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ABSTRACT 

Clinical and biomedical research seeks single-cell quantification to better understand their roles 

in a complex, multi-cell environment. Recently, quantification of vascular endothelial growth 

factor receptors (VEGFRs) provided important insights into endothelial cell (EC) characteristics 

and response in tumor microenvironments. However, data on other angiogenic receptors, such as 

platelet derived growth factor receptors (PDGFRs), Tie receptors, are also necessary for the 

development of an accurate angiogenesis model.  

To gain insights on the involvement of these angiogenic receptors in angiogenesis, I develop a 

method to quantify receptor concentrations as well as the cell-by-cell heterogeneity. I establish 

protocols to measure cell membrane VEGFR, NRP1, Tie2, and PDGFR concentration on several 

cell and tissue models including human dermal fibroblasts (HDFs) in vitro, a 2D 

endothelial/fibroblast co-culture model in vitro, and a patient-derived xenograft (PDX) model of 

glioblastoma (GBM). I demonstrate VEGF-A165-mediated downregulation of membrane 

PDGFRα (~25%) and PDGFRβ (~30%) on HDFs, following a 24-hour treatment. This supports 

the idea that VEGF-A165 acts independently of VEGFRs to signal through PDGFRα and 

PDGFRβ. I uncover high intratumoral heterogeneity within the GBM PDX model, with tumor 

EC-like subpopulations having high concentrations of membrane VEGFR1, VEGFR2, EGFR, 

IGFR, and PDGFRs.  

To gain greater insights into cell heterogeneity and examine angiogenic signaling pathways as a 

whole, I utilize the unique spectral properties of quantum dots (Qdots), and combines Qdots with 

qFlow cytometry, to dually quantify VEGFR1 and VEGFR2 on human umbilical vein 

endothelial cells (HUVECs).  To enable this quantification, I reduce nonspecific binding between 

Qdot-conjugated antibodies and cells, identify optimal labeling conditions, and establish that 800 

– 20,000 is the dynamic range where accurate Qdot-enabled quantification can be achieved. 

Through these optimizations we demonstrate measurement of 1,100 VEGFR1 and 6,900 

VEGFR2 per HUVEC. 24 h VEGF-A165 treatment induce ~90% upregulation of VEGFR1 and 

~30% downregulation of VEGFR2 concentration. We further analyze HUVEC heterogeneity and 

observe that 24 h VEGF-A165 treatment induces ~15% decrease in VEGFR2 heterogeneity. 

Overall, we demonstrate experimental and analysis strategies for quantifying two or more RTKs 

at single-level using Qdots, which will provide new insights into biological systems. 
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND AND SIGNIFICANCE 

Over 70 diseases rely on angiogenesis, the process of blood vessels forming from existing ones 1. 

For example, abnormal angiogenesis promotes tumor development in several cancers 2,3. Drugs 

that inhibit vascular endothelial growth factor (VEGF), like bevacizumab 4, sequester VEGF but 

only moderately improve patient survival, and these patients eventually become resistant to these 

drugs 5,6. Clearly, we must pursue new approaches to understand anti-VEGF resistance in these 

vascular dysfunctions.  

The involvement of other signaling axes potentially explains anti-VEGF failings. After anti-

VEGF treatment, several growth factors, including platelet derived growth factors (PDGFs) 7,8 

are upregulated. Under cross-axis signaling, upregulated PDGFs would directly activate 

VEGFRs and lead to anti-VEGF therapy resistance. PDGFs also contribute to vascular function. 

PDGF (-AA, -BB, -AB, -CC, and –DD) binding to corresponding PDGFRs (α and β) maintains 

and stabilizes EC tubes during development 9, induces vessel growth 10 and regeneration 11, and 

induces reperfusion after arterial blockage12. The fact that both VEGFs and PDGFs are key 

regulators of angiogenesis implies that shifting focus from VEGF-family to dual-family and 

ultimately, to multi-family (other important angiogenesis families) would more accurately 

represent angiogenesis.  

In addition to the complexity of signaling pathways, increasing evidence suggests that 

intratumoral heterogeneity may contribute to therapeutic resistance 13–17.The emergence of 

single-cell omics tools has enabled researchers to map individual cell heterogeneity. Using a 
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patient-derived xenograft model, a single-cell analysis of patient-derived xenografts (PDXs) of 

GBM39 also found higher heterogeneity in resistant tumors than in responsive tumors 18. Our lab 

and others have shown VEGFR1 heterogeneity may be contributing to anti-VEGF resistance in 

various cancer types 13,19–21. Therefore, it is important to support single-cell technologies that 

facilitate resolving such heterogeneity with new computational approaches 22–25.  

Many single-cell analysis methods are low-throughput and only semi-quantitative. 

Immunohistochemistry (IHC) is the accepted standard for receptor profiling in tissue 26. While 

IHC provides relative protein expression mapping, it does not provide cell-by-cell readouts, 

multiplexing, or absolute receptor quantification needed for modeling. Many studies examine 

receptor mRNA and total protein levels as a proxy for membrane receptors 27–30. However, 

correlations across mRNA levels and total protein can be inconsistent 31 or protein-specific 32, 

and correlations between total protein and membrane receptors require insight into trafficking 33. 

This reveals a need to quantitatively profile receptors.  

Three primary methods are used for receptor quantification, each with advantages and 

limitations. Radiolabeling, a reliable approach used in early biochemical studies 34,35, may be less 

accessible to laboratories due to safety considerations 36,37, specialized training requirements 38, 

and disposal challenges. Mass spectrometry (MS) can be high-throughput; however, stringent 

technique is required and sensitive to sample preparation artifacts 39. Fluorescence is an ideal 

technique. Its ease of use makes it more attractive than radiolabeling, and its lower detection 

limit (<100 molecules/cell vs. ~7,500 molecules/cell MS) makes it more attractive than MS. We 

have led efforts to fluorescently quantify VEGFRs 19,40,41. We detect VEGFRs via PE-conjugated 

antibodies and calibrate via commercially available PE beads 42,43. Its brightness, relative 
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robustness to photobleaching, and 1:1 antibody binding make PE an advantageous fluorophore. 

However, its broad emission spectrum limits quantification to a single readout (single-color) 44,45. 

As we shift towards integrating multi-axis signaling, receptor quantification must move towards 

multiplexing (multi-color).  

Quantum dots (Qdots) are ideal tools for multiplexing: they emit within a narrow and largely 

symmetric range, allowing simultaneous monitoring of multiple Qdot-conjugates 46,47. Moreover, 

Qdots are brighter and 100x more resistant to photobleaching than organic fluorophores. Qdots 

have enabled simultaneous imaging of eight biomarkers 48 and more sensitive detection of early 

cancer biomarkers 49. Towards quantification, Yezhelyev et al.50 pioneered a relative comparison 

of receptor expression (HER2, ER, PR); however, this study did not provide absolute receptor 

concentrations. Previously, Wu et al.51,52 described difficulties encountered when providing 

absolute Qdot concentrations. They postulated that Qdot valency (up to eight streptavidin 

tetrameric units per Qdot) makes biotin polystyrene beads unsuitable for calibration beads and 

developed a molecular assembly, M2 beads. With the M2 beads, they restricted Qdot-antibody 

binding to achieve a 1:1 ratio. Still, this system only quantified one receptor: EGFR. Therefore, 

there remains a need for multiplexed receptor quantification via Qdots.  

1.2 THESIS GOALS 

This thesis aims to provide the experimental framework and applied engineering strategies for 

the development of qFlow cytometry for quantitative detection of angiogenic biomarkers and for 

advancing systems biology. This goal is approached through three directions. First, an 

experimental framework and data analysis strategy is developed. This is provided by an 

extensive protocol of qFlow cytometry (Chapter 2), from cell staining to heterogeneity analysis, 
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as well as notes for troubleshooting. Second, a quantitative understanding of angiogenic 

biomarkers under normal condition and diseased is developed. This is achieved by applying 

qFlow cytometry to cell types associated with vessel formation in vitro (Chapter 3), a 2D co-

culture angiogenesis assay (Chapter 4), as well as by characterizing a panel of angiogenic 

biomarkers and tumor heterogeneity in a glioblastoma xenograft model (Chapter 5).  Finally, the 

potential of combining quantum dots with qFlow cytometry to achieve multiplexed 

quantification is tested. This is performed by characterizing the performance of quantum dot-

conjugated antibodies, with particular emphasis on their specific and nonspecific binding, as well 

as the impact of their sizes, measuring limit and accuracy when combined with qFlow cytometry 

(Chapter 6).  
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CHAPTER 2 THE DEVELOPMENT OF QFLOW CYTOMETRY-BASED 

BIOMARKER SCREENING 1 

Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical 

factor in nanosensor development is deciding which biomarker to target, as most diseases present 

several biomarkers.  Biomarker-targeting decisions can be informed via an understanding of 

biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for 

profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, 

it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker 

quantification. Flow cytometry overcomes both of these IHC challenges by offering biomarker 

expression on a cell-by-cell basis, and when combined with calibration standards, providing 

quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the 

key components for applying qFlow cytometry to detect biomarkers within the angiogenic 

vascular endothelial growth factor receptor family.  The key aspects of the qFlow cytometry 

methodology include antibody specificity testing, immunofluorescent cell labeling, saturation 

analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and 

cell-by-cell data.  Together, these methods enable high-throughput quantification of biomarker 

expression. 

 

 

 

 

 

1 This chapter was published in Biomedical Nanotechnology as part of the Methods in 

Molecular Biology book series (MIMB, volume 1570). PMID: 28238133,  

DOI: https://doi.org/10.1007/978-1-4939-6840-4_8. 
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2.1 INTRODUCTION 

2.1.1 Nanosensor-based detection of membrane angiogenic receptors can inform drug 

development 

Nanosensors are playing an increasingly important role in biomedicine 1–3 with exciting new 

applications to cardiovascular diseases and cancer. This is due to the fact that nanosensors enable 

highly-sensitive, early-stage disease detection, which is linked with better clinical outcomes 4. 

For example, the use of RGD-peptide targeted Copper-64 (64Cu)-quantum dots (QDs) as 

nanosensors to provide contrast for Cerenkov luminescence imaging has enabled atherosclerotic 

plaque detection in a rodent model 5.  Similarly, αvβ3-targeted Cu-nanoparticles have been 

coupled with photoacoustic imaging to visualize angiogenesis in a rodent model 6, and single-

chain cysteine-tagged recombinant vascular endothelial growth factor (VEGF)-121 molecules 

have been used as nanosensors with near-infrared fluorescence imaging (NIRF) to assess 

VEGF121 uptake in tumor-activated host vasculature in a mouse model 7. These examples 

demonstrate the immense potential of nanosensors in disease management, and highlight a 

common nanosensor feature: they can target specific biomarkers important to disease 

progression. 

As new nanosensors are developed to guide therapy selection and disease management 8, 

nanosensor development requires considering the biomarker localization. Most diseases present 

several overexpressed plasma membrane and intracellular biomarkers, typically genes, proteins, 

or other biomolecules 9–11. Therefore, determining the biomarker target is an important step in 

nanosensor development. The simplest biomarker targets are plasma membrane proteins: their 

extracellular residues render them highly-accessible.  Conversely, intracellular biomarkers 
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require manipulating membrane permeability or cell trafficking to enable nanosensor binding. 

Thus, plasma membrane proteins are promising disease biomarkers. 

Nanosensor development also requires considering biomarker abundance; biomarkers expressed 

at low levels require high-affinity nanosensors, whereas lower-affinity nanosensors may 

sufficiently target biomarkers expressed at high levels. To measure plasma membrane protein 

abundance on the cell scale, many studies examine mRNA and total protein expression using 

quantitative real time polymerase chain reaction (qRTPCR) and Western blot, respectively 12–16. 

However, identifying plasma membrane protein abundance from these assays requires 

correlations between DNA or mRNA and translated protein that are inconsistent 17, protein-

specific 18, or require trafficking insights 19. To measure plasma membrane protein abundance on 

the tissue scale, immunohistochemistry (IHC) is the employed standard 20. However, IHC only 

provides a relative protein expression mapping within an area, including the membrane, and does 

not provide an absolute protein quantification or cell-by-cell protein expression analysis. 

Therefore, new high-resolution techniques are necessary for accurate plasma membrane protein 

quantification.  

2.1.2 Rationale for quantitative flow cytometric assays  

Traditional flow cytometry directly profiles membrane proteins using an affinity probe 

conjugated to a fluorophore, providing biomarker expression readout on the plasma membrane.  

Advantages of traditional flow cytometry are its amenability to live-cell analysis and its inherent 

multi-dimension data obtained.  In particular, both fluorescence intensity and light scattering data 

are obtained on a cell-by-cell basis, providing cell-subpopulation information. Furthermore, 

biomarker expression can be dynamically observed in response to experimental parameters, such 
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as temperature or drug administration 21. However, a major disadvantage of traditional flow 

cytometry is its non-quantitative nature. Traditional flow cytometry provides a fluorescence 

signal correlating with protein abundance: higher fluorescence intensity indicates higher protein 

expression.  To translate fluorescence intensity to protein abundance, housekeeping proteins 

(positive control) are used to provide comparative insight to target protein expression levels. This 

comparative estimation allows trends and differences in samples to be identified; however, these 

trends and differences in samples can be erroneous if the positive control is not fully established. 

For example, housekeeping proteins may exhibit unexpected shifts due to internal factors, such 

as sample conditions, or external factors, such as variation across flow cytometry instruments 22–

26. To avoid these erroneous measurements, recent advances have made traditional flow 

cytometry quantitative by including fluorophore calibration standards 27, a technique termed 

qFlow cytometry 27–29.  

qFlow cytometry advances non-quantitative traditional flow cytometry by converting the 

arbitrary flow cytometry signal to absolute protein concentration.  Absolute protein 

quantification overcomes the shortcomings inherent to positive control comparisons used in 

traditional flow cytometry. For example, we have observed changing protein concentrations 

across slightly over-confluent to under-confluent cell cultures (data not shown), as have others 30. 

Again, when such changes happen in both a housekeeping protein and a target protein, the 

relative differences may not be detected or falsely translated using traditional flow cytometry.  

Since qFlow cytometry reports absolute protein concentrations, it can detect such differences, 

alerting the researcher to possible problems in their experimental protocol.  Thus, qFlow 

cytometry allows for experimental standardization, allowing researchers to understand 

experimental variation and easily compare data across labs.  
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qFlow cytometry offers a promising approach to advance computational modeling, which is 

widely used to accelerate scientific discovery and optimize therapeutic approaches by delineating 

the complex behaviors inherent to biological systems. For example, Weddell and Imoukhuede 

found that anti-VEGF efficacy depends on endothelial VEGFR1 plasma membrane 

concentration, with high VEGFR1 concentrations resulting in ineffective anti-VEGF treatment, 

using a whole-body computational model 31. Likewise, our lab found that small increases in 

plasma membrane receptor concentrations (< 1,000 receptors/cell) doubles nuclear-based 

receptor signaling 32 using an endocytosis computational model. However, such computational 

models require parameterization with physiological data, including protein concentrations 33, to 

accurately represent the biological system. Accurate biomarker concentrations are therefore 

necessary to develop computational models  21,31,33.  qFlow cytometry renders this much needed 

accuracy to biomarker quantification, ensuring optimal parameterization and physiologically 

relevant computational models. 

Here, we describe the method to successfully quantify membrane-localized biomarkers on a cell-

by-cell basis. We discuss antibody specificity, establishing saturation conditions, immuno-

fluorescent labeling strategies, live-cell versus fixed cell methods, and cell-by-cell analysis 

considerations (e.g., background subtraction, quantification, and statistically analyzing protein 

heterogeneity). We describe this method in the context of quantifying the angiogenesis-related 

membrane proteins vascular endothelial growth factor receptor 1 (VEGFR1), VEGFR2, 

VEGFR3, and neuropilin 1 (NRP1) on human umbilical vein endothelial cells (HUVECs), and 

platelet-derived growth factor receptor alpha (PDGFRα) and PDGFRβ on adult human dermal 

fibroblasts (HDFs). However, the method presented here can be adapted and applied to any cell 

type and biomarker. 
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2.2 MATERIALS 

2.2.1 Cell culturing 

1. Human umbilical vein endothelial cells (HUVECs). 

2. EGMTM-2 BulletKit endothelial cell growth medium. 

3. Adult human dermal fibroblasts (HDFs). 

4. FGMTM-2 BulletKit fibroblast growth medium.  

5. Phosphate-buffered saline (PBS), pH 7.4. 

6. Sterile Disposable Bottle Top Filters with PES Membrane. The filter membrane pore size 

should be 0.20 μm. 

7. TrypLETM Express. 

2.2.2 Cell harvest and membrane receptor staining for qFlow cytometry 

1. PBS, pH 7.4. 

2. CellstripperTM (see Note 1). 

3. 5 ml polystyrene round-bottom tubes. 

4. Stain buffer: PBS supplemented with 0.2% bovine serum albumin (BSA) and 0.05% NaN3, 

pH 7.4.  

5. Phycoerythrin (PE)-conjugated antibodies specific for human VEGFR1, VEGFR2, VEGFR3, 

NRP1, PDGFRα and PDGFRβ (see Note 2). 

2.2.3 Quantitative flow cytometry 

1. LSR Fortessa (BD Biosciences) or equivalent flow cytometer. 

2. SYTOXTM Blue Dead Cell Stain, for flow cytometry (see Note 3). 

3. QuantiBRITETM PE beads (this protocol uses beads from BD Biosciences, but equivalent 

beads from other manufacturers could be used). 

4. Stain buffer from step 2.2.4. 
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2.2.4 Data analysis software 

1. FlowJo (TreeStar) software is used for analyzing and exporting flow cytometry data. 

2. Excel software is used for performing calculations on exported flow cytometry data. 

3. The R programming language software is used for mixture modeling. 

4. MATLAB software is used for statistically describing uni-population data (see Note 4).  

2.3 METHODS 

Readers are assumed to have knowledge of aseptic cell culture technique and have access to the 

necessary equipment for growing cells: a biosafety cabinet in which the cell flasks can be opened 

and culture media can be changed, an incubator in which the cells can be kept at an appropriate 

temperature for growth, a microscope for cell observation, and pipettes/pipette tips.  

2.3.1 Cell culturing 

1. Culture HUVECs in EGMTM-2 BulletKit medium per standard cell culture protocols 

21,34–37. 

2. Culture HDFs in FGMTM-2 BulletKit medium per standard cell culture protocols 21. 

Plasma membrane receptor concentrations may differ depending on the serum level 

in the medium (see Note 5). 

3. Remove and discard culture media upon cell passaging. 

4. Briefly rinse the cell layer with 5 -10 mL PBS to remove all traces of serum that 

inhibit the action of trypsin. 

5. Add 3.0 – 5.0 mL of TrypLETM Express to flask and incubate at 37 °C in a 5% CO2 

humidified incubator for 5 min.  

6. Remove flask from incubator. Gently tap on the side of flasks and monitor cell 

release from the bottom of the flask using a microscope. 
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7. Add 3.0 – 5.0 mL of complete growth media and aspirate cells by gently pipetting. 

8. Add appropriate aliquots of the cell suspension to new culture flasks. A sub-culture 

ratio of 1:3 – 1:5 is recommended, split every 4 – 5 days for HUVECs and 9 – 12 

days for HDFs.  

9. Incubate cell cultures at 37 °C/5% CO2. 

2.3.2 Cell harvest from T-175 cell culture flasks  

1. Harvest cells when they grow to 75 – 85% confluent (see Note 6). 

2. Remove culture media from cells with an aspirating pipette. In this and all 

subsequent steps, be careful not to scrape the cell layer with the tip of the pipette. 

3. Gently add 10 mL PBS to the cells and let sit for 5 – 10 seconds. Remove PBS from 

the cells. 

4. Add 10 mL CellstripperTM to the cell culture flask. 

5. Incubate at 37 °C in a 5% CO2 humidified incubator for 5 min.  

6. Remove flask from incubator. Gently tap on the side of flasks and monitor cell 

release from the bottom of the flask using a microscope. If the cells are not releasing, 

subject flasks to abrupt mechanical force to dislodge cell adherence (see Note 7). 

7. Collect the released cells in a 50 mL conical tube, add 10 mL of stain buffer, and 

keep on ice. 

8. Perform a cell count using a hemocytometer or automated cell counter. 

9. Centrifuge the cell suspension from step 6 at 500 × g for 5 min at 4 °C to pellet the 

cells. Remove the supernatant, being careful not to remove any cells from the pellet. 

10. Resuspend the cell pellet in stain buffer to a final concentration of 4 × 106 cells/mL 

based on the cell count determined in step 8, and keep the cells on ice. 
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2.3.3 Cell surface staining with PE-conjugated monoclonal antibodies 

1. Prepare and label the 5 mL polystyrene round-bottom tubes. The number of tubes 

used in one experiment depends on how many samples you have. 

2. In a biosafety cabinet, transfer a 25 µL aliquot of cell suspension (1 × 105 cells) to 

each 5 mL polystyrene round-bottom tube.  

3. Add PE-conjugated monoclonal antibodies to each tube (see Note 8). For non-labeled 

cell samples, do not add antibodies. We recommend having 2 – 4 replicates for each 

antibody. 

4. Incubate cells with added antibodies for 40 min on ice in the dark. 

5. Add 4 mL stain buffer to each tube. 

6. Centrifuge at 500 × g for 4 min at 4 °C to form a cell pellet, then remove the 

supernatant. 

7. Repeat washing as described in steps 3.3.5 and 3.3.6. 

8. Resuspend cells in 250 µL of stain buffer, and keep on ice. 

2.3.4 Data acquisition using flow cytometry 

We describe data acquisition using a LSR Fortessa (BD) Flow cytometer with BD 

FACSDIVA software. Other flow cytometers and software should also work if the correct 

lasers and filters are included in the system. When using a LSR Fortessa (BD) Flow 

cytometer, use the Pacific Blue channel to measure fluorescence intensity of SYTOX Blue 

Stain, and use the PE channel to measure PE fluorescence intensity. If the reader is using a 

different flow cytometer, SYTOX Blue can be excited by a violet laser and its fluorescence 

intensity can be detected with a 450/50 band pass filter; PE can be excited by a yellow-green 

laser and detected with a 582/15 band pass filter. 
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1. Reconstitute one tube of QuantiBRITETM PE, which contains a lyophilized pellet of 

beads, with 500 µL of stain buffer and vortex briefly. Each QuantiBRITETM PE tube 

can be re-used up to 2 – 3 times within a month. 

2. Place the reconstituted PE beads from step 3.4.1 at the inlet to the flow cytometer and 

begin analysis following proper protocols for your instrument.  

3. Adjust the voltage for PE channel or equivalent to ensure all four bead populations 

are distinctively displayed on a PE histogram (see Note 9). Collect 10,000 events 

above the threshold. The geometric mean of each bead population will be used to 

determine the calibration curve for PE as described in step 3.5. 

4. Do not adjust the voltage for PE channels or the speed of the flow after acquiring 

these events. 

5. Add 5 μg/mL SYTOXTM Blue Dead Cell Stain to a sample tube (from step 3.3.8) and 

vortex briefly immediately prior to placement in a flow cytometer (see Note 10). 

6. Within the flow cytometer software, display a forward scatter area (FSC-A) versus 

side scatter area (SSC-A) dot plot for cell samples. Adjust voltages for FSC-A and 

SSC-A to ensure gating on single-cell populations can be achieved (see Note 11).  

7. Display the histogram of the cell samples for Pacific Blue channel or equivalent. 

Adjust voltages for Pacific Blue channel to ensure that two cell populations are 

distinctively displayed. Gate the population on the left side (expressing lower 

SYTOXTM Blue) and collect at least 10,000 gated events in each sample. 

2.3.5 qFlow cytometric analysis: ensemble-averaged plasma membrane receptor concentrations  

FlowJo (TreeStar) software and Excel are used for data analysis.  
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1. Within FlowJo software, plot FSC-A versus SSC-A for the QuantiBRITETM PE 

calibration beads and gate the single-bead population. Representative gating is shown 

in Fig. 1A. 

2. Plot a histogram of PE of the gated single-bead population. Gate the four distinctive 

peaks respectively. Representative gating is shown in Fig. 1B. 

3. Using Excel, plot a linear regression of log10 PE molecules per bead against log10 PE 

geometric mean using the equation y=mx + b, where m and b represent the slope and 

intercept of the linear regression respectively. A representative PE calibration curve is 

shown in Fig. 1C. 

4. Using FlowJo, plot histograms of Pacific Blue channel for cell samples stained with 

SYTOXTM Blue Dead Cell Stain and gate the live-cell populations. Representative 

gating is shown in Fig. 1D.   

5. Plot FSC-A versus SSC-A for gated live cells and gate the single-cell populations. 

Representative gating is shown in Fig. 1E. 

6. Plot a histogram of PE of the gated live single-cell population for each sample. The 

PE geometric means of both live cell samples labeled with PE-conjugated antibodies 

(PElabeled geometric mean) and unlabeled live cell samples (PEunlabeled geometric mean) 

are then quantified. 

7. Using Excel, determine the number of PE-conjugated antibodies per cell for both PE-

stained samples and non-labeled live cell samples using the equations: 

(number of PE-antibodies/cell)labeled = 
( )10

1
log    

10
labeledPE geometric mean b

m
−

 

(number of PE-antibodies/cell)unlabeled = 
( )10

1
log    

10
unlabeledPE geometric mean b

m
−

 

8. Determine number of receptors per cell using the equation: 
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number of receptors/cell = (number of PE-antibodies/cell)labeled - (number of PE-

antibodies/cell)unlabeled. 

9. Express ensemble-averaged plasma membrane receptor concentration as mean of 

number of receptors/cell ± standard error from replicates of each antibody.  

2.3.6 qFlow cytometric analysis: cell-by-cell analysis 

1. Export cell-by-cell PE fluorescence intensity from both labeled and unlabeled live 

cell samples as a CSV file from FlowJo. 

2. Open the CSV file exported in step 3.6.1 with Excel. Sum PE fluorescence intensity 

of all cells labeled with PE-conjugated antibody, labeledPE , and divide that sum by 

the number of labeled cells, 
labeledn .  

3. Sum PE fluorescence intensity of all unlabeled cells, unlabeledPE , and divide the 

sum by the number of unlabeled cells,
unlabeledn .  

4. Calculate the actual PE fluorescence intensity by subtracting the background signal, 

subtractedPE , using the equation (see Note 12): 

( )
( )

/

/

unlabeled unlabeled

subtracted labeled

labeled unlabeled

PE n
PE PE

PE n
1

 
 
 
 

=  −



 

5. Loop through the cell-by-cell 
subtractedPE  data and calculate the number of 

receptors/cell for each cell using the equation described in step 3.5.8.  

6. For each sample, construct a histogram H where the number of receptors/cell is 

contained in equally spaced bins. The histogram is defined by bin centers s , the mean 

number of receptors/cell defined by each bin, and frequency w , the fraction of total 
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cells contained in each bin. After constructing the histogram, eliminate outliers 31, 

store the bincenters as vector s , and store the frequency as vector w . 

2.3.7 qFlow cytometric analysis: mixture modeling for statistically describing subpopulations 

R programming software is used for this data analysis. 

1. Import the number of receptors/cell, with outliers removed as described in step 3.6.6, 

as vector 1v  into the R programming language software. Note this will need to be 

done individually for each sample.  

2. Take the natural logarithm of 1v using the ‘log’ command and store into a second 

vector 2v . 

3. Use the ‘normalmixEM’ command in the ‘mixtools’ package to fit vector 2v  to a 

logarithm mixture model with 2 subpopulations. Store the mixture model fit as a new 

variable ,2fitL . The logarithm mixture model for any number of subpopulations n   is 

defined by:  

2

1

) ,( ( )i i i

n

i

L v p l 
=

=  

where L  is the lognormal mixture and l  defines the lognormal subpopulation with 

index i , mean i
 , standard deviation i

 , and density i
p .  

4. Repeat step 3.7.3, this time fitting to a logarithm mixture model with 3 

subpopulations, storing as a new variable ,3fitL . 

5. Create the 2 subpopulation mixture model: 

2 1 1 1 2 2 2) (s | , ) (s | , )(s p l p lL    +=  
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where s  defines the bincenter positions (number of receptors/cell), as described in 

step 3.6.6, and the densities, means, and standard deviations are given by ,2fitL . 

6. Create the 3 subpopulation mixture model:  

3 1 1 1 2 2 2 3 3 3) (s | , ) (s | , ) (s | , )(s p l p l p lL      + +=  

where the densities, means, and standard deviations are given by ,3fitL . 

7. Calculate the sum of squared error between the 2 subpopulation mixture model 
2SSE  

and the number of receptors/cell data by: 

( )( )
2

2 2
1

i i

nbins

i

sSSE L w
=

= −   

where i  is the bin index with bincenter is , nbins  is the number of bins, 2 ( )iL s  is 

the 2 subpopulation mixture model value at bincenter is , and iw  is the frequency of 

cells contained within i  as described in step 3.6.6.  

8. Calculate the sum of squared error between the 3 subpopulation mixture model 
3SSE  

and the number of receptors/cell data by: 

( )( )
2

3 3
1

i i

nbins

i

sSSE L w
=

= −  

where 3( )iL s  is the 3 subpopulation mixture model value at bincenter is . 

9. If 
2SSE  (step 3.7.7) is less than 

3SSE  (step 3.7.8), define the best fit mixture model 

( )B iL s  as 2 ( )iL s . Otherwise, define ( )B iL s  as 3( )iL s . 

10. Express ( )B iL s  as the subpopulation means B , standard deviations B , and 

densities Bp . 
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11. For graphical representation, plot s  versus ( )B iL s  alone, or with the histogram H 

from step 3.6.6. An example of mixture modeling is given in Note 10 and Fig. 4B. 

2.3.8 qFlow cytometric analysis: non-normality and diversity analysis for statistically 

describing uni-population data 

MATLAB software is used for this data analysis. 

1. For each sample, import the number of receptors/cell bincenters as s  and frequency 

as w , as described in step 3.6.6, into MATLAB software. 

2. Import the corresponding number of receptors/cell for each sample, as described in 

step 3.5.8, into MATLAB software as a vector 1v . 

3. Determine the Gaussian mean   and standard deviation   of 1v  using the MATLAB 

commands ‘ 1
mean( )v ’ and ‘ 1

std( )v ’, respectively.  

4. Generate a reference Gaussian distribution using the command ‘ =normpdf ( , , )g s   ’, 

as given by the equation:  

2

2

1 ( )
( | , ) exp

22

s
g s


 

 

−
= −

 
 
 

 

5. Generate the probability distribution of ( | , )g s   , refP , using the command  

‘ Pref ./sum( )g g= ’, where sum( )g  is the sum of all elements in vector ( | , )g s   . 

6. Compute scalar statistic K-S values KSp  for each sample using the command  

‘ Pks kstest2( , Pref)w= ’ (see Note 13). 

7. Compute the quadratic entropy QE (see Note 13) as given by the equation: 

1

1 1

( ) ,  1
nbins nbins

i j i j
j i j

QE s s w w j i nbins
−

= = +

= −        
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where is  and js  are centers of the bins with indices i  and j  respectively, and iw  

and jw  are the frequencies of the bins with indices i  and j  respectively. 

2.4 NOTES 

1. Trypsin-based cell dissociation using solutions such as TrypLETM involves cleaving 

peptide bonds on the C-terminal sides of lysine and arginine 38. This action may 

cleave cell surface receptors 35 or stimulate receptor shedding 39–42, and either 

mechanism would lead to invalid qFlow cytometry results. Therefore, non-enzymatic 

dissociation solution such as CellstripperTM is recommended for preserving cell 

surface receptors when performing qFlow cytometry. For example, we have 

previously observed TrypLETM-mediated decreases in NRP1 on HUVECs, while cell 

surface VEGFR1 and VEGFR2 remained relatively unchanged 36. In this chapter, we 

observe similar results when we extend the methods to VEGFR3 and Tie2 on 

HUVECs (Fig. 2A). VEGFR2 and VEGFR3 plasma membrane concentrations on 

HUVECs are consistent with a previous report, while VEGFR1 is ~30% higher (p < 

0.01), which may be attributed to donor-specific differences 21. Interestingly, 

TrypLETM treatment results in a ~90% increase in PDGFRβ plasma membrane 

concentrations on HDF surface (p < 0.001), while PDGFRα concentrations remain 

unchanged (Fig. 1B). Furthermore, the previously reported NRP1 decrease is not 

specific to HUVECs; we also observe a two order of magnitude decrease in NRP1 

plasma membrane concentrations on HDFs following the TrypLE treatment (Fig. 2B). 

Altogether, our data and previous reports indicate that if the researcher prefers to use 

an enzymatic cell dissociation solution, that they check how the solution affects 

plasma membrane receptor concentrations. 
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2. Antibody specificity is required for accurate receptor quantification. We labeled 

mouse 3T3 fibroblasts with either human or mouse-specific antibodies to determine 

antibody binding specificity (Fig. 3). Our positive and negative controls give ~5,800 

mVEGFR1 and ~300 mVEGFR2 per mouse 3T3, respectively (Fig. 3). These trends 

are in line with prior studies reporting high mVEGFR1 plasma membrane 

concentration and little to no mVEGFR2 29. As expected, the human antibodies 

showed low binding to the mouse 3T3s. We observe less than 600 hVEGFR1, 

hVEGFR2, hPDGFRα or hPDGFRβ per mouse 3T3 fibroblast, which is similar in 

value to our negative controls (Fig. 3). Therefore, the cross-reactivity of the human 

antibody to mouse receptors is very low. When analyzing multiple biomarkers, the 

researcher should use similar methods, as we have outlined, to ensure that their 

antibodies have good specificity.  

3. SYTOX Blue can be excited with a solid-state laser (407 nm) and its emission 

collected using a 450/50 band-pass filter. SYTOX Blue live/dead stain is preferable to 

Propidium Iodide (PI) or 7-AAD because SYTOX Blue emission has little overlap 

with PE. Live-dead cell staining should always be performed, as we noted above, and 

if the researcher chooses to use a stain other than SYTOX Blue, they should check the 

spectral spillover to ensure accurate receptor quantification. 

4. This protocol is defined to use the software explicitly listed in the “Methods” section, 

however, alternative software can be used, based on the user preferences. An 

alternative flow cytometry software option that we have had good experience with is 

FCS Express (De Novo Software). The Purdue University Cytometry Laboratory 

(PUCL) offers a comprehensive listing of free flow cytometry software 43. 
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Alternatives to Excel for data calculations and storage include any spreadsheet 

software capable of basic algebraic functions and data storage, such as Accel 

Spreadsheet.  Alternatives to R for performing mixture modeling include any 

programming language capable of conducting mathematical operations, such as 

C/C++ or Python.  Likewise, other mathematical programming languages such as 

C/C++ or Python, or statistical analysis software, such as Minitab or SPSS, can be 

used instead of MATLAB for conducting statistical analyses. Overall, we advise 

researchers to choose the software based on experience, preference, and availability. 

5. A commonly used fibroblast culture medium is Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% of Penicillin 

Streptomycin (Pen Strep) 21,44–46. However, we would like to point out to readers that 

plasma membrane concentrations can be affected by serum levels in the cell culture 

medium. We previously found that PDGFRs and NRP1 plasma membrane 

concentrations decreased when HDFs were cultured in DMEM supplemented with 

10% FBS compared to the standard FGMTM-2 fibroblast growth medium 21, and the 

new data shown in Figs 2-4 are consistent with our previous results. Given the inverse 

serum concentration-receptor concentration relationship that we consistently observe, 

we recommend that researchers consider or assay these effects when performing 

qFlow cytometry. 

6. Others and we find that plasma membrane receptor concentrations in HUVECs may 

change if they reach 100% confluence.  Indeed, , Napione et al. also found that long-

confluent HUVECs express 2-fold higher VEGFR2 than in sparse cells, and proposed 

the theory that increased cell concentrations are linked with the presence of mature 
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cell junctions, which regulate receptor trafficking 30. Therefore, we recommend 

researchers harvest HUVECs when they reach 80-85% confluence to avoid receptor 

changes, which made lead to inconsistent data.  

