
c© 2018 Chenchao Shou

LEARNING-ACCELERATED ALGORITHMS FOR SIMULATION AND
OPTIMIZATION

BY

CHENCHAO SHOU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Associate Professor Matthew West, Chair and Director of Research
Professor Rayadurgam Srikant
Associate Professor Prashant Mehta
Assistant Professor Alexandra Chronopoulou
Assistant Professor Niao He

ABSTRACT

Simulation and optimization are fundamental building blocks for many com-

putational methods in science and engineering. In this work, we explore the

use of machine learning techniques to accelerate compute-intensive tasks in

both simulation and optimization. Specifically, two algorithms are developed:

(1) a variance reduction algorithm for Monte Carlo simulations of mean-field

particle systems, and (2) a global optimization algorithm for noisy expensive

functions.

For the variance reduction algorithm, we develop an adaptive-control-

variates technique for a class of simulations, where many particles interact

via common mean fields. Due to the presence of a large number of particles

and highly nonlinear dynamics, simulating these mean-field particle mod-

els is often time-consuming. Our algorithm treats the body of particles in

the system as a source of training data, then uses machine learning to au-

tomatically build a model for the underlying particle dynamics, and finally

constructs control variates with the learned model. We prove that the mean

estimators from our algorithm are unbiased. More importantly, we show

that, for a system with sufficiently many particles, our algorithm asymp-

totically produces more efficient estimators than naive Monte Carlo under

certain regularity conditions. We applied our variance reduction algorithm

to an aerosol particle simulation and found that the resulting simulation is

about 7 times faster.

The second algorithm is a parallel surrogate optimization algorithm, known

as ProSRS, for noisy expensive black-box functions. Within this algorithm,

we develop an efficient weighted-radial-basis regression procedure for con-

structing the surrogates. Furthermore, we introduce a novel tree-based tech-

nique, called the “zoom strategy”, to further improve optimization efficiency.

We prove that if ProSRS is run for sufficiently long, with probability converg-

ing to one there will be at least one sample among all the evaluations that

ii

will be arbitrarily close to the global minimum. We compared ProSRS to sev-

eral state-of-the-art Bayesian optimization algorithms on a suite of standard

benchmark functions and two real machine-learning hyperparameter-tuning

problems. We found that our algorithm not only achieves significantly faster

optimization convergence, but is also orders of magnitude cheaper in com-

putational cost. We also applied ProSRS to the problem of characterizing

and validating a complex aerosol model against experimental measurements,

where twelve simulation parameters must be optimized. This case illustrates

the use of ProSRS for general global optimization problems.

iii

To my parents, for their love, support and encouragement.

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Professor Matthew

West for his patient guidance and constant support throughout my PhD

study. Without many insightful suggestions from him, my research would

simply not achieve what has been achieved so far. I would like to thank

my committee Professor Rayadurgam Srikant, Professor Prashant Mehta,

Professor Alexandra Chronopoulou and Professor Niao He for their helpful

feedback on my work. I also want to thank Professor Nicole Riemer and her

PhD student Jeffrey Curtis for offering help from time to time. Finally I

want to acknowledge funding under DOE DE-SC0006689 and NSF CMMI-

1150490, as well as support from Blue Waters. This research is part of the

Blue Waters sustained-petascale computing project, which is supported by

the National Science Foundation (awards OCI-0725070 and ACI-1238993)

and the state of Illinois. Blue Waters is a joint effort of the University of

Illinois at Urbana-Champaign and its National Center for Supercomputing

Applications.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . xiii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Outline . 3

CHAPTER 2 VARIANCE REDUCTION FOR MEAN-FIELD PAR-
TICLE SIMULATIONS . 4
2.1 Introduction . 4
2.2 Problem definition . 6
2.3 Algorithm . 8
2.4 Analytical results . 13
2.5 Numerical study 1: 1D demonstration 24
2.6 Numerical study 2: a linear Gaussian example 28
2.7 Numerical study 3: aerosol particle simulation 32
2.8 Conclusions . 38

CHAPTER 3 PARALLEL SURROGATE OPTIMIZATION FOR
NOISY EXPENSIVE FUNCTIONS 40
3.1 Introduction . 40
3.2 ProSRS algorithm . 44
3.3 Convergence . 52
3.4 Numerical results . 56
3.5 Application of ProSRS to a general problem 67
3.6 Conclusions . 75

CHAPTER 4 CONCLUSIONS . 76

APPENDIX A ASSUMPTION VALIDATION FOR NUMERI-
CAL STUDY 1 . 77

vi

APPENDIX B MEAN FIELD CONVERGENCE FOR AEROSOL
PARTICLE MODEL . 80

APPENDIX C ALGORITHMS IN NUMERICAL STUDY 2 87

APPENDIX D COMPUTATION OF CONTROL VARIATES MEAN
FOR NUMERICAL STUDY 2 . 89

APPENDIX E OPTIMIZATION BENCHMARK FUNCTIONS . . . 91

REFERENCES . 96

vii

LIST OF TABLES

3.1 Parameter values for the ProSRS algorithm 57
3.2 Experiment conditions for optimization benchmark prob-

lems (the last numeric figure in the function name is the
problem dimension) . 57

3.3 Unknown parameters in PartMC simulation 68
3.4 Optimization results . 72

viii

LIST OF FIGURES

2.1 A schematic diagram of adaptive control variates algorithm
(Alg. 1). 9

2.2 Convergence of regression coefficients for the least squares
method, showing the mean square error between regression
coefficients from the least squares and the coefficients of the
projection for time t = 5. 26

2.3 Performance of a cubic polynomial regression model for
time t = 5 with R1 = 100. The cubic model (red) trained
with the least square method gives good prediction for the
particle property (green) in the evaluation phase. 26

2.4 Variance reduction performance of adaptive control vari-
ates algorithm for the one-dimensional mean-field system
in Eq. 2.47. The number of sample paths in the learning
phase is R1 = 100. The number of independent learning
phases R3 (see Eq. 2.10) for estimating variance reduction
is 20. 27

2.5 Variance reduction performances for the 1D linear Gaus-
sian example with different number of particles. 31

2.6 Variance reduction performance for the 1D linear Gaussian
example when R1 = 100 and N = 100. 31

2.7 Variance reduction performance of our adaptive control
variates algorithm for the mean estimation of the two bulk
properties: total mass concentration (blue) and scatter-
ing coefficient (red). The number of independent learning
phases R3 (see Eq. 2.10) for estimating variance reduction
is 20. 37

ix

2.8 Statistical error and computation time of our adaptive con-
trol variates algorithm and naive Monte Carlo for the mean
estimation of two bulk properties as the number of sample
paths in the evaluation phase varies from 10 to 500. The
error is measured by the L2 norm of the standard deviation
of estimators at different time steps. Comparing to naive
Monte Carlo (green), the estimator error of our algorithm
(red) is reduced by ∼ 67% for fixed computation time, and
the required computation time is reduced by ∼ 85% for the
same precision. 38

3.1 A schematic diagram of a general master-worker frame-
work for a parallel surrogate optimization algorithm. In
each iteration, the algorithm (master) constructs a surro-
gate based on the available evaluations, proposes multi-
ple points based on the surrogate, and distributes these
points to different processes (workers) for parallel evalua-
tions. The evaluated points are then fed back into the loop
to update the surrogate in the next iteration. 43

3.2 Illustration of the zoom strategy on a 1-D parabola. The
red curve shows the surrogate fit to all the noisy evalua-
tions (green dots) of the objective function (black curve).
The blue curve shows the surrogate fit using only the lo-
cal evaluation data in the zoomed-in domain. The local fit
is likely to agree well with the global fit on the restricted
domain, and is much cheaper to construct. 45

3.3 Illustration of the tree structure of ProSRS algorithm on a
2-D problem. The black box on the left shows the domain
of a root node. The two red boxes and one blue box show
two children and one grandchild of the root node. 46

3.4 Optimization curves for the benchmark functions. The er-
ror bar shows the standard deviation of 20 independent
runs. 60

3.5 Optimization curves for the hyperparameter-tuning prob-
lems. The error bar shows the standard deviation of 20
independent runs. The number of parallel cores is 8 for
both problems. The expected error (objective F) is esti-
mated by averaging 5 independent samples. 61

x

3.6 Compare the modeling capability of RBF regression as
used in ProSRS (dark blue lines) and GP regression with
kernels: Matern1.5, Matern2.5 and RBF (green, red and
light blue lines respectively) on 12 optimization benchmark
functions. The y axis is the relative error in terms of the
L2 norm of the difference between a model g and the un-
derlying true function E[f] over the function domain. The
error bar shows the standard deviation of 10 independent runs. 62

3.7 Computational costs of different algorithms for the twelve
optimization benchmark problems. The plots show the
mean and standard deviation of 20 independent runs. The
x axis is the number of iterations in actual optimization ex-
cluding the initial DOE iteration. The y axis is the actual
time that was consumed by an algorithm in each iteration,
and does not include the time of parallel function evaluations. 65

3.8 Computational costs of different algorithms for the two hy-
perparameter tuning problems. The plots show the mean
and standard deviation of 20 independent runs. The x axis
is the number of iterations in actual optimization excluding
the initial DOE iteration. For different algorithms, the y
axis is the actual time that was consumed by the algorithm
in each iteration, and does not include the time of parallel
function evaluations. The time for training and evaluating
the machine learning models is shown in black. 66

3.9 Optimization efficiency of different algorithms on the two
hyperparameter-tuning problems. Total time on the hori-
zontal axis is the actual elapsed time including both algo-
rithm running time and time of evaluating expensive func-
tions. The shaded areas show the standard deviation of 20
independent runs. 66

3.10 A general workflow for solving a noisy expensive optimiza-
tion problem with ProSRS algorithm. 70

3.11 Optimization curve for the PartMC characterization prob-
lem. The y axis is the noisy function value of the ProSRS
algorithm output. 71

3.12 Computational costs of ProSRS algorithms (blue curve)
and the evaluations of error function ε (black curve). The
x axis is the number of iterations in the optimization, ex-
cluding the initial DOE iteration. 72

3.13 The outputs of the optimized PartMC model (with the
optimal parameters in Table 3.4) versus SMPS measure-
ments. The shaded area shows the standard deviation of
10 independent runs. 73

xi

3.14 The outputs of the optimized PartMC model (with the op-
timal parameters in Table 3.4) versus SP2 measurements.
The shaded area shows the standard deviation of 10 inde-
pendent runs. 74

E.1 Surface plots for benchmark functions Ackley, Alpine, Griewank,
Levy, SumPower, and SixHumpCamel. 94

E.2 Surface plots for benchmark functions Schaffer, Dropwave,
Goldstein-Price and Rastrigin. 95

xii

LIST OF ABBREVIATIONS

MD Molecular dynamics

PartMC Particle-resolved Monte Carlo

MARS Multivariate adaptive regression splines

ProSRS Progressive Stochastic Response Surface

SRS Stochastic Response Surface

RBF Radial basis function

DOE Design of experiments

GP Gaussian process

LP Local penalization

EI Expected improvement

UCB Upper confidence bound

LCB Lower confidence bound

MCMC Markov Chain Monte Carlo

SGD Stochastic gradient descent

AS Ammonium sulfate

RB Regal black

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Many scientific and engineering applications are computationally intensive.

Examples include cosmological simulations, molecular dynamics simulations,

atmospheric climate simulations and deep learning. The time to complete

these tasks can be anywhere from several hours to multiple days or weeks

[1, 2].

Machine learning, a field of computer science, has recently gained increas-

ing popularity in the community due to its success in many areas including

natural language processing [3], image recognition [4], game playing [5] and

anomaly detection [6]. From an abstract perspective, machine learning gener-

ally deals with a collection of methods that are able to automatically extract

knowledge from data. The knowledge could be in the form of a mapping

between two sets of variables, as is often the case in supervised learning, or

may be some representation of the underlying structure of the data as in

unsupervised learning.

In this work, we explore the use of machine learning for accelerating

compute-intensive applications. The idea of using machine learning to accel-

erate numerical computation is not new, and has been exploited by numerous

researchers in various fields. For example, Gao and Kitchin [7] constructed a

neural network potential energy function to improve time-consuming molec-

ular dynamics (MD) simulations. The traditional MD simulations are based

on density-functional theory, and can be run with only short time scales and

a small scale of atoms due to the high computational cost. With the use of

machine learning, they showed that MD simulations can be accelerated by or-

ders of magnitude without sacrificing accuracy, thus enabling simulations at

much larger scales. Hughes et al. [8] trained gradient-boosted regression trees

1

to predict the global distribution of the aerosol mixing state index. The con-

ventional method of accurately capturing global distributions of this quantity

involves running large-scale detailed aerosol models, the cost of which is often

prohibitively high. Silver et al. [5] developed a chess-playing program called

AlphaGo using value and policy neural networks. The deep neural networks

were trained via supervised learning from human expert moves and by rein-

forcement learning from self-play. The trained neural networks significantly

accelerates Monte Carlo tree search, making AlphaGo the first program to

defeat a world champion of Go. Rasp et al. [9] used deep learning for climate

model parameterization, resulting in a significantly faster simulation com-

pared to a cloud-resolving model and producing more accurate results than

the traditional subgrid-processes method.

Machine learning has also been used to reduce the computational cost

to meet stringent requirements of time-critical applications. For example,

Ladický et al. [10] formulated physics-based fluid simulation as a regression

problem and trained a regression forest to approximate the behaviors of parti-

cles obtained with a traditional solver. The resultant data-driven simulation

is highly efficient, and can be used for high-quality real-time animation and

computer graphics. Tompson et al. [11] also accelerated fluid simulations

via machine learning but with convolutional networks. Chen et al. [12] used

basis function methods to efficiently solve harmonic Maxwells equation for

real-time controls and uncertainty quantification.

In this dissertation, we develop two specific learning-accelerated algorithms:

(1) a variance reduction algorithm for Monte Carlo simulations of mean-field

particle systems, and (2) a global optimization algorithm for noisy expensive

black-box functions. In terms of methodology, both algorithms exploit one

big idea: the expense of a task allows us to embed more “wisdom” into the

computation. Because the task is computationally expensive, we can invest

some extra time, which is a negligible fraction of the task, to make a better

decision. This extra investment in the context here involves the training and

the evaluation of machine learning models. Both algorithms then utilize the

learned knowledge to achieve an efficiency improvement.

2

1.2 Outline

The remainder of this dissertation is organized as follows. The two algorithms

will be presented separately in Chapter 2 and Chapter 3. Each Chapter will

have its own introduction, algorithm and numerical result section. We will

conclude in Chapter 4.

3

CHAPTER 2

VARIANCE REDUCTION FOR
MEAN-FIELD PARTICLE SIMULATIONS

2.1 Introduction

Direct simulation of a large population of interacting particles or agents has

been shown to be an effective and powerful way to understand complex phys-

ical and biological phenomena such as the draping behavior of woven cloth

[13], the mixing state of soot particles [14] and biological aggregation be-

havior [15]. Compared to a continuum model, a particle-based model, in

many cases, can yield more accurate results [14, 16–18]. Because the parti-

cles are modeled explicitly, a particle model can also reveal some features of

the system that would be otherwise hidden in a continuum model.

The outputs of these particle simulations are often stochastic in nature

due to random inputs and random interactions. To precisely measure an

output, the statistical error of the output needs to be appropriately handled.

Indeed, the statistical error can often be the dominant source of error for a

particle simulation [19]. Monte Carlo methods are typically used to reduce

these statistical errors. The most crude form of Monte Carlo, known as

naive Monte Carlo, reduces the error by taking the average of samples from

many independent sample paths. The statistical error of naive Monte Carlo

decreases at the rate of R−
1
2 , where R is the number of sample paths. Because

particle models are often very expensive to run due to a large number of

particles and highly complex dynamics, one would desire to draw a minimum

number of sample paths to achieve the desired precision.

Variance reduction techniques are very useful for reducing the number of

sample paths needed. Specifically, they reduce the variance of the output

for a given number of sample paths, and in this way the efficiency of Monte

Carlo simulation is improved. Some popular variance reduction techniques

are importance sampling, control variates, antithetic sampling and strati-

4

fied sampling [20, Chap. 9]. Among these, the method of control variates

is one of the most effective techniques [21, Chap. 4]. The control variates

method reduces the variance by constructing a new statistic (with known

mean) that strongly correlates with the output. This technique has been

successfully applied to a number of problems in machine learning. For in-

stance, in reinforcement learning the efficiency of a policy gradient estimator

can be enhanced with the use of control variates [22, Sec. 13.4]. In this

case, the control variate is constructed from a baseline function that depends

only on the state (not the action). A good heuristic for the baseline is the

value function, which leads to a policy gradient estimator using the advan-

tage function. Because the control variate depends on a baseline function,

this variance reduction technique is commonly known as the “baseline shift”

method in reinforcement learning. As another related example, Ranganath

et al. [23] have used control variates to improve the efficiency of variational

inference in machine learning.

The effectiveness of the control variates method largely depends on the

quality of the constructed statistic. However, for a general problem it is

often not obvious how to construct a good statistic, especially when the

dynamics of the system is highly complex.

The method of adaptive control variates [24] is a way to deal with such

difficulty. It works by first parameterizing the statistics with some unknown

parameters, and then learning these parameters adaptively from the data.

Adaptive control variates has been previously successfully applied to many

financial problems. Ehrlichman and Henderson [24] applied adaptive control

variates to a multivariate American option pricing problem, in which signifi-

cant variance reduction was demonstrated even in a high-dimensional setting.

Henderson and Simon [25] developed simulation schemes using adaptive con-

trol variates and showed that under certain conditions, the convergence rate

of the estimator could be exponential, faster than the canonical rate of Monte

Carlo simulation. Kim and Henderson [26] introduced two adaptive proce-

dures for general parametrization of control variates and demonstrated their

effectiveness on the problem of barrier options. A comprehensive review of

adaptive control variates is available in [27].

In this work, we develop a new adaptive control variates algorithm for a

class of particle simulations, in which many particles interact via common

mean fields. Previous works [28–30] have demonstrated the use of the an-

5

tithetic sampling technique to reduce the variance of particle simulations.

However, their works mainly focused on the particle systems where the dy-

namics is dominated by the change in number of particles, whereas in this

work we focus on the cases where the dynamics is dominated by particle

transformations. It is worth mentioning that although our method is differ-

ent from that in the previous works, the two approaches are complementary

and can be applied simultaneously to the same particle systems.

Compared to the existing adaptive control variates methods [24–26], our

algorithm proposes a novel scheme for learning the parameters in the control

variates. Conventionally the training data is collected from Monte Carlo sim-

ulations with only one training sample per sample path. Because the particle

system is often very high-dimensional (due to a large number of particles),

one may need to draw many sample paths in order to accumulate enough

data for training. As the simulations are usually expensive, the conventional

adaptive control variates method could lead to prohibitive overhead. Our

new method, in contrast, does not formulate the learning problem with re-

spect to the system observable directly. Rather, we treat each individual

particle as one training sample. In this way, the amount of the training data

per sample path is significantly increased and the dimension of the learning

problem is greatly reduced, thereby making it feasible to apply the control

variates method to particle simulations.

2.2 Problem definition

We consider a class of discrete-time stochastic processes in which a large

number of particles interact via common mean fields. Here we allow the

mean fields to be dependent on the full history of the states. Specifically,

xt+1,i = ft(φ0, φ1, . . . , φt, Xt,i),

φt = lt(Xt,1, Xt,2, . . . , Xt,N),

Xt,i =
[
xT0,i, x

T
1,i, . . . , x

T
t,i

]T
, i = 1, 2, . . . , N, t ∈ N,

(2.1)

where xt,i is a random vector representing the state of particle i at time t,

and vector φt denotes random mean fields of the system at time t with the

property that as the number of particles N approaches infinity, the mean

6

fields φt converge to some deterministic constants. The random vector Xt,i

summarizes all the states of particle i up to time t. The mean fields are

dependent on the states of all the particles, and are symmetric about particles

(i.e., function lt in Eq. 2.1 is symmetric about its N arguments). The initial

particles x0,i are i.i.d. sampled from some probability distribution.

