-

agate image local structures from known region to missing pixels [111]. In

addition, classical inpainting algorithms also applied TV as image regular-

izers [112, 113]. Sparse priors have also been applied in inpainting prob-

lems, assuming the unknown and known parts of the image share the same

sparse model [114]. Recent works proposed image inpainting methods based

on patch sparsity, using dictionary learning [115, 116] and transform learn-

ing [39], demonstrating promising performance. On the other hand, non-local

methods group similar image components and exploit their correlation. Ram

73

Table 5.2: Comparison between various MRI reconstruction methods,
including SparseMRI, PBDWS, DLMRI, TLMRI, FRIST-MRI, PANO and
STROLLR-MRI (this work).

Methods
Sparse Model Non- Super-

Fixed Direct. Learned Local vised

Sparse MRI 3

PBDWS 3 3

DLMRI 3

TLMRI 3

FRIST-
3 3

MRI

PANO 3 3

ADMM-Net 3 3

STROLLR-
3 3

MRI

et al. [81] proposed to order image patches in a shortest path followed by

collaborative filtering for inpainting. Li [117] proposed to iteratively cluster

similar patches and reconstruct each cluster via sparse approximation. Jin

and Ye [118] proposed inpainting algorithm using low-rank Hankel structured

matrix completion. More recently, non-local algorithms [49,119] applied dic-

tionary learning within each group of similar patches, for improved sparse

representation in inpainting problems. We refer the readers to a comprehen-

sive review of various recent image inpainting approaches [120].

5.1.3 Compressed Sensing MRI

In modern imaging applications, the image recovery problem from the sparsely

sampled measurements is often ill-posed. A popular approach to recover

high-quality images is to use regularizers based on image priors that penal-

74

ize the undesired solutions [121]. In this chapter, we focus on one popular

example of an ill-posed imaging problem, compressed sensing (CS) MRI. CS

techniques enable accurate MRI reconstruction from undersampled k-space

(i.e., Fourier domain) measurements, by utilizing image sparsity. Popular CS

MRI methods exploit either sparsity, or non-local self-similarity of the image.

Here we survey several popular algorithms that are related to our proposed

STROLLR-MRI. Comprehensive reviews can be found in [121–123].

To exploit image sparsity, Lustig et al. [72] proposed the Sparse MRI

method, which uses wavelets and total variation regularization. Compared

to such analytical transforms, adaptively learned transforms or dictionaries

have proved to be more effective for image modeling [5,44,114]. Ravishankar

and Bresler [44, 73] utilized dictionary learning (DL) and transform learn-

ing (TL) for MR image reconstruction achieving superior results. In other

work, the PBDWS algorithm [82] used partially adaptive wavelets to form an

MR image regularizer that exploited the patch-based geometric directions.

More recently, the FRIST-MRI method [43] proposed to learn a sparsify-

ing transform that is invariant to image patch orientations. On the other

hand, non-local methods exploit the image self-similarity for high-quality

MRI reconstruction. The PANO algorithm [83] used BM to group simi-

lar image patches, and applied the 3D Haar wavelet transform to model

each group. Furthermore, Yoon et al. [51] proposed to approximate group-

matched patches as low-rank. More recently, Yang et al. proposed ADMM-

Net [124] to unroll the well-known alternating direction method of multipliers

(ADMM) algorithm [125] applied to a standard variational formulation with

p-norm sparsity regularization, into a feed forward neural network. ADMM-

Net uses end-to-end training of linear operators that were fixed in the original

variational formulation and ADMM algorithm. ADMM-Net achieved state-

of-the-art performance in CS MRI reconstruction. This approach requires

supervised training, in which the training corpus and the sampling patterns

need to have distributions similar to those of the latent MRI measurements

to be reconstructed. Table 5.2 summarizes the major attributes of the afore-

mentioned CS MRI algorithms, as well as our proposed method.

75

5.2 STROLLR Model and Image Recovery

We propose a general image recovery framework based on the STROLLR

model for image regularization. The goal is to recover an image (in vectorized

form) x ∈ Cp from its degraded measurement y ∈ Cq using the classical

variational formulation

(P1) x̂ = argmin
x

γF ‖Ax− y‖2
2 + Rstrollr(x) ,

where γF ‖Ax− y‖2
2 is the image fidelity term with y being the measurement

under the sensing operator A ∈ Cq×p, and γF being its weight. The structure

of A varies in different image restoration problems. Here Rstrollr(x) is the

STOLLR regularizer which jointly imposes sparsity in a certain transform

domain and group low-rankness of the data. The proposed Rstrollr(x) is a

weighted combination of non-local group low-rankness and sparsity penalties

as follows:

Rstrollr(x, Θ) = γLRRLR(x) + γS RS(x, Θ) , (5.1)

where γLR and γS are the corresponding weights, and only the sparsity reg-

ularizer involves trainable parameters.

The term RLR(x) of the STROLLR regularizer imposes a low-rank prior

on groups of similar patches via a matrix rank penalty,

RLR(x) = min
{Di}

N∑
i=1

{
‖Vi x−Di‖2

F + θ2 rank(Di)
}
, (5.2)

where Vi : x 7→ Vix ∈ Cn×M is a block matching (BM) operator. It takes

Ri x to be the reference patch, where Ri ∈ Cn×p extracts the i-th n-pixel

overlapping patch of x. The means of all overlapping patches are removed,

and Vi selects M patches {uj}i that are closest to Rix in Euclidean distance

‖uj −Ri x‖2. There are N patches in total extracted from the image x. The

selected patches {uj}i are inserted into the columns of matrix Vix in ascend-

ing order of their Euclidean distance to Ri x. The removed means are added

back once the patches are denoised via low-rank approximation. Computing

the Euclidean distance between each patch pair, and sorting them, can be

very expensive for large images. In practice, we set a square
√
Q×
√
Q pixel

search window, which is centered at the reference patch. Only the overlap-

76

ping patches within the search window are evaluated by the BM operator,

assuming the neighborhood patches usually have higher spatial similarities.

The optimal D̂i is called the low-rank approximation of the matched block

Vi x. The low-rank prior has been widely used to model spatially similar

patch groups [48, 51, 99, 126]. Applying rank penalty leads to a simple low-

rank approximation algorithm, which can be computed using singular value

decomposition (SVD) and hard thresholding (see Section 5.3 for details).

The sparsity regularizer RS(x) assumes that a vectorized signal ui ∈ Cn is

approximately sparsifiable by some transform W that is adapted to the data

x. One way to construct the sparsifiable signals is by using the vectorized

2D image patches [39], i.e., ui , Rix. Therefore, for a given transform

W ∈ Cm×n, the sparsity regularizer on 2D image patches is formulated as

R2D
S (x,W) = min

{αi}

N∑
i=1

{
‖WRix− αi‖2

2 + λ2 ‖αi‖0

}
, (5.3)

where the `0 “norm” counts the number of nonzeros in each sparse vector αi.

Given the transform W , the optimal α̂i is called the sparse code of ui, which

can be calculated easily by hard thresholding (see Section 5.3).

We further extend the sparsity regularizer to impose sparsity over 3D

patches. Instead of using ui , Rix, we construct the signals as ui , Cix ∈
Cnl. The operator Ci first maps the BM matrix Vix (with first column Rix)

to the sub-matrix formed by its first l columns, and then vectorizes the sub-

matrix (in column lexicographical order). Therefore, for a given transform

W ∈ Cm×nl, the new sparsity regularizer RS(x,W) is formulated as

RS(x,W) = min
{αi}

N∑
i=1

{
‖W Cix− αi‖2

2 + λ2 ‖αi‖0

}
, (5.4)

where each sparse code αi ∈ Cm. Instead of using analytical transforms,

an adaptively learned W [5, 38] provides superior sparsity, which serves as a

better regularizer [6,27,44,45,127]. In the sparsity regularizer, the sparsifying

transform is trainable, which is obtained by transform learning. Generally,

the sparsifying transform W can be overcomplete [5] or square [38], with

different types of regularizers or constraints [38]. In this work, we restrict

ourselves to learning a square (i.e., m = nl) and unitary transform (i.e.,

WHW = Inl, where Inl ∈ Cnl×nl is the identity matrix) [38]. The sparsity

77

regularization term in (5.1) is thus obtained as

RS(x) = min
W∈Cnl×nl

RS(x,W) s.t. WHW = Inl . (5.5)

This optimization problem has a closed form solution requiring only the

computation of the SVD of an nl × nl matrix, leading to highly efficient

learning and image restoration algorithms [27,42,127].

In order to recover the underlying image x, we use the STROLLR regular-

izer for image recovery. We combine (P1) with (5.1), (5.2), (5.4) and (5.5),

and pull the minimizations to the front. Therefore, the STROLLR learning

based image recovery problem is formulated as follows:

(P2) min
{x,W,{αi,Di}}}

γF ‖Ax− y‖2
2

+ γS
N∑
i=1

{
‖W Cix− αi‖2

2 + λ2 ‖αi‖0

}
+ γLR

N∑
i=1

{
‖Vi x−Di‖2

F + θ2 rank(Di)
}

s.t. WHW = Inl .

5.3 Algorithm

We propose a simple block coordinate descent algorithm framework to solve

(P2). The framework for the algorithm is given in Figure 5.1. Each itera-

tion involves four steps: (i) low-rank approximation, (ii) sparse coding, (iii)

transform update, and (iv) image reconstruction. For all applications under

the general STROLLR image reconstruction framework (5.1), they follow the

same STROLLR learning steps (i) - (iii). The image initialization, and the

image reconstruction step (iv) may vary in specific applications with different

sensing operator A’s.

78

Algorithm 4.2: STROLLR-based Image Reconstruction

Input: The measurement y.

Initialize: Ŵ0 = W0 (e.g., 2D DCT), and the image x̂0: For
t = 1, 2, ..., T Repeat

1. Low-rank Approximation for all i = 1, ...N :

(a) Form {Vi x̂t−1} using BM.

(b) Compute the full SVD Γ diag(ω) ΥH ← Vi x̂t−1.

(c) Update D̂i = Γ diag(Hθ(ω)) ΥH .

2. Sparse Coding: α̂i = Hλ(Ŵt−1Ri x̂t−1).

3. Transform Update: Compute the full SVD S ΣGH ←
SVD(

∑N
i=0 (Ri x̂t−1)α̂i), then update Ŵt = GSH .

4. Image Reconstruction: Update x̂t by solving the problem
(5.9), with the specific A.

End
Output: The reconstructed image x̂T .

Figure 5.1: The STROLLR image recovery algorithm framework.

79

Low-rank Approximation

For fixed x, Problem (P2) separates into subproblems that we solve for each

low-rank approximant Di as:

D̂i = argmin
Di

‖Vi x−Di‖2
F + θ2 rank(Di) . (5.6)

We form matrix Vi x ∈ Cn×M using BM within the
√
Q×
√
Q search window,

which is centered at the i-th patch ui. Note that the locations (i.e., indices)

of the patches used to form Vix and Cix in each iteration of the algorithm

are updated and stored, to be used for the image reconstruction step.

Let Γ diag(ω) ΥH = Vi x be the full SVD, where the diagonal vector ω con-

tains the singular values. Then the low-rank approximation D̂i = Γ diag(Hθ(ω)) ΥH

is the exact solution. Here the hard thresholding operator Hv(·) is defined as

(Hv(β))r =

{
0 , |βr| < v

βj , |βr| ≥ v
,

where β ∈ Cn is the input vector, v is the threshold value, and the subscript

r indexes the vector entries.

Sparse Coding

Given the initialization, or the update of image x and transform W , we solve

Problem (P2) for the sparse codes,

α̂i = argmin
αi

‖W Ci x− αi‖2
2 + λ2 ‖αi‖0 ∀i , (5.7)

which is the standard transform-model sparse coding problem. The optimal

α̂i can be obtained using cheap hard thresholding, α̂i = Hλ(W Ci x).

80

Transform Update

For fixed x and {αi}, we solve for unitary W in (P2), which is equivalent to

the following:

Ŵ = argmin
W

N∑
i=1

‖W Cix− αi‖2
2 s.t. WHW = In . (5.8)

With the unitary constraint, the optimal Ŵ has a simple and exact solu-

tion [38]: denoting the full singular value decomposition (SVD) of K ,∑N
i=1(Ci x)αHi as S ΣGH , the transform update is Ŵ = GSH .

Image Reconstruction

With updated W , {Di}, and {αi}, we reconstruct the underlying image x by

solving the following problem:

x̂ = argmin
x

γF ‖Ax− y‖2
2

+
N∑
i=1

{
γS ‖Cix− ûi‖2

2 + γLR
N∑
i=1

‖Vi x−Di‖2
F

}
. (5.9)

Here ûi , WHα̂i denotes the reconstructed patches via the transform-model

sparse approximation. Since the unitary W preserves the norm, we have

‖Cix− ûi‖2
2 =

∥∥Cix−WHαi
∥∥2

2
= ‖WCix− αi‖2

2.

