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ABSTRACT

Formal analysis has a long and successful track record in the automated verification of

security protocols. Techniques in this domain have converged around modeling protocols as

non-deterministic processes that interact asynchronously through an adversarial environment

controlled by a Dolev-Yao attacker. There are, however, a large class of protocols whose

correctness relies on an explicit ability to model and reason about randomness. Lying at

the heart of many widely adopted systems for anonymous communication, these protocols

have so-far eluded automated verification techniques. The present work overcomes this long

standing obstacle, providing the first framework analyzing randomized security protocols

against Dolev-Yao attackers.

In this formalism, we present algorithms for model checking safety and indistinguisha-

bility properties of randomized security protocols. Our techniques are implemented in the

Stochastic Protocol ANalyzer (Span) and evaluated on a new suite of benchmarks. Our

benchmark examples include a brand new class of protocols that have never been subject of

formal (symbolic) verification, including: mix-networks, dinning cryptographers networks,

and several electronic voting protocols. During our analysis, we uncover previously unknown

vulnerabilities in two popular electronic voting protocols from the literature.

The high overhead associated with verifying security protocols, in conjunction with the

fact that protocols are rarely run in isolation, has created a demand for modular verification

techniques. In our protocol analysis framework, we give a series of composition results for

safety and indistinguishability properties of randomized security protocols.

Finally, we study the model checking problem for the probabilistic objects that lie at the

heart of our protocol semantics. In particular, we present a novel technique that allows for

the precise verification of probabilistic computation tree logic (PCTL) properties of discrete

time Markov chains (DTMCs) and Markov decision processes (MDPs) at scale. Although

our motivation comes from protocol analysis, the techniques further verification capabilities

in many application areas.
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3.5 Prêt à Voter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CHAPTER 4 THE STOCHASTIC PROTOCOL ANALYZER . . . . . . . . . . . . 27
4.1 Safety properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Indistinguishability properties . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Complexity of indistinguishabilty . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Protocol specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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CHAPTER 1: INTRODUCTION

Security protocols are highly intricate and vulnerable to design flaws. This has lead to sig-

nificant effort in the construction of tools for the automated verification of protocol designs.

Techniques for mechanized analysis of security protocols have converged around proving se-

curity in the symbolic model [1, 2, 3, 4, 5], where the assumption of perfect cryptography

is made. Messages are symbolic terms modulo an equational theory (as opposed to bit-

strings) and cryptographic operations are modeled via equations in the theory. Protocols

are specified in (a variant of) the applied π-calculus [6] where the threat model is that of the

Dolev-Yao attacker [7]. This omnipotent attacker has the ability to read, intercept, modify

and replay all messages on public channels, remember the (potentially unbounded) commu-

nication history as well as non-deterministically inject its own messages into the network

while remaining anonymous.

A growing number of security protocols are employing randomization to achieve privacy

and anonymity guarantees. Randomization has become an essential component in proto-

cols/systems for anonymous communication and web browsing such as Crowds [8], mix-

networks [9], onion routers [10] and Tor [11] and has also been employed to achieve fair

exchange [12, 13], vote privacy in electronic voting [14, 15, 16, 17] and denial of service

prevention [18]. In the example below, we demonstrate how randomization can be used as

a vehicle to achieve privacy in electronic voting systems.

Example 1.1 Consider a simple electronic voting protocol comprised of 2 voters Alice and

Bob, two candidates and an election authority. The protocol is as follows. Initially, the

election authority will generate two private tokens tA and tB and send them to Alice and

Bob encrypted under their respective public keys. These tokens will be used by the voters

as proofs of their eligibility. After receiving a token, each voter sends his/her choice to the

election authority along with the proof of eligibility encrypted under the public key of the

election authority. Once all votes have been collected, the election authority tosses a fair

coin. If tails turns up, it outputs Alice’s vote followed by Bob’s vote. In the event of a head,

the order in which the votes are released is reversed. The security property of the protocol we

are interested in is vote privacy, meaning an adversary should not be able deduce how each

voter voted.

All of the existing Dolev-Yao analysis tools are fundamentally limited to protocols that

are purely non-deterministic, where non-determinism models concurrency as well as the

interaction between protocol participants and their environment. There are currently no

symbolic analysis tools allowing the protocol from Example 1.1 to be verified, a limitation
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that has long been identified by the verification community. In the context of electronic

voting protocols, [19] identifies three main classes of techniques for achieving vote privacy;

blind signature schemes, homomorphic encryption and randomization. There the authors

concede that protocols based on the latter technique are “hard to address with our methods

that are purely non-deterministic.” Catherine Meadows, in her summary of the over 30

year history of formal techniques in cryptographic protocol analysis [20, 21], identified the

development of formal analysis techniques for anonymous communication systems, almost

exclusively built using primitives with randomization, as a fundamental and still largely

unsolved challenge. She writes, “it turned out to be difficult to develop formal models and

analyses of large-scale anonymous communication. The main stumbling block is the threat

model”. Later, she goes on to add that the features of these systems are “harder to capture

in a formal model, and even harder to analyze; thus research in this area has depended

heavily on experimentation and simulation.”

This work effectively breaks down the long standing barrier to automated verification of

randomized security protocols, providing a mathematically rigorous foundation for modeling

and mechanically analyzing the electronic voting protocols and anonymous communication

systems described above. The breakthrough comes with a characterization of the subtle

interaction between non-determinism and randomization. If the attacker is allowed to “ob-

serve” the results of private coin tosses in its scheduling decisions, then the analysis may

reveal “security flaws” in correct protocols (see examples in [22, 23, 24, 25, 26, 27]). In

Example 1.1, if the coin toss performed by the election authority is visible to the adver-

sary, then protocol does not satisfy vote privacy. On the other hand, the attacker needs

to remain powerful enough to, among other things, alter the order of protocol events and

modify/forge messages on the network. The key insight in overcoming this problem is to

analyze protocols with respect to attackers that are required to choose the same action in

any two protocol executions it cannot distinguish. We propose trace-equivalence from the

applied π-calculus [6] for the indistinguishability relation. In this framework, an attacker

is a function from traces, the equivalence classes on executions under the trace-equivalence

relation, to the set of attacker actions.

This thesis formalizes the preceding observations and introduces a powerful new framework

for analyzing randomized security protocols. We capture the behavior of a randomized

security protocol executed in the presence of a Dolev-Yao attack as a partially observable

Markov decision process (POMDP). A POMDP is a state transition system that consists

of both non-deterministic and probabilistic actions that are scheduled by an adversary who

observes only a portion of the state information. Scheduling under partial information is

what allows the model to capture private coin tosses. In this framework, we make the
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following fundamental contributions.

• We introduce several algorithms for analyzing properties of randomized security pro-

tocols. Our techniques are implemented and evaluated a new protocol analysis tool.

• We present conditions under which properties of randomized security protocols are

preserved through composition.

• We enhance state-of-the-art quantitative analysis tools for probabilistic systems through

a new algorithm that allows for precise verification at scale.

The following sections introduce these topics in more detail.

1.1 AUTOMATED SYMBOLIC ANALYSIS OF SECURITY PROTOCOLS

In Chapter 4, we introduce a new tool, the Stochastic Protocol ANalyzer (Span), for

analyzing randomized security protocols. Span analyzes two kinds properties: safety pro-

perties and indistinguishability properties. Properties of the former type allow one to prove

the absence certain undesirable behaviors in a system. In Example 1.1, for instance, there

should be no execution of the protocol in which the secret key of any of the protocol par-

ticipants can be derived from the network traffic. On the other hand, indistinguishability

is a property between two protocols. Essentially, two protocols are indistinguishable if the

attacker cannot determine which of the two protocols he/she is interacting with. As obser-

ved by many authors [19, 28, 29, 30, 31], critical properties of security protocols such as

anonymity, unlinkability, and privacy can be modeled using a notion of indistinguishability.

Consider the protocol from Example 1.1, designed to preserve vote privacy. Such a property

is achieved if the executions of the protocol in which Alice votes for candidate 1 and Bob

votes for candidate 2 cannot be distinguished from the executions of the protocol in which

Alice votes for candidate 2 and Bob votes for candidate 1.

There are a myriad of symbolic analysis tools that analyze safety properties of security

protocols, for example, [2, 3, 5, 32, 33, 34, 35]. Indistinguishability properties are intrinsically

more difficult to analyze, only recently have a few tools began to emerge [4, 36, 37, 38].

Unfortunately, none of the preceding tools have any support for dealing with randomization.

As a result, most analysis efforts using these tools simply “abstract away” essential protocol

components that utilize randomization, such as anonymous channels. For example, such an

abstraction is made in [19, 39] where the authors conduct a symbolic analysis of the Fujioka,

Okamoto and Ohta (FOO) electronic voting protocol. As we show in Section 3.4, this kind

of abstraction can result in the incorrect design and analysis of a protocol.
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There have been previous attempts to integrate randomization into symbolic protocol

analysis. For example, [40] introduced a process calculus allowing operations for both non-

deterministic and probabilistic choice. Unfortunately, the calculus did not capture many

important properties of the threat model, such as the ability for protocol participants to

make private coin tosses. As a result, properties of these processes are required to be

formulated through a notion of bisumlation too strong to capture many natural properties.

By contrast, our framework and analysis techniques have proven successful in verifying (and

finding bugs in) a number of widely studied protocols. Using Span, we have conducted the

first automated symbolic analysis mix-networks [9], dining-cryptographers-networks (DC-

nets) [41], 3-ballot electronic voting [17, 42], the FOO electronic voting protocol [43], and

Prêt à Voter [14]. During our analysis, we uncovered previously unknown bugs in the latter

two protocols.

1.2 COMPOSITIONAL VERIFICATION OF SECURITY PROTOCOLS

Algorithms for symbolic protocol analysis solve inherently difficult computational pro-

blems. As the size of a protocol grows, so too does the computational burden for verification.

This, in conjunction with the fact that security protocols are rarely run in isolation, has led

to a deep interest in modular techniques for protocol analysis. The goal of such techniques

is to identify sufficient conditions under which two protocols, proven secure in isolation, can

be shown to be secure in an environment where they interact. Composition results of this

form provide two main benefits. They help improve protocol designs by demonstrating how

the interaction with other protocols can break security. And, they allow large protocols to

be verified by decomposing them into smaller parts and stitching these smaller verification

efforts together with compositional guarantees.

Protocols can interact either in a concurrent or sequential fashion. The latter being quite

common in a number of protocols that run an initial sub-protocol to establish short-term

secret communication keys. Notice that this scenario requires the key-establishment sub-

protocol to share data with later phases of the protocol. Data sharing between composed

protocols is particularly difficult to reason about in a compositional setting. Nonetheless,

we are able to achieve powerful composition results for both inditinguishability and safety

properties. Our composition framework provides a generic mechanism in which protocols

can interact concurrently or sequentially as well as share secret data. Composition results for

indistinguishability properties are given in Chapter 5 and composition of sate-based safety

properties is considered in Chapter 6.

Our composition results for randomized protocols compliment the array modular analysis
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techniques that have surfaced for the non-randomized case. Safety properties are considered

in [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56] and indistinguishability properties in

[57, 56]. In [44, 45, 46] a general framework is proposed for proving that protocols compose

securely. Other papers [48, 47] essentially show that protocol compositions are secure if

messages from one protocol cannot be confused with messages from another protocol. This

can be ensured if certain protocol transformations are made (see for example [49, 50, 52, 57]).

Essentially, these protocol transformations require that all protocol messages are tagged with

the protocol name and protocol instance to which they belong. [58] shows that this continues

to be the case even when dishonest participants do not tag their messages properly. The

exact choice of tagging scheme depends on the desired security property; incorrect tagging

can actually make a secure protocol insecure [52]. In the computational model, the problem

of composing protocols securely has been studied in [59, 60]. Our results are most closely

related to [57, 56].

1.3 QUANTITATIVE MODEL CHECKING

Prior to our framework, techniques for analyzing security protocols have remained largely

disjoint from techniques for analyzing systems with randomization. Many have attempted to

use probabilistic model checkers such as PRISM [61], STORM [62] and APEX [63] to verify

protocols that explicitly employ randomization. For example, [64] conducts an analysis of

the Crowds anonymous web browsing protocol in PRISM. There they showed that system re-

configurations necessitated by users joining and leaving the system can lead to a degradation

in security over time. In [65], an analysis of Chaum’s Dining cryptographers protocol [41] was

carried out the in CSP framework [66]. All of the works in this arena are ad-hoc in nature

and don’t provide a general verification mechanism. Furthermore, many simplifications are

made to make modeling and analysis possible. The analysis from [64] considers only a passive

adversary that observes but does not modify network traffic.

In this work, we are interested in the study of quantitative modeling checking techniques

for two reasons. The analysis of probabilistic models remains a useful tool for analyzing

certain aspects of security protocols. Furthermore, in many cases, analysis of randomized

security protocols in our framework reduces to analyzing such models. Unfortunately, in or-

der to scale to large models, state-of-the-art quantitative model checkers typically implement

approximation techniques on top of floating-point arithmetic. As a result, there is no gua-

rantee on the quality of the solution produced by these tools. This can lead to a completely

incorrect logical analysis of a system or security property. To rectify this, we introduce a

novel model checking technique that leverages the approximate solutions generated by these
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model checking tools to compute exact solutions. Our technique incurs very little overhead

and has been shown to work on a wide array of examples. The full details are given in

Chapter 7.

1.4 OUTLINE

The remainder of this thesis is structured as follows. In Chapter 2, we define the mathe-

matical preliminaries need for modeling and analyzing cryptographic protocols with rand-

omization. In Chapter 3, we describe several randomized protocols that will serve as run-

ning examples in our composition results and benchmarks for our automated analysis tool.

Chapter 4 describes the (Span). Chapters 5 and 6 detail our composition results for in-

distinguishability and reachability properties, respectively. In Chapter 7, we present our

technique and tool for performing exact quantitative model checking at scale. We conclude

with potential future work Chapter 8.
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CHAPTER 2: PRELIMINARIES

2.1 PROBABILITY SPACES

Given a set Ω, Σ ⊆ 2Ω is said to be a σ-algebra on Ω if Σ contains ∅ and is closed

under complementation and countable union. A function µ : Σ → [0, 1] is said to be

countably additive if for each countable collection F1, F2, . . . ∈ Σ of pairwise disjoint sets,

µ(
⋃∞
i=1 Fi) =

∑∞
i=1 µ(Fi). A (sub)-probability space is a tuple (Ω,Σ, µ) where Ω is a set of

events, Σ is a σ-algebra on Ω and µ : Σ → [0, 1] is a countably additive function such that

µ(∅) = 0 and µ(Ω) ≤ 1. The set Σ is said to be the set of events and µ the (sub)-probability

measure of Ω. For F ∈ Σ, the quantity µ(F ) is said to be the probability of the event F . If

µ(Ω) = 1 then we call µ a probability measure.

A (sub)-probability space (Ω,Σ, µ) is said to be discrete if Σ = 2Ω. In a discrete (sub)-

probability space, for any set F ⊆ Ω, we have µ(F ) =
∑

x∈F µ({x}). Hence, for discrete

(sub)-probability spaces, µ is completely determined by its value on singleton sets and we will

consider µ a function from Ω to [0, 1]. For a probability measure µ over Ω, let support(µ) =

{x ∈ Ω |µ(x) > 0}. The set of all discrete probability distributions over Ω will be denoted by

Dist(Ω). Given any x ∈ Ω, the Dirac measure on Ω, denoted δx, is the discrete probability

measure µ such that µ(x) = 1. Given two (sub)-probability measures µ1 and µ2 on a measure

space (Ω,Σ) as well as a rational number p ∈ [0, 1], the convex combination µ1 +p µ2 is the

(sub)-probability measure µ such that for each set F ∈ Σ we have µ(F ) = p · µ1(F ) + (1−
p) · µ2(F ).

2.2 DISCRETE TIME MARKOV CHAINS

A discrete time Markov chain (DTMC) is used to model systems with probabilistic beha-

vior. Formally, a DTMCM is a tuple (Z, zs,∆) where Z is a countable set of states, zs ∈ Z
is the initial state and ∆ : Z → Dist(Z) is the probabilistic transition function that maps

states to a discrete probability distribution over Z. Informally, the process modeled by M
evolves as follows. The process starts in state zs. After i execution steps, if the process is in

state z, the process moves to state z′ at execution step (i+ 1) with probability ∆(z)(z′).

An execution ρ of M is a sequence of states z0 → z1 → z2 → · · · such that z0 = zs and

zi+1 ∈ support(∆(zi)) for all i ≥ 0. Let Exec∞(M) be the set of all executions and Exec(M)

be the set of all finite executions. To each finite execution ρfin = z0 → . . .→ zm ∈ Exec(M)

we associate a probability PrM(ρfin) =
∏m−1

i=0 ∆(zi)(zi+1). The cylinder set of ρfin is Cyl(ρfin) =
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{ρ ∈ Exec(M)|ρfin is a prefix of ρ}. Let S be the smallest σ-algebra on Exec∞(M) containing

the cylinder sets Cyl(ρfin) for all ρfin ∈ Exec(M). Define probM as the unique probability

measure on S such that probM(Cyl(ρfin)) = PrM(ρfin) for all ρfin ∈ Exec(M).

2.3 MARKOV DECISION PROCESSES

Markov decision processes (MDPs) are used to model systems that exhibit both proba-

bilistic and non-deterministic behavior. An MDP M is a tuple (Z, zs,Act,∆) where Z is

a countable set of states, zs ∈ Z is the initial state, Act is a countable set of actions and

∆ : Z × Act→ Dist(Z) is the probabilistic transition function. M is said to be finite if the

sets Z and Act are finite. An MDP is like a Markov chain except that at each state z, there

is a choice among many probabilistic transitions. This choice of which transition to trigger

is resolved by an adversary. Informally, the process modeled by M evolves as follows. The

process starts in state zs. After i execution steps, if the process is in state z, the attacker

chooses an action α such that ∆(z, α) = µ and the process moves to state z′ in step (i+ 1)

with probability µ(z′).

An execution of an MDP is a sequence ρ = z0
α1−→ z1

α2−→ z2 · · · such that z0 = zs and

zi+1 ∈ support(∆(zi, αi+1)) for all i ≥ 0. We will again use Exec∞(M) to denote the set

of executions and Exec(M) to denote the set of all finite executions of M. For a finite

execution ρ = z0
α1−→ z1

α2−→ z2 · · ·
αm−−→ zm we write last(ρ) = zm and say that ρ has length m,

denoted |ρ| = m. An execution ρ′ is said to be a one-step extension of ρ if there exists αm+1

and zm+1 such that ρ′ = ρ
αm+1−−−→ zm+1. In such a case, we say ρ′ extends ρ by (αm+1, zm+1).

An execution is called maximal if it is infinite or if it is finite and has no one-step extension.

An adversary for M is function A : Exec(M) → Dist(Act) that maps finite executions

to distributions on actions. An adversary A for M resolves all non-determinism and the

resulting system can be described by a DTMCMA = (Exec(M), zs,∆
A) where, for each ρ ∈

Exec(M), ∆A(ρ) is the unique discrete probability distribution that satisfies the following.

For each ρ1 ∈ Exec(M), z ∈ Z and α ∈ Act, ρ1 extends ρ by (α, z), ∆A(ρ)(ρ1) = A(ρ)(α) ·
∆(last(ρ), α)(z).

Probabilistic Bisimulation. Let M = (Z, zs,Act,∆) be an MDP and L : Z → 2AP

be a labeling function that maps states to subsets of the set of atomic propositions AP.

A probabilistic bisimulation on M is an equivalence relation R on Z such that, for all

(z1, z2) ∈ Z and α ∈ Act,

1. L(z1) = L(z2)
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2. ∆(z0, α)(C) = ∆(z1, α)(C) for all C ∈ Z/R

where ∆(z, α)(C) =
∑

z′∈C ∆(z, α)(z′). Two MDPsMi = (Zi, z
i
s,Acti,∆i) for i ∈ {0, 1} with

labeling function L are called bisimilar, denoted M0 ∼ M1, if there exists a probabilistic

bisimulation R on M =M0 ]M1 such that (z0
s , z

1
s) ∈ R.

2.4 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Partially observable Markov decision processes (POMDPs) extend MDPs by restricting

what an adversary can observe from the states of a system/process. Formally, a POMDP

M is a tuple (Z, zs,Act,∆,O, obs) whereM0 = (Z, zs,Act,∆) is an MDP, O is a countable

set of observations and obs : Z → O is a labeling of states with observations. M is said to

be finite if the sets Z and Act are finite. The set of executions of M0 is taken to be the set

of executions of M, i.e., we define Exec(M) as the set Exec(M0). We will lift the relevant

notation from Section 2.3. Given a finite execution ρ = z0
α1−→ . . .

αn−→ zn of M, the trace of

ρ is tr(ρ) = obs(z0)α1 . . . αnobs(zn). Let Trace = O · (Act · O)∗ be the set that contains tr(ρ).

A finite trace o0α1 . . . αnon ∈ Trace is said to have length n, denoted |o| = n. An adversary

for a POMDP is a function A : Trace→ Dist(Act).

Let M = (Z, zs,Act,∆,O, obs) be a POMDP and A be an adversary. Recall that κ =

ζ0 → ζ1 → . . . → ζm ∈ Exec(MA) is such that ζi ∈ Exec(M) for each i < m. For an

execution ρ ∈ Exec(M), the probability of ρ under adversary A, denoted probM(ρ,A), is

probMA(κ) where κ ∈ Exec(MA) and last(κ) = ρ. For κ ∈ Exec(MA) we will write tr(κ) is

tr(ζm) if ζm ∈ Exec(M) and tr(ζm−1)·ζm otherwise. For a sequence o ∈ Trace, the probability

of A observing o, written probM(o,A), is the sum of the measures of executions in the set

{κ ∈ (Exec(MA)) | tr(κ) = o}. We may simply write probM(o) when the adversary is not

relevant in a particular context.

A POMDP M = (Z, zs,Act,∆,O, obs) is said to be acyclic if there is a set of absorbing

states Zabs ⊆ Z such that for all α ∈ Act and z ∈ Za, ∆(z, α)(z) = 1 and for all ρ = z0
α1−→

. . .
αm−−→∈ Exec(M) if zi = zj for i 6= j then zi ∈ Zabs.

State-based safety properties. Given a POMDP M = (Z, zs,Act,∆,O, obs), a set

ψ ⊆ Z is said to be a state-based safety property. An execution ρ = z0
α1−→ z1

α2−→ . . . is said

to satisfy ψ if zj ∈ ψ for all j ≥ 0. An execution κ = ζ0 → ζ1 → . . . ∈ Exec∞(MA) is said

to satisfy ψ, denoted κ |= ψ, if whenever ζi ∈ Exec∞(M) then ζi satisfies ψ. We say that

M satisfies ψ with probability ≥ p against adversary A, denoted MA |=p ψ, if the sum of

the measures of the executions in the set {κ ∈ Exec∞(MA) | κ is maximal and κ |= ψ} in
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the Markov chain MA is ≥ p. We say that M satisfies ψ with probability ≥ p, denoted

M |=p ψ, if for all adversaries A, MA |=p ψ.

Indistinguishability. Given two POMDPs Mi = (Zi, z
i
s,Acti,∆i,Oi, obsi) for i ∈ {0, 1}

with the same set of actions and observations, we we say thatM0 andM1 are distinguishable

by an adversary A if there is an o ∈ Trace such that probM0
(o,A) 6= probM1

(o,A). If M0

and M1 cannot be distinguished by any adversary, they are said to be indistinguishable,

denoted M0 ≈M1.

Non-randomized adversaries. An adversary A : Trace → Dist(Act) is said to be non-

randomized if for each o ∈ Trace, A(o)(α) is non-zero for exactly one α ∈ Act. Due to the

following proposition, one need only consider non-randomized adversaries when analyzing

state-based safety and indistinguishability properties of POMDPs. For the remainder of this

work, we will restrict our attention to this class of adversaries.

Proposition 2.1 ([67]) Let M and M′ be POMDPs, ψ be a state-based safety property and

A be an adversary. The following are true.

1. If MA 6|=p ψ then there exists a non-randomized adversary A0 such that MA0 6|=p ψ.

2. IfM 6≈M′ then there exists a non-randomized adversary A0 such that probM(o,A0) 6=
probM′(o,A0).

2.5 PROBABILISTIC FINITE AUTOMATA

A PFA is like a finite-state deterministic automaton except that the transition function

from a state on a given input is described as a probability distribution. Formally, a PFA

A is a tuple (Q,Σ, qs,∆, F ) where Q is a finite set of states, Σ is a finite input alphabet,

qs ∈ Q is the initial state, ∆ : Q × Σ → Dist(Q) is the transition relation and F ⊆ Q is a

set of accepting states. A run ρ of A on an input word u ∈ Σ∗ = a1a2 . . . am is a sequence

q0q1 . . . qm ∈ Q∗ such that q0 = qs and ∆(qi−1, ai)(qi) > 0 for each 1 ≤ i ≤ m. For the run

ρ on word u, its measure, denoted probA,u(ρ), is
∏m

i=1 ∆(qi−1, ai)(qi). The run ρ is called

accepting if qm ∈ F . The probability of accepting a word u ∈ Σ, written probA(u), is the

sum of the measures of the accepting runs on u. Two PFAs A0 and A1 with the same input

alphabet Σ are said to be equivalent, denoted A0 ≡ A1, if probA0
(u) = probA1

(u) for all

u ∈ Σ∗. Acyclic PFAs are defined analogously to acyclic POMDPs.
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2.6 TERMS, EQUATIONAL THEORIES AND FRAMES

A signature F contains a finite set of function symbols, each with an associated arity and

two special countable sets of constant symbols Npub and Npriv representing public and private

names, respectively. Variable symbols are the union of two disjoint sets X and Xw, used to

represent protocol and frame variables, respectively. The sets F , Npub, Npriv, X and Xw are

required to be pairwise disjoint. Terms are built by the application of function symbols to

variables and terms in the standard way. Given a signature F and Y ⊆ X ∪ Xw, we use

T (F ,Y) to denote the set of terms built over F and Y . The set of variables occurring in a

term u is denoted by vars(u). A ground term is one that contains no free variables.

A substitution σ is a partial function with a finite domain that maps variables to terms,

where dom(σ) will denote the domain and ran(σ) will denote the range. For a substitution

σ with dom(σ) = {x1, . . . , xk}, we will denote σ as {x1 7→ σ(x1), . . . , xk 7→ σ(xk)}. A

substitution σ is said to be ground if every term in ran(σ) is ground and a substitution with

an empty domain will be denoted as ∅. Substitutions can be extended to terms in the usual

way and we write tσ for the term obtained by applying the substitution σ to the term t.

Our process algebra is parameterized by an equational theory (F , E), where F is a sig-

nature and E is a set of F -Equations. By an F -Equation, we mean a pair u = v where

u, v ∈ T (F \ Npriv,X ) are terms that do not contain private names.

Example 2.1 We can model primitives for symmetric encryption/decryption and a hash

function using the equational theory (Fsenc, Esenc) with signature Fsenc = {senc/2, sdec/2, h/1}
and equations Esenc = {sdec(senc(m, k), k) = m}.

Two terms u and v are said to be equal with respect to an equational theory (F , E),

denoted u =E v, if E ` u = v in the first order theory of equality. For equational theories

defined in the preceding manner, if two terms containing names are equivalent, they will

remain equivalent when the names are replaced by arbitrary terms. We often identify an

equational theory (F , E) by E when the signature is clear from the context. An equational

theory E is said to be trivial if u =E v for any terms u and v and otherwise it is said to

be non-trivial. For the remainder of this work, we will assume equational theories are non-

trivial. Processes are executed in an environment that consists of a frame ϕ : Xw → T (F)

and a binding substitution σ : X → T (F).

Definition 2.1 Two frames ϕ1 and ϕ2 are said to be statically equivalent in equational

theory E, denoted ϕ1 ≡E ϕ2, if dom(ϕ1) = dom(ϕ2) and for all r1, r2 ∈ T (F \ Npriv,Xw) we

have r1ϕ1 =E r2ϕ1 iff r1ϕ2 =E r2ϕ2.
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Intuitively, two frames are statically equivalent if an attacker cannot distinguish between

the information they contain. A term u ∈ T (F) is deducible from a frame ϕ with recipe

r ∈ T (F \ Npriv, dom(ϕ)) in equational theory E, denoted ϕ `rE u, if rϕ =E u. We often

omit r and E and write ϕ ` u if they are clear from the context.

A term u can be represented as a labeled directed acyclic graph (DAG), denoted dag(u)

[68, 69]. Every node in dag(u) is labeled by a function symbol, name or a variable. Nodes

labeled by names and variables have out-degree 0. A node labeled with a function symbol f

has out-degree equal to the arity of f where outgoing edges of the node are labeled from 1

to the arity of f . Every node of dag(u) represents a unique sub-term of u. The dag-size of a

term u is the number of nodes in dag(u). We assume that the size of a term u, denoted |u|,
is the dag-size of u. The depth of a term u, denoted depth(u), is the length of the longest

path in dag(u).

2.7 PROCESS SYNTAX

We assume a countably infinite set of labels L and an equivalence relation ∼ on L that

induces a countably infinite set of equivalence classes. For ` ∈ L, [`] denotes the equivalence

class of `. We use Lb and Lc to range over subsets of L such that Lb ∩ Lc = ∅ and both

Lb and Lc are closed under ∼. Each equivalence class is assumed to contain a countably

infinite set of labels. Operators in our grammar will come with a unique label from L, which

together with the relation ∼, will be used to mask the information an attacker can obtain

about actions of a process. When an action with label ` is executed, the attacker will only

be able to infer [`].

Processes in our calculus are the parallel composition of roles, which intuitively are used

to model a single actor in a system/protocol. Roles, in turn, are constructed by combining

atomic actions through sequential composition and probabilistic choice. Formally, an atomic

action is derived from the grammar

A := 0 νx` (x := u)` [c1 ∧ . . . ∧ ck]` in(x)` out(u)`

where ` ∈ L, x ∈ X and ci ∈ {>, u = v} for all i ∈ {1, . . . , k} where u, v ∈ T (F \ Npriv,X ).

In the case of the assignment rule (x := u)`, we additionally require that x 6∈ vars(u). A role

is derived from the grammar

R := A (R ·R) (R +`
p R)

where p ∈ [0, 1], ` ∈ L and x ∈ X . The 0 process does nothing. The process νx` creates a

fresh name and binds it to x while (x := u)` assigns the term u to the variable x. The test
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process [c1 ∧ . . . ∧ ck]` terminates if ci is > or ci is u = v where u =E v for all i ∈ {1, . . . , k}
and otherwise, if some ci is u = v and u 6=E v, the process deadlocks. The process in(x)`

reads a term u from the public channel and binds it to x and the process out(u)` outputs

a term on the public channel. The processes R · R′ sequentially executes R followed by R′

whereas the process R +`
p R
′ behaves like R with probability p and like R′ with probability

1 − p. Note that protocols in our formalism are simple; a protocol is said to be simple if

there is no principal-level nondeterminism [70].

We will use P and Q to denote processes, which are the parallel composition of a finite

set of roles R1, . . . , Rn, denoted R1 | . . . | Rn. For a process Q, fv(Q) and bv(Q) denote

the set of variables that have some free or bound occurrence in Q, respectively. The formal

definition is standard and is presented in Appendix A. Processes containing no free variables

are called ground. We restrict our attention to processes that do not contain variables with

both free and bound occurrences. That is, for a process Q, fv(Q) ∩ bv(Q) = ∅.

Definition 2.2 A process Q = R1 | . . . | Rn is said to be well-formed if the following hold.

1. Every atomic action and probabilistic choice in Q has a unique label.

2. If label `1 (resp. `2) occurs in the role Ri (resp. Rj) for i, j ∈ {1, . . . , n}
then i 6= j iff [`1] 6= [`2].

For the remainder of this work, processes are assumed to be well-formed. Unless otherwise

stated, will will also assume that the labels occurring a role come from the same equivalence

class.

Convention 2.1 For readability, we will omit process labels when they are not relevant in

a particular context.

We now give some examples illustrating the type of protocols that can be modeled in our

process algebra.

Example 2.2 We model the electronic voting protocol from Example 1.1 in our formalism.

The protocol is built over the equational theory (Faenc, Eaenc) with signature

Faenc = {sk/1, pk/1, aenc/3, adec/2, fst/1, snd/1, pair/2}

and equations

Eaenc = {adec(aenc(m, r, pk(k)), sk(k)) = m, fst(pair(x1, x2)) = x1, snd(pair(x1, x2)) = x2}.
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For generation of their pubic key pairs; Alice, Bob and the election authority hold private

names kA, kB and kEA, respectively. The candidates will be modeled using public names c0

and c1 and the tokens will be modeled using private names tA and tB. Additionally, we will

write yi and ri for i ∈ N to denote fresh input variables and private names, respectively. The

roles of Alice, Bob and the election authority are as follows.

A(cA) := in(y0) · out(aenc(pair(adec(y0, sk(kA)), cA), r0, pk(kEA)))

B(cB) := in(y1) · out(aenc(pair(adec(y1, sk(kB)), cB), r1, pk(kEA)))

EA := out(aenc(tA, r2, pk(kA))) · out(aenc(tB, r3, pk(kB))) · in(y3) · in(y4)·
[fst(adec(y3, sk(kEA))) = tA ∧ fst(adec(y4, sk(kEA))) = tB]·
out(snd(adec(y3, sk(kEA))) + 1

2
snd(adec(y4, sk(kEA))))

The entire protocol is evote(cA, cB) = A(cA) | B(cB) | EA.

For some examples, it is necessary permute the order in which a set of atomic actions

a1, . . . , an are executed. We introduce the shorthand perm[a1, . . . , an] for such an operation,

which is defined inductively using the basic probabilistic choice operator as follows. If n = 2,

then perm[a1, a2] = (a1 · a2) + 1
2

(a2 · a1). Inductively, if n > 2, then perm[a1, . . . , an] is

P1 + 1
n

(P2 + 1
n−1

(P3 + 1
n−2

. . . (Pn−1 + 1
2
Pn) . . .)

where Pi = ai · perm[a1, . . . , ai−1, ai+1, . . . , an].

Example 2.3 A mix-network, originally introduced by Chaum in [9], is a routing protocol

used to hide the origin of messages that pass through it. This is achieved by routing mes-

sages through a series of proxy servers, called mixes, which receive encrypted traffic from

multiple senders, shuffle the messages and forward them in random order (for more details,

see Section 3.1). More formally, assume there are users A1, . . . , An who want to communi-

cate anonymously through a single mix server M with users B1, . . . , Bn, respectively. The

protocol is build over the equational theory (Faenc, Eaenc) from Example 2.2. For generation

of their pubic key pairs, the parties A0, . . . , An (resp. B1, . . . , Bn), will hold private names

kA1 , . . . , kAn (resp. kB1 , . . . , kBn). The mix will hold the private name kM . We will also as-

sume a set of private names r1, r2, . . . to model nonces and a set of private names m1,m2, . . .

to model messages. The behavior of user Ai (for i ∈ {1, . . . , n}) and the mix can be described

by the roles below.

Ai := out(aenc(aenc(mi, ri, pk(kBi)), r
′
i, pk(kM)))

M := in(z1) · . . . · in(zn)·
perm(adec(z1, sk(kM)), . . . , adec(zn, sk(kM)))
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2.8 PROCESS SEMANTICS

Given a process P , an extended process is a 3-tuple (P, ϕ, σ) where ϕ is a frame and σ is

a binding substitution. Semantically, a ground process P over equational theory (F , E) is a

POMDP [[P ]] = (Z ∪ {error}, zs,Act,∆,O, obs) where Z is the set of all extended processes

zs = (P, ∅, ∅), Act = (T (F \Npriv,Xw)∪ τ)×L/∼ and ∆,O, obs are defined below. Let µ ·Q
denote the distribution µ1 such that µ1(P ′, ϕ, σ) = µ(P, ϕ, σ) if P ′ is P ·Q and 0 otherwise.

The distributions µ | Q and Q | µ are defined analogously. For a conjunct ci (i ∈ {1, . . . , n})
in a test process [c1 ∧ . . . ∧ cn] and a substitution σ we write ci ` > when ci is > or ci is

u = v where vars(u, v) ⊆ dom(σ) and uσ =E vσ. We define ∆ in Figure 2.1, where we write

(P, ϕ, σ)
α−→ µ if ∆((P, ϕ, σ), α) = µ. For any extended process (P, ϕ, σ) and action α ∈ Act,

if ∆((P, ϕ, σ), α) is undefined in Figure 2.1 then ∆((P, ϕ, σ), α) = δerror. Note that ∆ is

well-defined, as roles are deterministic and each equivalence class on labels identifies at most

one role. For a frame ϕ and equational theory E, we write [ϕ] to denote the equivalence

class of ϕ with respect to the static equivalence relation ≡E. We use EQ to denote the set

of all such equivalence classes. Let O = EQ and define obs as a function from extended

processes to O such that for any extended process η = (P, ϕ, σ), obs(η) = [ϕ]. Given an

action α, depth(α) = 0 if α = (τ, j) and depth(α) = m if α = (r, j) and depth(r) = m. For a

frame/substitution σ, |σ| is the sum of the sizes of the terms in ran(σ).