Equation 2.1 describes the dynamics of a particle system, in which parti-

cles are not only self-driven but also subject to common interactions. Such

processes have appeared in a wide array of applications, including computer

communication systems [31], mean field games [32], ferromagnetics [33] and

aerosol condensation [34]. For the condensation process, as a concrete ex-

ample, Eq. 2.1 can be used to describe the changes of the sizes of aerosol

particles due to their interactions with water vapor. In this case, xt,i is the

diameter of an aerosol particle and the mean field φt is water vapor concen-

tration. The set of equations specifically describes the following condensation

process: as water vapor condenses onto an aerosol particle, the diameter of

this particle increases due to added liquid water. Each aerosol particle in the

atmosphere takes away some amount of water vapor through condensation

so that water vapor in the atmosphere becomes less, leading to a decrease in

vapor concentration.

In this work, we are interested in the expectation of the observable in the

form of:

yt =
1

N

N∑
i=1

g(xt,i), t = 1, 2, . . . , T, (2.2)

where the observable yt is some bulk property of the particle system, and

function g represents some property of an individual particle.

The mean estimator of naive Monte Carlo is given by

ŷnaive
t =

1

R

R∑
r=1

[
1

N

N∑
i=1

g(x
(r)
t,i)

]
, (2.3)

where the superscript ‘(r)’ denotes an i.i.d. sample from the rth sample path,

and R is the total number of sample paths for naive Monte Carlo.

The objective of this work is to design an algorithm that would produce a

more efficient mean estimator than the naive one in Eq. 2.3.

7

2.3 Algorithm

2.3.1 Algorithm description

Algorithm 1 Adaptive control variates

Phase 1 (learning phase):

1: Generate R1 sample paths {x(r)
t,i | r = 1, 2, . . . , R1} from the process in

Eq. 2.1

2: Solve regression βt = argminβ∈Θ

∑R1

r=1

∑N
i=1

(
g(x

(r)
t,i)− h(x

(r)
0,i ; β)

)2

for

t = 1, 2, . . . , T
3: Compute Et = E[h(x

(1)
0,1; βt) | βt] for t = 1, 2, . . . , T

Phase 2 (evaluation phase):

4: Generate another R2 sample paths {x(r)
t,i | r = 1, 2, . . . , R2}

5: Construct estimator ŷcv
t = 1

R2

∑R2

r=1

[
1
N

∑N
i=1

(
g(x

(r)
t,i)− h(x

(r)
0,i ; βt)

)]
+Et

for t = 1, 2, . . . , T

Our adaptive control variates algorithm is presented in Alg. 1. It consists of

two phases. The first phase (Lines 1–3) is a learning phase, where the control

variates strategy is learned from the simulation data. Line 2 builds a model

for the particle property g(xt,i) in terms of the initial state of the particle

x0,i. Here we formulate it as a least-squares fitting problem, where h(·; β) is

a generic representation of parametric regression with β being regression co-

efficients in some space Θ. However, it should be noted that the least squares

formulation here is only for notational convenience. The algorithm does not

impose any constraint on the way a model is constructed. In fact, the model

can be built with any machine learning algorithm, including non-parametric

regression and regression forests. With this broad understanding, h(·; βt) in

Lines 3 and 5 should be thought as evaluating a model rather than necessar-

ily substituting some known coefficients βt into the expression h(·; β). The

training data of the model is all the particles from different sample paths

in the learning phase. Line 3 computes the conditional expectation given

the learned model. We refer to this conditional expectation as the mean of

control variates. Since the initial particles are identically distributed, the

expectation does not depend on the choice of a particle. For simplicity, here

we choose the first particle from the first sample path.

The second phase (Lines 4 and 5) is an evaluation phase, where we apply

8

Simulate R1 sample paths
for particle system

Machine learning

Data

Compute control variates mean

Model

Simulate R2 sample paths
for particle system

Construct estimators using
control variates

Learning phase Evaluation phase

Learned
model

Mean

Figure 2.1: A schematic diagram of adaptive control variates algorithm
(Alg. 1).

the learned strategy to the mean estimation of the system observable. The

sample paths drawn in this phase (Line 4) must be independent of those in

the learning phase (Line 1). Line 5 constructs a control variates estimator

using the model and the control variates mean obtained in the learning phase.

Figure 2.1 shows a schematic diagram for the entire algorithm.

2.3.2 Remarks on the algorithm

Suppose the model (Line 2) is “perfect” so that g(x
(r)
t,i) = h(x

(r)
0,i ; βt). Then the

variance of the estimator ŷcv
t is simply zero. Indeed, the variance reduction

performance of Alg. 1 is largely determined by how well a model predicts the

particle property g(xt,i) based on its initial state x0,i.

From the expression of the function ft in Eq. 2.1, it is easy to see that the

state of the particle i at time t (i.e., xt,i) depends on its initial state x0,i and

the mean fields φ0, φ1, . . . , φt−1. As a result, the particle property g(xt,i) can

be expressed as

g(xt,i) = Ψt(φ0, φ1, . . . , φt−1, x0,i). (2.4)

Hence, the regression in Line 2 is essentially to find a model h that approxi-

mates the function Ψt:

Ψt(φ0, φ1, . . . , φt−1, x0,i) ≈ h(x0,i; βt). (2.5)

9

Because the mean fields have low variance in the presence of a large number

of particles, the function Ψt should be reasonably well approximated by some

function that only depends on x0,i. This is the main reason why we build a

model that only depends on the initial state of the particle. Another reason

is that the initial particles are sampled from some known distribution so that

in most cases the mean of control variates (Line 3) can be computed cheaply

and accurately without resorting to Monte Carlo methods.

In many applications, the dynamics of the particles is so complex that the

function Ψt in Eq. 2.4 is almost intractable analytically. This intractability

hinders the application of approximation methods that heavily rely on the

closed-form expression of the function, such as derivative-based methods [35].

Our method of function approximation is data-driven, thus not requiring any

prior knowledge about the system. The method essentially treats the particle

dynamics as a black box, and uses machine learning to build an approximate

model directly from the data.

Our algorithm has two phases: a learning phase and an evaluation phase.

The reason for not having only one phase (i.e., not using the same data for

learning and evaluation) is that the control variates mean is often very dif-

ficult to compute analytically in a one-phase setting as the coefficients of

the learnt model are usually very complex functions of the random simula-

tion data. By having two separate and independent phases, one can usually

compute the control variates mean easily because the coefficients are treated

as constants when computing the conditional expectation. Another way of

viewing this is that if we were computing the control variates mean as the

conditional expectation in Line 3 but with only one phase, then the resultant

control variates estimator would be biased.

Due to the presence of the learning phase, there is some computational

overhead associated with adaptive control variates algorithm compared to

naive Monte Carlo. The hope is that the gain from variance reduction as

a result of the constructed control variates outweighs the loss due to fewer

sample paths to be generated because of the computational overhead. In

general, there is no guarantee that the gain wins over the loss. However,

there are several conducive factors that make this likely to happen for a

system under investigation. The factors are:

(a) Large number of particles in the system. This gives a large

10

amount of training data since our algorithm treats every particle as

one training sample. Combining this large volume of data with the

use of machine learning, it is likely to produce a good model for the

dynamics without requiring too many sample paths for the learning

phase.

(b) Expensive simulations of particle dynamics. In many applica-

tions, the complex dynamics of the particle system together with a

large number of particles lead to long simulation times. As a result,

the computational overhead of training regression models (Line 2) and

computing the means of control variates (Line 3) can be negligible com-

pared to the cost of generating sample paths in the evaluation phase.

(c) Convergence property of the mean-field system. The mean-

field system often exhibits a certain form of convergence in the limit

of a large number of particles [14, 36]. As a result, if we simulate the

same particle system but with fewer particles, the dynamics of this

reduced-size particle system would be similar to that of the original

system as long as the number of particles is not too small. Therefore,

in the learning phase we may generate sample paths from a reduced-size

system instead of from the original system for the sake of minimizing

the computational overhead. This technique is exploited in the second

numerical example, and is demonstrated in Section 2.7.2.

2.3.3 Characterization of variance reduction

The variance reduction performance of the algorithm is measured by the

standard variance reduction factor VR [24, 26]. It is defined as the ratio of

the variance of the naive estimator divided by that of the control variates

estimator given that the number of sample paths of the naive Monte Carlo

is equal to that of the evaluation phase of Alg. 1:

VRt :=
Var
(
ŷnaive
t

)
Var
(
ŷcv
t

) ∣∣∣∣∣
R=R2

. (2.6)

From Eq. 2.6, it is clear that the variance of the mean estimator is reduced

if and only if VR is greater than one.

11

The variances of the naive estimator and the control variates estimator

in Eq. 2.6 are generally unknown for a given problem. As a result, they

need to estimated through random samples drawn from the simulations. For

the naive estimator, the variance estimation is straightforward as we can

apply the standard sample variance formula. To estimate the variance of

the adaptive control variates estimator for our algorithm, we will use the

following analytical result.

Lemma 2.1 The variance of an adaptive control variates estimator is equal

to the expectation of the variance given the learned model. That is

Var
(
ŷcvt
)

= E[Var
(
ŷcvt | βt

)
].

Proof. By the law of total variance,

Var
(
ŷcv
t

)
= E[Var

(
ŷcv
t | βt

)
] + Var

(
E[ŷcv

t | βt]
)
. (2.7)

Note that

E[ŷcv
t | βt] = E

[1

N

N∑
i=1

g(x
(1)
t,i) | βt

]
+ E

[
− 1

N

N∑
i=1

h(x
(1)
0,i ; βt) + Et | βt

]
. (2.8)

By Eq. 2.12, the second expectation on the right hand side of Eq. 2.8 is zero.

Since the learning phase and the evaluation phase are independent, the first

expectation on the right hand side of Eq. 2.8 is equal to E[yt]. As a result,

E[ŷcv
t | βt] = E[yt]. Hence,

Var
(
E[ŷcv

t | βt]
)

= 0. (2.9)

Substituting Eq. 2.9 into Eq. 2.7 yields the desired result.

Based on Lemma 2.1, Var
(
ŷcv
t

)
is estimated using the following procedure:

(i) first run several independent learning phases, then (ii) given the model in

each learning phase, estimate the variance of the control variates estimator

using the samples in the corresponding evaluation phase, and finally (iii) take

the average of all these variance estimators from different learning phases.

Mathematically,

V̂ar
(
ŷcv
t

)
=

1

R3

R3∑
r=1

V̂ar
(
ŷcv
t | β(r)

t

)
, (2.10)

12

where R3 is the number of independent learning phases. The expression

V̂ar
(
ŷcv
t | β(r)

t

)
denotes the estimated variance of the estimator given the

model in the learning phase. Once the variance estimators for both algo-

rithms are obtained, substituting them into Eq. 2.6 gives an estimator for

the variance reduction factor.

2.4 Analytical results

We prove that the mean estimators from Alg. 1 are unbiased (Theorem 2.1).

That is, the mean of an adaptive control variates estimator is identical to

the true mean of the observable.

Theorem 2.1 The mean estimators in Line 5 of Alg. 1 are unbiased. That

is, E[ŷcvt] = E[yt].

Proof. Computing the expected control variates estimator gives

E[ŷcv
t] = E

[1

N

N∑
i=1

g(x
(1)
t,i)
]

+ E
[
− 1

N

N∑
i=1

h(x
(1)
0,i ; βt) + Et

]
= E[yt] + E

[
E
[
− 1

N

N∑
i=1

h(x
(1)
0,i ; βt) + Et | βt

]]
.

(2.11)

Note that {h(x
(1)
0,i ; βt) | i = 1, 2, . . . , N} are i.i.d. conditioned on the learned

model because the learning phase and the evaluation phase are independent.

Hence,

E
[
− 1

N

N∑
i=1

h(x
(1)
0,i ; βt) + Et | βt

]
= −E

[
h(x

(1)
0,1; βt) | βt

]
+ Et = 0. (2.12)

Substituting Eq. 2.12 into Eq. 2.11 yields the desired result.

Next, we give the main result of our adaptive control variates algorithm

(Theorem 2.2). Specifically, we prove that for the system with sufficiently

many particles, our algorithm asymptotically produces more efficient esti-

mators than naive Monte Carlo provided that some conditions are satisfied.

This analytical result is quite general in that it does not assume any specific

type of regression method.

13

We make several assumptions (Assumptions 2.1–2.4) for the main theorem.

For the ease of conveying these assumptions, we first define two functions with

respect to regression coefficients β:

V (β) := Var
(
g(xt,1)− h(x0,1; β)

)
, (2.13)

C(β) := Cov
(
g(xt,2), h(x0,1; β)

)
, (2.14)

where function g is defined in Eq. 2.2, representing the property of a particle,

and function h is a generic form of regression (Line 2 of Alg. 1).

The first assumption (Assumption 2.1) is a mild regularity condition to

ensure that we work with finite variances and covariances.

Assumption 2.1 (Moment regularity) Assume random variables g(xt,1) and

h(x0,1; β) have finite second moment1.

The second assumption (Assumption 2.2) mainly assumes that the learned

regression coefficients “stabilize” as more and more training data become

available.

Assumption 2.2 (Regression convergence) Assume that for sufficiently large

N fixed,

(i) Learned regression coefficients βt (Line 2 of Alg. 1) converge in prob-

ability to a constant vector β′t as the number of learning sample paths

R1 approaches infinity (i.e., βt
p.−−−−→

R1→∞
β′t).

(ii) The two functions defined in Eq. 2.13 and Eq. 2.14 converge in mean:

V (βt)
L1−−−−→

R1→∞
V (β′t) and C(βt)

L1−−−−→
R1→∞

C(β′t).

As the number of particles becomes sufficiently large, the mean field φt is

almost a constant vector so that function g(xt,2) is almost a function that

only depends on x0,2 (see Eq. 2.4). Consequently, with some mild regularity

conditions, it can be shown that the covariance C(β′t) would converge to

zero as N →∞ (recall that x0,1 and x0,2 are independent). Assumption 2.3

1Here we assume that h(x0,1;β) ∈ L2 for any fixed β ∈ Rm, where m is the dimension
of β. We also assume g(xt,1) ∈ L2 for all time t = 1, 2, . . . , T . We use L2 to denote the
space of the random variables that have finite second moment. In general, whenever there
is a t-dependent variable in the assumption, it should be understood that it is assumed
that the condition holds true “for all time t = 1, 2, . . . , T”. This convention is used in the
remaining assumptions as well as in Assumption 2.5–2.9.

14

essentially imposes conditions on this convergence. One sufficient condition

for this assumption to be true is that the rate of convergence is faster than

N−1 (in this case, lim inf is zero).

Assumption 2.3 (Asymptotic uncorrelation) Assume lim infN→∞C(β′t)N ≥
0.

The limiting regression model h(x0,1; β′t) often achieves some form of opti-

mality within the model space. As a result, it is reasonable to expect that

the variance with this optimal model (i.e., V (β′t)) is less than that without

any model. The last assumption (Assumption 2.4) requires this variance

difference to be bounded away from zero by some positive margin.

Assumption 2.4 (Variance optimality) Assume lim infN→∞

(
Var
(
g(xt,1)

)
−

V (β′t)
)
> 0.

Now we give our main theorem (Theorem 2.2) as follows.

Theorem 2.2 (Variance reduction theorem) Suppose Assumptions 2.1–2.4

are satisified. Then there exists N0 ∈ N such that for any system (Eq. 2.1)

with the number of particles greater than N0, the variance reduction factor

(Eq. 2.6) is greater than one for all time t as long as the number of sample

paths in the learning phase is sufficiently large.

Proof. The goal is to show that there exists N ′ ∈ N such that for any N > N ′,

there exists R′ ∈ N so that for any R1 > R′ and given R = R2,

Var
(
ŷcv
t

)
< Var

(
ŷnaive
t

)
, for all t = 1, 2, . . . , T. (2.15)

Without loss of generality, for the remainder of the proof we assume R =

R2 = 1.

For the clarity of showing the dependence on different variables, we intro-

duce the notation

Varcv(N,R1, t) := Var
(
ŷcv
t | βt

)
, Varnaive(N, t) := Var

(
ŷnaive
t

)
.

By Lemma 2.1, Var
(
ŷcv
t

)
= E

[
Varcv(N,R1, t)

]
. As a result, to show the

statement in Eq. 2.15 it suffices to show that for any t ∈ {1, 2, . . . , T} fixed,

15

there exists N ′′ ∈ N such that for any N > N ′′, there exists R′′ ∈ N so that

for all R1 > R′′,

E
[
Varcv(N,R1, t)

]
< Varnaive(N, t). (2.16)

Now we fix time t. Conditioned on the learned (random) model, Et in

Line 5 of Alg. 1 is a constant. Therefore, the variance of the control variates

estimator given the learned model is

Varcv(N,R1, t) = Var
(1

N

N∑
i=1

(
g(xt,i)− h(x0,i; βt)

)
| βt
)
. (2.17)

Since particles are initially i.i.d. and the system is symmetric under particle

relabeling,

Varnaive(N, t) = Var
(1

N

N∑
i=1

g(xt,i)
)

=
1

N
Var
(
g(xt,1)

)
+
N − 1

N
Cov

(
g(xt,1), g(xt,2)

)
.

(2.18)

Similarly,

Varcv(N,R1, t) =
1

N
Var
(
g(xt,1)− h(x0,1; βt) | βt

)
+
N − 1

N
Cov

(
g(xt,1)− h(x0,1; βt), g(xt,2)− h(x0,2; βt) | βt

)
.

(2.19)

Because (i) the learning phase and the evaluation phase are independent, (ii)

the particles are symmetric, and (iii) initial particles are independent of each

other conditioned on the learned model, we have

Cov
(
g(xt,1)− h(x0,1; βt), g(xt,2)− h(x0,2; βt) | βt

)
= Cov

(
g(xt,1), g(xt,2)

)
− 2Cov

(
g(xt,2), h(x0,1; βt) | βt

)
. (2.20)

By Eqs. 2.18, 2.19 and 2.20, and using the functions defined in Eqs. 2.13 and

16

2.14, we have

Varnaive(N, t)− Varcv(N,R1, t)

=
(

Var
(
g(xt,1)

)
− V (βt) + 2(N − 1)C(βt)

)
N−1

=
(

Var
(
g(xt,1)

)
− V (β′t) + 2(N − 1)C(β′t)

)
N−1

+
(
V (β′t)− V (βt)

)
N−1 + 2(1−N−1)

(
C(βt)− C(β′t)

)
. (2.21)

Taking expectations on both sides of Eq. 2.21, we get

Varnaive(N, t)− E
[
Varcv(N,R1, t)

]
=
(

Var
(
g(xt,1)

)
− V (β′t) + 2(N − 1)C(β′t)

)
N−1

+ E
[
V (β′t)− V (βt)

]
N−1 + 2(1−N−1)E

[
C(βt)− C(β′t)

]
. (2.22)

Denote the positive lim inf1 in Assumption 2.4 to be A. Then by definition

of the lim inf, there exists N1 ∈ N such that for all N > N1,

Var
(
g(xt,1)

)
− V (β′t) >

A

2
. (2.23)

By Assumption 2.3 and using the definition of the lim inf, there exists N2 ∈ N
such that for all N > N2,

2(N − 1)C(β′t) = 2
(
NC(β′t)

)(N − 1

N

)
> 2

(
−A

4

)(
N − 1

N

)
> −A

2
.

(2.24)

Let N3 = max(N1, N2). Then adding the inequalties in Eq. 2.23 and 2.24,

we have for all N > N3,(
Var
(
g(xt,1)

)
− V (β′t) + 2(N − 1)C(β′t)

)
N−1 >

(
A

2
− A

2

)
N−1 = 0. (2.25)

Now take N ′′ to be the maximum of N3 and the minimum integer for the

conditions in Assumption 2.2 to be satisfied, and fix N to be an arbitrary

integer that is larger than N ′′. By L1 convergence in Assumption 2.2, we

1Here we only discuss the case when the lim inf is finite (i.e., 0 < A <∞). If A =∞,
the inequality in Eq. 2.25 trivially holds for sufficiently large N .

17

have

E
[
V (β′t)− V (βt)

]
N−1 + 2(1−N−1)E

[
C(βt)− C(β′t)

] R1→∞−−−−→ 0. (2.26)

By the definition of the limit, there exists R′′ ∈ N such that for all R1 > R′′,

E
[
V (β′t)− V (βt)

]
N−1 + 2(1−N−1)E

[
C(βt)− C(β′t)

]
>

−
(

Var
(
g(xt,1)

)
− V (β′t) + 2(N − 1)C(β′t)

)
N−1, (2.27)

which implies Varnaive(N, t) > E
[
Varcv(N,R1, t)

]
(this is clear from Eq. 2.22).