7. We find that cell dissociation choice comes with advantages and disadvantages.  An 

important disadvantage of TrypLE as noted above, some receptors are affected by 

enzymatic treatment. However, a noteworthy advantage is that cells are easily 

dissociated from flasks with TrypLE.  Whereas, cell dissociation may be incomplete 

when using Cellstripper. Sometimes abrupt mechanical force is required to 

completely dissociate Cellstripper-treated cells.  Interestingly, we have not observed 

significant plasma membrane receptor concentration changes when using abrupt 

force. However, we do not recommend readers apply the force more than once. Some 

alternatives are to tap gently on the side of flasks or to place cells in a 37 °C/5% CO2 

incubator with Cellstripper for an additional 1 – 2 min. However, >2 additional min 

in the incubator is not recommended, as we have observed unpredictable changes in 

receptor concentrations with significant incubator-Cellstripper treatment.  Taken 

together, we recommend the use of a non-enzymatic cell dissociation solution as a 

default; if cells do not lift completely --- one may employ abrupt force or an 

additional, short incubation step.  

8. Non-labeled receptors will invalidate qFlow results. Therefore, a receptor saturation 

study is necessary for accurate qFlow cytometry profiling. We have previously 

determined the optimal concentrations of PE-conjugated monoclonal antibodies for 

staining each sample (1 × 105 cells): 14 μg/mL for VEGFR1 and VEGFR2, 7.1 

μg/mL for NRP,  and 9.4 μg/mL for PDGFRs 21,35. Readers should determine the 
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optimal antibody concentrations for their respective markers by staining cell samples 

with a series of increasing antibody concentrations and quantify the biomarker levels 

using qFlow cytometry. The biomarker levels should reach a plateau when the 

optimal antibody concentration is applied. Therefore, we advise researchers to 

perform a saturation study to determine the least amount of antibodies needed to 

achieve consistent and accurate receptor quantification. 

9. The photo-physical properties of PE make it an ideal choice for receptor 

quantification. Its high extinction coefficient lowers error due to photobleach, and its 

large size imparts the advantageous 1:1 antibody to fluorophore ratio needed to 

accurately quantify receptors 47. Several studies have established the use of 

QuantiBRITETM PE beads for receptor quantification 21,27,29,35,36, so the depth of 

research available further assists the researcher in troubleshooting and optimizing for 

their application. Important application notes for QuantiBRITETM PE beads described 

here. They comprise four groups of polystyrene beads conjugated with different PE 

densities: low (474 PE molecules/bead), medium-low (5,359 PE molecules/bead), 

medium-high (23,843 PE molecules/bead), and high (62,336 PE molecules/bead). 

The exact PE number may differ from batch to batch and can be found on the flyer in 

the kit. A representative figure of all four bead-populations distinctively displayed on 

a PE histogram can be seen in Figure 1B. Other options for qFlow cytometry include 

Quantum MESF and Quantum Simply Cellular microspheres, which also offer FITC-

based quantitative tools. However, the fluorophore sensitivity to photobleach, buffer, 

pH, etc. should be considered when choosing a fluorescent bead (e.g., FITC vs. PE). 

Overall, our approach has been optimized for applying QuantiBRITE-PE for 
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quantifying angiogenic receptors; however other tools exist and can be translated to 

qFlow cytometry via optimization. 

10. Live/dead cell staining or a reliable way to exclude dead cells is necessary for 

accurate receptor quantification. We observe that there is no significant difference in 

receptor quantitation when all cells are analyzed (live + dead cells) versus when only 

live cells are analyzed (via SYTOXTM Blue staining) for the following receptors: 

VEGFR1, VEGFR2, NRP1, Tie2, and PDGFRα (Fig. 4A).  However, we do observe 

significant changes in VEGFR3 plasma membrane concentrations on HUVECs and 

PDGFRβ on HDFs when dead cells are not excluded (Fig. 4A). To further examine 

VEGFR3 plasma membrane expression on live and dead cells, cell-by-cell analysis 

was applied as described in step 3.6. We observe that the live-cell population and live 

+ dead mixture population both exhibit twoVEGFR3 subpopulations (Fig. 4B). Two-

component lognormal mixture modeling indicates that 97% of live HUVECs have an 

average of ~1,900 VEGFR3/cell, while 3% display an average of ~65,000 

VEGFR3/cell (Table 1). Conversely, the high-VEGFR3 subpopulation has greater 

density in the live + dead HUVEC population: 33% display ~21,000 VEGFR3/cell 

and 67% display ~1,700 VEGFR3/cell (Table 1). Increased density of the high-

VEGFR3 subpopulation when dead cells are included suggests that the high-VEGFR3 

subpopulation is comprised of dead and apoptotic cells. This underlies the necessity 

to apply live/dead staining for accurate receptor profiling. 

11. Cells are distributed based on their sizes on a FSC-A vs SSC-A dot plot (Fig. 1E). 

The bigger the cells are, the higher their FSC-A is; the greater the cell granularity, the 

higher their SSC-A. When cells are prepared carefully, minimizing aggregation and 
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cell lysis (e.g., kept on ice, titrated and/or strained prior to imaging, solutions are 

buffered, solutions are isotonic, solutions do not include Ca or Mg), cell populations 

primarily resolve as singlets 34,35,48–50.  We observe that higher order cell clusters 

(e.g., doublets, triplets, etc.) are few and can be distinguished linearly in the FSC-A 

vs SSC-A dot plot. Overall, observing best-practices in handling enables easy gating 

of single-cell populations.   

12. Accounting for cell autofluorescence in ensemble qFlow cytometry analysis can be as 

simple as subtracting the average cell fluorescence of non-labeled cells. However, 

when performing cell-by-cell analysis accounting for autofluorescence may 

incorporate error. Indeed, the background subtraction method that we present may 

result in some negative 
realPE  values, indicating that the noise is larger than the 

signal. For simplicity, we set the negative values to zero. Figure 5 shows a 

comparison between cell-by-cell VEGFR1 histogram before and after background 

subtraction. Overall, the autofluorescence method presented here allows researchers 

to account for background noise such as cell autofluorescence by shifting the 

fluorescence signal based on a derived signal to noise ratio 21. 

13. The high-throughput cell-by-cell data obtained by flow cytometry renders it an ideal 

tool for studying cell heterogeneity.  The quantitative nature of qFlow cytometry adds 

the additional dimension of quantifying cell heterogeneity, which can be useful for 

several areas of research, most pressingly cancer medicine 34. Towards these goals, 

K-S and QE values are good analytical tools to statistically characterize cellular 

heterogeneity. The K-S test compares two populations and statistically determines 

whether they are drawn from the same continuous distribution. In this protocol, the ‘
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Pks kstest2( , Pref)w= ,’ command in MATLAB tests the null hypothesis that the 

number of receptors/cell population ( w ) is drawn from a Gaussian distribution, 

provided by the reference Gaussian distribution Pref . Pks will either equal 0 or 1; 

Pks = 1  indicates that the null hypothesis is rejected at the 5% significance level (the 

number of receptors/cell population is not Gaussian), whereas Pks = 0  fails to reject 

the null hypothesis. Therefore, K-S testing offers a statistical method for reporting 

differences in qFlow cytometry data that is analyzed on a cell-by-cell level. 

Traditional diversity measurement assumes all differences between groups are equal, 

whereas QE, introduced by Rao, accounts for the probability differences among those 

groups 51–54. The measurement of QE bins a group of cells into a finite number of 

subsets based on membrane receptors concentrations, and calculates the average 

dissimilarities between two randomly drawn subsets from the group of cells. QE has 

been shown to provide a quantitative measure of the diversity of cellular phenotypes 

in cancer tissue sections for diagnostic applications 55. It has also been applied to 

characterize cellular heterogeneity in response to drug treatment 56. As researchers 

extract quantitative data from qFlow cytometry studies, we recommend K-S and QE 

values as good approaches for characterizing  non-normality and diversity in 

heterogeneous cell populations 21,56.   
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2.5 FIGURES AND FIGURE LEGENDS 

 

Figure 1. Gating on the HDFs for qFlow cytometric analysis using FlowJo. (A) Gate single-bead 

population on a FSC-A vs. SSC-A dot plot. (B) Gate each population of beads conjugated with different 

numbers of PE on a histogram of PE-A. (C) PE calibration curve (red) obtained by fitting log10 PE geometric 

mean against log10 PE molecules/bead. (D) Gate live-cell and dead-cell population on a histogram of Pacific 

Blue-A. (E) Gate single-cell population from live cells on a FSC-A vs SSC-A dot plot.  
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Figure 2. Effects of TrypLETM comparing to CellstripperTM on receptor quantification of (A) 

HUVECs and (B) HDFs. Significance tests were conducted using two-sample t-test where *** indicates 

p < 0.001. 

  



 
 

36 
 

 

Figure 3. Quantification of binding sites for antibodies on mouse 3T3, HUVECs and HDFs.  
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Figure 4. Mixture modeling can be applied to unmix VEGFR3 expression on live and dead HUVECs. 

(A) Comparison of plasma membrane receptor concentration between live single cells and live + dead single 

cells. Significance tests are conducted using two-sample t-test where * indicates p < 0.05 and *** indicates 

p < 0.001. (B) Gaussian mixture models of VEGFR3 subpopulations on HUVECs. Dashed lines represent 

subpopulations having a higher density and dotted lines represent subpopulations having a smaller density.  
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Figure 5. Corresponding VEGFR1 cell-by-cell distribution computed from PE fluorescence of labeled 

HUVECs before (red dotted line) and after background subtraction (grey filled area). 
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2.6 TABLE 

Table 1. Gaussian mixture model parameters for HUVECs labeled with anti-VEGFR3-PE. 

 

Sample 

Mean Standard deviation Density 

μ1 μ2 σ1 σ2 π1 π2 

Live 1,900 65,000 3.19 2.49 0.97 0.03 

Live + Dead 1,700 21,000 2.54 2.88 0.67 0.33 
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CHAPTER 3 QUANTIFICATION OF VEGFRS, NRP1, AND PDGFRS ON 

ENDOTHELIAL CELLS AND FIBROBLASTS REVEALS SERUM, INTRA-

FAMILY LIGAND, AND CROSS-FAMILY LIGAND REGULATION1  

Computational modeling of angiogenesis is limited by a lack of experimental data on angiogenic 

receptor levels. Recent receptor profiling quantified vascular endothelial growth factor receptors 

(VEGFRs); however, data on other angiogenic receptors, such as platelet derived growth factor 

receptors (PDGFRs), are also necessary for the development of an accurate angiogenesis model. 

Here, we establish conditions for membrane PDGFR quantification. Additionally, we determine 

how several environmental conditions control membrane PDGFR levels on human dermal 

fibroblasts. We demonstrate that membrane PDGFRβ concentrations are negatively correlated 

with both media serum concentration and cell growth rate, in vitro. We also show VEGF-A165-

mediated downregulation of membrane PDGFRα (~25%) and PDGFRβ (~30%), following a 24-

hour treatment. This supports the idea that VEGF-A165 acts independently of VEGFRs to signal 

through PDGFRα and PDGFRβ. We observe that PDGF-AA and PDGF-AB downregulate 

membrane PDGFRα by up to 55% and 75%, respectively, while having little to no effect on 

PDGFRβ or NRP1. We observe that PDGF-BB effects both PDGFRs and NRP1: membrane 

PDGFRα and PDGFRβ were downregulated by up to 70% and 90%, respectively, whereas 

membrane NRP1 was upregulated by up to 40%. These data provide the necessary insight to 

accurately represent PDGFRs in angiogenesis models, while offering new insight into the 

regulation of membrane PDGFRs.  

 

1 This chapter was published in Cellular and Molecular Bioengineering (2015) Volume 8, Issue 

3, pp 383-403. DOI: https://doi.org/10.1007/s12195-015-0411-x. 

https://doi.org/10.1007/s12195-015-0411-x
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3.1 INTRODUCTION 

Membrane proteins are the initial transducers of cytokine signaling towards intracellular 

response; their expression defines pathologies and treatment regimens. As such, insights into 

membrane protein localization and activation can advance our understanding of complex 

biological processes, such as angiogenesis. Towards this aim, VEGFRs have been extensively 

profiled 1–4 and modeled 5–8. These studies revealed several VEGFR regulatory roles including 

the following: endothelial tip-cell versus stalk-cell selection 9–11, endothelial proliferation and 

migration to hypoxic regions 12–15, and vascular anastomoses and ultimate vascular stability 16–21. 

While these VEGFR contributions are significant, there are several other signaling axes that are 

critical to the process of angiogenesis: PDGFRs, which regulate vascular stability 22–24; fibroblast 

growth factor receptors (FGFRs), which influence cellular proliferation and increase motility 25; 

Tie receptors, which control vascular quiescence, vascular maintenance, and angiogenesis 26–29; 

and transforming growth factor receptors (TGFRs), which affect cellular proliferation 8. Of these, 

the PDGF-PDGFR axis offers considerable insight into VEGFR-angiogenic signaling, because 

of its independent contributions to vascular signaling and its crosstalk with the VEGF axis.   

PDGF ligands are within the family of disulfide-bonded homodimers, which include AA-, BB-, 

CC- and DD- polypeptide chains, as well as the heterodimer PDGF-AB 30–33 (Fig. 6). The four 

dimeric isoforms, PDGF-AA, PDGF-AB, PDGF-BB, and PDGFCC bind to PDGFRα; PDGF-

BB and PDGF-DD bind to PDGFRβ; and PDGF-AB, PDGF-BB, and PDGF-CC can bind to 

heterodimeric, PDGFRαβ complexes.  

PDGF-mediated activation of PDGFRs regulates embryonic development, maintains tissue 

stability, and serves reparative functions. During development, PDGF signaling enables the 
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necessary pericyte support of endothelial tubes 22,34. Indeed, PDGF B-/-  mice develop defective 

kidneys and abnormal microvessels that do not recruit pericytes to the vessel wall35,36; and PDGF 

A-/-  mice exhibit defective development of alveoli in the lung with an emphysema-like 

phenotype35,37. As for its role in tissue stability, PDGF is a potent regulator of cells comprising 

the connective tissue (e.g., fibroblasts and smooth muscle cells)38 39. PDGF signaling therein 

helps enable cell proliferation, migration, and maintenance of the interstitial fluid pressure40. 

PDGF signaling also has a reparative function. It stimulates wound-healing41–43, is upregulated 

following ischemic injury in endothelial and mural cell regions44, and induces vascular growth 

and reperfusion45 in animal ischemia models.  

While PDGF can induce vascular growth, it is also indicative of VEGF-mediated angiogenic 

signaling, owing to recently established cross-talk between the families.  VEGFR2 and PDGFRβ 

can form complexes on the pericyte-like 10T1/2 cell line 46,47; VEGF-A can bind to both 

PDGFRα and PDGFRβ, mediating migration on human dermal fibroblasts 48. Furthermore, 

VEGF-PDGFR and PDGF-VEGFR interactions have recently been discovered and 

systematically quantified 49. Therefore, the coordinated analysis of VEGF and PDGF signaling 

would advance our knowledge for ligand-receptor interactions, while uncovering novel 

approaches for controlling angiogenesis. However, these signaling axes have not been integrated 

into a comprehensive model. 

Systems biology offers promising approaches for integrating VEGF and PDGF signaling. 

Computational models have characterized VEGF-VEGFR binding in both healthy and diseased 

tissue50,51, VEGF spatial distribution in skeletal muscle 52–54, angiogenic sprouting in skeletal 

muscle 55,56, and VEGF gradients in peripheral artery disease (PAD) 57. PDGF models have also 
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been developed, which examined PI3K and MAPK pathways in fibroblasts 58,59. In order to 

integrate and understand VEGF-PDGF cross-talk, deterministic models are necessary. Such 

models require data on receptor concentrations. However, plasma membrane receptor quantities 

can be cell-specific4 and are not well quantified for PDGFRs.  

Quantitative flow (qFlow) cytometry is a useful approach for determining receptor quantities on 

plasma membranes. Here, immunofluorescent labeling of cells is examined alongside fluorescent 

microsphere calibration using flow cytometry to provide a high-throughput method of 

quantifying receptors on a cell-by-cell basis1,60,61. In order to establish this approach for 

VEGFRs, we previously confirmed VEGFR antibody specificity and determined the conditions 

in which VEGFR antibody binding were saturating3. Additionally, the VEGFR response to 

environmental stimuli, such as VEGF ligands and enzymes was fully characterized34. Extending 

qFlow cytometry to PDGFRs requires similar experimental optimization. However, an 

understanding of how PDGFRs are regulated by environmental stimuli has yet to be established.  

Several studies have shown PDGFRs to be highly responsive to stimuli, including: PDGF62, 

VEGF-A 48,63, and serum concentrations of the culture media 64. Ball et al. have shown that 

VEGF-A can induce proliferation and migration of MSCs via signaling through PDGFRα and 

PDGFRβ48. Furthermore, Battegay et al. observed expression of PDGFRβ on angiogenic 

endothelial cells, of which the proliferation and tube formation was dependent on the presence of 

serum in the culture media. They further demonstrated that it was PDGF-BB, not PDGF-AA that 

drove tube/cord formation of the angiogenic endothelial cells 64. Therefore, mapping how cells 

respond to these changes will offer insight into their cell-membrane regulation, while providing 

the accurate data needed for computational model development.  
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Here, we examine the regulation of membrane PDGFRs with comparison to VEGFRs and the 

VEGFR co-receptor, NRP1 on fibroblasts and endothelial cells.  We examine how ligands and 

environmental stimuli affect membrane receptor concentrations. We also examine the 

heterogeneity in cell response by performing cell-by-cell analysis of receptor concentrations. 

Altogether, we establish methods for membrane PDGFR quantification, give insight into 

membrane receptor regulation, and provide data necessary for computational models. 

3.2 MATERIALS AND METHODS 

3.2.1 Cell culture 

Human dermal fibroblasts (HDFs), derived from a normal adult, were purchased (Lonza, 

Allendale, NJ), expanded, and cryopreserved at a final concentration of 5 × 105 cells/mL. 

Freezing media, used for cryopreservation, included 80% Fibroblast Growth Medium-2 (FGM-

2), 10% Fetal Bovine Serum (FBS), and 10% dimethyl sulfoxide (DMSO). The fibroblasts were 

cultured on flasks and maintained in one of three types of media: (1) FGM-2 containing 2% (v/v) 

FBS, 0.1% (v/v) insulin, 0.1% (v/v) human recombinant basic FGF-B (rhFGF-B), and 0.1% (v/v) 

gentamicin/amphotericin at a 1:1000 ratio (GA-1000). (2) High-serum media: DMEM with 4.5 

g/L glucose, L-glutamine, and sodium pyruvate (Cellgro, Inc.) and supplemented with 10% (v/v) 

FBS and 1% penicillin/streptomycin (Invitrogen). (3) Low-serum media: DMEM with 4.5 g/L 

glucose, L-glutamine, and sodium pyruvate (Cellgro, Inc.), supplemented with 5% (v/v) FBS and 

1% (v/v) penicillin/streptomycin. The media was filtered using Nalgene™ Rapid-Flow™ Sterile 

Disposable Bottle Top Filters containing a polyethersulfone (PES) Membrane (Nalge Nunc 

International Corp., Rochester, NY). The pore size of the filter is 0.20 μm. The media was stored 

at 4 °C and warmed to 37 ºC upon usage. Human umbilical vein endothelial cells (HUVECs) 

were acquired from individual donors (Lonza and Invitrogen). The endothelial cells were 
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maintained in Endothelial Cell Growth Medium-2 (EGM-2) supplemented by the EGM-2 Single 

Quot Kit, which contains growth factors and fetal bovine serum (Lonza), as previously described 

3,65. All cells were maintained at 37°C in 95% air, 5% CO2. All cells were grown to confluence 

before dissociating and were used only up to passage 6. 

3.2.2 Media comparison  

HDFs were seeded at equal densities in each of the 3 media. All media were changed every two 

days. HUVECs were seeded at equal densities in supplemented EGM-2 or Media 200 (Table 2) 

and media were changed every other day. Cells were imaged daily on an inverted EVOS FL 

microscope (AMG, Mill Creek, WA), using a 10X Plan PH2 0.25 NA air objective. Image 

brightness, contrast, tone and color were adjusted using both Adobe Photoshop and Image J (Fig. 

8A and 9A). Cell confluency was automatically quantified in Image J, as follows: images were 

converted to 16-bit greyscale (Fig. S1A) and thresholded (Fig. S1B). Particles between 100-1000 

µm2 were counted from three different regions of a T-175 flask (Fig. S1C) and normalized to the 

maximum cell count observed.  

3.2.3 Growth factor application  

The homodimeric proteins, PDGF-AA and PDGF-BB, the heterodimeric protein PDGF-AB 

(R&D Systems, Minneapolis, MN) and the recombinant hVEGF-A165 (Shenandoah 

Biotechnology, Warmack, PA) were reconstituted with 1× Dulbecco's Phosphate-Buffered Saline 

(PBS) at concentrations of 350 μg/mL for PDGF-AA, PDGFAB, PDGF-BB, and at 100 μg/mL 

for hVEGF-A165 The ligands were frozen, and stored at −20°C. Ligand concentrations were 

confirmed by a NanoDrop 2000c UV-Vis Spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). Each ligand was incubated with cells for 20–24 h. 
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3.2.4 Cell dissociation 

For routine cell culture, cells were detached from flasks using TrypLE Express (Invitrogen); 

however, serine proteases (e.g., trypsin), can significantly affect cell quantification results3. 

Therefore, when performing receptor quantification, the non-enzymatic cell dissociation 

(Millipore, Billerica, MA) was applied for 4-7 min at 37°C, and flasks were subjected to abrupt 

mechanical force to dislodge cell adherence. Cells were re-suspended in stain buffer (1× PBS, 

bovine serum albumin, sodium azide)3,66, centrifuged at 500 x g for 5 minutes, supernatant was 

aspirated, and cells were re-suspended to a final concentration of 4 x 106 cells/mL in stain buffer. 

3.2.5 Cell staining 

25 µL aliquots of cells (1 x 105 cells) were added to 5 ml polystyrene round-bottom tubes (BD 

Biosciences, New Jersey) and labeled with phycoerythrin (PE)-conjugated monoclonal 

antibodies at the optimal concentrations: 14 µg/mL for VEGFR1, VEGFR2, 7.1 µg/mL for 

NRP13, and 9.4 µg/mL for PDGFRs (Fig. 7). VEGFRs were quantified on HUVECs for 

comparison and not on HDFs, because HDFs express little to no VEGFRs48. NRP1, a VEGFR 

co-receptor, was quantified on HUVECs and HDFs as a comparison. PDGFRs were quantified 

on human dermal fibroblasts, because fibroblasts are known to express these receptors38,48; 

whereas, HUVECs have shown little to no PDGFR expression67. Tubes were protected from 

light and incubated for 40 minutes on ice. Cells were washed, centrifuged at 500 ×g twice with 4 

mL stain buffer, and resuspended in 300 µL stain buffer. The precision and accuracy of qFlow 

cytometry profiling has been rigorously tested 68–71. We chose the PE fluorophore as the basis of 

our quantitative fluorescence measurements, because its high extinction coefficient reduces error 

due to photobleaching, its fluorescence is not quenched by common biomolecules (e.g., 
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antibodies), its fluorescence is independent of pH, and its size minimizes the possibility of 

multiple fluorophores conjugated to an antibody 72,73. 

3.2.6 Quantitative flow cytometry 

Flow cytometry was performed on a LSR Fortessa (BD) Flow cytometer; BD FACSDIVA 

software was used for data acquisition, and FlowJo (TreeStar) software was used for data 

analysis. Tubes were vortexed immediately prior to placement in the flow cytometer. 8,000 - 

10,000 live cells were collected from each tube. 5 μg/mL Sytox Blue (Invitrogen) was added to 

all samples to distinguish between live and dead cells. Sytox blue was excited with a solid-state 

laser (407 nm) and its emission was collected using a 450/50 band-pass filter. We plotted 

histograms of Sytox Blue fluorescence to identify the live cell population. Cells exhibiting little 

to no Sytox Blue fluorescence are gated as live cells. These gated cells were then examined in a 

plot of forward scatter area (FSC-A) versus side scatter area (SSC-A) to gate the single-cell 

population.  

3.2.7 Statistical analysis: ensemble-averaged data 

Quantibrite PE beads (BD) were collected and analyzed under the same compensation and 

voltage settings as cell fluorescence data. Quantibrite PE beads comprise a combination of 

polystyrene beads conjugated with different density of PE molecules: low (474 PE 

molecules/bead), medium-low (5,359 PE molecules/bead), medium-high (23,843 PE 

molecules/bead), and high (62,336 PE molecules/bead). A calibration curve that translated PE 

geometric mean to the number of bound molecules was determined using linear regression: y = 

mx+b, where x=log10
Number of PE molecules per bead, y represented log10

PE geometric mean per bead, and m and b 

represented the slope and intercept of the linear regression, respectively. For each experiment we 
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collected 2 – 4 biological replicates per condition. The number of independent samples and cells 

analyzed included in this manuscript for each receptor is shown in Table 3. Here, a “sample” is 

defined as a vial containing ~4×106 cells stained with antibody. The vials were composed of a 

cell suspension cultured on T-175 or T-75 flasks. The number of cells in Table 3 represents the 

number of gated, live, single cells that were analyzed. Ensemble averaged data were expressed as 

mean ± standard error of the mean. Unless otherwise noted, p < 0.05 was considered statistically 

significant using the Fisher test of variance (ANOVA) and is indicated with *, 0.001 < p < 0.01 

is indicated with **, and p < 0.001 is indicated with ***.  

3.2.8 Cell-by-cell background subtraction 

In order to accurately quantify cell-by-cell receptor levels, the background signal from cell 

autofluorescence must be subtracted from the fluorescence signal. To subtract the background 

signal present in a single emission channel for all noise magnitudes, we used a weighted integral 

approach First, we obtained cell-by-cell fluorescence data from labeled and unlabeled cells using 

flow cytometry, using the same excitation and emission spectra for all cells. We then took the 

weighted integral of the labeled and unlabeled cells by summing the fluorescence values and 

dividing by the number of values. We derived a signal to noise ratio by dividing the weighted 

integral of the labeled cell signal with the unlabeled cell signal. We weighted the labeled cell 

signal using this signal to noise ratio, shifting the signal and effectively removing the 

background. Mathematically: 
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where 
subtractedPE  is the number of receptors per cell obtained after background subtraction, 

labeledPE  is the fluorescence from labeled cells, unlabeledPE  is the fluorescence from unlabeled 

cells, and n  is the number of cells in a dataset. This subtraction method does result in some 

negative 
subtractedPE  values, indicating that the noise is larger than the signal; negative values 

are set to zero. Thus, the background subtraction method presented here allows us to accurately 

quantify fluorescent levels within the channel of interest by shifting the signal to remove noise 

from cell autofluorescence. 

3.2.9 Statistical analysis: non-normality and diversity 

A two sample Kolmogorov–Smirnov (K–S) test was performed on cell-by-cell distributions and 

a reference normal distribution in Matlab as described by previous study74. The p-value from the 

K-S test is used to quantify the receptor-specific non-normality of the cell distribution. Samples 

having p > 0.05 were considered to have a significant non-normal distribution and may suggest 

subpopulations of cells responding differently. Quadratic entropy was measured using a previous 

method74 on cell-by-cell distributions in Matlab to compare the cell diversity between receptors 

and different treatment (Fig. S3). 

3.3 RESULTS  

3.3.1 Antibody saturation affected qFlow cytometry accuracy 

Non-labeled receptors will invalidate qFlow results. Therefore, a receptor saturation study is 

necessary for accurate qFlow cytometry profiling. The saturation regime was previously 

established for VEGFR antibodies (14 µg/mL for VEGFR1, VEGFR2, 7.1 µg/mL for NRP1)3.  

Here, we observed that membrane PDGFRα (Fig. 7A) and PDGFRβ (Fig. 7B) saturated at 9.4 μg 



 
 

56 
 

antibody/mL. This represented a 75% higher labeling concentration compared to that suggested 

by the manufacturer.  Using our regression analysis, we estimated that the manufacturer 

suggested labeling of 2.3 µg/mL would result in labeling only 40% of membrane PDGFRs, 

versus ~90% of receptors at 9.38 µg/mL. Therefore, verifying antibody saturation is an important 

first step to ensure accurate quantification of cell membrane receptors. 

3.3.2 HUVEC media did not significantly affect membrane VEGFR1/2 & -NRP1 levels.  

We have previously shown that VEGF-A165 can regulate membrane VEGFR concentrations3. 

Since endothelial media contains several supplements (Table 2), we examined whether two 

commonly used endothelial cell growth media result in differential membrane VEGFR 

presentation on HUVECs. The ensemble averaged data showed that neither media exerted a 

significant effect on the membrane VEGFR1 or VEGFR2 concentrations (Fig. 8C). The cell-by-

cell analysis confirmed this finding, with membrane VEGFR1 (Fig. 8D) and VEGFR2 (Fig. 8E) 

giving similar distributions regardless of growth media. However, we observed a higher 

variability of VEGFR1 and VEGFR2 cell-by-cell distributions between different trials of 

experiments (Fig. S2). 

Interestingly, we observed significantly higher (ANOVA, p<0.001), ~50%, membrane VEGFR3 

on HUVECs grown in Media 200 compared with EGM-2 (Fig. 8C). This difference is best 

understood when examining the population data (Fig. 8F). Here, the cell-by-cell analysis 

revealed a significant difference in HUVEC membrane VEGFR3 levels between media types (K-

S test, p < 0.01) (Fig. 8F). Moreover, we observed that membrane VEGFR3 resolves into 2 sub-

populations.  Along with this observation, it also suggests that Media 200 may not provide the 
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ideal environment for reducing cell death. Indeed, we observed significantly slower cell growth 

with longer Media 200 culture times (ANOVA, p<0.05, Fig. 8A-B).  

3.3.3 Serum downregulated fibroblast membrane PDGFRβ and membrane NRP1 levels and 

increased PDGFRβ non-normality.  

We similarly examined the effect of media on the growth rate of HDFs (Fig. 9A-B) and the 

concentration of membrane PDGFRs and membrane NRP1. The HDF growth progression did 

not reflect a statistically significant difference between FGM-2 and DMEM + 5%FBS (Fig. 9B). 

However, the slope of the linear regression reflected that HDFs grown in DMEM+10%FBS grew 

significantly faster compared to FGM-2 (p < 0.05, ANOVA), which resulted in these cells 

reaching confluence ~1-2 days sooner than cells grown in the other two media (Fig. 9A).  

Membrane PDGFRs and membrane NPR1 were quantified on confluent cells with FGM-2 

reflecting control conditions.  Here, HDFs grown in DMEM +10% FBS showed a ~40% 

decrease in membrane PDGFRβ concentrations (p < 0.001) and a ~40% decrease in membrane 

NRP1 concentrations (p < 0.001) (Fig. 9C). Similarly, DMEM+5% FBS downregulated 

membrane PDGFRβ and membrane NRP1 by ~ 20% (p < 0.05). These serum-induced decreases 

in membrane PDGFRβ and membrane NRP1 were visualized in the cell-by-cell histograms as 

increased numbers of cells presenting < 10,000 receptors (Fig. 9E & F). Serum did not 

significantly affect membrane PDGFRα: the ensemble averaged data showed no significant 

differences across media. However, a K-S test on the cell-by-cell analysis showed that the non-

normality in membrane PDGFRα distributions were proportional to serum concentrations (Fig. 

9D & G).  
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3.3.4 PDGF did not affect HUVEC membrane VEGFR1/2 levels. 

 Given the recently discovered VEGF-A signaling via PDGFRβ48, we examined whether PDGFs 

could regulate plasma membrane levels of VEGFRs and the co-receptor, NRP1 (Fig. 10A). 100 

ng/mL PDGF-AA, -AB and -BB treatment for 20-24 hours affected neither membrane VEGFR1 

(Fig. 10B) nor membrane VEGFR2 (Fig. 10C). Membrane VEGFR3 was unaffected by PDGF-

AB; however, its levels were increased by ~60% in the presence of 100 ng/mL PDGF-AA, and it 

was upregulated by ~50% in the presence of 100 ng/mL PDGF-BB (p < 0.01, Fig. 10A & D). As 

with the Media 200-mediated VEGFR3 increase, PDGF-AA and PDGF-BB presented increased 

numbers of the high- VEGFR3 subpopulation. Although NRP1 has not been shown to bind 

PDGFs, its membrane levels were upregulated by ~10% upon treatment of 100 ng/mL of PDGF-

AB and PDGF-BB while its concentrations remained unaffected by 100 ng/mL of PDGF-AA 

(Fig. 9A & E). 

3.3.5 VEGF-A165 downregulated fibroblast membrane PDGFRα levels.  

The cross-family dose-response relationship was obtained for HDFs using concentrations of 

VEGF-A165 ranging from 25 ng/mL to 100 ng/mL (Fig. 11A). Membrane PDGFRα levels 

remained constant with increasing VEGF-A165 concentration from 25 ng/mL to 50 ng/mL. 

Membrane PDGFRα levels were decreased by ~25%, at 100 ng/mL VEGF-A165. Membrane 

PDGFRβ levels were similarly decreased at this dose (p < 0.05). These VEGF-A165-induced 

decreases in PDGFRα and PDGFRβ plasma membrane levels were also reflected in leftward 

shifts in their cell-by-cell distributions (Fig. 11B-C). The downregulation in membrane PDGFRα 

can be quantitatively described as a ~65% decrease in the number of HDFs expressing > 5,000 

membrane PDGFRα/cell and a ~50% increase in the number of HDFs expressing 1,400 – 5,000 
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membrane PDGFRα/cell. Similarly, 100 ng/mL VEGF-A165 treated HDFs present a ~45% 

increase in the number of cells expressing < 80,000 membrane PDGFRβ/cell. While NRP1 has 

been shown to bind VEGF-A165, membrane NRP1 levels remained constant at ~ 119,230 ± 3,410 

NRP1/HDF as the concentration of VEGF-A165 increased (Fig. 11A & D). Furthermore, a K-S 

test on cell-by-cell distributions revealed that the non-normality of the membrane PDGFRβ and 

NRP1 distributions increased with increasing VEGF-A165 concentration from 25 ng/mL to 100 

ng/mL (Fig. 11E). 

3.3.6 PDGF-AA downregulated fibroblast membrane PDGFRα levels and did not affect 

membrane PDGFRβ.  

PDGF ligands regulate mural cell proliferation and migration through selective PDGFR 

activation. In particular, PDGF-AA signals exclusively through PDGFRα, so we treated HDFs 

with PDGF-AA to determine if it exerts a regulatory effect on membrane PDGFRs (Fig. 12A). 

We observed that as PDGF-AA concentrations increased, PDGFRα membrane levels 

significantly decreased by up to 55% (p < 0.05 for PDGF-AA concentrations ≥ 5 ng/mL, Fig. 

12A-B). This PDGF-AA-mediated decrease of membrane PDGFRα was further observed as a 

significant leftward shift in the cell-by-cell distributions (Fig. 12B). Membrane PDGFRβ, which 

does not bind PDGF-AA, was unaffected by PDGF-AA (Fig. 12A & 12C). In contrast to VEGF-

A165 treated HDFs, a K-S test on the PDGF-AA treated HDFs reveals that high concentrations of 

PDGF-AA correlates with increased normality in PDGFRβ distributions (Fig. 12D). 
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3.3.7 PDGF-AB downregulated fibroblast membrane PDGFRα levels and did not affect 

membrane NRP1. 

 PDGF-AB is a binding partner of PDGFRα homodimers and PDGFRαβ heterodimers, and its 

signaling through these receptors stimulates angiogenesis in solid tumors and malignancies 75. 

