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ABSTRACT

Understanding the meaning of linguistic expressions is a fundamental task of natural

language processing. While distributed representations have become a powerful technique

for modeling lexical semantics, they have traditionally relied on ungrounded text corpora to

identify semantically similar words. In contrast, this thesis explicitly models the denotation

of linguistic expressions by building representations from grounded image captions. This

allows us to use descriptions of the world to learn connections that would be difficult to

identify in text-based corpora. In particular, we explore novel approaches to entailment that

capture everyday world knowledge missing from other NLP tasks, on both existing datasets

and our own new dataset. We also present a novel embedding model that produces phrase

representations that are informed by our grounded representation. We conclude with an

analysis of how grounded embeddings differ from standard distributional embeddings and

suggestions for future refinement of this approach.
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CHAPTER 1: INTRODUCTION

The ability to draw inferences is an important part of language understanding. When

we have a conversation with someone, for example, or when we read a newspaper, we use

our existing knowledge of the world to infer a great deal of information that was unstated

by the speaker or the text. This process allows us to have everyday conversations or write

an article without first listing all the facts and assumptions that we hold to be true. For

descriptive language, these types of inferences mean that even simple descriptions can evoke

rich, complex mental imagery. A description of people shopping in a supermarket comes with

the expectation that these people are probably pushing shopping carts and surrounded by

aisles of shelved food.

In natural language processing, we have established textual entailment as the task that

evaluates the ability of our models to infer unstated information from text. A model that

can accurately judge whether one text entails another should also be successful at other

tasks that we are interested in, such as question answering or summarization. This line of

research has resulted in models that use a broad range of approaches to tackle inference,

from alignment and rewriting rule extraction to lexical similarity and more recent end-to-end

neural network models.

In this thesis, we focus on applying denotational similarity, an image-grounded similarity

metric, to textual entailment. We first introduced denotational similarity to facilitate natural

language inference about everyday scenes. Compared to standard distributional similarity

that captures whether words occur in similar linguistic contexts, denotational similarity

is grounded in common images and expresses whether words can be used to describe the

same event. We expand on that initial work to demonstrate the usefulness of denotational

similarity to textual entailment, both as an explicit feature and in the form of novel phrase

embeddings.

1.1 THESIS STATEMENT

In this thesis, we explore textual entailment from the perspective of image-grounded deno-

tation, an effective representation for tasks that require natural language representation. We

introduce an embedding representation that expresses the denotational similarity of every-

day actions as vectors in an interpretable embedding space, and we present the first model

that automatically produces these vectors for unseen phrases.

We also present a new textual entailment corpus where the premise is comprised of sen-
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tences that all share a common grounded image denotation. Our aim is to evaluate a model’s

ability to build a unified representation of the denotation of a set of sentences. Our deno-

tational embedding model captures semantic relationships that are fundamentally different

from standard distributional embeddings and are demonstrably effective for natural language

inference.

1.2 CONTRIBUTIONS

Feature-Based Application of Denotational Similarity In Chapter 3 and Chapter 4,

we present models that use denotational similarity features as part of a system for textual en-

tailment and semantic similarity. We demonstrate that denotational similarity features over

constituent phrase pairs contribute to state-of-the-art performance. Furthermore, we present

ablation results that show that denotational similarity is complementary to distributional

similarity features on these tasks.

Denotational Embedding Models In Chapter 5, we propose a framework to map de-

notational probabilities to a structured vector embedding space that captures denotational

set relationships. We present the first model that can produce these denotational embed-

dings for new phrases, which allows us to predict the denotational conditional probability

of a hypothesis sentence given a premise sentence for a textual entailment task. In Chapter

7, we introduce another denotational embedding model that outperforms neural sentence

encoding models for entailment without the need for a constituent extraction step.

Multiple Premise Entailment Task To explore the space of image caption denotation,

in Chapter 6 we present a new textual entailment dataset where the premise text is a set

of captions that describe the same image. This requires that models aggregate information

from multiple independently written captions in order to predict the entailment relationship

between premise and hypothesis.

Analysis of Denotational Embeddings In Chapter 7, we analyze our denotational em-

beddings to account for the types of semantic relationships that they capture. We confirm

that denotational embeddings, like the similarities computed from the denotation graph,

capture entailment-like relationships within scenes. This distinguishes denotational embed-

dings from distributional embeddings, which tend to capture synonym relationships. We also

show that denotational embeddings capture visual scene information that is not available to

standard text-based models.
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Our goal in this thesis is to continue the development of denotational similarity through

new models and datasets that allow us to apply it to a broader range of scenarios. We show

that we can train neural embedding models to produce denotational representations for new

phrases. The resulting phrase embeddings are another step towards using denotation for

more complicated inference tasks in multiple domains. They emphasize semantic relation-

ships that are complementary to those captured by standard distributional representations,

creating opportunities to build future semantic representations that combine both types of

information.
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CHAPTER 2: TEXTUAL ENTAILMENT

Inference, the process by which we reach a new conclusion from the provided evidence, is

an important part of human reasoning and natural language. Inference is how we determine

that a new statement is true based on previous information. In Natural Language Processing,

we have recast this process as the textual entailment task, in which the goal is to conclude

whether one text is true or false based on the information given in a prior text. Textual

entailment has become an important semantic evaluation, first proposed by Dagan and

Glickman [1], popularized initially by the Recognizing Textual Entailment challenges [2] and

more recently by the much larger datasets SICK [3] and SNLI [4]. In this chapter, we present

some background information on textual entailment datasets and models. The contributions

of this thesis begin in Chapter 3.

Generally, textual entailment consists of two texts: a premise text p and a hypothesis

text h. The premise p entails the hypothesis h if a human who read p would assume that

h is probably true. This definition differs from the logic-based definition of entailment from

the field of linguistics. A definition of entailment based on formal semantics states that the

premise p entails another text h if h is true in every single possible situation where p is true.

This is true for some examples of textual entailment, such as:

Premise: A man is doing a trick on a skateboard.

Hypothesis: A person is doing a trick on a skateboard.

⇒ entailment

because all men are also people and therefore the hypothesis is always true when the premise

is true. However, for other examples in standard textual entailment datasets, this is not the

case:

Premise: A senior is waiting at the window of a restaurant that serves sandwiches.

Hypothesis: A person waits to be served his food.

⇒ entailment

In the above example, there exist other conceivable scenarios where the person is waiting

for his change after paying for the food, or is waiting at the window for some reason other

than being a customer of the restaurant. However, most people who read the premise

sentence assume that a person waiting at a restaurant window is indeed waiting for food,

and label the sentence pair as entailment. In general, we are interested in this definition

of entailment: what people assume to be true given the information they currently have. We

want NLP tools to model human understanding of and assumptions about language. This
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approach to textual entailment has the potential to be more useful to downstream tasks, in

contrast to a strict logical definition of entailment that does not correspond to how people

use language.

Dagan et al. [5] describe textual entailment as covering a broad definition of inference,

that can be classified into several types. One type of entailment involves deriving new

information from the premise by reasoning about what the premise implies. For example,

“Barack Obama was the 44th President of the United States” entails “Barack Obama is a

U.S. citizen.” The premise does not state outright that Obama is a citizen, but we can infer

this information based on the premise and what we know to be true about the world (that

presidents are citizens of their countries).

Other cases of textual entailment, however, do not involve deriving new information from

the premise. Instead, the hypothesis may state a generalization of the information in the

premise, or may be synonymous to the premise. For example, drugs are used to slow the

progress of Alzheimer’s entails drugs are used to treat Alzheimer’s. Treating a disease is a

more general expression that does not state whether the disease is slowed, halted, or cured

thanks to the drugs. A hypothesis that paraphrases the premise may involve replacing a

word with a synonym, or could involve more complex paraphrasing. This type of inference

involves capturing the variability of language: how the same information may be stated in

many different ways and with different levels of specificity. This variability of language is

what we aim to capture in creating the Flickr30K dataset and the denotation graph, as

we will describe in Chapter 3.

Textual entailment was conceived as a unified framework for semantic inference that could

be extended to downstream NLP tasks. For example, in a reading comprehension scenario,

the system should select a response that is entailed by the provided text. A summarization

system should not generate a summary that is not entailed by the text it is supposed to

summarize, so a textual entailment model could provide a very useful check on valid outputs.

In this chapter, we survey existing textual entailment datasets, several of which we will

use for evaluation in this thesis. We also present a brief overview of approaches to these

datasets.

2.1 CORPORA

2.1.1 Recognizing Textual Entailment

Initial work on textual entailment was driven by the Recognizing Textual Entailment

(RTE) datasets [2], a series of challenges presenting textual entailment data for a range of

5



Premise Hypothesis Label

Drew Walker, NHS Tayside’s public health di-
rector, said: “It is important to stress that this
is not a confirmed case of rabies.”

A case of rabies was
confirmed.

non-entailment

About two weeks before the trial started, I was
in Shapiro’s office in Century City.

Shapiro works in
Century City.

entailment

The drugs that slow down or halt Alzheimer’s
disease work best the earlier you administer
them.

Alzheimer’s disease
is treated using
drugs.

entailment

Arabic, for example, is used densely across
North Africa and from the Eastern Mediter-
ranean to the Philippines, as the key language
of the Arab world and the primary vehicle of
Islam.

Arabic is the pri-
mary language of
the Philippines.

non-entailment

Table 2.1: Examples of development data from RTE-2.

domains and potential applications. Some tasks involve validating the output of question

answering or text summarization systems, areas where textual entailment models could

prove useful. In total, there are about seven thousand entailment examples across the RTE

datasets [6].

RTE covers a broad range of inference types: lexical substitution, coreference, named

entity recognition, logical reasoning, the ability to compare numbers, and more general world

knowledge (e.g. knowing that “people work in their offices” and “presidents are citizens of

their countries”) [5]. These problems can be very complex and may assume a high degree

of world knowledge, e.g. knowing that a company that has “filed for its IPO” has “gone

public.” As such, models may require named entity recognition, syntactic parsing, semantic

role labeling, coreference resolution, and other components of the full NLP pipeline.

The first RTE challenges presented textual entailment as a binary task: the premise either

does or does not entail the hypothesis. Table 2.1 contains a few of these binary entailment

examples. Later challenges increased the number of classes to make the distinction between

a hypothesis that contradicts the premise and one that has a neutral or independent rela-

tionship to the premise. This three-way classification task was first introduced in RTE-4 [7].

Many recent textual entailment datasets have also treated textual entailment as a three-class

problem, including the two datasets that we will discuss in the next sections.
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Premise Hypothesis Label

A boy is standing in the cold water. A boy is standing in the water. entailment

The boy is sitting near the blue
ocean.

The boy is wading through the
blue ocean.

contradiction

A boy is standing in the water. The kid is swimming through the
blue ocean.

neutral

Table 2.2: Examples of training data from SICK.

Premise Hypothesis Label

An older man is drinking orange juice
at a restaurant.

A man is drinking juice. entailment

An older man is drinking orange juice
at a restaurant.

A man in a restaurant is wait-
ing for his meal to arrive.

neutral

An older man is drinking orange juice
at a restaurant.

Two women are at a restau-
rant drinking wine.

contradiction

Table 2.3: Examples of training data from SNLI.

2.1.2 Sentences Involving Compositional Knowledge

The Sentences Involving Compositional Knowledge (SICK) dataset [3, 8] was created as

a simplified textual entailment task that does not require as much world knowledge as RTE

and relies less on other NLP tasks like coreference resolution and named entity recognition.

A few examples are presented in Table 2.2.

SICK contains almost ten thousand sentence pairs annotated for three-class entailment

classification. The sentences come from image and video captions and were simplified and

modified according to a set of transformation rules. Due to the small set of rules that

were used to generate new sentences, SICK contains some phenomena that are unevenly

distributed across entailment classes. We discuss additional properties of SICK in Chapter

4.

2.1.3 Stanford Natural Language Inference

The Stanford Natural Language Inference (SNLI) dataset [4] was created to train neural

network models for textual entailment. It contains over 570,000 sentence pairs, each con-

sisting of a premise sentence from an image caption dataset [9, 10], a hypothesis sentence

written by a worker on Amazon Mechanical Turk, and a label for three-class entailment
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classification. Table 5.6 contains a few examples.

The Mechanical Turk workers were provided with the premise sentence, and were asked

to write one definitely true sentence, one possibly true sentence, and one definitely false

sentence. The task design prompted workers to write hypothesis sentences that frequently

parallel the premise in structure and vocabulary, and therefore the semantic relationships

between premise and hypothesis are often limited to synonym/hyponym lexical substitution,

replacement of short phrases, or exact word matching. As a result, several recent papers

have demonstrated that, due to an uneven distribution of phenomena in the hypotheses, it is

possible to correctly classify the majority of sentence pairs in SNLI without actually looking

at the hypothesis [11, 12]. We discuss this further in Chapter 6.

2.2 APPROACHES

2.2.1 Feature-Based Models for Textual Entailment

Models for RTE were largely developed in the era of traditional NLP features, before

distributional representations became widely used. Due to the difficulty of entailment prob-

lems in RTE, most approaches involve a complex pipeline of NLP tools. The first step is

generally to extract a representation from the relevant sentences that will be used in the

following inference step. A simple representation could involve lexical relationships between

premise and hypothesis [13], identified via stemming and lemmatization preprocessing or

the application of a lexical resource like WordNet. A more complex representation might

be the structure produced by a syntactic parser, which could be used to identify common

constituent phrases or dependency relations between the premise and hypothesis. Another

potentially useful representation might be semantic role labels, which present a more ab-

stract view of a sentence than a syntactic parse, and could be used to link sentences that

don’t share the same syntactic structure.

Given some representation of the premise and hypothesis, these models then use an in-

ference step to judge whether the hypothesis follows from the premise or not. This decision

could be based on any number of metrics. One possibility is to use alignment to link the

premise and hypothesis: if enough of the hypothesis representation aligns to parts of the

premise representation, then the model decides that the hypothesis is entailed [14]. A dif-

ferent metric to use would be similarity, which could be defined according to any number

of similarity metrics, but in general would try to move beyond exact word matches between

the premise and hypothesis [13, 15]. Yet another approach is to use a strict inference step,

applying some kind of proof-based logical reasoning to the premise and hypothesis repre-
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sentations [16, 17, 18, 19]. Although inference through proofs is a compelling approach,

proof-based models are often brittle when applied to natural language applications.

2.2.2 The Addition of Distributional Representations

Many successful approaches to SICK use the same approach as RTE models, training a

model with hand-engineered features. However, models for SICK often include distributional

representations at the word or phrase level as additional features. The vast majority of

submissions to the SICK SemEval shared task competition included a vector-based semantic

representation. These systems included a wide range of other features as well, including topic

models, word overlap, syntactic features, and other types of lexical similarity [20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31].

A few approaches to SICK have focused on the application of logical representations

to textual entailment. Bjerva et al. [23] proposed a formal semantics-based model that

uses logical inference to predict entailment. Beltagy et al. [32] combined a logic-based

representation with a distributional approach to achieve a new state-of-the-art result on

SICK. Although SICK is generally considered too small to train neural network models, a

few recent works have applied convolutional neural networks [33] or GRUs [34] to textual

entailment classification and established a new state of the art.

In Chapter 4, we will describe our submission to the SICK shared task competition, which

involves applying denotational similarity to textual entailment [35].

2.2.3 Transition to Neural Networks

As SNLI generally does not contain named entities or other characteristics that might

encourage the use of other NLP tasks as a preprocessing step, most approaches to SNLI

have been end-to-end neural network models. These models do not involve an explicit feature

extraction step where a model extracts a pre-defined representation (e.g. syntactic parsing,

named entity recognition, or semantic role labeling) for each entailment item. Instead, most

models start with a dense representation for each word in the sentence, train a neural network

model that combines those word vectors into a sentence (or sentence pair) representation, and

use the final representation as input to an entailment classifier (e.g. a multilayer perceptron).

Bowman et al. [4] initially illustrated the effectiveness of sequence-based neural networks

with a model that applies an RNN [36] with an LSTM cell [37] to produce a sentence vector

representation for each premise and hypothesis in SNLI. Although Bowman et al.’s initial

neural network model achieved only comparable accuracy to a simple classifier trained on

9



unigram and bigram features, the neural entailment models that followed have far out-

stripped its performance. These models have mostly taken the same approach, producing

dense sentence encodings as an intermediate step for entailment classification. Many use

neural sequence models such as LSTMs [38, 39, 40, 41, 42], while others involve tree-based

representations [43, 44, 45, 41].

Another line of work applies neural attention in order to reweight the most relevant parts

of the premise and hypothesis sentences to improve entailment classification [46]. In some

cases, this approach only relies on minimal word ordering information and does not require

the full sentence to be passed through a sequence model [47].

In general, the architecture of these models could be easily applied to other sentence

pair classification tasks, and is not inherently constructed to model phenomena specific to

textual entailment alone. One downside of this is that there is often little discussion of what

these models are actually learning, though there have been some recent efforts to go beyond

reporting overall model accuracy [48]. On the other hand, these generic architectures may

produce sentence embeddings that are useful for other semantic tasks [40].

This thesis in some respects mirrors the progression of textual entailment models described

here. In Chapter 4 we describe a model for SICK that uses handcrafted features including

distributional vector representations. Following that model, we moved to develop neural

embedding models for entailment (Chapter 5 and Chapter 7). We will evaluate these models

on some of the datasets described in this chapter, while also seeking to go beyond them and

develop new, more challenging forms of evaluation that can tease out the differences between

different semantic representations.
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CHAPTER 3: THE DENOTATION GRAPH

Part of understanding language is the ability to connect language to the external world.

In addition to textual inference – identifying whether one piece of text implies the truth

of another – this can involve linking language to visual representations. This idea is the

motivation behind the denotation graph we introduced in Young et al. [9]. We constructed

the denotation graph from Flickr30K, an image-caption dataset that captures the range

of linguistic expressions that can be used to describe a single scene. The denotation graph

uses these image captions to generate a hierarchy of new descriptions that can be applied to

existing images. We define a new similarity metric, denotational similarity, that expresses

how often two captions in this hierarchy describe the same scene.

3.1 THE FLICKR30K IMAGE CAPTION CORPUS

Flickr30K is a corpus of 31,783 images of everyday scenes collected from Flickr1 and

158,915 captions we collected via crowdsourcing (Figure 3.1). The corpus extends the

Flickr8K dataset of Hodosh et al. [49]. Following their approach to collecting images

and captions, we asked 5 different annotators on the crowdsourcing platform CrowdFlower

to write a one-sentence description of each image. Since the annotators are not familiar with

the images, they write captions that describe what is happening in the scene, e.g. “Three

people are setting up a tent,” rather than the ungrounded personal captions that people write

for their own photos (“Our trip to the Olympic Peninsula”). Annotators also use a range

of specificity, so that a person playing a violin is described as both performing a musical

piece and bowing on a violin by different annotators. The variety of descriptions allows us

to identify phrases that are closely related in terms of their semantic grounding even though

they are not easily linked by surface-level syntactic rewrite rules.

Work in this chapter was first published in P. Young, A. Lai, M. Hodosh, and J. Hockenmaier (2014),
“From Image Descriptions to Visual Denotations: New similarity metrics for semantic inference over event
descriptions,” Transactions of the Association of Computational Linguistics, 2, 67–78 [9]. It is reprinted
here with the permission of the copyright holder.

1https://www.flickr.com/
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In an athletic stance, the woman awaits the tennis ball.
A girl wearing a white jacket about to swing a tennis racket.
A woman waits to hit a tennis ball over a net in front of an
empty arena.
Woman tennis player holding a red and white tennis racket
wearing capri pants.
A woman wearing a hooded sweatshirt and black pants with a
ponytail playing tennis.

Four basketball players in action.
Young men playing basketball in a competition.
Four men playing basketball, two from each team.
Two boys in green and white uniforms play basketball with
two boys in blue and white uniforms.
A player from the white and green high school team dribbles
down court defended by a player from the other team.

Figure 3.1: Two images from Flickr30K with their five descriptive captions.

3.2 DEFINING THE DENOTATION GRAPH

3.2.1 Denotational Semantics

Truth-conditional semantics is a theory of meaning that proposes that the meaning of a

natural language sentence is the set of conditions under which the sentence is true. Under

this theory, sentences s1 and s2 have the same meaning if their truth-conditions specify

that s1 and s2 are always true under the exact same circumstances. For example, “The

man bought an expensive jacket” and “The man bought a pricy coat” have the same truth

conditions.

We can define entailment in these terms as well: if s1 entails s2, then for every situation

in which s1 is true, s2 is true as well. For example, “A woman swings her racket to hit the

tennis ball over the net” entails “A woman is playing tennis.”

Another way to discuss this theory is to say that the meaning of a sentence, or its deno-

tation, is the set of possible worlds or situations in which the sentence is true [50, 51, 52].

We can then compare the meaning of two sentences by comparing their denotations: if the

set of possible worlds where s1 is true is the same as the set of possible worlds where s2 is

true, then s1 and s2 have the same meaning; they are synonymous. Similarly, if s2 is true in

every possible world where s1 is true, then s1 implies or entails s2.

12



3.2.2 Visual Denotation of Image Captions

We propose to instantiate denotational semantics’ abstract notion of possible worlds with

concrete sets of images, specifically the Flickr30K images. On the language side, we

consider the visually descriptive Flickr30K captions that are linked to these images. The

interpretation function J·K maps a sentence s to its visual denotation JsK, which we define to

be the set of images i ∈ U , the universe of possible worlds, that s describes:

JsK = {i ∈ U |s is a truthful description of i} (3.1)

Similarly, we map nouns and noun phrases to the set of images that depict those objects,

and verbs and verb phrases to the set of images that depict those events. For example, the

denotation of the phrase man is the set of images in the corpus that show a man, and the

denotation of the phrase person is rock climbing is the set of images that depict a person

rock climbing.

We can easily identify entailment relations via a partial ordering over descriptions: if s

(e.g. “a poodle runs on the beach”) entails s′ (e.g. “a dog runs”), then the denotation of s

is a subset of the denotation of s′ (JsK ⊆ Js′K). We can say that the more general phrase s′

subsumes the more specific s.

However, while a few Flickr30K captions may naturally subsume other captions, but this

is not true of most of the corpus. For example, annotators may have written captions like “A

poodle is running” and “A dog is running” about the same image, but not the caption “An

animal is running.” Therefore, in order to produce a more complete subsumption hierarchy,

we generate more generic descriptions from the caption sentences by applying several simple

syntactic and lexical operations that preserve upward entailment. These operations preserve

the truth of the original description s such that the resulting more generic description s′ is

entailed by s.

The result is the denotation graph, a subsumption hierarchy over phrases (see Figure 3.2).

Each node in the denotation graph corresponds to a phrase s, which has an associated

denotation JsK, the set of images that correspond to the original captions from which this

phrase can be derived. Any phrase in the graph entails its parent phrases, so the denotation

of a node (e.g. woman jog on beach) is always a subset of the denotation of any of its

ancestors (e.g. woman jog, person jog, jog on beach, or beach).
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child play  
soccerchild play guitar      

child in red play  
on beach

girl play  
on beach

child play  
on beachgirl play  

girl play  
on playground

child play

Figure 3.2: The denotation graph is a subsumption hierarchy over phrases associated with
images.

3.2.3 Denotational Similarities

We can use visual denotations to measure the symmetric similarity of two phrases or the

conditional probability of one phrase given another. We can quantify these relationships

even between phrases that are not directly connected by edges in the graph.

The denotational probability of a phrase s in the denotation graph, PJK(s; graph), is a

Bernoulli random variable that corresponds to the probability that a randomly drawn image,

out of all the images used to generate the graph, can be described by s. For simplicity, we

refer to this probability as PJK(s) in this thesis. Given a denotation graph over N images, we

can compute the denotational probability of an expression s with a denotation of size |JsK|
as:

PJK(s) =
|JsK|
N

(3.2)

The joint probability of two expressions x and y expresses how likely it is that a situation

can be described by both x and y:

PJK(x, y) =
|JxK ∩ JyK|

N
(3.3)
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We can define the conditional probability PJK(x|y) as the probability that a scene can be

described by x if we know that y is a valid description of the same scene:

PJK(x|y) =
PJK(x, y)

PJK(y)
(3.4)

We can also compute the normalized pointwise mutual information (PMI) between JxK
and JyK:

pmiJK(x, y) =
log
(

PJK(x,y)

PJK(x)PJK(y)

)
− log

(
PJK(x, y)

) (3.5)

Both PJK(x|y) and pmiJK(x, y) are similarity metrics that express the denotational overlap

between two phrases: the likelihood that x and y are both reasonable description of the same

scene. In this thesis, we will use the term denotational similarity somewhat indiscriminately

to refer to either PJK(x|y) or pmiJK(x, y), but we will clearly state which metric we are using

for each experiment.

3.3 CONSTRUCTING THE DENOTATION GRAPH

The construction of the denotation graph consists of the following steps: preprocessing and

linguistic analysis of the captions, identification of applicable transformations, and repeated

application of those rules to each caption in order to generate the graph itself. This section

contains a high-level description of these steps; see Young’s thesis [53] for additional details.

The code to generate a denotation graph from a set of captions, including the modifications

we describe in Section 3.3.6, is available at https://github.com/aylai/DenotationGraph.

3.3.1 Preprocessing

We apply the Linux spell checker; the OpenNLP tokenizer, POS tagger, and chunker

(http://opennlp.apache.org); and the Malt parser [54] as preprocessing steps for graph

generation. Since the vocabulary of Flickr30K captions differs significantly from the data

these tools are trained on, we resort to a number of heuristics to improve the resulting

analyses.

After spell-checking, we normalize some common words and compounds that have multiple

spelling variations, e.g. barbecue (barbeque, BBQ), gray (grey), waterski (water ski), brown-

haired (brown haired).
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Next, we tokenize the captions using the OpenNLP tokenizer. The OpenNLP POS tagger

makes a number of systematic errors on our corpus, such as mis-tagging verbs as nouns. We

correct these errors by applying a few deterministic rules (e.g. climbs is never a noun in our

corpus, stand is a noun if it is preceded by vegetable but a verb when preceded by a noun

that refers to people). These fixes apply to 17% of the data (27,784 captions).

We use the OpenNLP chunker to produce a shallow parse for each caption. Again, we apply

some systematic fixes to address errors in 28,587 captions. We identify heads, determiners

and prenominal modifiers in each NP chunk. The head may consist of more than one token if

WordNet (or our hypernym lexicon, described below) contains an entry corresponding to the

whole phrase (e.g. little girl). Finally, we use the Malt parser to identify subject-verb-object

dependencies.

Since some heuristics require us to identify entity types, we also developed a lexicon of the

most common entity types in our domain (people, clothing, bodily appearance (e.g. hair or

body parts), containers of liquids, food items, and vehicles). The process of developing this

lexicon is described in Young’s thesis [53] (Section 2.4.8 and Section 3.5).

3.3.2 Hypernym Lexicon

We use WordNet [55] to construct a hypernym lexicon that allows us to replace head

nouns with more generic terms. We only consider hypernyms that occur with sufficient fre-

quency in the original captions (valid hypernyms of adult include person but not organism).

We consider a single WordNet sense for each noun across the whole corpus, which works

reasonably well due to the concreteness of the nouns in our corpus. In order to identify the

correct WordNet sense, we use the heuristic cross-caption coreference algorithm of Hodosh

et al. [56] to identify coreferent NP chunks among the original five captions of each image,

and then apply a greedy voting algorithm to map each mention to a single WordNet sense.

The sense determines the relevant hypernyms for that noun.

3.3.3 Caption Normalization

In order to increase the recall of the denotations we capture, we drop all punctuation

marks and lemmatize nouns, verbs, and adjectives that end in -ed or -ing before generating

the denotation graph.

We include a few normalization exceptions in order to distinguish between frequently

occurring homonyms where the noun is unrelated to the verb. We change all forms of the

verb dress to dressed, all forms of the verb stand to standing and all forms of the verb park
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to parking.

Finally, we drop sentence-initial there/here/this is/are (as in “there is a dog splashing in

the water”), and normalize the expressions in X and dressed (up) in X (where X is an

article of clothing or a color) to wear X. We allow plural determiners two and three, and

reduce anything higher to some. We also drop all singular determiners except no.

3.3.4 Transformation Rules

We define a set of transformation rules: syntactic and lexical operations that produce a

more generic description s′ given some string s. These rules can drop optional material,

extract simpler constituents, or perform lexical substitutions. The resulting generic descrip-

tion should still correctly describe the image about which the original caption was written.

These rules are used to create edges in the graph between s and s′. All transformation rules

are repeatedly applied to each caption to obtain the simplest possible phrases, which are the

root nodes in the denotation graph.

Drop Articles

We drop articles in all noun phrases:

the woman → woman

We do not drop articles no (e.g. from man wearing no shirt) or each (e.g from each other).