Figure 2.1 Process semantics.

r ∈ T (F \ Npriv,Xw) ϕ `r u x 6∈ dom(σ)

(in(x)`, ϕ, σ)
(r,[`])−−−→ δ(0,ϕ,σ∪{x 7→u})

in
x 6∈ dom(σ) n is a fresh name

(νx`, ϕ, σ)
(τ,[`])−−−−→ δ(0,ϕ,σ∪{x 7→n})

new

vars(u) ⊆ dom(σ) i = |dom(ϕ)|+ 1

(out(u)`, ϕ, σ)
(τ,[`])−−−−→ δ(0,ϕ∪{w(i,[`]) 7→uσ},σ)

out Q0 6= 0 (Q0, ϕ, σ)
α−→ µ

(Q0 ·Q1, ϕ, σ)
α−→ µ ·Q1

seq

∀i ∈ {1, . . . , n}, ci ` >

([c1 ∧ . . . ∧ cn]`, ϕ, σ)
(τ,[`])−−−−→ δ(0,ϕ,σ)

test (Q0, ϕ, σ)
α−→ µ

(0 ·Q0, ϕ, σ)
α−→ µ

null

vars(u) ⊆ dom(σ) x 6∈ dom(σ)

((x := u)`, ϕ, σ)
(τ,[`])−−−−→ δ(0,ϕ,σ∪{x 7→uσ})

asgn (Q0, ϕ, σ)
α−→ µ

(Q0 | Q1, ϕ, σ)
α−→ µ | Q1

parl

(Q1 +`
p Q2, ϕ, σ)

(τ,[`])−−−−→ δ(Q1,ϕ,σ) +p δ(Q2,ϕ,σ)

prob ((Q1, ϕ, σ)
α−→ µ

(Q0 | Q1, ϕ, σ)
α−→ Q0 | µ

parr

Protocols P and P ′ are said to indistinguishable if [[P ]] ≈ [[P ′]]. As observed in [67], this no-
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tion of indistinguishability coincides with the classical notion of trace-equivalence for simple

non-randomized protocols. In Examples 2.4 and 2.5 below, we demonstrate how properties

of randomized security protocols can be specified using the notion of indistinguishability.

Example 2.4 Consider the simple electronic voting protocol from Example 2.2. We say that

the protocol satisfies the vote privacy property if evote(c0, c1) and evote(c1, c0) are indistin-

guishable.

Example 2.5 Let P = A1 | . . . | An |M be the mix network protocol from Example 2.3. Let

M′ = in(z1) · . . . · in(zn) · perm(aenc(z1, r1, pk(kB1)), . . . , aenc(zn, rn, pk(kB1)))

be an idealized mix that outputs the messages from A1, . . . , An in random order. The protocol

P preserves the anonymity of senders if P is indistinguishable from A1 | . . . | An |M ′.

Definition 2.3 An extended process (P, ϕ, σ) preserves the secrecy of a term u in the equa-

tional theory (F , E), denoted (P, ϕ, σ) |=E u, if there is no r ∈ T (F \ Npriv, dom(ϕ)) such

that ϕ `rE uσ. We write secret(u), to represent the set of states of [[P ]] that preserve the

secrecy of u and secret({u1, . . . , un}) to denote secret(u1) ∩ . . . ∩ secret(un).

Notation 2.1 For a process P and terms u1, . . . , un, secret({u1, . . . , un}) is a state-based

safety property of [[P ]]. For a probability p, we will write P |=E,p secret(u1, . . . , un), if [[P ]] |=p

secret({u1, . . . , un}).

In the following examples, we demonstrate how the security properties from Examples 2.4

and 2.5 can be reformulated as state-base safety properties.

Example 2.6 Consider the simple electronic voting protocol from Example 2.2. We will

alter the protocol such that vote privacy can be modeled as a state-based safety property. In

our modeling, each of the voters will toss a fair coin to decide among the candidates c0 and

c1. After the election authority publishes the votes, the adversary will then be given a chance

to “guess” which candidate was chosen by Alice. If the guess is correct, a special public name

s will be output. Formally, the roles of Alice, Bob and the special test process S are given

below.

A′ := in(y0) · ((cA := c0) + 1
2

(cA := c1)) ·
out(aenc(pair(adec(y0, sk(kA)), cA), r0, pk(kEA)))

B′ := in(y1) · ((cB := c0) + 1
2

(cB := c1)) ·
out(aenc(pair(adec(y1, sk(kB)), cB), r1, pk(kEA)))

S := in(ys) · [ys = cA] · out(s)
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Vote privacy can be modeled as through the secrecy of the secret s. Notice that if both Alice

and Bob chose the same candidate (which occurs with probability 1
2
) then the attacker knows

Alice’s vote. If Alice and Bob chose different candidates (which also occurs with probability
1
2
) then the random permutation of the votes performed by the election authority should not

allow the attacker to distinguish the scenario in which Alice votes for c0 and Bob votes for c1

from the one in which Alice votes for c1 and Bob votes for c0. That is, the protocol satisfies

vote privacy if s is kept secret with probability 1
4
, i.e. (A′ | B′ | EA | S) |=Eaenc,

1
4
secret(s).

Example 2.7 Consider the mix-net protocol P = A1 | . . . | An |M defined in Example 2.3.

The protocol is designed to ensure that the messages output by the mix cannot be linked to

the original sends with high probability. That is, the adversary should be able to do no better

than “guess” which output message belongs to which sender. This hypothesis is violated if,

for a mix output, the adversary can identify the sender of the message with probability > 1
n

.

We can model this property in our framework by adding, for each i ∈ {1, . . . , n}, a role

Si = in(z′i) · [z′i = aenc(mi, ni, pk(kBi))] · out(si)

to the process, where si is a private name. The protocol P preserves the anonymity of sender

Ai if (A0 | . . . | An |M | S1 | . . . | Sn) |=Eaenc,
1
n
secret(si).
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CHAPTER 3: RANDOMIZED SECURITY PROTOCOLS

In this chapter, we describe a group of randomized security protocols that will serve as

running examples throughout the remainder of this work. This group of protocols also

constitutes the benchmark suite upon which we evaluate our protocol analysis tool (Chapter

4).

3.1 MIX-NETWORKS

A mix-network [9], is a routing protocol used to break the link between a message’s sender

and receiver. This is achieved by routing messages through a series of proxy servers, called

mixes. Each mix collects a batch of encrypted messages, privately decrypts each message

and forwards the resulting messages in random order. More formally, consider a sender

Alice (A) who wishes to send a message m to Bob (B) through Mix (M). Alice prepares a

cipher-text of the form

aenc(aenc(m,n1, pk(B)), n0, pk(M))

where aenc is asymmetric encryption, n0, n1 are nonces and pk(M), pk(B) are the public

keys of the Mix and Bob, respectively. Upon receiving a batch of N such cipher-texts, the

Mix unwraps the outer layer of encryption on each message using its secret key and then

randomly permutes and forwards the messages. This step of the protocol is referred to as a

flush. A passive attacker, who observes all traffic but does not otherwise modify messages

on the network, cannot (with high probability) correlate messages entering and exiting the

Mix. Unfortunately, this simple design, known as a threshold mix, is vulnerable to an active

attack. To expose Alice as the sender of the message aenc(m,n1, pk(B)), an attacker simply

forwards Alice’s message along with N−1 dummy messages to the Mix. In this way, the

attacker can distinguish which of the Mix’s N output messages is not a dummy message

and hence must have originated from Alice. Although active attacks of this nature cannot

be thwarted completely, several mix-network designs have been proposed to increase the

overhead associated with carrying out such an attack. We describe several of these designs

below. Each design will deviate from the mix described above only in its algorithm for

flushing messages.

Pool mixes. In each round, a pool mix [71, 72, 73], receives a set of messages, adds them

to its pool, and outputs a random subset of the messages from its pool in random order.

The remainder of the message are retained as part of the pool for later rounds. Often times,
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when the mix is first instantiated, the pool will be initialized with a set of dummy messages

that are indistinguishable from actual network traffic. Various methodologies regarding

which subsets of messages should be flushed or retained in each round has lead to several

variations of the pool mix design.

In the simplest instantiation of a pool mix, a constant number of messages m are retained

in the pool at each round. After a flush, the mix collects an additional n messages. Once

n+m messages are held, the mix randomly selects another n messages to flush. This design

is known as a threshold pool mix. As opposed to retaining a constant number of messages in

the pool at each round, a dynamic pool mix outputs only a fraction f (for 0 < f ≤ 1 ) of

the new messages it receives at each round. If the mix holds n + m messages at the end of

a round, then max(1, bn · fc) of the messages are forward.

Pool mixes do not eliminate the threat of N−1 flooding attacks. However, they impose a

much larger burden on an adversary attempting to carry out such an attack. In the case of

threshold mixes, a single round is sufficient to positively link a message with its sender. In

the case of pool mixes, the N−1 flooding attack becomes probabilistic in nature. A message

is retained in the pool for an unpredictable number of rounds. But, as the number of rounds

increases, the probability of a message remaining in the pool decreases. In [74], a study of

the effectiveness of N−1 flooding attacks details the number of rounds required to attack

each of the pool mix variations described above.

Binomial mixes. A binomial mix [75, 76, 77] adopts a dynamic strategy for its flushing

algorithm. For each n ∈ N, the mix has an associated probability of forwarding, denoted

pf (n). At the end of a round, if the mix holds n messages, a biased coin is flipped for each

message. With probability pf (n) a message is forwarded and with probability 1 − pf (n) a

message is retained for later rounds. In this approach, the number of messages output each

round is selected from a binomial distribution with mean n ·pf (n) and variance n ·pf (n)(1−
pf (n)).

Mix network topology. Observe that, in all of the mix-network schemes, the mix server

constitutes a single point of trust (failure). If the mix does not faithfully execute the protocol

or correctly randomize its outputs, than the security of the entire scheme is broken. As a

result, mix-networks are typically deployed using multiple mix servers. Incoming messages

are routed through a subset of these servers according to a statically or dynamically selected

path. In this way, trust is distributed among several of the servers in the mix-network.

In the cascade mix design, a user selects a static path for his/her message through the mix

network. This is achieved by a re-encrypting a message several times, each with the public

19



key of a different mix server. Upon receiving a cipher-text, each mix in the encryption chain

unwraps one layer of the encryption and forwards the resulting cipher-text to a new mix in

the chain. An alternative approach, called a free-route mix, allows the route of a message

to be dynamically selected by the mix-network. A sender performs a single encryption of

his/her message and forwards it to a mix server of its choice. This mix then unwraps the

outer layer of encryption, re-encrypts the message under the public key of another mix in

the network and forwards the message to that mix. Eventually one of the mix servers in this

communication chain forwards the message to the intended recipient. Each of the network

topologies described above comes with its own set of advantages and drawbacks. There has

been some debate in the research community as to which design provides a higher degree of

security [78, 79].

3.2 DINNING CRYPTOGRAPHERS NETWORKS

In a simple DC-net protocol [80, 41], two parties Alice and Bob want to anonymously

publish two confidential bits mA and mB, respectively. To achieve this, Alice and Bob agree

on three private random bits b0, b1 and b2 and output a pair of messages according to the

following scheme.

If b0 = 0 Alice: MA,0 = b1 ⊕mA, MA,1 = b2

Bob: MB,0 = b1, MB,1 = b2 ⊕mB

If b0 = 1 Alice: MA,0 = b1, MA,1 = b2 ⊕mA

Bob: MB,0 = b1 ⊕mB, MB,1 = b2

From the protocol output, the messages mA and mB can be retrieved as MA,0 ⊕MB,0 and

MA,1 ⊕MB,1. The party to which the messages belong, however, remains unconditionally

private, provided the exchanged secrets are not revealed.

The protocol can be extended to multiple parties as follows. Let A1, . . . , An be the par-

ticipants for the protocol. Each pair of participants (Ai, Aj) shares a set of secret keys

ki,j(w) for i, j, w ∈ {1, . . . , n} where ki,j(w) = kj,i(w). To broadcast the messages of parties

participating in the scheme, each member Ai first computes a vector of values

Wi = [Wi(1) = ⊕nj=1ki,j(1), . . . ,Wi(n) = ⊕nj=1ki,j(n)]

where each Wi(w) is called a pad. Ai then chooses a random position ci and and computes

a new vector

Vi = [Wi(1), . . . ,Wi(ci)⊕mi, . . . ,Wi(n)]
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where mi is the message of Ai. Each party then outputs the message Vi from which the

set of all messages can be obtained as V = ⊕ni=1(Vi) as long each party selected a distinct

position ci.

3.3 3-BALLOT ELECTRONIC VOTING

In this section, we present the 3-ballot voting system from [17]. To simplify the presen-

tation of the protocol, we begin by describing the major concepts behind 3-ballot voting

schemes, as originally introduced in [42]. At the polling station, each voter is given 3 ballots

at random. A ballot is comprised of a list of candidates and a ballot ID. When casting a

vote, a voter begins by placing exactly one mark next to each candidate on one of the three

ballots, chosen a random. An additional mark is then placed next to the desired candidate

on one of the ballots, again chosen at random. At the completion of the procedure, at

least one mark should have been placed on each ballot and two ballots should have marks

corresponding to the desired candidate. Ballots are then collected by an election authority,

however, each voter retains a copy of one of the ballots as a receipt. Once all votes have

been collected, the election authority publishes all of the ballots after which each voter can

use his/her receipt to verify their vote was cast. The full protocol from [17] is as follows.

The protocol will consist of three phases. There will be a set of voters, a registration agent

(R) and a voting manager (M).

In the first phase, called the registration phase, R begins by creating a voters/ballot ID

repository (VBR), requesting b ballot IDs from M and storing them in the VBR. The VBR

contains information the registration agent needs to verify the eligibility of a voter. When a

voter enters the polling station, R verifies his/her right to vote and then takes three ballot

IDs from the VBR an signs them with his/her private key. The signed ballot IDs are then

given to the voter after which R queries M for three replacement ballot IDs. Note that all

of the ballot IDs are encrypted under the public key of a voting console, which is a physical

device used to collect votes. In particular, this means that R does not know the value of the

ballot IDs.

The second phase of the protocol is the voting phase. Here a voter proceeds with the three

signed ballot IDs it obtained in the previous phase to a voting console. The voting console

uses verifies the signature of R on each ballot ID through the public key infrastructure (PKI)

and decrypts the ballot IDs. The first ballot ID is chosen as the receipt ballot ID (RID) and

sent to M . All of the communication between M and the voting console is done over an

encrypted and authenticated channel. M verifies that the RID has not been used before, to

prevent a replay attack. The voting manager then sends three ballots to the voting console.

21



The voter marks the three ballots according to the scheme presented at the beginning of this

section. After voting, the voter randomly selects one of the ballots to maintain as a receipt.

The chosen ballot is assigned the RID and the other two ballots are given the remaining

ballot IDs. The voting console then encrypts each of the ballots and sends them to M in

random order. Each of the three ballots is encrypted under the public key of one of three

vote repositories. Once the voting manager receives the three ballots, he/she signs them and

forwards them to the appropriate vote repository. All of the vote repositories validate the

signature of M before storing the vote in a random position.

Once all vote have been cast, the vote storage and counting phase commences. In this

final phase, a vote counting mechanism queries all of the vote repositories. Upon receiving

the votes, the vote counter posts the votes along with the ballot IDs to a bulletin board.

Voters can verify their vote was counted by ensuring the ballot ID they retained as a receipt

appears on the bulletin board.

3.4 FUJIOKA, OKAMOTO AND OHTA ELECTRONIC VOTING

The Fujioka, Okamoto and Ohta (FOO) voting protocol [43], is comprised of 3 phases car-

ried out by a set of voters (V1, . . . , Vn), an administrator (A) and a collector (C). To ensure

the privacy of voters from the administrator, both bit commitment [81] and blind signature

[82] schemes are used. For such schemes, will write ξ(v, k) to denote the commitment to

message v using key k and χ(m, b) for the blinding of message m with blinding factor b. By

σi(m) (resp. σA(m)), we mean the digital signature scheme of voter Vi (resp. administrator

A). The full protocol is below.

Phase 1 :

• Vi commits to vote vi as xi = ξ(vi, ki)

• Vi computes ei = χ(xi, bi) and sends the pair 〈Vi, σi(ei)〉 to A

• A verifies that Vi has the right to vote, has not yet voted, and the signature σi(ei) is

valid

• If the preceding hold, A sends σA(ei) to Vi

• Vi unblinds σA(ei) to obtain yi = σA(xi)

Phase 2 :
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• Vi sends yi to C over an anonymous channel

• C verifies the signature of yi and stores the tuple 〈`i, xi, yi〉 for number `i

Phase 3 :

• After collecting all votes, C publishes every 〈`i, xi, yi〉

• Vi verifies 〈`i, xi, yi〉 was published and sends 〈`i, ki〉 to C over an anonymous channel

• C opens xi using ki to retrieve vi and validates it is a well-formed vote

• Once all votes are collected the election results are released

The protocol assumes the existence of a perfectly anonymous channel. Unfortunately,

such a channel is difficult to realize in practice and, to the best of our knowledge, no imple-

mentations have been proposed in the literature. In fact, our analysis of the protocol led us

to conclude that such channels cannot not be realized without modification to the protocol

itself. To facilitate a concrete analysis, we a propose one such modification that instantiates

perfectly anonymous channels using mix-networks. The required changes to the protocol are

subtle, and many natural channel implementations can lead to a degradation in security.

Below we give our proposed modifications and enhancements to phases 2 and 3 of the FOO

protocol (phase 1 remains unchanged). We will write ni, ri and r′i to denote nonces held by

voter Vi and pk(m) to denote the public key of the mix.

Phase 2?:

• Vi sends aenc(〈yi, ni〉, ri, pk(m)) to the mix M

• M verifies the signature of yi and stores 〈`i, xi, yi〉 and 〈`i, ni〉 for number `i

Phase 3?:

• After collecting all votes, M publishes every 〈`i, xi, yi〉 in random order

• Vi verifies 〈`i, xi, yi〉 was published and sends aenc(〈`i, ni, ki〉, r′i, pk(m)) to M

• M verifies the pair 〈`i, ni〉 and then opens xi using ki to retrieve vi and validates it is

a well-formed vote

• Once all votes are collected the votes are released in random order
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To protect against flooding attacks, as described in the previous section, our mix-network

implementation authenticates the messages it receives. Only valid messages from valid par-

ticipants in the protocol are allowed to pass through the anonymous channel. In Phase 2∗,

this validation is enforced by verifying that messages are signed by the administrator. Alt-

hough not mentioned in the original paper, it is important that these signed messages are

also checked for distinctness. In other words, a voter should not be able to send multiple

copies of its administrator signed vote through the mix. The absence of this requirement is

a bug in the original protocol design.

In Phase 3∗, mix inputs are validated through the nonce ni, which can only be mutually

held by M and Vi, provided voter Vi supplied a valid mix input in the preceding phase.

Notice that the flushing operation from Phase 2∗ and Phase 3∗ is triggered only after all

inputs have been collected and validated. In particular, it is crucial that the mix from Phase

3∗ validates that xi and ki produce a well formed vote before releasing the results.

Beyond the protocol modifications that enable the mixes to authenticate messages, our

version of the protocol also requires that communication with the anonymous channel is

encrypted. Also note that the mixes in our protocol actually assume the role of the collector.

If so desired, the two parties can easily be separated to decentralize trust. Using Span, we

have validated, in the symbolic model, that our changes result in a protocol that preserves

vote privacy.

3.5 PRÊT À VOTER

Prêt à Voter [14] is a mix-network based voting protocol that provides a simple and

intuitive mechanism by which a set of voters (V1, . . . , Vn) can carry out elections with the

help of a set of tellers (T1, . . . , Tk) and an election authority (A). Each teller has two public

key pairs. Using these keys and a set of random values, the authority creates a set of ballot

forms with the following properties. Each ballot has two columns; the left column lists the

candidates in random order and the right column provides space for a vote to be recorded.

The bottom of the right column also holds an “onion” which encodes the ordering (cyclic

offset) for the candidates on the left hand side of the ballot.

The precise construction of a ballot is as follows. The authority first generates a random

seed,

seed := g0, g1, . . . , g2k−1

where each gi (for i ∈ {1, . . . , 2k − 1}), called a germ, is drawn from an appropriately sized
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field. For a candidate list of size v, the seed is used generate the cyclic offset

θ :=
2k−1∑
i=0

(di)(mod v)

where di := hash(gi)(mod v). Each teller i has public keys pk(T2i) and pk(T2i−1) which are

used to construct the onion

{〈g2k−1, {〈g2k−1, . . . {〈g0, D0〉}pk(T0) . . .〉}pk(T2k−2)〉}pk(T2k−1)

where D0 is a nonce uniquely chosen for each onion. Each layer Di+1 := {〈gi, Di〉}pk(Ti)

asymmetrically encrypts a germ and the previous layer of the onion.

The election authority generates a set of ballots whose count greatly exceeds the number

of voters. To cast a vote, a voter authenticates with the authority after which a random

ballot is chosen by the voter. In the voting booth, the voter marks his/her choice on the

right hand side of the ballot and removes the left hand side for shredding. The values on the

right side of the ballot (the vote position and onion) are read by a voting device and then

retained by the voter as a receipt. Once read by the voting device, the values are passed

to the tellers that manipulate pairs of the form 〈r2i, D2i〉. The first teller receives the pair

〈r,D2k〉 where r is the vote position and D2k is the onion. Upon receiving such a pair, each

teller Ti−1 performs the following operations.

• Apply the secret key sk(T2i−1) to D2i to reveal the germ g2i−1 and the next layer of the

onion D2i−1.

• Recover d2i−1 = hash(g2i−1)(mod v) and obtain r2i−1 = (r2i − d2i−1)(mod v).

• Form the new pair 〈r2i−1, D2i−1〉.

After applying this transformation for each pair in the batch it receives, teller Ti−1 performs

a secret shuffle on the resulting transformed pairs. Teller Ti−1 then repeats this process on

the shuffled values using its second secret key sk(T2i−2) to obtain a new set of pairs with the

form 〈r2i−2, D2i−2〉. These pairs are shuffled again and then passed to the next teller Ti−2.

The output of the last teller is the value of r0 which identifies a voter’s vote.

Our analysis of this version of the Prêt à Voter protocol has uncovered a previously

unknown flaw in the protocol’s design. The error arises from the assumption that the

elements of the field from which the germs are drawn are evenly distributed when their hash

is taken modulo v. To understand this error in more detail, let us consider the simple case
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when there are two candidates (0 and 1) and one teller. Let F be a field with M elements

and

Fj = {g | g ∈ F and hash(g)(mod 2) = j}

for j ∈ {0, 1}. There is no guarantee that F0 = F1 and thus the probability of the two cyclic

offsets θ0 = (F0

F
)(F0

F
) + (F1

F
)(F1

F
) and θ1 = 2(F0

F
)(F1

F
) in the randomly chosen ballots may be

different. This can give an attacker an advantage in attempting to infer a vote from a ballot

receipt. To fix this issue, the hash function should be replaced by a pseudo-random function

[83]. In Section 4.7 we demonstrate how Span can be used to help identify and fix this bug.
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CHAPTER 4: THE STOCHASTIC PROTOCOL ANALYZER

In this chapter, we introduce the first techniques for automated (symbolic) analysis of

randomized security protocols. In particular, we propose one algorithm for analyzing state-

based safety properties and two algorithms for analyzing indistinguishability in randomized

protocols. Our techniques are implemented in the Stochastic Protocol ANalyzer (Span). As

highlighted in Chapter 2, algorithms for analyzing randomized protocols require techniques

for solving state-based safety and indistinguishability properties in POMDPs.

Safety properties We begin this chapter by presenting a technique (Algorithm 4.1 on

page 32) for analyzing state-based safety properties of POMDPs. The algorithm is a based

on a well-known technique in the verification of POMDPs in which one translates a POMDP

M into a fully observable MDP known as a belief MDP B(M). Properties of M can then

be derived from an analysis of B(M).

Indistinguishability properties In Section 4.2 we study the problem of deciding indis-

tinguishability in POMDPs. Our first result (Theorem 4.2 on page 32) shows indistin-

guishability of finite POMDPs is in NC by a reduction of POMDP indistinguishability to

equivalence in PFAs, which is known to be in NC (and hence also in P) [84, 85, 86, 87].

Further, we show that POMDP indistinguishability is at least as hard as PFA equivalence.

The hardness result continues to hold for acyclic POMDPs, where an acyclic POMDP is

a POMDP that has a set of “final” absorbing states and the only cycles in the underlying

graph are self-loops on these states.

For acyclic finite POMDPs, we present another algorithm for checking indistinguishability

based on a technique that translates a POMDP M into a fully observable MDP B(M),

known as the belief MDP ofM. It was shown in [88] that two POMDPs are indistinguishable

if and only if the belief MDPs they induce are bisimilar as labeled MDPs. WhenM is finite

and acyclic and then its belief MDP B(M) is finite and acyclic and its bisimulation relation

can be checked inductively (Algorithm 4.2 on page 34).

Complexity results Protocols in Span are described by a finite set of roles (agents) that

interact asynchronously by passing messages. Each role models an agent in a protocol ses-

sion and hence we only consider bounded number of sessions. An action in a role performs

either a message input, or a message output or a test on messages. The adversary sche-

dules the order in which these actions are executed and generates input recipes comprised

of public information and messages previously output by the agents. In general, there are
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an unbounded number of input recipes available at each input step, resulting in POMDPs

that are infinitely branching. Span, however, searches for bounded attacks by bounding

the size of attacker messages. Under this assumption, protocols give rise to finite acyclic

POMDPs. Even with this assumption, protocols specified in Span describe POMDPs that

are exponentially larger than their description. Nevertheless, we show that when considering

protocols defined over subterm convergent equational theories, indistinguishability of rand-

omized security protocols is in PSPACE for bounded Dolev-Yao adversaries. We further

show that the problem is at least as hard as #SATD and hence it is both NP-hard and

coNP-hard.

Tool overview The main engine of Span translates a randomized security protocol into

an acyclic finite POMDP by recursively unrolling all protocol executions and grouping states

according to those that are indistinguishable. We implemented two algorithms for checking

indistinguishability in Span. The first algorithm, called the PFA algorithm, checks indis-

tinguishability of P and P ′ by converting them to corresponding PFAs A and A′ as in the

proof of decidability of indistinguishability of finite POMDPs. PFA equivalence can then be

solved through a reduction to linear programming [85]. The second algorithm, called the on-

the-fly (OTF) algorithm, is based on the technique of checking bisimulation of belief MDPs.

Although asymptotically less efficient than the PFA algorithm, the recursive procedure for

checking bisimulation in belief MDPs can be embedded into the main engine of Span with

little overhead, allowing one to analyze indistinguishability on-the-fly as the POMDP models

are constructed.

Evaluation and case studies In this chapter, we also evaluate the model checking al-

gorithms implemented in Span. In this evaluation process, we conduct the first automated

symbolic analysis for several new classes of security protocols including mix networks [9],

dinning cryptographers networks [80, 41] a 3-ballot electronic voting protocol [17], the FOO

electronic voting protocol [43] and Prêt à Voter [14]. In our analysis, we uncovered several

new security vulnerabilities in electronic voting protocols. When analyzing the FOO voting

protocol, we uncovered a replay attack. In addition, we discovered that realizing perfectly

anonymous channels in the FOO protocol requires non-trivial modification to the protocol

design, which if not done carefully, can lead to errors. A bug in the design of the Prêt à

Voter protocol was also uncovered.
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4.1 SAFETY PROPERTIES

In the analysis of state-based safety properties in POMDPs, the fundamental challenge

is to find an attacker for a given POMDP that maximizes the probability of reaching a

set of target (bad) states. Unfortunately, techniques for solving reachability problems in

POMDPs are far less efficient than those for MDPs, the fully observable counterpart to

POMDPs (where attackers are a function from executions to actions). The reason for the

added complexity is that at any given point in the execution of a POMDP, the attacker can

only view the observation generated by a state and can thus only infer a distribution over

the possible states. Further, an attacker for a POMDP needs to define a consistent strategy

across all executions that produce the same sequence of observations. The actions chosen in

one branch of an execution may affect the actions that can be made in another branch of an

execution. By contrast, when trying to maximize the probability of reaching a target set of

states in an MDP, it is possible to make a local decision about which action maximizes the

probability of reaching the target states.

Several results [89, 22] corroborate this story, showing that many key verification problems

for POMDPs are undecidable. Although various solution techniques have been proposed [90],

and there have been successful applications to AI and planning [91], tractable reasoning

about POMDPs typically relies on approximation techniques or simplifications to the model

(discounts). Complicating matters further, randomized security protocols induce POMDPs

that are infinitely branching. At every transition corresponding to protocol input, an infinite

number of possible recipes can be supplied by a Dolev−Yao attacker. Taming the state space

explosion that results from this infinite branching on inputs is a huge challenge, even in the

non-randomized case. We adopt the philosophy of the SATMC [5] tool, in that we will search

for bounded attacks. That is, our tool answers the question; for a given input recipe depth

k, what is the maximum probability of reaching a set of target states? The assumption of

bounded recipe depth allows randomized security protocol to be modeled by POMDPs that

are finite branching.

One of the most successful techniques in the approximation of optimal attackers for

POMDPs is to translate a POMDP M into a fully observable belief MDP B(M) that

emulates it. One can then analyze B(M) to infer properties ofM. The states of B(M) are

probability distributions over the states of M. Further, given a state b of B(M), if states

z1, z2 ofM are such that b(z1), b(z2) are non-zero then z1 and z2 must have the same obser-

vation. Hence, by abuse of notation, we can define obs(b) to be obs(z) if b(z) 6= 0. Intuitively,

an execution ρ = b0
α1−→ b1

α2−→ · · · αm−−→ bm of B(M) corresponds to the set of all executions

ρ′ of M such that tr(ρ′) = obs(b0)α1obs(b1)α2 · · ·αmobs(bm). The measure of execution ρ in
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B(M) is exactly probM(obs(b0)α1obs(b1)α2 · · ·αmobs(bm)).

The initial state of B(M) is the distribution that assigns 1 to the initial state of M.

Intuitively, on a given state b of B(M) and an action α, there is at most one successor state

bα,o for each observation o. The probability of transitioning from b to bα,o is the probability

that o is observed given that the distribution on the states of M is b and action α is

performed; bα,o(z) is the conditional probability that the actual state of the POMDP is z.

The formal definition follows.

Definition 4.1 Let M = (Z, zs,Act,∆,O, obs) be a POMDP. The belief MDP of M, deno-

ted B(M), is the tuple (Dist(Z), δzs ,Act,∆
B) where ∆B is defined as follows. For b ∈ Dist(Z),

action α ∈ Act and o ∈ O, let

pb,α,o =
∑
z∈Z

b(z) ·
( ∑
z′∈Z∧obs(z′)=o

∆(z, α)(z′)

)
.

∆B(b, α) is the unique distribution such that for each o ∈ O, if pb,α,o 6= 0 then ∆B(b, α)(bα,o) =

pb,α,o where for all z′ ∈ Z,

bα,o(z′) =


∑
z∈Z b(z)·∆(z,α)(z′)

pb,α,o
if obs(z′) = o

0 otherwise
.

This definition results in a correspondence between the maximal reachability probabili-

ties in a POMDP M and the belief MDP B(M) it induces. The following proposition,

due to Norman et al. [92], makes this correspondence precise. In the result below, for a

POMDP (resp. MDP)M and a set of observations O (resp. states T ), we write probmaxM (O)

(resp. probmaxM (T ) ) to denote the maximum probability with whichMA reaches states with

observations in O (resp. states from T ) for any adversary A.

Proposition 4.1 Let M = (Z, zs,Act,∆,O, obs) be a POMDP, O ⊆ O and TO = {b ∈
Dist(Z) | ∀z ∈ Z.(b(z) > 0⇒ obs(z) ∈ O)}. Then probmaxM (O) = probmaxB(M)(TO).

In general, belief MDPs are defined over a continuous state space; even simple POMDP

models can yield an infinite number of distributions on states. For instance, see the POMDP

from Example 4.1. It is this continuous state space that makes belief MDPs difficult to ana-

lyze. Fortunately, the calculus from Section 2.7 doesn’t include an operator for replication,

as we are mainly interested in single session protocols like those from Chapter 3. This means

that protocol executions are of a fixed length and can be encoded as acyclic POMDPs that

reach a set of finite absorbing states after a bounded number of actions. However, even
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for acyclic POMDPs, the number of reachable belief states can grow much larger than the

number of states in the original POMDP. Again, see example 4.1.

Example 4.1 Consider the POMDP M

S1 S2

α : 1
2

α : 1
2

α : 1

where Z = {S1, S2}, zs = A, Act = {α} and obs(S1) = obs(S2). Observe that any belief state

of the form {S1 : 1
2k

, S2 : 1 − 1
2k
} is reachable in k steps in B(M). Clearly, the number of

reachable states in B(M) grows with the length of executions is not finite.

Let Q be a randomized security protocol such that [[Q]] = (Z, zs,Act,∆,O, obs). Define

[[Qd]] = (Z, zs,Actd,∆d,O, obs) where every α ∈ Actd is such that depth(α) ≤ d and for all

z ∈ Z, ∆d(z, α) = ∆(z, α) if α ∈ Actd and otherwise ∆d(z, α) is undefined. For a security

protocol Q, probability p and safety property ψ, the bounded model checking problem for

depth d is to determine if [[Qd]] |=p ψ. As described above, [[Qd]] can be translated into a finite

acyclic fully observable belief MDP B([[Qd]]). By analyzing B([[Qd]]), one can generate an

attacker for [[Qd]] that optimizes the probability of reaching a target set of states Z\ψ. These

optimal reachability probabilities can be computed using Algorithm 4.1, where we assume

a finite set of absorbing states Babs. The algorithm works by recursively computing the

maximum probability of attack by exploring states in a depth first way. Such an approach

can avoid exploring many redundant portions of the state space.

The correctness of our algorithm, which follows from Proposition 4.1, is given below.

Theorem 4.1 Let Q be a protocol and d ∈ N be such that [[Qd]] = (Z, zs,Actd,∆,O, obs).

For a given probability p and state-based safety property ψ ⊆ Z, if [[Qd]] |=p ψ iff

maxAttack(δz, Z \ ψ) ≤ 1− p for the belief MDP B([[Qd]]).

4.2 INDISTINGUISHABILITY PROPERTIES

In this section, we study the problem of deciding indistinguishability properties in

POMDPs. The techniques we develop for analyzing POMDPs will provide the foundation

for the indistinguishability algorithms we implement in the Span protocol analysis tool. In

our first result, we show that POMDP indistinguishability is in NC (and hence also P) by

a reduction to PFA equivalence, also known to be in NC [84, 85, 86, 87]. All of the results

in this section assume finite POMDPs.
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Algorithm 4.1 On-the-fly model checking of safety properties in finite-length belief MDPs.

1: procedure maxAttack(beliefState b, targetStates T )
2: p← 0
3: if b ∈ Babs then
4: for z ∈ support(b) do
5: if z ∈ T then
6: p← p+b(z)

7: return p

8: for α ∈ Act do
9: for o ∈ O do

10: p← max(p,maxAttack(bα,o, T ))
11: if p == 1 then
12: return 1
13: return p

Theorem 4.2 Indistinguishability of finite POMDPs is in NC.

Proof. Consider two POMDPs Mi = (Zi, z
i
s,Acti,∆i,Oi, obsi) for i ∈ {0, 1} with the same

set of actions Act and observations O. We shall construct PFAs A0 and A1 such that

M0 ≈ M1 iff A0 ≡ A1 as follows. For i ∈ {0, 1}, let “badi” be a new state and define the

PFA Ai = (Qi,Σ, q
i
s,∆

′
i, Fi) where Qi = Zi ∪{badi}, Σ = (Act×O), qis = zis, Fi = Zi and ∆′i

defined is as follows.

∆′i(q, (α, o))(q
′) =



∆i(q, α)(q′) if q, q′ ∈ Zi and obs(q) = o

1 if q ∈ Zi, obs(q) 6= o and q′ = badi

1 if q, q′ = badi

0 otherwise

.

Let u = (α1, o0) . . . (αk, ok−1) be a non-empty word on Σ. To the word u, associate the

trace ou = o0α1o1α2 . . . αk−1ok−1 of M. Observe that a run ρ ∈ z0 . . . zk−1zk of Ai on u is an

accepting run if and only the following hold.

1. zj ∈ Z for each 0 ≤ j ≤ k

2. obs(zj) = oj for each 0 ≤ j < k

3. ∆′(zj, (αj+1, oi))(zj+1) = ∆(zj, αj+1)(zj+1) > 0 for each 0 ≤ j < k
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From these observations, it is easy to see that probAi
(u)

=
∑

zj ∈ Z, ∀ 0 ≤ j < k,

obs(zj) = oj , z ∈ Z

∆i(z0, α1)(z1) . . .∆i(zk−2, αk−1)(zk−1)∆i(zk−1, αk)(z)

=
∑

zj ∈ Z, ∀ 0 ≤ j < k,

obs(zj) = oj

∑
z∈Z ∆i(z0, α1)(z1) . . .∆i(zk−2, αk−1)(zk−1)∆i(zk−1, αk)(z)

=
∑

zj ∈ Z, ∀ 0 ≤ j < k,

obs(zj) = oj

∆i(z0, α1)(z1) . . .∆i(zk−2, αk−1)(zk−1)
∑

z∈Z ∆i(zk−1, αk)(z)

=
∑

zj ∈ Z, ∀ 0 ≤ j < k,

obs(zj) = oj

∆i(z0, α1)(z1) . . .∆i(zk−2, αk−1)(zk−1) · 1

= probMi
(ou).

The proposition follows immediately from the fact that probAi
(u) = probMi

(ou).

Theorem 4.3 Indistinguishability of finite acyclic POMDPs is at least as hard as PFA

equivalence.

Proof. Let Ai = (Qi,Σ, q
i
s,∆i, Fi) for i ∈ {0, 1} be PFAs such that |Q0| = m and |Q1| = n.

It was shown in [93] that A0 and A1 are distinguishable iff they are distinguishable on words

of length at most ` = m+n. For i ∈ {0, 1}, letMi be the POMDP (Zi, z
i
s,Acti,∆

′
i,Oi, obsi)

where Zi = {(q, j) | q ∈ Qi and 0 ≤ j ≤ `} ∪ {accepti, deadi}, zis = (qis, 0), Acti = Σi ∪ {τ},
Oi = {o1, o2}, obsi(accepti) = o2, obsi(z) = o1 for all z ∈ Zi \ {accepti} and ∆′i is as follows.