The image reconstruction problem (5.9) is a least squares problem with

solution given by the solution to the normal equation

B x̂ = z , (5.10)

where the left and right sides of (5.10) are defined as

B , AHA+ γS
N∑
i=1

C∗i Ci + γLR
N∑
i=1

V ∗i Vi (5.11)

z , y + γS
N∑
i=1

C∗i ûi + γLR
N∑
i=1

V ∗i Di . (5.12)

Here V ∗i : Cn×M → Cp and C∗i : Cnl → Cp denote the adjoint operators

81

of Vi and Ci, respectively, which correspond to patch deposit operators. In

particular, V ∗i takes an n × M matrix of M patches, and “deposits” the

patches in their respective locations in a (vectorized) image. Overlapping

patches are added up where they overlap. A similar operation is performed

by C∗i on a length-nl vector, extracting l length-n consecutive subvectors

and depositing them as patches in their respective locations in a (vectorized)

image. In (5.11), both
∑N

i=1C
∗
i Ci and

∑N
i=1 V

∗
i Vi are p×p diagonal matrices

with (j, j) elements equal to the total number of the patches in all the Cix’s

and Vix’s that contain the j-th pixel, respectively. In (5.12), the image-size

vector z ∈ Cp is a weighted combination of noisy measurements and the

images formed by the sparse and low-rank approximations of patches.

There are different sensing operators A associated with various inverse

problems, leading to different forms of B ∈ Cp×p, and to variations in the

solutions to step (iv). Direct inversion of B is typically expensive, but there

exist efficient inverses of B for some inverse problems. Several exemplary

applications will be discussed in Section 5.5. The general image recovery

algorithm using STROLLR learning is summarized as Algorithm 4.2.

Computational Cost

In Algorithm 4.2, the computational cost for the STROLLR-based image re-

covery, excluding the image reconstruction step, isO(NnQ+min(NMn2, NnM2)+

Nn2l2 + (Nn2l2 + n3l3)) per iteration, corresponding to the steps of BM,

low-rank approximation, sparse coding, and transform update, respectively,

where the Nn2l2 term in the transform update step is the cost of form-

ing matrix K, and the n3l3 corresponds to the cost of its SVD. Here the

number of patches N scales similar to the image size p � n. Typically,

the search window size needs to be sufficiently large, i.e., Q � M,n. The

3D patches are only formed by a small number of l highly correlated 2D

patches, i.e., l2 < M . Furthermore, the BM matrix size M � 1 and scales

similar to n. Thus, the cost of the STROLLR-based image recovery is dom-

inated by the cost of BM and low-rank approximation steps, and scales as

O(NnQ+ min(NMn2, NnM2)), i.e., as O (n(Q+M min(n,M))) per image

pixel per iteration.

Note that this cost analysis is based on full SVD, and naive BM algo-

rithm. Further cost reductions are possible by randomized SVD to obtain

82

an approximate truncated SVD [128,129], and by using fast data structures

and algorithms for k-NN (with k=M nearest neighbors) to perform the block

matching [130].

5.4 Image Recovery Applications

The STROLLR model is particularly appealing in recovery of natural im-

ages, as well as biomedical images. In this section, we consider three such

applications, namely image denoising, inpainting, and CS-based MRI. Each

corresponds to a specific sensing operator A in (P2), thus leading to a differ-

ent image reconstruction step in (5.9).

5.4.1 Image Denoising

When A = Ip, we are solving the image denoising problem, which is one of

the most fundamental inverse problems in image processing. The goal is to

recover the image x from its noisy measurement y = x+e, which is corrupted

by noise vector e. In the image denoising algorithm based on STROLLR

learning, we initialize x̂0 = y. The matrix B in (5.11) thus becomes

B = diag(b) , Ip + γS
N∑
i=1

C∗i Ci + γLR
N∑
i=1

V ∗i Vi , (5.13)

where B ∈ Cp×p is a diagonal matrix with positive diagonal elements bj >

0 ∀j. Thus, with z given by (5.12), the denoised image has the closed form:

x̂ = B−1 z . (5.14)

The inversion of the diagonal matrix B is simple, and the solution reduces

to the pixel-wise division x̂j = zj/b
j ∀j = 1, ..., p, which can be thought of

as normalization to remove redundancy in z. The computational cost of this

step is O(p) per iteration, which is negligible compared to the cost of the

other steps (i)− (iii). Thus, the computational cost of the STROLLR based

image denoising algorithm is on par with various state-of-the-art methods

such as BM3D [32], SAIST [48], etc.

Though the proposed algorithm is designed to recover gray-scale images,

83

it has a simple extension to color image denoising that exploits the corre-

lation across the color channels. There are algorithm modifications in both

transform learning and low-rank approximation. The red (R), green (G), and

blue (B) channels1 of each color patch are vectorized to form one training

sample in transform learning. In the low-rank approximation step, the BM

operator Vi selects the M patches that have the minimum Euclidean distance

to Rix, summed over the three color channels. The block matched matrix

Vix is formed by matched patches, in which the R, G, and B channels of each

selected patch are in the adjacent columns.

5.4.2 Image Inpainting

The goal of image inpainting is to estimate the missing pixel in an image.

When A = Φ ∈ Cp×p, the given image measurement is denoted as y =

Φx+ e, where the Φ is a diagonal binary matrix with zeros at the locations

corresponding to missing pixels in y. The vector e denotes the additive noise

on the available pixels. Similar to image denoising, we initialize x̂0 = y in

the STROLLR-based inpainting algorithm.

Similar to denoising, the inpainted image has a simple closed-form solution

x = B−1 z, where z is again given by (5.12) and the normalization matrix is

the diagonal matrix with positive diagonal elements:

B , Φ + γS
N∑
i=1

C∗i Ci + γLR
N∑
i=1

V ∗i Vi . (5.15)

The matrix inversion is again cheap pixel-wise division.

In the ideal case when the noise e is absent, i.e., σ = 0, we replace the

fidelity term ‖Φx− y‖2
2 with the hard constraint Φx = y. The image

reconstruction step becomes a constrained optimization problem,

min
x

N∑
i=1

{
γS ‖Cix− ûi‖2

2 + γLR
∑N

i=1 ‖Vi x−Di‖2
F

}
s.t. Φx = y . (5.16)

1The proposed denoising algorithm can be also applied to data in a different color space
possibly weighting more a highly informative channel such as luminance.

84

Let Ω denote the subset of image pixels that are sampled by y, i.e., diag(A)Ω 6=
0. With the hard constraint on the pixels in Ω, the closed-form solution x̂ to

(5.16) becomes

x̂j =

{
zj/bj , j /∈ Ω

yj , j ∈ Ω
(5.17)

where the vectors z and b are defined as

diag(b) , γS
N∑
i=1

C∗i Ci + γLR
N∑
i=1

V ∗i Vi (5.18)

z , γS
N∑
i=1

C∗i ûi + γLR
N∑
i=1

V ∗i Di. (5.19)

Similar to image denoising, the computational costs of the image reconstruc-

tion step in inpainting is also O(p), i.e., O(1) per pixel, per iteration, which

is negligible relative to the costs of the other steps. The computational costs

of both the noisy and ideal STROLLR based image inpainting algorithms

are on par with popular competing methods, such as GSR [49].

5.4.3 Magnetic Resonance Imaging

We propose an MR image reconstruction scheme based on STROLLR learn-

ing, dubbed STROLLR-MRI. The sensing operator A = Fg ∈ Cq×p in (5.9)

is the undersampled Fourier encoding matrix, composed of the q rows of the

unitary p× p 2D DFT matrix F corresponding to the sampled locations in k

space. The selected rows are indicated by the positions of ones in the binary

vector g ∈ {0, 1}p. The k-space measurement y ∈ Cq has lower dimension,

i.e., q � p; thus, the MRI reconstruction is an ill-posed problem that re-

quires an effective image regularizer. We can directly formulate STROLLR-

MRI based on (P2), but this introduces several complications. First, as the

number of pixel references generated by BM is not homogeneous across the

image, the B matrix in (5.11) cannot be diagonalized by the DFT [43,44,73],

making direct inversion of B impractical for MRI, requiring that the image

update step (9) be performed by by iterative optimization methods, such as

conjugate gradients at considerably higher computation cost. Second, as im-

age content and therefore the matches by BM are updated from one iteration

to the next, the structure of the cost function will usually vary and affect the

85

algorithm convergence [51].

Instead, we propose to normalize the weights of patches that appear in

multiple BM groups Vi x or Ci x by the number of their appearances, so

that all patches exert similar influence on the regularizer. We initialize the

image by the so-called zero-filled DFT inverse, x̂0 = FH
g y in the STROLLR-

based MRI algorithm. The STROLLR-MRI image reconstruction step (5.9)

is replaced by

x̂ = argmin
x

‖Fu x− y‖2
2

+γS
N∑
i=1

l∑
j=1

1

Pi,j
‖(Ci x)j − ûi,j‖2

2

+γLR
N∑
i=1

M∑
j=1

1

Li,j
‖ (Vi x)j −Di,j ‖2

2 . (5.20)

Here (Vi x)j and Di,j denote the j-th column of the matrices Vi x and Di, re-

spectively. The weight Li,j equals the number of times that the j-th column of

Vi x appears in all
{
Vi x
}N
i=1

. Similarly, we use (Cix)j ∈ Cn and ûi,j ∈ Cn to

denote the j-th block of Cix and ûi ∈ Cn, respectively. The weight Pi,j equals

the number of times that the j-th block of Ci x appears in all
{
Ci x

}
. Define

the sets ∆k =
{

(i, j) | (Ci x)j = Rk x
}

, and Γk =
{

(i, j) | (Vi x)j = Rk x
}

,

which indicate the indices (i, j) where patch Rk x appears in Ci x and Vi x,

respectively. As all wrap-around patches are used as reference patches, each

Rkx appears at least once in
{
Vix
}

and
{
Cix
}

, i.e.,
∣∣∣∆k

∣∣∣ ≥ 1 and
∣∣∣Γk∣∣∣ ≥ 1,

respectively. Thus, each Rk x can be represented as

Rk x =
1∣∣∣∆k

∣∣∣
∑

(i,j)∈∆k

(Ci x)j =
1∣∣∣Γk∣∣∣

∑
(i,j)∈Γk

(Vi x)j . (5.21)

Using (5.21) and the fact that Pi,j =
∣∣∣∆k

∣∣∣ for (i, j) ∈ ∆k, and Li,j =
∣∣∣Γk∣∣∣

for (i, j) ∈ Γk, defining ũk , 1∣∣∣∣∆k

∣∣∣∣
∑

(i,j)∈∆k
ûi,j and dk , 1∣∣∣∣Γk∣∣∣∣

∑
(i,j)∈Γk

Di,j,

and dropping terms independent of x, (20) simplifies to

86

x̂ = argmin
x

‖Fu x− y‖2
2 +

N∑
k=1

{
γS
∥∥∥Rkx− ũk

∥∥∥2

2
+ γLR

∥∥∥Rkx− dk
∥∥∥2

2

}
. (5.22)

The normal equation of (5.22) for STROLLR-MRI in k-space is simplified to[
FFH

u FuF
H + (γS + γLR)F

∑N
i=1R

∗
iRiF

H
]
Fx̂

= FFH
u y + F

N∑
i=1

R∗i (γ
Sũi + γLRvi) . (5.23)

On the left-hand side of (5.23), matrix FFH
u FuF

H = diag g is diagonal

with binary entries equal to one at the sampled locations in k space, and

F
∑N

i=1R
∗
iRiF

H = nF IpF
H = n Ip is a scaled identity. Therefore, a simple

solution to (5.23) is

x̂ = FHB−1 z , (5.24)

where B , diag g + n(γS + γLR)Ip is a diagonal matrix whose inversion

is cheap, and z , Gy + F
∑N

i=1 R
H
i (γSũi + γLRvi), where G = FFH

g ∈
Cp×q is a binary “upsampling” matrix, which places the entries of y in their

corresponding k-space locations indicated by g into a length-p vector.

5.5 Experiments

In this section, we demonstrate the promise of the STROLLR based im-

age restoration framework by testing our gray-scale / color image denoising,

image inpainting, and CS MRI algorithms on publicly available images or

datasets [43,44,49,75,124,131,132]. To evaluate the performance of the im-

age recovery algorithms, we measure the peak signal-to-noise ratio (PSNR)

in decibel (dB), which is computed between the ground truth image and the

recovered image.

All of the proposed STROLLR-based image recovery algorithms are un-

supervised algorithms. There are several hyperparameters used in the algo-

87

rithm, among which we set the spatial search window
√
Q×
√
Q = 30× 30.

We initialize the unitary sparsifying transform W0 to be the 3D DCT (of size
√
n×
√
n× l). These settings are fixed in all experiments.

5.5.1 Image Denoising

We present image denoising results using our proposed algorithms in Sec.5.4.1.

