
© 2018 Chase Geigle



TOWARDS HIGH QUALITY, SCALABLE EDUCATION: TECHNIQUES IN AUTOMATED
ASSESSMENT AND PROBABILISTIC BEHAVIOR MODELING

BY

CHASE GEIGLE

DISSERTATION

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor ChengXiang Zhai, Chair
Associate Professor Hari Sundaram
Professor Craig Zilles
Professor Bill Cope
Associate Professor Jie Tang, Tsinghua University



Abstract

There are two primary challenges for instructors in o�ering a high-quality course at large

scale. The �rst is scaling educational experiences to such a large audience. The second major

challenge encountered is that of enabling adaptivity of the educational experience. This thesis

addresses both major challenges in the way of high-quality scalable education by developing new

techniques for large-scale automated assessment (for addressing scalability) and developing new

models for interpretable user behavior analysis in educational environments for improving the

quality of interaction via personalized education.

Speci�cally, I perform a study of automated assessment of complex assignments where I

explore the e�ectiveness of di�erent types of features in a feasibility study. I argue for re-framing

automated assessment techniques in these more complex contexts as a ranking problem, and

provide a systematic approach for integrating expert, peer, and automated assessment techniques

via an active-learning-to-rank formulation that outperforms a traditional randomized training

solution.

I also present the design and implementation of CLaDS—a Cloud-based Lab for Data Science—

to enable students to engage with real-world data science problems at-scale with minimal cost

($7.40/student). I discuss our experience with deploying seven major text data assignments for

students in both on-campus and online courses and show that the general infrastructure of CLaDS

can be used to e�ciently deliver a wide range of hands-on data science assignments.

Understanding student behavior is necessary for improving the quality of scalable education

through adaptivity. To this end, I present two general user behavior models for analyzing student

interaction log data to understand student behavior. The �rst focuses on the discovery and analysis

of action-based roles in community question answering (CQA) platforms using a generative model

called the MDMM behavior model. I show interesting distinctions within CQA communities in

question-asking behavior (where two distinct types of askers can be identi�ed) and answering

behavior (where two distinct roles surrounding answers emerge). Second, I �nd that where there

ii



are statistically signi�cant di�erences in health metrics across topical groups on StackExchange,

there are also statistically signi�cant di�erences in behavior compositions, suggesting a relation-

ship between behavior composition and health. Third, I show that the MDMM behavior model

can be used to demonstrate similar but distinct evolutionary patterns between topical groups.

The second model focuses on discovering temporal action patterns of learners in Coursera

MOOCs. I present a two-layer hidden Markov model (2L-HMM) to extract a multi-resolution

summary of user behavior patterns and their evolution, and show that these patterns can be used

to extract latent features that correlate with educational outcomes.

Finally, I develop the Piazza Educational Role Mining (PERM) system to close the gap between

theory and practice by providing an easy-to-use web-based interface for leveraging probabilistic

user behavior models on Piazza CQA interaction data. PERM allows instructors to easily crawl

their courses and run subsequent MDMM behavior analyses on them. Analyses provide instructors

with insight into the common user behavior patterns (roles) uncovered by plotting their action

distributions in a browser. PERM enables instructors to perform deep-dives into an individual

role by viewing the concrete sessions that have been assigned a speci�c role by the model, along

with each session’s individual actions and associated content. This allows instructors to �exibly

combine data-driven statistical inference (through the MDMM behavior model) with a qualitative

understanding of the behavior within a role. Finally, PERM develops a model of individual users

as mixtures over the discovered roles, which instructors can also deep-dive into to explore exactly

what individual users were doing on the platform.

iii



To Chelsea;

to my parents, Angie and Elmer.

iv



Acknowledgments

First, I would like to thank my advisor, Dr. ChengXiang Zhai. I owe Cheng a great deal for his

excellent mentoring throughout my Ph.D.—without any doubt, my research has been successful

in large part due to his direction and support. Cheng has consistently been a bastion of positivity

in an academic research environment that can often be too focused on the negative. For showing

me how to maintain a spirit of optimism in the face of disappointment or uncertainty, he has my

sincerest gratitude. He has also provided me with an immense number of opportunities during

my graduate studies that helped me grow both as a researcher and as a teacher.

I would also like to thank Dr. Hari Sundaram who has acted as a form of “pseudo-advisor” for

my Ph.D. in many respects. He welcomed me into his research group with open arms and has been

an essential collaborator for much of the work in this thesis. From Hari, I learned much about

clarity in academic writing, including the importance of the design and presentation of �gures.

The quality of the writing and argumentation in this thesis bene�ted greatly from his in�uence. I

am appreciative of the support he and the rest of the Crowd Dynamics Lab have provided.

The rest of my committee has also been instrumental in the development of this thesis. Dr.

Bill Cope has helped me frame the thesis in the context of its potential impact on education

research, and together with Cheng has provided tremendous support for my research through

the formation of the Learning Analytics Research Lab and the connections formed therein. Much

of the greater vision of this thesis is due in no small part to this fruitful collaboration resulting

in many discussions about the greater goals of the �eld in general, and for that I am incredibly

grateful. Dr. Craig Zilles has been instrumental in helping disseminate the work in this thesis to

the broader community through initiatives aimed at growing the important area of Computers

and Education within the department. His experience with hands-on deployment of educational

systems in practice has been incredibly valuable. Finally, I want to thank Dr. Jie Tang for his

support—it is no small feat to manage to be available at very odd hours of the night because of the

timezone di�erences, and his �exibility in this respect has been incredible. His broad vision for

v



how AI can in�uence scalable online education has been a source of inspiration.

Others that have helped with this thesis in a less formal manner also deserve much thanks. In

particular, I want to thank Dr. Duncan Ferguson for providing my �rst “real” research problem

through our initial collaboration with Cheng and helping to essentially launch this entire thesis

direction. He was instrumental in my successful application to the National Science Foundation

Graduate Research Fellowship Program, which has helped to fund nearly all of the work in this

thesis. I want to thank Dr. Maryalice Wu and the rest of the ATLAS group at UIUC for your help

with securing the Coursera MOOC data necessary for studies within this thesis.

To the friends I have made while at UIUC: you have all helped me in uncountably many ways.

Thank you for serving as a sounding board, as collaborators, and as my support system. Dr. Sean

Massung, Himel Dev, Jason Cho, and Urvashi Khandelwal all deserve special thanks.

Finally, I want to thank Chelsea Neely and the rest of my family. Without your support, this

thesis could never have been completed.

As alluded to previously, the material in this thesis is based upon work supported by the

National Science Foundation Graduate Research Fellowship Program under Grant Number DGE-

1144245 and by the National Science Foundation Research Program under Grant Number IIS-

1629161.

vi



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Quality-Scalability Trade-o� . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Breaking the Quality-Scalability Trade-o� . . . . . . . . . . . . . . . . . . . . . . 2
1.3 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Scaling Assessment in Large-Scale Classrooms . . . . . . . . . . . . . . . . . . . . 9
2.2 Understanding Behavior for Personalizing Education at Scale . . . . . . . . . . . . 11

Chapter 3 Scalable Education: Automated Grading of Complex Assignments . . 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Medical Case Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Feasibility of Automated Gradiing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Automated Grading as Ranking Assignments . . . . . . . . . . . . . . . . . . . . . 30
3.6 E�ciently Utilizing Human Judgments with Active Learning . . . . . . . . . . . . 33
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 4 Scalable Education: A Cloud-Based Lab for Data Science Education . . 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 CLaDS: A Data Science Virtual Lab . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Deployment Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 5 Behavior Modeling: Action-Based Role Discovery . . . . . . . . . . . . 57
5.1 A Generative Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Mixture of Dirichliet-Multinomial Mixtures (MDMM) Behavior Model . . . . . . . 58
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.7 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 6 Behavior Modeling: Two-Layer Hidden Markov Models . . . . . . . . . 89
6.1 Temporal Behavior Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 A Two-Layer HMM for MOOC Log Analysis . . . . . . . . . . . . . . . . . . . . . 98
6.5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



6.6 Limitations and Potential Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 7 Behavior Modeling: The Piazza Educational Role Mining System . . . 122
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Behavior Modeling on Piazza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Chapter 8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 140
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Potential Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4 Future Work and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

viii



Chapter 1
Introduction

1.1 The Quality-Scalability Trade-o�

Education is perhaps the singularly most important aspect of a well-functioning society.

Without an educated populace, after all, there are no doctors to tend to the sick, no lawyers to

protect the innocent or prosecute those who commit crimes, no engineers to build the infrastructure

upon which we depend for our daily function. It would seem critically important, then, for us as

educators to provide high-quality educational experiences to all people in the world, regardless of

demographics like gender, age, location, or socioeconomic status. After all, the need for educated

individuals knows no bounds, and the human race as a whole stands to bene�t from the steady

march of progress ushered in by educated citizens. And yet, we are still just beginning the process

of transforming education at all levels to be simultaneously high-quality and readily obtainable

by all, instead of just the privileged few who happen to be in the right place at the right time.

The Internet has been a driving force toward improving the accessibility of education world-

wide. Of particular note and popularity in recent years is the Massive Open Online Course (MOOC)

phenomenon. These massive courses o�ered through the use of the Internet as a delivery mecha-

nism seek to provide a level of accessibility to educational material that is unprecedented—and for

doing so they have garnered a lot of attention. Not all of the attention has been positive, however:

many have doubts about the MOOC as an e�ective educational medium, citing both mass attrition

in these large courses [59, 60] as well as the di�culty (and even feasibility) of evaluating student

learning at such a large scale [6]. This is not to say that a MOOC cannot be both highly scalable

and simultaneously o�er a high-quality educational experience, but rather that there remains

work to be done before we can say we have fully realized that goal.

A recurring problem in scaling education is instructor overload [116]. Assessments in MOOCs

1



are typically compromised due to the inability of instructors to manually grade assignments at

that scale. Educational environments are “one-size-�ts-all” due to a lack of resources (mainly

time) to customize the educational experience to individual students’ needs or desires. Pedagogy

is compromised to accommodate larger and larger student enrollment. We cannot deliver high

quality, scalable education with overloaded instructors: either we fail to scale when we hit an

instructor’s resource constraints, or we sacri�ce the high quality experiences they wish to provide

in order to attain scalability. This result is a striking quality-scalability trade-o� encountered

by most traditional educational con�gurations. All things being equal, a well trained instructor

utilizing traditional educational techniques can create a high-quality learning environment at low

scale, but when forced to apply the same techniques at high scale, quality inevitably su�ers.

1.2 Breaking the Quality-Scalability Trade-o�

It does not need to be this way. The overall vision of this thesis is that the quality-scalability

trade-o� can be e�ectively addressed by leveraging advanced computational techniques (especially

those from machine learning and data mining) to improve both the scalability and quality of

education. To achieve both high quality and high scalability, though, we must view the problem

from di�erent angles. Each di�erent perspective we may take leads to a very di�erent class of

solutions, but all of which leverage computational techniques in di�erent ways to attempt to break

free of this trade-o�.

1.2.1 Scaling Existing Solutions

The �rst perspective, in which we accept an existing high quality but low scalability edu-

cational experience (whether that be an assignment, a lab, etc.) as our desired goal, requires

the development of some form of automated system to address tasks in which instructors are a

bottleneck to scalability. Often, this is in the form of some kind of automated or semi-automated as-

sessment technology. As a consequence, such an automated system can itself lead to improvements

and changes to the underlying educational experience. If, for example, summative assessments

2



become nearly “free” after deploying an automated grading system developed to address a grading

scalability challenge, the output of the automatic grading system could be used as a basis for

formative assessment instead. In other words, addressing scalability challenges for traditional

educational experiences can result not just in scalable experiences, but ones that can surpass the

original non-scalable methods in terms of quality by unburdening instructors.

Techniques following this line of thinking must ask hard questions about how one can capture

the knowledge state of an individual based on the output they produce from an educational

experience in a way that can be generalized across individuals. It also requires careful problem

formulations—what is perhaps the most obvious application of a machine learning or arti�cial

intelligence technique may be missing scalability opportunities unless the problem is formulated

in a di�erent way. Thus, this line of thinking can lead to all sorts of discoveries surrounding

optimal human-machine interactions in educational environments, new machine-actionable and

machine-learned knowledge representations, and novel systems that leverage these new solutions.

1.2.2 Extracting Quality From Scale

A di�erent perspective one could take is to instead embrace the existing high scalability

educational solutions and ask how we can increase the quality of the existing environment. There

are two key questions to ask from this perspective: (1) what was sacri�ced to scale, and (2) what

a�ordances are o�ered by scale? Considering these questions side-by-side, once can observe that

at scale we su�er from a lack of adaptivity of the educational environment—most MOOCs have

a “one-size-�ts-all” mentality not because they desire it, but out of necessity for scale. However,

at scale these environments provide enormous treasure troves of behavior data. Every action is

captured: every click, every answer, every post—everything. This provides an unprecedented

insight into every individual participating in an educational environment, beyond which can be

captured by an individual human instructor—even at low scale! Thus, the questions one may ask

from this perspective center on the understanding and processing of massive scale interaction

logs in an educational setting. In an ideal world, with ideal models, these massive interaction log

3



datasets could be leveraged in real time to allow a high scalability educational environment to

adapt to individual learners based on their interactions with the platform itself and knowledge

extracted about the behavior of previous, similar learners. The promise is perfectly individualized

learning, custom tailored to each speci�c learner’s needs, at massive scale (indeed, because of

massive scale).

We do not live in an ideal world, nor do we yet have ideal models for understanding user

behavior at such massive scale. We are still in an incredibly nascent stage for such models. We

must start with seemingly basic, but critical questions. How should behavior be represented? How

should it be visualized? What models can capture these desired representations? How can these

representations be leveraged to estimate knowledge states? How should an online environment

adapt on the basis of a behavior representation? These are important and, interestingly, funda-

mental questions in this �eld, which is a unique opportunity in a world where most �elds have

already answered their foundational questions.

In order to enable online educational experiences to be custom-tailored to individuals, we must

�rst understand what these individuals do in these platforms. To that end, techniques must be

developed to understand user behavior in online educational platforms to develop representations

of users and behavior that can then be utilized as a basis for developing adaptive, rather than static,

systems. Currently, however, instructors attempting to understand behavior in these large-scale

environments are overburdened with the massive scale of these interaction logs. It is necessary to

develop models and, perhaps more importantly, systems to allow them to digest activity logs to

understand behavior as a basis to developing personalization techniques that can work at scale.

1.3 This Thesis

The previous section outlined two di�erent perspectives for achieving high quality, scalable

education. These are, of course, not the only perspectives one could take, but they are illuminating

in the sense that they provide two di�erent sca�olds for solutions to the quality-scalability trade-

o� problem that can leverage data science and machine learning techniques. That being said, this

4



�eld is so massive, with so many di�erent problems along each perspective that remain to be

solved, so we must narrow our focus to make the �rst steps towards realizing solutions in these

two perspectives.

In this thesis, we attempt to unburden instructors of large-scale classes by developing tech-

niques and systems for large-scale automated assessment to address the challenge of scaling

educational experiences, and by developing probabilistic user behavior models to address the

challenge of providing adaptivitiy of the educational experience in a scalable way.

1.3.1 Scaling Existing Solutions

Addressing massive numbers of students is challenging—a direct application of what works

at small scale in the classroom does not necessarily translate well to an online educational

environment with tens of thousands of learners. In many cases, sacri�ces are made to the quality

of assessment and educational experience. This presents a direct challenge: how can we o�er

assessments and experiences that are closer to those we would o�er at small scale to massive

numbers of students? Chapters 3 and 4 of this thesis provide techniques for achieving high

scalability of more complex assignments in order to extend the set of assignment types that can

be utilized in large-scale educational environments.

Speci�cally, in Chapter 3 we study the e�ectiveness of existing machine learning techniques

for grading assignments designed to teach critical thinking through case assessments in the

domain of veterinary medicine [41]. We explore the e�ectiveness of three classes of features for

automating grading for these outline-form assignments: (1) token features, (2) similarity features,

and (3) selection features. In addition to this feasibility study, we argue for re-framing automated

assessment in this context as a ranking problem, which allows for the use of active-learning

techniques in a learning-to-rank framework. We discuss how to properly evaluate a ranking

system for automated assessment, and show the utility of such an active-learning formulation

compared to a traditional randomized training solution.

In Chapter 4 we discuss the development and associated deployment experience of a novel

5



Cloud-based Lab for Data Science (CLaDS) that enables many learners around the world to work

on real-world data science problems without having to move or otherwise distribute prohibitively

large data sets [42]. Leveraging version control and continuous integration, CLaDS provides a

general infrastructure to enable any instructor to conveniently deliver any hands-on data science

assignment that uses large real world data sets to as many learners as our cloud-computing

infrastructure allows at minimal cost. We present the design and implementation of CLaDS and

discuss our experience with using CLaDS to deploy seven major text data assignments for students

in both an on-campus course and an online course to work on for learning about text data retrieval

and mining techniques; this shows that CLaDS is a very promising novel general infrastructure

for e�ciently delivering a wide range of hands-on data science assignments to a large number of

learners at very low cost ($7.40/student in our deployment).

1.3.2 Extracting Quality from Scale

In order to personalize online learning environments at scale, developing a model of an individ-

ual student (or group of students) is a necessary �rst step. To this end, we explore probabilistic

user behavior models that can be applied to learner-system interaction data at scale.

Speci�cally, in Chapter 5 we propose a generative model for discovering and analyzing

action-based roles in community question answering (CQA) platforms [43]. These kinds of

platforms are commonplace as a supporting infrastructure for online learning environments. We

propose the use of a generative model for inferring action-based roles for users both at the level

of an individual browsing session as well as at the broader community level called the MDMM

behavior model. The model is speci�cally designed to produce descriptions of user behavior

roles in the form of interpretable probability distributions over the atomic actions a user may

take within a community while also modeling the composition of those roles inside individual

communities to facilitate cross-community analysis. A comprehensive experiment on all 161

non-meta communities on the StackExchange1 CQA platform reveals three empirical insights.
1https://stackexchange.com

6

https://stackexchange.com


First, we show interesting distinctions within CQA communities in question-asking behavior

(where two distinct types of askers can be identi�ed) and answering behavior (where two distinct

roles surrounding answers emerge). Second, we �nd that where there are statistically signi�cant

di�erences in health metrics across topical groups on StackExchange, there are also statistically

signi�cant di�erences in behavior compositions, suggesting a relationship between behavior

composition and health. Furthermore, we show that if one instead were to cluster communities

based on behavior composition vectors alone, the clusters discovered have interesting topical

di�erences as well as statistically signi�cant di�erences in mean health, suggesting that the model

can both be used to analyze ad-hoc groupings of communities as well as provide a data-driven

way to derive sensible community groups. Finally, we show that the MDMM behavior model can

be used to demonstrate similar but distinct evolutionary patterns between topical groups.

In order to better understand temporal action patterns in user behavior, in Chapter 6

we propose a temporal student behavior representation alongside a method for automatically

discovering those student behavior patterns by leveraging the click log data that can be obtained

from a MOOC platform. Speci�cally, we propose the use of a two-layer hidden Markov model

(2L-HMM) to extract our desired behavior representation, and show that patterns extracted by such

a 2L-HMM are interpretable and meaningful [40]. We demonstrate that the proposed 2L-HMM can

also be used to extract latent features from student behavioral data that correlate with educational

outcomes.

We demonstrate the great potential for the development of applications of our models in Chap-

ter 7 where we develop the Piazza Educational Role Mining (PERM) system to enable instructors

to use probabilistic user behavior models on their own Piazza course data through an easy-to-use

web-based interface for both crawling Piazza courses and running subsequent MDMM behavior

analyses on them. Analyses provide instructors with insight into the common user behavior

patterns (roles) uncovered by plotting their action distributions in a browser. PERM enables

instructors to perform deep-dives into an individual role by viewing the concrete sessions that

have been assigned a speci�c role by the model, along with each session’s individual actions and

7



associated content. This allows instructors to �exibly combine data-driven statistical inference

(through the MDMM behavior model) with a qualitative understanding of the behavior within a

role. Finally, PERM develops a model of individual users as mixtures over the discovered roles,

which instructors can also deep-dive into to explore exactly what individual users were doing on

the platform.

1.3.3 Open Source Model and System Contributions

All of the models and systems presented in this thesis are available as open source software

(see each speci�c chapter for relevant links). As a result of our work, one can achieve high

quality, scalable education in at least a few narrow areas by leveraging our models and systems for

automated assessment. As a result of our behavior modeling work, instructors can immediately

begin to digest salient patterns in their own courses on the platforms we investigate (namely

Coursera and Piazza), as well as other systems. Indeed, we have already seen work applying these

models to generate insights into di�erent educational platforms [124], and expect this trend to

continue as the models are employed to study other environments.

8



Chapter 2
Related Work

Massive Open Online Courses (MOOCs) have garnered much attention in recent years, fueled

by the massive success of MOOC platforms like Coursera1, edX2, and XuetangX3. As such, there has

been a �urry of recent research into these platforms that covers both of the major directions of this

thesis: scaling assessment in large-scale classrooms, and behavior understanding for personalizing

education at scale.

A more in-depth treatment of the related work to each of the individual contributions of this

thesis can be found in their associated chapters—this chapter instead aims to provide a very high

level overview of a large body of related work.

2.1 Scaling Assessment in Large-Scale Classrooms

Assessment in large-scale classrooms—and MOOCs in particular—presents an immediate

scalability challenge. The traditional grading model of one-instructor-and-some-assistants is

unsustainable with MOOCs that enroll an average of 43,000 students [59] while charging little or

no tuition.

There are two major schools of thought on addressing the assessment challenge of MOOC-

scale courses. One focuses on automated assessment, where the goal is to use computational

tools to automatically assess student work without having to directly involve an instructor or

teaching assistant in the grading process. The other school of thought emphasizes peer-to-peer

assessment that focuses on leveraging the students that are taking the course themselves to

provide assessment, again avoiding having to directly involve an instructor or teaching assistant

in the grading process.
1https://coursera.org
2https://edx.org
3https://xuetangx.com

9

https://coursera.org
https://edx.org
https://xuetangx.com


2.1.1 Automated Assessment

Automated assessment has long seen application in settings where there is a single, well

de�ned answer. In most MOOCs, automated assessment is commonly used for grading quizzes.

In most cases, these quizzes are multiple-choice and thus automated assessment is trivial, but as

MOOCs move toward more complicated assignment types, assessment becomes more tricky.

Grading programming assignments automatically has been a commonplace practice for many

years [35, 52, 61]. While it is not trivial to detect program correctness, it is still quite feasible

to devise a set of test cases that determine whether a learner’s submitted program produces the

expected output, converting the assessment question into a trivially automated series of “yes” or

“no” questions (did the code pass the individual test case or not).

There is also a rich literature for automated assessment of written assignments. Short answer

questions can be e�ciently graded using clustering-based techniques [11]. Mitros et al. [91]

provides a study of the integration of automated assessment and self/peer grading for grading short

answer questions. Automated assessment for long-form written assignments (essays) has been

deployed for years [6]. Approaches range from purely supervised classi�ers [74] to approaches

that use similarity features [26] or topic modeling [107].

The automated assessment techniques discussed in this thesis focus more strongly on questions

of assessing scienti�c thinking. Recently, there has been some work in this direction [77], but

the focus has not been strongly on assessing scienti�c thinking in higher education. We provide

techniques for automated assessment in the domain of veterinary medicine and data science.

2.1.2 Peer Assessment

Grading anything more complicated than a short answer question in a MOOC environment

without appealing to automated assessment techniques typically necessitates the application of

some form of peer assessment. Unfortunately, blind application of peer review is often problematic,

necessitating models for calibration of the peer review scores [6, 120, 100]. Many studies have

emerged that focus on improving student experience with peer assessment frameworks [72, 118].

10



Much work in this space has focused on the generation of feedback rather than just scores [128,

63]. Work in this space has also attempted to understand how to scale-up feedback generated by

experts that include paid peer reviewers [62] or more traditional instructors or TAs [91, 113].

We attempt to address the question of how to properly integrate expert, peer, and automated

assessment in Chapter 3.

2.2 Understanding Behavior for Personalizing Education
at Scale

While MOOCs can claim huge success in enrollment sizes [59], they cannot claim nearly as

much success in terms of their completion rates. In a study of 221 MOOCs, Jordan [60] found that

completion rates varied from 0.7% to 52.1% with a median of 12.6%—a far cry from the 81% that is

typical for a 4-year public college or university [121]. There is clearly an achievement gap between

a traditional course and that of a MOOC [65]. It may be argued that the attrition rates are high

in MOOCs due to a more diverse set of learner motivations [22], but this fact further reinforces

the importance of understanding user behavior in these courses as a mechanism to improve their

utility for their users. A behavior model could be used to identify a student’s learning motivation

(intent to complete), and could further be used to adapt the learning environment so as to minimize

the attrition rate in such a case.

Any technique for user behavior modeling that is deployed to improve classrooms that have as

large a scale as a MOOC must be designed speci�cally for that level of massive scale. This presents

a di�cult challenge, but the size of these courses and, more speci�cally, the massive amount of

data they collect also provides an opportunity to leverage the data collected in order to build better

models for student behavior, understanding, and learning. Indeed, systems are beginning to be

designed that are explicitly targeting MOOC log exploration and mining [36].

There are numerous works on understanding learner behavior in MOOC (or MOOC-like)

settings. Behavior data has been used to understand lecture video watching behavior [70, 122] and

to understand and predict learner trajectories [66, 21]. Several recent models emphasize predicting

11



a learner’s next action in order to provide some degree of real-time adaptivity [111, 30, 99, 51].

Some models attempt to directly predict educationally-relevant behaviors like diligence [20] and

wheel spinning [44], while others focus on obtaining more general vector-space representations

(embeddings) of students [102, 68].

More generally, there are works that address modeling user behavior in web contexts [83],

social media [130, 104, 50], and CQA [93, 82, 1, 125, 37, 4, 88]. Our models are strongly related to

the ideas in clickstream mining [123, 47, 119, 9, 80, 108], where a variety of clustering techniques

is applied to �nd users that share similar clickstream traces in some application log.

The behavior models presented in this thesis aim at being both generally applicable to any

online educational system as well as being readily interpretable by design. Both models presented

can be readily used for next-action prediction while also providing insights into common behavior

patterns.

12



Chapter 3
Scalable Education: Automated Grading
of Complex Assignments

Automated grading is essential for scaling up learning. In this chapter1, we conduct the �rst

systematic study of how to automate grading of a complex assignment using a medical case

assessment as a test case. We propose to solve this problem using a supervised learning approach

and introduce three general complementary types of feature representations of such complex

assignments for use in supervised learning. We �rst show with empirical experiments that it is

feasible to automate grading of such assignments provided that the instructor can grade a number

of examples. We further study how to integrate an automated grader with human grading and

propose to frame the problem as learning to rank assignments to exploit pairwise preference

judgments and use NDPM as a measure for evaluation of the accuracy of ranking. We then propose

a sequential pairwise online active learning strategy to minimize the e�ort of human grading and

optimize the collaboration of human graders and an automated grader. Experiment results show

that this strategy is indeed e�ective and can substantially reduce human e�ort as compared with

randomly sampling assignments for manual grading.

3.1 Introduction

Information Technologies have been transforming education dramatically recently, leading

to the rapid growth of Massive Open Online Courses (MOOCs), which have not only made

education more a�ordable and scalable, but also have huge potential to enable more e�ective

personalized learning. Automatic grading technology has been a key component enabling the

success of MOOCs. Unfortunately, the current technology for automatic grading is mostly limited

to multiple-choice questions, short answers [11, 75, 90, 103, 92], and simple essay scoring [6],
1The work in this chapter has been previously published in Geigle et al. [41].

13



which makes it quite challenging for the current MOOCs to provide sophisticated assignments for

teaching complex concepts or skills (e.g., critical thinking skills) since they cannot be easily graded

in a scalable way. A solution currently adopted to bypass this di�culty is to use the calibrated

peer review [6, 120, 100]. While there are encouraging �ndings about peer assessment and

methods proposed to improve it [72, 100], there are still systematic problems with this approach:

discrepancy between peer and instructor ratings, variation in ratings over time by the same peer

rater, inconsistency across exercises for rating two works of similar quality, di�erences in rater

stringency, and random �uctuation of ratings of the same work under varied conditions [120].

Preliminary data from a recent attempt to use this technique with veterinary students has also

shown that peer reviews have a distinct positive bias (vide infra) relative to an expert instructor

analysis [31]. Thus, it is important to develop more powerful automatic grading technology that

can be applied to more sophisticated exercises than those provided by the current MOOCs, which

are necessary in many education scenarios.

To automate grading of such a complex assignment, a natural idea is to use supervised

machine learning to learn from graded examples for automatically assigning grades to ungraded

assignments. As in other machine learning applications, the general idea here is that if we can

extract those features from the assignments that can indicate the quality of an assignment, a

machine learning program would be able to pick up the patterns of the features that can distinguish

high-quality work from low-quality work from a sample of graded assignments (i.e., “training

data”), thus potentially assigning a grade automatically to an ungraded assignment.

Although this idea is natural and appealing, there are many challenges and questions that we

must address before we can e�ectively deploy such a technology in a real education environment,

and a main goal of this chapter is to take a �rst step toward systematically addressing these

questions.

1. Feasibility: How feasible is it to use machine learning to automate grading of a complex

assignment? What general features can we extract from assignments for automated grading?

How e�ective are the state of the art machine learning approaches for automated grading?

14



Are they su�ciently e�ective to be immediately useful in practice?

2. Problem Formulation and Evaluation: How should we formulate the grading problem

as a machine learning problem? There are at least two options. One is to frame it as a

classi�cation problem with the goal of classifying an assignment into one of the �nite

number of pre-de�ned grade levels based on a rubric. The other is to frame it as a ranking

problem where the goal is to rank the assignments based on the quality without necessarily

assigning a speci�c grade—human graders can then go through the ranked list to segment

the assignments into di�erent grade levels. How should we design evaluation metrics to

measure the quality of the results of automated grading?

3. Integration of Automated Grading and Human Grading: How exactly should such an

automated grader be integrated with instructor or TA grading? A more general question

is: how can we optimize the collaboration of an imperfect automated grader with more

reliable human graders? Intuitively, the optimization depends on a trade-o� between the

quality/reliability of grading and the amount of human e�ort required. But given an expected

amount of human e�ort, what is the best way to have the automated grader to assist a person

in grading? What is the best way to have a human grader help train the machine-learning

based automated grader?

While some of these questions have been studied for non-complex assignments, most of them

are open new questions that have not been addressed in the existing work (see Section 3.2 for a

detailed discussion of related work). In this chapter, we will systematically study these questions

using a particular type of complex assignment that requires sophisticated critical thinking skills,

i.e., medical case assessment. This kind of assignment is very important for medical professional

education. By studying how to automate grading for medical assessment assignments, we can

potentially enable medical professional education to scale up—a much needed e�ort. Not teaching

clinicians about clinical uncertainty has been referred to as “the greatest de�ciency of medical

education throughout the twentieth century” [25, 38]. However, implementing an instruction plan

15



with an online education system at large scale to teach clinical uncertainty in decision making

raises many signi�cant challenges that must be solved, particularly challenges in automatic

evaluation of the case studies completed by the students, which we address in this chapter by

leveraging information retrieval and machine learning techniques.

To study the feasibility questions, we propose a general methodology for designing three

complementary types of feature representations of such complex assignments, including token

features, similarity features, and selection features, and experiment with these features using

ordinal regression for predicting the grade levels in multiple dimensions of rubrics. The token

features are based on the term tokens extracted from an assignment and they o�er the most general

representation and are robust in practice. The similarity features are to capture the similarity

between an assignment and the solution provided by an instructor; the intuition is that the higher

the similarity is, the higher the grade should be. Finally, the selection features are to quantify the

accuracy of the selection of relevant parts in a case description based on how well the selected

parts match the solutions (e.g., choosing to run the right lab tests in a clinical case). While it

is generally bene�cial to manually design assignment-speci�c features, such features cannot be

generalized to work on other assignments; in this chapter, we focus on studying general features

that can be automatically computed on any semi-structured complex assignment, and aim at

understanding their e�ectiveness.

A practical challenge in studying our problem is the lack of a large set of graded assignments

which is needed both for training a machine learning program and for validating the results

of automated grading. This is partly due to the fact that grading such assignments takes much

human e�ort: the very reason why we need to study automated grading for such assignments. In

our experiments, we used a data set of 107 student submissions for one medical case assessment

assignment that is available to us. While the data set is small, we are able to observe statistically

signi�cant di�erences in our experiments, thus it still allows us to draw meaningful conclusions

about di�erent approaches to automated grading.

Our study with this data set shows that it is feasible to automate grading of a complex

16



assignment such as a medical case assessment using standard machine learning approaches and

the proposed three kinds of general features provided the instructor can grade a small number of

examples, but the grading accuracy on di�erent rubric categories varies substantially.

The results of our feasibility study reveal that there is a great deal of variation in the grades

given by instructors due to the inevitable subjectivity of the rubrics. This suggests that it might

be less e�ort and more reliable for an instructor to make pairwise judgments between a pair

of assignments as opposed to assigning an exact numerical or letter grade. Working on such

pairwise preference judgments also makes it easy to integrate non-expert judgments (such as

peer grading) that might not be reliable in the exact grades assigned but may include relatively

reliable preference judgments. Moreover, working on pairwise preferences naturally “eliminates”

the need for normalizing numerical grades which might be biased (e.g., some graders may be

overly generous).

Given that we will attempt to obtain pairwise preferences as training examples, it follows

that we should frame the problem of automated grading as ranking the ungraded assignments, as

opposed to predicting the exact grade of an assignment. The ranking would be in descending order

of quality (in any rubric dimension or overall quality with consideration of multiple dimensions),

and a human grader can then easily segment the list into any desired grade levels. In comparison

with predicting exact grades, such a ranking formulation also o�ers a natural way to engage

humans in validating and �nalizing the grades. For evaluation, although retrieval measures such as

Mean Average Precision (MAP) or normalized Discounted Cumulative Gain (nDCG) are commonly

used for evaluating a ranked list, we suggest that the Normalized Distance-based Performance

Measure (NDPM) [131] is a better measure for our ranking problem since it can robustly handle

the many inevitable ties that occur in our case.

In practice, an automated grader must be integrated with a human grader so as to minimize the

overall e�ort of the human grader while ensuring a certain level of grading accuracy. There is an

inherent trade-o� here: in order to increase the grading accuracy we would like to have as many

training examples (i.e., manually graded assignments) as possible, which would thus incur more

17



human e�ort. To optimize human-machine collaboration and enable a �exible trade-o� between

human e�ort and grading accuracy, we propose the following sequential training process based

on active machine learning: (1) a human grader �rst grades a small number of assignments as the

initial training set (this could be either numeric or letter grades, or pairwise judgments); (2) the

machine would learn from the initial set, and identify the next “best” example (i.e., assignment)

to label and present it for the human to grade (where “best” here means that the example is

most valuable to help the automated grader improve its accuracy); (3) a human would grade the

nominated example to increase the size of the training set by one; (4) the machine would learn

from the augmented training set and repeatedly present a new example for the human to grade

until it reaches a desired level of accuracy, at which point, the process stops and the human grader

would segment the �nal ranked list to generate grades for all the assignments. Our experiment

results show that this online active learning process is much more e�ective than batch training.

3.2 Related Work

To the best of our knowledge, no previous work has studied how to automatically grade a

complex assignment such as a medical case assessment. However, our work is related to multiple

lines of existing work, which we brie�y review below.

Automated grading has been explored mostly for constrained question types where the correct

answer has a certain, well known form. Programming assignments, for example, have long been a

target for automatic grading [35, 52] as their very medium can easily be leveraged for providing

“yes” or “no” feedback with respect to programmatic correctness. For speci�c assignment types,

more sophisticated techniques like edit-distance of canonical representations has been explored [2].

Recent e�orts have focused on providing feedback to students about their programs by leveraging

structural similarities in the code itself to allow feedback to be provided to many assignments at

once that share particular features [95, 101].