For all α ∈ Act,

∆′i(z, α)(z′) =



∆i(q, α)(q′) if z = (q, j − 1), z′ = (q′, j), α ∈ Σ, j ∈ {0, . . . , `}

1 if z = (q, `), α ∈ Σ, z′ = deadi

1 if z = (q, j), α = τ , q ∈ Fi, z′ = accepti

1 if z = (q, j), α = τ , q /∈ Fi, z′ = deadi

1 if z = z′ = accepti or z = z′ = deadi

0 otherwise.

It is easy to see that M0,M1 are acyclic and that A0,A1 are equivalent iff M0,M1 are

indistinguishable.
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In Theorem 4.2, we presented a new algorithm for POMDP indistinguishability. As di-

cussed in Section 4.1, POMDPs can also be analyzed by a translation to beleif MDPs. Let

Mi = (Zi, z
i
s,Act,∆i,O, obsi) for i ∈ {0, 1} be POMDPs with the same set of actions and

observations. In [88] the authors show thatM0 andM1 are indistinguishable if and only if

the beliefs δz0s and δz1s are strongly belief bisimilar. Strong belief bisimilarity coincides with

the notion of bisimilarity of labeled MDPs: a pair of states (b0, b1) ∈ Dist(Z0)× Dist(Z1) is

said to have a strong belief bisimulation if (i) obs(b0) = obs(b1), (ii) for all α ∈ Act, o ∈ O,

pb0,α,o = pb1,α,o and (iii) the pair (bα,o0 , bα,o1 ) has a strong belief bisimulation if pb0,α,o = pb1,α,o >

0. The states (b0, b1) ∈ Dist(Z0) × Dist(Z1) are said to be strongly belief bisimilar if there

exists some strong belief bisimulation over (b0, b1). Observe that, in general, belief MDPs

are defined over an infinite state space. It is easy to see that, for a finite acyclic POMDP

M, B(M) is acyclic and has a finite number of reachable belief states. Let M0 and M1

be as above and assume further that M0,M1 are finite and acyclic with absorbing states

Zabs ⊆ Z0 ∪Z1. As a consequence of the result from [88] and the observations above, we can

determine if two states (b0, b1) ∈ Dist(Z0) × Dist(Z1) are strongly belief bisimilar using the

on-the-fly procedure from Algorithm 4.2.

Algorithm 4.2 On-the-fly bisimulation for finite acyclic POMDPs

1: function Bisimilar(beliefState b0, beliefState b1)
2: if obs(b0) 6= obs(b1) then return false

3: if support(b0) ∪ support(b1) ⊆ Zabs then return true

4: for α ∈ Act do
5: for o ∈ O do
6: if pb0,α,o 6= pb1,α,o then return false

7: if pb0,α,o > 0 and !Bisimilar(bα,o0 , bα,o1 ) then return false

8: return true

4.3 COMPLEXITY OF INDISTINGUISHABILTY

In this section, we study the problem of deciding when two protocols are indistinguishable.

Let P be a protocol such that [[P ]] = (Z, zs,Act,∆,O, obs). Define [[P ]]d to be the POMDP

[[P ]]d = (Z, zs,Actd,∆,O, obs) where Actd ⊆ Act is such that every α ∈ Act is such that

depth(α) ≤ d. For a constant d ∈ N, we define InDist(d) to be the decision problem that, given

a subterm convergent equational theory (F , E) and protocols P, P ′ over (F , E), determines

if [[P ]]d and [[P ′]]d are indistinguishable. An equational theory (F , E) is subterm convergent

[68] if for every equation u = v ∈ E oriented as a rewrite rule u → v, either v is a proper

34



subterm of u or v is a constant.

Theorem 4.4 For a subterm convergent equational theory (F , E) and a constant d ∈ N,

InDist(d) is in PSPACE.

Proof. Let P, P ′ be protocols of length `. We give an algorithm for deciding

InDist(d) as follows. Guess a trace o = o0α1o1 . . . αnon such that αi ∈ Actd, where each

observation is represented by a frame, and calculate the measure γ (resp. γ′) of o in Pd

(resp. P ′d) by enumerating the exponential number of executions. For each ρ ∈ Exec([[Pd]])

(resp. ρ ∈ Exec([[P ′d]])), check if ρ has trace o and if so, add the measure of ρ to γ (resp.

γ′). Finally, check that γ 6= γ′. Because static equivalence is decidable in polynomial

time for sub-term convergent theories [68], we can check if a given execution has trace o in

polynomial time. We need only show that o can be guessed in polynomial space, every ρ

can be enumerated in polynomial space and every execution has a polynomial measure.

Let s be the maximum arity of the function symbols in F . Observe that every (r, j) ∈ Actd

for j ∈ {1, . . . , n} is such that |r| ≤ sd+1. Let θ be dag-size of the largest term in the

specification of protocols P and P ′. Further let ρ ∈ Exec([[Pd]]) (resp. ρ ∈ Exec([[P ′d]]))

where last(ρ) = (Q,ϕ, σ). We claim that, for any u ∈ ran(ϕ) ∪ ran(σ), |u| ≤ `(θ + sd+1).

Indeed, consider any execution ρ ∈ Exec([[Pd]]) (resp. ρ ∈ Exec([[P ′d]])) with m inputs and n

outputs where last(ρ) = (Q,ϕ, σ), dom(ϕ) = {w1, . . . , wn} and dom(σ) = {x1, . . . , xm}. The

following are true.

1. wjϕ = uj(x1, . . . , xm) is an output term over x1, . . . xm for all j ∈ {1, . . . ,m}

2. xiσ = ri(w1, . . . , wn) is a recipe over w1, . . . , wn for all i ∈ {1, . . . , n}

3. |w0|+ . . .+ |wn| = |u0|+ . . .+ |un|+ |x1|, . . . , |xm|

4. |x1|+ . . .+ |xm| = |r0|+ . . .+ |rm|+ |w0| . . .+ |wn|

It follows that

|wj|, |xi| ≤ |u0|+ . . .+ |un|+ |r0|+ . . .+ |rm|
≤ n · θ +m · sd+1

≤ ` · θ + ` · sd+1

≤ `(θ + sd+1).

From the derivation above, we have that for any execution of length a most `, |ϕ|, |σ|
are polynomially bounded. To see that the measure of an execution is polynomial, let

p = max{y | x
y

is a transition probability in P, P ′}. Because the measure of an execution x
y

lies in [0,1] and y ≤ p`, we have 0 ≤ x, y ≤ p`.
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We now give a lower bound for InDist(d) by a reduction from #SATD. Recall that #SATD

is the decision problem that, given a 3CNF formula φ and a constant k ∈ N, checks if the

number of satisfying assignments of φ is equal to k. In the proof of Theorem 4.5 (below),

we will make use of a conditional operation

IF [c1 ∧ . . . ∧ ck] THEN out(u0 +p u1) ELSE out(u′0 +p′ u
′
1)

that performs out(u0 +pu1) if [c1∧ . . .∧ck] holds and otherwise performs out(u′0 +p′ u
′
1). This

operation was omitted from the process calculus in Section 2.7 to simplify the presentation of

results in Chapters 5 and 6. However, it should be considered a part of the process calculus

of this chapter and is implemented in Span (see Section 4.4).

Theorem 4.5 There exists a d0 ∈ N such that #SATD reduces to InDist(d) in logspace for

every d > d0.

Proof. Let φ be a 3CNF formula over the variables x0, . . . , xn with clauses c0, . . . , cm. For a

clause c = (a0∨a1∨a2) and a position p ∈ {0, 1, 2}, let cp = ap. We define protocols P, P ′ such

that φ has k satisfying assignments iff P and P ′ are indistinguishable. The equational theory

of the protocol will have private names k0, . . . , kn, s0, . . . , sm ∈ Npriv, public names {>,⊥
} ∈ Npub, signature F = {sdec, senc, conj, neg} and equations E = {sdec(senc(x0, x1), x1) =

x0, neg(>) =⊥ , neg(⊥) = >, conj(⊥,⊥,⊥) =⊥ , conj(>, x0, x1) = >,

conj(x0,>, x1) = >, conj(x0, x1,>) = >}. Let key(cpj) = ki if cpj is the (negation of) a

variable xi. For each i ∈ {1, . . . , n}, define Qi = out(senc(>, ki) + 1
2
senc(⊥, ki)) and for each

j ∈ {1, . . . ,m} define

Cj = in(y0
j ) · in(y1

j ) · in(y2
j ) · [senc(sdec(y0

j , key(c0
j)), key(c0

j)) = y0
j ∧ . . .∧

senc(sdec(y2
j , key(c2

j)), key(c2
j)) = y2

j ] · out(senc(conj(w0
j , w

1
j , w

2
j ), sj))

where wpj = neg(sdec(y0
j , key(c0

j))) if cpj is the negation of a variable and wpj = sdec(y0
j , key(c0

j))

otherwise. Let

V0 := in(z0) · . . . · in(zm) · [senc(sdec(z0, s0), s0) = z0 ∧ . . . ∧ senc(sdec(zm, sm), sm) = zm].

Further let

V := IF [sdec(z0, s0) = > ∧ . . . ∧ sdec(zm, sm) = >] THEN out(>) ELSE out(⊥)

and V ′ = out(>+ k
2n
⊥). Finally, let P0 = Q0| . . . |Qn|C0| . . . |Cm, P = P0|V0 · V and

P ′ = P0|V0 · V ′. Clearly P and P ′ only differ on executions that output > or ⊥. Observe
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that there exist traces o> and o⊥ such that, for every execution ρ ∈ Exec(P ) ∪ Exec(P ′),

if ρ outputs > then tr(ρ) = o> and if ρ outputs ⊥ then tr(ρ) = o⊥. By construction,

probP ′(o>) = k
2n

and probP ′(o⊥) = 1− k
2n

. Further, if φ has exactly k truth assignments then

probP (o>) = k
2n

and probP (o⊥) = 1− k
2n

. The result follows.

From Theorem 4.5, we have the following.

Corollary 4.1 InDist(d) is NP-hard and coNP-hard.

4.4 PROTOCOL SPECIFICATION

The Span tool makes several enhancements to the core process calculus for randomized

security protocols presented in Section 2.7. Protocols are specified over an equational theory

that includes a user-defined sort system [2]. Sorts are used to distinguish between different

types of data. One can also define sorts to be sub-sorts of other sorts, allowing a more

fine-grained restriction of a data type.

Example 4.2 Consider the protocol and equational theory (Faenc, Eaenc) from Example 2.3.

One may specify a sort system with four sorts: msg, nonce, pkey and skey where the latter

three sorts are sub-sorts of msg. The functions can then be assigned sorts as follows.

sk := nonce → skey

pk := nonce → pkey

aenc := msg × nonce × pkey → msg

adec := msg × skey → msg

pair := msg × msg → msg

fst, snd := msg → msg

Roles are specified as a sequential composition of three basic constructs (actions). The

interpretation of each action is a straightforward from the semantics presented in Figure 2.1,

so we omit formal definitions in the descriptions below. Note that each action is required

to be annotated with a phase number. For some protocols, their correctness relies on a

strict ordering between different sets of events/operations. For example, the FOO protocol

from Section 3.4 has 3 phases that must execute sequentially. Phase numbers are used as

a mechanism to enforce these kind of orderings. All enabled actions with phase i must

complete before any action from phase j for j > i can begin.
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Guarded outputs. A guarded output takes the form

[c1 ∧ . . . ∧ ck] out(p1 → u1#R1 + . . .+ p` → u`#R`)

where ci (for i ∈ {1, . . . , k}) are conjuncts of the form >, u = v or u 6= v for u, v ∈
T (F \ Npriv,X ), p1, . . . , p` ∈ (0, 1] are such that

∑k
i=1 pi = 1, u1, . . . , u` are sequences of

terms from T (F ,X ) and R1, . . . , R` are roles. If all of the conjuncts evaluate to true then

the action outputs the sequence of terms uj and places the actions from Rj to the head of

the role with probability pj for j ∈ {1, . . . , `}. Otherwise the action blocks. To reduce the

syntactic overhead for the output process, we allow it be replaced by permute(u1, . . . , u`)

which outputs each permutation of the set of terms {u1, . . . , u`} with probability 1
2k

. Consider

the mix-network from Example 2.3. The output operation could be replaced by the more

succinct “[>] permute(adec(z1, sk(kM)), . . . , adec(zn, sk(kM))”.

Conditional outputs. A conditional output takes the form

IF [c1 ∧ . . . ∧ ck] THEN out1 ELSE out2

where the conjuncts c1 . . . ck and output processes out1 and out2 take the same form as they

do for guarded outputs. If all of the conjuncts evaluate to true then the actions executes

out1 otherwise it executes out2.

Guarded inputs. A guarded input takes the form in(y{u}) where y is a variable and

u ∈ T (F ,X ). The action takes an input v, generated from a recipe and the frame, and

binds y to v. For v to be a valid input, it is required that there is a substitution θ with

domain vars(u) such that uθ = v. Note that θ must respect sorts, that is, if y ∈ dom(θ)

then y and yθ have the same sort. Essentially, this allows pattern matching on the symbols

and sorts of input terms. Consider the protocol and sort system from Example 4.2. Let m

and n be variables with sort mes and nonce, respectively. The pattern “aenc(m,n, pk(kM))”

requires recipes to generate input terms in which the root symbol is aenc where the first

parameter has sort mes, the second parameter has sort nonce and the final parameter is the

public key of the mix.
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4.5 IMPLEMENTATION

In this section we describe the implementation of our model checking algorithms for in-

distinguishability and safety properties of randomized security protocols. The main engine

of our tool, Span, translates a protocol into a POMDP, belief MDP or PFA by exploring

all protocol executions and grouping states according to those that are statically equivalent.

This engine, in conjunction with (the proof of) Theorem 4.2, allows Span to solve the in-

distinguishability problem for randomized security protocols as follows. For protocols P, P ′,

translate [[P ]], [[P ′]] into PFAs A,A′ and determine if A ≡ A′ using the linear programming

algorithm from [85]. We will henceforth refer to this approach as the PFA algorithm and

the approach from Algorithm 4.2 as the OTF algorithm. Span also implements the OTF

approach from Algorithm 4.1 to analyze safety properties. The tool is implemented in Java

and is available for download at [94]. In what follows, we describe the libraries and external

engines that Span makes use of.

Static equivalence and deduction engines. Currently, Span supports two external

engines for solving the static equivalence and deduction questions: Kiss [95] and Akiss [96].

The Kiss tool requires an equational theory (F , E) that is sub-term convergent, meaning

every equation u = v ∈ E oriented as a rewrite rule u→ v is such that either v is a proper

subterm of u or v is a constant. It provides no support for associate and commutative

(AC) operations. The Akiss tool, designed to decide reachability and indistinguishability

questions on (pairs of) protocols, supports more general equational theories, called optimally

reducing [97]. An equational theory (F , E) in optimally reducing if for any u = v ∈ E

oriented as a rewrite rule u → v and any substitution θ such that all proper subterms of

uθ are in normal form the term vθ is in normal form. Akiss also provides support for the

AC operation XOR. The tool can easily be extended to utilize other tools that solve static

equivalence and deduction such as Fast [98] and Maude-NPA [2].

Term rewriting engines. Span requires a term rewriting engine to check conditionals and

compute normal forms. The tool includes built-in support for term rewriting on convergent

equational theories using the unfication algorithm from [99]. For rewriting in the presence

of AC operations, support for integration with Maude is also included. Span communicates

with Maude via asynchronously command line I/O.

Libraries. To eliminate redundant computation that may occur in different executions

paths (branches) of a randomized protocol, Span leverages caching enabled by the Guava
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library [100] for operations such as rewriting, recipe generation, static equivalence and de-

duction. Span manipulates arbitrary precision numbers provided by Apfloat [101]. Because

attacks on randomized protocols are trees (as opposed to sequences), attacks are exported

to DOT format, which can be rendered visually using the graphviz framework [102]. For

example, consider the protocol with roles

R0 := [T ] out(1
2
→ k1, k0#R1 + 1

2
→ k0, k2#R2)

R1 := in(y1{k1}) · [y1 = k1] out(1→ s)

R2 := in(y2{k2}) · [y2 = k2] out(1→ s)

where k0, k1, k2 and s are private names. The attack on the protocol deriving s with proba-

bility 1 is shown in Figure 4.1. Nodes at even levels of the tree represent the attackers view

(a representative from the equivalence class on frames) and nodes at odd levels represent

recipes generated by the attacker.

Figure 4.1 Span generated attack tree.
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4.6 EVALUATION

Our experiments were conducted on an Intel core i7 dual quad core processor at 2.67GHz

with 12Gb of RAM. The host operating system was 64 bit Ubuntu 16.04.3 LTS. In Section

4.6.1, we evaluate the performance of Span on both of the indistinguishability algorithms.

Section 4.6.2 evaluates studies the performance of Span on safety properties. Our suite of
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examples are described informally in Chapter 3. The actual test files are avaliable at [103]

for indistinguishability properties and [104] for safety properties.

4.6.1 Evaluation for indistinguishaiblity properties

Our evaluation of Span on indistinguishability properties began by examining how the

the PFA and OTF algorithms scaled on a variety of examples. The results of the analysis

are given in Figure 4.1. For each example, we consider a fixed recipe depth and report

the running times for 2 parties as well as the maximum number of parties for which one of

the algorithms terminates inside of the timeout bound. On small examples for which the

protocols were indistinguishable, we found that the OTF and PFA algorithms were roughly

equivalent. On large examples where the protocols were indistinguishable, such as the 3

ballot protocol, the PFA algorithm did not scale as well as the OTF algorithm. In particular,

an out-of-memory exception often occurred during construction of the automata or the linear

programming constraints. On examples for which the protocols were distinguishable, the

OTF algorithm demonstrated a significant advantage. This was a result of the fact that

the OTF approach analyzed the model as it was constructed. If at any point during model

construction the bisimulation relation was determine not to hold, model construction was

halted. By contrast, the PFA algorithm required the entire model to be constructed and

stored before any analysis could take place.
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Table 4.1 Expiremental results for indistinguishability properties. Columns 1 and 2 describe

the example being analyzed. Column 3 gives the maximum recipe depth and column 4

indicates when the example protocols were indistinguishable. Columns 5-8 give the running

time (in seconds) for the respective algorithms and static equivalence engines. We report

OOM for an out of memory exception and TO for a timeout - which occurs if no solution

is generated in 60 minutes. Column 9 gives the number of states in the protocol’s POMDP

and Column 9 gives the number of belief states explored in the OTF algorithm. When

information could not be determined due to a failure of the tool to terminate, we report

n/a. For protocols using equational theories that were not subterm convergent, we write n/s

(not supported) for the Kiss engine. All test were conducted using Maude 2.7.1 as the term

rewriting engine.

1 2 3 4 5 6 7 8 9 10

Protocol Parties Depth Equiv Time (s) States Beliefs

PFA OTF

Kiss Aiss Kiss Akiss

DC-net 2 10 true n/s 5.5 n/s 4 58 24

DC-net 3 10 true n/s OOM n/s 3013 n/a 286

mix-net 2 10 false TO TO .3 .4 n/a 7

mix-net 5 10 false OOM OOM 582 1586 n/a 79654

Evote 2 10 true 1 1 .5 1 34 33

Evote 8 10 true 105 105 131 124 94 93

3 Ballot 2 10 true n/s OOM n/s 1444 n/a 408

In addition to stress-testing the tool, we also examined how each algorithm performed

under various parameters of the mix-network example. The results are given in Figure

4.2, where we examine how running times are affected by scaling the number of protocol

participants and the recipe depth. Our results coincided with the observations from above.

One interesting thing to point out is that the number of beliefs explored on the 5 party

example was identical for recipe depth 4 and recipe depth 10. The reason is that, for a given

protocol input step, Span generates a minimal set of recipes. This is in the sense that if

recipes r0, r1 are generated at an input step with frame ϕ, then r0ϕ 6=E r1ϕ. For the given

number of public names available to the protocol, changing the recipe depth from 4 to 10
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did not alter the number of unique terms that could be constructed by the attacker.

Table 4.2 Detailed experimental results for indistinguishability in mix networks. The co-
lumns have an identical meaning to the ones from Figure 4.1. We report OOM for an out
of memory exception and when information could not be determined due to a failure of the
tool to terminate, we report n/a.

1 2 3 4 5 6 7 8 9

Parties Depth Equiv Time (s) States Beliefs

PFA OTF

Kiss Akiss Kiss Akiss

2 1 true .3 .3 .2 .3 15 12

3 1 true 1 1.2 .4 .9 81 50

4 1 true 47 47 2 6 2075 656

5 1 true OOM OOM 34 79 n/a 4032

5 2 false OOM OOM 13 33 n/a 1382

5 3 false OOM OOM 124 354 n/a 6934

5 4 false OOM OOM 580 1578 n/a 79654

4.6.2 Evaluation for state-based safety properties

General performance evaluation Figure 4.3 gives the performance of Span on our ben-

chmark examples. We attempted to verify all protocols with a recipe depth of 10, however,

for some examples, Span did not terminate within a reasonable time bound. In such cases,

we report the time for a recipe depth of 5. Our analysis revealed that there are two main

variables affecting how well our algorithms scale. The first is the number of interleaving

possible in a protocol. Observe that the cascade mix, pool mix and and binomial mix all

had a high number of beliefs that were explored during analysis. Correspondingly, the ana-

lysis time for these examples was quite high in relation to examples like the DC-net and

threshold mix, where the number of beliefs explored was much lower. However, observe

that the number of beliefs explored in the simple e-vote protocol (6 parties) was drastically

lower than the number of beliefs explored in the binomial mix example (3 parties), yet the

analysis time for the former was higher. This illustrates the second factor contributing to

analysis speed; the average number of original protocol states contained in any belief state.

If the number of original protocol states contained in a belief state is high, then the overhead

43



Table 4.3 Experimental results for safety properties. Columns 1-5 describe the example
under test, where column 2 is the number of users in the protocol, column 3 is maximum
recipe depth, column 4 is the maximum attack probability and column 5 is the security
parameter. If the value of column 4 exceeds the value of column 5, then an attack was found.
Columns 6 and 7 give the running times (in seconds) under the Kiss and Akiss, respectively.
Column 8 reports the number of belief states explored during the model checking procedure.
All test were conducted using Maude 2.7.1 as the term rewriting engine. For protocols with
requiring equational theories with XOR we write n/s (not supported) for the Kiss engine.

1 2 3 4 5 6 7 8

Protocol Parties Depth Attack Threshold Time (s) Beliefs

w/ Kiss w/ Akiss

DC-net 2 10 1/2 1/2 n/s 23 110

Threshold Mix 4 10 1 1/4 22 70 49

Cascade Mix 2 5 1 1/2 917 2832 55303

Pool Mix 3 5 1/2 2/3 1824 6639 26273

Initialized Pool Mix 2 10 1/2 1/2 36 120 714

Binomial Mix 3 5 1/4 1/4 1134 3796 106907

Simple E-Vote 2 10 3/4 3/4 1 3 33

Simple E-Vote 6 10 21/32 21/32 1065 4872 307

FOO 92 2 10 3/4 3/4 321 918 1813

Prêt à Voter 2 10 3/4 7/8 n/s 288 103

associated with computing belief transitions is high. Every transition requires all reachable

protocol states to be grouped according to static equivalence. Because Kiss and Akiss

only determine static equivalence between a pair of states, this grouping can lead to a high

number of external queries to the equivalence engines.

Detailed evaluation of threshold mixes In addition to our general performance evalu-

ation of Span, we did an in-depth study of how the tool performed for various parameters

of the threshold mix-network benchmark. The goal of this study was to determine how the

number of parties and recipe depth parameters affected performance. The results are given

in Table 4.4. The first four entries of the table analyze the mix-network under depth 1,

which corresponds to a passive attacker that can only forward previously received messages

or nonces. For passive attackers, there is no attack on mix networks. By contrast, a recipe

depth > 2 allows the adversary to forge a valid input to the mix and carry out a flooding

attack. Span is able to find this attack without having to explore all belief states of the
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model. This is the reason that, on the 5 party example, the model checking times for depth

3 are lower than the model checking times for depth 5. On the 5 party example, depth

2 also represents a situation where no attack is possible. This is because our encoding of

the mix-network ensures that 1) all inputs during a given round are distinct and 2) only

cipher-texts that are encrypted by the mix’s public key are accepted. Also, notice again

that the model checking times on the 5-party example are the same for depth 4 and 5. This

is because increasing the recipe depth from 4 to 5 did not allow any “new” terms to be

generated modulo the equational theory.

Table 4.4 Detailed experimental results for safety properties in mix networks. Column 1
is the number of users in the protocol and column 2 is maximum recipe depth. Column 3
and 4 gives the running times (in seconds) under the Kiss and Akiss engines, respectively.
Column 5 gives the number of belief states explored. All test were conducted using the same
expiremental setup as in Figure 4.3

1 2 3 4 5

Parties Depth Kiss Akiss Beliefs

2 1 .25 .4 10

3 1 1.7 4 16

4 1 19 75 138

5 1 648 3705 1027

5 2 22684 88247 23048

5 3 367 1286 402

5 4 1159 3769 1911

5 5 1167 3705 1911

4.7 CASE STUDY: PRÊT À VOTER

In this section, we demonstrate how the attack on the Prêt à Voter protocol described in

Section 3.5 can be modeled in our framework. Let (Faenc, Eaenc) be the equational theory

and sort system from Example 4.2 with the addition of the sort bit < msg. Our modeling

of the protocol will use the theory (Faenc ∪ Fpv, Eaenc ∪ Epv) where Fpv is

45



sign := msg × skey → msg

getsign := msg × pkey → bit

chksign := msg × pkey → msg

hashmod2 := msg → bit

evenh, oddh := msg → msg

zero, one, ok := → bit

xor := bit × bit → bit

and Epv contains the following equations.

chksign(sign(m, sk(k)), pk(k)) = ok

getsign(sign(m, sk(k)), pk(k)) = m

hashmod2(evenh(m)) = zero

hashmod2(oddh(m)) = one

xor(xor(b′, b′), b), xor(b, zero) = b

xor(b, b) = zero

Note that xor is an AC operation and we will henceforth write 〈, 〉 is place of pair. There

will be a single teller T , and election authority A and two voters V1, V2. The teller will hold

two private names kt1 and kt2 , the authority will hold the private name ka and the voters

will hold the names kv1 , kv2 , respectively. We will assume an infinite set n1, n2, . . . of private

names to represent nonces and that all of the public keys pk(kv1), pk(kv2), pk(kt1), pk(kt2) and

pk(ka) are made available at the beginning of the protocol.

Ballot generation will be modeled by a process that generates a triple (t, g, g′) where t is

an eligibility token and g, g′ are germs that dictate the cyclic offset and onion of a ballot.

The eligibility token will be used by the election authority at the voting terminal to verify

a voters right to vote. The role modeling the ballot generation process is given in Figure

4.2, where we use the macros evPair(g, g′) = 〈(evenh(g), evenh(g′)〉 and oddPair(g, g′) =

〈(evenh(g), oddh(g′)〉. Because there is no guarantee that the sum of hashes of the germs

modulo 2 is evenly distributed, we select an non-uniform distribution for modeling purposes.

Figure 4.2 Role modeling Prêt à Voter ballot generation.

[>] out(3/4→ aenc(〈t1, evPair(g0, g1)), n1, pk(kv1)) +

1/4→ aenc(〈t1, oddPair(g0, g1)), n1, pk(kv1)))

[>] out(3/4→ aenc(〈t2, evPair(g′0, g
′
1)), n2, pk(kv2)) +

1/4→ aenc(〈t2, oddPair(g′0, g
′
1)), n2, pk(kv2)))

In the second part of the protocol, each voter receives his/her eligibility token and germs,

authenticates with the election authority at the voting both and then sends vote (the XOR of
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the cyclic offset and the vote position) and the onion to the teller. Messages received by the

teller must be signed by the election authority. The role modeling this process for voter Vi

(i ∈ {1, 2}) is given in Figure 4.3 where we use the macros germsi = (adec(yi, sk(kvi))),

germ0
i = (snd(snd(germsi))), germ1

i = (fst(snd(germsi))), offi = xor(germ0
i , germ

1
i ) and

onioni = aenc(〈germ0
i , aenc(〈germ1

i , Di〉, n3, pk(kt1))〉, n4, pk(kt2)). The values D0, D1 are as-

sumed to be nonces and n3, n4 should be distinct for each voter. For modeling purposes, we

assume that each voter selects one of the two candidates with probability 1
2
. The vote itself

as represented as a position, either zero or one, that is combined with the offset to identify

the chosen candidate.

Figure 4.3 Role modeling voting terminal with voter Vi.

in(yi{aenc(〈ti, msg, nonce, pk(kvi)〉)})
[fst(balloti) == ti]

out(1/2→ sign(〈xor(offi, zero), onioni〉, sk(ka)) +

1/2→ sign(〈xor(offi, one), onioni〉, sk(ka)))

In the final phase of the protocol, the teller collects both of the ballot forms, reconstructs

the votes from the onion and the vote position and then publishes the votes in random

order. This process is modeled using the role from Figure 4.4 where we use the macros

ballotj = getsign(yj, pk(ka)) (for j ∈ {3, 4}), vposj = fst(ballotj),

recgrm0
j = hashmod2(fst(adec(snd(ballotj), sk(kt2))))

and

recgrm1j = hashmod2(fst(adec(snd(adec(snd(ballotj), sk(kt2))), sk(kt1)))).

Figure 4.4 Role modeling teller.

in(y3{sign(msg, pk(ka)〉)})
in(y4{sign(msg, pk(ka)〉)})
[chksign(y3, pk(ka)) = ok∧
chksign(y3, pk(ka)) = ok ∧ y3 6= y4]

out(1/2→ xor(vpos3, xor(recgrm
0
3, recgrm

1
3)),

xor(vpos4, xor(recgrm
0
4, recgrm

1
4)) +

out(1/2→ xor(vpos4, xor(recgrm
0
4, recgrm

1
4)),

xor(vpos3, xor(recgrm
0
3, recgrm

1
3)))

There are four possible outcomes of this simple election, two in which both parties vote
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for the same candidate, one in which V1 votes for party 0 and V2 votes for party 1 and one

in which the votes from the preceding scenario are switched. Because we have modeled each

voter selecting one of the candidates with probability 1
2
, each of these outcomes happens with

probability 1
4
. When both parties vote for the same candidate the adversary can guess who

V1 (resp. V2) voted for with probability one. When their votes don’t match, the adversary

should only be able to guess which candidate each voter selected. This means, if the protocol

is secure, the adversary should not be able to guess a voters selection with probability > 3
4
.

This security requirement can be enforced by adding a role of the form

in(y5{bit}) · [y5 = votei] out(1→ si)

to the end of the protocol, where votei represents the vote of Vi. Because the vote is not

stored in any local variable, a role invocation can be added to the voting phase of the protocol

given in Figure 4.3. In the case where Vi votes for the first party, a role with votei = zero is

invoked. In the other case, a role with votei = one is invoked. Let P be protocol modeling

Prêt à Voter described above. The protocol satisfies vote privacy if P |=Eaenc∪Epv,
1
4
secret({si})

for i ∈ {0, 1}.
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CHAPTER 5: COMPOSITION OF INDISTINGUISHABILITY
PROPERTIES

In this chapter, we study the problem of composition for randomized security protocols

when the protocols are allowed to share data, such as keys. We begin our study by con-

sidering single-session protocols. In this setup, we give a set of conditions under which

the composition of indistinguishable protocols under disjoint equational theories preserves

indistinguishability (Theorem 5.1 on page 53). More precisely, consider indistinguishable

protocols P and Q over equational theory Ea, and indistinguishable protocols P ′ and Q′

over equational theory Eb, where Ea and Eb are disjoint. We show that the composition of

P and P ′ is indistinguishable from the composition of Q and Q′, provided the shared secrets

between P and P ′ and those between Q and Q′ are kept with probability 1. While such

a result also holds for non-randomized protocols (see [54, 56] for example), randomization

presents its own challenges.

The first challenge arises from the fact that even if P and Q (resp. P ′ and Q′) do not

leak shared secrets, they may still reveal equalities that hold amongst the shared secrets.

Revealing these equalities may, in some cases, allow the attacker to infer the result of a

private coin toss (See Example 5.3 on page 54). Consequently, our composition theorem

requires that P and Q remain indistinguishable even when such equalities are revealed. The

revelation of the equalities is achieved by adding actions to protocols P and Q that reveal

“hashes” of shared secrets.

As in non-randomized protocols [54, 56], the proof proceeds by showing that it suffices to

reduce the problem to the case when P (Q) does not share any secrets with P ′ (Q′ respecti-

vely). In the non-randomized setting, this is achieved by observing that if the composition

of P and P ′ is not indistinguishable from the composition of Q and Q′, then there must

be a trace o and an individual execution ρ in the composition of P and P ′ (or of Q and

Q′) such that ρ has trace o and there is no execution in the composition of Q and Q′ (or

of P and P ′ respectively) with the trace o. It is then observed that if the shared secrets

between P and P ′, and between Q and Q′, are re-initialized to fresh values respecting the

same equalities amongst them as in the execution ρ, then the transformed protocols continue

to remain distinguishable. After this re-initialization of the shared values, the protocols no

longer share data. For randomized protocols, we no longer have an individual execution that

witnesses protocol distinguishability. Instead we have an attacker A and a trace o which

occurs with different probabilities when the protocols interact with A. Observe that the

executions corresponding to the trace o will form a tree, and different equalities amongst the

shared secrets may hold in different branches. Thus, a simple transformation as in the case
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of non-randomized protocols no longer suffices (see Example 5.2 on page 54). Instead, we

have to perform a non-trivial inductive argument (with induction on number of coin tosses)

to show that it suffices to consider the case when P (resp. Q) does not share any secrets

with P ′ (resp. Q′).

Our second result concerns the case when the equational theories Ea and Eb are the same,

each containing cryptographic primitives for symmetric encryption, symmetric decryption

and hashes (see Theorem 5.2 on page 72). For this case, we show that the composition of

randomized protocols preserves indistinguishablility when the protocols are allowed to share

secrets, provided protocol messages are tagged with the information of which protocol they

belong to. As in the case of non-randomized protocols, this is achieved by showing that in

presence of tagging, the protocols can be transformed to new protocols Pnew, P
′
new, Qnew, Q

′
new

such that Pnew and Qnew are indistinguishable protocols with equational theory Enew, and

P ′new and Q′new are indistinguishable protocols with disjoint equational theory E ′new. Thus,

this result follows from the first result of this chapter.

Our final result in this chapter extends the above result to the case of unbounded number

of sessions (see Theorem 5.3 on page 88). We again consider the case when the equational

theories Ea and Eb are the same, containing cryptographic primitives for symmetric en-

cryption, symmetric decryption and hashes. In order to achieve this result, we additionally

require that messages from each session are tagged with a unique session identifier.

5.1 COMPOSITION FRAMEWORK

5.1.1 Contexts

In this section we introduce contexts, our vehicle for protocol composition. A context,

is like a process except that it contains “holes”. These holes can be substituted by roles,

creating a composed process. To define contexts, we will assume a countable set of process

variables Xc, whose elements will be denoted by �,�1, . . . ,�m. Contexts are defined in

Figure 5.1, where we begin by defining basic contexts, which extend roles by allowing for the

occurence of a single process variable from Xc in any branch of the role. Basic contexts will

be denoted by D[�], D1[�], D2[�], . . . , Dn[�]. For a basic context D[�] and a role R, D[R]

denotes the process that results from replacing every occurrence of � in D by R. Using

basic contexts, we can define contexts as the parallel composition of a set of basic contexts

preceded by a sequential composition of fresh variable creations and variable assignments.

The prefix of variable creations and assignments is used to instantiate data common to one

or more basic contexts. A process is nothing but a context that does not contain any process
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variables. We will use C,C1, C2, . . . , Cn to denote contexts. For a context C[�1, . . . ,�m]

and roles R1, . . . , Rm, C[B1, . . . , Bm] denotes the process that results from replacing each

process variable �i by Ri.

Figure 5.1 Context sytax.

Basic Contexts
D[�] ::= � R D[�] ·R R ·D[�] D[�] +`

p D[�]

Contexts [ai ∈ {νx, (x := u)}]
C[�1, . . . ,�m] ::= a`11 · . . . · a`nn · (D1[�1] | . . . | Dm[�m])

As we do for processes, we will drop labels from a context when they are not relevant. A

context C[�1, . . . ,�m] = a1 · . . . · an · (D1[�1] | . . . | Dm[�m]) is said to be well-formed if

every operator has a unique label and for any labels `1 and `2 occurring in Di and Dj for

i, j ∈ {1, 2, . . . ,m}, i 6= j iff [`1] 6= [`2]. For the remainder of this work, contexts are assumed

to be well-formed. A process that results from replacing process variables in a context by

roles is also assumed to be well-formed. Whenever new actions are added to a process, their

labels are assumed to be fresh and not equivalent to any existing labels of that process. In

the following example, we demonstrate how contexts can be used to instantiate data (keys)

to be used by roles that are later substituted into the context.

Example 5.1 Let (Fdh, Edh) the equational theory with the signature Fdh = {f/1, g/1,mac/1}
and the equations Edh = {f(g(y), x) = f(g(x), y)} modeling the Diffie-Hellman primitives,

i.e. f(x, y) = xy mod p, g(y) = αy mod p for some group generator α. We use mac for a

keyed hash function. Define C[�1,�2] = νkh ·D1[�1] | D2[�2] to be the context that models

(a variant of) the Diffie-Hellman protocol where D1 and D2 are below.

D1 = νx · out(g(x)) · out(mac(g(x), a, kh)) · in(z)·
in(z′) · [z′ = mac(z, b, kh)] · (k1 := f(x, z)) ·�1

D2 = νy · out(g(y)) · out(mac(g(y), b, kh)) · in(z)·
in(z′) · [z′ = mac(z, a, kh)] · (k2 := f(y, z)) ·�2

5.1.2 Composition under disjoint data

In the case of non-randomized protocols, it is well known that composition preserves

indistinguishability when protocols do not share data. Recall that we have introduced a

new notion of indistinguishability for randomized protocols wherein two protocols P and
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Q are equivalent if, for every attacker A and trace o, the event o has equal probability in

the Markov chains [[PA]] and [[QA]]. A cornerstone of our result establishes that parallel

composition is a congruence with respect to indistinguishability when protocols do not share

data.