Drop Noun Phrase Modifiers

We drop modifiers from noun phrases:

red shirt → shirt

When there are multiple modifiers for a single head in the form adj1 adj2 noun, we drop

each modifier separately only if the strings adj1 noun and adj2 noun both occur elsewhere

in the corpus. This produces white building and stone building from the noun phrase white

stone building. However, given the noun phrase ice hockey player, this rule will produce only

hockey player and not ice player.
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Replace Nouns with Hypernyms

We use our hypernym lexicon to replace noun phrase heads with more generic terms:

red shirt → red clothing

When a single noun has more than one hypernym, we apply both transformations, which

results in two parent nodes that each have an edge to a shared child node:

man → male

man → adult

We only allow the hypernym transformation after any age-based modifiers have been

removed: toddler can be replaced with child, but not older toddler with older child.

Drop Other Modifiers

We drop adverbs from VP chunks as well as ADVP chunks:

run quickly → run

We also drop prepositional phrases (a preposition followed by a possibly conjoined NP

chunk) under several conditions. The preposition must be locational (in, on, above, etc.),

directional (towards, through, across, etc.), or instrumental (by, for, with).

walk on the sidewalk → walk

If the preposition is part of a phrasal verb (according to a predefined corpus-specific list),

then we drop only the preposition or both the preposition and the direct object:

climb up a mountain → climb a mountain

walk down a street → walk

We also drop all wear NP constructions:

man wearing red → man
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Handle “X of Y” Cases

For noun phrases that occur in the form X of Y, most can be replaced with either X or

Y and remain a true description, as in the sentence “A man holding a glass of beer”:

glass of beer → glass

glass of beer → beer

There are some exceptions, such as the phrase body of water, which can only be replaced

with water, and expressions in the form a kind/type/sort of X, which we replace with X.

Handle “X or Y” Cases

When two noun phrases are joined with or, we allow both phrases to replace the entire

string:

man or woman → man

man or woman → woman

Handle VP1-to-VP2 Cases

We replace VPs of the form X to Y with both X and Y if X is a movement or posture:

jump to catch → jump

jump to catch → catch

Otherwise we distinguish between cases we can only replace with X (because Y has not

started yet):

wait to jump → wait

and those we can only replace with Y :

seem to jump → jump
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Extract Simpler Constituents

Any noun phrase or verb phrase also corresponds to a node in the graph (after dropping

the rest of the phrase):

man standing with a backpack → man

man standing with a backpack → standing

man standing with a backpack → backpack

Finally, we use the Malt dependencies to identify subject-verb-object chunks that corre-

spond to simpler sentences:

man look up while hiking → man look up

man look up while hiking → man hiking

The resulting sentences will be further simplified by extracting noun phrases (man, which

can be further simplified via hypernyms to male, adult, and person) and verb phrases (look

up, hiking).

3.3.5 Graph Generation

The naive approach to graph generation would be to generate all possible strings for each

caption. However, this would produce far more strings than could be processed in a rea-

sonable amount of time, and most of these strings would have uninformative denotations

consisting of a single image. To make graph generation tractable, we use a top-down algo-

rithm that generates the graph from the most generic (root) nodes, and stops once we reach

a node that has a singleton denotation (Figure 3.3).

We start by identifying the rules that can apply to each original caption and use them to

reduce each caption c as much as possible (SimplifyCaption). The resulting maximally

generic strings are the root nodes of the graph, and we add them to Captions[c], the list of

strings produced by each caption. When a root node string r has been produced by two

different captions, we add r to the queue of nodes to be expanded.

While the queue is not empty, we remove a new node to be expanded. Each node string s

in the queue is associated with a particular caption c which has its own set of transformations

(Rules[c]). ExpandNode produces a set of child node strings that result from all applicable

transformations of s with respect to c. For example, expanding node run with respect to

the caption “A woman runs along the shore” will produce the child nodes woman run and
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function GenerateGraph(ImageCorpus)
Queue ← ∅
Captions ← ∅
Edges ← ∅
Rules ← ∅
for all c ∈ ImageCorpus do

Rules[c], RootNodes ← SimplifyCaption(c)
for all r ∈ RootNodes do

Captions[r] ← Captions[r] ∪ {r}
if |Captions[r]| = 2 then

for all c′ ∈ Captions[r] do
push(Queue, 〈c′, r〉)

else if |Captions[r]| > 2 then
push(Queue, 〈c, r〉

while ¬ empty(Queue) do
(c, s)← pop(Queue)
children ← ExpandNode((s, Rules[c]))
for all s′ ∈ children do

Captions[s′] ← Captions[s′] ∪ {s′}
Edges ← Edges ∪ {〈s, s′〉}
if |Captions[s′]| = 2 then

for all c′ ∈ Captions[s′] do
push(Queue, 〈c′, s′〉)

else if |Captions[s′]| > 2 then
push(Queue, 〈c′, s′〉

return Captions, Edges

Figure 3.3: Denotation graph generation algorithm

run along the shore. However, expanding run with respect to a different caption “A horse

runs in a race” will produce a different set of child nodes: horse run and run in a race.

For each child string s′, we record an edge between s and s′, and add s′ to our list of

generated strings. If s′ has been generated by at least two captions, we add it to the queue

to be further expanded. If not, expansion will pause at this node until a second caption

generates s′.

3.3.6 Changes to the Graph Generation Process

In the course of this thesis, we made some modifications to the first version of the graph

generation algorithm as described by Young et al. [9]. Below, we describe the changes that

comprise our updated algorithm.
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Figure 3.4: Left: the original denotation graph algorithm did not produce nodes correspond-
ing to prepositional phrases. Right: we add prepositional phrase nodes as an intermediate
node to the prepositional object node.

Adding Prepositional Phrase and Prepositional Object Nodes

The original graph algorithm allowed three types of nodes: entities (nouns or noun

phrases), verb phrases (which may include direct objects), and sentences (all other nodes).

For the purpose of the work in this thesis, we introduced prepositional phrase nodes, which

can capture shared scene information, as shown in Figure 3.4.

Under the previous algorithm, a node run on beach was connected directly to the prepo-

sitional object beach via a SENT edge (which extracts nouns that are not subjects or direct

objects), and there was no node for the phrase on beach. We added a fourth node type,

prepositional phrases, to serve as an intermediate node connected to the prepositional ob-

ject. So now, run on beach is a child node of PP node on beach via a new PP-SENT edge,

and on beach is a child node of beach via a SENT edge. We reasoned that prepositional

phrases often indicate salient scene information, and knowing that two images share the

same prepositional phrase, not just the same noun phrase, provides additional signal.

Expanding the Allowed Constituents

The second change that we made to the graph generation process was to expand the

types of constituents that can be extracted from a single sentence. The first version of

the algorithm only allowed nodes corresponding to constituents as defined by the Penn

Treebank annotation guidelines [57]. For a simple sentence consisting of subj verb dobj,

we only generated parent nodes according to the rules S → NP VP and VP → verb NP. As

a result, a node like person eat pizza has parent nodes person and eat pizza, and eat pizza

has parent nodes eat and pizza. However, the subject and verb were not allowed to combine

before the direct object was added to the verb, so the node person eat was disallowed for

this sentence.
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Figure 3.5: Left: the original denotation graph algorithm did not produce nodes correspond-
ing subj + verb if the verb had a direct object. Right: we allow sentence nodes to drop
the direct object, producing intermediate nodes like person eat.

We reasoned, however, that it is semantically informative in many cases to consider subj

+ verb as a constituent. For example, a new sentence person eat pizza may contain a direct

object (pizza) that we have not seen before. However, we may still be able to say something

about the denotational relationships between this sentence and other observed sentences

about people eating if we can identify the common constituent person eat.

Therefore, we generate nodes that correspond to dropping the direct object to get subj

+ verb constituents. This results in a subgraph structure like the example in Figure 3.5.

Simplifying Transformation Rules

The original graph algorithm contained two types of rules: expansion rules and reduction

rules. Under this approach, each caption started with a single maximally general sentence

node, e.g. person sit. From this sentence node, reduction rules extracted the nouns and

verbs from this sentence to produce parent nodes person and sit. In the other direction,

expansion rules produced more specific strings in this caption, e.g. adult sit, person in blue

sit, person sit outside.

Keeping track of the two directions of rewrite rules required a nontrivial amount of book-

keeping, so we modified the graph generation algorithm to express all transformation rules

as expansions that produce a more specific phrase from a more general one. This simplifies

the algorithm considerably. A side effect of this modification is that the expansion process

for each caption now starts at a set of root nodes, all nouns or verbs, that constitute the

most general phrases in the graph. So, rather than starting graph generation from a simple

sentence, person sit, we start from two root nodes, person and sit, which both produce a

shared child node person sit via expansion rules. All the strings for this caption can be

produced starting from these two root nodes by expanding the graph downwards to more

specific strings.
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Denotation Size # captions Example strings
Old New

|JsK| ≥ 1000 161 232 person, ball, red shirt, group of adult, adult work,
person play instrument

|JsK| ≥ 100 1,921 2,887 bicycle, guitar, mountain, dish
|JsK| ≥ 10 22,683 33,940 produce, pillar, adult with helmet, woman with

blue shirt
|JsK| ≥ 5 53,341 57,631 white dog with brown spot, yacht, two scuba

diver, mom with child
|JsK| ≥ 2 230,811 259,712 woman with short hair and clothing, two adult

at work, pyrotechnics, squid
|JsK| ≥ 1 1,749,096 2,889,013 adult dressed for colder weather, bare pine table,

rabbit costume, thick cord

Table 3.1: Distribution of the denotation size of phrases in the Flickr30K denotation
graph. Old is the count from the original graph [9]. New is the count from the modified
graph algorithm as described in this thesis.

3.4 PROPERTIES OF THE GRAPH AND RESULTING SIMILARITIES

3.4.1 Size and Coverage

The denotation graph contains 2,889,013 captions, 259,712 of which describe more than

a single image. Table 3.1 shows how denotation size is distributed over the captions. Old

refers to the graph generated by the original algorithm [9], while New refers to the graph

generated by the algorithm described in this thesis. The new graph contains 232 captions

that describe each over 1,000 images. In addition to general nouns such as person, these

captions also include simple sentences such as woman standing, adult work, person walk

street, or person play instrument.

Since the graph is derived from the original captions by simple syntactic operations, the

denotations it captures are likely to be incomplete. For example, Jsoccer playerK contains

251 images, Jplay soccerK contains 234 images, and Jsoccer gameK contain 119 images. It is

probably the case that most of the soccer player images involve a soccer game or playing soc-

cer, but some of those associations are missing from the graph. We also have not attempted

to identify word order variation (stick tongue out vs. stick out tongue) or context-specific

equivalent prepositions (look into mirror vs. look in mirror), let alone synonyms. However,

despite this brittleness, the graph expresses a large number of semantic associations.
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3.4.2 Denotational Similarity Examples

Having generated a denotation graph from Flickr30K captions, we can now compute two

types of denotational similarities between any two phrases x and y: the pointwise mutual

information pmiJK(x, y) (Equation 3.5) and the conditional probability PJK(x|y) (Equation

3.4). The following examples show that denotational similarities find events that are closely

related by entailment, rather than merely topically related:

PJK(x|y) x y

0.962 sit eat lunch

0.846 play guitar strum

0.811 surf catch wave

0.800 ride horse rope calf

0.700 listen sit in classroom

If someone is eating lunch, it is likely that they are sitting, and people who sit in a

classroom are likely to be listening to somebody. These entailments can be very precise:

walk up stair entails ascend, but not descend ; the reverse is true for walk down stair :

PJK(x|y) x = ascend x = descend

y = walk up stair 0.32 0.0

y = walk down stair 0.0 0.31

Pointwise mutual information captures paraphrases as well as closely related events: peo-

ple look in a mirror when shaving their face, and baseball players may try to tag someone

who is sliding into base:

pmiJK(x, y) x y

0.835 open present unwrap

0.826 lasso try to rope

0.791 get ready to kick run towards ball

0.785 try to tag slide into base

0.777 shave face look in mirror

We can compare denotational similarities to distributional similarities that are computed

over the same corpus. (In Section 3.5.1, we explain how we compute distributional similarities

on Flickr30K data.) We look at the expressions that are most similar to play baseball or

play football according to the denotational pmiJK and the distributional similarities (Σ).

Denotational similarity finds actions that are part of the same sport, while distributional

similarity finds other high-level events that are similar to play baseball or play football :
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play baseball

pmiJK Σ

0.674 tag him 0.859 play softball

0.637 hold bat 0.782 play game

0.616 try to tag 0.768 play ball

0.569 slide into base 0.741 play catch

0.516 pitch ball 0.739 play cricket

play football

pmiJK Σ

0.623 tackle person 0.826 play game

0.597 hold football 0.817 play rugby

0.545 run down field 0.811 play soccer

0.519 wear white jersey 0.796 play on field

0.487 avoid 0.773 play ball

3.5 EVALUATING DENOTATIONAL SIMILARITIES

In this section, we present two different evaluations comparing the utility of denotational

and distributional similarities.

3.5.1 Approximate Textual Entailment

In order to evaluate the utility of denotational similarities, we apply them to an approxi-

mate entailment task (ATE). ATE is loosely modeled after the Recognizing Textual Entail-

ment problem [2] and consists of deciding whether a simplified caption h (the hypothesis)

can describe the same image as a set of four captions P = {p1, ..., p4} (the premises).

Data

We generate ATE items 〈P, h〉 as follows: given an image, a random subset of four of its

captions forms a set of premises. The hypothesis is either a short verb phrase or sentence

corresponding to a node in the denotation graph, and may or may not come from the same

image. By focusing on short hypotheses, we minimize the possibility that the hypotheses

contain extraneous details that cannot be inferred from the premises. Positive examples are
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generated by choosing a node h as the hypothesis and an image i ∈ JhK such that exactly

one caption of i generates h. We use the other four captions of i as the set of premises (since

they do not trivially entail h through the graph generation transformations, denotational

approaches should not have an unfair advantage over distributional methods). Negative

examples are generated by choosing a node h as the hypothesis and randomly selecting four

of the captions of an image i 6∈ JhK.
The training items are generated from the captions in the training split of Flickr30K,

and the test items are generated from the disjoint test split. The VP dataset contains 290,000

training items and 16,000 test items, while the S dataset contains 400,000 training items and

22,000 test items. In each set, half of the items are positive and half are negative.

Denotational Similarity Features

We compute denotational similarities over node pairs in a denotation graph generated

from the Flickr30K training split images. We only consider pairs of nodes 〈n, n′〉 if their

denotations contain at least 10 images each and their intersection contains at least two

images.

To map an item 〈P, h〉 to denotational similarity features, we represent the premises as

the set of all nodes P that are ancestors of the premise captions. A sentential hypothesis is

represented as a set of nodes H = {hS, hsubj, hVP, hverb, hdobj} that correspond to the sentence

as well as its subject, verb phrase, verb, and direct object. A VP hypothesis is represented

by nodes H = {hVP, hverb, hdobj}.
Given the premise and hypothesis node sets, we compute global similarity features over

all constituent types as well as constituent-specific features. We compute both types of

denotational similarity (pmiJK(h, p) and PJK(h|p)) as our features. For the global features, we

compute max and sum features over all node comparisons 〈h, p〉 such that for p ∈ P , h ∈ H:

sum =
∑
p,h

sim(h, p) (3.6)

max = max
p,h

sim(h, p) (3.7)

The constituent-specific features are computed similarly, taking the sum and max over all

node comparisons 〈hx, p〉 where hx is a node in H of constituent type x. Finally, we include

node-specific constituent-type features sumx,s and maxx,s for each constituent string s.
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Compositional Distributional Similarity Features

For distributional similarity features, we first compute word vectors on the Flickr30K

captions as well as over the British National Corpus (BNC) and Gigaword [58] corpus. For

each corpus, we define the context words to be the 1000 most frequent words. Then we

map each word w that appears at least 10 times in the corpus to a vector of the positive

normalized pointwise mutual information scores between w and the context words.

We consider multiple definitions of context in order to provide a fairer comparison be-

tween denotational and distributional similarities. First, Cap vectors use a more traditional

definition of distributional context: w occurs in the context of w′ if they appear in the same

sentence. Img vectors are more comparable to denotational similarities: w and w′ co-occur

if they occur in any captions that describe the same image. Hyp vectors are computed

like Img vectors after augmenting the Flickr30K captions with hypernyms. Finally, All

vectors include distributional vector similarity features computed on BNC and Gigaword.

We use two standard compositional baselines to combine the word vectors into a single

sentence vector: addition (sΣ = w1 + ... + wn, which can be interpreted as a disjunctive

operation), and element-wise (Hadamard) multiplication (s∏ = w1 � ...� wn, which can be

viewed as a conjunctive operation). In both cases, we represent the premise set as the sum

of all four caption vectors p = p1 + ...+ p4. This gives two compositional similarity features:

Σ = cos(pΣ, hΣ), and Π = cos(pΠ, hΠ).

Experimental Results

For each model, we train a binary logistic regression classifier with Mallet [59]. In addi-

tion to the features described above, each model contains bag-of-words features expressing

the word overlap between the premises and the hypothesis (after expanding the premises

with our hypernym lexicon).

Table 3.2 shows the test accuracy of our models on the VP and S node tasks. The

denotational models solidly outperform all of the models trained on distributional features.

For the distributional similarities, we observe that the accuracy of the distributional models

tends to increase when we use the denotational definition of context (Img), add hypernyms

(Hyp), and finally add information from other corpora (All). The Hyp column shows that

the denotational metrics clearly outperform any distributional metric when both have access

to the same information. Although the distributional models benefit from the BNC and

Gigaword-based similarities (All), their performance is still below that of the denotational

models.
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VP task S task
Cap Img Hyp All Cap Img Hyp All

Distributional Π 68.4 70.5 70.5 70.3 75.3 76.6 77.1 77.3
Distributional Σ 67.8 71.4 71.6 71.4 76.9 78.1 79.1 79.2
Π, Σ 69.8 72.7 72.9 72.7 77.0 78.6 79.3 79.6

pmiJK 74.9 80.2
PJK 73.8 79.5
pmiJK, PJK 75.5 81.2

Table 3.2: Test accuracy on Approximate Entailment. Denotational features (pmiJK, PJK)
outperform distributional features (Π, Σ).

3.5.2 Semantic Textual Similarity

We also evaluate the effectiveness of denotational similarities on the SemEval 2012 Seman-

tic Textual Similarity (STS) task [60], which contains 1500 sentence pairs from the MSR

Video Description Corpus [61]. The goal of this task is to score the relatedness of two

sentences from 0 (unrelated) to 5 (equivalent).

Denotational Similarity Features

Since the STS task is symmetric, we only consider pmiJK similarities. Similar to the previ-

ous experiment, we again represent each sentence with five types of constituents. However,

these sentences are longer than the hypotheses in ATE, so we can rarely map them to a single

complete sentence node and they often contain other noun phrases in addition to the subject

and object. Therefore, we replace the sentence node feature with a noun phrase constituent

feature: S = {ssubj, sVP, sverb, sdobj, sNP}. Each constituent type may contain multiple nodes

(especially the NP nodes), and is divided into two groups: nodes that appear in the original

sentence, and ancestors of those nodes (which contain hypernym information or dropped

modifiers, etc). We include features that compare constituents of the same type as well as

constituents of any type. These denotational features are the same ones we use in Chapter

4; Section 4.2.3 contains more details as to how these features are computed.

Experimental Results

We use a state-of-the-art model, DKPro Similarity [62], which consists of a log-linear

regression model trained on multiple text features (word and character n-grams, longest

common substring and longest common subsequence, Explicit Semantic Analysis [63], and
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Features Pearson r

DKPro 0.868
+Σ,Π 0.880
+pmiJK 0.888
+Σ,Π, pmiJK 0.890

Table 3.3: Performance on the STS MSRvid task: DKPro Similarity plus compositional (Σ,
Π) and/or denotational similarities (pmiJK) from Flickr30K.

Resnik’s WordNet-based similarity [64]). We investigate the effects of adding distributional

and denotational similarity features to this system.

Table 3.3 shows experimental results for four models: We compare the off-the-shelf DKPro

Similarity model to versions where we appended different Flickr30K features. We either

include the distributional features (Σ, Π) from Section 3.5.1, the constituent-based pmiJK de-

notational features, or both. Models are evaluated according to the Pearson correlation r of

their predicted similarity scores to the human-annotated ones. We see that the denotational

similarities outperform the distributional similarities. Even after adding distributional simi-

larity features, the bulk of the improvement comes from the denotational similarity features.

3.6 RELATED WORK

The most similar line of work to the denotation graph is Berant et al. [65]’s entailment

graph. Entailment graphs contain nodes that correspond to propositional templates, a binary

template where at least one of the two arguments is a variable (e.g. X treats Y or X treats

nausea). An edge (u, v) in the entailment graph means that template u entails template

v. For example, X is diagnosed with asthma entails X suffers from asthma. Historically,

textual entailment systems required knowledge of entailment patterns, which specify an

entailment relation between two fragments of text, and some of which can be encoded as these

propositional templates. Entailment graphs have the potential to facilitate the acquisition of

entailment rules for predicates while enforcing other relations between rules, e.g. transitivity

of entailment.

Berant et al.’s goal is to learn focused entailment graphs, concerning a single target concept

(e.g. nausea), from data. They present an approach that learns the edges of an entailment

graph given a set of propositional templates. The propositional templates are extracted from

a large corpus and labeled as positive or negative examples of entailment using WordNet

hypernym information. These examples are used to train an entailment classifier, which
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produces a score for each possible entailment graph edge (u, v). Finally, they apply global

restraints to produce the optimal graph given the nodes and the potential edges.

The entailment graph resembles our denotation graph in that the nodes are connected

by directed edges that indicate an entailment relationship. However, the denotation graph

differs from the entailment graph in two ways. First, in addition to directed entailment edges,

the denotation graph also expresses graded entailment (denotational conditional probability),

which is defined extensionally in terms of the images at each node. This allows us to

express that one phrase x is reasonably likely but not guaranteed to be true given y, based

on the image overlap. Second, the nodes in the entailment graph correspond to generic

propositional templates (X treats Y ), while nodes in our denotation graph correspond to

complete propositions (a dog runs).

Kotlerman et al. [66] extend entailment graphs to handle complete natural language texts

instead of predicates, so they consider full propositions like our denotation graph does.

These textual entailment graphs still differ from the denotation graph in that they lack the

extensional image representation that allows us to express similarity between unconnected

nodes in the graph. Kotlerman et al. present an evaluation for merging paraphrase or near-

paraphrase nodes in their graph, which is a step that might prove useful for improving the

denotation graph. However, they only present this evaluation on a very small dataset (29

graphs with a total of 756 nodes).
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CHAPTER 4: A TEXTUAL ENTAILMENT MODEL WITH
HANDCRAFTED DENOTATION FEATURES

In the previous chapter, we defined denotational similarities and applied them as features

for an approximate textual entailment task. We now apply these denotational similarity

features to a real textual entailment dataset. In this chapter, we describe the model we

developed for the SemEval 2014 shared task [8] on textual entailment and semantic related-

ness. Our model included denotational similarity features as well as other features based on

distributional similarity and alignment. We use this model to compare the effectiveness of

denotational features to other handcrafted features. We also analyze the SICK dataset and

their approach to building a textual entailment dataset.

4.1 A DATASET FOR SEMANTIC SIMILARITY AND TEXTUAL
ENTAILMENT

The Sentences Involving Compositional Knowledge (SICK) dataset [3] was constructed to

evaluate textual entailment and semantic relatedness models without requiring the kind of

world knowledge previously required for these tasks. SICK was used for the SemEval 2014

Task 1 competition to evaluate systems on textual entailment and semantic relatedness.

4.1.1 Dataset Construction

The SICK dataset contains 9927 English sentence pairs (4500 train, 500 development,

4927 test), each annotated with a semantic relatedness score and a textual entailment label.

The authors started with sentences from an image description dataset, Flickr8K [49], and

a video description dataset, the MSR Video Description Corpus subset of the SemEval 2012

STS dataset. They simplified and transformed these sentences according to a small set of

syntactic and lexical transformation rules, and then randomly paired the resulting sentences

to create sentence pairs. Each sentence pair is labeled with a textual entailment relation

and a semantic relatedness score.

Work in this chapter was first published in A. Lai and J. Hockenmaier (2014), “Illinois-LH: A Deno-
tational and Distributional Approach to Semantics,” in Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), 329–334 [35]. It is reprinted here with the permission of the copyright
holder.
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Premise Hypothesis TE SR

A man is jumping into an empty pool. There is no biker jumping in the air. N 1.2
Two angels are making snow on the
lying children.

Two children are lying in the snow and
are making snow angels.

N 2.9

The young boys are playing outdoors
and the man is smiling nearby.

There is no boy playing outdoors and
there is no man smiling .

C 3.6

The brown horse is near a red barrel
at the rodeo.

The brown horse is far from a red barrel
at the rodeo.

C 3.6

A person is riding the bicycle on one
wheel.

A man in a black jacket is doing tricks
on a motorbike.

N 3.7

Two groups of people are playing
football.

Two teams are competing in a football
match.

E 4.7

A person in a black jacket is doing
tricks on a motorbike.

A man in a black jacket is doing tricks
on a motorbike.

E 4.9

Table 4.1: SICK sentence pair examples with gold textual entailment and semantic related-
ness labels.

4.1.2 Annotation

Each sentence pair in SICK was annotated by multiple non-expert annotators via a Crowd-

Flower crowdsourcing task. Table 4.1 contains some examples.

Textual entailment The entailment class label is the majority of five human judgments.

Annotators labeled each sentence pair as entailment, contradiction, or neutral to

indicate whether sentence B is true, false, or neither given the information in sentence A.

Models are evaluated according to overall accuracy.

Semantic relatedness The goal of semantic relatedness, also known as semantic textual

similarity [60], is to score the relatedness of two texts on a continuous scale. In contrast to

a classification task like paraphrase recognition or textual entailment, semantic relatedness

can express on a graded scale that sentences are more or less topically related. In SICK, the

semantic relatedness score is a real number between 1 and 5 that is the mean of 10 human

ratings. A score of 1 means that the sentences are completely unrelated and a score of 5

means that the sentences are very related, perhaps even paraphrases. Models are evaluated

using the Pearson correlation between the predicted and gold scores.
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4.2 SENTENCE PAIR COMPARISON FEATURES

Our model combines various sources of semantic similarity, including distributional sim-

ilarity features, denotational similarity features, and alignment features based on shallow

syntactic structure, to model both semantic relatedness and textual entailment. In this

section, we define these features.

4.2.1 Negation

In SICK, the contradiction class is often marked by explicit negation, for example:

Premise: The man is stirring the sauce for the chicken.

Hypothesis: The man is not stirring the sauce for the chicken.

⇒ contradiction

We define a binary feature that indicates whether either sentence contains not, no, or

nobody.

4.2.2 Word Overlap

We define a word overlap feature:

overlap =
|W1 ∩W2|

1
2

(len (s1) + len (s2))
(4.1)

where Wi is the set of word types that appear in sentence si, and the denominator is the

average sentence length. We compute the word overlap after lemmatizing the sentences and

removing stopwords.

4.2.3 Denotational Constituent Similarity

As we stated in Chapter 3, denotational similarity is intended to capture entailment-

like relations between events. We include denotational similarity features in our model to

evaluate that hypothesis. As with the STS-2012 task (Section 3.5.2), we cannot expect

that any given sentence in SICK will have been observed in Flickr30K or the resulting

denotation graph. Therefore, we decompose each sentence into constituent phrases and use

denotational similarity to compare multiple phrases between the premise and the hypothesis.

We identify five types of constituents for each sentence: subject noun phrases, verbs, verb

phrases, direct object noun phrases, and other noun phrases. Following the same procedure
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Constituent Decomposition

s1 = A player is throwing the ball.
subj(s1) = {player} anc(subj(s1)) = {person}
vp(s1) = {throw ball} anc(vp(s1)) = {throw}
verb(s1) = {throw}
dobj(s1) = {ball}

s2 = Two teams are competing in a football match.
subj(s2) = {two team} anc(subj(s2)) = {team}
vp(s2) = {compete in football match} anc(vp(s2)) = {compete, compete in match}
verb(s2) = {compete}
dobj(s2) = {football match} anc(dobj(s2)) = {match}

Feature Constituent Type s1 constituent s2 constituent

leaf sim subj player two team
verb throw compete
dobj ball football match

mix sim subj person two team
vp throw compete in football match

anc sim subj person team
verb throw compete

all sim – player compete in match
– throw ball football match
– ball team

Table 4.2: Examples of constituent comparisons based on the feature template applied to
the specified sentence pair. This sentence pair decomposition method is used for both the
denotational and distributional features.

we used to generate the graph, we use the Malt parser to identify subject-verb-object de-

pendencies and extract constituents. We then attempt to map each constituent phrase to a

node in the denotation graph. When the constituent phrase exists in the graph (because it

was generated from the Flickr30K captions), we can compute the denotational similarity

between this constituent phrase and any other node in the graph. For each constituent type

t, we also define anc(t), which is the set of parents and grandparents of all phrases t in

the denotation graph. The top half of Table 4.2 shows two sentences from SICK with their

corresponding constituents and example constituent comparisons.