In this vein, clustering-based techniques have been applied to tools designed to help instructors

manually grade short-answer MOOC assignments at scale by allowing them to assign grades

18



to entire clusters of students at once. For example, in Brooks et al. [11] hierarchical clustering

methods were applied to allow the instructor to “drill down” as far as he/she would like to assign

grades and feedback to students. Their method, PowerGrading, can be regarded as optimizing the

collaboration of humans and machines heuristically, but the approach does not take advantage of

supervised learning from graded examples of instructors, which we explore. Furthermore, if a

cluster is poorly formed, the grading error can be serious no matter how an instructor optimizes

the grade assignment to a cluster.

Mitros et. al. [91] give a brief overview of di�erent strategies for grading and proposed a

heuristic work�ow to optimize the collaboration of assessors in consideration of di�erent costs

associated with di�erent graders. However, it does not address the question of how to optimize

the recommendation of assignments for graders to grade in order to maximize the e�ectiveness of

the machine learning component of their framework, a goal we seek to achieve in this chapter.

We could deploy our technology in their framework by modifying the threshold strategy (e.g., for

cuto�s on a ranked list). Both of these methods [11, 91] only explored the short-answer question

space, leaving semi-automated grading of more complex assignment outputs (like the outline-form

case assessments we study here) unexplored.

Another approach would be to attempt to predict the grades explicitly. One branch of work in

this direction based on information extraction techniques focuses on matching expected patterns

in the answer; many methods require the manual construction of these patterns [90, 75], while

others attempt to learn them from large training datasets [103]. In either case, the methods require

strong supervision support to be e�ective. Other works take an unsupervised text-similarity

approach and compare the student answers with a gold standard answer using a wide variety of

similarity functions [92].

Grading of long-form student answers has also been explored [6]. In CarmelTC [107] a

combination of topic modeling and text classi�cation approaches are taken to score student essays.

The system attempts to determine which “key components” have been mentioned in each essay and

uses this information to suggest to students what components they may be missing. Approaches

19



that purely use document similarity metrics [26] or purely supervised classi�ers [74] have been

used for grading as well, but the rubrics are not as complex as those required for medical case

assessment.

The task of predicting categorical labels with an implicit ranking (ordinal variables, often the

result of surveys on a Likert scale) is often solved via ordinal regression methods [89]; our work

adds yet another application of ordinal regression to the many already explored. Using machine

learning for optimizing ranking has been extensively explored in information retrieval [84]; our

work explores an interesting novel application of online active learning to automated grading where

we are interested in minimizing the size of the training sample to be labeled while maximizing the

ranking accuracy over a �nite number of known test cases.

3.3 Medical Case Assignment

Complex assignments inevitably vary across courses. As a �rst step toward studying how

to automate grading of such assignments, we use a medical case assignment in the veterinary

medicine domain for our study. At a high level, such an assignment represents a typical type of

analysis assignment where the students are given a case description with both an unstructured

text description as well as some structured data (e.g., lab test results), and are asked to perform an

analysis of the case. The analysis generally involves (1) selecting relevant content from the case

description, which can be selected from both the text part and the structured data, (2) answering

questions with short textual answers, and (3) writing assessments in natural language text.

More speci�cally, the case exercises were developed using the WhenKnowingMatters (WKM)

web-based case formulation software2 which facilitates development and exchange of text-based

cases while allowing students to objectify their observations from a case and manipulate them in

an outline format around a suggested sca�old provided by the instructor. The student’s analysis is

then rendered into a structured text format to facilitate automatic grading.

Due to the lack of automated grading tools, the assignments are currently graded manually.
2http://www.whenknowingmatters.com

20

http://www.whenknowingmatters.com


Figure 3.1: An example of a case description (top) and a reference assessment (bottom). Assessment bullets
are labeled: “F” is part of the instructor provided framework, “Q” is a question posed by the instructor,
and “P” is a physiological point made by the student.

21



Table 3.1: Mean and standard deviation of scores in each of the rubric dimensions we study. The standard
deviation is considerably larger for the “clarity” and “quality” dimensions.

dimension score (µ ± σ )
analysis 2.634 ± 0.766
answers 3.028 ± 0.767
application 2.869 ± 0.565
clarity 3.383 ± 0.944
quality 3.112 ± 0.980
questions 2.822 ± 0.681

An assessment rubric designed prior to instruction was used by the instructor to evaluate student

performance on a subjective, 5-point scale (listed here in increasing order): novice, beginner,

competent, pro�cient, and expert. Rubric categories were related to elements of critical thinking

and communication:

Questions Developing relevant re�ning (or clarifying) questions to answer based upon an honest

assessment of current knowledge base

Answers Approach to seeking answers to developed questions, literature search, etc.

Quality Judgment of quality of information, awareness and application of standards of a discipline,

bias detection including appropriate humility to detect one’s own potential bias, application

of statistical concepts

Analysis Analysis of an argument

Clarity Clarity and communication of thought, conciseness, grammar, spelling, elocution

Application Application and understanding of appropriate disciplinary content

For our experiments, we used a data set consisting of n = 107 student submissions for one

medical case analysis assignment in a veterinary medicine course at UIUC. Each was graded

according to the rubric detailed above. We report the mean score and standard deviation for each

of these six labels in Table 3.1, where 1 corresponds to novice and 5 to expert. The instructor also

created a “gold standard” assessment for the assignment case, which is available for the automated

22



grading tool to use. We wish we could use a much larger data set, but the size of the data set is

limited by the amount of manual work needed for grading, which is precisely our motivation for

studying how to automate grading.

Figure 3.1 shows an example of a very simple case and a typical student answer. In the case

description, the student can see a text description of the case and a number of lab test results

in the form of structured data. The student assessment is seen to be a semi-structured text with

indented structures based on a sca�old provided by the instructor. Multiple tags indicate di�erent

kinds of answers, including, e.g., selected content from the original case description, selected lab

tests (both are “observations”), and text input by the student re�ecting his/her assessment (called

“analysis”).

Because of the complexity, automated grading of such an assignment is very challenging.

First, due to variations across di�erent assignments, it is almost impossible to learn from the

grading results of one assignment to automate grading of another (often called “transfer learning”),

even though such an “inter-assignment” automated grading is ideal. We thus focus on a more

realistic setting of attempting to automate the grading after the instructor has already graded some

assignments, which we may refer to as “intra-assignment” automated grading, which, strictly

speaking, is actually semi-automatic grading. Our goal is thus to study whether and how we can

leverage machine learning to learn from the graded assignments to reduce the grading burden on

an instructor, either by directly predicting grades or by providing a ranking as a sca�olding for

assigning grades.

3.4 Feasibility of Automated Gradiing

In this section, we discuss and study the feasibility of using machine learning methods, partic-

ularly supervised learning, for automating the grading of complex assignments. We �rst present

the general idea of supervised learning, then propose a general methodology for designing three

complementary types of features for representing assignments, which are needed for supervised

learning, and �nally present experiment results.

23



3.4.1 Supervised Learning

In supervised learning, a model is built to predict the outcome (or label) of a new data example

based on previous examples it has seen before (called the training data). Thus a natural way to use

supervised learning for grading is to have a human (e.g., instructor) grade a set of assignments to

be used as training data to learn a model to predict the grade of each ungraded assignment.

A critical component of this infrastructure is the decomposition of examples into feature

vectors—this decomposition enables the use of algorithms for learning functions from these

vectors to the output labels desired. Typically, these feature vectors are either binary or real-

valued, and are often (but not always) in a high-dimensional space. The performance of the learned

function is directly tied to the features used in the vector representation of the examples—poor

features result in low predictive capability due to the algorithm being unable to �nd meaningful

patterns in the examples. As such, these features are a critical component of any supervised

learning approach. With a properly de�ned set of features that are capable of capturing the salient

patterns in the training examples, the task can be given to any of a number of state-of-the-art

algorithms for learning appropriate predictive functions that can be applied to yet-unseen data

(the test data).

Another factor a�ecting the accuracy of prediction is the number of training examples, with

more training examples leading to higher accuracy. However, since creating training examples

generally requires manual work, we tend to have only a limited number of training examples

to work with. How to de�ne general features that we can automatically compute based on a

complex assignment and how to minimize manual e�ort in creating training examples are two

major questions that we study in this chapter.

De�ning Features of a Student Assignment

The performance of a supervised learning approach is highly dependent on the e�ectiveness

of the features fed into the learning program. Thus a main technical challenge we need to solve is

designing e�ective features for representing an assignment.

24



To address this challenge, we propose a general framework for de�ning features for complex

assignments such as the one we explore in this chapter. The features we propose are general in

nature and thus should be applicable to any assignment that is presented in a text-based, semi-

structured response form. We describe a set of feature classes and evaluate the performance of

these features on an example autograding task to evaluate their predictive capacity. Our framework

consists �rst of constructing a “view” of an assignment and then de�ning features based on this

view. The view chosen for the assignment is critical in that it changes the way we may naturally

describe it and thus leads to the de�nition of distinct classes of features distinguished by the view

taken to derive them. We will explore features by progressively taking views that make stronger

assignment design assumptions: while the features are still general, each view progressively

narrows the space of possible student response types.

The �rst class of features, which we call token features, are generated by taking a view of the

student response consistent with the traditional “bag of words” approach common in information

retrieval contexts [84]. In this view a document is decomposed into a vector of count data that

indicates the frequency of words within the document. Two features are thus natural. The �rst

type of feature would indicate the number of occurrences of a given word in a student submission

(and is thus real-valued), and the second would indicate the presence or absence of a word (and

is thus binary-valued). These features would both create a high-dimensional representation of

the student submission, and are motivated by an attempt to capture the di�erence in vocabulary

between assignments. This is often enough to capture whether the correct ideas are mentioned

without requiring extensive computation (features from this class are trivial to compute for every

student submission), though more discriminative units such as n-grams (a sequence of n words)

may also be easily used to replace single words if necessary. Document classi�cation techniques

typically operate in this kind of space.

The second class of features, which we call similarity features, are generated by characteriz-

ing a student submission by the “distance” from a gold standard (e.g., an assignment submission

generated by the instructor). With this view, features can be derived that strongly utilize the

25



structure of the assignment (e.g., how closely does the outline structure of the student assignment

match the outline structure of the instructor assignment?) as well as features that loosely utilize

or completely ignore the structure of the assignment. Examples of features that loosely utilize the

assignment structure would be the similarity of certain outline bullet types with the gold standard

bullet types of the same category. A bullet type in our examples could be “observation” (indicating

something selected from the assignment text directly) or “analysis” (indicating original thoughts

from the student). These features require the assignment to be structured in such a way that this

information is easily extracted, but do not look so closely at the overall structure of the outline

itself. Ignoring the structure of the assignment, features can be generated that indicate the overall

similarity with the gold standard. Document clustering techniques typically operate in this kind

of space, as well as retrieval functions in search systems [84].

The third class of features, which we call selection features, are generated by measuring

concrete statistics about the selection of bullet points compared to a gold standard. In some

sense, these are similar to the similarity features, but they di�er in that they make a stronger

assumption about the assignment structure—namely, that students are producing the exact same

text that should occur in a similar section of the gold standard. Examples of selection features

would be precision (what fraction of the bullets selected by the student also appear in the gold

standard?) and recall (what fraction of bullets selected in the gold standard were also selected by

the student?) [84].

Ordinal Regression for Grade Prediction

Because of the ordinal nature of our grade labels (categorical with an implicit ranking), it is

natural to apply ordinal regression techniques to our automated grading setup. In particular, we

will utilize support vector ordinal regression (SVOR) [15], a generalization of the popular support

vector machine (SVM) [19] for classi�cation to the case of ordinal labels in the study of feasibility

of grade prediction.

26



3.4.2 Experiment Results

We now present the results of ordinal regression on our medical assignment data set to assess

the e�ectiveness of the proposed features and examine how e�ective such a state of the art learning

method is for solving the grading problem.

We �rst explore using only the most general of our feature types—token features—to attempt to

understand the di�erences in grading di�culty across our di�erent rubric dimensions. Frequency-

based token features were extracted: we used the MeTA toolkit3 at version 1.1 with its default

tokenizer, stemmer, and stopword list [86]. For regression, we used a modi�ed version of LIBSVM4

for ordinal regression [78].

In an actual grading scenario, the instructor would manually grade a certain number of the

submissions, learn the regression function from these labeled examples, and then apply the learned

model to the remaining unlabeled examples. To simulate this, we ran the following experiments:

for each rubric dimension, we took the collection of student documents and randomly split it into

two groups (the training and test sets) each containing 50% of the data5. A function is learned

based on the labeled training set which is then used to label the examples in the test set. We

compute the mean absolute error (MAE), de�ned as

MAE =
1
n

n∑
i=1
|r (f (xi)) − r (yi)| (3.1)

where f (xi) is the predicted label of the example xi , r (·) is the rank of a given label, and yi is the

gold standard label for the example xi . This experiment is repeated for ten di�erent randomized

splits, and we report the average and standard deviation of the test set MAE in Table 3.2.

We can observe that the rubric labels with the least variation are the easiest to predict (e.g.,

“application” and “questions”), whereas rubric dimensions with higher data variance (e.g., “quality”)

are more di�cult.
3https://meta-toolkit.org
4http://www.work.caltech.edu/~htlin/program/libsvm/
5We do not use something like 10-fold cross validation due to the small size of the available labeled data to ensure

that the training and test sets can be as representative of the actual data as possible.

27

https://meta-toolkit.org
http://www.work.caltech.edu/~htlin/program/libsvm/


Table 3.2: Di�culty of grading each rubric dimension, characterized by MAE of a SVOR model learned
on 50% of the data. 10 randomized experiments were run; reported is the average and standard devia-
tion. Rubric dimensions with the least variation are the easiest to predict (“application” and “questions”),
whereas rubric dimensions with higher data variance (“quality”) are more di�cult.

dimension MAE (µ ± σ )
analysis 0.564 ± 0.073
answers 0.549 ± 0.063
application 0.332 ± 0.058
clarity 0.760 ± 0.066
quality 0.787 ± 0.081
questions 0.432 ± 0.064

The Impact of Di�erent Feature Types

Moving beyond simple token features, we extracted both similarity and selection features from

our assignments and incorporated them incrementally into our model to measure the predictive

capacity of di�erent feature types.

Our token features were generated using the same process detailed previously (frequency-based

features extracted using the MeTA toolkit). Our similarity features (compared against an instructor-

generated assignment submission) were overall similarity, similarity of only “observation” bullets,

and similarity of only “analysis” bullets. These were computed using the Okapi BM25 similarity

function often used in information retrieval as a scoring function [84], treating the instructor

submission as a query and the student submissions as documents to be scored. Finally, our selection

features were precision and recall [84] of the selected lab data in the student case analysis when

compared against the instructor’s assignment.

We investigate the predictive capacity of these features by exploring the improvement of the

model when predicting our most challenging labels (“quality” and “clarity”). We ran ten separate

experiments with di�erent randomized training sets consisting of 50% of the data when using

di�erent feature combinations to represent the student submissions. We again report the average

and standard deviation of the MAE on the test set across the ten runs. To further explore whether

the regression method is truly capturing patterns relevant for grading, we compare its MAE

against the MAE obtained by using a naïve baseline: compute the most frequent label in the

28



Table 3.3: E�ectiveness (in terms of MAE, lower is better) of incorporating additional features in grade
prediction for the “quality” dimension using SVOR methods compared to the mode-assigning baseline.
The number of features used for the SVORmethod is given in parentheses. In all cases, the SVORmethod
outperforms the baseline, and moreover when using all features it performs statistically signi�cantly
better (p < 0.05).

MAE (µ ± σ )
baseline SVOR

sim (3) 0.9358± 0.0882 0.8811± 0.0940
sim + sel (5) 0.9566± 0.1677 0.8642± 0.0325
toks (2646) 0.9075± 0.0789 0.7660± 0.0910†

all (2651) 0.9792± 0.1568 0.7566± 0.0738†
† statistically signi�cant using an unpaired t-test with p ≤ 0.05

Table 3.4: A similar experiment to Table 3.3, but for the “clarity” dimension. Here, there SVOR is not
obviously better than the baseline.

MAE (µ ± σ )
baseline SVOR

sim (3) 0.7906± 0.0771 0.7830± 0.0836
sim + sel (5) 0.7623± 0.0649 0.7811± 0.0561
toks (2646) 0.7528± 0.0550 0.7415± 0.0597

all (2651) 0.7189± 0.0617 0.7226± 0.0527

training data, and then assign this label to all examples in the test set. Intuitively, this is a very

reasonable baseline when comparing MAE—if the labels are normally distributed, picking the

most frequent one will ensure an absolute error of zero for the majority of the examples—while

simultaneously being unhelpful for discriminative grading (which the regression method hopes to

capture). Our results are summarized in Tables 3.3 and 3.4.

We see that for the “quality” dimension, the model is able to successfully learn generalizable

patterns in our features to predict the label with errors that are statistically signi�cantly less

than the baseline method. In general, the token features dominate the performance, but it would

seem as though the similarity and selection features have lower variability in the MAE. Again,

this result suggests that there are likely gains to be had by utilizing a more sophisticated feature

selection method to remove some of the noise introduced by extraneous token features.

However, the “clarity” label shows us that the problem is far from being solved in a general

29



sense. Here, we see that our method consistently fails to beat the baseline method, with the

winning method being seemingly random. This indicates that the features we have selected

thus far are more tailored toward discrimination along certain dimensions of the grading rubric

than others. More work must be placed into developing features that truly capture the “clarity”

dimension to allow the model to extract the patterns the instructor observes when grading along

this dimension.

What this demonstrates is that automatic grading of complex assignments is currently feasible,

but perhaps only in a limited fashion. Careful feature generation is required, but in some cases

a model can be learned to e�ectively grade assignments. We suspect that signi�cant gains in

grading performance can be obtained in other dimensions with better features.

3.5 Automated Grading as Ranking Assignments

Some of the results from our feasibility study using ordinal regression raise a question about

whether framing the problem of automated grading as ordinal regression is appropriate. Indeed,

as we will discuss, it appears to be more advantageous to frame the problem as one of ranking the

ungraded assignments, which a human grader can segment into desired grade levels.

Speci�cally, as we observed in Tables 3.3 and 3.4, outright prediction of an ordinal grade can

be very challenging due to the highly concentrated nature of the dataset labels (see Table 3.1). The

vast majority of grade information available for the grade prediction task is centered around the

mean, leaving very little information in the tails for a supervised learner to extract patterns from.

(In some cases, for example, there are as few as one example for the highest and lowest ordinal

grade values). The result is noisy output that may be inappropriate for using directly. However,

it is worth noting that ordinal grade prediction is a hard problem, even for humans: a previous

study suggests disagreement rates around 44% for short answer grading [92]. We suspect that this

only becomes larger as assignments become more complex and di�cult to grade, which makes

the task of outright label prediction much more di�cult for the machine as well.

Thus an alternative, and more reasonable approach may be to produce a ranked list of assign-

30



ments from best to worst. Annotators are typically more consistent at providing judgments of

the form “is a better than b?” than “on a scale from 1–5, how good is a?” [12], so it is reasonable

to suspect that a machine learning model could achieve better results when trained using such

pairwise judgments. If a system can provide a good ranking of assignments, an instructor simply

needs to assign “cuto�” points in this ranking to determine grades. This simpli�es the learning

problem from attempting to predict an ordinal label for a speci�c assignment to assigning a

ranking to a set of assignments. This is a well studied area in information retrieval called “learning

to rank” [58, 84], and there are a wide variety of methods available that one can use to learn a

ranking function for documents given a set of features.

One particular method that we will explore is a pairwise solution called a Ranking SVM [58],

where the problem of learning to create ranked lists is decomposed into the problem of determining

preferences for pairs of items (i.e., whether a should appear before b). A traditional SVM model is

learned on this decomposition, and its weight vector is used to de�ne a retrieval function that is

the dot product with a document’s feature vector.

Before we explore the e�cacy of such an approach, however, we must �rst rede�ne some

measure by which we can measure performance. Because the system is no longer predicting a

rating for each assignment, we cannot use MAE as before.

3.5.1 Evaluating Ranking-based Grading Systems

Our goal is to produce a ranking of student assignments that is consistent with instructor

evaluation. One way of framing this problem is to compare the ranking produced by the system

to the ranking produced by the instructor (which we’ll call the “reference ranking”). A system’s

ranking can then be evaluated using some measure of correlation between the two rankings. We

note a preference for metrics that take into account the entire ranked list—this contrasts with

most of the preferred measures in information retrieval evaluation which typically place heavier

emphasis on the top-ranked elements. While this makes sense in a search context, our goal is to

produce an exhaustive ranking of the assignments, so we focus on these types of measures.

31



Measures for rank correlation are plentiful. Perhaps the most commonly used metrics are

Kendall’s τ or Spearman’s ρ (which have been found to be highly correlated in practice [110];

thus, we present only one for illustration). Kendall’s τ can be formulated as

τ =
nc − nd

1
2n(n − 1)

, (3.2)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n is the

number of items ranked. To compute nc and nd , one considers all pairs (xi,yi) and (xj,yj) (that is,

pairs of tuples) of assigned rankings in the system ranking X and the reference ranking Y (the

denominator is simply the number of such pairs). A pair is concordant if the ordering of the items

i and j in X and Y is consistent—in other words, if (xi < xj) ∧ (yi < yj) or (xi > xj) ∧ (yi > yj).

A pair is discordant if the ordering of items in the two lists is inconsistent—in other words, if

(xi < xj) ∧ (yi > yj) or (xi > xj) ∧ (yi < yj). This is then a correlation measure, with values

bounded in [−1, 1], with 1 indicating a perfect correlation and −1 indicating inverse correlation.

One of the assumptions Kendall’s τ makes is that there are no ties in ranks. However, in a

realistic grading scenario based on rubrics we expect many ties. Fortunately, there is a variation

of Kendall’s τ , denoted as τb , that accounts for ties in the rankings. This is formulated as

τb =
nc − nd√

(nc + nd + tx )(nc + nd + ty)
(3.3)

where tx is the number of pairs that were tied on only their ranking from X , and ty is the number

of pairs that were tied on only their ranking from Y .

This may, at �rst glance then, seem like a good measure to use, but it is not without its

problems. Despite taking into account ties in the rankings, it may still penalize a system for

re-ordering items that were tied in the reference ranking—in other words, we may be penalized

for not correctly identifying elements who are tied in the reference ranking. Consider a simple

example: suppose the ranking proposed by a system isX = (1, 2, 3, 4, 5, 6) but the reference ranking

is Y = (1, 1, 2, 2, 3, 4). Intuitively, the system made no real mistakes in that no pair where the

32



reference ranking asserted a relative ordering is in the wrong order in X . However, we note that

τb ≈ 0.9309, indicating that the system did not achieve perfect correlation.

To address this issue, Yao [131] proposed the normalized distance-based performance measure

(NDPM), which computes a distance between two rankings that is insensitive to a system’s

reordering of tied elements in the reference ranking. NDPM is computed as

NDPM =
2nd + tx

2(nc + nd + tx )
. (3.4)

This can also be described as the distance between the system ranking and the reference ranking

divided by the maximum achievable distance any ranking could have from the reference ranking.

Thus, a value of 0.3 would indicate that the system ranking was 30% of the distance away from

the reference ranking than the reverse of the reference ranking. Since this is a normalized

distance measure, a value of 0 would indicate a perfect ranking. Indeed, if we compute NDPM

for the example rankings above, we achieve this result. Thus, we feel that NDPM is perhaps the

most appropriate measure for evaluating automatic grading systems that produce an ordering of

assignments as their output.

3.6 E�ciently Utilizing Human Judgments with Active
Learning

As in all supervised learning approaches, the accuracy of the automated grader based on

learning to rank depends on the quantity and quality of the training examples available for the

learner to use. Ideally, we would like human graders to provide as many graded examples as

possible, but this would reduce the bene�t of an automated grader. Indeed, if a human grader

completes grading all the assignments, there would be no need for the automated grader! However,

if there are insu�cient training examples to learn from, the automated grader might have a low

accuracy, which would further require more human e�ort on “post-editing" the grading results of

the automated grader. Thus there is clearly a complicated trade-o� between the e�ort of manual

33



grading and the utility of the trained grader that may have to be empirically optimized in an

application-speci�c way.

However, it is very clear that if we ask human graders to grade a certain amount of assignments,

we would like the graded assignments to be as useful to the automated grader as possible. Just

randomly selecting a sample of assignments for manual grading is not the best way. Unfortunately,

the traditional supervised learning setting o�ers no principled mechanism for picking which

training set to use—it just assumes one exists a priori.

Active learning methods [109] bridge this gap by providing a mechanism for selecting relevant

training examples designed to maximally improve the performance of an existing model. This

setting is very relevant for an autograding setup, where the system should ideally ask the instructor

to grade a speci�c set of examples, rather than forcing the instructor to �nd good representative

examples on his/her own. This process can be iterative: the system can learn from the �rst batch

of examples graded by the instructor, and then request him/her to grade a second batch, which is

used to incrementally improve the learned model. This should, in principle, reduce the amount of

time an instructor would have to spend grading to obtain a certain performance threshold for the

grade predictor.

Building on these observations, we thus propose the following “pairwise active learning

to rank” model for automatic grading, which will employ the following process where k1 is a

parameter that can be empirically set:

(1) Ask the instructor for comparative judgments on k1 pairs of assignments,

(2) Learn a model using a learning-to-rank approach on the available pairwise judgments,

(3) Apply the model to all remaining unjudged pairs,

(4) Select an unjudged pair to present to the instructor for judgment, and

(5) Go to step (2).

Instantiations of this general approach will di�er mainly in steps (2) and (4).

34



To study whether our proposed active learning approach better utilizes human judgments

during the grading process, we performed the following experiment. We took our assignments

and assigned each a “composite score”, computed as the average of their ordinal score for each of

the six rubric dimensions. Our task is then to learn a ranking that is consistent with the ranking

produced by these composite scores while simultaneously minimizing instructor e�ort in labeling.

We �rst transform the n = 107 assignments into 1
2n(n − 1) = 5671 assignment pairs (xi, xj)

with corresponding labels yij ∈ {+1,−1} indicating whether xi should be ranked above or below

xj in the ranking. Ties were broken arbitrarily by assignment id. The supervision given by the

instructor is then to indicate a preference for ranking xi relative to xj .

Following the process laid out in the beginning of the section, we �rst start with k1 = 10

random pairs selected from the transformed data and ask for labels from the instructor. We then

learn the model, compute the NDPM for the ranking produced by the model for all n assignments,

and then ask for additional supervision by selecting the unlabeled assignment pair whose distance

from the decision boundary for the model is lowest (this is a known, simple approach to uncertainty

sampling [109]) and repeat the training/evaluation loop. Our particular model choice was a linear

SVM provided through the MeTA toolkit.

We compare this active learning scenario with a random learning baseline, which is the exact

same process as above, but instead of selecting the most uncertain pair in the unlabeled data

we select one uniformly at random. This will allow us to see whether the uncertainty sampling

approach is truly helping to guide the learning process to make more e�cient supervision choices

or not.

Our results are summarized in Figure 3.2. Recall that a NDPM value of 0.3 indicates that a

system ranking was 30% of the maximal achievable distance away from the reference ranking. We

can see that even at a small fraction of all of the assignment pairs, the active learning approach

(blue line) is able to achieve better NDPM than simply learning at random (red line). This is

consistent with our hypothesis that active learning as part of an automatic grading system can

make more e�ective use of an instructor’s time than a purely passive supervised approach.

35



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

human-labeled pairs

N
D

PM

Random learning
Active learning

Figure 3.2: A comparison between a randomized learning solution and an active learning solution to the
grading-as-ranking problem. Reported is the average NDPM (lower is better) over 5 runs, with error bars
indicating one standard deviation.

How much instructor e�ort goes in to judging 200 assignment pairs? This may initially seem

like a lot, but each pair is not labeled in isolation—labeling many pairs will inevitably include

assignments that have already been seen before. These familiar assignments make providing a

pairwise judgment faster than it would be if done “cold”. In general, it is also reasonable to assume

that the e�ort involved in simply saying whether assignment a is better than assignment b is

lower than having to consult a rubric to assign an actual point (or letter) value. It is important,

however, to ensure that providing a pairwise judgment takes as little e�ort as possible relative to

assigning a numeric or letter grade. An interesting future direction is then to design an interactive

system that attempts to further drive the cost of providing judgments down.

3.7 Conclusions

Automated grading of complex assignments is necessary for scaling up learning without

compromising e�ectiveness of learning. Using a data set of medical case assessment assignments,

we conducted the �rst systematic study of how to leverage machine learning to automate grading

of such a complex assignment. Our study has led to several contributions.

First, we have experimentally shown the feasibility of using supervised learning techniques

for automated grading of medical case assignments under certain conditions provided that the

36



instructor can manually label a number of the assignments to serve as a training set. In particular,

an ordinal regression method can be applied to the data with results that consistently outperform

the majority-label baseline in terms of MAE.

Second, we proposed a general framework for the development of three complementary types

of representative features for student submissions (i.e., token features, similarity features, and

selection features) —while we applied these features to our speci�c task of medical case analysis

grading, these feature types (and generation framework) are general and should apply to the

grading of any complex assignment.

Third, we proposed to frame the problem of automated grading as a ranking problem, which

can more naturally assist human graders to validate and �nalize grades of ungraded assignments

and learn from pairwise preference judgments that can be potentially created more reliably by

human graders including through peer grading. We also suggested NDPM as potentially a better

measure for this ranking task than other measures due to its superiority in handling many tied

cases.

Finally, we proposed an iterative procedure of online active learning to rank to e�ciently

utilize human judgments, and thus optimizing the collaboration between human graders and

the automated grader. Experiment results con�rm the e�ciency of this procedure which can

substantially save human e�ort as compared with randomly choosing sample assignments for

humans to grade.

3.8 Discussion and Future Work

In the previous experiments we formulated the automated grading problem as a ranking

problem, and introduced a rank distance measure (NDPM) as a form of evaluating the quality

of a ranked list generated by an automated (or semi-automated, in our case) system. Under a

ranking-based problem formulation, we argue that this is the most sensible metric for evaluating

the ranking accuracy relative to a gold standard.

However, the value of NDPM cannot be easily compared with the values of existing metrics

37



(such as MAE) that have been traditionally used in evaluating automated grading systems in the

past. There is a need to evaluate a ranked list from the perspective of its impact on the eventual

grades assigned to student work. Unfortunately, how to evaluate the utility of a ranked list

appropriately remains a challenge partly due to the di�culty in choosing the cuto�s, which may

depend on the desired tradeo� that an instructor wants (e.g., a desired distribution of grades in

di�erent brackets). In practice, we envision that the instructor would visit points in the ranked list

and choose cuto�s based on the tradeo� between the di�erent types of grading errors. Exploring

grade cuto� assignment strategies remains an important future direction, and our framework

coupled with such a cuto� strategy would enable evaluation based on the traditional grade

prediction task.

While we believe the results here show that the methods employed are feasible for grading

complex assignments, more work remains to be done to understand just how well our system

performs relative to human judgments. Future work should explore this by measuring human

consensus in grading these complex assignments, similar to what has done for short answers [92].

Furthermore, we only investigated very simplistic features—such as the bag-of-words model—

which are very general but not very sophisticated. Exploring the feature space further to �nd

more sophisticated features that perform well in practice and are more tailored to the goals of

medical case assessments remains as future work.

Another major limitation of our study is the limited size of the data set. This is partly due to the

fact that such complex assignments currently can only be graded by human graders. In the future,

we hope to deploy our automated grading tools to help scale up such courses to enable more

students to participate, which in turn, would help collecting more data for further veri�cation of

our observations and conclusions.

Additional work is still needed in order to truly deploy such an automated assessment technol-

ogy in a real-world application environment. This is mostly systems work in order to operationalize

the techniques described in this chapter—designing UIs to present two assignments to an annotator

to label with a binary judgment, and integrating with the training of the model to present the

38



next best pair to be judged according to the active learning strategy employed here. Perhaps the

most interesting direction that would require both modeling and systems work is to optimize the

interaction between instructor-provided labels and student-provided labels. We feel that the ability

to use the peer labels under our reformulation is an incredibly important advantage of the active

learning-to-rank solution, so it is important to consider how to best solicit and leverage student

labeling e�ort alongside instructor labels. In the presence of novice annotators, careful modeling

is required to temper the labels provided what are essentially very noisy oracles compared to the

reliable and trustworthy instructor labels.

Finally, a crucial direction that remains unexplored is feedback: how could such a system give

more detailed feedback to students beyond just their ordinal rating along a rubric dimension?

Currently, peer grading approaches have an advantage in this sense, as your peers can suggest to

you corrections or point out speci�c mistakes that you made. It is worth investigating whether or

not we can generate “explanatory reports” of grading results when using a supervised learning

approach.

39



Chapter 4
Scalable Education: A Cloud-Based Lab
for Data Science Education

The rise of the “big data” era has created a pressing demand for educating many data scientists

and engineers quickly at low cost. It is essential they learn by working on assignments that involve

real world data sets to develop the skills needed to be successful in the workplace. However,

enabling instructors to �exibly deliver all kinds of data science assignments using real world data

sets to large numbers of learners (both on-campus and o�-campus) at low cost is a signi�cant

open challenge. To address this emerging challenge generally, we develop and deploy a novel

Cloud-based Lab for Data Science (CLaDS) to enable many learners around the world to work on

real-world data science problems without having to move or otherwise distribute prohibitively

large data sets1. Leveraging version control and continuous integration, CLaDS provides a

general infrastructure to enable any instructor to conveniently deliver any hands-on data science

assignment that uses large real world data sets to as many learners as our cloud-computing

infrastructure allows at very low cost. In this chapter, we present the design and implementation of

CLaDS and discuss our experience with using CLaDS to deploy seven major text data assignments

for students in both an on-campus course and an online course to work on for learning about text

data retrieval and mining techniques; this shows that CLaDS is a very promising novel general

infrastructure for e�ciently delivering a wide range of hands-on data science assignments to a

large number of learners at very low cost.

4.1 Introduction

Many institutions of higher education have responded to the growing demand within industry

for knowledgeable employees in the areas of data science, “big data,” and machine learning by
1The work in this chapter has been previously published in Geigle et al. [42].

40



providing new interdisciplinary online degree programs in Computer Science that speci�cally

target these areas. These new online degree programs o�er undergraduate and postgraduate

degrees in an attempt to maximize their impact by allowing for nontraditional students from all

over the country (and perhaps the world) to obtain training in these important areas. However,

achieving this broad impact through online education comes with challenges that currently

lack satisfactory solutions: (1) designing assignments to allow for the development of hands-on

experience with real data sets; (2) deploying those assignments to o�-campus students that lack the

computing resources traditionally o�ered to on-campus students; and (3) minimizing the overall

cost (both monetary and time) of the deployment of such assignments.

In general, o�ering large-scale courses targeting a wide variety of students comes with a

direct course scalability challenge. How can we ensure that we can deliver meaningful, hands-on

experiences to these students that can allow them to develop practical skills? Such practical skills

are especially important for an experimental �eld such as data science. In a traditional classroom

setting, we o�er programming assignments, but in an online and/or large-scale classroom we

must be careful to ensure that our programming assignments can properly scale. While traditional

students are often given access to a physical computer lab or shared remote server, it is infeasible

in most cases to simply o�er online students access to on-campus computing resources, and it is

similarly unreasonable to expect all such students to have workstation-level computers capable

of handling real-world data sets. Since the real-world data sets cannot be easily moved, using

them necessitates the provision of some form of computing to the students on the cloud where

the data are stored. However, this must also be done in such a way as to have a minimal impact

on tuition costs which already present a large barrier for many students wishing to obtain an

accredited degree in data science. Today, this forces instructors into making a trade-o� with their

assignments that eschews truly practical experiences (with industry-standard tools and real data

sets) for feasibility—students often work on toy problems with tiny data sets in order to better

ensure that a student’s current computing device can handle the task. This limits a student’s

ability to learn the skills and tools necessary to be e�ective in a real industry setting.