Lemma 5.1 Let P, P ′, Q and Q′ be closed processes such that vars(P ) ∩ vars(Q) = ∅ and

vars(P ′) ∩ vars(Q′) = ∅. If P ≈ P ′ and Q ≈ Q′ then P | Q ≈ P ′ | Q′.

In the absence of probabilistic choice, Lemma 5.1 is obtained by transforming an attacker

A for P | Q into an attacker A′ that “simulates” Q to P (and vice versa). When a term

created by Q is forwarded to P by A, the attacker A′ forwards a new recipe in which the

nonces in the term created by Q are replaced by fresh nonces created by the adversary. This

technique is not directly applicable in the presence of randomness, where the adversary must

forward a common term to P in every indistinguishable execution of P | Q. For example, if

the outputs n1 and h(n2) fromQ are forwarded byA to P in two indistinguishable executions,

the recipe constructed by A′ must be identical for both executions. Further complicating

matters, if n2 is later revealed by Q, the simulation of n1 and h(n2) to P via a common term

can introduce in-equivalences that were not present in the original executions. We prove

the result by showing P ≈ P ′ ⇒ P | Q ≈ P ′ | Q and Q ≈ Q′ ⇒ P | Q ≈ P | Q′, which

together imply Lemma 5.1. Each sub-goal is obtained by first inducting on the number of

probabilistic choices in the common process. In the case of P | Q ≈ P ′ | Q, for example,

this allows one to formulate an adversary A for P | Q (resp. P ′ | Q) as a combination of

two disjoint adversaries. We then appeal to a result on POMDPs where we prove that the

asynchronous product of POMDPs preserves indistinguishability. The full proof of Lemma

5.1 is given in Section 5.4.

5.1.3 Composition under disjoint primitives

In our composition results, we would like to argue that if two contexts C[�] and C ′[�] are

“equivalent” and two basic process B and B′ are “equivalent”, then the processes C[B] and

C ′[B′] are indistinguishable. In such a setup, contexts can instantiate data (keys) that are

used by and occur free in the basic processes. This setup provides a natural way to model

and reason about protocols that begin by carrying out a key exchange before transitioning

into another phase of the protocol. It is worth pointing out that the combination of key

exchange with anonymity protocols can indeed lead to errors. For example, it was observed

in [105] that the RSA implementation of mix networks leads to a degradation in the level of
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anonymity provided by the mix. The formalization of our main composition result for this

chapter is as follows.

Theorem 5.1 Let C[�1, . . . ,�n] = νk1·. . .·νkm·(D1[�1] | . . . | Dn[�n]) (resp. C ′[�1, . . . ,�n] =

νk′1 · . . . · νk′m · (D′1[�1] | . . . | D′n[�n])) be a context over Fc with labels from Lc. Further let

B1, . . . , Bn (resp. B′1, . . . , B
′
n) be roles over Fb with labels from Lb. For `1, . . . , `n ∈ Lb and

] 6∈ Fb ∪ Fc, assume that the following hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′i) = {x′i}

2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′i) = {x′i}

3. C[B1, . . . , Bn] and C ′[B′1, . . . , B
′
n] are ground

4. C[B1, . . . , Bn] |=E,1 secret(x1, . . . , xn) and C ′[B′1, . . . , B
′
n] |=E,1 secret(x

′
1, . . . , x

′
n)

5. C[out(](x1))`1 , . . . , out(](xn))`n ] ≈ C ′[out(](x1))`1 , . . . , out(](xn))`n ]

6. νk ·(x1 := k)·. . .·(xn := k)·(B1 | . . . | Bn) ≈ νk ·(x′1 := k)·. . .·(x′n := k)·(B′1 | . . . | B′n)

Then C[B1, . . . , Bn] ≈ C ′[B′1, . . . , B
′
n].

The result is achieved by showing that if C[B1, . . . , Bn] is not distinguishable from

C ′[B′1, . . . , B
′
n] then one of conditions 5 or 6 from Theorem 5.1 is violated. More specifically,

we use an offending trace o under an attacker A for C[B1, . . . , Bn] 6≈ C ′[B′1, . . . , B
′
n], i.e.

a trace such that probC[B1,...,Bn](o,A) 6= probC′[B′1,...,B′n](o,A), to construct a trace o0 that

witnesses a violation of condition 5 or 6 from Theorem 5.1. In particular, we can show that

if C[B1, . . . , Bn] 6≈ C ′[B′1, . . . , B
′
n] then

C[out(](x1)), . . . , out(](xn))] | B0 · (B1 | . . . | Bn)

6≈

C ′[out(](x1)), . . . , out(](xn))] | B′0 · (B′1 | . . . | B′n)

(5.1)

where B0 and B′0 are processes that bind {x1, . . . , xn} and {x′1, . . . , x′n}, respectively. This

transformation is a non-trival extension of a result from [54, 57] which allows a process

P | Q, where P and Q share common variables but are over disjoint signatures, to be

transformed into an “equivalent” process P ′ | Q′ where variables are no longer shared.

Variables of Q are re-initialized in Q′ according to the equational equivalences they respect

in an execution of P | Q. Unlike nondeterministic processes, where executions are sequences,

executions in randomized processes form a tree where variables can receive different values in
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different branches of the tree. From equation 5.1, we can apply Lemma 5.1 to achieve either

C[out(](x1)), . . . , out(](xn))] 6≈ C ′[out(](x1)), . . . , out(](xn))] or B0 · (B1 | . . . | Bn) 6≈
B′0 · (B′1 | . . . | B′n). In the former case, we have contradicted condition 5 of Theorem

5.1. If we achieve B0 · (B1 | . . . | Bn) 6≈ B′0 · (B′1 | . . . | B′n), we additionally need to

transform an adversary that witnesses this distinguishablility to an adversary that witnesses

the distinguishablility νk ·(x1 := k) · . . . ·(xn := k) ·(B1 | . . . | Bn) 6≈ νk ·(x′1 := k) · . . . ·(x′n :=

k) · (B′1 | . . . | B′n). The presence of randomness makes this transformation tricky, as

illustrated by Example 5.2 below.

Example 5.2 Define B0, B
′
0 = νk1 · νk2 · (x1 := k1) · (x2 := k2), B1, B

′
1 = out(h(x1)),

B2 = in(y)·(out(y)+ 1
2
out(h(x2))) and B′2 = in(y)·(out(h(x2))+ 1

2
out(h(x2))). Consider the

adversary A for B0 ·(B1 | B2) (resp. B′0 ·(B′1 | B′2)) that forwards the output of B1 (resp. B′1)

to B2 (resp. B′2). A is a witness to the distinguishability of B0 · (B1 | B2) and B′0 · (B′1 | B′2),

but it does not witness the distinguishability of νk1 · (x1 := k1) · (x2 := k1) · (B1 | B2) and

νk1 · (x1 := k1) · (x2 := k1) · (B′1 | B′2). We can, however, transform the attacker A to an

attacker A′ that witnesses νk1 · (x1 := k1) · (x2 := k1) · (B1 | B2) 6≈ νk1 · (x1 := k1) · (x2 :=

k1) · (B1 | B′2). The details of this transformation, as well as the full proof of Theorem 5.1

can be found in Section 5.5

5.1.4 Difficulties with composition

In the setup from Theorem 5.1, observe that C[�], C ′[�] contain process (free) variables.

As a result, trace equivalence cannot directly be used to equate these objects. One natural

notion of equivalence between C[�] and C ′[�] is achieved by requiring C[B0] ≈ C ′[B0] under

all assignments of � to a basic process B0. While mathematically sufficient for achieving

composition, such a definition creates a non-trivial computational overhead. Instead, our

result is able to guarantee safe composition when C[B0] ≈ C ′[B0] for a single instantiation

of B0. A natural selection for B0 is the empty process [>]. We illustrate why such a choice

is insufficient in Example 5.3.

Example 5.3 Consider the contexts defined below.

C[�1,�2] = νk1 · νk2 · ((x1 := k1) ·�1 | (x2 := k1) ·�2 + 1
2

(x2 := k2) ·�2)

C ′[�1,�2] = νk1 · νk2 · ((x1 := k1) ·�1 | (x2 := k1) ·�2 + 1
2

(x2 := k1) ·�2).

Notice that C and C ′ differ in that C assigns x2 to k1 or k2, each with probability 1
2
,

while C ′ assigns x2 to k1 with probability 1. For the basic processes B1 = out(h(x1)) and
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B2 = out(h(x2)). We have C[[>], [>]] ≈ C ′[[>], [>]] as for any adversary A, C[[>], [>]]A

and C ′[[>], [>]]A yield a single common trace that occurs with probability 1. On the other

hand, C[B1, B2] 6≈ C ′[B1, B2]. This is because there is an adversary A′ for the processes

C[B1, B2] and C ′[B1, B2] such that the trace outputting h(k1), h(k1) occurs with probability

1 in C ′[B1, B2]A
′

and with probability 1
2

in C[B1, B2]A
′
. The second trace of C[B1, B2]A

′

outputs h(k1), h(k2) with probability 1
2
.

The problematic behavior arising in Example 5.3 occurs when basic processes reveal equa-

lities among the shared secrets from the context. Revealing these equalities may, in some

cases, allow the attacker to infer the result of a private coin toss. Consequently, our composi-

tion theorem must require contexts to remain secure even when such equalities are revealed.

As was the case with composition contexts, our result also relies on a notion of indistinguisha-

blilty between basic processes B and B′ that contain free variables. Universal quantification

over the free variables results in a non-trivial computational overhead. However, we are

able to show that when B is distinguishable from B′ under some instantiation of the free

variables, then B and B′ can also be shown to be distinguishable when all of the free vari-

ables take the same value. This allows us to prove a stronger result by requiring a weaker

condition on the equivalence between B and B′. Another subtle component of Theorem

5.1 is condition 1, which allows each basic process to share only a single variable with the

context. As demonstrated by Example 5.4, the composition theorem does not hold when

this restriction is relaxed.

Example 5.4 Consider the context and processes below.

C[�] = νk1 · νk2 · νk3 · (x1 := k1) · (x2 := k2) · (x3 := k3) ·�
B1 = out(senc(x1, x3)) · out(senc(x1, x3))

B2 = out(senc(x1, x3)) · out(senc(x1, x2)).

For B0 = νk · (x1 := k) · (x2 := k) · (x3 := k) we have B0 ·B1 ≈ B0 ·B2 but C[B1] 6≈ C[B2].

Indeed, observe that B0 ·B1 and B0 ·B2 have a single trace that outputs senc(k, k), senc(k, k).

However, an adversary that executes C[B1], C[B2] to completion produces a trace that outputs

senc(k1, k3), senc(k1, k3) for C[B1] and a trace that outputs senc(k1, k3), senc(k1, k2) for C[B2].

In Theorem 5.1, condition 4 requires that the composed processes do not reveal the shared

secrets with probability 1. One might also be interested in the quantitative version of this

result, where the probability of revealing the shared secrets is below a given threshold.

Unfortunately, condition 4 cannot be relaxed, as shown by Example 5.5 below.
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Example 5.5 Consider the contexts

C[�] = νk1 · (x1 := k1) ·� · in(y) · νk2 · [y = x1] · out(ok)

C ′[�] = νk1 · (x1 := k1) ·� · in(y) · νk2 · [y = k2] · out(ok)

and the basic process B = νn · out(x1) + 1
2
νn · out(n). Observe that C[B] |=E, 1

2
secret(x1)

and C ′[B] |=E, 1
2
secret(x1). Furthermore, C[out(#(x1))] ≈ C ′[out(#(x1))] and νk · (x1 :=

k) ·B ≈ νk · (x1 := k) ·B. However, C[B] 6≈ C ′[B].

5.1.5 Application of the composition framework

We demonstrate an application of Theorem 5.1 using the DC-net protocol from Section

3.2.

Example 5.6 We model the DC-net protocol in our formalism as follows. We will use the

equational theory (Fdc, Edc) with signature Fdc = {0, 1,⊕, senc, sdec, pair, fst, snd, val} and the

equations Edc given below.

sdec(senc(m, k), k) = m

fst(pair(x, y)) = x

snd(pair(x, y)) = y

(x⊕ y)⊕ z = x⊕ (y ⊕ z)

x⊕ 0 = x

x⊕ x = 0

x⊕ y = y ⊕ x
val(m, 0, b1, b2) = pair(b1 ⊕m, b2)

val(m, 1, b1, b2) = pair(b1, b2 ⊕m)

The roles of Alice and Bob in this protocol are defined in our process syntax as follows.

A = ((b0 := 0) + 1
2

(b0 := 1)) · ((b1 := 0) + 1
2

(b1 := 1)) · ((b2 := 0) + 1
2

(b2 := 1)·
out(senc(pair(b0, pair(b1, b2)), k1) · out(val(mA, b0, b1, b2))

B = in(z) · (y := sdec(z, k2)) · (b0 := fst(y)) · (b1 := fst(snd(y)))·
(b2 := snd(snd(y))) · out(val(mB, b0 ⊕ 1, b1, b2))

Notice that the output of Bob depends on the value of Alice’s coin flip. Because the process

calculus of our composition framework does not contain else branches, the required functi-

onality is embedded in the equational theory. Also notice that the communication between

Alice and Bob in the above specification requires pre-established secret keys k1 and k2 that can

be generated by first running a key-exchange protocol. Let C[�1,�2] be the context modeling
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the Diffie-Hellman protocol from Example 5.1. If Alice holds the bit b and Bob holds the bit

b′, the entire protocol can be modeled as C[(mA := b) · A, (mB := b′) ·B].

The security property of DC-nets can be formalized as follows.

Example 5.7 Consider the DC-net protocol defined in Example 5.6 which is designed to

ensure that an observer of the protocol’s output can obtain Alice and Bob’s bits but cannot

distinguish the party to which each bit belongs. This property can be modeled by the indis-

tinguishablity C[(mA := 0) · A | (mB := 1) · B] ≈ C[(mA := 1) · A | (mB := 0) · B] which

says that any attacker for the DC-net protocol will observe identical probabilities for every

sequence of protocol outputs, regardless of the bits that Alice and Bob hold in their messages.

Using Theorem 5.1, we can verify the DC-net protocol in a modular way.

Example 5.8 Consider the indistinguishablity property from Example 5.7. Using the results

established in Theorem 5.1, the verification effort for the property can be reduced to verifying

the following set of simpler properties, where K = νk · (k1 := k) · (k2 := k).

1. C[B1, . . . , Bn] |=E,1 secret(x1, . . . , xn) and C ′[B′1, . . . , B
′
n] |=E,1 secret(x

′
1, . . . , x

′
n)

2. K · ((ma := 0) · A | (mb := 1) ·B) ≈ K · ((ma := 1) · A | (mb := 0) ·B)

Property 1 can also be verified modularly using Theorem 6.1 from Section 6.1. When the

contexts in the equivalence are not the same, one must also verify property 5 from Theorem

5.1.

5.2 COMBINING INTRUDER KNOWLEDGE IN DISJOINT EQUATIONAL
THEORIES

In this section, let e ∈ {a, b, c}, d ∈ {b, c} and d denote {b, c} \ d. Let (Fa, Ea), (Fb, Eb)
and and (Fc, Ec) be disjoint non-trivial equational theories. We will assume that Fe has

private names N e
priv and public names N e

pub. Further, we will assume that Ea = ∅ and

Fa = N a
priv ∪N a

pub. Define (F , E) as the equational theory with signature F = Fa ∪ Fb ∪ Fc
and equations E = Eb ∪ Ec. The set of all pure d-terms is T (Fd) and the set of all pure

a-terms is T (Fa,X ∪Xw). A term is pure if it is a pure e-term and the set of all pure e-terms

will be denoted by De. For a term u,

root(u) =

{
f if u = f(u1, . . . , un)

u if u is an atom
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and domain(u) = e iff root(u) ∈ De. A term context over signature F is T (F ,Xh) where Xh is

a special set of variables called holes. Will will use 1, 2, . . . to denote holes. A term context

H is called non-empty if H 6∈ Xh. A pure d-term context is a non-empty term context

H ∈ T (Fd,Xh). For a non-empty term context, define domain(H) = domain(root(H)). We

will write H[ 1, . . . , k] to denote a term context with variables 1, . . . , k and H[u1, . . . , uk]

to be the term that results from replacing, in H, the variable j by the term uj for all

j ∈ {1, . . . , j}. For a pure d-term context H and a set of terms u1, . . . , uk we will write

H[[u1, . . . , uk]] if domain(H) 6= domain(uj) for all j ∈ {1, . . . , k}. The terms u1, . . . , uk are

called alien subterms of H. Given a set of frame variables Xw, let X d
w = {wi,[`] | wi,[`] ∈

Xw ∧ [`] ∈ Ld}. For the remainder of this section, let s̃ = s1, . . . , s` ∈ T (Fb ∪ Fc) be

a sequence of terms and ñ = n1, . . . , n` be a sequence of fresh private names such that

domain(si) = domain(ni) and ni = nj iff si =E sj for all i, j ∈ {1, . . . , `}.

Definition 5.1 Define the function Rñ
s̃,d : T (F)→ T (F) as follows.

Rñ
s̃,d(u) =


ni if root(u) 6∈ Fd and u =E si for i ∈ {1, . . . , `}
f(Rñ

s̃,d′(u1), . . . , Rñ
s̃,d′(uk)) otherwise if u = f(u1, . . . , uk) and f ∈ Fd′

u otherwise

Definition 5.2 Let col : T (F)→ T (F) be a function such that

col(u) =


u if u is an atom

vi if u = f(u1, . . . , u`) is collapsable to vi

f(col(u1), . . . , col(u`)) otherwise

where a term f(u1, . . . , u`) is collapsable to vi if f(col(u1), . . . , col(u`)) = H[[v1, . . . , vk]] and

H[[n1, . . . , nk]] =Ed ni where n1, . . . , nk ∈ N d
priv are fresh names such that ni = nj iff vi =E vj

for all i, j ∈ {1, . . . , `} and d = domain(H).

We will assume a total order <t on terms from T (F). In case 2 of Definition 5.2, if

u = f(u1, . . . , u`) is collapsible to vi and vj for i, j ∈ {1, . . . , `} then col(u) = vi if vi <t vj.

That is, col is a deterministic function. We can easily extend col to a substitution σ by

requiring col(σ)(x) = col(σ(x)) for all x ∈ dom(σ).

Lemma 5.2 ([106]) For any term u ∈ T (F), col(u) =E u.

Lemma 5.3 ([106]) If f ∈ Fd and u1, . . . , u` ∈ T (F) then

col(f(u1, . . . , u`)) = col(f(col(u1), . . . , col(u`))).
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Lemma 5.4 ([106]) (Fundamental Collapse Lemma) Let u1, u2 ∈ T (F). If u1 =E u2, then

the following hold.

1. col(u1) = H1[[v1, . . . , vk]], col(u2) = H2[[vk+1, . . . , vk+`]] and domain(H1) = domain(H2)

2. If d ∈ domain(H1) and n1, . . . , nk+` are fresh names such that ni = nj iff vi =E vj for

all 1 ≤ i, j ≤ k + ` then H1[n1, . . . , nk] =Ed H2[nk+1, . . . , nk+`].

Lemma 5.5 ([106]) Let u, v ∈ T (F). If u =E v, then Rñ
s̃,d(col(u)) =E R

ñ
s̃,d(col(v)).

Lemma 5.6 ([106]) Let ϕ be a frame such that u ∈ T (F) for all u ∈ ran(ϕ). If r ∈
T (F , dom(ϕ)) is such that ϕ 6`r′ si for every i ∈ {1, . . . , `} and sub-recipe r′ of r then

rRñ
s̃,d(col(ϕ)) =E R

ñ
s̃,d(col(rϕ)).

By our assumption that E is stable by replacement of names by equivalent terms, we have

the following.

Definition 5.3 Let u1, u2 ∈ T (F) and n ∈ st(u1) ∪ st(u2). If u1 =E u2 and v1, v2 ∈ T (F)

are such that v1 =E v2 then u1{n 7→ v1} =E u2{n 7→ v2}.

Lemma 5.7 Let ϕ and ϕ′ be frames such that dom(ϕ) = dom(ϕ′) and the following hold.

1. wi,[`]ϕ
′ = Rñ

s̃,d(col(wi,[`]ϕ)) for all wi,[`] ∈ dom(ϕ).

2. u ∈ T (F) for all u ∈ ran(ϕ) ∪ ran(ϕ′)

If ϕ 6` s̃ and ϕ′ 6` s̃ then ϕ ≡ ϕ′.

Proof. We show that for all r1, r2 ∈ T (F , dom(ϕ)), r1ϕ =E r2ϕ iff r1ϕ
′ =E r2ϕ

′. Assume

r1ϕ =E r2ϕ. By Lemma 5.5, Rñ
s̃,d(col(r1ϕ)) =E R

ñ
s̃,d(col(r2ϕ)). Because ϕ 6` s̃, we can apply

Lemma 5.6 to both sides, yielding r1R
ñ
s̃,d(col(ϕ)) =E r2R

ñ
s̃,d(col(ϕ)). By the definition of ϕ′,

we have r1ϕ
′ =E r2ϕ

′ as desired. The other direction follows by Definition 5.3.

5.3 INDISTINGUISHABILITY IN PRODUCT POMDPS

We first fix some notation. LetMi = (Zi, z
s
i ,Acti,∆i,Oi, obsi) be a POMDP for i ∈ {1, 2}.

We will assume that Z1 ∩ Z2 = ∅ and Act1 ∩ Act2 = ∅. The asynchronous product of M1

andM2, denotedM1⊗M2, is the POMDP (Z, zs,Act,∆,O, obs) where Z = {(z1, z2) | z1 ∈
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Z1 ∧ z2 ∈ Z2}, zs = (zs1, z
s
2), Act = Act1 ∪ Act2, O = {(o1, o2) | o1 ∈ O1 ∧ o2 ∈ O2},

obs((z1, z2)) = (obs1(z1), obs2(z2)) and ∆ is defined below.

∆((z1, z2), α)((z′1, z
′
2)) =


∆1(z1, α)(z′1) if z2 = z′2 ∧ α ∈ Act1

∆2(z2, α)(z′2) if z1 = z′1 ∧ α ∈ Act2

0 otherwise.

LetM,M1 andM2 be as above. We will assume that Exec(M) is finite and every execution

is of finite length. For a state z = (z1, z2) ∈ Z (resp. an observation o = (o1, o2) ∈ O), its

projection ontoMi is πi(z) = zi (resp. πi(o) = oi). We can lift this projection to executions

(resp. traces) by the following inductive definition. For an execution ρ ∈ Exec(M) of the

form ρ = ρ0
α−→ z′ let πi(ρ) = πi(ρ)

α−→ πi(z
′) if α ∈ Acti and otherwise let πi(ρ) = πi(ρ).

Likewise, for a trace o ∈ (O · Act) · O∗ of the form o = o0αo
′ let πi(o) = πi(o0α)πi(o

′) if

α ∈ Acti and otherwise let πi(o) = πi(o0). Let A be an adversary and MA = (Z0, z
s
0,∆

A).

For a state z ∈ Z0 and ρ ∈ Exec(MA), let probzM(ρ,A) be the measure of the event ρ starting

from state z inMA. For an observation o and trace o, let proboM(o,A) =
∑m

j=1 prob
zj
M(ρj,A)

where ρ1, . . . , ρm ∈ Exec(MA) are executions such that tr(ρj) = o and the initial state zj

of ρj is such that obs(zj) = o. Let A be an adversary and o be a trace. Define projoi (A) as

follows. For any trace o0, projoi (A)(o0) = A(o1) if o1 is a maximal trace such that o1 � o and

πi(o1) = o0.

Lemma 5.8 Let M, M1 and M2 be as above. Let o be a trace, A be an adversary and

Ai = projoi (A). We have probM1⊗M2
(o,A) = probM1

(π1(o),A1)× probM2
(π2(o),A2).

Proof. The proof is by induction on the length of o. For the base case, when o = o, we have

probM1⊗M2
(o,A) = 1 and probMi

(πi(o),Ai) = probMi
(πi(o),Ai) = 1. For the induction

step, let o = oαo0. We can assume without loss of generality that α ∈ Act1. Let o = (os1, o
s
2).

Then the first observation of o0 is o0 = (o′, os2). Let ρ1, . . . , ρm ∈ Exec((M1 ⊗M2)A) be the

executions such that tr(ρj) = o for j ∈ {1, . . . ,m}. Further let ρj = zs
α−→ ρ′j and observe

that every initial state z′j of ρ′j is such that obs(z′j) = o0. We have the following.

probM1⊗M2
(o,A) =

∑m
j=1 probM1⊗M2

(ρj,A)

=
∑m

j=1 ∆A(zs)(z′j)× probM1⊗M2
(ρ′j,A)

=
∑m

j=1 ∆A(zs)(z′j)×
∑m

j=1 probM1⊗M2
(ρ′j,A)

=
∑m

j=1 ∆A(zs)(z′j)× probo0M1⊗M2
(o0,A)

We will assume without loss of generality that z′1, . . . , z
′
m are distinct states. LetM′

j be the

same as M1 with the exception that its initial state is z′j. Further, let A′ be the adversary

such that A′(o′) = A(oαo′). If A′i = projoi (A′), then we have the following.
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probo0M1⊗M2
(o0,A) =

∑m
j=1 probM′j⊗M2

(o0,A′)
=

∑m
j=1 probM′j(πi(o0),A′1)× probM2

(π2(o0),A′2)

= probo
′

M1
(π1(o0),A1)× prob

os2
M2

(π2(o0),A2)

Let ρ′′1, . . . , ρ
′′
m be the executions of MA1

1 such that π1(ρ′′j ) = ρ′j and π1(z′j) = z′′j . Then we

have probo
′

M1
(π1(o0),A1) =

∑m
j=1 prob

z′′j
M1

(ρ′′j ,A1). Furthermore, because α ∈ Act1, it must be

the case that ∆A(zs)(z′′m) = ∆A1
1 (π1(zs))(π1(z′′m)) and prob

os2
M2

(π(o0),A2) = probM2
(π(o0),A2).

Putting everything together, we have probM1⊗M2
(o,A)

=
∑m

j=1 ∆A(zs)(z′j)× probo0M1⊗M2
(o0,A)

=
∑m

j=1 ∆A(zs)(z′j)× probo
′

M1
(π1(o0),A1)× prob

os2
M2

(π2(o0),A2)

=
∑m

j=1 ∆A1
1 (π1(zs))(π1(z′′j ))×

∑m
j=1 prob

z′′j
M1

(ρ′′j ,A1)× prob
os2
M2

(π2(o0),A2)

=
∑m

j=1 ∆A1
1 (π1(zs))(π1(z′′j ))× prob

z′′j
M1

(ρ′′j ,A1)× probM2
(π2(o0),A2)

= probM1
(π1(o0),A1)× probM2

(π2(o0),A2).

Lemma 5.9 Let M,M1 and M′
1 be POMDPs such that the states and actions of M and

M1 (resp. M′
1) are disjoint. If M1 ≈M′

1 then M1 ⊗M ≈M′
1 ⊗M.

Proof. Assume for a contradiction that M1 ⊗M 6≈ M′
1 ⊗M. By definition, there exists a

trace o and adversary A such that probM1⊗M(o,A) 6= probM′1⊗M(o,A). Let Ai = projoi (A)

for i ∈ {1, 2}. By Lemma 5.8,

probM1
(π1(o),A1)× probM(π2(o),A2) 6= probM′1(π1(o),A1)× probM(π2(o),A2).

Because probM1⊗M(o,A) 6= probM′1⊗M(o,A) we have probM(π2(o),A2) 6= 0. That is,

probM1
(π1(o),A1) 6= probM′1(π1(o),A1)

and hence M1 6≈M ′
1, contradiction.

The following is a consequence of Lemma 5.9.

Lemma 5.10 Let M1, M′
1, M2 and M′

2 be POMDPs such that the states and actions of

M1 (resp. M′
1) and M2 (resp. M′

2) are disjoint. If M1 ≈ M′
1 and M2 ≈ M′

2, then

M1 ⊗M2 ≈M′
1 ⊗M′

2.
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5.4 SINGLE-SESSION PROTOCOLS OVER DISJOINT DATA

This section is dedicated to the proof of Lemma 5.1. Throughout the section, we will

assume an equational theory (F , E) with private names Npriv and public names Npub. We

will also assume two disjoint set of labels L that is partitioned into two disjoint sets Lb and

Lc. As before, L is equipped with an equivalence relation ∼.

Lemma 5.11 Let ϕ0, ϕ
′
0, ϕ1 and ϕ′1 be frames and N0,N1 ⊆ Npriv be sets of private names

such that N0 ∩N1 = ∅, N0 ∪N1 = Npriv and the following hold.

1. ∀u ∈ ran(ϕ0) ∪ ran(ϕ′0) and ∀wi,[`] ∈ dom(ϕ0) ∪ dom(ϕ′0), u ∈ T (F \ N1) and ` ∈ Lb.

2. ∀u ∈ ran(ϕ1) ∪ ran(ϕ′1) and ∀wi,[`] ∈ dom(ϕ1) ∪ dom(ϕ′1), u ∈ T (F \ N0) and ` ∈ Lc

3. ϕ = ϕ0 ∪ ϕ1 and ϕ′ = ϕ′0 ∪ ϕ′1

Then ϕ ≡ ϕ′ iff ϕ0 ≡ ϕ′0 and ϕ1 ≡ ϕ′1.

Proof. “⇒” We show the contrapositive. Assume without loss of generality that ϕ0 6≡
ϕ′0. That is, dom(ϕ) 6= dom(ϕ′) or there exist recipes r1, r2 such that r1ϕ0 =E r2ϕ0 and

r1ϕ
′
0 6=E r2ϕ

′
0 (or vice versa, in which case the result follows by a similar argument). If

dom(ϕ) 6= dom(ϕ′) then the result is immediate. Otherwise the free variables in r1, r2 must

come from dom(ϕ0) = dom(ϕ′0) and thus they have the form wi,[`] for ` ∈ Lb. By definition,

for all such wi,[`], we have wi,[`]ϕ0 = wi,[`]ϕ and wi,[`]ϕ
′
0 = wi,[`]ϕ

′. That is, r1ϕ =E r2ϕ and

r1ϕ
′ 6=E r2ϕ

′, which means that ϕ 6≡ ϕ′.

“⇐” We show the contrapositive. Assume that ϕ 6≡ ϕ′. If dom(ϕ) 6= dom(ϕ′) then

the result is immediate. Otherwise there exist recipes rb, rc such that rbϕ =E rcϕ and

rbϕ
′ 6=E rcϕ

′ (or vice versa, in which case the result follows by a similar argument). Again,

if rb, rc ∈ dom(ϕ) then the result is immediate, so we will assume that for all wi,[`1], wj,[`2] ∈
dom(ϕ), we have wi,[`1]ϕ =E wj,[`2]ϕ iff wi,[`1]ϕ

′ =E wj,[`2]ϕ
′. Let ξ : T (F) → T (F) be a

function such that ξ(u1) = ξ(u2) iff u1 =E u2 and ξ(u1) ∈ [u1]. Let ϕ̃ (resp. ϕ̃′) be the frame

that results from replacing every u ∈ ran(ϕ) (resp. u ∈ ran(ϕ′)) by ξ(u). Clearly, for any

recipe r, rϕ =E rϕ̃ and rϕ′ =E rϕ̃′. Let rename0 : N0 → M0 and rename1 : N1 → M1 be

bijections such that M0 ∩M1 = ∅, M0,M1 ⊂ Npub and no names in M0,M1 occur in ϕ, ϕ′.

Given a term u, we will write rename0(u) (resp. rename1(u)) to denote the term that results

from replacing in u, every k ∈ N0 (resp. k ∈ N1) by rename0(k) (resp. rename1(k)).

For a recipe r, let r0 (resp. r1) be the recipe that that results from replacing every sub-

recipe of the form u = wi,[`] for ` ∈ Lc (resp. ` ∈ Lb) in r by the sub-recipe rename1(uϕ) (resp.
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rename0(uϕ)). By Definition 5.3, we have rϕ̃ =E r0ϕ̃ =E r1ϕ̃ and rϕ̃′ =E r0ϕ̃′ =E r1ϕ̃′.

Given this, it must be the case that either

r0
b ϕ̃ =E r

0
c ϕ̃ ∧ r0

b ϕ̃
′ 6=E r

0
c ϕ̃
′ or r1

b ϕ̃ =E r
1
c ϕ̃ ∧ r1

b ϕ̃
′ 6=E r

1
c ϕ̃
′.

Because the free variables of r0
b , r

0
c are over dom(ϕ0) and the free variables of r1

b , r
1
c are over

dom(ϕ1) we can conclude that either ϕ0 6≡ ϕ′0 or ϕ1 6≡ ϕ′1.

For a set of frame variables Xw and a set of labels L ⊆ L closed under ∼, we write X L
w to

denote the set {wi,[`] | wi,[`] ⊆ Xw and ` ∈ L}.

Definition 5.4 Let L be a set of labels closed under ∼. An adversary A for a process

Q is said to be pure with respect to L if whenever A chooses an action (r, [`]), we have

r ∈ (F ,X L
w ).

Lemma 5.12 Let P , P ′ and Q be processes such that vars(P )∩vars(Q) = vars(P ′)∩vars(Q) =

∅. If P ≈ P ′ then P | Q ≈ P ′ | Q.

Proof. We show the contrapositive, that is P | Q 6≈ P ′ | Q implies P 6≈ P ′. The proof is by

induction on the number of probabilistic choices in Q. For the base case, let Q be a process

that doesn’t contain probabilistic choice. Define S = {k | νk occurs in Q} to be the set of

all variable names that can be bound by the ν operator in Q. Further let M ⊂ Npub be a

set of names not occurring in P, P ′ and Q and rename : S → M be a bijection. Define Q′

as the process that results from replacing, in Q, every occurrence of an atomic action νk

by (k := rename(k)). If P | Q 6≈ P ′ | Q then P | Q′ 6≈ P ′ | Q′, which is a straightforward

consequence of Definition 5.3.

We can assume, by convention, that P, P ′ are labeled by Lb and Q is labeled by Lc.
Let A be an adversary and o be a trace such that probP |Q′(o,A) 6= probP ′|Q′(o,A). From

A, we define an adversary A′ for P | Q′ and P ′ | Q′ that is pure with respect to Lb
as follows. Let ρ ∈ Exec([[P | Q′]]A ∪ [[P ′ | Q′]]A) be such that tr(ρ) = o and last(ρ) =

(R,ϕ, σ). We will define mappings Θρ : dom(σ) ∩ vars(Q′) → T (F \ Npriv, dom(ϕ)) and

Φρ : dom(ϕ) → T (F \ Npriv, dom(ϕ)) by induction on the length of ρ. If ρ contains no

actions then dom(σ) = dom(ϕ) = ∅. Inductively let ρ = ρ0
α−→ z. We distinguish 4 cases.

case 1: α does not execute an output action or an input/assignment action that binds a

variable in dom(σ) ∩ vars(Q′). Define Θρ = Θρ0 and Φρ = Φρ0 .

case 2: α executes output action of the form out(u) where u ∈ T (F , dom(σ)). Define

Θρ = Θρ0 . The output action must bind a frame variable wj,[`] to the value uσ. If ` ∈ Lc
then Φρ(wj,[`]) = uΘρ0 . Otherwise, if ` ∈ Lb then Φρ(wj,[`]) = wj,[`].
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case 3: α executes a action of the form in(x) from Q′. The action α must be of the form

(r, [`]). Define Θρ(x) = rΦρ0 and Φρ = Φρ0 .

case 4: α executes a action of the form (x := u) from Q′ where u ∈ T (F , dom(σ)). Define

Θρ(x) = uΘρ0 and Φρ = Φρ0 .

We extend Φρ to actions by requiring that Φρ(τ, [`]) = (τ, [`]) and Φρ(r, [`]) = (rΦρ, [`]).

Observe that because Q doesn’t contain probabilistic choice, for any two executions ρ, ρ′ ∈
Exec([[P | Q′]]A) ∪ Exec([[P ′ | Q′]]A) such that tr(ρ) = tr(ρ′), we have Φρ(α) = Φρ′(α). Thus,

for a trace o and action α, we can define Φo as Φρ(α) where ρ is any execution such that

tr(ρ) = o. Now if o0 = obs(z0)α1 . . . αk−1obs(zk−1) is a prefix of o and A(o0) = αk let

A′(obs(z0)Φ′o(α0) . . .Φo(αk−1)obs(zk)) = Φo(αk).

By a simple induction on the length of ρ, one can show that ρ ∈ Exec([[P | Q′]]A) iff ρ ∈
Exec([[P | Q′]]A′) and probP |Q(ρ,A) = probP |Q′(ρ,A′). Likewise, we have ρ ∈ Exec([[P ′ | Q′]]A)

iff ρ ∈ Exec([[P ′ | Q′]]A′) and probP ′|Q′(ρ,A) = probP ′|Q′(ρ,A′). The preceding facts imply

that A′ is an adversary for P | Q′ and P ′ | Q′ such that probP |Q′(o,A) = probP |Q′(o,A′)
and probP ′|Q′(o,A) = probP ′|Q′(o,A′). That is probP |Q′(o,A′) 6= probP ′|Q′(o,A′). By our

construction, A′ doesn’t use an recipes output by Q′. By Lemma 5.11 and Lemma 5.9, we

can conclude that P 6≈ P ′.