For gray-scale image denoising experiment, we first convert the images in the

Kodak [131] and SIPI Misc [75] datasets to gray-scale, and simulate i.i.d.

Gaussian noise at 5 different noise levels (σ = 5, 10, 15, 20 and 50). For the

color image denoising experiment, we use all 24 color images from the Ko-

dak dataset, and simulate equal-intensity i.i.d. Gaussian noise in each of the

RGB channels at 4 different noise levels (σ = 15, 25, 35 and 50).

Implementation Details and Parameters

We set the regularizer weights γS = γLR = 1, and the fidelity weight γF =

0.1/σ2, where σ is the noise standard deviation of the noisy image y. We

directly use the noisy image as the initial estimate x̂0. Only for denoising,

we modify the image update step (5.14), at iteration t = 1, 2, ...T −1 (except

for the last iteration), as follows:

x̂t = δB−1 zt + (1− δ)y , (5.25)

where we set δ = 0.1. The modified x̂t is the convex combination of the

denoised estimate and the original noisy image. This method, widely known

as iterative regularization for non-convex inverse problems [50,133], has been

applied in various popular image restoration algorithms [50,105,134,135]. Let

x̃t , x̂t − x denote the noise remaining in x̂t. We re-estimate the variance

of x̃t using σ2
t = ψ(σ2 − (1/N)‖y − x̂t‖2) [50, 135]. Here (1/N)‖x̂t − y‖2 is

an estimate of the variance of the noise removed throughout the t iterations.

Assuming the removed noise to be white and uncorrelated with x̃t, the esti-

mated variance of x̃t is σ2−(1/N)‖x̂t−y‖2. However, because in practice the

removed and the remaining noises are positively correlated, σ2
t tends to be

over-estimated using the ideal formula. To better approximate the actual σ2
t ,

we compensate by the factor ψ = 0.36 [50,105,134,135]. At the tth iteration,

88

(a) Ground Truth (b) DnCNN (25.87 dB) (d) STROLLR (26.05 dB)

Figure 5.2: Denoising result of the image Pentagon: the zoom-in regions of
(a) the ground truth, (b) the denoised image by DnCNN (PSNR = 25.87
dB), and (c) the denoised image by STROLLR (PSNR = 26.05 dB).

we set the penalty parameters λ = 1.2σt−1 and θ = 0.8σt−1(
√
n+
√
M) [127],

using the re-estimated σt−1 (or the noise level of y, σ0 = σ at the first

iteration). The remaining hyper parameters are the patch size n, data

matrix sizes M and l, and the number of iterations T . We set them to

be
{
n,M, l, T

}
=
{

62, 70, 8, 8
}

and
{

72, 80, 7, 10
}

, for low-noise case (i.e.,

0 ≤ σ ≤ 30), and high-noise case (i.e. σ > 30), respectively.

Gray-Scale Image Denoising

We compare our proposed STROLLR based image denoising algorithm to

various well-known alternatives, including denoising algorithms using over-

complete DCT (ODCT) dictionary, KSVD [36], GHP [136], Shrinkage Fields

(SF) [107], EPLL [104], NLM [46], OCTOBOS [5], BM3D [32], NCSR [137],

PGPD [105], and SAIST [48]. We use their publicly available codes for imple-

mentation. Among these methods, ODCT, KSVD and OCTOBOS exploit

sparsity of image patches. EPLL and GHP make use of image pixel statis-

tics. SF uses an unrolled neural network based on an analysis sparse model.

NLM, BM3D, SAIT, NCSR, and PGPD are all non-local methods that use

collaborative filtering, low-rank, or sparse approximation. Additionally, to

better understand the benefit of each of the regularizers used in STROLLR

model, we evaluate the denoising results using only the transform learning

(TL), and the low-rank approximation (LR).

Table 5.3 lists the denoised PSNRs obtained using the aforementioned

89

Table 5.3: Comparison of gray-scale image denoising PSNR values (in dB),
averaged over the Kodak and USC-SIPI Misc datasets, using the proposed
STROLLR image denoising method, versus other competing algorithms.
For each dataset and noise level, the best denoising PSNR is marked in
bold. For each method, ∆ PSNR denotes the PSNR loss relative to the
proposed STROLLR algorithm (highlighted in bold) averaged over the five
different noise levels.

Kodak Dataset (24 images)
∆PSNR

σ 5 10 15 20 50

SF 37.60 33.51 31.40 29.79 23.84 -1.53

NLM 36.85 32.91 30.93 29.62 25.55 -1.59

GHP 37.90 34.16 31.93 30.86 26.20 -0.55

ODCT 37.55 33.51 31.32 29.84 25.61 -1.20

KSVD 37.60 33.70 31.60 30.18 25.93 -0.96

EPLL 38.15 34.29 32.22 30.82 26.74 -0.32

OCTOBOS 38.27 34.24 32.16 30.70 26.48 -0.39

PGPD 38.21 34.37 32.32 30.92 27.08 -0.18

BM3D 38.30 34.39 32.30 30.92 26.98 -0.18

NCSR 38.35 34.48 32.36 30.92 26.84 -0.17

SAIST 38.39 34.51 32.39 30.98 26.95 -0.12

STROLLR 38.46 34.61 32.50 31.06 27.18 0.00

USC-SIPI Misc Dataset (44 images)
∆PSNR

σ 5 10 15 20 50

SF 36.93 33.27 31.40 30.01 24.08 -2.66

NLM 37.14 33.38 31.52 30.29 26.12 -2.10

GHP 36.32 33.36 31.55 30.59 26.42 -2.14

ODCT 38.12 34.27 32.16 30.71 26.35 -1.47

KSVD 38.33 34.67 32.69 31.35 26.95 -1.00

EPLL 38.41 34.67 32.67 31.32 27.13 -0.95

OCTOBOS 38.91 35.06 33.12 31.70 27.35 -0.56

PGPD 38.28 34.94 33.09 31.86 27.88 -0.58

BM3D 39.04 35.31 33.36 32.05 27.85 -0.27

NCSR 39.13 35.38 33.39 32.03 27.90 -0.23

SAIST 39.13 35.39 33.39 32.06 27.87 -0.22

STROLLR 39.26 35.60 33.63 32.29 28.18 0.00

methods, with the best result for each noise level and testing dataset (i.e.,

each column) marked in bold. The proposed STROLLR image denoising

90

Table 5.4: PSNRs of gray-scale image denoising, using STROLLR and its
variants, averaged over the Kodak image dataset. For each noise level, the
best denoising PSNR is marked in bold. For each variant, ∆PSNR denotes
the PSNR loss relative to the full STROLLR denoiser, averaged over the
four noise levels.

Kodak Dataset (24 images) ∆

σ 5 10 20 50 PSNR

STROLLR-S w/o TL 38.15 34.09 30.33 25.82 -0.73

STROLLR-S w/o LR 38.09 34.02 30.36 25.96 -0.72

STROLLR-S 38.31 34.43 30.96 26.87 -0.19

STROLLR 38.46 34.61 31.06 27.18 0

method provides average PSNR improvements of 0.2dB, 0.2dB, 0.3dB, 0.4dB,

0.5dB, 0.7dB, 1.0dB, 1.4dB, 1.6dB, 2.0dB, and 2.2dB, respectively, over the

SAIST, NCSR, BM3D, PGPD, OCTOBOS, EPLL, KSVD, ODCT, GHP,

NLM and SF denoising methods. By imposing both sparsity and non-

local (i.e., group low-rankness) regularizers, for all noise σ’s and testing

datasets, STROLLR performs consistently the best. Thus our proposed

method demonstrates robust and promising performance in image denois-

ing compared to popular competing methods.

To further analyze the effectiveness of imposing both the sparsity and

the low-rankness regularizers, as well as applying the iterative regulariza-

tion method, we conduct an “ablation” study by disabling in turn each of

these three components in the STROLLR image denoising algorithm. We

run STROLLR denoising with single pass, i.e., without iterative regulariza-

tion, which is denoted as STROLLR-S. On top of STROLLR-S, we further

disable the low-rank regularizer RLR, and the sparsity regularizer RS, which

are referred as STROLLR-S w/o LR, and STROLLR-S w/o TL, respectively.

Table 5.4 lists the denoised PSNRs obtained using STROLLR, and its vari-

ants. It is clear that STROLLR denoising outperforms its variants, and all of

the three components contribute significantly to the success of the proposed

STROLLR algorithm.

Besides the conventional approaches, popular deep learning techniques

91

[106–108, 138, 139] have been shown useful in image denoising. The re-

cently proposed DnCNN [109] demonstrated image denoising results superior

to those of the standard natural image datasets. The deep learning based

methods typically require a large training corpus containing images that have

similar distribution to the image to be recovered. However, such a training

corpus may not always be easy to obtain in applications such as remote sens-

ing, biomedical imaging, etc. Figure 5.2 shows an example denoising result

of the image Pentagon from the SIPI aerial dataset [75]. Here we applied

the DnCNN algorithm using the publicly available implementation and the

trained models (using 400 images from BSDS500 dataset [103]) from the

authors’ project website. Comparing to the denoised result using the pro-

posed STROLLR-based algorithm, DnCNN generates various artifacts and

distortions in the denoised image.

(a) Zoom-in Regions (b) C-BM3D: 31.64 dB

(c) C-STROLLR: 32.08 dB (d) Ground Truth

Figure 5.3: Denoising results of (a) the example color images Kodim07 at
σ = 35, with the blue rectangles highlighting the zoom-in regions of (b) the
images denoised by C-BM3D (PSNR = 31.64 dB), and (c) the images
denoised by C-STROLLR (PSNR = 32.08 dB), and (d) the ground truth.

92

(a) Zoom-in Regions (b) C-BM3D: 27.82 dB

(c) C-STROLLR: 28.45 dB (d) Ground Truth

Figure 5.4: Denoising results of (a) the example color images Kodim08 at
σ = 35, with the blue rectangles highlighting the zoom-in regions of (b) the
images denoised by C-BM3D (PSNR = 27.82 dB), and (c) the images
denoised by C-STROLLR (PSNR = 28.45 dB), and (d) the ground truth.

Color Image Denoising

The C-STROLLR algorithm extends STROLLR to color image denoising

as described before. We compare to popular denoising methods including

WNNM [50], TNRD [108], MC-WNNM [134], and C-BM3D [140]. Among

the selected competing methods, TNRD is a deep learning based method,

while WNNM, MC-WNNM, and C-BM3D are all internal methods using

non-local image structures. WNNM is based on low-rank approximation,

which is a gray-scale image denoising algorithm. Thus, we apply WNNM to

each of the RGB channels of color images. MC-WNNM is the color image

denoising extension of WNNM algorithm, which further exploits the cross-

channel correlation.

Table 5.5 lists the average denoising PSNRs over the 24 color images from

Kodak database, with the best result for each noise level marked in bold. It

93

Table 5.5: PSNR values of color image denoising, averaged over the Kodak
color image dataset, using the TNRD, MC-WNNM, C-BM3D, and the
proposed C-STROLLR image denoiser. For each noise level, the best
denoising PSNR is marked in bold. For each method, ∆ PSNR denotes the
PSNR loss relative to the proposed STROLLR algorithm (highlighted in
bold), averaged over the four noise levels.

Kodak Dataset (24 color images)
∆PSNR

σ 15 25 35 50

WNNM 32.49 29.68 28.49 26.93 −1.98

TNRD N/A 30.08 N/A 27.17 −1.76

MC-WNNM 33.94 31.35 29.70 28.02 −0.63

C-BM3D 34.41 31.81 30.04 28.62 −0.16

C-STROLLR 34.57 31.94 30.25 28.78 0

is clear that the proposed C-STROLLR performs consistently the best for

all noise levels. The MC-WNNM algorithm generates significantly better

results comparing to those using the channel-wise WNNM denoising, which

demonstrates the importance of exploiting image color correlation in restora-

tion. Figures 5.3 and 5.4 compare the denoising results of example images

Kodim07 and Kodim08, respectively, at σ = 35, using the best competitor C-

BM3D, and the proposed C-STROLLR algorithms. The denoised image by

C-STROLLR preserves clearer details thanks to the sparsity regularization,

while C-BM3D generates undesired artifacts, e.g., the zoomed-in region in

the blue boxes. We observe similar, or more severe, artifacts in the denoising

results using other competing methods.

5.5.2 Image Inpainting

We present the image inpainting results using our STROLLR based algo-

rithm. The testing gray-scale images Barbara and House which were used

in the GSR inpainting method [49] are selected to evaluate our proposed

STROLLR method, as well as competing methods including Bicubic inter-

polation, SKR [141], Smooth [81], and GSR [49]. We work with 6×6 patches,

94

Table 5.6: PSNR values of image inpainting, using bicubic interpolation,
SKR, GSR, and the proposed STROLLR image inpainting method. For
each image and available pixel percentage, the best inpainting PSNR is
marked in bold.