The next theorem (Theorem 2.3) is a specialized version of the previous

theorem, where we restrict the regression method to the class of basis function

regression. This theorem shows how the assumptions made in the previous

general theorem can be satisfied in a concrete setting. It is worth noting

that the class of basis function models is quite broad as the basis functions

can be any polynomials, radial basis functions and so forth. In particular, it

contains the class of the classical linear regression models.

Just like the main theorem, we make a few assumptions (Assumptions 2.5–

2.9). The first assumption (Assumption 2.5) sets up a classical least-squares

regression problem. The compact set Θ in the assumption can be considered

as the finite range of numbers that a computer can represent.

Assumption 2.5 Assume the regression coefficients βt (Line 2 of Alg. 1)

minimize the least squares error,
∑R1

r=1

∑N
i=1

(
g(x

(r)
t,i)− βTη(x

(r)
0,i)
)2

, over the

domain Θ, where the vector-valued function η : Rk → Rm denotes a set of

predetermined basis functions, and Θ is a compact subset of Rm.

The next assumption (Assumption 2.6) impose some regularity on the re-

gression model space. Here the condition 1 ∈ ν essentially requires that the

basis function regression model has an intercept term. The non-singularity

condition of correlation matrix ensures that there is a unique β that corre-

sponds to the projection to the subspace ν. In the case of classical linear

regression, this condition is equivalent to that the covariance matrix of pre-

dictors (i.e., Cov(x0,1)) is non-singular. More generally, a sufficient condition

for this to be true is that all the predictors are independent and have posi-

18

tive variances (in this case, covariance matrix is simply diagonal thus trivially

non-singular).

Assumption 2.6 Assume 1 ∈ ν := {βTη(x0,1) | β ∈ Rm} ⊆ L2 := {X |
E[X2] <∞} and the correlation matrix E

[
η(x0,1)

(
η(x0,1)

)T]
is non-singular.

Assumption 2.7 Assume Ψt(φ0, φ1, . . . , φt−1, x0,1) converges in mean square

to Ψt(c0, c1, . . . , ct−1, x0,1) as N goes to infinity, where the function Ψt is

defined in Eq. 2.4, and ct is the constant limit of the mean field φt as N →∞.

As we will show in the proof, there is a unique coefficient vector in Rm

that corresponds to the projection Πν

(
g(xt,1)

)
. The next assumption (As-

sumption 2.8) requires that this unique vector is also in the set Θ. Here the

condition on lim inf is speaking to Assumption 2.3 of Theorem 2.2.

Assumption 2.8 Assume1 there is a vector β′t ∈ Θ such that (β′t)
Tη(x0,1) =

Πν

(
g(xt,1)

)
and lim infN→∞Cov

(
g(xt,2), (β′t)

Tη(x0,1)
)
N ≥ 0.

Assumption 2.9 Assume the variance of Πν

(
Ψt(c0, c1, . . . , ct−1, x0,1)

)
is pos-

itive2.

Now we state the specialized version of our variance reduction theorem as

follows.

Theorem 2.3 Suppose Assumptions 2.5–2.9 are satisified. Then there exists

N0 ∈ N such that for any system (Eq. 2.1) with the number of particles

greater than N0, the variance reduction factor (Eq. 2.6) is greater than one

for all time t as long as the number of sample paths in the learning phase is

sufficiently large.

Proof. To prove this theorem, we need several Lemmas (2.2 – 2.5).

Lemma 2.2 Let g be a function on Rk × Θ, where Θ is a compact subset

of a Euclidean space. Let g(x, θ) be a continuous function of θ for each x

and a measurable function of x for each θ. Assume also that |g(x, θ)| ≤ h(x)

for all x and θ, where h is integrable with respect to a probability distribution

1By Assumption 2.6, it is clear that ν is a closed subspace in L2. Here the operator
Πν(·) denotes the projection onto the subspace ν. By Assumption 2.7 and the definition of
mean square convergence, g(xt,1) = Ψt(φ0, φ1, . . . , φt−1, x0,1) ∈ L2 so that the projection
Πν

(
g(xt,1)

)
is unique and well-defined.

2Assumption 2.7 implies Ψt(c0, c1, . . . , ct−1, x0,1) ∈ L2 so that the projection is well-
defined.

19

function F on Rk. If x1, x2, . . . , xn are i.i.d. samples from F and Qn(θ) =

n−1
∑n

t=1 g(xt, θ), then Qn(θ) has weak uniform convergence over Θ:

sup
θ∈Θ

∣∣Qn(θ)− E[Qn(θ)]
∣∣ p−−−→
n→∞

0. (2.28)

Proof. See Theorem 2 in Jennrich [37].

Lemma 2.3 Let QR(β) = 1
R

∑R
r=1 g(xr, β), where {xr | r = 1, 2, . . . , R}

are random vectors defined on the same probability space, g is a real-valued

function and β is a vector in a set Θ ⊆ Rm. Suppose (i) Θ is compact, (ii)

QR(β) enjoys weak uniform convergence over Θ (weak uniform convergence

is defined in Lemma 2.2), (iii) E[QR(β)] is continuous with β on the domain

Θ, and (iv) E[QR(β)] has a unique minimum at β0 in the domain Θ (i.e.,

β0 = argminβ∈Θ E[QR(β)]). Let βR minimize QR(β) on the domain Θ (i.e.,

QR(βR) = infβ∈ΘQR(β)). Then βR converges to β0 in probability as R→∞.

Proof. See Theorem 4.1.1 in Amemiya [38, Chap. 4]. Here we give the proof

for interested readers. Let ε = infβ∈Bc⋂Θ

(
E[QR(β)] − E[QR(β0)]

)
, where

B ⊆ Θ is an arbitrary open neighborhood of β0. Since Θ is compact and

E[QR(β)] is continuous in β, the infimum can be obtained in the compact set

Bc
⋂

Θ. Because E[QR(β)] admits a unique minimum, we have ε > 0. Note

that

E[QR(βR)]−QR(βR) ≤ sup
β∈Θ

∣∣QR(β)− E[QR(β)]
∣∣ (2.29)

and

QR(βR)− E[QR(β0)] ≤ QR(β0)− E[QR(β0)] ≤ sup
β∈Θ

∣∣QR(β)− E[QR(β)]
∣∣.

(2.30)

Adding Eqs. 2.29 and 2.30 yields

E[QR(βR)]− E[QR(β0)] ≤ 2 sup
β∈Θ

∣∣QR(β)− E[QR(β)]
∣∣. (2.31)

Hence, supβ∈Θ

∣∣QR(β)− E[QR(β)]
∣∣ < ε

2
implies E[QR(βR)]− E[QR(β0)] < ε.

By weak uniform convergence, we have P
(

supβ∈Θ

∣∣QR(β) − E[QR(β)]
∣∣ <

ε
2

)
−→ 1 as R → ∞. As a result, P

(
E[QR(βR)] − E[QR(β0)] < ε

)
−→ 1.

That is, as R → ∞, P
(
E[QR(βR)] − E[QR(β0)] < infβ∈Bc⋂Θ

(
E[QR(β)] −

E[QR(β0)]
))
−→ 1. Note that E[QR(βR)]−E[QR(β0)] < infβ∈Bc⋂Θ

(
E[QR(β)]−

20

E[QR(β0)]
)

implies βR ∈ B. Therefore, P(βR ∈ B) −→ 1. Since B is an arbi-

trary open neighborhood of β0, βR
p−→ β0 as claimed.

Lemma 2.4 Let ν be some closed subspace ⊆ L2 with 1 ∈ ν and suppose

Y ∈ L2. If X = Πν(Y), then Var(Y) = Var(Y −X) + Var(X).

Proof. By the orthogonality principle, E[Y 2] = E[(Y −X)2] + E[X2]. Since

1 ∈ ν, (Y −X) ⊥ 1. So E[Y −X] = 0. Hence,

Var(Y) = E[Y 2]− E[Y]2 = E[(Y −X)2] + E[X2]− E[Y]2

=
(
E[(Y −X)2]− E[Y −X]2

)
+
(
E[X2]− E[X]2

)
+
(
E[X]2 − E[Y]2

)
= Var(Y −X) + Var(X) + E[X − Y]E[X + Y]

= Var(Y −X) + Var(X).

Lemma 2.5 Let ν ⊆ L2 be some closed subspace. Let {Yn}n∈N be a sequence

of random variables defined on the same probability space. Suppose Yn −→ Y

in m.s., Xn = Πν(Yn) and X = Πν(Y), then Xn −→ X in m.s. and Var(Xn) −→
Var(X).

Proof. By linearity of the projection operator, Xn−X = Πν(Yn−Y). By the

orthogonality principle, E[(Yn−Y)2] = E[(Xn−X)2]+E[(Yn−Y −Xn+X)2].

In particular, we have E[(Yn − Y)2] ≥ E[(Xn −X)2]. Since Yn −→ Y in m.s.,

E[(Yn−Y)2] −→ 0. Hence, E[(Xn−X)2] −→ 0. By definition, Xn −→ X in m.s..

So E[X2
n] −→ E[X2] and E[Xn] −→ E[X]. Hence, Var(Xn) = E[X2

n]−E[Xn]2 −→
E[X2]− E[X]2 = Var(X) as claimed.

Now we prove the theorem as follows.

We will apply Theorem 2.2 for this proof. Let

h(x0,i; β) = βTη(x0,i), (2.32)

so that the variance function (Eq. 2.13) and the covariance function (Eq. 2.14)

become

V (β) = Var
(
g(xt,1)− βTη(x0,1)

)
, (2.33)

C(β) = Cov
(
g(xt,2), βTη(x0,1)

)
. (2.34)

Now to prove the result, it suffices to check each assumption of Theorem 2.2,

which we will show separately:

21

1. Check Assumption 2.1

Assumption 2.6 implies h(x0,1; β) ∈ L2. Assumption 2.7 implies g(xt,1) =

Ψt(φ0, φ1, . . . , φt−1, x0,1) ∈ L2 (this is by definition of mean square conver-

gence).

2. Check Condition (i) in Assumption 2.2

First define the function q:

q(Z
(r)
t , β) :=

N∑
i=1

(
g(x

(r)
t,i)− βTη(x

(r)
0,i)
)2

, (2.35)

where the random vector Z
(r)
t =

(
x

(r)
t,1 , x

(r)
t,2 , . . . , x

(r)
t,N , x

(r)
0,1, x

(r)
0,2, . . . , x

(r)
0,N

)
and

the coefficient vector β is in the domain Θ.

From Eq. 2.35 it is clear that q(Z
(r)
t , β) is a continuous function with respect

to β for any fixed Z
(r)
t . Moreover, we have the following inequalities:

q(Z
(r)
t , β) ≤

N∑
i=1

[
2
(
g(x

(r)
t,i)
)2

+ 2
(
βTη(x

(r)
0,i)
)2
]

≤
N∑
i=1

[
2
(
g(x

(r)
t,i)
)2

+ 2‖β‖2‖η(x
(r)
0,i)‖2

]

≤
N∑
i=1

[
2
(
g(x

(r)
t,i)
)2

+ 2C‖η(x
(r)
0,i)‖2

]
:= r(Z

(r)
t).

(2.36)

The second inequality above is a consequence of the Cauchy-Schwarz in-

equality. Since β ∈ Θ and Θ is compact, ‖β‖2 is upper bounded by some

constant, which is denoted as C in the third inequality of Eq. 2.36. By As-

sumptions 2.6 and 2.7, we have that E[g2(x
(r)
t,i)] and E[‖η(x

(r)
0,i)‖2] are both

finite. As a result, r(Z
(r)
t) in Eq. 2.36 is integrable. Now define

QR1,t(β) :=
1

R1

R1∑
r=1

q(Z
(r)
t , β). (2.37)

Since Z
(1)
t , Z

(2)
t , . . . , Z

(R1)
t are i.i.d., QR1,t(β) has the weak uniform conver-

gence property by using Lemma 2.2:

sup
β∈Θ

∣∣QR1,t(β)− E[QR1,t(β)]
∣∣ p−−−−→
R1→∞

0. (2.38)

22

Note that

E[QR1,t(β)] = E
[
q(Z

(1)
t , β)

]
= NE

[(
g(xt,1)− βTη(x0,1)

)2
]

= N
(
E
[
g2(xt,1)

]
− 2E

[
g(xt,1)

(
η(x0,1)

)T]
β

+ βTE
[
η(x0,1)

(
η(x0,1)

)T]
β
)
.

(2.39)

Because the correlation matrix E
[
η(x0,1)

(
η(x0,1)

)T]
is non-singular (Assump-

tion 2.6), it is positive definite. As a result, E[QR1,t(β)] is quadratic in β and

is strictly convex. Hence, there is a unique vector in Rm such that E[QR1(β)]

is minimized. From Eq. 2.39, it is clear that this vector also uniquely mini-

mizes E
[(
g(xt,1)− βTη(x0,1)

)2
]
. By the orthogonality principle, this unique

vector is exactly β′t in Assumption 2.8. Since β′t ∈ Θ ⊆ Rm, we have

β′t = argmin
β∈Θ

E[QR1,t(β)]. (2.40)

By Assumption 2.5, we have

QR1,t(βt) = inf
β∈Θ

QR1,t(β). (2.41)

From Eq. 2.39, it is clear that E[QR1,t(β)] is continuous with respect to β.

By Lemma 2.3, we have

βt
p.−−−−→

R1→∞
β′t. (2.42)

3. Check Condition (ii) in Assumption 2.2

Observe that V (β) in Eq. 2.33 and C(β) in Eq. 2.34 are respectively

quadratic and linear in β. As a result, both V (β) and C(β) are continuous

functions. Recall that βt converges to β′t in probability (Eq. 2.42). Hence,

by the continuous mapping theorem, we have

V (βt)
p.−−−−→

R1→∞
V (β′t) and C(βt)

p.−−−−→
R1→∞

C(β′t). (2.43)

Since (i) βt ∈ Θ, (ii) Θ is compact, and (iii) V (β) is a continuous function

on Θ, the sequence of |V (βt)| indexed by R1 is bounded by a finite positive

constant. Similarly, the sequence of |C(βt)| is also bounded by some finite

23

positive constant. Together with convergence in probability (Eq. 2.43), we

have convergence in mean by the Lebesgue dominated convergence theorem:

V (βt)
L1−−−−→

R1→∞
V (β′t) and C(βt)

L1−−−−→
R1→∞

C(β′t). (2.44)

4. Check Assumption 2.3

This follows immediately from Assumption 2.8 and the definition of C(β)

in Eq. 2.34.

5. Check Assumption 2.4

Note that

Var
(
g(xt,1)

)
− V (β′t) = Var

(
g(xt,1)

)
− Var

(
g(xt,1)− (β′t)

T
η(x0,1)

)
= Var

(
g(xt,1)

)
− Var

(
g(xt,1)− Πν

(
g(xt,1)

))
= Var

(
Πν

(
g(xt,1)

))
= Var

(
Πν

(
Ψt(φ0, φ1, . . . , φt−1, x0,1)

))
.

(2.45)

The third equality in Eq. 2.45 is a consequence of Lemma 2.4. By the mean

square convergence in Assumption 2.7 and using Lemma 2.5, we have

lim
N→∞

(
Var
(
g(xt,1)

)
− V (β′t)

)
= Var

(
Πν

(
Ψt(c0, c1, . . . , ct−1, x0,1)

))
> 0,

(2.46)

where the positiveness of the variance is due to Assumption 2.9. This implies

the desired result since the limit and lim inf coincide.

2.5 Numerical study 1: 1D demonstration

In this section, we will show the performance of our adaptive control variates

algorithm for a simple mean-field system, where the state of a particle is

one-dimensional:

xt+1,i = kφt + ebx0,i ,

φt =
1

N

N∑
j=1

xt,j, i = 1, 2, . . . , N, t ∈ N,
(2.47)

24

where k and b are some deterministic constants. The initial particles are

sampled i.i.d. from the standard Gaussian distribution (i.e., x0,i ∼ N (0, 1)).

The observable of this system is equal to the mean field:

yt =
1

N

N∑
i=1

xt,i, t = 1, 2, . . . , T. (2.48)

For this study, we set k = 0.2, b = 1, N = 100 and T = 15. We use

the least squares method to build cubic polynomial regression models for

the learning phase of the adaptive control variates algorithm. It can be

checked that the system with these parameters satisfies all the assumptions

of Theorem 2.3 (see Appendix A). It is worth noting that in this example the

observable depends on the states of 100 particles (i.e., the particle system

is 100-dimensional) whereas the regression problem is only 1-dimensional

thanks to the new learning scheme of our algorithm.

We will first examine the convergence of regression coefficients for the least

squares method. We observe from Fig. 2.2 that as the number of learning

sample paths increases, the regression coefficients βt from the least squares

are approaching the coefficients β′t of the projection (see Assumption 2.8 for

definition of β′t).

Figure 2.3 shows an example of a cubic polynomial model that is trained

with the least squares method. We see that the trained model predicts well

for the properties of the particles in the evaluation phase.

Figure 2.4 shows the variance reduction performance of our adaptive con-

trol variates algorithm. We observe that the variances of the mean estimators

are reduced by an order of magnitude for all time steps. This significant vari-

ance reduction demonstrates the effectiveness of our adaptive control variates

algorithm for the system under investigation. It also provides numerical val-

idation for the assertion of Theorem 2.3.

25

101 102 103

Learning sample paths R1

10−4

10−3

10−2

10−1

R
eg

re
ss

io
n

co
effi

ci
en

t
er

ro
r
E[
‖β

t
−
β
′ t‖2

]

Figure 2.2: Convergence of regression coefficients for the least squares
method, showing the mean square error between regression coefficients from
the least squares and the coefficients of the projection for time t = 5.

−3 −2 −1 0 1 2

Initial particle state x0,i

−2

0

2

4

6

8

10

P
ar

ti
cl

e
p

ro
p

er
ty
x
t,
i

Sample Prediction

Figure 2.3: Performance of a cubic polynomial regression model for time
t = 5 with R1 = 100. The cubic model (red) trained with the least square
method gives good prediction for the particle property (green) in the
evaluation phase.

26

0 2 4 6 8 10 12 14 16

t

10

15

20

25

30

35

V
ar

ia
n

ce
re

d
u

ct
io

n
fa

ct
or

V
R
t

Figure 2.4: Variance reduction performance of adaptive control variates
algorithm for the one-dimensional mean-field system in Eq. 2.47. The
number of sample paths in the learning phase is R1 = 100. The number of
independent learning phases R3 (see Eq. 2.10) for estimating variance
reduction is 20.

27

2.6 Numerical study 2: a linear Gaussian example

In this section, we will demonstrate our adaptive control variates algorithm

for a linear Gaussian mean-field system defined by

xt+1,i = αxt,i + φt,

φt =
1

N

N∑
j=1

xt,j, i = 1, 2, . . . , N, t ∈ N,
(2.49)

where xt,i is the state of a particle, φt is the mean field and α 6= 0 is a

constant. The initial particles are sampled i.i.d. from the standard Gaussian

distribution (i.e., x0,i ∼ N (0, 1)). The observable yt takes a quadratic form

yt =
1

N

N∑
i=1

x2
t,i, t = 1, 2, . . . , T. (2.50)

For this example, we can obtain an analytical expression for the particle

state xt,i as a function of the initial states of particles. We assume that the

particle state xt,i takes the form xt,i = αtx0,i + γtφ0 with γt being a constant

to be determined. Substituting this assumed expression into Eq. 2.49, we

find that γt must satisfy the following recursion

γt − (1 + 2α)γt−1 + (α2 + α)γt−2 = 0, (2.51)

with γ0 = 0 and γ1 = 1. Using the technique of characteristic equations, we

have

γt = (α + 1)t − αt. (2.52)

As a result, the particle state xt,i can be expressed analytically as

xt,i = αtx0,i +
(
(α + 1)t − αt

)
φ0. (2.53)

Using the fact that the initial states are i.i.d. Gaussian and taking advantage

of the derived analytical form (Eq. 2.53), we can compute the variance of the

observable yt as

Var(yt) = 2α4tN−1 + 2
(
(α + 1)4t − α4t

)
N−2. (2.54)

28

Hence, the variance of the naive estimator is given by

Var(ŷnaive
t) =

Var(yt)

R
, (2.55)

where R is the number of sample paths.

For the adaptive control variates, we learn a simple quadratic model ax2
0,i+

b for the particle property x2
t,i using the least squares method. Given suffi-

ciently many learning samples (i.e., R1 is sufficiently large), the coefficients

of the learned model would converge (see proof of Theorem 2.3). These

limiting coefficients can be found using projection technique, which we will

demonstrate next.

Without loss of generality, let us work with the first particle (i.e., i = 1).