41



To break this bottleneck, we would ideally want to design a system for deploying practical

hands-on assignments for data science that satis�es four criteria: (1) it must allow instructors to

easily scale their courses to large numbers of students; (2) it must allow for the deployment of

a wide spectrum of possible assignment designs to be �exible to handle most, if not all, desired

hands-on experience training in data science; (3) it must be able to use real-world datasets to

ensure the practicality of the skills students are able to learn; and �nally (4) it must do all of these at

minimal cost. In this chapter, we propose a novel system that meets all of the above criteria called

CLaDS: a Cloud-based Lab for Data Science. CLaDS scales to large numbers of students while

simultaneously allowing for both the use of real data sets as well as a high degree of assignment

design �exibility. We describe the design and implementation of CLaDS, and discuss our practical

experiences with deploying CLaDS in two di�erent courses in a data science curriculum. We �nd

that at a cost of as little as $7.40 per student, CLaDS was able to provide a computing environment

that facilitated a wide variety of assignments ranging from in-depth analysis of speci�c algorithms

to competition-style assignments in which students approached or beat state-of-the-art solutions

to open research problems. Because our proposed virtual lab system is quite general, it holds

the promise to pave the way for a more complete data science education when instantiated for a

number of di�erent problem domains. Source code and instructions for deploying CLaDS is freely

available2.

4.2 Related Work

Recent literature turns towards producing scalable platforms that can support the full pipeline

of programming assignments. For example, Prof. CI [87] allows students to work on their local ma-

chines and recieve automated feedback in the form of GitHub issues when their code submissions

are pushed to a GitHub repository. Systems like CodeOcean [117], Hackerrank3, and TopCoder4

provide web-based platforms that support the execution and assessment of programming exercises.
2https://timan-group.github.io/clads/
3www.hackerrank.com
4www.topcoder.com

42

https://timan-group.github.io/clads/
www.hackerrank.com
www.topcoder.com


All of these platforms, however, are insu�cient for addressing general data science education as

they do not support uploading a dataset and thus instructors cannot build assignments that utilize

real-world data.

Scaling traditional programming assessments often involves designing a battery of unit tests

to run student code through for evaluating correctness [61]. While unit tests can provide partial

automation, they do not incorporate instructor rubrics. Data-driven methods have been developed

for automatically grading [115] and producing feedback, including utilizing search engines that

leverage the redundancy found in highly structured homework [95] and deep learning meth-

ods [101]. However, nearly all of such systems focus on programming problems where there

is a single “gold standard” solution; in data science there is rarely a single “correct” answer, so

facilitating these assignments is di�cult through using traditional programming assignment

techniques.

A number of general platforms are available for running data science competitions which

help data science education. Among them, Kaggle5 is the closest to ours. It primarily allows for

the delivery of data science competitions on labeled datasets, and recently provides an online

computing environment that allows users to run scripts (called “kernels”) when participating

in these competitions. Our system di�erentiates itself in a few key ways: (1) our system allows

complete �exibility in the tools and libraries used in an assignment and customized grading

rubrics—Kaggle by comparison has a whitelisted set of libraries and tools that one is allowed to use

in a “kernel,” (2) our system supports o�ering traditional assignments that are not competitions,

and (3) our system does not place any strict limit on the size of the dataset that can be used.

Lopez et al. [79] showed that students working on open-ended challenge problems in machine

translation can result in student systems (or combinations of student systems) capable of reaching

near state-of-the-art performance. Such a set of assignments is a perfect �t for our virtual lab

system, and we should expect to see similar results to theirs across the broad spectrum of all

applications in data science. There has been some previous work on creating a virtual lab for
5www.kaggle.com

43

www.kaggle.com


information retrieval, one subdomain of data science [29, 28]; we generalize this to address creating

a virtual lab for any data science domain or application.

Our proposed virtual lab makes heavy use of a cloud computing infrastructure; for a compre-

hensive survey of the use of cloud computing in education, please see González-Martínez et al.

[45]. Finally, our system heavily uses the concept of continuous integration (CI) introduced by

Beck [8]. CI is a software engineering concept that minimizes the gap between development

and production of software; see Fitzgerald and Stol [34] for a comprehensive review of CI in its

many forms in software engineering. We build upon the concept of CI by adapting it for use in

facilitating running student code on real-world datasets instead of purely for testing software.

4.3 CLaDS: A Data Science Virtual Lab

A typical data science assignment involves the use of some data set to extract knowledge.

This broadly covers areas6 such as information retrieval (where the goal is to develop a system to

respond to queries with relevant data, typically in the form of free-text documents), data mining

(where the goal is to directly use the existing data to extract knowledge from statistical patterns

present in the data), machine learning (where the goal is to train a model on some data set in order

to make predictions about new data), and visualization (where the goal is to create interpretable

visual representations of data sets). At a high level, all of these domains involve creating a piece

of software that can process a data set and produce some desired output. The usefulness of this

output depends on the quality, and in many cases the size of the input data set, and the amount of

computational e�ort required to produce the useful output typically scales as a function of the

data size (both in terms of the number of items as well as their dimensionality).

Thus, in an ideal setting we would provide students with a real data set to work with, and

instruct them on the use of industry-standard tools that have been designed to handle that scale.

Unfortunately, in most cases the real data sets that we wish to use are too large to reasonably

distribute to students, particularly in an online setting where they would most likely be forced
6This is a representative, but not exhaustive, list of data science subdomains.

44



to download it to their own computers. As a result, instructors are generally forced to o�er

assignments that use very small, toy data sets. Unfortunately, observations generated by running

algorithms on these very small data sets are known to be misleading, as a small data set often

fails to su�ciently capture the true variety present in a real data set. By instead o�ering the

assignment through a cloud-based virtual lab, we can enable students to work on real-world data

sets by bypassing the data distribution problem and instead moving student code to where the

data resides. Moving student code is cheap—it is easily tens of orders of magnitude smaller than

even the smallest of real-world data sets.

4.3.1 Interaction Flow

Our proposed system, CLaDS, solves this problem as follows (see Figure 4.1 for a detailed

graphical overview). At a high level, an assignment delivered through CLaDS has students obtain

and submit code to a central authority hosted in the cloud. Upon submitting new code to that

central authority, an automated process is invoked that builds and runs that student’s new code on

a worker machine that is co-located with a real-world dataset within the same cloud infrastructure.

Instructors, as well as students, have full control over what tools and libraries they wish to use

to process the dataset in order to enable students to gain practical hands-on experience with

industry-standard methods. While this code is running, students obtain real-time terminal output

from the code through a web-based user interface. When the code �nishes running, any output

it generates can be saved as an archive that can then be downloaded from that same web user

interface (UI), and the worker can then submit results to a leaderboard that can be updated if the

assignment has a competition component.

From an instructor perspective, adapting an existing assignment to the virtual lab is relatively

straightforward. The data set used for the assignment would �rst need to be uploaded into the

cloud computing infrastructure, and a skeleton for the student code (if desired) would need to be

created for distributing to the students through the version control system (VCS); this skeleton

code contains a script that is used to install any required tools or libraries, which will be used to

45



Student 1
Code Repo

Student 2
Code Repo

. . . VCS
DB

Version Control System

Real
Data 1

Real
Data 2

. . .
Dataset Fileserver

Judge
Code

Results
DB

Leaderboard

CI System

Worker
Repo

Data
Worker 1

Worker
Repo

Data
Worker 2 . . .

Worker Cluster
read only

read only
Cloud
Local

Local
Repo

Toy
Data

Student 1 Device

Local
Repo

Toy
Data

Student 2 Device

. . .

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

(10)

Figure 4.1: The overall CLaDS system design. Dashed lines indicate optional components, and the dotted horizontal line indicates the separation
between local devices (student machines; bottom) and cloud devices (virtual machines; bottom). The interaction �ow is as follows: (1) student
clones/pulls code to local device; (2) student writes code locally (optional: testing on toy data set); (3) student pushes code back to the version
control system (VCS); (4) the VCS noti�es the continuous integration (CI) system; (5) the CI system spawns a worker (re-using one if available);
(6) the worker clones/pulls the student code; (7) the worker builds and runs the student code; (8) the CI system updates its UI as the build/run
progresses; (9) (optional) the worker submits results to the leaderboard system; (10) (optional) the leaderboard system judges the results and
updates its competition rankings.

46



con�gure the worker machines that are eventually used to run the student code. In the event that

the assignment has a competition component, code for judging a student assignment submission

would need to be uploaded to the leaderboard server, and the skeleton code distributed to the

students through the VCS should be updated to include a leaderboard submission script.

4.3.2 Detailed System Architecture

Figure 4.1 gives a visual overview of our system architecture. Below, we detail the implemen-

tation of each of the major components.

Version Control System. The �rst major component of our system is the version control

system (VCS) used to store the code. In our case, we use git to store a copy of each student’s

code for a particular assignment. Using a UI for the VCS, such as GitLab7, provides the students

with a central location for their code (as a form of backup) and allows them to work from any

location that has an Internet connection. Using a VCS instead of a traditional hand-in system like

Blackboard or Moodle has a number of educational bene�ts: nearly all large software companies

are using some form of VCS (so it is important to train aspiring data scientists in how to use one),

and it also allows for more organic project team formation for assignments that allow partner

work (commonplace in many data science curricula where training students on how to work in

teams is crucial for proper workplace preparation). The VCS is the source of “truth” in our system,

from which both students and later components of the system obtain the current version of the

code for each individual student, assignment pair. Because this system also stores all historical

information about all versions of an assignment, it can provide extra information for assessment of

student performance and analysis of student learning behavior; furthermore, it can also facilitate

reproducible research by serving as an archive of a set of attempted solutions (and their generated

results) to an open research problem in data science (which is often completely characterized by a

competition challenge with a particular data set).

Continuous Integration. The system we propose borrows heavily from the concept of
7https://gitlab.com

47

https://gitlab.com


continuous integration (CI) �rst introduced by Beck [8] in the context of the “extreme programming”

software development methodology. CI as a practice has evolved and grown over time to mean

di�erent things for di�erent people [34], but the key component of the methodology is to minimize

the gap between the development and deployment of software. One typical approach is to

tie a software tool that facilitates a build and test cycle on a production (or near-production)

environment to VCS being used for the software’s development in such a way that every commit

to that VCS results in an automated build and test process. Doing this ensures that every (or nearly

every) commit to the central repository both builds and runs properly in an environment that is

not just the developer’s local machine.

The fact that these CI systems build and run the code on a machine that is entirely separate

from the developer’s machine is crucial for our adaptation. The key insight is this: because CI

systems move the code onto a separate machine for the build and test process, we can exploit

this property to move student code onto a virtual machine in the cloud in the same datacenter

that stores some large, real-world data sets. In e�ect, we “move the code to the data,” a common

practice in real-world data science applications where it is prohibitively expensive, or in many

cases �at out impossible, to move the data set to be analyzed around to di�erent locations.

Running the student code in the cloud has two key bene�ts. First, it is now possible (perhaps

for the �rst time) to allow students to experiment on data sets that would be impossibly large

to deliver in a traditional setting because we are able to run student code on the same cloud

infrastructure that is used to store these large real-world data sets. This allows us to greatly

reduce the gap between education and practice by allowing students to work on real problems

instead of simple (but illustrative) toy examples. Moreover, this separation between working

locally and running an analysis on real-world data is consistent with how data scientists work in

practice: �rst making the model work on small, toy data sets, and then testing the model on much

larger, real-world data sets of the same format. Second, from an instructor’s perspective, this

separation allows for a more centralized, predictable computing environment for each assignment

to be o�ered, freeing teachers from having to design detailed set-up guides and working with

48



individuals on troubleshooting issues for each possible device con�guration a student might have,

and instead allowing them to focus on teaching the tool itself. Because these systems provide

real-time output from the programs in the form of a pseudo-terminal provided in the web UI, the

experience di�erence between running the tools locally vs running them in the cloud is minimized.

This allows for the same rapid iteration cycle possible when running code locally.

Another key component of the CI system we used in our virtual lab implementation is its

ability to generate “build artifacts” that can be downloaded at the completion of the job. In a

traditional software engineering environment, these are typically the compiled binaries or library

�les generated by a build-and-test process, but in our setting these are often summary reports,

generated data tables, graphs and �gures, or trained models. In this way, the output generated

by student work is not “locked up” in the cloud, but rather is freely available for them to use.

Naturally, they can also be used for automated assessment of student work (e.g., by comparing

the results produced by the student system with some gold standard).

A number of tools for CI infrastructure exist—in our system, we leveraged the GitLab VCS

along with its tightly integrated GitLab CI8 for this purpose. Both tools are available under liberal

open-source licenses.

Autoscaling. The GitLab CI software provides an additional feature that completes the

scalability picture for our proposed virtual lab adaptation: auto-scaling build workers. In many

CI infrastructures, there is a single server, or some �xed set of servers, that are used to process

the build-and-test jobs that are created by commits to a software repository. This kind of setup

requires careful analysis of the number of machines required to meet build demand. In corporate

environments with regular usage, this may be easy to estimate, but in an educational environment

the demand is much more variable with high utilization around assignment deadlines with sporadic

activity between them. In order to provide a better experience and simultaneously minimize cost,

we desire a �exible number of build workers determined by real-time demand.

The auto-scaling feature9 of GitLab CI works by dynamically spawning new virtual machines
8https://about.gitlab.com/features/gitlab-ci-cd/
9https://docs.gitlab.com/runner/install/autoscaling.html

49

https://about.gitlab.com/features/gitlab-ci-cd/
https://docs.gitlab.com/runner/install/autoscaling.html


in some cloud infrastructure as needed to meet the current demand of build jobs. These spawned

machines are kept and re-used to run multiple build jobs until demand lowers and they remain

idle for a certain timeout period, after which they are decomissioned. This allows for a perfectly

�exible number of build machines to be maintained, and even no machines spawned at all when

there are no currently pending jobs.

Leaderboard. Open challenge problems can be a powerful tool for learning and they enable

learners to explore new ideas for research. To facilitate the delivery of engaging challenge problems,

we deployed a web-based leaderboard system as part of our virtual lab. This website contains

a list of student results (typically something like accuracy, precision, recall, or other objective

metric for the task used in the research literature) along with some baseline(s). Students can then

work individually or together in small groups to attempt to devise solutions that beat the baseline

(typically a simple, but naïve method) and attempt to beat state-of-the-art models. In practice, we

observe students regularly obtaining near state-of-the-art performance, consistent with Lopez

et al. [79].

4.4 Deployment Experience

We deployed a number of assignments using the MeTA text retrieval and mining toolkit [86]

through an instantiation of the virtual lab infrastructure in two courses, CS4(10) and CS5(10),

in the information retrieval and text mining domains, respectively. The delivered assignments

covered a broad spectrum of use-cases for the virtual lab, ranging from parameter sensitivity

experiments and in-depth algorithm evaluation to competition-style assignments run on real

datasets with leaderboards for tracking progress.

Historically, both courses could only use very small “unreal” data sets due to the lack of

infrastructure support. With CLaDS, we were able to, for the �rst time, use much larger real data

sets for all the assignments of those two courses, thus enabling students to learn skills that can

be directly useful for solving real world problems. While not explored, all the assignments can

also be easily made available to any learners around the world that have an Internet connection.

50



Moreover, not only was grading assignments performed automatically with the use of GitLab’s

API10, but also the number of con�guration problems was decreased compared with previous

o�erings of the course that relied on implementing assignments locally. Hosting the student code

repositories all in one place helped reduce turn-around times for providing guidance to students.

CS4. We o�ered three programming-focused assignments through the virtual lab in the CS4

course. The �rst assignment was focused on how to use the MeTA toolkit in order to perform basic

text pre-processing and feature extraction methods, such as tokenization, stopword removal and

stemming and part-of-speech (POS) tagging [85]. The lab enforced a consistent testing of student’s

output and enabled us to easily provide guidance regarding the MeTA tool usage, which was

crucial for the sucessful completion of assignments to follow. For the second assignment students

were asked to implement the InL2 retrieval function [3], tune its parameters and compare its

performance with several other retrieval functions available in MeTA by performing signi�cance

tests. Students were provided with the same skeleton for implementation purposes. Additionally,

the assignment had a competition component. Students could take part in a search competition

where the overall performance was measured with an appropriate metric, NDCG@10 [135],

averaged through two di�erent datasets. Hence, the usage of our virtual lab was necessary for

evaluating on several datasets to and establishing a common baseline among all students. The

third assignment was a classi�cation competition on a real-world data set in an active research

area: predicting the location of Twitter11 users from their textual posts/tweets. All Twitter users

in the data are from the contiguous U.S. (i.e., the U.S. excluding Hawaii, Alaska and all o�-shore

territories) and are classi�ed into 4 classes, which represent the main four U.S. regions (Northeast,

Midwest, South, and West) as de�ned by the Census Bureau12. Students were free to use any

pre-processing step, feature extractor and classi�er. This data set contains 380,000 tweets from

9,500 users and is commonly used in text-based geolocation prediction existing work [27], with

state-of-the-art systems reaching 67% accuracy. The lab allowed instructors to quickly setup an
10https://python-gitlab.readthedocs.io/
11https://twitter.com
12https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf

51

https://python-gitlab.readthedocs.io/
https://twitter.com
https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf


assignment that provides hands-on experience with research in the respective �eld.

CS5. We o�ered four programming-focused assignments through the virtual lab in the CS5

course. The �rst had students implement a two-stage smoothing method for information re-

trieval [134] by extending the MeTA toolkit. Here, the virtual lab was used primarily to produce

data for drawing �gures about the performance of the implemented retrieval method’s sensitivity

to parameter settings as compared to other industry-standard retrieval methods, and the lab was

useful in order to allow the students to work on the same information retrieval datasets that were

used in the original paper. The second assignment had students implement a word embedding

method using singular value decomposition [76]; use of the virtual lab here allowed for students to

perform the “heavy lifting” of the SVD on the virtual lab infrastructure and then experiment with

the generated output (the embeddings themselves) locally. The third assignment had students

implement probabilistic latent semantic analysis (PLSA) [53] from scratch; the virtual lab allowed

us to provide a uni�ed environment for grading their submissions and allowed extreme �exibility

in the programming language and support libraries used by students in their implementation. The

fourth assignment had students implement speci�c algorithms for a hidden Markov model [106];

moving to the virtual lab for this assignment enabled us to move from previous use of a toy dataset

to the use of a real-world dataset for evaluating the implementation.

4.4.1 Competition Experience

We o�ered two competitions through the virtual lab, both in the CS4 course. In both, we main-

tained a leaderboard that listed each student’s current submission score (optionally anonymized)

along with a baseline method. Students were required to beat the baseline method to complete the

assignment, and a small amount of extra credit incentive was given for being in the top rankings.

The �rst competition (CS4-MP2) was a search engine competition where students competed with

one another to improve the relevance of search rankings—the use of the virtual lab here not only

simpli�ed the running of the competition component of the assignment, but also allowed us to use

a real-world information retrieval dataset that was di�cult to use before. The second competition

52



Table 4.1: The total number of submissions students made a�er beating the baseline submission. This
re�ects the additionalwork students put into the competition after having already guaranteed themselves
an “A” on the assignment. Even in the 25th percentile we see three to �ve submission attempts after
beating the baseline; 50% of students submitted more than 10 new attempts.

Assignment Mean Std. Dev. Median 25th %ile
CS4-MP2 20.5 27.6 10.0 5.0
CS4-MP3 21.7 42.3 10.0 3.0

assignment (CS4-MP3) was a geolocation prediction competition using a Twitter dataset that

enabled students to compete among themselves and go beyond baselines from existing related

work. Our infrastructure setup enabled participants to surpass existing literature, raising the

state-of-the-art in the 4-way classi�cation task from 67% accuracy to 75%. Furthermore, several

students chose to continue work on this task as part of their course projects, thus the lab serves as

a virtual incubator for promoting research in �elds of interest.

Student engagement was prevalent throughout the duration of the competition as well as

afterwards. We observed that some students experimented with over hundreds of di�erent

submissions over the course of the assignment period. In Table 4.1 we show the number of

submissions students made to the leaderboard after passing the baseline requirement. We can see

that students remained engaged with the assignment and its material even after the completion of

the main assignment goal; indeed, even the 25th percentile submitted between three to �ve more

times after completing the main assignment, with half of the class submitting 10 or more times

post-completion.

In our discussion forum, several students asked for top-ranked submissions to post a description

of their solution, and the highest-ranked students responded accordingly continuing the discussion.

We also see many cases that expressed positive comments at the end of the course, for example:

• “Professionally speaking, I really feel that I gained a lot, as now I truly understand the

essential fundamentals in Text Information Systems areas and, thanks to the hands-on �nal

project, and MPs, can implement some of these principles. I am more than positive that I

will utilize the gained knowledge in my workplace in 2018 and make a signi�cant impact."

53



08/
28

09/
04

09/
11

09/
18

09/
25

10/
02

10/
09

10/
16

10/
23

10/
30

11/
06

11/
13

11/
20

11/
27

12/
04

12/
11

12/
18

0
250
500
750

1000
1250
1500

CS
4-

M
P1

du
e

CS
5-

M
P1

du
e

CS
4-

M
P2

du
e

CS
5-

M
P2

du
e

CS
5-

M
P3

or
ig

in
al

CS
5-

M
P3

ex
te

ns
io

n

CS
5-

M
P4

du
e

CS
4-

M
P3

du
e

CS4-MP1
CS4-MP2
CS4-MP3
CS5-MP1
CS5-MP2
CS5-MP3
CS5-MP4

Figure 4.2: Total running jobs in the virtual lab over the course of one semester. Data is bucketed by the
day, with assignment deadlines denoted with vertical dashed lines. The build demand is highly variable,
which allows for signi�cant cost savings when there is little or no demand. As one might expect, we see
the highest demand for builds around assignment due dates—in one case where both of our courses had
due dates near one another, we saw over 1,200 builds performed in a single day.

Table 4.2: Topic coverage and total build hours consumed by each individual assignment deployed to
the virtual lab in one semester. The total computational resource consumption depends highly on the
assignment structure.

CS4 CS5
Description Hrs. Description Hrs.

MP1 feat. extraction 28.6 smoothing methods 908.8
MP2 retrieval fns. 227.1 word embeddings 79.3
MP3 classi�cation 142.9 topic mdls. 250.9
MP4 - - hidden Markov mdls. 29.6

• “The system used for the programming assignments to automatically test, evaluate, and

rank solutions made the assignments a fun challenge.”

• “The competition style leader board added a fun aspect...”

4.4.2 Overall System Utilization and Cost

In Figure 4.2 we denote the total number of running build jobs over time in our virtual lab

deployment for the two courses over the whole semester. We can see the expected pattern of

most build jobs happening on the eve of deadline periods. In the case where two deadlines were

near one another, we saw a peak of over 1,200 build jobs occur in a single day. In between those

dates, the build demand is quite variable (and in many cases nonexistent)—this translates to cost

savings by leveraging the auto-scaling feature of our CI system to decommission idle machines

54



during such periods, limiting our expenditures to only maintaining the leaderboard server(s), the

CI system master machine, and the VCS server in those cases.

Table 4.2 highlights an important point: the amount of build hours required to run an assign-

ment depends strongly on the assignment design itself. Assignments that are more “light” in

nature (e.g. CS4’s MP1) do not consume nearly as many build jobs as competition assignments

or assignments requiring a signi�cant amount of experimentation work. CS5’s MP1 is a good

example of an assignment that bene�ts a lot from the virtual lab—using the infrastructure we built,

we were able to ask students to experiment on real datasets with a number of di�erent methods

and parameters for those methods. This results in a large amount of fairly time consuming build

jobs, which our auto-scaling worker cluster handled very well.

The total cost of the deployment of the virtual lab across both the CS4 and CS5 o�ering

simultaneously for one semester was a mere $1,680.29 USD which provided access for the 136

students in the CS4 course and the 91 students in the CS5 course. This comes down to approximately

$7.40 USD when amortized over all students. We feel this is a very reasonable “lab fee” for sustaining

the virtual lab infrastructure, and shows that there is still signi�cant headroom available for using

even larger datasets for experiments that may necessitate larger, more expensive worker virtual

machines to process for longer periods of time.

4.5 Conclusions and Future Work

We proposed a novel virtual data science lab system, CLaDS, which addresses a serious

bottleneck in “big data” education and provides a general solution to the problem of delivering

practical hands-on assignments for teaching data science at scale. Through a principled use of an

auto-scaling worker cluster running on a cloud computing infrastructure, such a system can allow

these practical assignments to be delivered to large numbers of students while simultaneously

enabling the use of real-world data sets. We detailed our experience with using CLaDS to o�er

seven di�erent assignments in two di�erent courses as part of a larger data science curriculum

with a cost as low as $7.40 per student. Through this deployment experience, we showed that

55



CLaDS can facilitate the deployment of a wide variety of assignments with low instructor e�ort,

including competitions that enjoyed high student engagement.

As this was the �rst attempt at using such a novel system, we were relatively conservative

with data set size in our �rst deployment—our results suggest that there is signi�cant headroom

for exploring even larger data sets, which we plan to do soon. Also, since CLaDS is a general

infrastructure, it can be easily used to host a wide range of assignments in many other data science

domains beyond information retrieval and text mining. CLaDS is built entirely with open source

software, so it can be used by any instructor of data science in the world to improve and accelerate

data science education.

56



Chapter 5
Behavior Modeling: Action-Based Role
Discovery

5.1 A Generative Perspective

In the previous chapters, we developed techniques for automated assessment to scale existing

high quality educational solutions to break through the quality-scalability trade-o�. In the next

three chapters of this thesis, we will take a di�erent perspective and instead ask how we can

extract quality from scale directly by leveraging behavior data collected in large-scale educational

environments.

Before starting our discussion of behavior models for educational data, it is important to

provide some perspective for our chosen methodology. In general, we wish to address the problem

of understanding user behavior in these environments rather than just capturing it. To that

end, we place a strong emphasis on developing models whose output can be readily interpreted

by instructors (but whose inner workings, arguably, may not be transparent to non-experts).

Furthermore, we adopt the stance that behavior models should be informed directly by the data,

rather than biased by our own expectations, and thus focus on unsupervised models that learn

our desired behavioral representations based on statistics extracted from the data set alone. From

this standpoint, probabilistic generative models [69] are a natural solution that allow us to specify

the output of the model as a set of distributions that can be interpreted by an instructor, and

then through specifying our (in)dependence assumptions we can extract an inference method

directly from the generative story we envision to model the data using the output distributions

we are interested in. Generative models are far from the only way to capture user behavior in

an interpretable way, but they satisfy a number of criteria that we feel are important for the �rst

foundational steps at solving this problem.

57



We will start in this chapter by presenting one such model for understanding behavior at

scale, follow it up with a second model that addresses understanding temporal behavior at scale in

Chapter 6, and �nally conclude the behavior modeling portion of the thesis in Chapter 7 with a

discussion of a system developed to allow the immediate use of the behavior model discussed in

this chapter.

5.2 Mixture of Dirichliet-Multinomial Mixtures (MDMM)
Behavior Model

This chapter proposes a generative model for discovering user roles and community role

compositions in Community Question Answering (CQA) platforms1. While past research shows

that participants play di�erent roles in online communities, automatically discovering these roles

and providing a summary of user behavior that is readily interpretable remains an important

challenge. Furthermore, there has been relatively little insight into the distribution of these roles

between communities. Does a community’s composition over user roles vary as a function of

topic? How does it relate to the health of the underlying community? Does role composition evolve

over time? The generative model we propose, the mixture of Dirichlet-multinomial mixtures

(MDMM) behavior model can (1) automatically discover interpretable user roles (as probability

distributions over atomic actions) directly from log data, and (2) uncover community-level role

compositions to facilitate such cross-community studies.

A comprehensive experiment on all 161 non-meta communities on the StackExchange CQA

platform demonstrates that our model can be useful for a wide variety of behavioral studies,

and we highlight three empirical insights. First, we show interesting distinctions within CQA

communities in question-asking behavior (where two distinct types of askers can be identi�ed)

and answering behavior (where two distinct roles surrounding answers emerge). Second, we �nd

statistically signi�cant di�erences in behavior compositions across topical groups of communities

on StackExchange, and that those groups that have statistically signi�cant di�erences in health
1The work in this chapter will be published in Geigle et al. [43].

58



metrics also have statistically signi�cant di�erences in behavior compositions, suggesting a

relationship between behavior composition and health. Furthermore, we show that if one instead

were to cluster communities based on behavior composition vectors alone, the clusters discovered

have interesting topical di�erences as well as statistically signi�cant di�erences in mean health,

suggesting that the model can both be used to analyze ad-hoc groupings of communities as well

as provide a data-driven way to derive sensible community groups. Finally, we show that the

MDMM behavior model can be used to demonstrate similar but distinct evolutionary patterns

between topical groups.

5.3 Introduction

Discovering user roles and community role compositions on Community Question Answering

(CQA) platforms is an important challenge. CQA platforms such as the StackExchange platform2

play an incredibly important role in today’s society, and recent years have seen an increase in

both the number of such CQA communities and the user populations within each community.

For example, in 2017, StackOver�ow3 added over 200,000 new questions and over 130,000 new

users every month; many software developers regularly depend StackOver�ow to be e�ective at

work. An understanding of behavior within communities can help to inform the decisions made

by platform providers to steer the communities to be maximally e�ective.

It is well established that users in these communities play important, distinct roles [1, 82, 93,

125, 129], but it remains an important scalability challenge to automatically uncover these distinct

user roles across a large number of communities. StackExchange as a platform, for example,

facilitates 161 distinct websites. Manual investigation of user behavior compositions within and

across these communities is prohibitively expensive to do without some level of automation, and

with these communities continuing to grow over time, the need for automated role discovery

intensi�es.
2https://stackexchange.com
3https://stackoverflow.com, the largest community on the StackExchange platform

59

https://stackexchange.com
https://stackoverflow.com


Existing approaches fall short of our needs in a number of ways. Many existing models

for role discovery do not consider the case of modeling many communities at once, yet such a

cross-community understanding of behavior is important to enable comparative studies across

communities. Previous work often de�nes roles based on a graph-centric approach [33, 126, 7],

which fails to uncover many distinct roles beyond “answer people” and “discussion people.” Other

approaches require a manual de�nition of individual features to describe roles [13, 37], which can

fail to cover all of the empirically present role patterns in the data.

In this chapter, we propose a generative model for discovering action-based user roles and

community role compositions in CQA platforms directly from log data. We formally de�ne an

action-based user behavior role as a probability distribution over atomic actions a user may take

with respect to the CQA community within one browsing session. We also directly model the

role compositions across all communities within the platform to facilitate comparative analysis of

communities. This is achieved via the use of a mixture of Dirichlet-multinomial Mixtures (MDMM),

which allows us to use statistical inference to uncover the latent user roles and community role

compositions from log data directly, which can facilitate studies into user behavior both within

and across communities on a CQA platform at scale. We envision that with the assistance of our

model, human analysts can “see” more patterns than what they could see otherwise. Such a tool

provides a useful “lens” through which to view behavior data, and opens up many directions for

future studies that would not otherwise be possible.

To demonstrate that such a model is indeed useful as a tool to assist human discovery of

behavior patterns within and between CQA communities, we perform a comprehensive experiment

on all 161 non-meta communities on the StackExchange CQA platform that delivers three empirical

insights. First, we show interesting distinctions in question-asking behavior on StackExchange

(where two distinct types of askers can be identi�ed) and answering behavior (where two distinct

roles surrounding answers emerge). Second, we �nd statistically signi�cant di�erences in behavior

compositions across topical groups of communities on StackExchange, and that those groups

that have statistically signi�cant di�erences in health metrics also have statistically signi�cant

60



di�erences in behavior compositions, suggesting a relationship between behavior composition and

health. Furthermore, we show that if one instead were to cluster communities based on behavior

composition vectors alone, the clusters discovered have interesting topical di�erences as well as

statistically signi�cant di�erences in mean health, suggesting that the model can both be used to

analyze ad-hoc groupings of communities as well as provide a data-driven way to derive sensible

community groups. Finally, we show that the MDMM behavior model can be used to demonstrate

similar but distinct evolutionary patterns between topical groups.

The rest of this chapter is organized as follows. In the next section we position our proposed

model in the context of the related literature. In Section 5.5 we discuss the details of the proposed

generative model and provide a derivation of a Gibbs-sampling based approximate posterior

inference algorithm. In Section 5.6 we discuss our experiments where we apply the model to

161 di�erent CQA communities within the StackExchange platform and analyze the discovered

user behavior roles, their compositions within communities, their relationship with measures of

community success, and �nally how community role compositions evolve over time. In Section 5.7

we discuss the limitations of our model, and in Section 5.8 we summarize our �ndings and comment

on possible future work directions.

5.4 Related Work

The presence of roles in CQA platforms has been argued by many. For example, Adamic

et al. [1] demonstrate that, on the Yahoo! Answers platform, there are at least three distinct user

types—answerers, askers, and discussion persons. Mamykina et al. [82] argue for the presence of

at least four distinct user roles on StackOver�ow: community activists, shooting stars, low-pro�le

users, and lurkers and visitors. Other studies have explored whether roles characterized by a single

action are separate or overlapping [93, 125]. Developing tools to automatically uncover distinct

user behavior types is a major thrust of this chapter.

Many approaches for discovering these distinct user roles in the CQA setting require practi-

tioners to de�ne individual features used to describe the discovered roles [13, 37], and early work

61



in the domain of user role modeling could only easily identify two critical roles (“answer people”

and “discussion people”) through the use of a graph-centric modeling approach [33, 126, 7]. More

recent work explores a mixed-membership approach to user behavior modeling [127] in order

to identify more user roles, but still takes a graph-centric modeling approach. In this work, we

explore the newer direction of action-focused probabilistic modeling for user behavior in order

to automatically discover roles in a way that requires less hands-on e�ort to de�ne features and

is �exible enough to be able to capture more nuance within the roles of “answer people” and

“discussion people”.

The application of probabilistic modeling for user behavior understanding has been explored

before [83, 130, 104]. We extend this body of research by modeling the behavior composition at a

community level, rather than just at a user level. This allows us to understand the behavior at the

level of an entire community as it relates to others.

Perhaps the most relevant probabilistic behavior model to ours is the one proposed by Han and

Tang [50], where they attempt to jointly model three phenomena: social network link formation,

community discovery, and behavior prediction. Their de�nition of user behavior di�ers from ours,

however, as it considers only posting and reposting as the two possible actions a user can take. We

attempt to de�ne a much more comprehensive behavioral action set in this work. Furthermore,

their discovered role distributions model real-valued user attributes, rather than behavior directly,

which makes interpretation challenging. Our work, in comparison, assumes a di�erent generative

process over user action lists that leads to a set of readily interpretable probability distributions

that de�ne our roles.

CQA data, and in particular the StackExchange CQA platform, have been analyzed in many

ways in previous literature [93, 82, 1, 125, 37, 4], but many do not discuss user roles in depth.

Furtado et al. [37], however, do explore user roles and their dynamics using �ve of the communities

on the StackExchange platform, but their de�nition of user roles arises from manual construction

of user attributes and an agglomerative clustering approach. Our model, in comparison, is more

general in that it should be applicable to any CQA community (or any social network) where

62



articulating the set of actions users can take within the community is the only manual supervision

required.

Our session-focused approach is closely related to the notion of clickstream mining [123, 47,

40, 119, 9, 80, 108], where a variety of clustering techniques is applied to �nd users that share

similar clickstream traces. Many of these techniques utilize Markov models and focus on the task

of predicting a user’s next action. In this chapter, we instead focus on characterizing the behavior

of users in an interpretable way that also facilitates cross-community comparisons.

The model we propose in this chapter is essentially similar to topic models such as PLSA [53]

or LDA [10], but the key di�erence is that the data modeled by our model are the user actions

whereas topic models generally model text data where the input tokens are individual words

within topics. The Dirichlet-multinomial mixture (DMM) [96, 132] is the closest related model

to ours in this space. A DMM assumes that individual documents exhibit only one topic—our

generative framework also assumes that one user session exhibits only one role.