Image Barbara House

Available
10% 20% 50% 10% 20% 50%

pixels

Bicubic 22.65 23.65 25.94 29.82 31.62 33.18

SKR 21.92 22.45 22.81 30.18 31.05 31.94

Smooth 28.32 30.90 35.94 33.67 36.62 39.98

GSR 31.32 34.42 39.12 35.61 37.65 41.61

STROLLR 31.51 34.56 39.33 35.72 37.75 41.70

and set M = 80, l = 8, the number of iterations T = 150, and γS = γLR = 1.

We set the rank penalty weight to be θ = λ(
√
n +
√
M). We randomly

remove image pixels, and keep only 20%, 30% and 50% pixels of the entire

image, and set the sparsity penalty weight λ = 20, 12 and 5 respectively.

Table 5.6 lists the inpainting PSNRs, over all available pixel percentages

and testing images, obtained using the aforementioned methods. The best

result for each testing case is marked in bold. The proposed STROLLR

inpainting algorithm produces better results than the popular competitors.

5.5.3 MRI reconstruction

We present the MRI reconstruction results using the proposed STROLLR-

MRI algorithm. The 4 testing MR images (3 anatomical and one physical

phantom), i.e., the images a - c used in our experiments shown in Fig. 5.5(a)-

(c) and the image d shown in Fig. 5.6, are all publicly available [43,44,132].

We simulated complex MR data obtained by taking the discrete Fourier

transform (DFT) of the magnitude of the complex images,2 with various un-

2The STROLLR-MRI, as well as the competing methods except for ADMM-Net [124],
can handle complex MR data.

95

(a) (b) (c)

Figure 5.5: Testing anatomical and physical phantom MR images: (a) is
used in TL-MRI and FRIST-MRI, and (b) and (c) are from a publicly
available dataset.

(a) DL-MRI, 31.7dB (b) FRIST-MRI, 32.1dB(c) STROLLR-MRI 33.3dB

Figure 5.6: Reconstruction of MR image d using (a) DL-MRI, (b)
FRIST-MRI, and (c) the proposed STROLLR-MRI. Top row:
reconstructions; bottom row: magnitude of the reconstruction error.

96

dersampling masks in k-space, using either Cartesian or 2D random sampling

patterns [44,71], at undersampling ratios ranging from 2.5× to 7×. The pro-

posed STROLL-MRI scheme is applied to reconstruct the MR images. We

set the weights of the STROLLR regularizers to γS = γLR = 10−6. The spar-

sity and low-rankness penalty coefficients θ = 2λ = θ0, where θ0 depends on

undersampling ratio of the k-space measurement, as well as the image distri-

bution. For the three anatomical images a, b and d, we set θ0 = 0.02 when

the undersampling ratio is smaller than or equal to 5×, and θ0 = 0.05 when

undersampling ratio is higher than 5×. For the physical phantom image c,

which has large piece-wise smooth regions, we set θ0 = 0.05 for reconstruct-

ing 2.5× undersampled k-space measurement. We run STROLLR-MRI for

100 iterations, and have observed the empirical convergence of the objective

functions.

We first compare our STROLLR-MRI reconstruction results to those ob-

tained using popular internal methods, including naive Zero-filling, Sparse

MRI [72], PBDWS [82], PANO [83], DL-MRI [73], TL-MRI [44], and FRIST-

MRI [43]. To evaluate the performance of the MRI reconstruction schemes,

we measure the reconstruction PSNRs (computed for image magnitudes) for

various approaches, which are listed in Table 5.7. The proposed STROLLR-

MRI algorithm provides PSNR improvements (averaged over all 7 cases) of

2.3dB, 2.5dB, 3.1dB, 2.9dB, 3.0dB, 7.7dB, over the FRIST-MRI, TL-MRI,

PANO, PBDWS, DL-MRI, and Sparse MRI, respectively. Even when com-

pared to the recently proposed TL-MRI and FRIST-MRI, our STROLLR-

MRI provides much better reconstruction results. The quality improvement

obtained by STROLLR-MRI demonstrates the effectiveness of the learned

STROLLR as the regularizer, as it utilizes both sparsity and non-local sim-

ilarity. Figure 5.6 compares the reconstructed MR images, and the magni-

tudes of their reconstruction error (i.e., difference between the magnitudes of

the reconstructed images and the reference images) using DL-MRI, FRIST-

MRI, and STROLLR-MRI. The reconstruction result using STROLLR-MRI

contains fewer artifacts and less noise, compared to competing methods.

Finally, we compare the proposed STROLLR-MRI scheme to the recent

ADMM-Net [124], which is an external method using deep learning. We

use the publicly available implementation with the trained 15-stage model

by Yang et al. [124]. Because the released ADMM-Net model requires the

MR image to have fixed size (i.e., 256× 256) with a specific sampling mask

97

(a) TL-MRI, 32.4dB (b) ADMM-Net, 35.9dB(c) STROLLR-MRI 37.3dB

Figure 5.7: Example of CS MRI of the Brain Data 1 using the 5×
undersampled pseudo radial mask in K-space. Reconstructions using (a)
TL-MRI, (b) ADMM-Net, and (c) the proposed STROLLR-MRI (top row),
and the magnitudes of the corresponding reconstruction error (bottom row).

(i.e., pseudo radial sampling pattern with 5× undersampling ratio) [124],

the testing images a-d are not applicable for direct comparison. Instead,

we reconstruct the two example MR images that were used in the ADMM-

Net demonstration [124]. The proposed STROLLR-MRI algorithm provides

PSNR improvements of 1.4dB and 1.3dB over ADMM-Net, for reconstruct-

ing the testing images Brain data 1 and Brain data 2 , respectively. Figure

5.7 compares the reconstructed MR images with the magnitudes of their cor-

responding reconstruction errors using TL-MRI [44], ADMM-Net [124], and

STROLLR-MRI. It is clear that the reconstruction result using STROLLR-

MRI provides less noise and fewer artifacts than ADMM-Net. In contrast

to deep learning algorithms, the proposed STROLLR-MRI does not require

re-training the model using different sampling masks, over an image corpus

with similar distribution, when reconstructing a class of MR images.

98

Table 5.7: PSNRs, corresponding to the Zero-filling, Sparse MRI, DL-MRI,
and the proposed STROLLR-MRI reconstructions for various images,
sampling schemes, and undersampling factors. The best PSNR for each
case is marked in bold.

Image
Sampling Under- Zero- Sparse DL-

PBDWS
Scheme sampl. filling MRI MRI

a 2D Random 5× 26.9 27.9 30.5 30.3

b Cartesian 2.5× 28.1 31.7 37.5 42.5

c Cartesian 2.5× 24.9 29.9 36.6 35.8

d

Cartesian 4× 28.9 29.7 32.7 31.7

Cartesian 7× 27.9 28.6 30.9 31.1

2D Random 4× 25.2 26.1 33.0 32.8

2D Random 7× 25.3 26.4 31.7 30.9

Image
Sampling Under-

PANO
TL- FRIST- STROLLR-

Scheme sampl. MRI MRI MRI

a 2D Random 5× 30.4 30.6 30.7 32.4

b Cartesian 2.5× 40.0 40.7 40.9 44.0

c Cartesian 2.5× 34.8 36.3 36.7 40.9

d

Cartesian 4× 32.7 32.8 33.0 35.2

Cartesian 7× 31.1 31.2 31.4 32.8

2D Random 4× 32.8 33.1 33.1 35.6

2D Random 7× 30.9 31.9 32.1 33.3

99

CHAPTER 6

ONLINE TENSOR RECONSTRUCTION
FOR VIDEO DENOISING

6.1 Related Methods

Natural images and videos have local structures that are sparse or com-

pressible in some transform domain or over certain dictionaries [86,142,143],

e.g.,discrete cosine transform (DCT) and wavelets. One can exploit this

fact and reduce noise by coefficient shrinkage, e.g.,sparse approximation or

Wiener filtering, of the compressible representation [85,86]. Beyond these lo-

cal structures captured by sparsity, videos also contain non-local structures,

such as spatial similarity and temporal redundancy. State-of-the-art video

and image denoising algorithms group similar structures across the spatial

and temporal dimensions (usually within a spatio-temporal neighborhood)

and apply a denoising operation jointly to a group. A successful approach of

this nature comprises the following steps: 1) group similar patches; 2) jointly

denoise a group of patches; 3) aggregate the denoised patches to construct

the final estimate [32,37,47,49,56,59,87,144–147].

The well-known BM3D image denoising algorithm [32] has been extended

to both volumetric data [56] and video data [59]. In both cases, a block

matching (BM) algorithm is used to group similar 3D cubes of data forming

patch groups and patches are denoised by coefficient shrinkage in a 4D trans-

form domain. The video version, VBM4D, augments the BM algorithm with

motion estimation to track objects as they move throughout the scene [59].

Buades et al. proposed a similar video denoising algorithm that differs in

both the patch grouping and denoising strategy [144]. Patch grouping incor-

porates the optical flow algorithm for motion estimation, and the grouped

patches are denoised by low-rank (LR) matrix approximation. Dong et al.

proposed a multi-frame image denoising algorithm that uses BM to extract

similar 3D patches of data [145]. Rather than transform domain threshold-

100

Table 6.1: Comparison of the key attributes between the proposed SALT
denoising, its variations, and the competing methods.

Methods
Local Sparse Model

BM
Non-Local

Fixed Adaptive Online Method

fBM3D [32] 3 3 3

sKSVD [31] 3

VIDOSAT [6] 3 3

VBM3D [87] /
3 3 3

VBM4D [59]

BM-DCT 3 3

BM-TL 3 3 3

BM-LR 3 3

SALT 3 3 3 3

ing, they denoise the resulting tensor using a low-rank approximation. A

recent approach splits videos into sparse and low-rank “layers” before de-

noising [148].

Table 6.1 summarizes the proposed SALT method, its variations (BM-

DCT, BM-TL, and BM-LR), as well as some of the aforementioned competing

video denoising methods with their key attributes.

6.2 SALT Video Denoising Framework

We present a video denoising framework based on SALT online reconstruc-

tion, in which streaming frames can be denoised online with a constant buffer

and fixed latency.

Prior work [6] on video denoising based on transform learning introduced

a video stream processing method, called VIDOSAT, which learns a spar-

sifying transform for 3D spatio-temporal patches of contiguous pixels. As

101

෨𝑌1෨𝑌𝑡෨𝑌𝑡+1

෨𝑌𝑡−𝑚+1| … | ෨𝑌𝑡

Input FIFO
Buffer

Patch-wise KNN to form tensors

෨𝑉𝑡 = 𝑖=𝑁 𝑡−1 +1
𝑁𝑡 Grouped Patch

Coordinates+

A1: Mini-batch SALT Denoising

𝑉𝑡 = 𝑖=𝑁 𝑡−1 +1
𝑁𝑡

ത𝑌𝑡−𝑚+1| … | ത𝑌𝑡

Output
FIFO

Buffer 𝐹𝑡−𝑚+1| … |𝐹𝑡

𝑌1𝑌𝑡−𝑚+1

Video
Stream

Denoised
Stream

Normalize ෨𝑌𝑡−𝑚+1 by 𝐹𝑡−𝑚+1

Figure 6.1: A diagram for SALT based video denoising

video typically involves various types of motion, patch grouping methods

are widely used to generate high-dimensional data with better correlation

and redundancy [59, 145]. We therefore extend the streaming scheme of VI-

DOSAT, so that group matching is applied to generate 3D tensors, which

are then sequentially denoised using the mini-batch SALT denoising method

(see Section 6.4 for more details). The reconstructed tensors are aggregated

to output denoised frame estimates.

Figure 6.1 illustrates the streaming scheme in the proposed SALT based

video denoising framework. We assume that the video stream is corrupted by

additive i.i.d. Gaussian noise. The noisy frames, denoted by Ỹτ = Yτ + ξτ ∈

102

Ra×b, arrive sequentially at time τ = 1, 2, 3, etc. At time instant τ = t,

the newly arrived Ỹt is added to a fixed-size first-in-first-out (FIFO) input

buffer Ỹt ∈ Ra×b×m. The buffer stores m (set to be odd) consecutive frames

Ỹt =
[
Ỹt−m+1 | Ỹt−m+2 | ... | Ỹt

]
, and drops the oldest frame Ỹt−m once the

new frame Ỹt arrives. We extract all 2D overlapping patches from the middle

frame Ỹt−(m−1)/2 of Ỹt. Suppose there exist N such patches in total, and we

denote the i-th patch by Z̃i ∈ Rn1×n2 , where i belongs to an index set St =

{N(t−1) + 1, ... , Nt}. For each i ∈ St, we set an h1×h2×m search window

centered at Z̃i and use the K-nearest neighbor (KNN) method to find the K

most similar patches within this window in terms of their Euclidean distances

to Z̃i. The grouped patches, in ascending order of Euclidean distances, form

a tensor Ũi ∈ Rn1×n2×K which is assumed to satisfy the SALT model. As

Z̃i has zero distance to itself, it is always found as the leading patch in Ũi.
The coordinates of the grouped patches are also recorded, and later used for

video reconstruction. The set of extracted tensors from the input buffer Ỹt,
denoted by Ṽt = {Ũi}i∈St , forms the input to the mini-batch SALT denoising

scheme.