However, phrases that are unique to SICK have no corresponding node in the pre-computed

graph and therefore no quantifiable similarity to other phrases. This affects the coverage of

the denotational features, which we discuss in Section 4.4.2.

We define two sets of denotational similarity features: typed and untyped. Both sets

express how often we expect the specified constituents to apply to the same situation. The
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typed features compare constituents of the same type, while the untyped features compare

constituents of any type. The bottom half of Table 4.2 shows examples of constituent

comparisons.

We specify t(s) to be the set of phrases of constituent type t in sentence s. ti(s) specifies

a single phrase in this set (ancestor phrase sets in particular often contain more than one

phrase). We define three kinds of typed similarity features which are parameterized by the

constituent type t ∈ {subj, vp, verb, dobj, np}:

LeafSimt = max
i,j

(pmiJK(ti(s1), tj(s2)) (4.2)

MixSimt = max( max
i,j

(pmiJK(ti(s1), anc(tj(s2)))),

max
i,j

(pmiJK(anc(ti(s1)), tj(s2))) ) (4.3)

AncSimt = max
i,j

(pmiJK(anc(ti(s1)), anc(tj(s2))) (4.4)

The LeafSim features measure the denotational similarity between constituents of the

same type. The MixSim features measure the denotational similarity between constituents in

one sentence with the constituent ancestors of the same type in the other sentence. AncSim

features measure the denotational similarity between constituent ancestors of the same type.

For all denotational similarity features, we use the normalized pointwise mutual information

pmiJK(x, y) between phrases x and y in the denotation graph (Equation 3.5). We found in

previous experiments that pmiJK(x, y) tended to be more robust to new data.

We additionally define three kinds of untyped constituent similarity features, again pa-

rameterized by the constituent type t, where all(s) specifies constituent phrases of any type

in sentence s:

AllMaxt = max (max
i,j

(pmiJK(ti(s1), allj(s2))) , max
i,j

(pmiJK(alli(s1), tj(s2)))) (4.5)

AllMint = min (max
i,j

(pmiJK(ti(s1), allj(s2))) , max
i,j

(pmiJK(alli(s1), tj(s2)))) (4.6)

AllSumt = sum (max
i,j

(pmiJK(ti(s1), allj(s2))) , max
i,j

(pmiJK(alli(s1), tj(s2)))) (4.7)
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4.2.4 Distributional Constituent Similarity

While denotational similarity captures the degree to which one phrase entails another, its

coverage is limited to phrases that occur frequently in the denotation graph. To alleviate

the sparsity of the denotational similarity features, we include distributional vector-based

similarity features over the same constituents.

As one point of comparison regarding coverage, for constituent features comparing subject

pairs, we have non-zero distributional similarity for 87% of instances in the development data,

but non-zero denotational similarity for only 56% of the same instances. For example, the

phrases football and compete have a denotational overlap of only four images in the training

data, which is below the threshold (10 images) that we use to define denotational similarity.

As a result, football and compete have a denotational similarity of 0. On the other hand,

we have distributional vectors for football and for compete which we can use to compute a

non-zero distributional similarity.

For the distributional similarity feature, we start by computing count-based distributional

co-occurrence vectors over the Flickr30K captions (after lemmatizing and removing stop-

words). We compute vectors for the 3254 tokens that appear at least 10 times in Flickr30K.

We define the vector space using the 1000 most frequent lemmas in Flickr30K as context

words. For each word wi in our vocabulary, we compute a vector where the jth entry is the

pointwise normalized PMI between target wi and context word wj:

pnPMI(wi, wj) = max

0,
log
(

P (wi,wj)

P (wi)P (wj)

)
− log (P (wi, wj))

 (4.8)

P (wi) is the fraction of images with at least one caption containing target word wi, and

P (wi, wj) is the fraction of images whose captions contain both wi and wj. Following work

that extends distributional similarity to phrases [67], we use element-wise multiplication to

compose word vectors w1...wn into a phrase vector p:

p = w1 � ...� wn (4.9)

where � is the Hadamard (element-wise) multiplication of corresponding vector components,

i.e. pi = ui · vi.
The resulting vectors have a somewhat broader definition of context than typical distri-

butional count vectors. Rather than defining the context of a target word to be within a

fixed-size window of k words to either side or even within the same sentence as the target

word, our definition of context is whether the context word and the target word appear
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together in the same set of five captions that describe the same image. This modified distri-

butional representation is slightly closer to denotational similarity, as it can take advantage

of the shared denotational information across captions that share an image.

We define typed and untyped distributional similarity features that mirror the denotational

constituent-based features described in Section 4.2.3. We simply replace the denotational

definition of pmiJK(a, b) with the cosine similarity between constituent phrase vectors a and

b, where a and b are the pointwise multiplication product of their word vectors.

4.2.5 Alignment

In many semantic tasks involving sentence pairs, it can be useful to identify aligned phrases

between the sentences and compute features over the alignments. For SICK in particular,

both contradiction and entailment pairs often have a premise and hypothesis with

similar or identical syntactic structure. Therefore, it can be useful to identify the parts of

the sentences that align, and compute features over the remaining words.

We start by identifying the longest subsequence of matching lemmas between the premise

and the hypothesis. We then compute word alignment features from the aligned subse-

quence and phrase similarity features from the remaining words in both sentences. We use

the Needleman-Wunsch algorithm [68] to compute longest subsequence of matching words

between the lemmatized premise and the lemmatized hypothesis. To do this, we define the

similarity between two lemmas to be 1.0 if the words are identical and 0.0 otherwise, and

we do not penalize gaps.

The algorithm produces an alignment between the two sentences and a set of unaligned

tokens for each sentence. In the following example, the underlined parts of both sentences

constitute the longest subsequence alignment.

Premise: A brown and white dog is running through the tall grass.

Hypothesis: A brown and white dog is moving through the wild grass.

⇒ entailment

This results in a set of (lemmatized) tokens from each sentence that are not contained in

the longest alignment:

Premise: run, tall

Hypothesis: move, wild

We will use alignment and unaligned tokens to compute the alignment features below.
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Token Alignment

Based on the aligned subsequences and remaining unaligned tokens, we compute the fol-

lowing features:

• Number of words in the premise and in the hypothesis

• Ratio of the number of words in the premise to the number of words in the hypothesis

• Number of words in the longest aligned subsequence

• Maximum, minimum, and average unaligned phrase lengths in the premise

• Maximum, minimum, and average unaligned phrase lengths in the hypotheses

• Maximum, minimum, and average unaligned phrase lengths in the premise and the

hypothesis

Phrase Similarity

We compute features to express the similarity of the remaining unaligned phrases: when

two sentences have a large overlap, their differences can be very informative. If only a

single word in the premise differs from the hypothesis, the similarity of those two words

can determine the relationship between the sentences. If the words are synonyms, then the

premise entails the hypothesis. If the words are antonyms, then the hypothesis contradicts

the premise.

We use the same distributional similarity metric defined in Section 4.2.4: we compose

phrase vectors as the element-wise product of Flickr30K word vectors. We consider all

unaligned phrases between the premise and the hypothesis and greedily pair them according

to the highest cosine similarity between phrase vectors until no candidate pairs remain.

We run this algorithm twice: once for simple similarity where any two phrases are a valid

candidate pair, and once for strict similarity where two phrases are a valid candidate pair

only if they have the same shallow parse label.

From our previous “brown and white dog” example, strict similarity produces only one set

of valid pairs:

〈 runVP, moveVP〉
〈 tallNP, wildNP〉
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Simple matching could produce two possible sets (〈run, tall〉 and 〈move, wild〉, or 〈run,

wild〉 and 〈move, tall〉), depending on which pair has the highest distributional similarity.

Given the pairs of similar phrases, we compute the following features for both simple and

strict similarity:

• Number of unaligned phrases in the premise and in the hypothesis

• Ratio of the number of unaligned phrases in the premise to the number of unaligned

phrases in the hypothesis

• Maximum, minimum, and average similarity of paired phrases

• Maximum, minimum, and average word lengths of paired phrases

• Number of matched phrases

• Number of crossings resulting from pairing phrases in place

Phrase Type Alignment

In addition to token-based alignments, we also abstract sentences to a sequence of shallow

parse labels and again compute an alignment and unaligned tokens between sentences. The

above example would have the same shallow parse representation for both premise and

hypothesis, so they would have a perfect alignment with no remaining unaligned tokens:

[NP A brown and white dog] [VP is running] [PP through] [NP the tall grass] → NP VP PP NP

[NP A brown and white dog] [VP is moving] [PP through] [NP the wild grass] → NP VP PP NP

From the shallow parse label sequence for the premise and hypothesis, we compute the

longest label matching subsequence and compute the following features:

• Lengths of premise and hypothesis label sequences

• Length of longest matching label subsequence

• Ratio of the length of longest matching label subsequence to the length of the label

sequence for both the premise and the hypothesis

• Numbers of unaligned labels in premise and hypothesis

• Ratio of the number of unaligned labels to the length of the label sequence for both

the premise and the hypothesis
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4.2.6 Lexical relations

We include features to count occurrences of hypernyms, synonyms, and antonyms between

the premise and the hypothesis. These relations are more precise than the phrase similarity

features, as a highly similar phrase pair may contain synonyms or antonyms, but they have

lower coverage than distributional similarity. For these features, we consider primarily the

pairs of highly similar phrases that we identified by aligning phrases with distributional

similarity (we also consider words that could not be paired with distributional similarity due

to out-of-vocabulary issues).

Hypernyms

The hypernym features count the number of hypernyms in the similar phrases between

the premise and the hypothesis: one feature counts the words in the premise phrases that

have a hypernym in the hypothesis phrases, and another feature counts the words in the

hypothesis that have a hypernym in the premise. We identify hypernyms using WordNet,

assuming that all WordNet senses for a given word are valid.

To deal with out-of-vocabulary issues stemming from our distributional vector representa-

tion, which is only computed over Flickr30K, we additionally count hypernym-hyponym

pairs in any remaining phrases that could not be paired using distributional similarity.

Synonyms

Synonym features count the number of synonym pairs in the same candidate phrases.

Synonyms are words that share a WordNet synset, assuming that all WordNet senses are

valid for any word.

Antonyms

We first count as antonyms any occurrences of the following patterns between premise and

hypothesis:

• X–not X

• X–no X

• X–no HeadNoun(X) (e.g. blue hat–no hat)
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• X–no Hypernym(X) (e.g. poodle–no dog)

• X–no Synonym(X) (e.g. kid–no child).

Secondly, we want to identify antonyms in similar phrase pairs. We consider a broader

definition of antonyms than usual. In addition to standard antonyms like crowded street vs.

empty street, we also want to identify word pairs that are mutually exclusive in the context

of textual entailment, like man and woman or bike and car.

To do this, we identify similar phrases that occur at least twice in neutral or contra-

diction sentence pairs in the training data and do not occur in any entailment sentence

pairs. Commonly matched chunks in neutral or contradiction sentence pairs include

sit–stand, boy–girl, and cat–dog. We use these pairs to define an antonym dictionary and

count these occurrences in the antonym feature.

The information captured by these antonym pairs is similar to the knowledge that we

aim to capture with the denotation graph. Phrases with low denotational similarity should

not be used to describe the same scene. Similarly, these antonym pairs indicate that two

phrases, while similar, describe two distinct, non-overlapping scenarios.

4.3 EXPERIMENTS

For semantic relatedness, we implement a log-linear ridge regression model [69] using Weka

[70]. For textual entailment, we use a logistic regression classifier implemented with Mallet

[59]. For both models, we use the default parameters and the same set of features.

4.3.1 Preprocessing

We lemmatize all sentences with Stanford CoreNLP1 and extract shallow parses for the

alignment features using the Illinois Chunker [71]. For features that require stopword re-

moval, we use the NLTK2 English stopword list (127 words). We remove negation words

(no, not, and nor) from the stopword list since their presence is informative for this dataset.

4.3.2 Results

Table 4.3 shows the semantic relatedness results of our model [35] on the test data com-

pared to the top five systems as well as the task baseline. Table 4.4 shows our textual

1 https://stanfordnlp.github.io/CoreNLP/
2https://www.nltk.org/
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Pearson r

Baseline 0.627

Lai and Hockenmaier [35] 0.799
Jimenez et al. [26] 0.804
Bjerva et al. [23] 0.827
StanfordNLP 0.827
Zhao et al. [31] 0.828

Table 4.3: The top 5 SemEval-2014 results for semantic relatedness (Pearson correlation on
test data). Our model was fifth out of 17 semantic relatedness systems.

Accuracy

Baseline 56.2

Jimenez et al. [26] 83.1
Zhao et al. [31] 83.6
Lai and Hockenmaier [35] 84.6

Beltagy et al. [32] 85.1
Yin et al. [33] 86.2
Yin and Schütze [34] 87.1

Table 4.4: The top 3 SemEval-2014 results for textual entailment (accuracy on test data)
compared to recent state-of-the-art results. Our model was first out of 18 systems in the
shared task.

entailment results compared to the task baseline, the other top systems from the shared

task, and more recent state of the art advances in textual entailment on SICK. Overall, our

model performed quite well, ranking fifth out of 17 systems for semantic relatedness and first

out of 18 systems for textual entailment. Like our system, most of the other top performing

systems used a combination of features, often including a compositional vector represen-

tation, and limited their use of external knowledge sources to WordNet and paraphrase

corpora.

In the rest of this section, we present an ablation study of our different features to deter-

mine their various contributions.
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Model Accuracy
Overall Entailment Neutral Contradiction

Baseline 56.8 44.8 77.3 0.0

All features 84.2 83.3 86.5 77.0
Word overlap 65.0 63.8 82.9 0.0

Feature Feat. removal acc. ∆ Feat. addition acc ∆
Overall E N C Overall E N C

Word overlap −0.2 0.7 −0.4 −1.4 – – – –
Negation −2.6 −6.3 0.3 −6.8 10.2 2.8 −3.2 74.3
DenSim −1.0 −2.8 −1.1 2.7 9.4 3.5 0.7 52.7
DistSim −0.4 0.0 −0.4 −1.4 6.8 −3.4 3.6 37.8
Den+Dist −1.6 −4.2 −1.4 2.7 12.0 4.9 2.5 60.8
Alignment 0.6 0.7 0.7 0.0 5.4 −13.2 5.0 41.8
Unaligned −0.6 0.0 −0.7 −1.4 10.8 2.8 7.5 37.8
Synonyms 0.2 1.4 0.0 −1.4 0.2 1.4 −0.7 0.0
Hypernyms −1.4 0.0 −2.2 −1.4 6.0 4.2 1.1 0.0
Antonyms 0.0 −2.8 1.7 −1.4 6.0 18.8 0.7 0.0

Table 4.5: Feature ablation results for textual entailment on development data

4.4 ANALYSIS

4.4.1 Feature Ablation

To determine which features contribute the most to the overall performance of our model,

we performed an ablation study. We train the model on the training data and evaluate on

the validation data with a different combination of features each time. The results of these

experiments are in Table 4.5. The top half of the table contains the accuracy of our full

model with all features on the validation data as well as its accuracy on each label. We

compare this to the same classifier trained with only our single word overlap feature.

The bottom half of the table contains the ablation results for each feature group. The

left side shows the change in accuracy from the full model when we remove the specified

feature. Larger negative values indicate that the feature is more important to the overall

performance of the model. The right side shows the difference in accuracy when we add

the specified feature to word overlap. Larger positive values indicate that the feature group

produces larger gains on top of the word overlap feature.

Negation is clearly is the most important feature for our overall textual entailment per-

formance, resulting in the largest drop in accuracy when it is removed from the model (a

44



decrease of 2.6 points from 84.2%). Hypernym features are the second most important

group. From the right side of the table, we can see that as we expected, adding hypernym

features increases accuracy on entailment by 4.2 points. However, there is some overlap

with other features: from the left side, we see that removing hypernym features from the full

model primarily decreases the accuracy on neutral and contradiction. We hypothesize

that for neutral and contradiction sentence pairs, the absence of a hypernym pair in

conjunction with other feature values may indicate the correct category.

Denotational constituent similarity features contribute noticeably to the overall perfor-

mance, and are one of the feature groups to add the most improvement (9.4 points) over

the word overlap feature. Our ablation analysis shows that denotational similarity and

distributional similarity have different strengths: denotational features contribute more to

textual entailment than distributional features, but we saw the opposite effect for semantic

relatedness [see 35, Table 3]. This follows our intuition that denotational similarity features

are particularly suited for entailment-type tasks, while distributional similarity captures the

more general concept of topical similarity. The two types of similarity capture comple-

mentary information: removing both distributional and denotational constituent similarity

features results in lower performance on both textual entailment and semantic relatedness

than removing either feature individually. Notably, denotational similarity performed well

on textual entailment even though we used PMI which is not a directional similarity metric.

4.4.2 Coverage of Constituent-Based Features

Since the denotation graph was not constructed on the SICK data, there may be some

sentence constituents do not exist in the graph with sufficient frequency (fewer than 10

images in Flickr30K) or at all. In that case, the constituent will have no denotational

similarity to any other constituent. For example, a phrase like exhausted man which we have

not seen before in the training data will have a denotational similarity score of 0.0 with any

other phrase. As a result, denotational similarity features may have poor coverage. Since

our distributional features are compositional, they have much better coverage: we can use

the vector for man and take the cosine similarity of 〈man, person〉 as an approximation for

the similarity of 〈exhausted man, person〉
In Table 4.6, we quantify the coverage of the denotational and distributional features

across different constituent types. The coverage is the percent of constituent features with a

non-zero value (we ignore constituents where there was no comparison to be made, e.g. if we

did not identify a direct object in one of the sentences). We only show the coverage for the

LeafSim constituent features, which compare the constituent leaf nodes of the same type
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% of instances covered
Features subj VP verb dobj NP

Denotation 65.8 30.1 41.9 70.6 80.3
Distributional 97.3 96.7 92.3 91.2 97.1

Table 4.6: The percentage of constituent pairs that have nonzero feature values for LeafSim
constituent comparisons. Distributional features have higher coverage than denotational
features

between sentences. The MixSim and AncSim features alleviate some coverage issues by

considering parent and grandparent nodes, but the coverage of those features shows similar

patterns.

Unsurprisingly, the coverage of the distributional representations is always better than

the coverage of the denotational representation. However, despite incomplete coverage,

denotational similarity features still noticeably contribute to the overall performance of the

model, as we observed in the ablation experiment. Improving the coverage of denotational

similarity could further improve its contributions to textual entailment.

4.4.3 Strengths and Weaknesses

In this section, we discuss specific errors that our model makes. We provide examples of

difficult and ambiguous cases in the dataset as well as examples of sentence pairs that our

model correctly classifies. Table 4.7 contains the sentence pairs under discussion.

Some of our model’s misclassifications are actually sentence pairs that are inconsistently

labeled. Example 1, where the premise explicitly negates the hypothesis, is labeled as

neutral, while Example 2, which contains the antonym pair standing vs. running, is labeled

as contradiction. Our model reverses the labels, making two incorrect predictions. The

inconsistent annotation of sentences involving negation makes it difficult to train a model

to distinguish between contradiction and neutral sentence pairs. We discuss this

annotation issue further in Section 4.5.2.

Our model also has trouble handling multiword paraphrases. Correctly labeling Example

3 requires the knowledge that a green ball and a green colored ball are equivalent, information

that our model does not have. An even more difficult case is Example 4, which requires a

deeper understanding of what a snowboarder doing a flip involves: that there is a person on

a board who is jumping in the air.

Our model also has difficulty with pairs where the key semantic difference between the

two sentences is in the prepositional phrase. Our model incorrectly predicts the labels for
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Premise Hypothesis Gold Pred

1 A man with no hat is sitting on
the ground

A man with a backwards hat is sit-
ting on the ground.

N C

2 A black and white dog with a large
branch is standing in the field.

A black and white dog with a large
branch is running in the field.

C N

3 A large green ball is hitting a
potato.

A large green colored ball is hit-
ting a potato.

E C

4 The snowboarder is doing a flip
over a mound of snow.

Somebody is jumping in the air on
a board.

E N

5 Five children are standing in front
of a wooden hut.

Five children are standing in a
wooden hut.

N E

6 A woman dressed in elegant cloth-
ing is inside a crowd of people and
is looking up.

A woman dressed in elegant cloth-
ing is inside a crowd of people and
is looking down.

C E

7 A few men in a competition are
running outside.

A few men in a competition are
running indoors.

C N

8 Some people and vehicles are on a
crowded street.

Some people and vehicles are on a
almost empty street.

C E

9 The milk is being drunk by a cat. The cat is drinking some milk. E E
10 A man is doing a trick on a skate-

board.
A person is doing a trick on a
skateboard.

E E

11 A hurdle is being leapt by a horse
that has a rider on its back.

A horse and its rider are leaping
over a barrier.

E E

12 There is no woman using an eye
pencil and applying eye liner to
her eyelid.

A woman is applying cosmetics to
her eyelid.

C C

Table 4.7: Sentence pair examples with gold and predicted textual entailment labels from
SICK development data.

both Example 5 and Example 6, where adding or altering a single word in the preposi-

tional phrase changes the relationship from entailment to neutral (removing front) or

contradiction (up → down).

Finally, although the antonym feature does help our model identify some contradiction

pairs, there are still several that we miss, such as Example 7 (outside 6= indoors) and Example

8 (crowded 6= almost empty).

Our model generally correctly classifies passive transformations such as Example 9. Al-

though the typed constituent features rely on comparable syntactic roles between the two

sentences, the untyped features allow the comparison of different constituent types. In ad-

dition, the alignment features attempt to match up the unaligned words in the sentence

pair regardless of word order, which allows active-passive sentence pairs to achieve higher

47



Meaning-Preserving Transformations

Active ↔ Passive A man is driving a car. → A car is being driven by a
man.

Replace words with (near) syn-
onyms

A young boy is jumping into water → A young kid is
jumping into water

Add modifiers that do not rad-
ically alter meaning

A deer is jumping a fence → A wild deer is jumping a
fence

Meaning-Altering Transformations

Insert negation The boy is playing the piano → The boy is not playing
the piano

Replace word with a semantic
opposite

The girl is spraying the plants with water→ The boy is
spraying the plants with water

Scramble words The turtle is following the fish → The fish is following
the turtle

Table 4.8: Examples of the two types of transformations, meaning-preserving and meaning-
altering, that were used to generate SICK sentences.

similarity scores.

Expanding our model’s vocabulary using WordNet synonyms and hypernyms helps us most

on sentence pairs that have high word overlap but one key word differs, such as Example 10

or Example 11. Our model correctly classifies both pairs as entailment, because it knows

that person is a hypernym of man and barrier is a hypernym of hurdle. Our model also

correctly labels Example 12 using the information that cosmetics is a hypernym of (eye)

pencil.

4.5 NOTABLE DATASET PHENOMENA

The sentences in SICK were generated by simplifying the original descriptive captions and

then applying a set of transformation rules. The rules included meaning-preserving rules like

transformating active sentences to passive sentences, as well as meaning altering rules like

inserting negation. Table 4.8 contains some of the transformation rules and corresponding

example sentences.

4.5.1 Phenomena Resulting from Rule-Based Sentence Transformations

Since the hypotheses in SICK are generated by applying rule-based transformations to the

premises, they avoid some of the bias that results from asking human annotators to write
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a hypothesis sentence given a premise and a particular entailment label [12]. However, the

way in which the SICK transformations were applied resulted in other biases.

Two types of transformations were used to generate new sentences from the normalized

sentences: meaning-preserving transformations and meaning-altering transformations. The

resulting transformed sentences are paired almost exclusively with the original sentence: only

12% of the sentence pairs result from pairing random, unrelated sentences [see 8, Table 5]. As

a result, the meaning-preserving transformations are strongly associated with sentence pairs

that are ultimately labeled as entailment, meaning-altering transformations are associated

with contradiction, and word-scrambling transformations are strongly associated with

neutral pairs. Any model that can identify the patterns in these transformations can fairly

easily label the same-set sentence pairs that make up almost half of the dataset.

The most obvious example of this is the negation insertion transformation. As one of

the meaning-altering transformations, it occurs primarily with contradiction pairs and

occasionally neutral pairs. It never appears in a sentence pair that has been labeled

entailment. As a result, a classifier trained with a single binary negation feature like ours

has over 60% overall accuracy on the development data. With just two features – binary

negation and word overlap – a simple model achieves over 75% accuracy.

Similarly, sentences produced via meaning-preserving transformations (e.g. turning an

active sentence into a passive sentence) never indicate contradiction. Based on this

observation, it is likely that a model with a simple syntax-based feature similar to the

binary negation feature would also have surprisingly high accuracy.

When building a textual entailment dataset, it is important to keep in mind the extent

to which the data can be “hacked” by features like these which are based on lexical or

syntactic patterns and do not truly capture anything about the meaning of a sentence or

what entailment really is. All datasets are subject to bias of one kind or another, but

building challenging datasets requires a thorough exploration of different kinds of baselines

to minimize these occurrences.

4.5.2 Sentences Containing Explicit Negation

The sentence pairs that contain explicit negation are a unique feature of the SICK dataset,

as previous textual entailment datasets did not contain a significant number of these cases

(the Framework for Computational Semantics (FraCas) entailment test suite [72] contains

negated plurals, but not negation of verb phrases as SICK does). However, annotators were

not provided with specific instructions as to how to label these cases of negation. As a result,

we observe that these pairs are inconsistently labeled across the entire dataset.
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For example, the following example is labeled neutral despite the underlined explicit

negation:

Premise: A man with no hat is sitting on the ground.

Hypothesis: A man with a backwards hat is sitting on the ground.

⇒ neutral

By contrast, the next example is labeled contradiction due to the opposed meaning of

the verbs.

Premise: A black and white dog with a large branch is standing in the field.

Hypothesis: A black and white dog with a large branch is running in the field.

⇒ contradiction

Marelli et al. [3] do mention that annotators treated potentially contradictory sentence

pairs where subjects are accompanied by indefinite determiners differently from sentence

pairs whose subjects are marked by definite determiners. However, in the above example,

both sentence pairs contain subjects with indefinite determiners. Since the majority (64 of 74

pairs in the development data) of contradiction sentence pairs involve explicit negation,

this distinction is critical to understanding what constitutes contradiction in SICK.

In making their own textual entailment dataset, SNLI, Bowman et al. [4] observed that

the distinction between contradiction and neutral hinges on whether the annotator

assumes that the premise and hypothesis refer to the same single event (and same single

entity). Bowman et al. attempt to address the issue by informing the annotators that the

premise and hypothesis sentences refer to the same grounded scene (an image which the

annotators are not shown). This does not completely solve all questions about entity coref-

erence between premise and hypothesis, but it would resolve many of the negated sentence

pairs in SICK to be contradiction. Ideally, future annotation efforts for textual entail-

ment datasets should endeavor to disambiguate these difficult cases as much as possible to

produce consistent annotations.

4.6 CONCLUSION

This chapter presented a detailed description of the model that we submitted to the

SemEval 2014 shared task for textual entailment and semantic relatedness. Our model in-

cluded denotational similarity features based on decomposing new sentences into constituent

phrases that exist in the pre-computed Flickr30K denotation graph. We presented ab-

lation experiments analyzing the contributions of our features. In particular, we observe
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that denotational similarities and distributional similarities computed over the same text

are complementary: denotational similarity, even symmetric PMI, is more effective for tex-

tual entailment, while distributional similarity contributes more to the semantic relatedness

task.

Furthermore, we also analyze the construction of the SICK dataset. While the rule-

generated hypotheses may lack some biases of human-written hypotheses, the rules used to

generate the premise and hypothesis sentences are extremely important. Uneven application

of these rules results in a dataset where a few simple features can achieve high accuracy

without true language understanding. We take these lessons into account when we construct

our own entailment dataset in Chapter 6.

Now that we have demonstrated that denotational similarity can be straightforwardly

applied to existing semantic tasks as an explicit feature, we next extend it to vector repre-

sentations. In this chapter, we applied denotational similarity to phrases that we previously

observed in the Flickr30K denotation graph. In the next chapter, we present an embedding

model to alleviate this issue.
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CHAPTER 5: A STRUCTURED EMBEDDING SPACE FOR
DENOTATIONAL PROBABILITIES

We have shown that denotational similarities are useful features for semantic tasks like

textual entailment and semantic relatedness. In this chapter, we propose a framework that

captures the denotational probabilities of words and phrases by embedding them in a struc-

tured vector space that captures denotational set relationships. We then present a method

to induce such an embedding from a dataset of denotational probabilities. We show that our

compositional model successfully produces this representation for unseen phrases, extending

the application of denotational probabilities to textual entailment datasets like SNLI.