Other approaches for user behavior modeling on CQA communities consider both actions

and textual content to generate topic-speci�c action distributions [104, 88]. These distributions

are similar to what we call roles, but the meaning they capture is very di�erent—in their work

these capture how users interact with a speci�c topic, whereas in our work they describe how to

characterize an individual user’s entire browsing session.

5.5 Model

The design of our model is motivated by our goal of discovering interpretable descriptions of

functional roles played by users on CQA platforms, as well as a representation for each community

as a mixture over these user roles. We explore a de�nition of user roles that considers the co-

occurrence behavior of actions users take within individual browsing sessions. To accomplish this,

we represent the roles as probability distributions that describe the likelihood of taking individual

actions when a user is assuming a particular functional role in one session. This de�nition is

advantageous: �rst, it is general, and thus should be applicable to any CQA platform (or even any

63



social network); second, roles represented in this way can be readily interpreted by inspection;

and third, it is able to capture the uncertainty associated with assigning users to roles.

5.5.1 Generative Process and Inference

The �rst step in the use of our action-based role discovery model is to de�ne the setA of actions

users may take within a community. De�ning the actions in this action set is very important in

order to capture meaningful roles under our model, so careful attention should be paid to the

construction of a set of disjoint actions whose proportions can meaningfully re�ect a type of

domain-relevant behavior.

Next, one must identify the collection of observed communities C1:N to analyze that all share

the same action set A. We do not address the problem of community discovery in this paper;

rather, these communities are treated as input to the model. Each community must share the same

types of allowed actions. In our case, we use individual websites that are all part of the same CQA

platform (but focus on di�erent topical domains) to ensure that by de�ning A with respect to the

CQA platform itself we can represent behavior across all of these communities.

To automatically discover distinctive user behavior types, which we will call our roles, we

appeal to the general technique of probabilistic graphical models [69] and model user behavior

using a mixed membership approach. The model assumes that there are K distinct user roles, each

of which is characterized with a categorical distribution ϕk over actions from some A; each of the

roles ϕk is assumed to be drawn from a Dirichlet distribution with parameter β . With these user

roles de�ned, we further assume that each community Ci is associated with a mixing distribution

θi (drawn from another Dirichlet distribution with parameter α ) that governs the distribution over

the user roles for each user session that occurs within that community. If a user makes actions in

multiple communities within one browsing session, we subdivide their browsing session into a

collection of sessions, one for each community they participated in.

More concretely, we represent each communityCi with a list of the user sessions 〈si,1, . . . , si,M〉

associated with it. Each session is itself a list of actions si,j = 〈ai,j,1,ai,j,2, . . . ,ai,j,T 〉, with each

64



θα z a ϕ β
T
M
N

K

Figure 5.1: Plate notation for the MDMM role discovery model. α parameterizes a Dirichlet distribution
from which each community’s role proportions, θi , are drawn. z represents the role assignment for a spe-
ci�c user session, and a represents the actions taken within that user session. β parameterizes a Dirichlet
distribution from which each of the user roles ϕk are drawn, each of which is a categorical distribution
over the possible action types.

ai,j,t ∈ A. Each individual session si,j is associated with one particular user role zi,j that indicates

the role distribution ϕzi , j from which each of the actions within the session is drawn (note that an

individual user is free to exhibit a di�erent roles between di�erent sessions). The full generative

process is thus

1. For k = 1 to K (number of roles), draw an action distribution ϕk ∼ Dirichlet(β)

2. For each community Ci :

(a) Draw a role mixing distribution θi ∼ Dirichlet(α)

(b) For each si,j in community Ci :

i. Draw a role for the session zi,j ∼ Categorical(θi)

ii. For t = 1 to |si,j | (the length of the session), draw a single action within the session

ai,j,t ∼ Categorical(ϕzi , j )

and is depicted using plate notation in Figure 5.1.

The resulting model is quite similar to a Dirichlet-multinomial mixture (DMM), which has seen

use in the text mining community for clustering [132] and classi�cation [96]. A major di�erence

from our model, however, is that in a DMM one learns a single distribution θ that governs the

mixing proportions over the components ϕk that is shared for each elementCi , whereas our model

instead learns a separate distribution θi for each individual community, but shares the description

of the components ϕk between each. This allows us to compare two communities by their role

65



proportions in a meaningful way since each θi will be a distribution over the same set of roles ϕk . If

one were instead to �t multiple DMMs, one for each community, comparison of the θ distributions

would not necessarily be immediately obvious due to the fact that each model would learn a

separate set of roles ϕk . Thus, we view our model as a principled mixture of DMMs (MDMM)

where we have made a deliberate decision to share a global set of role components between all

communities Ci .

There are several approaches to inference in a DMM. Nigam et al. [96] use maximum a

posteriori (MAP) estimation to obtain a point estimate. We instead choose to follow a more fully

Bayesian approach similar to Yin and Wang [132] and instead appeal to Markov-chain Monte

Carlo methods to approximate the desired posterior distribution. Speci�cally, we integrate out θ

and ϕ in order to then derive a collapsed Gibbs sampler that iteratively updates the latent role

assignments zi,j by sampling new values from the full conditional distribution. When this chain

has converged, we extract a MAP estimate for each θi and ϕk from the current state of the Markov

chain.

Formally, we can de�ne the full conditional distribution

p(zm,n = z | Z¬m,n, S,α, β) =
p(Z, S | α, β)

p(Z¬m,n, S | α, β)
∝

p(Z, S | α, β)
p(Z¬m,n, S¬m,n | α, β)

, (5.1)

where Z¬m,n indicates the set of all the assignments of zi,j with only zm,n excluded, and similarly

S¬m,n indicates the set of all user sessions with only the speci�c session sn,m absent. We begin

by noting p(Z, S | α, β) = p(S | Z, β)P(Z | α), and focus on each term separately. Following a

similar argument to Yin and Wang [132], we have p(Z | α) =
∏N

i=1
B(ηi+α)
B(α) , where B(α) is the

multivariate beta function and ηi is a vector where ηi,k indicates the number of times role k is

chosen as the role assignment for a session in community Ci . Similarly, p(S | Z, β) =
∏K

k=1
B(τk+β)
B(β)

where τk is a vector with τk,a indicating the number of times action type a was assigned to role k

through its session’s role assignment. From here, we can derive the sampling probability through

cancellation of terms and exploiting the property of the gamma function that Γ(1 + x) = xΓ(x).

66



Letting c(a, sm,n) be the number of occurrences of actiontype a in session sm,n, we have:

p(zm,n = z | Z¬m,n, S,α, β) ∝
αz + η

¬m,n
i,z∑K

k=1 αk + η
¬m,n
i,k

×

∏
a∈sm,n

∏c(a,sm,n)

j=1 (βa + τ
¬m,n
z,a + j − 1)∏|sm,n |

j=1

((∑|A|
a=1 βa + τ

¬m,n
z,a

)
+ j − 1

) . (5.2)

As a practical matter, computing this probability is susceptible to under�ow issues due to

the products occurring in the second term. To prevent this issue, we use the Gumbel-max

trick [81] to sample from this discrete distribution. This trick works by �rst computing the

sampling proportions in log-space γk = log p̃(zm,n = k | Z¬m,n, S,α, β), where p̃ represents the

un-normalized probability in equation 5.2, which e�ectively prevents the under�ow issues. We

then can sample from the original discrete distribution by sampling k values дk ∼ Gumbel(0),

and taking the sample zm,n = argmaxk γk + дk . We have open-sourced the implementation of our

inference algorithm under a liberal license4.

5.5.2 Choosing the Number of Roles

The number of roles, K , remains a hyperparameter of the MDMM behavior model. How should

one choose the “optimal” value for K? This is a similar question that is asked for nearly any

mixed-membership or clustering model. We note, �rst, that the choice of K can be an empirical

parameter that is sometimes bene�cial as it can give users control over the granularity of the

model, much like a user can adjust the zoom level of a microscope. If the user does not know how

to set K a priori, we describe a procedure that can help choose a particular value of K that may be

optimal.

In our speci�c case, not only do we wish to discover distributions over actions that can

adequately describe a user’s behavior within a single session, but we wish for these distributions

to be meaningfully di�erent from one another. An ad-hoc approach, then, is to simply run the

model for di�erent values of K in some range, and then investigate the roles ϕ1:K that are produced.
4https://github.com/CrowdDynamicsLab/stackoverflow-stream

67

https://github.com/CrowdDynamicsLab/stackoverflow-stream


When moving from k to k + 1 roles, if a new role arises that is not meaningfully di�erent from all

of the k roles found previously, this suggests that k was the optimal number of roles for the data

being modeled.

One can de�ne a simple quantitative heuristic to capture this intuition. Formally, let ϕ1:k be

the k roles proposed by the model previously, and let ϕ̂1:k+1 be the k + 1 roles proposed by the

model when incrementing K . Consider a single new role ϕ̂i . We can compute how di�erent it is

from each of the previously proposed roles ϕ1:k by using the KL-divergence metric [73]. By taking

the minimum divergence from the newly proposed role ϕ̂i to each of the k previous roles, we have

a measure for how “surprising” this new role is compared to the previous roles. If it is very similar

to one of the existing roles, it will have a very low minimum KL-divergence; on the other hand,

should it be very di�erent from all of the previous roles, it would have a very large minimum

KL-divergence.

If we then take the maximum value of this measure over all of the k + 1 newly proposed roles

ϕ̂1:k+1, we obtain a number that re�ects the largest minimum divergence between the set of k

old roles and the set of k + 1 new roles. The smaller this value, the more redundant the set of

k + 1 new roles is compared to the set of k previous roles. Formally, we can de�ne this measure

MaxMinKLk→k+1

MaxMinKLk→k+1 = max
ϕ̂i

(
min
ϕ j

KL(ϕj | | ϕ̂i)

)
. (5.3)

To �nd the optimal value of K , one can run the model for K in a range of values to be considered,

computing MaxMinKLk→k+1 for each transition. When this value drops substantially, this is a

sign that the new set of roles is not meaningfully di�erent from the previous set of roles, and we

should stop increasing K .

5.5.3 Applications of the Model

The MDMM behavior model is a tool to enable humans to discover new knowledge, explore

new hypotheses, and test those hypotheses about user behavior in ways that they were unable to

before. There are a number of di�erent applications of the model beyond just the discovery of user

68



behavior roles. We outline a few of them below, but note that this list is not exhaustive—exploring

those opportunities are interesting future directions.

Community Pro�ling. A secondary output of the model are the mixing proportions θi over

the roles for each community. These distributions provide a pro�le of the behavior of users

within the community, which can be used as a representation for that community in downstream

tasks. To explore this in more detail, in Section 5.6.3 and 5.6.4 we explore how we can use this

representation to uncover communities with di�erent behavior pro�les, and show how these

groups are correlated with many metrics of community success.

User Pro�ling. The model can also be used to infer the roles of a user by averaging over the

roles they assume in their sessions. This output can then be used in downstream tasks that relate

to understanding user behavior on an individual level and can be used as a representation of a

user for other machine learning algorithms.

Behavior Dynamics of Communities. We can also uncover temporal community represen-

tations by further segmenting the user browsing sessions into buckets relating to di�erent points

in time. This allows us to study how behavior proportions evolve over time as a community ages.

We explore this in more depth in Section 5.6.6.

Behavior Dynamics of Users. In much the same way we can uncover community represen-

tations over time, we can also uncover user representations over time. This output could be used

to understand how individual users, or groups of users, change their behavior over time.

5.6 Experiments

The goal of our experiments is to demonstrate the usefulness of the MDMM user behavior

model as a tool for investigating user behavior in di�erent ways. Our goal is not to be completely

comprehensive or conclusive in our study of user behavior, but rather to lay a framework for

future studies in a variety of di�erent directions that could not otherwise be studied.

Our MDMM user behavior model provides two important outputs to characterize user behavior

in CQA communities: (1) the latent role representations, and (2) the degree to which each latent

69



Table 5.1: Action names and their de�nitions for our application of the MDMM behavior model on Stack-
Excahnge. (m: “my”, o: “other”, q: “question”, a: “answer”)

Action Name Action De�nition
question Posting a new question

answer-mq Answering your own question
answer-oq Answering someone else’s question

comment-mq Commenting on your own question
comment-oq Commenting on someone else’s question
comment-ma-mq Commenting on your own answer to your own question
comment-ma-oq Commenting on your own answer to someone else’s question
comment-oa-mq Commenting on someone else’s answer to your own question
comment-oa-oq Commenting on someone else’s answer to someone else’s question

edit-mq Editing your own question
edit-oq Editing someone else’s question
edit-ma Editing your own answer
edit-oa Editing someone else’s answer

mod-vote Voting for moderation action
mod-action Moderating a post

role is present within each of the CQA communities. We apply our model to communities from

the StackExchange CQA platform5 in order to better understand its utility for role discovery and

CQA community behavior analysis tasks. We take the entire StackExchange dataset consisting

of a total of 322 websites and discard all “meta” websites (websites discussing one of the other

StackExchange websites), leaving us with 161 non-meta websites (communities) for our analysis.

5.6.1 Dataset Construction

A critical component of the use of the MDMM in our setting is properly de�ning the action

space to be considered, as the roles discovered are to be distributions over that action space. The

�exibility of de�ning actions outside of the MDMM model makes it easy to accommodate analysis

of action patterns at di�erent levels of granularity by adjusting the granularity of the action space

to be analyzed itself. However, in any speci�c application, carefully choosing the exact action
5The dataset is available here: https://archive.org/details/stackexchange. We used a dataset from 2016-

12-12, which covers from 2008-07-31 through 2016-12-11.

70

https://archive.org/details/stackexchange


set used is naturally very important. If the space of actions is de�ned too narrowly, this prevents

discovering subtle di�erences between user roles.

To analyze the StackExchange dataset, we de�ned an action space based on the inherent

content hierarchy present on the StackExchange platform (see Table 5.1 for a list of the action set

we consider). Content on the StackExchange platform comes in three main types: questions (the

root content), answers (which nest below questions), and comments (which can nest either beneath

questions or answers), so it is natural to consider an action set consisting of the creation action

for each of these three types of content. However, limiting the action space to just these three

actions will fail to uncover meaningful di�erences in commenting behavior, the most frequently

generated type of content. We subdivide the commenting action by �rst distinguishing between

comments that occur on questions from comments that occur on answers, and then further

dividing these based on the original poster of the parent content further up in the content tree.

Concretely, we arrive at six separate commenting action types: commenting on my own question

(comment-mq), commenting on others’ questions (comment-oq), commenting on my answer to my

question (comment-ma-mq), commenting on my answer to others’ questions (comment-ma-oq),

commenting on others’ answers to my question (comment-oa-mq), and �nally commenting on

others’ answers to others’ questions (comment-oa-oq). Similarly, we can subdivide the answering

action into answering my own question (answer-mq) and answering others’ questions (answer-oq).

While creation actions are arguably the most important actions to consider for modeling

user behavior with respect to the generation of content, it is also important to consider the

role that editors play within the communities. We de�ne four types of edit actions: editing my

question (edit-mq), editing others’ questions (edit-oq), editing my answer (edit-ma), and editing

others’ answers (edit-oa). We also include two actions related to moderation (the closing, locking,

deleting, moving, etc. of posts) on StackExchange with two actions: voting for moderation activity

(mod-vote) and the actual application of moderation (mod-action).

Once we have de�ned our action space, we can then begin the session segmentation process.

We start with a chronologically ordered list of all of the actions from the action space taken within

71



Table 5.2: The MaxMinKL heuristic for the MDMM behavior model applied to the StackExchange dataset.
Notice the substantial drop when moving from K = 5 to K = 6, indicating redundancy obtained in the set
of new roles. This matches our own visual inspection of the role distributions; hence, we choose K = 5
for the remaining experiments.

Transition MaxMinKL
2→ 3 2.95
3→ 4 3.35
4→ 5 3.30
5→ 6 1.73
6→ 7 1.75

a community, and then partition this list into separate action lists associated with each individual

user. Then, we de�ne a session as a contiguous chunk of a user’s action list such that the gap

between consecutive actions is less than six hours to roughly capture a day’s worth of activity per

session. The collection of all of these sessions, grouped by community, serves as the MDMM’s

input.

We further decompose the community session lists by segmenting them into month-long

chunks to enable temporal analysis of the behavior compositions over time for our communities.

We de�ne the “birth” of a community as the timestamp of the very �rst action taken in any user

session associated with it, and then use that as the reference point for constructing the monthly

session lists. This gives us 49,768,660 user sessions across 9117 community-month pairs.

5.6.2 Analysis of the Discovered Roles

We start our analysis by examining the usefulness of the discovered roles ϕ1:K . Because the

number of roles, K , is a hyperparameter of our model, it must be chosen in advance of our

investigation into the roles. Our MaxMinKL heuristic suggests a value of K = 5 for our dataset (see

Table 5.2 for the scores for each transition), and manual inspection also indicated role redundancies

found at K > 5. We ran our model on an Intel(R) Core(TM) i7-5820K CPU, and each iteration

takes approximately 20 seconds. We ran the model for 100 total iterations, as we found the output

stopped changing appreciably after about 40 iterations. Each role we discovered at K = 5 is

depicted in Figure 5.2, along with labels constructed from our own interpretation of the roles.

72



These results directly help us understand what the “typical” roles assumed by users are in CQA

communities.

“Eager asker” (Figure 5.2a): Users exhibiting this role tend to ask questions, and comment on

others’ answers to their questions.

“Careful asker” (Figure 5.2d): While both this role and the previous role tend to ask questions in

the same proportion within a session, a “careful asker” tends to comment a lot in discussions

on their own question rather than on answers to their question, and they also have a much

higher chance of updating their question when compared to the “eager asker” role. This

subtle di�erence in asking behavior types would be lost if we had not carefully subdivided

the commenting action by considering both the type and originator of the parent content of

the comment.

“Answerer” (Figure 5.2c): For the most part, this re�ects a user that is concerned about their own

answers. They provide their answers, they comment on their answers, and they update

their answers. They may also seek clari�cation on a question by engaging in the discussion

on that question, but not nearly as much as the next role.

“Clari�er” (Figure 5.2e): Users exhibiting this role tend to engage in the discussion on a question

(by far their most frequent action) before answering; they also tend to comment on others’

answers to others’ questions more than any other role.

“Editor/moderator” (Figure 5.2b): This role captures nearly all of the observed moderation

activity, and the most common action is to update someone else’s question.

While it might not be very surprising to see two distinct roles corresponding to primarily

asking questions and primarily answering questions, the model goes beyond discovering such

“obvious” roles to provide further �ne distinction of interesting variations of roles for both question

askers and question answerers, which may not be easy to discover otherwise by simply manually

examining their behaviors. Our MDMM behavior model is able to uncover these meaningful user

behavior roles, including those with subtle di�erences, in a completely unsupervised way directly

from log data once given an appropriate action space. Note that due to the generality of the

73



qu
es

tio
n

an
sw

er
 (m

q)

an
sw

er
 (o

q)

co
m

m
en

t (
m

q)

co
m

m
en

t (
oq

)

co
m

m
en

t (
m

a-
m

q)

co
m

m
en

t (
m

a-
oq

)

co
m

m
en

t (
oa

-m
q)

co
m

m
en

t (
oa

-o
q)

ed
it 

(m
q)

ed
it 

(o
q)

ed
it 

(m
a)

ed
it 

(o
a)

m
od

 v
ot

e

m
od

 a
ct

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6
pr

ob
ab

ili
ty

(a) An asker role we call “eager asker.” In comparison to
Figure 5.2d, we see that when a user exhibiting this role
chooses to comment, they tend to comment on others’
answers to their own question.

qu
es

tio
n

an
sw

er
 (m

q)

an
sw

er
 (o

q)

co
m

m
en

t (
m

q)

co
m

m
en

t (
oq

)

co
m

m
en

t (
m

a-
m

q)

co
m

m
en

t (
m

a-
oq

)

co
m

m
en

t (
oa

-m
q)

co
m

m
en

t (
oa

-o
q)

ed
it 

(m
q)

ed
it 

(o
q)

ed
it 

(m
a)

ed
it 

(o
a)

m
od

 v
ot

e

m
od

 a
ct

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili

ty

(b) An “editor/moderator” role. This role is the only role
that exhibits moderation behavior, and we see that the
vastmajority of actions a user takeswhen exhibiting this
role are to update others’ questions.

qu
es

tio
n

an
sw

er
 (m

q)

an
sw

er
 (o

q)

co
m

m
en

t (
m

q)

co
m

m
en

t (
oq

)

co
m

m
en

t (
m

a-
m

q)

co
m

m
en

t (
m

a-
oq

)

co
m

m
en

t (
oa

-m
q)

co
m

m
en

t (
oa

-o
q)

ed
it 

(m
q)

ed
it 

(o
q)

ed
it 

(m
a)

ed
it 

(o
a)

m
od

 v
ot

e

m
od

 a
ct

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili

ty

(c) An “answerer” role. The majority of the time, users
exhibiting this role answer others’ questions, engage in
discussion on their provided answers, and update their
answers accordingly.

qu
es

tio
n

an
sw

er
 (m

q)

an
sw

er
 (o

q)

co
m

m
en

t (
m

q)

co
m

m
en

t (
oq

)

co
m

m
en

t (
m

a-
m

q)

co
m

m
en

t (
m

a-
oq

)

co
m

m
en

t (
oa

-m
q)

co
m

m
en

t (
oa

-o
q)

ed
it 

(m
q)

ed
it 

(o
q)

ed
it 

(m
a)

ed
it 

(o
a)

m
od

 v
ot

e

m
od

 a
ct

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili

ty

(d) An asker role we call “careful asker.” In comparison to Figure 5.2a, we see that when
a user exhibiting this role chooses to comment, they tend to do so on their own question.
This may indicate engagement with users exhibiting the “clari�er” role (see Figure 5.2e)
to improve the question’s quality before obtaining an answer.

qu
es

tio
n

an
sw

er
 (m

q)

an
sw

er
 (o

q)

co
m

m
en

t (
m

q)

co
m

m
en

t (
oq

)

co
m

m
en

t (
m

a-
m

q)

co
m

m
en

t (
m

a-
oq

)

co
m

m
en

t (
oa

-m
q)

co
m

m
en

t (
oa

-o
q)

ed
it 

(m
q)

ed
it 

(o
q)

ed
it 

(m
a)

ed
it 

(o
a)

m
od

 v
ot

e

m
od

 a
ct

io
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili

ty

(e) A “clari�er” role. The majority of this user’s activity is centered on commenting
behavior, and is predominately engaging in discussion on others’ questions. This is
likely a result of this type of user engaging with others exhibiting the “careful asker”
role (see Figure 5.2d) in order to clarify the question before providing an answer.

Figure 5.2: The role distributions discovered by our MDMM behavior model �t to 161 StackExchange communities. The labels given to these roles
re�ect our own interpretation of the role and are given here to make disambiguating the roles easier in the text. The MDMM behavior model can
uncover subtle distinctions in asking behavior (see Figure 5.2a vs Figure 5.2d) and answering behavior (see Figure 5.2c vs Figure 5.2e).

74



MDMM model, we can easily re�ne action categories to potentially discover even �ner-grained

variations of user roles than what we have seen here—in this way, our model naturally supports

multi-resolution analysis of user behavior.

5.6.3 Analysis of Behavior Compositions: Topical Groups

The MDMM behavior model also outputs role proportions θi for each community in the

dataset. These proportions provide an informative summary of the composition of behaviors in a

community, i.e., a behavior pro�le. This pro�le provides a representation of a community that can

be further analyzed, as we will discuss in this section.

We start with the following question: are there systematic di�erences in role proportions

between groups of communities in our dataset? To answer this question, we grouped each

community in the StackExchange dataset using the taxonomy provided by StackExchange itself6:

(1) Technology, (2) Culture/Recreation, (3) Life/Arts, (4) Science, (5) Professional, and (6) Business.

To allow for a “warm-up” period for the community and to eliminate the issue of noisy proportion

vectors arising due to data sparsity during community launch, we discard the �rst 12 months of

role proportion data for each community. We then only consider communities that have at least

12 months of data beyond that warm-up period to allow for computing an average proportion

vector to represent the community over at least one year. After �ltering, the “Professional” and

“Business” groups have only �ve and four communities, respectively, so we consider only the four

larger groups. “Technology” had 52 communities, “Culture/Recreation” had 36, “Life/Arts” had 20,

and “Science” had 17. We show the group memberships in Table 5.3.

These four groups’ role proportions are visualized in Figure 5.3. Visually, we can see a number

of di�erences. First, the “eager asker” role is more prominent in the “Technology” group than all

three others. Both the “Technology” and “Science” groups have higher prominence of the “careful

asker” role when compared against “Culture/Recreation” and “Life/Arts”. We can also see that the

“clari�er” role is diminished in the “Technology” compared to the others.
6https://stackexchange.com/sites

75

https://stackexchange.com/sites


Table 5.3: Communities belonging to each of the four groups we consider from StackExchange’s own
taxonomy.

Group Members
Technology android, apple, arduino, askubuntu, bitcoin, blender, codegolf, codereview, craftcms,

crypto, datascience, dba, drupal, dsp, ebooks, electronics, emacs, expressionengine,
gamedev, gis, ja.stackover�ow, joomla, magento, mathematica, networkengineering,
opendata, programmers, pt.stackover�ow, raspberrypi, reverseengineering, robotics,
ru.stackover�ow, salesforce, security, serverfault, sharepoint, softwarerecs, sound, space,
sqa, stackapps, stackover�ow, superuser, tex, tor, tridion, unix, ux, webapps, webmasters,
windowsphone, wordpress

Culture/Recreation anime, beer, bicycles, boardgames, bricks, buddhism, chess, chinese, christianity, ell, en-
glish, french, gaming, german, ham, hermeneutics, hinduism, history, homebrew, islam,
italian, japanese, judaism, martialarts, mechanics, outdoors, poker, politics, puzzling,
rpg, rus, russian, skeptics, spanish, sports, travel

Life/Arts academia, avp, cooking, diy, expatriates, �tness, gardening, genealogy, graphicdesign,
lifehacks, money, movies, music, parenting, pets, photo, productivity, sci�, sustainability,
worldbuilding

Science astronomy, biology, chemistry, cogsci, cs, cstheory, earthscience, economics, hsm, lin-
guistics, math, matheducators, mathover�ow.net, philosophy, physics, scicomp, stats

There are also notable commonalities between groups. The “Culture/Recreation” and “Life/Arts”

groups are quite similar across nearly all of the roles. The “editor/moderator” role prevalence is

similar across all of the groups (with only a slight increase present for the “Culture/Recreation”

group). “Answerer” prevalence is similar across all of the groups (where the reduction in variance

in “Life/Arts” and “Science” likely attributable to there being fewer communities in those groups).

To quantify the statistical signi�cance of the above observations, we use a Kruskal-Wallis H

test [71] to perform a one-way ANOVA test to determine the existence of a di�erence between

a single role proportion across all four groups, for each role proportion. Then, if a statistically

signi�cant di�erence between the groups is reported, we use a post-hoc Conover-Iman test [17] to

determine which of the groups exhibit statistically signi�cant di�erences in that role proportion.

To correct for multiple testing in both cases, we use the Holm-Bonferroni method [54] to correct

the p-values. We report our �ndings in Table 5.4. On the whole, we see that the “Technology“

group di�ers strongly from the other three groups in terms of its proportion of “eager asker”

(where it is higher) and “clari�er” roles (where it is lower). We also see that the “careful asker”

role is more prominent in the communities from the “Technology” and “Science” groups and

76



ea
ge

r a
ske

r

ed
ito

r/m
od

era
tor

car
efu

l a
ske

r

an
sw

ere
r

cla
rifi

er
0.0

0.1

0.2

0.3

0.4

0.5

0.6
pr

ob
ab

ilit
y

(a) Technology

ea
ge

r a
ske

r

ed
ito

r/m
od

era
tor

car
efu

l a
ske

r

an
sw

ere
r

cla
rifi

er
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ilit

y
(b) Culture/Recreation

ea
ge

r a
ske

r

ed
ito

r/m
od

era
tor

car
efu

l a
ske

r

an
sw

ere
r

cla
rifi

er
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ilit

y

(c) Life/Arts

ea
ge

r a
ske

r

ed
ito

r/m
od

era
tor

car
efu

l a
ske

r

an
sw

ere
r

cla
rifi

er
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ilit

y

(d) Science

Figure 5.3: Letter-value plots of the role proportion vectors for the four largest StackExchange groups
after �ltering communities with less than 12months of data after �ltering a start-up period of 12months.

less prominent in the “Culture/Recreation” and “Life/Arts” groups. This suggests that the more

technical communities in “Technology” and “Science” require more discussion around questions

than the less technical communities of “Culture/Recreation” and “Life/Arts”.

Thus, we have demonstrated the utility of using the MDMM behavior model for understanding

di�erences in user behavior across communities. This is easily facilitated because it learns a role

proportion vector θ1:N that, by design, can be readily interpreted in the context of the discovered

roles ϕ1:K .

5.6.4 Behavior Compositions and their Relationship to Community
Success

As another example of what one can learn by studying the community role compositions

that can be discovered by the MDMM user behavior model, we now ask the following question:

how does the proportion of roles within a community relate to its success? In order to explore

this, we �rst need to be able to de�ne what we mean by “success” in a CQA community. We

have taken a content-focused approach to understanding behavior, so we also choose to de�ne

the success of a community in terms of its content generation. Borrowing from Dev et al. [24],

we have the following metrics: (1) the ratio of the number of answers Na to the number of

questions Nq , which is a re�ection of the ability of a community to cope with question load; (2) the

percentage of questions that receive an answer; (3) the percentage of questions that receive an

77



Table 5.4: Statistical signi�cance tests for di�erences in role proportions across the four groups. All p-
values are adjusted using the Holm-Bonferroni method. Shown are only those tests that are statistically
signi�cant at a threshold of 0.05. We notice strongly signi�cant di�erences (p < 1 × 10−5) in role propor-
tions for the “eager asker”, “careful asker”, and “clari�er” roles.

Role p-value Group Pair p-value

eag. ask. 3.87 × 10−11
cult. tech. 1.49 × 10−14

life vs. tech. 5.41 × 10−7

sci. vs. tech. 6.63 × 10−7

edit/mod. 1.10 × 10−2 cult. vs. tech. 2.40 × 10−3

care. ask. 7.53 × 10−9

cult. vs. sci. 3.00 × 10−6

cult. vs. tech. 3.41 × 10−9

life vs. sci. 5.80 × 10−5

life vs. tech. 3.07 × 10−6

answerer 1.10 × 10−2 cult. vs. sci. 4.44 × 10−3

clari�er 4.41 × 10−8
cult. vs. tech. 5.22 × 10−8

life vs. tech 1.69 × 10−6

sci. vs. tech 2.30 × 10−5

“accepted” answer7, which re�ects the community’s ability to provide high-quality answers to new

questions; and �nally (4) the average time before the arrival of the �rst answer8, which measures

the timeliness of the community’s answering capabilities.

Each of these metrics can be computed for each monthly snapshot of a community (by

considering the questions that are asked within that time period). Then, we can average the value

for a metric across all of the months of a community to obtain an overall score for that metric

for that community. We again only consider the communities that, after dropping 12 months of

“warm-up” period data, have at least 12 months of data.

The results are visualized in Figure 5.4. While di�erences in these metrics are small, they are

statistically signi�cant (see Table 5.5). In particular, we notice that the “Culture/Recreation” and

“Life/Arts” groups have a higher ratio of answers to questions (Figure 5.4a) and a higher fraction

of answered questions (Figure 5.4b) when compared to the “Science” and “Technology” groups.

These same pairs exhibit statistically signi�cantly di�erent proportions of the “careful asker” role.
7On StackExchange, the original poster of a question can designate one of the answers provided as being “correct”

by “accepting” that answer.
8We compute this only for questions that did receive an answer.

78



cul
t. life sci

.
tec

h.

1
2
3
4
5
6
7

An
sw

er
s /

 Q
ue

st
io

ns

(a) Na/Nq

cul
t. life sci

.
tec

h.
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
st

io
ns

 a
ns

we
re

d

(b) Fraction of Nq with an answer

cul
t. life sci

.
tec

h.
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
st

io
ns

 w
/ a

cc
ep

te
d 

an
sw

er

(c) Fraction of Nq with an accepted answer

cul
t. life sci

.
tec

h.
0

10

20

30

40

50

Da
ys

 u
nt

il 
fir

st
 a

ns
we

r

(d) Avg. days until �rst answer

Figure 5.4: Health metrics for each of the four groups of StackExchanges considered in Section 5.6.3. Dif-
ferences are small but statistically signi�cant (see Table 5.5). Na/Nq is higher for “Culture/Recreation” and
“Life/Arts” than for “Science” and “Technology”. Similarly, “Culture/Recreation” and “Life/Arts” enjoy a
higher fraction of answered questions compared to “Science” and “Technology”, and also have faster aver-
age response times (though only “Culture/Recreation” statistically signi�cantly so). “Culture/Recreation”
also has a higher fraction of questions with an accepted answer compared to the other three groups.

79



Table 5.5: Statistical signi�cance tests for di�erences in healthmetrics across the four groups. Allp-values
are adjusted using the Holm-Bonferroni method. Shown are only those tests that are statistically signi�-
cant at a threshold of 0.05. We note that, with a single exception (“Science” vs “Technology”), when there
is a statistically signi�cant di�erence in role proportions, there is a statistically signi�cant di�erence
in at least one of the four health metrics we explore. Similarly, groups that do not have di�erent role
proportions (“Culture/Recreation” and “Life/Arts”) do not have signi�cant di�erences in health metrics.

Metric p-value Group Pair p-value

Na/Nq 7.08 × 10−7

cult. vs. sci. 4.26 × 10−5

cult. vs. tech. 3.51 × 10−6

life vs. sci. 1.20 × 10−4

life vs. tech. 6.50 × 10−5

% ans. 6.34 × 10−5

cult. vs. sci. 7.44 × 10−5

cult. vs. tech. 4.12 × 10−4

life. vs. sci. 3.16 × 10−3

life. vs. tech. 3.36 × 10−2

% acc. ans. 1.08 × 10−2 cult. vs. sci. 6.68 × 10−3

Resp. time 1.08 × 10−2 cult. vs. sci. 2.31 × 10−2

cult. vs. tech. 3.34 × 10−2

This provides an interesting insight: groups of communities that have a higher propensity

for the “careful asker” role exhibited lower health metrics across multiple measures. In fact, every

pair of groups that exhibited a statistically signi�cant di�erence in this role proportion also had

statistically signi�cant di�erences present in at least two metrics (with one pair with three and

another with four). Furthermore, notice that groups that do not exhibit di�erences in their behavior

pro�les (namely “Culture/Recreation” and “Life/Arts”) also do not exhibit di�erences in any of

our four health metrics. While we cannot say whether this correlation is causal, this opens the

door for more studies into impact of the “careful asker” pro�le on community health—a question

we could not have raised without �rst having a tool like the MDMM behavior model to aid our

e�orts to understand user behavior.

5.6.5 Data-driven Clustering Analysis of Behavior Compositions and
Health

An alternative approach to understanding whether there are systematic di�erences in role

proportions between communities in our dataset would be to take a data-driven perspective: can

80



ea
ge

r a
ske

r

ed
ito

r/m
od

era
tor

car
efu

l a
ske

r

an
sw

ere
r

cla
rifi

er
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ilit

y

(a) The �rst cluster. This cluster contains 79 commu-
nities.

ea
ge

r a
ske

r

ed
ito

r/m
od

era
tor

car
efu

l a
ske

r

an
sw

ere
r

cla
rifi

er
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ilit

y

(b) The second cluster. This cluster contains 55 com-
munities.