We therefore looked at the comparative regulatory effect of PDGF-AB on membrane PDGFRs 

and membrane NRP1 (Fig. 13A). Following a 20-24 h treatment, PDGFRα membrane levels 

significantly decreased on HDFs, up to 76% (p < 0.001 for PDGF-AB concentrations ≥ 5 

ng/mL). This aligned with our observations of a shift in PDGFRα cell-by-cell distributions upon 

treatment with 50 ng/mL PDGF-AA (Fig. 12B). PDGFRβ membrane levels treated with 50 

ng/mL PDGF-AB decreased ~20%, but the change was not significant according to the ANOVA 

test (p > 0.05). The PDGF-AB treated PDGFRβ cell-by-cell distributions did reflect this 20% 

decrease as a leftward distribution shift (Fig. 13C). As expected, NRP1, which is not known to 

bind PDGF-AB, was not affected by PDGF-AB.  Membrane NRP1 concentrations remained 

stable at 123,970 ± 7,670 (Fig. 13A & 13D), which is unlike our observations on HUVECs (Fig. 

10A). Although unaffected in receptor levels, a K-S test on HDF cell-by-cell distributions shows 

that NRP1 has increasing normality with increasing PDGF-AB concentration (Fig. 13E). 

3.3.8 PDGF-BB regulated both fibroblast PDGFRα and PDGFRβ.  

PDGF-BB binds both PDGFRs. Moreover, previous studies have suggested that PDGF-BB 

released from endothelial cells promotes recruitment and proliferation of adjacent mural cell 

progenitors via signaling through PDGFRβ 76. Therefore, in order to determine if PDGF-BB 

exerts a regulatory effect on PDGFRs we tested PDGF-BB concentrations ranging from 5 ng/mL 

to 50 ng/mL on HDFs for 20 – 24 hr (Fig. 14A). Both membrane PDGFRα and PDGFRβ were 
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significantly affected by the addition of PDGF-BB. Membrane PDGFRα levels increased by ~30 

– 40% as PDGF-BB concentration increased from 0 to 5 ng/mL (p < 0.01 at 0.5 ng/mL and p < 

0.001 at 5 ng/mL). Membrane PDGFRα was downregulated by 50 ng/mL and 100 ng/mL PDGF-

BB treatment by ~30% (p < 0.05) and ~70% (p < 0.001), respectively. Similarly, membrane 

PDGFRβ concentrations were significantly upregulated by PDGF-BB at concentrations of 0.5 

ng/mL and 5 ng/mL by ~60% and ~50%, respectively. However, as PDGF-BB concentrations 

increased to 50 ng/mL and 100 ng/mL, membrane PDGFRβ levels decreased ~90% compared to 

control (p < 0.001). The downregulation of PDGFRα and PDGFRβ membrane levels by 100 

ng/mL PDGF-BB, observed in the ensemble averaged data, was qualitatively observed in the 

cell-by-cell analysis by the shifting of receptor distributions to the left (Fig. 14B & C). The non-

normality test does not show a PDGF-BB correlation with normality (Fig. 14E). Interestingly, 

HDF membrane NRP1 showed a similarly delayed dose response as PDGFRα: a 15 – 40% 

increase in ensemble average as PDGF-BB concentration increased from 0 – 50 ng/mL (p < 

0.001 at 50 ng/mL PDGF-BB) and a ~30% decrease when PDGF-BB reached 100 ng/mL. As 

with the other PDGFs, PDGF-BB has not been shown to bind NRP1. Contrary to increased 

membrane NRP1 levels upon treatment of 100 ng/mL PDGF-BB on HUVECs, HDF membrane 

NRP1 was downregulated by 100 ng/mL of PDGF-BB.  

3.4 DISCUSSION 

PDGFRs are important regulators of vascular development and this role underlies a need to 

better understand their cell-surface distribution. Towards this goal, we successfully: (1) 

quantified PDGFR surface-levels on fibroblasts and (2) examined their regulation by serum and 

angiogenic growth factors.   
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3.4.1 PDGFRα versus PDGFRβ membrane levels. 

 We observed significant presentation of PDGFRs on adult human dermal fibroblasts, with 

PDGFRβ present at levels two orders of magnitude higher than PDGFRα. These findings are 

consistent with prior radiolabeling studies. In particular, newborn foreskin fibroblasts (AG1523) 

were reported to present ~2,000-5,000 PDGFRα and ~150,000 PDGFRβ, and ~12,000 PDGFRα 

and ~275,000 PDGFRβ on adult fibroblasts (SK5) 77. Another study observed human fibroblasts 

presenting 50,000 PDGFRs on the plasma membrane38 with 5-10 times more PDGFRβ than 

PDGFRα. The consistently higher PDGFRβ relative to PDGFRα is important in the context of 

cross-family signaling, because radiolabeling studies would not discern the presence of any 

additional receptors (e.g. VEGFRs) with similar binding affinities as the PDGFRs. While we 

have not observed VEGFRs on the HDFs (data not shown), VEGFRs might be present on the 

cell types tested in those previous reports. Indeed, both VEGFRs and PDGFRs have been 

quantified on human dermal microvascular endothelial cells (HDMECs), at ~1,900 VEGFR1, 

~7,200 VEGFR2 and ~30,000 total PDGFRs 3,38,64. 

There are a few studies quantifying PDGFR-levels, these include: radiolabeling analysis of 

PDGF binding to 32D mouse hematopoietic cells engineered to express PDGFRα (32DαR), and 

Chinese hamster ovary (CHO) fibroblasts engineered to express PDGFRβ (HR5βR cells)78. They 

reported that 32DαR and HR5βR cells express ~50,000 PDGFRα/cell 79 and ~55,000 

PDGFRβ/cell 80, respectively. Since these were overexpression models, the number of receptors 

might not accurately reflect stromal cell PDGFR-levels. However, the characteristic expression 

pattern of lower PDGFRα and higher PDGFRβ indicated a unique regulation of these receptors 

that was preserved even under induction. Indeed, only one study has reported higher PDGFRα 



 
 

63 
 

than PDGFRβ: a human sarcoma cell line, MG-63, where ~60,000 PDGFRα and ~50,000 

PDGFRβ were present 77.  

3.4.2 Why is there differential PDGFR expression?  

An explanation may lay in the specific roles of the PDGFRs. One study suggested that low 

PDGFRα is a mechanism of modulating PDGF-AA-mediated mitogenic activity, without 

changing PDGF-AA potency, given that MG-63 cells, which expressed similar level of PDGFRα 

and PDGFRβ77, presented similar mitogenic activity stimulated by PDGF-AA and PDGF-BB. In 

another study, PDGF-AA was shown to significantly stimulate cardiac fibroblast growth, and 

these cells expressed an unusually high level of PDGFRα (15,300 PDGFRα and 24,800 PDGFRβ 

per cell)81.  These findings suggested a mitogenic role of PDGFRα in which membrane PDGFRα 

levels regulate the mitogenic activity of ligands such as PDGF-AA and PDGF-AB. Other studies 

also supported the theory of differential PDGFR roles 82,83. For example, PDGFRα activation 

inhibited fibroblast and smooth muscle cell chemotaxis, while PDGFRβ stimulated fibroblast 

chemotaxis 84,85. Indeed, these differential roles also extend to pathological conditions. For 

instance, PDGFRβ is highly expressed in cancer-associated fibroblasts in human breast cancer 

samples, while PDGFRα expression is not as frequently observed on tumor fibroblasts 86,87. In 

addition, immunohistology and confocal microscopy analysis have revealed the specific 

upregulation of PDGFRβ on blood vessels of an ischemic mouse model 88. Together, these prior 

studies and our data offer new insight into the differential presentation of PDGFRs, and these 

PDGFRα and PDGFRβ signaling contributions can be better unmixed through computational 

modeling.  
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3.4.3 Cell growth conditions: Media 

Examining cell growth conditions and mapping these to changes in protein levels is critical 

towards understanding and ultimately controlling the environmental conditions directing 

angiogenesis. A recent study showed that VEGFR2 protein levels are dependent on cell density, 

with twice as many surface VEGFR2 receptors in long confluent cells, those with cell-to-cell 

junctions, compared to sparse cells, those lacking cellular contacts 89. Although we found that 

HUVECs maintained in EGM-2 exhibited growth to confluence in a shorter time than HUVECs 

maintained in M200 media, once confluence is reached, we saw no appreciable differences in 

averaged receptor levels of VEGFR1 or VEGFR2 (Fig. 8B). These studies also brought into 

question endothelial response to growth factor, because of the differences in media 

supplementation. In comparison to Media 200, EGM-2 is supplemented with VEGF and IGF 

(Table 2), which are both known regulators of endothelial cell survival and migration90–92. Here 

we observed that such supplementation does increase growth rate; however, cells lacking these 

supplements converged to the same receptor-based steady state as cells treated with these 

supplements. 

3.4.4 Cell growth conditions: FBS 

FBS is a common supplement to in vitro culture media. Some common components of serum 

include growth factors such as fibroblast growth factor (FGF) and platelet-derived growth factor 

(PDGF), hormones, enzymes, serum proteins, fatty acids, amino acids, and carbohydrates 93,94. 

Our results showed that this combination of biomolecules can selectively downregulate PDGFRβ 

and NRP1, while increasing cell growth rate. A previous study has reported that 

DMEM+10%FBS cultured fibroblasts showed tumor cell-like growth, while human fibroblasts 
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in living dermis rarely proliferated and maintained homeostasis of the dermis through collagen 

production 95. Based on our studies, we recommend using media supplemented with lower level 

of serum when culturing HDFs in order to preserve surface receptor levels and to reflect a more 

normalized fibroblast growth rate. 

3.4.5 VEGF-mediated changes in receptor levels confirms cross-talk 

 The VEGF-A165-induced decreases in PDGFRα and PDGFRβ indicate that VEGF acts 

independently of VEGFRs to regulate PDGFR levels, possibly through internalization of 

signaling receptors. This is a significant finding, because it indicates that under conditions of 

high-VEGF, VEGF signaling through PDGFRs and regulation of PDGFR concentrations could 

play a significant signaling role. Furthermore, the fact that VEGF can downregulate PDGFRs 

means that VEGF can modulate PDGFR sensitivity to its native-ligand: PDGF. In particular, the 

downregulation of PDGFRs following VEGF application can lead to lower sensitivity of 

PDGFRs to their native ligands: PDGFs, thus possibly reducing PDGF-mediated signaling.  

Indeed, we have found one study suggesting VEGF-A inhibition of PDGF signaling; wherein 

VEGF inhibited PDGF-induced mesenchymal stem cell (MSC) migration48. 

3.4.6 High-ligand concentrations offer insight into local signaling 

The concentrations tested in this study are higher than currently reported serum ligand levels96. 

However, there are opportunities for local spikes in ligand concentration to the nM level, which 

can be mediated by extracellular matrix-ligand binding and its proteolytic release52. This 

mechanism for producing high-local VEGF-concentrations has been predicted computationally 

97, and together with our data suggests a mechanism for VEGF-mediated regulation of PDGFRs 

under the proteolytic states observed in cardiovascular disease98 and pathological 
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vascularization99,100. In contrast, VEGF regulation of PDGFR may be inhibited by VEGF 

sequestration by heparin sulfate proteoglycans (HSPGs) on the cell-surface. Computational 

modeling of FGF-HSPG binding has shown that high levels of HSPG can significantly increase 

FGF-receptor ligation101. Similar studies of VEGF-A165 binding to HSPGs102 indicated a similar 

role; however, a recent study suggested that HSPG-mediated VEGF ligation decreased VEGFR 

internalization 103. As such, HSPGs should be explored towards decreasing VEGF-PDGFR 

regulation, while proteases should be explored towards increasing VEGF-mediated regulation of 

PDGFRs. Conversely, it is important to note that we did not observe a VEGF-A165 -induced 

decrease in NRP1, the VEGFR co-receptor, on HDFs.  Nonetheless, we have previously reported 

VEGF-A induced downregulation of NRP1 on HUVECs3. This suggested that VEGF-NRP1 

downregulation requires VEGFRs. Therefore, our receptor quantification outlines an expanded 

regulatory role of VEGF signaling. 

3.4.7 Regulation of PDGFRs by PDGF 

Our data showing significant downregulation of PDGFRα confirmed that PDGFRα binds to all 

three PDGF ligands with high affinity, and  aligned with previous studies104,105.   Furthermore, 

our observation of significant downregulation of PDGFRβ by PDGF-BB but not PDGF-AB or 

PDGF-AA indicated that PDGFRβ binds to PDGF-BB with the highest affinity.  Indeed, 

previous research showed that PDGF-BB binds to PDGFRβ with a Kd of ~0.5 nM, whereas 

PDGF-AB binds to a small number of PDGFRβs with a Kd of ~0.8 nM and the majority of 

PDGFRβs with a Kd of ~6 nM104,106–108. Interestingly, we observed that the ensemble average of 

membrane PDGFRβ concentration was not significantly affected by the application of PDGF-

AB, while our cell-by-cell analysis showed that the receptor distribution shifted to the left when 
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treated with 50 ng/mL PDGF-AB.  The small population shift may map to the PDGFRβs with 

differing PDGF-AB affinity: a theory that can be better resolved via computational modeling.  

Other explanations for the small PDGF-AB-mediated population shift may lay in the 

dimerization state of PDGFRs. Although heterodimeric receptor PDGFRαβ can form and be 

activated when treated with PDGF-AB, Hammacher et al. suggested that in the absence of 

PDGFRα, PDGF-AB acts as a PDGFRβ antagonist because it binds to PDGFRβ without 

activating them32,109. It is possible that the small number of PDGFRβ downregulated upon 

treatment of PDGF-AB existed in the form of a heterodimer, which were bound to PDGF-AB 

with higher affinity. In addition, the unchanged membrane levels of PDGFRβ on PDGF-AA 

treated HDFs was consistent with previous studies where  PDGFRβ failed to bind PDGF-AA 

with any appreciable affinity104,108. Again, these PDGF concepts can be clarified by examining 

cell populations with different PDGF-PDGFR binding affinities. 

3.4.8 Fibroblasts and PDGF signaling 

 It has become increasingly appreciated that stromal cells, such as myofibroblasts and cancer-

associated fibroblasts (CAFs) play an important role in tumorigenesis76,110,111. CAFs are 

heterogeneous and may derive from tissue fibroblasts, bone-marrow-derived progenitor cells or 

transdifferentiating epithelial cells30,112. Indeed, CAFs express overlapping markers as fibroblasts 

such as NG-2, α-SMA, SM22-α and PDGFR 86,112,113. CAFs have been demonstrated to enhance 

tumor cell proliferation, angiogenesis, invasion and metastasis by secreting multiple growth 

factors and cytokines110. Recent studies have demonstrated that tumor cell-secreted PDGF-AA 

promoted recruitment of PDGFRα-positive fibroblasts, which in turn produced VEGF-A and 

enhanced tumor angiogenesis114. In another study, tumor-derived PDGF-BB was found to 
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promote stroma formation and tumor growth of melanoma115.  Therefore, quantifying angiogenic 

receptors such as PDGFRβ on HDFs provides a better understanding of the roles of stromal cells 

in tumorigenesis; modeling inter-family and cross-family signaling between PDGF and VEGF 

will also offer new insights into anti-angiogenic therapy.  

3.4.9 Cell-by-cell heterogeneity 

As a main component of drug resistance, cellular heterogeneity presents a grand challenge in 

understanding drug response and predicting therapeutic outcome5,74. In our study, we 

characterized cell-by-cell heterogeneity by its non-normality and diversity through the K-S test. 

This method was defined by Gough et al. in a previous study74.  One of the interesting findings in 

our study is that increasing the amount of serum in HDF culture media increased the non-

normality HDFs presenting membrane PDGFRβ. That indicated an increase in cellular 

heterogeneity, as defined by membrane PDGFRβ. As described before, serum is an important 

and commonly used supplement to in vitro culture media. Some common components of serum 

include growth factors, hormones, enzymes, etc66. This result suggests that in a growth 

factor/enzyme-rich environment, such as tumors and wounds, we may observe increased cellular 

heterogeneity, defined by PDGFRβ.   

3.5 CONCLUSIONS 

PDGFR, VEGFR, and NRP1 are critical to angiogenic signaling in several diseases, including 

prostate cancer, lung cancer, and endometrial cancers. Therefore understanding their regulation 

by their ligands offers new insight into pathologies where increased ligand is present. Cells were 

treated with several ligands, and we observed significant decreases in the corresponding PDGFR 

binding partners. The VEGF-A-induced changes in PDGFRs also advocate the angiogenic 
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functionality of VEGF-PDGF signaling network under high-VEGF conditions. Media 

components were also varied in our study and it revealed how the presence of serum can increase 

cell growth while decreasing membrane receptors. Overall, the membrane receptor changes that 

we observed have shed light onto cross-family regulation. We have helped to establish 

conditions for qFlow profiling of tyrosine kinase receptors, while providing the data necessary 

for advancing computational models of PDGF-VEGF cross-family signaling. 
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3.6 FIGURES AND FIGURE LEGENDS 

 

Figure 6. Schematic of cross-family binding between VEGF, PDGF family and NRP1. * NRP1 is 

shown as a co-receptor to VEGFR dimmers R and R’. 

 

 

  



 
 

71 
 

 
Figure 7. Saturation of antibody labeling for surface receptors on HDFs. (A) PDGFRα and (B) 

PDGFRβ both saturate at 9.4 μg/mL on HDFs with respect to an exponential fitting of normalized receptor 

density with increasing labeling concentration. 
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Figure 8. HUVEC media comparison. (A) Representative pictures of HUVECS cultured in each media 

on day 1-4. (B) Normalized HUVEC confluence. (C) Ensemble averages of VEGFR levels AND Cell-by-

cell analysis (D) VEGFR1, (E) VEGFR2, and (F) VEGFR3. Significance tests were conducted using 

ANOVA where * indicates p < 0.05 and *** indicates p < 0.001. 
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Figure 9. HDF media comparison. (A) Representative pictures of HDFs cultured in each media on day 1 

– day 9. Scale bar is 250 μm. (B) Normalized HDF confluency given number of days cultured of each 

media. (C) Ensemble averages of HDF receptor levels cultured in different media. Cell-by-cell analysis was 

performed on HDF receptor levels grown in each media: (D) PDGFRα, (E) PDGFRβ, and (F) NRP1 were 

analyzed. (G) p-value from K-S test of PDGFRα, PDGFRβ and NRP1 on HDFs cultured in different media. 

Significance tests were conducted using ANOVA where * indicates p < 0.05 and *** indicates p < 0.001.  
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Figure 10. PDGF regulation of HUVECs receptor levels. (A) Ensemble averages of HUVEC receptor-

levels regulated by 100 ng/mL (4 nM) of PDGFAA, PDGFAB, PDGFBB. Cell-by-cell analysis of (B) 

VEGFR1, (C) VEGFR2, (D) VEGFR3 and (E) NRP1 responses induced by PDGF ligands. Significance 

tests conducted using ANOVA where * indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 

0.001. 
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Figure 11. Response of PDGFRα, PDGFRβ and NRP1 to 20–24 h application of  0 - 100 ng/mL (2.6 

nM) VEGF-A165. (A) VEGFA dose-receptor response and cell-by-cell analysis of control (FGM-2) and 

highest VEGF dose for (B) PDGFRα, (C) PDGFRβ and (D) NRP1. (E) p-value from K-S test of PDGFRα, 

PDGFRβ and NRP1 on HDFs treated with VEGF was also analyzed. Significance tests were conducted 

using ANOVA where ** indicates p < 0.01 and *** indicates p < 0.001. 



 
 

76 
 

 
Figure 12. Response of PDGFRα, PDGFRβ to 20–24 h application of 0 – 50 ng/mL (0 – 1.75 nM) 

PDGFAA. (A) PDGFAA dose-receptor response and cell-by-cell analysis of control (FGM-2) and highest 

PDGFAA dose for (B) PDGFRα and (C) PDGFRβ. (D) p-value from K-S test of PDGFRα and PDGFRβ 

on HDFs treated with PDGFAA was also analyzed. Significance tests were conducted using ANOVA where 

** indicates p < 0.01 and *** indicates p < 0.001. 
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Figure 13. Response of PDGFRα, PDGFRβ and NRP1 to 20–24 h application of 0 – 50 ng/mL (0 – 2 

nM) PDGFAB.  (A) PDGFAB dose-receptor response and cell-by-cell analysis of control (FGM-2) and 

highest PDGFAB dose for (B) PDGFRα, (C) PDGFRβ and (D) NRP1. (E) p-value from K-S test of 

PDGFRα, PDGFRβ and NRP1 on HDFs treated with PDGFAB was also analyzed. Significance tests were 

conducted using ANOVA where ** indicates p < 0.01 and *** indicates p < 0.001. 
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Figure 14. Response of PDGFRα, PDGFRβ and NRP1 to 20–24 h application of 0 – 100 ng/mL (0 – 4 

nM) PDGFBB. (A) PDGFBB dose-receptor response and cell-by-cell analysis of control (FGM-2) and 

highest PDGFBB dose for (B) PDGFRα, (C) PDGFRβ and (D) NRP1. (E) p-value from K-S test of 

PDGFRα, PDGFRβ and NRP1 on HDFs treated with PDGFBB was also analyzed. Significance tests were 

conducted using ANOVA where ** indicates p < 0.01 and *** indicates p < 0.001. 
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Supplemental Figure 1. Image processing for cell concluency quantification. A image of HUVECs was 

converted to 16-bit greyscale using Adobe Photoshop (A) and thresholded using imageJ (B). Particles 

between 100 – 1000 μm2 were gated out using imageJ and the number of particles was recorded as cell 

number. 
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Supplemental Figure 2. Cell by cell analysis of VEGFR1 distribution on HUVECs grown in (A) M200 

media and (B) EGM-2 under different trials. We observed a higher variability of receptor distribution 

within trials in HUVECs cultured in M200 compared to EGM-2. 
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Supplemental Figure 3. Quadratic entropy of receptors responding to different media or ligand 

treatment.  
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3.7 TABLES 

Table 2. HUVEC media supplement components 

Component 
Media-200 

(Life Technologies)  

EGM-2 
(Lonza)  

2% Fetal Bovine Serum 2% 2% 

Hydrocortisone 1 µg/mL 0.2 µg/mL 

hEGF 10 ng/mL 10 ng/ml 

bFGF 3 ng/mL 4 ng/ml 

heparin 10 µg/mL 1 ng/mL  

GA-1000  
(Gentamicin, Amphotericin-B) 

--- 3 µg/mL 

VEGF --- 2 ng/mL 

R3-IGF-1 --- 5 ng/ml 

Ascorbic Acid --- 75 mg/ml 
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Table 3. Receptor statistics 

 

 

Ensemble averaging  Cell-by-cell analysis 

n Mean ± SEM  Number of 

cells 

Median IQR Skewness K-S test 

VEGFR1 HUVECs 

 Control 8 990 ± 50  82,195 940 1,110 65 1.29 × 10-15 

 100 ng/mL 

PDGFAA 

4 990 ± 40  40,342 1,000 1,010 60 1.68 × 10-15 

 100 ng/mL 

PDGFAB 

3 830 ± 20  33,730 840 930 71 1.24 × 10-14 

 100 ng/mL 

PDGFBB 

8 1,000 ± 40  58,879 980 1,150 64 5.31 × 10-15 

VEGFR2 HUVECs 

 Control 7 1,890 ± 110  71,066 1,960 2,160 82 9.15 × 10-14 

 100 ng/mL 

PDGFAA 

4 1,780 ± 160  42,824 1,850 2,000 106 1.21 × 10-15 

 100 ng/mL 

PDGFAB 

3 1,650 ± 90  34,149 1,800 1,950 70 1.17 × 10-13 

 100 ng/mL 

PDGFBB 

8 2,080 ± 80  63,562 2,120 2,310 76 1.42 × 10-13 

VEGFR3 HUVECs 

 Control 6 1,840 ± 200  77,745 1,920 300% 3,864 56 

 100 ng/mL 

PDGFAA 

4 2,440 ± 80  40,424 2,630 380% 2,401 47 

 100 ng/mL 

PDGFAB 

3 1,480 ± 20  32,350 1,380 350% 3,060 51 

 100 ng/mL 

PDGFBB 

4 2,310 ± 70  38,245 2,410 440% 1,917 42 
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Table 3. Receptor statistics (continued) 

 
  

PDGFRα HDFs 

 FGM-2 51 4,580 ± 120  233,831 4,740 160% 1,543 25 

 DMEM + 5% FBS 14 4,680 ± 430  45,137 7,030 140% 268 10 

 DMEM + 10% FBS 4 5,110 ± 920  28,775 7,180 90% 1,265 21 

 100 ng/mL VEGFA 4 3,030 ± 40  19,795 2,530 200% 887 23 

 50 ng/mL PDGFAA 4 2,030 ± 100  14,206 2,280 230% 1,280 30 

 50 ng/mL PDGFAB 3 1,070 ± 20  17,810 1,380 770% 3,238 49 

 100 ng/mL PDGFBB 3 1,330 ± 70  4,679 1,430 810% 2,351 46 

PDGFRβ HDFs 

 FGM-2 55 93,290 ± 3,230  220,970 95,150 60% 63 4 

 DMEM + 

5% FBS 

16 77,060 ± 4,250  51,206 91,710 60% 84 5 

 DMEM + 10% FBS 7 53,440 ± 710  34,382 70,250 60% 31 3 

 100 ng/mL VEGFA 4 69,320 ± 1,260  19,440 74,380 80% 164 9 

 50 ng/mL PDGFAA 4 107,640 ± 1,600  26,695 121,870 40% 38 3 

 50 ng/mL PDGFAB 3 71,330 ± 1,460  17,636 69,670 50% 5 1 

 100 ng/mL PDGFBB 3 6,660 ± 300  5,084 68,740 460% 1,272 34 

NRP1 HUVECs 

 Control 5 44,090 ± 330  50,386 47,750 40% 156 4 

 100 ng/mL PDGFAA 5 47,400 ± 1,900  74,593 50,690 40% 128 4 

 100 ng/mL PDGFAB 3 48,400 ± 1,130  57,957 51,180 50% 320 10 

 100 ng/mL PDGFBB 4 47,440 ± 340  67,189 50,010 40% 330 9 

 HDFs 

 FGM-2 36 120,470 ± 2,730  147,633 113,200 60% 13 1 

 DMEM + 

5% FBS 

11 100,020 ± 7,970  24,818 112,060 60% 33 3 

 DMEM + 10% FBS 8 69,620 ± 4,210  10,450 79,060 50% 11 1 

 100 ng/mL VEGFA 4 108,210 ± 1,890  20,813 114,420 50% 12 1 

 50 ng/mL PDGFAB 3 132,180 ± 2,230  19,449 138,850 50% 43 3 

 100 ng/mL PDGFBB 3 100,830 ± 230  4,527 125,630 40% 7 1 
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CHAPTER 4 A 2D ENDOTHELIAL/FIBROBLAST CO-CULTURE MODEL1 

Angiogenesis research often applies in vitro models, such as 2D culture, wherein the vascular 

structure and microenvironment are not fully present.  However, current co-culture analysis is 

usually limited to structural examinations, such as: tubule length, number of tubules and branch 

points. As co-culture gains expanded use, it must be further probed to determine whether it 

displays other important characteristics of native vasculature, namely endothelial heterogeneity. 

An improved in vitro model involves co-culture of endothelial cells and mural cells that support 

vessel formation, in combination with quantitative analysis not only on macro features of the 

tissue model, but also characteristics at molecular level. In this chapter, we first present the 

culturing logistics important for developing a tube formation assay using a 2D 

HUVEC/fibroblast co-culture model.  Then, we quantitatively characterize the endothelial 

networks formed in the span of tube formation (24 hours – 17 days). We show measurements of 

both bulk-level and cell-by-cell concentration of a panel of receptors involved in angiogenesis: 

VEGFR1, VEGFR2, PDGFRα, PDGFRβ, Tie2, and NRP1. We examine the cellular 

heterogeneity within each cell population and how it changes as endothelial tubes form. This 

combined tube formation assay with qFlow cytometry analysis can be applied to study a number 

of vascular-based tissue dysfunction and cancer.  

 

 

 

 

 

1 This chapter was modified from a manuscript being prepared for publication. 
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4.1 INTRODUCTION 

One of the most powerful tools to study cellular crosstalk is the co-culture assay.  Ronald et al. 

have discussed several considerations when setting up a co-culture system including: choice of 

cells, choice of cultured media, phenotypic characterization of co-cultured cells, seeding logistics 

(seeding cell numbers and the order of seeding), static or dynamic, and two- or three-dimensional 

(2D or 3D)1. In particular, a tubule formation assay commonly involves the co-culture of ECs 

with stromal cells (i.e. fibroblasts, smooth muscle cells, pericytes)2,3. When human fibroblasts 

are co-cultured with endothelial cells, the fibroblast secretes matrix components leading ECs to 

the formation of micro-capillaries or tubules in 2D cell culture flasks, which closely resemble the 

capillary bed in vivo2,3. However, this assay is time consuming (12–21 days) and poorly 

characterized due to undefined matrix components secreted by fibroblasts. In terms of media, 

endothelial growth media (EGM) is the most commonly used media for culturing ECs with 

fibroblasts2,4–6; normal HDF standard media FGM-2 has also been used in some assays7. 

Kirkpatrick et al. suggest that in a co-culture system the more sensitive cell type will usually 

have the greater weight in the formulation of the final media to be used1. While a 3D assay is 

likely to be more representative of angiogenesis in vivo than the 2D assays, there are technical 

challenges in both setting up the assays and in fully analyzing them. In addition, analysis of such 

co-culture assay is usually limited to tubule length, number of tubules and branch points8. 

Certainly, our focus on regulation and heterogeneity of receptor-levels will be a novel approach 

for evaluating not only the influences of co-culture on both cell types, but also the relativity of a 

co-culture assay to an injury-induced tissue environment in vivo. 

As the challenge with selecting the appropriate assays for angiogenesis research remains, it is 

essential to assess not only the macro features such as tube formation of each assay, but also the 
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micro features such as its molecular characteristics. Here, we performed qFlow cytometry to 

quantify plasma membrane receptors that are involved in angiogenic signaling pathways.  

4.2 MATERIALS AND METHODS 

Fibroblasts/EC co-culture. Multilayer co-cultures will be prepared by seeding mixtures of 

single-cell suspensions from HDFs (1×104) and HUVECs (1×104, 5×104 or 2×103 according to 

three different ratio of HDFs to HUVECs) on to 96-well plates (BD Biosciences/ Falcon, 

Heidelberg, Germany), modified from previous investigations7. Another approach of the co-

culture is to seed HDFs first onto the plate and seed HUVECs when HDFs are confluent (usually 

3 days later). In parallel, co-culture systems with corresponding relative seeding cell number, 

seeding order, media condition will be cultured on T75 flasks in order to have enough cells for 

the quantitative flow cytometric studies (see below). The media (see below) in the experimental 

setup will be routinely renewed every other day. Multilayers will be grown at 37°C in 95% air, 

5% CO2. HDFs will be used only up to passage 12 and HUVECs will be used only up to passage 

69. The formation of tubular structures will be visualized using an Olympus IX51 inverted 

microscope after Immunofluorescent staining on day 3, 7 and 14 of culturing. 

Media comparison. In order to evaluate the effect of different media on tubule formation and 

key angiogenic receptor levels, co-cultures will be maintained in two different media: (1) EGM-

2, and (2) DMEM supplemented with 5%FBS.  

Immunofluorescent imaging. Immunofluorescent staining of fibroblast/EC co-cultures in 96-

well plates will be performed according to an established protocol2,3. In brief, multilayer co-

cultures will be fixed with ice-cold 4% PFA for 10 min at room temperature and blocked in PBS 

supplemented with 6% BSA for 1 hr. Then multilayers will be labelled with 1:1000 diluted FITC 
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conjugated mouse anti-human CD31 antibody for 45 min at 37 °C and 1:1000 diluted DAPI for 5 

min. After washing in PBS, multilayers can be stored at 4 °C for future imaging. For 

documentation and analysis, three images per well will be taken at defined locations with a 

magnification of × 4, ×10, and × 20 with an Olympus IX51 inverted microscope (Olympus, Inc.). 

Images will be processed using ImageJ in order to increase contrast and brightness.  

Angiogenesis analysis. The Angiogenesis Analyzer was installed as an plugin in ImageJ, and it 

detects and measures cellular networks from microscope images. It differentiates networks into 

four main components (Fig. S4): junctions, which are where a tube branches; segments, tubes 

that link two junctions together; branches, tubes that only connect to one junction; and meshes, 

which are regions of the image that are completely enclosed by the network. The plugin 

generates a map of the network which is overlaid onto the original image. In addition, it creates a 

separate window containing the number of junctions, branches, segments, meshes, and the total 

length of all branches and segments (in pixels), as well as several other statistics that are not as 

relevant (e.g. number of isolated elements, total area of enclosed meshes, etc.).  

 

Cell dissociation. After 24 hours, 6 days, 11 days, or 17 days of culturing, EC/fibroblast co-

cultures were washed twice with 1× PBS, followed by 5 – 7-minute incubation in Cell Stripper at 

37 °C. Lifted co-culture tissues were transferred to a petri dish, where HBSS with 2mM EDTA 

and 0.2% BSA was added to the tissues as they were minced into 2mm × 2mm squares. Minced 

tissues were then incubated with 0.2% collagenase IV for 5 minutes at 4oC. After the incubation, 

the collagenase-treated tissues were vortexed for 3 – 5 minute with 1-minute interval to achieve 

single-cell suspension. The suspension was then kept on ice until antibody staining. HUVECs 
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and HDFs monocultures were harvested and dissociated as described previously (Chapter 2, 

section 2.3.2). 

Cell staining. 25 µL aliquots of cells (1 x 105 cells) were added to 5 ml polystyrene round-

bottom tubes (BD Biosciences, New Jersey). FITC-anti-hCD31 or APC-anti-hCD34 at 

recommended concentration by their manufacturers were added to each sample tube to 

differentiate HUVECs from HDFs. Then, phycoerythrin (PE)-conjugated monoclonal antibodies 

were added at their respective concentrations: 14 µg/mL for VEGFR1, VEGFR2, 7.1 µg/mL for 

NRP110, and 9.4 µg/mL for PDGFRs. Sample tubes were protected from light and incubated for 

40 minutes on ice. Cells were washed, centrifuged at 500 ×g twice with 4 mL stain buffer, and 

resuspended in 300 µL stain buffer. The precision and accuracy of qFlow cytometry profiling has 

been rigorously tested 9,11–13.  

Quantitative flow cytometry. Flow cytometry was performed on a LSR Fortessa (BD) Flow 

cytometer; BD FACSDIVA software was used for data acquisition, and FlowJo (TreeStar) 

software was used for data analysis. Tubes were vortexed immediately prior to placement in the 

flow cytometer. 8,000 - 10,000 live cells were collected from each tube. 5 μg/mL Sytox Blue 

(Invitrogen) was added to all samples to distinguish between live and dead cells. Sytox blue was 

excited with a solid-state laser (407 nm) and its emission was collected using a 450/50 band-

pass filter. We plotted histograms of Sytox Blue fluorescence to identify the live cell population. 

Cells exhibiting little to no Sytox Blue fluorescence are gated as live cells. These gated cells 

were then examined in a plot of forward scatter area (FSC-A) versus side scatter area (SSC-A) to 

gate the single-cell population.  
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Statistical analysis: To examine the average receptor concentrations in all cells, ensemble-

averages were calculated as described in Chapter 3 (section 3.2.7). To examine variation of 

receptor concentration within cell populations, cell-by-cell analysis and mixture modeling was 

conducted as described in Chapter 2 (section 2.3.6 and 2.3.7). Finally, quadratic entropy (QE) 

was calculated for each receptor distribution as a quantitative measure of cell heterogeneity 

defined by receptor concentration. Please refer to Chapter 2 (section 2.3.8) for a detailed 

protocol. 