5.1 AN ORDER EMBEDDING FOR PROBABILITIES

5.1.1 Entailment Embeddings

Dense vectors, or embeddings, have become a common representation for words. Tradi-

tional linear models often consider lexical features as indicator functions, where each feature

indicates, for example, that a word was present in the text. However, this one-hot feature

representation loses a lot of information by assuming that each token corresponds to a unique

vector dimension: under this assumption, cat and cats are two distinct, unrelated words and

there is no opportunity to share information between them. A dense word vector, by com-

parison, represents each word as a dense vector in some d dimensional space. Rather than

a one-hot vector where a single dimension has a value of 1 and all other dimensions have a

value of 0, a dense word representation can have non-zero values in all dimensions. These

values may come from a more direct feature representation, like counting the co-occurrences

between words in a sliding window over an entire corpus, or they may be the result of train-

ing a neural network model for some other task starting from randomly initialized word

representations.

Dense vector representations can improve generalization in our models. For example, we

may have observed the word child frequently during training, but only saw toddler a few

times. A model that uses a one-hot representation that compares words based on the surface

string identity will not have much information about toddler. However, if the dense vectors

Work in this chapter was first published in A. Lai and J. Hockenmaier (2017), “Learning to Predict
Denotational Probabilities for Modeling Entailment,” in Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, 721–739 [73]. It is reprinted here with the
permission of the copyright holder.
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for child and toddler are similar, then our model may be able to leverage features of child

to share with toddler. This does assume that we observed toddler frequently enough in

training to build a vector representation that is close to child, or that we use pre-trained

word embeddings based on a separate, large corpus where this is true.

Pre-trained embeddings are now a common starting point for many NLP tasks where the

labeled corpus size is much smaller than the corpus used to train the embeddings. Lexical

embeddings can be combined to produce dense representations for phrases and sentences that

are useful to the particular task at hand. Initially, these combination functions were simple

applications of vector addition or element-wise multiplication, but the current accepted

approach is to produce a sentence vector by feeding a sequence of word vectors into a

neural sequence model, such as an RNN. We take this approach in this chapter, using pre-

trained embeddings to train a neural sequence model that produces phrase embeddings that

reflect the information captured in the denotation graph. The resulting model can produce

embeddings for phrases that we have not seen before.

Several related works have explored different approaches to learning vector space represen-

tations that express entailment more directly. Kruszewski et al. [74] learn a mapping from an

existing distributional vector representation to a structured Boolean vector representation

that expresses entailment as feature inclusion. They evaluate the resulting representation

on lexical entailment tasks and on sentence entailment in SICK, but they restrict SICK

to a binary task and their sentence vectors result from simple composition functions (e.g.

addition) over their word representations. Henderson and Popa [75] learn a mapping from

an existing distributional vector representation to an entailment-based vector representation

that expresses whether information is known or unknown. However, they only evaluate on

lexical semantic tasks such as hyponymy detection.

Other approaches explore the idea that it may be more appropriate to represent a word

as a region in space instead of a single point. Erk [76] presents a word vector representation

in which the hyponyms of a word are mapped to vectors that exist within the boundaries

of that word vector’s region. Vilnis and McCallum [77] use Gaussian functions to map a

word to a density over a latent space. Both papers evaluate their models only on lexical

relationships.

Most relevant to our model is the order embedding model of Vendrov et al. [78], who

observed that the lexical hypernym relationship, the textual entailment relationship between

sentences, and the image-caption relationship can all be seen as part of a larger partial order

over language and images. In this partial order, a sentence s = “A woman is walking a dog”

that describes some image i is an abstraction of that image. Similarly, the sentence s′ =

“A person is walking a dog” is entailed by s; s′ is an abstraction of both s and i, as are the
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phrase woman and its hypernym person.

From this definition, Vendrov et al. then define an order embedding for phrases and images

such that the vector y corresponding to the phrase/image y is smaller than the vector

x, i.e. y � x, for phrases/images x that are entailed by y, where � corresponds to the

reversed product order on RN
+ ( y � x ⇔ yi ≥ xi∀i). The authors use their model to

predict entailment labels between pairs of sentences, but it is only capable of making binary

entailment decisions. They also evaluate their model on hypernym relations in WordNet and

caption-image retrieval [49, 79].

The model we present in this chapter is based on this idea that directional phrase relation-

ships can be encoded in an embedding space. Our model only handles text representations,

not images, but we extend the binary ordered relationship to express the probability, from

0 to 1, that one phrase implies another.

5.1.2 Denotational Conditional Probability

In the previous chapter, we used pointwise mutual information as the denotational feature

between phrases. For this model, however, we focus instead on denotational conditional prob-

ability (Equation 3.4), as it is directional and intended to capture entailment-like relations.

In an ideal representation, if the premise p entails the hypothesis h, then the denotational

conditional probability PJK(h|p) should be 1 (or close to 1). Conversely, if h contradicts p,

then PJK(h|p) should be close to 0. The denotation graph is constructed to express some

entailment relations directly: if x is an ancestor of y in the graph, then y entails x and

PJK(x|y) = 1. We therefore stipulate that learning to predict the denotational conditional

probability PJK(h|p) would be helpful in predicting textual entailment.

5.1.3 Defining a Structured Embedding Space

We generalize Vendrov et al.’s binary entailment order embedding to an embedding space

that expresses the denotational probability that phrase x is true given phrase y. Denotational

probability represents a phrase as a set of scenarios accurately described by that phrase, and

the conditional probability of phrase x given phrase y is the set intersection, the number of

overlapping scenarios, of x and y. In translating this representation to a vector space, we

can envision each vector, each point in the space, as corresponding to a particular possible

scenario in the set of all possible scenarios. Then PJK(x) would correspond to a set of vectors,

possibly encompassing a region in the vector space. If PJK(x) and PJK(y) each correspond

to a region of points in the space, then we can take the overlap in their regions as the
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Figure 5.1: An embedding space that expresses the individual probability of events X and
Y and the joint probability P (X, Y ).

set intersection corresponding to PJK(x, y) from which we can compute the denotational

conditional probability.

Concretely, we want to map a phrase x to a vector x that corresponds to a region in the

embedding space that is proportional to PJK(x). We also want the overlap between any two

vector regions x and y to correspond to the joint probability PJK(x, y), from which we can

compute PJK(x|y).

Figure 5.1 illustrates the basic idea of this embedding space in two dimensions. Each

phrase vector occupies a region proportional to the denotational probability of the phrase

and corresponding to the set of points greater than the vector in each dimension. The

denotation of the entire universe (all possible scenarios) corresponds to the entire region

of the positive orthant, i.e. the origin vector. All other points in the space correspond to

smaller regions within the positive orthant and thus probabilities less than 1.

Concretely, we learn a mapping from phrase x to an N -dimensional vector x ∈ RN
+ such

that x = (x1, ..., xN) defines the denotational probability of x as PJK(x) = exp(−
∑

i xi).

The origin has probability exp(0) = 1, while any other vector x such that ∃ixi > 0 has a

denotational probability less than 1. When comparing a pair of vectors, if x is farther from

the origin than y, then phrase x has a smaller denotational probability than phrase y.

The joint probability PJK(x, y) in this embedding space is proportional to the size of the

intersection of the regions of x and y. We define this joint probability as the region that

corresponds to the vector z that is the element-wise maximum of x and y:
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Figure 5.2: Our probability model DenEmbed. Each phrase is a sequence of word em-
beddings that is passed through an LSTM to produce a 512d vector representation for the
premise and the hypothesis. Both vectors are used to compute the predicted conditional
probability and calculate the loss.

z = max(x, y) : zi = max(xi, yi) (5.1)

This allows us to compute the conditional probability PJK(x|y) as follows:

PJK(x|y) =
PJK(x, y)

PJK(y)

=
exp (−

∑
i zi)

exp (−
∑

i yi)

= exp

(∑
i

yi −
∑
i

zi

) (5.2)
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5.2 TRAINING A DENOTATIONAL EMBEDDING MODEL

5.2.1 Model Architecture

We train a neural network model to predict phrase probabilities PJK(x) and PJK(y) and

the conditional probability PJK(x|y) for phrase pairs 〈x, y〉. The model, which we will call

DenEmbed, consists of a single LSTM that produces a 512d phrase vector x or y from

a sequence of pre-trained GloVe vectors (we use the 300d vectors trained on 840B tokens)

corresponding to the words in phrase x or y.

We take x and y, the LSTM output vectors at the final timestep, and sum their elements

to compute the predicted denotational probabilities P̂JK(x) and P̂JK(y). From x and y, we

also compute the joint vector z (Equation 5.1), which we use to compute the predicted

denotational conditional probability P̂JK(x|y) according to Equation 5.2. Figure 5.2 illustrates

the structure of our model.

Our training data consists of ordered phrase pairs 〈x, y〉. For each pair, the loss is the

sum of cross-entropy losses for three predicted probabilities, P̂JK(x), P̂JK(y), and P̂JK(x|y):

L =−
[
PJK(x) log P̂JK(x) +

(
1− PJK(x)

)
log
(
1− P̂JK(x)

)]
−
[
PJK(y) log P̂JK(y) +

(
1− PJK(y)

)
log
(
1− P̂JK(y)

)]
−
[
PJK(x|y) log P̂JK(x|y) +

(
1− PJK(x|y)

)
log
(
1− P̂JK(x|y)

)] (5.3)

5.2.2 Numerical Issues

In Section 5.1.3, we described the probability vectors x as being in the positive orthant.

However, in order to prevent the gradients from becoming too small during training, we use

log probabilities in our implementation. This means our vectors are actually in the negative

orthant.

We apply two modifications to the LSTM output vectors in order to compute P̂JK(x),

P̂JK(y), and P̂JK(x|y). First, to ensure that x is in RN
− , we clip the element values of the

output vector so that xi ≤ 0. Second, when computing the log probability log P̂JK(x) from

the phrase vector x, we clip the sum of the elements of x to the range (log(10−10),−0.0001)

in order to avoid errors caused by passing log(0) values to the loss function.

The conditional log probability is simply log P̂JK(x|y) = log P̂JK(x, y) − log P̂JK(y), where

log P̂JK(x, y) is now computed over the element-wise minimum of x and y:
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log P̂JK(x, y) =
∑
i

min (xi, yi) (5.4)

The element-wise minimum is a standard pooling operation (min pooling instead of the

more common max pooling). Note that if xi > yi, neither xi nor yi is updated with respect

to the P̂JK(x|y) loss. Both xi and yi will always be updated with respect to the P̂JK(x) and

P̂JK(y) components of the loss.

5.2.3 Denotational Phrase Data

We now define the DenPhrase dataset1 of denotational phrase pairs that we use to train

DenEmbed. We start by identifying all phrase pairs that occur frequently enough in the

denotation graph that we can rely on their individual and conditional probability values.

Then we sample from this pool of phrase pairs to create the test and development data such

that some phrases are unique to the test or development data.

From the training split of the Flickr30K denotation graph, we identify all phrase pairs

〈x, y〉 that fit one of the following conditions:

• PJK(x|y) > 0 s.t. |x| ≥ 10, |y| ≥ 10

(45 million pairs that have at least one image in common and where each phrase occurs

with at least 10 images)

• PJK(x|y) = 0 s.t. N × PJK(x)PJK(y) ≥ N−1

(2 million pairs that have no common images where we would have expected at least

one (given independence and the total number of images N))

• PJK(x|y) = 1 s.t. x is an ancestor of y, |x| ≥ 10, |y| ≥ 10

(3 million pairs that are ancestor-descendant pairs in the denotation graph)

Given this pool of phrase pairs, we take the set of phrases that occur in these pairs and

sample 5% of them as test phrases to occur only in the test data and another 5% to occur

only in the development data. The test data then contains all phrase pairs from the pool

where at least one phrase is a test phrase. As a result, at least one phrase in each test pair

will be unseen in the training or development data. The development data is constructed

the same way from the development phrases.

Since all phrases in the denotation graph have been lemmatized, the phrases in Den-

Phrase are lemmatized as well.

1Available at https://github.com/aylai/EntailmentProbabilityEmbedding.
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P (x) P (x|y)
KL r KL r

Training data 0.0003 0.998 0.017 0.974
Full test data 0.001 0.979 0.031 0.949
Unseen pairs 0.002 0.837 0.048 0.920
Unseen words 0.016 0.906 0.127 0.696

Table 5.1: DenEmbed predicts the probability of unseen phrase pairs in DenPhrase with
high correlation to the gold probabilities.

5.3 CONDITIONAL PROBABILITY EVALUATION

We evaluate how well our embedding model can predict the denotational conditional prob-

ability of one phrase given another (or one sentence given another). We train DenEmbed

on the 42 million phrase pairs in the DenPhrase training data with batch size 512 for 10

epochs. We use the Adam optimizer [80] with default parameters, and a dropout rate of 0.5.

These parameters were tuned on the development data, and we selected the model with the

lowest KL divergence between gold and predicted conditional probabilities:

DKL (P ||Q) = PJK(x|y) log
PJK(x|y)

P̂JK(x|y)
+
(
1− PJK(x|y)

)
log

1− PJK(x|y)

1− P̂JK(x|y)
(5.5)

5.3.1 Unseen Phrase Pairs

We evaluate DenEmbed’s denotational probability predictions for the 4.6 million phrase

pairs in the DenPhrase test split. Table 5.1 reports the mean KL divergence DKL(P ||Q)

between PJK(x) and PJK(x|y) compared to the predicted probabilities P̂JK(x) and P̂JK(x|y), and

the Pearson correlation r, which expresses the correlation between the gold and predicted

probabilities as a value between −1 (complete negative linear correlation) and 1 (complete

positive linear correlation).

DenEmbed’s predicted conditional probabilities are fairly accurate, reaching a correlation

of r = 0.949 on the complete test data. On the subset of 123,000 test phrase pairs where

both phrases are previously unseen, DenEmbed’s predictions are almost as good, reaching

r = 0.920. On the subset of 3,100 test phrase pairs where at least one word was unseen in

training, the model’s predictions are worse, only achieving a correlation of r = 0.696.

We specifically look at DenEmbed’s predictions for phrase pairs where the gold PJK(x|y)

is either 0 or 1. The latter case reflects an important property of the denotation graph,

since PJK(x|y) = 1 when x is an ancestor of y. More generally, we can interpret PJK(h|p) = 1
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Figure 5.3: Predicted probabilities on a subset of DenPhrase test data where PJK(x|y) is
0 (left) or 1 (right). Black is the full test data and gray is the subset of pairs where both
phrases are unseen. Frequency is represented as a percentage of the pairs considered in each
plot.

as a confident prediction of entailment, and PJK(h|p) = 0 as a confident prediction of

contradiction. Figure 5.3 shows the distribution of predicted conditional probabilities

for phrase pairs where gold PJK(h|p) = 0 (left) and gold PJK(h|p) = 1 (right). DenEmbed’s

predictions on unseen phrase pairs (gray bars) are nearly as accurate as its predictions on

the full test data (black bars).

5.3.2 Longer Sentences

Up to this point, DenEmbed has only been trained on short phrases, since conditional

probabilities in the denotation graph are only reliable for phrases that occur with multiple

images (see Figure 5.4 for the distribution of phrase lengths in the DenPhrase training

data). To improve the model’s performance on longer sentences, we use the 550,000 sentence

pairs in the SNLI training data (which have a mean sentence length of 11 words) as additional

data. We train a new model, which we will refer to as DenEmbed+, on both DenPhrase

and SNLI (lemmatizing SNLI sentences to match DenPhrase).

We augment the SNLI data with approximate gold denotational probabilities by assigning

a probability PJK(S) = s/N to a sentence S that occurs s times in the N training sentences.

We assign approximate gold conditional probabilities for each sentence pair 〈p, h〉 according

to the entailment label: if p entails h, then P (h|p) = 0.9. If p contradicts h, then P (h|p) =

0.001. Otherwise, P (h|p) = 0.5.

Figure 5.5 shows the predicted probabilities on the SNLI test data when our embedding

model is trained on different data distributions. The top row shows the predictions of Den-
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Figure 5.5: Predicted conditional probabilities P (h|p) for SNLI sentence pairs (test) by
entailment label, as a percentage of pairs with that label. Top: predictions from DenEmbed,
which is trained only on DenPhrase. Bottom: predictions from DenEmbed+, which is
trained on both DenPhrase and SNLI.
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Figure 5.6: EntailLSTM: an entailment classifier based on an LSTM RNN that is applied
to both the premise and the hypothesis.

Embed, which is trained only on DenPhrase. Given the training data, we did not expect

these probabilities to align cleanly with the entailment labels, and indeed, the three distri-

butions look fairly similar. However, the median probability of each class does increase from

contradiction to neutral to entailment, confirming our intuition for how PJK(h|p)
should relate to textual entailment classes.

The bottom row shows that DenEmbed+, which is trained on on both DenPhrase and

SNLI with approximate conditional probabilities, has much improved probability predictions

for longer sentences. DenEmbed+’s predicted conditional probabilities align much more

closely with the entailment class labels: entailment sentence pairs have high conditional

probabilities (median 0.72), neutral pairs have mid-range probabilities (median 0.46), and

contradiction pairs have probabilities approaching 0 (median 0.19).

5.4 TEXTUAL ENTAILMENT EVALUATION

We now evaluate the effectiveness of DenEmbed+ for textual entailment, and demonstrate

that these predicted probabilities are informative features for predicting entailment on both

SICK and SNLI.
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Figure 5.7: DenEnsemble: an entailment classifier that combines the outputs of pretrained
EntailLSTM and DenEmbed models.

5.4.1 An Ensemble Model for Entailment

LSTM Entailment Model

We start with a basic LSTM entailment model [4], which we refer to as EntailLSTM

(Figure 5.6). It consists of a single 100d LSTM RNN that takes sequences of GloVe vectors

for both the premise and hypothesis, and produces 100d sentence vectors. The concatenated

200d sentence pair representation is passed through three 200d tanh layers and a softmax

layer for three-class entailment classification. We train EntailLSTM with a batch size of

512 for 10 epochs. We use Adam with the default learning rate and a dropout keep rate of

0.85.

Combining the LSTM Entailment Model with Predicted Probabilities

We then combine the output of EntailLSTM (the result of the final tanh layer) with

the output P̂JK(h|p) of DenEmbed+, and train a classifier over this conjoined feature repre-

sentation. We refer to this classifier as DenEnsemble (Figure 5.7). It consists of two tanh

layers that take the 201d feature vector as input, and a final softmax classification layer.

Both EntailLSTM and DenEmbed have been pretrained (EntailLSTM on SNLI, and

DenEmbed+ on DenPhrase and SNLI), at which point we freeze their parameters and

train DenEnsemble for 10 epochs on the relevant textual entailment data (SICK or SNLI)

with a dropout keep rate of 0.5 and a batch size of 512.

Table 5.2 contains our results on SNLI and SICK. EntailLSTM achieves 77.2% accuracy

on SNLI (the same accuracy reported by Bowman et al. [4]), whereas our combined model

DenEnsemble improves the accuracy to 78.2% by including a single predicted denotational

probability feature.
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Accuracy
Model SNLI SICK

EntailLSTM 77.2 81.5
DenEnsemble 78.2 82.7

Table 5.2: Entailment test accuracy on SNLI and SICK, comparing EntailLSTM, a stan-
dard LSTM classifier, to DenEnsemble, an ensemble method that adds DenEmbed+’s
predicted probability to the LSTM output.

We use a similar approach to evaluate our model on SICK. Since SICK is too small to train

an LSTM, we combine the SICK and SNLI training data to pretrain EntailLSTM and then

to train the combined model DenEnsemble. When we add the predicted conditional prob-

ability as a single feature for each SICK sentence pair, DenEnsemble’s accuracy increases

to 82.7%, compared to EntailLSTM’s 81.5% accuracy. This approach outperforms the

80.0% accuracy achieved by Bowman et al. [4]’s transfer learning approach.

This experiment shows that the denotational embeddings contain information that is not

learned by a standard neural entailment model. We have demonstrated that an LSTM entail-

ment model can be improved by adding a single feature based on our predicted denotational

probabilities.

5.4.2 Constituent-Based Features

In the previous experiment, we used a single predicted probability value P̂JK(h|p) to rep-

resent all the denotational similarity information between the premise and the hypothesis,

replacing the large set of denotational similarity features we used in previous chapters. To

evaluate whether we are losing information by reducing the number of denotational features,

we apply the constituent decomposition method from Chapter 4 to sentences in SNLI, and

use DenEmbed+ to predict the conditional probability of each hypothesis-premise phrase

pair, producing a total of 60 predicted probability features.

We now retrain DenEnsemble with EntailLSTM unchanged, but now with 60 pre-

dicted probabilities instead of 1. Table 5.3 contains our results. We consider constituent

features with and without ancestor information from the graph. Without ancestor informa-

tion, the constituent features perform worse than the single probability feature, achieving

only 78.0% accuracy. However, including ancestor information pushes the accuracy to 78.5%,

higher than the single probability feature. This indicates that there is some information, ei-

ther involving ancestors or sub-phrase comparisons, that a single probability feature does not
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Model SNLI Accuracy

EntailLSTM 77.2
DenEnsemble 78.2
DenEnsembleconst 78.0
DenEnsembleanc 78.5

Table 5.3: Entailment accuracy on SNLI test data. Appending multiple features based on
ancestor constituent information results in higher accuracy compared to DenEnsemble,
which only uses a single probability feature.

fully capture. However, DenEnsemble trained from a single predicted probability feature

is still competitive with this larger set of features that requires more structural knowledge

from the graph.

5.4.3 Binary Entailment Task

We also evaluate how well the predicted conditional probabilities P̂JK(h|p) correspond

to binary entailment labels. We follow Vendrov et al. [78] in transforming SNLI into a

binary entailment task by relabeling all neutral and contradiction sentence pairs as

not entailment and classifying them against entailment pairs.

We use the predicted probability P̂JK(h|p) for each SNLI sentence pair and tune a threshold

t ∈ {0.0, 0.1 ... 0.9, 1.0} on the development data. The best threshold produces 79.0% binary

classification accuracy on the SNLI test data, significantly worse than Vendrov et al. [78]’s

reported test accuracy of 88.6% from their order embedding model. Our result shows a

strong correlation between the binary entailment label and the conditional probability of

the hypothesis given the premise according to our probability model, but not sufficient to

compete with order embeddings. However, as can be seen from the probability distributions

in Figure 5.5, simply thresholding P̂JK(h|p) does not produce unambiguous entailment classes.

In the next section, we include some examples that demonstrate why it may not be a simple

task to bin P̂JK(h|p) into well-defined entailment classes.
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Premise Hypothesis PJK P̂JK

1 person walk on trail in woods in forest 1.00 0.99
2 dark color clothing clothing 1.00 0.85
3 group of person bike group of person ride 0.86 0.78
4 adult sing while play instrument adult play guitar 0.81 0.75
5 on busy street sidewalk 0.35 0.73
6 person sit on bench outside on park bench 0.42 0.42
7 child walk path person wear green 0.07 0.31
8 tennis player hit ball person swing 0.19 0.24
9 girl sleep on pillow 0.06 0.23
10 man practice martial art person kick person 0.13 0.26
11 person skateboard on ramp man ride skateboard 0.18 0.20
12 busy intersection city street 0.28 0.15
13 person dive into swim pool person fly through air 0.10 0.11
14 sit at bench adult read book 0.14 0.12
15 person leap into air jump over obstacle 0.03 0.02
16 person talk on phone man ride skateboard 0.01 0.02

Table 5.4: Gold and predicted conditional probabilities from the DenPhrase development
data.

5.5 ANALYSIS

5.5.1 Model Predictions

In Section 5.3, we demonstrated that we can successfully predict denotational probabilities

for phrases that we have not encountered during training and for longer sentences. In Section

5.4, we illustrated the utility of these probabilities by showing that a single feature based

on our model’s predicted denotational conditional probabilities improves the accuracy of an

LSTM entailment model on SICK and SNLI by 1 percentage point or more. Although we

did not evaluate the impact on more complex, recently proposed neural network models,

this improvement is quite encouraging. We note in particular that we only have accurate

denotational probabilities for the short phrases from the denotation graph (mostly six words

or fewer), which have a limited vocabulary compared to the full SNLI data (there are 5263

word types in the denotation graph training data, while the lemmatized SNLI training data

has a vocabulary of 31,739 word types). In light of these statistics, our modest gains are

encouraging.

We examine examples of predicted conditional probabilities for both phrase and sentence

pairs to identify the strengths and weaknesses of our denotational embedding model. Table

5.4 contains examples of DenEmbed’s predictions for phrase pairs from the DenPhrase
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Premise Hypothesis PJK P̂JK

skier on snowy hill athlete 1.00 0.99
fan cheer wear clothing and helmet 0.10 0.99
girl read book adult read book 0.29 0.95
pitcher throw ball mound 0.53 0.84
golf ball athlete 0.53 0.66
wear gray jacket person wear gray clothing 0.94 0.63
person point man point 0.48 0.41
in front of computer person look 0.36 0.21
person wear short and blue shirt blue shirt 1.00 0.55

Table 5.5: Gold conditional probabilities for unseen pairs in the DenPhrase development
data, compared to DenEmbed’s predictions.

development data. DenEmbed correctly predicts high conditional probabilities for entailed

phrase pairs even when there is no direct hypernym involved, as in example 3 (biking and

riding are closely related but involve no synonym or hypernym relationship), and for closely

related phrases that are not strictly entailing, as in example 4 (someone who is singing and

playing an instrument is likely but not required to be playing a guitar). DenEmbed also

predicts reasonable probabilities for events that frequently co-occur but are not required to

do so, such as example 10: practicing martial arts sometimes involves one person kicking

another person, but could also involve punching or throwing or blocking instead. In examples

13 and 14, DenEmbed predicts low but nonzero probabilities for occasionally co-occurring

events (diving and flying, or sitting on a bench while reading a book), which are still more

plausible and likely scenarios than the improbable co-occurrence in example 16 (a person

talking on the phone while riding a skateboard). Table 5.5 demonstrates similar patterns for

pairs where both phrases were unseen.

However, DenEmbed’s predictions are not always so accurate. For example, in Table

5.4, examples 5 and 7 show overly high predicted probabilities for events that were either

quite rare and unrelated (〈child walk path, person wear green〉) or for events that were only

moderately connected (〈on busy street, sidewalk〉). Generally, DenEmbed is quite good at

predicting PJK(h|p) = 1.0 for phrases involving hypernyms, but that is not true of example

2, where it predicts that the probability of clothing given dark colored clothing is only 0.85.

Table 5.6 contains examples of predicted conditional probabilities from DenEmbed+ for

SNLI development sentence pairs. In many cases, the label is obvious and so the probability

of the hypothesis given the premise should also be easy to predict. Example 2 is a clear

case of entailment that simply involves dropping words from the premise (having drinks

and smoking cigarettes) to reach the hypothesis (Two women are at a bar). Example 1
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Premise Hypothesis P̂JK
e
n
t
a
il
m
e
n
t

1 A person rides his bicycle in the sand beside
the ocean.

A person is on a beach. 0.88

2 Two women having drinks and smoking
cigarettes at the bar.

Two women are at a bar. 0.86

3 A senior is waiting at the window of a restau-
rant that serves sandwiches.

A person waits to be served his food. 0.61

4 A man with a shopping cart is studying the
shelves in a supermarket aisle.

There is a man inside a supermarket. 0.47

5 The two farmers are working on a piece of
John Deere equipment.

John Deere equipment is being worked
on by two farmers.

0.16

n
e
u
t
r
a
l

6 A group of young people with instruments are
on stage.

People are playing music. 0.86

7 Two doctors perform surgery on patient. Two doctors are performing surgery
on a man.

0.56

8 Two young boys of opposing teams play foot-
ball, while wearing full protection uniforms
and helmets.

Boys scoring a touchdown. 0.30

9 Two men on bicycles competing in a race. Men are riding bicycles on the street. 0.24

c
o
n
t
r
a
d
ic
t
io
n

10 Two women having drinks and smoking
cigarettes at the bar.

Three women are at a bar. 0.79

11 A man in a black shirt is playing a guitar. The man is wearing a blue shirt. 0.47
12 An Asian woman sitting outside an outdoor

market stall.
A woman sitting in an indoor market. 0.22

13 A white dog with long hair jumps to catch a
red and green toy.

A white dog with long hair is swim-
ming underwater.

0.09

14 Two women are embracing while holding to go
packages.

The men are fighting outside a deli. 0.06

Table 5.6: DenEmbed+’s predicted conditional probabilities for sentence pairs from the
SNLI development data.

is a slightly more difficult case of entailment where the hypothesis does not have an

exact word-to-word correspondence with the premise (in the sand beside the ocean → on the

beach), but nevertheless DenEmbed+ predicts a high probability. In example 7, we might

guess that the patient is a man with 50% probability, so a predicted conditional probability

around 0.5 seems reasonable. Example 14 shows that DenEmbed+ can correctly predict

very low conditional probability for sentences that have no topic in common, while example

13 shows a low predicted probability for a contradiction example that still has high word

overlap.