For the induction step, let Q′ be the result of replacing, in Q, some occurrence of a

subprocess Q0 +p Q1 by out(0)`0 · Q0 +p out(1)`1 · Q1 where 0, 1 are fresh unary constant

symbols. Define a projection π from executions of P | Q′ (resp. P ′ | Q′) to executions of

P | Q (resp. P ′ | Q) inductively as follows. If ρ ∈ Exec([[P | Q′]]) (resp. ρ ∈ Exec([[P ′ | Q′]]))
contains no actions, then π(P | Q′, ∅, ∅) = (P | Q, ∅, ∅) (resp. π(P ′ | Q′, ∅, ∅) = (P ′ |
Q, ∅, ∅)). Inductively, let ρ = ρ0

α−→ z for α = (§, [`]). If ` ∈ {`0, `1} then π(ρ) = π(ρ0).

Otherwise π(ρ) = π(ρ0)
α−→ z. The projection π can be extended to traces by requiring that

π(o) = tr(π(ρ)). From π we can define an adversary A′ for P | Q′ (resp. P ′ | Q′) from an

adversary A for P | Q (resp. P ′ | Q) in the following way. For a trace o, if A(π(o)) = (§, [`])
where ` occurs in Q0 (resp. Q1) and o doesn’t contain the action (τ, [`0]) (resp. (τ, [`1])),

then A′(o) = (τ, [`0]) (resp. A′(o) = (τ, [`1])). Otherwise A′(o) = A(π(o)). Clearly we have

probP |Q(ρ,A) = probP |Q′(π(ρ),A′) and probP ′|Q(ρ,A) = probP ′|Q′(π(ρ),A′). Furthermore,

for any ρ1, ρ2 ∈ Exec([[P | Q′]]A′) (resp. ρ1, ρ2 ∈ Exec([[P ′ | Q′]]A′)) if tr(ρ1) 6= tr(ρ2) then

tr(π(ρ1)) 6= tr(π(ρ2)). Because P | Q 6≈ P ′ | Q there is an adversary A and trace o such that

probP |Q(o,A) 6= probP ′|Q(o,A). Let o1, . . . , ov be the traces of (P | Q′)A′ , (P ′ | Q′)A′ such

that tr(oj) = o for all j ∈ {1, . . . , v}. By the preceding observations, there is some j such that

probP |Q′(oj,A′) 6= probP ′|Q′(oj,A′) and hence P | Q′ 6≈ P ′ | Q′. Let ρ0, ρ1 ∈ Exec([[P | Q′]]A′)
(resp. ρ0, ρ1 ∈ Exec([[P ′ | Q′]]A′)) be executions such that ρ0 contains the action (τ, [`0]) and

ρ1 contains the action (τ, [`1]). We have tr(ρ0) 6= tr(ρ1). From this, we can conclude that

64



P | Q′0 6≈ P ′ | Q′0 or P | Q′1 6≈ P ′ | Q′1 where Q′0 (resp. Q′1) is the process that results

from replacing, in Q, some occurrence of the subprocess Q0 +pQ1 by Q0 (resp. Q1). By the

induction hypothesis, we can conclude that P 6≈ P ′.

By Lemma 5.12, we have P | Q ≈ P ′ | Q and P ′ | Q ≈ P ′ | Q′. The result from Lemma

5.1 follows.

5.5 SINGLE-SESSION PROTOCOLS OVER DISJOINT PRIMITIVES

In this section, we complete the proof of Theorem 5.1. For any two executions ρ0, ρ1 we

say that ρ0 is a prefix of ρ1, denoted ρ0 � ρ1, if ρ1 = ρ0
α0−→ . . .

αk−→ zk. The prefix operation

� is extended to traces in the natural way. For a process P and an adversary A, we will write

MExec([[P ]]A) to denote the subset of Exec([[P ]]A) that contains only maximal executions. A

trace o is said to be maximal for [[P ]]A if o = tr(ρ) where ρ ∈ MExec([[P ]]A). The set of all

attackers will be denoted by A.

Proposition 5.1 Let P and Q be processes such that P 6≈ Q. There exist an adversary A
and a trace o that is maximal for [[P ]]A and [[Q]]A such that probP (o,A) 6= probQ(o,A).

Definition 5.5 Let (P1, P2) (resp. (Q1, Q2)) be a pair of processes and A be an adver-

sary. Further Let Λ : A → A be a function and δ : MExec([[P1]]A) ] MExec([[P2]]A) →
MExec([[Q1]]Λ(A)) ]MExec([[Q2]]Λ(A)) be a bijection such that the following hold.

1. For any ρ ∈ MExec([[Pi]]
A), probPi(ρ,A) = probQi(δ(ρ),Λ(A))

2. For any ρ0, ρ1 ∈ MExec([[P1]]A)]MExec([[P2]]A), tr(ρ0) = tr(ρ1) iff tr(δ(ρ0)) = tr(δ(ρ1)).

Then (P1, P2) is said to be transposable to (Q1, Q2) by Λ.

Lemma 5.13 Let (P1, P2) be transposable to (Q1, Q2). If P1 6≈ P2 then Q1 6≈ Q2.

Proof. Assume P1 6≈ P2. By Proposition 5.1, there exists and adversary A and a maxi-

mal trace o such that probP1
(o,A) 6= probP2

(o,A). Let ρ1, . . . , ρk ∈ MExec([[P1]]A) (resp.

ρ′1, . . . , ρ
′
` ∈ MExec([[P2]]A)) be the executions such that tr(ρi) = o (resp. tr(ρ′j) = o) for all

i ∈ {1, . . . , k} (resp. j ∈ {1, . . . , `}). By property 2 of Definition 5.5 there exists a trace

o0 such that for the executions δ(ρ1), . . . , δ(ρk) ∈ MExec([[Q1]]Λ(A)) (resp. δ(ρ′1), . . . , δ(ρ′`) ∈
MExec([[Q2]]Λ(A))) tr(δ(ρi)) = o0 (resp. tr(δ(ρ′j)) = o0) for all i (resp. j). By property 1 of

Definition 5.5, probQ1
(o0,Λ(A)) = probP1

(o,A) 6= probP2
(o,A) = probQ2

(o0, Q
Λ(A)
2 ).
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Figure 5.2 Interleavings for parallel composition of basic processes.

D ∈ I(D1 | . . . | Dm)

a ·D ∈ I(D1 | . . . | Di−1 | a | Di+1 | . . . | Dm)

D ∈ I(D1 | . . . | Di | . . . | Dm)

a ·D ∈ I(D1 | . . . | a ·Di | . . . | Dm)

D′ ∈ I(D1 | . . . | D′i | . . . | Dm) D′′ ∈ I(D1 | . . . | D′′i | . . . | Dm)

D′ +p D
′′ ∈ I(D1 | . . . | D′i +p D

′′
i | . . . | Dm)

Recall the definition of an atomic process from Section 2.7. We will use a to denote atomic

processes. A process is called linear if it can be derived from the grammar L := a | (L · a).

Let P be a process and A be an adversary for P . For any ρ ∈ Exec([[P ]]A), define the linear

process L(ρ) inductively as follows. For the base case L((P, ∅, ∅)) = ε. For the inductive

case, let ρ = ρ0
(§,[`])−−−→ zn. If ` is the label of an atomic process a, then L(ρ) = L(ρ0) · a.

Otherwise ` is the label of a probabilistic choice and L(ρ) = L(ρ0) · [T ]`.

Proposition 5.2 Let P be a process, A be an adversary for P and ρ ∈ Exec([[P ]]A). There

exists an adversary A′ for L(ρ), an execution ρ′ ∈ Exec([[L(ρ)]]A
′
), a frame ϕ and a substi-

tution σ such that last(ρ) = (Q,ϕ, σ) and last(ρ′) = (Q′, ϕ, σ).

A process is called deterministic if it can be derived from the following grammar.

D ::= a D +p D a ·D

The concatenation of two deterministic process, denoted D1 ◦D2, is defined below.

D1 ◦D2 =


a ·D2 if D1 = a

D
′
1 ·D2 +p D

′′
1 ·D2 D1 = D

′
1 +p D

′′
1

a · (D′1 ◦D2) D1 = a ·D′1

For a role B, its expansion to a deterministic process, denoted exp(B), is defined as follows.

exp(B) =



a if B = a

a · exp(B′) if B = a ·B′

exp(B1) +p exp(B2) if B = B1 +p B2

exp(B1) ◦ exp(B′) +p if B = (B1 +p B2) ·B′

exp(B2) ◦ exp(B′)

The set of interleavings for the parallel composition of deterministic processes is given in

Figure 5.2, and will be denoted by I(P ) for a process P . Recall that a process Q takes the
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form a1 · . . . ·an · (B1 | . . . | Bm) where ai ∈ {νx, (x := u)}. If D ∈ I(exp(B1) | . . . | exp(Bm)),

then a1 · . . . · an · D ∈ I(P ). Notice that I(Q) is a deterministic process. Further, for

any adversary A and process Q there exists a deterministic process D ∈ I(Q) such that

Exec([[D]]A) = Exec([[Q]]A) modulo a renaming of variables. We will write I(Q,A) to denote

such a deterministic process. For a bitstring ω, if a ∈ {νx, in(x), (x := u)}, let aω be νxω,

in(xω) or (xω := u), respectively. For any deterministic process D and bitstring ω, let Dω

be

Dω =



a if D = a and a 6∈ a
aω if D = a and a ∈ a
a ·Dω

0 if D = a ·D0 and a 6∈ a
aω ·Dω

0 {x 7→ xω} if D = a ·D0 and a ∈ a
Dω0

0 +p D
ω1
1 if D = D0 +p D1

for a = {νx, in(x), (x := u)}. By construction, Dω is such that for any adversary A and

ρ1, ρ2 ∈ Exec([[Dω]]A) if last(ρ1) = (D1, ϕ1, σ1), last(ρ2) = (D2, ϕ2, σ2) and x ∈ dom(σ1) ∩
dom(σ2) then xσ1 = xσ2. Let ρ1, . . . , ρm = MExec([[Dω]]A) where last(ρj) = (Dj, ϕj, σj)

for all j ∈ {1, . . . ,m}. Define bind(Dω,A) =
⋃j=m
j=1 σj. For any process Q, let Qb

Lb be the

result of replacing, in Q, every occurrence of a variable x that occurs in an atomic process

a`, where ` ∈ Lb, by the variable xb. For the remainder of this section, let i ∈ {1, . . . , n},
S = {x1, . . . , xn} and

C[�1, . . . ,�n] = νk1 · . . . · νkm · (D1[�1] | D2[�2] | . . . | Dn[�n])

C ′[�1, . . . ,�n] = νk′1 · . . . · νk′m · (D′1[�1] | D′2[�2] | . . . | D′n[�n])

be contexts over Fc with labels from Lc, B1, . . . , Bn (resp. B′1, . . . , B
′
n) be roles over Fb with

labels from Lb and assume that the conditions of Theorem 5.1 hold. Let A be an adversary

for C[B1, . . . , Bn] and C ′[B′1, . . . , B
′
n]. We will henceforth refer to the preceding conditions

by †. By convention, the labels from each Bi come from different equivalence classes, which

we will denote by ∼i. Define

SD = {xω | xω ∈ vars(I(C[B1, . . . , Bn],A)ε) ∧ x ∈ vars(S)}

and

S ′D = {xω | xω ∈ vars(I(C ′[B′1, . . . , B
′
n],A)ε) ∧ x ∈ vars(S)}.

Let M = max(|SD|, |S ′D|).

Definition 5.6 Define ∆(C[B1, . . . , Bn],A,M) to be the process
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[T ]1 · . . . · [T ]s · νk′1 · . . . · νk′v · (yb1 := z1) · . . . · (ybv := zv) · (I(C[B1, . . . , Bn],A)ε)bLb

such that {y1, . . . , yv} = SD, zj ∈ {k′1, . . . , k′v} and for all zj, zh we have zj = zh iff σA(yj) =E

σA(yh) for σA = bind(C[B1, . . . , Bn],A). We also require s is such that s+ 2v = M .

In Definition 5.6, every atomic action in the prefix [T ]1 · . . . · [T ]s · νk′1 · . . . · νk′v · (yb1 :=

z1) · . . . · (ybv := zv) is labeled sequentially with `1, . . . , `2v+s ∈ Lb. We can similarly de-

fine ∆(C ′[B′1, . . . , B
′
n],A,M). Let disA : A → A be the adversary such that if A′(o) = α

then disA(A′)(o0o) = α where o0 = o0(τ, [`1]) . . . (τ, [`2v+s])o2v+s. In what follows, when

we write ρ ` S for some ρ ∈ Exec([[P ]]) and S ⊆ vars(P ) we mean that there exists an

x ∈ S such ϕ ` xσ where last(ρ) = (P ′, ϕ, σ). We will also assume that B1, . . . , Bn and

C[�1, . . . ,�n] only share the variables S = {x1, . . . , xn}. We will write varsb(C[B1, . . . , Bn])

and varsc(C[B1, . . . , Bn]) to denote the sets
⋃n
i=1 vars(Bi) \ xi and vars(C[�1, . . . ,�n]) \ S

respectively.

Lemma 5.14 Let A be an adversary for P0 = C[B1, . . . , Bn] and P1 = C ′[B′1, . . . , B
′
n].

Assuming †, If Q0 = ∆(P0,A,M) and Q1 = ∆(P1,A,M) then (P0, P1) is transposble to

(Q0, Q1) by disA.

Proof. Observe that Exec([[P0]]A) = Exec([[I(P0,A)]]A) and I(P0,A) is the same as I(P0,A)ε

modulo renaming of variables. Likewise, Exec([[P1]]A) = Exec([[I(P1,A)]]A) and I(P1,A)

is the same as I(P1,A)ε modulo renaming of variables. Thus, it suffices to show the

pair (I(P0,A)ε, I(P0,A)ε) is transposable to (Q0, Q1) by disA. We define a bijection δ :

MExec([[I(P0,A)ε]]A) ]MExec([[I(P1,A)ε]]A)→ MExec([[Q0]]disA) ]MExec([[Q1]]disA). The de-

finition of δ is only given on executions of MExec([[I(P0,A)ε]]A), it can be naturally extended

to executions of MExec([[I(P1,A)ε]]A). Let disA(A) = A′ and P ′0 = I(P0,A)ε. Define a

bijection

δ0 : MExec([[P ′0]]A)→ MExec([[Q0]]A
′
)

as follows. To begin, let ρ0 = (Q0, ∅, ∅)
(τ,[`])−−−→ . . .

(τ,[`])−−−→ ((R0)bLb , ∅, σ0) for ` ∈ Lb and

dom(σ) = {k′1, . . . , k′v, yb1, . . . , ybv} be an execution of MExec([[Q0]]A
′
) such that |ρ0| = M . Now

consider any ρ ∈ MExec([[P ′0]]A) of the form (R0, ϕ0, σ0)
α1−→ . . .

αm−−→ (Rm, ϕm, σm). Define

ρ′ = ((R0)bLb , ϕ
′
0, σ

′
0)

α1−→ . . .
αm−−→ ((Rm)bLb , ϕ

′
m, σ

′
m) where for all j ∈ {1, . . . ,m}, ϕ′j and σ′j

are as follows. If σA = bind(P1,A), s̃ = {σA(y1), . . . , σA(yv)} and ñ = {σ0(yb1), . . . , σ0(ybv)}
then σ′j and ϕ′j are smallest substitutions that satisfy the following.

1. σ′j(x) = σ0(x) for all x ∈ dom(σ0)

2. σ′j(x
b) = Rñ

s̃,b(col(σj(x
b))) for all xb ∈ dom(σ′j) ∩ varsb(P ′0)
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3. σ′j(x) = Rñ
s̃,b(col(σj(x))) for all x ∈ dom(σ′j) ∩ varsc(P ′0)

4. ϕ′j(wi,[`]) = Rñ
s̃,b(col(ϕj(wi,[`])))

Define δ0(ρ) = ρ0ρ
′. Let XD = {xω |xω ∈ vars(P ′0) and x ∈ S} and X ′D = XD∪{(xω)b |(xω)b ∈

vars(Q0) and x ∈ S}. Consider any ρ ∈ MExec([[P ′0]]A). By condition 4 of Theorem 5.1 ρ 6`
secret(XD). Applying Proposition 5.2, the linear process L(ρ) 6` secret(XD). Furthermore,

L(ρ) and L(δ0(ρ)) meet the conditions of Theorem 1 from [54], allowing one to conclude

that L(δ0(ρ)) 6` secret(X ′D) and δ0(ρ) ∈ MExec([[Q0]]A
′
). Proposition 5.2 again yields δ0(ρ) 6`

secret(X ′D). In particular, this means that ρ 6` s̃ and δ0(ρ) 6` s̃ and we can apply Lemma

5.7 to conclude ϕ ≡ ϕ′ and hence obs(last(ρ)) = obs(last(δ0(ρ))). As noted previously, we

can similarly define a bijection δ1 : MExec([[I(P1,A)ε]]A)→ MExec([[Q1]]A
′
) that satisfies the

properties above. Let δ = δ0 ] δ1. A′ is an adversary for Q0 and Q1 such that property 2 of

Definition 5.5 holds. Clearly property 1 also holds by the definition of δ.

Lemma 5.15 Assuming †, if C[B1, . . . , Bn] 6≈ C ′[B′1, . . . , B
′
n] then

C[out(](x1)) ·B1, . . . , out(](xn)) ·Bn] 6≈ C ′[out(](x1)) ·B′1, . . . , out(](xn)) ·B′n].

Proof. Let P1 = C[B1, . . . , Bn], P2 = C ′[B′1, . . . , B
′
n], P ′1 = C[out(](x1)) ·B1, . . . , out(](xn)) ·

Bn] and P ′2 = C ′[out(](x1)) · B′1, . . . , out(](xn)) · B′n]. We will assume out(](x1)), . . . ,

out(](xn)) are labeled by `1, . . . , `n ∈ Lb. Define a projection π from executions of P ′1

(resp. P ′2) to executions of P1 (resp. P2) inductively as follows. If ρ ∈ Exec([[P ′1]]) (resp. ρ ∈
Exec([[P ′2]])), contains no actions, then π(P ′1, ∅, ∅) = (P1, ∅, ∅) (resp. π(P ′2, ∅, ∅) = (P2, ∅, ∅)).
Inductively, let ρ = ρ0

α−→ z for α = (§, [`]). If ` = `i for i ∈ {1, . . . , n} then π(ρ) = π(ρ0). Ot-

herwise π(ρ) = π(ρ0)
α−→ z′. The projection π can be extended to traces in the following way.

For a trace o, π(o) = tr(π(ρ′)) where ρ′ is any execution such that tr(ρ′) = o. This extension

is well defined. From π we can define an adversary A′ for P ′1 (resp. P ′2) from an adversary

A for P1 (resp. P2) in the following way. For a trace o, if A(π(o)) = (§, [`]) where ` ∈∼i and

o doesn’t contain the action (τ, [`i]), then A′(o) = (τ, [`i]). Otherwise A′(o) = A(π(o)). Let

ρ, ρ1, ρ2 ∈ MExec([[P ′k]]
A′) for k ∈ {1, 2}. First observe that probP ′k(ρ,A

′) = probPk(π(ρ),A)

by our definition of A′. Furthermore, if tr(π(ρ1)) 6= tr(π(ρ2)) then tr(ρ1) 6= tr(ρ2). Because

P1 6≈ P2, by Proposition 5.1, there is an adversary A and trace o that is maximal for [[P1]]A

and [[P2]]A such that probP1
(o,A) 6= probP2

(o,A). Let o1, . . . , ok be the traces of [[P ′1]]A
′

and

[[P ′2]]A
′

such that π(oj) = o for all j ∈ {1, . . . , k}. We have

probP1
(o,A) =

k∑
j=1

probP1
(oj,A′) and probP2

(o,A) =
k∑
j=1

probP ′2(oj,A
′).
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By the preceding observations,

k∑
j=1

probP ′1(oj,A
′) 6=

k∑
j=1

probP ′2(oj,A
′)

and thus there exists j such that probP ′1(oj,A
′) 6= probP ′2(oj,A

′). That is, P ′1 6≈ P ′2.

Lemma 5.16 Let P, P ′, Q and Q′ be processes such that vars(P ) ∩ vars(Q) = {x} and

vars(P ′) ∩ vars(Q′) = {x}. If νx · (P | Q) ≈ νx · (P ′ | Q′) then

νx1 · P{x 7→ x1} | νx2 ·Q{x 7→ x2} ≈ νx1 · P ′{x 7→ x1} | νx2 ·Q′{x 7→ x2}.

Proof. We begin by showing that νx · P ≈ νx · P ′ and νx · Q ≈ νx · Q′. We only give

the agruement for νx · P ≈ νx · P ′ as the case of νx · Q ≈ νx · Q′ is similar. Assume for

a contradiction that νx · P 6≈ νx · P ′. There exists an adversary A and trace o such that

probνx·P (o,A) 6= probνx·P ′(o,A). Clearly, A is also an adversary for νx·(P |Q) and νx·(P ′|Q′)
such that probνx·P (o,A) = probνx·(P |Q)(o,A) and probνx·P ′(o,A) = probνx·(P ′|Q′)(o,A). That

is, νx · (P | Q) ≈ νx · (P ′ | Q′), contradiction. Given that νx ·P ≈ νx ·P ′ and νx ·Q ≈ νx ·Q′

the result is a consequence of Lemma 5.1.

Lemma 5.17 Assuming †, we have C[B1, ..., Bn] ≈ C ′[B1, ..., Bn].

Proof. Assume for a contradiction that C[B1, . . . , Bn] 6≈ C ′[B1, . . . , Bn]. Let

P1 = C[out(](x1)) ·B1, . . . , out(](xn)) ·Bn]

and

P2 = C ′[out(](x1)) ·B1, . . . , out(](xn)) ·Bn].

By Lemma 5.15, P1 6≈ P2. Let A be an adversary such that probP1
(o,A) 6= probP2

(o,A) for

some trace o. By Lemma 5.14, there exists some M ∈ N such that (P1, P2) are transposable

to (∆(P1,A,M),∆(P2,A,M)). By Lemma 5.13, this yields ∆(P1,A,M) 6≈ ∆(P2,A,M)

and again we have a trace o0 and an adversary A′ such that

prob∆(P1,A,M)(o0,A′) 6= prob∆(P2,A,M)(o0,A′).

Further, let ρ1, ρ2 ∈ Exec([[∆(P1,A,M)]]A
′
) be such that tr(ρ1) = tr(ρ2) = o0. If o0 contains

an action with a label from ∼i, then the first such action in ρ1 (resp. ρ2) is an output of a
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term of the form ]((xπ1i )bσ1) (resp. ]((xπ2i )bσ2)) where last(ρk) = (Rk, ϕk, σk) for k ∈ {1, 2}.
We will write ]1(xi) (resp. ]2(xi)) to denote the first (and only) output of ρ1 (resp. ρ2) with a

label from ∼i. Observe that if ρ1 contains actions with labels from ∼i and ∼j then ]1(xi) =E

]1(xj) iff ]2(xi) =E ]
2(xj). If this was not the case, then ρ1 and ρ2 would not have the same

trace. Notice that the above observation also holds when ρ2 ∈ Exec([[∆(P2,A,M)]]A
′
).

Let B0 := νk0 · . . . · νkn · (x1 := z1) · . . . · (x1 := zn) be a process such that zi ∈ {k0, . . . , kn}
and the following hold. If o0 doesn’t contain an action from ∼i then zi = k0 and otherwise

zi = zj iff ]1(xi) = ]1(xj). By definition, ∆(P1,A,M) and ∆(P2,A,M), both contain a

prefix of the form νk′1 · . . . · νk′v · (yb1 := z1) · . . . · (ybv := zv). Furthermore, each prefix

has the same length. Let B′0 = [>] · . . . · [>] · B0 such that |B′0| = 2v. We will assume

that the actions of B′0 are labeled sequentially by `1, . . . , `2v ∈ Lb. Using the adversary A′

and the trace o0, we construct an adversary A′′ for C[out(](x1)), . . . , out(](xn))] | B′ and

C ′[out(](x1)), . . . , out(](xn))] | B′ where B′ = B′0 · (B1 | . . . | Bn) as follows. If o′0 is a prefix

of o0 then A′′(o′0) = A′(o′0). Otherwise, A′′ is undefined. By our construction, we have

prob(C[out(](x1)),...,out(](xn))]|B′)(o0,A′′) 6= prob(C′[out(](x1)),...,out(](xn))]|B′)(o0,A′′)

which means

C[out(](x1)), . . . , out(](xn))] | B′ 6≈ C ′[out(](x1)), . . . , out(](xn))] | B′.

Applying Lemma 5.12, we get

C[out(](x1)), . . . , out(](xn))] 6≈ C ′[out(](x1)), . . . , out(](xn))]

which contradicts condition 5 of Theorem 5.1.

Lemma 5.18 Assuming †, we have C ′[B1, . . . , Bn] ≈ C ′[B′1, . . . , B
′
n].

Proof. By a similar arguement as the one used in Lemma 5.17, there exists a process B0 :=

νk0 · . . . · νkn · (x1 := z1) · . . . · (x1 := zn) where zi ∈ {k0, . . . , kn} for all i ∈ {1, . . . , n} such

that

B0 · (B1 | . . . | Bn) 6≈ B0 · (B′1 | . . . | B′n).

By Lemma 5.16, we can conclude that

νk · (x1 := k) · . . . · (xn := k) · (B1 | . . . | Bn)

6≈
νk · (x′1 := k) · . . . · (x′n := k) · (B′1 | . . . | B′n)
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which contradictions condition 6 of Theorem 5.1.

Theorem 5.1 is a consequence of Lemma 5.17 and Lemma 5.18.

5.6 SHARED PRIMITIVES THROUGH TAGGING

Theorem 5.1 requires that the context and basic processes don’t share cryptographic pri-

mitives. To extend the result to processes that allow components of the composition to share

primitives, such as functions for encryption, decryption and hashing, we utilize a syntactic

transformation of a protocol and its signature called tagging. When a protocol is tagged, a

special identifier is appended to each of the messages that it outputs. On input, the pro-

tocol recursively tests all subterms of the input message to verify their tags are consistent

with the protocol’s tag. If this requirement is not met, the protocol deadlocks. In Theo-

rem 5.2, we show that an attack on a composition of two tagged protocols originating from

the same signature can be mapped to an attack on the composition of the protocols when

the signatures are explicitly made disjoint. In this result, we consider the fixed equatio-

nal theory (Fsenc, Esenc) from Example 2.1. For this theory, we define a signature renaming

function d which transforms a context C over the signature (Fsenc, Esenc) to a context Cd

by replacing every occurrence of the function symbols senc, sdec and h in C by sencd, sdecd

and hd, respectively. Given a context C[�1, . . . ,�n] and basic processes B1, . . . , Bn we write

dC[B1, . . . , Bn]e to denote the tagged version of C[B1, . . . , Bn] (see Definition 5.7). We now

give our composition result for protocols over a common equational theory.

Theorem 5.2 Let C[�1, . . . ,�n] = νk1·. . .·νkm·(D1[�1] | . . . | Dn[�n]) (resp. C ′[�1, . . . ,�n] =

νk′1 · . . . · νk′m · (D′1[�1] | . . . | D′n[�n])) be a context over Fsenc with labels from Lc. Further

let B1, . . . , Bn (resp. B′1, . . . , B
′
n) be roles over Fsenc with labels from Lb. For `1, . . . , `n ∈ Lb

and ] 6∈ Fb ∪ Fc, assume that the following hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′i) = {x′i}

2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′i) = {x′i}

3. C[B1, . . . , Bn] and C ′[B′1, . . . , B
′
n] are ground

4. C[B1, . . . , Bn] |=Esenc,1 secret(x1, . . . , xn) and C ′[B′1, . . . , B
′
n] |=Esenc,1 secret(x

′
1, . . . , x

′
n)

5. C[out(](x1))`1 , . . . , out(](xn))`n ] ≈ C ′[out(](x1))`1 , . . . , out(](xn))`n ]

6. νk ·(x1 := k)·. . .·(xn := k)·(B1 | . . . | Bn) ≈ νk ·(x′1 := k)·. . .·(x′n := k)·(B′1 | . . . | B′n)
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Then dCc[Bb
1, . . . , B

b
n]e ≈ d(C ′)c[(B′1)b, . . . , (B′n)b]e.

The remainder of this section is dedicated to the proof of Theorem 5.2. Let C be a

context and B be a basic process, both over the equational theory (Fsenc, Esenc). To securely

compose C and B, the terms occurring in each protocol must be tagged by function symbols

from disjoint equational theories. The tagging of two protocols will be done in two steps.

To begin, the signature renaming function d will be applied to each of C and B with

distinct values of d ∈ {b, c}. The resulting context Cd is over the signature (Fdsenc, E
d
senc), for

Fdsenc = {sencd, sdecd, hd} and Ed
senc = {sdecd(sencd(m, k), k) = m}. Given Cc and Bb over

the disjoint signatures F csenc and F bsenc, the tagging function d e is then applied to Cc and

Bb, generating the the tagged versions of C and B. We now give the formal definition of the

tagging function d e. Let Fdtag = {tagd, untagd} and Ed
tag = {untagd(tagd(x)) = x}. Further,

Ftag = F btag∪F ctag and Etag = Eb
tag∪Ec

tag. The function H : T (Fdsenc,X )→ T (Fsenc ∪ Fdtag,X )

is defined below.

H(sencd(u1, u2)) = senc(tagd(H(u1)),H(u2))

H(sdecd(u1, u2)) = untagd(sdec(H(u1),H(u2)))

H(hd(u)) = h(tagd(H(u)))

H(u) = u, if u is a name or variable

The function testsd below maps terms from T (Fsenc ∪ Fdtag,X ) to a conjunction of equali-

ties, as defined below.

testsd(senc(u1, u2)) = testsd(u1) ∧ testsd(u2)

testsd(sdec(u1, u2)) = testsd(u1) ∧ testsd(u2)

testsd(h(u)) = testsd(u)

testsd(tagd(u)) = testsd(u)

testsd(untagd(u)) = tagd(untagd(u)) = tagd(u) ∧
testsd(u)

testsd(u) = >, if u is a name or variable

For a term u, observe that testsd(u) = c1 ∧ . . . ∧ cn where ci is > or v1 = v2 for ground

terms v1, v2 ∈ Fsenc ∪ Ftag. We say that testsd(u) passes if ci is > or v1 =Esenc∪Etag v2 for all

i ∈ {1, . . . , n}. Using the preceding notions, we define d e as follows.

Definition 5.7 Let Bd be basic process over Fdsenc for d ∈ {b, c}. The basic process dBde is

defined as follows.
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d�e = �

dνxe = [>] · νx
din(x)e = [>] · in(x)

dout(u)e = [testsd(H(u))] · out(H(u))

d(x := u)e = [testsd(H(u))] · (x := H(u))

d[u = v]e = [testsd(H(u)) ∧ testsd(H(v))]·
[H(u) = H(v)]

dB1 ·B2e = dB1e · dB2e
dB1 +p B2e = [>] · dB1e+p [>] · dB2e

Definition 5.7 can be lifted naturally to basic contexts by requiring d�e = � for any

process variable �.

Definition 5.8 Let Cd = a1 · . . . · an · (D1[�1] | . . . | Dn(�n)) be a context over Fdsenc for

d ∈ {b, c}. The context dCde is da1 · . . . · ane · (dD1[�1]e | . . . | dDn(�n)e).

The following example demonstrates the behavior of processes that are tagged using our

scheme. Whenever a protocol manipulates a term, that term should be tagged with the

identifier of the protocol. To enforce this, every observable action in a tagged protocol is

prefixed with a conjunction of tests. If the terms manipulated by the atomic action meet the

aforementioned requirement, the tests will pass. Otherwise, the tests will fail, and further

protocol actions will be blocked. In this way, messages from one protocol cannot be confused

with messages from another protocol.

Example 5.9 Let P = νn · νm · out(senc(m,n, k)) and Q = in(x) · out(sdec(x, k)) where

the processes P and Q share a key k. We have

dP be = [>] · νn · [>] · νm · [>] · out(senc(tagb(m), n, k))

and

dQce = [>] · in(x) · [tagc(untagc(sdec(x, k))) = sdec(x, k)] · out(untagc(sdec(x, k))).

If the output of dP be is forwarded to dQce then the test

tagc(untagc(sdec(senc(tagb(m), n, k), k))

=

sdec(senc(tagb(m), n, k), k)

reduces to tagc(untagc(tagb(m)) = tagb(m) but ultimately blocks because c 6= b.
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For ease of notation, let E = Esenc ∪ Etag. Let d ∈ {b, c} be a symbolic identifier used for

tagging processes. We will write d′ to denote the new identifier c′ if d = c and b′ if d = b.

Using these identifiers, we define new equational theories for tagged processes as follows. Let

Fd′tag = {tagd′ , untagd′}

and

Ed′

tag = {untagd′(tagd′(x)) = x}.

To achieve Theorem 5.2, we will map an attack on a tagged process over the equational theory

E to an attack on a process over disjoint signatures in the extended equational theory E0

defined below. Let

F0 = F bsenc ∪ F csenc ∪ Fasenc ∪ F b
′

tag ∪ F c
′

tag

and

E0 = Eb
senc ∪ Ec

senc ∪ Ea
senc ∪ Eb′

tag ∪ Ec′

tag.

We now define a function b c : T (Fsenc ∪ Ftag,X ) → T (F0,X ). This function is an

adaptation of the one from [54].

btagd(u)c = tagd′(buc)
buntagd(u)c = untagd′(buc)
bsenc(u1, u2)c = sencd(untagd′(bu1c), bu2c) if

bu1c =E0 tagd′(untagd′(bu1c))
= senca(bu1c, bu2c) otherwise

bsdec(u1, u2)c = tagd′(sdecd(bu1c, bu2c)) if

bu1c =E0 sencd(sdecd(bu1c, bu2c), bu2c)
= sdeca(bu1c, bu2c) otherwise

bh(u)c = hd(untagd′(buc)) if

buc =E0 tagd′(untagd′(buc))
= ha(buc) otherwise

buc = u for a name or a variable

Let u be a term and
−→
E be an orientation of the equations of E from left to right. We

will write u→E v to denote that u rewrites to v and u→∗E v if u rewrites to v in 0 or more

steps. The normal form of u will be denoted u ↓. A term u is in head normal form if any

sequence of rewrites on u cannot happen at the root.
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Lemma 5.19 Let u, v ∈ T (Fsenc ∪ Ftag,X ). If u→E v then buc =E0 bvc.

Proof. The proof is by induction on the structure of u. For the base case, let u be a name

or variable. If u →E v then u = v and the goal is immediate. For the induction step, we

proceed by cases.

case 1 : u = tagd(u1). By the definition of E, u does not rewrite in the root symbol.

That is, if u→E v then v = tagd(v1) where u1 →E v1. By definition, buc = tagd′(bu1c) and

bvc = tagd′(bv1c). By the I.H. we have bu1c =E0 bv1c and the case follows.

case 2 : u = untagd(u1). We consider two cases. First assume that u1 = tagd(u2) and

u→E u2. We have the following.

buc = untagd′(bu1c)
= untagd′(tagd′(bu2c))
=E0 bu2c

Otherwise u→E v where v = untagd(u
′
1). By the I.H. bu1c =E0 bu′1c and the result follows.

case 3 : u = senc(u1, u2). By the definition of E, u does not rewrite in the root symbol.

That is, v = senc(v1, v2) where u1 →E v1 and u2 = v2 (or u1 = v2 and u2 →E v2, which

follows by a similar argument). By the I.H. bu1c =E0 bv1c. We consider two subcases.

In the first, bu1c =E0 tagd′(untagd′(bu1c)). Because bu1c =E0 bv1c, we have bv1c =E0

tagd′(untagd′(bv1c)). By definition, we know buc = sencd(untagd′(bu1c), bu2c) and bvc =

sencd(untagd′(bv1c), bu2c) and thus buc =E0 bvc.
In the second case, bu1c 6=E0 tagd′(untagd′(bu1c)). Because bu1c =E0 bv1c, we have

bv1c 6=E0 tagd′(untagd′(bv1c)). That is, buc = senca(bu1c, bu2c) and bvc = senca(bv1c, bu2c)
and thus buc =E0 bvc.

case 4 : u = sdec(u1, u2). We consider two subcases.

subcase 4.1 : u1 = senc(u3, u2) and u →E u3. First assume that the following equation

holds.

bu3c =E0 tagd′(untagd′(bu3c)) (5.2)

Because u1 = senc(u3, u2), by the I.H. we have

bu1c =E0 bsenc(u3, u2)c = sencd(untagd′(bu3c), bu2c)

where the latter equality follows by equation 5.2. From the proceeding facts, we have

sencd(sdecd(bu1c, bu2c), bu2c)

=E0 sencd(sdecd(sencd(untagd′(bu3c), bu2c), bu2c), bu2c)
=E0 sencd(untagd′(bu3c), bu2c)
=E0 bu1c
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The result is a consequence of the following derivation.

buc = tagd′(sdecd(bu1c, bu2c))
=E0 tagd′(sdecd(sencd(untagd′(bu3c), bu2c), bu2c))
=E0 tagd′(untagd′(bu3c))
=E0 bu3c

Now assume that equation 5.2 does not hold. Because u1 →E senc(u3, u2), by the I.H.

we have bu1c =E0 bsenc(u3, u2)c = senca(bu3c, bu2c), where the latter equality follows from

the fact that equation 5.2 does not hold. By the definition of E0, senca(bu3c, bu2c) does not

rewrite in the root symbol and bu1c ↓ = senca(u
′
3, u
′
2). We also have

sencd(sdecd(bu1c, bu2c), bu2c)) ↓= sencd(sdecd(senca(u
′
3, u
′
4), u′2).

Notice that bu1c ↓ and sencd(sdecd(bu1c, bu2c), bu2c) have normal forms of different size.

Because E0 is a convergent rewrite system, this means that

bu1c 6=E0 sencd(sdecd(bu1c, bu2c), bu2c)

and thus buc = sdeca(bu1c, bu2c). The case follows by the derivation below.

buc = sdeca(bu1c, bu2c))
=E0 sdeca(senca(bu3c, bu2c), bu2c))
=E0 bu3c

case 4.2 : u →E v where v = sdec(u′1, u2) and u1 →E u
′
1. The case when v = sdec(u1, u

′
2)

and u2 →E u′2 follows by a similar argument. By the I.H. bu1c = bu′1c and the case is

straightforward.

case 5 : u = h(u1). Follows by a similar argument as case 2.