Figure 5.5: Letter-value plots for all communities’ role proportion vectors in each cluster identi�ed via
a k-means clustering. The clustering was performed on each community’s role proportion vector from
our MDMM model which was run on all communities with at least 12 months of data after excluding
12 months of warm-up time. The clusters di�er in two aspects: the �rst cluster has proportionally more
overall “eager asker” and “careful asker”; the second cluster has amuch stronger presence of the “clari�er”
role than the �rst.

the role proportion vectors themselves be systematically separated into groups with meaningful

di�erences? To do so, we can instead perform k-means clustering on the each community’s role

proportion vector and investigate the uncovered clusters. Following a similar setup to that of

Section 5.6.3, we discard the �rst 12 months of role proportion data for each community, and then

only consider communities that have at least 12 months of data beyond that warm-up period to

allow for computing an average proportion vector to represent the community over at least one

year. After performing this �ltering, we have 134 communities remaining, which we then cluster

into k groups. To determine the number of clusters to use in our analysis, we use the average

silhouette coe�cient as a metric, and sweep over k ∈ [2, 10]. We found that the maximum average

silhouette of 0.336 was obtained with k = 2.

The centroids obtained are summarized in Figure 5.5. The most striking di�erence is that

the clari�er role is much more prominent in the second cluster than in the �rst. We also see

proportionally fewer “eager asker” and “careful asker” roles in the second cluster compared to the

81



Table 5.6: Statistical signi�cance tests (unpaired t-tests with unequal variance) for the di�erences in role
proportions across the two clusters we identi�ed via k-means. All p-values are adjusted using the Holm-
Bonferroni method. We see that the di�erences in the proportions of “eager asker”, “careful asker”, and
“clari�er” roles are all strongly statistically signi�cant (p < 10−12).

Role p-value
eager asker 2.38 × 10−17
editor/moderator 9.89 × 10−2

careful asker 3.55 × 10−13
answerer 6.13 × 10−1

clari�er 1.68 × 10−28

�rst, perhaps indicative of a lesser load on the users who tend to adopt the “answerer” role.

To quantify the statistical signi�cance of the di�erence between role proportions across the

two clusters (that is, to prove that the clusters identi�ed are in fact signi�cantly di�erent from one

another), we use a similar method to before, but because there are only two groups we use a set of

unpaired t-tests (with unequal variance) with p-values again corrected via the Holm-Bonferroni

method. The results are depicted in Table 5.6. We see that the “eager asker”, “careful asker”

and “clari�er” role proportion di�erences we identi�ed visually are indeed strongly statistically

signi�cant (p < 10−12).

Furthermore, the exact membership assignments of all of the communities is given in Table 5.7,

and here we can see that the clusters have managed to capture meaningful topical di�erences

between the communities, despite not being trained using any information regarding the textual

content itself. Speci�cally, we see that nearly all communities pertaining to technology (as

identi�ed by StackOver�ow’s own taxonomy) have been placed into the �rst cluster, and the

majority of communities pertaining to Culture/Recreation have been placed into the second cluster.

This supplies more evidence that the way users participate in a CQA community depends on the

topic of that community.

Finally, we also con�rm that these di�erences in role proportions across the two clusters also

corresponds to signi�cant di�erences in average health metrics across the clusters. Following the

same procedure as before (unpaired t-tests with unequal variance, with p-values adjusted with

the Holm-Bonferroni method), we �nd statistical signi�cance across all metrics at p < 0.05, and

82



Table 5.7: Communities belonging to each of the two clusters corresponding to the centroids de-
picted in Figure 5.3. Highlighted in bold are communities belonging to the Technology category on
StackExchange’s taxonomy, and in italics with an underline are communities that belong to the Cul-
ture/Recreation category. Notice that the majority of the Technology communities end up in cluster 1,
and the majority of the Culture/Recreation communities end up in cluster 2.

Cluster Members
Cluster 1 android, anime, apple, arduino, askubuntu, avp, beer , biology, bitcoin, blender, bricks,

buddhism, chemistry, codereview, cogsci, craftcms, cs, datascience, dba, drupal, dsp,
ebooks, economics, emacs, expressionengine, freelancing, gamedev, gardening, ge-
nealogy, gis, graphicdesign, ham, hermeneutics, homebrew, hsm, islam, ja.stackover�ow,
joomla, magento, math, mathematica, mechanics, moderators, networkengineering,
opendata, patents, pets, physics, pm, poker , productivity, pt.stackover�ow, quant, rasp-
berrypi, reverseengineering, robotics, ru.stackover�ow, rus, salesforce, scicomp,
serverfault, sharepoint, softwarerecs, sound, sports, sqa, stackapps, stackover�ow,
startups, stats, superuser, tex, tor, tridion, unix, webapps, webmasters, windows-
phone, wordpress

Cluster 2 academia, astronomy, aviation, bicycles, boardgames, chess, chinese, christianity, codegolf,
cooking, crypto, cstheory, diy, earthscience, electronics, ell, english, expatriates, �tness,
french, gaming, german, hinduism, history, italian, japanese, judaism, lifehacks, linguistics,
martialarts, matheducators, mathover�ow.net, money, movies, music, outdoors, parenting,
philosophy, photo, politics, programmers, puzzling, rpg, russian, sci�, security, skeptics,
space, spanish, sustainability, travel, ux, workplace, worldbuilding, writers

Table 5.8: Statistical signi�cance tests (unpaired t-tests with unequal variance) for the di�erences in
health metrics across the two clusters we identi�ed via k-means. All p-values are adjusted using the
Holm-Bonferroni method. We see that there is a statistically signi�cant di�erence in average health for
all metrics at a p < 0.05 signi�cance level, and for Na/Nq and the percentage of questions with an accepted
answer at a stronger level (p < 0.0001).

Metric p-value
Na/Nq 2.58 × 10−6
% answered 3.17 × 10−3

% with accepted answer 9.09 × 10−5
Average response time 3.17 × 10−3

83



for Na/Nq and the percentage of questions with an accepted answer at p < 0.0001 (see Table 5.8).

This signi�cant di�erence is particularly interesting for the last two metrics, the percentage of

questions with an accepted answer and the average time until the �rst answer, because the model

does not model the answer acceptance process nor does it model response time. Nevertheless, the

groups discovered have signi�cant di�erences between them along these two dimensions. These

results, and the clusters that underpin them, provide indirect proof that the output of the MDMM

has captured meaningful patterns in user behavior.

5.6.6 Evolution of Behavior Composition

The questions we have explored so far have focused mainly on static snapshots of the CQA com-

munities in our dataset. However, these communities do not exist in a vacuum—they continually

evolve over time as they acquire new users and address new topics. How can we understand how

community behavior changes over time as these communities grow and evolve? Here, we explore

one potential solution using the MDMM behavior model as yet another example application.

Because we segmented the user sessions by month for each community, we have a role

proportion associated with each (community, month) pair. With this information in hand, we can

then plot a collection of time-series for each community by considering the role proportions for

each individual role over the life of the community. This plot can allow us to understand how

role proportions �uctuate as the community evolves. In Figure 5.6, we show the evolution of the

top three oldest communities belonging to the “Technology” and “Culture/Recreation” groups,

respectively. We start plotting the time series at the month when the community �rst has at least

100 browsing sessions.

We can see a few trends occurring. First, we can see a common trend in Figure 5.6a–5.6c,

where the proportions for the “eager asker” role grow, reach a peak within the �rst quarter or

so of the community’s life, and then begin a steady decline over time. We also notice that the

“careful asker” and “clari�er” roles tend to increase steadily over time, nearly in tandem. Second,

we can see in Figure 5.6d–5.6f that the role proportions tend to be more consistent over time for

84



20 40 60 80 100
month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y

eager asker
editor/moderator
careful asker
answerer
clarifier

(a) StackOver�ow

0 20 40 60 80 100
month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y

(b) SuperUser

0 20 40 60 80
month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y

(c) ServerFault

20 40 60 80
month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y

(d) Judaism

20 40 60 80
month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y

(e) Homebrew

0 10 20 30 40 50 60 70
month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y

(f) Gaming

Figure 5.6: Role proportions over time for the three oldest communities belonging to the “Technology” and “Culture/Recreation” groups. (a)–
(c) belong to the “Technology” group, and (d)–(f) belong to the “Culture/Recreation” group. We can see a common trend in (a)–(c) where the
proportion of the “eager asker” role grows until it peaks, and then declines as the community ages. The “clari�er” and “careful asker” roles
increase over time, almost in tandem in this group. However, in (d)–(f) we see that that communities belonging to “Culture/Recreation” tend to
have role proportions that remain more consistent over time (in that they do not demonstrate long-term trends.)

85



members of the “Culture/Recreation” group than for “Technology”. Note, however, that the exact

composition that is remaining stable varies between the communities. That is to say, communities

in “Culture/Recreation” appear to be more stable relative to themselves over time, but exhibit

variation in what that stability looks like.

Why does this behavior shift happen in “Technology” while “Culture/Recreation” communities

remain more stable? While we cannot yet provide an answer to this question, we note that without

�rst being able to see that this kind of behavior evolution is even taking place (which requires a

model like our MDMM behavior model), we could not even begin to ask such a question. This

shows that the MDMM behavior model opens new interesting research directions in understanding

user behavior in ways we were not able to before.

5.7 Discussion and Limitations

The goal of this work is to contribute a new and general tool for role discovery and analysis

of community role compositions. There are two key ideas in the design of the proposed model.

The �rst is the formalization of a shared set of user roles, distributions over user actions, across

communities. This is an expressive representation of a user role as the distribution can vary

to capture subtle di�erences between user roles while also allowing us to discover user roles

empirically from the data using sound statistical principles. The second is the direct modeling

of the composition of user roles in a CQA community with another distribution over the user

roles. This second distribution provides a general and �exible way to model variations in the

composition of user roles that may exist in di�erent communities, and again allows us to use

statistical inference to discover each community’s role composition.

The use of a generative model over user actions to discover user roles and community role

compositions is advantageous in that it allows the model to be very general and applied in a variety

of di�erent analysis scenarios without requiring hand-crafted features to be de�ned in order to

describe user roles. On the other hand, the use of a generative model is not without some cost.

Because statistical inference of such a model is intractable, we must resort to approximate posterior

86



inference methods. In this paper, we have used Gibbs sampling to approximate the posterior, but

this comes with some risk—it is di�cult to determine whether the sampler has actually converged

to the true posterior, despite there being a theoretical guarantee that it will do so given enough

time. Had we instead opted for a di�erent inference method like variational inference which

instead optimizes a variational lower bound, we trade the convergence question for a question

about the quality of the solution found by the optimization because the variational lower bound is

highly non-convex. In practice, we can attempt to mitigate these concerns via multiple runs of

the sampler (or multiple randomly initialized optimizations for variational inference)—we found

multiple runs of the model all converged to nearly identical solutions.

Because the model does not impose an action set upon the user, they are free to specify a

di�erent action set for di�erent analysis purposes. This again makes the model quite �exible,

but also requires some up front work to de�ne an appropriate action set for the model. Feeding

the model with less meaningful actions can lead to the output of less meaningful role patterns.

Fortunately, in the case of CQA communities, de�ning an action set based on the content hierarchy

and content ownership semantics is a reasonable choice that should lead to interpretable roles as

demonstrated here for StackExchange. However, a user does need to manually interpret the role

distributions ϕ1:K discovered by the model.

Finally, our model makes a strong assumption that a user only performs one role in a given

session. While this assumption is valid in most cases, there are situations where users potentially

perform more than one role in a given browsing session. In these cases, the model will incorrectly

con�ate these two roles and this will contribute some “noise actions” to that role.

5.8 Conclusion and Future Work

Computational analysis of user roles on CQA platforms is important not only for the un-

derstanding of users in such a new social network environment, but also for improving their

e�ciency and utility. To this end, we proposed a general probabilistic model for discovering and

analyzing action-based roles on CQA platforms. The generative model assumes that the observed

87



user actions in a single session are samples drawn from the same, but unknown, action distribution

(the role). Individual communities are modeled as mixtures over these role distributions, allowing

for cross-community analysis. Through a comprehensive experiment on all 161 non-meta commu-

nities on the StackExchange CQA platform, we demonstrated that our model is indeed useful for

understanding user behavior on these platforms. We were able to show interesting distinctions

in asking and answering behavior on the platform are captured through our roles, that di�erent

groups of communities exhibit statistically signi�cant di�erences in role composition, and those

communities also exhibit statistically signi�cant di�erences in a variety of health measures. Finally,

we were also able to uncover two clear and distinct trends of role compositions over time between

the “Technology” and “Culture/Recreation” groups on StackExchange.

The proposed model is very general and does not require labeled data for training. It can

thus be applied to analyze any CQA platform immediately. Since the de�nition of actions is

outside the model, analysts can vary the granularity of actions as needed; this �exibility allows for

multi-resolution analysis of user actions, behavior, and roles. An interesting future work is to fully

exploit this �exibility to further analyze roles with even more re�ned actions on CQA platforms

as well as to apply the model to other social networks. Another interesting future direction is to

develop tools based on this model for monitoring the “well-being” of those CQA platforms and

helping the community managers to improve the utility and e�ciency of a community so as to

maximize the utility of all the CQA communities.

88



Chapter 6
Behavior Modeling: Two-Layer Hidden
Markov Models

6.1 Temporal Behavior Modeling

In the previous chapter we discussed a model for role discovery that, at its core, discovers

roles as correlated sets of actions that co-occur within individual users’ browsing sessions, but

that ignores the relative order of those actions within the sessions themselves.

Should one consider the relative order of actions within the sessions? In our study of the CQA

networks, the answer was “no” as we were mostly concerned with discovering patterns of activity

in terms of the individual actions themselves, where our attention was mainly on the relative

probability of actions across di�erent behavior patterns. However, in the case of investigating

an entire MOOC environment, the answer may very well be “yes” if we suspect that there may

be an interesting distinction between behavior types on the basis of the ordering of the actions in

addition to just the relative probabilities of the actions across the patterns themselves. In this case,

we would need a di�erent representation of the behavior pattern that can capture these temporal

relations between the actions themselves.

What’s more, the previous chapter’s model did not explicitly model behavior evolution for

users on each CQA website. While we are indeed able to prove that there is systematic behavior

evolution on the StackExchange CQA platform, we did so in a heuristic way, and the manner in

which we can observe evolution patterns is only in terms of relative proportions of the patterns

plotted over time. What if we instead explicitly model the transitioning behavior between behavior

patterns within a website? Such a model could give insight into whether there is a common

trajectory (or set of trajectories) for users on the platform, something that could be very valuable

for understanding student behavior on a MOOC platform for the purposes of adaptation or

89



intervention.

To address this problem, in this chapter1 we propose a student behavior representation method

alongside a method for automatically discovering those student behavior patterns by leveraging

the click log data that can be obtained from the MOOC platform itself. Speci�cally, we propose the

use of a two-layer hidden Markov model (2L-HMM) to extract our desired behavior representation,

and show that patterns extracted by such a 2L-HMM are interpretable and meaningful. We

demonstrate that the proposed 2L-HMM can also be used to extract latent features from student

behavioral data that correlate with educational outcomes.

6.2 Introduction

The proliferation of massive open online courses (MOOCs) has resulted in a profound impact

on education. As more and more students participate in these novel educational environments, it

is of utmost importance that we be able to understand the behavioral patterns students exhibit

in these environments. While we can easily observe the changes in behavior of students in real

classrooms, MOOC environments present some signi�cant challenges in this regard: the structure

of the course itself is more hands-o� in nature than that of the traditional classroom (in most

cases), and thus attracts more students that are full-time workers with irregular learning schedules.

At the same time, this in�ux of learners turning to MOOC platforms to educate themselves

directly leads to the collection of larger datasets of behavioral data through the platform’s logging.

This presents a unique opportunity: the data present in these logs has the power to aid us in

understanding the behavior of students who take our MOOCs. However, due to the vast scale of

these behavioral logs, student behavior patterns are mostly undetectable for MOOC instructors

and as a result, the rich data available through MOOC logs is highly underutilized today.

What stands in the way? Instructors require intelligent systems to create concise and digestible

summaries of the massive amount of interaction data collected. If we can understand how users

are interacting with our MOOCs, we are much more likely to be able to make changes to these
1The work in this chapter has been previously published in Geigle and Zhai [40].

90



(a) Behavior pattern 0 (b) Behavior pattern 1 (c) Transitions between the two behav-
ior patterns to the left.

Figure 6.1: An idealized example of what our behavior representation could capture.

courses that positively impact learners. We view this chapter as attempting to bridge this gap.

How should we represent behavioral patterns, and what does it mean to understand changes in

student behavior with respect to these patterns? These are still very open questions and are active

areas of research [66, 30, 21, 111]. In this chapter, we advocate for a representation of student

behavior patterns as well as behavior transitions that we believe is simultaneously interpretable but

also amenable to unsupervised, automated discovery via statistical means. Speci�cally, we choose

to visualize behavior patterns as labeled directed graphs where a node represents a “behavior

state” (such as watching a lecture video or visiting a forum), a directed edge indicates a transition

from one behavior state to another, node sizes are proportional to steady-state probabilities, and

edge widths are proportional to the probability of leaving a node following that edge. We can

use this same representation for visualizing both the student behavior patterns as well as the

transitioning behavior between them. In Figure 6.1 we show a hypothetical example of the kind of

output our proposed representation could convey. Here we see two di�erent behavioral patterns

(6.1a and 6.1b) as well as the transition behavior between these two behavior patterns (6.1c). Such

a visualized state-transition representation is very informative for describing student behavior.

Indeed, we could infer many things from even such a simple example: The �rst might be that,

when students are taking quizzes, they tend to either use the forum or the videos for support, but

not both. They also tend to take quizzes in a sort of “cycle” pattern, indicating perhaps that this

91



course allows quiz re-takes. Finally, in Figure 6.1c we could conclude that users tend to change

their quiz-taking behavior over time from one that is more video-focused (pattern 0) to one that is

more forum-focused (pattern 1).

Our goal in this chapter is to design a model that can automatically capture student behavior

in this way via unsupervised learning methods applied to large collections of click logs associated

with MOOCs. We view our model as a component of a system that enables collaboration between

the machine and a human instructor to extract knowledge from large collections of MOOC data.

Automatically extracting interpretable patterns from the clickstream data associated with MOOCs

is a necessary step for instructors to identify the hidden knowledge in massive interaction datasets.

Without the availability of a suitable model for identifying behavioral patterns, instructors are not

empowered to use this available data to improve their courses without expending extraordinary

amounts of manual e�ort (even with which the raw data can still be very hard to interpret).

Our proposed model (as well as the proposed behavior representation) is motivated by the

following observations:

1. Student behavior is complicated and cannot necessarily be captured su�ciently by rule-

based methods such as those explored by Kizilcec et al. [66] and Davis et al. [21]. We

instead propose to treat student behavior patterns as being characterized (represented) via a

sequence of latent states. This allows us to automatically capture patterns that we might not

have been able to articulate clearly a priori via a series of rules, and allows us to model the

inherent uncertainty in assigning a student’s behavior to a pattern or group.

2. Student behavior can vary over time. Previous models that treat students as exhibiting only

one behavioral pattern over time [30] miss out on the opportunity to understand student

behavior dynamics in a course. We propose a latent space model with latent state transitions

to �exibly model the dynamics.

3. Analysis of student behavior can and should be performed at varying levels of granularity.

This requires us to aggregate data over time with di�erent levels of resolution; existing models

92



tend to come with an assumption about the resolution of time they consider [30, 66, 111].

We propose a model that is agnostic to the time resolution considered, allowing it to be

applied at di�erent levels of resolution more naturally.

Thus, what we propose is a latent variable approach for mining student behavior patterns that

is probabilistic for inference and does not force assumptions about time resolutions, making it

�exible to model state changes over di�erent time resolutions more easily. More speci�cally, we

propose a novel two-layer hidden Markov model (2L-HMM) to discover latent student behavior

patterns via unsupervised learning on large collections of student behavior observation sequences.

Evaluation results on a MOOC data set on Coursera demonstrate that the 2L-HMM can e�ectively

discover a variety of interesting interpretable student behavior patterns at di�erent levels of

resolution, many of which are beyond what existing approaches can discover. We show that the

patterns uncovered by the 2L-HMM capture meaningful behavior by quantitatively showing that

features extracted from a trained 2L-HMM correlate with learning outcomes. Since our proposed

methods are unsupervised, they can potentially be applied to any MOOC data without requiring

manual annotation e�ort at the level of sequences, thus empowering instructors to use the latent

patterns discovered by the 2L-HMM to further extract knowledge about the behaviors his/her

students exhibit in the MOOC.

6.3 Related Work

Our model is based heavily on the prior art of Hidden Markov Models (HMMs) [105] for

sequence labeling tasks. As a member of the more general family of probabilistic graphical mod-

els [69], HMMs are widely applicable and have been used for tasks such as speech recognition [56],

part-of-speech tagging [64], and econometrics [49]. A major challenge in applying HMMs and

other graphical models successfully to solve a problem is to design an appropriate architecture of

the model, which always varies according to speci�c applications.

For example, in part-of-speech tagging [64], the output distributions are categorical (distri-

butions over words from a �xed vocabulary) and the latent states represent the part-of-speech

93



category for a word. In speech recognition [56], the output distributions might be mixtures of

Gaussians to predict real-valued vectors extracted from short windows of a speech signal. In

the domain of econometrics, Hamilton [49] explores HMMs in the context of “regime-switching.”

In this framing, the goal is to understand how econometric data changes by modeling discrete

changes in “regime” as having an impact on the resulting real-valued vector data observed. The

“regimes” are thus represented with a model that can produce real-valued vector data, such as a

multivariate Gaussian or an auto-regressive model. The analogy with HMMs is that a “regime”

is a latent state, and the characterization of the regime itself is the output distribution for that

latent state. Our model can be seen as such a “regime-switching” model where the output of

the “regimes” that students are switching between are discrete-valued sequences (as opposed to

real numbers, vectors of real numbers, or categorical symbols) and the model used to represent

a speci�c “regime” is an (observable) Markov chain over the observed student actions. We view

the switching between “regimes” as the �rst “layer” of our model, and the transitioning behavior

within a “regime” between the actions a student takes as the second “layer” of our model.

A multi-layered approach to HMM modeling of sequence data has been performed before

in other domains. Zhang et al. [136], for example, explored a two-layer HMM framework for

modeling actions in meetings, but their de�nition of “two-layer” di�ers from ours. In their

formulation, the “lower-layer” level is used to label audio-video action sequences into basic events,

and the “upper-layer” is used to label the output of the lower-layer to discover higher-level o�ce

behavior abstractions. Oliver et al. [97] propose a similar layered HMM approach for modeling

o�ce activity at multiple di�erent levels of time granularity. In their approach, each layer L is

represented as a “bank” of K di�erent HMMs that model sequences of some length TL. At the

bottom layer (L = 1), the bank of K HMMs corresponding to that layer is run on some initial

observation data, considering windows of observations of length T1. Then an output is generated

by using the inferential results of these K HMMs to make a prediction: which of the K HMMs was

most likely to produce that sequence of observations? This output is then fed to the next layer

of HMMs, which considers sequences of length T2 and outputs prediction results as to which of

94



the K HMMs at layer two were most likely to produce the sequence of outputs produced by the

previous layer, and so on.

Our formulation di�ers from both Zhang et al. [136] and Oliver et al. [97] in that we do not feed

the labeled sequence of the lower level into the input of the higher level. Instead, our lower level

is treated using a non-hidden Markov model, and the higher level is modeling transitions between

the K di�erent non-hidden Markov models we consider. The problem to be solved is similar in

that we wish to predict a “label” for a sequence of actions a student takes as well as understand

the transition behavior between those labels. However, one of the consequences of modeling the

lower layer using a non-hidden Markov model instead of an HMM directly is that the meaning

of the K di�erent latent states can be more clearly captured by using our proposed behavior

representation. If we were to use an HMM as our �rst layer, the behavior patterns (like from

Figure 6.1) would instead have nodes that represent another set of latent states instead of being

concrete actions themselves. Each of these latent states would then be associated with some other

output distribution over the possible concrete actions to be considered. In order to understand

a single behavior pattern uncovered, one would �rst have to understand the di�erent output

distributions for the latent states in that pattern to understand the meaning of that latent state.

This further complicates the understanding of higher level patterns because understanding the

higher layer patterns requires understanding the lower layer patterns. By taking a more restrictive

view of the �rst layer, we can produce a representation that can be more readily interpreted due

to the states in our �rst layer representation having an immediately clear meaning (the concrete

action they represent).

The 2L-HMM model we propose is more closely related to the Hierarchical Hidden Markov

Model (HHMM) detailed in Fine et al. [32]. Here, the “layers” are modeled by having the hidden

Markov model have two kinds of transitions. Horizontal transitions move between states within

a layer, where vertical transitions move between di�erent layers. At the bottom layer lie the

“production” states, which output symbols according to some probability distribution. Our speci�c

model, in this case, can be modeled as an HHMM where the horizontal transitions between nodes

95



at the highest layer (including self-loops) must be immediately followed by a vertical transition to

the lower layer. The output probability distributions over symbols in the lower layer “production”

level are forced to emit only one kind of symbol, and vertical transitions are only allowed into the

original higher-layer state that transitioned down into the lower-layer.

Mixtures of hidden Markov models are also conceptually similar to our formulation. Song et al.

[114] explored using a mixture of hidden Markov models in the context of anomaly detection

in the security domain. Ypma and Heskes [133] use mixtures of HMMs to categorize web pages

and cluster users by investigating web log data, which is quite similar to the clickstream log data

we obtain from MOOCs. The major di�erence between our approach and a standard mixture of

HMMs is that we also model the transition behavior between the Markov models that make up our

model’s lowest layer, where a standard mixture of HMMs would ignore the potential dependence

of the previous sequence’s latent state on the next sequence’s latent state.

HMMs or similar ideas have been previously applied to model education data [111, 66, 21],

but the previous models are not well tuned toward the student behavior task and thus cannot

adequately address all the aspects of the complexity of student learning behavior. A main technical

contribution of this chapter is to propose a more general HMM that can better adapt to the

variations of student behavior via its variable resolution and nested HMM structure, and thus enable

discovery of more sophisticated behavior patterns and provide a more detailed characterization of

student behavior than the previous models.

For example, Kizilcec et al. [66] assigned students to states following a rule-based approach

based upon when the student submitted the assignment for a particular week in the course. They

investigated how students transitioned between these states as the course progressed, and used

the sequence of states a student exhibited as a representation for performing k-means clustering

of students into related groups. This di�ers from our method substantially: we assign students

to states using a probabilistic framework to account for uncertainty in this state assignment

and jointly learn representations for these states, which are treated as being latent as opposed to

pre-de�ned using some rule (or set of rules). Furthermore, our model provides more �exibility in

96



how the time segments are de�ned, allowing for both �ner (for example, day-by-day) or coarser

(for example, month-by-month) granularity. Shih et al. [111] investigated the use of HMM-based

clustering techniques for automatic discovery of student learning strategies when solving a

problem. This is similar to our approach in that the description of behavior pro�les is a Markov

model, but cannot further characterize each latent state with another informative HMM. Thus,

their work can be regarded as modeling “micro” behavior, whereas our model can model both

“micro” and “macro” behavior.

Davis et al. [21] investigate frequent student behavior pattern chains with a set of actions

that are de�ned similarly to ours. However, their method for �nding the common behavioral

patterns involves a manual clustering step to identify behavioral “motifs,” which is then followed

by an automatic (rule-based) assignment of all sequences to these motifs. Our method, by contrast,

attempts to do this automatically: the latent state representations obtained by our model attempt

to capture similar meanings to their behavior motifs in a completely automated fashion. They

also automatically generate and investigate Markov models for di�erent MOOCs, but do so by

considering all student action sequences as belonging to a single Markov model. In our approach,

we allow each student behavior sequence to belong to one of K di�erent Markov models (and

further model the transition probabilities between these latent state Markov models between each

sequence a student generates). Thus, their Markov models presented are a special case of our

model when K = 1.

Faucon et al. [30] proposed a semi-Markov model for simulating MOOC students. They produce

behavior pro�les that characterize groups of students in the form of semi-Markov models like

our proposed model does, but they assume that a student can belong to only one behavior pro�le

across the entire course rather than allowing this pro�le to change over time. Because we do

not have this restriction, our model is also able to learn the transition probabilities between the

di�erent behavior pro�les we discover.

There are a few additional related studies worth mentioning. Bayesian Knowledge Tracing [18]

in its basic form uses a hidden Markov model to model the probability that a learner knows a

97



certain skill at a given time. Modi�cations to this algorithm include contextual estimation of the

“slip” and “guess” probabilities of the model [5] and most recently a re-framing as a neural network

problem [102].

6.4 A Two-Layer HMM for MOOC Log Analysis

6.4.1 Basic Idea and Rationale

Our general idea is to use a probabilistic generative model to model the student activities as

recorded in a MOOC log, which means we will assume that all the observed student activities are

samples drawn (i.e., “generated”) from a parameterized probabilistic model. We can then estimate

the parameter values of the probabilistic model by �tting the model to a speci�c MOOC log data

set. The estimated parameter values could then be treated as the latent “knowledge” discovered

from the data. Because such a generative model attempts to �t all the data, it enables us to discover

interesting patterns that can explain the overall behavior of a student or the common behavior

patterns shared by many students.

An HMM is a speci�c probabilistic generative model with a “built-in” state transition system

that would control the data to be generated by the model, thus it is especially suitable for modeling

sequence data [105, 56]. At any moment, the HMM would be in one of k states U = {u1, . . . ,uk},

and at the next moment, the HMM would move to another state stochastically according to a

transition matrix that speci�es the probability p(ui | uj) of going to state ui when the HMM is

currently in state uj . When the HMM is in state u, the HMM can generate an observable data

point x according to an output probabilistic model p(x | u). Thus, if we “run” an HMM for N time

points denoted by t = 1, . . . ,N , the HMM could “generate” a sequence of observations x1 . . . xN ,

where each xi is an output symbol by going through a sequence of hidden states w1 . . .wN where

each wi is a random variable taking a value from the HMM’s state setU . The association of such a

latent sequence of state transitions with the observed symbols makes it possible to use the HMM

to “decode” the latent behavior of students behind the surface behavior we directly observe in the

98



log data, allowing for understanding student behavior more deeply than a model with no latent

state variables.

In many ways, the generation process behind an HMM is meant to simulate the actual behavior

of a student. We may say that students transition through di�erent “task states” (or “behavior

states”) in the process of study. One such task state may be to learn about a topic by mostly

watching lecture videos, another task state may be to work on quizzes, and yet another may be to

participate in forum discussions. While in each of these di�erent states, the student would tend to

exhibit di�erent surface “micro” behaviors. For example, in the lecture study state, the student

would tend to have many video-watching related behaviors and occasionally forum activities, while

in the quiz-taking state (to pass each module), the student would tend to show many quiz-related

“micro” activities as well as asking questions or checking discussions on the forum. Note that due

to the complexity of the student behavior, it is very di�cult to accurately prescribe the speci�c

surface “micro” behavior patterns for each state in advance, especially without prior knowledge

about the students. For example, forum activities are likely interleaved with other activities in

every task state and the interleaving pattern can be somewhat irregular with potentially many

variations. The major motivations for using an HMM are that (1) it uses a probabilistic model

(the output probability distribution p(x | u) conditioned on each state) to directly capture the

inevitable uncertainty in the association of surface “micro” activities with their corresponding

latent task/behavior state, which is often our main target to discover and characterize, and (2) it

does not make any assumption about which latent task/behavior state must be associated with

which observed activities or how a student would move from one state to another, but instead

allows our data to “tell” us what kind of associations are most likely, what kind of transitions are

most probable, and which states tend to be more long-lasting for any set of students.

However, if we were to use an ordinary HMM to analyze our data, we would treat each

observed “micro” activity (such as video watching or forum post reading) as an output symbol, and

thus the output distribution p(x | u) for each discovered latent state would be a simple distribution

over all kinds of observable micro activities recorded in our log data (e.g., 50% lecture watching,

99



8% quiz taking, 7% quiz submission, 2% course wiki reading, etc.). While such a distribution is

meaningful and can already help us interpret the corresponding latent state, it only gives us a

rather super�cial characterization of student behavior.

Ideally, we want p(x | u) to characterize the directly observable “micro” behavior in more

detail to further capture the relations and dependencies of these “micro” activities. To this end, we

would treat an entire sequence of “micro” activities (e.g., one session of activities) as an observed

“symbol” from a latent state, and further model the generation of such a sequence with another

Markov model where we treat each micro activity as an observable state, and model the transitions

between these activity states in very much the same way as the state transitions in an HMM.

Adding this second layer would allow us to characterize a latent task state in much more

detail, as it would reveal not only what activities are most common to a task state, but also the

transition patterns between these “micro” activities (e.g., it can reveal frequent back-and-forth

transitions between quiz-taking and quiz-submission, which would suggest a concentrated period

of taking quizzes). Combining this “surface” Markov model over the “micro” actions with the

“deep” hidden Markov model over the latent task states gives us a general and powerful two-layer

HMM (2L-HMM) that can simultaneously learn “deeply” the latent task/behavior states and their

transitions as well as the corresponding “micro” activity transition patterns associated with each

latent state to facilitate interpretation and analysis of the discovered latent state patterns.

To estimate the parameters of our model, we will use the EM algorithm [23] which allows us

to perform maximum likelihood estimation of the model in the presence of latent (unobserved)

variables. This algorithm, intuitively, works as follows: �rst, the model parameters we wish to

estimate are initialized to some random (but valid) starting point. Then, we “guess” what the

latent variable values might be given the current model parameters. We can then use this guess

to re-estimate the model parameters, which will improve their accuracy slightly. We can then

use these newly estimated parameters to again “guess” what the latent variable values might

be, and so on. We repeat this process until the parameter estimates no longer shift by much (or,

equivalently, the log likelihood of the data does not improve by much). The computation for the

100



“guessing” of latent variable values is somewhat involved in the case of HMMs (see Section 6.4.3

for the full details), but the general intuition behind the iterative hill-climbing remains valid.

Next, we present this model more formally and discuss how to estimate its parameters to

uncover these latent patterns in an unsupervised manner.

6.4.2 Formal De�nition of the 2L-HMM

Given a MOOC log, we can de�ne a set A of actions that a student can take at any given time.

For example, an action a ∈ Amight be “viewing lecture,” “taking quiz,” or “viewing forum.” For each

student in the course ` ∈ L, we then extract a list of action sequences O` that he or she produced

as observed in the log, where each sequence o ∈ O` is itself a list of actions (a1,a2, . . . ,aT ) with

each ai ∈ A. Each sequence can be divided �exibly; in this chapter, we chose to denote the end of

a sequence as occurring when no further actions occur within a 10-hour window of time (and

thus our sequences roughly correspond to one day’s worth of activity). This decision re�ects our

desire to uncover latent state transition behavior at the granularity of day-to-day behavior. A

di�erent segmentation strategy could be used to uncover hour-by-hour behavior or week-by-week

behavior, and this depends entirely on the desired time resolution one wishes to be exhibited in

the transitions between the latent states. Di�erent segmentation strategies will result in di�erent

underlying training data, and thus di�erent meanings behind the patterns that the 2L-HMM will

extract. The �exibility of using di�erent segmentation strategies is intentional as it allows a user

to adjust the segmentation as needed to obtain patterns at di�erent granularity levels.

Each sequence o ∈ O` is associated with a latent state u ∈ {1, . . . ,K} (where K is a �xed

constant picked in advance). The actions within the sequence o = (a1,a2, . . . ,aT ) are then modeled

as a �rst-order Markov process conditioned upon u where each action is drawn from a distribution

conditioned upon the previous action (except for the �rst which is sampled from an initial starting

distribution). We can write the parameters for the �rst-order Markov model associated with latent

state u as λ(u) = (π (u),A(u)) where π (u) indicates the initial probability vector of length |A| and A(u)

is an |A| × |A| matrix indicating the transition probabilities between each pair of actions from A.