There are also some examples in SNLI that illustrate why it may be difficult to apply

strict thresholds to conditional probability in order to turn P̂JK(h|p) into an entailment class

label. These examples are more ambiguous. In example 6, it is not certain that people are

playing music, but it is a pretty reasonable assumption from the premise. Therefore it is not
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surprising that the model assigns a higher conditional probability than for most neutral

sentence pairs. In contrast, example 8 is also neutral, but yields a much lower predicted

probability score. This is also a reasonable outcome, as scoring a touchdown is a relatively

infrequent event in the space of an entire football game. It would be less reasonable to say

that the probability of scoring a touchdown is fifty percent for any given moment of a football

game.

DenEmbed+ predictions are less accurate when the sentence structure differs substan-

tially between premise and hypothesis, or when there are many unknown words, as in ex-

ample 5 (John Deere is not in our vocabulary). Our model cannot reason about numbers

and quantities, as example 10 shows (two women does not imply three women). It also fails

to recognize in example 11 that a man wearing a black shirt is probably not wearing a blue

shirt as well.

5.5.2 Negation

One shortcoming of our embedding model is that it does not allow us to represent the

negation of x as a vector. We also cannot represent two phrases that have completely disjoint

denotations: in Figure 5.1, the P (x) and P (y) regions will always intersect and therefore

the P (x, y) region will always have an area greater than 0. In fact, in our embedding space,

the joint probability represented by the vector z will always be greater than or equal to the

product of the probabilities represented by the vectors x and y. For any pair x = (x1, ..., xN)

and y = (y1, ..., yN), P̂JK(x, y) ≥ P̂JK(x)P̂JK(y):

P̂JK(x, y) = exp
(
−
∑
i

max(xi, yi)
)

(5.6)

≥ exp
(
−
∑
i

xi −
∑
i

yi
)

(5.7)

= P̂JK(x)P̂JK(y) (5.8)

(Equality holds when x and y are orthogonal, and thus
∑

i xi +
∑

i yi =
∑

i max(xi, yi)).

Therefore, the best we can do for disjoint phrases is learn an embedding that assumes the

phrases are independent. In other words, we can map the disjoint phrases to two vectors

whose computed joint probability is the product of the individual phrase probabilities.

Although DenEmbed cannot represent two events with completely disjoint denotations,

we have showed that it is still able to express that some phrase pairs have very low deno-

tational conditional probabilities. We note also that DenEmbed cannot express P (x) = 0
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exactly, but can get arbitrarily close in order to represent the probability of a phrase that is

extremely unlikely.

Vilnis et al. [81] observe that this shortcoming is inherent to the class of models that assign

probability measures to a partial order embedding: these models cannot capture negative

correlation. Instead, they propose a new model that represents each concept as a high-

dimensional product-of-intervals (also known as a hyperrectangle or box ). In contrast to our

model, which defines each phrase’s probability as the forward cone of the vector, their model

defines unary probabilities based on the box volume and joint probabilities from the overlap

between boxes. Vilnis et al. show that their definition of box embeddings can model disjoint

events, and empirically demonstrate this as well. The box lattice model produces improved

results on WordNet hypernym prediction over Vendrov et al.’s order embedding model, and

improved results on the DenPhrase probability predictions over our model. They do not

evaluate on any further downstream tasks like textual entailment, so it remains to be seen

whether the box lattice embeddings are informative to other semantic tasks.

5.6 CONCLUSION

In this chapter, we presented a framework for computing the denotational conditional

probabilities between pairs of phrases from regions in a vector space that correspond to

denotational set relationships. We demonstrated that we can successfully train a neural

network model to predict these probabilities for new phrases. There are some limitations

to the resulting phrase embeddings due to the limited vocabulary and short phrase lengths

in the training data. However, we showed that by adding longer sentences with approxi-

mate probabilities to our training data, our embedding model can be adapted to standard

textual entailment datasets, on which we demonstrate improved performance over a neural

entailment baseline.
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CHAPTER 6: MULTIPLE PREMISE ENTAILMENT

Standard textual entailment recognition is concerned with deciding whether one statement

(the hypothesis) follows from another statement (the premise). So far in this thesis, we have

only discussed tasks where both the premise and the hypothesis are single sentences. The

sentence entailment task has encouraged the development of models that produce semantic

representations for sentences independent of other natural language tasks like coreference

resolution and named entity recognition. However, it has also resulted in entailment datasets

that rely on local comparisons between two sentences, e.g. word matching and substitution

of lexical synonyms or hypernyms.

In this chapter, we define Multiple Premise Entailment (MPE), a novel textual entailment

task in which the premise text is an unordered set of independently written sentences that

describe the same event. The premise sentences are all Flickr30K captions from the same

image (see examples in Table 6.1), so they may contain overlapping information but they

are typically not paraphrases. Importantly, these premise sentences all share a common

denotation which is the image they all describe. In light of this information, we want to

learn more about how these sentences interact, how often they contain overlapping or new

information, and so on.

There are many real-world situations in which we are presented with information from

multiple perspectives. For example, we might read news articles from different sources in

order to obtain a more complete picture of a reported story. Other examples are social media

posts by different people about a single event, or multiple witness reports for a crime. In

these cases, we want to use multiple independent reports to infer what really happened. The

multiple Flickr30K captions per image provide an ideal testbed for this task.

The hypothesis for this task is a simplified fifth Flickr30K caption that may or may

not come from the same image. Instead of soliciting humans to write new hypotheses, as

Bowman et al. [4] did to build SNLI, we use simplified sentences from the denotation graph,

and apply a word overlap filter and the graph structure to minimize the presence of trivial

lexical relationships.

The task is to decide whether the hypothesis sentence a) can be used to describe the same

scene (entailment), b) cannot be used to describe the same scene (contradiction), or

c) may or may not describe the same scene (neutral). The main challenge is to consider

Work in this chapter was first published in A. Lai, Y. Bisk, and J. Hockenmaier (2017), “Natural
Language Inference from Multiple Premises,” in Proceedings of the Eighth International Joint Conference on
Natural Language Processing, 100–109 [82]. It is reprinted here with the permission of the copyright holder.
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all the premise sentences to infer what happened in the scene, in some cases aggregating

information across multiple sentences into a coherent whole.

In this chapter, we describe how we collected a dataset for this task that minimizes trivial

lexical inferences, emphasizes knowledge of everyday events, and presents a more challenging

setting for textual entailment. We evaluate several strong neural baselines and analyze how

the multiple premise task differs from standard textual entailment.

Premises:
Two girls sitting down and looking at a book.
A couple laughs together as they read a book on a train.
Two travelers on a train or bus reading a book together.
A woman wearing glasses and a brown beanie next to a girl with long brown hair holding a

book.

Hypothesis: Women smiling. ⇒entailment

Premises:
Three men are working construction on top of a building.
Three male construction workers on a roof working in the sun.
One man is shirtless while the other two men work on construction.
Two construction workers working on infrastructure, while one worker takes a break.

Hypothesis: A man smoking a cigarette. ⇒neutral

Premises:
A group of individuals performed in front of a seated crowd.
Woman standing in front of group with black folders in hand.
A group of women with black binders stand in front of a group of people.
A group of people are standing at the front of the room, preparing to sing.

Hypothesis: A group having a meeting. ⇒contradiction

Table 6.1: The Multiple Premise Entailment Task

6.1 CONSTRUCTING THE MPE DATASET

The MPE dataset1 contains 10,000 items, each consisting of four premise sentences (cap-

tions from the same Flickr30K image), one hypothesis sentence (a simplified Flickr30K

caption), and a label (entailment, neutral, or contradiction) that indicates the rela-

tionship between the four premises and the hypothesis. The label is based on a consensus of

five crowdsourced judgments. To analyze the difference between multiple premise and single

1Available to download at https://github.com/aylai/MultiPremiseEntailment.
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premise entailment (Section 6.2.2), we also collected entailment labels for each individual

premise-hypothesis pair in the development data.

6.1.1 Generating the Items

Hypothesis Simplification

The premise of each MPE item consists of four Flickr30K captions from the same

image, while the hypothesis sentence is a simplified caption. Since complete captions are

very specific and are likely to introduce new details that are not entailed by the premises,

we simplify the hypothesis caption according to the denotation graph generation process to

produce a sentence that is more likely to be entailed by the premises. In 50% of our data,

the hypothesis sentence is a simplified variant of the fifth caption describing the same image

as the premise captions (this hypothesis is more likely to be entailed by the premises, but

this is not guaranteed, which is why we have a human annotation step). In the remaining

50% of our data, the hypothesis sentence is a simplified variant of one of the captions for a

random Flickr30K image.

To simplify a hypothesis caption, we consider all sentence nodes in the denotation graph

that are ancestors (more generic versions) of this caption, but exclude nodes that are also

ancestors of any of the premises. This ensures that the simplified hypothesis sentence can-

not be trivially obtained from any premise sentence via the same automatic simplification

procedure. Therefore, we avoid some obvious semantic relationships between premises and

hypothesis, such as hypernym replacement, dropping modifiers or prepositional phrases, etc.

Limiting Lexical Overlap

Given the set of simplified, restricted hypotheses, we further restrict the pool of potential

items to contain only pairings where the hypothesis has a word overlap ≤ 0.5 with the

premise set. We compute word overlap as the fraction of hypothesis tokens that appear in at

least one premise (after stopword removal). This eliminates trivial entailment cases where

the hypothesis is simply a subset of the premise text. Table 6.2 shows that, as a result, the

mean word overlap for the MPE training data is much lower than SNLI.
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SNLI MPE
Data full lemma full lemma

All 0.44 ± 0.29 0.48 ± 0.29 0.28 ± 0.22 0.33 ± 0.20

entailment 0.59 ± 0.31 0.64 ± 0.30 0.34 ± 0.21 0.38 ± 0.19

neutral 0.41 ± 0.24 0.45 ± 0.24 0.28 ± 0.21 0.33 ± 0.19

contradiction 0.33 ± 0.25 0.36 ± 0.25 0.23 ± 0.22 0.30 ± 0.21

Table 6.2: Mean word overlap for full training data and each label, original and lemmatized
sentences. MPE has much lower word overlap than SNLI.

Data Selection

From this constrained pool of premises-hypothesis pairings, we randomly sampled 8000

training items from the Flickr30K training split. For test and development data, we sample

1000 items from Flickr30K test and 1000 from dev. The hypotheses in the training data

must be associated with at least two captions in the Flickr30K train split, while the

hypotheses in dev/test must be associated with at least two captions in the union of the

train and dev/test splits, and with at least one caption in dev/test alone. Since the test and

dev splits of Flickr30K are smaller than the training split, this threshold is designed to

select hypotheses that are rare enough to be interesting and frequent enough to be reasonable

sentences.

We also limited repetition of hypothesis sentences to at most 16 times in the training set

and at most two times each in the development and test splits to encourage diversity of

hypotheses in the data.

6.1.2 Assigning Entailment Labels

The MPE task was inspired by the Approximate Textual Entailment (ATE) task [9], which

also used a premise set of four Flickr30K captions. ATE items were labeled automatically

under the assumption that items were positive (approximately entailing) if the hypothesis

came from the same image as the four premises, and negative otherwise. However, we

ultimately found that this assumption was true for only half of the positive items. To

address this discrepancy, we collected human judgments to label these items as entailment,

contradiction, or neutral.
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Instructions:
We will show you four caption sentences that describe the same scene, and one proposed sentence. Your

task is to decide whether or not the scene described by the four captions can also be described by the
proposed sentence.

The four captions were written by four different people. All four people were shown the same image,
and then wrote a sentence describing the scene in this image. Therefore, there may be slight disagreements
among the captions. The images are photographs from Flickr that show everyday scenes, activities, and
events. You will not be given the image that the caption writers saw.

Process:
Read the four caption sentences and then read the proposed sentence. Then choose a response to this

question: Can the scene described by the four captions also be described by the proposed sentence?

Yes: The scene described by the captions can definitely (or very probably) be described by the proposed
sentence. The proposed sentence may leave out details that are mentioned in the captions. If the proposed
sentence describes something that is not mentioned in the captions, it is probably safe to assume the extra
information is true, given what you know from the captions. If there are disagreements among the captions
about the details of the scene, the proposed sentence is consistent with at least one caption.

Unknown: There is not enough information to decide whether or not the scene described by the captions
can be described by the proposed sentence. There may be scenes that can be described by the proposed
sentence and the captions, but you don’t know whether this is the case here.

No: The scene described by the captions can probably not be described by the proposed sentence. The
proposed sentence and the captions either contradict each other or describe what appear to be two completely
separate events.

Table 6.3: The annotation instructions we provided to CrowdFlower and Mechanical Turk
annotators.

Crowdsourcing Procedure

For each item, we solicited five responses from workers on two crowdsourcing platforms,

CrowdFlower and Mechanical Turk, as to whether the relationship between the set of four

premises and the hypothesis was entailment, contradiction, or neutral. Table 6.3

contains the instructions we provided to the workers.

The two crowdsourcing platforms differ somewhat in their interfaces and options to filter

workers, so our annotation procedures differ slightly between CrowdFlower and Amazon.

On CrowdFlower, we limited the annotator pool to the highest quality group of workers

(as defined by CrowdFlower) and to countries with a high percentage of native English

speakers. We also set a minimum time of 60 seconds per five questions. Annotators had to

complete five questions to be paid for a job, and each annotator was allowed to complete

a maximum of 800 questions. On Mechanical Turk, we only allowed workers located in the

United States who had at least successful 1000 HITs with an overall approval rate of at

least 95%. Annotators submitted one question at a time and there was no maximum on the

number of questions that a single annotator could answer.
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Entailment Labels

We assume three labels (entailment, neutral, contradiction). For entailment,

we asked annotators to judge whether the hypothesis could very probably describe the same

scene as the premises, rather than specifying that the hypothesis must definitely be true, as

Bowman et al. [4] did for SNLI. We also told annotators that the hypothesis could mention

something not described in the premises as long as most people would assume it was true.

Our instructions align with the standard definition of textual entailment: “T entails H if

humans reading T would typically infer that H is most likely true” [5]. We are interested

in more than what is logically required for a hypothesis to be true: our goal was to solicit

examples of entailment that depend on people’s assumptions about the world that are rarely

stated directly.

SNLI does contain some entailment examples where the hypothesis is not strictly re-

quired to be true from the premise. For example:

Premise: A woman in a tan top and jeans is sitting on a bench wearing headphones.

Hypothesis: A woman is listening to music.

⇒entailment

or

Premise: A dog running in the sand.

Hypothesis: A dog is running outside at the beach.

⇒entailment

Both of the above examples are labeled entailment even though one can imagine sce-

narios where the premise is true while the hypothesis is not. These examples might not be

as unambiguous as the strict entailment example below, but they are also more interesting:

Premise: Two men on bicycles competing in a race.

Hypothesis: People are riding bikes.

⇒entailment

Our goal was to include entailment examples that are more interesting and natural, and

reflect human assumptions about language and correlation in the world.

Examples

We provided a small set of labeled example items to the annotators along with an expla-

nation for the label. This text is reproduced here:
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Premises:

A man in jean shorts and a dark shirt is sitting with a red backpack beside him in a wooded

area possibly chanting.

A man with a headband sitting on a green bench.

A man takes a break from his hiking trip.

An older man sitting in the sunshine.

Hypothesis: A hiker sitting. ⇒entailment

In the above example, the captions describe a man on a hike, so hiker is an appropriate

description. Three of the four captions say the man is sitting and the fourth caption doesn’t

contradict this information, so the proposed sentence describes the scene.

Premises:

A thin man talks in front of a seated crowd and explains something with his hands.

A man in a dark shirt and orange lanyard speaking to an audience.

A man is giving a presentation in front of a crowd.

A man is giving a presentation.

Hypothesis: A man standing. ⇒entailment

In this second example, we assume that a man who is giving a presentation is standing

unless otherwise mentioned, so the proposed sentence is a true description.

Premises:

Three girls sitting at a dinner eating and looking around.

Three children are sitting down at a table eating.

Four girls eat breakfast at a convention.

Three children sit down to a meal.

Hypothesis: Three girls sitting at a table. ⇒entailment

Although the captions disagree about whether there are three or four girls in the scene,

the proposed sentence is consistent with one of these possible scenarios, so it describes the

scene. A different proposed sentence “Four girls sitting at a table” would also describe the

scene.

Premises:

People in a school cafeteria with a boy in the foreground wearing yellow and brown stripes.

A crowd of people gather for a meal indoors.

Children serving at a community dinner.

A room full of adults and children.

Hypothesis: A child does dishes. ⇒neutral
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It is quite possible that there is a child doing dishes at a dinner served by children, but

none of the captions mention anyone doing dishes. There is not enough information to decide

that the proposed sentence either does or does not describe the scene.

Premises:

There are two girls dressed in exercise clothing obviously doing an exercise on a beach.

Two young women, both with long brown hair, practicing yoga on a rocky beach.

Two females are working out on a beach.

Two women, on a beach doing yoga.

Hypothesis: Women stand. ⇒neutral

The captions describe two women in the scene, but we don’t know if they are standing

because yoga involves both sitting and standing positions. There is not enough information

to decide that the proposed sentence either does or does not describe the scene.

Premises:

Two men are sitting in white chairs next to a blue door.

Two men in white plastic chairs sitting in a doorway.

Two elderly men converse in an run-down building.

Two men are sitting on white chairs.

Hypothesis: A man does crunches. ⇒contradiction

Neither of the men described in the captions can be doing crunches because they are

sitting in chairs. It is unlikely that there is a third man in the same scene who is doing

crunches, so the proposed sentence probably does not describe the scene.

Premises:

Eight people are shown in the picture in snow gear seeming to be skiing.

Seven people are taking a break from skiing to chat in a snowy clearing.

Several skiers standing around talking in a snowy scene.

A group of adults getting ready to ski.

Hypothesis: A group swimming. ⇒contradiction

It does not make sense for a group of people to be swimming in a skiing scene, so the

proposed sentence is not compatible with the scene described by the captions.
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Final Label Assignment

Of the 10,000 items for which we collected annotations, 90% had a majority label based

on the five judgments, including 16% with a 3-2 split between entailment and contra-

diction. The remaining 10% had a 2-2-1 split across the three classes. We manually

adjudicated the latter two cases.

The dataset we released contains both our final labels and the crowdsourced judgments

for all items. 82% of the final labels in the dataset agree with the majority voting label

over the submitted judgments (the remaining 18% differ due to our manual correction). The

disagreements are due to various factors. In some cases, the item is simply more difficult

and therefore disagreement among annotators is to be expected for these edge cases. In

other cases, some annotators provided questionable judgments. We did attempt to weed

out unskilled or malicious annotators, and collected five judgments per item to alleviate the

affects of bad annotators, but some of these disagreements are inevitable in any crowdsourced

data.

6.1.3 Image IDs

Each premise sentence in MPE has a corresponding Flickr30K image ID (included in

the data release). Since we are interested primarily in the information present in linguistic

descriptions of a scene, the labels reflect the text-based entailment relationship between the

premise text and the hypothesis. However, future work could apply multi-modal represen-

tations to this task, with the caveat that including the image would likely resolve many

neutral items to either entailment or contradiction. We explore a version of this

task in Chapter 7.

6.2 DATASET CHARACTERISTICS

6.2.1 Statistics

The dataset contains 8000 training items, 1000 development items, and 1000 test items.

Table 6.4 shows overall type and token counts and sentence lengths as well as the label

distribution.

The mean annotator agreement, i.e. the fraction of annotators who agreed with the

final label, is 0.70 for the full dataset (0.82 for entailment, 0.42 for neutral, and 0.78

for contradiction). That is, on average, four of the five crowdsourced judgments agree
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SNLI MPE
Number of Lexical types 36,616 9,254
Number of Lexical tokens 12 million 468,524
Mean premise length 14.0 ± 6.0 53.2 ± 12.8

Mean hypothesis length 8.3 ± 3.2 5.3 ± 1.8

Label distribution
entailment 33.3% 32.3%
neutral 33.3% 26.3%
contradiction 33.3% 41.6%

Table 6.4: Type and token counts, sentence lengths, and label distributions for the training
data.

with the final label for entailment and contradiction. For neutral, only two of the

five original annotators on average selected neutral, and the other three selected either

contradiction or entailment.

6.2.2 MPE vs. Standard Entailment

Multiple premise entailment differs from standard single premise entailment (SPE) in

that each premise consists of four independently written sentences about the same scene.

To understand how MPE differs from SPE, we collected pairwise single-premise entailment

labels for each individual premise-hypothesis pair in the development data. Each pair label

is based on three human judgments, again collected using Mechanical Turk.

In Table 6.5, we compare the full item MPE entailment labels to the four pair SPE

labels. The number of SPE labels that agree with the MPE label yields the five categories

in Table 6.5, ranging from the most difficult case where none of the SPE labels agree with

the MPE label (21.8% of the data) to the simplest case where all four SPE labels agree with

the MPE label (9.8% of the data).

We observe that a simple majority voting scheme over the gold standard SPE labels is

not sufficient to do well on MPE, since it assigns the correct MPE label to only 34.6% of

the development items (i.e. those cases where three or four SPE pairs agree with the MPE

label). We also consider a slightly more sophisticated voting scheme that applies the following

heuristic (here, |E| and |C| are the number of SPE entailment and contradiction labels

of each class):
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#
pairs
agree

% of
data

Pair
Label

Example Hypothesis and Four Premises

0 21.8 N

N
N
N

A football player in a red uniform is standing in front of other
football players in a stadium.
A football player facing off against two others.
A football player wearing a red shirt.
Defensive player waiting for the snap.
The team waiting.

⇒entailment

1 26.9 N
C
N
N

A person is half submerged in water in their yellow kayak.
A woman has positioned her kayak nose down in the water.
A person in a canoe is rafting in wild waters.
A kayaker plunges into the river.
A man in a boat paddling through waters.

⇒contradiction

2 16.7 E

E
N
N

A batter playing cricket missed the ball and the person behind
him is catching it.
A cricket player misses the pitch.
The three men are playing cricket.
A man struck out playing cricket.
A man swings a bat.

⇒ entailment

3 24.8 N

N

E
N

A young gymnast, jumps high in the air, while performing on a
balance beam.
A gymnast performing on the balance beam in front of an audi-
ence.
The young gymnast’s supple body soars above the balance beam.
A gymnast is performing on the balance beam.
A woman doing gymnastics.

⇒ neutral

4 9.8 C
C
C
C

A man with a cowboy hat is riding a horse that is jumping.
A cowboy riding on his horse that is jumping in the air.
A cowboy balances on his horse in a rodeo.
Man wearing a cowboy hat riding a horse.
Men pulled by animals.

⇒ contradiction

Table 6.5: MPE examples categorized by the number of pairs labels (0–4) that agree with
the full label.
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If |E| > |C|, predict entailment.

Else if |C| > |E|, predict contradiction.

Otherwise, predict neutral.

This baseline achieves 41.7% accuracy, indicating that MPE cannot be trivially reduced to

SPE. That is, even if a model could predict the correct SPE label for each individual premise

with 100% accuracy (an unrealistic assumption), it would require more than simple voting

heuristics to obtain the correct MPE label from the pairwise labels.

Table 6.5 illustrates that the majority of MPE items require aggregation of information

about entities and events from multiple premises. In the first example, the first premise is

consistent with a scene that involves a team of football players but does not indicate what

the team is doing, while the last premise indicates that a football player (and therefore the

rest of the team) is waiting, but does not actually mention the team.

6.2.3 Semantic Phenomena

We used a random sample of 100 development items to examine the types of semantic

phenomena that are useful for inference in MPE. We categorized each item by the type

of knowledge or reasoning necessary to predict the correct label for the hypothesis given

the premises. An item belongs to a category if at least one premise exhibits the specified

phenomenon in relation to the hypothesis, and an item may belong to multiple categories.

Table 6.6 shows the frequency of each category, an illustrative example containing the rele-

vant premise, and the distribution over entailment labels. We used all four premises for our

analysis, but we show only a single relevant premise along with the hypothesis for simplicity.

Word equivalence Items in this category contain a pair of equivalent words (synonyms

or paraphrases). The word in the hypothesis can be exchanged for the word in the premise

without significantly changing the meaning of the hypothesis.

Word hypernymy These items involve lexical hypernyms: either one word is the hyper-

nym of the other, or they share a mutual hypernym. For example, a man is also a person

(entailment), but a person may or may not be a man (neutral), and somebody who is

a man is not a child (contradiction).

Phrase equivalence These items involve equivalent phrases, i.e. synonyms or para-

phrases. The phrase in the hypothesis can be replaced by the phrase in the premise without
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# E N C Example Premise and Hypothesis Pair

Total 100 31 29 40

Word equivalence 16 12 4 0 A person climbing a rock face.
A rock climber scales a cliff.

⇒entailment

Word hypernymy 19 6 6 7 Girl in a blue sweater painting while looking at a bird in a
book.
A child painting a picture.

⇒entailment

Phrase equivalence 7 6 1 0 A couple in their wedding attire stand behind a table with a
wedding cake and flowers.
Newlyweds standing.

⇒ entailment

Phrase hypernymy 8 6 2 0 A group of young boys wearing track jackets stretch their legs
on a gym floor as they sit in a circle.
A group doing exercises.

⇒ entailment

Mutual exclusion 25 0 0 25 A woman in a red vest working at a computer.
Lady doing yoga.

⇒ contradiction

Compatibility 18 0 18 0 Onlookers watch.
A girl at bat in a softball game.

⇒ neutral

World knowledge 35 14 9 12 A young woman gives directions to an older woman outside
a subway station.
Women standing.

⇒ entailment

Table 6.6: Analysis of 100 random dev items. For each phenomenon, we show the distribution
over labels and an example. We use italics to indicate the relevant comparisons. The
indicated span of text is part of the necessary information to predict the correct label, but
may not be sufficient on its own.

significantly changing the meaning of the hypothesis. The phrases cannot be decomposed

into multiple lexical comparisons.

Phrase hypernymy Items in this category involve a specific phrase and a general phrase:

the more general phrase doing exercises can refer to multiple types of exercises in addition

to stretching their legs.

Mutual exclusion Distinguishing between contradiction and neutral involves iden-

tifying actions that are mutually exclusive, i.e. cannot be performed simultaneously by the

same agent (“Two doctors perform surgery” vs. “Two surgeons are having lunch”). We pre-

viously demonstrated in Section 4.4.1 that this kind of information encoded in an antonym
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dictionary was particularly useful for identifying contradiction in SICK.

Compatibility The opposite of mutual exclusion is compatibility: when two actions can

be performed simultaneously by the same agent (e.g. “A boy flying a red and white kite” vs.

“A boy is smiling”).

World knowledge These items require extra-linguistic knowledge about the relative fre-

quency and co-occurrence of events in the world (not including the mutual exclusion or

compatibility phenomena). For example, a human reader can infer that children in a potato

sack race are having fun (while a marathon runner competing in a race might not be de-

scribed as having fun).

When we look at the distribution of these phenomena as shown in Table 6.6, we see that

many items (19–35%) involve lexical relationships, either lexical synonyms or hypernyms.

These types of relationships are also common in SNLI, and it is not surprising that they

appear frequently in MPE as well, due to the construction of the image caption data and

the denotation graph: the multiple captions from Flickr30K encourage the presence of

synonyms, and the denotation graph phrases are generated using WordNet hypernym infor-

mation. However, in addition to these lexical relationships, we see a nontrivial number of

items (8–15%) that involve phrase comparisons that cannot be easily decomposed into words.

These phrasal synonyms or hypernyms are interesting as they differ from most constructions

in SNLI.

Finally, we have the mutual exclusion and compatibility categories, which are a specific

type of world knowledge. These three categories all involve some external information about

the distribution of events in the world: certain actions cannot be done simultaneously by the

same person, while this is not true of other action pairs. We consider these items to be the

most difficult in our dataset, and together they comprise 35-78% of the data, a significant

portion of the items in MPE. Modeling these phenomena should present an interesting

challenge for future work.

6.2.4 Combining Information Across Premises

In addition to the semantic phenomena we have just discussed, MPE presents the challenge

of how to combine information across multiple premises. We examined examples from the

development data to categorize the different types of information aggregation present in our

dataset.
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Coreference resolution These items require cross-caption coreference resolution of entity

mentions from multiple premises and the hypothesis. In this example, two men and two

senior citizens refer to the same entities, i.e. the two older men in the hypothesis. Given

that information and other premise descriptions, the reader can infer that the two older men

on the street are likely to be standing.

Premises:

Two men in tan coats exchange looks on the city sidewalk.

Two senior citizens talking on a public street.

Two men in brown coats on the street.