Lemma 5.20 Let u, v ∈ T (Fsenc ∪ Ftag,X ) be terms in normal form. Then u 6= v implies

buc 6=E0 bvc.

Proof. Define a function b c1 : T (Fsenc ∪ Ftag,X ) → T (F0,X ) which is identical to b c on

all cases with the exception that bsdec(u1, u2)c1 = sdeca(bu1c1, bu2c1). Formally,
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btagd(u)c1 = tagd′(buc1)

buntagd(u)c1 = untagd′(buc1)

bsenc(u1, u2)c1 = sencd(untagd′(bu1c1), bu2c1) if

bu1c1 =E0 tagd′(untagd′(bu1c1))

= senca(bu1c1, bu2c1) otherwise

bsdec(u1, u2)c1 = sdeca(bu1c1, bu2c1)

bh(u)c1 = hd(untagd′(buc1)) if

buc1 =E0 tagd′(untagd′(buc1))

= ha(buc1) otherwise

buc1 = u for a name or a variable.

We show the following.

(i) buc = buc1 and bvc = bvc1

(ii) buc, bvc are in head normal form

(iii) u 6= v implies buc 6=E0 bvc

by induction on max(|u|, |v|). We can assume without loss of generality that |v| ≤ |u| and

hence need only show items (i) and (ii) hold for the term u. For the base case, when u is a

name or a variable, we have u = buc = buc1 from which items (i) and (ii) are obvious. We

also have v = bvc and clearly buc = u 6=E0 v = bvc. For the induction step, we proceed by

a case analysis on u.

case 1 : u = tagd(u1).

(i) We have buc = tagd′(bu1c) and buc1 = tagd′(bu1c1). By the I.H. bu1c =E0 bu1c1 and

thus buc =E0 buc1.

(ii) By definition buc = tagd′(bu1c) and clearly buc is in head normal form.

(iii) We again do a case analysis on v. Assume buc =E buc. By items (i) and (ii), the only

interesting cases are when v = tagd(v1) or v = sdec(v1, v2). When v = tagd(v1), it must be

the case that u1 6= v1 because u 6= v. We have buc = tagd′(bu1c) and bvc = tagd′(bv1c). By

the I.H. bu1c 6=E0 bv1c and it follows that buc 6=E0 bvc.
When v = sdec(v1, v2), by item (i) we have bvc = bvc1 and thus bvc = sdeca(bv1c, bv2c).

That is, buc ↓= tagd′(u
′
1) and bvc ↓= sdeca(v

′
1, v
′
2) and clearly buc 6=E0 bvc.

case 2 : u = untagd(u1).

(i) We have buc = untagd′(bu1c) and buc1 = untagd′(bu1c1). By the I.H. bu1c =E0 bu1c1
and thus buc =E0 buc1.
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(ii) We again do a case analysis of u1. First note that u1 6= tagd(u2) for any u2. Otherwise

we would have u = untagd(tagd(u2))→E u2, contradicting the fact that u is in normal form.

Now consider the case when u1 = sdec(u2, u3). By the I.H. bu1c = bu1c1 = sdeca(bu2c, bu3c).
Then we have buc = untagd′(sdeca(bu2c, bu3c)) which clearly does not rewrite in the root

symbol. The remaining cases are straightforward.

(iii) By item (ii), buc = untagd′(bu1c) is in head normal form. We do a case analysis of

v, with the only interesting case being when v = untagd(v1). Again by item (ii), we have

bvc = untagd′(bv1c) is in head normal form. It then suffices to show bu1c 6=E0 bv1c. Because

u 6= v, u1 6= v1 and the I.H. yields bu1c 6=E0 bv1c.
case 3 : u = senc(u1, u2).

(i) By the I.H. bu1c = bu1c1 and bu2c = bu2c1. From this we have

bu1c =E0 tagd′(untagd′(bu1c)) iff bu1c1 =E0 tagd′(untagd′(bu1c1))

and it follows that buc = buc1.

(ii) By definition, buc = sence(u
′
3, u
′
4) for some terms u′3, u

′
4 and e ∈ {a, b, c}. Clearly,

sence(u
′
3, u
′
4) is in head normal form.

(iii) We do a case analysis on v. By item (ii), the only interesting case is when v =

senc(v1, v2). In this case u1 6= v1 or u2 6= v2. By the I.H. bu1c 6=E0 bv1c or bu2c 6=E0 bv2c.
Clearly if buc = sencd(untagd′(bu1), bu2c) and bvc = senca(bv1c, bv2c) (or vice-versa) then

buc 6=E0 bvc. If buc = senca(bu1c, bu2c) and bvc = senca(bv1c, bv2c) then the result follows

from the fact that buc, bvc are in head normal form and bu1c 6=E0 bv1c or bu2c 6=E0 bv2c.
When buc = sencd(untagd′(bu1c), bu2c) and bvc = sencd(untagd′(bv1c), bv2c) the result follows

by a similar argument.

case 4 : u = sdec(u1, u2).

(i) We do a case analysis on u1. By the I.H. bu1c is in head normal form and thus the

only interesting case is when u1 = senc(u3, u4). Assume for a contradiction that bu1c =E0

sencd(sdecd(bu1c, bu2c), bu2c). By definition, bu1c = sencd(u
′
3, bu4c) for some term u′3. In

particular, this means that bu4c =E0 bu2c. By the I.H. (contrapositive of item (iii)) u2 = u4.

Then we have u = sdec(senc(u3, u2), u2)→ u3, which contradicts the fact that u is in normal

form. That is, bu1c 6=E0 sencd(sdecd(bu1c, bu2c), bu2c) and buc = sdeca(bu1c, bu2c). By the

I.H. bu1c = bu1c1 and bu2c = bu2c1 from which it follows that buc = buc1.

(ii) By item (i), buc = buc1 and we have buc = sdeca(bu1c, bu2c). Notice that if buc is

not in head normal form then bu1c =E0 senca(bu3c, bu2c) for some u3. By the definition of

b c and the fact that bu1c is in head normal form (by the I.H.), it must be the case that

u1 = senc(u3, u4). Because u is in normal form, u1 6= senc(u3, u2) for any u3. Otherwise we
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would have u = sdec(senc(u3, u2), u2)→E u3. That is, bu1c 6=E0 senca(bu3c, bu2c) for any u3

and the result follows.

(iii) By items (i) and (ii), buc = buc1 = sdeca(bu1c, bu2c) is in head normal form. We do a

case analysis on v, with the only interesting case being when v = sdec(v1, v2). Then again by

items (i) and (ii), we have bvc = bvc1 = sdeca(bv1c, bv2c) is in head normal form. Because

u 6= v and either u1 6= v1 or u2 6= v2. By the I.H. either bu1c 6=E0 bv1c or bu2c 6=E0 bv2c from

which the result follows.

case 5 : u = h(u1).

(i) By the I.H. bu1c = bu1c1. From this we have bu1c =E0 tagd′(untagd′(bu1c)) iff bu1c1 =E0

tagd′(untagd′(bu1c1)) and it follows that buc = buc1.

(ii) By definition, buc = hd(untagd′(bu1c)) or buc = hd(bu1c). Clearly, both

hd(untagd′(bu1c)) and hd(bu1c) are in head normal form.

(iii) We do a case analysis on v. By item (ii), the only interesting case is when v = h(v1).

Because u 6= v, it must be the case that u1 6= v1 and by the I.H. we have bu1c 6=E0 bv1c.
Clearly if buc = hd(untagd′(bu1c)) and bvc = ha(bu1c) (or vice-versa) then buc 6=E0 bvc. If

buc = hd(untagd′(bu1c)) and bvc = hd(untagd′(bv1c)) or buc = ha(bu1c) and bvc = ha(bv1c)
then the result follows from the fact that bu1c 6=E0 bv1c.

Lemma 5.21 Let u, v ∈ T (Fsenc ∪ Ftag,X ). We have u =E v iff buc =E0 bvc.

Proof. The proof follows from Lemma 5.19 and Lemma 5.20.

Let ϕ be a frame and σ be a substitution over T (Fsenc ∪Ftag). Define bϕc = {bwϕc |w ∈
dom(ϕ)} and bσc = {bxσc|x ∈ dom(σ)}. Further define a function ♦ϕ : T (Fsenc∪Ftag,Xw)→
T (F0,Xw) as follows. This function is an adaptation of the one from [54].
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♦ϕ(tagd(r)) = tagd′(♦ϕ(r))

♦ϕ(untagd(r)) = untagd′(♦ϕ(r))

♦ϕ(senc(r1, r2)) = sencd(untagd′(♦ϕ(r1)),♦ϕ(r2)) if

♦ϕ(r1)bϕc =E0

tagd′(untagd′(♦ϕ(r1)))bϕc
= senca(♦ϕ(r1),♦ϕ(r2)) otherwise

♦ϕ(sdec(r1, r2)) = tagd′(sdecd(♦ϕ(r1),♦ϕ(r2))) if

♦ϕ(r1)bϕc =E0

sencd(sdec(♦ϕ(r1),♦ϕ(r2)),♦ϕ(r2))bϕc
= sdeca(♦ϕ(r1),♦ϕ(r2))

♦ϕ(h(r)) = hd(untagd′(♦ϕ(r))) if

♦ϕ(r)bϕc =E0

tagd′(untagd′(♦ϕ(r))bϕc
= ha(♦ϕ(r)) otherwise

♦ϕ(w) = w for w ∈ dom(ϕ)

We can lift ♦ϕ to actions in the following way. If α = (τ, [`]) then ♦ϕ(α) = (τ, [`]). If

α = (r, [`]) then ♦ϕ(α) = (♦ϕ(r), [`]).

Lemma 5.22 Let ϕ be a frame over T (Fsenc ∪ Ftag) and r ∈ T (Fsenc ∪ Ftag,Xw). Then

brϕc =E0 ♦ϕ(r)bϕc.

Proof. The proof is by induction on the structure of r. For the base case, when r is a frame

variable w, we have ♦ϕ(w)bϕc = wbϕc = bwϕc. For the induction step, we proceed by cases.

case 1 : r = tagd(r1). We have btagd(r1)ϕc = tagd′(br1ϕc) and ♦ϕ(tagd(r1))bϕc =

tagd′(♦ϕ(r1)bϕc). By the I.H. br1ϕc =E0 ♦ϕ(r1)bϕc and the case follows.

case 2 : r = h(r1). If ♦ϕ(h(r1)) = hd(untagd′(♦ϕ(r1))) then

♦ϕ(r1)bϕc =E0 tagd′(untagd′(♦ϕ(r1)))bϕc.

By the I.H. ♦ϕ(r1)bϕc =E0 br1ϕc and we have br1ϕc =E0 tagd′(untagd′(br1ϕc)). By defini-

tion, this means that bh(r1)ϕc = hd(untagd′(br1ϕc)) and we have the following.

bh(r1)ϕc = hd(untagd′(br1ϕc))
=E0 hd(untagd′(♦ϕ(r1)bϕc))
= ♦ϕ(h(r1))bϕc
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If ♦ϕ(h(r1)) = ha(♦ϕ(r1)) then we can show by a similar argument that bh(r1)ϕc = ha(br1ϕc)
and the case again follows by the I.H.

The remaining cases are similar.

Lemma 5.23 Let ϕ1, ϕ2 be frames over T (Fsenc ∪ Ftag). If bϕ1c ≡E0 bϕ2c then ϕ1 ≡E ϕ2.

Proof. We show the contrapositive. Assume ϕ1 6≡E ϕ2. By definition, there exist recipes r

and r′ such that rϕ1 6=E r
′ϕ1 and rϕ2 =E r

′ϕ2 (or vice-versa). We show

♦ϕ1(r)bϕ1c 6=E ♦ϕ1(r
′)bϕ1c

and

♦ϕ1(r)bϕ2c =E ♦ϕ1(r
′)bϕ2c.

By Lemma 5.21, if rϕ1 6=E r′ϕ1 then brϕ1c 6=E0cr′ϕ1c. Using Lemma 5.22, we have

♦ϕ(r)bϕ1c 6=E0 ♦ϕ(r′)bϕ1c. By a similar argument, we can derive ♦ϕ1(r)bϕ2c =E ♦ϕ1(r
′)bϕ2c

and hence bϕ1c 6≡E0 bϕ2c.

Lemma 5.24 Let ϕ, ϕ′ be frames over T (Fsenc ∪ Ftag) such that bϕc ≡E0 bϕ′c. Then

♦ϕ(r) = ♦ϕ′(r).

Proof. The proof is by induction on the structure of r. For the base case, when r is an frame

variable w, we have ♦ϕ(w) = ♦ϕ′(w) = w. For the induction step, we proceed by cases.

case 1 : r = tagd(r1). By definition, ♦ϕ(r) = tagd′(♦ϕ(r1)) and ♦ϕ′(r) = tagd′(♦ϕ′(r1)).

From the I.H. ♦ϕ(r1) = ♦ϕ′(r1) and it follows that ♦ϕ(r) = ♦ϕ′(r).

case 2 : r = h(r1). By the I.H. we can define r′1 = ♦ϕ(r1) = ♦ϕ′(r1) and

r′2 = tagd′(untagd′(♦ϕ(r1))) = tagd′(untagd′(♦ϕ′(r1))).

Because bϕc ≡E0 bϕ′c, we have r′1bϕc =E0 r′2bϕc iff r′1bϕ′c =E0 r′2bϕ′c. This means that if

♦ϕ(h(r1)) = hd(untagd′(♦ϕ(r1))) then ♦ϕ′(h(r1)) = hd(untagd′(♦ϕ′(r1))) and if ♦ϕ(h(r1)) =

ha(♦ϕ(r1)) then ♦ϕ′(h(r1)) = ha(♦ϕ′(r1)). In either case, the result follows by the I.H.

The remaining cases are similar.

Proposition 5.3 Let u ∈ T (Fdsenc,X ) and u1 ∈ st(u). If testsd(H(u)σ) passes then

testsd(H(u1)σ) passes.

Lemma 5.25 Let u ∈ T (Fdsenc,X ) and σ be a substitution over Fdsenc. If testsd(H(u)σ) passes

then bH(u)σc =E0 ubσc.
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Proof. The proof is by induction on the structure of u. For the base case, when u is a name

or variable we have bH(u)σc = buσc = ubσc. For the induction step, we do a case analysis.

By Proposition 5.3, we can apply the I.H. on any subterm of u.

case 1 : u = hd(u1). By definition, H(u) = h(tagd(H(u1))) and

bH(u)σc = bh(tagd(H(u1)σ))c.

Let v = tagd(H(u1)σ). We have

tagd′(untagd′(bvc)) = tagd′(untagd′(btagd(H(u1)σ)c))
= tagd′(untagd′(tagd′(bH(u1)σc)))
=E0 tagd′(bH(u1)σc)
= bvc.

The result is a consequence of the following derivation.

bH(u)σc = bh(tagd(H(u1)σ))c
= hd(untagd′(tagd′(bH(u1)σc)))
=E0 hd(bH(u1)σc)
=E0 hd(u1bσc) (I.H.)

= hd(u1)bσc

case 2 : u = sencd(u1, u2). By definition, H(u) = senc(tagd(H(u1)),H(u2)) and bH(u)σc =

bsenc(tagd(H(u1)σ),H(u2)σ)c. Let v = tagd(H(u1)σ). Identically to case 1, we can show

that tagd′(untagd′(bvc)) = bvc. The result is a consequence of the following derivation.

bH(u)σc = bsenc(tagd(H(u1)σ),H(u2)σ)c
= sencd(untagd′(btagd(H(u1)σ)c), bH(u2)σc)
= sencd(untagd′(tagd′(bH(u1)σc)), bH(u2)σc)
=E0 sencd(bH(u1)σc, bH(u2)σc)
=E0 sencd(u1bσc, u2bσc) (I.H.)

= sencd(u1, u2)bσc

case 3 : u = sdecd(u1, u2). By definition H(u)σ = untagd(sdec(H(u1)σ,H(u2)σ)). Because

testsd(H(u)σ) passes, it must be the case that

tagd(untagd(sdec(H(u1)σ,H(u2)σ))) =E0 sdec(H(u1)σ,H(u2)σ).

The preceding equality only holds when

H(u1)σ =E0 senc(tagd(v),H(u2)σ) (5.3)
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for some term v. Therefore, by the definition of b c, we have

bH(u1)σc =E0 sencd(untagd′(tagd′(v)), bH(u2)σc)
=E0 sencd(bvσc, bH(u2)σc)

from which it follows that sencd(sdecd(bH(u1)σc, bH(u2)σc), bH(u2)σc)

=E0 sencd(sdecd(sencd(v, bH(u2)σc), bH(u2)σc), bH(u2)σc)
=E0 sencd(bvσc, bH(u2)σc)
=E0 bH(u1)σc

The result is consequence of the following.

bH(u)σc = buntagd(sdec(H(u1)σ,H(u2)σ))c
= untagd′(tagd′(sdecd(bH(u1)σc, bH(u2)σc)))
=E0 sdecd(bH(u1)σc, bH(u2)σc)
=E0 sdecd(u1bσc, u2bσc) (I.H.)

= sdecd(u1, u2)bσc

Define a function Θ on traces inductively as follows. If |o| = 0 then Θ(o) = o. Otherwise

if o = o0
(§,[`])−−−→ obs(P, ϕ, σ) define

Θ(o) = Θ(o0)
(τ,[`])−−−→ last(Θ(o0))

♦ϕ(α)−−−→ obs(P ′, ϕ′, σ′).

Let P be a process over F bsenc ∪ F csenc. Define a function ♦P : A → A such that ♦P (A)(o) =

A(Θ(o)) if Θ(o) ∈ Trace([[dP eA]]). For substitutions σ, σ′ and an equational theory E, we

write σ ∼=E σ
′ if dom(σ) = dom(σ′) and xσ =E xσ

′ for all x ∈ dom(σ).

Lemma 5.26 Let P,Q be linear processes over Fsenc and W be an arbitrary interleaving of

P b and Qc. If o =

obs(dW e, ∅, ∅) (τ,[`1])−−−−→ obs(Q1, ϕ1, σ1)
α1−→ . . .

(τ,[`k])−−−−→ obs(Qk, ϕk, σk)
αk−→ obs(dWke, ϕk, σk)

is a trace of [[dW eA]] then

o0 = obs(W, ∅, ∅)
♦ϕ1 (α1)
−−−−→ . . .

♦ϕk (α′k)
−−−−→ obs(W ′

k, ϕ
′
k, σ

′
k)

is a trace of [[W ♦W (A)]] such that ϕ′k ≡E0 bϕkc and σ′k ≡E0 bσkc.
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Proof. The proof is by induction on k. The base case, k = 0, is trivial. For the induction

step, let o0 = o1

α′k−→ obs(W ′, ϕ′k, σ
′
k) where last(o1) = obs(W ′′, ϕ′k−1, σ

′
k−1). By the I.H. o1 is

a trace of [[W ♦W (A)]] such that ϕ′k−1 ≡E0 bϕk−1c and σ′k−1 ≡E0 bσk−1c. We proceed by cases.

case 1 : αk corresponds to an input action of the form in(x). By definition, α′k also

corresponds to an input action of the form in(x) and clearly o0 is a trace of [[W ♦(A)]]. We

have ϕk = ϕk−1 and ϕ′k = ϕ′k−1 and therefore ϕ′k = ϕ′k−1 ≡E0 bϕk−1c = bϕkc. By definition

σk = σk−1 ∪ {x 7→ rϕk−1} and σ′k = σ′k−1 ∪ {x 7→ ♦ϕk−1
(r)ϕ′k−1}. By the I.H. it suffices to

show xσ′k =E0 bxσkc, which is a consequence of the derivation below.

bxσkc =E0 brϕk−1c (Lemma 5.21)

=E0 ♦ϕk−1
(r)bϕk−1c (Lemma 5.22)

=E0 ♦ϕk−1
(r)ϕ′k−1 (I.H.)

= xσ′k

case 2 : αk corresponds to executing an assignment of the form x := H(u) for some

u ∈ T (Fdsenc,X ). By definition α′k is also an assignment of the form x := u and clearly o0 is

a trace of [[W ♦(A)]]. Because o is a trace of [[dW eA]], it must be the case that testsd(H(u))

passes. We also have ϕk = ϕk−1 and ϕ′k = ϕ′k−1 and therefore ϕ′k = ϕ′k−1 ≡E0 bϕk−1c = bϕkc.
By definition σk = σk−1 ∪ {x 7→ H(u)σk−1} and σ′k = σ′k−1 ∪ {x 7→ uσ′k−1}. By the I.H. it

suffices to show xσ′k =E0 bxσkc, which is a consequence of the derivation below.

bxσkc =E0 bH(u)σk−1c (Lemma 5.21)

=E0 ubσk−1c (Lemma 5.25)

=E0 uσ′k−1 (I.H.)

=E0 xσ′k

case 3 : α2 corresponds to executing a test of the form [H(u1) = H(u2)] where u1, u2 ∈
T (Fdsenc,X ). By definition α′k is also a test of the form [u1 = u2]. Because o is a trace of

[[dW eA]], it must be the case that testsd(H(u1)) and testsd(H(u1)) both pass. We also have

ϕk = ϕk−1 and ϕ′k = ϕ′k−1 and therefore ϕ′k = ϕ′k−1 ≡E0 bϕk−1c = bϕkc. We can similarly

conclude that σ′k ≡E0 bσkc. We know that H(u1)σk =E H(u2)σk, from which we have the

following derivation.

bH(u1)σkc =E0 bH(u2)σkc (Lemma 5.21)

u1bσkc =E0 u2bσkc (Lemma 5.25)

u1σ
′
k =E0 u2σ

′
k

That is, o0 is a trace of [[W ♦W (A)]]
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case 4 : αk is an output of the form out(H(u)) where u ∈ T (Fdsenc,X ). By definition α′k is

also an output of the form out(u). Because o is a trace of [[dW eA]], it must be the case that

testsd(H(u)) passes. We also have σk = σk−1 and σ′k = σ′k−1 and therefore σ′k = σ′k−1 ≡E0

bσk−1c = bσkc. By definition ϕk = ϕk−1 ∪ {w 7→ H(u)σk} and ϕ′k = ϕ′k−1 ∪ {w 7→ uσ′k}. By

the I.H. it suffices to show wϕ′k =E0 bwϕkc, which is a consequence of the derivation below.

bwϕkc =E0 bH(u)σkc (Lemma 5.21)

=E0 ubσkc (Lemma 5.25)

=E0 uσ′k
= wϕ′k

case 5 : α2 corresponds to a new name creation of the form νn. This case is straightforward

from the fact that α′k is also a new name creation of the form νn and bnc = n.

Let C[�1, . . . ,�n] = νk1 · . . . · νkm · (D1[�1] | . . . | Dn[�n]) (resp. C ′[�1, . . . ,�n] =

νk′1 · . . . · νk′m · (D′1[�1] | . . . | D′n[�n])) be a context over Fsenc with labels from Lc. Further

let B1, . . . , Bn (resp. B′1, . . . , B
′
n) be basic processes over Fsenc with labels from Lb. We will

write ‡ when the conditions of Theorem 5.2 hold for the preceding processes. The following

is a consequence of Lemmas 5.23, 5.24 and 5.26.

Proposition 5.4 Assuming ‡, then

(dCc[Bb
1, . . . , B

b
n]e, d(C ′)c[(B′1)b, . . . , (B′n)b]e)

is transposable to

(Cc[Bb
1, . . . , B

b
n], (C ′)c[(B′1)b, . . . , (B′n)b]).

5.7 MULTI-SESSION PROTOCOLS

In this section, we extend our composition result to protocols that can run multiple sessi-

ons. Our focus will be on protocols that have a single occurrence of the replication operator

appearing in the context. This restriction simplifies the statement of the results and proofs.

However, it is possible to extend our results to protocols with a more general framework for

replication. Formally, a context with replication is over the following grammar.

C[�1, . . . ,�m] ::= a`11 · . . . · a`nn ·!`(D1[�1] | . . . | Dm[�m])
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where a ∈ {νx, (x := u)}. The semantics of this new replication operator are given in Figure

5.3, where i ∈ N is used to denote the smallest previously unused index. We will write P (i)

to denote that process that results from renaming each occurrence of x ∈ vars(P ) to xi for

i ∈ N. When P (i) is relabeled freshly as in Figure 5.3, the new labels must all belong to the

same equivalence class (that contains only those labels).

Figure 5.3 Replication semantics.

P (i) is relabeled freshly

(!`P, ϕ, σ)
(τ,`)−−→ δ(P (i)|!`P,ϕ,σ)

rep

Our semantics imposes an explicit variable renaming with each application of a replication

rule. The reason for this is best illustrated through an example. Consider the process

!in(x) · P and the execution

(!in(x) · P, ∅, ∅)→∗ (in(x) · P | !in(x) · P, ϕ, {x 7→ u} ∪ σ)

where variable renaming does not occur. This execution corresponds to the attacker repli-

cating !in(x) · P , running one instance of in(x) · P and then replicating !in(x) · P again.

Note that, because x is bound at the end of the above execution, the semantics of the input

action cause the process to deadlock at in(x). In other words, an attacker can only effective

run one copy of !in(x) · P for any process of the form !in(x) · P .

Our composition result must prevent messages from one session of a process from being

confused with messages from another session. We achieve this by introducing an occurrence

of νλ directly following the replication operator. This freshly generated “session tag” will

then be used to augment tags occurring in the composed processes. Recall that for any

POMDPs M1 and M2, if M1 6≈ M2 there exists an adversary A and trace o such that

probM1
(o,A) = probM2

(o,A). This trace o must have finite length and subsequently M1

and M2 can only perform a bounded number of replication actions in o. This means one

can transform A, o,M1,M2 to an adversary A′, trace o0 and POMDPs M′
1 and M′

2 such

that probM′1(o0,A′) = probM′2(o0,A′) where M′
1 and M′

2 do not contain replication. This

is achieved by syntactically unrolling the replication operator |o| times in M1 (resp. M2).

In the resulting process, every unrolling of M1 (resp. M2) generates a new parallel branch

with fresh labels coming from a fresh equivalence class. The result below is a consequence

of the preceding observation and Theorem 5.2. We again require the fixed equational theory

(Fsenc, Esenc).
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Theorem 5.3 Let C[�1, . . . ,�n] = νk1 · . . . · νkm·!νλ · (D1[�1] | . . . | Dn[�n]) (resp.

C ′[�1, . . . ,�n] = νk′1 · . . . · νk′m·!νλ · (D′1[�1] | . . . | D′n[�n])) be a context over Fsenc with

labels from Lc. Further let B1, . . . , Bn (resp. B′1, . . . , B
′
n) be roles over Fsenc with labels from

Lb. For `1, . . . , `n ∈ Lb and ] 6∈ Fb ∪ Fc, assume that the following hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′i) = {x′i}

2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′i) = {x′i}

3. C[B1, . . . , Bn] and C ′[B′1, . . . , B
′
n] are ground

4. λ 6∈ vars(C[B1, . . . , Bn]) ∪ vars(C ′[B′1, . . . , B
′
n])

5. C[B1, . . . , Bn] |=Esenc,1 secret(x1, . . . , xn) and C ′[B′1, . . . , B
′
n] |=Esenc,1 secret(x

′
1, . . . , x

′
n)

6. C[out(](x1))`1 , . . . , out(](xn))`n ] ≈ C ′[out(](x1))`1 , . . . , out(](xn))`n ]

7. νk ·(x1 := k)·. . .·(xn := k)·!(B1 | . . . | Bn) ≈ νk ·(x′1 := k)·. . .·(x′n := k)·!(B′1 | . . . | B′n)

Then dνk1 · . . . · νkm·!νλ · (D
(c,λ)
1 [B

(b,λ)
1 ] | . . . | D(c,λ)

n [B
(b,λ)
n ])e ≈ dνk′1 · . . . · νk′m·!νλ ·

((D′1)(c,λ)[(B′1)(b,λ)] | . . . | (D′n)(c,λ)[(B′n)(b,λ)])e.
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CHAPTER 6: COMPOSITION OF SAFETY PROPERTIES

In this chapter, we extend the composition results from Chapter 5 to state-based safety

properties. Our first composition result is for the composition of one session of protocol P

and one session of protocol Q. We show that if P (in isolation) is secure with probability

at least p (i.e., the shared secrets are not leaked) and Q is secure with probability at least

q, then the composed protocol is secure with probability at least pq, provided the protocols

are over disjoint equational theories (Theorem 6.1 on page 90). Although we exploit some

techniques used in [54] to establish this result, there are important differences. First, the

separation result in [54] does not carry over to the randomized setting. This is because an

attack on the composition of P and Q is no longer a trace, but is instead a tree, as the

protocol itself makes random choices. As a consequence, in different branches representing

different resolutions of the randomized coin tosses, it is possible that the attacker may choose

to send different messages (See example 6.1 on page 92). In such a case, an attack on the

composition of P and Q cannot be separated into an attack on P and an attack on Q.

Instead, we show that if there is an attack on the composition of P and Q then either we

can extract an attack on P which succeeds with probability > p or there is an attack on Q

which succeeds with probability > q.

Our second composition result concerns multiple sessions of the composed protocol. Here,

we would show that if n sessions of P are secure with probability at least p and n sessions of

Q are secure with probability at least q then n sessions of the composed protocol are secure

with probability at least pq, provided the protocol messages are tagged with the informa-

tion of which protocol they belong to. Indeed, a similar result is claimed in [54] for the

non-randomized protocols. Unfortunately, this result is not valid even for nonrandomized

protocols and we exhibit a simple example which contradicts this desired result (See Exam-

ple 6.3 on page 97). Essentially, the reason for this failure is that, in the claimed result, the

n sessions of Q are assumed to generate fresh shared secrets in every session; but P may

not be guaranteeing this freshness. Thus, messages of one session can get confused with

messages of other sessions. We establish a weaker composition result in which we assume

that the messages of each session of Q are tagged with a unique session identifier in addition

to the protocol identifier. The use of session identifiers ensures that the messages of one

session cannot be confused with other sessions.

Finally, we also consider the case for protocols containing an unbounded number of ses-

sions. For this case, we observe that a composition result is only possible when P and Q

are secure with probability exactly 1. This is because if m sessions of a protocol leak a
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secret with probability r > 0 then by running mk sessions we can amplify the probability

of leaking the secret. This probability approaches 1 as we increase k. We show that if an

unbounded number of sessions of P are secure with probability 1 and an unbounded number

of sessions of Q are secure with probability 1 then an unbounded number of sessions of the

composed protocol are secure with probability 1, if the protocol messages are tagged with

the information of which protocol they belong to and the messages of each session of Q are

tagged with a unique session identifier.

6.1 COMPOSITION FRAMEWORK

Our composition setup for state-based safety properties will utilize the same machinery

as Chapter 5. In particular, we will focus on the scenario in which a group of protocol

participants, modeled by a context C[�0, . . . ,�n], establishes a set of secrets to be used in a

later phase of the protocol. The later phase will be modeled by a set of roles B1, . . . , Bn. As

before, the context and roles will run over disjoint equational theories (Fc, Ec) and (Fb, Eb),
respectively. Our main composition framework for safety properties follows. We will write

(F , E) for (Fb ∪ Fc, Eb ∪ Ec).

Theorem 6.1 Let C[�1, . . . ,�n] = νk1 · . . . · νkm · (D1[�1] | D2[�2] | . . . | Dn[�n]) be a

context over Fc with labels from Lc and B1, B2, . . . , Bn be roles over Fb with labels from Lb.
Further let q1, q2 ∈ [0, 1], xs ∈

⋃n
i=1 vars(Bi) \ vars(C) and assume that the following hold.

1. fv(C) = ∅ and fv(Bi) ⊆ {xi}

2. vars(C) ∩ vars(Bi) = {xi} for i ∈ {1, . . . , n}

3. C[B1, . . . , Bn] is ground

4. C[out(](x1))`1 , . . . , out(](xn))`n ] |=Ec,q1 secret(x1, . . . , xn) where `1, . . . , `n ∈ Lb

5. νk · (x1 := k) · . . . · (xn := k) · (B1 | . . . | Bn) |=Eb,q2 secret(x1, . . . , xn, xs)

Then C[B1, . . . , Bn] |=E,q1q2 secret(xs).

The proof of Theorem 6.1 will begin by transforming an attack on the composed protocol

C[B1, . . . , Bn] into an attack on on the protocol

C[out(](x1))`1 , . . . , out(](xn))`n ] | νk · (x1 := k) · . . . · (xn := k) · (B1 | . . . | Bn)

90



under a pure adversary (Definition 5.4). The techniques used in these adversary transfor-

mations are identical to the ones presented in Chapter 5. Using the pure adversary for the

above protocol that breaks the security of the protocol with probability > 1− q1q2, we show

that there exits an adversary the breaks the security of C[out(](x1))`1 , . . . , out(](xn))`n ] with

probability > 1 − q1 or an adversary the breaks the security of νk · (x1 := k) · . . . · (xn :=

k) · (B1 | . . . | Bn) with probability > 1 − q2. This result boils down to proving that an

attacker for the asynchronous product of two POMDP’s M1 and M2 can be transformed

into an attacker for either M1 or M2. This is achieved by transforming the attacker A for

M1 ⊗M2 into an attacker A′ with the following two properties:

• A′ executes all of the actions from M1 before executing any actions from M2.

• For any two executions ρ, ρ′ ∈ Exec((M1 ⊗M2)A
′
), if the projection of ρ and ρ′ onto

their components fromMi (for i ∈ {1, 2}) produces two equivalent traces and A′ picks

an action from Mi, then A′(tr(ρ)) = A′(tr(ρ′)).

• A′ derives a set secret values S with probability greater than or equal to A.

The details of this construction are, which complete the proof of Theorem 6.1, are given

in Section 6.2.

As a result of Theorem 6.1, one can reason about protocols composed sequentially by

taking a context with a single basic context where a single hole appears at the end. The

same is true for protocols composed in parallel, as given by Corollary 6.1. In this setting,

one considers a context built over two basic contexts. One basic context contains only a

hole, while the other contains no holes.

Corollary 6.1 Let C be a role over Fc with labels from Lc and B be a role over Fb with

labels from Lb. Let q1, q2 ∈ [0, 1] and assume that the following hold.

1. vars(C) ∩ vars(B) = ∅

2. C |=Ec,q1 secret(xc) for xc ∈ vars(C)

3. B |=Eb,q2 secret(xb) for xb ∈ vars(B)

Then (C | B) |=E,q1q2 secret(xb, xc).
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6.1.1 Difficulties with composition

In Section 5.1.4, we highlighted some of the major challenges in composing protocols

with randomization. Because our composition framework for safety properties is the same

as our composition framework for indistinguishability, many of the challenges from Section

5.1.4 extend naturally to the present setting. In the following examples, we present some

additional difficulties that manifest themselves in the modular analysis of safety properties.

Example 6.1 Consider the equational theories (Fb, Eb) and (Fc, Ec) where Fb = {h/1},
Fc = {c/0} and Eb = Ec = ∅. Let C[�1,�2] = C1 ·�1 | C2 ·�2 be the context where C1 and

C2 are as follows.

C1 = νxk · (out1(xk) + 1
2
out2(c))

C2 = νyk · (out3(yk) + 1
2
out4(c))

Essentially C1 generates xk and with probability 1
2

decides to reveal it. C2 generates yk and

with probability 1
2

decides to reveal it. In both cases, when the fresh values are not revealed,

a constant is output in its place. Consider the roles R1 and R2 defined as follows.

R1 = in5(x) · [x = xk] · νxs · out6(xs)

R2 = in7(y) · [y = h(yk)] · νxs · out8(xs)

Let P = C[B1, B2] be a process and define the following.

C ′1 = out1(xk) + 1
2
out2(c)

C ′2 = out3(yk) + 1
2
out4(c)

σ = {xk 7→ k1, yk 7→ k2}
ϕ0 = {w1 → c}
ϕ1 = {w1 → k1}
ϕ2 = {w1 → c, w2 → k2}
ϕ00 = {w1 → c, w2 → c}
ϕ10 = {w1 → k1, w2 → c}

ϕ12 = {w1 → k1, w2 → k2}
ϕ02 = {w1 → k1, w2 → c}
σf1 = {xk 7→ k1, yk 7→ k2, x 7→ k1, xs 7→ k3}
σf2 = {xk 7→ k1, yk 7→ k2, y 7→ h(k1), xs 7→ k3}
ϕf1 = {w1 → k1, w2 → c, w4 7→ k3}
ϕf2 = {w1 → c, w2 → k2, w6 7→ k3}
ϕf12 = {w1 → k1, w2 → k2, w4 7→ k3}

The execution of P shown in Figure 6.1 reveals xs with probability 3
4
. Observe that

the transitions out of the states labeling (B1 | B2, ϕ1, σ) involve transitions of B1 while the

transitions out of (B1 | B2, ϕ2, σ) involve transitions of B2. If we try to fire the same

transitions out of (B1 | B2, ϕ2, σ) as in (B1 | B2, ϕ1, σ) the process will deadlock because

the attacker cannot deduce xk in ϕ2. From this, it is easy to see that the execution shown

in Figure 6.1 cannot be written as an interleaving of one execution of C1 | C2 and one
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Figure 6.1 Execution of P . The solid edges are transitions of the context C and dotted
edges are transitions of the basic processes B1, B2. For convenience, the edges in the drawn
execution tree may compose of more than 1 action. The recipes used in in3 and in5 are w1

and h(w2) respectively. The transition probabilities also label the edges.

(P, ∅, ∅)

(C′1 ·B1 | C′2 ·B2, ∅, σ)

(B1 | C′2 ·B2, ϕ1, σ) (B1 | C′2 ·B2, ϕ0, σ)

(B1 | B2, ϕ12, σ) (B1 | B2, ϕ10, σ) (B1 | B2, ϕ02, σ) (B1 | B2, ϕ00, σ)

τ∗, 1

out1, 1
2

out2, 1
2

out3, 1
2

out4, 1
2

out3, 1
2

out4, 1
2

( , ϕf12, σ
f
1 )

in5.out6, 1

( , ϕf1 , σ
f
1 )

in5.out6, 1

( , ϕf2 , σ
f
2 )

in7.out8, 1

execution of B1 | B2. As a result, the proof technique of [54] is not immediately applicable.