4.3 RESULTS AND DISCUSSION 

4.3.1 HUVECs supported by fibroblasts form capillary-like structures in vitro 

To establish a co-culture system with HUVECs and HDFs, the following culturing logistics were 

assessed (Fig. 15): media, HUVEC:HDF seeding ratio, and seeding order. When cultured alone, 

HUVECs and HDFs organized into typical cell monolayers (Fig. 15a, e), whereas they showed 

variability in cell behavior and organization when cultured together. Co-cultures with 1:5 HDFs 

to HUVECs seeding ratio did not form tubules up to day 17, and displayed HUVEC overgrowth 

regardless of the culturing order of cells (Fig. 15b, g). Co-cultures with 5:1 HDFs to HUVECs 

seeding ratio presented more EC clusters and fewer tubules comparing to 1:1 HDFs to HUVECs 

(Fig. 15c, d). HDFs were able to proliferate in DMEM supplemented with 10% FBS, however, 

DMEM media was not able to support growth of HUVECs in co-cultures (Fig. 15f). To test if 

ECMs secreted by culturing HDFs first were sufficient to support tubule formation, we seeded 

HDFs first, following by HUVECs 3 days later. Regardless of HDFs being cultured first or at the 

same time as HUVECs, we did not observe tubule structures up to 17 days (Fig. 15h).  
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When HUVEC and HUVECs were incubated together at a 1:1 seeding ratio (3 × 104 cells/cm2) 

in standard growth media for endothelial cells (EGM-2), and the media was changed every other 

day, both cell types proliferated until the culture reached confluence. After 24 hours, HUVECs 

were seen to form clusters, with HDFs dispersed amongst them (Fig. S5a). As HDFs grew more 

confluent, tubule structures were seen to sprout from HUVEC clusters, usually by day 6 (Fig. 

S5b). These HUVEC clusters and sprouts continued to sprout, lengthen, and organized into 

capillary-like structures by day 11 (Fig. S5c). By day 17, most of the development of HUVECs 

into tubule-like structures occurred (Fig. S5d). To quantitatively characterize the tubule growth 

for the established HUVEC/fibroblast co-culturing system, the average number of junctions and 

branches and was determined, and their length (Fig. 16). An increase in the number of junctions 

and branches was observed between day 6 and 17 and accompanied by a significant increase in 

tubule length (p<0.01).  

4.3.2 Co-culturing induced a rapid increase of VEGFR1 on HDFs within 24 hours 

VEGFRs are key regulators of angiogenesis; however, the exact role of VEGFR1 has been 

controversial. As such, VEGFR1 quantification can offer insights into how they support vessel 

growth.  We found that HUVECs in co-cultures presented fewer than 800 VEGFR1s/cell up to 

17 days, whereas HDFs showed a higher VEGFR1 concentration (~2,700 receptors/cell) within 

24 hours (Fig. 17A). Cell-by-cell analysis confirmed this rapid increase through a right-handed 

shift of VEGFR1 distribution comparing to HDF monoculture (Fig. 18D). By day 6, VEGFR1 

concentration on HDF plasma membranes reduced to ~200 receptors/cell and remained lower 

than ~500 receptors/cell.  To ensure plasma membrane VEGFR1 on HDFs following 24-hr co-

culturing was not induced by collagenase, we examined the effect of collagenase on receptors 

tested in this study and found no significant change in receptor concentrations (Fig. S6). These 
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findings for the first time showed quantitative proof that HDFs, which do not natively express 

VEFGR1, can express VEGFR1 on their plasma membranes when co-cultured with HUVECs. 

4.3.3 Co-cultured HUVECs showed higher VEGFR2 concentration than monoculture 

throughout tubule development 

VEGF-VEGFR2 signaling has been widely studied and signaling via VEGFR2 is considered to 

be pro-angiogenic. In line with its pro-angiogenic role, we observed 20% - 140% increase in 

plasma membrane VEGFR2 concentrations on co-cultured HUVECs as tubules develop---this 

increase is when compared to monocultures.  Although, both co-cultured and mono-cultured 

HUVECs showed 3,300—8,100 VEGFR2s/cell, co-cultured HDFs had lower VEGFR2 [390 – 

1,100 receptors/cell] (Fig. 17B).  Cell-by-cell analysis suggest subpopulations of varying 

VEGFR2 concentrations among co-cultured HUVECs (Fig. 18B). The subpopulations within 

VEGFR2 cell-by-cell distribution and their characteristics were further determined by Gaussian 

mixture modeling 14,15, a method we employed to identify log-normal sub-populations described 

by their mean, standard deviation, and density. Particularly, a 3-component mixture model 

showed 25% of the HUVECs from 24-hr co-cultures had 3,100 VEGFR2s/cell on average, 46% 

had an average of 8,400 VEGFR2s/cell, and 29% had an average of 17,000 VEGFR2s/cell (Fig. 

S7A). This high heterogeneity was also captured by quadratic entropy (QE), a measure we 

employed to quantify diversity of cellular phenotypes 16–18, as QE of 24-hr VEGFR2 was ~2-fold 

higher than day 6-17 (Fig. S8A). These quantitative results showed that RTK signaling through 

VEGFR2 played an active role throughout tubule formation in a HUVEC/fibroblast co-culture 

system.  
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4.3.4 Tie2 concentration on HUVECs reached highest during late-stage co-cultures 

Tie2 maintains the vascular integrity of mature vessels and is thought to mediate quiescence of 

blood vessels through Ang-Tie2 signaling 19. Although we did not observe significant changes in 

Tie2 concentration ensembles throughout tubule development [1,500 – 2,300 Tie2s/cell] when 

compared to HUVEC monocultures [2,100 Tie2s/cell], ensemble averages showed a 50% 

increase of Tie2 concentration from day 11 to day 17 (Fig. 17C). Cell-by-cell analysis confirmed 

this increase by a right-handed shift of Tie2 distribution on day 17 when compared to co-cultures 

at earlier stage (Fig. 18C).  

4.3.5 NRP1 concentration decreased on HUVEC/fibroblast co-cultured cells within 11 days  

NRP1, a VEGFR co-receptor, is highly expressed on both endothelial cells (ECs) and fibroblasts, 

where we have measured 35,000 – 73,000 NRP1s/EC and 70,000 – 120,500 NRP1s/fibroblast in 

vitro 10,20. We observed a downregulation of NRP1 on co-cultured HUVECs from the initial 

HUVEC-HDF contacts to day 11 (Fig. 17D). Quantitatively, NRP1 concentration on co-cultured 

HUVECs decreased from 47,000 NRP1/cell to 28,900 NRP1/cell after 11 days, and remained 

steady until day 17. However, we did not observe any significant difference in NRP1 

concentration between HUVEC monocultures and co-cultures. In contrast, co-cultured HDFs 

present significantly lower number of NRP1s on their plasma membrane throughout tubule 

development when compared to mono-cultures (p< 0.001, Fig. 17D). Throughout tubule 

development, NRP1 concentration on co-cultured HDFs decreased from 73,300 NRP1s/cell to 

52,400 NRP1s/cell within 6 days, and bounced back to 77,800 NRP1s/cell on day 17.   

Cell-by-cell analysis of NRP1 concentration revealed a highly heterogeneous HUVEC 

population on day 17 (Fig. 18G), which was confirmed by a high QE of 0.6 (Fig. S8A). A 3-



 
 

104 
 

component mixture model identified a low-NRP1 subpopulation (9,000 NRP1s/cell, 67%) and a 

high-NRP1 subpopulation (49,300 NRP1s/cell, 29%) within co-cultured HUVECs on day 17, as 

shown in Fig. S7B. For co-cultured HDFs, cell-by-cell analysis confirmed the changes in NRP1 

plasma membrane concentration (Fig. 18J), while QE remained lower than 0.35 except for day 6 

(Fig. S8B).  A further analysis of co-cultured HDFs on day 6 revealed a low-NRP1 

subpopulation (5,500 NRP1s/cell, 12%) and a high-NRP1 subpopulation (58,500 NRP1s/cell, 

88%) using a 2-component mixture model (Fig. S7C). 

4.3.6 PDGFRα and -Rβ showed a steady increase on co-cultured HDFs from day 6 

PDGFRs, typically expressed by perivascular cells including pericytes and fibroblasts, serve 

important roles in supporting vasculature and tissue repair 20–24. We have previously quantified 

4,600 PDGFRαs/cell and 93,300 PDGFRβs/cell on confluent HDF monocultures, and how 

growth factors regulate the receptors 20.  While PDGFRα concentration on co-cultured HDFs 

remained 2 – 6-fold lower than mono-cultured HDFs, we observed a steady increase of PDGFRα 

from 1,000 receptors/cell on day 6 to 4,500 receptors/cell on day 17 (Fig. 17E). Similarly, as 

tubule started to form, PDGFRβ concentration increased from 34,800 receptors/cell on day 6 to 

103,300 receptors/cell on day 17 (Fig. 17F). Cell-by-cell analysis of co-cultured HDFs 

confirmed this increase in both PDGF receptors throughout tubule development (Fig. 18K-L).  

4.3.7 PDGFRβ observed on co-cultured HUVECs but not PDGFRα 

ECs do not natively express PDGF receptors when cultured alone 25, however, multiple studies 

have reported PDGFR expression on ECs in angiogenic environment 26,27. Aligned with these 

findings, we observed consistent PDGFRβ expression (~600 – 2,900 PDGFRβ/cell) on co-

cultured HUVEC plasma membrane throughout tubule development (Fig. 17F).  In contrast to 
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the steady increase of PDGFRs on HDFs from day 6, PDGFRβ concentration on HUVECs were 

higher during the initial HUVEC-HDF contacts (1,900 PDGFRβs/HUVEC after 24 hours) and 

cluster formation (2,900 PDGFRβs/HUVEC on day 6), but decreased as tubules develop. Cell-

by-cell analysis confirmed the increase in PDGFRβ concentration by day 6, evidenced by a right-

handed shift of histograms (Fig. 18I). Although ensemble average of PDGFRβ concentration was 

low on day 17, high-PDGFRβ subpopulation was observed among co-cultured HUVECs. A 2-

component mixture model determined a low-PDGFRβ subpopulation (700 receptors/cell, 90%) 

and a high-PDGFRβ subpopulation (8,800 receptors/cell, 10%) within co-cultured HUVECs on 

day 17 (Fig. S7B). This heterogeneity was also captured by a high QE of 0.55 as well as a 2-fold 

increase from day 11 to day 17 (Fig. S8A). These quantitative findings showed HUVECs, when 

interacting with fibroblasts, may express transmembrane PDGF receptors.  

4.4 CONCLUSIONS 

In summary, we have established a simple 2D tube formation assay by co-culturing HUVECs 

with HDFs and examined concentrations and heterogeneity of a panel of angiogenic receptors up 

to 17 days. Particularly, we optimized and established the seeding logistics so that HUVECs 

supported by fibroblasts form capillary-like structures during the course of 17 days. Within 24 h 

co-culturing, we observed ~2,700 VEGFR1 per cell on HDFs, which do not natively express 

VEGFR when cultured alone. In line with the pro-angiogenic role of VEGFR2, we observed 

20% - 140% increase in plasma membrane VEGFR2 concentrations [4,000—8,100 receptors per 

cell] on co-cultured HUVECs as tubules develop when compared to monocultures.  We observed 

a ~50% increase in Tie2 concentration on HUVECs during late-stage tube formation, which 

aligns with the theory that Ang-Tie2 signaling mediates quiescence of blood vessels. We showed 



 
 

106 
 

steady increase in PDGFRs on HDFs, and PDGFRβs were found on HUVECs during the first 6 

hours of co-culturing [1,900 – 2,900 PDGFRβs per cell]. 

4.5 FIGURES AND FIGURE LEGENDS 

 

Figure 15. HUVEC/fibroblast co-culture tubule formation dependent on seeding ratio and culturing 

media. Representative images of monocultures and co-cultures of HUVECs and HDFs on day 17. HUVECs 

were stained with PE-anti-hCD31 (green) and cell nucleus were stained with DAPI (blue).  
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Figure 16. Comparison of the mean (± SEM) number of junctions, branches, and length of tubules 

formed in fibroblast/HUVEC co-cultures on day 6 and day 17. Two representative images from each 

day were analyzed using Angiogenesis Analyzer 205 in ImageJ. Mean (± SEM) were compared using 

ANOVA Tukey test, where ** indicates p<0.01. 
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Figure 17. Quantification of angiogenic receptor concentrations on HUVECs and HDFs following 24-

hour, 6-day, 11-day, and 17-day co-culturing. Dashed lines represent receptor concentrations of 

collagenase-treated monocultures (Red: HUVECs; Blue: HDFs). Mean ± SEM of receptor concentrations 

in co-cultures were compared to monocultures and ANOVA Tukey test was performed to determine the 

significant differences (* indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001). 
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Figure 18. Cell-by-cell analysis of fibroblast/HUVEC co-culture up to 17 days. We showed receptor 

distributions of (A & D) VEGFR1, (B &E) VEGFR2, (C & F) Tie2, (G & J) NRP1, (H &K) PDGFRα, and 

(I & L) PDGFRβ on HUVECs and HDFs.  
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Supplemental Figure 4. Representative images of analyzed fibroblast/HUVEC co-cultures on day 6 

and day 17 using Angiogenesis Analyzer in ImageJ. Red dots: joints, blue lines: branches. 
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Supplemental Figure 5. Representative images of fibroblast/HUVEC co-cultures incubated in EGM-

2 at 3 x 104 cells/cm2 seeding density with a 1:1 seeding ratio after (a) 24 hours, (b) 6 days, (c) 11 days, 

and (d) 17 days. Cells were stained with FITC-conjugated CD31 antibodies and DAPI, and fluorescent 

images were taken using a 4x objective and a 20x objective.  
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Supplemental Figure 6. Comparison of receptor concentrations on cells dissociated using Cell 

Stripper and cells dissociated using 0.2% collagenase type IV with intermittent vortexing. Mean ± 

SEM of replicates were compared using ANOVA Tukey test and no significant changes were observed (p 

> 0.05). 
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Supplemental Figure 7. Gaussian mixture models of (A) VEGFR2 on 24-hr co-cultured HUVECs, 

(B) NRP1 on day-17 co-cultured HUVECs, (C) NRP1 on day-6 co-cultured HDFs, and (D) PDGFRβ 

on day-17 co-cultured HUVECs. 
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Supplemental Figure 8. Quadratic entropy (QE) of co-cultured (A) HUVECs and (B) HDFs up to 17 

days.  

  



 
 

115 
 

4.6 REFERENCES 

1. Kirkpatrick, C. J., Fuchs, S. & Unger, R. E. Co-culture systems for vascularization--

learning from nature. Adv. Drug Deliv. Rev. 63, 291–9 (2011). 

2. Bishop, E. T. et al. An in vitro model of angiogenesis: basic features. Angiogenesis 3, 

335–44 (1999). 

3. Donovan, D., Brown, N. J., Bishop, E. T. & Lewis, C. E. Comparison of three in vitro 

human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4, 113–121 

(2001). 

4. Beilmann, M., Birk, G. & Lenter, M. C. Human primary co-culture angiogenesis assay 

reveals additive stimulation and different angiogenic properties of VEGF and HGF. 

Cytokine 26, 178–85 (2004). 

5. Eckermann, C. W., Lehle, K., Schmid, S. A., Wheatley, D. N. & Kunz-Schughart, L. A. 

Characterization and modulation of fibroblast/endothelial cell co-cultures for the in vitro 

preformation of three-dimensional tubular networks. Cell Biol. Int. 35, 1097–110 (2011). 

6. Schmid, S. A. et al. Lactate adversely affects the in vitro formation of endothelial cell 

tubular structures through the action of TGF-beta1. Exp. Cell Res. 313, 2531–49 (2007). 

7. FRIIS, T., KJAER SORENSEN, B., ENGEL, A.-M., RYGAARD, J. & HOUEN, G. A 

quantitative ELISA-based co-culture angiogenesis and cell proliferation assay. APMIS 

111, 658–668 (2003). 

8. Staton, C. A., Reed, M. W. R. & Brown, N. J. A critical analysis of current in vitro and in 

vivo angiogenesis assays. Int. J. Exp. Pathol. 90, 195–221 (2009). 

9. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has 

antivascular effects in human rectal cancer. Nature medicine 10, (2004). 

10. Imoukhuede, P. I. & Popel, A. S. Quantification and cell-to-cell variation of vascular 

endothelial growth factor receptors. Exp. Cell Res. 317, 955–965 (2011). 

11. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of 

targeting both pericytes and endothelial cells in the tumor vasculature with kinase 

inhibitors. J. Clin. Invest. 111, 1287–1295 (2003). 



 
 

116 
 

12. Erber, R. et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel 

regression by interfering with pericyte-mediated endothelial cell survival mechanisms. 

FASEB J. 18, 338–40 (2004). 

13. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of 

antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer 

Cell 8, 299–309 (2005). 

14. Weddell, J. C. & Imoukhuede, P. I. Quantitative characterization of cellular membrane-

receptor heterogeneity through statistical and computational modeling. PLoS One 9, 

e97271 (2014). 

15. Imoukhuede, P. I. & Popel, A. S. Quantitative fluorescent profiling of VEGFRs reveals 

tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 3, 

225–44 (2014). 

16. Rao, C. R. Diversity and dissimilarity coefficients: A unified approach. Theor. Popul. 

Biol. 21, 24–43 (1982). 

17. Pavoine, S. & Dolédec, S. The apportionment of quadratic entropy: a useful alternative for 

partitioning diversity in ecological data. Environ. Ecol. Stat. 12, 125–138 (2005). 

18. Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on 

multiple traits. J. Veg. Sci. 16, 533–540 (2005). 

19. Fukuhara, S. et al. Differential function of Tie2 at cell–cell contacts and cell–substratum 

contacts regulated by angiopoietin-1. Nat. Cell Biol. 10, 513–526 (2008). 

20. Chen, S., Guo, X., Imarenezor, O. & Imoukhuede, P. I. Quantification of VEGFRs, NRP1, 

and PDGFRs on Endothelial Cells and Fibroblasts Reveals Serum, Intra-Family Ligand, 

and Cross-Family Ligand Regulation. Cell. Mol. Bioeng. 8, 383–403 (2015). 

21. Gaengel, K., Genové, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in 

vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–8 

(2009). 

22. Hellström, M., Kalén, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B 

and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during 

embryonic blood vessel formation in the mouse. Development 126, 3047–55 (1999). 



 
 

117 
 

23. Zhang, J. et al. Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and 

vessel stability. FASEB J. 23, 153–63 (2009). 

24. Andrae, J., Gallini, R. & Betsholtz, C. Role of platelet-derived growth factors in 

physiology and medicine. Genes Dev. 22, 1276–312 (2008). 

25. Chen, S. et al. qFlow cytometry-based receptoromic screening: a high-throughput 

quantification approach informing biomarker selection and nanosensor development. in 

Methods Mol Biol (eds. Hurst Petrosko, S. & S. Day, E.) 117–138 (Springer New York, 

2017). 

26. Battegay, E. J., Rupp, J., Iruela-Arispe, L., Sage, E. H. & Pech, M. PDGF-BB modulates 

endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J. Cell Biol. 

125, 917–28 (1994). 

27. Ball, S. G., Shuttleworth, C. A. & Kielty, C. M. Vascular endothelial growth factor can 

signal through platelet-derived growth factor receptors. J. Cell Biol. 177, 489–500 (2007). 



 
 

118 
 

CHAPTER 5 CHARACTERIZING GLIOBLASTOMA HETEROGENEITY VIA 

SINGLE-CELL RECEPTOR QUANTIFICATION 

Dysregulation of tyrosine kinase receptor (RTK) signaling pathways play important roles in 

glioblastoma (GBM). However, therapies targeting these signaling pathways have not been 

successful, partially because of drug resistance. Increasing evidence suggests that tumor 

heterogeneity, more specifically, GBM-associated stem and endothelial cell heterogeneity, may 

contribute to drug resistance. In this perspective article, we introduce a high-throughput, 

quantitative approach to profile plasma membrane RTKs on single cells. First, we review the 

roles of RTKs in cancer. Then, we discuss the sources of cell heterogeneity in GBM, providing 

context to the key cells directing resistance to drugs. Finally, we present our provisionally 

patented qFlow cytometry approach, and report results of a “proof of concept” patient-derived 

xenograft GBM study.  
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5.1 INTRODUCTION 

GBMs are the most frequent and lethal malignant primary adult brain tumor 1, which presents a 

critical need to develop new therapeutics. Addressing the dysregulation of RTK signaling 

pathways offers promise in overcoming GBM lethality 2–5. RTK dysfunction has been observed 

in GBM, where these pathways are correlated with tumor cell proliferation 6,7, angiogenesis 8,9, 

tumor invasiveness 10,11, and resistance to therapy 12–14. Moreover, these pathways are popular 

targets for small-molecule inhibitors 15,16. Unfortunately, the clinical benefit of these targeted 

therapies is limited by drug resistance 17,18.  

Increasing evidence suggests that drug resistance may be attributed to tumor heterogeneity 

(variations within an individual tumor) 7,19,20. For example, a landmark study identified tumor 

subpopulations resistant to therapy prior to treatment by sequencing 4,645 single cells from 19 

melanoma patients.  This thorough analysis was enabled by single-cell technology, and may have 

been overlooked with ensemble sequencing 21.  Additionally, a single-cell analysis of patient-

derived xenografts (PDXs) of GBM39 also found higher heterogeneity in resistant tumors than in 

responsive tumors 22. In line with these single-cell measurements, we previously discovered, 

measured, and statistically described heterogeneity in breast cancer xenografts by quantifying 

vascular endothelial growth factor plasma membrane receptor (VEGFR) concentrations at the 

single-cell level 23.  When we combined this quantitative analysis with computational modeling, 

we arrived at the prediction that tumors having “high” concentrations of plasma membrane 

VEGFR1 could be resistant to anti-VEGF drugs (angiogenesis inhibitors) 24.  Clinical work 

supports this prediction for colorectal cancer 25, and application of this quantification and 

prediction should offer a new paradigm for biomarker discovery in cancer medicine.   
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To address the need for quantitative, single-cell analysis of GBM heterogeneity, we apply our 

optimized and provisionally patented VEGFR quantitative flow (qFlow) cytometry approach to 

GBM 23,24,26–30.  We describe expanded measurement to several RTKs critical to tumor 

development. To provide further context we, briefly, review the roles of RTKs in cancer and 

present connections between RTK heterogeneity and drug resistance. We then present our 

approach, qFlow cytometry, and report promising findings of a “proof of concept” PDX GBM 

study. 

5.1.1 Roles of RTKs in cancer 

RTKs are widely expressed transmembrane proteins 31,32. Upon ligand binding, they are activated 

via canonical 33,34 and non-canonical 28,35–37 ligand-induced dimerization and tyrosine 

phosphorylation mechanisms.  Importantly, unligated receptors can dimerize 33,38–44 and signal 

33,45,46, although ligand binding stabilizes the dimeric receptor structure. These receptor-initiated 

signaling events regulate cell survival, proliferation, differentiation, and motility 47,48.   

VEGFRs are upregulated in many cancers 49–51. Signals through endothelial VEGFRs and the 

neuropilin (NRP) co-receptors 23,52–55 induce the sprouting angiogenic hallmarks of cell 

proliferation and cell migration 56.  These sprouting angiogenesis hallmarks also sustain tumor 

growth and enable tumor metastasis 57,58.  VEGF and other pro-angiogenic factors, may also 

regulate vascular growth and regression in tumors that co-opt pre-existing blood vessels 59–61.   

In addition to these canonical pathways, cross-family signaling may also affect tumor 

vascularization. In this paradigm, ligands from one growth factor family bind to and signal 

through receptor(s) of another family. For instance, we have shown VEGF-mediated 
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downregulation of PDGFRs 28, and discovered that both VEGF–PDGFR binding and PDGF–

VEGFR binding is high affinity 37. Other cross-family studies have identified VEGF–PDGFR 

binding and signaling 62,63 and VEGFR–PDGFR dimerization in tumor associated pericytes 64. 

Altogether, these canonical and cross-family RTK mechanisms suggest several possible receptor 

activation landscapes that can contribute to tumor growth and drug resistance. 

5.1.2 GBM-associated cell heterogeneity: stem and endothelial 

An accepted origin of tumor heterogeneity involves clonal evolution; an reiterative process of 

genetic mutation, clonal selection, and expansion, which drives the growth of single cancer cells 

into heterogeneous tumor masses 65–67.  In addition to cancer cells, other cell types within the 

tumor may also differentiate or transition as tumor develops.  Some such cells include: tumor-

associated fibroblasts, macrophages/monocytes, endothelial cells (ECs), and stem cells 19. Here, 

we describe glioblastoma stem cells (GSCs) and ECs, which we focus on in our pilot study. 

GSCs are an important tumor cell component, because despite their small number (~0.5% - 10%) 

68, GSCs are more resistant to radiotherapy and chemotherapy than other cancer cells 69,70.  

Furthermore, their resistance can amplify tumor heterogeneity, because they have self-renewing 

and tumor-initiating capabilities 71.  GSCs are often identified by CD133 72, which is associated 

with poor prognosis in a number of tumor types. There is controversy surrounding the usage of 

CD133 as a GSC marker 70,73,74.  Early studies showed a subpopulation of GBM cells expressing 

CD133 were able to form tumors 75 and further studies showed subpopulations of CD133− cells 

were also able to form tumors in vivo 76.  While these studies do not negate the possible role of 

CD133 in identifying GSCs, they do highlight the importance of heterogeneity and the need for 

additional markers. Therefore, establishing a “barcode” of RTK plasma membrane 
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concentrations on GSCs may help to identify novel markers, aiding in the isolation and 

understanding of these stem cells. 

ECs, the primary structural unit of the vasculature, are an important contributor to GBM 

development.  Unlike normal vessels, tumor vasculature is leaky, tortuous, and dilated 77,78. In 

addition to typical tumor vascular pathological features, brain tumor vasculature exhibits the loss 

of the important blood-brain-barrier feature of tight EC-EC junctions when tumor size grows 

beyond 1–2 mm in diameter 79. The close interaction between tumors and tumor vessels, and the 

observation of extensive EC heterogeneity supports the need for profiling tumor-associated ECs.  

5.1.3 A paradigm shift in single-cell technologies: from gene-centric to proteomics 

Studies characterizing GBM heterogeneity primarily focus on genetic and transcriptomic 

profiling 80–86, which does not always correlate with functional changes87–89. Moreover, multiple 

studies show discordance between sequence data and protein expression in GBM, particularly 

with regards to epidermal growth factor receptor (EGFR) 90 and PDGFR 91 gene vs. protein 

expression. Because proteins are the effectors of signaling towards functional response 27,53,92, 

there is a need for increased protein-based, functional measurements.   

qFlow cytometry offers a powerful tool for protein-based, single-cell measurements.  It applies 

fluorescent calibration to traditional flow cytometry, converting signal to absolute protein 

concentrations 27,93,94. Absolute protein quantification allows detection of variations in proteins 

across published studies, tissues, replicates, and instrument settings 95–99. Moreover, qFlow 

cytometry advances systems biology, providing the quantitative data needed for computational 

studies 100,101. For example, using qFlow cytometry coupled with systems biology, we predicted 



 
 

123 
 

that anti-VEGF efficacy depends on tumor endothelial VEGFR1 plasma membrane 

concentrations 24. Furthermore, a receptor-internalization computational model recently predicted 

that small increases in plasma membrane RTK concentrations (< 1,000 receptors/cell) may 

double nuclear-based RTK signaling 102, which further implicates RTK concentrations as a 

determinant of signal transduction. These predictions were only possible with the accurate 

experimental data offered by qFlow cytometry. 

5.2 RESULTS AND DISCUSSION 

We performed a “proof of concept” qFlow cytometry study on a PDX, GBM39 (Fig. 19).  

GBM39 is known for EGFRvIII and low invasiveness, in vivo 6,103.  The xenograft was established 

with tumor tissue from patients undergoing surgical treatment at Mayo Clinic, Rochester, MN.  

Multiple studies characterize these PDX models and report maintenance of patient morphologic 

and molecular characteristics including EGFR amplification as well as tumor invasiveness 11,104.  

Following dissociation, PDX cells were stained with Sytox Blue (a live/dead cell stain), CD45 

105, CD34 106,107, and CD133 108–112 fluorophore-conjugated antibodies that target EC-like cells 

and GSCs, respectively (Fig. 19). This labeling scheme excludes both dead cells and 

hematopoietic cells and enables identification of human tumor EC-like cells (hCD34+), mouse 

tumor EC-like cells (mCD34+), and GSCs (hCD133+) from the live CD45- pool (Fig. 20A). To 

obtain reliable data, we obtained fluorescence signals from 2–3 samples/RTK with 10,000 – 

35,000 live single cells collected per sample.  As expected, the bulk GBM39 PDX sample was 

primarily non-EC, non-GSC cells (62.46%).  In addition, we found 6-fold higher mouse tumor 

EC-like cells than human tumor EC-like cells (Fig. 20B). This quantification aligned with prior 

studies of GBM xenograft showing ~7.1% EC population (CD45-CD31+CD34+). Consistent with 
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our quantification of GSCs, a primary human study of 37 patients reported a range of 0.5%–10% 

68, when identifying GSCs using the CD133 marker.   

We labeled and screened 9 plasma membrane RTKs on these cells, which included two 

established GBM biomarkers, EGFR and insulin-like growth factor receptor (IGFR) 10, and 

angiogenic signaling biomarkers: VEGFRs, PDGFRs , NRP1, and Tie2 31,113–116.  Using qFlow 

cytometry and statistical models, we quantitatively characterized GBM39 PDX via four patented 

metrics (Fig. 19): cell composition, ensemble RTK concentration, cell-by-cell analysis with 

Gaussian mixture modeling, and heterogeneity analysis 30.  

Percentage of gated cell populations were exported using FlowJo software (TreeStar). Ensemble 

RTK concentrations and cell-by-cell analysis were performed as previously described 27,28. We 

then applied Gaussian mixture modeling to identify log-normal sub-populations within each 

distribution, described by its mean, standard deviation, and density. We reduced the chance of 

overfitting the subpopulations by using Bayesian Information Criterion (BIC) 117,118. A detailed 

description of heterogeneity quantification is provided in section 5.5.  

5.2.1 Human tumor EC-like cells have high EGFR and IGFR on plasma membrane 

EGFR and IGFR are expressed on tumor cells and contribute to tumor progression. Interestingly, 

the human tumor EC-like population had high plasma membrane EGFR and IGFR 

concentrations (~21,000/cell and ~20,000/cell, respectively) (Fig. 20C), consistent with 

qualitative findings of higher EGFR on breast carcinoma-derived ECs compared to normal ECs 

119. Our results of high EGFR on human tumor EC-like cells from GBM39 is also consistent with 

results of clinical GBM samples 120.  
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The mixture modeling revealed that 8% of human tumor EC-like subpopulations had a ~12-fold 

higher membrane localization of EGFRs than average. We found a similar pattern for IGFRs in 

human tumor EC-like subpopulations. Together, the ensemble-averaged data and the mixture 

modeling indicated significant plasma membrane localization of EGFR and IGFR on human 

tumor EC-like cells. High concentrations of EGFR and IGFR suggest an opportunity for targeted 

inhibition, which could be a mechanism for disrupting tumor vessels on GBMs with a similar 

profile. 

5.2.2 Mouse tumor EC-like cells have similar plasma membrane VEGFR concentrations as 

healthy mouse ECs from skeletal muscle 

VEGFRs are key regulators of tumor angiogenesis, so their quantification can offer insight into 

the tumor vasculature.  Furthermore, as biomarkers of vasculature, these receptors have been 

proposed as diagnostic biomarkers of anti-angiogenic drug efficacy 121,122 with computational 24 

and clinical 25 support to their use. We found that VEGFR1 and VEGFR2 had similar 

concentrations and ratios on mouse tumor EC-like cells (~3,100 VEGFR1/cell and ~1,000 

VEGFR2/cell) as on healthy ECs obtained from mouse skeletal muscle 52 (Fig. 20E).  This 

finding of a low VEGFR2:VEGFR1 ratio aligns with a previous study on breast cancer 

xenografts 24; however, the receptor abundance we report here is much lower.  These findings of 

EC-like cells from GBM39 having VEGFRs at levels similar to normal mouse skeletal muscle 

ECs suggests a need for further quantification of normal brain ECs VEGFR concentrations to 

establish tissue standards. Similarly, it suggests a need to examine other GBM specimens to 

identify whether this is a property of co-opted vessels or specific to this GBM strain. 
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We analyzed the human tumor EC-like population (5.20% of the population, Fig. 20B), which 

should reflect the original tumor vessels from the patient (Fig. 20C). We found similar plasma 

membrane VEGFR1 and VEGFR2 ratios (~3,600 VEGFR1/cell & ~5,800 VEGFR2/cell) as 

previous reports in vitro 28,54. However, these data show that not all tumors have the same 

concentrations or ratios of plasma membrane VEGFRs on their endothelium.  Importantly, tumor 

EC-like cells display much greater heterogeneity than normal ECs with subpopulations that have 

high concentrations of VEGFRs. Indeed, cell-by-cell analysis and mixture modeling of human 

tumor EC-like cells reveals the existence of a high-VEGFR1 subpopulation (~10%) with 

~41,000 VEGFR1/cell, while the highest VEGFR2 subpopulation is ~18,500 VEGFR2/cell, 

comprising ~35% of the total human tumor EC-like population (Fig. 20D & 20G). The 

difference in VEGFR2:VEGFR1 ratio and receptor concentrations between human and mouse 

tumor EC-like population shows a significant level of endothelial heterogeneity. Such data may 

enable correlations between these tumor vessel regulators and anti-angiogenic drug efficacy. 

5.2.3 Plasma membrane PDGFRs localize on tumor EC-like cells 

PDGFRs serve important roles in supporting vasculature in tumor microenvironments 123. We 

observed lower levels of PDGFRs on human tumor EC-like cell membranes than on mouse (Fig. 

20C & 20E).  The cell-by-cell analysis and mixture modeling suggests that this ensemble 

average does not capture the subpopulations having high-PDGFR plasma membrane localization: 

66% and 16% of mouse tumor EC-like cell membrane had ~23,400 PDGFRα and ~19,800 

PDGFRβ, respectively (Fig. 20F). This significant heterogeneity may be attributed to the use of 

the CD34 marker to designate EC-like cells, because it is also found on stem cells/precursors, 

mast cells, and neurons 23,124,125. PDGFRα is also considered an important mesenchymal stem 
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cell marker 126.  So, the co-labeling of PDGFRα and CD34 suggests these cells may be 

mesenchymal stem cells 127. 

If these CD34+PDGFR+ cells are endothelial, then our data correlates with studies finding 

PDGFRs on tumor ECs 128–130.  PDGFR localization on ECs is controversial, because it is 

characteristic of mural cells and not of ECs 131–136. However, they have been observed on 

monolayer microvascular ECs, in vitro 136,137 and on angiogenic ECs that formed sprout and 

tubes in vitro 131.  If we subscribe to the canonical PDGFR localization understanding, then these 

tumor vessels induce “non-conventional” PDGFR localization patterns.   

5.2.4 GSCs have little-to-no surface EGFR or IGFR  

Multiple studies suggest that a higher degree of GSC “stemness” is associated with EGFR 

amplification 138,139; however, we observed ~13-fold lower EGFRs on GSC plasma membranes 

compared to the bulk PDX cells (Fig. 20C).  This trend was also seen with IGFR (Fig. 20C). The 

low membrane EGFR concentrations on GSCs is concerning, given reports that EGFR signaling 

is necessary for GSC proliferation and tumor-sphere formation 140,141. Yet, this may explain the 

lower percentage of GSCs in the PDX sample (~0.9%) compared to the expected stem cell 

fraction (0.5%–10% 68). A possible explanation is that serially transplanted tumors can lose their 

EGFR overexpression, even in vivo (Liffers et al. 2015). Clearly, further investigation of both 

gene expression and protein quantification on other GBM PDX GSCs is necessary to understand 

their contribution to heterogeneity and drug-resistance.  
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5.2.5 Quantification of cell-RTK heterogeneity 

To quantify heterogeneity of each cell subpopulation, we used two parameters: number of 

mixture components and Quadratic Entropy (QE). To quantitatively assess the number of 

subpopulations within each cell population, we fit each cell-by-cell RTK distribution with 

mixture models consisting of 1 – 9 log-normal Gaussian sub-distributions (mixture components); 

we then applied BIC as the criterion to select the mixture model with the lowest BIC. The 

number of mixture components is determined by how many log-normal Gaussian sub-

distributions are in the mixture model.  The number of mixture components, thus, is a 

measurement of cell heterogeneity. Generally, 1–2 mixture components are considered low 

heterogeneity 27, while more than 2 components is considered highly heterogeneous 23,24.  