We define the subspace ν = {ax2
0,1 + b | a, b ∈ R}. Then the limiting

regression model is the projection onto the subspace ν:

Πν(x
2
t,1) = E[x2

t,1] + Cov(x2
t,1, x

2
0,1)Var(x2

0,1)−1(x2
0,1 − E[x2

0,1]), (2.56)

where Π is a projection operator. Using the analytical expression (Eq. 2.53)

and Gaussian properties, we can compute the expectation, variance and co-

variance terms in Eq. 2.56, resulting in a quadratic model h:

h(x0,1; a∗t , b
∗
t) = a∗tx

2
0,1 + b∗t , (2.57)

where the coefficients a∗t and b∗t are given by

a∗t =
(
αt +

(
(α + 1)t − αt

)
N−1

)2

,

b∗t = α2t +N−1
(
(α + 1)2t − α2t

)
− a∗t .

(2.58)

Hence, the mean of the control variates is given by

E[h(x0,1; a∗t , b
∗
t)] = a∗t + b∗t . (2.59)

29

The control variates can be then constructed as

ycv
t =

1

N

N∑
i=1

(
x2
t,i − h(x0,i; a

∗
t , b
∗
t)
)

+ E[h(x0,1; a∗t , b
∗
t)]

= yt −
1

N

N∑
i=1

h(x0,i; a
∗
t , b
∗
t) + E[h(x0,1; a∗t , b

∗
t)],

(2.60)

and the variance of the control variates estimator is given by

Var(ŷcv
t) =

Var(ycv
t)

R
. (2.61)

After some algebra, the difference between the variance of yt and the vari-

ance of ycv
t is

∆ := Var(yt)− Var(ycv
t) = 2a∗tN

−1
(
a∗t + 2

(
(α + 1)t − αt

)2
N−1(1−N−1)

)
,

(2.62)

where a∗t is given in Eq. 2.58. Observe that a∗t is non-negative thus ∆ ≥ 0,

which implies that Var(ŷcv
t) ≤ Var(ŷnaive

t). This means that the variance

of adaptive control variates estimator is no worse that that of naive one.

Furthermore, as N goes to infinity, a∗t converges to α2t > 0. As a result, ∆

would become strictly positive for sufficiently large N (i.e., the variance is

reduced for large N).

The observable yt depends on the states of all the particles so the dimen-

sion of yt is equal to the number of particles N . Having analytically found

the variance of the naive estimator (Eq. 2.54) and the variance difference

(Eq. 2.62), we can compute variance reduction for any N as

VRt =
Var(ŷnaive

t)

Var(ŷcv
t)

=
α4t +O(N−1)(

(α + 1)2t − α2t
)2

+O(N−1)
N, (2.63)

from which we see that the variance reduction factor is O(N).

To numerically verify this, we set α = −0.6, T = 10 and vary N from 10 to

1000. The result is shown in Fig. 2.5. As we can see, the variance is reduced

by 1–3 orders of magnitude for all time steps. The variance reduction is

roughly proportional with the dimension N .

30

0 2 4 6 8 10

t

100

101

102

103

104

105

V
ar

ia
n

ce
re

d
u

ct
io

n
fa

ct
or

V
R
t N = 10

N = 100

N = 1000

Figure 2.5: Variance reduction performances for the 1D linear Gaussian
example with different number of particles.

The analysis above is for the limiting regression model (i.e., R1 → ∞).

For the cases of finite learning samples, we set R1 = 100, N = 100 and use

least squares to train quadratic models. We find that the variance reduction

is about 2 orders of magnitude as shown in Fig. 2.6.

0 2 4 6 8 10

t

80

120

160

200

240

V
ar

ia
n

ce
re

d
u

ct
io

n
fa

ct
or

V
R
t

Figure 2.6: Variance reduction performance for the 1D linear Gaussian
example when R1 = 100 and N = 100.

31

2.7 Numerical study 3: aerosol particle simulation

2.7.1 Process description

In this study, we will demonstrate our algorithm for complex particle sim-

ulations of atmospheric aerosol dynamics, using the model and the codes

of Riemer et al. [14]. This aerosol model explicitly stores the composition

of a large number of aerosol particles, and contains many physicochemical

processes, including emission, dilution, gas chemistry and gas-particle inter-

actions. This particle-resolved model circumvents the combinatorial explo-

sion that occurs in traditional methods when attempting to resolve high-

dimensional aerosol distributions [14], and has been successfully applied to

many aerosol problems, such as soot mixing state [14], cloud condensation

nuclei [34] and black carbon [39, 40].

For brevity, here we only give a succinct description of the processes in the

aerosol model. The details of each process have been elaborated elsewhere

[14, 34]. The model is implemented in the software package PartMC1.

This model considers a large number of aerosol particles (about 105) within

a well-mixed computational volume in the air. The state of each particle is

described by its composition of 20 different chemical species. The changes

in the particle compositions are modeled explicitly as the particles evolve

through different processes but their locations within the volume are not

kept track of.

To start with, Ni particles are randomly sampled from some initial sources:

Ni ∼ Pois(Ninit), (2.64)

V0,i ∼ lnN (µinit, σ
2
init), x0,i = rinitV0,i, i = 1, 2, . . . , Ni, (2.65)

where Ninit, µinit and σinit are parameters of probability distributions. The

variable V0,i represents the initial volume of particle i while rinit is the volu-

metric fractions of the chemical species of a particle. The vector x0,i is the

initial state of particle i.

The computational volume of an air box is initialized to be proportional

1It is available under the GNU General Public License (GPL) at http://lagrange.

mechse.illinois.edu/partmc/.

32

to the initial (mean) number of particles:

Vbox ∼Minit :=
∑

initial sources

Ninit. (2.66)

At each time t, Ne,t particles are randomly sampled from every source of

emission:

Ne,t ∼ Pois(λemit(t)Vbox), (2.67)

Vt,i ∼ lnN (µemit, σ
2
emit), xt,i = remitVt,i, i = 1, 2, . . . , Ne,t, (2.68)

and Nd,t particles are randomly sampled from every source of dilution:

Nd,t ∼ Pois(λdil(t)Vbox), (2.69)

Vt,i ∼ lnN (µdil, σ
2
dil), xt,i = rdilVt,i, i = 1, 2, . . . , Nd,t. (2.70)

Here the vector xt,i denotes the state of particle i at time t. Parameters

λemit(t) and λdil(t) are respectively the emission rate and the dilution rate at

time t.

In addition, Nr,t particles are randomly removed from the air box for the

dilution-out process:

Nr,t ∼ Binom(Ntot,t, pdil,t), (2.71)

where Ntot,t is the total number of particles in the box at time t. The pa-

rameter pdil,t is the probability of a particle diluting out of the box.

Moreover, aerosol particles interact with gas species via gas-particle parti-

tioning so that both the particle state and the concentrations of gas species

change for every time step. During the partitioning process, the concentra-

tions of the gas species are influenced by the average contribution of all the

particles. As a result, the gas concentrations are the mean fields for this

aerosol model. Indeed, we analytically prove in a simplified setting that the

gas concentration converges to a constant as the number of particles becomes

sufficiently large (see Appendix B).

The observables are total mass concentration and optical scattering coef-

33

ficient [34], both taking the form of

yt =
1

(Vbox)t

Nt∑
i=1

g(xt,i). (2.72)

Specifically, for the total mass concentration, function g represents the mass

of an aerosol particle. For the optical scattering coefficient, function g is the

scattering cross section, an optical property of an aerosol particle.

An illustration of the entire aerosol model is given in Appendix C.

2.7.2 MARS and regression techniques

We refer to the time a particle is first added to the box as the creation

time of that particle. For a given output time, the creation times of all the

particles in the system are generally not the same. Particles with different

creation times experience different gas-particle partitioning processes due to

their different histories. As a result, we build a model with respect to not

only the initial state of the particle but also the creation time of that particle.

Mathematically,

g(xt,i) ≈ h(xτi,i, τi; βt), i = 1, 2, . . . , Nt, (2.73)

where τi denotes the creation time of particle i, and g is the particle mass or

the scattering cross section of the particle.

The machine learning algorithm we use to train the model h in Eq. 2.73

is multivariate adaptive regression splines (MARS), a non-parametric regres-

sion method introduced by Friedman [41]. MARS is an adaptive procedure

for regression, and is well suited for high-dimensional problems [42, Chap. 9].

A MARS model is quite flexible and enjoys a good bias-variance trade-off.

Moreover, the model is efficient to build and fast to evaluate so that the

computational overhead is well limited.

In addition to MARS, we utilize three techniques to further improve the

performance of the model. The first technique is to split training samples

by particle creation times. For a given output time t, the creation times

can only assume values of 0, 1, . . . , t. Particles with creation times close

to each other experience similar gas-particle partitioning processes. This

34

motivates us to partition the training data into smaller chunks based on the

creation time, and then build MARS models separately for each chunk of

data. The resulting model is essentially a function piecewise in the creation

time with each piece being a MARS model. Compared to the MARS model

without splitting the data, this piecewise model is more flexible and possesses

more predictive power. Because the computation time of a MARS algorithm

scales linearly with the number of samples, this splitting strategy does not

increase the total training time. To ensure sufficiently many samples for each

partition, we use a simple greedy algorithm (Alg. 6 in Appendix C).

It is possible that a particle in the evaluation phase is beyond the range of

the training data (e.g., a particularly large particle) so that the model may

not generalize well to this particle. The second technique attempts to miti-

gate this generalization problem by imposing some regularization beyond the

boundary of the model. Here we define the boundary of the model in terms

of the range of the particle volume in the training data. The regularization

of the upper bound is carried out via a simple “clamping” function: if the

volume of a particle in the evaluation phase exceeds the maximum particle

volume in the training data, the prediction of this particle is simply made

equal to that of the particle with the maximum volume. The regularization of

the lower bound is done using a similar clamping function. Given the piece-

wise MARS model resulted from the first technique, one can regularize only

the upper bound or only the lower bound or both or neither of the bounds.

To automatically determine which of the four regularization methods is the

most appropriate, we use 5-fold cross validation.

The third technique is to build models from a scaled-down system. That

is, we make the initial mean number of particles Minit (defined in Eq. 2.66)

in the learning phase less than that of the evaluation phase:

(Minit)learn < (Minit)eval. (2.74)

Since the computational cost of aerosol simulation is roughly proportional

to the number of particles, by decreasing Minit the computational overhead

during the learning phase can be significantly reduced. Yet the prediction

performance of the model from this scaled-down system is comparable to

that from the original system as long as (Minit)learn is not too small. This is

because the evolution of this type of process often exhibits convergence in the

35

limit of a large number of particles so that models learned from a downsized

system may still work reasonably well for the full system.

2.7.3 Algorithm performance for estimating aerosol properties

We applied our adaptive control variates algorithm to the aerosol simulations

of an idealized urban plume scenario over a period of 24 h with the time step

∆t = 1 min. The total mass concentration and the scattering coefficient

were outputted every hour. The number of chemical species in a particle was

20. The initial mean number of particles Minit = (Minit)eval = 105. Other

process parameters such as distributions of different sources are described in

Zaveri et al. [34]. We used the Earth package [43] for the implementation of

MARS. The partition parameter (of Alg. 6) Np = 5000. We set R1 = 5000

and (Minit)learn = 100. With the number of particles being about 105 and

each particle consisting of 20 species, the dimension of the particle system

is roughly 2× 106, which is prohibitively high for the conventional adaptive

control variates method.

Figure 2.7 shows the variance reduction performance of our adaptive con-

trol variates algorithm. We observe that the variances of the mean estimators

are reduced by a factor of about 1–3 orders of magnitude for both bulk prop-

erties. The variance reduction factor of total mass concentration decreases

quite sharply initially and then gradually increases after about the tenth

step, whereas that of the scattering coefficient decreases gradually.

Figure 2.8 compares the statistical error of mean estimation and compu-

tation time of the two algorithms: our adaptive control variates algorithm

and naive Monte Carlo. The statistical error is measured by the L2 norm of

standard deviations of mean estimators at different time steps.

First, we observe that our adaptive control variates algorithm is more

efficient than naive Monte Carlo for both bulk properties. Specifically, for

a fixed amount of computation time, the estimation error of our algorithm

is about one third of that of naive Monte Carlo. For the same precision of

mean estimators, our algorithm requires only about 15% the time of naive

Monte Carlo.

Second, we see that the statistical error of naive Monte Carlo falls at the

rate of −1
2

as expected. Due to the computational overhead of the learning

36

0 5 10 15 20 25

Time (h)

100

101

102

103

V
ar

ia
n

ce
re

d
u

ct
io

n
fa

ct
or

V
R
t

total mass concentration

scattering coefficient

Figure 2.7: Variance reduction performance of our adaptive control variates
algorithm for the mean estimation of the two bulk properties: total mass
concentration (blue) and scattering coefficient (red). The number of
independent learning phases R3 (see Eq. 2.10) for estimating variance
reduction is 20.

37

106 107

Computation time (sec)

10−11

10−10

10−9

L
2

er
ro

r
of

m
as

s
co

n
c.

2

1

Naive MC

Adaptive CV

106 107

Computation time (sec)

10−7

10−6

10−5

L
2

er
ro

r
of

sc
at

.
co

ef
.

2

1

Naive MC

Adaptive CV

10 100 500

R2

10 100 500

R2

Figure 2.8: Statistical error and computation time of our adaptive control
variates algorithm and naive Monte Carlo for the mean estimation of two
bulk properties as the number of sample paths in the evaluation phase
varies from 10 to 500. The error is measured by the L2 norm of the
standard deviation of estimators at different time steps. Comparing to
naive Monte Carlo (green), the estimator error of our algorithm (red) is
reduced by ∼ 67% for fixed computation time, and the required
computation time is reduced by ∼ 85% for the same precision.

phase, the statistical error of adaptive control variates algorithm decreases

at a slightly faster rate initially but as the number of sample paths in the

evaluation phase increases, the computational overhead becomes more and

more negligible so that the error rate approaches −1
2

eventually.

2.8 Conclusions

In this chapter we presented a novel adaptive control variates algorithm for

a class of stochastic simulations, in which a large number of particles in-

teract via common mean fields. Because these particle systems are often

very high-dimensional, the conventional adaptive control variates methods

are normally not applicable to these simulations. To deal with this difficulty,

we proposed a new learning scheme that treats all the particles as training

samples. Compared to the conventional methods, the amount of the train-

ing data per sample path of our algorithm is significantly enhanced and the

dimension of the learning problem is greatly reduced.

38

We proved that the mean estimators from our algorithm are unbiased

(Theorem 2.1). We also showed that for the system with sufficiently many

particles, our algorithm will asymptotically produce more efficient estimators

than naive Monte Carlo provided that some conditions are satisfied (Theo-

rems 2.2 and 2.3). A numerical study on a simple one-dimensional mean-field

system validated our theoretical claims. We applied our algorithm to a com-

plex aerosol particle simulation, and found that the stochastic error of the

mean estimator was reduced by about 67% and the required computation

time was reduced by about 85%.

39

CHAPTER 3

PARALLEL SURROGATE OPTIMIZATION
FOR NOISY EXPENSIVE FUNCTIONS

3.1 Introduction

Noisy optimization refers to a class of optimization problems, where the ob-

jective function is corrupted with random noise. The randomness in the ob-

jective may come from stochasticity in numerical computations (e.g., Monte

Carlo simulations) or random measurement errors of physical experiments.

In this work, we consider a general global noisy optimization problem:

minimize F (x), where F (x) := Eω[f(x, ω)],

s.t. x ∈ D = [a1, b1]× [a2, b2]× . . .× [ad, bd] ⊆ Rd,
(3.1)

where f is an expensive black-box function, ω captures noise (randomness)

in the function evaluation and the dimension d is low to medium (up to tens

of dimensions). We assume that only noisy evaluations f are observed and

the underlying objective function F is unknown.

The problem in Eq. 3.1 is a standard optimization problem [44, 45] that

appears in many applications including operations [46], engineering designs

[47], biology [48, 49], transportation [50, 51] and machine learning [52, 53].

Here we give two concrete examples of how this optimization problem can

show up in real world. The first example is characterization of an expensive

stochastic model. In this case, a model, with some parameters that cannot

be measured or identified precisely due to physical limitations, needs to be

calibrated against some experimental observations before it can be further

used for predictions. Determining these unsure parameters can be formally

cast into a problem in Eq. 3.1, where the objective function in this case is the

expected discrepancy between the simulated outputs of the model and the

experimental observations. The second example considers the scenario where

the noisy function (i.e., f in Eq. 3.1) is a physical measurement. For instance,

40

a chemist may have a few tunable process parameters (e.g., temperature),

and would like to find the optimal value that gives the maximum reaction

yield. Here the objective could be minus expected yield (minus is due to a

maximization problem here). The random noise may arise from the yield-

measuring process. Obtaining one yield value requires conducting a chemical

experiment so the function f is often expensive to evaluate.

Another relevant problem is a stochastic bandit with infinitely many arms

[54, 55]. In this type of problem, the goal is to find the optimal strategy within

a continuous space so that the expected cumulative reward is maximized. An

important theoretical result shown by Bubeck et al. [55] is that if the mean

payoff function in a bandit is locally Lipschitz, then the rate of growth of the

regret can be independent of the dimension of the space. The key difference

between a bandit problem and the problem we consider in this work is that

the objective function in a bandit problem is usually not expensive. As a

result, the solution strategy for a bandit problem is often somewhat different

from that for an expensive optimization problem.

Next, we will review the methods of solving the expensive optimization

problem in Eq. 3.1. There are two main classes of methods for this: gradient-

based methods and derivative-free methods. The gradient-based methods at-

tempt to robustly estimate the unknown gradients of the function using noisy

evaluations. The classic technique for gradient estimation is through stochas-

tic approximation [56]. The technique of stochastic approximation has led to

the development of several optimization algorithms [57–59]. Unfortunately

these gradient-based algorithms are usually guaranteed to converge only to

local optima. Moreover, because of the constraints on step sizes, these algo-

rithms tend to make relatively slow progress towards an optimum. Hence,

they are typically not suitable for expensive optimization problems [51].

Within the class of derivative-free methods, there are heuristic algorithms

and surrogate-based algorithms. Here we use the term “heuristic algorithms”

to generally refer to nature-inspired or simplex-based or direct search algo-

rithms, such as particle swarm optimization [60], Nelder-Mead algorithm [61],

simulated annealing [62], differential evolution [63] and direct search [64]. De-

spite the success in many applications, one drawback of these algorithms is

that the trend of the underlying objective function is not well exploited. As

a result, they often require a larger number of function evaluations compared

to surrogate-based algorithms [65, 66].

41

Surrogate-based methods, also known as response surface methodology or

metamodel methods, are a class of global optimization algorithms that effi-

ciently search the domain with the assist of surrogates. The method starts

with a space-filling experiment design. Next, in each iteration, a surrogate

function that approximates the objective function is first constructed using

available evaluations, and then a new set of point(s) is carefully proposed

for the next iteration based on the surrogate. Because the function evalua-

tion is expensive, spending extra computation in determining which points to

evaluate is often worthwhile. For the noisy optimization problems, the sur-

rogates are essentially regression models so the surrogate-based algorithms

inherently have close connection with the field of machine learning.

In the family of surrogate-based methods, parallel surrogate optimization

algorithms propose multiple points in each iteration, and the expensive eval-

uations of these points are performed in parallel [67]. These algorithms are

often configured in a master-worker framework as illustrated in Fig. 3.1.

Compared to the serial counterpart, parallel surrogate optimization uses the

parallel cores of a machine more efficiently, thereby achieving better progress

per unit wall time.

A popular method for noisy parallel surrogate optimization is Bayesian

optimization [52, 53, 68–72]. Bayesian optimization typically works by as-

suming a Gaussian process prior over the objective function, constructing a

Gaussian process (GP) surrogate [73] with the evaluations, and proposing

new points through optimizing an acquisition function. Common acquisi-

tion functions are expected improvement (EI) [52], upper confidence bound

(UCB) or lower confidence bound (LCB) [68, 69], and information-theoretic

based [53, 70].