Nevertheless, we will be able to show that P keeps xs secret with probability at least 1
4
.

Notice that the execution of P shown in Figure 6.1, the attacker performs different actions

depending of the result of coin toss made by C1. When C1 outputs a nonce, B1 is scheduled

before B2. When C1 outputs the constant c, B2 is executed first. Such an attack is valid,

even when considering our restricted class of adversaries. The reason is that the attacker

can infer the result of the coin toss in C1 by observing what is output.

It is important to point out that the security guarantees of the composed process may in

fact be stronger than what we can prove utilizing Theorem 6.1. This is because we always

assume the worst case in that context assigns the same secret values to each basic process.

As a result, our composition result will in some cases lead to only an under-approximation

on the probability that a set of variables is kept secret, as shown by the following example.

Example 6.2 Consider the signatures Fb = {h/1} and Fc = {} with empty equational

theories and the context defined below.

C[�1,�2] = νk1 · νk2 · (([x1 := k1] + 1
2

[x1 := k2]) ·�1 | [x2 := k2] ·�2)

Essentially, the context generates shared secrets x1 and x2 for two sub-protocols �1 and

�2 to be run in parallel. For the sub-protocol �1, it sets the secret x1 to k1 with probability
1
2

and to k2 with probability 1
2
. In the second sub-protocol, the shared secret x2 is set to k2.
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Now consider the sub-protocols B1 and B2 defined as follows.

B1 = out(h(x1)) + 1
2

0

B2 = in(z) · [z = h(x2)] · νxs · out(xs)

B1 outputs h(x1) with probability 1
2

and with probability 1
2

does nothing. B2 checks if the

attacker can construct h(x2) before revealing xs. It is easy to see that C[B1, B2] reveals xs

with probability 1
4
. This is because the attacker can construct h(x2) when x1 and x2 are

equal (which happens with probability 1
2
) and when B1 reveals h(x1) (which also happens

with probability 1
2
). Infact, we can easily show that C[B1, B2] keeps xs secret with probability

exactly 3
4
. However, Theorem 6.1 can only show C[B1, B2] keeps xs secret with probability 1

2
,

since in our composition results, we assume that x1 and x2 get the same secret name.

6.2 SAFETY PROPERTIES IN PRODUCT POMDPS

We first fix some notation that will be used throughout the remainder of this section. Let

Mi = (Zi, z
s
i ,Acti,∆i,≡i) be a POMDP for i ∈ {1, 2}. We will assume that Z1 ∩ Z2 = ∅

and Act1 ∩ Act2 = ∅. We will assume that Exec((M1 ⊗M2)A) is finite and every execution

is of finite length. The projection function πi on states, observation, executions and traces

will be the same as in Section 5.3.

Let S1 ⊆ Z1, S2 ⊆ Z2 and S = S1 ∪ S2. We write probM1⊗M2
(S,A) to denote the

maximal probability p such that (M1 ⊗ M2)A |=p S. Intuitively, S can be thought of

the attack states (states in which the attacker can derive some secret value) in M1 ⊗M2

and probM1⊗M2
(S,A) is the exact probability of reaching an attack state under the attacker

A. An execution ρ ∈ Exec((M1 ⊗ M2)A) is said to be distinguishing if there exist one

step extensions ρ1 and ρ2 of ρ such that last(ρ1) 6≡ last(ρ2). An L ∈ N is said to be a

distinguishing level in (M1⊗M2)A if L = min(|ρ1|, . . . , |ρn|) for all distinguishing executions

ρ1, . . . , ρn ∈ Exec((M1⊗M2)A). When (M1⊗M2)A contains no distinguishing executions,

the distinguishing level is∞. For ease of notation, we will write i to denote the only element

of {1, 2} \ {i}.

Definition 6.1 An attacker A for M1 ⊗M2 is said to be process determined if, for any

ρ, ρ′ ∈ Exec((M1 ⊗M2)A), if tr(πi(ρ)) = tr(πi(ρ
′)) then A(tr(ρ)) = A(tr(ρ′)).

Definition 6.2 An execution ρ ∈ Exec((M1 ⊗M2)A) is said to be (Mi,Mi)-sequential if

there exists a k ∈ N such that

ρ = z0
α1−→ . . .

αk−→ zk
αk+1−−−→ . . .

αk+m−−−→ zk+m
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where α1, . . . , αk ∈ Acti and αk+1, . . . , αk+m ∈ Acti. An attacker A is called (Mi,Mi)-

sequential if any execution in Exec((Mi ⊗Mi)
A) is (Mi,Mi)-sequential.

Lemma 6.1 For any (Mi,Mi)-sequential attacker A ofM1⊗M2, there exists a sequential

and process determined attacker A′ such that prob(M1⊗M2)(S,A) ≤ prob(M1⊗M2)(S,A′).

Proof. Let ρ = z0
α1−→ . . .

αk−→ zk be an execution in Exec((M1⊗M2)A) such that α1, . . . , αk ∈
Act1 and for any one step extension ρ′ = ρ

α−→ z, α ∈ Act2. We know that for any pair of one

step extensions ρ1 and ρ2 of ρ, tr(π2(ρ1)) = tr(π2(ρ2)). That is, we can define an attacker

A′ on M2 with respect to the execution ρ by induction on the number of transitions in

(M1 ⊗M2)A starting from the prefix ρ. For the base case, let z2 ∈ Exec((π2(ρ))A
′
) where

last(ρ) = (z1, z2). For the inductive step, let ρ
α−→ ρ′

α′−→ z be an execution of (M1 ⊗M2)A.

Inductively, we have an execution ρ′′ ∈ Exec((M1 ⊗M2)A
′
) for ρ

α−→ ρ′. Define A′(tr(ρ′′)) =

α′.

Let Θ be the set of all executions in Exec((M1⊗M2)A) having the property of execution ρ.

For each ρj ∈ Θ, let Aj be the scheduler forM2 defined with respect to ρi. Let j ∈ {1, . . . , n}
and m be the index of some execution in Θ such that probM2

(S,Am) ≥ probM2
(S,Aj)

for all j. Define the attacker A′′ for M1 ⊗ M2 that behaves like A until reaching an

execution of Θ and then behaves like Am on the remaining M2 component. Clearly, A′′

is both sequential and process determined. Furthermore, because M2 is executed with

respect to the maximal adversary Am ofM2 for every execution in (M1 ⊗M2)A
′′
, we have

prob(M1⊗M2)(S,A) ≤ prob(M1⊗M2)(S,A′′).

Proposition 6.1 Let L be the distinguishing level of (M1⊗M2)A and k ≤ L. There exists

an attacker A′ for M1 ⊗M2 such that for any ρ ∈ Exec(M1 ⊗M2) where |ρ| = k, ρ is

(Mi,Mi)-sequential and probM1⊗M2
(S,A) = prob(M1⊗M2)(S,A′).

Lemma 6.2 For any attacker A of M1 ⊗ M2, there exists an (M1,M2)-sequential and

processes determined attacker A′ such that prob(M1×M2)(S,A) ≤ prob
(M1×M2)

(S,A′).

Proof. The proof is by induction on the number of distinguishing executions in (M1⊗M2)A.

The base case, when there are no distinguishing executions, follows by Proposition 6.1 and

Lemma 6.1. For the inductive step, let the number of distinguishing executions in (M1 ⊗
M2)A be d + 1 and let the distinguishing level be L. For any ρ1, ρ2 ∈ Exec((M1 ⊗M2)A)

where |ρ1| = |ρ2| = L, A(tr(ρ1)) = A(tr(ρ2)). Fix A(tr(ρ1)) = α. We proceed by cases.

Case 1: α ∈ Act1. By Proposition 6.1, there exists an adversary A′ such that for any

ρ ∈ Exec((M1 ⊗M2)A
′
) where |ρ| = L, ρ is (M1,M2)-sequential and prob(M1×M2)(S,A) =

prob(M1×M2)(S,A′). Let the distinguishing level of this new DTMC (M1 ⊗M2)A
′

be L′
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and let Θ = {ρ | ρ ∈ Exec((M1 ⊗M2)A
′
) and |ρ| = L′}. Assume without loss of generality

that Θ = Θe1 ] Θe1 where Θei = {ρ | ρ ∈ Θ and last(ρ) ∈ ei} for some ei in ≡. Let fi :

{1, . . . , |Θei |} 7→ Θe1 be a bijection. For j ∈ {1, . . . , |Θei |}, let κj be the probability of event

fi(j) in (M1⊗M2)A
′
and let κei be the sum of the probabilities of the events fi(1), . . . , fi(j).

Define the POMDP Mei = (Zi, z
s
i ,Acti ∪ {αnew},∆′i,≡i), where αnew 6∈ Act1 ∪ Act2 and ∆′i

is the same as ∆i with addition of ∆′i(z
s
i , αnew) = µ where µ(last(fi(j))) = κj/κei for all j.

We define an attacker Aei on Mei ⊗M2 from A′ such that

zs
αnew−−−→ zL′

αL′+L−−−→ . . .
αL′+m−−−−→ zL′+m (6.1)

is an execution of (Mei ⊗M2)Aei iff

z0
α1−→ . . .

αL′−−→ zL′
αL′+L−−−→ . . .

αL′+m−−−−→ zL′+m (6.2)

is an execution of (Mi⊗M2)A
′
i . Notice that the number of distinguishing states in (Mei ⊗

M2)Aei is d. By our inductive assumption, there exists a process determined and (M1,M2)-

sequential attacker A′ei for Mei ⊗M2 where prob(Mei⊗M2)(S,Aei) ≤ prob(Mei⊗M2)(S,A′ei).
Using A′e1 and A′e2 , we construct a scheduler Ae for M1 ⊗M2 inductively as follows. For

any ρ ∈ (M1 ⊗M2)Ae such that |ρ| < L′, let Ae(tr(ρ)) = A′(tr(ρ)). For any ρ ∈ (M1 ⊗
M2)Ae such that |ρ| ≥ L′, Ae behaves like A′ei if the initial prefix of ρ is in Θei . Clearly,

prob(M1⊗M2)(S,A′) ≤ prob(M1⊗M2)(S,Ae). Observe that Ae is a sequential adversary for

M1 ⊗M2. Because prob(M1⊗M2)(S,A) = prob(M′1,M2)(S,A′) ≤ prob(M1⊗M2)(S,Ae) we can

apply Lemma 6.1 to conclude that there exits a sequential and process determined adversary

A′e for M1 ⊗M2 such that prob(M1⊗M2)(S,A) ≤ prob(M1⊗M2)(S,A′e).
Case 2: α ∈ Act2). Follows by a similar argument as case 1.

Proposition 6.2 If M1 |=q1 S1 and M2 |=q2 S2 then for any (M1,M2)-sequential and

process determined scheduler A for M1 ⊗M2, (M1 ⊗M2)A |=q1q2 S.

6.3 EXTENSIONS OF THE COMPOSITION FRAMEWORK

In this section, we expand on the composition result from Section 6.1. We begin by showing

that the result continues to hold when the protocols share a common signature containing

primitives of symmetric encryption/decryption and hashing. Our tagging scheme is identical

to the one Chapter 5. The following is a consequence of Theorem 6.1 and Lemmas 5.23, 5.24

and 5.26.
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Theorem 6.2 Let C[�1, . . . ,�n] = νk1 · . . . · νkm · (D1[�1] | D2[�2] | . . . | Dn[�n]) be a

context over Fsenc with labels from Lc and B1, B2, . . . , Bn be roles over Fsenc with labels from

Lb. Further let q1, q2 ∈ [0, 1], xs ∈
⋃n
i=1 vars(Bi) \ vars(C) and assume that the following

hold.

• fv(C) = ∅ and fv(Bi) = {xi}

• vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, . . . , n}

• C[B1, . . . , Bn] is ground

• C[out(](x1))`1 , . . . , out(](xn))`n ] |=Esenc,q1 secret(x1, . . . , xn) where `1, . . . , `n ∈ Lb

• νk · (x1 := k) · . . . · (xn := k) · (B1 | . . . | Bn) |=Esenc,q2 secret(x1, . . . , xn, xs)

Then dCc[Bb
1, . . . , B

b
n]e |=Esenc∪Etag,q1q2 secret(xs).

We can also extend our composition result to protocols that can run multiple sessions.1

We will begin by considering processes that contain only a bounded version of the replication

operator. The bounded replication operator has an explicit bound that limits the number

of times a process can replicate. As in Section 5.7, we will only consider processes that a

single occurrence of the replication operator.

In our first such result, we will show that if the protocols C = νk1 · . . . ·νkm·!n(C[�1] | . . . |
C[�`]) and !n(B1 | . . . | B`) are proven secure with probability at least p and q, respectively,

then the composition νk1 · . . . · νkm·!n(C[B1] | . . . | C[B`]) is secure with probability at least

pq. The result requires that protocol messages are tagged with both a protocol identifier and

a unique session identifier. A similar result (with the absence of the session identifier), has

been claimed in [54] for non-randomized protocols (with p and q both being 1). However,

we discovered a simple counterexample, which works for the case of two sessions. Essentially

the reason for this attack is that protocol messages from one session can be confused with

messages from the other session.

Example 6.3 Consider the equational theories (Fb, Eb) and (Fc, Ec) with signatures Fb =

{h/1, c/0} and Fa = {} and equations Ea ∪ Eb = ∅. We will consider two sessions of the

composed protocol. Let P be the process below.

P = νk1 · νk2·!2(P1 | P2)

P1 = (xk := k1)

P2 = (yk := k2)

1n sessions of P will be denoted by !nP.
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Let Q be the process below.

Q = !2(νk · ((xk := k) ·Q1 | (yk := k) ·Q2))

Q1 = in(y) · ([y = c] · outl(h(xk)) | [y = h(xk)] · νxs · outl
′
(xs))

Q2 = 0

Clearly, P keeps xk and yk secret with probability 1 and Q keeps xk, yk and xs secret with

probability 1. Theorem 3 from [54] would imply that xs is kept secret by W = νk1 ·νk2·!2(P1 ·
Q1 | P2 · Q2) in both sessions of the protocol. However, we can show that this is not the

case. The reason is as follows. In both sessions of the composed protocol, xk gets the same

value. In the first session of the composed protocol, when y is input by Q1, attacker sends the

constant c. Thereafter, the attacker learns h(xk) because Q1 outputs it. In the second session

of the composed protocol, the attacker sends h(xk) to Q1; the check [y = h(xk)] succeeds and

the attacker learns xs in this session.

In process calculus terms, this attack can be realized by the execution:

(W, ∅, ∅)→∗ (W ′, ∅, σ′)→∗ (0, ϕ′′, σ′′)

where
W ′ = (Q1

1 | Q2
1)

σ′ = {k1 7→ n1, k2 7→ n2, x
1
k 7→ n1, y

1
k 7→ n2, x

2
k 7→ n1, y

2
k 7→ n2}

σ′′ = σ′ ∪ {y1 7→ c, y2 7→ h(n1), x2
s 7→ n3}

ϕ′′ = {wl 7→ h(n1), wl′ 7→ n3}

Note above that we have used superscripts on variables xk, yk, y and xs in the substitutions

to indicate their values in different sessions. We have also indexed frame variables by the label

of the corresponding output action they were generated from. Essentially in this execution

in (W ′, ∅, σ′), P is finished in both sessions and assigned xk and yk the same values in both

sessions. The role Q2 is also finished in both sessions. Q1
1 is the first session of Q1 and Q2

1

is the second session of Q1. Now in Q1
1, the attacker inputs c for y resulting in Q1

1 leaking

h(n1). In Q2
1, the attacker can input h(n1) and learn the value of xs generated.

Formally, a context containing bounded replication is defined as

C[�1, . . . ,�m] := a`11 · . . . · a`nn ·!`n(D1[�1] |`n+1 D2[�2] |`n+2 . . . |`n+m−1 Dm[�m])

where a ∈ {νx, (x := u)} and n ≥ 2 is a natural number. The semantics for this bounded

replication operator is given in Figure 6.2, where i, j ∈ N are used to denoted the smallest

previously unused indices. We will use P (i) to denote that process that results from renaming
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each occurrence of x ∈ vars(P ) to xi for i ∈ N. When P (i) or P (j) is relabeled freshly as in

Figure 6.2, the new labels must all belong to the same equivalence class (that contains only

those labels). The notation x∗ denotes the infinite set {x0, x1, x2, . . .}.

Figure 6.2 Bounded replication semantics.

n > 2 `′ is a fresh label P (i) is relabeled freshly

(!`nP, ϕ, σ)
(τ,[`])−−−→ δ(P (i)|`′ !`n−1P,ϕ,σ)

b-rep

`′ is a fresh label P (i), P (j) are relabeled freshly

(!`2P, ϕ, σ)
(τ,[`])−−−→ δ(P (i)|`′P (j),ϕ,σ)

b-repn=2

As demonstrated in Example 6.3, our composition result must prevent messages from

one session of a process with bounded replication from being confused with messages from

another sessions. We achieve this in the following way. Our composed processes will contain

an occurrence of νλ directly following the occurrence of a bounded replication operator. This

freshly generated “session tag” will then be used to augment tags occurring in the composed

processes. We have the following result.

Theorem 6.3 Let C[�1, . . . ,�n] = νk1 · . . . · νkm·!wνλ · (D1[�1] | D2[�2] | . . . | Dn[�n])

for w ∈ N be a context over Fsenc with labels from Lc and B1, B2, . . . , Bn be roles over Fsenc

with labels from Lb Further let q1, q2 ∈ [0, 1], xs ∈
⋃n
i=1 vars(Bi) \ vars(C) and assume the

following hold.

• fv(C) = ∅ and fv(Bi) ⊆ {xi}

• vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, . . . , n}

• λ 6∈ vars(P ) ∪ vars(Q)

• C[B1, . . . , Bn] is ground

• C[out(](x1))`1 , . . . , out(](xn))`n ] |=Esenc,q1 secret(x1, . . . , xn) where `1, . . . , `n ∈ Lb

• νk · (x1 := k) · . . . · (xn := k) · (B1 | . . . | Bn) |=Esenc,q2 secret(x1, . . . , xn, x
∗
s)

Then dνk1 · . . . · νkm·!wνλ · (D(c,λ)
1 [B

(b,λ)
1 ] | D(c,λ)

2 [B
(b,λ)
2 ] | . . . | D(c,λ)

n [B
(b,λ)
n ])e |=Esenc∪Etag,q1q2

secret(x∗s).
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As a final result, we will show how protocols containing unbounded replication can be

composed. We will use an identical syntax and semantics for contexts and processes with

replication as in Section 5.7. Notice that we cannot state a result in the style of Theorem

6.3 with non-trivial probabilities. This is because, in the unbounded setting, a attacker can

always amplify the probability of deriving a secret by running an attack on more sessions

of a protocol. Such a restriction makes our result for unbounded processes almost identical

to that of Theorem 6 from [54]. Our result, however, has two main advantages. It elimiates

the still applicable attack of Example 6.3 while considering a richer class of processes.

Theorem 6.4 Let C[�1, . . . ,�n] = νk1 · . . . · νkm·!νλ · (D1[�1] | D2[�2] | . . . | Dn[�n]) for

w ∈ N be a context over Fsenc with labels from Lc and B1, B2, . . . , Bn be roles over Fsenc

with labels from Lb Further let q1, q2 ∈ [0, 1], xs ∈
⋃n
i=1 vars(Bi) \ vars(C) and assume the

following hold.

• fv(C) = ∅ and fv(Bi) ⊆ {xi}

• vars(C) ∩ vars(Bi) ⊆ {xi} for i ∈ {1, . . . , n}

• λ 6∈ vars(P ) ∪ vars(Q)

• C[B1, . . . , Bn] is ground

• C[out(](x1))`1 , . . . , out(](xn))`n ] |=Esenc,q1 secret(x1, . . . , xn) where `1, . . . , `n ∈ Lb

• νk · (x1 := k) · . . . · (xn := k) · (B1 | . . . | Bn) |=Esenc,q2 secret(x1, . . . , xn, x
∗
s)

Then dνk1 · . . . · νkm·!νλ · (D(c,λ)
1 [B

(b,λ)
1 ] | D(c,λ)

2 [B
(b,λ)
2 ] | . . . | D(c,λ)

n [B
(b,λ)
n ])e |=Esenc∪Etag,q1q2

secret(x∗s).
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CHAPTER 7: EXACT QUANTITATIVE MODEL CHECKING

In Chapter 4, we presented a technique to analyze security protocols by reducing the

problem to an analysis of (belief) MDPs. In this chapter, we study the general problem

of model checking probabilistic models such as DTMCs (Section 2.2) and MDPs (Section

2.3). These models have been effectively used to analyze security protocols for anonymous

communication such as [64]. However, there are many other application areas such as distri-

buted systems [107, 108], hardware communication protocols [109], reliability engineering in

circuits [110, 111, 112, 113], dynamic power management [114, 115], networking [116, 117]

and security [41]. Probabilistic transitions in these models are used to capture random

faults, uncertainty of environment and explicit randomization used in algorithms. Ana-

lyzing properties of these probabilistic models is typically achieved through Probabilistic

Computation Tree Logic (PCTL) model checking [118], wherein, desired properties of the

model are specified as PCTL formulas and their validity is evaluated against the system in

question.

PCTL is a quantitative extension of the temporal logic Computation Tree Logic (CTL)

used to describe how a system evolves over time. For example, a PCTL formula ψ can

be used to specify the property that almost surely no execution of a probabilistic program

leads to a state with a deadlock. Given on∈ {≤, <,≥, >}, the formula Ponp[ψ] expresses the

property that the measure of computation paths satisfying ψ is onp. For a DTMC or MDP

M and a PCTL formula φ, the PCTL model checking procedure recursively computes the

set of states of M that satisfy subformulas of φ. Each recursive step, in turn, reduces to

constrained quantitative reachability, wherein, given a set of good states G and a set of target

states T , the goal is to compute the measure of the paths that reach T while remaining in

G. If the model is decorated with costs or rewards, one may also be interested in computing

the expected cost/reward of reaching T . It is well known that the constrained quantitative

reachability problem for DTMCs and MDPs can be solved in polynomial time by a reduction

to linear programming [119, 118].

Despite its low asymptotic complexity, linear programming, unfortunately, doesn’t scale to

large models and is rarely used to solve the constrained quantitative reachability problem in

practice. Instead, probabilistic model checkers [61, 120, 121, 122, 62, 123], typically compute

approximations to the exact reachability probabilities through an iterative process. The most

prevalent iterative technique is value iteration, where exact reachability probabilities may

only be approached in the limit. To ensure completion in a finite number of steps, it is

common practice for model checking tools to terminate value iteration based on various
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heuristics, for example, when the difference between the computed reachability probabilities

of successive iterations is “small”. This approximation step may lead to unsound results

[124, 125, 126], particularly in systems where high magnitude changes in value iteration are

preceded by periods of stability that cause iteration to terminate prematurely.

Another iterative technique for computing constrained quantitative reachability is interval

iteration [125, 124, 127]. Aimed at addressing the shortcomings of value iteration, interval

iteration utilizes two simultaneous value iteration procedures converging to the exact pro-

bability values from above and below. While this allows one to bound the error present

in the approximation, the exact solution cannot be obtained from such an interval bound.

Further, state-of-the-art model checkers typically implement these iterative procedures using

floating-point numbers and finite- precision arithmetic. As a result, both iterative techniques

are susceptible to overflows in floating-point calculations. The inherent imprecision in the

approximate answers, combined with the errors introduced from finite precision arithmetic

can be further compounded by the presence of nested probability operators in PCTL for-

mulas when the sets of good states G and target states T are not correctly computed in the

recursive step (see Example 7.3 in Section 7.2).

We present a new algorithm and its implementation that sharpens approximate solutions

computed by fast iterative techniques, to obtain the exact constrained reachability probabili-

ties. The starting point of our approach is the observation that when transition probabilities

in the model are rational numbers, the exact solution is also a rational number of polyno-

mially many bits. The second ingredient in our technique is an algorithm due to Kwek and

Mehlhorn [128], which, given a “close enough” approximation to a rational number, finds

the rational number efficiently. The rough outline of our algorithm is as follows. We use an

iterative technique (value iteration or interval iteration) to compute an approximate solution

and then apply the Kwek-Mehlhorn algorithm to find a close candidate rational solution.

Since the approximate solution we start with is of unknown quality, the candidate rational

solution obtained may not be the exact answer. Therefore, we check if the candidate is the

unique solution to the linear program that describes the system. This allows one to confirm

the correctness of the candidate rational solution. If it is not correct, the process is repeated,

starting with an approximate solution of improved precision. Precise details of the algorithm

are given in Section 7.3.

We have implemented this approach as an extension of the PRISM model checker, called

RationalSearch. Our tool computes exact constrained reachability probabilities and ex-

act expected rewards when model checking DTMCs and MDPs against PCTL specifications.

Evaluation of our implementation against a large set of examples from the PRISM bench-

mark suite [129] and case studies [130] shows that our technique can be applied to a wide

102



array of examples. In many cases, our tool is orders of magnitude faster than the exact model

checking engines implemented in state-of-the-art tools like PRISM [61] and STORM [62].

The work closest in spirit to ours is [131], which presents an approach to obtain exact

solutions for reachability properties for MDPs and discounted MDPs. The basic idea there

is to interpret the scheduler obtained for an approximate solution, as a basis for the linear

program corresponding to the verification question. By examining the optimality of the

solution associated with this basis, the exact solution can be obtained by improving the

scheduler using the Simplex algorithm. This is significantly different from our approach. In

particular, for DTMCs (where there is no scheduler), the approach of [131] reduces to solving

a linear program, which is known to be not scalable. Since the implementation from [131] is

not available, we could not experimentally compare with this approach.

Several existing tools [62, 61] implement algorithms for exact quantitative model checking.

Essentially these tools work by creating a model representation using rational numbers and

performing a state elimination computation similar to Gauss elimination. Much of the

infrastructure of this computation can be derived from parametric model checking techni-

ques [132, 120, 133, 134] that analyze systems in which portions of the model are left

unspecified. These computations are intrinsically more complicated than those performed

by approximation engines. Our techniques avoid these expensive computations while still

producing exact solutions for a large class of examples.

7.1 PROBABILISTIC COMPUTATION TREE LOGIC

In Section 2.2, DTMCs were defined as a tuple (Z, zs,∆) where Z is a finite set of states,

∆ : Z → Dist(Z) is the probabilistic transition function and zs is the start state. In this

chapter, we will not assume a start state zs and will additionally enrich DTMCs with a

cost (or reward) structure C : Z × Z 7→ Q≥0 and a labeling function L : Z → 2AP that

maps states to subsets of AP, the set of atomic propositions. We will henceforth consider a

DTMC to be a tuple M = (Z,∆,C, L). We will write Exec∞z (M) to be the executions of

M stating from state z. The measure probM is defined exactly as it is in Section 2.2. Let

z ∈ Z and F ⊆ Z. Define a function costz(F,M) : Exec∞z (M) → Q≥0 such that for any

ρ ∈ Exec∞z (M), costz(F,M)(ρ) =
∑m−1

i=0 C(zi, zi+1) if z0 → · · · → zm is the shortest prefix

of ρ such that zm ∈ F and costz(F,M)(ρ) =∞ if no such prefix exists. Let Ez be the usual

expectation on Execz(M) with respect to the measure probM. Then Ez[costz(F,M)] is the

expected cost of reaching F .

Example 7.1 Consider an embedded control system [135] comprised of an input processor,
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Figure 7.1 Markov chain for a simple embedded control system with two sensors and one
actuator tolerating a single sensor fault.
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a main processor, an output processor and a bus. In each cycle of the system, the input

processor collects data from a set of n sensors S1, S2, . . . , Sn. The main processor polls

the input processor and passes instructions to the output processor controlling a set of m

actuators A1, A2, . . . Am. Communication between processors occurs over the bus. The system

is designed to tolerate failures in a limited number of components. If the input processor

reports that the number of sensor failures exceeds some threshold MAX FAILURES, then

the main processor shuts the system down. Otherwise, it activates the actuators, which

again, are prone to failure. When the probabilities with which each of these components fail

are known, one can model the system’s reliability using a DTMC. Figure 7.1 shows a DTMC

that models a single cycle of such a system with n = 2 sensors and m = 1 actuator. For

simplicity, we assume that each sensor fails with probability Es and each actuator fails with

probability Ea. States of the model are labeled with es1, . . . , e
s
n ∈ {0, 1} and ea1, . . . , e

a
m ∈ {0, 1},

where esi = 1 denotes the failure of sensor Si and eai = 1 denotes the failure of actuator Ai.

In Figure 7.1, we omit labels if they are not relevant in a particular state.

As was done for DTMCs, we will also augment MDPs with a cost (or reward) structure

C : Z × Act× Z → Q≥0 and a labeling function L : Z → 2AP such that an MDP is a tuple

M = (Z,Act,∆,C, L). One can define the expected cost of reaching a target set of states in

a similar fashion to the DTMC case. Interested readers should refer to standard texts such

as [136, 119] for more details. Properties of DTMCs and MDPs can be expressed in the logic

PCTL, which extends the temporal logic CTL with the ability to reason quantitatively.
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Definition 7.1 Let a ∈ AP be an atomic proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1], c ∈ Q≥0

and k ∈ N. The syntax of PCTL is

φ ::= true a ¬φ φ ∧ φ Ponp[ψ] Eonc[φ]

where ψ ::= Xφ | φUφ.

In Definition 7.1, φ is a state formula used to describe properties of states and ψ are path

formulas used to model properties of paths. We now formalize the semantics of PCTL.

Definition 7.2 Let M = (Z,∆,C, L) be a DTMC, φ, φ1, φ2 be state formulas and ψ be a

path formula. The satisfaction relation |= for PCTL state formulae is defined inductively as

z |= true for all z ∈ Z
z |= a ⇔ a ∈ L(z)

z |= ¬φ ⇔ z 6|= φ

z |= φ1 ∧ φ2 ⇔ z |= φ1 and z |= φ2

z |= Ponp[ψ] ⇔ pz(ψ) on p

z |= Eonc[φ] ⇔ ez(φ) on c

where pz(ψ) = prob({ρ ∈ Execz(M) | ρ |= ψ}), ez(φ) = E[costz(Zφ)] with Zφ = {z′ ∈ Z | z′ |=
φ}, and the satisfaction relation for paths and path formulae is defined inductively as

ρ |= Xφ ⇔ ρ(1) |= φ

ρ |= φ1Uφ2 ⇔ ∃i≥0 : (ρ(i) |= φ2 & ∀j < i : ρ(j) |= φ1)

When the underlying model M is an MDP, the semantics of PCTL formulae stay the

same, except for the semantics of Ponp[ψ] and Eonc[φ], which now require a quantification over

all schedulers. Let pAz (ψ) = prob({ρ ∈ Execz(MA) | ρ |= ψ}). One can analogously define

eAz (φ) for a scheduler A.

Definition 7.3 Let M be an MDP, φ be a state formula and ψ be a path formula. The

satisfaction relation |= for PCTL state formulae is defined identically to Definition 7.2, with

the exception of the following cases.

z |= Ponp[ψ] ⇔ ∀A ∈ S, pAz (ψ) on p

z |= Eonc[φ] ⇔ ∀A ∈ S, eAz (φ) on c

For a path formula ψ (resp. state formula φ), we write P=?[ψ] (resp. E=?[φ]) to represent

the solution vector V, given by V(z) = pz(ψ) (resp. ez(φ)) for all z ∈ Z. Strictly speaking,

P=?[·] and E=?[·] are not part of PCTL syntax. However, we henceforth extend the PCTL

syntax to allow P=?[·] and E=?[·] as the outermost operator.
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Example 7.2 Consider the DTMC modeling an embedded control system from Example 7.1.

One can describe many important properties of this model using PCTL.

1. The probability of success:

P=? [ true U “Sucess” ]

2. The probability of reaching states where there are no sensor failures from a given state:

P=? [ true U (es1 + ...+ esn = 0) ]

3. Let G be the set of states where the probability of reaching a state in which sensor S1

fails is on1/2. Let T be the set of states for which the probability of reaching a state

in which actuator A1 fails is 0. The probability of remaining in states from G until

reaching a state from T :

P=? [ Pon 1
2
[true U (es1=1)] U P≤0[true U (ea1=1)] ]

Similar to the model checking algorithm for CTL, the PCTL model checking algorithm

recursively computes the set of states satisfying a state sub-formula (see [136, 119] for the

complete details). We will begin by restricting our attention to DTMCs. Let φ, φ′ be state

formulas. To compute P=?[φ U φ′], one recursively computes the set of states Zφ and Zφ′

satisfying φ and φ′, respectively. These can be used to derive, for every z∈Z, the quantity

pz(φ U φ′) which represents the probability of reaching the set Zφ′ while remaining in the

set Zφ, starting from the state z. The probability pz(φ U φ′) can be computed as the unique

solution to the following linear program.

pz(φ U φ′)=


0 if z ∈ Prob0

1 if z ∈ Prob1∑
z′∈Z

∆(z, z′) · pz′(φ U φ′) otherwise

(7.1)

In the equation above, Prob0 and Prob1 are the set of states that satisfy φ Uφ′ with pro-

bability 0 and 1, respectively. These sets can be determined via a pre-computation step

that analyzes the underlying graph of the DTMC. To compute Ponp[φ U φ′], one computes

P=?[φ U φ′] and does the comparison pz(z U z′) on p for every z ∈ Z. The computations for

¬φ, φ ∧ φ′, E=?[φ] and Ponc[Xφ] are similar.

When the underlying model is an MDP, the computation for Ponp[φ U φ′] reduces to solving
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the following linear optimization problem when on∈ {<,≤}

min
∑
z∈Z

pz(φ U φ′) subject to

pz(φ U φ′) = 0 if z ∈ Prob0

pz(φ U φ′) = 1 if z ∈ Prob1

pz(φ U φ′) ≥
∑
z′∈Z

∆(z, α, z′) · pz′(φ U φ′)

for each α ∈ enabled(z) otherwise

(7.2)

When on∈ {>,≥}, the objective changes to maximization and the direction the last inequa-

lity is reversed.

7.2 APPROXIMATE MODEL CHECKING

As discussed above, solving quantitative properties of DTMCs and MDPs by a reduction

to linear programming does not scale well enough to make it a viable solution technique in

practice. As a result, techniques to approximate solutions using floating point arithmetic

have been widely adopted. In this section, we describe two such techniques, value iteration

and interval iteration and demonstrate how each approach can produce incorrect solutions.

7.2.1 Iterative Techniques

The linear program described in equation (7.1) for DTMCs can equivalently be expressed

in the form of equation (7.3) below, for some appropriate matrix A and vector b.

x̄ = Ax̄+ b (7.3)

This allows for an alternate approach to solving the linear program from equation (7.1)

known as value iteration. In the case of DTMCs, one iteratively computes the solution vector

as the limit of the sequence {x̄i}i≥0 given by x̄i+1 = Ax̄i + b̄ starting with x̄0 where

x̄0(z) =

1 if z ∈ Prob1

0 otherwise .

The linear program from equation (7.2) for MDPs can likewise be expressed in the form of

equation (7.4) below.
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x̄(z) = max{
∑
z′∈Z

∆(z, α, z′) · x̄(z′) |α∈enabled(z)} (7.4)

In this case again, the exact solution can be expressed as the limit of an iterative sequence

{xi}i≥0. In many cases, the sequence does not converge in a finite number of steps, and

therefore model checkers terminate the sequence when successive vectors vk and vk+1 be-

come “close enough”. The choice of stopping criterion is based largely on heuristics. The

PRISM model checker, for example, implements two criteria (i) absolute convergence, and

(ii) relative convergence. Under the absolute criterion, value iteration terminates if the norm

‖vk+1 − vk‖ < ε for some ε > 0. Under the relative criterion, termination occurs when
‖vk+1−vk‖
‖vk‖

< ε. In spite of the fact that iterative techniques only approximate solutions, value

iteration remains the popular choice for widely used tools that analyze PCTL properties

as it vastly outperforms linear programming techniques, despite their theoretically better

asymptotic complexity.

As originally observed in [137], value iteration provides no guarantees about the quality of

the solution, regardless of the stopping criterion used. To help rectify this problem, Haddad

et. al. [125] introduce interval iteration for computing min/max reachability probabilities

in DTMCs and MDPs. In this approach, one simultaneously computes two sequences of

vectors, one converging to the solution from below and one converging to the exact solution

from above. In this setting, the stopping criterion becomes straightforward; terminate when

the distance between the two vectors is within some ε threshold. Assuming the absence of

floating point errors, this effectively gives a small ε-neighborhood that contains the actual

solution. In order to achieve convergence, interval iteration requires a pre-processing step

that transforms the underlying graph of the model. The interval iteration technique was

extended to costs (rewards) in [124].

Both iterative techniques described above can be further enhanced by performing arithme-

tic operations using Multi-terminal binary decision diagrams (MTBDDs) [138, 139]. MTBDDs

generalize BDDs [140] by allowing terminal values to be different from 0 or 1. Similar to

the role of BDDs in symbolic model checking [141], MTBDD based model checkers leverage

the performance benefit due to the succinct representations of the data structures involved.

Let vars = {v1, v2, . . . vk} be a finite and ordered set of boolean variables, and let D be some

domain of values. Given a function f : 2vars → D, an MTBDD that represents f is a full

binary tree of height |vars| with leaf nodes labeled with elements from D and internal nodes

at depth i labeled with variable vi+1. Each path in an MTBDD then represents a specific

valuation of the variables vars and the leaf node represents the value of f for this valuation.

A reduced order MTBDD, similar to a reduced order BDD (ROBDD), merges isomorphic
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subtrees in the MTBDDs. In particular, this means that, a reduced order MTBDD has

exactly one leaf node for every value d in the range of the function f . In what follows, we

will refer reduced order MTBDDs as simply MTBDDs.