The outputs of the mini-batch denoising algorithm V̂t = {Ûi} are accumu-

lated to the fixed-size output buffer Ȳt =
[
Ȳt−m+1 | ... | Ȳt

]
∈ Ra×b×m, i.e.,

the 2D patches grouped in V̂t are added to Ȳt at their respective locations, and

the numbers of occurrences of these 2D patches are accumulated accordingly

in the output weighting buffer Ft =
[
Ft−m+1 | ... | Ft

]
∈ Ra×b×m. Similar

to the FIFO Ỹt, once the newly denoised {Ûi} and the counts of occurrences

of its patches are accumulated in the output buffers, the streaming scheme

outputs the oldest (leftmost) Ȳt−m+1 and Ft−m+1, which have finished aggre-

gation and will not be influenced by future output of the mini-batch denoising

algorithm. The denoised estimate Ŷt−m+1 of the frame Yt−m+1 is computed

by normalizing Ȳt−m+1 by the weights Ft−m+1. The remaining frames in Ȳt
will be updated further based on future outputs of the mini-batch denoising

algorithm {V̂τ}t+m−1
τ=t+1 . Thus, there is a fixed latency of (m − 1) frames be-

tween the arrival of noisy Ỹτ and the production of its final denoised estimate

Ŷτ .

103

6.3 SALT Formulation

In this section, we first introduce the formulations of online unitary transform

learning, and online SALT denoising. Then we propose a mini-batch SALT

denoising formulation, which is extended from the online formulation, and is

used in the video denoising scheme illustrated in Fig. 6.1.

6.3.1 Online Sparsifying Transform Learning with a Unitary
Constraint

We propose to learn a unitary sparsifying transform from streaming data

in an online fashion. We wish to adaptively update a unitary transform

to approximately sparsify sequentially arrived, or processed data. For time

t = 1, 2, ..., we compute the unitary transform Ŵt ∈ Rn×n and the sparse

code α̂t ∈ Rn for new data xt ∈ Rn by solving the following optimization

problem:

{
Ŵt, α̂t

}
= argmin

W,αt

1

t

t∑
τ=1

{
‖W xτ − ατ‖2

2 + ρ2 ‖ατ‖0

}
s.t. W TW = In (P1) ,

where In ∈ Rn×n is the identity matrix, and a unitary constraint W TW = In

is imposed. Here α̂t is the optimal sparse code for xt, and Ŵt is optimized

for all {xτ}tτ=1 and {ατ}tτ=1 until time t. The `0 “norm” ‖ατ‖0 counts the

number of nonzeros in ατ , thus imposing sparsity on xτ under transform

W . Since only the latest αt is updated at time t, we assume ατ = α̂τ for

1 ≤ τ ≤ t− 1 [6, 28].

6.3.2 Online SALT Denoising

Based on the online unitary transform learning formulation, we propose an

online tensor reconstruction scheme, dubbed online SALT, that denoises

streaming tensor data {Ũτ}tτ=1 based on sparse and low-rank approxima-

tion. The noisy tensor measurement is Ũτ = Uτ + ετ , where Uτ is the clean

tensor, and ετ is additive noise.

To facilitate our discussion of sparse and low-rank approximation, we define

104

Figure 6.2: A simple illustration of the SALT model for video

some reshaping operations on tensors. We use mat(·) : Rn1×n2×K → Rns×K to

denote the matricization operation that unfolds the first two modes of a third-

order tensor, where ns = n1×n2. We use vec(·) : Rns×K → Rn to denote the

vectorization operation on a matrix, where n = ns×K. The relations between

a third-order tensor U ∈ Rn1×n2×K , its matricization U = mat(U), and its

vectorization u = vec(U) can be summarized by the following diagram:

U ∈ Rn1×n2×K mat

mat−1
U ∈ Rns×K vec

vec−1

u ∈ Rn.

The SALT model assumes that the vectorization u is approximately sparsi-

fiable by some unitary transform W ∈ Rn×n , i.e.,Wu = α + e, where α is a

sparse vector, and e is a small (in terms of `2 norm) modeling error. Addi-

tionally, the SALT model enforces the matricization U to be approximately

low-rank, i.e.,U = D + E, where D is a low-rank matrix, and E is a small

(in terms of Frobenius norm) residual. Figure 6.2 illustrates SALT model for

video.

Consider streaming tensor data with noise corruption,
{
Ũτ
}t
τ=1

, that we

wish to denoise sequentially. The online SALT denoising scheme is solving

105

the following optimization problem sequentially (for t = 1, 2, 3, ...):

min
{W,αt,Dt,Ut}

γs
1

t

t∑
τ=1

{
‖W uτ − ατ‖2

2 + ρ2 ‖ατ‖0

}
+γl

1

t

t∑
τ=1

{
‖Uτ −Dτ‖2

F + θ2 rank(Dτ)
}

+γf
1

t

t∑
τ=1

∥∥∥Uτ −mat(Ũτ)
∥∥∥2

F

s.t. uτ = vec(Uτ) ∀τ, W TW = In (P2) ,

where rank(·) returns the rank of a matrix. The solution to (P2) at time t

is denoted as
{
Ŵt, α̂t, D̂t, Ût

}
, which jointly minimizes the sparsity and the

LR modeling errors, as well as the data fidelity to mat(Ũτ) – the matricized

version of the noisy tensor measurement. Here α̂t is the optimal sparse code

for ut, D̂t is the low-rank approximation of Ut, and Ût is the reconstruction

of Ut under the SALT model. We update the sparsifying transform Ŵt, and

the sparse code α̂t online to be optimal for {uτ}tτ=1, which coincides with the

online unitary transform learning problem in Section 6.3.1.

6.3.3 Mini-Batch SALT in Video Denoising

We now discuss the mini-batch SALT denoising formulation, which is ex-

tended from the online SALT denoising problem (P2) described in Section

6.3.2, and used in the proposed video denoising framework. The modified

mini-batch SALT denoising problem is the following:

min
{W,{αi,Di,Ui}i∈St}

γf
tN

t∑
τ=1

%t−τ
∑
i∈Sτ

∥∥∥Ui −mat(Ũi)
∥∥∥2

F

+
γl
tN

t∑
τ=1

%t−τ
∑
i∈Sτ

{
‖Ui −Di‖2

F + θ2 rank(Di)
}

+
γs
tN

t∑
τ=1

%t−τ
∑
i∈Sτ

{
‖W umi − αi‖

2
2 + ρ2 ‖αi‖0

}
s.t. umi = vec(C1:m U

m
i) ∀i, W TW = In (P3) ,

106

where Sτ = {N(τ − 1) + 1, ... , Nτ} indicates the range of tensors {Ũi}i∈Sτ in

the current mini-batch Vτ . There are in total N tensors in each mini-batch.

Comparing to the online SALT denoising problem (P2), there are three major

variations introduced in this extension: (a) mini-batch transform update, (b)

temporal forgetting factor, and (c) reduced-size sparse approximation.

(a) Mini-batch transform update: Instead of updating the transform

after each tensor reconstruction, we only update it once per mini-batch [6,28].

This is motivated by two factors: a) each mini-batch Vτ contains relatively

stationary training data, which can be sparsified by the same transform W ,

and b) transform update involves a relatively intensive computation of a full

SVD with O(n3) complexity. Mini-batch updates lower the overall compu-

tational cost by reducing the number of transform updates by a factor of

N .

(b) Temporal forgetting factor: To better adapt the sparsifying trans-

form W to temporally local structures of video data, we introduce a temporal

forgetting factor %t−τ with a constant 0 < % < 1. The use of the forgetting

factor diminishes the influence from early training data [6]. This is espe-

cially useful when denoising videos with dynamically changing frames, or

scene changes.

(c) Reduced-size sparse approximation: In the online SALT recon-

struction, we find the sparse approximation of the entire Ui ∈ Rns×K under

the adaptive 3D transformW . As a relatively largeK is used in our approach,

we need to train a large transform W , which leads to high computational cost

and overfitting. To alleviate this issue, we only find sparse approximation

of the reduced-size Um
i = C1:m Ui, where the operator C1:m maps Ui to the

sub-matrix formed by the first m columns of Ui. The sparsifying transform

W is of reduced size n× n, where n = ns ×m.

6.4 Algorithm

We solve problem (P3) using an efficient block coordinate descent algorithm,

which runs one iteration per time instance t. Each iteration involves 4 steps:

(i) sparse coding, (ii) mini-batch transform update, (iii) LR approxima-

tion, and (iv) SALT reconstruction, which compute or update
{
αi

}
i∈St

, Wt,

107

{
Di

}
i∈St

, and
{
Ui

}
i∈St

, respectively.

At each time instance t, each noisy tensor Ũi from the current input Ṽt

(i.e.,∀i ∈ St), is first matricized to mat(Ũi) as an initial estimate of Ui. Once

an iteration completes, we recover each tensor Ûi by reshaping the denoised

output Ûi back to tensor Ûi = mat−1(Ûi), to form the output of the mini-

batch algorithm V̂t. The four steps of one iteration at time t are illustrated

as follows:

(i) Sparse Coding: Given the initial value of each Ui and the updated

sparsifying transform Ŵt−1 from the last iteration, we first vectorize the first

m columns of the noisy measurement as umi = vec(C1:mUi). We solve the

Problem (P3) for the optimal sparse code ∀i ∈ St,

α̂i = argmin
αi

∥∥∥Ŵt−1u
m
i − αi

∥∥∥2

2
+ ρ2 ‖αi‖0 , (6.1)

which is the standard sparse coding problem under the transform model.

The optimal solution α̂i is obtained as α̂i = Hρ(Ŵt−1u
m
i) by cheap hard

thresholding [63], where the hard thresholding operator Hρ(·) is defined as

(Hρ(b))j =

{
0 , |bj| < ρ

bj , |bj| ≥ ρ
,

where b ∈ Rn denotes the input vector, scalar ρ ≥ 0 denotes the threshold

value, and the subscript j denotes indices of vector entries. Note that Hρ(·)
can be generalized to take a matrix as the input, and similarly it zeros out

all elements with magnitude smaller than ρ in the matrix.

(ii) Mini-batch transform update. Fixing
{
umi

}Nt
i=1

and {α̂i}Nti=1, we

solve for the mini-batch unitary transform update sub-problem at time t in

(P3) as follows:

Ŵt = argmin
W

1

tN

t∑
τ=1

%t−τ
∑
i∈Sτ

‖Wumi − α̂i‖
2
2 (6.2)

s.t. W T W = In .

Prior work on batch unitary transform learning introduced closed-form trans-

form update [63]. Similarly, the optimal solution Ŵt to problem (6.2) has a

simple and exact solution. We define Γt =
∑t

τ=1 %
t−τ∑

i∈Sτ u
m
i α̂

T
i , and com-

108

pute its full SVD ΦtΣtΨ
T
t = SVD(Γt). The closed-form solution to problem

(6.2) is Ŵt = ΨtΦ
T
t . The matrix Γτ is computed sequentially over time as

Γτ = %(1− τ−1)Γτ−1 + τ−1
∑

i∈Sτ u
m
i α̂

T
i .

(iii) LR Approximation: We solve (P3) for the LR matrix D̂i to ap-

proximate Ui ∀i ∈ St as

D̂i = argmin
Di

‖Ui −Di‖2
F + θ2 rank(Di) . (6.3)

Suppose the economy-size SVD of Ui is ΛiΩi∆
T
i = SVD(Ui). Then (6.3) has

a closed-form solution: D̂i = ΛiHθ(Ωi)∆
T
i .

(iv) SALT reconstruction. We reconstruct each Ui, part of which has

a sparse approximation, based on the SALT model. With fixed Ŵt, α̂i, and

D̂i, we solve (P3) for Ui as follows:

Ûi = argmin
Ui

γs

∥∥∥vec(C1:m Ui)− Ŵ T
t α̂i

∥∥∥2

2

+ γl

∥∥∥Ui − D̂i

∥∥∥2

F
+ γf

∥∥∥Ui −mat(Ũi)
∥∥∥2

F
.

Denote the optimal Ûi =
[
Ûi,1 | Ûi,2

]
, where Ûi,1 ∈ Rn×m and Ûi,2 ∈ Rn×(K−m)

are two sub-matrices. The closed-form solutions for the sub-matrices are

Ûi,1 =
γsvec−1(W T

t α̂i) + C1 :m(γlD̂i + γfmat(Ũi))
γs + γl + γf

(6.4)

Ûi,2 =
Cm+1 :K(γl D̂i + γf mat(Ũi))

γl + γf
. (6.5)

When the iteration completes at time t, each denoised Ûi is tensorized to be

Ûi = mat−1(Ûi) as output. Algorithm 6.1 summarizes the SALT mini-batch

denoising algorithm.