One issue with Bayesian methods is the high computational cost. Typi-

cally, training a GP surrogate requires solving a maximum likelihood prob-

lem, for which operations of complexity proportional to the cube of the num-

ber of evaluations are performed for many times [74]. To propose new points,

Bayesian optimization usually requires the solution of sub-optimization prob-

lems (e.g., maximizing expected improvement) with the possible use of Monte

Carlo procedures [52, 71]. When many parallel cores are used, so that

the number of evaluations accumulates quickly with the number of itera-

tions, Bayesian optimization algorithm itself can be even more expensive

than the evaluation of the function f , and this is indeed observed in real

42

Design of experiments (DOE)

Master
Construct surrogates for all evaluations
 Propose N new points

Evaluate
 point 1

Evaluate
 point 2

Evaluate
 point N

Workers

…

Figure 3.1: A schematic diagram of a general master-worker framework for
a parallel surrogate optimization algorithm. In each iteration, the algorithm
(master) constructs a surrogate based on the available evaluations, proposes
multiple points based on the surrogate, and distributes these points to
different processes (workers) for parallel evaluations. The evaluated points
are then fed back into the loop to update the surrogate in the next iteration.

43

hyperparameter-tuning problems (see Section 3.4.3).

In this work, we develop a novel algorithm called ProSRS for noisy parallel

surrogate optimization. Unlike Bayesian optimization that uses a GP model,

our algorithm uses a radial basis function (RBF), which is more efficient com-

putationally. We adopt an efficient framework, known as stochastic response

surface (SRS) method [66, 75], for proposing new points in each iteration.

The sub-optimization problems in the SRS method are discrete minimization

problems. Compared to the original parallel SRS work [75], our work: (1)

introduces a new tree-based technique, known as the “zoom strategy”, for

efficiency improvement, (2) extends the original work to the noisy setting

(i.e., an objective function corrupted with random noise) through the devel-

opment of a radial basis regression procedure, (3) introduces weighting to the

regression to enhance exploitation, (4) implements a new SRS combining the

two types of candidate points that were originally proposed in SRS [66]. We

compare our algorithm to three well-established parallel Bayesian optimiza-

tion algorithms. We find that our algorithm shows superior optimization

performance on both benchmark problems and real hyperparameter-tuning

problems, and yet its cost is orders of magnitude lower. The fact that our

algorithm is significantly cheaper means that our algorithm is suitable for a

wider range of optimization problems, not just very expensive ones.

3.2 ProSRS algorithm

Conventional surrogate optimization algorithms use all the expensive func-

tion evaluations from past iterations to construct the surrogate. As the

number of evaluations grows over iterations, the cost of conventional meth-

ods thus increases. Indeed, the cost can increase rather quickly with the

number of iterations, especially when a large number of parallel cores are

used and so many points are evaluated per iteration.

To overcome this limitation, we develop a novel algorithm that does not

necessarily use all the past evaluations while still being able to achieve good

optimization performance. The key intuition here is that once an optimal

region is approximately located, progress can be made by focusing on the

evaluations within this region. This idea is illustrated in Fig. 3.2, where

the red curve is a surrogate built with all the evaluations. Now suppose we

44

Zoomed-in domain (child)

Global fit

Local fit

Evaluation
data

Original domain (parent)

Zoomed-in domain (child)

True objective

Figure 3.2: Illustration of the zoom strategy on a 1-D parabola. The red
curve shows the surrogate fit to all the noisy evaluations (green dots) of the
objective function (black curve). The blue curve shows the surrogate fit
using only the local evaluation data in the zoomed-in domain. The local fit
is likely to agree well with the global fit on the restricted domain, and is
much cheaper to construct.

restrict the domain to a smaller region as indicated by the dashed black box

and only fit the evaluation data within that region. We still obtain a good

surrogate (blue curve) around the optimum, and it is cheaper as we are using

fewer evaluations to do so. We now proceed with our optimization, treating

the restricted region as our new domain and the local fit as our surrogate for

optimization. This idea of recursively optimizing over hierarchical domains

lies at the heart of our algorithm. In this work, we call this technique the

“zoom strategy”. Because it requires less evaluation data to build a local

surrogate than to build a global one, the zoom strategy can significantly

reduce the cost of the algorithm.

For ease of describing the relationships between different domains, we in-

troduce the notion of a node. A node consists of a domain together with

all the information needed by an optimization algorithm to make progress

for that domain. We call the process of restricting the domain to a smaller

domain the “zoom-in” process, in which case the node associated with the

original domain is a “parent” node and the node for the restricted domain is

a “child” node. The reverse process of zooming in is referred to as the “zoom-

out” process (i.e., the transition from a child node to its parent node). See

Fig. 3.3 for an illustration of this structure.

45

Zoom level
z = 1

z = 0

z = 1

z = 2

Tree graph

z = 0

z = 1

z = 2

Figure 3.3: Illustration of the tree structure of ProSRS algorithm on a 2-D
problem. The black box on the left shows the domain of a root node. The
two red boxes and one blue box show two children and one grandchild of
the root node.

3.2.1 Algorithm overview

We now present our algorithm, namely Progressive Stochastic Response Sur-

face (ProSRS)1, in Alg. 2. Like most surrogate optimization algorithms,

ProSRS starts with a space-filling design of experiments (DOE). Here we use

Latin hypercube sampling with maximin criterion for the initial design. In

our algorithm, a node N is formally defined by a quadruplet:

N = (D,Ω, S, β), (3.2)

where D is the evaluation data in the domain Ω. The variable S characterizes

the exploitation (versus exploration) strength of ProSRS. Mathematically, it

is a tuple:

S = (γ, p, σ), (3.3)

where γ is a radial basis regression parameter (see Section 3.2.2) and p, σ are

two parameters in the step of proposing new points (see Section 3.2.3). The

variable β in Eq. 3.2 is the zoom-out probability.

For each iteration, we first construct a radial-basis surrogate using the

evaluation data D (Line 7), followed by the step of proposing new points for

parallel evaluation (Line 8). The proposed points must not only exploit the

optimal locations of a surrogate, but also explore the untapped regions in

the domain to improve the quality of the surrogate. Indeed, achieving the

appropriate balance between exploitation and exploration is the key to the

1Code is publicly available at https://github.com/compdyn/ProSRS.

46

Algorithm 2 Progressive Stochastic Response Surface (ProSRS)

1: Inputs: m, βinit, Sinit and N
2: Generate m Latin hypercube samples: X = (x1, x2, . . . , xm)
3: Evaluate samples X in parallel to give Y = (y1, y2, . . . , ym)
4: Initialize the current node = (D,Ω, β, S) with evaluation data D =

(X, Y), domain Ω = optimization domain D, zoom-out probability
β = βinit and variable S = Sinit

5: for iteration = 1, 2, . . . , N do
6: Obtain D,Ω, β, S from the current node
7: g ← RBF(D,S) . Build surrogate (Sect. 3.2.2)
8: Xnew ← SRS(D,Ω, S, g) . Propose points (Sect. 3.2.3)
9: Ynew ← evaluate samples Xnew in parallel

10: Augment evaluation data D with proposed points (Xnew, Ynew)
11: Update the variable S of current node . see Sect. 3.2.4
12: if S reaches the critical value then
13: if restart condition is met then
14: Restart from DOE
15: else
16: Create or update a child node . Zoom in (Sect. 3.2.5)
17: Reset variable S of current node
18: Set the child node to be the current node
19: end if
20: end if
21: if no restart and the parent of current node exists then
22: With probability β, set its parent node to be the current node .

Zoom out
23: end if
24: end for
25: return xbest = the sample with the lowest y value

47

success of a surrogate optimization algorithm. For this, we use an efficient

procedure, known as Stochastic Response Surface (SRS) method, that was

first developed by Regis and Shoemaker [66] and later extended to the parallel

setting in their subsequent work [75].

After performing expensive evaluations in parallel, we update the exploita-

tion strength variable S (Line 11) so that for a specific node, the exploita-

tion strength progressively increases with the number of iterations (see Sec-

tion 3.2.4 for the update rule). The purpose of this step is to help locate the

optimal region for zooming in. Once the exploitation strength reaches some

prescribed threshold (Line 12; see Section 3.2.5 for details), the algorithm

will decide to zoom in (Line 16) by setting a child to be the current node

(neglecting the restart step in Line 14 for now). The updating of the vari-

able S and the zoom-in mechanism generally make ProSRS “greedier” as the

number of iterations increases. To balance out this increasing greediness over

iterations, we implement a simple ε-greedy policy by allowing the algorithm

to zoom out with some small probability in each iteration (Line 22). Because

of the mechanism of zooming in and out, ProSRS will generally form a “tree”

during the optimization process, as illustrated in Fig. 3.3.

Finally we would like to address the restart steps (Line 13 and 14) in Alg. 2.

We make the algorithm restart completely from scratch when it reaches some

prescribed resolution after several rounds of zooming in. Specifically, to check

whether to restart, we first perform the step of creating or updating a child

node like the normal zoom-in process (Line 16). Suppose the resulted child

node has n points in its domain Ω ⊆ Rd, then ProSRS will restart if for all

i = 1, 2, . . . , d,

n−
1
d `i(Ω) < r(bi − ai), (3.4)

where r ∈ (0, 1) is a prescribed resolution parameter, `i(Ω) denotes the length

of the domain Ω in the ith dimension, ai and bi are the bounds for the

optimization domain D (Eq. 3.1). The reason for restarting from a DOE is

to avoid the new runs being biased by the old runs so that the algorithm

has a better chance to discover other potentially optimal regions. Indeed,

extensive study [66, 75, 76] has shown that restarting from the initial DOE

is better than continuing the algorithm with past evaluations.

48

3.2.2 Weighted radial basis regression

Given the evaluation data D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, a radial basis

surrogate takes the form

g(x) =
n∑
i=1

ciφ(‖x− xi‖), x ∈ Rd, (3.5)

where the function φ is a radial basis function. In this work, we choose φ to

be a multiquadric function. The radial basis coefficients ci are obtained by

minimizing the L2-regularized weighted square loss:

Loss =
n∑
j=1

eγŷj
(
yj−g(xj)

)2
+λ

n∑
j=1

c2
j , with ŷj =

yj −min yk
max yk −min yk

, (3.6)

where γ is a non-positive weight parameter (one component of the variable

S; see Eq. 3.3) and λ is a regularization constant determined automatically

through cross validation. This loss function is quadratic in the coefficients

ci so that the minimization problem admits a unique solution and can be

solved efficiently.

The term eγŷj in Eq. 3.6 represents the weight for the jth sample, and ŷj

can be interpreted as the normalized y value with the understanding that

ŷj = 0 if max yk = min yk. It is clear that γ = 0 disables the weighting in the

RBF regression. When γ is negative, the samples with smaller y values gain

more weight, so the RBF regression produces a better fit for the samples with

low y values (the “best” samples). Consequently, smaller weight parameter

γ values imply greater exploitation.

3.2.3 Stochastic response surface method

To propose new points for parallel evaluations, we use the general Stochastic

Response Surface (SRS) framework [66, 75]. The first step of the stochastic

response surface method is to randomly generate candidate points in the

domain Ω. In the original SRS work [66], the authors introduced two types

of candidate points and proposed one algorithm for each type. Here we

consider the candidate points to be a mixture of both types.

Type I candidate points are sampled uniformly over the domain. Type II

49

candidate points are generated by adding Gaussian perturbations around the

current best point x∗, where x∗ is the point in the evaluation data D with

the lowest value of the RBF surrogate g. The covariance matrix for the

Gaussian perturbation is a diagonal matrix with its diagonal being σ2l2i (Ω)

(i = 1, 2, . . . , d), where σ is one component of the variable S (see Eq. 3.3)

and li(Ω) is the length of the domain in the ith dimension. Any generated

point that lies outside the domain would be replaced by the nearest point

in the domain so that all the Type II candidate points are within Ω. The

proportion of these two types of candidate points is controlled by a parameter

p, which is another component of the variable S. Specifically, we generate

1000d candidate points with a fraction of 1
10
b10pc points being Type I and

the remainder being Type II.

The second step is to measure the quality of each candidate point using two

criteria: the value of the response surface (RBF surrogate) and the minimum

distance from previously evaluated points. The points with low response

values are of high exploitation value, while the ones with large minimum

distances are of high exploration value. In the SRS method, every candidate

point is given a score on each of the two criteria, and a weight between 0 and

1 is used for trading off one criterion for the other. For our algorithm, we

generate an array of weights that are equally-spaced in the interval [0.3, 1]

with the number of weights being equal to the number of parallel cores (if the

number of cores is one, we alternate weights between 0.3 and 1 from iteration

to iteration). This weight array, also known as the “weight pattern” in the

original work [66], is used to balance between exploitation and exploration

among the proposed points. The procedures of scoring the candidate points

and selecting the proposed points from the candidate points based on the

weight pattern are described in detail in Regis and Shoemaker [75].

3.2.4 Update procedure for variable S

After obtaining new evaluations, we update the variable S of the current node

(Line 11 of Alg. 2). The goal of this updating step is to gradually increase the

exploitation strength. As listed in Eq. 3.3, the variable S of a node consists

of 3 parameters: (1) a weight parameter γ for radial basis regression, (2) a

parameter p that controls the proportion of Type I candidate points in the

50

SRS method, and (3) a parameter σ that determines the spread of Type II

candidate points. The exploitation strength will be enhanced by decreasing

any of these 3 parameters.

Algorithm 3 Update p, σ and γ

if p ≥ 0.1 then

p← pn
− 1
d

eff

else if the counter for number of consecutive failed iterations = Cfail then
Reset the counter
σ ← σ/2 and γ ← γ −∆γ

end if

The update rule is specified in Alg. 3, which can be understood as having

two separate phases. The first phase is when there are still some Type I

candidate points generated in the SRS method (i.e., p ≥ 0.1). During this

phase, the values of σ and γ are unchanged but the p value is decreased with

each iteration. The rate of decrease is determined by n
−1/d
eff , where neff is

the effective number of evaluations for the current iteration. The effective

number of evaluations neff is computed by first uniformly partitioning the

domain Ω into cells with the number of cells per dimension being equal to

dn1/de, where n is the number of points in the evaluation data D. Then neff

is number of cells that are occupied by at least one point. The quantity n
1/d
eff

can be viewed as a measurement of the density of the evaluated points in the

domain Ω. Therefore, we essentially make the decreasing rate proportional

to the evaluation density.

When the p value drops below 0.1, so that all the candidate points are

Type II, we enter the second phase of the state transition, where the pa-

rameter p does not change but σ and γ are reduced. Just like in Regis and

Shoemaker [66], we use the number of consecutive failures as the condition

for deciding when to reduce the value of σ. Here an iteration is counted as

a failure if the best y value of the proposed points for the current iteration

does not improve the best y value of the evaluations prior to the proposing

step. The counter is set to zero at the beginning of the algorithm, and starts

to count the number of consecutive failures only when p < 0.1. Whenever

the number of consecutive failures reaches some prescribed threshold Cfail,

we reduce σ by half and decrease γ by ∆γ.

51

3.2.5 Zoom Strategy

The updating of the variable S (Line 11) will make the parameter σ gradually

decrease over iterations. Once σ drops below some critical value σcrit (i.e., S

reaches the critical value in Line 12) and the restart condition is not satisfied,

the algorithm will zoom in by either creating a new child node or updating

an existing child node. Specifically, we start the zoom-in process by finding

the point that has the lowest fit value among the evaluation data D, which

we will denote as x∗. Depending on the location of x∗ and the locations of

the children of the current node, there are two possible scenarios.

The first scenario is that x∗ does not belong to the domain of any of the

existing child nodes or there is no child for the current node. In this case

a new child node is created. The domain Ω of this child node is generated

by shrinking the domain of the current node with the center being at x∗

and the length of each dimension being ρ-fractional of that of the current

domain. The parameter ρ ∈ (0, 1) is called the zoom-in factor, which is a

constant set prior to the start of the algorithm. After shrinkage, any part

of the new domain that is outside the current domain will be clipped off so

that the domain of a child is always contained by that of its parent. Given

the domain of the new child node, its evaluation data D are all the past

evaluations that are within this domain. The zoom-out probability β and

the variable S of this child node are set to the initial values βinit and Sinit

respectively.

The other possibility is that x∗ belongs to at least one child of the current

node. Among all children whose domains contain x∗, we select the child

whose domain center is closest to x∗. The evaluation data D of this selected

child node is updated by including all the past evaluations that are within

its domain. Since the selected child node is being revisited, we reduce its

zoom-out probability by β ← max(β/2, βmin), where βmin is a constant lower

bound for the zoom-out probability.

3.3 Convergence

In this section we state a convergence theorem for our ProSRS algorithm

(Alg. 2). More specifically, if ProSRS is run for sufficiently long, with prob-

ability converging to one there will be at least one sample among all the

52

evaluations that will be arbitrarily close to the global minimizer of the ob-

jective function. Because the point returned in each iteration is the one with

the lowest noisy evaluation (not necessarily with the lowest expected value),

as the underlying expectation function is generally unknown, this theoretical

result does not immediately imply the convergence of our algorithm. How-

ever, in practice one may implement posterior Monte Carlo procedures for

choosing the true best point from the evaluations (see Section 3.5.2).

Theorem 3.1 Suppose the objective function F in Eq. 3.1 is continuous on

the domain D ⊆ Rd and xopt is the unique minimizer of F , characterized by1

F (xopt) = infx∈D F (x) ∈ (−∞,+∞) and infx∈D,‖x−xopt‖≥η F (x) > F (xopt) for

all η > 0. Let xn be the sample with the minimum objective value among all

the samples up to iteration n. Then xn −→ xopt almost surely as n→∞.

Proof. We define the zoom level z to be zero for the root node and, whenever

zooming in occurs, the zoom level of the child node is one plus that of its

parent node so that every node in the tree is associated with a unique zoom

level (see Fig. 3.3).

First, we argue that there is an upper bound on the zoom level for ProSRS

algorithm. Since after each zoom-in step, the size of the domain is shrunk by

at least the zoom-in factor ρ ∈ (0, 1), the domain length for a node of a zoom

level z ∈ N is upper bounded by ρz(bi−ai) for each dimension i = 1, 2, . . . , d.

Here ai and bi are the domain boundaries for the root node (Eq. 3.1). Now

let us consider a node with zoom level z∗ = dlogρ re + 1, where r ∈ (0, 1) is

the prescribed resolution parameter for the restart (see Eq. 3.4). We further

denote the domain length of this node in each dimension to be `i and the

number of evaluation points within its domain to be n, then we have for all

i = 1, 2, . . . , d,

n−
1
d `i ≤ `i ≤ ρz

∗
(bi − ai) = ρdlogρ re+1(bi − ai) < ρlogρ r(bi − ai) = r(bi − ai),

which would satisfy the restart condition (Eq. 3.4). This implies that the

zoom level of ProSRS must be less than z∗. In other words, the zoom level

is upper bounded by zmax = z∗ − 1 = dlogρ re.
Now fix some ε > 0 and define ∆ := max(zmax, NDOE + 1), where NDOE is

1Here we adopt the convention that if {x ∈ D, ‖x − xopt‖ ≥ η} = ∅, then
infx∈D,‖x−xopt‖≥η F (x) = +∞.

53

the number of iterations for the initial space-filling design. The main idea of

the following proof is similar to that in the original SRS paper [66].

Since the objective function F is continuous at the unique minimizer xopt,

there exists δ(ε) > 0 so that whenever x is within the open ball B(xopt, δ(ε)),

f(x) < f(xopt) + ε.

The probability that a candidate point generated in the root node (of either

Type I or Type II) is located within the domain B(xopt, δ(ε))∩D can be shown

to be bounded from below by some positive ν(ε) (see Section 2 of Regis and

Shoemaker [66]). Here D is the domain of the optimization problem (Eq. 3.1).

Since all the candidate points are generated independently, the probability

that all the candidate points are within B(xopt, δ(ε)) ∩ D is greater than or

equal to L(ε) := ν(ε)t > 0, where t is a constant denoting the number of

candidate points.

Now we define a positive quantity h(ε) := L(ε)(βmin)∆, where βmin is the

minimum zoom-out probability (see Section 3.2.5). We further define the

event

Ai :={for each of the iterations (i− 1)∆ + 1, (i− 1)∆ + 2, . . . , i∆, there is

at least one candidate point that lies outside the domain

B(xopt, δ(ε)) ∩ D}, i ∈ Z+.

Let probability Pi := P (Ai | A1 ∩ A2 ∩ . . . ∩ Ai−1) with the understanding

that P1 = P (A1). Then

P (A1 ∩ A2 ∩ . . . ∩ Ak) =
k∏
i=1

Pi, k ∈ Z+. (3.7)

For now, let us assume i > 1. For the iteration (i − 1)∆, there are 3

possible events that could happen when we are about to run Line 21 of the

ProSRS algorithm (Alg. 2):

E1 = {decide to restart},
E2 = {decide not to restart and the parent node exists},
E3 = {decide not to restart and the parent node does not exist}.