Alternatively, QE requires equally spaced bins, here we chose 500 bins, from each cell-by-cell 

distribution (Fig. 20D & 20F). QE then sums the weighted differences of the means between two 

bins 142–144. Thus, QE is a measurement of the increase in random variation in the cellular 

response. Because healthy ECs and human fibroblasts in vitro have shown QE within 0.2–0.7 28, 

we describe QE<0.7 as low heterogeneity and QE>0.7 as high heterogeneity.  QE provides a 

quantitative measure of the diversity of cellular phenotypes in cancer tissue sections for 

diagnostic applications 145 and drug discovery 146. Interestingly, human tumor EC-like cells 

showed lower QE and number of mixture components when compared to mouse tumor EC-like 

cells (Fig. 20G). We suspect that the likely loss of human tumor-associated cells over time in a 

PDX model 147 may be the reason why human tumor EC-like cells present a more homogenous 

state than the mouse tumor EC-like cells.  
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5.2.6 Clinical implications of GBM heterogeneity 

We envision that RTK quantification can identify ideal receptor targets across the bulk tumor 

specimen and on specific cell populations in the tumor. First, the ideal receptor target would be 

highly available 5,15,148: it would have high concentrations on a high percentage of bulk cells or 

specific cells. Next, the target RTK would exhibit low heterogeneity: it would have low QE in 

bulk cells or on the specific cell subpopulation 103,149. An ideal receptor target would also be 

highly specific to the tumor, which would manifest as higher receptor concentrations in the 

tumor versus healthy tissue 15.  

Based on these guidelines, we offer possible targets on GBM39. If the goal is targeting tumor 

vessels, then VEGFR2 and PDGFRα are highly targetable:  >70% target cells have > 6,000 

VEGFR2 or PDGFRα/cell plasma membrane with QE=0.20 or 0.32, respectively. Furthermore, 

they are likely targets, because they are more highly expressed in GBM specimens than health 

tissue 28:  ~5-fold higher VEGFR2 and ~4-fold higher PDGFRα. Therefore, targeting VEGFR2 

and PDGFRα should preferentially target the tumor.    

Our work suggests that targeting EGFR and IGFR on tumors like GBM39 may not be effective 

by itself.  Although, they have high concentrations on ~70-90% EC-like and non-EC-like GBM 

cells, their high GBM heterogeneity (QE=~1.0) and high concentration on healthy tissue (2-

2,000 × 103 EGFR/fibroblast or epithelial cell; 2.5 × 104 IGFR/NIH 3T3 mouse fibroblasts 

80,102,150 may lower their targeting specificity, resulting in lower drug efficacy 151. Better drug 

delivery to the tumor site will likely improve targeting specificity without disrupting healthy 

tissue. An alternative strategy is to develop dual-inhibitors targeting both EGFR/IGFR and 

VEGFR2 to increase their specificity for tumor EC-like cells. 
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We believe our method can also identify cellular and molecular mechanisms underlying reduced 

response to drugs. For example, upregulation of alternative signaling pathways has been 

implicated in anti-VEGF drug resistance 152,153. This mechanism of drug resistance is often 

accompanied by significant tumor heterogeneity 14,84,86. Therefore, these alternative pathways 

may be overlooked in bulk studies if they are only present on small cell subpopulations. From 

this study, we suggest targeting RTKs that are localized on plasma membrane at high 

concentrations on small cell populations (<10%) for combination therapy. For example, 

VEGFR1 and Tie2 on tumor ECs may become “alternative” RTKs for anti-VEGF treatment, 

because we found ~10% human tumor EC-like cell subpopulations had 41,000 VEGFR1 and 

~8% had 65,700 Tie2 on the plasma membrane. Identifying alternative RTK pathways that 

contribute to resistance can provide tumor-specific drug targets for combination therapy.  

5.3 CONCLUSIONS 

Our study of the GBM39 PDX model, arrived at 4 key findings and 2 recommendations: (1) 

tumor EC-like subpopulations have high concentrations of plasma membrane VEGFR1 and 

VEGFR2; (2) human versus mouse tumor EC-like cells have inverted VEGFR2:VEGFR1 ratios; 

(3) tumor EC-like subpopulations have high plasma membrane EGFR, IGFR, and PDGFR 

concentrations; and (4) GSCs compose a low percentage of cells in the tumor and have little-to-

no EGFRs and IGFRs on their plasma membranes.  

Based on findings in this study and our RTK-targeting criteria, VEGFR2 or PDGFRα would be 

likely drug targets for GBM39. In addition, VEGFR1 and Tie2 are likely drug targets for 

combination therapy. The next step would be to test these targets in a GBM PDX model.  
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The results of this “proof of concept” study should be interpreted as such: it offers an approach 

for continued measurement of tumor samples, broadly, and GBM samples, specifically, with the 

GBM39 PDX sample as a first example.  We present the novel method, qFlow cytometry, and 

show its application in characterizing GBM heterogeneity. Larger and well powered samples are 

warranted to expand the current preliminary results, and to discover ideal drug targets and 

mechanisms underlying drug resistance. 

Future opportunities for expanding this research lies in establishing protein concentration ranges 

on additional samples and continued development of biomimetic tumor models. Firstly, 

additional measurements of protein concentration on normal ECs and other cells would provide 

the baselines needed to compare to tumor. In establishing EC baselines, isolation of a pure EC 

population may be a challenge.  Previous qFlow studies have identified ECs using both the CD34 

and CD31 markers 23,26,52. However, it is important to note, that using multiple markers can bias 

cell collection: CD34 is a progenitor marker, so its use biases selection from more mature cells.  

Whereas, CD31 is a mature cell marker that is found on ECs, platelets, natural killer cells, 

monocytes, macrophages, and among other cells 154, so its use can lead to sample impurity.  

Here, we chose to bias towards progenitor-like ECs; however, expanded studies may determine 

if protein concentrations correlate with marker presentation (e.g., identifying whether progenitor-

like cells having higher or lower protein concentrations).   

Another opportunity for advancement lies in our quantitative single-cell RTK mapping, moving 

towards multiplexed measurement of RTKs.  Towards multiplexed quantification, Lee-Montiel 

et al. developed a quantum dot method for receptor labeling and calibration 94,155 that can be 

translated to qFlow cytometry. Another approach could be to adapt receptor quantification to 
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mass cytometry (CyTOF) 156.  Such advancements would provide multi-RTK, multi-cell insight 

into tumor heterogeneity.   

In conclusion, cancer research is experiencing a paradigm shift from ensemble analysis to cell-

to-cell variability 157–159 because of the increasing evidence correlating drug resistance with 

tumor heterogeneity. The perspective and work that we present here offers sensitive methods for 

heterogeneity characterization in tumors that should enable improved treatment. We believe that 

continued quantification of single-cell receptor heterogeneity is a new frontier that will offer 

significant clinical impact. 
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5.4 FIGURES AND FIGURE LEGENDS 

 

Figure 19. An overview of the workflow for characterizing tumor heterogeneity in GBM39 PDX samples. The 

GBM39 PDX is established with tumor tissue from patients at Mayo Clinic, Rochester, MN. Following dissociation, 

multi-channel flow cytometer is used to characterize PDX cells. Briefly, dead cells are excluded using a live/dead cell 

stain, and hematopoietic cells are excluded using the CD45 antigen, then the endothelial marker CD34 and CD133 

can be used to identify EC-like cells and GSCs respectively from the CD45- pool. Percentage of GSCs, EC-like cells 

and other PDX cells within all live cells can be exported from the flow cytometer. Cells are also stained with 

phycoerythrin (PE)-conjugated antibodies targeting one of the 9 plasma membrane RTKs. qFlow cytometry is 

performed as described previously, and ensemble averaged plasma membrane RTK concentrations and cell-by-cell 

RTK distributions can be obtained. We use two parameters to quantify RTK heterogeneity across EC-like and non 

EC-like cells: number of mixture components and Quadratic entropy of the cell-by-cell RTK distribution.  
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Figure 20. Characterization of plasma membrane RTK concentrations and tumor heterogeneity in GBM39 

PDX sample. (A) Representative flow cytometry plots for gating GSCs (hCD45-hCD133+), human EC-like cells 

(hCD45-hCD34+), and mouse EC-like cells (mCD45-mCD34+) from live cell population. (B) Percentage of GSCs, 

human EC-like, mouse EC-like, and tumor & other PDX cells in the GBM39 PDX sample. (C) Ensemble-averaged 

concentrations and (D) cell-by-cell distributions of plasma membrane VEGFRs, Tie2, NRP1, PDGFRs, EGFR, and 

IGFR on human EC-like cells. (E) Ensemble-averaged concentrations and (F) cell-by-cell distributions of plasma 

membrane VEGFRs, Tie2, NRP1, and PDGFRs on mouse EC-like cells. (G) Heterogeneity analysis of RTKs in EC-

like and non EC-like cell populations. Number of mixture components estimates how many cell subpopulations there 

are having different plasma membrane RTK concentrations. Quadratic entropy represents the diversity of RTK 

concentrations within EC-like and non EC-like populations.  
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CHAPTER 6 MULTIPLEXING ANGIOGENIC RECEPTOR QUANTIFICATION VIA 

QUANTUM DOTS1 

Clinical and biomedical research seeks single-cell quantification to better understand their roles 

in a complex, multi-cell environment. Recently, quantification of vascular endothelial growth 

factor receptors (VEGFRs) provided important insights into endothelial cells characteristics and 

response in tumor microenvironments. However, existing technologies for quantifying plasma 

membrane receptor tyrosine kinases (RTKs) lack multiplexing capabilities, limiting detailed 

characterization. Here, we use the unique spectral properties of quantum dots (Qdots) to optimize 

and dually quantify VEGFR1 and VEGFR2 on human umbilical vein endothelial cells 

(HUVECs).  To enable this quantification, we reduce nonspecific binding between Qdot-

conjugated antibodies and cells via buffer optimization. Second, we identify optimal labeling 

conditions by examining Qdot-conjugated antibody binding to five receptors: VEGFRs 

(VEGFR1 and VEGFR2), their co-receptor Neuropilin1 (NRP1), and platelet-derived growth 

factor receptor (PDGFRα and PDGFRβ). We establish that 800 – 20,000 is the dynamic range 

where accurate Qdot-enabled quantification can be achieved. Through these optimizations, we 

demonstrate measurement of 1,100 VEGFR1 and 6,900 VEGFR2 per HUVEC. We induce ~90% 

upregulation of VEGFR1 and ~30% downregulation of VEGFR2 concentration via 24 h VEGF-

A165 treatment. We observe no change in VEGFR1 or VEGFR2 concentration with 24 h VEGF-

B167treatment. We further apply the Qdots to analyze HUVEC heterogeneity and observe that 

24 h VEGF-A165 treatment induces ~15% decrease in VEGFR2 heterogeneity, but little to no 

change in VEGFR1 heterogeneity 24 h VEGF-B167 induced little to no changes in either 

VEGFR1 or VEGFR2-dependent heterogeneity. Overall, we demonstrate experimental and 

analysis strategies for quantifying two or more RTKs at single-level using Qdots, which will 

provide new insights into biological systems. 

 

 

 

1 This chapter has been submitted for publication.  
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6.1 INTRODUCTION 

Tyrosine kinase receptors (RTKs) are transmembrane proteins that initiate signaling events that 

regulate cell survival, proliferation, differentiation, and motility.  Here we examine two receptor 

tyrosine kinase (RTK) families, vascular endothelial growth factor receptors (VEGFRs) and 

platelet-derived  growth factor receptors (PDGFRs), which are both critical to angiogenesis, and 

are upregulated in many cancers  1–3. Signals through endothelial VEGFRs and the neuropilin 

(NRP) co-receptors 4–8  induce the sprouting angiogenic hallmarks of cell proliferation and cell 

migration 9.  PDGFR signaling regulates vascular stability 10,11, stimulates wound-healing 12–14, 

and induces vascular growth and reperfusion 15. We and others have also discovered that cross-

family signaling between VEGFR and PDGFR exists 16–19, which may affect tumor 

vascularization 20. Therefore, the coordinated analysis of VEGF and PDGF signaling would 

advance our knowledge for RTK signaling mechanisms, while uncovering novel approaches for 

controlling cell survival, proliferation, differentiation, motility, and angiogenesis. 

Quantitative flow (qFlow) cytometry offers a powerful tool for analyzing RTKs and other 

plasma membrane proteins on a single-cell level.  It is an advancement upon traditional flow 

cytometry which converts signal to absolute protein concentrations via fluorescent calibration 

standards  21,22. Absolute protein quantification is advantageous, because it detects protein 

variations across published studies, tissues, replicates, and instrument settings 23–28. Moreover, 

qFlow cytometry advances systems biology, providing the quantitative data needed for 

computational studies 29–31. For instance, a computational model that included ligand-receptor 

binding and receptor-internalization predicted that small increases (< 1,000 receptors/cell) in 

plasma membrane RTK concentration may double nuclear-based RTK signaling 32, which further 

implicates RTK concentration as a determinant of signal transduction. Furthermore, via a 
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systems biology paradigm, we predicted that anti-VEGF efficacy can depend on tumor 

endothelial VEGFR1 plasma membrane concentrations 33.  This prediction was further supported 

by a clinical post-hoc analysis of anti-VEGF efficacy in colorectal cancer 34. This prediction was 

only possible with the accurate experimental data offered by qFlow cytometry.  

A complete understanding of biological system response to environmental stimuli requires 

examining multiple signals at once; however few technologies provide absolute quantification35.  

In fact, current qFlow cytometry regularly provides only one absolute quantitative readout at a 

time due to the wide emission spectra of organic fluorescent dyes, such as phycoerythrin (PE) 

21,22.  In contrast, the narrow, largely symmetric emission range of Qdots36 allows multiple Qdots 

to be monitored simultaneously 37–39. Our lab recently optimized Qdot-antibody labeling for 

imaging VEGFRs on endothelial cells 38 and engineered Qdot calibration standards for receptor 

quantification 40. Here, we advance towards multiplexed absolute receptor quantification by 

combining these calibration standards and Qdot-antibody conjugates (Fig. 21).  The RTK 

concentrations obtained using our method can be further analyzed to characterize and quantify 

the cell-by-cell heterogeneity within a biological system, and how it responds to environmental 

changes. 

To achieve multiplexed absolute receptor quantification, we investigate and optimize Qdot 

labeling and analysis via two advancements.  First, nonspecific binding is a hurdle for applying 

Qdot-conjugated antibodies 41,42. Conventional blocking buffers, like PBS buffers containing 

BSA 7,21,43, serum 44, may not effectively minimize nonspecific binding without modification of 

Qdot materials 45,46. So, we increase binding specificity by identifying an ideal blocking buffer. 

Second, researchers have reported that receptor densities affect antibody binding efficiency 47,48. 
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However, no study has quantitatively characterized the effect of receptor density on binding 

between Qdot-antibody and receptors. So, we identify the dynamic range for Qdot receptor 

quantification. Ultimately, we present multiplexed VEGFR1 & VEGFR2 quantification and 

heterogeneity analysis, as few technologies provide us absolute quantification.  

6.2 MATERIALS AND METHODS 

Cell culture. The human umbilical vein endothelial cells (HUVECs) and human adult dermal 

fibroblasts (HDFs) were obtained from individual donors (Lonza, Allendale, NJ). HUVECs were 

cultured in Endothelial Cell Basal Medium (EBM)-2 supplemented by the Endothelial Cell 

Growth Medium (EGM)-2 SingleQuot Kit (Lonza). HDFs were cultured in Fibroblasts Growth 

Medium (FGM)-2 (Lonza) for the first passage; for passage 2 – 12, HDFs were cultured in 

DMEM/high-glucose medium supplemented with 5% (v/v) FBS and 1% (v/v) penicillin and 

streptomycin. The media was filtered using Nalgene™ Rapid-Flow™ Sterile Disposable Bottle 

Top Filters containing a polyethersulfone (PES) Membrane (Nalge Nunc International Corp., 

Rochester, NY). The pore size of the filter is 0.20 μm. The media was stored at 4 °C and warmed 

to 37 ºC upon usage. All cultures were incubated at 37°C in a humidified 5% CO2 incubator and 

then harvested to collect independent samples upon confluency. HUVECs were used up to 

passage 6 as described previously 49 and HDFs were used up to passage 12. 

Growth factor application. Near-confluent HUVECs were cultured in EGM-2 media 

supplemented with 25 ng/mL VEGF-A165 and 25 ng/mL VEGF-B167 (Shenandoah 

Biotechnology, Warmack, PA)  prior to cell labeling 7. 

Qdot calibration standards. The Qdot calibration standards were established as described 

previously 40. Briefly, biotin-functionalized polystyrene beads (Spherotech, Lake Forest, IL) 
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were labeled with a dilution series of Innovator’s Tool Kit (ITK)-streptavidin Qdots (Invitrogen, 

Carlsbad, CA) at 500, 5 000, 20 000, 60 000, and 100 000 Qdots per bead.  

Qdots–antibody conjugation. We conjugated four different Qdots CdSe/ZnS nanocrystals with 

525, 605, 655 and 705 nm emission (Invitrogen, Carlsbad, CA) to monoclonal human antibodies 

using the copper free click chemistry Qdot–antibody conjugation kits (catalog numbers: S10449, 

S10450, S10469, S10453, S10454). The copper-free click conjugation consists of three steps: 

antibody carbohydrate domain modification, azide attachment to the antibody, and conjugation 

with the DIBO-modified label. It relies on copper-free click chemistry to covalently link the 

label containing the dibenzocyclooxtyne (DIBO) moiety with the azide-modified antibody 

without reducing the protein. The molar ratio of antibody fragments to the Qdots at mixing is 

∼3: 1. Conjugates with bigger Qdots (Qdot605 and Qdot705) are concentrated by ultrafiltration.  

Cell labeling. HUVECs and HDFs of 85 – 90% confluency were harvested from flasks and 

dissociated as described 16,21. Dissociated cells were resuspended using BlockaidTM blocking 

solution (Thermo Fisher Scientific) for 30 min on ice prior to staining. Then we added 25 µL 

aliquots of cell suspension containing 1 x 105 cells to 5 ml polystyrene round-bottom tubes (BD 

Biosciences, NJ). Cells were labeled with either Qdot-conjugated antibodies or phycoerythrin 

(PE)-conjugated monoclonal antibodies. PE-conjugated antibodies were added at previously 

established concentrations to ensure saturated labeling 16,21. Qdot-conjugated antibodies were 

titrated at various concentrations from 0.5 nM to 200 nM, and added to the cell suspension. 

Samples were protected from light and incubated for 40 minutes on ice in stain buffer (PBS 

containing 0.2% FBS and 0.05% sodium azide) to prevent receptor internalization. After two 
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washes with 2 mL of stain buffer, samples were resuspended in 300 μL stain buffer and kept on 

ice until flow cytometric measurements.  

Quantitative flow cytometry. Flow cytometry was performed on a LSR Fortessa (BD) Flow 

cytometer; BD FACSDIVA software was used for data acquisition, and FlowJo (TreeStar) 

software was used for data analysis. Upon analysis, 5 μg/mL Sytox Blue (for PE, Qdot655, and 

Qdot705) or Sytox Red (for Qdot525 and Qdot 605) live/dead cell stain (Invitrogen) was added 

to all samples. Tubes were vortexed immediately prior to placement in the flow cytometer. 8,000 

- 10,000 live cells were collected from each tube. For each experiment we collected 2 – 4 tubes 

of Qdot-labeled cell samples for each receptor under each condition, i.e. control and treated. To 

subtract cell auto-fluorescence and background noise, 1-2 tubes of unlabeled cell samples were 

collected as well. Sytox blue was excited with a solid-state laser (407 nm) and its emission was 

collected using a 450/50 band-pass filter. Qdot 525, 605, 655, and Sytox Blue were excited with 

a 403-nm violet laser; Qdot 705 was excited with a 488-nm blue laser; Sytox Red was excited 

with a 640-nm red laser. Fluorescence of Qdot 525, 605, 655, 705, Sytox Blue, and Sytox Red 

were obtained with band filters at 525/30 nm, 610/20 nm, 670/30 nm, 695/40 nm, 450/50 nm, 

and 670/30 nm, respectively. Qdot calibration beads, along with the QuantiBRITE™ PE 

calibration beads (Becton Dickinson), were analyzed by flow cytometry under the same setting 

as cell samples. 

Statistical analysis: ensemble averages. For samples incubated with PE-conjugated antibodies, 

cell surface receptor concentration was quantified with PE calibration standards as previously 

described 7,16,21. Similarly, a calibration curve that correlates Qdot fluorescence intensity with the 

number of Qdots was determined.  Following flow cytometry, single beads were gated using 
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FlowJo (TreeStar) to ensure accurate fluorescence measurement (Fig. S9A). Histograms of 

fluorescence intensity of each Qdot655-conjugated beads population were plotted and geometric 

means of each histogram was measured (Fig. S9B). Qdot calibration curve was determined by 

fitting the geometric mean of fluorescence histograms of five bead populations that were 

conjugated with 500, 5 000, 20 000, 60 000, and 100 000 Qdots per bead respectively to a linear 

regression (Fig. S9C): y = mx+b, where x = log10(Number of Qdots per bead), y = log10(Qdot 

fluorescent intensity geometric mean). A calibration curve was generated for every type of Qdot 

used in each experiment. Number of Qdots per cell for each labeled and unlabeled sample was 

calculated using the equations below: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑑𝑜𝑡𝑠/𝑐𝑒𝑙𝑙𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = 10
1
𝑚

(log10 𝑄𝑑𝑜𝑡𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛−𝑏)
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑑𝑜𝑡𝑠/𝑐𝑒𝑙𝑙𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = 10
1
𝑚

(log10 𝑄𝑑𝑜𝑡𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛−𝑏)
 

where m and b were obtained from the Qdot calibration curve. Finally, ensemble receptor 

concentration was calculated by subtracting averaged number of Qdots/cell of all unlabeled 

samples from averaged number of Qdots/cell of all labeled samples.  

Saturation study and KD. Binding of the conjugated antibody to the receptor follows the law of 

mass action, therefore, equilibrium binding characteristics including the dissociation constant 

and maximum number of binding sites can be determined from saturation binding studies 48,50,51. 

This method is often used to assess binding characteristics of radiolabeling ligands, or to 

determine whether a given drug acts as a competitive antagonist to a receptor of interest 50. Here, 

we adapted he method to quantitatively characterize Qdot-conjugated antibody binding to 
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receptors. Briefly, ensemble-averaged number of bound antibody-receptor pairs and the 

corresponding antibody concentrations were fitted using OriginLab software to the equation  

𝑦 =
𝐵𝑚𝑎𝑥 ∙ 𝑥

𝑥 + 𝐾𝐷
 

where 𝑥 is the concentration of Qdot or PE-conjugated antibody, 𝐵𝑚𝑎𝑥 is the maximal density of 

binding sites for the conjugated antibody, and 𝐾𝐷 is the equilibrium dissociation constant, which 

is a measure of the binding affinity (ratio of unbinding, off, to binding, on, rates) between 

conjugated antibody and the targeted receptor. 

Statistical analysis: cell-by-cell analysis. A 2D histogram of RTK concentration within a cell 

population was calculated using cell-by-cell Qdot fluorescence intensity, similar to the 

established PE-based qFlow cytometry 21. Briefly, we derived a signal to noise ratio by dividing 

the weighted integral of the labeled cell signal with the unlabeled cell signal, and deriving the 

histogram of RTK concentration using this signal to noise ratio: 

𝐻𝑅𝑇𝐾 = 𝐻𝑠𝑖𝑔𝑛𝑎𝑙 (1 −
∑ 𝑄𝑑𝑜𝑡𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 /𝑁𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑

∑ 𝑄𝑑𝑜𝑡𝑙𝑎𝑏𝑒𝑙𝑒𝑑 /𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑
) 

where Hsignal is the histogram of Qdot fluorescence from labeled cells, HRTK is the histogram of 

RTK concentration, Qdotlabeled and Qdotunlabeled are the fluorescence signal from labeled cells and 

unlabeled cells respectively, and N is the number of cells in a dataset (may contain multiple 

samples). The cell-by-cell analysis was performed using R (www.r-project.org), and the 2D 

histogram was plotted using OriginPro.   

http://www.r-project.org/
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Heterogeneity analysis. To quantitatively characterize cell heterogeneity at receptor-level, we 

employed quadratic entropy (QE). QE provides a quantitative measure of the diversity of cellular 

phenotypes in cancer tissue sections for diagnostic applications 52 and drug discovery 53,54.  Each 

log-scaled cell-by-cell distribution was divided into 500 equally spaced bins. QE then sums the 

weighted differences of the means between two bins 55–57. 

Cell staining for TIRF imaging. 4.4x105 HUVECs and mouse 3T3 fibroblasts were seeded 

overnight on 14 mm No. 0 glass microwells coated manufacturer coated with poly-d-lysine 

attached to 35 mm diameter plastic dishes (Mattek, P35GC-0-14-C).  Live cells were pre-fixed 

by adding 500 µL of 4% formaldehyde (Fisher; Lot: 122604) in phosphate buffered saline (PBS) 

to each dish for 2 min at room temperature (RT).  The pre-fixation solution was replaced with 1 

mL of 4% formaldehyde for 20 min at RT. Cells were washed with 1 mL PBS. Free aldehyde 

groups were quenched, to reduce binding of antibody by incubating at RT with 100 mM glycine 

(Fisher; Lot #131855) in PBS. Cells were washed twice with wash buffer containing PBS plus 

0.1% bovine serum albumin (BSA), corresponding to 500 mg BSA + 500 mL PBS.  A 1:25 

antibody dilution in wash buffer was used and added to cells and incubated overnight at 4°C.  

Cells were washed twice with wash buffer, and DAPI was added to stain nuclei. 

TIRF Microscopy. TIRF imaging was performed on an inverted microscope (Nikon, Eclipse Ti) 

configured for evanescent wave excitation at the Beckman Institute (University of Illinois at 

Urbana-Champaign).  Briefly, the beam was generated by a 20 mW, 405 nm laser (Power 

Technology Inc.) was focused using a Nikon 60x 1.4 NA oil objective. TIR was introduced via a 

single mode fiber to produce a better spatial mode, and then guided through a fiber collimator 

and a Chroma dichroic mirror to finally focus at the back focal plane of the objective lens. In the 
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detection path, a Chroma Notch filter was used to eliminate laser stray light and emission was 

filtered via a YFP filter cube. Images were captured with an Evolve 512 Delta EMCCD camera 

(Photometrics), which was equipped single molecule imaging. A custom software program was 

developed in Labview and C++ for microscope control and image acquisition.  

6.3 RESULTS AND DISCUSSION 

6.3.1 Minimize non-specific binding by optimizing staining buffer 

Ensuring antibody specificity is the first step to accurately quantify receptor density and 

characterize novel receptor-targeting biosensors. If the antibody binds to targeted receptors 

specifically, the number of antibody binding sites should be saturable, since a finite number of 

receptors is present on each cell plasma membrane 58. To assess saturability, HDFs at a fixed 

concentration (4 × 106 cells/mL) were labeled with increasing concentrations of Qdot-conjugated 

anti-PDGFRα. As shown in Figure 22, binding sites on stain buffer-blocked HDFs for Qdot-

conjugated PDGFR antibody did not saturate (as indicated by a steeper slope), whereas binding 

sites on HDFs incubated with Blockaid buffer (Thermo Fisher) saturated (as indicated by a 

plateau). At saturating concentrations of Qdot-conjugated PDGFRα antibody (~40 nM), we 

measured ~7,800 total binding sites per stain buffer-blocked HDF and ~4,000 specific binding 

sties per Blockaid-blocked HDF. Therefore, we reduced ~49% non-specific binding by using 

Blockaid buffer. These results showed that optimizing staining buffer has a significant impact on 

increasing saturability of Qdot-conjugated antibody.   

We further assessed nonspecific binding by applying Qdot-conjugated human antibodies on cells 

of a different specie; therefore, the number of binding sites detected will be due to nonspecific 

binding between Qdot-antibodies and cells. We observed that nonspecific binding is a linear 



 
 

157 
 

function of conjugated-antibody concentration when human PDGFRα antibody conjugated to 

Qdot655 (Qdot655-anti-hPDGFRα) is applied to mouse 3T3 fibroblasts (Fig. 22). We measured 

~250 non-specific binding sites per mouse 3T3 cell at concentrations lower than 40 nM (where 

antibody plateaued on HDFs). We assessed VEGFR1, VEGFR2, and PDGFRβ using the same 

method, and observed less than ~800 nonspecific binding sites per plasma membrane (Fig. S10). 

By comparison, mouse antibodies conjugated with PE measured ~3,200 mouse VEGFR1, 

~21,500 mouse PDGFRα, and ~32,800 mouse PDGFRβ, confirming that the low receptor counts 

measured via Qdot-antibody conjugates was not due to low concentrations of receptors present 

but high specificity of the antibodies. 

Nonspecific binding poses an challenge to accurate receptor quantification on cell plasma 

membranes 37. We showed that number of nonspecific binding sites increased as Qdot-antibody 

concentration increased, as nonspecific binding is usually linear with the labeling concentration 

58. More quantitatively, Healey et al. suggest that nonspecific binding for radioligand should be 

less than 50% of the total binding to be considered “not too high” 59. Here, we reported ~2-25% 

of the total binding sites on HDFs for nonspecific binding sites between Qdot-conjugated human 

antibody and mouse 3T3 cells, ensuring specific binding between Qdot-conjugated antibodies 

and targeted receptors.  The detected low non-specific binding along with our comparison 

between conventional stain buffer and optimized buffer BlockaidTM, suggests that optimizing 

buffer can increase antibody specificity and minimize nonspecific binding in Qdot-antibody 

staining.  
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6.3.2 Determining optimal labeling concentration and KD from saturation binding studies 

Importantly, we verified antibody saturation to ensure accurate receptor quantification. We 

identified the saturating concentration (optimal staining concentration) at the plateau of the 

saturation curves of other Qdot-conjugated antibodies: VEGFR1=30 nM (Fig. 23A), 

VEGFR2=40 nM (Fig. 23B), NRP1=40 nM (Fig. 23C), PDGFRα=40 nM (Fig. 23D), and 

PDGFRβ=200 nM (Fig. 23E).  These results established the optimal staining concentrations for 

Qdot-conjugated antibodies. Our optimal staining concentrations for Qdot-conjugated antibodies 

aligned with previously established PE-conjugated antibodies (20 – 40 nM) 7,16,21 expect for 

PDGFRβ.  This similarity is expected, because same human monoclonal antibody clones were 

used in PE-conjugates and Qdot-conjugates. The higher Qdot-conjugate concentration required 

than PE-antibody to saturate PDGFRβ may be due to the lower binding efficiency of larger 

Qdots, i.e. Qdot705. We will discuss the effect of steric hindrance and other implications when 

using larger Qdots in later sections.   

We derived 𝐾𝐷 of Qdot-conjugated antibodies from saturation binding curves (Fig. 23A-E): 

Qdot525-anti-VEGFR1=13.8 nM, Qdot605-anti-VEGFR2= 3.2 nM, Qdot655-anti-NRP1=9.1 

nM, Qdot655-anti-PDGFRα= 5.0 nM, Qdot705-anti-PDGFRβ= 64 nM. Previous study showed 

that monoclonal IgG antibody-receptor binding affinity can range from several pM to several nM 

48, which aligns with what we observed except for Qdot705-anti-PDGFRβ.  

𝐾𝐷 is affected by several factors including the intrinsic binding affinity of the monoclonal IgG 

antibody to the targeted receptor 48,60, fluorophore conjugation 61, antibody conjugate size and 

shape 60,62,63, cell-surface receptor density 48,64, and the valency of the conjugates or “degree of 

labeling”, the mean number of fluorophores per antibody 42,61,64. Some of these factors affect 
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each other, for example, if receptor density is low, the valency of the Qdot-antibody conjugates 

would matter less than if the receptor density is high. Another example is that if the size of Qdot-

antibody conjugates is too large, steric hindrance may prevent a conjugate from binding to 

multiple receptors even if the antibody: Qdot ratio is higher than 1.  

6.3.3 Single-Qdot labeling provides accurate quantification of VEGFRs and PDGFRα 

Using the optimized buffer, and Qdot-antibody saturating concentrations (Fig. 23A-E), we 

quantified VEGFR1, VEGFR2, and NRP1 on HUVEC surface, and PDGFRs on HDF surface, as 

these receptors were previously located on the two cell types 7,16. For VEGFR1, VEGFR2, and 

PDGFRα, Qdot-conjugated antibodies yielded similar quantification compared to PE-conjugated 

antibodies (p>0.05, Fig. 23F): 1,520±120 VEGFR1 per HUVEC, 3,030±110 VEGFR2 per 

HUVEC, and 4,440±190 PDGFRα per HDF. We observed ~2-fold lower NRP1 concentrations 

quantified using Qdot-conjugated antibodies than PE-conjugated antibodies, and ~14-fold lower 

for PDGFRβ (p<0.01, Fig. 23F).  The quantification disparity for NRP1 and PDGFRβ may be 

due to Qdot multivalency, as our previous reports found a ~4:1 IgG antibodies to Qdot ratio per 

each Qdot565-antibody conjugate 38. These results show that Qdot-antibody used in this study 

may be able to accurately measure receptor concentration within a dynamic range.  

6.3.4 Impact of receptor density on Qdot-antibody quantification. 

To determine the dynamic range for accurate Qdot-conjugated antibody measurement, we 

applied Qdot-conjugated antibodies on HUVECs having various plasma membrane NRP1 

concentrations. We chose NRP1, because it is highly present on HUVECs (~50,000 

NRP1/HUVEC 7,16), and its concentration can be manipulated via serine protease exposure 7,16. 

By incubating HUVECs with PBS buffer containing 0-80% TrypLE at 37 °C for 5 minutes, we 
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measured 5,900 – 50,900 NRP1 per HUVEC using PE-conjugated antibody. Qdot605-

conjugated NRP1 antibody can only measure ~60% NRP1 comparing to PE-conjugated antibody 

(p < 0.05, Fig. 24) on HUVECs having >20,000 plasma membrane NRP1/cell.  Conversely, 

Qdot-anti-NRP1 bound to 85-100% plasma membrane NRP1 on HUVECs having fewer than 

20,000 plasma membrane NRP1 per cell (p >0.05, Fig. 24). Altogether, Qdot-conjugated 

antibodies can ensure accurate receptor quantification of plasma membranes having 20,000 

receptors or lower. 

The correlation between receptor concentration and Qdot-antibody labeling suggests that 

receptor clustering may also cause steric hindrance, and therefore, prevent Qdot-conjugated 

antibodies from binding to receptor targets. Clustering is indeed a common phenomenon among 

highly expressed membrane proteins 65. For example, epidermal growth factor receptors 

(EGFRs) form clusters of 2-3 receptors on BAF/3 or COS7 cells, which express 50,000 

EGFRs/cell 66.  In another study, A431 cells, a cancer cell line that express abnormally high 

levels of EGFR (2×106 EGFRs/cell), form clusters of 10-15 receptors 67. Similarly, we observed 

inhomogeneous NRP1 distribution on HUVEC (50,900 NRP1s/cell), indicating receptor 

clustering (Fig. S11A). In comparison, we observed low levels of autofluorescence of non-

labeled HUVECs (Fig. S11B) and low non-specific binding of conjugated human NRP1 

antibodies on 3T3 mouse fibroblasts (Fig. 23C). These results confirmed that the small 

fluorescence puncta observed on stained HUVECs were not from autofluorescence or 

nonspecific binding. Therefore, when applying Qdot-conjugated antibodies, researchers should 

use similar methods as we have outlined, to ensure that their antibodies are specific and 

determine the measuring range for receptor density with their Qdot-conjugated antibodies.   
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In addition to receptor clustering, receptor concentration itself can affect antibody binding, and 

therefore may affect measurement accuracy. A study measured IgG antibody apparent binding 

affinity on tumor cells expressing varying levels of EGFR, and showed a correlation between 

antibody apparent affinity and receptor concentration 48.  Therefore, when developing antibody-

based nanosensors, it is important to quantitatively determine the measuring limit to ensure 

accurate quantification. This study and our results also suggest that antibodies of different 

apparent binding affinities can be tested to achieve the optimal pairing between antibody and 

receptor concentration.    