Algorithm Complexity. The computational cost of the SALT algorithm

is O(Ntmh1h2 + Ntn2K + Ntm2n2 + tm3n3 + Nt), corresponding to block

matching (BM), low-rank approximation, sparse coding, transform update,

and aggregation steps. It is on par with the state-of-the-art VBM3D, which

is O(Ntmh1h2 + Ntn2K). The current implementation of SALT algorithm,

including single-thread patch extraction and BM Matlab functions, is not

yet optimized for real-time applications. We anticipate optimized code on a

GPU to be significantly faster in future works.

109

6.5 Experiment

6.5.1 Implementation and Parameters

Testing data. We present experimental results demonstrating the promise

of the proposed SALT video denoising scheme. We evaluate the proposed

algorithm over commonly used videos from the Arizona State University

(ASU) dataset [91] 1 and Tampere University of Technology (TUT) dataset

[59, 87]. The selected testing videos contain 50 to 494 frames, with different

spatial resolutions ranging from 176× 144 to 720× 576. Each video involves

different types of motion, including translation, rotation, scaling, etc. The

color videos are first converted to gray-scale. We simulate i.i.d. zero-mean

Gaussian noise at 5 different noise levels (i.e.,with standard deviation σ = 5,

10, 15, 20, and 50) for each video.

Implementation details. We explain several implementation details and

minor modifications. First, at each time instant t, instead of grouping the

noisy patches directly by KNN, we pre-clean the input buffer sequentially,

and then group pre-cleaned patches. Secondly, when the KNN searching

window slides through a video, the spatial and temporal corner cases need

special treatment. We extend frames by mirroring them at all boundaries and

corners (symmetric boundary conditions) to accommodate search windows

exceeding frame boundaries [149]. The reconstructions of the extended pixels

are not aggregated to the output buffer, for the sake of computational and

memory efficiency. We choose the h1×h2×m window surrounding a patch in

the first (m−1)/2 frames to be the same window centered at the patch in the

(m+1)/2-th frame with the same spatial location, to ensure that the window

does not temporally exceed the first frame, and still has the same size. We

also apply similar treatments to the last (m − 1)/2 frames. Thirdly, when

each denoised tensor Ûi is aggregated to the output buffer Ȳt, we weight the

first m slices of Ûi by an extra factor of (γs+γl +γf)/(γl +γf) (assuming the

last K −m slices have unit weights). Intuitively, as the first m slices of Ûi
are reconstructed with both sparse and low-rank approximations, we expect

their denoised estimates to be better, and hence assign more weights to them

in the aggregation.

Parameters. The proposed SALT video denoising scheme uses an un-

1Videos from ASU dataset with less than 1000 frames are selected.

110

supervised approach, though there are several hyperparameters that require

tuning. We randomly select a tuning set of 10 videos from ASU dataset,

which are excluded in the denoising test in this chapter. After tuning, all of

the hyperparameters are fixed for evaluation over the other 18 videos from

ASU dataset, and 8 videos from TUT dataset.

We work with square patches of size n1 = n2 = 8. We set the temporal

search range m = 9, the penalty weights ρ = 3σ, θ = 1.1σ(
√
K +

√
ns),

γl = 1, and γf = 10−4/σ. We set γs,i = 60/si for each Ûi (see Algorithm 6.1,

Step 4(b)), where si is the sparsity of α̂i (see Algorithm 6.1, Step 4(a)). We

use square search windows of size h1 = h2 = h, where h decreases from 30 to

16 as σ increases from 5 to 50. We set K = 32, 48, 64, 80 and 96, for σ = 5,

10, 15, 20, and 50, respectively. We use the same forgetting factor values as

in the VIDOSAT algorithm [6], which are tuned empirically for each σ. We

initialize the sparsifying transform with the 3D DCT W0.

6.5.2 Video Denoising

Competing methods. We compare the numerical results obtained using

our proposed online denoising algorithm (SALT), to various well-known alter-

natives including frame-wise BM3D denoising (fBM3D) [32], sparse KSVD

image sequence denoising (sKSVD) [31], VIDOSAT [6], VBM3D [87], and

VBM4D [59]. We use their publicly available codes for implementation.

Among these methods, fBM3D makes use of only non-local spatial struc-

tures by applying a state-of-the-art image denoising method, while sKSVD

and VIDOSAT exploit local spatial-temporal sparsity. VBM3D and VBM4D

are considered as state-of-the-art methods for video denoising. Additionally,

to better understand the benefit of each of the regularizers used in our SALT

model, we evaluate the denoising results reconstructed separately using only

the adaptive sparse approximation (BM-TL) and the low-rank approxima-

tion (BM-LR). To verify the advantage of adaptive transform learning, we fix

the sparsifying transform in BM-TL as 3D DCT, and denote such a method

as BM-DCT. Table 6.1 summarizes the key attributes of the SALT denoising,

as well as other competing methods.

Denoising results. To evaluate the performance of the denoising schemes,

we measure the peak signal-to-noise-ratio (PSNR) in decibel (dB), which is

111

computed between the noiseless reference and the denoised video. Table 6.2

and 6.3 list the average denoised PSNRs over videos from TUT and ASU

(excluding the 10 videos used for tuning) datasets, obtained by our proposed

SALT video denoising method, as well as the eight competing methods. The

proposed SALT video denoising method provides PSNR improvements (av-

eraged over all 26 testing videos from both datasets) of 1.3 dB, 1.2 dB, 1.0

dB, 1.6 dB, and 3.6 dB, over the VBM4D, VBM3D, VIDOSAT, sKSVD,

and fBM3D denoising methods, respectively. The proposed SALT denois-

ing method consistently provides better PSNRs than all of the competing

methods for almost all videos and noise levels, demonstrating state-of-the-

art performance in denoising natural videos. Furthermore, we observe that

the average PSNR improvements of SALT denoising over BM-LR, BM-TL,

and BM-DCT are 0.2 dB, 0.6 dB, and 3.1 dB, respectively. The empirical

evidence indicates that both low-rank and sparse approximations contribute

positively to the final denoising quality. Additionally, adaptively learned

transform can provide much better data sparse representation, which trans-

lates to improved sparse approximation.

Figures 6.3 and 6.5 show the frame-by-frame denoised PSNRs and SSIMs,

which are obtained using the SALT denoising algorithm for the video Gbi-

cycle (example from TUT dataset) and Stefan (example from ASU dataset)

respectively at σ = 20, along with the corresponding PSNR and SSIM values

for VIDOSAT, VBM3D, and VBM4D. It is clear that SALT outperforms the

three competing methods in terms of both PSNRs and SSIMs for all frames.

Figure 6.4 illustrates the visual comparisons of the denoised results, by show-

ing one frame of the denoised Gbicycle at σ = 20 (the clean and noisy frames

are shown in Figs. 6.4(a) and (b)), obtained by SALT (see Fig. 6.4(c)) and

VIDOSAT (see Fig. 6.4(d)). The denoised frame by SALT preserves more

details while VIDOSAT generates undesired artifacts, e.g.,the zoomed-in re-

gion in the red and blue boxes. It is also evident that the denoised frame

by VIDOSAT exhibits higher reconstruction error than that by SALT, espe-

cially around the moving objects (see Figs. 6.4(e) and (f)). Similarly in Fig.

6.6, we observe better denoised result by SALT compared to VBM4D.

112

6.6 Conclusion

We propose an efficient and scalable online video denoising method called

SALT. Our method groups similar noisy patches into tensors, adaptively

learns a sparsifying transform, and cleans the patches jointly by adaptive

sparse and low-rank approximations. Denoising experiments show that our

method outperforms competing methods consistently, sometimes by a sizable

margin.

113

Algorithm 6.1: Mini-batch SALT Denoising

Input: The noisy mini-batch {Ṽτ}tτ=1 sequence (Ṽτ ={
Ũi
}Nτ
i=N(τ−1)+1

), and the initial transform W0.

Initialize: Ŵ0 = W0, Γ̃0 = 0, and Ui = mat(Ũi) ∀i =
1, 2, ...Nt.

For τ = 1, 2, ..., t Repeat
Index set: Sτ = {N(τ − 1) + 1, ... , Nτ}.

1. Sparse Coding: ∀i ∈ Sτ
(a) Vectorize umi = vec(C1 :m(Ui)).

(b) Sparsify α̂i = Hρ(Ŵτ−1u
m
i).

2. Mini-batch Transform Update:

(a) Γτ = %(1− τ−1)Γτ−1 + τ−1
∑

i∈Sτ u
m
i α̂

T
i .

(b) Full SVD: ΦτΣτΨ
T
τ = SVD(Γτ).

(c) Update Ŵτ = ΨτΦ
T
τ .

3. LR Approximation: ∀i ∈ Sτ
(a) Economy-size: ΛiΩi∆

T
i = SVD(Ui).

(b) LR Approximate D̂i = ΛiHθ(Ωi)∆
T
i .

4. SALT Reconstruction: ∀i ∈ Sτ
(a) Sparse coding: α̂i = Hρ(Ŵτu

m
i).

(b) Reconstruct first m columns of Ûi by (6.4).

(c) Reconstruct last K − m columns of Ûi by
(6.5).

(d) Tensorize Ûi = mat−1(
[
Ûi,1 | Ûi,2

]
).

End
Output: The reconstructed (denoised) tensor mini-

batch
{
V̂τ

}t
τ=1

sequence, the learned transform Ŵt.

114

(a)

(b)

Figure 6.3: Frame-by-frame (a) PSNR(dB) and (b) SSIM of the video
Gbicycle with σ = 20, denoised by the proposed SALT denoising scheme,
VIDOLSAT, VBM3D and VBM4D.

115

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Denoising result: (a) One frame of the clean video Gbicycle. (b)
Frame corrupted with noise at σ = 20 (PSNR = 22.12 dB). (c) Denoised
frame using the proposed SALT denoising (PSNR = 35.67 dB). (d)
Denoised frame using VIDOSAT (PSNR = 31.80 dB). (e) Magnitude of
error in (c). (f) Magnitude of error in (d).

116

(a)

(b)

Figure 6.5: Frame-by-frame (a) PSNR(dB) and (b) SSIM of the video
Stefan with σ = 20, denoised by the proposed SALT denoising scheme,
VIDOLSAT, VBM3D and VBM4D.

117

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Denoising result: (a) One frame of the clean video Stefan. (b)
Frame corrupted with noise at σ = 20 (PSNR = 22.11 dB). (c) Denoised
frame using the proposed SALT denoising (PSNR = 29.69 dB). (d)
Denoised frame using VBM4D (PSNR = 28.56 dB). (e) Magnitude of error
in (c). (f) Magnitude of error in (d).

118

Table 6.2: Comparison of video denoising PSNR values, averaged over TUT
dataset, for the proposed SALT and competing methods. ∆P denotes the
average PSNR difference (with its standard deviation) relative to SALT.
For each video and noise level, the best denoising PSNR is marked in bold.

Data TUT Dataset (8 videos) ∆ P

σ 5 10 15 20 50 (std.)

fBM3D
38.05 34.06 31.89 30.42 25.88

-2.86

[32] (0.78)

sKSVD
38.87 34.95 32.80 31.33 26.89

-1.95

[31] (1.02)

VIDO-
39.56 35.75 33.54 31.98 27.29

-1.30

SAT [6] (0.92)

VBM3D
39.20 35.75 33.87 32.49 26.51

-1.36

[87] (0.57)

VBM4D
39.37 35.73 33.70 32.24 26.68

-1.38

[59] (0.51)

BM-
38.76 34.80 32.63 31.15 26.82

-2.09

DCT (1.13)

BM-
40.54 36.93 34.82 33.32 28.42

-0.11

LR (0.05)

BM-
40.03 36.41 34.31 32.84 27.49

-0.70

TL (0.32)

SALT 40.65 37.05 34.98 33.47 28.47 0

119

Table 6.3: Comparison of video denoising PSNR values, averaged over ASU
dataset, for the proposed SALT and competing methods. For each video
and noise level, the best denoising PSNR is marked in bold.

Data ASU Dataset (18 videos) ∆ P

σ 5 10 15 20 50 (std.)

fBM3D
39.44 35.47 33.26 31.73 27.00

-3.90

[32] (0.95)

sKSVD
41.83 38.09 35.96 34.46 29.80

-1.45

[31] (0.77)

VIDO-
42.49 38.63 36.36 34.79 29.78

-0.87

SAT [6] (0.47)

VBM3D
41.66 38.55 36.32 34.70 29.72

-1.09

[87] (0.82)

VBM4D
42.00 38.36 36.18 34.58 28.70

-1.32

[59] (0.52)

BM-
39.70 35.74 33.52 32.01 27.73

-3.54

DCT (0.93)

BM-
43.13 39.36 37.05 35.42 30.11

-0.26

LR (0.20)

BM-
42.61 39.01 36.84 35.27 29.97

-0.54

TL (0.28)

SALT 43.29 39.59 37.38 35.73 30.41 0

120

REFERENCES

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions
of systems of equations to sparse modeling of signals and images,”
SIAM Review, vol. 51, no. 1, pp. 34–81, 2009.