101



Thus, the probability of a sequence o of length T given a latent state u is

P(o | λ(u)) = P(a1 | π
(u))

T∏
i=2

P(ai | ai−1,A
(u)) (6.1)

where P(a | π (u)) = π (u)a is the probability of starting with action a and P(ai | ai−1,A
(u)) = A(u)ai−1,ai

is the transition probability of moving from action ai−1 to ai given that the model is currently in

latent state u.

We can compute the likelihood of a list of action sequences O` of length N for a student ` by

marginalizing over all possible latent state sequences (v1, . . . ,vN ) ∈ U as

P(O` | Λ) =
∑

(v1,...,vN )∈U

(
P(v1 | Λ)P(o1 | λ

(v1)) ×

N∏
i=2

P(vi | vi−1,Λ)P(oi | λ(vi ))

)
(6.2)

where Λ is the set of all model parameters. In our model, we let Λ = (π ,A,B) where π and A

are the parameters of a �rst-order Markov model over the latent states and B = (λ(1), . . . , λ(K))

where each λ(i) consists of the parameters for the �rst-order Markov model over action sequences

for latent state i . Thus π (without superscripts) is an initial probability vector of length K and

A (without superscripts) is a K × K transition probability matrix, analogous to the case with

the individual �rst-order Markov model parameters λ(i) for each latent state. We have in total

K + K2 + K(|A| + |A|2) parameters to be estimated from our sequence data.

This can be seen as a modi�cation of the traditional hidden Markov model with categorical

outputs [105] where instead of discrete observations (one for each latent state transition) we have

observations that take the form of entire sequences oi = (a1,a2, . . . aT ) whose probabilities are

computed using another (non-hidden) Markov model conditioned upon the latent state ui .

6.4.3 Parameter Estimation

To learn the parameters of our model, we may use maximum likelihood estimation. Unfor-

tunately, a closed-form solution does not exist, so we must appeal to the EM algorithm [23]. In

particular, we propose a minor modi�cation of the Baum-Welch algorithm [105] which is an

102



e�cient EM algorithm for learning the parameters of hidden Markov models in an unsupervised

setting where the Markovian assumption is exploited to signi�cantly reduce the computational

complexity of the EM algorithm by avoiding explicit enumeration of all the possible state transi-

tions. In the following sections, we will provide a brief description of the original Baum-Welch

algorithm for unsupervised parameter estimation for categorical valued hidden Markov models,

and then describe our modi�cation to allow for parameter estimation for our 2L-HMM modi�cation

for sequence valued observations.

Baum-Welch for Traditional HMMs

In the traditional HMM formulation with categorical outputs, we have Λ = (π ,A,B) where

π is the initial probability distribution over the latent states (of length K), A is a K × K matrix

indicating the latent state transition probabilities, and B = (b1, . . . ,bk) is a length K vector where

each entry bi is a probability distribution over the possible discrete output symbols from A.

The goal of the Baum-Welch algorithm (also called the forward-backward algorithm) is to

learn the values for the parameters Λ from a collection of observed sequences of values from

A. Concretely, our training data D = (o(1), . . . , o(M)) is a collection of M sequences o(k), each of

which consists of Tk symbols (observations) from A. The Baum-Welch algorithm de�nes two sets

of variables α (o)t (i) called the forward variables and β (o)t (i) called the backward variables [105] for

each sequence o ∈ D.

α (o)t (i) = P(o1, . . . ,ot ,vt = i | Λ) is the probability of generating the sequence of observations

(o1,o2, . . . ,ot ) up to time t and arriving in state i at that time. They are typically de�ned using the

following recursion:

• α (o)1 (i) = πibi(o1), the probability of starting in state i (πi ) times the probability of generating

the �rst observation o1 from state i .

• α (o)t+1(i) = bi(ot+1)
∑K

j=1 α
(o)
t (j)Aji , the probability of generating the observation ot+1 from

state i times the probability that we arrive in state i from any other previous state after

generating all of the other observations.

103



Analogously, β (o)t (i) = P(ot+1, . . . ,oT | vt = i,Λ) is the probability of generating the rest of the

sequence given that we are in state i at time t . They are also de�ned using a recursion:

• β (o)T (i) = 1

• β (o)t (i) =
∑K

j=1 β
(o)
t+1(j)Aijbj(ot+1), the probability of transitioning to any state j and generating

the observation ot+1 times the probability of generating the rest of the sequence given that

we transitioned to state j.

Given the αs and the βs, we can compute γ (o)t (i), the posterior probability of being in a given

state i at time t , and ξ (o)t (i, j), the posterior probability of going through a transition from state i

to state j at time t as

γ (o)t (i) =
α (o)t (i)β

(o)
t (i)∑K

j=1 α
(o)
t (j)β

(o)
t (j)

(6.3)

and

ξ (o)t (i, j) =
α (o)t (i)Aijbj(ot+1)β

(o)
t+1(j)∑K

j=1 α
(o)
t (j)β

(o)
t (j)

(6.4)

respectively [105]. Computing these variables for each sequence o ∈ D is the E-step of the EM

algorithm.

Given γ (o)t (i) and ξ (o)t (i, j) for each sequence o ∈ D, we can update our model parameters Λ as

πi =

∑
o∈D γ

(o)
1 (i)

|D|
, (6.5)

Aij =

∑
o∈D

∑T
t=1 ξ

(o)
t (i, j)∑

o∈D
∑N

j=1
∑T

t=1 ξ
(o)
t (i, j)

, and (6.6)

bi(a) =

∑
o∈D

∑T
t=1,ot=a γ

(o)
t (i)∑

o∈D
∑T

t=1 γ
(o)
t (i)

(6.7)

respectively [105]. This is the M-step of the EM algorithm.

Baum-Welch for HMMs with Sequence Observations

The major deviation of our model from the traditional categorical-valued HMM is that our

observations are themselves sequences of actions from A rather than individual tokens. We again

104



denote our parameters as Λ = (π ,A,B) where π is the initial probability distribution over the

latent states (of lengthK ),A is aK×K matrix indicating the latent state transition probabilities, but

B = (λ(1), . . . , λ(K)) is now a vector of length K where each element λ(i) consists of the parameters

for a �rst-order Markov model over the action space A. Recall that each λ(i) = (π (i),A(i)) where

π (i) is an initial action distribution over the |A| available actions, and A(i) is the |A| × |A| transition

matrix between those actions.

The goal of the Baum-Welch algorithm is still to learn the parameters Λ for our model. What

di�ers from the categorical-valued HMM case is that our data now consists of a collection of lists

of sequences, rather than just a collection of sequences. This means that our observation values

ot are now themselves sequences of values from A, rather than just being a single token from A.

Formally, our training data D = (O(1), . . . ,O(|L|)), where each O(`) = (o1, . . . , oT` ) is itself a list of

sequences. Each sequence ok ∈ O(`) consists of a list of actions (a1, . . . ,aTk ), each of which is a

member of A.

In order to run the forward-backward algorithm for an element O ∈ D to compute the α and

β recursions like before, we must de�ne bi(ot ) in this setting where ot = (a1, . . . ,aTt ) is now a

sequence instead of a single token. We de�ne it as follows:

bi(ot ) = P(ot | λ(i)) = P(a1 | π
(i))

Tt∏
k=2

P(ak | ak−1,A
(i)) = π (i)a1

Tt∏
k=2

A(i)ak−1,ak . (6.8)

Fortunately, the recursions for α (O)t (i) and β (O)t (i) remain the same, as do the de�nitions of γ (O)t (i)

and ξ (O)t (i, j), in the E-step. We can simply substitute the new de�nition for the output distribution

bi(ot ) in those equations.

The substantial change is in the updating equations in the M-step, where we replace the update

for bi(a) (which used to be a categorical distribution) by a pair of updates for the Markov chain for

state i: one for π (i)a one for A(i)
ab

. These updates can be understood as follows. π (i)a is the probability

that a sequence being generated by state i begins with action a. γ (O)t (i) gives the probability of

generating the sequence ot from state i , so we simply aggregate this for all sequences ot where

105



Table 6.1: Statistics about the sequences extracted from the two MOOCs.

MOOC Students Sequences Avg. |s|
textretrieval-001 18,941 85,240 7.31

sustain-001 85,240 231,881 15.4

the �rst action is a. We then normalize this distribution to sum to 1 across all possible actions

a ∈ A to obtain our new estimate for π (i)a . A(i)
ab

is the probability that a sequence being generated

by state i currently at action a ∈ A transitions to action b ∈ A. Thus, we compute the expected

number of times we observe a transition from a to b in a sequence generated by state i , and we

normalize this distribution to sum to 1 across all possible actions b ∈ A. Thus, the two updates

can be written as

π (i)a =

∑
O∈D

∑
ot ∈O,ot ,1=a γ

(O)
t (i)∑

O∈D
∑

ot ∈O γ
(O)
t (i)

, and (6.9)

A(i)
ab
=

∑
O∈D

∑
ot ∈O

∑|ot |
m=2,ot ,m−1=a∧ot ,m=b

γ (O)t (i)∑
O∈D

∑
ot ∈O

∑|ot |
m=2,ot ,m−1=a

γ (O)t (i)
. (6.10)

Our modi�ed EM algorithm for 2L-HMMs is provided as part of the MeTA toolkit [86].

6.5 Experiment Results

As an analysis tool, the 2L-HMM model provides us with the following two patterns to

characterize student behavior: (1) the latent state representations, and (2) the latent state transitions.

Thus, to evaluate the proposed model, we conduct experiments to qualitatively analyze both types

of patterns discovered from empirical MOOC log data.

Speci�cally, we look at the MOOC logs associated with two di�erent Coursera MOOCs o�ered

by UIUC: textretrieval-001 and sustain-001. The textretrieval-001 MOOC represents a highly

technical computer science course, where the sustain-001 MOOC is more representative of a

humanities course. We picked these two MOOCs because of their vastly di�erent content domains.

Table 6.1 summarizes the two datasets we extracted from the MOOCs.

106



6.5.1 Latent State Representations

The 2L-HMM is meant to be a tool for exploratory analysis of student behavior. As such, the

number of states should be empirically set based on the goal of analysis. A higher number of

states will lead to a �ner-grained modeling of student behavior. In our experiments, we explored

using between 2–6 states. First, we �t a 6-state 2L-HMM to the textretrieval-001 sequence dataset

and show some of the latent state representations we �nd. We used the following ten actions as

our action set A: (1) quiz start, (2) quiz submit, (3) wiki (course material), (4) forum list (view the

list of all forums), (5) forum thread list (view the list of all threads in a speci�c forum), (6) forum

thread view (view the list of posts within a speci�c thread), (7) forum search (a search query issued

against the forum), (8) forum post thread (a new thread was posted), (9) forum post reply (a new

post was created within an existing thread), and (10) view lecture (de�ned as either streaming or

downloading a lecture video).

To visualize these Markov models that represent our latent states, we plot them as a directed

graph where we set the size of a node to be proportional to its personalized Pagerank score [98, 57]

where the personalization vector is the initial state distribution for the Markov model. We let the

thickness of a directed edge (u,v) re�ect the probability of taking that edge given that a random

walk is currently at noteu (as indicated by the transition matrix)2. In the interest of reproducibility,

the source code for analyzing the MOOC logs we use in this chapter and for producing the �gures

themselves is publicly available as open-source software3.

Figure 6.2 includes two such representations we learned. Under our interpretation, the �rst

corresponds to a “quiz taking” state (it has higher “quiz: start” and “quiz: submit” state probabilities

than the other �ve states) whereas the second corresponds to a “lecture viewing” state. Our

unsupervised method can uncover states that do indeed correspond to student behavior modes

that we would expect to �nd a priori.

We also argue that it is important that the latent state representation is a Markov model rather
2We do not plot the transition probabilities directly within the �gure to ease readability; we instead will mention

relevant transition probabilities in the text as we discuss the plots. The plots were created using python-igraph:
http://igraph.org/python/.

3https://github.com/skystrife/clickstream-hmm

107

http://igraph.org/python/
https://github.com/skystrife/clickstream-hmm


(a) An example “quiz taking” state. (b) An example “lecture viewing” state.

Figure 6.2: Two example states found by the 6-state 2L-HMM. (The naming of these states re�ects our
own interpretation.)

than just a discrete distribution over actions in A (as would be the case for a traditional single-layer

HMM). We can observe why if we take a closer look at each of the two latent state representations

in Figure 6.2 and look at their forum component (bottom right). We can see that the relative

probability of the forum activities is roughly the same between these states, but the transitions are

quite di�erent. In Figure 6.2a we have a relatively low probability of walking from the “forum

thread view” action back to the “forum thread list” action (see the bottom rightmost arc; transition

probability p ≈ 0.17), but in Figure 6.2b we actually observe a much stronger link in this direction

(transition probability p ≈ 0.63). This di�erence highlights an important distinction between these

two latent states: in the �rst you are more likely to visit the forum looking for a post, where in

the second you are more likely to visit the forum to browse existing posts. Thus, capturing the

action transition matrix within a latent state is important for capturing detailed insights involving

bigrams of actions.

We can also use our model for cross-course behavior analysis. In Figure 6.3 we show two

latent state representations learned by a 6-state 2L-HMM, one from textretrieval-001 and one

108



(a) A state from textretrieval-001. (b) A state from sustain-001.

Figure 6.3: Two similar example states found by the 6-state 2L-HMM.

from sustain-001. These two states were chosen as they are the most similar between the two

courses. However, if we look at the transitions we can see some important di�erences. First,

in the state from textretrieval-001, we can see that the probability of returning to the course

wiki after viewing a lecture (transition probability p ≈ 0.24) is considerably lower than that

probability in the state from sustain-001 (transition probability p ≈ 0.57). We also notice that

the self-loop for staying in a lecture activity in textretrieval-001 (transition probability p ≈ 0.70)

is signi�cantly higher probability than it is in the state from sustain-001 (transition probability

p ≈ 0.34). This gives us some insight into the lecture viewing behavior of students in these two

MOOCs which might re�ect the course’s structure (which, as demonstrated in Davis et al. [21],

can di�er substantially across di�erent MOOCs). In textretrieval-001, students are likely to view

lecture videos in succession directly without �rst visiting the course wiki, whereas in sustain-001

students are much more likely to �rst return the course wiki before watching the next lecture

video. This observation would be lost if we did not consider the transitions between the actions

within the latent states.

109



6.5.2 Varying the Number of Latent States

Our 2L-HMM model has a parameter K that sets the number of latent states to be learned. We

believe that this can allow our model to �exibly discover patterns of di�erent granularity, and

we can show this by varying K for a course and observing how the latent state representations

evolve.

In Figure 6.4 we see the evolution of the latent state representations found for the textretrieval-

001 MOOC. With K = 2 we uncover a video watching pattern (state 1) and a course material

browsing pattern (state 0). However, we can see that when K = 3 we can uncover a new pattern

involving forum behavior in state 3 (notice the node sizes on the bottom right). As we increase K

to four, we can see that state 1 splits into state 1 and state 3. These states appear quite similar

at a glance, but there are still some key di�erences. First, we can see that state 1 now has a

non-negligible forum component, whereas state 3 has hardly any weight on the forum.

We observe similar behavior in Figure 6.5 as we increase K when �tting our 2L-HMM on the

sustain-001 MOOC. Again, in the transition between K = 2 and K = 3, we discover forum behavior

patterns as a latent state. However, in the transition between K = 3 to K = 4, we instead see a

re�ning of that discovered forum state, where state 3 captures asymmetric transition probabilities

between “forum thread view” and “forum thread list”. These states could be seen as redundant, in

which case a setting of K = 3 may be more appropriate for the sustain-001 dataset.

6.5.3 Transitions Between Latent States

A unique property of our model is its ability to capture transitions between the behavior

patterns themselves that are captured by the latent states. In Figure 6.6a we show the latent state

transition diagram for a 4-state 2L-HMM �t on textretrieval-001. We can immediately observe

two things: (1) each latent state has a very high “staying” probability, and (2) the prevalence of

each latent state matches our intuition. In particular, we can see that the forum browsing state

(state 2) has relatively lower probability than the other states as we might expect. It also makes

sense that state 0 has a rather high probability as this state likely captures all sequences where a

110



State 0 (Wiki) State 1 (Lecture) State 2 (Thread View) State 3 (Lecture/Wiki)

Figure 6.4: The evolution of states for increasing K for the textretrieval-001 MOOC. Each row corresponds to the next value of K , starting from
K = 2. State “names” indicate the highest probability action(s) within the state.

111



State 0 (Wiki) State 1 (Lecture/Wiki) State 2 (Thread List) State 3 (Thread View)

Figure 6.5: The evolution of states for increasing K for the sustain-001 MOOC. Each row corresponds to the next value of K , starting from K = 2.
State “names” indicate the highest probability action(s) within a state.

112



(a) (b) (c)

Figure 6.6: The latent state transition diagrams for a 4-state 2L-HMM �t to textretrieval-001 for all stu-
dents (a) compared to only “perfect” students (b) and only “low” students (c).

student logged in to the platform and then did nothing else (likely checking for updates). If we

look at state 1 and state 3, their relative probabilities match our intuition as well. State 1 seems to

capture a more engaged browsing session, where there is non-negligible probability associated

with di�erent activities such as quiz taking and forum browsing and, importantly, these activities

have high probability symmetric edges (so students are taking quizzes one after the other, or

viewing forum threads in succession). By contrast, state 3 seems to capture a more passive student,

with negligible probability mass associated with forum activity (with low symmetry in the edges).

The link between “quiz submit” and “quiz start” (indicating quiz repetition) is also signi�cantly

lower than state 1.

Thus, we might expect to see students that perform well in the course preferring states 1 and

2 over states 0 and 3. To verify this, we took the model we learned on the full training data and

retro�t it to training data consisting only of sequences produced by students in textretrieval-001

that had perfect marks. To prevent the latent state meanings from drifting, we forced the model

parameters associated with their Markov model representations to be �xed, in e�ect only learning

initial and transition probabilities for the top layer of our 2L-HMM. We show the updated latent

state transition diagram in Figure 6.6b. We can clearly see that the probability of state 2 has

increased dramatically, consistent with previous observations of the positive correlation between

forum activity and grades [55], while the probability of states 0 and 3 has decreased. State 1 had

its probability increase, but only very slightly.

113



Table 6.2: Average rank for “perfect” and “low” student groups in the ranked lists associated with the
four latent states found by a 2L-HMM. † indicates statistically signi�cant di�erent mean ranks at p < 0.01
according to an unpaired t-test.

State 0 State 1† State 2† State 3 State 2→ 2†

Perfect 975.3 1001.5 999.0 1056.5 939.6
Low 1024.9 816.4 1230.5 1161.2 1187.4

† statistically signi�cant di�erence (p < 0.01)

In Figure 6.6c we plot the latent state transition diagram for a second group of “low” students.

These students were selected so that they attempted all required quizzes in the course, but such

that their average quiz score was ≤ 70%. Here, we see that state 1 has a large increase in size, where

we might have expected state 3 to grow instead. However, there is an alternative explanation

for this phenomenon. Since state 1 seems to indicate a highly engaged student, it is a perfectly

reasonable explanation for the “low” student group as they are going to be working hard to try

to �ll in the gaps in their knowledge. By contrast, the “perfect” student group likely has many

members who can take the quiz more passively and get perfect marks, perhaps because they

already know much of the material being presented, or are just naturally strong and do not require

much background review to perform well. This also explains why state 1 did not increase in size

for the “perfect” group like we were anticipating. Kizilcec et al. [67] observe similar phenomena

with the courses they studied where they �nd that certi�cate earning is negatively correlated with

help seeking behavior. Our model lends itself well to discovering this potentially counter-intuitive

insight directly from data.

To quantify this �nding, we perform the following experiment. First, we select all students

from textretrieval-001 who completed all of the quizzes Lq ⊂ L. This gives us 1,985 students along

with their average quiz score. We then create a ranked list of the students in Lq by sorting them

by their “preference” for a speci�c latent state

p`(i) =

∑T
t=1 γ

(o`)
t (i)∑K

j=1
∑T

t=1 γ
(o`)
t (j)

(6.11)

where o` is the list of action sequences for student ` and γ is de�ned as before and computed

114



using the Baum-Welch algorithm. We can now compare the average rank in this list for both

the “perfect” student group and the “low” student group: a useful state for distinguishing the

two groups should result in a ranked list with statistically signi�cant di�erences in average rank

between the two groups. Our results are summarized in Table 6.2. Indeed, we discover that states

1 and 2 are correlated with the “perfect” or “low” groups: state 1 ranks students in the “low” group

signi�cantly higher than those in the “perfect” group, and state 2 does the opposite and prefers

students in the “perfect” group to those in the “low” group.

Returning to Figure 6.6, we can also see a di�erence in the transitions between the latent states.

In particular, look at the transitions in Figure 6.6b and Figure 6.6c that leave state 2. In the “perfect”

group, nearly all this probability mass is allocated for the self-loop (p ≈ 0.93). In the “low” group,

this self-loop is less strong (p ≈ 0.80; most easily seen by noting that the edges leaving state 2 are

darker than for the “perfect” group). We can perform a similar experiment to above by producing

a ranked list of students ` ∈ Lq by their staying probability for state 2 (that is, given that a student

` is already in state 2, how likely are they to remain there in the next action sequence?). This can

be computed as

p`(2, 2) =
∑T−1

t=1 ξ
(o`)
t (2, 2)∑K

i=1
∑T−1

t=1 ξ
(o`)
t (2, i)

(6.12)

where ξ is de�ned as before and computed using the Baum-Welch algorithm. The last column

of Table 6.2 indicates that this transition feature also correlates with the achievement group and

results in signi�cant di�erences in mean rank.

6.6 Limitations and Potential Drawbacks

There are a few limitations of our model that are important to highlight. First, there are speci�c

technical limitations due to the statistical nature of the model and the particular methodology we

propose for �tting our model parameters. Second, there are limitations in the kinds of patterns

our model is able to discover in its current formulation and the ease with which instructors are

able to extract knowledge from these patterns. We discuss both lines below.

115



6.6.1 Technical Limitations and Implementation Challenges

One potential limitation is that the model is complex and has many parameters in order to

truly uncover the relevant patterns in the data. To properly estimate these parameters at training

time, a large amount of data must be available to the training algorithm. The assumption that

we have a large amount of sequence data available for training on should hold for most MOOC

courses, but this assumption may be problematic if attempting to apply our model to smaller

online (or on-campus) courses.

Our model �ts its parameters using maximum likelihood estimation using the EM algorithm.

The EM algorithm is a hill climbing algorithm that is optimizing in a highly non-convex parameter

space. Thus, it can only guarantee that we reach a local maximum in practice [23]. This may mean

that the parameters found for the model may not be the “best” parameters in a global sense, which

may lead to suboptimal latent state representations and transition patterns. Empirically, however,

we observed in our experiments that strong patterns tend to always show up if algorithm reaches

a reasonably good local maximum, and the di�erences of the results tend to be related to weak

“unstable” patterns which may not be reliable anyway. Since it is far more important and useful to

reveal the strong salient patterns than weak unreliable ones for instructors, the problem might

not necessarily a�ect the utility of the approach so signi�cantly. A commonly applied approach

to address the problem of multiple local maxima is to run the model multiple times with di�erent

starting points to allow the model to explore a larger portion of the parameter space. One can

then compare the log-likelihood of the data between the models that were started from di�erent

initialization points and select the one that has the highest value. This still does not guarantee

that we �nd a global maximum, but it does help alleviate the potential for �nding a particularly

bad local maximum. In practice, we have found that our model can be �t to the data quickly on

commodity hardware, so running it multiple times to address this concern is not computationally

unfeasible.

A further complication in blindly applying the EM algorithm to our model is the fact that

the observation probabilities will be incredibly small. The probability that a speci�c sequence is

116



generated by a speci�c Markov chain (one of our latent states) will decrease exponentially with

its length. While there are general approaches to avoiding numerical under�ow in hidden Markov

models, applying the “scaling” method proposed by Rabiner [105] will still result in numeric

stability issues in our case due to the incredibly small sequence-generation probabilities. We

address this in our open-source implementation by computing the trellises in log-space and using

the log-sum-exp trick when we need to take summations, which exploits the identity

log
n∑
i=1

exi = a + log
n∑
i=1

exi−a (6.13)

where a is typically set to maxi xi to improve stability. We did not encounter further stability

issues once we applied these two tricks.

As is the case with traditional hidden Markov models, it is often important to smooth the

underlying model’s distributions to ensure that there is a non-zero probability of generating the

observations. We employed a simple additive smoothing in our implementation with a small

additive constant (10−6) for all our transition matrices to avoid this problem.

6.6.2 Limitations of Discovered Patterns

The proposed behavior representation is most suitable for representing recurring behavior

patterns, which presumably are most interesting to extract from the data, but may not cover all the

interesting patterns in the data. It would be interesting to explore other complementary models

such as time series models, which may help capture non-recurring patterns.

Our proposed model is �exible in the patterns it can discover in two main ways. The �rst

is that the granularity of the patterns can be adjusted by changing the segmentation strategy

one uses to divide the user action stream into discrete “sessions.” The other is the number of

latent states K that are used to describe the segmented action sequences. One drawback of these

two lines of �exibility is that there is not necessarily a clear answer as to the “correct” approach

for both in any given scenario. Varying the segmentation strategy changes the granularity of

the patterns the latent states explain, which will change their meaning. Varying the number of

117



latent states increases the �exibility of the model, but also may result in latent states that are not

substantially di�erent from the other latent states and/or latent states with very low probability.

This �exibility forces a user of our model to make some assumptions about the patterns they wish

to �nd (granularity, diversity), and the model itself does not necessarily provide clear guidance as

to what the best approach is.

Furthermore, we have made an implicit assumption that the segmentation strategy is applied as

a pre-processing step (and is most obviously a deterministic process). The proposed segmentation

strategies in this chapter do not speci�cally allow for the transitioning between the di�erent latent

behavior patterns to occur over di�erent windows of time for di�erent users: we have made a

strong assumption that transitions between latent states only occur at action sequence boundaries.

One can model how much time a user stays in each state in terms of the number of sessions they

remain there before transitioning, but it may be better to directly model the amount of time we

expect a user to stay in the given state. In other words, a more powerful model might be one in

which the segmentation and the latent behavior pattern discovery are jointly modeled in a single

probabilistic framework rather than being separate pieces as we investigate in this work.

While the model can discover patterns in the data in a fully automated way, there is still clearly

a burden on the user of our model to interpret the patterns it has discovered to create actionable

knowledge about the MOOC from which the data was extracted. Extracting the patterns is a

necessary step towards the creation of knowledge, and we view our model as a component in

a collaborative system which leverages the machine to perform statistical modeling to extract

patterns which then enable a human actor to extract knowledge and take actions on the basis of the

data. The pattern discovery is an important and absolutely necessary component, without which

it would be very di�cult, if not impossible, for humans to directly digest the student behavior

buried in the large amount of data. Of course, pattern discovery is only a means to help humans

obtain knowledge, not the end of the knowledge discovery process.

118



6.7 Conclusions and Future Work

As a tool to help instructors and education researchers better understand the behavior of

MOOC students, we proposed a two-layer hidden Markov model to automatically extract student

activity patterns in the form of behavior state-transition graphs from large amounts of MOOC

log data. This model is di�erent from existing methods in that it treats behavior patterns as a

sequence of latent states, rather than assigning these states in a rule-based manner. It captures the

variable behaviors of students over time and allows analysis at di�erent levels of granularity.

We showed that such a model does, in fact, capture meaningful behavior patterns and produces

descriptions of these behavior patterns that are easy to interpret. We argued that it is important

to capture student behavior patterns with more sophisticated models than simple discrete distri-

butions over actions to capture information present in bigrams of actions (or larger sequences).

By varying the number of latent states inferred, we showed that the model is �exible and can

capture patterns of di�ering levels of speci�city in this way. Finally, we investigated whether we

can detect di�erences in student behavior patterns as they correlate with course performance.

Speci�cally, we demonstrated that high-performing students produce substantially di�erent HMM

transition diagrams that tend to show longer concentration span in quiz-taking and more active

forum participation as compared with the average students. These results show the great potential

of the proposed model for serving as a tool to help humans discover knowledge about student

behaviors.

There are a number of interesting directions to further extend our work in the future. First, the

proposed model is completely general and can thus be easily applied to analyze the log of many

other courses to enable deep understanding of student behaviors as well as the correlations of

such behaviors and other variables such as grades. To realize these bene�ts, it would be useful to

develop a MOOC log analysis system based on the proposed model to facilitate education research

and help instructors improve course design.

Second, our model can empower many new comparative analyses. For example, we could

now look at how behavior patterns change between di�erent o�erings of the same MOOC to

119



understand how changes in course structure or materials in�uence student behavior. Individual

students can now also be compared against each other or against groups. For example, by decoding

the latent state sequences for each student, we can measure how “surprising” their latent state

transition sequence is relative to the average we would expect according to the model, or to the

average “perfect” student, etc. We can now investigate how certain behavioral patterns correlate

with properties of a student (e.g., demographics, prior aptitude, etc.). After decoding the students’

latent state sequences, we could also correlate course-wide drifts in these latent states with events

in a course. For example, we might be able to automatically discover di�cult or confusing parts of

a course by noticing spikes in the distribution of students over latent states over time.

Third, there is more recent work on better learning algorithms for mixtures of Markov mod-

els [48]. It would be worth exploring whether the advances proposed in this and similar work can

be applied to our model to address some of the concerns surrounding our use of the EM algorithm

for our parameter estimation.

Finally, the proposed model can be extended in several ways. For example, although our model

does not explicitly model drop-out like Kizilcec et al. [66], doing so is an obvious extension. Our

model would be able to provide predictions of when a student is “at risk” for dropping out under

such an extension. Also, currently, the model learns a transition matrix over the latent states

that is shared across all students. It would be interesting to instead learn a di�erent latent state

transition matrix for each individual student, but keep the second-level Markov models shared.

This would provide the model with more �exibility which may be desirable itself, but would

also naturally result in a description of a student (via his or her HMM transitions) that could be

incorporated into existing supervised learning techniques that try to predict student outcomes for

understanding which of the latent behavior patterns discovered by 2L-HMM are most predictive

of the performance of student learning. One could also relax this somewhat and posit that groups

of students transition between the lower layer patterns identi�ed by our method in distinct ways;

this way, we can do a soft clustering of students into K2 groups based on the similarity of their

transitioning behavior between the higher-level behaviors we can identify.

120



The models presented in the previous chapter and this chapter are general tools that can be

used to provide an intelligent assistant to help instructors “see” patterns of student behavior that

they would otherwise be unable to due to the massive scale of the data. Being able to discover these

patterns organically from data can enable personalization through adaptation of instructional

strategies dynamically based on the discovered patterns. In order to perform this personalization,

however, these patterns need to be directly surfaced to instructors for interpretation to form an

action plan—the model itself is not enough if the instructor cannot easily use it. To that end, in

the next chapter we describe a novel tool that operationalizes the generative behavior modeling

techniques we have described thus far into an easy-to-use system for mining behavioral patterns.

This “closes the loop” in the sense that it provides an end-to-end system for behavior pattern

discovery that utilizes the models we have discussed thus far.

121



Chapter 7
Behavior Modeling: The Piazza
Educational Role Mining System

While many sophisticated behavior modeling techniques have been developed that have

potential to be applied to the educational domain (including those discussed in the previous

two chapters), all too often the techniques go underutilized due to the di�culty associated with

untrained instructors utilizing the research-quality code underpinning the models. Insights

into behavior data generated in large scale courses remain undiscovered due to the lack of an

easy-to-use interface for instructors to leverage these behavior models.

In this chapter, we detail an open-source web-based system called the Piazza Educational

Role Mining System (PERM) that we developed to enable the use of our MDMM behavior model

from Chapter 5 on Piazza1 forum data. Our system enables instructors of Piazza courses to easily

crawl their course to obtain every action that occurred on the forum. Once a course is crawled,

instructors can easily run many analyses using the MDMM behavior model while adjusting the

session gap length, the number of roles, and smoothing parameters �exibly through a web-based

form. Analyses provide instructors with insight into the common user behavior patterns (roles)

uncovered by plotting their action distributions in a browser. PERM enables instructors to perform

deep-dives into an individual role by viewing the concrete sessions that have been assigned a

speci�c role by the model, along with each session’s individual actions and associated content.

This allows instructors to �exibly combine data-driven statistical inference (through the MDMM

behavior model) with a qualitative understanding of the behavior within a role. Finally, PERM

develops a model of individual users as mixtures over the discovered roles, which instructors can

also deep-dive into to explore exactly what individual users were doing on the platform. The
1https://www.piazza.com

122

https://www.piazza.com


source code for PERM is available under the MIT license and is freely available on GitHub2.

7.1 Related Work

Because our MDMM behavior model maintains a strong analogy with statistical topic models

like LDA [10], it is important to understand the work that has been done to visualize statistical

topic models in the past. Under our analogy with models like LDA, a word is analogous to an

action, and a topic (a distribution over words) is analogous to a role (a distribution over actions).

Similarly, a document in LDA is analogous to a browsing session in the MDMM model, but

there are di�erences in how proportions are modeled. In LDA, topic proportions are modeled

for each document separately, meaning documents are mixtures over the topics found by the

model. By contrast, in the MDMM model individual sessions are assumed to have just a single

role, and role proportions are instead measured at some higher level. In the case of PERM, we

model role proportions for each user as opposed to each community because PERM takes a class-

speci�c analysis approach which is likely more aligned with an instructor’s use case scenario than

cross-course analysis might be.

Thus, it is reasonable to consider LDA visualization strategies as a starting point for developing

a usable visual system for analyzing the output of the MDMM behavior model. Many researchers

have attempted to tackle the problem of visualizing the output of statistical topic models, which

served as a strong inspiration for the MDMM behavior model. Early models for visualizing the

output of topic models like LDA took a very “topic-focused” approach and de-emphasized the

documents themselves [94, 39, 46].

Chaney and Blei [14] instead argued for a more visual approach and designed a visual web-

based topic browser that allows users to explore the topic-document space by exploring both

the topics themselves as well as the topic proportions within documents. The ability to explore

both “sides” of the topic model is an important property we wish to retain in any system that

allows the exploration of user behavior models as it allows for a mixture of statistical inference
2https://github.com/skystrife/piazza-roles

123

https://github.com/skystrife/piazza-roles


based pattern matching with qualitative human judgments, which is important for enhancing the

interpretability of the results.

Recent work in visualizing topic models has seen the development of new measures for topic

relevance or saliency [16, 112] in order to re-order the terms associated with a discovered topic

to make the topics more informative. In our case, because the action space available to users on

Piazza is much smaller than that of the vocabulary of a text corpus, we do not struggle as much

with �nding salient actions as traditional topic models do with �nding salient words.

Very recently, there has been work on developing web-based systems for understanding

behavior data in educational contexts. Fratamico et al. [36] developed a system called Tempr to

enable instructors to explore the data collected from an interactive online learning environment

(their case study was a physics virtual lab). Their system enabled instructors to form data-driven

hypotheses by associating actions from the user logs of the learning environment with learning

outcomes, and further to understand how those actions change over time for di�erent learners.

Our goal is to make a system that can similarly support such a “deep dive” into a system’s behavior

content, but to do so with the assistance of a particular statistical behavior model to help guide

these analyses3.

7.2 Behavior Modeling on Piazza

7.2.1 De�ning the Action Space

As discussed in Chapter 5, a prerequisite for employing the MDMM behavior model on a

new system is to de�ne the action space for that system. We start by understanding the content

hierarchy on Piazza, and we can de�ne the action space allowed to users by relating an individual

action with a piece of content in the hierarchy.

Piazza has three kinds of “root” content: questions, notes, and polls. Notes are like questions
3In our speci�c case, we do not have associated learning outcomes, but we feel that our system can enable

instructors to perform such analyses by combining the data we help visualize with their own private data about
student performance, for example.

124



question

students’ answer
instructors’ answer
followup*

feedback*

note or poll
followup*

feedback*

Figure 7.1: A visual representation of the content dependency on Piazza networks. A * indicates that there
can be arbitrarily many of that content type.

that do not require answers, and polls are like notes that have embedding polling. We will focus

on the question root content for describing content dependencies on Piazza because it has the

most possible child content types; without loss of generality, things that apply to questions (except

for answers) apply to notes and polls.