6.3.5 Impact of Qdot size on Qdot-antibody quantification 

To investigate whether smaller Qdots can exceed the measuring limit in receptor concentration, 

we conjugated Qdots of different sizes to human PDGFRβ antibody and applied these conjugates 

along with PE-conjugated PDGFRβ antibody on HDFs (Fig. S12A). The emission maxima of 

Qdots are dependent on their size; the emission peak for large Qdots, like Qdot705, is in the red 

end of the spectra and smaller Qdots, like Qdot525, in the blue region 36. Binding affinity of 

antibody conjugates decreases as Qdot size increases due to the reduced steric hindrance; in turn, 

higher binding efficacy of smaller Qdots leads to higher number of bound cell-surface receptors. 

Indeed, we detected ~4-fold higher bound membrane-PDGFRβ using smaller Qdots, Qdot525 or 

Qdot605-conjugated antibody, than larger Qdot, Qdot705 (Fig. S12B).  However, neither of the 

smaller Qdots we tested, Qdot525 or Qdot605 exceeded the measuring limit (20,000 receptors per 

cell), while PE-conjugated antibody measured ~78,800 PDGFRβ per cell.   
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6.3.6 Multiplexed VEGFR quantification reveals receptor surface regulation by VEGF-A165 but 

not VEGF-B167 

In order to validate the performance of our Qdot-antibody conjugates, we recapitulated the 

VEGFR regulation induced by 24 h VEGF-A165-treatment7. We observed that 20-24 h VEGF-

A165-treatment induced an increase of ~990 VEGFR1s and a downregulation of ~2,300 

VEGFR2s per HUVEC plasma membrane via Qdot525-anti-VEGFR1 and Qdot605-anti-

VEGFR2 co-staining (p < 0.05, Fig. 25A). In contrast, long-term, 20 – 24 h VEGF-B167 

treatment did not induce significant changes in plasma membrane VEGFR1 and VEGFR2 

concentrations using either PE-based or Qdot-based quantification (p >0.05, Fig. 25B). Together, 

these results demonstrate Qdot-conjugated antibodies can measure at least two receptors 

presented within the detection limit. 

6.3.7 Multiplexed cell-by-cell analysis reveals changes in bivariate receptor distribution by 

VEGF-A165 but not VEGF-B167 

In addition to regulating VEGFR1 and VEGFR2 concentrations, VEGF-A165 induced changes in 

cell heterogeneity. We observed a shift of cell frequency distribution on a two-dimensional 

surface mapped by VEGFR1 and VEGFR2 plasma membrane concentrations, when HUVECs 

were treated with VEGF-A165 but not VEGF-B167 (Fig. 26A). To quantitatively understand these 

changes in cell heterogeneity at receptor-level, we employed quadratic entropy (QE). QE 

provides a quantitative measure of the diversity of cellular phenotypes in cancer tissue sections 

for diagnostic applications 52 and drug discovery 53,54.  QE requires equally spaced bins, here we 

chose 500 bins, from each log-scaled cell-by-cell distribution. QE then sums the weighted 

differences of the means between two bins 55–57. Thus, QE is a measurement of the increase in 
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random variation in the cellular response. Prior to VEGF treatment, the QE of VEGFR1 and 

VEGFR2 was 0.06 and 0.07, respectively; QE of the dual-receptor distribution was 0.14 (Fig. 

26B). VEGF-A165 induced little to no change in VEGFR1 heterogeneity and ~15% decrease in 

QE of VEGFR2. The dual-receptor distribution of HUVECs showed ~8% decrease in QE when 

treated with VEGF-A165. Here, we observe ~3-11-fold decrease in receptor QE on healthy ECs 

and human fibroblasts using Qdot-antibody conjugate compared to PE-based quantification. 

Previously, we have shown that healthy ECs and human fibroblasts in vitro have QE within 0.2–

0.7 16. This discrepancy in QE may be due to that Qdot-antibody has a narrower measurable 

receptor density range than PE-conjugated antibody. Therefore, it is important to establish a 

baseline for multiplexed heterogeneity using standard cell lines.  

Not surprisingly, VEGF-B167-treated HUVECs show little to no changes in either VEGFR1 or 

VEGFR2-dependent heterogeneity. Changes in the dual-receptor heterogeneity highly correlates 

with VEGFR2 heterogeneity, despite of the changes of receptor density in both receptors. 

Together, this analysis revealed, for the first time, changes in endothelial heterogeneity defined 

by dual-receptor distribution of VEGFR1 and VEGFR2, upon VEGF activation. 

Our observation of VEGF-A165-induced downregulation of cell heterogeneity in VEGFR2 

concentration aligns with previous findings 7, however, we did not observe a significant 

upregulation of cell heterogeneity in VEGFR1 concentration. This is likely due to the 

heterogeneity analysis done in this study, which is based on log-scaled receptor distribution, 

whereas a previous study was done on linear-scaled distributions.  
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6.4 CONCLUSIONS 

In summary, we have established a receptor quantification method for multiplexing more than 

one receptor, using Qdots. In particular, we optimized and established the buffer to minimize 

non-specific antibody binding; we identified the dynamic range of our conjugates to be 800 – 

20,000 receptors per cell; we confirmed significant changes in VEGFR1 & VEGFR2 

concentration and heterogeneity when cells were treated with VEGF-A165, and found no 

significant change induced by VEGF-B167; and we validated the method by comparing our 

results to previously established PE-based qFlow cytometry.  

The Qdot-based qFlow cytometry has several advantages and limitations among cytometry-based 

proteomic technologies. The wide usage of flow cytometry in both clinical and laboratory 

settings permits easier and cheaper access, than more advanced technologies, i.e. mass cytometry 

(CyTOF) 68 . In addition, the commercial availability of Qdot-antibody conjugation kits allows 

for easy development of protein-specific nanosensors that requires little to no training. The Qdot-

based qFlow cytometry could potentially be expanded to 3 – 5 RTKs, depending on their plasma 

membrane concentrations; whereas CyTOF can provide measurement of over 40 parameters at 

single-cell level 68.  Despite these features for multiplexed measurements, both technologies are 

limited by their reliance on antibodies.  

Here, we identified a 20,000 receptors per cell measuring limit for the commercial Qdots, so 

above this single-receptor concentration, PE-based qFlow cytometry is preferred over Qdots. 

Qdots should still enable heterogeneity measurements, as has previously been reported 69–71, and 

multiplexed quantification may still be achieved by using a calibration standard for each Qdot. 

Given our previous reports of a 4:1 IgG antibodies to Qdot ratio per each Qdot-antibody 
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conjugate 38, advancements towards higher-ranged Qdot-based multiplexed receptor 

quantification may still be achieved via emerging monovalent Qdot-antibody conjugates 72.  

Similarly, the development of smaller Qdot-antibody probes 73,74 has the potential to measure 

high-density receptors by overcoming steric hindrance and/or multivalency. 

qFlow cytometry has enabled computational modeling 29,31; multiplexed qFlow cytometry 

enabled by Qdots should improve the accuracy of such models, because model parameters such 

as RTK concentrations of each cell or cell population will be more accurate. For example, our 

previous model predicted tumor resistance with high VEGFR1 plasma membrane concentrations 

to anti-VEGF drugs 6; with multiplexed qFlow cytometry, models will be able to incorporate 

concentrations of other RTKs that may contribute to drug resistance for a more accurate 

prediction. Other researchers have shown that in quantitative models of RTK signaling, small 

changes in cell-specific parameters including receptor concentrations and rate constant for 

receptor activation can drastically influence modeling outcome, thus significantly affect the 

accuracy of model prediction 75,76. Therefore, the cell-specific, quantitative receptor 

concentrations obtained via multiplexed qFlow cytometry will advance computational models for 

receptor signal transduction.    

In order to apply this technology to clinical tissue samples, it is important to establish RTK 

concentration on cells under normal and diseased conditions in preclinical models. qFlow 

cytometry has been applied towards quantifying key angiogenic receptors (VEGFRs, PDGFRs, 

Tie receptors) on several preclinical models 4–7,16,54, and multiplexed qFlow cytometry should be 

able to expand these quantitative data. Ideal models for using Qdot-based qFlow cytometry 

requires RTK concentrations to be lower than 20,000 receptors/cell. For VEGFR1 and VEGFR2, 
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human ECs in vitro 7, mouse ECs from nonischemic limb and ischemic limb 4,5, tumor cells and 

tumor ECs from breast cancer xenografts 6, and human EC-like cells in glioblastoma 39 

xenografts 54 are ideal models. Human EC-like cells in glioblastoma 39 xenografts 54 showed 

PDGFRs and NRP1 concentrations within the ideal measuring range of Qdot-based qFlow 

cytometry.  For RTKs having concentrations higher than 20,000 receptors per cell in these 

preclinical models, PE-conjugated antibodies are still applicable to be used alone or combined 

with Qdots. The application of quantitative Qdot probes to these preclinical models will provide 

us valuable insights into RTK profile in clinical models.   

Other preclinical applications of our multiplexed RTK quantification method can range from 

biomaterials to tissue engineering. For example, stem cells have become a popular target for 

researchers due to its wide applications including cancer therapy 77,78 and regenerative 

biomaterials 79,80; however, there is a critical need for better identify and isolate stem cells from 

tissues 81,82.  Our multiplexed qFlow cytometry can help establish a “barcode” of RTK plasma 

membrane concentrations on stem cells may help to identify novel markers, aiding in the 

isolation and understanding of these stem cells. Multiplexed RTK quantification can improve 

other tissue engineering applications: cell RTK concentrations can be used to assess the 

functionality of biomaterials such as such as 3D hydrogel matrices 83, carbon nanotubes 84, to 

better direct tissue engineering. 
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6.5 FIGURES AND FIGURE LEGENDS 

 

Figure 21. An overview of the workflow for characterizing plasma membrane VEGFR1 and 

VEGFR2 concentrations and heterogeneity on HUVECs.  
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Figure 22. Saturation binding studies show difference between specific versus nonspecific cell 

labeling. Saturation curves of Qdot655-anti-PDGFRα on PDGFRα-expressing human dermal fibroblasts 

pre-incubated with Blockaid buffer vs. stain buffer (PBS supplemented with 0.2% BSA and 0.05% sodium 

azide). Blockaid buffer reduced nonspecific Qdot-cell labeling, demonstrated by a saturated curve. 

Nonspecific binding was characterized by applying Qdot655-anti-PDGFRα on mouse 3T3 fibroblasts, 

resulting in a linear-like curve.  
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Figure 23. Quantification of VEGFRs, NRP1, and PDGFRs concentration on HUVECs and HDFs 

and Qdot-antibody binding affinity. (A)-(E) KD, the equilibrium dissociation constant for Qdot-antibody 

binding to cell surface receptors, and Bmax, maximal density of binding sites for the conjugated antibody 

were determined by fitting the saturation binding data to the Lineweaver-Burk equation (see Supporting 

Information, Methods and Materials). Optimal Qdot-antibody concentrations (> 2-fold of KD) were 

indicated by arrows. (F) Single staining of Qdot-antibodies provides accurate quantification for plasma 

membrane VEGFRs on HUVECs and PDGFRα on HDFs when compared with previously established 

phycoerythrin (PE)-antibodies. Significance tests were conducted using ANOVA where *** indicates 

p<0.001. 
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Figure 24. Receptor concentration affects accurate quantification of Qdot-conjugated antibodies. 

HUVECs were pretreated with increasing concentrations of TrypLE, an enzymatic cell dissociation buffer 

that cleaves NRP1 antibody epitope. Quantified NRP1 concentrations via Qdot-antibody was compared 

with previously established phycoerythrin (PE)-antibody. Significance tests were conducted using ANOVA 

where * indicates p<0.05 and *** indicates p<0.001. 
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Figure 25. Dual-staining of Qdot-conjugated VEGFR1 and VEGFR2 antibodies on HUVECs yields 

similar receptor concentrations as phycoerythrin (PE)-antibodies. (A) Qdot-based qFlow cytometry 

accurately quantify changes in VEGFR1 & VEGFR2 membrane plasma concentrations on VEGF-A165-

treated HUVECs. (B) 2.6 nM VEGF-B167 did not cause significant changes in VEGFR1 or VEGFR2 levels. 

Significance tests were conducted using ANOVA where * indicates p<0.05 and *** indicates p<0.001; NS: 

Not significant. 
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Figure 26. Characterizing receptor heterogeneity on single HUVECs treated by VEGF-A165 and 

VEGF-B167. (A) 3D cell-by-cell analysis shows increase in VEGFR1 & VEGFR2 heterogeneity on 

HUVECs treated with VEGF-A165 and no significant change induced by VEGF-B167 treatment. (B) 

Quantification of cell heterogeneity using quadratic entropy. Significance tests were conducted using 

ANOVA where * indicates p<0.05 and *** indicates p<0.001. 
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Supplemental Figures 

 

Supplemental Figure 9. Qdot calibration curve. (A) Gated single beads conjugated with Qdot655 on a 

forward scatter vs. side scatter plot. (B) Histograms of fluorescence intensity from five groups of beads 

conjugated with 500, 5000, 20 000, 60 000, and 100 000 Qdot655s respectively. (C) Linear regression of 

log10(geometric mean of fluorescence of Qdot655-conjugated beads) plotted against log10(number of 

Qdot655 per bead).   
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Supplemental Figure 10. Characterization of nonspecific binding of Qdot-conjugated antibodies. 

Phycoerythrin (PE)-conjugated human antibody on mouse 3T3 fibroblasts showed little to no binding cites 

and high specificity of the antibody conjugates, while Qdot-conjugate human antibody showed maximum 

~800 non-specific binding sites per 3T3 cell (indicated by red dashed line). The ensemble average of each 

receptor were mean of receptor concentrations measured at 10 nM, 25 nM, and 50 nM of Qdot-antibody 

conjugates. 
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Supplemental Figure 11. Inhomogeneous NRP1 distribution on HUVEC plasma membranes 

indicates receptor clustering. (A) Total internal reflection fluorescence (TIRF) imaging of fixed HUVECs 

stained with PE-conjugate antibodies showed NRP1 clustering, indicated by inhomogeneous PE 

distribution on cell plasma membrane.  (B) TIRF imaging of non-labeled HUVECs showed little to no 

autofluorescence. (C) TIRF imaging of 3T3 mouse fibroblasts stained with PE-conjugated human NRP1 

antibody showed low level of fluorescence, indicating high specificity of conjugated NRP1 antibody. 
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Supplemental Figure 12. Impact of Qdot size on cell-surface receptor quantification. (A) Size 

comparison between Qdots and PE used to conjugate with anti-PDGFRβ. (B) Saturation binding curves of 

PDGFRβ antibody conjugated with Qdots of varying sizes resulted in different binding affinities and 

receptor quantification.  
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APPENDIX A: CURRENT STATE-OF-THE-ART AND FUTURE DIRECTIONS 

IN SYSTEMS BIOLOGY 

This Chapter has been published in Progress in Communication in Sciences (2014), Volume 1, 

Issue 1, pp12-26.  We conducted an extensive review on current experimental approaches and 

computational approaches used in the field of systems biology, with an emphasis on its 

application in studying angiogenesis and vessel formation. We also included a section of how 

systems biology can advance personalized medicine, using examples of several diseases that 

present to be challenging to treat.
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Current State-of-The-Art and Future Directions in Systems Biology 

Abstract—Systems Biology offers the promise of decoding genetic information, optimizing 

pharmaceutical design, and aiding in the development of precision medicine. These advances 

require the bimodal approach of deriving information from experimental data and integrating such 

information via computational modeling. However, choosing an appropriate experimental assay 

and computational model is paramount to the accuracy and relevancy of the output. Here, we delve 

into the fundamental concept of several commonly used modeling approaches, their advantages 

and limitations, as well as potential applications. We review and compare experimental assays 

used in systems biology, based on the throughput, simplicity and possibility for quantification. In 

addition, we review current experimental models used in conjunction with assays to provide 

parameters and/or validation for computational modeling. Lastly, we present applications of 

systems biology in medicine: case studies, clinical opportunities, and future directions of systems 

biology. 

Keywords—computational modeling, high-throughput, deterministic, stochastic, agent-based, 

qFlow cytometry. 

A1. INTRODUCTION 

YSTEMS biology has positively impacted several translational and clinical research areas: 

diagnostics, drug discovery and personalized medicine [1]-[3]. Our bodies consist of many 

integrated biological and chemical components that communicate on multiple scales: from 

genomes to molecules to cells that make up the organs. Some fields of biology focus on probing 

and studying components of a system one at a time, and one scale at a time. However, such a linear 

approach is not enough when it comes to solving systemic problems, such as cancer. Systems 

biology, on the other hand, aims to understand biological functions by integrating experimental 

data across different scales with predictive computational modeling. This integrative approach is 

driven by three major fields of research and technology: 1) Physiologically-relevant experimental 

models that allow us to define biological systems; 2) High-throughput technologies that probe 

biological systems at molecular-level with single-cell resolution; 3) Multi-scale predictive 

modeling that can integrate such biological data to predict system mechanism and responses. 

Experimental models offer a window to empirically define and probe a biological system, and 

test response from a given stimulation. Without experimental models, no definitive statements 
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regarding the structure or function of biological systems could be made. However, experimental 

models are often difficult to choose from, due to the large variety and heterogeneity among those 

models. In addition, each model has their advantages and limitations depending on the 

experimental parameters one would like to probe. To alleviate confusion and provide guidance on 

which experimental model to use, we lay out the strengths and weakness of some commonly used 

experimental models, and the relevancy between those models and the physiological systems that 

they represent. 

The complexity of the biological system and heterogeneity at different scales has posed great 

challenges in systems biology and hindered its application in biomarker discovery and drug 

development (Figure 27). In order to expand the approach of systems biology in those areas, it is 

crucial to develop technologies for genomic, transcriptomic and multiplex proteomic analyses at 

single-cell resolution [4][5]. In the past two decades, a variety of high-throughput technologies 

such as cDNA microarrays have greatly benefited the advancement of systems biology [6][7]. 

These technologies also generate “big data” or -omics data, providing insight into novel 

therapeutic targets or critical nodes. However, one challenge that remains is how to interpret and 

integrate these massive datasets in order to provide meaningful insights. Computational modeling 

is a useful tool to integrate big data and possibly overcome this challenge. 

Computational modeling allows big datasets generated from experimental models and high-

throughput assays to be analyzed in a physiological context in shorter times with lower material 

costs. Computational models allow probing of a biological system, using experimentally derived 

knowledge of the system, to provide new insights into the system function and predict system 

responses to various stimuli [8]. However, the biological system must first be experimentally 

defined to a certain extent before computational models can be developed, otherwise the 

computational models will fail to be physiological relevant. As knowledge and data of biological 

systems continues to grow, computational models will be critical for organizing, interpreting, and 

utilizing these data to improve decision making in pharmaceutical development. 

Systems biology, the iteration between experimental models that represent a system, high-

throughput assays that map parameters within the system, and computational models that predict 

system function and response, will accelerate discovery in several fields of biomedical research 

(Figure 28). As such, this review will help contextualize this field by first presenting several types 
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of computational models: describing metrics for selection of appropriate modeling paradigms. We 

will then outline four types of commonly used experimental models in systems biology and discuss 

quantitative high-throughput techniques, with a focus on angiogenesis assays and quantitative 

proteomics. Furthermore, we present selected examples of recent research contributions that 

applied systems biology to better understand and treat diseases such as breast cancer and 

Alzheimer’s. We conclude by proposing two possible opportunities for incorporating systems 

biology approaches towards cancer treatment. 

 

Figure 27 Experimental approaches to systems biology in the pharmaceutical industry. 

A2. COMPUTATIONAL MODEL SELECTION 

You et al described succinctly the major driving force behind the creation of computational 

models: “To be confident how the car works, we should be able to put the [individual] parts back 

together and demonstrate that the car works” [9]. One goal of modeling is to probe empirical data 

and derive the mechanisms and critical nodes of interaction, i.e., the ‘parts’, that comprise the 

system, the ‘car’. A model of the system can be defined using data derived from literature, 

experiments, -omic databases, or clinical studies. Models are iteratively tested and improved by 

comparing model predictions with results, measured empirically. Experimentally validated models 
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can provide predicted responses of systems, and provide insight into mechanisms and pathways of 

interacting system components. The ideal computational model should be robust, computationally 

efficient, and faithful to empirical data. Not all models are created equally. It is important when 

building a model to choose the most efficient type of model for the given system. For example, 

one model type may better represent phenomena at a specific scale than another type. In this 

section, we will review some of the different modeling approaches that are commonly used in 

systems biology studies, focusing on their strengths and weaknesses for modeling a specific system. 

 

Figure 28 The continuous cycle that systems biology studies generally follow. Experimental studies 

derive the first information about the system components, which are utilized to develop a 

computational model. After performing model validation, models give additional insight into the 

system, which are then confirmed empirically. Additional experimental studies allow refinement of 

the model, and the cycle starts anew. 

a. Kinetic Equation -based Modeling 

Kinetic equations, possibly the most common form of representing biochemical interactions, can 

be derived from stoichiometric and empirical data. Kinetic equations are implemented through the 

use of ordinary differential equations (ODEs) and they can give information about the fluctuations 

in concentrations as a function of time ( 

Table ). Kinetic equations require explicit definition of every state, interaction, and rate 

constants, and are thusly described as “deterministic”.  
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Table 4 ODE Modeling: 

The interaction of two species with a forward rate constant kf, and reverse rate constant kr. 

Reaction Equation ODE 
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Kinetic equation based modeling is useful as it allows hypothesized interactions to be explored 

and validated. If the hypothesized model is unable to match empirical results, the model parameters 

and interaction networks can easily be redefined iteratively, through the use of parameter 

estimation, until the empirical results are reproduced. Several methods of estimating parameters 

[10][11] and measuring parameter uncertainty [12][13] have been described. One of the main 

drawbacks associated with kinetic based modeling is the amount of information that is necessary: 

reaction definitions, reaction rates, and initial protein concentrations [14]. A second drawback is 

when simulating several orders of magnitude of reactions, the computational strain becomes quite 

large. One way to reduce this computational intensity is to make the interaction network Boolean, 

meaning every state exhibits one of two cases- on or off, allowing great simplification of the 

system [9]. While the Boolean model is very robust for gene networks, cellular interactions or 

compartmental changes are not very amenable to the system. Thus, systems with more complex 

interaction networks are usually modeled with ODEs. Additionally, ODEs can only be accurately 

applied to a continuum. Thus in situations where reactions occur stochasticity, such as at low 

concentrations, kinetic based approaches can be highly inaccurate. Altogether, kinetic equation 

based modeling can provide straightforward insight into the hypothesized network. 

b. Stochastic Modeling 

Stochastic modeling is the modeling of random, “non-deterministic,” processes. It can be applied 

to a variety of topics including metabolite diffusion and receptor coupling. One stochastic 

technique with widespread use for systems of chemical reactions is the Gillespie algorithm. It 
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captures stochastic processes and predicts the next state of the system [15]. This allows for better 

prediction of highly random interactions compared to deterministic modeling, but it is not without 

challenges.  The randomness introduced into the system may not necessarily correlate with 

inherent system stochasticity. In addition, the added randomness makes it possible for the Gillespie 

algorithm to arrive at different simulation results, a phenomenon that does not occur in 

deterministic modeling. It is best used for few reactions and few species; otherwise, the calculation 

time necessary for a purely stochastic model can be significant. The Gillespie algorithm without 

kinetic equations can also be implemented, giving a homogeneously distributed system that 

contains only basic elementary reactions. Such conditions may not well represent intercellular 

signaling, and thus it is a very rare exception [9]. 

Another stochastic approach involves combining differential equations with to create a 

combinational model. One commonly used combinational model is that of Langevin. Each 

Langevin equation is comprised of two terms: (1) the differential equation, derived via 

deterministic modeling, and (2) a noise term. Introduction of both noise and dynamics provide 

accuracy to the model, without introducing significant computational time.  

Stochastic modeling has also been explored to better reflect the randomness of small scale 

binding-unbinding behavior. Modeling techniques such as Monte Carlo methods allow for the 

creation of randomized data inputs through random sampling and/or probability distributions. This 

allows for the creation of “trials” in computational modeling for interrogating model robustness. 

However, it is debatable whether the increased computing power and number of trials necessary 

for a Monte Carlo simulation results in meaningful accuracy improvement. A study by Mac 

Gabhann et al compared a Mcell Monte Carlo simulation to a Gillespie model and to a purely 

deterministic model to determine if there were differences among these approaches [16]. Here, 

they examined the binding of the vascular endothelial growth factor (VEGF)-A variant, VEGF165, 

to its receptors, VEGFR1 and VEGFR2 on the cellular scale.  They determined that there was not 

an appreciable difference in output amongst the three models, when examining a sample size 

representative of a cell surface. This suggests that for applications on the cellular scale, the more 

convenient deterministic models are sufficient. This study did have some notable limitations: it 

did not account for receptor clustering, receptor internalization, or ligand secretion. Furthermore, 

simulations over small surface areas revealed differences between stochastic and deterministic 

models, indicating that further studies might help identify the deterministic to stochastic relevancy 
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threshold [16]. 

Stochastic systems can also be modeled using Bayesian methods to represent probabilistic noise 

[17]. Capturing probabilistic noise is advantageous as physiological processes are not purely 

deterministic in nature, and every process has some degree of stochasticity. One Bayesian method, 

Markov chain Monte Carlo simulation, is used to estimate initial parameters, discover motifs, or 

predict transcription factor binding sites [17]. Markov chain Monte Carlo simulations are able to 

include biological noise into their simulations, and have achieved 95% physiologically accurate 

results [18]. Markov chain Monte Carlo simulations have been applied to calculate mRNA 

transcript concentration in a series of spotted cDNA wells. Bayesian methods have also been 

applied to discriminate physical interactions across thousands of genes in cancer tumor models, 

such as gliomas. These statistical network models study the topology of cellular systems to find 

key genetic interactions regulating cancer development [19]. One major disadvantage of Bayesian 

methods is that it causes large computational loads, resulting from the large amount of calculations 

and processes; as such, a complete Bayesian analysis of models containing high physiological 

complexity is infeasible with current technology. 

In stochastic models, it is important to note that noise introduced externally is typically assumed 

to be additive. This means that noise is not accounted for directly in the differential parameters, 

but as a constant, input separately. Additionally, fluctuations due to noise only affect the 

measurements, as the reality of the dynamics being affected by noise would require the differential 

equations factoring in that noise, which may make calculations more complex. This would involve 

the creation of a differential term that varied the noise on a temporal scale, which could complicate 

the model. 

c. Agent-based Modeling 

Agent-based modeling involves the creation of a series of rules that constrain the model. Instead 

of a series of deterministic equations such as the kinetic ODE model, agent based modeling is 

much more open-ended as the rules can be implemented to incorporate such aspects as orientation, 

proximity, velocity and even time. One example of this model type is the simulation of angiogenic 

sprouting. With this model, researchers were able to visualize the vessel filopodia as they grew, 

and were able to verify the presence of delta-notch mediated tip and stalk cell selection [20]. 

Recently, agent based modeling has been used to examine leukocyte rolling, adhesion, and 
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extravasation in microvascular networks [21]; to understand angiogenesis by surveying the rules 

for cell behavior compared against experimental results [22]; and to examine breast cancer 

progression [23]. Agent based modeling is very useful as the implementation of rules introduces 

more noise than a kinetic ODE model. The open-endedness of the model comes at a cost however, 

as creating the rules for reactions are not trivial, and the equations can become computationally 

complex when modeling how each agent within the model responds to the rules. Doing five to ten 

equations for a single agent (molecule/gene/protein/cell/etc.) may be computationally inexpensive, 

but scale-up to hundreds or thousands of such agents would result in higher computational strain 

(Figure 29). 

 

Figure 29 An example of the interaction between a blue particle and a red one and the increasing 

complexity of the model with experiment duplication, several time steps, and several particles (Figure 

is adapted from Janes et al 2005 [24]). 

d. Selection of Model and Parameter 

In order to create models with high physiological relevance, it is important to implement an 

effective model type, as incorrect model assignment can result in non-trivial deviations from 

empirical results. For example, if a kinetic ODE based model is utilized for a dilute, low volume 

system where stochastic movement is integral, the model will not be able to capture the random 

fluctuations in particle quantities. The random fluctuations are an essential feature of the system, 

and as such, its lack of integration is a non-trivial simplification in the model. Forcing the kinetic 

model to fit this stochastic process would be much more difficult than implementing it as a 

stochastic model. Relatedly, using a kinetic ODE based model, or even a Langevin stochastic 
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model to simplify a complex interaction may result in lost information; whereas describing 

complexity via agent based model rules may better capture the system.  

Deciding what type of model best represents the system of interest can also be subjective. One 

important aspect to note when comparing models is that a model or hypothesis cannot be proven -

-- merely rejected. Meaning, even if a model is suggested and fits the empirical data, there is no 

proof that it is correct or that a “more accurate model” does not exist. Therefore, the success of a 

model should be judged not simply by whether it best fits empirical data, but also by whether the 

outcome makes sense biologically or physiologically. Additionally, models that can predict system 

outcomes that canbe further validated experimentally are often desired [25]. Models that help 

experimental design, predicting more effective experiments has been well examined [26][27]. 

A3. EXPERIMENTAL APPROACHES 

Experimental research offers new insight into fundamental biological processes. It can serve 

several purposes including providing insight into signals, providing parameters for computational 

modeling, identifying potential biomarkers for clinical applications (early-stage detection, 

progress, and predicted outcome), and providing potential targets for drug development (Figure 

28). The complexity of cellular systems often necessitates high-throughput approaches, while the 

data requirements of computational models require quantification. Additionally, the development 

of quantitative and high-throughput technology can significantly improve the efficiency and 

accuracy of experimental measurements and allow us compare data between facilities, days. 

a. Experimental Assays 

Systems biology has catalyzed the development of quantitative and high-throughput biological 

tools. In turn, the development of these new technologies has revolutionized the way we practice 

biology. The majority of the current experimental tools used in systems biology can be classified 

into genomic technologies and high-throughput proteomics (Table 5).  Genomic technologies are 

used to determine the sequence or abundance of individual gene to an entire genome at either DNA 

level or the transcriptional level. Whereas, post-translational modifications, protein abundance, 

and protein-protein interactions can be identified and quantified using high-throughput 

proteomics. We have detailed examples of these experimental tools in Table 5, detailing their 

respective throughput, simplicity, quantitative nature. 
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b. Genomic Technologies 

There are three primary genomic technologies that are used in systems biology [28]-[31]: 1) 

DNA/RNA sequencing, 2) microarray, and 3) quantitative polymerase chain reaction (qPCR) 

(Table 5). Since the invention of the first automated DNA sequencer in 1986, the throughput of 

DNA sequencing has increased more than 2000-fold [30][32]. The most powerful tool to decipher 

the complexity of genomes, next-generation sequencing (NGS), have been evolving over the past 

decade, leading to improvements such as longer read, higher throughput, and lower cost 

[29][33][34]. However, the relatively higher error rate and higher cost compared to other DNA 

platforms remains the limitation for NGS to be used clinically. Microarrays are widely used in 

genomic research due to its lower cost compared to NGS routines. Microarrays can be used to 

identify single-nucleotide polymorphisms (SNPs) [35][36] as well as measure expression levels of 

thousands of genes inexpensively [37]. Normalization for microarray measurement is considered 

to be challenging due to the variations in hybridizations; therefore, RNA sequencing is sometimes 

recommended in order to achieve more precise output [29][38][39]. qPCR is the gold standard for 

clinical gene detection due to its high sensitivity and specificity. With primers designed for targets 

of interest, qPCR can quickly and robustly detect specific targets, making it preferable for point-

of-care applications [29][40][41]. 
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Table 5 Examples of experimental techniques used in systems biology research. 

Within each assay subset, we evaluate and rank throughput, simplicity, and how quantitative their 

output is. 

Genomic Technologies Throughput Simplicity Quantitative Output 

DNA/RNA Sequencing High  Complex Moderate  

Microarray High Moderate Low  

qPCR Moderate Simple  High  

    

High-throughput Proteomics    

Protein structure Throughput Simplicity Resolving power 

NMR High Simple Low 

Crystallography Moderate Moderate  Moderate 

Mass spectrometry High Complex High 

Protein concentrations Throughput Simplicity  Quantitative Output 

Mass spectrometry High Complex High 

qFlow cytometry Moderate Simple  High  

Quantitative ELISA Moderate  Simple  High  

Protein interaction Throughput Simplicity  Quantitative Output 

Yeast 2-hybrid Moderate  Complex  Low  

MS-based affinity purification High Moderate  Moderate  

Quantitative SPR Low Simple High 
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c. High-throughput Proteomics 

It is clear that proteins are the effectors of several critical cell behaviors. Biological systems 

cannot be decoded simply by studying the genes or RNAs due to the poor correlation between 

gene/RNA expression and protein expression [42]-[45]. Therefore, proteomics research applied to 

systems biology can enlighten on protein function, delineating how proteins regulate cell behavior 

on several levels. Towards this goal, proteomic technologies have been developed to characterize 

protein structure, protein-protein interactions, protein concentrations, and localization.  

Here we focus on technologies used in systems biology that examine: protein structure, protein 

concentrations, and protein-protein interactions (Table 5). 

1) Protein structure 

There are three primary technologies used to identify protein structure in systems biology 

[42][46][47]: 1) Nuclear Magnetic Resonance (NMR), 2) crystallography and 3) mass 

spectrometry (MS). The advantage of NMR over the other two technologies listed here is that it 

allows us to identify the secondary structure, which means it can solve the 3D structure of a protein. 

However, the resolving power of NMR is lower compared to other technologies, and the molecular 

mass of protein complex is limited[48]. Crystallography allows high-resolution identification of 

protein structure, but requires the most prior knowledge of protein function of all the techniques 

outlined here. Relatively large amounts of protein need to be available for purification to form 

crystalline structures and the weight of the protein of interest needs to be approximately known. 

Mass spectrometry is a means of peptide and protein identification by ionization and mass 

analysis. Biomarker identification by mass spectrometry allows for high resolution. However, 

mass spectrometry technology is limited by scalability as the large sample size requirement and 

pre-processing limit single cell analyses. Additionally, the distinction of molecules by mass is 

complicated by extensive proteomes in which several molecules are similar in mass. One example 

of advances in resolving protein complexes is given by Ho et al., where they successfully applied 

mass spectrometry to systematically identify protein complexes in Saccharomyces cerevisiae [49]. 

2) Protein concentrations 

There are three primary technologies that are used to quantify protein concentrations in systems 

biology [50]-[53]: 1) Mass spectroscopy, 2) quantitative flow (qFlow) cytometry, 3) quantitative 
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ELISA, and 4) Immunohistochemistry. Here we start with several MS-based proteomic assays 

used in systems biology. 

Protein phosphorylation, a post-translational modification that is critical to intracellular 

signaling, can be identified along with the sites of phosphorylation through the use of mass 

spectroscopy assays. While useful in assessing the amount and nature of phosphorylation, mass 

spectroscopy techniques cannot easily trace the act of phosphorylation itself, leaving the kinetics 

unknown. However, a powerful benefit of this technique is that these assays can be made in 

physiologically relevant environment and cellular conditions. These techniques are usually aided 

through the use of stable isotope labeling of amino acids in culture, such as with isotope tagged 

amine reactive agents or isotope-coded affinity tags [44], allowing for quantification of many 

different phosphorylation sites under different biological conditions [54]. A similar technique, 

selected reaction monitoring (SRM), is a form of double mass spectroscopy where the sample is 

ionized, fractionated, reionized, and then refractionated. Using heavy isotopes to quantitatively 

label certain ions allows for very accurate quantitation of preselected proteins or protein motifs. 