[2] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,” Inverse Problems, vol. 23, no. 3, p. 947, 2007.

[3] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image
coding,” Proceedings of the IEEE, vol. 57, no. 1, pp. 58–68, 1969.

[4] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Transactions on Im-
age Processing, vol. 15, no. 12, pp. 3736–45, Dec. 2006.

[5] B. Wen, S. Ravishankar, and Y. Bresler, “Structured overcomplete
sparsifying transform learning with convergence guarantees and appli-
cations,” International Journal of Computer Vision, vol. 114, no. 2-3,
pp. 137–167, 2015.

[6] B. Wen, S. Ravishankar, and Y. Bresler, “Video denoising by online
3D sparsifying transform learning,” in IEEE International Conference
on Image Processing (ICIP). IEEE, 2015, pp. 118–122.

[7] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions
for frame design,” in Acoustics, Speech, and Signal Processing, 1999.
Proceedings., 1999 IEEE International Conference on, vol. 5. IEEE,
1999, pp. 2443–2446.

[8] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD : An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Transactions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[9] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approxima-
tions,” Constructive Approximation, vol. 13, no. 1, pp. 57–98, 1997.

121

[10] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Signals, Systems and Computers, 1993. 1993 Con-
ference Record of The Twenty-Seventh Asilomar Conference on. IEEE,
1993, pp. 40–44.

[11] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on Signal Processing, vol. 41, no. 12,
pp. 3397–3415, 1993.

[12] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[13] M. Yaghoobi, T. Blumensath, and M. E. Davies, “Dictionary learn-
ing for sparse approximations with the majorization method,” IEEE
Transactions on Signal Processing, vol. 57, no. 6, pp. 2178–2191, 2009.

[14] K. Skretting and K. Engan, “Recursive least squares dictionary learn-
ing algorithm,” IEEE Transactions on Signal Processing, vol. 58, no. 4,
pp. 2121–2130, 2010.

[15] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for ma-
trix factorization and sparse coding,” Journal of Machine Learning
Research, vol. 11, no. Jan, pp. 19–60, 2010.

[16] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color
image restoration,” IEEE Transactions on Image Processing, vol. 17,
no. 1, pp. 53–69, 2008.

[17] M. Aharon and M. Elad, “Sparse and redundant modeling of image
content using an image-signature-dictionary,” SIAM Journal on Imag-
ing Sciences, vol. 1, no. 3, pp. 228–247, 2008.

[18] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proceedings of the IEEE, vol. 98, no. 6, pp.
1045–1057, 2010.

[19] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press,
1999.

[20] S. Ravishankar and Y. Bresler, “Learning sparsifying transforms,”
IEEE Transactions on Signal Processing, vol. 61, no. 5, pp. 1072–1086,
2013.

[21] L. Pfister and Y. Bresler, “Learning sparsifying filter banks,” in Proc.
SPIE Wavelets & Sparsity XVI, vol. 9597. SPIE, Aug. 2015.

122

[22] L. Pfister and Y. Bresler, “Model-based iterative tomographic
reconstruction with adaptive sparsifying transforms,” in Proc. SPIE
Computational Imaging XII, C. A. Bouman and K. D. Sauer, Eds.
SPIE, Mar. 2014, pp. 90 200H–90 200H–11.

[23] S. Ravishankar and Y. Bresler, “Sparsifying transform learning with
efficient optimal updates and convergence guarantees,” IEEE Transac-
tions on Signal Processing, vol. 63, no. 9, pp. 2389–2404, 2015.

[24] B. Wen, S. Ravishankar, and Y. Bresler, “Learning overcomplete spar-
sifying transforms with block cosparsity,” in IEEE International Con-
ference on Image Processing (ICIP). IEEE, 2014, pp. 803–807.

[25] H. Wersing, J. Eggert, and E. Körner, “Sparse coding with invari-
ance constraints,” in Artificial Neural Networks and Neural Informa-
tion Processing—ICANN/ICONIP 2003. Springer, 2003, pp. 385–392.

[26] Z. Zhan, J.-F. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu, “Fast multi-
class dictionaries learning with geometrical directions in MRI recon-
struction,” IEEE Transactions on Biomedical Engineering, vol. 63,
no. 9, pp. 1850–1861, 2016.

[27] B. Wen, S. Ravishankar, and Y. Bresler, “Learning flipping and rota-
tion invariant sparsifying transforms,” in IEEE International Confer-
ence on Image Processing (ICIP). IEEE, 2016, pp. 3857–3861.

[28] S. Ravishankar, B. Wen, and Y. Bresler, “Online sparsifying trans-
form learning—part i: Algorithms,” IEEE Journal of Selected Topics
in Signal Processing, vol. 9, no. 4, pp. 625–636, 2015.

[29] S. Ravishankar, B. Wen, and Y. Bresler, “Online sparsifying transform
learning for signal processing,” in Signal and Information Processing
(GlobalSIP), 2014 IEEE Global Conference on. IEEE, 2014, pp. 364–
368.

[30] M. Protter and M. Elad, “Image sequence denoising via sparse and
redundant representations,” IEEE Transactions on Image Processing,
vol. 18, no. 1, pp. 27–35, 2009.

[31] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: Learn-
ing sparse dictionaries for sparse signal approximation,” IEEE Trans-
actions on Signal Processing, vol. 58, no. 3, pp. 1553–1564, 2010.

[32] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-d transform-domain collaborative filtering,” IEEE Trans-
actions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

123

[33] G. Yu and G. Sapiro, “Dct image denoising: a simple and effective
image denoising algorithm,” Image Processing On Line, vol. 1, pp.
292–296, 2011.

[34] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding
for image denoising and compression,” IEEE Transactions on Image
Processing, vol. 9, no. 9, pp. 1532–1546, 2000.

[35] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[36] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Pro-
cess., vol. 15, no. 12, pp. 3736–3745, 2006.

[37] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in IEEE International Conference
on Computer Vision (ICCV), Sept 2009, pp. 2272–2279.

[38] S. Ravishankar and Y. Bresler, “`0 sparsifying transform learning with
efficient optimal updates and convergence guarantees,” IEEE Transac-
tions on Signal Processing, vol. 63, no. 9, pp. 2389–2404, 2014.

[39] B. Wen, Y. Li, and Y. Bresler, “When sparsity meets low-rankness:
Transform learning with non-local low-rank constraint for image
restoration,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017, pp. 2297–2301.

[40] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” Asilomar Conference on Signals, Systems and Com-
puters, pp. 40–44, 1993.

[41] B. Wen, S. Ravishankar, and Y. Bresler, “Vidosat: High-dimensional
sparsifying transform learning for online video denoising,” IEEE Trans-
actions on Image Processing, 2018.

[42] S. Ravishankar and Y. Bresler, “Data-driven learning of a union of spar-
sifying transforms model for blind compressed sensing,” IEEE Trans-
actions on Computational Imaging, vol. 2, no. 3, pp. 294–309, 2016.

[43] B. Wen, S. Ravishankar, and Y. Bresler, “FRIST- flipping and rota-
tion invariant sparsifying transform learning and applications,” Inverse
Problems, vol. 33, no. 7, p. 074007, 2017.

124

[44] S. Ravishankar and Y. Bresler, “Efficient blind compressed sensing us-
ing sparsifying transforms with convergence guarantees and application
to magnetic resonance imaging,” SIAM Journal on Imaging Sciences,
vol. 8, no. 4, pp. 2519–2557, 2015.

[45] L. Pfister and Y. Bresler, “Tomographic reconstruction with adaptive
sparsifying transforms,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2014, pp. 6914–6918.

[46] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for im-
age denoising,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2, June 2005, pp. 60–65 vol. 2.

[47] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising
via dictionary learning and structural clustering,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2011, pp.
457–464.

[48] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilat-
eral variance estimation: a low-rank approach,” IEEE Transactions on
Image Processing, vol. 22, no. 2, pp. 700–711, 2013.

[49] J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representa-
tion for image restoration,” IEEE Transactions on Image Processing,
vol. 23, no. 8, pp. 3336–3351, 2014.

[50] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang, “Weighted
nuclear norm minimization and its applications to low level vision,”
International Journal of Computer Vision, vol. 121, no. 2, pp. 183–
208, 2017.

[51] H. Yoon, K. S. Kim, D. Kim, Y. Bresler, and J. C. Ye, “Motion adap-
tive patch-based low-rank approach for compressed sensing cardiac cine
MRI,” IEEE Transactions on Medical Imaging, vol. 33, no. 11, pp.
2069–2085, 2014.

[52] Z. Zha, X. Liu, Z. Zhou, X. Huang, J. Shi, Z. Shang, L. Tang, Y. Bai,
Q. Wang, and X. Zhang, “Image denoising via group sparsity residual
constraint,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017, pp. 1787–1791.

[53] B. Wen, Y. Li, and Y. Bresler, “The power of complementary regular-
izers: Image recovery via transform learning and low-rank modeling,”
arXiv preprint arXiv:1808.01316, 2018.

[54] D. Liu, B. Wen, X. Liu, and T. S. Huang, “When image denoising meets
high-level vision tasks: A deep learning approach,” in International
Joint Conference on Artificial Intelligence (IJCAI), 2018, pp. 842–848.

125

[55] D. Liu, B. Wen, J. Jiao, X. Liu, Z. Wang, and T. S. Huang, “Connecting
image denoising and high-level vision tasks via deep learning,” arXiv
preprint arXiv:1809.01826, 2018.

[56] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlocal
transform-domain filter for volumetric data denoising and reconstruc-
tion,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp.
119–133, 2013.

[57] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang,
“Decomposable nonlocal tensor dictionary learning for multispectral
image denoising,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 6 2014, pp. 2949–2956.

[58] B. Wen, U. S. Kamilov, D. Liu, H. Mansour, and P. T. Boufounos,
“Deepcasd: An end-to-end approach for multi-spectral image super-
resolution,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2018, pp. 6503–6507.

[59] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian, “Video
denoising, deblocking, and enhancement through separable 4-d
nonlocal spatiotemporal transforms,” IEEE Transactions on Image
Processing, vol. 21, no. 9, pp. 3952–3966, 2012.

[60] I. Tosic and P. Frossard, “Dictionary learning,” IEEE Signal
Processing Magazine, vol. 28, no. 2, pp. 27–38, Mar 2011.

[61] B. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995.

[62] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, May 2009.

[63] S. Ravishankar and Y. Bresler, “Closed-form solutions within sparsi-
fying transform learning,” in 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 5378–5382.

[64] S. Ravishankar and Y. Bresler, “Online sparsifying transform learn-
ing—part ii: Convergence analysis,” IEEE Journal of Selected Topics
in Signal Processing, vol. 9, no. 4, pp. 637–646, 2015.

[65] D. G. Lowe, “Object recognition from local scale-invariant features,”
in IEEE International Conference on Computer Vision (ICCV), vol. 2,
1999, pp. 1150–1157.

[66] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive represen-
tation for local image descriptors,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 2. IEEE, 2004, pp. II–II.

126

[67] E. Le Pennec and S. Mallat, “Bandelet image approximation and com-
pression,” Multiscale Modeling & Simulation, vol. 4, no. 3, pp. 992–
1039, 2005.

[68] X. Qu, D. Guo, B. Ning, Y. Hou, Y. Lin, S. Cai, and Z. Chen, “Under-
sampled MRI reconstruction with patch-based directional wavelets,”
Magnetic Resonance Imaging, vol. 30, no. 7, pp. 964–977, 2012.

[69] S. Ravishankar and Y. Bresler, “Learning doubly sparse transforms for
images,” IEEE Transactions on Image Processing, vol. 22, no. 12, pp.
4598–4612, 2013.

[70] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar, “Dictionary opti-
mization for block-sparse representations,” IEEE Transactions on Sig-
nal Processing, vol. 60, no. 5, pp. 2386–2395, 2012.

[71] J. Trzasko and A. Manduca, “Highly undersampled magnetic res-
onance image reconstruction via homotopic ell {0}-minimization,”
IEEE Transactions on Medical Imaging, vol. 28, no. 1, pp. 106–121,
2009.

[72] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application
of compressed sensing for rapid MR imaging,” Magnetic Resonance in
Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[73] S. Ravishankar and Y. Bresler, “MR image reconstruction from highly
undersampled k-space data by dictionary learning,” IEEE Transactions
on Medical Imaging, vol. 30, no. 5, pp. 1028–1041, 2011.

[74] S. Gleichman and Y. C. Eldar, “Blind compressed sensing,” IEEE
Transactions on Information Theory, vol. 57, no. 10, pp. 6958–6975,
2011.