Let zi−1 be the zoom level of the current node at this moment. Then we have

54

the following inequalities:

P (Ai | A1 ∩ A2 ∩ . . . ∩ Ai−1 ∩ E1)

= P (among iterations (i− 1)∆ + 1, (i− 1)∆ + 2, . . . , i∆, there exists one

iteration for which all the candidate points are within domain

B(xopt, δ(ε)) ∩ D | A1 ∩ A2 ∩ . . . ∩ Ai−1 ∩ E1)

≥ P
(

all the candidate points are within B(xopt, δ(ε)) ∩ D for iteration(
(i− 1)∆ +NDOE + 1

)
| A1 ∩ A2 ∩ . . . ∩ Ai−1 ∩ E1

)
≥ L(ε) ≥ h(ε)

P (Ai | A1 ∩ A2 ∩ . . . ∩ Ai−1 ∩ E2)

≥ P
(

decide to zoom out for iterations (i− 1)∆, (i− 1)∆ + 1, . . . ,

(i− 1)∆ + zi−1 − 1 and all the candidate points are within

B(xopt, δ(ε)) ∩ D for the iteration
(
(i− 1)∆ + zi−1

)
| A1 ∩ A2 ∩ . . . ∩ Ai−1 ∩ E2

)
≥ L(ε)(βmin)zi−1 ≥ h(ε)

P (Ai | A1 ∩ A2 ∩ . . . ∩ Ai−1 ∩ E3)

≥ P
(

all the candidate points are within B(xopt, δ(ε)) ∩ D for the iteration(
(i− 1)∆ + 1

)
| A1 ∩ A2 ∩ . . . ∩ Ai−1 ∩ E3

)
≥ L(ε) ≥ h(ε).

That is, for any i > 1, P (Ai | A1 ∩A2 ∩ . . . ∩Ai−1 ∩Ej) ≥ h(ε) for all j =

1, 2, 3. Hence, P (Ai | A1∩A2∩ . . .∩Ai−1) ≥ h(ε), which implies Pi ≤ 1−h(ε)

for any i > 1. Now if i = 1, again we have P1 = 1−P (A1) ≤ 1−h(ε) because

the probability that all the candidates are within B(xopt, δ(ε)) ∩ D for the

iteration (NDOE + 1) is greater or equal to h(ε). Therefore, Pi ≤ 1 − h(ε)

holds true for all i ∈ Z+. Using Eq. 3.7, we have

P (A1 ∩ A2 ∩ . . . ∩ Ak) ≤
(
1− h(ε)

)k
. (3.8)

Since h(ε) ∈ (0, 1), P (A1∩A2∩ . . .∩Ak) converges to zero, or equivalently

55

P (A1 ∩ A2 ∩ . . . ∩ Ak) converges to one as k →∞. Observe that

A1 ∩ A2 ∩ . . . ∩ Ak
= {among iterations 1, 2, . . . , k∆, there is an iteration for which all the

candidate points are within B(xopt, δ(ε)) ∩ D}
⊆ {among iterations 1, 2, . . . , k∆, there is an evaluation sample x within

B(xopt, δ(ε)) ∩ D}
⊆ {among iterations 1, 2, . . . , k∆, there is an evaluation sample x such

that f(x) < f(xopt) + ε}
⊆ {f(xk∆) < f(xopt) + ε} = {|f(xk∆)− f(xopt)| < ε}.

Hence, f(xk∆) converges to f(xopt) in probability as k →∞. Therefore, there

is a subsequence of
(
f(xk∆)

)
k∈N which is also a subsequence of

(
f(xn)

)
n∈N,

that converges almost surely to f(xopt). Because f(xn) is monotonically

decreasing so that the limit always exists, f(xn) converges to f(xopt) almost

surely. Finally, by the uniqueness of the minimizer, xn converges to xopt

almost surely. The arguments for the last two almost-sure convergences are

essentially the same as those used in proving the convergence of a simple

random search algorithm (see the proof of Theorem 2.1 in Spall [59]).

3.4 Numerical results

In this section, we compare our ProSRS algorithm to three state-of-the-art

parallel Bayesian optimization algorithms: GP-EI-MCMC [52], GP-LP [72]

with acquisitions LCB and EI. The parameter values of ProSRS algorithm

are listed in Table 3.1, where d is optimization dimension and Ncore is the

number of parallel cores.

For test problems, we first used a suite of standard optimization bench-

mark problems from the literature. Table 3.2 summarizes the conditions for

all the benchmark experiments. For each benchmark problem, a Gaussian

noise was added to the true underlying function. We tested with commonly-

used optimization domains, and the standard deviation of the noise roughly

matched the range of a function. The function expressions for these bench-

56

Table 3.1: Parameter values for the ProSRS algorithm

Parameter Meaning Value

m number of DOE samples d3/NcoreeNcore

Sinit initial value of variable S (0, 1, 0.1)
σcrit critical σ value 0.025
βinit initial zoom-out probability 0.02
βmin minimum zoom-out probability 0.01
ρ zoom-in factor 0.4
r resolution parameter for restart 0.01
Cfail critical number of consecutive failures max(dd/Ncoree, 2)
∆γ change of γ value 2

Table 3.2: Experiment conditions for optimization benchmark problems
(the last numeric figure in the function name is the problem dimension)

Function Optimization Domain Std. of Gaussian noise

Ackley10 [−32.768, 32.768]10 1
Alpine10 [−10, 10]10 1

Griewank10 [−600, 600]10 2
Levy10 [−10, 10]10 1

SumPower10 [−1, 1]10 0.05
SixHumpCamel2 [−3, 3]× [−2, 2] 0.1

Schaffer2 [−100, 100]2 0.02
Dropwave2 [−5.12, 5.12]2 0.02

Goldstein-Price2 [−2, 2]2 2
Rastrigin2 [−5.12, 5.12]2 0.5
Hartmann6 [0, 1]6 0.05
PowerSum4 [0, 4]4 1

mark problems are given in detail in Appendix E.

Next, we test algorithms on real hyperparameter-tuning problems. The

problem of tuning hyperparameters of a machine learning model can be

viewed as an expensive optimization problem in Eq. 3.1. In this case, the

function f is a validation or cross-validation error for a machine learning

model and the vector x represents the hyperparameters to be tuned. The

function f is typically expensive since one evaluation of f involves training

and scoring one or multiple machine learning models. The noise associated

with f may come from the fact that a machine learning algorithm (e.g., ran-

dom forest) contains random elements or a stochastic optimization method

57

(e.g., SGD) is invoked during the training process.

Specifically, two hyperparameter-tuning problems are considered: (1) tun-

ing 5 hyperparameters of a random forest (2) tuning 7 hyperparameters of

a deep neural network. For both problems, when tuning an integer-valued

hyperparameter, we rounded the continuous output from an optimization

algorithm to the nearest integer before feeding it to the machine learn-

ing algorithm. The next two paragraphs below give the details of the two

hyperparameter-tuning problems:

Random forest. We tuned a random forest, one of the most widely used

classification algorithms, on the well-known Adult dataset [77]. The dataset

consists of 48842 instances with 14 attributes, and the task is to classify

income based on census information. We tuned 5 hyperparameters: number

of trees on [1, 300], number of features on [1, 14], maximum depth of a tree

on [1, 100], minimum number of samples for the node split on [2, 1000] and

minimum number of samples for a leaf node on [1, 1000]. We minimized the

5-fold cross-validation error.

Deep neural network. We tuned a feedforward deep neural network with

2 hidden layers on the popular MNIST dataset [78]. This tuning problem is

also considered in [79]. We used the same training-validation data split as in

the TensorFlow tutorial [80] with the training set having 55000 data points

and the validation set having 5000 data points. We tuned 7 hyperparameters:

number of units in each hidden layer on [1, 100], L1 and L2 regularization

constants, both on a log scale on [10−8, 100], learning rate on a log scale

on [10−4, 100], batch size on [50, 1000] and number of epochs on [5, 50]. We

minimized the validation error.

3.4.1 Optimization performance versus iteration

The first results that we consider are the optimization result (function value)

versus iteration number. All the algorithms are proposing and evaluating the

same number of points per iteration, so these results measure the quality of

these proposed points. As we will see, ProSRS does significantly better than

the existing methods.

58

Figure 3.4 shows the optimization progress versus the number of iterations.

The objective function on the y axis is the evaluation of the underlying true

expectation function (not the noisy function) at the algorithm output. The

error bar is the standard deviation of 20 independent runs. All algorithms

are run with 12 parallel cores.

As we can see from Figure 3.4, our algorithm performs the best on almost

all of the problems. In particular, ProSRS is significantly better on high-

dimensional functions such as Ackley and Levy, as well as highly-complex

functions such as Dropwave and Schaffer. Excellent performance on these

benchmark problems shows that our algorithm can cope with various opti-

mization landscape types.

Figure 3.5 shows optimization performance on the two hyperparameter-

tuning problems. Here we include a random search algorithm as a baseline

in addition to the optimization algorithms. First, we see that surrogate

optimization algorithms are in general significantly better than the random

search algorithm. This is no surprise as the surrogate optimization algorithm

selects every evaluation point carefully in each iteration. Second, among the

surrogate optimization algorithms, our ProSRS algorithm is better than the

GP-EI-MCMC algorithm (particularly on the random forest tuning problem),

and is much better than the two GP-LP algorithms.

3.4.2 Optimization performance analysis

In the previous section we demonstrated that our ProSRS algorithm gener-

ally achieved superior optimization performances compared to the Bayesian

optimization algorithms. In this section, we give some insight into why our

algorithm could be better. We performed the analysis with a numerical ex-

periment that studied the modeling capability of RBF (as used in ProSRS)

and GP models (as used in the Bayesian optimization methods).

More specifically, we investigated RBF and GP regression on the twelve

optimization benchmark functions listed in Table 3.2, varying the number

n of training data points from 10 to 100. For each test function and every

n, we first randomly sampled n points (X1, X2, . . . , Xn) over the function

domain using Latin hypercube sampling, and then evaluated these n sam-

ples to get noisy responses (Y1, Y2, . . . , Yn). Then given the data (X1, Y1),

59

0 5 10 15 20

0

5

10

15

20

25

O
bj

ec
ti

ve
fu

nc
ti

on

Ackley10

0 5 10 15 20

0

5

10

15

20

25
Alpine10

0 5 10 15 20

0

40

80

120

160

Griewank10

0 5 10 15 20

0

10

20

30

40

50

O
bj

ec
ti

ve
fu

nc
ti

on

Levy10

0 2 4 6 8 10

0.00

0.15

0.30

0.45

0.60

SumPower10

0 2 4 6 8 10

−1.0

−0.8

−0.6

−0.4

−0.2

0.0
SixHumpCamel2

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

O
bj

ec
ti

ve
fu

nc
ti

on

Schaffer2

0 5 10 15 20
−1.05

−0.90

−0.75

−0.60

−0.45

Dropwave2

0 5 10 15 20

0

80

160

240

320

400
Goldstein2

0 5 10 15 20

Iteration

0

4

8

12

16

O
bj

ec
ti

ve
fu

nc
ti

on

Rastrigin2

0 5 10 15 20

Iteration

−3.2

−2.4

−1.6

−0.8

Hartmann6

std of noise
function min

ProSRS
GP-LP-LCB

GP-LP-EI
GP-EI-MCMC

0 5 10 15 20

Iteration

0

60

120

180

240

300
PowerSum4

Figure 3.4: Optimization curves for the benchmark functions. The error bar
shows the standard deviation of 20 independent runs.

60

0 5 10 15 20 25 30

Iteration

0.138

0.140

0.142

0.144

0.146

0.148

0.150

0.152

C
ro

ss
-v

al
id

at
io

n
er

ro
r

Random forest

0 5 10 15 20 25 30

Iteration

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Va
lid

at
io

n
er

ro
r

Deep neural network

ProSRS
GP-LP-LCB
GP-LP-EI
GP-EI-MCMC
Random

Figure 3.5: Optimization curves for the hyperparameter-tuning problems.
The error bar shows the standard deviation of 20 independent runs. The
number of parallel cores is 8 for both problems. The expected error
(objective F) is estimated by averaging 5 independent samples.

(X2, Y2), . . ., (Xn, Yn), we trained 4 models: a RBF model using the cross

validation procedure developed in the ProSRS algorithm with no weighting,

and 3 GP models with commonly used GP kernels: Matern1.5, Matern2.5

and RBF.

We used the Python scikit-learn package1 for the implementations of GP

regression. We set the number of restarts for the optimizer in GP regression

to be 10. We evaluated each regression model by measuring the relative

error in terms of the L2 norm of the difference between a model g and the

underlying true function E[f] over the function domain. We repeated the

training and evaluation procedure for 10 times, and reported the mean and

the standard deviation of the measured relative errors.

The results are shown in Figure 3.6. We can see that cross-validated

RBF regression (as used in our ProSRS method) generally produces a better

model than those from GP regression (as used in the Bayesian optimization

methods). Specifically, the RBF model from ProSRS is significantly better

for the test functions Griewank, Levy, Goldstein and PowerSum, and is on

par with GP models for Schaffer, Dropwave and Hartmann.

From this numerical study, we can draw two conclusions. First, the ProSRS

RBF models seem to be able to better capture the objective functions than

GP regression models. One possible explanation for this is that the ProSRS

1Python package for Gaussian Processes: http://scikit-learn.org/stable/

modules/gaussian_process.html.

61

10 20 30 40 50 60 70 80 90 100

0.016

0.020

0.024

0.028

0.032

E
rr

or
|g
−
E[
f

]|/
|E

[f
]|

Ackley10

10 20 30 40 50 60 70 80 90 100

0.22

0.23

0.24

0.25

0.26
Alpine10

10 20 30 40 50 60 70 80 90 100
0.00

0.06

0.12

0.18

0.24

0.30
Griewank10

10 20 30 40 50 60 70 80 90 100

0.275

0.300

0.325

0.350

0.375

0.400

E
rr

or
|g
−
E[
f

]|/
|E

[f
]|

Levy10

10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

SumPower10

10 20 30 40 50 60 70 80 90 100
0.00

0.15

0.30

0.45

0.60

0.75

0.90
SixHumpCamel2

10 20 30 40 50 60 70 80 90 100

0.120

0.128

0.136

0.144

0.152

E
rr

or
|g
−
E[
f

]|/
|E

[f
]|

Schaffer2

10 20 30 40 50 60 70 80 90 100
0.60

0.66

0.72

0.78

0.84

0.90
Dropwave2

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1.0
Goldstein2

10 20 30 40 50 60 70 80 90 100

Number of training data

0.24

0.27

0.30

0.33

0.36

0.39

E
rr

or
|g
−
E[
f

]|/
|E

[f
]|

Rastrigin2

10 20 30 40 50 60 70 80 90 100

Number of training data

0.60

0.75

0.90

1.05

Hartmann6

RBF GP-Matern1.5 GP-Matern2.5 GP-RBF

10 20 30 40 50 60 70 80 90 100

Number of training data

0.30

0.45

0.60

0.75

0.90
PowerSum4

Figure 3.6: Compare the modeling capability of RBF regression as used in
ProSRS (dark blue lines) and GP regression with kernels: Matern1.5,
Matern2.5 and RBF (green, red and light blue lines respectively) on 12
optimization benchmark functions. The y axis is the relative error in terms
of the L2 norm of the difference between a model g and the underlying true
function E[f] over the function domain. The error bar shows the standard
deviation of 10 independent runs.

62

RBF regression uses a cross validation procedure so that the best model is

selected directly according to the data, whereas GP regression builds models

relying on the prior distributional assumptions about the data (i.e., Gaussian

process with some kernel). Therefore, in a way the ProSRS regression pro-

cedure makes fewer assumptions about the data and is more ”data-driven”

than GP. Since the quality of a surrogate has a direct impact on how well

the proposed points exploit the objective function, we believe that the su-

periority of the RBF models plays an important part in the success of our

ProSRS algorithm over those Bayesian optimization algorithms.

Second, for those test functions where ProSRS RBF and GP have similar

modeling performances (i.e., Schaffer, Dropwave and Hartmann), the opti-

mization performance of ProSRS (using RBF) is nonetheless generally better

than Bayesian optimization (using the GP models), as we can see from Fig-

ure 3.4. This suggests that with surrogate modeling performance being equal,

the ProSRS sample selection strategy (i.e., SRS and zoom strategy) may still

have an edge over the probablity-based selection criterion (e.g., EI-MCMC)

of Bayesian optimization.

3.4.3 Algorithm cost

In Section 3.4.1 we saw that ProSRS achieved faster convergence per itera-

tion, meaning that it was proposing better points to evaluate in each itera-

tion. In this section we will compare the cost of the algorithms and show that

ProSRS is in addition much cheaper per iteration. The main focus here is to

compare the cost of the algorithm, not the cost of evaluating the function f

since the function-evaluation cost is roughly the same among the algorithms.

Figure 3.7 and Figure 3.8 show the computational costs of running dif-

ferent algorithms for both optimization benchmark problems and the two

hyperparameter-tuning problems. The time was benchmarked on Blue Wa-

ters1 XE compute nodes. We observe that our ProSRS algorithm is generally

about 1 to 4 orders of magnitude cheaper than the other algorithms. It is

worth noting that for the hyperparameter-tuning problems, the cost of the

GP-EI-MCMC algorithm is in fact consistently higher than that of the train-

ing and the evaluation of a machine learning model, and the cost gap becomes

1Blue Waters: https://bluewaters.ncsa.illinois.edu.

63

larger as the number of iterations increases.

From Fig. 3.8 we can see that the cost of our algorithm scales roughly

∼ O(1) with the number of iterations in the long run (i.e., when the algorithm

is run with a large number of iterations, the general trend of the cost stays flat

with iterations). This scaling behavior is generally true for our algorithm, and

is a consequence of the zoom strategy and the restart mechanism exploited

by our algorithm.

3.4.4 Overall optimization efficiency

In this section, we will show the overall optimization efficiency for the two

real hyperparameter-tuning problems, which takes into account not only the

optimization performance per iteration but also the cost of the algorithm

and the expensive function evaluations. From Fig. 3.9, we can see that our

ProSRS algorithm is the best among all the algorithms. Because of the

high cost of the GP-EI-MCMC algorithm, the advantage of our algorithm

over GP-EI-MCMC becomes even more pronounced compared to that of the

iteration-based performance measurement (Fig. 3.5).

64

0 5 10 15 20
10−1

100

101

102

103

A
lg

or
it

hm
ti

m
e

(s
ec

)

Ackley10

0 5 10 15 20
10−1

100

101

102

103
Alpine10

0 5 10 15 20
10−1

100

101

102

103
Griewank10

0 5 10 15 20
10−1

100

101

102

103

A
lg

or
it

hm
ti

m
e

(s
ec

)

Levy10

0 2 4 6 8 10
10−1

100

101

102

103
SumPower10

0 2 4 6 8 10
10−2

10−1

100

101

102

103
SixHumpCamel2

0 5 10 15 20
10−2

10−1

100

101

102

103

A
lg

or
it

hm
ti

m
e

(s
ec

)

Schaffer2

0 5 10 15 20
10−2

10−1

100

101

102

103
Dropwave2

0 5 10 15 20
10−2

10−1

100

101

102

103

104
Goldstein2

0 5 10 15 20

Optimization iteration

10−2

10−1

100

101

102

103

A
lg

or
it

hm
ti

m
e

(s
ec

)

Rastrigin2

0 5 10 15 20

Optimization iteration

10−2

10−1

100

101

102

103
Hartmann6

ProSRS GP-LP-LCB GP-LP-EI GP-EI-MCMC

0 5 10 15 20

Optimization iteration

10−2

10−1

100

101

102

103

104
PowerSum4

Figure 3.7: Computational costs of different algorithms for the twelve
optimization benchmark problems. The plots show the mean and standard
deviation of 20 independent runs. The x axis is the number of iterations in
actual optimization excluding the initial DOE iteration. The y axis is the
actual time that was consumed by an algorithm in each iteration, and does
not include the time of parallel function evaluations.

65

0 5 10 15 20 25 30

Optimization iteration

10−2

10−1

100

101

102

103

W
al

lt
im

e
(s

ec
)

Random forest

0 5 10 15 20 25 30

Optimization iteration

Deep neural network

ProSRS
GP-LP-LCB
GP-LP-EI
GP-EI-MCMC
Function eval

Figure 3.8: Computational costs of different algorithms for the two
hyperparameter tuning problems. The plots show the mean and standard
deviation of 20 independent runs. The x axis is the number of iterations in
actual optimization excluding the initial DOE iteration. For different
algorithms, the y axis is the actual time that was consumed by the
algorithm in each iteration, and does not include the time of parallel
function evaluations. The time for training and evaluating the machine
learning models is shown in black.