Two men in beige coats, talking.

Hypothesis: Two older men stand. ⇒entailment

Event resolution This case requires resolving various event descriptions from multiple

premises and the hypothesis. In the following example, a human reader recognizes that the

man is sitting on scaffolding so that he can repair the building, and therefore he is doing

construction work.

Premises:

A man is sitting on a scaffolding in front of a white building.

A man is sitting on a platform next to a building ledge.

A man looks down from his balcony from a stone building.

Repairing the front of an old building.

Hypothesis: A man doing construction work. ⇒entailment

Visual ambiguity resolution This case involves reconciling apparently contradictory

information across premises. These discrepancies are largely due to the fact that the premise

captions were written about an image. Sometimes the image contained visually ambiguous

entities or events that are then described differently by different caption writers. In this

example, in order to resolve the discrepancy, the reader must recognize from context that

woman and young child (and also person) refer to the same entity.
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Premises:

A person in a green jacket and pants appears to be digging in a wooded field with several

cars in the background.

A young child in a green jacket rakes leaves.

A young child rakes leaves in a wooded area.

A woman cleaning up a park.

Hypothesis: A woman standing in the forest. ⇒entailment

Scene resolution These examples require the reader to build a mental representation of

the scene from the premises in order to assess the probability that the hypothesis is true. In

the first example, specific descriptions – a jumping horse, a cowboy balancing, a rodeo – can

be combined to conclude that there is a high probability that the specific event described

by the hypothesis is true.

Premises:

A man with a cowboy hat is riding a horse that is jumping.

A cowboy riding on his horse that is jumping in the air.

A cowboy balances on his horse in a rodeo.

Man wearing a cowboy hat riding a horse.

Hypothesis: An animal bucking a man. ⇒entailment

In the next example, the hypothesis does not contradict any individual premise sentence.

However, a reader who understands the generic scene described knows that the very specific

hypothesis description is unlikely to go unmentioned if it were a true description of the

premise scene. Shirtlessness would be a salient detail in this scene, so the fact that none of

the premises mention it means that the hypothesis is likely to be false.

Premises:

A young couple sits in a park eating ice cream as children play and other people enjoy

themselves around them.

Couple in park eating ice cream cones with three other adults and two children in background.

A couple enjoying ice cream outside on a nice day.

A couple eats ice cream in the park.

Hypothesis: A shirtless man sitting. ⇒contradiction

In the final example, the premises present a somewhat generic description of the scene.

While some premises lean towards entailment (a woman and a man in discussion could

86



be having a work meeting) and others lean towards contradiction (two people conversing

outdoors at a restaurant are probably not working), none of them contain overwhelming

evidence that the scene entails or contradicts the hypothesis. Therefore, the hypothesis is

neutral given the premises.

Premises:

A blond woman wearing a gray jacket converses with an older man in a green shirt and

glasses while sitting on a restaurant patio.

A blond pony-tailed woman and a gray-haired man converse while seated at a restaurant’s

outdoor area.

A woman with blond hair is sitting at a table and talking to a man with glasses.

A woman discusses something with an older man at a table outside a restaurant.

Hypothesis: A woman doing work. ⇒neutral

6.2.5 Hypothesis-Only Bias

One of our motivations for creating this dataset was the idea that SNLI contains certain

biases due to how Bowman et al. [4] elicited hypotheses from annotators. We aimed to avoid

some of these issues by using randomly selected hypotheses that were derived from image

captions independently of the entailment label.

Recent work has verified this hypothesis: both Gururangan et al. [11] and Poliak et al. [12]

showed that a hypothesis-only model, which encodes only the hypothesis of each sentence

pair, achieves almost 70% accuracy on SNLI. This is compared to a majority-class baseline

of 33%. In other words, a significant fraction of the test set can be correctly classified

without knowledge of the premise sentence. Both papers demonstrate that some of this bias

is encoded at the word level: certain words and types of words are more likely to occur

with a particular entailment label. Gururangan et al. hypothesize that these artifacts may

result from annotators using heuristics in order to quickly write hypotheses for a specific

entailment label.

We took a human judgment approach to our dataset rather than human elicitation. We

constructed the items in our dataset by selecting hypothesis sentences from the denotation

graph and randomly pairing them with premises. Poliak et al. show that we were successful

in avoiding this bias in the hypothesis, as their hypothesis-only model applied to MPE

shows no improvement in accuracy over the majority class baseline. However, it is not clear

what part of our data selection and annotation process is responsible for this result; Poliak

et al. show that other entailment datasets without human-elicited hypotheses still show some
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Figure 6.1: LSTMCond: an entailment classifier that uses two LSTM RNNs to process
the hypothesis conditioned on the premise sentence(s). To apply this model to MPE, we
concatenate the four premises into a single sequence that is processed by the first LSTM.

hypothesis-only bias.

Hypothesis-only bias may exist for many reasons, e.g. sentence lengths, the previously

mentioned issue of lexical choice, or unexplored phenomena like syntax or multi-word ex-

pressions. Furthermore, hypothesis-only bias is not the only possible type of bias in a textual

entailment dataset. MPE may not contain label biases due to the hypothesis, but that does

not mean it is free from other biases. It is important to continue these investigations into

potential dataset bias to better understand the models we train.

6.3 NEURAL ENTAILMENT MODELS

We apply several neural models from the entailment literature to predict entailment on

MPE. We also present a model designed to handle multiple premises, as this is unique to

our dataset.

6.3.1 A Conditional LSTM Classifier

In our experiments, we found that an entailment model that uses two LSTMs where one

conditioned is on the other [46] outperformed an entailment classifier with a single LSTM

(e.g. Bowman et al. [4], EntailLSTM from Chapter 5). We refer to this conditional LSTM

classifier as LSTMCond (Figure 6.1). The model consists of two LSTMs, one to process

the premise, and the second to process the hypothesis conditioned on the premise. After
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the first LSTM reads the premise, its final cell state is used to initialize the cell state of

the second LSTM, which reads the hypothesis. The resulting premise vector and hypothesis

vector are concatenated and passed through a hidden layer and a softmax prediction layer.

When handling four MPE premise sentences, we concatenate them into a single sequence

(ordered by their caption IDs) that we pass to the first LSTM.

6.3.2 Word-to-Word Attention

Neural attention models have been very successful on SNLI, so we also consider a word-

to-word attention model [46].2 This model, which we refer to as Attention, learns a

soft alignment of words in the premise and hypothesis. One LSTM reads the premise and

produces output vectors Y = [p1...pL] for the L words in the premise. The second LSTM

processes the hypothesis one word at a time. For each word xt in the hypothesis, the attention

mechanism produces a vector of weights αt by attending to all the premise output vectors

p1...pL and using the ht, the hypothesis LSTM output for this word, and the weighted

premise representation from the previous timestep, rt−1.

Mt = tanh
(
WyY +

(
Whht + Wrrt−1

)
⊗ eL

)
(6.1)

αt = softmax
(
wTMt

)
(6.2)

rt = YαT
t + tanh

(
Wtrt−1

)
(6.3)

The final sentence pair representation is a nonlinear combination of the final attention-

weighted representation of the premise rL and the final output vector from the hypothesis

LSTM, hN . This final sentence pair representation is passed through a softmax layer to

compute the cross-entropy loss.

h∗ = tanh (WprL + WxhN) (6.4)

In the above equations, eL is a vector of ones. Wy, Wh, Wr, Wt, Wp, and Wx are all

learned parameter matrices.

When training on MPE, we concatenate the premise sentences into a single sequence as

the input to the premise LSTM.

2We use a reimplementation of Rocktäschel et al.’s model (https://github.com/junfenglx/reasoning_
attention).
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Figure 6.2: SumOfExperts: an entailment classifier that uses a pair of LSTM RNNs to
process the hypothesis sentence four times conditioned on each premise sentence, and then
aggregates the predictions.

6.3.3 Premise-wise Sum of Experts (SE)

Both LSTMCond and Attention assume that the premise is a single sentence, so we

have to concatenate the four premises in order to apply the models to MPE. To capture

what distinguishes MPE from standard entailment, we also consider a premise-wise sum of

experts model (SumOfExperts, Figure 6.2) that makes a separate entailment prediction

for each premise paired with the hypothesis. This model can adjust how it handles each

premise based on the predictions of the other premises.

We use the same conditional LSTM setup as in LSTMCond and apply it repeatedly

to read each premise and the hypothesis, producing four premise vectors p1...p4 and four

hypothesis vectors h1...h4 (conditioned on each premise). Each premise vector pi is concate-

nated with its hypothesis vector hi and passed through a feedforward layer to produce logit

prediction li. We sum l1...l4 to obtain the final prediction, which we use to compute the

cross-entropy loss.

When training SumOfExperts on SNLI, we use the conditional LSTM only once to read

the premise and hypothesis and produce p1 and h1. We pass the concatenation of p1 and

h1 through the feedforward layer to produce l1, which we use to compute the cross-entropy

loss.
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6.4 EXPERIMENTAL RESULTS

6.4.1 Training Details

We use the Adam optimizer with a learning rate of 0.001 for all models. We train each

model for 10 epochs based on convergence on the development data. For joint SNLI+MPE

training, we pretrain the model for 10 epochs on SNLI, then train for 10 epochs on MPE. This

was the best joint training approach we found, compared to other approaches that involved

balancing the SNLI and MPE data sizes, or interleaving the SNLI and MPE training epochs.

For all experiments that involve training on SNLI (either as the sole training data or as a

pretraining step), we apply the best reported parameters for the Attention model to train

all three of our models: dropout keep rate 0.8, LSTM dimensionality 100d, batch size 32.

For the experiments that involve training only on MPE, we chose hyperparameters from a

grid search. For LSTMCond: dropout keep rate 0.8, LSTM dimensionality 75d, batch size

32. For SumOfExperts: dropout keep rate 0.8, LSTM dimensionality 100d, batch size 32.

For Attention: dropout keep rate 0.6, LSTM dimensionality 100d, batch size 32.

6.4.2 Word Embedding Representations

For LSTMCond and SumOfExperts, we use 300d GloVe vectors (trained on 840B to-

kens) as the word embedding input. Bowman et al. [4] presented some of the first competitive

neural network models for textual entailment, and established GloVe vectors as the default

embedding representation for neural entailment models. Later works that also evaluate on

SNLI have followed this precedent in using GloVe vectors [43, 45, 47, 38, 83]. However, the

Attention implementation uses word2vec vectors.

In Table 6.7, we compare the effects of GloVe vs. word2vec on Attention’s accuracy on

the development data. For the training regimes involving SNLI, word2vec vectors outperform

GloVe vectors, while GloVe vectors slightly outperform word2vec when only training on

MPE. These preliminary results are not necessarily reflective of the performance of GloVe vs.

word2vec on SNLI or MPE in general. Prior work has shown that the performance of different

word vectors may be task-specific and is also subject to sometimes hidden design decisions

like preprocessing steps and hyperparameter choices [84, 85, 86, 87]. In the experiments

in this chapter, we use word2vec vectors for Attention under the assumption that its

parameters were tuned for that embedding representation, but we use GloVe vectors for

LSTMCond and SumOfExperts to maintain continuity with the entailment community.
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Vector source Training regime
SNLI MPE SNLI+MPE

word2vec 54.3 54.0 64.0
GloVe 48.1 55.6 60.3

Table 6.7: Comparing entailment accuracy of Attention using GloVe vs. word2vec vectors,
evaluated on MPE development data.

Training Class LSTMCond SumOfExperts Attention

SNLI only 52.6 55.9 55.0
E 85.8 71.5 81.7
N 8.4 21.6 16.4
C 55.7 62.0 54.5

MPE only 53.5 56.3 53.9
E 63.1 61.3 48.3
N 39.2 30.2 30.6
C 53.5 66.5 71.2

SNLI+MPE 60.4 60.0 64.0
E 65.1 65.4 75.9
N 40.9 42.7 32.8
C 67.2 65.1 71.5

Table 6.8: Entailment test accuracy on MPE. SumOfExperts has the highest accuracy of
all models that are trained only on SNLI or MPE. Attention has the highest accuracy
when pretrained on SNLI.

6.4.3 Classification Results

Table 6.8 contains the test accuracies of the three models under three training regimes:

SNLI only, MPE only, and SNLI+MPE.

We train only on SNLI to see whether models can generalize from one entailment task

to the other. Both LSTMCond and SumOfExperts are able to transfer information

learned on SNLI to MPE; their performance does not degrade much from the MPE-only

training regime to the SNLI-only regime. In contrast, however, Attention’s does much

better on MPE when it is trained only on SNLI, compared to training in-domain only on

MPE. We hypothesize that this is because Attention has many more parameters than

either LSTMCond or SumOfExperts, and MPE alone does not contain sufficient data to

train reliably. SNLI, however, does contain enough data for Attention to learn reasonable

parameters, enough to perform adequately on MPE. Its performance in the SNLI-only setting
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(55.0%) still does not measure up to SumOfExperts trained on MPE (56.3%), which is

trained on much less data.

The model with the highest accuracy after training in-domain is SumOfExperts (56.3%).

It also outperforms all models that were trained only on SNLI. SumOfExperts is the only

model of the three that processes the four premises as individual sentences and not as a single

concatenated sequence, which appears to be an important distinction. SumOfExperts’s

strong performance supports our hypothesis that different premises may contain different

information that needs to be combined carefully with other premises in order to succeed on

this task.

LSTMCond performs on par with SumOfExperts when training on SNLI+MPE, but

our analysis (Section 6.4.5) shows that their errors are quite different. LSTMCond’s com-

paratively poor performance is not surprising as it is forced to reduce a very long sequence

of words to a single vector without the benefit of attention to highlight important words.

Overall, the best performing model under any training regime is Attention trained on

SNLI+MPE. We hypothesize that pretraining Attention on SNLI is necessary to learn

reasonable parameters before training on MPE, a smaller dataset where word-to-word infer-

ences may be less obvious. Attention’s relative success confirms our analysis in Table 6.6

that there are a substantial minority of items in this dataset that contain lexical relation-

ships similar to those found in SNLI. However, even the most successful model achieves only

64% accuracy on our dataset, compared to the 83.5% that Attention reaches on SNLI, so

there is still substantial room for improvement on this dataset.

There are benefits both from using word-to-word attention and from handling the premises

as individual sentences as SumOfExperts does. These benefits are potentially comple-

mentary and could be explored in future work. We did implement a preliminary model that

added attention to the SumOfExperts architecture, but it overfit on SNLI and could not

match other models’ accuracy, reaching only about 58% on the development data compared

to 59-63% from the other models.

6.4.4 Pair Agreement Results

We analyze how each model’s performance is affected by the number of premises whose

SPE label agrees with the MPE label. Table 6.9 shows the accuracy of each model (trained

on SNLI+MPE) on the development data grouped by SPE-MPE label agreement (using the

categories defined in Table 6.5).

Attention and SumOfExperts exhibit different strengths: Attention has the highest

accuracy on three of five categories, including the most difficult category where none of the
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Accuracy on SPE-MPE agreement subsets
# pairs agree 0 1 2 3 4
% of data 21.8 26.9 16.7 24.8 9.8

LSTMCond 57.3 57.6 60.5 67.1 63.3
SumOfExperts 59.6 58.0 63.3 62.9 66.3
Attention 65.6 57.6 62.9 68.3 70.4

Table 6.9: Accuracy for each model (trained on SNLI+MPE) on the development data split
according to how many SPE labels match the MPE label (Table 6.5).

Accuracy
Phenomenon LSTMCond SumOfExperts Attention #

Word equivalence 50.0 56.2 68.8 16
Word hypernymy 52.6 47.4 52.6 19
Phrase equivalence 57.1 57.1 85.7 7
Phrase hypernymy 50.0 50.0 62.5 8
Mutual exclusion 68.0 72.0 60.0 25
Compatibility 50.0 61.1 50.0 18
World knowledge 57.1 62.9 45.7 35

Table 6.10: Accuracy across semantic phenomena on 100 annotated development items.
While Attention was the best model overall, it does not have the highest accuracy in each
category.

SPE labels match the MPE label, while SumOfExperts has the highest accuracy in the

remaining two categories. Attention demonstrates large gains in the easiest categories,

perhaps because there is less advantage to aggregating individual premise predictions (as

SumOfExperts does) and using attention to reweight individual words is more useful. On

the other hand, Attention also does well on the most difficult category, indicating that it

may be able to partially aggregate premise information by increasing attention weights on

phrases from multiple sentences.

These results again emphasize that the SumOfExperts and Attention models might

be complementary and have the potential to produce even better results on MPE when

combined.

6.4.5 Semantic Phenomenon Results

Table 6.10 shows the performance of the three SNLI+MPE-trained models over semantic

phenomena, based on the 100 annotated dev items (see Section 6.2.3 and Table 6.6). The
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smaller categories (e.g. phrase equivalence and phrase hypernymy) may contain too few

examples to be informative, but other categories still provide some information about the

models.

Although Attention outperformed both LSTMCond and SumOfExperts in overall

accuracy, it does not have the highest accuracy in every semantic category. Both SumOf-

Experts and Attention have access to the same information, but Attention does better

on items that contain hypernyms and synonyms for both words and short phrases. Mean-

while, SumOfExperts is best at mutual exclusion, compatibility, and world knowledge

categories, e.g. knowing that a man who is resting is not kayaking, and a bride is not also

a cheerleader. In cases that require analysis of mutually exclusive or compatible events, a

model like SumOfExperts has an advantage since it can reinforce its weighted combination

prediction by examining each premise separately.

6.5 CONCLUSION

In this chapter, we presented a novel textual entailment task that involves inference over

longer premise texts and aggregation of information from multiple independent premise

sentences. Each premise text in our corpus contains multiple sentences that share a common

denotation – the single image that they all describe – and the ultimate goal is to model

a unified scene representation that can be used to judge the entailment relation between

premises and hypothesis.

We presented several strong neural entailment baselines for this new task, including one

model that aggregates information from the predictions of separate premise sentences. In

the next chapter, we will continue this exploration by applying a denotational embedding

model to this task.
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CHAPTER 7: DENOTATIONAL EMBEDDINGS FOR MULTIPLE
PREMISE ENTAILMENT

In Chapter 6, we introduced the MPE dataset as a new challenge for textual entailment

models. MPE highlights phenomena that are not as common in other entailment datasets,

including compatibility: how likely it is that two events occur simultaneously in the same

setting. We have already presented the results of several reasonably successful neural en-

tailment models. Moving forward, we want to apply denotational similarity to this task, as

it expresses exactly the information that MPE requires: the likelihood that two phrases are

both valid descriptions of an event.

In this chapter, we introduce a new model for learning denotational phrase embeddings

and applying them to textual entailment. Our new denotational phrase embedding model

is not interpretable, but it produces representations that are more flexible and informative

for downstream tasks. We demonstrate that denotational information is useful to textual

entailment in MPE and that denotational embeddings outperform standard neural sequence

models.

We present several analyses of the successes and failures of our new model. We compare

its errors to an SNLI-pretrained model to see the effects of different pre-training data. We

also examine the characteristics of the denotational embedding model: what aspects of the

denotation graph contribute to the model’s performance, as well as what kinds of semantic

relationships are encoded in the resulting phrase embeddings, and whether denotational simi-

larity contains more visual scene information than other entailment models. Finally, we show

that compared to standard phrase embeddings, our denotational embedding model learns

relationships that express what happens in a certain type of scene instead of representing

synonym relationships.

7.1 A DENOTATIONAL PHRASE MODEL FOR MPE

In this section, we present a new model to learn phrase embeddings from denotational

information and apply these embeddings to the MPE textual entailment task. This model

has two main stages. In the first, we train an encoder to predict conditional probabilities for

pairs of phrases from the denotation graph. In the second stage, we use the encoder to embed

sentences from MPE, and train a textual entailment classifier that uses these representations

to outperform standard neural sequence models.
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Figure 7.1: The BiLSTM encoder DenEncode that we train on DenPhraseBal to predict
denotational probabilities as a five-way classification problem.

7.1.1 Denotational Phrase Encoder

Our denotational phrase encoder, which we will refer to as DenEncode, is based on

InferSent [40]1. It consists of a BiLSTM encoder with max-pooling that produces sum-

mary vectors u and v for the two input sentences. We extract features via concatenation

(u, v), element-wise multiplication u ∗ v, and absolute element-wise difference |u − v|. We

pass the resulting premise-hypothesis feature vector into a classifier consisting of multiple

fully-connected layers and a final softmax layer. We define the classes by discretizing the

denotational phrase conditional probability PJK(u|v) from the DenPhrase data into five

bins. Figure 7.1 illustrates DenEncode’s basic structure.

The bidirectional LSTM takes as input pre-trained 300d fixed GloVe vectors and produces

a vector ht at each step t for word wt in the sentence. ht is the concatenation of the output

1https://github.com/facebookresearch/InferSent
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vectors from the forward LSTM and the backward LSTM at time t.

−→
ht =

−−−−−→
LSTMt (w1, ..., wT )

←−
ht =

←−−−−−
LSTMt (w1, ..., wT )

ht =
[−→
ht ,
←−
ht

]
Finally, the sentence representation u is created by max-pooling (selecting the element-wise

maximum value over all vectors) over the word vectors h1...hN . When applying DenEncode

to downstream tasks like MPE, we use u and v to represent the sentences, leaving out the

extracted features (u ∗ v, |u− v|) that are used to train the encoder initially.

Moving Away from Interpretable Representations

In Chapter 5, we used the predicted conditional probability P̂JK(h|d) from our previous

denotational embedding model DenEmbed as an additional feature in an entailment classi-

fier. This single output value from our model improved the performance of a baseline textual

entailment model. However, we failed to train a classifier using the embeddings produced by

DenEmbed instead of the single feature P̂JK(h|d). Even though the embeddings should be

more expressive than a single conditional probability prediction, we saw no additional gains

from using them.

One possible reason for this result might be the interpretable aspect of our previous em-

bedding model. Because we forced the embeddings to have specific relations in a structured

embedding space, we constrained the set of possible vectors that could be produced by the

model. This inflexibility could limit the expressivity of the model, so that even when its

predicted probabilities are highly correlated with the gold probabilities, the intermediate

embeddings do not provide much additional information that is useful to a downstream task

like textual entailment.

In contrast, the BiLSTM encoder InferSent, on which DenEncode is based, is trained

on a textual entailment dataset like SNLI in order to produce sentence embeddings that

are demonstrably useful for a large number of other semantic tasks. While the resulting

embeddings no longer exist in a geometrically interpretable space, they are more useful for

a downstream textual entailment task. We follow this approach in using a similar encoder

architecture for DenEncode; our goal is to train the encoder on denotational phrases and

apply it to a downstream entailment task.
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Discretizing Probabilities

We previously trained DenEmbed to predict real-value conditional probabilities, but we

take a different approach for DenEncode. We take the DenPhrase data and discretize

the conditional probabilities into five bins, turning a regression problem into a classification

problem. We do this for several reasons. First, the BiLSTM architecture of our encoder

was designed for classification tasks and may not produce good results on regression. Fur-

thermore, we are interested not in the exact predicted probability values, but in using the

resulting denotational embeddings for a downstream textual entailment task. Therefore, we

are necessarily losing important information when we simplify the probability prediction task

to a classification task by binning the probabilities into five bins2. Previous work, particu-

larly in computer vision, has demonstrated that discretizing a continuous value regression

problem in this way can increase prediction accuracy because it simplifies the information

space [88, 89, 90, 91, 92].

In discretizing our probabilities, we also subsample the DenPhrase data to ensure ap-

proximately equal-sized bins. There are far more phrase pairs with conditional probability

PJK(x|y) < 0.1 than in any other bin, so we sample 2% of these pairs for our classification

phrase data. Subsampling the phrase data does not eliminate any phrases from the train-

ing data, only particular phrase pairs, so the vocabulary size of the training data remains

unchanged. We refer to this modified version of DenPhrase as DenPhraseBal.

7.1.2 Entailment Aggregation Classifier

We now use the pre-trained DenEncode to encode MPE sentences, and use those repre-

sentations to train a classifier to predict entailment. This model, InferDen, is illustrated

in Figure 7.2.

To start, we decompose each sentence in MPE into a set of phrases p1...pN , each of which

is passed through the encoder to get a vector representation e1...eN . We previously observed

that since DenPhrase contains short phrases, an encoder trained on this data may not

produce reliable representations for longer sentences. Therefore, we decompose each premise

sentence into all possible subsequence phrases. We consider subsequences so that we are not

limited to phrases that consist of only adjacent words. For example, in the sentence “A boy

with a stick kneeling in front of a goalie net,” we want to consider phrases like “boy kneeling”

and “boy in front of a goalie net” in addition to phrases like “boy with a stick” and “with a

stick kneeling.” Since this naively generates a huge number of constituent phrases, we first

2We also tried three bins with similar results.
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Figure 7.2: The InferDen model that trains an MPE classifier from encoded phrase vectors
output by DenEncode.

remove stopwords3 from the sentence. This process results in an average of 261 constituent

phrases per premise sentence.

To combine the set of phrase vectors into a single premise vector representation, we apply

attention as a filtering step that can downweight uninformative or ungrammatical phrases,

while upweighting phrases that contribute more to the summary sentence vector. We apply

the learned attention vector w to each phrase vector ei in the same sentence to produce un-

normalized attention weights. The normalized attention weights α are the result of applying

a softmax to the attention weights of all the phrase vectors e1...eN in the same premise

sentence.

αi =
exp

(
wT ei

)∑
j exp (wT ej)

(7.1)

Then each attention weight αi is used to reweight the corresponding phrase vector ei. The

reweighted phrase vectors ê1...êN are summed to produce a single sentence vector s.

s =
∑
i

αi ∗ ei (7.2)

Finally, we apply the same prediction aggregation approach from our SumOfExperts

model in Chapter 6 to the four sentence vectors. InferDen produces a prediction for each

premise vector concatenated with the hypothesis vector by passing the two vectors through

a hidden layer, ReLU, and three-class prediction layer. We sum the logits across the four

premises and apply a softmax to predict the label of the whole item.

3We use the list of English stopwords from NLTK.
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7.1.3 Model Variations

In the process of developing the InferDen model, we also experimented with multiple

alternative model variations. In this section, we describe some of the main modifications

that we explored. All of these models produced worse results on the MPE development data

compared to InferDen, so we do not include a full evaluation on the test data for most of

them.

Sentence Decomposition

InferDen uses a filtered set of subsequence phrases to represent the premise sentence,

but there are alternatives to this decomposition.

Sentence encodings In the simplest approach, InferDensent, we do not decompose

the premise sentence at all, but pass the entire sentence through the pre-trained encoder to

produce a single sentence vector. Unsurprisingly, this approach is not particularly successful:

as we observed in Chapter 5, an encoder trained on short denotation phrases does not produce

informative embeddings for much longer sentences. We present some results from this model

in Section 6.4.

Sliding window substrings Another approach, InferDensubstr, involves considering

phrases of adjacent words based on a sliding window. We consider phrases lengths from one

word up to k adjacent words, and we do not remove stopwords. This approach produces an

average of 47 constituent phrases per premise sentence, much fewer than the 261 average

subsequence phrases considered by InferDen. We present some results from this model in

Section 6.4 as well.

Denotation graph phrases Neither the sliding window phrase approach nor the sub-

sequence phrase approach makes any attempt to filter the set of phrases to contain only

informative ones before encoding. Instead, we rely on the model to discount uninformative

or superfluous phrases. One possible alternative is to use the denotation graph decomposi-

tion of each premise sentence, taking the set of all node phrases corresponding to a sentence

as the set of constituent phrases. This should produce only semantically meaningful phrases

to the model, and additionally contains hypernym information not included in the other

phrase decompositions. However, these phrases are somewhat limited in their coverage due

to the brittleness of the sentence simplification algorithm, and some important constituent

phrases may be missing. Furthermore, certain parts of the sentence (e.g the subject) tend
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to be overrepresented in this phrase set. We do not present any further results from this

model.

Combining Phrase Vectors

Given a set of phrase vectors that all come from the same premise sentence, there are

many ways to combine these vectors to produce a single sentence vector representation. As

we described, InferDen uses the attention as a filtering step to downweight some of the

phrase vectors. We pursued several other alternatives to combining phrase vectors, but none

of them performed as well as our self-attention approach. We do not present any results

from these models.

Hypothesis attention Instead of applying attention weights only to the phrase vectors,

this method applies the learned attention vector w to the concatenation [·, ·] of each phrase

vector ei and the hypothesis embedding h. We apply softmax to normalize attention weights

for each premise.

αi =
exp

(
wT [ei, h]

)∑
j exp (wT [ej, h])

(7.3)

Then, as with the filtering-attention model, the attention weight αi is used to reweight

the phrase vector ei before summing all phrase vectors to produce a single sentence vector s

for each premise.