High-throughput techniques can increase the applicability of selected reaction monitoring [55] to 

new proteins. When SRM assay mixtures are available, they provide specific information about 

the concentrations of several proteins of interest simultaneously [56]. 

Multidimensional protein identification technology (MudPIT) is a mass spectroscopy technique 

that relies on data mining to identify and sort the protein fragments generated. Proteins are 

denatured and liquid chromatography is used to separate them by size, then tandem mass 

spectroscopy fragments the proteins and measures their distribution. Using computational 

techniques, the original protein mixture can be reconstructed [57]. MudPIT samples require several 

days of preparation, and the spectroscopy itself can take many hours. However, MudPIT allows 

quantitative analysis of thousands of proteins across a wide dynamic range. 

Metabolic foot printing is a novel method that uses mass spectrometry in conjunction to 

measuring the metabolites that are excreted or not consumed by the cells from the media [58]. 

Instead of tracing what the cells have consumed through labelling, this technique finds the 

consumption through the analysis of cellular remains and excretion. This method is done through 

the stimulation of “overflow metabolism” which up-regulates the amount of excreted metabolites 

from the cells. This technique is very high-throughput, at the scale of 250 experiments in triplicate 
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in three days. Additionally, this system has been proven to be very useful in detecting the metabolic 

patterns in single-gene knock-out strains in functional genome analyses [58]. These assays give 

mass/charge data which contain vital information about the metabolites remaining in the system. 

However, a purely direct injection system trades off some knowledge of the identity of the 

metabolites for speed. A method to remedy this tradeoff is to use time of flight mass spectrometry 

plus gas chromatography to give much more information about metabolite identity, while 

minimizing the run time to roughly 13-20 minutes per run [58]. 

Quantitative enzyme-linked immunosorbent assays (ELISAs) use enzyme-linked antibodies to 

tag proteins of interest. Proteins are detected by adding a substrate that reacts with the enzyme to 

produce a measureable signal. ELISAs offer protein quantification at the cellular scale, but also 

detect protein levels within fluid or dissociated tissue samples. Radiolabeling seeks to overcome 

the disadvantages to fluorescent tags by tagging proteins with radioactive isotopes. The emitted 

radiation is detected and combined with information about the isotope half-life and decay kinetics, 

which allows protein quantification at small scales. Despite these advances in receptor profiling, 

an inexpensive, high-throughput, and highly-sensitive experimental tool for in vivo measurements 

of protein profiles is still missing. 

Quantitative flow (qFlow) cytometry allows measurement of several different fluorophores 

across hundreds of cells per second. Recently, qFlow cytometry has been used to profile 

angiogenic receptors on endothelial cells in vitro [59], and on endothelial cells from normal tissue 

[60], ischemic tissue [61], and breast cancer xenografts ex vivo [62]. Without compromising 

specificity, up to five different dyes can be used if spectral unmixing techniques and the near-

infrared spectrum are used [63]. Recently, quantum dot-based nanosensors which exhibit narrow 

emission spectrums have been developed to target multiple molecules simultaneously [64]. 

Quantum dot-conjugated antibodies can be combined with qFlow cytometry to quantify membrane 

receptors in a multiplexed manner [65], [66]. Modern fluorophores and compatible antibodies can 

be used to stain for nearly any cellular protein, allowing intercellular diversity to be captured. In 

comparison to immunohistochemistry, qFlow cytometry images a greater number of cells but may 

sacrifice some subcellular resolution. 

3) Protein interaction 

Protein interaction assays seek to identify how proteins bind, and the function of protein binding. 
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Here we introduce three quantitative methods used in systems biology to determine protein-protein 

interaction [67][68]: 1) Yeast two-hybrid assay, 2) MS-based affinity purification, and 3) surface 

plasma resonance (SPR). 

Yeast two hybrid screening (Y2H) uses protein interactions to create a transcription factor for a 

reporter product, which tests for binary protein interactions [69]. The screening is simple and 

effective, but does not necessarily reflect in vivo conditions. MS-based affinity purification also 

probes the interaction of different proteins, though it is more technically complex than Y2H. In 

return for that complexity, the composition of macromolecular complexes can be tracked in more 

physiologically relevant conditions [70]. Surface plasmon resonance (SPR) quantifies the binding 

affinity of two types of molecules by detecting changes in the local refractive index upon protein-

protein interaction on a biosensor. It has important applications in drug discovery and basic 

research because on-and-off kinetics can be measured [71]. 

A4. EXPERIMENTAL MODELS 

Although large-scale gene, protein, and metabolite measurements (-omics) provide accurate 

identification of molecules and potential molecular interactions, it remains challenging to 

understand biological mechanisms with this information by itself. Therefore, experimental models 

that allow incorporation of biological complexity with knowledge of cellular and higher level 

system responses are beneficial. In all, an ideal experimental model for systems biology studies is 

reproducible, technically straightforward, quantitative, and has physiological meaning. The 

selection of appropriate experimental models for probing a biological system can be a challenging 

task. Here we describe some commonly used experimental models and discuss their strengths and 

limitations, mostly focusing on angiogenesis assays. 

In vitro models of angiogenesis (e.g. cell cultures on or in Matrigel, transwell, or scratch assays) 

typically serve to quantify cell migration, endothelial cell proliferation and tubule formation, or 

cell responses to pro- and anti-angiogenic factors. In vitro studies allow for precise control of 

cellular environments, cell isolation, and augmentation, providing a high level of reproducibility. 

However, in vitro cell lines may not accurately recapitulate the physiology present in vivo due to 

the lack of the complexity in cell environment. Environmental factors that cells have surrounding 

them such as vasculature, tensile stresses, stromal cells, and connective tissues contribute greatly 

to the overall cell response to stimuli [72]. Thus, monolayer endothelial cells cultured in static 
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media may display different pathology to that observed in vivo. A recent study showed that 

proliferation rates in micro-channel assays continuously decreased, reaching 5% of the rate of cells 

cultured in flasks after 48 hours, maintaining this rate for 5 days [73]. This discrepancy may be 

due to different surface antigen levels or growth factors expression from proliferating cells in 

culture compared to normally quiescent cells in adult blood vessels [74]. In addition, differences 

have also been present between human umbilical vein endothelial cells (HUVECs) and human 

dermal microvascular endothelial cells (MECs) [75]. Imoukhuede et al quantified angiogenic 

receptor levels on HUVECs and MECs using high-throughput quantitative flow cytometry, 

revealing previously heterogeneities within each cell line [59]. Recently, experimental techniques 

of co-culturing multiple cell lines have been developed to more accurately capture the 

physiological environment. Bryan et al proposed a protocol for co-culturing endothelial cells and 

pericytes, revealing important interactions between these two cell types in angiogenesis [76]. 

Despite these recent advances, intrinsic heterogeneity across cell types and within cell lines needs 

to be better understood, in addition to the standardization of experimental models to provide more 

accurate measurements. 

Beyond in vitro assays, there are a plethora of in vivo assays which allow the study of 

interactions between cells and the supporting environment. It is important to note that the cells and 

tissue that support in vivo environments are inherently heterogeneous, and can be observed even 

in the membrane proteins found on these cells [60]. As such, the characterization of such 

heterogeneities in vivo systems offers more insight into the biological system than in vitro assays.  

In the study of vasculature, it is critical to capture these interactions including those between 

endothelial cells and their supporting smooth muscle cells, fibroblasts, pericytes, basement 

membrane, and extracellular matrix. One widely performed in vivo angiogenesis study, which 

captures the vascular structure, is the chick chorioallantoic membrane (CAM) assay [77]. New 

formation of vessels can be observed and semi-quantified on the chorioallantoic membrane of 

chick embryos using image processing tools such as ImageJ. 

Two limitations of many in vivo models is their inherent complexity, which fails to separate the 

mechanisms of each system component, and their difficulty in scaling up to high-throughput 

measurement. To overcome these limitations, multi-culture protocols have been developed for 

screening pro-angiogenic and anti-angiogenic compounds. For instance, Arnaoutova and 

Kleinman developed a high-throughput angiogenesis assay of endothelial cell tube formation that 
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can be created in 3-6 hours [78], whereas CAM assays usually takes 15 days. Another approach is 

metabolic foot printing analyses, which primarily use yeast. Yeast experiments have the 

advantages of safety, ease of use, absence of ethical issues, large specificity of knock-out mutants 

are obtainable, and 42% of its genetic information has human homologues, so the data derived 

from this method is very similar to human data. This method allows for potential probing of 

parameter values without the use of complex computational analysis [58]. 

Beyond high-throughput in vitro and in vivo, there lies ex vivo models, which provide a 

convenient, higher throughput option than in vivo testing. The choroid sprouting assay involves 

removing choroid tissue from live test subjects, culturing on Matrigel, and observing subsequent 

angiogenesis [79]. Next, image analysis can be used to determine the extent of angiogenesis by 

observing vessel growth and formation, and much of the lab work can be automated. This allows 

for high-throughput testing of pharmacological compounds in a mostly life-like environment. This 

assay can be expensive, but has so far shown promise in accurately reflecting the effects of 

pharmacological compounds on a system. However, ex vivo samples can be difficult to maintain 

and thus may have lower survival rate compared to in vitro assays [80]. Additionally, certain cell 

phenotypes may be altered by the tissue extraction and cell isolation processes. 

Lastly, in situ modeling involves the culturing of large tissue in order to study smaller cells 

within the tissue. For instance, liver cells can be cultured and studied within a large portion of the 

liver. The cells in the liver represents the native environment and thus will experience little 

environmental alternation. Additionally, this has the strengths of in vitro culturing; testing and 

controlling parameters is relatively easy. However, the removal of such a significant portion of 

tissue is invasive and cannot be performed on biopsies. Additionally, while the cell to cell 

environment is conserved, larger system to system interactions are lost, and thus potential signaling 

between systems may be sacrificed. Fluorescence in situ hybridization (FISH), one of the best-

known in situ techniques, uses a labeled complementary DNA or RNA strand to probe and 

visualize a DNA or RNA sequence of interest within tissue sections. Although FISH is very useful 

for detecting and locating viral nucleic acids and distinguish infected cells, it is limited in providing 

quantitative data for sensitive computational modeling. However, recent advancement in 

microfluidic devices has made it possible for in situ high-throughput –omics characterization [81]. 

In the future, minimized microfluidic platforms that are integrated with sensitive microarrays, or 

“Lab on a chip”, can be used for quantitative monitoring of gene expression or molecular 
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interaction in vivo or in situ. This will provide systems biology with not only spatial, but also 

temporal information for advancing quantitative modeling. 

While in vivo human models would be the ideal test bed when probing for system interactions 

or responses, cross-talk from other components may add unnecessary complexity to the study [72]. 

Thus, isolated systems such as in vitro modeling, ex vivo modeling or even in situ modeling can 

be preferential to in vivo modeling for probing individual interactions or mechanisms. 

A5. APPLICATIONS OF BIMODAL SYSTEMS BIOLOGY: 

EXPERIMENT + COMPUTATION 

Creating comprehensive computational models to identify and test new therapies is the goal of 

many systems biology researchers. Even though no models are completely accurate they still 

provide insight where knowledge gaps exist and can therefore direct further experimentation. For 

example, one model determined that direction and rate of endothelial cell migration are decoupled, 

thereby directing further modeling and experimentation [82]. More recent models have focused on 

the molecular interactions that drive endothelial cell migration, specifically the VEGF family of 

signaling molecules and their tyrosine kinase receptors with the goal of inhibiting these molecules 

to prevent tumor angiogenesis. In one example, a hypothesis that the selective binding of PlGF to 

VEGFR1 would increasesVEGFR2 signaling by displacing VEGF from VEGFR1, thus making 

VEGF more available for VEGFR2 was tested and described using a deterministic model [16]. 

This model demonstrates two primary bases for computational modeling; it elucidated signaling 

mechanisms as well as tested design assumptions by performing sensitivity analysis on assumed 

parameters. 

All models make assumptions to derive their results. Most ODEs and other equation based 

modeling use parameter or concentration assumptions. However, inaccurate parameters can cause 

lead to inaccurate or physiologically irrelevant predictions [83]. One way to make these models 

more accurate would be to seed the models with distribution data rather than discrete values. 

Usually, a singular value is imputed for a certain parameter in the model. If a distribution of values 

was inputted into the model, the model would able to resolve the entire range of possible parameter 

values. The resulting distribution of solutions could be used to better understand the system. To 

reduce this dataset, a sensitivity analysis could be done to interrogate the sensitive parameters that 
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would significantly affect model results, and then applying the distribution approach to these 

parameters to gauge response. 

The future direction of deterministic modeling in systems biology includes the move from 

single-scale, spatially isolated systems into larger, more comprehensive, multi-scale models 

(Figure 30). For example, a multi-scale model would incorporate stochasticity into ligand-receptor 

interactions, whole-cell responses from that binding action, and properties of the tissues made up 

of such cells. While elaborate, complex models of specific subsystems are an important focus of 

many modeling endeavors. Incorporation of multiple scales allows for integration of data at other 

scales, which will improve model robustness. 

 

Figure 30 Modeling potential at different scales. Scale increases up the list. Each successively larger 

scale would be built using the smaller scale information below it. 

There are significant computational challenges that accompany the development of multi-scale 

models. These challenges arise primarily from the fact that models at different scales use different 

data and modeling techniques. For example, signal transduction pathways are commonly modeled 

using ODEs, whereas ion channel opening is commonly modeled with stochastic techniques [84]. 

Agent-based techniques have been used for modeling the cellular level, such as in modeling 

endothelial cell migration [21]. These modeling techniques are carefully chosen as the best 

approach to representing the dynamics, spatial scale, and temporal scale of a particular system. 

When systems at multiple scales are combined, a more robust set of information can be captured, 

but integrating these different techniques is a significant computational challenge. 

One recent technique for multi-scale modeling is the rule-based approach [85]. Rule-based 

modeling allows the integration of processes at different scales, as well as providing an iterative 

approach to model development. For example, Chen and colleagues used rule-based modeling to 
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simplify the EGFR system from 400 interacting proteins to 21 proteins [86]. Rule-based modeling 

reduces ODE models to simplified rules based on the necessary inputs and outputs. Rule-based 

methods have been increasingly used in systems biology and are available with OLGIO, StochSim, 

and BioNetGen software. 

Some techniques have been developed to alleviate the challenges of integrating model 

techniques at multiple scales. For example, Covert et al used flux-balance analysis and ODEs to 

model large-scale metabolic networks of carbohydrate uptake in E. coli [87]. The specific 

regulatory flux-balance analysis model was verified to show predictive power in different 

environmental conditions, while ODE modeling of transcriptional regulation from catabolites have 

been able to simulate observation in a wide range of experimental conditions [88]. The results of 

this integrated paradigm provide a framework to combining different modeling techniques and 

shows information gain that would not be possible when limited to a single modeling approach 

(Figure 31). However, the complexity of many systems would not allow for this approach. This 

approach is also computationally expensive: every iteration of model development involves 

recalculating the protein activity, gene expression, protein expression, flux distribution, and 

solving for new concentrations. 

 

Figure 31 Illustration of the advantages of a combinatory model from different scales and modeling 

techniques based on information provided by Covert [87]. 

The integrated flux balance analysis approach provides a good example of the information 

gained from incorporating different model types. However, further approaches must be developed 

to integrate other techniques (i.e. agent-based models (ABM) and partial differential equations) 

and different scales. Another approach integrates an agent-based model of cell-level processes 

with a constrained mixture model (accounting for energy and mass balances) to model tissue-level 
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processes (Figure 32) [89]. The agent-based model was based on data obtained in vitro while the 

constrained mixture model was based on tissue data. Both models were individually validated for 

the respective scales. However, disagreement between the two scales needed to be alleviated to 

create an integrated model. Specifically, the outputs from models, collagen and smooth muscle 

cell masses, had to be converged through the use of a heuristic genetic algorithm. While 

computational tools such as this genetic heuristic algorithm provide potential for systems biology, 

further algorithms and computational tools relevant to biological systems must be developed and 

refined for future models. 

 

Figure 32 Illustration of the process and results of integration of different models from different 

scales based on information provided by Hayenga [89]. 

Towards these multi-scale modeling goals, a problem that must be overcome is that many 

different models exist to model distinct processes, while a unified whole-body model that 

incorporates the models of several researchers fails to exist. Reactome.org offers a good movement 

towards incorporating several cell processes into a qualitative framework.  However, the 

challenges in unifying models is due to two major deficiencies: first, there is a lack of model 

uniformity; second, there is a lack of transparency in the dissemination of models. The lack of 

uniformity is partially due to a lack of knowledge about the implementation and design of different 

model types, and so as the field develops and more educated models are designed, greater 

uniformity will enable greater sharing and compatibility across models. Systems Biology Markup 

Language (SBML) is a modeling language that is gaining traction and may help overcome this 

limitation. However, transparency is a challenge that must be tackled side-by-side with uniformity. 

The presence of curated databases that accept well-notated, standardized models will enable 

greater sharing and implementation of current models.  
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A6. APPLICATION OF SYSTEMS BIOLOGY IN PERSONALIZED MEDICINE 

A grand challenge in interfacing engineering with the life sciences, is understanding the 

complexity and heterogeneity in disease [90]. Previous decades have seen the collection of “big 

data” [91] in the genetic [92] and proteomic fronts [93]. Mapping complex interactions between 

genetics and proteomics requires the application of systems biology principles. By modeling the 

physiological pathways and processes the cause of complex diseases can be identified and efficient 

treatments can be developed. 

The progression of systems biology applications to disease can follow a standard process as 

described in Figure 33. First, the genetic variation contributing to the disease can be identified 

using high-throughput gene sequencing across large patient populations. Next, pathways 

regulating this genetic variation can be computationally modeled to understand the proteomic role 

in the disease. The cell and tissue behavior can also be computationally modeled, as necessary. As 

computational models advance, new insights are discovered into the disease mechanisms, leading 

to more efficient drug development and personalized medicine. Here we describe three diseases 

that can benefit from this systemic approach: Metabolic Syndrome, Alzheimer’s Disease, and 

Cancer.  We then present cancer in greater detail, highlighting modeling of ErB signaling, and 

anti-angiogenic approaches in cancer.  

 

Figure 33 Schematic of systems biology approach to disease treatment. 

a. Metabolic Syndrome 

Metabolic Syndrome (MetSyn), which contributes to diabetes and cardiovascular diseases, has 

been of great interest to systems biology research [94]. Risk factors for MetSyn include obesity, 

high triglyceride levels, low high density lipoprotein (HDL) or high low density lipoprotein (LDL) 

levels, high blood pressure, and high blood glucose levels [94]. The chance of inheriting MetSyn 

is as high as 70%, but only a small fraction of syndrome occurrence is explained by known genetic 

variations [94]. Thus, scientists are still applying high-throughput genetic sequencing to try and 

identify specific genes regulating MetSyn. This genetic sequencing relies on single nucleotide 
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polymorphisms (SNPs), which are locations in the genome where a single nucleotide varies 

between members of the population. By comparing disease-associated SNPs to eSNPs (SNPs at 

experimental trait loci) using causality analysis, we can determine the source of damaging 

mutations. Using microarrays, SNPs present in diseased subjects are compared with eSNP 

databases to specifically identify candidate genes. This approach has previously yielded results, 

such as allowing researchers to identify that the SORT1 and neighboring genes are responsible for 

elevated LDL expression leading to cardiovascular disease. This was determined by analyzing 

correlation between three candidate genes (SORT1, PSRC1, and CELSR2) and an SNP known to 

correlate to LDL elevation. This insight was then validated experimentally in mice where SORT1 

was blocked [95]. The complexity of MetSyn makes treatment progress difficult: hundreds of 

genes and proteins are involved but their identity and relationships remain undefined. As these 

proteins and relationships are defined, computer models can be created to map the interactome 

behind MetSyn and identify effective treatments. 

b. Alzheimer’s Disease 

Alzheimer’s disease (AD) provides an example of a disease in the next stage of systems 

analysis. AD is a neurogenerative disorder common in aging patients characterized by loss of 

memory, judgment, and communications skills. The neurological causes are commonly 

understood to be Amyloid Plaques (a buildup of protein fragments called Aβ) and neurofibrillary 

tangles (strands of a protein called ‘tau’) [96]. Currently, models of the molecular mechanisms are 

being designed to probe further into the functionality of these proteins. In one such model, the 

synapse is treated as a complex machine made up of thousands of proteins and lipids on both sides 

of the synapse. Their interaction is tuned by modifying their relative geometry to create more or 

less transmission of action potential across the synapse. This tuning can increase or decrease the 

“weight” that the outgoing signals have on the incoming signal. This model revealed that plaque 

buildup inhibits synaptic tuning and causes the memory loss and other cognitive dysfunction seen 

in AD [97]. By further probing protein interactions and validating experimentally, the exact 

mechanism of disruption that leads to AD can be elucidated and treated. To this end, efforts are 

being made to computationally model neural systems. One such model uses mass-action to 

understand the interaction of calcium with NDMA receptors and calmodulin-dependent protein 

kinase II in regulating synaptic strength [98]. This type of synaptic modeling can be applied further 
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to understand the precise causes of AD symptoms. The same principles could be applied to other 

CNS disorders such as PTSD, Bipolar Disorder, ALS, and others to improve understanding and 

treatment. 

c. Cancer  

Another prominent application of systems biology has been in cancer research. Genetic analysis 

allowed identification of numerous oncogenes and tumor-suppressor genes such as p53, ErbB 

receptors, and RAS [99]. The systems that these genes regulate were modeled computationally. 

For example, the ErbB signaling pathway was modeled using mass-action kinetics. This model 

investigated the effects of ErbB overexpression, and determined that high ErbB expression leads 

to sustained signaling. This response was verified through testing in MCF-7 cells to complete the 

feedback loop characteristic of systems biology [100]. 

One example of a proposed cancer model uses glioma cell imaging data to generate a model. 

Initial parameters for the glioma cells in brain tumors can be found from patient specific data such 

as location, structure, and vasculature through the use of contrast-enhanced MRI. More parameters 

such as cell density and microvasculature could be obtained from histopathology, gene arrays, 

tissue cultures, and proteomic profiling. This proposed model would allow for the creation of a 

temporally evolving and relevant model that could allow for further insight in the mechanisms of 

brain cancer, which is a particularly lethal cancer variant [101]. 

An eventual goal of systems biology is to produce personalized treatment plans that are based 

on an intricate understanding of cancer function. [102]. One way in which the advancement of 

personalized medicine will be accomplished is through a more sophisticated understanding of 

tumor make-up derived from lineage tracing. Tumors can grow from one cell or from a number of 

mutated cells, with most mature tumors being derived from one cell. Tracing epigenetic variations 

in the tumor by taking advantage of silencing one X chromosome in females allowed verification 

of this monoclonality [103]. With the knowledge that most tumor cells derive from a single source, 

computational models mapping the tumor genotype could provide personalized understanding of 

tumor phenotype and patient reaction to various treatment options. 

Another application of computational modeling is in the integration of smaller scale models 

into a larger system. Many system models are individual cells or units inside an organ. Integrating 

these models into a larger “organ” or “organ system” model could be done by making these “cells” 
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into small compartments from which several can be tied together into one larger unit. This can 

help with modeling larger scale interactions of diseases, as several diseases do not target one 

specific area. Modeling the initial tumor, as well as the organs at which metastasis is most to occur 

could give insight into tumor growth and metastasis prevention. 

d. Applications of Modeling Targeted Regimes in Cancer Treatment 

VEGF and its receptors are regularly over-expressed in a wide variety of human cancers, 

including breast cancer. VEGF overexpression is an early step in breast cancer progression, and 

frequently occurs before tumor invasion [104]. Furthermore, some breast cancers that overexpress 

VEGF show resistance to chemotherapy and hormonal therapy. Therefore, targeting VEGF and its 

signaling axis becomes a potential approach of inhibiting breast cancer progression and metastasis. 

As Rebecca et al put succinctly in their 2014 paper, “Despite excitement about the development 

of targeted therapy strategies of cancer, few cures have been achieved.” [105] Clinical studies have 

shown that tumors may develop resistance to drugs that inhibit VEGF signaling. This is believed 

to be because endothelial cells, cancer-associated fibroblasts, and pericytes within individual 

tumor display strong heterogeneity. Thus, therapies among different patients, different tumor 

types, and different cancer stages exhibit contrasting responses [106]. Another explanation is that 

tumors may develop an alternative signaling pathway, such as PDGF signaling, to recruit pericytes 

and/or tumor-associated fibroblasts to support angiogenesis after VEGF inhibition [107].  

A good case-study for the challenge of anti-angiogenic drug resistance is bevacizumab.  

Bevacizumab is the first FDA-approved drug to inhibit VEGF by binding to all the isoforms of the 

parent VEGF-A molecule. Bevacizumab has activity in multiple tumor types, and clinical trials 

have indicated benefits of Bevacizumab when combined with chemotherapy for the treatment of 

non-small-cell lung cancer [108] and metastatic colorectal cancer [109]. However, phase III breast 

cancer trials showed the addition of Bevacizumab failed to prolong time to progression or overall 

survival due to unexplained heterogeneous responses, in addition to severe side effects and 

development of drug resistance [110]. 

More thorough studies of the balance of angiogenic receptor levels and crosstalk between 

angiogenic signaling axes under pathological and physiological conditions are required to 

understand the development of drug resistance and develop more efficient therapeutics. To this 

end, the balance between VEGFR1 and VEGFR2 on HUVECs and their response to VEGF-A 
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treatment in vitro has been profiled [59]. More recently, heterogeneity in MDA-MB-231 breast 

tumors was discovered by quantifying receptor levels of VEGFR1 and VEGFR2 on tumor 

endothelial cells in mouse xenografts [62]. Erber et al. showed resistance of tumor blood vessels 

to VEGFR2 targeting, by the tyrosine kinase inhibitor SU5416, is conferred by recruitment of 

pericytes, which provide endothelial cell survival signals through PDGF and Ang-Tie signaling 

[111]. 

The concept of phenotypic resistance to VEGFR2 blockade is a well-discussed idea in the field 

of angiogenesis.  Cassanovas et al. in 2005 [112] show that resistance to VEGFR2 blockade was 

associated with induction of proangiogenic factors other than VEGF, including members of FGF 

family, in a pancreatic islet carcinogenesis mouse model. To reduce the drug resistance due to 

alternative signaling, dual-targeting drugs have been studied. For example, Erber et al showed 

SU6668, which targets both VEGFR2 and platelet-derived growth factor receptor (PDGFR)-β 

caused 40% regression of tumor blood vessels in a C6 tumor mice model [111]. Other inhibitor 

cocktails include TAK-593 targeting VEGFR2 and PDGFRβ [113], sorafenib [114], a single-chain 

antibody targeting VEGF-A and PDGFRβ [115] and combination of AZD6244 (targeting MEK) 

and corenolanib (targeting PDGFR) [116]. 

Systems biology has brought valuable insights to understand the multi-step process of 

angiogenesis [117]. The complexity of signaling pathways involved makes it an excellent 

candidate for systems biology; and the combination of experimental profiling and computational 

modeling could offer new hypothesis. As Logsdon et al stated in their review article in 2014, “A 

model investigating the efficacy of targeting the VEGF co-receptor neuropilin predicted that 

inhibiting NRP-VEGFR coupling is a more effective strategy than blocking NRP1 expression or 

preventing VEGF-NRP binding” [117][118]. Another whole-body model of VEGF signaling 

investigated the level of free VEGF in the tumor affected by tumor microenvironment and drug 

characteristics such as the clearance rate and binding affinity [119]. The model further predicted 

that targeting VEGF121 can reduce free VEGF in the tumor and yield effective reduction in VEGF 

signaling [120]. 

These findings indicate that the balance of VEGFR, PDGFR, and other surface receptors could 

provide insight into the behavior of cancer cells. With this in mind, it would be useful to profile 

the surface concentrations of VEGFR and PDGFR in multiple cancers and correlate these 
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concentration profiles to cancer behavior, specifically response to anti-angiogenic therapies. This 

data could elucidate a series of classifications with distinct treatment profiles. Towards these goals, 

Imoukhuede and Popel have optimized qFlow cytometry, using it to characterize receptor 

concentrations on individual cells in a sample [59]. In concert with such new experimental 

techniques, computational models that involve multiple signaling pathways are being developed 

[121]. These models will provide insight into the significance of the receptor concentration profiles 

determined by the flow cytometry. By applying this to determine concentrations of VEGF and 

PDGF receptors on a variety of cancer samples, the necessary database could be produced and 

mined for insight. 

e. Multi-Targeted Approaches to Anti-Angiogenesis 

Endothelial cells in tumor vasculature exhibit a large amount of heterogeneity in expression as 

well as in vasculature structure. This heterogeneity is an important aspect to consider in treatment 

regimes, as differences in vascularity profiles can be the difference between an anti-angiogenic 

drug succeeding or failing in a patient [122]. There are many hypotheses for what causes these 

different expressions and modalities, one of which is that the extracellular matrix (ECM) 

contributes to the heterogeneity through molecular expression as well as physical parameters such 

as stiffness [123]. It is even believed that certain types of collagen in the extracellular matrix, type 

I and type IV, can induce chemo-resistance through interactions with certain integrin [124]. Cancer 

ECM are also much more stiffened than typical ECM, which results in a potentially drastic 

difference in the chemical environment of the cancer endothelial cells as stiffness correlates to a 

difference in growth factors and modifiers such as Yes-associated protein [125]. Further studies 

have showed that small-molecule inhibitors of collagen synthesis prevent angiogenesis and tumor 

growth [126]. As a result, a large amount of research has gone into the development of the 

“matrisome” a comprehensive library of proteins that complement the extracellular matrix [127]. 

This extensive library is the first step in developing a mechanism in differentiating tumor 

extracellular matrix from healthy matrix, which in turn can provide vital information on how 

endothelial cells are affected by these changes. These effects could be the exact criterion on which 

to discriminate cancerous endothelial cells from healthy endothelial cells. 

Drugs targeted to the extracellular matrix can transport more easily, as it is not encapsulated by 

a plasma membrane. Extracellular matrix targets have been pursued in many applications already. 
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One such medicine, Lysyl oxide, has been tested in murine models to inhibit tumor growth. Lysyl 

oxide is up-regulated in tumor ECM, and is an enzyme that interacts with the ECM, which makes 

it a viable target. Using nanoparticles rather than antibodies conjugated to the lysyl oxide resulted 

in definitive decreases in tumor sizes in the mouse models [128]. There are more drugs currently 

in clinical trials that target extracellular matrix binding. Cilengitide (EMD 121974) targets αvβ3 

and αvβ5 integrins and inhibits them. It is currently in phase one and two clinical trials. 

Intetumumab (CNTO 95) is a monoclonal antibody that targets the αv integrin. It has shown some 

promise as it slightly increases survivability in cancer treatments. It is currently in clinical trials 

[129]. 

These examples suggest that the ECM is a viable target. Considering the past research 

suggesting correlations between cancer ECM and tumor angiogenesis, a robust model of ECM 

proteins, structure, and angiogenic signals could potentially lead to drug targets for anti-

angiogenesis. For example, a factor that is commonly targeted for angiogenesis is VEGF. Tumor 

ECM can alter the uptake of VEGF through additional modification. Basement membrane matrix 

protein 9 (MMP9) is necessary for transport of angiogenic growth factor VEGFR, which means 

an increase in the MMP activity will increase the uptake of VEGF [130]. Tumors typically do 

increase MMP activity to facilitate growth and establish more vascularity. This upregulation in 

glycolytic activity increases the amount of lactic acid produced, which changes the local pH of the 

tumor to be more acidic. The local acidity further effects the endothelial cells inside the tumor as 

pH of the environment definitely affects the expression of the cells [131]. These changes in 

expression can be used to differential the healthy endothelial cells from the tumor endothelial cells. 

A comprehensive model of ECM proteins, tumor endothelial cell growth pathways, and 

angiogenic factors may be a potential new arena for cancer drug target discovery. Moreover, 

combining not only kinetic reactions but also the effects of physical structure within the ECM and 

tumor vasculature growth —both which differ from that of normal cells– may result in a multi-

scale model with robust predictability. These modeling techniques would allow for the probing of 

physical ECM effects on endothelial cells and could be an engine to develop new treatments and 

diagnostics for cancer. Since the amount of data pertaining to cancer and ECM interactions are so 

large, some models strive to simplify the overall model. This results in drastic decreases in 

computational processing time, while remaining faithful to the empirical data [132]. By elucidating 
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the mechanisms by which the ECM affects the expression of tumorous cells, drugs that restore 

normal cell function or probes that target irregular function could be developed. 

A7. CONCLUDING REMARKS 

Systems biology has developed substantially with recent advances in both computational 

modeling and sophistication of experimentation. As experimental models have begun to reach the 

limits of realism allowed by biology, the focus of experimentation has shifted to the advancement 

of high-throughput, quantitative technologies that allow us to screen organisms at multi-scales. 

The data obtained with such technologies in turn allows complex in silico testing and provides 

feedback to improve existing experimental models and predict stimuli responses. This iteration 

between experimentation and modeling has been applied to the treatment of diseases such as 

Metabolic Syndrome, Alzheimer’s disease, and cancer. As the field moves forward, better 

understanding of the mechanisms behind these complex diseases will yield new treatment 

strategies and precision medicine. 

  



 

214 
 

A8. REFERENCES   

[1] R.-S. Wang, B. A. Maron, and J. Loscalzo, “Systems medicine: evolution of systems biology 

from bench to bedside.,” Wiley Interdiscip. Rev. Syst. Biol. Med., vol. 7, no. 4, pp. 141–61. 

[2] E. C. Butcher, E. L. Berg, and E. J. Kunkel, “Systems biology in drug discovery.,” Nat. 

Biotechnol., vol. 22, no. 10, pp. 1253–9, Oct. 2004. 

[3] F. Mac Gabhann, B. H. Annex, and A. S. Popel, “Gene therapy from the perspective of systems 

biology.,” Curr. Opin. Mol. Ther., vol. 12, no. 5, pp. 570–7, Oct. 2010. 

[4] J. R. Heath, A. Ribas, and P. S. Mischel, “Single-cell analysis tools for drug discovery and 

development,” Nat. Rev. Drug Discov., vol. 15, no. 3, pp. 204–216, Dec. 2015. 

[5] M. Breker and M. Schuldiner, “The emergence of proteome-wide technologies: systematic 

analysis of proteins comes of age,” Nat. Rev. Mol. Cell Biol., vol. 15, no. 7, pp. 453–464, Jun. 

2014. 

[6] R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T. Garyantes, D. V. S. 

Green, R. P. Hertzberg, W. P. Janzen, J. W. Paslay, U. Schopfer, and G. S. Sittampalam, 

“Impact of high-throughput screening in biomedical research,” Nat Rev Drug Discov, vol. 10, 

no. 3, pp. 188–195, Mar. 2011. 

[7] M. G. Acker and D. S. Auld, “Considerations for the design and reporting of enzyme assays 

in high-throughput screening applications,” Perspect. Sci., vol. 1, no. 1–6, pp. 56–73, May 

2014. 

[8] G. W. Brodland, “How computational models can help unlock biological systems,” Semin. 

Cell Dev. Biol., vol. 47–48, pp. 62–73, Dec. 2015. 

[9] L. You, “Toward computational systems biology,” Cell Biochem Biophys, vol. 40, no. 2, pp. 

167–184, 2004. 

[10] C.-L. Ko, E. Voit, and F.-S. Wang, “Estimating parameters for generalized mass action 

models with connectivity information,” BMC Bioinformatics, vol. 10, no. 1, p. 140, 2009. 