100 101 102

Total time (min)

0.135

0.140

0.145

0.150

0.155

0.160

C
ro

ss
-v

al
id

at
io

n
er

ro
r

Random forest

101 102

Total time (min)

0.02

0.04

0.06

0.08

0.10

0.12

Va
lid

at
io

n
er

ro
r

Deep neural network

ProSRS
GP-LP-LCB
GP-LP-EI
GP-EI-MCMC
Random

Figure 3.9: Optimization efficiency of different algorithms on the two
hyperparameter-tuning problems. Total time on the horizontal axis is the
actual elapsed time including both algorithm running time and time of
evaluating expensive functions. The shaded areas show the standard
deviation of 20 independent runs.

66

3.5 Application of ProSRS to a general problem

In the last section (Section 3.4), we demonstrated the effectiveness of the

ProSRS algorithm by benchmarking it against several state-of-the-art Bayesian

optimization algorithms on standard benchmark functions, as well as on two

real hyperparameter-tuning problems. In this section, we will demonstrate,

through a concrete example, the use of ProSRS for a general noisy expen-

sive optimization problem. In this example we applied ProSRS algorithm

to a model characterization problem. We will show a complete optimiza-

tion workflow from defining the optimization problem, running the ProSRS

algorithm, and finally selecting the best sample among evaluations.

3.5.1 A model characterization problem

We consider the problem of determining unknown parameters of a particle-

resolved aerosol model, known as the PartMC model1, to match the model

output to the measurements from a particular set of laboratory chamber ex-

periments. PartMC is a stochastic atmospheric aerosol model that simulates

the evolution of aerosols at per-particle level using Monte Carlo methods. A

detailed description of the model is available in Riemer et al. [14] and Zaveri

et al. [34].

In this study, we simulated aerosol particles in a chamber environment with

the PartMC model. We identified 12 parameters that need to be prescribed

for the PartMC simulations but that are not well-constrained from the cham-

ber experiments (see Table 3.3). We determined these unknown parameters

by optimizing them over a predefined domain so that the error between the

simulation outputs and the experimental measurements was minimized.

Specifically, the PartMC model was simulated with a total simulation time

of 220 minutes, and the outputs were generated every two minutes in simu-

lation. These outputs were then compared to two sets of experimental data:

measurement of the overall size distribution with an SMPS instrument, and

measurement of the black carbon core size distribution with an SP2 instru-

1PartMC code is open-source under the GNU General Public License (GPL) at http:
//lagrange.mechse.illinois.edu/partmc/.

67

Table 3.3: Unknown parameters in PartMC simulation

Parameter Meaning Domain
RAS filling inflow for AS particles [1, 4]
RRB filling inflow for RB particles [1, 4]
Rdil2 dilution outflow during Period 2 [0.5, 4]
sc,AS input scaling factor for AS particles [100, 400]
sc,RB input scaling factor for RB particles [100, 400]
sc,SMPS output scaling factor for SMPS measurements [100, 400]
sc,SP2 output scaling factor for SP2 measurements [50, 300]
df fractal dimension [1.5, 3]
R0 radius of primary particles [3, 100]
f volume filling factor [1.35, 2]
a exponent in diffusive boundary layer thickness [0.2, 0.3]
kD prefactor in diffusive boundary layer thickness [0.02, 0.1]

ment. The error with respect to the SMPS measurements is given by

εSMPS =

√√√√ 1

T1

T1∑
t=1

(εt,1)2, (3.9)

where T1 is the number of SMPS measurement times, and εt,1 is the relative

error of size distributions at time t, defined as

εt,1 =

√√√√∑N1

i=1

(
ni,tPMC − ni,tSMPS

)2∑N1

i=1

(
ni,tSMPS

)2 . (3.10)

Here ni,tPMC and ni,tSMPS represent the number concentration at size bin i and

time t for the PartMC simulations and for the SMPS measurements respec-

tively, and N1 is the number of bins.

Similarly, the error between the PartMC simulations and the SP2 mea-

surements is given by

εSP2 =

√√√√ 1

T2

T2∑
t=1

(εt,2)2, where εt,2 =

√√√√∑N2

i=1

(
ni,tPMC − ni,tSP2

)2∑N2

i=1

(
ni,tSP2

)2 . (3.11)

The total error ε is the root mean square error (RMSE) over the two types

68

of measurements:

ε =

√
ε2SMPS + ε2SP2

2
. (3.12)

Let us denote the unknown parameters in Table 3.3 as a 12-dimensional

vector x. Then the number concentrations ni,tPMC, ni,tSMPS and ni,tSP2 all depend

on the value of x. As a result, the total error ε (Eq. 3.12) is also dependent

on the vector x. Hence, finding the unknown parameters can be formally

cast into solving a noisy optimization problem:

argmin
x∈D

E(x) = Eω[ε(x, ω)], (3.13)

where the expected error E is the optimization objective function, ε is the

total error defined in Eq. 3.12, ω captures the randomness in the PartMC

simulations and D is the optimization domain given in Table 3.3. Here the

optimization objective E is not observed directly but can be estimated via

independent random samples of the function ε. Moreover, the function ε

is expensive to evaluate since one evaluation requires running a PartMC

simulation with some vector x and then computing the error according to

Eq. 3.9–Eq. 3.12.

3.5.2 Optimization procedure

After the optimization problem was defined, we fed it into the ProSRS al-

gorithm. We monitored the optimization progress versus iterations, and

stopped running the algorithm when it appeared to have converged. Af-

ter ProSRS completed, we needed to select, from all the samples evaluated

by ProSRS, the one with the lowest expected error. Since the underlying

expected error function E (Eq. 3.13) is unknown and we have only one noisy

evaluation of function ε per sample, selecting the true best sample is not

trivial. Indeed, this can be regarded as a discrete expensive optimization

problem, more commonly known as a ranking and selection problem [44].

There are several ranking and selection algorithms in the literature such as

Nelson et al. [81] and Ni et al. [82]. Here we present a very simple algorithm

(Alg. 4) that we found works well in this example. In this algorithm, we

started with choosing m top samples from the evaluations as the candidates

69

Define optimization problem

Select best sample

Run ProSRS algorithm

Figure 3.10: A general workflow for solving a noisy expensive optimization
problem with ProSRS algorithm.

for the best sample, then performed Monte Carlo evaluations for each can-

didate sample, and finally selected the best sample to be the one with the

lowest Monte Carlo mean estimate. The complete procedure for solving an

optimization problem with ProSRS is illustrated in Fig. 3.10.

Algorithm 4 Select best sample from evaluations

Input: evaluations during optimization: {(x1, ε1), (x2, ε2), . . . , (xn, εn)}
Parameters: number of candidates m (m ≤ n), number of repeats R
Sorting xi based on value εi (ascending order) gives (x′1, x

′
2, . . . , x

′
n)

Select top m samples as candidates C = (x′1, x
′
2, . . . , x

′
m)

Obtain mean estimate ε̂i for each sample in C using R-repeat Monte Carlo
Output: best sample x∗ = x′j, where j = argmini=1,2,...,m ε̂i

3.5.3 Optimization result

For the SMPS measurements, the number of times T1 (Eq. 3.9) is 66 and the

number of size bins N1 (Eq. 3.10) is 106. For the SP2 measurements, the

number of times T2 and the number of bins N2 are 54 and 200 respectively

(see Eq. 3.11). As a result, the optimization problem is essentially to fit a

total of T1N1 + T2N2 = 66 × 106 + 54 × 200 = 17796 data points with 12

parameters listed in Table 3.3.

We ran the ProSRS algorithm with 800 iterations on 32-core XE compute

nodes of Blue Waters1. We configured the algorithm to use all the cores

1Blue Waters: https://bluewaters.ncsa.illinois.edu.

70

0 100 200 300 400 500 600 700 800

Iteration

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

F
u

n
ct

io
n
ε

Figure 3.11: Optimization curve for the PartMC characterization problem.
The y axis is the noisy function value of the ProSRS algorithm output.

of a node (i.e., ProSRS proposed 32 points for parallel evaluations at each

iteration).

Figure 3.11 shows the optimization progress of the ProSRS algorithm. As

we can see, ProSRS made significant progress within the initial 50 iterations

before it gradually stabilized. Figure 3.12 shows the computational time

of ProSRS and that of expensive function evaluations. We see that the

computational cost of running ProSRS is about 1–2 orders of magnitude

lower than that of evaluating the error function ε (Eq. 3.12). The general

trend of the running time for the ProSRS algorithm stays roughly constant

with the iterations.

After running the ProSRS algorithm, we ran the sample selection algorithm

(Alg. 4) with number of candidates m = 100 and number of repeats R = 10.

The best sample found (i.e., optimal parameters) is shown in Table 3.4. From

Fig. 3.13 and 3.14, we see that the outputs of the optimized PartMC model

agree well with the experimental data for both SMPS and SP2 measurements.

71

0 100 200 300 400 500 600 700 800

Optimization iteration

10−2

10−1

100

101

102

103

W
al

l
ti

m
e

(s
ec

)

ProSRS

Function eval

Figure 3.12: Computational costs of ProSRS algorithms (blue curve) and
the evaluations of error function ε (black curve). The x axis is the number
of iterations in the optimization, excluding the initial DOE iteration.

Table 3.4: Optimization results

Parameter Optimal value Parameter Optimal value

RAS 1.509 sc,SP2 217.43
RRB 1.889 df 2.146
Rdil2 1.077 R0 37.339
sc,AS 305.19 f 1.411
sc,RB 255.43 a 0.230
sc,SMPS 253.18 kD 0.086

72

101 102 103
0.0

0.8

1.6

2.4

3.2

4.0

nu
m

b
er

co
n

c.
n

(D
)

/
m
−

3

×1011

t = 10 mins

101 102 103
0.0

1.5

3.0

4.5

6.0

7.5
×1011

t = 50 mins

101 102 103

mobility diameter / nm

0.0

0.8

1.6

2.4

3.2

4.0

nu
m

b
er

co
n

c.
n

(D
)

/
m
−

3

×1011

t = 108 mins

101 102 103

mobility diameter / nm

0.0

0.3

0.6

0.9

1.2

1.5

1.8 ×1011

t = 192 mins

PartMC model SMPS measurement

Figure 3.13: The outputs of the optimized PartMC model (with the
optimal parameters in Table 3.4) versus SMPS measurements. The shaded
area shows the standard deviation of 10 independent runs.

73

101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

1.2

nu
m

b
er

co
n

c.
n

(D
)

/
m
−

3

×1011

t = 10 mins

101 102 103
0.0

0.8

1.6

2.4

3.2

4.0 ×1011

t = 50 mins

101 102 103

mass equivalent diameter / nm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

nu
m

b
er

co
n

c.
n

(D
)

/
m
−

3

×1011

t = 108 mins

101 102 103

mass equivalent diameter / nm

0.0

0.3

0.6

0.9

1.2

1.5
×1011

t = 192 mins

PartMC model SP2 measurement

Figure 3.14: The outputs of the optimized PartMC model (with the
optimal parameters in Table 3.4) versus SP2 measurements. The shaded
area shows the standard deviation of 10 independent runs.

74

3.6 Conclusions

In this chapter we introduced a novel parallel surrogate optimization al-

gorithm, namely the ProSRS algorithm, for noisy expensive optimization

problems. We developed a “zoom strategy” for efficiency improvement, a

weighted radial basis regression procedure, and a new SRS method com-

bining the two types of candidate points in the original SRS work. We

proved an analytical result for our algorithm (Theorem 3.1): if ProSRS is

run for sufficiently long, with probability converging to one there will be

at least one sample among all the evaluations that will be arbitrarily close

to the global minimizer of the objective function. Numerical experiments

show that our algorithm outperforms three current parallel Bayesian opti-

mization algorithms on both optimization benchmark problems and two real

hyperparameter-tuning problems. Our algorithm not only shows better op-

timization performance per iteration but is also orders of magnitude cheaper

to run. We also demonstrated the application of ProSRS to the problem of

characterizing a complex aerosol model against experimental measurements.

This application serves as an example to illustrate a workflow of solving a

general optimization problem with our algorithm.

75

CHAPTER 4

CONCLUSIONS

In this dissertation we demonstrated the use of machine learning to accelerate

compute-intensive tasks in two distinct fields: simulation and optimization.

In Chapter 2 we developed an adaptive control variates algorithm to expe-

dite the simulations of mean-field particle systems. Within this algorithm, we

treated the body of particles as training data and used machine learning to

automatically construct highly-correlated control variates from the data. It

was through this learning mechanism that we were able to achieve significant

variance reduction in spite of highly complex particle dynamics. We proved

two important properties of our algorithm: unbiasedness of the estimator

and asymptotic greater efficiency than naive Monte Carlo. We validated

our theoretical claims through a simple 1D example, and demonstrated the

effectiveness of our algorithm in simulating a complex aerosol particle model.

In Chapter 3 we introduced a parallel surrogate optimization algorithm,

namely the ProSRS algorithm, for optimizing noisy expensive black-box func-

tions. The algorithm uses weighted radial basis regression to learn the under-

lying response surface from the evaluation data. In doing so, the trend of the

objective function is well exploited. Hence, our algorithm is able to achieve

good optimization progress using relatively few function evaluations. In ad-

dition to the radial basis regression, we developed a tree-based technique,

known as the “zoom strategy”, to help reduce the computational cost while

not compromising the optimization convergence. We proved an asymptotic

convergence result for our algorithm. Moreover, we benchmarked our algo-

rithm against state-of-the-art Bayesian optimization algorithms, finding that

our algorithm was not only generally superior in optimization performance

but was also orders of magnitude cheaper to run. We further demonstrated a

workflow of solving a general optimization problem with ProSRS by applying

it to the problem of characterizing the parameters needed to fit an expensive

aerosol model to experimental data.

76

APPENDIX A

ASSUMPTION VALIDATION FOR
NUMERICAL STUDY 1

Using induction, we have the following formula for the particle state xt,i and

the mean field φt with k 6= 1:

xt,i =
1

N

N∑
j=1

[
ktx0,j +

(
k − kt
1− k

)
ebx0,j

]
+ ebx0,i , t ≥ 1, (A.1)

φt =
1

N

N∑
j=1

[
ktx0,j +

(
1− kt
1− k

)
ebx0,j

]
, t ∈ N. (A.2)

Now we validate Assumptions 2.5–2.9 separately as follows:

1. Check Assumption 2.5

This is trivially satisfied (see the remarks of Theorem 2.3 on the domain

Θ).

2. Check Assumption 2.6

Since we train cubic polynomial regression models, the basis function η in

this assumption is simply

η(x0,1) = [1, x0,1, x
2
0,1, x

3
0,1]T , (A.3)

and the subspace ν is given by

ν = {a0 + a1x0,1 + a2x
2
0,1 + a3x

3
0,1 | a0, a1, a2, a3 ∈ R}. (A.4)

Clearly, 1 ∈ ν. Because x0,1 is a standard Gaussian random variable, the

random variable a0 + a1x0,1 + a2x
2
0,1 + a3x

3
0,1 has finite second moment for

any fixed a0, a1, a2, a3 ∈ R. Hence, ν ⊆ L2.

77

The correlation matrix is

E
[
η(x0,1) (η(x0,1))T

]
=

1 0 1 0

0 1 0 3

1 0 3 0

0 3 0 15

 , (A.5)

which is non-singular.

3. Check Assumption 2.7

From Eq. A.2, it is easy to see that the mean field φt converges to its

expectation, denoted as ct, in mean square as N → ∞ (recall that x0,j are

i.i.d.). As a result, for any t ≥ 1,

xt,1 = Ψt(φ0, φ1, . . . , φt−1, x0,1) = kφt−1 + ebx0,1
m.s.−−−→
N→∞

kct−1 + ebx0,1 . (A.6)

4. Check Assumption 2.8

Define a random vector ξ := [x0,1, x
2
0,1, x

3
0,1]T . Then the projection of xt,1

onto the subspace ν in Eq. A.4 is given by

Πν(xt,1) = E[xt,1] + Cov(xt,1, ξ)Cov(ξ, ξ)−1 (ξ − E[ξ]) = (β′t)
T

[1, ξT]T , (A.7)

from which we solve for β′t for each t = 1, 2, . . . , T .

Using the projection expression in Eq. A.7 and after some calculation, the

covariance in the assumption is found to have the following form:

Cov (xt,2,Πν(xt,1)) =
At
N

+
Bt

N2
, (A.8)

where the constants At and Bt are given by

At = DtCov(ξ, ξ)−1Cov
(
ξ, ebx0,1

)
,

Bt = DtCov(ξ, ξ)−1(Dt)
T ,

with

Dt = Cov

(
ktx0,1 +

k − kt
1− k e

bx0,1 , ξ

)
.

With the parameters in the model, it can be checked that At > 0 for all

78

time t = 1, 2, . . . , T . Hence, lim infN→∞Cov
(
g(xt,2), (β′t)

Tη(x0,1)
)
N = At >

0.

5. Check Assumption 2.9

Computing the variance of projection gives

Var
(

Πν

(
Ψt(c0, c1, . . . , ct−1, x0,1)

))
= Var

(
Πν

(
kct−1 + ebx0,1

))
= Cov(ebx0,1 , ξ)Cov(ξ, ξ)−1

(
Cov(ebx0,1 , ξ)

)T
. (A.9)

It is easy to see that the vector Cov(ebx0,1 , ξ) is not a zero vector. Hence,

the variance in Eq. A.9 is positive by noting that the covariance matrix

Cov(ξ, ξ)−1 is positive definite.

79

APPENDIX B

MEAN FIELD CONVERGENCE FOR
AEROSOL PARTICLE MODEL

We show that the concentration of gas species converges to some constant

in the limit of a large number of particles for a simplified case of the aerosol

model (Theorem B.1).

Assumption B.1 Gas emission, gas dilution and gas chemistry are ne-

glected. There is only one gas species. No doubling or halving for number of

particles. The volume of air box does not change with time. No dilution or

emission for aerosol particles. There is only one initial source. There is one

chemical species for each aerosol particle.

Assumption B.2 The dynamics of the gas-particle partitioning is given by

the following equations [83]:

xt+1,i = xt,i +G(Rt,i)∆t

(
φt−1 − φt

ln(φt−1)− ln(φt)

)
, (B.1)

φt = φ−1exp

(
−∆t

t∑
τ=0

N∑
j=1

kτ,j

)
, i = 1, 2, . . . , N, t ∈ N (B.2)

kt,i =
G(Rt,i)

Vbox
, Rt,i =

3

√
3

4π
xt,i, G(x) =

x(a2x
2 + a1x)

b2x2 + b1x+ b0

, (B.3)

where xt,i is the volume of aerosol particle i at time t, ∆t is the time step

size, Rt,i is the radius of the particle, kt,i is the first order mass transfer

coefficient, and N is total number of particles. The variable φt denotes the

gas concentration at time t, and φ−1 is a positive constant for the initialized

gas concentration. Coefficients a1, a2, b0, b1 and b2 in the function G are

some positive constants.

Theorem B.1 For the aerosol model defined in Alg. 5 and under Assump-

tions B.1–B.2, the gas concentration φt converges to a constant in probability

as the mean number of particles Minit →∞ (Minit is defined in Eq. 2.66) for

each t = 0, 1, . . . , T .

80

Proof. To show this, we will first prove several Lemmas (Lemma B.1–B.4).

Lemma B.1 Let {Nm}m∈N be a sequence of random variables taking values

in N such that Nm
m
−→ b > 0 in probability as m→∞. Let {xn}n∈N be another

sequence of random variables taking values in Ω. Let Sm(y) =
∑Nm

i=1 φ(xi, y)

with the convention that Sm(y) = 0 if Nm = 0, where φ(x, y) is a real-valued

function continuous at y = a uniformly in x ∈ Ω (i.e., ∀ε > 0, ∃δ > 0 such

that ‖y − a‖ < δ implies supx∈Ω |φ(x, y)− φ(x, a)| < ε). Suppose a sequence

of random vectors zm
p.−→ a and the sequence Sm(a)

m

p.−→ c. Then1 Sm(zm)
m

p.−→ c.