Max pooling Rather than using attention for reweighting, this approach takes the element-

wise maximum over all phrase vectors pi to produce a single sentence vector s. This approach

helped when there were fewer constituent phrases, as in the sliding window decomposition

method, but did not produce good results when faced with the much larger set of subsequence

phrases.

Combining Premise Vectors

Assuming that the phrase vectors have been combined into a single premise vector, we

have four premise vectors that we must combine in some way to make a single prediction for

the entailment label of the full item. InferDen makes four separate predictions, one for

each premise vector paired with the hypothesis embedding, and sums the resulting logits in

order to make the final prediction.

102



Pooling We can instead max pool or mean pool over the four premise vectors to produce

a single summary premise vector which then is concatenated with the hypothesis before

passing through a hidden layer and a softmax prediction layer.

Single premise attention We also consider applying attention reweighting to the four

premise vectors si each concatenated with the hypothesis embedding h.

αi =
exp

(
wT [si, h]

)∑
j exp (wT [sj, h])

(7.4)

The premise vector s is the reweighted sum over the four individual premise vectors si:

s =
∑
i

αi ∗ si (7.5)

The summary premise vector s is then concatenated with the hypothesis embedding h

and passed through a hidden layer and a softmax prediction layer.

Combined premise attention The above methods make no attempt to explicitly com-

bine the vectors of multiple premises, though one premise can affect another premise during

training. Since one of the characteristics of MPE is the need to identify whether one premise

alone out of the four premises determines the correct entailment label for the full item,

or whether information must be aggregated from more than one premise, we consider an

approach that considers all possible explicit combinations of premise vectors. We take all

combinations of two, three, or four vectors as well as the single premise vectors. We max

pool over each combination of vectors to produce a total of 15 summary vectors, each of

which we concatenate with the shared hypothesis embedding in order to compute attention

weights. The attention weights are computed in the same way as for the single premise

attention model before, but there are 15 premise combination vectors instead of only four

premise vectors. The final premise summary vector is the sum over the reweighted combi-

nation premise vectors, which is concatenated with the hypothesis embedding and passed

through a hidden layer and a final softmax prediction layer.

Word Representations

InferDen uses GloVe embeddings to represent words, as these have been the common

word embedding representation for most recent textual entailment work. However, we won-

dered whether GloVe embeddings would be able to account for the vocabulary discrepancy
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between the denotation phrase data, which is lemmatized, and MPE, which is not. We ran

several experiments to see if there was a different initial word representation that would

produce better results on MPE, but none of these alternatives were successful.

Lemmatize MPE One simple potential fix is to continue using GloVe embeddings, but

lemmatize MPE so that the vocabulary overlaps more with the denotation phrase data on

which the DenEncode encoder is trained.

FastText embeddings We also tried substituting FastText embeddings [93], as they have

been trained with subword information and might be better able to recover from OOV issues

and share information between the lemmatized and inflected forms of a word. We used the

FastText embeddings trained with subword information on 16 billion tokens of English text

from Wikipedia 2017, UMBC webbase corpus, and statmt.org news dataset4. However, they

were ultimately worse than GloVe embeddings for MPE.

GloVe with a nonlinear transformation Finally, we added a nonlinear transformation

on top of the GloVe embeddings. This consists of a single layer of the same dimensionality as

the GloVe embeddings (300d), followed by a tanh operation. This layer is trained together

with DenEncode on DenPhraseBal. We hypothesized that this layer could project the

lemmatized word vectors in DenPhraseBal closer to the inflected word vectors in MPE.

However, adding this layer did not improve the classification results on MPE.

7.1.4 Parameters

Given a particular model architecture for the classifier, we ran a grid search over a set of

parameters: max phrase length in {4, 5, 6}, dropout in {0, 0.5}, hidden layer dimensionality

in {128, 256, 512}, batch size in {16, 32}. When pre-training the encoder, we tried reducing

the default encoder dimensionality from 4096 to 2048 or 1024, but kept the default values

for all other parameters. Table 7.1 contains the parameter values for all our experiments.

The best parameters were selected based on a grid search where models were evaluated on

the MPE development data.

4https://fasttext.cc/docs/en/english-vectors.html
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Experiment Model Hidden dim Batch size Dropout Encoder dim

Ternary InferSent-MPE 512 32 0.5 4096
InferSent-SNLI 512 32 0.5 4096
InferDensent 1024 16 0.2 4096
InferDensubstr 512 32 0.0 1024
InferDenug 256 16 0.0 1024
InferDen 256 16 0.0 1024

Binary InferSent-SNLI 512 32 0.5 4096
InferDenug 512 32 0.0 1024
InferDen 512 16 0.0 1024

Table 7.1: The parameters we used to train each model. All models use fixed GloVe vectors
as the input word embeddings.

Model Accuracy

Majority class baseline 42.4

LSTMCond 53.5
InferSent-MPE 53.5
SumOfExperts 56.3
InferDen 58.0

Table 7.2: Entailment test accuracy on MPE. LSTMCond, SumOfExperts, and In-
ferSent-MPE are trained only on MPE data. InferDen uses the DenEncode encoder
that was pretrained on DenPhraseBal. Adding the denotation data as a pretraining step
improves accuracy on MPE.

7.2 EXPERIMENTAL RESULTS

In this section, we compare the performance of InferDen using DenEncode phrase

vectors against other neural entailment models on MPE. We show that InferDen produces

more accurate entailment predictions than other neural entailment models that were trained

on MPE, but does not quite reach the accuracy of models that were pretrained on SNLI.

Finally, we present an error analysis comparing InferDen with InferSent-SNLI to see

the effects of different types of pretraining data (denotational phrase probabilities compared

to labeled entailment sentences).
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Model Accuracy

Majority class baseline 42.4

InferDen 58.0
InferDensubstr 54.4
InferDensent 49.8

Table 7.3: Ablation experiment, showing entailment test accuracy on MPE. InferDen
considers all subsequences (contiguous and noncontiguous phrases) up to a certain length. It
outperforms InferDensubstr, which considers only contiguous encoded phrases (substrings),
and InferDensent, which does not decompose the premise sentences before encoding.

7.2.1 Classification

In Table 7.2, we compare InferDen (which has been pretrained on denotational phrase

data DenPhraseBal and then trained on MPE) to three neural sequence models that are

trained on MPE. The models are evaluated in terms of overall accuracy on the MPE test

data.

We compare to InferSent-MPE, which is a version of InferSent [40] that we trained

only on MPE. To adapt InferSent to the multiple premise setting, we encode each premise

sentence separately and predict the entailment label for each premise paired with the hy-

pothesis (similar to our premise-aggregation approach for SumOfExperts). The pairwise

predictions are summed and passed to the final softmax for the full label prediction.

We also compare this model to two neural sequence models from Chapter 6: the condi-

tional LSTM model LSTMCond, which treats the four premise sentences as a single long

premise sequence, and SumOfExperts, which processes each premise sentence separately

and aggregates four pairwise predictions.

Our InferDen model solidly outperforms all of these models; the addition of denotational

probability information clearly improves the performance of the entailment model on MPE.

This supports our hypothesis that denotational representations capture information that is

not readily available to basic neural entailment models. It is encouraging that InferDen

produces noticeable gains despite the fact that we had to compensate for the short length

of the denotational phrases in pretraining. Further improvements to the denotational pre-

training step to address phrase length and vocabulary issues have the potential to produce

even better models for downstream textual entailment.

We also present a comparison among variations of our InferDen model that take different

approaches to sentence decomposition. In Table 7.3, we compare the accuracy of these

models. InferDen considers all subsequences of up to four words in the premise sentences,
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Model Accuracy

Majority class baseline 42.4

InferDen 58.0
InferSent-SNLI 58.9
Attention-SNLI 64.0

Table 7.4: Pre-training a comparable model on SNLI first before training on MPE slightly
outperforms pre-training on denotation data. These gains are larger for a word-to-word
attention model.

both contiguous and non-contiguous phrases. InferDensubstr considers only contiguous

phrases up to length 4. Finally, InferDensent passes full premise sentences through the

pretrained encoder without decomposing them into shorter phrases. (The details of these

models are described in Section 7.1.3.)

All three variations of InferDen use the same underlying phrase encoder, which is pre-

trained on DenPhraseBal, achieving 88% accuracy for 5-class classification on the test

data. For each model, the pre-trained encoder produces embeddings for the relevant phrases

or sentences in MPE. We then train the entailment classifier described in Section 7.1.2 on

the fixed phrase/sentence embeddings as input.

The results in Table 7.3 show that there is a clear benefit to looking at noncontiguous

phrases over substrings or full sentences. Since the encoder is pretrained on denotational

information between short phrases, using it to encode full sentences results in a decrease

in accuracy of over 8 percentage points. Conversely, looking at noncontiguous phrases im-

proves InferDen’s accuracy by 3.5 percentage points, from 54.4% to 58.0%. Noncontiguous

phrases can capture long-distance dependencies in each premise sentence, helping the model

aggregate and represent important information within each sentence. Based on these results,

one promising avenue of future work could investigate methods to learn the best sentence

decomposition approach for the data.

7.2.2 SNLI Pretraining

Finally, we compare InferDen to two models that are pre-trained on SNLI. InferSent-

SNLI is the BiLSTM max-pooling encoder model described by Conneau et al. [40]. We

pre-train the encoder on SNLI, and then use the trained model to produce sentence vectors

for the premises and hypothesis in MPE. We use the encoded sentence vectors to train a

classifier that consists of a single feed-forward layer followed by a ReLU to make a separate
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prediction for each premise vector concatenated with the hypothesis vector. This layer is

trained only on the MPE data. Like the second stage of the InferDen model, we sum over

the logits and pass the result through a final softmax to predict the label. Attention-

SNLI, the second SNLI-pretrained model, is the word-to-word attention model we presented

in Chapter 6.

Table 7.4 shows that InferDen is still outperformed by the two models that are pretrained

on SNLI. InferSent-SNLI slightly outperforms InferDen at 58.9%, while the word-to-

word attention model continues to be the best performing model overall at 64.0%. Despite

the gains that we see from adding denotational information to MPE models, it is still not

as effective as adding more labeled information in the form of SNLI sentence pairs. Even

though MPE is not a sentence pair task, there is still a lot of information about entailment

patterns that can be transferred from SNLI to MPE. To some extent, this is not surprising:

SNLI contains a lot of precisely labeled data, in comparison to the noisy automatic process

by which we compute conditional probabilities from the denotation graph.

In sum, our experiments show that InferDen demonstrates a clear improvement over

neural entailment models trained on MPE, including our previous SumOfExperts model,

but does not quite reach the performance of a similar model that uses SNLI data. In the rest

of this chapter, we will explore the differences between denotational- and SNLI-pretrained

models, and examine how denotational embedding models compare to other kinds of phrase

similarity.

7.2.3 Error Analysis

In this section, we present an error analysis comparison InferDen and InferSent-SNLI.

We chose InferSent-SNLI rather than Attention-SNLI because it is similar in design to

InferDen, and presents a fairer comparison of the effects of the different pretraining data

(SNLI vs. DenPhraseBal).

We first identify the set of errors that each model makes consistently. We ran each model

10 times and collected their predictions on the development data. For this analysis, we

looked only at the items that each model consistently labeled incorrectly for all 10 runs.

We look for any patterns in the types of errors consistently made by InferSent-SNLI but

not InferDen, and vice-versa. We provide some examples of each error type for discussion

purposes (with the gold label indicated by ⇒).

Overall, both models have the most difficulty with neutral items. This is not surpris-

ing, as it is also the category which had the lowest agreement among our crowdsourced

labels. Among the errors consistently made by InferSent-SNLI were some examples of
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fairly straightforward synonym replacement. These synonyms (〈converse, talk〉, 〈talk, have

a discussion〉, 〈jump, leap in the air〉) are relatively common co-occurrences in Flickr30K

and therefore may have reasonable support in the denotational embeddings, but may be less

common in the human-authored hypotheses in SNLI.

Premises:

Three women standing in front of a Sallie Mae sign interact among themselves.

Some women wearing dark clothing are talking in front of a Sallie Mae sign.

A group of women standing in front of a blue Sallie Mae banner.

Three females talking in front of a Sallie Mae banner.

Hypothesis: Older women converse. ⇒entailment

As for neutral errors that are consistently made by InferSent-SNLI but not In-

ferDen, InferDen’s correct predictions may be due to the denotation graph’s weak but

nonzero support for the co-occurrence of some phrases that sometimes describe the same

scene. Given this information – that the events co-occur sometimes but are not guaran-

teed to do so – the denotational model correctly classifies these cases as neutral, while

InferSent-SNLI makes errors. In the following example, a man selling magazines may or

may not be sitting. The neutral label is a reasonable prediction because the denotation

graph contains some instances of a person selling something where the person is sitting

down, and some instances where the person is standing.

Premises:

An older man sells magazines at a magazine stand in Asia.

A magazine stand with many multicolored magazines.

An elderly man sells magazines in a stand.

An elderly man selling magazines.

Hypothesis: An old man sitting. ⇒neutral

Finally, InferSent-SNLI tends to make contradiction errors that InferDen avoids

in cases where the hypothesis is too specific and contains some detail that is unlikely to be

true of the scene described by the premises. In this example, the hypothesis “A man playing

his instrument” would be entailed by the premises, but the addition of the scene information

on a corner makes the hypothesis much less likely given the premise description of the scene

as a concert.
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Premises:

A man in a brownish green shirting playing guitar singing into a microphone.

A man is playing guitar and singing into a microphone.

A man playing the guitar and singing.

A young man singing at a concert.

Hypothesis: A man playing his instrument on a corner. ⇒contradiction

In the other direction, we can look at the errors consistently made by InferDen but

not InferSent-SNLI. One common error involving neutral items is when the premises

describe a scene that either explicitly or implicitly contains people other than the main

subjects mentioned, and the hypothesis describes an entity that could conceivably exist in

the background of that scene. This is common with crowd scenes: if the premises mention a

crowd of people in the background, then a large number of hypotheses could possibly describe

some person in the crowd. In the example below, although none of the premises specifically

mention men sitting at a table, two of the premises mention people working somewhere in

the scene who could easily be the men in the hypothesis.

Premises:

A woman is sitting at a desk on her computer, and other people are behind her with laptops

in front of them as well.

A woman on the side of the picture typing on a keyboard with a laptop computer in front

of her.

Many people busily working, watching a presentation, or talking to each other.

A woman in a pink v neck shirt is typing on a keyboard plugged into a laptop.

Hypothesis: Men sitting behind a table. ⇒neutral

Other neutral errors involve strong world knowledge about what kinds of actions are

compatible with one another (but not strongly implied or required to be true given the

premises). This requires a stronger signal about compatible or mutual exclusive events than

the denotation graph has: in its current form, it is difficult to distinguish events that are

unseen together because they are incompatible from events that are unseen together simply

by chance in the data we collected. In the following example, workers can definitely be

smiling while doing their jobs with no contradiction, but it is unlikely that we observed

this co-occurrence in the denotation graph with sufficient frequency to correctly make that

prediction.
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Premises:

Two men in hard hats, business suits, and orange vests walking through a facility’s yard.

The two men in suits and safety gear are overseeing construction.

Two men with construction hats walk next to concrete structure.

Two men inspecting and building a wall.

Hypothesis: Workers smile. ⇒neutral

Many of the entailment errors made only by InferDen involve some implications that

are relatively easy for humans to make given some amount of world knowledge, but are

perhaps difficult to distill to simple co-occurrences among denotation graph phrases. For

example, people posing for a photo are likely to be smiling.

Premises:

A sports team made up of 14 women wearing white t-shirt and pink tags.

A group of runners and walkers posing together for a picture.

A group of women posing for a picture.

Cancer survivors race for a cure.

Hypothesis: Women smiling. ⇒entailment

The contradiction errors made by InferDen occur in cases where the hypothesis

describes an event that is theoretically possible in the premise scene, but extremely unlikely.

InferSent-SNLI may have more success with these cases because it has the advantage of

many more labeled negative examples than the denotation graph and InferDen.

Premises:

A football player wearing a number 23 white jersey tackles a football player wearing a red,

number three jersey while fans cheer.

A football player being tackled from behind by another player from a different team in front

of a crowd.

A football tackle in progress with a crowd in the background.

A football player in red being tackled by opponents in white.

Hypothesis: A dog running through a snowy field. ⇒contradiction

7.3 DENOTATIONAL EMBEDDING ANALYSIS

One area of exploration that still remains is to examine what kind of information the deno-

tational embedding model is capturing. In Chapter 3, we presented a brief initial exploration
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of this question in the context of the gold denotational probabilities, but we have not per-

formed a similar examination of the representation produced by a denotational embedding

model. In this section, we present several experiments to break down the sources of denota-

tional information and determine what types of relationships are captured in denotational

embedding models like InferDen.

7.3.1 The Effects of Grounding on the Denotation Graph

The motivation for constructing the denotation graph and the succeeding models was to

learn a representation of language that is grounded in some other depiction of the world. In

our implementation, we chose images to be this grounding. With this additional knowledge of

the grounding of linguistic expressions – specifically, knowing that two captions both describe

the same image – we predicted that the resulting denotational similarity would capture

semantic relationships that are different from those captured by distributional similarity

and specifically useful for tasks like textual entailment. This aspect of the denotation graph

and denotational similarity – the fact that we have multiple captions grounded in a common

image – is somewhat unique to image caption datasets. Replicating this in another domain

would be a nontrivial process.

However, there is another key aspect of constructing the denotation graph that also im-

proves our model’s coverage on downstream tasks: the generation process that we use to

produce more general descriptions of each image from the original captions. This relies on

a small set of hand-defined rules that each produce a new sentence that is more general but

still true given the original sentence. This process increases the coverage of the denotation

graph, producing more phrases and identifying more linguistic expressions that share a com-

mon image denotation. This part of the graph construction process could be applied to any

other text corpus.

In thinking about whether we can generalize the denotational approach to other data

sources and domains, an important question is how much the initial grounding to common

images contributes to the ultimate performance. We have hypothesized that denotational

similarity is a useful metric because of the image grounding step, but we want to be able to

quantify this claim. To do this, we recomputed the gold probabilities in the DenPhrase-

Bal dataset as if each caption described its own unique image, and used this new dataset

(DenPhraseBalug) to train an ungrounded InferDen model.

To compute the gold probabilities in DenPhraseBal, we used Equations 3.2–3.4, which

compute the probability of a phrase x as the number of images described by x and the joint

probability of phrases x and y as the number of common images that they both describe in
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Model Accuracy

InferDensent 49.8
InferDensubstr 54.4
InferDen 58.0
InferDenug 53.8

Table 7.5: Comparing grounded InferDen models to an ungrounded model using entail-
ment accuracy on MPE test.

the corpus. To re-compute these probabilities for a denotation graph over a set of captions

that each describe a unique image, we redefine the denotation function J·K to map a sentence

s to the set of captions c ∈ U that contain s, rather than the set of images that s describes.

We then recompute Equations 3.2–3.4 given this new definition of denotation, producing

new gold probabilities for an ungrounded denotation graph.

We train another InferDen model, InferDenug, on the new DenPhraseBalug dataset

of phrase probabilities, and use the resulting phrase embeddings on subsequences of up to 4

words to train a classifier on MPE. In Table 7.5, we compare the results of InferDenug to

the entailment classification results of the grounded InferDen models from Section 7.2. As

we expected, the ungrounded model is much worse than the grounded models, performing

more than 4 points lower than the grounded model with the same configuration (InferDen).

This result is not surprising, since we expected that having no common images between

captions would mean that we miss out on valid co-occurrences between phrases and capture

less linguistic variation overall. Nevertheless, this experiment is a helpful quantification of

the significance of this part of the data collection process, and tells us that we would want

to follow a similar image- or scene-grounded approach in a new domain.

Error Analysis

We can also examine how the errors made by InferDenug differ from the grounded

InferDen. As in Section 7.2.3, we run each model ten times and look for patterns in the

errors that were consistently made by each model.

One key difference is that InferDen appears to have better coverage of paraphrases.

InferDenug misses many examples of entailment where the hypothesis is synonymous with

some part of the premises, while InferDen correctly identifies that 〈man kayaks, man pad-

dles〉, 〈infant screams, child yells〉, and 〈talking, conversing〉 are paraphrases and therefore

the hypothesis is entailed.
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Another distinction is that InferDen does better on items where the hypothesis states

something about the scene that would be obvious from the image being described. These are

often unstated implications: for example, that a dog shaking off water is standing, and that

a woman playing the violin is holding an instrument. As InferDen has better coverage of

linguistic variation and implications for a shared scene, it makes sense that InferDen does

better than InferDenug on these implications as well as paraphrases and synonyms.

7.3.2 MPE as an Image-Grounded Binary Evaluation

In comparing InferDenug to InferDen, we wanted to investigate to what extent the

presence of images, which capture rich scenes and can be described by a wide variety of

different descriptive captions, affects our denotational representation. We present an eval-

uation to quantify what inferences the grounded InferDen model can make given that it

was indirectly informed by images.

This evaluation is similar to the ATE experiment that we described in Chapter 3. Like

ATE, this is a binary classification task where each premise-hypothesis item has been labeled

according to whether the hypothesis describes the same image as the premises. We relabel

the MPE data with binary labels based on how the items were generated: roughly 50% of the

items have a hypothesis that describes the same image as the premises. We label these items

as entailment because the hypothesis is entailed by the image. The remaining 50% of the

items have a hypothesis from a different image; we labels these items as contradiction

because the hypothesis contradicts the image. Although the new label depends on the

image, our models are text-based so they are presented with only the text of the premises,

which present an impoverished version of the scene information available in the image. This

means that some of the new binary labels may appear to be inconsistent with the premise

text, because they depend on information present only in the image. As a result, this task

evaluates whether these models capture information about typical visual scenes that can be

inferred based on incomplete information in the premise text.

This grounded version of MPE is conceptually related to the grounded textual entailment

task that Vu et al. [94] explore. However, we are evaluating text-based models only, while

Vu et al. investigated multimodal (vision and language) models. Unlike SNLI, MPE actually

has ground truth labels as to whether the hypothesis is entailed or not by the original image,

allowing us to evaluate whether these models can accurately capture the relationship between

the hypothesis, the premises, and the (unseen) image.

Figure 7.3 shows an example of the binary image-based relabeling process, illustrating how

including the image disambiguates previously neutral instances. The four premises on the
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Hypothesis: A vendor sitting.

Premises: Image:

A man is laying out his merchandise to include eggs, chickens
and vegetables.
A man in a brown coat and pants is arranging dead chickens
on a mat.
A man sells eggs and chickens from a mat on the street.
A man with dead chickens and baskets of chicken eggs.

=⇒ neutral =⇒ entailment

Figure 7.3: Left: an example from MPE where the truth of the hypothesis is ambiguous
(neutral) given the premises. Right: the label is resolved as entailment given the image
that the premises describe.

Accuracy
Model All Neutral

Majority class baseline 50.2 42.1

InferSent-SNLI 69.5 62.7
InferDenug 66.8 63.4
InferDen 68.0 64.5

Table 7.6: Entailment test accuracy on binary grounded MPE task. While InferSent-SNLI
has the highest overall accuracy, InferDen has the highest accuracy on the subset of test
data where the image is required to disambiguate the label from neutral to entailment
or contradiction.

left describe a scene where a man is setting up his merchandise to sell on the street. There

is not enough information in the premises to tell whether the hypothesis, which states that

the vender is sitting, is true or false. Therefore, the label of this item in MPE is neutral.

However, if we look at the image that the premises were written to describe (right side), it is

clear that the man is sitting down and therefore the hypothesis is entailed. The goal of this

task is to evaluate whether models can predict the right-hand label, which is conditioned on

the image, given only the premise text on the left.

We train models on binary-labeled MPE, and present the test results in Table 7.6. We

compare InferDen to a corresponding ungrounded model, which again performs worse

than InferDen on this binary task, and to InferSent-SNLI, which continues to slightly

outperform InferDen, achieving 69.5% accuracy compared to InferDen’s 68.0% accuracy
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on the test data.

However, the overall test accuracy includes items that were relabeled as well as items

whose label did not change from the ternary text-based task to the binary image-based

task. We already know that InferSent-SNLI has higher accuracy than InferDen on the

ternary task. For the purposes of this analysis, we are actually interested in the subset of the

MPE data where the item was labeled neutral in the ternary task and was disambiguated

to either entailment or contradiction for the binary image-based task. In the right-

hand column of Table 7.6, we compare the accuracies of these models only on the ambiguous

neutral items, and find that InferDen is in fact better than InferSent-SNLI at predicting

the image-based labels. This confirms our intuition that denotation captures visual inferences

that are not apparent from text, but can be verified from the accompanying image. Since

none of the models see the image, the fact that InferDen outperforms InferSent-SNLI

on the neutral items means that it contains extra-linguistic information about the types of

scenes that are tend to accompany the provided premise text.

Error Analysis

We compare InferDen and InferSent-SNLI’s errors on the binary grounded task, using

the errors made by each model consistently over 10 repeated runs. InferSent-SNLI tends

to make incorrect predictions on contradiction items where the hypothesis describes an

action that is unusual enough given the premise scene that it would have been mentioned if it

were true. In the following example, which InferDen labeled correctly, digging is a salient

action in these scene that should have been mentioned in the premises; since it wasn’t, the

hypothesis is not entailed by the premises.

Premises:

Two men in hard hats, business suits, and orange vests walking through a facility’s yard.

The two men in suits and safety gear are overseeing construction.

Two men with construction hats walk next to concrete structure.

Two workers are walking around a construction site.

Hypothesis: Men digging. ⇒contradiction

InferSent-SNLI also tends to make mistakes on entailment items where the hypothesis

is not really a paraphrase, and may not even be strictly entailed by the premises, but is

compatible with the scene. InferDen has better coverage of co-occurrences grounded in

common images, so it is better able to extrapolate when the hypothesis is entailed not by

the premise text but by the imagined scene about which the premises were written. In
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the following example, none of the premises mention fans watching, but it is reasonable to

assume that a hockey game has an audience. InferDen reasonably labels this item as

entailment, which is the correct label given the image context.

Premises:

A red-uniformed hockey player is attempting to control the puck while two white-suited

hockey players try to disrupt him.

A hockey player wearing a red uniform reaches for the puck as others follow.

A hockey player in white tries to steal the puck from another player in red.

People playing hockey on ice.

Hypothesis: Fans watching. ⇒entailment

7.3.3 Comparing Denotational Embeddings to Other Embedding Models

In this final analysis, we step away from downstream evaluations and look at how the

representation learned by the denotational encoder, DenEncode, differs from representa-

tions learned by distributional word models or other neural encoding models. To do this,

we compare the nearest neighbors of a set of target phrases according to three similarity

metrics: denotational conditional probabilities (both gold probabilities computed from the

denotation graph as well as predicted probabilities from DenEncode), the cosine similar-

ity of vectors composed from GloVe word embeddings, and the cosine similarity of vectors

produced by the encoder from InferSent-SNLI.

Data

Most intrinsic embedding analyses look primarily at the similarity between pairs of words.

However, since the denotation graph produces similarities over multi-word phrases, we want

to look at the nearest neighbors of phrases as well as single words. Therefore, we define our

vocabulary using phrases from the denotation graph, where we expect all the models to have

reasonable coverage.

We defined three nearest neighbors experiments. In each experiment, for each model

and each phrase in the vocabulary, we compute the nearest phrases from the vocabulary

according to that model’s similarity metric. We analyze how these neighborhoods differ

between models.
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Observed phrase pairs In the first experiment, the vocabulary consists of all phrases

present in the training or development data of DenPhraseBal. Any phrase in the vocabu-

lary can be a neighbor of any other phrase, with no restrictions. We expect that DenEncode

will predict the denotational conditional probability of these phrase pairs with reasonably

high accuracy, as they were observed in training or validation.

Observed phrase pairs, filtered As we will show, the neighborhoods generated by ob-

served phrase pairs tend to contain mostly phrases with high word overlap with the target

phrase (for all models). In the second experiment, we restrict the phrases that can appear in

the neighborhood of the target phrase to look for other patterns. If the potential neighbor

phrase n is a subset of the target phrase t, or vice-versa, then we remove n as a potential

neighbor (essentially forcing sim(n, p) = 0). In addition, specific to denotational similarity,

we remove n if PJK(t|n) or P̂JK(t|n) is equal to 1.0, to ignore ancestor-descendant phrase pairs.

Random phrase pairs In the third experiment, we look at phrase pairs that were not

necessarily observed in training DenEncode, to see how well the denotational embedding

model generalizes to infrequent, unseen events. The vocabulary consists 10,000 phrases,

randomly sampled from the denotation graph. Most phrase pairs in this random sample do

not have a common image according to the denotation graph.

Models

Denotational conditional probability Although most semantic similarity metrics are

symmetric, textual entailment is a directed relationship. We have therefore found it most

useful to focus on the directed denotational conditional probability of one phrase given

another. Although it is uncommon to compare symmetric and asymmetric similarities, this

comparison should nevertheless provide an interesting look at what semantic relationships

are prioritized by the denotational model compared to standard representations like GloVe

embeddings.