7.2.2 Shortcomings of iterative techniques

When computing constrained reachability probabilities using value iteration, both the

absolute and relative convergence criteria can result in solutions that are very far from the

actual answers. In [125], the authors give a DTMC and a PCTL property whose solution is 1
2
,

yet PRISM reports 9.77× 10−4 for the absolute criterion and 0.198 for the relative criterion.

This drastic error is the result of a premature termination of value iteration. Several other

sources of imprecision can also cause state-of-the-art quantitative model checkers to produce

unsound results. For example, consider a PCTL formula of the form P≥p(ψ) and a system

M such that the probability measure of the formula ψ is exactly p. When value iteration,

with floating point numbers, is used to compute this measure, the value p may only be

approached in the limit, and hence the procedure will return some p′ that approximates p

from below. This means that the formula P≥p(ψ) will evaluate to false, where of course the

correct value is true. This phenomenon was first pointed out in [126]. We also demonstrate

a similar phenomenon with the DTMC from Example 7.1. For the sake of illustration, let

Es = 1
2
. Clearly, from the initial state, the probability of reaching a state where sensor

1 fails is exactly 1
2

and hence the formula P< 1
2

[ true U (es1=1) ] evaluates to false for

the initial state. However, PRISM returns true. Errors such as these can be compounded

in PCTL formulas containing nested operators, wherein the recursive step of the model

checking algorithm returns an incorrect set of states. This can lead to substantial logical

errors in model analysis, as we demonstrate with the example below.

Example 7.3 Let us instantiate the DTMC from Example 7.1 with n = 14 sensors, m = 1

actuator, MAX FAILURES=1 and with Es = Ea = 1
2
. Recall the third PCTL property of

the embedded control system given in Example 7.2:

P=? [ Pon 1
2
[true U (es1=1)] U P≤0[true U (ea1=1)] ].

When on is ≤, the PRISM model checker returns “0.7096993582589287” as the probability

for the initial state with both value iteration and interval iteration1. With our tool Ratio-

nalSearch, one can verify that the correct probability is 212895/229376, or

“0.9281485421316964”. Further, when on is <, PRISM again returns the value given above

1Using the Hybrid engine, the absolute convergence criterion and ε = 10−16.

109



for both iterative techniques. This time, the actual solution, as generated by

RationalSearch, is 0. The errors above are the result of the fact that PRISM incorrectly

computes the set of states satisfying Pon 1
2
[true U (es1=1)]. This error in the recursive step re-

sults in an incorrect formulation of the constraints in the outermost constrained reachability

problem.

7.3 EXACT MODEL CHECKING

As demonstrated in the previous section, approximate solution techniques can lead to

unreliable results and the incorrect analysis of systems. To rectify this serious limitation,

tools such as PRISM and STORM have implemented exact model checking engines, which

make heavy use of techniques from parametric model checking [132, 120, 133, 134]. The idea

behind these engines is to interpret the probabilistic model (DTMC or MDP) as a finite

automaton in which transitions probabilities are described by letters of an alphabet. When

one is interested in cost (rewards), states are additionally labeled by a cost structure. Using

techniques derived from state elimination [142], one can then calculate a regular expression

representing the language of this automaton. The core idea of this translation is to eliminate

a state s by increasing the probability of moving from each predecessor s1 of s to each

successor s2 of s by the probability of moving from s1 to s2 when passing through s. In

the case of parametric model checking, various techniques can then be used to translate the

regular expression into a rational function over the parameters of the model. When using

this approach for exact model checking, one can likewise derive a parameter-free function

that describes the property in question.

Although they rectify the problems with approximation techniques, the exact quantitative

model checking engines implemented in tools like PRISM and STORM don’t scale as well as

their iterative counterparts. See Example 7.4 below and Section 7.5 for a complete analysis.

The goal of our technique, to which the remainder of this section is dedicated, is to utilize

the advantages of fast approximate model checking techniques to produce exact solutions.

Example 7.4 Again consider the DTMC modeling an embedded control system with the

parameters given in Example 7.3. To guarantee the correctness of one’s analysis, exact

solution techniques must be employed. Unfortunately, the exact model checking engines of

PRISM and STORM do not scale well enough to analyze this example, which contains about

4.8 million states and about 44 million transitions. Under our test setup (see Section 7.5),

both tools reached a 30 minute timeout when trying to analyze the properties from Example

7.3. On the other hand, RationalSearch found the exact answer to both the formulae in
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under a minute.

7.3.1 The Kwek-Mehlhorn algorithm

Given an ordered set of integers of bounded size, the classical binary search algorithm can

be used to locate the smallest element larger than a given value. Kwek and Mehlhorn [128]

extend this methodology to efficiently locate the rational number with the smallest size in

a given interval. Here we present a novel application of this technique where approximate

answers to quantitative model checking problems can be used to efficiently generate exact

solutions.

Consider an interval I = [α
β
, γ
δ
] with rational end-points. It was established [128] that for

any interval I = [α
β
, γ
δ
], there exists a unique rational amin(I)/bmin(I) such that for all rational

numbers a
b
∈ I, amin(I) ≤ a and bmin(I) ≤ b. Further, this minimal fraction amin(I)/bmin(I)

can be found using Algorithm 7.1 from [128].

Algorithm 7.1 Compute the minimal rational in [α
β
, γ
δ
].

function findFraction(α, β, γ, δ):
if bα

β
c = bγ

δ
c and α

β
6∈ N then

b, a ← findFraction(δ, γ mod δ, β, α mod β)
return bα

β
cb+ a, b

else
return dα

β
e, 1

Let QM = {p/q | p, q ∈ {1, . . . ,M}} ∩ [0, 1]. For µ ∈ N, if a
b
∈ QM is contained in the

interval [ µ
2M2 ,

µ+1
2M2 ] of length 1

2M2 then a
b

is the unique element of QM in [ µ
2M2 ,

µ+1
2M2 ]. It turns

out that a
b

must also be the minimal element of [ µ
2M2 ,

µ+1
2M2 ], meaning it can be found using

Algorithm 7.1 in time O(logM).

7.3.2 Rational search

In this section, we explain our approach for exact quantitative model checking of PCTL

formulas. The key insight we exploit is that iterative techniques for solving constrained

reachability typically converge very fast and produce a precise enough answer. Using this

precise approximation, we can then effectively construct a small interval for which the Kwek-

Mehlhorn algorithm can find the exact solution.

Recall that each iterative technique for approximating a set of equations, like those given

in equations (7.1) and (7.2), yields a different guarantee on the precision of an approximate
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solution. The difference between the approximation generated by interval iteration and the

actual solution is bounded by a given ε value, provided there are no errors generated by

floating-point arithmetic. Value iteration, on the other hand, comes with no guarantees.

When an approximate solution vector contains values of known precision, one can translate

it into an exact solution vector as follows. For each value q in the vector, construct the

interval [q − ε, q + ε] and run Algorithm 7.1 to find the smallest rational in this interval.

Then, check that the generated rational values V? are correct by verifying that they satisfy

equation (7.3) or (7.4), whichever is appropriate. The uniqueness of the solutions to the these

equation systems (which follows from those of (7.1) and (7.2)) ensures that the fixpoint check

is only satisfied by the desired solution vector. If the fixpoint check fails for the candidate

solution vector, one obtains a more precise approximation and re-runs the procedure.

When a solution vector contains values of unknown quality, we can find exact solutions

using a similar technique. Here the idea is to “guess” a sequence intervals, with decreasing

sizes, that may contain the actual value. This process is formalized in Algorithm 7.2, which

takes as input the model M, a maximum precision P and a state-indexed vector V† that

approximates the exact solution vector V.

Algorithm 7.2 Sharpen values of unknown precision.

function sharpen(M, P , V†):

for all p ∈ {1, . . . , P} do
for all z ∈ Z do

α, β, γ, δ ← bounds(p, V†(z))

V?(z) ← bV†(z)c+ findFraction(α, β, γ, δ)

if fixpoint(M, V?) then

return V?

return null

For a given precision p and state z, bounds(p,V†(z)) returns α, β, γ, δ such that α is

the first p decimal digits of the fractional part of V†(z), β = 10p, γ = α + 1 and δ = β.

Observe that α/β is the rational representation of the first p digits of the fractional part of

V†(z). From this approximation, we identify a sharpened solution vector V? using the find-

Fraction procedure from Algorithm 7.1. The procedure fixpoint then tests if V? is the

correct solution by checking if it satisfies (7.3) or (7.4). If the input vector V† is not precise

enough, then shapren returns “null”, indicating that more precision is required to infer an

exact solution. The guarantees of Algorithm 7.2 are formalized as follows. Let Vb satisfying

V(z) − Vb(z) ≤ 10−b for all z ∈ Z be an approximate solution vector of precision b. Then,

Lemma 7.1 establishes that starting from a close enough approximation, Algorithm 7.2 finds
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the actual solution vector.

Lemma 7.1 Let M be an MDP, ψ be a PCTL path formula and V be the solution vector

for P=?[ψ]. Let b, P ∈ N be such that P ≥ b and Vb is an approximate solution vector of

precision b. If V(z) ∈ Qb
√

10b/2c for every z ∈ Z, then sharpen(M, P,Vb) = V.

Proof. Fix a state z and assume V(z) ∈ QM for M=b
√

10b/2c. If P≥b then

sharpen(M, P,Vb) searches for V(z) in I = [α/β, γ/δ] for α, β, γ, δ = bounds(b,Vb(z)).

Now, V(z) ∈ I since Vb(z) satisfies V(z)− Vb(z) ≤ 10−b. Further, |I| = 10−b ≤ 1
2M2 . Due to

Kwek et. al. [128], we have that an interval of size 1
2M2 contains at most 1 element of QM .

Clearly, findFraction(α, β, γ, δ) returns V(z) which is the unique “minimal” element in

I ∩QM .

We now describe a method for optimizing Algorithm 7.2. Let v be a floating-point value

and p be a precision. If the decimal expansion of findFraction(bounds(p, v)) agrees with

v on the first q digits, then

findFraction(bounds(p, v)) = findFraction(bounds(p′, v))

for all p′ ≤ q. The correctness of this observation follows from Lemma 7.2 below.

Lemma 7.2 Let α, β, γ, δ and α′, β′, γ′, δ′ be integers such that the following hold.

1. [α
′

β′
, γ
′

δ′
] ⊆ [α

β
, γ
δ
]

2. findFraction(α, β, γ, δ) ∈ [α
′

β′
, γ
′

δ′
]

Then findFraction(α, β, γ, δ) = findFraction(α′, β′, γ′, δ′).

Using the techniques for sharpening an approximate solution into an exact value from

Algorithm 7.2, we can now derive a procedure for solving constrained reachability (and

hence PCTL) formulas exactly. The procedure is given in Algorithm 7.3 which takes as

arguments an MDP or DTMC M, a constrained reachability formula φ and a precision ε.

The iteration procedure can be either of value iteration or interval iteration. Algorithm 7.3

begins by running the iteration procedure up to a given precision ε. If the procedure is

value iteration, ε is used in the convergence criterion — absolute or relative — described

in Section 7.2. In the case of interval iteration, ε defines the bound on the maximum error

in the approximate solution vector. The approximate solution vector V† generated by the

iteration procedure is then used by the shapren procedure, which attempts to strengthen
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the approximate answer to an exact one. Note the the version of the shapren varies

according to iterative method being utilized. If it succeeds, the whole process terminates.

Otherwise, V† is further refined by re-invoking iteration with an increased ε precision and

the sharpening process is repeated.

Algorithm 7.3 Rational search.
function rationalSearch(M, φ, ε0):

Vinit ← init(M, φ)
ε ← ε0
while true do

V† ← iteration(M, φ, V init, ε)
V? ← sharpen(M, dlog(1

ε )e, V
†)

if V? 6= null then
return V?

Vinit ← V†

ε ← ε/10

When successive approximations in value iteration or interval iteration are computed using

arbitrary precision arithmetic, the correctness guarantees of Algorithm 7.3 can be stated as

follows.

Theorem 7.1 Let M be a MDP, ψ be a constrained reachability formula and V be the so-

lution vector for P=?[ψ] and ε0 ∈ Q>0. Then, RationalSearch(M,Ponp[ψ], ε0) terminates

and returns the exact solution vector V.

Proof. It is easy to see that there is a b > 0 such that, for every state z, V(z) ∈ QN for

N = b
√

10b/2c. Now, since value iteration converges in the limit, we have that the first b

digits of V†(z) match that of V(z) for each state z ∈ Z, eventually. Also, in every iteration

of the loop in Algorithm 7.3, sharpen is invoked with an incremented value of P and

eventually P ≥ b.

While both Lemma 7.1 and Theorem 7.1 are stated for formulae of the kind P=?[ψ], they

can be easily re-factored to reason about formulas of the form E=?[φ].

Example 7.5 Our experiments show that Algorithm 7.3 can make non-trivial improvements

to solution quality. Consider the standard example of tossing N biased coins independently,

where each coin yields heads with probability 1/3 and tails with probability 2/3. Analyzing

the DTMC model to compute the probability of the event that 11 coins land heads, PRISM’s

floating-point model checker returned the decimal “0.000005645029269476758”. Our tool

was able to correctly determine the exact probability to be 1/177,147 by examining with the

first 12 digits of this approximate answer. This is remarkable given that the period of this
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fraction (and hence its most succinct decimal representation) is almost 20,000 digits long.

Moreover, the algorithm is able to simultaneously infer the reachability probabilities for all of

the roughly 200,000 states of the model with a single fixpoint check. This illustrates another

advantage of our technique; the algorithm is agnostic of the number of initial states in the

system. The exact model checking engine of PRISM, on the other hand, currently only

supports systems with a single initial state.

7.4 IMPLEMENTATION

We have implemented Algorithm 7.3 in our tool RationalSearch, which is an extension

of the PRISM model checker (version 4.3.1). RationalSearch is available for download

at [143]. Before describing our integration with PRISM, we briefly describe the relevant por-

tions of its architecture. PRISM is a Java-based tool comprised of four solution engines, three

of which (Mtbdd, Hybrid, Sparse) are based (entirely or partially) on symbolic methods

using compact data structures like MTBDDs. The fourth engine (Explicit) manipulates

sparse matrices, vectors and bit-sets directly.

The Sparse engine is similar to the Explicit engine in that it uses explicit data structures

for storing vectors and matrices. However, it makes use of symbolic data structures during

model construction, allowing it to efficiently remove portions of the state space that are not

reachable. This is achieved through a conjunction of the MTBDD representing the model’s

state space with a BDD representing the characteristic function for the reachable states

of the model. The Mtbdd engine is based entirely on symbolic data structures. During

value iteration, the transition matrix and solution vector are both given as MTBDDs. The

matrix-vector multiplications used to update the solution vector are carried out over these

data structures. As described in [144] one drawback of this approach is that the size of

the solution vector can grow substantially as more computations are performed. To address

this issue, the Hybrid engine combines the advantages present in both the symbolic and

explicit engines. In particular, it stores the solution vector as a fixed size array and the

transition matrix as an MTBDD (which can usually be done succinctly due to symmetry

in the model). Updates to the solution vector are carried out by operations over these

mixed-type data structures.

RationalSearch implements Algorithm 7.3 on top of all four engines. The architecture

of our extension is outlined in Figure 7.2. It intercepts PRISM’s routine for solving con-

strained reachability probabilities and rewards, sharpening the probabilities every time it is

invoked. These engines are built using floating point numbers, which can store at most 16

digits in the fractional part of the decimal expansion of any floating point number. Hence,
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Figure 7.2 RationalSearch architecture. Given a PCTL formula ϕ, PRISM (equipped
with CUDD) approximates the solution using value/interval iteration. The sharpen pro-
cedure uses this approximation V † and employs findFraction, in conjunction with the
rational extension to CUDD (CUDD + GMP), to generate a candidate rational vector. If
this candidate rational vector satisfies an appropriate fixpoint check, it is guaranteed to be
correct. Otherwise, the process is repeated with a better approximation.

PRISM

PCTL Formula
ϕ

Approximation
Engine

CUDD

sharpen

Approximate
solution V †

CUDD
+

GMP Exact
Solution

Found

ε← ε/10

Not
found

Kwek Mehlhorn

Fixpoint

Candidate solution

YES NO

the convergence criteria support a minimum ε of 10−16. Our implementation, thus, bypasses

the ε refinement loop from Algorithm 7.3 and directly invokes the procedure iteration

for the maximum precision supported by doubles. Among the 4 engines, Explicit is the

only one implemented entirely in Java. To support this engine, our tool uses the libraries

JScience [145] and Apfloat [101] to construct the transition matrix using rational entries,

perform matrix-vector multiplications for the fixpoint check in Algorithm 7.3, and implement

the Kwek-Mehlhorn algorithm (Algorithm 7.1).

PRISM implements the remaining three engines using an extension of the CUDD library

[146]. The off-the-shelf version of CUDD only supports floating point numbers at the ter-

minals. RationalSearch enhances CUDD by allowing terminals to hold either floating

points or arbitrary precision rational numbers provided by the GNU MP library [147]. Our

extension allows the data type at a terminal node to be easily interchanged and the full suite

of MTBDD operations can be performed regardless of the data type.

RationalSearch makes use of this extended CUDD functionality in the following man-

ner. When the model is parsed, it constructs two transition matrices, one with doubles at

the terminal nodes and one with rationals. The procedure iteration uses double-precision
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transition matrix to generate a double-precision solution vector. RationalSearch trans-

lates this solution vector into a candidate solution vector stored as a rational MTBDDs

using sharpen. The fixpoint check from sharpen can then be performed by an MTBDD

matrix-vector multiplication between rational MTBDDs.

Algorithm 7.3 has also been integrated into the STORM model checker. Their implemen-

tation2 differs from ours in that it supports running iteration with both floating-point and

arbitrary-precision numbers. It begins by running value iteration using floating-point num-

bers and attempts to infer and exact solution from the approximation. If double-precision

is determined to be insufficient for extracting the precise solution, the approximation engine

is re-invoked using arbitrary-precision numbers. Another major difference in the STORM

implementation is that STROM uses the Sylvan [148] MTBDD library instead of CUDD.

Sylvan provides built-in support for arbitrary precision arithmetic.

7.5 EVALUATION

We evaluated our tool against examples involving quantitative reachability and rewards

from the PRISM benchmark suite and case studies [129, 130] and compared the results with

the exact parametric engines implemented in PRISM and STORM. In particular, we used

version 4.3.1 of PRISM and version 1.0.0 of STORM. Our tests were carried out on an Intel

core i7 dual core processor @2.2GHz with 8Gb RAM running macOS 10.12.4.

Performance overhead. We examined the overhead incurred by RationalSearch’s

extension of PRISM. The results are given in Table 7.1 for the approximation engines Ex-

plicit, MTBDD and Hybrid of PRISM. Due to the similarity between the Explicit and

Sparse engines, we chose to only report metrics for the former. In Table 7.1, all of the tests

were conducted using value iteration as the approximation scheme. The overhead incurred

for interval iteration is similar and thus not reported.

On several examples with large state spaces, the Explicit engine fails with an out-of-

memory exception. This can be attributed to the fact that the implementation stores two

copies of the transition matrix in memory. On all the examples where Explicit fails,

the symbolic engines (MTBDD and Hybrid) find the solution quickly, typically with an

overhead of less than 50%. For the examples on which the Explicit engine did not encounter

an out-of-memory exception, overhead times where much higher. One major reason for this

difference is that the Explicit engine stores the solution vector as an array. Further, in this

2Information about the implementation of Algorithm 7.3 in STORM was obtain through private email
conversations with the developers.
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case, RationalSearch runs the sharpen procedure for each element of this array, thus

resulting into redundant computation when a number appears multiple times. By contrast

the symbolic engines perform symmetry reductions on the data structures and store only

distinct values at the terminal nodes of the solution vector. As a result, sharpen needs

only be run once for each terminal node.

Table 7.1 Evaluation of RationalSearch overhead. Columns 1-5 describe the ben-
chmark examples. Columns 6-10 report the performance and overhead metrics for Rati-
onalSearch’s extension of the various PRISM engines. Running times are reported in
seconds. Overhead percentages were calculated by examining the time the routines added
by RationalSearch contributed to the overall running time. All tests were conduced with
the absolute convergence criterion (ε = 10−16), javamaxmem=4g and cuddmaxmem=4g. TO
represents a timeout (set to 30 minutes), OOM indicates an out of memory exception and
MP indicates that more than double precision is required to produce an exact answer. We
write n/a if information could not be determined due to a timeout or an out of memory
exception.

1 2 3 4 5 6 7 8 9 10 11

Model Explicit MTBDD Hybrid

Name Type Prop Param States Time Overhead Time Overhead Time Overhead

Biased Coins DTMC Reach 15 14348907 OOM n/a .18 62% 2.23 3%

IPv4 DTMC Reach 100000 100003 4.1 254% 1708 1% 1702 1%

Crowds DTMC Reach 15 119800 MP n/a MP n/a MP n/a

Lead. Elec. DTMC Cost 4 12302 1.5 117% 6.3 27% 19.6 7%

ECS DTMC PCTL 14 4815782 OOM n/a .4 70% 11.1 1%

Dice MDP Reach 6 4826809 OOM n/a .57 48% 2.4 6%

Din. Crypt. MDP Reach 9 855095 OOM n/a .381 41% .84 13%

Fair Exch. MDP Reach 400 321600 11.2 480% 2.1 36% 2.07 37%

Firewire MDP Reach 11000 428364 87.7 640% 15.1 7% 16.7 7%

Din. Phil. MDP Cost 3 956 .54 55% 2.86 1% .22 10%

Virus MDP Cost 3 809 .47 70% 2.3 1% .2 19%

Dice Coin MDP PCTL 1 728 .76 260% .168 17% .13 22%

An encouraging observation from our results was that the overhead times did not vary

drastically with the size of the model or the type of property being checked. In particular,

both PCTL properties that we examined required solving three instances of constrained

reachability properties. In spite of this, the overhead induced by RationalSearch on

these examples remained consistent with the other examples.

Comparison with exact engines. We also compared RationalSearch with the exact

engines implemented in PRISM and STORM. The results are reported in Table 7.2. The
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existing exact engines of both PRISM and STORM were invoked with the -exact flag.

In addition, STORM also uses the flag --minmax:method pi. RationalSearch was run

with the underlying Hybrid engine and value iteration with absolute convergence criterion

(with ε = 10−16) as the underlying approximation scheme. We set javamaxmem=4g and

cuddmaxmem=4g wherever applicable.

Table 7.2 Experimental comparison of exact engines. Columns 1-5 describe the benchmark
examples. Columns 6,8,10 report the running times (in seconds) for each of the tools.
Columns 7,9,11 report the portion of the model checking times (Columns 6,8,10) used for
model construction. The configuration options for each of the tools is described in the main
text. TO represents a timeout (set to 30 minutes) and OOM indicates an out of memory
exception. We write n/a if information could not be determined due to a timeout or an out
of memory exception. The PE in Columns 8 and 9 represent a parsing error in STORM.

1 2 3 4 5 6 7 8 9 10 11

Model PRISM Exact STORM Exact RationalSearch

Name Type Prop Param States Time Model Time Model Time Model

Biased Coins DTMC Reach 15 14348907 TO n/a 458 375 2.23 .02

IPv4 DTMC Reach 100000 100003 1141 6 342 .6 1702 1701

Lead. Elec. DTMC Cost 4 12302 70 1.7 1.37 0.2 19.6 1.2

ECS DTMC PCTL 14 4815782 TO 1435 TO 104 11.1 .04

Dice MDP Reach 6 4826809 TO 1016 109 76 2.4 .05

Din. Crypt. MDP Reach 9 855095 TO 39 12 11.5 .84 .06

Fair Exch. MDP Reach 400 321600 TO 2.7 .96 .05 2.07 1

Firewire MDP Reach 11000 428364 244 6.8 27 2.4 16.7 6.6

Din. Phil. MDP Cost 3 956 2.1 .2 .13 .125 .22 .03

Virus MDP Cost 3 809 1.3 .5 PE PE .2 .05

Dice Coin MDP PCTL 1 728 .12 .04 0.15 0.0 .13 .02

RationalSearch drastically outperformed PRISM’s exact engine; in many cases, by

several orders of magnitude. For about half of the examples, PRISM exact reached the 30

minute timeout. In every case, RationalSearch was able to find the exact solution in a

matter of seconds. The comparison with STORM is more competitive. For the majority

of the small and medium size examples (IPv4, Fair Exchange, Firewire, Dinning Philosop-

hers) the running times for both engines was within the same order of magnitude. However,

the performance benefit of RationalSearch became apparent with large models (Biased

Coins, Dice, ECS). RationalSearch achieved a 200x speed-up on the biased coins example

and 45x speed-up on the dice example. For the embedded control system example, Ratio-

nalSearch returned a solution in a matter of seconds while both PRISM and STORM hit

the 30 minute timeout.
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In order to check the scalability of each of the exact engines, we also compared the running

times on specific models (Biased Coins and Dice) where the number of states is governed by

parameters that can be tuned to change the size of the underlying models. The results are

depicted in Figure 7.3, where we use an approximate engine of PRISM as a baseline for our

comparative analysis. Several interesting observations can be made here. As expected, the

approximate engine of PRISM is the fastest. Since, RationalSearch is crucially tied to

the approximate engine(s) in PRISM, it is not surprising again, that (RationalSearch)

scales very well on large models, with comparable performance to the underlying approximate

engine because of the low overhead our technique imposes. While the existing exact model

checking engines in PRISM and STORM do perform well when the models are small, the

performance quickly degrades when the models become reasonably large (the scale is a

logarithmic scale). This clearly demonstrates the power of the insight that the approximate

answers from fast iterative model checking techniques can be utilized to obtain exact rational

solutions with only little overhead.

Figure 7.3 Scaling comparison. Running times for various model checking engines on the
biased coins (left) and dice (right) examples. In both graphs, the values on the x-axis
represent the parameters of the given model and the values on the y-axis represent the
running times (in log10 scale). The configuration options for RationalSearch, PRISM
Exact and STORM exact identical to those in Figure 7.2. PRISM approx was invoked using
the same base options as RationalSearch. No data point is given for PRISM Exact with
parameter 6 on the dice example as a 30 minute timeout was reached.

2 4 6 8 10
10−2

10−1

100

101

102

Biased Coins

2 3 4 5 6

10−1

100

101

102

Dice

RationalSearch PRISM Exact PRISM Approx STORM Exact

120



Comparison of iterative techniques. The final goal of our evaluation was to determine

which approximation technique, amongst value iteration and interval iteration, could be more

effectively integrated with Algorithm 7.3. In particular, we compared the two approaches

for speed and the quality of their approximations. The results are given in Table 7.3. We

integrated RationalSearch with the implementation of interval iteration in PRISM from

prior work [124], available at [149].

To our surprise, we found that the interval iteration implementation from [149] did not

always produce an approximate solution within the specified ε threshold. In particular, for

the dice example under the parameter 6, the approximations for both ε = 10−6 and ε = 10−12

were not within the given threshold. This resulted in RationalSearch not being able infer

an exact solution. Several other examples also suffered from this symptom. Although the

approximate probabilities for the initial states were precise enough, poor approximations for

the other states in the solution vector prevented RationalSearch from finding an exact

solution.

The quality of solution produced by approximation techniques varied according to the ε

threshold and the iterative technique used. Although we have not reported the numbers in

Table 7.3, there are also examples for which the approximations for value (interval) itera-

tion differ across the solution engines (for the same value of ε). In spite of this variation,

RationalSearch is able to infer an exact solution for all of these different approximations.

In terms of speed, we observed only a small variance in the performance of the two

techniques on the benchmarks we used. In most cases value iteration slightly outperformed

interval iteration. The difference is primarily a result of the extra cost incurred by interval

iteration to perform the additional pre-processing steps it requires. This cost outweighs

the savings afforded by the version of shapren used with interval iteration that requires

only a single fixpoint. In addition, our benchmarks did not identify any examples for which

the improved precision of interval iteration allowed RationalSearch to infer an exact

solution where value iteration could not. The preceding observations, in conjunction, lead

us to conclude value iteration is the more effective partner for Algorithm 7.3.
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Table 7.3 Experimental comparison of iterative techniques. Columns 1-5 describe the ben-
chmark examples. Columns 6 and 9 are the approximate values generated by value iteration
and interval iteration, respectively. Columns 8 and 10 report the running times for each
engine (including the time for model construction). Column 7 gives the number of fixpoints
checks computed by Algorithm 7.2. We do not report the number of fixpoint checks for
interval iteration as the implementation of sharpen for this technique always calculates a
single fixpoint. The probabilities given in columns 5,6 and 9 represent the probability of
satisfying the given property from the initial state. The model types and properties for the
evaluated examples are the same as in Figure 7.1. Both iterative techniques were invoke
using the Hybrid engine with the options javamaxmem=4g and cuddmaxmem=4g. We write
n/a in column 10 if no fixpoint was found by the shapren procedure.

1 2 3 4 5 6 7 8 9 10

Model Value Iteration Interval Iteration

Name Param States Epsilon Solution Approx FP Time Approx Time

Firewire 11000 428364 10−6 2087481/2097152 0.9953885078430176 n/a n/a 0.9953885078430176 n/a

Firewire 11000 428364 10−12 2087481/2097152 0.9953885078430176 11 16.2 0.9953885078430176 27.7

Dice 3 2197 10−6 1/216 0.004629455506801605 4 .1 0.004629705101251602 n/a

Dice 3 2197 10−12 1/216 0.00462962962906488 4 .1 0.0046296296297008155 n/a

Dice 6 4826809 10−6 1/46656 2.131238579750061E-5 n/a n/a 2.143591779395712E-5 n/a

Dice 6 4826809 10−12 1/46656 2.143347024102793E-5 9 2.6 2.1433470555450964E-5 n/a

Din. Crypt. 9 855095 10−6 1/256 0.00390625 4 .71 0.00390625 .97

Din. Crypt. 9 855095 10−12 1/256 0.00390625 4 1 0.00390625 1

Biased Coins 11 177147 10−6 1/177147 5.645029269476758E-6 10 .11 5.645029269476758E-6 n/a

Biased Coins 11 177147 10−12 1/177147 5.645029269476758E-6 10 .15 5.645029269476758E-6 .1

Din. Phil. 3 956 10−6 27 26.999990834143837 1 .13 27.00000014876298 .28

Din. Phil. 3 956 10−12 27 26.99999999999123 1 .14 27.000000000000142 .22

Lead. Elec. 4 12302 10−6 256/49 5.2244897630362175 3 12.2 5.224489867467293 30.1

Lead. Elec. 4 12302 10−12 256/49 5.224489795918261 3 12.4 5.22448979591833 29.7
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CHAPTER 8: CONCLUSION

8.1 SUMMARY

In this work, we introduced a new framework for analyzing randomized security protocols

against the powerful threat model of the Dolev-Yao attacker. In Chapter 4, we studied the

problem of model checking safety and indistinguishability properties of randomized security

protocols modeled using this new formalism. Our model checking algorithm assumed a

bounded attacker that, at each protocol step, can construct a specified fixed number of

inputs. We showed that the model checking problem for indistinguishability propertes in

this context is in PSPACE and #SATd-hard. Further, we proposed algorithms for deciding

indistinguishability and safety properties in randomized security protocols and implemented

our techniques in Span. The algorithms we developed are derived from techniques for

analyzing POMDPs, objects that capture the semantics of randomized security protocols. In

particular, we presented a POMDP indistinguishability algorithm by reducing the problem

to PFA equivalence. This allowed us to establish that POMDP indistinguishability is in

NC. We also provided algorithms for deciding safety and indistinguishability properties in

POMDPs by utilizing translations to belief MDPs. While asymptotically less efficient than

the PFA reduction algorithm, we showed, through experimental evaluation, that the later

technique is more efficient in practice. As part of our evaluation, we modeled and analyzed

several new classes of security protocols and discovered vulnerabilities in two electronic

voting protocols.

In Chapters 5 and 6 we considered the problem of composition for randomized security

protocols. Initially analyzing protocols with a bounded number of sessions, our composition

result for indistinguishability properties considers indistinguishable protocols P and Q over

equational theory Ea, and indistinguishable protocols P ′ and Q′ over equational theory Eb.

We showed that the composition of P and P ′ with Q and Q′ preserves indistinguishability,

provided Ea and Eb are disjoint. The same result applies to the case when both equational

theories coincide and consist of symmetric encryption/decryption and hashes, provided each

protocol message is tagged with a unique identifier for the protocol to which it belongs.

Finally, we show that the latter result extends to protocols with an unbounded number of

sessions, as long as messages from each session of the protocol are tagged with a unique

session identifier.

Expanding on the previous results, we studied the problem of securely composing rand-

omized security protocols under state-based safety properties. For one session, we show
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that if P is secure with probability p and Q is secure with probability q then the composed

protocol is secure with probability at least pq if the protocol messages are tagged with the

information of which protocol they belong to. The same result applies to multiple sessions

except that, in addition, the protocol messages of Q also need to be tagged with session

identifiers.

In Chapter 7 we observed that techniques for exact model checking allow one to avoid

logical errors in system analysis that can arise due to approximation techniques. We also

observed that state-of-the-art exact quantitative model checkers don’t scale as well as their

approximate counterparts. To help overcome this limitation, we presented an algorithm and

tool, RationalSearch, that computes the exact probabilities described by PCTL formu-

las for DTMCs and MDPs. Our tool works by sharpening approximate results obtained

through iterative techniques, allowing it to benefit from the performance enhancements gai-

ned through approximation. Our experimental evaluation concurs with this hypothesis, and

shows that our approach often performs significantly better than existing exact quantitative

model checking tools while also scaling to large model sizes.

8.2 FUTURE DIRECTIONS

The techniques for symbolic analysis of randomized security protocols presented in this

work lay the foundation for many exciting areas of follow-on research. Notice that the

automated analysis techniques from Chapter 4 rely on an explicit exploration of the state

space. As demonstrated by many state-of-the-art protocol analysis tools [1, 2], exploring

the state space in a symbolic fashion can result in huge performance gains. One natural

avenue for integrating symbolic analysis techniques into our model checking algorithms would

be to group input recipes at a given protocol step according to how each one affects the

distinguishability of executions in later branches of the protocol. For instance, consider the

encoding of the mix-network from Example 2.3. Essentially, the security of the protocol is

broken if there is some input recipe for the mix that makes the two possible probabilistic

outputs distinguishable. If one could effectively identify (a symbolic pattern on) the recipes

that make the outputs distinguishable, exploring many unnecessary portions of the state

space could be avoided.

Another direction would be to explore different model checking approaches. For example,

several protocol analysis engines [5, 38] use SAT/SMT solvers such as [150, 151] to help

“guess” attacks. These techniques work by encoding the constraints of an attack as a logical

formula and identifying vulnerabilities through the validity of such a formula. The challenge

in using SAT based techniques in our context is encoding the parameters of a valid attack.
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In the case of non-deterministic protocols, an attack is a sequence of legal protocol steps

(including input recipes). By contrast, an attack on a randomized protocols is a tree with

the following property. If two different input recipes are in two paths in the tree, than

the executions encoded by those paths should be distinguishable. The latter is significantly

harder to encode.

The speed of our model checking engine could also be enhanced using partial order re-

duction (POR) techniques. The idea behind POR is to classify protocol interleavings that

induce “equivalent” behavior. In this group of equivalent interleavings, if there is a some

interleaving that breaks a safety/indistinguishability property, then all interleavings in the

group also break the respective property. Using such a classification, a protocol can be ana-

lyzed by exploring a single representative from each group of equivalent interleavings. POR

reduction in randomized security protocols is likely to come with a synergy of the techniques

for POR in non-deterministic security protocols [152, 153] and POR in probabilistic systems

[154, 155].

Our model checking tool can also be used out-of-the-box to study many new classes of

security protocols that were previously out of reach for symbolic verification. For example,

mix networks are being used to enhance anonymity in blockchain protocols [156, 157, 158,

159, 160] and messaging systems [161, 162, 163]. Finally, there are several directions in

which our composition results from Chapters 5 and 6 can be strengthened. As was done for

non-randomized security protocols [31, 56], one can consider composing randomized security

protocols that include dis-equality tests and equational theories with primitives beyond

symmetric encryption/decryption and hashes.
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APPENDIX A: AUXILIARY DEFINITIONS

Let P be a process. We will use fv(P ) (resp. bv(P )) to denote the set of variables that

have some free (resp. bound) occurrence in P . As an auxiliary function needed to define the

preceding, abv(P ) will denote the set of variables for which every occurrence in P is bound.

bv(P ), abv(P ), fv(P ) =



bv(P ) = abv(P ) = {x}, if P = νx

fv(P ) = ∅

bv(P ) = abv(P ) = {x}, if P = (x := u)

fv(P ) = vars(u)

bv(P ) = abv(P ) = ∅, if P = [c1 ∧ . . . ∧ ck]
fv(P ) = vars(c1) ∪ . . . ∪ vars(ck)

bv(P ) = abv(P ) = {x}, if P = in(x)

fv(P ) = ∅

bv(P ) = abv(P ) = ∅, if P = out(u)

fv(P ) = vars(u)

bv(P1) ∪ bv(P2), if P = P1 · P2

abv(P1) ∩ abv(P2),

fv(P1) ∪ (fv(P2) \ abv(P1))

bv(P1) ∪ bv(P2), if P = P1 +p P2

abv(P1) ∩ abv(P2),

fv(P1) ∪ fv(P2)

We can lift the preceding definition to a basic context D by requiring that bv(�) =

abv(�) = fv(�) = ∅ for any process variable �. Let C be a context of the form B · (D1(�1) |
. . . | Dm(�m)) where B = a1 · . . . · an. Define bv(C) = bv(B) ∪ bv(D1) ∪ . . . ∪ bv(Dm) and

fv(C) = fv(B) ∪ ((fv(D1) ∪ . . . ∪ fv(Dm)) \ bv(B)).
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