[75] “The USC-SIPI Database,” online:
http://sipi.usc.edu/database/database.php?volume=misc.

[76] O. Bryt and M. Elad, “Compression of facial images using the k-svd
algorithm,” Journal of Visual Communication and Image Representa-
tion, vol. 19, no. 4, pp. 270–282, 2008.

[77] “Michael Elad’s Homepage,” online:
http://www.cs.technion.ac.il/ẽlad.

[78] “Transform Learning Website,” online:
http://transformlearning.csl.illinois.edu/.

[79] T. Yang, Finite Element Structural Analysis. Prentice Hall, 1986.

127

[80] D. Watson, Contouring: A Guide to the Analysis and Display of Spatial
Data. Elsevier, 2013, vol. 10.

[81] I. Ram, M. Elad, and I. Cohen, “Image processing using smooth order-
ing of its patches,” IEEE Transactions on Image Processing, vol. 22,
no. 7, pp. 2764–2774, 2013.

[82] B. Ning, X. Qu, D. Guo, C. Hu, and Z. Chen, “Magnetic resonance im-
age reconstruction using trained geometric directions in 2d redundant
wavelets domain and non-convex optimization,” Magnetic Resonance
Imaging, vol. 31, no. 9, pp. 1611–1622, 2013.

[83] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen, “Magnetic
resonance image reconstruction from undersampled measurements us-
ing a patch-based nonlocal operator,” Medical Image Analysis, vol. 18,
no. 6, pp. 843–856, 2014.

[84] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[85] D. Rusanovskyy and K. Egiazarian, “Video denoising algorithm in slid-
ing 3d dct domain,” in Proc. Advanced Concepts for Intelligent Vision
Systems, 2005, pp. 618–625.

[86] N. Rajpoot, Z. Yao, and R. Wilson, “Adaptive wavelet restoration of
noisy video sequences,” in IEEE International Conference on Image
Processing (ICIP), vol. 2, 2004, pp. 957–960.

[87] K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D
transform-domain collaborative filtering,” in Signal Processing Confer-
ence, 2007 15th European, Sept 2007, pp. 145–149.

[88] S. Dev, B. Wen, Y. H. Lee, and S. Winkler, “Ground-based image
analysis: A tutorial on machine-learning techniques and applications,”
IEEE Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp. 79–
93, 2016.

[89] T. Ouni and M. Abid, “Scan methods and their application in image
compression,” International Journal of Signal Processing, Image Pro-
cessing and Pattern Recognition, vol. 5, no. 3, pp. 49–64, 2012.

[90] D. Le Gall, “MPEG: A video compression standard for multimedia
applications,” Communications of the ACM, vol. 34, no. 4, pp. 46–58,
1991.

128

[91] P. Seeling and M. Reisslein, “Video traffic characteristics of modern
encoding standards: H.264/ AVC with SVC and MVC extensions and
H.265/HVEC,” The Scientific World Journal, vol. 2014, 2014.

[92] H. C. Burger, C. Schuler, and S. Harmeling, “Learning how to combine
internal and external denoising methods,” in German Conference on
Pattern Recognition. Springer, 2013, pp. 121–130.

[93] M. Zontak and M. Irani, “Internal statistics of a single natural im-
age,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, 2011, pp. 977–984.

[94] F. Chen, L. Zhang, and H. Yu, “External patch prior guided internal
clustering for image denoising,” in IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 603–611.

[95] Z. Wang, Y. Yang, Z. Wang, S. Chang, J. Yang, and T. S. Huang,
“Learning super-resolution jointly from external and internal exam-
ples,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp.
4359–4371, 2015.

[96] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1-4, pp. 259–268, 1992.

[97] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,”
IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2419–
2434, 2009.

[98] W. Dong, G. Shi, Y. Ma, and X. Li, “Image restoration via simulta-
neous sparse coding: Where structured sparsity meets gaussian scale
mixture,” International Journal of Computer Vision, vol. 114, no. 2-3,
pp. 217–232, 2015.

[99] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang, “Compressive sensing
via nonlocal low-rank regularization,” IEEE Transactions on Image
Processing, vol. 23, no. 8, pp. 3618–3632, 2014.

[100] J. Li, X. Chen, D. Zou, B. Gao, and W. Teng, “Conformal and low-rank
sparse representation for image restoration,” in IEEE International
Conference on Computer Vision (ICCV), Dec 2015, pp. 235–243.

[101] R. Yin, T. Gao, Y. M. Lu, and I. Daubechies, “A tale of two
bases: Local-nonlocal regularization on image patches with convolu-
tion framelets,” SIAM Journal on Imaging Sciences, vol. 10, no. 2, pp.
711–750, 2017.

129

[102] S. Osher, Z. Shi, and W. Zhu, “Low dimensional manifold model for
image processing,” SIAM Journal on Imaging Sciences, vol. 10, no. 4,
pp. 1669–1690, 2017.

[103] S. Roth and M. J. Black, “Fields of experts,” International Journal of
Computer Vision, vol. 82, no. 2, p. 205, 2009.

[104] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in IEEE International Conference on
Computer Vision (ICCV). IEEE, 2011, pp. 479–486.

[105] J. Xu, L. Zhang, W. Zuo, D. Zhang, and X. Feng, “Patch group based
nonlocal self-similarity prior learning for image denoising,” in IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 244–
252.

[106] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with bm3d?” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2012, pp.
2392–2399.

[107] U. Schmidt and S. Roth, “Shrinkage fields for effective image restora-
tion,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 2774–2781.

[108] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flex-
ible framework for fast and effective image restoration,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6,
pp. 1256–1272, 2017.

[109] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaus-
sian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155,
2017.

[110] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, “Non-local recur-
rent network for image restoration,” arXiv preprint arXiv:1806.02919,
2018.

[111] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image in-
painting,” in Annual Conference on Computer Graphics and Interac-
tive Techniques. ACM Press/Addison-Wesley Publishing Co., 2000,
pp. 417–424.

[112] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera,
“Filling-in by joint interpolation of vector fields and gray levels,” IEEE
Transactions on Image Processing, vol. 10, no. 8, pp. 1200–1211, 2001.

130

[113] A. Levin, A. Zomet, and Y. Weiss, “Learning how to inpaint from
global image statistics,” in IEEE International Conference on Com-
puter Vision (ICCV), 2003, p. 305.

[114] M. Elad, Sparse and Redundant Representations: From Theory to Ap-
plications in Signal and Image Processing. New York: Springer, 2010.

[115] O. G. Guleryuz, “Nonlinear approximation based image recovery using
adaptive sparse reconstructions and iterated denoising-part ii: adaptive
algorithms,” IEEE Transactions on Image Processing, vol. 15, no. 3,
pp. 555–571, 2006.

[116] Z. Xu and J. Sun, “Image inpainting by patch propagation using patch
sparsity,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp.
1153–1165, 2010.

[117] X. Li, “Image recovery via hybrid sparse representations: A determin-
istic annealing approach,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 5, pp. 953–962, 2011.

[118] K. H. Jin and J. C. Ye, “Annihilating filter-based low-rank hankel ma-
trix approach for image inpainting,” IEEE Trans. Image Proc., vol. 24,
no. 11, pp. 3498–3511, 2015.

[119] Z. Zha, X. Yuan, B. Wen, J. Zhou, and C. Zhu, “Joint patch-group
based sparse representation for image inpainting,” in Asian Conference
on Machine Learning, 2018, pp. 145–160.

[120] C. Guillemot and O. Le Meur, “Image inpainting: Overview and recent
advances,” IEEE signal processing magazine, vol. 31, no. 1, pp. 127–
144, 2014.

[121] S. Geethanath, R. Reddy, A. S. Konar, S. Imam, R. Sundaresan,
and R. Venkatesan, “Compressed sensing MRI: a review,” Critical
ReviewsTM in Biomedical Engineering, vol. 41, no. 3, 2013.

[122] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed
sensing MRI,” IEEE signal processing magazine, vol. 25, no. 2, pp.
72–82, 2008.

[123] O. N. Jaspan, R. Fleysher, and M. L. Lipton, “Compressed sensing
MRI: a review of the clinical literature,” The British journal of radiol-
ogy, vol. 88, no. 1056, p. 20150487, 2015.

[124] Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep ADMM-Net for compressive
sensing MRI,” in Advances in Neural Information Processing Systems,
2016, pp. 10–18.

131

[125] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2011.

[126] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low
rank matrix completion,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2010, pp. 1791–1798.

[127] B. Wen, Y. Li, L. Pfister, and Y. Bresler, “Joint adaptive sparsity
and low-rankness on the fly: an online tensor reconstruction scheme
for video denoising,” in IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 241–250.

[128] T. Zhou and D. Tao, “Godec: Randomized low-rank & sparse matrix
decomposition in noisy case,” in International Conference on Machine
Learning (ICML). Omnipress, 2011.

[129] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert,
“Randomized algorithms for the low-rank approximation of matrices,”
Proceedings of the National Academy of Sciences, vol. 104, no. 51, pp.
20 167–20 172, 2007.

[130] Y.-S. Chen, Y.-P. Hung, and C.-S. Fuh, “Fast block matching algorithm
based on the winner-update strategy,” IEEE Transactions on Image
Processing, vol. 10, no. 8, pp. 1212–1222, 2001.

[131] Kodak, “The Kodak lossless true color image suite,” available at:
http://r0k.us/graphics/kodak/.

[132] X. Qu, “PBDWS code,” available at: http://www.quxiaobo.org/.

[133] B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Regulariza-
tion Methods for Nonlinear Ill-posed Problems. Walter de Gruyter,
2008, vol. 6.

[134] J. Xu, L. Zhang, D. Zhang, and X. Feng, “Multi-channel weighted
nuclear norm minimization for real color image denoising,” in IEEE
International Conference on Computer Vision (ICCV), 2017.

[135] Y. Romano and M. Elad, “Boosting of image denoising algorithms,”
SIAM Journal on Imaging Sciences, vol. 8, no. 2, pp. 1187–1219, 2015.

[136] W. Zuo, L. Zhang, C. Song, and D. Zhang, “Texture enhanced image
denoising via gradient histogram preservation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). ieee, 2013, pp.
1203–1210.

132

[137] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse
representation for image restoration,” IEEE Transactions on Image
Processing, vol. 22, no. 4, pp. 1620–1630, 2013.

[138] J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A gen-
eral deep learning framework for inverse problems,” SIAM Journal on
Imaging Sciences, vol. 11, no. 2, pp. 991–1048, 2018.

[139] W. Bae, J. Yoo, and J. C. Ye, “Beyond deep residual learning for im-
age restoration: Persistent homology-guided manifold simplification,”
in IEEE Conf. Comp. Vision and Pattern Recog (CVPR) Workshops,
2017, pp. 145–153.

[140] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Color image
denoising via sparse 3d collaborative filtering with grouping constraint
in luminance-chrominance space,” in IEEE International Conference
on Image Processing (ICIP), vol. 1. IEEE, 2007, pp. I–313.

[141] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image pro-
cessing and reconstruction,” IEEE Transactions on Image Processing,
vol. 16, no. 2, pp. 349–366, 2007.

[142] K. Lee, Y. Li, M. Junge, and Y. Bresler, “Blind recovery of sparse sig-
nals from subsampled convolution,” IEEE Transactions on Information
Theory, vol. 63, no. 2, pp. 802 – 821, 2017.

[143] Y. Li, K. Lee, and B. Yoram, “Blind gain and phase calibration for
low-dimensional or sparse signal sensing via power iteration,” in Int.
Conf. Sampling Theory and Applications (SampTA), 2017.

[144] A. Buades, J.-L. Lisani, and M. Miladinovic, “Patch-based video
denoising with optical flow estimation,” IEEE Transactions on Image
Processing, vol. 25, no. 6, pp. 2573–2586, 2016.

[145] W. Dong, G. Li, G. Shi, X. Li, and Y. Ma, “Low-rank tensor ap-
proximation with Laplacian scale mixture modeling for multiframe im-
age denoising,” in IEEE International Conference on Computer Vision
(ICCV), 12 2015, pp. 442–449.

[146] Z. Zha, X. Liu, X. Huang, H. Shi, Y. Xu, Q. Wang, L. Tang, and
X. Zhang, “Analyzing the group sparsity based on the rank minimiza-
tion methods,” in IEEE International Conference on Multimedia and
Expo (ICME), 2017, pp. 883–888.

[147] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Bm3d image
denoising with shape-adaptive principal component analysis,” in Signal
Processing with Adaptive Sparse Structured Representations (SPARS),
2009.

133

[148] H. Guo and N. Vaswani, “Video denoising via online sparse and
low-rank matrix decomposition,” in IEEE Statistical Signal Processing
Workshop (SSP), 6 2016, pp. 1–5.

[149] H. Hu, J. Froment, and Q. Liu, “Patch-based low-rank minimization
for image denoising,” arXiv preprint arXiv:1506.08353, 2015.

134