[11] I. C. Chou and E. O. Voit, “Recent developments in parameter estimation and structure 

identification of biochemical and genomic systems,” Math. Biosci., vol. 219, no. 2, pp. 57–83, 

2009. 

[12] K. Beven, “A manifesto for the equifinality thesis,” J. Hydrol., vol. 320, no. 1–2, pp. 18–



 

215 
 

36, 2006. 

[13] C. Hutton, Z. Kapelan, L. Vamvakeridou-Lyroudia, and D. Savić, “Dealing with 

Uncertainty in Water Distribution System Models: A Framework for Real-Time Modeling and 

Data Assimilation,” J. Water Resour. Plan. Manag., vol. 140, no. 2, pp. 169–183, 2012. 

[14] N. Jamshidi and B. Ø. Palsson, “Mass Action Stoichiometric Simulation Models: 

Incorporating Kinetics and Regulation into Stoichiometric Models,” Biophys. J., vol. 98, no. 

2, pp. 175–185, 2010. 

[15] D. Gillespie, “Exact stochastic simulation of coupled chemical reactions,” J. Phys. Chem., 

vol. 93555, no. 1, pp. 2340–2361, 1977. 

[16] F. Mac Gabhann and A. S. Popel, “Model of competitive binding of vascular endothelial 

growth factor and placental growth factor to VEGF receptors on endothelial cells.,” Am. J. 

Physiol. Heart Circ. Physiol., vol. 286, no. 1, pp. H153-64, Jan. 2004. 

[17] D. J. Wilkinson, “Bayesian methods in bioinformatics and computational systems 

biology.,” Brief. Bioinform., vol. 8, no. 2, pp. 109–16, Mar. 2007. 

[18] A. Frigessi, M. a van de Wiel, M. Holden, D. H. Svendsrud, I. K. Glad, and H. Lyng, 

“Genome-wide estimation of transcript concentrations from spotted cDNA microarray data.,” 

Nucleic Acids Res., vol. 33, no. 17, p. e143, Jan. 2005. 

[19] L. B. Edelman, J. a Eddy, and N. D. Price, “In silico models of cancer.,” Wiley Interdiscip. 

Rev. Syst. Biol. Med., vol. 2, no. 4, pp. 438–59, 2010. 

[20] L. Jakobsson, C. A. Franco, K. Bentley, R. T. Collins, B. Ponsioen, I. M. Aspalter, I. 

Rosewell, M. Busse, G. Thurston, A. Medvinsky, S. Schulte-Merker, and H. Gerhardt, 

“Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting,” 

Nat Cell Biol, vol. 12, no. 10, pp. 943–953, 2010. 

[21] A. Bailey, B. Thorne, and S. Peirce, “Multi-cell Agent-based Simulation of the 

Microvasculature to Study the Dynamics of Circulating Inflammatory Cell Trafficking,” Ann. 

Biomed. Eng., vol. 35, no. 6, pp. 916–936, 2007. 

[22] B. L. Long, R. Rekhi, A. Abrego, J. Jung, and A. A. Qutub, “Cells as state machines: Cell 

behavior patterns arise during capillary formation as a function of BDNF and VEGF,” J. 

Theor. Biol., vol. 326, no. 0, pp. 43–57, 2013. 

[23] K.-A. Norton, M. Wininger, G. Bhanot, S. Ganesan, N. Barnard, and T. Shinbrot, “A 2D 



 

216 
 

mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression,” J. 

Theor. Biol., vol. 263, no. 4, pp. 393–406, 2010. 

[24] K. A. Janes and D. A. Lauffenburger, “A biological approach to computational models of 

proteomic networks,” Curr. Opin. Chem. Biol., vol. 10, no. 1, pp. 73–80, 2006. 

[25] G. Cedersund and J. Roll, “Systems biology: model based evaluation and comparison of 

potential explanations for given biological data.,” FEBS J., vol. 276, no. 4, pp. 903–22, Feb. 

2009. 

[26] A. Chakrabarty, G. T. Buzzard, and A. E. Rundell, “Model-based design of experiments 

for cellular processes,” Wiley Interdiscip. Rev. Syst. Biol. Med., vol. 5, no. 2, pp. 181–203, 

2013. 

[27] E. Walter and L. Pronzato, “Qualitative and quantitative experiment design for 

phenomenological models—A survey,” Automatica, vol. 26, no. 2, pp. 195–213, 1990. 

[28] A. Aderem, “Systems Biology: Its Practice and Challenges,” Cell, vol. 121, no. 4. pp. 511–

513, 2005. 

[29] S. Goodwin, J. D. McPherson, and W. R. McCombie, “Coming of age: ten years of next-

generation sequencing technologies,” Nat. Rev. Genet., vol. 17, no. 6, pp. 333–351, May 2016. 

[30] L. Hood, “Systems biology: integrating technology, biology, and computation,” Mech. 

Ageing Dev., vol. 124, no. 1, pp. 9–16, 2003. 

[31] T. Ideker, T. Galitski, and L. Hood, “A N EW A PPROACH TO D ECODING L IFE : 

Systems Biology,” Annu. Rev. Genomics Hum. Genet., vol. 2, no. 1, pp. 343–372, Sep. 2001. 

[32] L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd, C. R. Connell, C. Heiner, S. 

B. H. Kent, and L. E. Hood, “Fluorescence detection in automated DNA sequence analysis,” 

Nature, vol. 321, no. 6071, pp. 674–679, Jun. 1986. 

[33] M. Kircher and J. Kelso, “High-throughput DNA sequencing - concepts and limitations,” 

BioEssays, vol. 32, no. 6, pp. 524–536, May 2010. 

[34] E. R. Mardis, “Next-Generation Sequencing Platforms,” Annu. Rev. Anal. Chem., vol. 6, 

no. 1, pp. 287–303, Jun. 2013. 

[35] J. Perkel, “SNP genotyping: six technologies that keyed a revolution,” Nat. Methods, Publ. 

online 01 May 2008; | doi10.1038/nmeth0508-447, vol. 5, no. 5, p. 447, 2008. 



 

217 
 

[36] A.-C. Syvänen, “Toward genome-wide SNP genotyping,” Nat. Genet., vol. 37, no. 6s, pp. 

S5–S10, Jun. 2005. 

[37] M. Schena, D. Shalont, R. Heller, A. Chai, P. Brown, and R. W. Davis, “Parallel human 

genome analysis : Microarray-based expression monitoring of 1000 genes,” vol. 93, no. 

October, pp. 10614–10619, 1996. 

[38] S. Zhao, W.-P. Fung-Leung, A. Bittner, K. Ngo, X. Liu, G. Kerr, H. Ruskin, M. Crane, P. 

Doolan, G. Passador-Gurgel, W. Hsieh, P. Hunt, N. Deighton, G. Gibson, A. Mortazavi, B. 

Williams, K. McCue, L. Schaeffer, B. Wold, U. Nagalakshmi, K. Waern, M. Snyder, S. 

Montgomery, M. Sammeth, M. Gutierrez-Arcelus, R. Lach, C. Ingle, M. Beyer, M. Mallmann, 

J. Xue, A. Staratschek-Jox, D. Vorholt, K. Mutz, A. Heilkenbrinker, M. Lönne, J. Walter, F. 

Stahl, M. Garber, M. Grabherr, M. Guttman, C. Trapnell, D. Bottomly, N. Walter, J. Hunter, 

P. Darakjian, S. Kawane, W. Zhang, J. Ferguson, S. Ng, K. Hui, G. Goh, A. Sîrbu, G. Kerr, 

M. Crane, H. Ruskin, J. Marioni, C. Mason, S. Mane, M. Stephens, Y. Gilad, X. Fu, N. Fu, S. 

Guo, Z. Yan, Y. Xu, Z. Wang, M. Gerstein, M. Snyder, J. Bloom, Z. Khan, L. Kruglyak, M. 

Singh, A. Caudy, P. Hurd, C. Nelson, J. Bradford, Y. Hey, T. Yates, Y. Li, S. Pepper, J. 

Malone, B. Oliver, B. Bolstad, R. Irizarry, M. Astrand, T. Speed, R. Irizarry, B. Hobbs, F. 

Collin, Y. Beazer-Barclay, K. Antonellis, J. Hu, H. Ge, M. Newman, K. Liu, Y. Benjamini, 

Y. Hochberg, A. Jetten, R. Røge, J. Thorsen, C. Tørring, A. Ozbay, B. Møller, J. Carstens, I. 

Nookaew, M. Papini, N. Pornputtapong, G. Scalcinati, L. Fagerberg, M. Stalteri, A. Harrison, 

X. Cui, A. Loraine, H. Liu, B. Zeeberg, G. Qu, A. Koru, A. Ferrucci, R. Nurtdinov, M. 

Vasiliev, A. Ershova, I. Lossev, A. Karyagina, K. Hansen, S. Brenner, S. Dudoit, L. McIntyre, 

K. Lopiano, A. Morse, V. Amin, A. Oberg, H. Le, M. Schulz, B. McCauley, V. Hinman, Z. 

Bar-Joseph, D. Risso, K. Schwartz, G. Sherlock, S. Dudoit, W. Zheng, L. Chung, H. Zhao, A. 

Roberts, C. Trapnell, J. Donaghey, J. Rinn, L. Pachter, M. Baker, M. Schatz, B. Langmead, S. 

Salzberg, and L. Stein, “Comparison of RNA-Seq and Microarray in Transcriptome Profiling 

of Activated T Cells,” PLoS One, vol. 9, no. 1, p. e78644, Jan. 2014. 

[39] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for 

transcriptomics,” Nat. Rev. Genet., vol. 10, no. 1, pp. 57–63, Jan. 2009. 

[40] A. Ståhlberg, P. Aman, L. Strömbom, N. Zoric, A. Diez, O. Nilsson, M. Kubista, and B. 

Ridell, “Comparison of reverse transcription quantitative real-time PCR, flow cytometry, and 

immunohistochemistry for detection of monoclonality in lymphomas.,” ISRN Oncol., vol. 



 

218 
 

2014, p. 796210, Jan. 2014. 

[41] D. J. Eastburn, A. Sciambi, and A. R. Abate, “Ultrahigh-throughput Mammalian single-

cell reverse-transcriptase polymerase chain reaction in microfluidic drops.,” Anal. Chem., vol. 

85, no. 16, pp. 8016–8021, Aug. 2013. 

[42] Andrea D. Weston and Leroy Hood, “Systems Biology, Proteomics, and the Future of 

Health Care:  Toward Predictive, Preventative, and Personalized Medicine,” Journal of 

Proteome Research, vol. 3, no. 2, pp. 179-196, Mar. 2004. 

[43] T. J. Griffin, S. P. Gygi, T. Ideker, B. Rist, J. Eng, L. Hood, and R. Aebersold, 

“Complementary profiling of gene expression at the transcriptome and proteome levels in 

Saccharomyces cerevisiae.,” Mol. Cell. Proteomics, vol. 1, no. 4, pp. 323–33, Apr. 2002. 

[44] S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold, “Quantitative 

analysis of complex protein mixtures using isotope-codedaffinity tags,” Nat. Biotechnol., vol. 

17, no. 10, pp. 994–999, Oct. 1999. 

[45] N. S. Baliga, M. Pan, Y. A. Goo, E. C. Yi, D. R. Goodlett, K. Dimitrov, P. Shannon, R. 

Aebersold, W. V. Ng, and L. Hood, “Coordinate regulation of energy transduction modules in 

Halobacterium sp. analyzed by a global systems approach.,” Proc. Natl. Acad. Sci. U. S. A., 

vol. 99, no. 23, pp. 14913–8, Nov. 2002. 

[46] E. Brunk, N. Mih, J. Monk, Z. Zhang, E. J. O’Brien, S. E. Bliven, K. Chen, R. L. Chang, 

P. E. Bourne, and B. O. Palsson, “Systems biology of the structural proteome,” BMC Syst. 

Biol., vol. 10, no. 1, p. 26, Dec. 2016. 

[47] W. B. Dunn, D. I. Broadhurst, H. J. Atherton, R. Goodacre, and J. L. Griffin, “Systems 

level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear 

magnetic resonance spectroscopy,” Chem. Soc. Rev., vol. 40, no. 1, pp. 387–426, 2011. 

[48] A. Ambrus and L. Fésüs, “Comparison of NMR and X-ray crystallography.” . 

[49] Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S.-L. Adams, A. Millar, P. Taylor, 

K. Bennett, K. Boutilier, L. Yang, C. Wolting, I. Donaldson, S. Schandorff, J. Shewnarane, 

M. Vo, J. Taggart, M. Goudreault, B. Muskat, C. Alfarano, D. Dewar, Z. Lin, K. Michalickova, 

A. R. Willems, H. Sassi, P. A. Nielsen, K. J. Rasmussen, J. R. Andersen, L. E. Johansen, L. 

H. Hansen, H. Jespersen, A. Podtelejnikov, E. Nielsen, J. Crawford, V. Poulsen, B. D. 

Sørensen, J. Matthiesen, R. C. Hendrickson, F. Gleeson, T. Pawson, M. F. Moran, D. 



 

219 
 

Durocher, M. Mann, C. W. V. Hogue, D. Figeys, and M. Tyers, “Systematic identification of 

protein complexes in Saccharomyces cerevisiae by mass spectrometry,” Nature, vol. 415, no. 

6868, pp. 180–183, Jan. 2002. 

[50] A. Bensimon, A. J. R. Heck, and R. Aebersold, “Mass spectrometry-based proteomics and 

network biology.,” Annu. Rev. Biochem., vol. 81, pp. 379–405, 2012. 

[51] S. Chen, J. Weddel, P. Gupta, G. Conard, J. Parkin, and P. I. Imoukhuede, “QFlow 

Cytometer-Based Receptoromic Screening: A High-throughput Quantification Approach 

Informing Biomarker Selection and Nanosensor Development,” Submiss., 2016. 

[52] S. Pan, R. Aebersold, R. Chen, J. Rush, D. R. Goodlett, M. W. McIntosh, J. Zhang, and T. 

A. Brentnall, “Mass spectrometry based targeted protein quantification: methods and 

applications.,” J. Proteome Res., vol. 8, no. 2, pp. 787–97, Feb. 2009. 

[53] J. P. Nolan and F. Mandy, “Multiplexed and microparticle-based analyses: Quantitative 

tools for the large-scale analysis of biological systems,” Cytom. Part A, vol. 69A, no. 5, pp. 

318–325, May 2006. 

[54] C. S. H. Tan and R. Linding, “Experimental and computational tools useful for 

(re)construction of dynamic kinase-substrate networks.,” Proteomics, vol. 9, no. 23, pp. 5233–

42, Dec. 2009. 

[55] P. Picotti, O. Rinner, R. Stallmach, F. Dautel, T. Farrah, B. Domon, H. Wenschuh, and R. 

Aebersold, “High-throughput generation of selected reaction-monitoring assays for proteins 

and proteomes.,” Nat. Methods, vol. 7, no. 1, pp. 43–6, Jan. 2010. 

[56] J. a Hewel, J. Liu, K. Onishi, V. Fong, S. Chandran, J. B. Olsen, O. Pogoutse, M. 

Schutkowski, H. Wenschuh, D. F. H. Winkler, L. Eckler, P. W. Zandstra, and A. Emili, 

“Synthetic peptide arrays for pathway-level protein monitoring by liquid chromatography-

tandem mass spectrometry.,” Mol. Cell. Proteomics, vol. 9, no. 11, pp. 2460–73, Nov. 2010. 

[57] E. A. Kislinger T, Gramolini AO, Maclennan DH, “Multidimensional protein identification 

technology (MudPIT): technical overview of a profiling method optimized for the 

comprehensive proteomic investigation of normal and diseased heart tissue.,” J Am Soc Mass 

Spectrom, vol. 16, pp. 1207–20, 2005. 

[58] D. B. Kell, M. Brown, H. M. Davey, W. B. Dunn, I. Spasic, and S. G. Oliver, “Metabolic 

footprinting and systems biology: the medium is the message.,” Nat. Rev. Microbiol., vol. 3, 



 

220 
 

no. 7, pp. 557–65, Jul. 2005. 

[59] P. I. Imoukhuede and A. S. Popel, “Quantification and cell-to-cell variation of vascular 

endothelial growth factor receptors,” Exp. Cell Res., vol. 317, no. 7, pp. 955–965, 2011. 

[60] P. I. Imoukhuede and A. S. Popel, “Expression of VEGF receptors on endothelial cells in 

mouse skeletal muscle,” PLoS One, vol. 7, p. e44791, 2012. 

[61] P. I. Imoukhuede, A. O. Dokun, B. H. Annex, and A. S. Popel, “Endothelial cell-by-cell 

profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization 

after murine hindlimb ischemia.,” Am. J. Physiol. Heart Circ. Physiol., vol. 304, no. 8, pp. 

H1085-93, Apr. 2013. 

[62] P. I. Imoukhuede and A. S. Popel, “Quantitative fluorescent profiling of VEGFRs reveals 

tumor cell and endothelial cell heterogeneity in breast cancer xenografts.,” Cancer Med., vol. 

3, no. 2, pp. 225–44, Apr. 2014. 

[63] J. P. Nolan, D. Condello, E. Duggan, M. Naivar, and D. Novo, “Visible and near infrared 

fluorescence spectral flow cytometry.,” Cytometry. A, vol. 83, no. 3, pp. 253–64, Mar. 2013. 

[64] A. M. Smith, H. Duan, A. M. Mohs, and S. Nie, “Bioconjugated quantum dots for in vivo 

molecular and cellular imaging,” Adv. Drug Deliv. Rev., vol. 60, no. 11, pp. 1226–1240, 2008. 

[65] F. T. Lee-Montiel and P. I. Imoukhuede, “Engineering quantum dot calibration standards 

for quantitative fluorescent profiling,” J. Mater. Chem. B, vol. 1, p. 6434, 2013. 

[66] F. T. Lee-Montiel, P. Li, and P. I. Imoukhuede, “Quantum dot multiplexing for the 

profiling of cellular receptors.,” Nanoscale, vol. 7, no. 44, pp. 18504–14, Nov. 2015. 

[67] P. Aloy and R. B. Russell, “Structural systems biology: modelling protein interactions,” 

Nat. Rev. Mol. Cell Biol., vol. 7, no. 3, pp. 188–197, Mar. 2006. 

[68] A. Pujol, R. Mosca, J. Farrés, and P. Aloy, “Unveiling the role of network and systems 

biology in drug discovery,” Trends Pharmacol. Sci., vol. 31, no. 3, pp. 115–123, 2010. 

[69] A. Brückner, C. Polge, N. Lentze, D. Auerbach, and U. Schlattner, “Yeast two-hybrid, a 

powerful tool for systems biology.,” Int. J. Mol. Sci., vol. 10, no. 6, pp. 2763–88, Jun. 2009. 

[70] J. J. Hughey, T. K. Lee, and M. W. Covert, “Computational modeling of mammalian 

signaling networks.,” Wiley Interdiscip. Rev. Syst. Biol. Med., vol. 2, no. 2, pp. 194–209, 2010. 

[71] Å. Frostell, L. Vinterbäck, and H. Sjöbom, “Protein–Ligand Interactions Using SPR 



 

221 
 

Systems,” 2013, pp. 139–165. 

[72] I. G. Khalil and C. Hill, “Systems biology for cancer,” pp. 44–48, 2005. 

[73] H. Yu, I. Meyvantsson, I. a Shkel, and D. J. Beebe, “Diffusion dependent cell behavior in 

microenvironments.,” Lab Chip, vol. 5, no. 10, pp. 1089–95, Oct. 2005. 

[74] R. B. Rutherford and R. Ross, “Platelet factors stimulate fibroblasts and smooth muscle 

cells quiescent in plasma serum to proliferate,” J Cell Biol, vol. 69, no. 14, pp. 196–203, 1976. 

[75] C. J. Jackson and M. Nguyen, “Human microvascular endothelial cells differ from 

macrovascular endothelial cells in their expression of matrix metalloproteinases.,” Int J 

Biochem Cell Biol, vol. 29, no. 10, pp. 1167–77, Oct. 1997. 

[76] B. A. Bryan and P. A. D’Amore, “Pericyte isolation and use in endothelial/pericyte 

coculture models.,” Methods Enzymol., vol. 443, pp. 315–31, Jan. 2008. 

[77] J. Jedelská, B. Strehlow, U. Bakowsky, A. Aigner, S. Höbel, M. Bette, M. Roessler, N. 

Franke, A. Teymoortash, J. A. Werner, B. Eivazi, and R. Mandic, “The chorioallantoic 

membrane assay is a promising ex vivo model system for the study of vascular anomalies.,” 

In Vivo, vol. 27, no. 6, pp. 701–5, 2013. 

[78] I. Arnaoutova and H. K. Kleinman, “In vitro angiogenesis: endothelial cell tube formation 

on gelled basement membrane extract.,” Nat. Protoc., vol. 5, no. 4, pp. 628–35, Apr. 2010. 

[79] Z. Shao, M. Friedlander, C. G. Hurst, Z. Cui, D. T. Pei, L. P. Evans, A. M. Juan, H. Tahir, 

F. Duhamel, J. Chen, P. Sapieha, S. Chemtob, J.-S. Joyal, and L. E. H. Smith, “Choroid 

sprouting assay: an ex vivo model of microvascular angiogenesis.,” PLoS One, vol. 8, no. 7, 

p. e69552, Jan. 2013. 

[80] C. a Staton, M. W. R. Reed, and N. J. Brown, “A critical analysis of current in vitro and in 

vivo angiogenesis assays.,” Int. J. Exp. Pathol., vol. 90, no. 3, pp. 195–221, Jun. 2009. 

[81] S. J. Maerkl, “Next generation microfluidic platforms for high-throughput protein 

biochemistry.,” Curr. Opin. Biotechnol., vol. 22, no. 1, pp. 59–65, Feb. 2011. 

[82] C. L. Stokes and D. a Lauffenburger, “Analysis of the roles of microvessel endothelial cell 

random motility and chemotaxis in angiogenesis.,” J. Theor. Biol., vol. 152, no. 3, pp. 377–

403, Oct. 1991. 

[83] A. a. De Graaf, A. P. Freidig, B. De Roos, N. Jamshidi, M. Heinemann, J. a C. Rullmann, 



 

222 
 

K. D. Hall, M. Adiels, and B. Van Ommen, “Nutritional systems biology modeling: From 

molecular mechanisms to physiology,” PLoS Comput. Biol., vol. 5, no. 11, p. e1000554, Nov. 

2009. 

[84] Z. Qu, A. Garfinkel, J. N. Weiss, and M. Nivala, “Multi-scale modeling in biology: how to 

bridge the gaps between scales?,” Prog. Biophys. Mol. Biol., vol. 107, no. 1, pp. 21–31, Oct. 

2011. 

[85] L. A. Chylek, E. C. Stites, R. G. Posner, and W. S. Hlavacek, “Systems Biology,” pp. 273–

300, 2013. 

[86] W. W. Chen, B. Schoeberl, P. J. Jasper, M. Niepel, U. B. Nielsen, D. A. Lauffenburger, 

and P. K. Sorger, “Input–output behavior of ErbB signaling pathways as revealed by a mass 

action model trained against dynamic data,” Mol. Syst. Biol., vol. 5, p. 239, Jan. 2009. 

[87] M. W. Covert, N. Xiao, T. J. Chen, and J. R. Karr, “Integrating metabolic, transcriptional 

regulatory and signal transduction models in Escherichia coli.,” Bioinformatics, vol. 24, no. 

18, pp. 2044–50, Sep. 2008. 

[88] K. Bettenbrock, S. Fischer, A. Kremling, K. Jahreis, T. Sauter, and E.-D. Gilles, “A 

quantitative approach to catabolite repression in Escherichia coli.,” J. Biol. Chem., vol. 281, 

no. 5, pp. 2578–84, Mar. 2006. 

[89] H. N. Hayenga, B. C. Thorne, S. M. Peirce, and J. D. Humphrey, “Ensuring congruency in 

multiscale modeling: towards linking agent based and continuum biomechanical models of 

arterial adaptation.,” Ann. Biomed. Eng., vol. 39, no. 11, pp. 2669–82, Nov. 2011. 

[90] B. He, R. Baird, R. Butera, A. Datta, S. George, B. Hecht, A. Hero, G. Lazzi, R. Lee, J. 

Liang, M. Neuman, G. C. Y. Peng, E. Perreault, M. Ramasubramanian, M. Wang, J. Wikswo, 

G.-Z. Yang, and Y.-T. Zhang, “Grand challenges in interfacing engineering with life sciences 

and medicine,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 589–598, 2013. 

[91] C. S. Greene, J. Tan, M. Ung, J. H. Moore, and C. Cheng, “Big Data Bioinformatics,” J. 

Cell. Physiol., p. n/a-n/a, 2014. 

[92] M. Gerstein, “Genomics: ENCODE leads the way on big data,” Nature, vol. 489, no. 7415, 

p. 208, 2012. 

[93] S. F. Martin, H. Falkenberg, T. F. Dyrlund, G. A. Khoudoli, C. J. Mageean, and R. Linding, 

“PROTEINCHALLENGE: Crowd sourcing in proteomics analysis and software 



 

223 
 

development,” J. Proteomics, vol. 88, no. 0, pp. 41–46, 2013. 

[94] A. J. Lusis, A. D. Attie, and K. Reue, “Metabolic syndrome: from epidemiology to systems 

biology.,” Nat. Rev. Genet., vol. 9, no. 11, pp. 819–30, Nov. 2008. 

[95] Q. Meng, V.-P. Mäkinen, H. Luk, and X. Yang, “Systems Biology Approaches and 

Applications in Obesity, Diabetes, and Cardiovascular Diseases.,” Curr. Cardiovasc. Risk 

Rep., vol. 7, no. 1, pp. 73–83, Mar. 2013. 

[96] S. Pasinetti, Giulio M, Hiller-Sturmhofel, “Systems biology in the study of neurological 

disease: focus on Alzheimer’s disease,” Putting Systems Biology Approaches into Practice, 

2008. 

[97] G. Juhász, I. Földi, and B. Penke, “Systems biology of Alzheimer’s disease: how diverse 

molecular changes result in memory impairment in AD.,” Neurochem. Int., vol. 58, no. 7, pp. 

739–50, Jun. 2011. 

[98] S. Pepke, T. Kinzer-Ursem, S. Mihalas, and M. B. Kennedy, “A dynamic model of 

interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent 

protein kinase II.,” PLoS Comput. Biol., vol. 6, no. 2, p. e1000675, Mar. 2010. 

[99] P. K. Kreeger and D. a Lauffenburger, “Cancer systems biology: a network modeling 

perspective.,” Carcinogenesis, vol. 31, no. 1, pp. 2–8, Jan. 2010. 

[100] M. R. Birtwistle, M. Hatakeyama, N. Yumoto, B. A. Ogunnaike, J. B. Hoek, and B. N. 

Kholodenko, “Ligand-dependent responses of the ErbB signaling network: experimental and 

modeling analyses.,” Mol. Syst. Biol., vol. 3, no. 144, p. 144, Jan. 2007. 

[101] S. Sanga, H. B. Frieboes, X. Zheng, R. Gatenby, E. L. Bearer, and V. Cristini, “Predictive 

oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, 

morphology and growth.,” Neuroimage, vol. 37 Suppl 1, pp. S120-34, Jan. 2007. 

[102] A. M. Gonzalez-Angulo, B. T. J. Hennessy, and G. B. Mills, “Future of personalized 

medicine in oncology: a systems biology approach.,” J. Clin. Oncol., vol. 28, no. 16, pp. 2777–

83, Jun. 2010. 

[103] R. A. Weinberg, The biology of cancer. 2007. 

[104] A. J. Guidi, S. J. Schnitt, L. Fischer, K. Tognazzi, J. R. Harris, H. F. Dvorak, and L. F. 

Brown, “Vascular permeability factor (vascular endothelial growth factor) expression and 

angiogenesis in patients with ductal carcinoma in situ of the breast.,” Cancer, vol. 80, no. 10, 



 

224 
 

pp. 1945–53, Nov. 1997. 

[105] V. W. Rebecca, E. Wood, I. V Fedorenko, K. H. Paraiso, H. E. Haarberg, Y. Chen, Y. 

Xiang, A. Sarnaik, G. T. Gibney, V. K. Sondak, J. M. Koomen, and K. S. Smalley, “Evaluating 

melanoma drug response and therapeutic escape with quantitative proteomics,” Mol Cell 

Proteomics, vol. 13, no. 7, pp. 1844–1854, 2014. 

[106] S. NA, F. Simpson, T. EW, H. MM, L. Endo-Munoz, G. Leggatt, M. RF, and A. Guminski, 

“Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical 

perspectives,” EMBO Mol Med, vol. 4, pp. 675–684, 2011. 

[107] G. Bergers and D. Hanahan, “Modes of resistance to anti-angiogenic therapy,” Nat Rev 

Cancer, vol. 8, no. 8, pp. 592–603, 2008. 

[108] A. B. Sandler, “Clinical trials comparing carboplatin/paclitaxel with or without 

bevacizumab in patients with metastatic NSCLC,” Lung Cancer Updat., vol. 2, pp. 6–10, 

2005. 

[109] H. Hurwitz, “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic 

colorectal cancer,” N Engl J Med, vol. 350, pp. 2335–2342, 2004. 

[110] B. P. Schneider and G. W. Sledge, “Drug insight: VEGF as a therapeutic target for breast 

cancer.,” Nat. Clin. Pract. Oncol., vol. 4, no. 3, pp. 181–9, Mar. 2007. 

[111] R. Erber, A. Thurnher, A. D. Katsen, G. Groth, H. Kerger, H.-P. Hammes, M. D. Menger, 

A. Ullrich, and P. Vajkoczy, “Combined inhibition of VEGF and PDGF signaling enforces 

tumor vessel regression by interfering with pericyte-mediated endothelial cell survival 

mechanisms.,” FASEB J., vol. 18, no. 2, pp. 338–40, Feb. 2004. 

[112] O. Casanovas, D. J. Hicklin, G. Bergers, and D. Hanahan, “Drug resistance by evasion of 

antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors,” Cancer Cell, 

vol. 8, no. 4, pp. 299–309, Oct. 2005. 

[113] H. Iwata, S. Imamura, A. Hori, M. S. Hixon, H. Kimura, and H. Miki, “Biochemical 

characterization of TAK-593, a novel VEGFR/PDGFR inhibitor with a two-step slow binding 

mechanism,” Biochemistry, vol. 50, no. 5, pp. 738–751, Feb. 2011. 

[114] A. Schwandt, V. E. von Gruenigen, R. M. Wenham, H. Frasure, S. Eaton, N. Fusco, P. Fu, 

J. J. Wright, A. Dowlati, and S. Waggoner, “Randomized phase II trial of sorafenib alone or 

in combination with carboplatin/paclitaxel in women with recurrent platinum sensitive 



 

225 
 

epithelial ovarian, peritoneal, or fallopian tube cancer.,” Invest. New Drugs, vol. 32, no. 4, pp. 

729–38, Mar. 2014. 

[115] R. Mabry, D. G. Gilbertson, A. Frank, T. Vu, D. Ardourel, C. Ostrander, B. Stevens, S. 

Julien, S. Franke, B. Meengs, J. Brody, S. Presnell, N. B. Hamacher, M. Lantry, A. Wolf, T. 

Bukowski, R. Rosler, C. Yen, M. Anderson-Haley, K. Brasel, Q. Pan, H. Franklin, P. 

Thompson, M. Dodds, S. Underwood, S. Peterson, P. V Sivakumar, and M. Snavely, “A dual-

targeting PDGFRbeta/VEGF-A molecule assembled from stable antibody fragments 

demonstrates anti-angiogenic activity in vitro and in vivo.,” MAbs, vol. 2, no. 1, pp. 20–34, 

2010. 

[116] V. W. Rebecca, E. Wood, I. V. Fedorenko, K. H. T. Paraiso, H. E. Haarberg, Y. Chen, Y. 

Xiang, A. Sarnaik, G. T. Gibney, V. K. Sondak, J. M. Koomen, and K. S. M. Smalley, 

“Evaluating Melanoma Drug Response and Therapeutic Escape with Quantitative 

Proteomics,” Mol. Cell. Proteomics, vol. 13, no. 7, pp. 1844–1854, Apr. 2014. 

[117] E. A. Logsdon, S. D. Finley, A. S. Popel, and F. Mac Gabhann, “A systems biology view 

of blood vessel growth and remodelling,” J. Cell. Mol. Med., vol. 18, no. 8, pp. 1491–1508, 

Nov. 2014. 

[118] F. Mac Gabhann and A. S. Popel, “Targeting neuropilin-1 to inhibit VEGF signaling in 

cancer: Comparison of therapeutic approaches,” PLoS Comput. Biol., vol. 2, no. 12, pp. 1649–

1662, Dec. 2006. 

[119] S. D. Finley, M. O. Engel-Stefanini, P. Imoukhuede, and A. S. Popel, “Pharmacokinetics 

and pharmacodynamics of VEGF-neutralizing antibodies,” BMC Syst. Biol., vol. 5, no. 1, p. 

193, 2011. 

[120] S. D. Finley and A. S. Popel, “Predicting the effects of anti-angiogenic agents targeting 

specific VEGF isoforms.,” AAPS J., vol. 14, no. 3, pp. 500–9, 2012. 

[121] J. C. Weddell and P. I. Imoukhuede, “Quantitative characterization of cellular membrane-

receptor heterogeneity through statistical and computational modeling,” PLoS One, vol. 9, 

2014. 

[122] H. F. Dvorak, V. M. Weaver, T. D. Tlsty, and G. Bergers, “Tumor microenvironment and 

progression.,” J. Surg. Oncol., vol. 103, no. 6, pp. 468–74, May 2011. 

[123] P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer 



 

226 
 

progression.,” J. Cell Biol., vol. 196, no. 4, pp. 395–406, Mar. 2012. 

[124] M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen 

scaffold and tumor evolution.,” Curr. Opin. Cell Biol., vol. 22, no. 5, pp. 697–706, Oct. 2010. 

[125] O. Maller, C. C. DuFort, and V. M. Weaver, “YAP forces fibroblasts to feel the tension.,” 

Nat. Cell Biol., vol. 15, no. 6, pp. 570–2, 2013. 

[126] G. Haralabopoulos, “Inhibitors of basement membrane collagen synthesis prevent 

endothelial cell alignment in matrigel in vitro and angiogenesis in vivo.,” … ; a J. Tech. …, 

1994. 

[127] R. O. Hynes and A. Naba, “Overview of the matrisome--an inventory of extracellular 

matrix constituents and functions.,” Cold Spring Harb. Perspect. Biol., vol. 4, no. 1, p. 

a004903, Jan. 2012. 

[128] M. Kanapathipillai, A. Mammoto, T. Mammoto, J. H. Kang, E. Jiang, K. Ghosh, N. Korin, 

A. Gibbs, R. Mannix, and D. E. Ingber, “Inhibition of mammary tumor growth using lysyl 

oxidase-targeting nanoparticles to modify extracellular matrix.,” Nano Lett., vol. 12, no. 6, pp. 

3213–7, Jun. 2012. 

[129] H. Fang and Y. a Declerck, “Targeting the tumor microenvironment: from understanding 

pathways to effective clinical trials.,” Cancer Res., vol. 73, no. 16, pp. 4965–77, Aug. 2013. 

[130] R. Kalluri, “Basement membranes: structure, assembly and role in tumour angiogenesis.,” 

Nat. Rev. Cancer, vol. 3, no. 6, pp. 422–33, Jun. 2003. 

[131] S. Huang, K. Shao, Y. Kuang, Y. Liu, J. Li, S. An, Y. Guo, H. Ma, X. He, and C. Jiang, 

“Tumor targeting and microenvironment-responsive nanoparticles for gene delivery.,” 

Biomaterials, vol. 34, no. 21, pp. 5294–302, Jul. 2013. 

[132]  A. Toma, A. Mang, T. A. Schuetz, S. Becker, and T. M. Buzug, “A novel method for 

simulating the extracellular matrix in models of tumour growth,” Comput. Math. Methods 

Med., vol. 2012, 2012. 

 

 