Three di�erent types of immediate children can be beneath a question on Piazza: the students’

answer, the instructors’ answer, and followups. A key di�erence between Piazza and other CQA

platforms is that on Piazza there is a single answer that all students can collaboratively edit, and

a single instructor answer that can be collaboratively edited by instructors, but not students.

Followup discussions (of which there can be arbitrarily many) nest beneath the root question and

serve as a commenting facility. Beneath followups can nest arbitrarily many “feedback” comments.

Figure 7.1 shows this content dependency for Piazza networks visually.

Finally, actions on Piazza can be performed anonymously to classmates or instructors. Unfor-

tunately, actions that are anonymous to instructors cannot be tied to a session by any particular

user, so these actions cannot be utilized by the behavior model. Actions that are anonymous to

only students, however, can be associated to user accounts by instructor-level users on Piazza.

Thus, for every action we consider in our action space, we will need two kinds: one for when the

action is performed non-anonymously (which we will use the “NAME” su�x to denote), and one

for when the action is performed anonymously (which we will use the “ANON” su�x to denote).

Posting anonymously to instructors is a setting that can be disabled for Piazza courses should

instructors wish to be able to run these models without discarding any user behavior data.

With the content dependency diagram in mind, we can begin to de�ne the action space for

125



our Piazza behavior modeling task. Each of these types of content can be created, so we de�ne

a “POST” action for each. For a root question content, then, we have actions “Q_POST_ANON”

and “Q_POST_NAME” to denote creation (“POST”) of a question (“Q”) (non-)anonymously. For

non-root content such as answers, we distinguish between an answer to a question belonging to

the user, or belonging to a di�erent user with actions such as “SR_POST_MQ_ANON” denoting a

post of a student answer (“SR” for student response) to their own question (“MQ”) anonymously.

Feedback actions can be distinguished in two ways: is the feedback comment on a followup owned

by the posting user (“MF”) or by a di�erent user (“OF”), and then is the root content (question,

note, or poll) owned by the posting user (e.g. “MQ”) or a di�erent user (e.g. “OQ”).

Piazza tracks edit histories for root content and instructor/student responses4, so “EDIT”

actions are de�ned for these content types. We distinguish between editing actions based on

the owner of the content that is being edited: “M” for content that is owned by the editor (“my”

content) or “O” for content that is owned by another user (“others’ content”), arriving at actions

such as “QUESTION_EDIT_MQ” for an edit action taking place on a question owned by that user.

For answer content, we further subdivide edit actions based on whether the answer is owned by

the editor (“MA”) or not (“OA”), and then by whether the root content was posted by the editor

(“MQ”) or not (“OQ”) to arrive at actions like “SR_EDIT_MA_OQ” for an edit action taking place

on an answer originally posted by this user (“MA”) to someone else’s question (“OQ”). Because

we are mostly interested in student behavior, we limit the number of action types for instructor

answers to just three: “IR_POST”, “IR_EDIT_MA”, and “IR_EDIT_MQ”.

The entire action space is summarized in Figure 7.2.

7.2.2 Modeling Role Proportions

In Chapter 5, our goal was to discover behavior pattern di�erences between the di�erent

websites using the StackExchange platform, so we used the MDMM to model role mixtures on

the basis of an entire community at once, and our training data was the entire collection of all
4They do not, however, track edits to followups or feedback comments.

126



Q

POST
NAME
ANON

EDIT
MQ

NAME
ANON

OQ

NAME
ANON

SR
POST

MQ

NAME
ANON

OQ

NAME
ANON

EDIT
MA

MQ

NAME
ANON

OQ

NAME
ANON

OA
MQ

NAME
ANON

OQ

NAME
ANON

IR
POST
EDIT

MA
OA

FOLLOWUP
MQ

NAME
ANON

OQ

NAME
ANON

FEEDBACK
MF

MQ

NAME
ANON

OQ

NAME
ANON

OF
MQ

NAME
ANON

OQ

NAME
ANON

Figure 7.2: A visual representation of the entire action space considered by PERM on Piazza. A full action
name is de�ned by joining the labels of the nodes with “_” while tracing a path from a root to a leaf. Notes
and polls are not shown as they are identical to questions from an action-space perspective.

127



StackExchange websites.

This is di�erent from our goal in PERM, where instructors are more likely to focus on an

individual course. Thus, we use a slightly di�erent setting for dividing the sessions for the MDMM

used in PERM: here, we group the sessions by users, rather than by communities. What this means

is that we will learn a separate MDMM for each Piazza course to be analyzed, and model each

user within a speci�c Piazza course as a mixture of course-speci�c action distributions (roles).

This further demonstrates the �exibility of the MDMM behavior model, as a simple regrouping of

sessions can allow the same model to be used for di�erent analysis purposes.

7.3 System Design

There are two distinct areas within PERM’s web-based user interface. The �rst is for performing

crawls of an instructor’s Piazza course data, and the second is for performing analyses. We discuss

both in detail below.

To log in to the entire PERM system, an instructor simply provides their Piazza user credentials.

For added security, PERM does not store these credentials in any database—they are simply used

to make a Piazza API call to authenticate the user against the Piazza API to obtain their list of

classes. All information about the Piazza login is stored client-side as a cookie in the browser:

PERM itself has no persistent storage of user credentials.

7.3.1 Crawling Interface

Once an instructor logs in to PERM, he/she is presented with a list of his/her classes, sorted

from most recent to least recent. Each course is shown with a badge that indicates whether the

course has already been crawled (blue), has not been crawled (grey), or is currently being crawled

(grey with progress percentage displayed). An example view is shown in Figure 7.3.

By clicking on a class from this list, the instructor navigates to the class view, where information

about the class itself and any existing analyses is presented. Figure 7.4 shows what this looks like

for a class that has not yet been crawled, and Figure 7.5 shows an example of a class that has been

128



Figure 7.3: The class list view of PERM. Here, an instructor is shown a list of all of his/her classes, along
with information about whether or not they have been crawled. If a course is currently being crawled,
the progress is reported in the list.

Figure 7.4: The class view for an uncrawled class. Instructors can initiate a crawl by clicking the “Start a
crawl” button; creating analyses is disabled until a course has been crawled.

crawled with analyses already created.

If a class has already been crawled, statistics about the crawl will be presented in the left hand

pane along with options to re-crawl the course and to create new analyses. If the course has not

yet been crawled, instructors must click “Start a crawl” to initiate a crawl for the course. If they do

so, they will see a form for starting the crawl, shown in Figure 7.6. If the course has already been

crawled, they will see a di�erent form for initiating a re-crawl of the course. Because an analysis is

tied to the data obtained by a crawl, re-crawling a course requires deleting all associated analyses.

If there were errors during the crawl, they will be displayed to the user on this page (see Figure 7.7

129



Figure 7.5: The class view for a crawled class. In the left pane, instructors can see statistics about the
crawl, can initiate a re-crawl of the course, or create a new analysis. Existing or in-progress analyses are
shown in the right pane, with information about their con�guration to allow for distinguishing between
di�erent analyses.

for an example).

When a crawl is created, the user is sent to a crawl progress page, shown in Figure 7.8. The

progress bar on this page updates in real time as the crawl progresses by using websockets. When

the crawl is completed, the bar turns green and a button to navigate to the course page is presented

so the user can then go on to create analyses.

7.3.2 Analysis Interface

Now we will discuss the analysis interface of PERM. There are four major components to

discuss: creating an analysis, viewing the summary results of an analysis, viewing a deep-dive

into a speci�c role, and viewing a deep-dive into a speci�c user.

Creating an Analysis

To create a new analylsis, an instructor can click the “Create a new analysis” link in the left

pane on a crawled course’s course page, as shown in Figure 7.5. This will present them with a form

to create a new analysis, which is demonstrated in Figure 7.9. Should there be errors associated

with the crawl, they are displayed to the user at the top of the page so they are immediately made

aware of any potential integrity issues with their analysis. If users posted using full anonymity,

the number of such actions that were dropped is displayed to the instructor so they can understand

130



Figure 7.6: The form for starting a new crawl. For technical reasons, the instructor must re-log in to
initiate the crawl—this allows for multiple crawls to be performed at once.

Figure 7.7: The form for re-starting a crawl. If there were errors with the crawl, they will be displayed to
the user here. Re-crawling a course requires the deletion of all associated analyses, so the user is warned
of this as well.

131



Figure 7.8: The crawling progress page. The progress bar updates in real-time during this potentially long
running background job by using websockets.

the extent of the data loss incurred by this feature. In our experience, this varies considerably

based on the course.

Every hyperparameter of the MDMM behavior model can be set before the analysis is created.

These are presented to the user with sensible defaults chosen automatically, and a detailed

description of the speci�c parameter given below the input form for selecting it.

Session gap length (hours): the maximum allowed time di�erence between subsequent

actions that can be seen before a new browsing session is assumed to have started

Number of roles: K in the MDMM model, the number of roles to discover

Number of iterations: the maximum iteration count for the sampler

Proportion smoothing: The amount of smoothing to apply to the user-speci�c role propor-

tion distributions

Role smoothing: The amount of smoothing to apply to the action distribution for each role

Once an analysis is created, the user is presented with another progress page (Figure 7.10)

where they can monitor the progress of the di�erent steps of the analysis: (1) session extraction,

(2) training data construction, (3) role inference, and (4) persisting results to the database. Once

an analysis has been completed, a button that directs the user to the analysis’ summary view is

displayed.

132



Figure 7.9: The form for creating a new analysis for a course on PERM. Errors encountered during the
crawl are shown again to the user here to make them aware of any potential data loss. If students per-
formed actions using full anonymity, the number of actions that had to be dropped is displayed to the
instructor so they canmake an informed decision about potential integrity issues with their analysis. All
relevant parameters for running an MDMM are presented in the analysis form, with sensible defaults
presented automatically.

133



Figure 7.10: The view of an in-progress analysis. Progress bars for each of the four phases of the analysis
are updated in real-time using websockets.

Summary View

In the summary view, the instructor is presented with a display of the parameters used for the

analysis, and a set of summary statistics about the sessions that were extracted for the analysis.

Below that, each of the K roles that were discovered by the MDMM behavior model are displayed

as bar charts. The extents of each of the charts on the page is �xed to be the same so as to enable

comparative analysis between the roles on this page. Actions are only displayed in the bar chart

for each role if the probability of that action is more than 0.001 to reduce wasted whitespace

and increase the information density of the charts. Because of the large action space associated

with the Piazza analysis, action names are associated with a tooltip that provides a plain Engish

description of what the action type means. Individual bars have a tooltip indicating the exact

numerical value of each.

The percentage of sessions in the analysis that were assigned to a speci�c role is displayed in

the header for that role. On the right is a button that directs the user to the “deep-dive” page for a

speci�c role.

134



Figure 7.11: The summary view for a completed analysis. At the top, the parameters for the analysis and
a number of statistics about the sessions that were extracted for it are displayed. Beneath, each role is
plotted using d3 as a bar chart; careful attention has been paid to ensure that the extents of each of the
plotted role distributions are the same to enable comparison between roles on this page (only one role
is shown in the screenshot for brevity). Only actions with greater than 0.001 probability are shown to
increase the information density of the plot by eliminating whitespace from unused actions.

135



Figure 7.12: The list of the top users associated with a particular role appears on the role’s deep-dive page.
The table can be sorted according to the di�erent columns, and links are provided to individual users’
deep-dive pages. (The user ids in this image are faked for anonymity.)

Role Deep-dive

At the top of the role deep-dive page, the role is again plotted as a bar chart as a visual reminder

of the role being investigated. Below that is a list of the users that the sampler identi�ed as having

the highest posterior probability of exhibiting that role, shown in Figure 7.12. From this table, an

instructor can navigate to an individual user’s deep-dive page.

Below the top users section is a list of all sessions that were assigned to this particular role

by the sampler. These are ordered so that sessions from users with higher estimated posterior

probabilities of exhibiting this role appear �rst. By clicking on a particular session, a box expands

to show all actions in that session (again with tooltips to explain their meaning in plain English).

Each individual action is associated with the content that was created/changed by that action,

which can be viewed by clicking on the action’s button. This allows instructors to do a �ne-grained

exploration of their course’s data, guided by the output of the MDMM behavior model. An example

136



of this view is given in Figure 7.13. Each session is associated with a user, and a link is provided to

launch the user-speci�c deep-dive view.

User Deep-dive

The �nal analysis view is the user deep-dive page, shown in Figure 7.14. Here, an instructor

can inspect a particular user’s mixing distribution over the K roles discovered by the MDMM.

Below that is a similar session listing to the one displayed on the role deep-dive page. Here, the

sessions are all ones created by this user, and each is shown with its associated role as assigned by

the sampler. Like the role deep-dive page, the sessions can be individually expanded, and within

each session the content associated with an action can be displayed by clicking on an action’s

button.

7.4 System Implementation

The source code for PERM is publicly available on GitHub5 and is licensed under the MIT

license. The web application itself is written using the Flask framework6 in Python, with the front-

end designed using Bootstrap7 and plotting facilities covered by d38. The MDMM behavior model

is implemented in C++ using the pybind11 Python binding library9 and the MeTA toolkit [86] as a

support library. The interface with Piazza is accomplished using a slightly customized version of

a reverse-engineered implementation of the Piazza internal API in Python10.

There are two long-running task types that need to be facilitated by PERM: one for crawling,

and one for running analyses. To accomplish this, we use the Python celery task queue library11

to run these jobs in the background o� of the main web application server process. Job progress is
5https://github.com/skystrife/piazza-roles
6http://flask.pocoo.org/
7https://getbootstrap.com
8https://d3js.org
9https://github.com/pybind/pybind11

10https://github.com/skystrife/piazza-api is our modi�ed fork of the original at https://github.com/
hfaran/piazza-api

11http://celeryproject.org

137

https://github.com/skystrife/piazza-roles
http://flask.pocoo.org/
https://getbootstrap.com
https://d3js.org
https://github.com/pybind/pybind11
https://github.com/skystrife/piazza-api
https://github.com/hfaran/piazza-api
https://github.com/hfaran/piazza-api
http://celeryproject.org


Figure 7.13: The list of all sessions assigned to a particular role by the sampler as it appears on the role’s
deep-dive page. Each session can be expanded by clicking on it; each session’s actions appear as buttons
that can be clicked to reveal the content associated with each action. Tooltips are used to provide plain
English explanations of each action type.

Figure 7.14: The user deep-dive page displayed when an instructor clicks a link to a user page. At the top,
the user’s mixing distribution over the discovered roles is displayed, and at the bottom is a list of all of
their sessions and the role that session was given by the sampler.

138



communicated using a combination of Redis12 and websockets13 so that users of PERM can be

updated in real time as their crawls and analyses progress.

To make deployment of PERM as simple as possible, it is bundled with integration with Docker

Compose14. This allows all of the individual services associated with an instance of PERM to be

launched in a reproducible way by leveraging Docker containers. We hope that this will make

adoption of PERM signi�cantly easier.

7.5 Limitations and Future Work

There are some important limitations still present in PERM that should be addressed. First,

because we are captive to the system we are analyzing, we cannot do anything to address the issue

of fully anonymous user posting—this information is irreparably lost by our crawler. Fortunately,

should instructors so desire, the feature can be disabled in a Piazza’s course settings, and anecdotally

we have found disabling this setting is popular among instructors of large courses.

Second, because PERM uses the MDMM behavior model and not the 2L-HMM discussed in

Chapter 6, temporal behavior patterns are not explored here. In the future, we would like to

extend PERM to support analyses using the 2L-HMM, as there is nothing technically preventing

the deployment of the more sophisticated model in this setting.

Finally, PERM should be extended to be “*ERM” to support educational role mining as a general

task on many di�erent educational platforms. Doing so is challenging, however, due to the vast

array of educational platforms in use today and their often disparate data formats. Nevertheless,

we believe it to be an important future direction to pursue to maximize the potential impact of

these behavioral models for instructors.

12https://redis.io
13https://flask-socketio.readthedocs.io/en/latest/ as a backend, https://socket.io for the frontend
14https://docs.docker.com/compose/

139

https://redis.io
https://flask-socketio.readthedocs.io/en/latest/
https://socket.io
https://docs.docker.com/compose/


Chapter 8
Conclusions and Future Work

8.1 Introduction

In this thesis, we addressed the quality-scalability trade-o�—a phenomenon whereby traditional

educational methods are often forced to sacri�ce quality for scalability—by applying advanced

computational techniques to both scale traditionally non-scalable educational experiences as

well as to begin the process of extracting quality from scale through user behavior modeling.

Addressing this trade-o� is one of the most important challenges we must face as we attempt to

provide high quality, scalable education for all people. If left unaddressed, the quality-scalability

trade-o� will ensure that we continue to provide truly high quality education to only a very

privileged few, while highly scalable online education is permanently relegated to a lower quality

“one-size-�ts-all” model by necessity. This thesis represents a small step towards a greater vision—

one where machine learning, data mining, and other advanced computational techniques are

uniquely leveraged to change, improve, and even create brand new educational experiences that

break free of the scalability challenges faced by traditional education and provide high quality

educational experiences at massive scale.

Speci�cally, in Chapters 3 and 4 we address the problem of scaling traditional experiences—

how can we take an educational experience that currently works well (that is, it has high quality)

but is only feasible for low scale scenarios and leverage computational techniques to break the

scalability barrier? By contrast, in Chapters 5–7 we focus on extracting quality from scale by

presenting the �rst steps towards understanding user behavior patterns in large-scale educational

contexts with an eye towards providing the ground work for personalization on the basis of those

discovered behavior patterns. These two perspectives together move us in a direction where we

do not have to sacri�ce quality to scale, and moreover where scale in and of itself can help us

140



achieve higher quality than could be attainable traditionally. All of the models and techniques

employed in this thesis are available as liberally licensed open source software.1 We hope that

this can help with reproducing our results as well as providing a springboard for future research

that extends or improves upon the work presented in this thesis.

The remainder of this chapter is structured as follows. In Section 8.2 we summarize the

concrete contributions of our research. In Section 8.3 we discuss potential improvements to the

techniques and models we have proposed in this research. Finally, in Section 8.4 we discuss

promising directions for future work in the general area of high quality, scalable education that

are inspired by the work conducted in this thesis.

8.2 Research Summary

The work in this thesis can be separated into two groups: automated assessment, which focuses

on scaling up high quality educational experiences that can only currently be o�ered at low scale,

and behavior modeling, which focuses on taking the �rst steps towards extracting quality from

large scale educational environments by leveraging the rich interaction log data collected on such

platforms.

8.2.1 Automated Assessment: Scaling Existing Experiences

To help scale educational experiences, in Chapter 3 we conducted the �rst study of utilizing

machine learning techniques for automated assessment of more a complex form of assignment

designed to teach critical thinking through a case study in the domain of veterinary medicine. We

described three classes of features that can be readily extracted from assignments of this outline-

based form: (1) token features, (2) similarity features, and (3) selection features. This feasibility

study informed a re-framing of automated grading tasks in this and other domains from that of

an ordinal regression problem to instead a ranking problem. This reformulation allowed for the

development of a sensible solution that optimizes machine-instructor interactions by leveraging
1Please see the related chapters for speci�c links.

141



an active learning-to-rank approach for automated grading to ensure that the instructor grading

e�ort undertaken for training such a model provides the largest bene�t to its overall quality. We

further discussed how to best evaluate grading systems under this reformulation, suggesting that

the NDPM evaluation metric may make the most sense in such contexts due to its robustness in

the presence of ties. The reformulation technique we described in this chapter shows promise for

allowing the use of more complex assignments to teach critical thinking to veterinary medicine

students at much larger scale than what was previously attainable, and we believe that these

insights should generalize well to other domains.

In Chapter 4, we developed and deployed a Cloud-based Lab for Data Science (CLaDS) for

delivering hands-on assignments on real-world data sets for the domain of data science education.

CLaDS provides a general solution for “big data” education at massive scale that does not fall

prey to the typical “toy data” compromise utilized by most assignments of this type today. Indeed,

CLaDS provides a general infrastructure to enable any instructor to conveniently deliver any

hands-on data science assignment using large real-world data sets to thousands of learners at

a minimal overall cost. Our deployment of CLaDS at UIUC for providing seven major text

data assignments for students in multiple courses spanning online and on-campus achieved an

amortized cost per student of just $7.40 (USD).

8.2.2 Behavior Modeling: Extracting Quality From Scale

As a �rst step towards enabling large-scale adaptive education, we explored the domain of

probabilistic user behavior models. Understanding user behavior is essential for being able to

improve quality—after all, any attempt to provide adaptivity or personalization must have some

basis for the changes based on such a behavioral understanding of the learner. In general, we

focused on addressing the problem of understanding user behavior in large-scale educational

environments rather than simply capturing it; as a result we designed models whose output can be

readily understood by instructors. By focusing on probabilistic generative user behavior models,

we ensured that the desired behavioral pattern output took the form of intuitive probability

142



distributions that are directly inferred from the data (bypassing practitioner bias in the pattern

discovery) in a principled way by appealing to scalable statistical inference techniques. The

models we proposed were applied to educational data, but are themselves general and thus can be

potentially used in a variety of di�erent application scenarios beyond just the educational domain.

In Chapter 5 we proposed the MDMM behavior model to allow for action-based role discovery

on CQA networks. Through applying this model to all available StackExchange websites, we

discovered distinctions within CQA communities in question-asking behavior (where two distinct

types of askers can be identi�ed) and answering behavior (where two distinct roles surrounding

answers emerge). Second, we found statistically signi�cant di�erences in behavior compositions

across topical groups of communities on StackExchange, and that those groups that had statistically

signi�cant di�erences in health metrics also had statistically signi�cant di�erences in behavior

compositions, suggesting a relationship between behavior composition and health. Furthermore,

we showed that if one instead were to cluster communities based on behavior composition vectors

alone, the clusters discovered have interesting topical di�erences as well as statistically signi�cant

di�erences in mean health, suggesting that the model can both be used to analyze ad-hoc groupings

of communities as well as provide a data-driven way to derive sensible community groups. Finally,

we showed that the MDMM behavior model can be used to demonstrate similar but distinct

evolutionary patterns between topical groups.

In Chapter 6, we proposed a student behavior representation capable of capturing temporal

user behavior patterns and an unsupervised model capable of capturing such temporal patterns

from clickstream data available from most online educational platforms. Such a model allowed

for the direct modeling of the ordering of actions within a user browsing session (which can be

informative for understanding the meaning of a behavior pattern in an educational setting) as

well as for explicit modeling of transitioning behavior between behavior patterns (i.e., behavior

trajectories), giving an orthogonal temporal perspective compared to the MDMM behavior model.

Speci�cally, we proposed the use of a two-layer hidden Markov model (2L-HMM) to extract

our desired behavior representation, and showed that patterns extracted by such a 2L-HMM are

143



interpretable, meaningful, and unique. We demonstrated that features extracted from a trained

2L-HMM can be shown to correlate with educational outcomes.

In Chapter 7, we demonstrated the great potential for the development of applications of our

models by developing the Piazza Educational Role Mining (PERM) system to enable instructors to

leverage the MDMM behavior model to discover user behavior patterns in Piazza course data. Our

system provides instructors with an easy-to-use web-based user interface for both crawling Piazza

courses and running subsequent MDMM behavior analyses on them. Analyses provide instructors

with insight into the common user behavior patterns (roles) uncovered by plotting their action

distributions in a browser. PERM enables instructors to perform deep-dives into an individual

role by viewing the concrete sessions that have been assigned a speci�c role by the model, along

with each session’s individual actions and associated content. This allows instructors to �exibly

combine data-driven statistical inference (through the MDMM behavior model) with a qualitative

understanding of the behavior within a role. Finally, PERM develops a model of individual users

as mixtures over the discovered roles, which instructors can also deep-dive into to explore exactly

what individual users were doing on the platform.

8.3 Potential Improvements

There are a number of models, techniques, and systems described in this thesis, all of which

have a number of potential future directions for improving upon the existing work. We discuss

what we feel are the most promising in this section.

8.3.1 Automated Assessment of Complex Assignments

Our case study in Chapter 3 was in a very narrow domain, but we focused on ensuring

that our features and results were presented at a very general level that could be replicated for

many di�erent domains that may share a similar assignment structure. That being said, if we

were to attempt to completely “solve” the problem of automated assessment for the veterinary

medicine domain (or any other speci�c domain), there is great room for the development of much

144



more domain-speci�c feature types that can better capture the institutional knowledge that the

assignment is attempting to test and convey to the students. Much of this work would, by necessity,

be very domain speci�c, and unlikely to generalize across all kinds of assignments. However, this

raises an interesting question about the generalizability of di�erent feature sets across domains:

how similar must some other domain be for the features designed for one to be applicable to the

other?

In our study, we also used a relatively rudimentary machine learning model in the end: a linear

support vector machine (SVM). There have been many advances in machine learning, particularly

in the area of deep learning and representation learning, that could be applicable to this problem

and may have the potential to outperform a simple SVM with hand-crafted features. It is worth

exploring the degree to which more complex models themselves can improve performance on the

problem even with the same inputs. To what degree does the active learning-to-rank formulation

apply to much more complex models?

Finally, our proposed technique requires more e�ort in order to be actively deployed in a

real-world setting. Understanding the optimal way of presenting the material to be judged to

individual annotators is crucial for such a system to be e�ective. How can the user interface allow

the instructor to know when to stop? How should a revision to the ranked list be visualized upon

a labeled example? How might this interface interact with student annotators by, for example,

estimating annotation correctness con�dence intervals for individuals? These are all important

questions that would need to be explored for such a system to have maximal real-world impact.

All of these questions are able to be explored immediately by adapting, extending, and building

systems that leverage the techniques discussed in Chapter 3.

8.3.2 Cloud-based Labs for Data Science

In Chapter 4, CLaDS was deployed and used for several courses at UIUC, though these all were

in the information retrieval and text mining domains. CLaDS is general, however, and should

be applicable for a wide variety of machine learning, data mining, data visualization, and other

145



domains within the broader scope of data science. By o�ering CLaDS as open-source software,

we hope that others will be encouraged to utilize the system and develop new assignments for it

in di�erent domains of data science to maximize its impact. What’s more, we believe that CLaDS

as an architecture could be useful for not only data science, but computer science education in

general, and are hopeful that assignments teaching core computer science can be developed as

well. The system can also be generalized to be used for supporting privacy-preserving big data

research on data sets that are required to be protected, though some con�guration changes and

security hardening would be required to provide hard privacy guarantees. CLaDS could also be

extended to be leveraged for providing shared tasks, where the leaderboard accompanied with

the exact source code used to generate the results for a speci�c leaderboard entry can lead to

much more readily reproducible results on common shared task datasets and improve researcher

productivity.

In terms of the system itself, CLaDS’s main pitfall is that of latency. Minimizing cost often

results in there being no available build machines at the time of a student’s code submission,

resulting in a noticeable delay before their code is run to produce the output or update the

leaderboard as the system must �rst create and properly initialize a build worker virtual machine.

This problem is shared, in general, by distributed systems that attempt to employ some form of

auto-scaling: there is always some amount of latency incurred by the scaling if it is reactionary.

However, non-reactionary scaling is not as cost-e�ective. Thus, an interesting direction to extend

CLaDS would be to investigate how latency can be minimized through architectural changes. For

example, a single larger build machine might be shareable across a few students, if certain security

guarantees can be provided. This may cause a single machine to be leveraged more frequently

and reduce the number of machines that need to be spawned overall, which can improve latency.

The scaling algorithm could be incorporated with a predictive algorithm to estimate when more

machines will be necessary. As we saw in our deployment, demand for build jobs spikes predictably

around deadlines, so a simple solution might be to provide a setting for instructors to specify

assignment deadline dates and leverage that information to preemptively scale the build worker

146



cluster to meet demand as it arrives, rather than taking some time to react to the increase �rst.

Because CLaDS is built entirely with open source software, all of these directions can be

immediately explored.

8.3.3 Behavior Modeling

In Chapters 5–7, we discussed two di�erent probabilistic generative user behavior models,

and one concrete analysis application built using such models. These kinds of models, at least as

presented here, have some �aws that could be addressed in future extensions.

Being entirely data-driven can be an advantage when wanting to discover potentially surprising

roles or behavior patterns, but may also result in the model not discovering what a system provider

may expect it to �nd. In such a case, the ability for the system provider to utilize the model for

comparisons may be inhibited. Fortunately, such models can be readily adapted to these sorts

of expectations through the careful utilization of prior distributions placed upon the parameters

that need “guiding” towards a particular desired outcome. Designing an intuitive way for users of

these models to specify these expectations and transform those into appropriate prior distribution

speci�cations is an interesting extension of these models that may improve their utility.

The models discussed in this thesis will generally �nd patterns that have high “support” in the

data—that is, they will likely �nd behavior patterns or roles that are exhibited the most frequently

in the collection of behavior logs. This may be desirable when trying to understand user behavior

in a general sense, as is the case in the problems we investigated in this thesis, but it may be a

detriment when one wishes to model more rare behaviors. These, too, may be interesting, but are

much harder to properly discover. There has been work in the topic modeling sub-domain of text

mining that focuses on addressing skew and bias in topic discovery—this work, when brought

to bear on behavior data, should be an improvement that allows these model to �nd more rare

behaviors than they can now.

The PERM system discussed in Chapter 7 can be easily extended and improved in a number of

ways. The �rst, most obvious extension would be to add support for the 2L-HMM discussed in

147



Chapter 6—the database of actions in PERM itself should be su�cient for creating the temporal

training data needed for utilizing such a model. Additionally, analyses in the system are currently

treated as entirely standalone, but it is reasonable to expect there to be recurring patterns between

courses, or across years for the same course. Allowing instructors to “name” the roles discovered

by the model can potentially enable a crowd-sourced role annotation engine to be developed.

Similar action distributions can be discovered in the existing database and suggested names for a

new action distribution can be presented to ease the interpretability of the results for a new class.

Finally, there remains work to be done to convert the knowledge discovered by such statistical

behavior pattern mining methods like the MDMM behavior model or the 2L-HMM into an action

plan for instructors to make changes to their courses. How can we provide these kinds of insights

to instructors in real-time so they can course-correct in their own classes? A sort of “meta-analysis”

approach, where information from multiple classes is combined in order to make some assessment

about the current running class, might be promising in order to deliver actionable insights on the

basis of these patterns. Imagine, for example, a system that could notify instructors about the

speci�c di�erences in behavior between the current class and some previous one. This could allow

instructors to adapt to a di�erence in the behavioral composition of the learner body compared to

a prior course o�ering. Another potential angle would be to monitor the “expected” behavioral

makeup of users within a class (either based on previous o�erings or based on other similar

courses), and provide diagnostic information to instructors on a week-to-week basis if and when

that behavioral expectation shifts outside of a speci�c range. This could allow, for example,

early detection of students suddenly adopting maladaptive behaviors to allow for an instructor

intervention to improve, for example, study habits or peer communication patterns.

8.4 Future Work and Open Problems

There are a number of promising directions for future work that are opened or suggested

by the research presented in this thesis that are not immediate extensions or improvements to

existing models or techniques discussed therein. We conclude this thesis with a brief discussion

148



of some of the most interesting and challenging of these open questions.

8.4.1 Generalizable Machine-learned Notions of Critical Thinking

In Chapter 3, we attempted to narrowly solve a problem related to assessing critical thinking

capabilities of individuals in the speci�c domain of veterinary medicine. However, this study raises

a number of interesting, open questions surrounding the automated assessment of domain-speci�c

critical thinking ability in general. While there are many results surrounding assessments for

general critical thinking (typically through some form of standardized test), it is not clear exactly

how to generalize these results to very domain-speci�c situations like medicine or engineering.

We feel the notion of allowing students to demonstrate critical thinking capabilities through

in-domain exercises that mirror the real-world scenarios they will experience in their careers

is a good one—the computational question is whether (and if so, how) one can identify concrete

demonstrations of critical thinking in student generated output. If the output is free text, this

problem can be thought of as a sentence or phrase-level coding task, but again this raises questions

about what optimal features might look like for capturing these demonstrations in a general way.

Can these features generalize outside of their domain? If so, how far?

If the output is not constrained to be free text, this raises another interesting computational

question: what might be the “optimal form” for the output of a critical thinking assessment that can

be most useful from the perspective of a computational assessment of that thinking strategy? Is

this a graph? A tree? Are the nodes and edges typed? Can one compute the “optimality” of such an

argumentation construction? These are interesting questions because they take a vastly di�erent

perspective on the assignment—rather than designing them to be gradable by a human instructor,

how can assignments be designed to be more amenable to machine grading in general? That is,

rather than trying to solve the two problems of divining a “critical thinking representation” directly

from free text, and then trying to develop a model to “grade” that representation, what if we

instead tried to get the learners themselves to specify the desired “critical thinking representation”

and then directly use that for assessment?

149



Assessing domain-speci�c critical thinking, in general, is incredibly important and still largely

remains unsolved, especially not in a highly scalable way. Our work in Chapter 3 is a baby step in

this direction, but there are many more exciting problems that remain to be solved.

8.4.2 Automated Feedback vs. Automated Assessment

A recurring theme in our discussion of scaling educational experiences via semi-automated

assessment frameworks is that of the distinction between assessment and feedback. In automated

assessment, our assumed goal is simply to provide a score (or a grade) to a particular assignment

or student. However, this is ultimately an incomplete picture for a learner—a score alone is not

a roadmap for how to improve. Imagine if our peer reviewing system was only an assessment.

At the end of a long submission review process, your only response from the review committee

would be a series of numbers! How could you improve the research on that basis alone? It should

be clear, then, that mere assessment is insu�cient for claiming that we have solved the scalability

challenge for providing an assignment. Rather, we should instead aim for providing automated or

semi-automated feedback—the reviewer comments in the research paper analogy.

How do we solve the feedback problem? This is an incredibly di�cult challenge, as doing so

entirely automatically would seem to imply designing a general intelligence system, for under-

standing not only the score of an assignment but also providing a dialogue about how to improve

would require a much deeper understanding of language than computers currently are capable of.

However, there is still hope for performing feedback in a semi-automated way. One of the pitfalls

with peer grading is calibrating their score output, but what if we already trust the score output

for an automated assessment system? We could then treat the problem as a crowd-sourcing issue:

can individual students, given the output of a machine learning powered grading system, generate

feedback that is consistent with the predicted scores? How does this compare with having peers

grade from scratch? Can the machine learning grading system be leveraged to provide “hints” to

the student feedback providers about where to focus their attention? What would an end-to-end

system for this feedback solicitation look like?

150



It seems di�cult, but there may be reason to believe that a machine could identify “generalizable”

comments on old assignments that could be applicable to new assignments that are similar in

speci�c ways. This would require work to identify what a “generalizable” comment looks like

(for example, it should not mention a speci�c passage in the text, paragraph numbers, etc.) and

whether it applies to a new assignment. This may involve intelligently linking comments directly

back to the text to which they refer. Could such data be crowd-sourced through a peer reviewing

process? Imagine if students were required to select the text that their individual comments refer

to (ranging in length from entire paragraphs and sections to individual words or phrases)—could

a machine learn to do this linking of comments to passages? In this case, comments from old

assignments could be fed through this machine learning based linking application, and then

selected for an assignment if the linking probability with some passage in the new assignment

exceeds some threshold.

While this problem may at �rst seem insurmountable, it seems clear to me that there are a

number of potential directions one could take to begin solving this highly important problem.

8.4.3 Psychology-in�uenced Models of User Behavior

The models discussed in Chapters 5–7 are all based upon statistical pattern recognition in

order to de�ne user behavior types or categories of behavior. This is a reasonable place to start in

order to describe what is actually occurring in the data in terms of statistical patterns, but what

they lack is a more theoretical approach to behavior understanding.