We use both the gold probabilities according to the denotation graph and the predicted

probabilities according to DenEncode. As the similarity metric, we consider both P̂JK(t|n),

the conditional probability of the target phrase t given a potential neighborhood phrase

n, as well as PJK(n|t). The gold probabilities come directly from the graph: we compute

Equation 3.4 according to the denotation graph (by our standard threshold, this value is

0 if the phrases have fewer than 10 images in common). We refer to the denotation graph

probabilities PJK(t|n) as P 1
JK and PJK(n|t) as P 2

JK. For predicted probabilities, we use a variation
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of DenEncode which has been trained on DenPhraseBal to predict the exact probability

value of each phrase pair (rather than the simplified five-way classification model we used

in Section 7.1). We refer to the predicted denotational encoder probabilities P̂JK(t|n) as P̂ 1
JK

and P̂JK(n|t) as P̂ 2
JK.

GloVe We start with GloVe word vectors (300d, 840B tokens). We compute phrase vectors

to be the mean of all the word vectors in the phrase. The similarity metric for a pair of

phrases is the cosine similarity of the composed phrase vectors. We refer to these phrase

similarities as GloVe.

InferSent-SNLI We use the encoder from the InferSent-SNLI model to produce an

output vector for each phrase in the vocabulary. The similarity metric for a pair of phrases

in the vocabulary is the cosine similarity between their phrase vectors as produced by the

encoder. We refer to these phrase similarities as SNLI for the rest of this section.

Results

Observed phrase pairs We compare the lists of nearest neighbors according to the

gold and predicted denotational probabilities and the non-denotational models, GloVe

and SNLI. Table 7.7 contains some examples. We observed that the nearest neighbors of

each target phrase are almost always phrases that have very high word overlap with the

target phrase. For GloVe, this is presumably because our method of composing phrase

vectors from GloVe word vectors biases the phrase vectors to be close to the constituent

word vectors. For P 1
JK and P̂ 1

JK, the nearest neighbors of the target phrase are parent phrases

of the target phrase, meaning that they entail the target phrase (and that PJK(t|n) or P̂JK(t|n)

equals 1.0). The target phrase is often a subset of the words of the parent phrase due to

the denotation graph construction process: each edge is defined by a lexical transformation

like dropping modifiers or prepositional phrases. (Replacing a word with its hypernym does

result in a lexical difference, but it only modifies a single word.) For SNLI, we presume that

the high word overlap is because the GloVe word vectors used to initialize the model still

play a significant role in determining the phrase vector.

Compared to the other models, P 2
JK and P̂ 2

JK produce fewer phrases with high word overlap

with the target phrase. This is because these models select for neighbor phrases that are

highly likely given the target phrase, and therefore these phrases are often hypernyms (adult

or person from blond woman) or very general descriptors associated with the same scene as
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the target phrase (the subject of play is almost always a person who may be wearing specific

clothing).

We observe that DenEncode’s predicted denotational probabilities are reasonably reli-

able compared to the gold probabilities from the denotation graph: the nearest neighbor

phrases based on predicted probability are similar to the nearest neighbor phrases based on

gold probability. For both gold and predicted denotational probabilities P 1
JK and P̂ 1

JK, the

closest phrases to blond woman describe a blond woman doing something, and the closest

phrases to play describe a person playing an instrument or a game. These results rein-

force our conclusion that DenEncode indeed produces phrase embeddings that capture

the denotational conditional probability of phrase pairs.

Observed phrase pairs, filtered We considered the unfiltered neighborhoods in the pre-

vious experiment for completeness, but it is more interesting to compare the neighborhoods

after removing phrases with trivial relationships to the target phrase. Table 7.8 contains

examples of these neighborhoods.

DenEncode continues to produce accurate denotational probabilities and the predicted

denotational nearest neighbors hold the same kind of relationships to the target phrase as

the gold denotational nearest neighbors. P 2
JK, P̂

2
JK, GloVe, and SNLI continue to group short

phrases closer to the target phrases, while P 1
JK and P̂ 1

JK tend to select longer phrases as nearby

neighbors. P 2
JKand P̂ 2

JK tend to select more general phrases like person, adult, or clothing.

However, unlike the unfiltered observed phrase pairs, this filter reveals that denotational

similarities P 1
JK and P̂ 1

JK produce nearest neighbors that represent different semantic relation-

ships than non-denotational similarity. The non-denotational models, GloVe and SNLI,

identify phrases that are distributionally similar to the target phrase, which means the neigh-

boring phrases are often synonyms of the target phrase (accept → {have, receive, hold}, city

street → {city sidewalk, city road, city intersection} or short phrases involving a synonym

of the target phrase (machine → {use equipment, with machinery}. In contrast, both P 1
JK

and P̂ 1
JK tend to select for neighbors that describe the same scene as the target phrase, but

are not synonyms. P 2
JK and P̂ 2

JK include some of these scene-related phrases to a lesser extent

(award as a neighbor of accept from P 2
JK and city sidewalk as a neighbor of city street from

P̂ 2
JK). However, for the most part, the denotational similarities P 2

JK and P̂ 2
JK result in neighbor

phrases are extremely general and less interesting than P 1
JK and P̂ 1

JK, so we will focus our

remaining discussion mostly on P 1
JK and P̂ 1

JK.

P 1
JK and P̂ 1

JK produce neighbors for accept that consist of things that are accepted (award,

trophy, something (from someone)) and a few phrases that describe a scene where a person

accepts something like an award (an action like man shake hand or a recipient like race
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Model Nearest Neighbors
b

lo
n

d
w

om
an

P 1
JK blond woman walk down sidewalk, blond woman wear clothing and glasses, blond

woman wear uniform, blond woman wear yellow clothing, smile blond woman
P 2

JK woman, blond adult, adult, person, blond person

P̂ 1
JK blond woman with shirt and pant hold, blond woman wear clothing sing into mi-

crophone with adult, blond woman wear shirt sing into microphone with person,
blond woman with clothing and pant hold, blond woman wear shirt sing into
microphone with adult

P̂ 2
JK person, adult, clothing, man, blond adult

GloVe young blond woman, blond woman dressed, blond woman look, blond woman
put, with blond woman

SNLI blond lady, with blond woman, young blond woman, blond woman be, two blond
woman

p
la

y

P 1
JK crowd of person play, asian person play stringed instrument, adult with glasses

play brass instrument, young child play game, some adult play hockey
P 2

JK person, person play, adult, clothing, wear clothing

P̂ 1
JK male person play game while person stand, person wear black clothing play guitar

and adult play stringed instrument, woman wear black and red play violin, per-
son wear shirt play stringed instrument while adult play percussion instrument,
person sing into microphone while adult play in background

P̂ 2
JK adult, person play, play instrument, ball, man

GloVe play game, game play, play player, player play, player play game
SNLI one play, both play, that play, play one, another play

ai
r

P 1
JK man jump in air on skateboard, rider jump in air, girl into air, girl wear clothing

jump into air, dog jump in air catch frisbee
P 2

JK person, in air, adult, man, jump

P̂ 1
JK white animal jump in air catch frisbee, white dog jump in air catch frisbee, dog

leap into air catch ball in mouth, brown dog leap into air catch ball, person jump
in air with arm and leg

P̂ 2
JK adult, into air, person, jump in air, person wear clothing

GloVe with air, into air, cold air, some air, get air
SNLI with air, into air, through air, open air, on air

st
or

e

P 1
JK store display window, clean store window, in front of store window, into store

window, stand in front of store window
P 2

JK person, adult, shop, man, clothing

P̂ 1
JK two adult walk down street with shop bag, two woman walk down street with

shop bag, person wear yellow clothing stand outside store, woman walk carry two
shop bag, man wear clothing and pant stand in front of store

P̂ 2
JK person store, person, in store, person wear clothing, adult

GloVe store in store, grocery store, retail store, warehouse store, shop in grocery store
SNLI shop, be store, behind store, above store, with store

Table 7.7: Nearest neighbors of observed phrase pairs.
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Model Nearest Neighbors
a
cc

ep
t

P 1
JK award, winner, something from person, something from adult, adult hand person,

person hand person, trophy, man receive, man shake hand, hand person
P 2

JK adult, man, wear clothing, clothing, person wear clothing, adult wear clothing,
man wear clothing, stand, woman, award

P̂ 1
JK something from adult, man receive, something from person, person wear yellow

jumpsuit, person hand person, man shake hand, race car driver, race car adult

P̂ 2
JK man, person, clothing, wear clothing, two, child, shirt, group, wear shirt

GloVe person receive, person hold, receive, man receive, person stand, have, hold
SNLI have, that, receive, hold, someone, who, one, something, present, money

ci
ty

st
re

et

P 1
JK down busy sidewalk, walk down busy sidewalk, woman and person walk down

street, crosswalk in city, through crowd street
P 2

JK adult, on street, man, clothing, wear clothing

P̂ 1
JK city sidewalk in front of store, woman stand on city sidewalk, man walk on city

sidewalk, city sidewalk at night, woman walk on city sidewalk

P̂ 2
JK person, adult, city sidewalk, man, person wear clothing

GloVe city sidewalk, city road, sidewalk in city, city corner, down city sidewalk
SNLI city road, city sidewalk, city corner, city intersection, near street

m
ac

h
in

e

P 1
JK atm, some machinery, operate machinery, arcade game, casino, machinery, dryer,

construction vehicle, in laundromat, make beverage
P 2

JK adult, man, clothing, wear clothing, person wear clothing, adult wear clothing,
work, shirt, man wear clothing, wear shirt

P̂ 1
JK with machinery, at loom, adult wear hard hat work, person wear hard hat work,

woman operate, person do job, use equipment, worker cut

P̂ 2
JK person, person wear clothing, adult, adult wear clothing, wear clothing, person

wear shirt, clothing, man, wear clothing, man wear shirt
GloVe with machinery, operate machinery, some machinery, heavy machinery, work with

machinery, use equipment, equipment, work on equipment, system
SNLI machinery, equipment, system, steam, contraption, operate, with machinery, use

a
u

d
it

o
ri

u
m

P 1
JK lecture hall, adult sit on stage, person sit on stage, adult give lecture, two adult

give, person give lecture, sit on stage, group sit in room
P 2

JK adult, man, group, group of person, person sit, woman, clothing, wear clothing,
stage, person wear clothing

P̂ 1
JK lecture hall, give lecture, person give lecture, adult give lecture, group sit in room,

group of person sit in room, in hall, entertainer rehearse, adult sit on stage, adult
with instrument sing

P̂ 2
JK man, clothing, wear clothing, hold, two, shirt, person wear clothing, stand, talk,

crowd
GloVe lecture hall, hall, in hall, room, lecture, concert, crowd, in room, at podium
SNLI hall, in hall, room, lecture hall, lecture, meeting, crowd, podium, stage, front

Table 7.8: Nearest neighbors of observed phrase pairs, with neighbors filtered by word overlap
and gold denotational probability.
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car driver). SNLI neighbors contain a few things that are accepted, but largely consist of

synonyms for accept.

The nearest neighbors for denotational models P 1
JK and P̂ 1

JK for the phrase city street are not

so dramatically different from the non-denotational models: these phrases tend to describe

what is happening on a city street (walk down busy sidewalk) or other elements of a city

street scene (woman stand on city sidewalk). For the target phrase machine, P 1
JK selects

types of machines (atm, dryer, construction vehicle), and P̂ 1
JK selects phrases about people

who are working with machines (adult wear hard hat work, woman operate, worker cut).

In some cases, P̂ 1
JK does identify some multi-word synonyms that are not captured well

by the non-denotational model. For the target phrase adult walk up stair, both P 1
JK and P̂ 1

JK

include phrases containing climb and ascend among their twenty nearest neighbors, while

the non-denotational models only find climb as a close synonym.

Not all target phrases produce such different results between the denotational and non-

denotational models. One example is auditorium, where all models’ neighbor lists contain

synonyms (hall, lecture hall) as well as examples of people or objects in an auditorium

(crowd, podium) and events that happen in an auditorium (give lecture, entertainer rehearse,

meeting).

Random phrase pairs We have shown that DenEncode produces probabilities that

capture different semantic relationships from GloVe or SNLI. This observation is based on

phrase pairs that occurred in the training or development split of DenPhraseBal. In other

words, the phrase pairs whose similarity we have examined all co-occurred with a shared

image in the Flickr30K denotation graph.

We can divide the space of all possible event pairs into three categories with regard to

some corpus: positive labeled pairs (events that were definitely observed to co-occur), neg-

ative labeled pairs (events that were definitely observed not to co-occur), and unobserved

pairs (events that were not observed together given some data, but may or may not co-occur

in reality). With regard to the denotation graph and its images, we have positive labeled

pairs: the co-occurring events that pass our threshold, from which we can compute denota-

tional probabilities. The graph does not have explicitly labeled negative events. However,

to address this, we added phrase pairs 〈x, y〉 s.t. PJK(x, y) = 0 to DenPhrase (and Den-

PhraseBal) where x and y occurred with sufficient frequency that given independence

assumptions, we would have expected them to share at least one image. These two types of

events make up the data that we have used to evaluate both our denotational embedding

models in Chapter 5 and this chapter. However, we have not investigated how the probabil-

ities produced by DenEncode generalize to events that were not observed with sufficient
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frequency in the denotation graph for us to label them with certainty.

To this end, we selected 10,000 random phrase pairs from the denotation graph phrases.

Although each individual phrase comes from the denotation graph data, most pairs (993 out

of a randomly sampled 1000 phrase pairs) have not been observed in our data (they fell below

our thresholds to be considered either a positive or a negative pair in DenPhrase). This

data allows us to test DenEncode’s probability predictions on infrequent events. (We look

only at the predicted probabilities P̂ 1
JK because most of the gold denotational probabilities

P 1
JK between these phrase pairs would be 0. We also omit P̂ 2

JK similarities.)

The resulting nearest neighbors, examples of which are shown in Table 7.9, are much

noisier for P̂ 1
JK than for GloVe or SNLI. For examples, the fifth nearest neighbor of child

play stringed instrument is child play in sprinkler. While both phrases contain child play,

they involve completely different scenes. GloVe and SNLI, however, do not appear to be

so noisy. They appear to rely more on lexical relationships than the denotational phrase

model does, so the relationship between the target phrase and the neighbor phrase is usually

obvious (child play stringed instrument → girl play stringed instrument, woman leap →
female jump, two person discuss → two person write). P̂ 1

JK, on the other hand, lacks negative

labels and also tends to predict overly high probabilities for long, specific phrases, even when

the neighbor and target phrases are clearly unrelated (two person discuss → two person play

soccer on field).

Despite the noise present in P̂ 1
JK, there are interesting patterns that continue to indicate

that denotational similarity represents different semantic relationships from those modeled

by distributional representations. For the target phrase child play stringed instrument, P̂ 1
JK

includes phrases about guitars in its nearest neighbors, while the non-denotational neighbor

phrases all involve the phrase stringed instrument. P̂ 1
JK is still able to identify hypernyms as

being highly relevant even when considering unobserved event pairs. In the second example,

woman leap, P̂ 1
JK identifies some similar phrases that the non-denotational models miss (ath-

lete leap, woman jump into air). In the third example, woman put on makeup, P̂ 1
JK differs

from the non-denotational models GloVe and SNLI in its focus on other descriptions of

women’s appearances that probably occur in the same scenes as the target phrase (woman

with blond hair and clothing, woman with long black hair, woman with ponytail). Finally,

P̂ 1
JK’s neighbors for two person discuss contain phrases describing what else people could be

doing while discussing (two person sit next to each other, two person look at each other, two

woman and man stand), in contrast to the synonyms or the subject-repeating phrases that

populate the non-denotational neighbors.
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Model Nearest Neighbors

ch
il

d
p

la
y

st
ri

n
g
ed

in
st

ru
m

en
t P̂ 1

JK child play guitar, child play instrument, two man play stringed instrument on
stage, boy play guitar, child play in sprinkler, boy play in sand, child play with
block, child play on playground

GloVe person play stringed instrument, girl play stringed instrument, one play stringed
instrument, child play instrument, play stringed instrument, play stringed in-
strument with person, three person play stringed instrument, man play stringed
instrument

SNLI child play instrument, girl play stringed instrument, person play stringed in-
strument, one play stringed instrument, play stringed instrument, clothing play
stringed instrument, young woman play stringed instrument, musician play
stringed instrument

w
om

an
le

ap

P̂ 1
JK girl leap, athlete leap, newlywed hold bouquet, woman put on makeup, two

woman walk down city street, woman jump into air, hiker with backpack, black
animal leap, cyclist ride through forest, woman stand in front of car

GloVe woman jump, girl leap, young woman jump, woman, embrace woman, woman
turn, woman climb, woman point, woman and woman sit, woman reach

SNLI woman jump, girl leap, woman climb, young woman jump, female jump, woman
reach, woman climb up, woman crouch, woman turn, woman hit

w
om

an
p

u
t

on
m

ak
eu

p

P̂ 1
JK on makeup, person apply makeup, clown makeup, woman with blond hair and

clothing, woman with long black hair, newlywed hold bouquet, lady with brown
hair, woman with long blond hair, woman with ponytail, person with long hair
play stringed instrument

GloVe woman on right, on woman, on makeup, some woman look, woman sit on, woman
look down, woman with clothing look, woman look at her, woman with shirt on,
woman with hair

SNLI on makeup, person apply makeup, woman with clothing look, woman on right,
woman with hair, woman work on computer, woman with shirt on, woman with
haircut, woman have tattoo, woman look at her

tw
o

p
er

so
n

d
is

cu
ss

P̂ 1
JK two person on oppose team, two man discuss, two man play stringed instrument

on stage, two person sit next to each other, two woman have conversation, two
person play soccer on field, two woman and man stand, two man have discussion,
two person look at each other, two guy talk

GloVe two person examine, two person have discussion, three person examine, two per-
son have conversation, two other person, two person make, three person take,
three other person, two person help, two person come

SNLI group of person discuss, two person examine, two person have discussion, three
person examine, two person have conversation, two man discuss, person and
person talk, two person chat, two person write, three person participate

Table 7.9: Nearest neighbors among 10,000 randomly selected phrases.
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7.4 CONCLUSION

In this chapter, we presented a new denotational embedding model that does not require

constituent-identification preprocessing and still extends to long sentences, outperforming

standard neural sequence models on textual entailment in MPE. This model demonstrates

again that denotational probabilities provide beneficial information for textual entailment

models, this time on our multiple premise entailment task.

Although our denotational model does not perform quite as well as a similar model that is

pretrained on SNLI, the two models make very different types of errors. Additional analysis

of the denotational embedding model shows that it successfully learns semantic relationships

that are distinct from distributional representations. This difference, which is due to the

denotational knowledge of common images that we used to seed the embedding representa-

tion, may explain why the denotational model outperforms even the SNLI-pretrained model

in disambiguated neutral items in the context of an unseen image.
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CHAPTER 8: CONCLUSION

This thesis focuses on modeling textual entailment in the context of image-grounded de-

scriptions. We started with the concept of denotation, a novel similarity metric, from our

earlier work in Young et al. [9], and introduced new models that produce denotational em-

beddings that can be applied to new tasks. We also presented a new textual entailment

corpus that contains sentences linked by a common image denotation, challenging models

to build summary scene representations. The experiments we have presented demonstrate

that denotational similarity captures different semantic relationships from traditional distri-

butional representations, and that this information can be useful to various semantic tasks.

In Chapter 4, we applied denotational similarities to textual entailment for the first time.

These denotational similarities are computed over the constituent phrases in each sentence

that correspond to phrases in the denotation graph. Our handcrafted feature model that

included denotational features outperformed all other models on textual entailment in the

shared task competition. We demonstrate that denotational similarities are complementary

to count-based distributional similarities.

In Chapter 5, we introduced a denotational embedding model that expresses denota-

tional set relationships. This model produces denotationally informed phrase embeddings

for phrases unseen during training, allowing us to measure denotational similarity between

phrases not present in the denotation graph. Furthermore, we demonstrated that these

resulting embeddings can be informative for textual entailment.

In Chapter 6, we introduced a new textual entailment task based on the multiple image

descriptions available in Flickr30K. This task presents a challenge for models to aggre-

gate information from multiple partially overlapping premise sentences, building an entire

coherent scene representation in order to make the correct inference. We use this task to

evaluate the effectiveness of standard sentence encoding models as well as the denotational

embedding model that we introduce in Chapter 7.

In Chapter 7, we also present an analysis of the phrase embeddings produced by the deno-

tational embedding model. We examine how predicted denotational similarities differ from

similarity according to a distributional representation. This investigation shows that the

denotational model successfully reproduces the relations in the denotation graph for events

with sufficient frequency in Flickr30K. However, the model fails to generalize to infrequent

events. Nevertheless, the denotational similarity metric emphasizes different semantic rela-

tionships from a distributional similarity metric, relationships that could be useful to other

types of downstream tasks, not just textual entailment. It captures scene-grounded infor-
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mation rather than synonyms, and contains visual scene information that is not available to

text-based models.

8.1 AVENUES FOR FUTURE WORK

Although we have demonstrated the usefulness of denotational similarities on multiple

textual entailment datasets, they do have limitations. In this section, we discuss several of

these areas for future work, illustrated with examples from MPE.

8.1.1 Domain Adaptation

In the denotation graph, the phrases with the largest denotations are shorter and more

general phrases. As a result, denotational similarities are often reliable only for short phrases

with a relatively limited vocabulary. In this thesis, we ameliorated this weakness somewhat

by using neural phrase encoding models we initialized with pre-trained word embeddings.

However, the fundamental limitation remains, and hinders the general applicability of this

approach to entailment in other domains. Future work could investigate how to improve

the coverage of the current denotation graph and denotational models. That could involve

modeling paraphrases in the current image-caption graph in order to improve its density.

Another possible approach would be to explore whether it is feasible to automatically build

similar denotation graphs in other domains in order to extend this similarity metric to other

problems.

8.1.2 Phrase Decomposition

Since denotational information exists primarily for shorter phrases, we found it helpful

to first decompose sentences into shorter phrases. In Chapter 4, this involved a parsing

pre-processing step to identify constituent phrases. In Chapter 7, we explored multiple

approaches to decomposing a sentence into phrases: sliding windows, subsequence phrases,

and phrases from the denotation graph. However, all of these methods are preprocessing

steps that separate the decomposition step from the entailment prediction step. A model that

instead learns its own decomposition method in conjunction with the entailment classification

task could identify only the most informative phrases for entailment between any premise

and hypothesis sentences.

One possible approach could be to learn an alignment model specifically for predicting

entailment in MPE. Existing alignment models have been trained primarily for machine
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translation and do not produce useful results on MPE, but it should be useful to have a

learned alignment between premises or between the premises and hypothesis in order to

identify key phrases for consideration.

8.1.3 Common Sense Knowledge

One weakness of our approach to denotation is that it is difficult to distinguish between a

pair of events that rarely co-occurs but could conceivably do so and a pair of events that could

not co-occur. According to how we compute denotational similarity, both event pairs will be

classified as unobserved, but we do not have enough information to say why. As a result, it

is difficult to distinguish between the following two examples using denotational information

alone. It is possible to laugh and cook at the same time even if there are no examples of such

a scene in Flickr30K. On the other hand, people who are standing cannot also be sitting :

this is physically impossible. However, it is difficult to use corpus statistics to definitively

separate mutually exclusive events from events that are simply unlikely to co-occur.

Premises:

A man in black rimmed glasses and a blue button down shirt and a woman in a black and

white tank top laugh together.

A man and a woman are laughing.

Two friends having a laugh.

A man and woman laughing.

Hypothesis: A man cooking. ⇒neutral

Premises:

Six casually dressed people watch from the comfort and protection of a wooden rail while a

restaurant employee stands in the background.

A group of six people are standing next to a white fence.

Six people stand at the railing at the El Tambor.

Crowd of people standing near a bench.

Hypothesis: A group sits. ⇒contradiction

We can think of this issue – distinguishing a true negative event pair from an event pair

that we did not observe in the data – as the problem of modeling the unknown unknowns.

Solving this issue requires additional information that could explain what makes two events

mutually exclusive.
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In constructing the denotation graph, we have assumed that we can learn common sense,

real world relationships from linguistic expressions that are grounded in common scenarios,

but not otherwise labeled with more fine-grained co-occurrence or causal information. In

contrast, there is a line of work regarding common sense knowledge that explicitly labels

these unstated assumptions. These works use a purely linguistic approach to represent

likely intents and reactions [95], mental states [96], and subjective roles [97] of actors in

a particular scene. In addition, Zellers et al. [98] present a dataset that uses adversarial

filtering to remove co-occurrence relationships that are easily predicted by existing models,

therefore selecting for typically unstated common sense assumptions that are difficult for

our models to capture.

These common sense datasets seek to present inference problems that humans can solve

easily given their implicit knowledge of the world. Their purely linguistic, explicit label-

ing approach may be complementary to our grounded, unlabeled approach. Future work

could investigate whether different types of common sense information regarding these often

unstated unknown unknowns can be shared across these datasets and models.

8.1.4 Multiple Premise Handling

Finally, we did not fully address one of the most interesting parts of MPE: combining

information from different premises. We tried several approaches, applying attention to

different combinations of premise sentences as well as to constituent phrases across premises.

However, we did not see any gains from these different approaches.

Ideally, a model would be able to build a unified scene representation from an arbitrary

number of sentences, which it could then compare to the hypothesis to judge its compatibility

with the entire scene. However, even if we set aside the question of scene representation and

focus on entailment prediction, there are still multiple ways that premises may interact with

one another and with the hypothesis. In the rest of this section, we present some examples

and discuss the difficulties of developing a general solution.

Single Premise

In this case, only one of the four premises contains the information to produce the correct

entailment label. This means that a majority voting strategy will not work, as the other

three premises have a different relationship with the hypothesis (e.g. three premises are

neutral to the hypothesis but the fourth premise entails the hypothesis).

In the following example, only the third premise indicates that the dogs are interacting
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with one another in a way that should be interpreted as greeting each other. The remaining

three premises mention the dogs but do not explain what they are doing.

Premises:

Two little dogs are lying on the green grass and a larger dog looks down on them.

A large orange dog and a little orange dog with another third dog in the grass.

Three dogs sniffing each other.

Two dogs and a puppy.

Hypothesis: Dogs greeting each other. ⇒entailment

Multiple Premise Reinforcement

In this case, more than one premise contains sufficient information to produce the correct

entailment label. It is possible, but not guaranteed, that a majority voting approach will

work here (there could still be a 2-2 tie over pairwise entailment relationships). Here, the

presence of multiple premises with the same, correct entailment relationship to the hypothesis

should serve as a reinforcing signal to produce that entailment label.

In the following example, the first and fourth premises state that the group is performing

or singing, which contradicts the idea that the group is having a meeting. These two premises

both contradict the hypothesis, and so they reinforce the conclusion that the correct label is

contradiction. The remaining two premises are neutral to the hypothesis (the hypothesis

could conceivably be true given the second or third premises), but they are overruled by the

two premises that contradict the hypothesis.

Premises:

A group of people are standing at the front of the room, preparing to sing.

A group of women with black binders stand in front of a group of people.

Woman standing in front of group with black folders in hand.

A group of individuals performed in front of a seated crowd.

Hypothesis: A group having a meeting. ⇒contradiction

Multiple Premise Aggregation

In this case, no single premise alone contains sufficient information to predict the overall

relationship with the hypothesis. Information must be aggregated from at least two premise

sentences in order to predict the correct label.
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In the following example, all the premises imply that the person is probably standing up.

However, only the fourth premise describes the person as a woman, and only the first and

third premises describe a wooded or forested area. We must combine information from the

fourth premise and the first or third premise in order to determine that the hypothesis is

entailed by the premises.

Premises:

A person in a green jacket and pants appears to be digging in a wooded field with several

cars in the background.

A young child in a green jacket rakes leaves.

A young child rakes leaves in a wooded area.

A woman cleaning up a park.

Hypothesis: A woman standing in the forest. ⇒entailment

We tried several models that reweighted various combinations of premise sentence repre-

sentations in order to combine information across sentences. In Section 7.1.3, we described

several model variants that a) max pool over all four premise vectors, b) apply attention

weights over all four premise vectors, or c) max pool over combinations of one to four premise

vectors and apply attention weights to the resulting summary vectors. Ultimately, these

models, which explicitly combine summary premise vectors, did not outperform a model

that uses each premise vector separately to make an entailment label prediction. There is

still room for future development here.

The work in this thesis has demonstrated the promise of grounded image-based repre-

sentations of linguistic expressions and their applicability to important tasks like textual

entailment. Much work remains to be done to make denotational similarity useful to a

broader spectrum of tasks in multiple domains. However, promising work in areas like

paraphrasing, multimodal representations, and common sense modeling could all potentially

facilitate further development.
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