There are a few interesting questions one could ask here. How can we understand a student’s

state of mind, in a psychological sense, on the basis of a statistical user behavior model? Is such a

thing possible, or does it warrant the design of entirely new models on the basis of theories from

(educational) psychology? How does one apply an (educational) psychology theory of behavior or

learning to design a computational model for mining that behavior? This is a rich, and relatively

unexplored, area of research that ought to be able to provide much deeper and nuanced insights

into behavior in online learning environments than what is currently possible with the purely

151



statistical machine learning techniques that have been most popularly applied in this context.

What’s more, it may be the case that we can actually work together with (educational) psy-

chologists to develop entirely new theories of behavior or models of that behavior. After all, these

platforms provide such a rich collection of behavioral data that could not have been collected

before (or, at the very least, not at the same scale)—this should allow researchers to con�rm or

improve existing theories, or design and test brand new theories of behavior of learners in certain

contexts. In a sense, these online learning environments can allow machine learning and psychol-

ogy research to mutually enhance one another and develop deeper, and—critically—reproducible

understandings of user behavior.

8.4.4 Real-time Adaptive MOOCs

While Chapters 5–7 begin to provide tool for developing an understanding of user behavior

in large-scale educational environments, they do not yet suggest directly how to personalize the

educational environment. Certainly such decisions will hinge upon a deep understanding of

behavior and its relation to di�erent metrics of success, but optimizing when and how to adapt a

course is an interesting general and mostly unsolved challenge. While there has been some work

toward adaptivity in the MOOC setting (see for example Pardos et al. [99]), it has largely been

shallow and not on the basis of individual behavior patterns.

Here is an example of a potential challenge for adaptive MOOCs. Suppose we have a behavior

pattern that we know correlates with better success than some other similar, but slightly di�erent

pattern. Suppose, furthermore, that we have demonstrated reason to believe that this in�uence

is causal through some other lab experiment. How do you get people to change their behavior

from the lower-success pattern to the higher-success pattern? What should that intervention look

like? Which learners should see that intervention, and when? How, ethically, do we provide some

guarantees that there is no harm in�icted by the intervention upon the students who see it (or

who do not see it)?

Another challenge: suppose we are able to, through some behavior model, estimate the

152



probability that a user has a speci�c intent when taking a MOOC (e.g., some people intend to take

it like a regular course, whereas others may treat it more like a PBS special). When should we

alter the course material to compensate for these di�erent user intents? Should we at all? How

do we alter the course, and who does the work of that content adaptation? Again, how do we

perform this adaptation and ethically guarantee no harm is being in�icted by the adaptation (or

the lack thereof) for di�erent users?

A further complication: how do we do all of these things at the scale of millions of learners?

It should be immediately apparent that even if we had completely solved the behavior modeling

problem and related problems surrounding prediction on the basis of these behavior represen-

tations, we would not immediately be in a position to actively begin improving the educational

experience for millions of users at once. There are many serious challenges that need to be

addressed for these models to have maximal impact that span from the computational to the

sociological—all of which are equally important as they are all challenges that must be solved in

order to achieve the vision of perfectly adaptive online education at massive scale.

153



References
[1] Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman. Knowledge sharing and

yahoo answers: Everyone knows something. In Proc. WWW, WWW ’08, pages 665–674,
2008.

[2] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan. Automated grading of dfa
constructions. In Proc. IJCAI, IJCAI, pages 1976–1982, 2013.

[3] Gianni Amati and Cornelis Joost Van Rijsbergen. Probabilistic models of information
retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst.,
20(4):357–389, October 2002. ISSN 1046-8188. doi: 10.1145/582415.582416. URL http:
//doi.acm.org/10.1145/582415.582416.

[4] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. Discovering
value from community activity on focused question answering sites: A case study of stack
over�ow. In Proc. KDD, KDD ’12, pages 850–858, 2012. ISBN 978-1-4503-1462-6.

[5] Ryan S. J. d. Baker, Albert T. Corbett, and Vincent Aleven. More accurate student modeling
through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing.
In B. Woolf, E. Aïmeur, R. Nkambou, and S. Lajoie, editors, Proceedings of the 9th International
Conference on Intelligent Tutoring Systems, ITS 2008, pages 406–415, June 2008. ISBN 978-3-
540-69132-7.

[6] S. P. Balfour. Assessing writing in MOOCs: Automated essay scoring and calibrated peer
review. Research and Practice in Assessment, 8(1):40–48, 2013.

[7] Vladimir D. Barash, Marc Smith, Lise Getoor, and Howard T. Welser. Distinguishing
knowledge vs social capital in social media with roles and context. In Proceedings of the
Third International AAAI Conference on Weblogs and Social Media, 2009.

[8] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0-201-61641-6.

[9] Fabrício Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virgílio Almeida. Characterizing
user behavior in online social networks. In Proc. IMC, IMC ’09, pages 49–62, 2009. ISBN
978-1-60558-771-4.

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.

[11] M. Brooks, S. Basu, C. Jacobs, and L. Vanderwende. Divide and correct: Using clusters to
grade short answers at scale. In ACM L@S, pages 89–98, 2014. ISBN 978-1-4503-2669-8.

[12] C. Callison-Burch, C. Fordyce, P. Koehn, C. Monz, and J. Schroeder. (meta-) evaluation of
machine translation. In WMT, pages 136–158, 2007.

154

http://doi.acm.org/10.1145/582415.582416
http://doi.acm.org/10.1145/582415.582416


[13] Je�rey Chan, Conor Hayes, and Elizabeth M. Daly. Decomposing discussion forums and
boards using user roles. In Proceedings of the Fourth International AAAI Conference on
Weblogs and Social Media, pages 215–218, 2010.

[14] Allison J. B. Chaney and David M. Blei. Visualizing topic models. In Proceedings of the Sixth
International AAAI Conference on Weblogs and Social Media, pages 419–422. Association for
the Advancement of Arti�cial Intelligence, 2012.

[15] W. Chu and S. S. Keerthi. Support vector ordinal regression. Neural Comput., 19(3):792–815,
2007.

[16] Jason Chuang, Christopher D. Manning, and Je�rey Heer. Termite: Visualization techniques
for assessing textual topic models. In Proceedings of the International Working Conference on
Advanced Visual Interfaces, AVI ’12, pages 74–77. ACM, 2012. ISBN 978-1-4503-1287-5. doi:
10.1145/2254556.2254572.

[17] W. Jay Conover and Ronald L. Iman. On multiple-comparisons procedures. Technical report,
Los Alamos Scienti�c Laboratory, 1979.

[18] Albert T. Corbett and John R. Anderson. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modeling and User-Adapted Interaction, 4(4):253–278, 1994.

[19] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, 1995.

[20] Steven Dang, Michael Yudelson, and Kenneth R. Koedinger. Detecting diligence with
online behaviors on intelligent tutoring systems. In Proceedings of the Fourth (2017) ACM
Conference on Learning @ Scale, L@S ’17, pages 51–59, New York, NY, USA, 2017. ACM.
ISBN 978-1-4503-4450-0.

[21] Dan Davis, Guanliang Chen, Claudia Hau�, and Geert-Jan Houben. Gauging MOOC
learners’ adherence to the designed learning path. In Ti�any Barnes, Min Chi, and Mingyu
Feng, editors, Proceedings of the 9th International Conference on Educational Data Mining,
EDM ’16, pages 54–61. International Educational Data Mining Society (IEDMS), 2016.

[22] Hugh C. Davis, Kate Dickens, Manuel Leon, María del Mar Sánchez-Vera, and Su White.
Moocs for universities and learners - an analysis of motivating factors. In CSEDU 2014 -
Proceedings of the 6th International Conference on Computer Supported Education, Volume 1,
Barcelona, Spain, 1-3 April, 2014, pages 105–116, 2014.

[23] A. P. Dempster, N. M. Laird, and D. B. Rudin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39(1):
1–38, 1977.

[24] Himel Dev, Chase Geigle, Qingtao Hu, Jiahui Zheng, and Hari Sundaram. The size conun-
drum: Why online knowledge markets can fail at scale. In Proceedings of WWW 2018: The
Web Conference, pages 65–75, New York, NY, USA, 4 2018. ACM.

[25] B. Djulbegovic. Lifting the fog of uncertainty from the practice of medicine. British Medical
Journal, 329(7480):1419–1420A, 2004.

155



[26] R. M. Duwairi. A framework for the computerized assessment of university student essays.
Comput. Hum. Behav., 22(3):381–388, 2006.

[27] Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and Eric P Xing. A latent variable
model for geographic lexical variation. In Proc. EMNLP, pages 1277–1287. Association for
Computational Linguistics, 2010.

[28] Hui Fang and ChengXiang Zhai. Virlab: A platform for privacy-preserving evaluation for
information retrieval models. In Proc. PIR@SIGIR, pages 37–38, 2014.

[29] Hui Fang, Hao Wu, Peilin Yang, and ChengXiang Zhai. Virlab: A web-based virtual lab for
learning and studying information retrieval models. In Proc. SIGIR, pages 1249–1250. ACM,
2014.

[30] Louis Faucon, Lukasz Kidzinski, and Pierre Dillenbourg. Semi-Markov model for simulating
MOOC students. In Ti�any Barnes, Min Chi, and Mingyu Feng, editors, Proceedings of
the 9th International Conference on Educational Data Mining, EDM 2016, pages 358–363.
International Educational Data Mining Society (IEDMS), 2016.

[31] DC Ferguson, LK McNeil, EM Mills, and JE Ehlers. International e�orts to encourage critical
clinical thinking (CCT) skills in veterinary students. In Veterinary Educational Collaborative
biannual meeting, Ames, IA., 2014. (abstract).

[32] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden Markov model: Analysis
and applications. Mach. Learn., 32(1):41–62, July 1998. ISSN 0885-6125.

[33] Danyel Fisher, Marc Smith, and Howard T. Welser. You are who you talk to: Detecting roles
in usenet newsgroups. In Proceedings of the 39th Annual Hawaii International Conference
on System Sciences - Volume 03, HICSS ’06, pages 59.2–, Washington, DC, USA, 2006. IEEE
Computer Society.

[34] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering: A roadmap and
agenda. Journal of Systems and Software, 123:176 – 189, 2017. ISSN 0164-1212.

[35] G. E. Forsythe and N. Wirth. Automatic grading programs. Commun. ACM, 8(5):275–278,
1965.

[36] Lauren Fratamico, Sarah Perez, and Ido Roll. A visual approach towards knowledge engi-
neering and understanding how students learn in complex environments. In Proceedings of
the Fourth (2017) ACM Conference on Learning @ Scale, L@S ’17, pages 13–22, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4450-0.

[37] Adabriand Furtado, Nazareno Andrade, Nigini Oliveira, and Francisco Brasileiro. Contribu-
tor pro�les, their dynamics, and their importance in �ve q&a sites. In Proc. CSCW, CSCW
’13, pages 1237–1252, 2013. ISBN 978-1-4503-1331-5.

[38] E. Gambrill. Critical Thinking in Clinical Practice: Improving the Quality of Judgments and
Decisions. Wiley and Sons, 2nd edition, 2006.

156



[39] M. J. Gardener, J. Lutes, J. Lund, J. Hansen, D. Walker, E. Ringger, and K. Seppi. The topic
browser: An interactive tool for browsing topic models. In Proceedings of the Workshop on
Challenges of Data Visualization (in conjunction with NIPS), 2010.

[40] Chase Geigle and ChengXiang Zhai. Modeling mooc student behavior with two-layer
hidden markov models. Journal of Educational Data Mining, 9(1):1–24, 9 2017.

[41] Chase Geigle, ChengXiang Zhai, and Duncan Ferguson. An exploration of automated
grading of complex assignments. In Proceedings of the Third (2016) ACM Conference on
Learning @ Scale, L@S ’16, pages 351–360. ACM, 2016.

[42] Chase Geigle, Ismini Lourentzou, Hari Sundaram, and ChengXiang Zhai. Clads: A cloud-
based virtual lab for the delivery of scalable hands-on assignments for practical data science
education. In Proceedings of the 23rd Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE’18, pages 176–181, New York, NY, USA, 7 2018. ACM.

[43] Chase Geigle, Himel Dev, Hari Sundaram, and ChengXiang Zhai. A generative model for
discovering action-based roles and community role compositions on community question
answering platforms. In Proceedings of the 13th International Conference on Web and Social
Media, ICWSM 2019, page to appear. AAAI, 6 2019.

[44] Yue Gong and Joseph E. Beck. Towards detecting wheel-spinning: Future failure in mastery
learning. In Proceedings of the Second (2015) ACM Conference on Learning @ Scale, L@S ’15,
pages 67–74, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3411-2.

[45] José A González-Martínez, Miguel L Bote-Lorenzo, Eduardo Gómez-Sánchez, and Rafael
Cano-Parra. Cloud computing and education: A state-of-the-art survey. Computers &
Education, 80:132–151, 2015.

[46] Brynjar Gretarsson, John O’Donovan, Svetlin Bostandjiev, Tobias Höllerer, Arthur Asuncion,
David Newman, and Padhraic Smyth. Topicnets: Visual analysis of large text corpora with
topic modeling. ACM Trans. Intell. Syst. Technol., 3(2):23:1–23:26, February 2012. ISSN
2157-6904. doi: 10.1145/2089094.2089099.

[47] Şule Gündüz and M. Tamer Özsu. A web page prediction model based on click-stream
tree representation of user behavior. In Proc. KDD, KDD ’03, pages 535–540, 2003. ISBN
1-58113-737-0.

[48] Rishi Gupta, Ravi Kumar, and Sergei Vassilvitskii. On mixtures of Markov chains. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 3441–3449. Curran Associates, Inc., 2016.

[49] James D. Hamilton. Analysis of time series subject to changes in regime. Journal of
Econometrics, 45(1):39 – 70, 1990. ISSN 0304-4076.

[50] Yu Han and Jie Tang. Probabilistic community and role model for social networks. In Proc.
KDD, KDD ’15, pages 407–416, 2015. ISBN 978-1-4503-3664-2.

157



[51] Christian Hansen, Casper Hansen, Niklas Hjuler, Stephen Alstrup, and Christina Lioma. Se-
quence modeling for analysing student interaction with educational systems. In Proceedings
of the 10th International Conference on Educational Data Mining, EDM 2017, pages 232–237.
International Educational Data Mining Society (IEDMS), 2017.

[52] M. T. Helmick. Interface-based programming assignments and automatic grading of java
programs. In SIGCSE, pages 63–67, 2007.

[53] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of the Fifteenth
Conference on Uncertainty in Arti�cial Intelligence, UAI’99, pages 289–296, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-614-9. URL http://dl.
acm.org/citation.cfm?id=2073796.2073829.

[54] Sture Holm. A simple sequentially rejective multiple test proceedure. Scandinavian Journal
of Statistics, 6(2):65–70, 1979.

[55] Jonathan Huang, Anirban Dasgupta, Arpita Ghosh, Jane Manning, and Marc Sanders.
Superposter behavior in MOOC forums. In Armando Fox, Marti A. Hearst, and Michelene
T. H. Chi, editors, Proceedings of the First ACM Conference on Learning @ Scale, pages
117–126, 2014. ISBN 978-1-4503-2669-8.

[56] Xuedong Huang, Yasuo Ariki, and Mervyn Jack. Hidden Markov Models for Speech Recogni-
tion. Columbia University Press, New York, NY, USA, 1990. ISBN 0748601627.

[57] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Gusztáv Hencsey and
Bebo White, editors, Proceedings of the 12th International Conference on World Wide Web,
pages 271–279, 2003.

[58] T. Joachims. Optimizing search engines using clickthrough data. In KDD, pages 133–142,
2002.

[59] Katy Jordan. Initial trends in enrolment and completion of massive open online courses.
The International Review of Research in Open and Distributed Learning, 15(1), 2014. ISSN
1492-3831. URL http://www.irrodl.org/index.php/irrodl/article/view/1651.

[60] Katy Jordan. Massive open online course completion rates revisited: Assessment, length
and attrition. The International Review of Research in Open and Distributed Learning, 16
(3), 2015. ISSN 1492-3831. URL http://www.irrodl.org/index.php/irrodl/article/
view/2112.

[61] Mike Joy, Nathan Gri�ths, and Russell Boyatt. The boss online submission and assessment
system. Journal on Educational Resources in Computing (JERIC), 5(3):2, 2005.

[62] David A. Joyner. Scaling expert feedback: Two case studies. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale, L@S ’17, pages 71–80, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4450-0.

158

http://dl.acm.org/citation.cfm?id=2073796.2073829
http://dl.acm.org/citation.cfm?id=2073796.2073829
http://www.irrodl.org/index.php/irrodl/article/view/1651
http://www.irrodl.org/index.php/irrodl/article/view/2112
http://www.irrodl.org/index.php/irrodl/article/view/2112


[63] David A. Joyner, Wade Ashby, Liam Irish, Yeeling Lam, Jacob Langston, Isabel Lupiani, Mike
Lustig, Paige Pettoruto, Dana Sheahen, Angela Smiley, Amy Bruckman, and Ashok Goel.
Graders as meta-reviewers: Simultaneously scaling and improving expert evaluation for
large online classrooms. In Proceedings of the Third (2016) ACM Conference on Learning @
Scale, L@S ’16, pages 399–408, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3726-7.

[64] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2009. ISBN 0131873210.

[65] René F. Kizilcec and Sherif Halawa. Attrition and achievement gaps in online learning. In
Proceedings of the Second (2015) ACM Conference on Learning @ Scale, L@S ’15, pages 57–66,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3411-2.

[66] René F. Kizilcec, Chris Piech, and Emily Schneider. Deconstructing disengagement: Analyz-
ing learner subpopulations in massive open online courses. In Dan Suthers, Katrien Verbert,
Erik Duval, and Xavier Ochoa, editors, Proceedings of the Third International Conference on
Learning Analytics and Knowledge, LAK ’13, pages 170–179, 2013. ISBN 978-1-4503-1785-6.

[67] René F. Kizilcec, Mar Pérez-Sanagustín, and Jorge J. Maldonado. Self-regulated learning
strategies predict learner behavior and goal attainment in massive open online courses.
Computers & Education, 104:18 – 33, 2017. ISSN 0360-1315.

[68] Severin Klingler, Rafael Wamp�er, Tanja Käser, Barbara Solenthaler, and Markus Gross.
E�cient feature embeddings for student clasi�cation with variational auto-encoders. In
Proceedings of the 10th International Conference on Educational Data Mining, EDM 2017,
pages 72–79. International Educational Data Mining Society (IEDMS), 2017.

[69] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques
- Adaptive Computation and Machine Learning. The MIT Press, 2009. ISBN 0262013193,
9780262013192.

[70] Geza Kovacs. E�ects of in-video quizzes on mooc lecture viewing. In Proceedings of the
Third (2016) ACM Conference on Learning @ Scale, L@S ’16, pages 31–40, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-3726-7.

[71] William H. Kruskal and W. Allen Wallis. Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association, 47(260):583–621, 1952.

[72] C. Kulkarni, K. P. Wei, H. Le, D. Chia, K. Papadopoulos, J. Cheng, D. Koller, and S. R. Klemmer.
Peer and self assessment in massive online classes. ACM Trans. Comput.-Hum. Interact., 20
(6):33:1–33:31, 2013.

[73] S. Kullback. Information Theory and Statistics. John Wiley & Sons, 1959.

[74] L. S. Larkey. Automatic essay grading using text categorization techniques. In SIGIR, pages
90–95, 1998.

[75] C. Leacock and M. Chodorow. C-rater: Automated scoring of short-answer questions.
Computers and the Humanities, 37(4):pp. 389–405, 2003.

159



[76] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons
learned from word embeddings. Transactions of the Association for Computational Linguistics,
3:211–225, 2015. ISSN 2307-387X. URL https://tacl2013.cs.columbia.edu/ojs/index.
php/tacl/article/view/570.

[77] Haiying Li, Janice Gobert, and Rachel Dickler. Automated assessment for scienti�c expla-
nations in on-line science inquiry. In Proceedings of the 10th International Conference on
Educational Data Mining, EDM 2017, pages 214–219. International Educational Data Mining
Society (IEDMS), 2017.

[78] L. Li and H. Lin. Ordinal regression by extended binary classi�cation. In NIPS, pages
865–872. MIT Press, 2007.

[79] Adam Lopez, Matt Post, Chris Callison-Burch, Jonathan Weese, Juri Ganitkevitch, Narges
Ahmidi, Olivia Buzek, Leah Hanson, Beenish Jamil, Matthias Lee, Ya-Ting Lin, Henry Pao,
Fatima Rivera, Leili Shahriyari, Debu Sinha, Adam Teichert, Stephen Wampler, Michael
Weinberger, Daguang Xu, Lin Yang, and Shang Zhao. Learning to translate with products
of novices: A suite of open-ended challenge problems for teaching mt. TACL, 1:165–178,
2013. ISSN 2307-387X.

[80] Lin Lu, Margaret Dunham, and Yu Meng. Mining signi�cant usage patterns from clickstream
data. In Proc. WebKDD, WebKDD’05, pages 1–17, 2006. ISBN 3-540-46346-1, 978-3-540-
46346-7.

[81] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 3086–3094. Curran Associates, Inc., 2014.

[82] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann.
Design lessons from the fastest q&a site in the west. In Proc. CHI, CHI ’11, pages 2857–2866,
2011. ISBN 978-1-4503-0228-9.

[83] E. Manavoglu, D. Pavlov, and C. L. Giles. Probabilistic user behavior models. In ICDM,
pages 203–210, Nov 2003.

[84] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[85] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

[86] Sean Massung, Chase Geigle, and ChengXiang Zhai. MeTA: A uni�ed toolkit for text
retrieval and analysis. In Sameer Pradhan and Marianna Apidianaki, editors, Proceedings of
ACL-2016 System Demonstrations, pages 91–96, Berlin, Germany, August 2016.

[87] Christoph Matthies, Arian Tre�er, and Matthias U�acker. Prof. ci: Employing continuous
integration services and github work�ows to teach test-driven development. In 2017 IEEE
Frontiers in Education Conference (FIE), pages 1–8. IEEE, 2017.

160

https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570


[88] Andrew McCallum, Xuerui Wang, and Andrés Corrada-Emmanuel. Topic and role discovery
in social networks with experiments on enron and academic email. J. Artif. Int. Res., 30(1):
249–272, October 2007. ISSN 1076-9757.

[89] Peter McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society.
Series B (Methodological), 42(2):109–142, 1980. ISSN 00359246.

[90] T. Mitchell, T. Russell, P. Broomhead, and N. Aldridge. Towards robust computerised
marking of free-text responses. In ICAAC, 2002.

[91] P. Mitros, V. Paruchuri, J. Rogosic, and D. Huang. An integrated framework for the grading
of freeform responses. In MIT LINC, 2013.

[92] M. Mohler and R. Mihalcea. Text-to-text semantic similarity for automatic short answer
grading. In EACL, pages 567–575, 2009.

[93] Kevin Kyung Nam, Mark S. Ackerman, and Lada A. Adamic. Questions in, knowledge in?:
A study of naver’s question answering community. In Proc. CHI, CHI ’09, pages 779–788,
2009. ISBN 978-1-60558-246-7.

[94] David Newman, Arthur Asuncion, Chaitanya Chemudugunta, and Mark Steyvers. Exploring
large document collections using statistical topic models. In KDD 2006 demo session, 2006.

[95] A. Nguyen, C. Piech, J. Huang, and L. Guibas. Codewebs: Scalable homework search for
massive open online programming courses. In WWW, pages 491–502, 2014.

[96] Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, and Tom Mitchell. Text
classi�cation from labeled and unlabeled documents using em. Machine Learning, 39(2):
103–134, May 2000. ISSN 1573-0565.

[97] Nuria Oliver, Ashutosh Garg, and Eric Horvitz. Layered representations for learning and
inferring o�ce activity from multiple sensory channels. Comput. Vis. Image Underst., 96(2):
163–180, November 2004. ISSN 1077-3142.

[98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: bringing order to the web. Technical report, Stanford InfoLab, 1999.

[99] Zachary A. Pardos, Steven Tang, Daniel Davis, and Christopher Vu Le. Enabling real-
time adaptivity in moocs with a personalized next-step recommendation framework. In
Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale, L@S ’17, pages 23–32,
New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4450-0.

[100] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller. Tuned Models of Peer Assessment
in MOOCs. In EDM, 2013.

[101] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and L. J. Guibas. Learning
program embeddings to propagate feedback on student code. In ICML, pages 1093–1102,
2015.

161



[102] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J
Guibas, and Jascha Sohl-Dickstein. Deep knowledge tracing. In C. Cortes, N.D. Lawrence,
D.D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 505–513, 2015.

[103] S. G. Pulman and J. Z. Sukkarieh. Automatic short answer marking. In BEA, pages 9–16.
ACL, 2005.

[104] Minghui Qiu, Feida Zhu, and Jing Jiang. It is not just what we say, but how we say them:
Lda-based behavior-topic model. In Proc. SDM, SDM ’13, pages 794–802, May 2013.

[105] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In Alex Waibel and Kai-Fu Lee, editors, Readings in Speech Recognition,
pages 267–296. Morgan Kaufmann Publishers Inc., 1990. ISBN 1-55860-124-4.

[106] Lawrence R. Rabiner. Readings in speech recognition. chapter A Tutorial on Hidden
Markov Models and Selected Applications in Speech Recognition, pages 267–296. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990. ISBN 1-55860-124-4. URL http:
//dl.acm.org/citation.cfm?id=108235.108253.

[107] C. P. Rosé, A. Roque, D. Bhembe, and K. Vanlehn. A hybrid text classi�cation approach for
analysis of student essays. In BEA, pages 68–75. ACL, 2003.

[108] Narayanan Sadagopan and Jie Li. Characterizing typical and atypical user sessions in
clickstreams. In Proc. WWW, WWW ’08, pages 885–894, 2008. ISBN 978-1-60558-085-2.

[109] B. Settles. Active learning. Synthesis Lectures on Arti�cial Intelligence and Machine Learning,
6(1):1–114, 2012.

[110] G. Shani and A. Gunawardana. Evaluating Recommendation Systems, chapter 8. Springer,
2011.

[111] Benjamin Shih, Kenneth R Koedinger, and Richard Scheines. Unsupervised discovery of
student strategies. In Ryan S.J.d. Baker, Agathe Merceron, and Phillip I. Pavlik, Jr., editors,
Proceedings of the 3rd International Conference on Educational Data Mining, EDM 2010, pages
201–210. International Educational Data Mining Society (IEDMS), 2010.

[112] Carson Sievert and Kenneth Shirley. Ldavis: A method for visualizing and interpreting
topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and
Interfaces, pages 63–70, Baltimore, Maryland, USA, June 2014. Association for Computational
Linguistics.

[113] Arjun Singh, Sergey Karayev, Kevin Gutowski, and Pieter Abbeel. Gradescope: A fast,
�exible, and fair system for scalable assessment of handwritten work. In Proceedings of the
Fourth (2017) ACM Conference on Learning @ Scale, L@S ’17, pages 81–88, New York, NY,
USA, 2017. ACM. ISBN 978-1-4503-4450-0.

162

http://dl.acm.org/citation.cfm?id=108235.108253
http://dl.acm.org/citation.cfm?id=108235.108253


[114] Yingbo Song, Angelos D Keromytis, and Salvatore J Stolfo. Spectrogram: A mixture-of-
Markov-chains model for anomaly detection in web tra�c. In Giovanni Vigna, editor, 16th
Annual Network and Distributed System Security Symposium, NDSS. ISOC, 2009.

[115] Shashank Srikant and Varun Aggarwal. A system to grade computer programming skills
using machine learning. In Proc. KDD, pages 1887–1896. ACM, 2014.

[116] Christine A. Stanley and Erin M. Porter, editors. Engaging Large Classes: Strategies and
Techniques for College Faculty. Anker Publishing Company, Inc., 2002. ISBN 1-882982-51-7.

[117] Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz, and Christoph Meinel. Codeocean-
a versatile platform for practical programming excercises in online environments. In Global
Engineering Education Conference (EDUCON), 2016 IEEE, pages 314–323. IEEE, 2016.

[118] Thomas Staubitz, Dominic Petrick, Matthias Bauer, Jan Renz, and Christoph Meinel. Im-
proving the peer assessment experience on mooc platforms. In Proceedings of the Third
(2016) ACM Conference on Learning @ Scale, L@S ’16, pages 389–398, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3726-7.

[119] Qiang Su and Lu Chen. A method for discovering clusters of e-commerce interest patterns
using click-stream data. Electron. Commer. Rec. Appl., 14(1):1–13, January 2015. ISSN
1567-4223.

[120] H. Suen. Peer assessment for massive open online courses (moocs). The International Review
of Research in Open and Distance Learning, 15(3), 2014.

[121] U.S. Department of Education, National Center for Education Statistics. Undergraduate
retention and graduation rates. The Condition of Education 2017 (NCES 2017-144), 2017.

[122] Frans Van der Sluis, Jasper Ginn, and Tim Van der Zee. Explaining student behavior at
scale: The in�uence of video complexity on student dwelling time. In Proceedings of the
Third (2016) ACM Conference on Learning @ Scale, L@S ’16, pages 51–60, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-3726-7.

[123] Gang Wang, Xinyi Zhang, Shiliang Tang, Haitao Zheng, and Ben Y. Zhao. Unsupervised
clickstream clustering for user behavior analysis. In Proc. CHI, CHI ’16, pages 225–236, 2016.
ISBN 978-1-4503-3362-7.

[124] Guoyi Wang, Yun Tang, Junyi Li, and Xiangen Hu. Modeling student learning behaviors in
aleks: A two-layer hidden markov modeling approach. In Carolyn Penstein Rosé, Roberto
Martínez-Maldonado, H. Ulrich Hoppe, Rose Luckin, Manolis Mavrikis, Kaska Porayska-
Pomsta, Bruce McLaren, and Benedict du Boulay, editors, Arti�cial Intelligence in Education,
pages 374–378, Cham, 2018. Springer International Publishing. ISBN 978-3-319-93846-2.

[125] Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study on developer interactions
in stackover�ow. In Proc. SAC, SAC ’13, pages 1019–1024, 2013.

[126] Howard T. Welser, Eric Gleave, Danyel Fisher, and Marc Smith. Visualizing the signatures
of social roles in online discussion groups. Journal of Social Structure, 8:1–31, 2007.

163



[127] Arthur White, Je�rey Chan, Conor Hayes, and Thomas Brendan Murphy. Mixed membership
models for exploring user roles in online fora. In Proceedings of the Sixth International AAAI
Conference on Weblogs and Social Media, pages 599–602, 2012.

[128] Joseph Jay Williams, Juho Kim, Anna Ra�erty, Samuel Maldonado, Krzysztof Z. Gajos,
Walter S. Lasecki, and Neil He�ernan. Axis: Generating explanations at scale with learn-
ersourcing and machine learning. In Proceedings of the Third (2016) ACM Conference on
Learning @ Scale, L@S ’16, pages 379–388, New York, NY, USA, 2016. ACM. ISBN 978-1-
4503-3726-7.

[129] Lingfei Wu, Jacopo A. Baggio, and Marco A. Janssen. The role of diverse strategies in
sustainable knowledge production. PLOS ONE, 11(3):1–13, 03 2016.

[130] Zhiheng Xu, Yang Zhang, Yao Wu, and Qing Yang. Modeling user posting behavior on
social media. In Proc. SIGIR, SIGIR ’12, pages 545–554, 2012. ISBN 978-1-4503-1472-5.

[131] Y. Y. Yao. Measuring retrieval e�ectiveness based on user preference of documents. J. Am.
Soc. Inf. Sci., 46(2):133–145, 1995.

[132] Jianhua Yin and Jianyong Wang. A dirichlet multinomial mixture model-based approach for
short text clustering. In Proc. KDD, KDD ’14, pages 233–242, 2014. ISBN 978-1-4503-2956-9.

[133] Alexander Ypma and Tom Heskes. Automatic categorization of web pages and user clustering
with mixtures of hidden markov models. In Osmar R. Zaïane, Jaideep Srivastava, Myra
Spiliopoulou, and Brij Masand, editors, 4th International Workshop on Mining Web Data for
Discovering Usage Patterns and Pro�les, WEBKDD 2002, pages 35–49. Springer, 2002.

[134] ChengXiang Zhai and John La�erty. A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, April 2004. ISSN 1046-
8188. doi: 10.1145/984321.984322. URL http://doi.acm.org/10.1145/984321.984322.

[135] ChengXiang Zhai and Sean Massung. Text data management and analysis: a practical
introduction to information retrieval and text mining. Morgan & Claypool, 2016.

[136] Dong Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, and G. Lathoud. Modeling individual
and group actions in meetings: A two-layer HMM framework. In 2004 Conference on
Computer Vision and Pattern Recognition Workshop, pages 117–117, June 2004. doi: 10.1109/
CVPR.2004.125.

164

http://doi.acm.org/10.1145/984321.984322

	Chapter 1 Introduction
	The Quality-Scalability Trade-off
	Breaking the Quality-Scalability Trade-off
	Scaling Existing Solutions
	Extracting Quality From Scale

	This Thesis
	Scaling Existing Solutions
	Extracting Quality from Scale
	Open Source Model and System Contributions


	Chapter 2 Related Work
	Scaling Assessment in Large-Scale Classrooms
	Automated Assessment
	Peer Assessment

	Understanding Behavior for Personalizing Education at Scale

	Chapter 3 Scalable Education: Automated Grading of Complex Assignments
	Introduction
	Related Work
	Medical Case Assignment
	Feasibility of Automated Gradiing
	Supervised Learning
	Experiment Results

	Automated Grading as Ranking Assignments
	Evaluating Ranking-based Grading Systems

	Efficiently Utilizing Human Judgments with Active Learning
	Conclusions
	Discussion and Future Work

	Chapter 4 Scalable Education: A Cloud-Based Lab for Data Science Education
	Introduction
	Related Work
	CLaDS: A Data Science Virtual Lab
	Interaction Flow
	Detailed System Architecture

	Deployment Experience
	Competition Experience
	Overall System Utilization and Cost

	Conclusions and Future Work

	Chapter 5 Behavior Modeling: Action-Based Role Discovery
	A Generative Perspective
	Mixture of Dirichliet-Multinomial Mixtures (MDMM) Behavior Model
	Introduction
	Related Work
	Model
	Generative Process and Inference
	Choosing the Number of Roles
	Applications of the Model

	Experiments
	Dataset Construction
	Analysis of the Discovered Roles
	Analysis of Behavior Compositions: Topical Groups
	Behavior Compositions and their Relationship to Community Success
	Data-driven Clustering Analysis of Behavior Compositions and Health
	Evolution of Behavior Composition

	Discussion and Limitations
	Conclusion and Future Work

	Chapter 6 Behavior Modeling: Two-Layer Hidden Markov Models
	Temporal Behavior Modeling
	Introduction
	Related Work
	A Two-Layer HMM for MOOC Log Analysis
	Basic Idea and Rationale
	Formal Definition of the 2L-HMM
	Parameter Estimation

	Experiment Results
	Latent State Representations
	Varying the Number of Latent States
	Transitions Between Latent States

	Limitations and Potential Drawbacks
	Technical Limitations and Implementation Challenges
	Limitations of Discovered Patterns

	Conclusions and Future Work

	Chapter 7 Behavior Modeling: The Piazza Educational Role Mining System
	Related Work
	Behavior Modeling on Piazza
	Defining the Action Space
	Modeling Role Proportions

	System Design
	Crawling Interface
	Analysis Interface

	System Implementation
	Limitations and Future Work

	Chapter 8 Conclusions and Future Work
	Introduction
	Research Summary
	Automated Assessment: Scaling Existing Experiences
	Behavior Modeling: Extracting Quality From Scale

	Potential Improvements
	Automated Assessment of Complex Assignments
	Cloud-based Labs for Data Science
	Behavior Modeling

	Future Work and Open Problems
	Generalizable Machine-learned Notions of Critical Thinking
	Automated Feedback vs. Automated Assessment
	Psychology-influenced Models of User Behavior
	Real-time Adaptive MOOCs


	References