Proof. It suffices to show Sm(zm)−Sm(a)
m

p.−→ 0. That is, to show for any ε > 0,

P

(∣∣∣∣Sm(zm)− Sm(a)

m

∣∣∣∣ < ε

)
−→ 1. (B.4)

Since φ is continuous at y = a uniformly in x ∈ Ω, there exists δ > 0 such

that ‖zm − a‖ < δ implies |φ(x, zm)− φ(x, a)| < ε/(2b) for all x ∈ Ω. By the

triangle inequality, we have

∣∣∣∣Sm(zm)− Sm(a)

m

∣∣∣∣ =

∣∣∣∣Nm∑
i=1

(
φ(xi, zm)− φ(xi, a)

)∣∣∣∣
m

≤

Nm∑
i=1

|φ(xi, zm)− φ(xi, a)|

m
≤ Nm

2mb
ε.

Hence, ‖zm − a‖ < δ and Nm
m

< 2b would imply
∣∣∣Sm(zm)−Sm(a)

m

∣∣∣ < ε. So to

prove Eq. B.4, we only need to show

P

(
‖zm − a‖ < δ,

Nm

m
< 2b

)
−→ 1. (B.5)

Since Nm
m

p.−→ b > 0 and zm
p.−→ a, P

(
Nm
m
< 2b

)
−→ 1 and P (‖zm − a‖ < δ) −→ 1

so that Eq. B.5 immediately follows.

Lemma B.2 Let N ∼ Pois(M), where M > 0 is a Poisson distribution pa-

rameter. Conditioned on N > 0, let X1, X2, . . . , XN be identically distributed

and pairwise uncorrelated with finite mean µ and finite variance σ2 (µ and

σ2 are constants that do not depend on N). Let SN =
∑N

i=1Xi with the

1We assume that xn, Nm and zm are defined on the same probability space.

81

convention S0 = 0. Then
SN
M

p.−−−−→
M→∞

µ.

Proof. By the tower property,

E
[SN
M

]
= E

[
E
[SN
M
| N
]]

=
E[N]

M
µ = µ.

By the law of total variance,

Var
(SN
M

)
= Var

(
E
[SN
M
| N
])

+ E
[
Var
(SN
M
| N
)]

= Var
(N
M
µ
)

+ E
[N
M2

σ2
]

=
µ2 + σ2

M
.

Since µ2 + σ2 is finite, by Markov’s inequality we have for all ε > 0,

P

(∣∣∣SN
M
− µ

∣∣∣ > ε

)
≤ Var

(SN
M

)
ε−2 =

µ2 + σ2

Mε2
M→∞−−−−→ 0.

Hence, SN
M

p.−→ µ as desired.

Lemma B.3 Suppose g is a real-valued function uniformly continuous on

S ⊆ R. Let φ(x, y) be an S-valued function continuous at y = a uniformly

in x ∈ Ω. Then the composite function g
(
φ(x, y)

)
is continuous at y = a

uniformly in x ∈ Ω.

Proof. Since g is uniformly continuous on S, for any ε > 0, there exists δ > 0

such that for all x1, x2 ∈ S with |x1− x2| < δ, |g(x1)− g(x2)| < ε. Since φ is

continuous at y = a uniformly in x ∈ Ω, by definition there exists ξ > 0 such

that for all y with ‖y− a‖ < ξ and all x ∈ Ω, we have |φ(x, y)−φ(x, a)| < δ,

which implies |g
(
φ(x, y)

)
− g
(
φ(x, a)

)
| < ε. Thus, g

(
φ(x, y)

)
is continuous

at y = a uniformly in x ∈ Ω.

Lemma B.4 Suppose the partial derivative ∂φ(x, y)/∂y exists on D = {(x, y) |
y = a, x ∈ Ω} and is bounded on D. Then φ(x, y) is continuous at y = a

uniformly in x ∈ Ω.

Proof. Since ∂yφ exists on D, lim
y→a

φ(x,y)−φ(x,a)
y−a = ∂yφ(x, a) for all x ∈ Ω. Since

∂yφ(x, a) is bounded on x ∈ Ω, there exists δ > 0 and C > 0 such that for

82

any y with |y − a| < δ and any x ∈ Ω, |φ(x, y) − φ(x, a)| ≤ C|y − a|. As a

result, for any ε > 0, if we take ξ = min(δ, ε
C

), then for any y with |y−a| < ξ

and any x ∈ Ω,

|φ(x, y)− φ(x, a)| ≤ C|y − a| < Cξ ≤ C
ε

C
= ε.

Hence, φ(x, y) is continuous at y = a uniformly in x ∈ Ω.

Now we prove the theorem (Theorem B.1) as follows.

Without loss of generality, we assume Vbox = Minit so that the propor-

tionality constant in Eq. 2.66 is one. For notational brevity, we omit the

subscript of Minit so that Vbox = Minit = M . Since there is one initial source

by Assumption B.1, we have N ∼ Pois(M), which is clear from Eq. 2.64.

Further define

St :=

0, N = 0,
N∑
i=1

G(Rt,i), N > 0,
(B.6)

Ft :=

(
3φ−1

4π

)
exp

(
−

t−1∑
τ=0

Sτ∆t

M

)[
1− exp

(
−St∆t

M

)](
St
M

)−1

, (B.7)

with the convention
t−1∑
τ=0

(•) = 0 if t = 0. With some algebra, it can be

shown that the gas-partitioning dynamics (Eq. B.1, Eq. B.2 and Eq. B.3) is

equivalent to

φt = φt−1exp
(
−∆t

St
M

)
, (B.8)

Rt+1,i = 3

√
(Rt,i)3 + FtG(Rt,i), i = 1, 2, . . . , N. (B.9)

Since the particle volume x0,i (= V0,i) is lognormally-distributed (see Eq. 2.65),

the particle radius R0,i is also lognormal. As a result, G(R0,i) has a finite

second moment. Note that G(R0,i) (i = 1, 2, . . . , N) are i.i.d. given positive

N and they are always positive. Consequently, by Lemma B.2,

S0

M

p.−−−−→
M→∞

E
[
G(R0,1)

]
> 0. (B.10)

83

Recursively applying Eq. B.8, we have

φt = φ−1exp
(
−∆t

S0

M

)
exp
(
−∆t

S1

M

)
. . . exp

(
−∆t

St
M

)
.

Since φ−1 is a constant, to prove φt converges to a constant in probabil-

ity, we only need to show St
M

converges to a constant in probability for all

t = 0, 1, . . . , T thanks to the continuous mapping theorem. With Eq. B.10,

it suffices to show the following statement: if S0

M
, S1

M
, . . . , St

M
all converge to

some positive constants in probability, then St+1

M
also converges to a positive

constant in probability.

From Eq. B.9, it is clear Rt+1,i is a function of R0,i, F0, F1, . . . , Ft. As a

result, we can write

Rt+1,i = Ht(R0,i, F0, F1, . . . , Ft) (B.11)

for some Ht. Define zt := (F0, F1, . . . , Ft). Then Eq. B.6 becomes

St+1(zt) =

0, N = 0,
N∑
i=1

G
(
Ht(R0,i, zt)

)
, N > 0.

By Lemma B.1, in order to show St+1(zt)
M

converges to a positive constant in

probability, it suffices to verify the following conditions:

1. N
M

p.−→ 1 as M →∞.

2. zt
p.−→ at as M →∞, where at is a constant vector ∈ Rt+1.

3. St+1(at)
M

p.−→ Ct as M →∞, where Ct is a positive constant.

4. G
(
Ht(x, zt)

)
is continuous at zt = at uniformly in x > 0.

Condition 1 is a trivial corollary of Lemma B.2 by setting all X to 1.

Since S0

M
, S1

M
, . . . , St

M
all converge to some positive constants in probabil-

ity, by the continuous mapping theorem, F0, F1, . . . , Ft all converge to some

(positive) constants, say ω0, ω1 . . . ωt, in probability (Ft is defined in Eq. B.7).

Elementwise convergence in probability implies convergence of the random

vector in probability. Now letting at = (ω0, ω1, . . . , ωt) gives Condition 2.

84

Using simple induction, it is easy to check that G
(
Ht(R0,i, at)

)
has finite

second moment. Because G
(
Ht(R0,i, at)

)
(i = 1, 2, . . . , N) are i.i.d. condi-

tioned on positive N , we have that St+1(at)
M

p.−→ E
[
G
(
Ht(R0,1, at)

)]
> 0 by

Lemma B.2. This gives Condition 3.

Function G in Eq. B.3 is continuous on [0,+∞) and has the property that

limx→∞
(
G(x) − (ax + b)

)
= 0 for some a, b ∈ R. Since ax + b is uniformly

continuous on [0,+∞), G is also uniformly continuous on [0,+∞). Hence, by

Lemma B.3, to show Condition 4 we only need to show Ht(x, zt) is continuous

at zt = at uniformly in x > 0. To show this, we will use induction.

First note that by Eq. B.9 and the definition of Ht in Eq. B.11, H0(x, z0) =
3
√
x3 + z0G(x). Consequently, the partial derivative is d(x) := ∂H0

∂z0

∣∣∣
z0=a0

=

1
3

(
x3 + a0G(x)

)− 2
3G(x). Since G(x) ∼ O(x) as x → ∞, by observation

we have limx→0+ d(x) = limx→∞ d(x) = 0. Note that d is continuous on

(0,+∞). Hence, d must be bounded on (0,+∞). By Lemma B.4, H0(x, z0)

is continuous at z0 = a0 uniformly in x > 0.

To complete the induction, now we only need to show the following state-

ment: If Ht(x, zt) is continuous at zt = at uniformly in x > 0, then Ht+1(x, zt+1)

is also continuous at zt+1 = at+1 uniformly in x > 0. Now fix an arbitrary

ε > 0.

By Eq. B.9, Eq. B.11 and using the triangle inequality, we have

|Ht+1(x, zt+1)−Ht+1(x, at+1)|

=

∣∣∣∣ 3

√(
Ht(x, zt)

)3
+ Ft+1G

(
Ht(x, zt)

)
− 3

√(
Ht(x, at)

)3
+ ωt+1G

(
Ht(x, at)

)∣∣∣∣
≤
∣∣∣∣ 3

√(
Ht(x, zt)

)3
+ Ft+1G

(
Ht(x, zt)

)
− 3

√(
Ht(x, zt)

)3
+ ωt+1G

(
Ht(x, zt)

)∣∣∣∣
+

∣∣∣∣ 3

√(
Ht(x, zt)

)3
+ ωt+1G

(
Ht(x, zt)

)
− 3

√(
Ht(x, at)

)3
+ ωt+1G

(
Ht(x, at)

)∣∣∣∣ .
(B.12)

Applying the same technique that is for establishing the first step of induction

(i.e., the step of showing uniform continuity of H0(x, z0)), we have that there

exists δ1 > 0 such that for any zt+1 with ‖zt+1 − at+1‖ < δ1 (which implies

85

|Ft+1 − ωt+1| < δ1) and for any x > 0,∣∣∣∣ 3

√(
Ht(x, zt)

)3
+ Ft+1G

(
Ht(x, zt)

)
− 3

√(
Ht(x, zt)

)3
+ ωt+1G

(
Ht(x, zt)

)∣∣∣∣ < ε

2
.

(B.13)

Note that 3
√
x3 + ωt+1G(x) is uniformly continuous on (0,+∞) (this can

be seen using exactly the same arguments that we have established for the

uniform continuity of function G). Also note that by our induction condition,

Ht(x, zt) is continuous at zt = at uniformly in x > 0. As a result, by using

Lemma B.3, we have that 3

√(
Ht(x, zt)

)3
+ ωt+1G

(
Ht(x, zt)

)
is continuous at

zt = at uniformly in x > 0. Hence, there exists δ2 > 0 such that for any zt+1

with ‖zt+1 − at+1‖ < δ2 (which implies ‖zt − at‖ < δ2) and for any x > 0,∣∣∣∣ 3

√(
Ht(x, zt)

)3
+ ωt+1G

(
Ht(x, zt)

)
− 3

√(
Ht(x, at)

)3
+ ωt+1G

(
Ht(x, at)

)∣∣∣∣ < ε

2
.

(B.14)

Now take δ = min(δ1, δ2). Substituting Eqs. B.13 and B.14 into Eq. B.12,

we have for any zt+1 with ‖zt+1 − at+1‖ < δ and for any x > 0,

|Ht+1(x, zt+1)−Ht+1(x, at+1)| < ε

2
+
ε

2
= ε.

This completes the induction of Condition 4 and so also the proof of the

theorem.

86

APPENDIX C

ALGORITHMS IN NUMERICAL STUDY 2

Algorithm 5 shows the particle-resolved aerosol model in the second numeri-

cal example. A more detailed description of the model is available in [14, 34].

Algorithm 5 Particle-resolved aerosol model

1: t← 0, box← ∅ and set T
2: Add Ni particles for each initial source (Eq. 2.64, Eq. 2.65)
3: Initialize gas species concentrations and box volume Vbox (Eq. 2.66)
4: while t ≤ T do
5: Update gas concentrations for gas emission and dilution
6: Add Ne,t particles for each emission source (Eq. 2.67, Eq. 2.68)
7: Randomly remove Nr,t particles for dilution-out process (Eq. 2.71)
8: Add Nd,t particles for each dilution source (Eq. 2.69, Eq. 2.70)
9: Scale Vbox for temperature and humidity adjustment

10: Gas-particle partitioning and gas chemistry
11: Double or halve number of particles and Vbox for efficient computation

12: if t ∈ {output times} then
13: Output total mass concentration and scattering coefficient

(Eq. 2.72)
14: end if
15: t← t+ 1
16: end while

Algorithm 6 is used for partitioning the training data in the second numer-

ical example. The algorithm groups the training data so that the samples in

each partition have contiguous creation times and different partitions have

roughly the same sizes. The parameter Np is used to control the partition

sizes. To ensure sufficient training samples for each MARS model, we set

Np = 5000 in our numerical experiments.

87

Algorithm 6 Partition training samples by particle creation times

1: Set Np to control number of samples in a partition
2: if the total number of samples < Np then
3: The whole data is the only partition
4: else
5: Form the first partition by grouping samples with creation time =

0, 1, . . . until the size of the group ≥ Np

6: Keep forming the remaining partitions until the data is exhausted
7: if the size of the last partition < Np then
8: Join the last two partitions to form a new partition
9: end if

10: end if

88

APPENDIX D

COMPUTATION OF CONTROL VARIATES
MEAN FOR NUMERICAL STUDY 2

It can be shown that the step of doubling or halving (Line 11 of Alg. 5)

does not change the mean of control variates. As a result, without loss of

generality we can assume there is no doubling or halving for the aerosol

simulation. Consequently, (Vbox)t is now a deterministic function of time t,

and the mean of control variates is given by

Et =
1

(Vbox)t
E
[Nt∑
i=1

h(xτi,i, τi; βt) | βt
]
, (D.1)

where the function h is a piecewise MARS model (see Section 2.7.2). Parti-

tioning the summation in Eq. D.1 based on the creation time and the particle

source, we have

Et =
1

(Vbox)t

{ ∑
initial sources

E
[∑

i

h(x0,i, 0; βt) | βt
]

+
t∑

τ=0

(∑
emission sources

E
[∑

i

h(xτ,i, τ ; βt) | βt
]

+
∑

dilution sources

E
[∑

i

h(xτ,i, τ ; βt) | βt
])}

.

Now it suffices to show the computation of the sum of the conditional ex-

pectations for an arbitrary creation time and an arbitrary source. Without

loss of generality, consider the particles with creation time τ from the first

emission source, and denote the number of these particles at time t to be

Ne,t with t ≥ τ . Since particles with the same creation time and the same

emission source are identically distributed conditioned on the learned model,

89

we have

E
[Ne,t∑
i=1

h(xτ,i, τ ; βt) | βt
]

= E
[
Ne,t | βt

]
E
[
h(xτ,1, τ ; βt) | βt

]
. (D.2)

Denote the mean number of particles of the first emission source at time τ to

be Me,τ , which is equal to the product of λemit(τ) and Vbox (see Eq. 2.67). At

each time t ≥ τ , there is a probability of pdil,t for each particle to be removed.

As a result, we have E
[
Ne,t

]
= Me,τΠ

t
j=τ (1− pdil,j). Since the learning phase

and the evaluation phase are independent, E
[
Ne,t | βt

]
= E

[
Ne,t

]
. This

completes the computation of the first expectation on the right hand side

of Eq. D.2. For the second expectation, note that xτ,1 is the product of

a constant vector and a lognormal random variable (see Eq. 2.68). Conse-

quently, E
[
h(xτ,1, τ ; βt) | βt

]
is essentially the expectation of some function

of a lognormal random variable. In this study, we use numerical quadrature

to compute this expectation.

90

APPENDIX E

OPTIMIZATION BENCHMARK
FUNCTIONS

In this section we give the expression for each optimization benchmark func-

tion in Table 3.2.

1. Ackley function

f(x) = −a exp

−b
√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1), x ∈ Rd,

where d is the dimension, xi is the ith component of vector x, a = 20,

b = 0.2 and c = 2π.

2. Alpine function

f(x) =
d∑
i=1

|xi sin(xi) + 0.1xi|, x ∈ Rd,

where d is the dimension and xi is the ith component of vector x.

3. Griewank function

f(x) =
d∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
+ 1, x ∈ Rd,

where d is the dimension and xi is the ith component of vector x.

4. Levy function

f(x) = sin2(πw1) +
d−1∑
i=1

(wi − 1)2[1 + 10 sin2(πwi + 1)]

+ (wd − 1)2[1 + sin2(2πwd)],

91

where wi (i = 1, 2, . . . , d) is given by

wi = 1 +
xi − 1

4
.

Here d is the dimension and xi is the ith component of vector x.

5. SumPower function

f(x) =
d∑
i=1

|xi|i+1, x ∈ Rd,

where d is the dimension and xi is the ith component of vector x.

6. SixHumpCamel function

f(x1, x2) =

(
4− 2.1x2

1 +
x4

1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2

)
x2

2, x1, x2 ∈ R.

7. Schaffer function

f(x1, x2) = 0.5 +
sin2(x2

1 − x2
2)− 0.5

[1 + 0.001(x2
1 + x2

2)]2
, x1, x2 ∈ R.

8. Dropwave function

f(x1, x2) = −
1 + cos

(
12
√
x2

1 + x2
2

)
0.5(x2

1 + x2
2) + 2

, x1, x2 ∈ R.

9. Goldstein-Price function

f(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2

+ 3x2
2)][30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2

− 36x1x2 + 27x2
2)], x1, x2 ∈ R.

10. Rastrigin function

f(x) = 10d+
d∑
i=1

[x2
i − 10 cos(2πxi)], x ∈ Rd,

where d is the dimension and xi is the ith component of vector x.

92

11. Hartmann6 function

f(x) = −
4∑
i=1

αi exp

(
−

6∑
j=1

Aij(xj − Pij)2

)
, x ∈ R6,

where xj is the jth component of vector x, αi is the ith component

of coefficient vector α, Aij is the ith row and jth column of coefficient

matrix A and Pij is the ith row and jth column of coefficient matrix P .

The coefficients α, A and P are given by

α = [1, 1.2, 3, 3.2]T ,

A =

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 ,

P = 10−4

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

 .

12. PowerSum4 function

f(x) =
4∑
i=1

[(
4∑
i=1

xij

)
− bi

]2

, x, b ∈ R4,

where vector b = [8, 18, 44, 114]T and xj is the jth component of vector

x.

93

Ackley Alpine

Griewank Levy

SumPower SixHumpCamel

Figure E.1: Surface plots for benchmark functions Ackley, Alpine,
Griewank, Levy, SumPower, and SixHumpCamel.

94

Schaffer Dropwave

Goldstein Rastrigin

Figure E.2: Surface plots for benchmark functions Schaffer, Dropwave,
Goldstein-Price and Rastrigin.

95

REFERENCES

[1] J. Garcke and R. Iza-Teran. Machine learning approaches for repositories
of numerical simulation results. In 10th European LS-DYNA Conference,
volume 2015, 2015.

[2] F. Viana and R. Haftka. Surrogate-based optimization with parallel
simulations using the probability of improvement. In 13th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, page 9392, 2010.

[3] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Re-
current neural network based language model. In Eleventh Annual Con-
ference of the International Speech Communication Association, 2010.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Infor-
mation Processing Systems, pages 1097–1105, 2012.

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. Van den Driessche, T. Graepel, and D. Hassabis.
Mastering the game of Go without human knowledge. Nature, 550:354,
oct 2017.

[6] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining
outliers from large data sets. In ACM Sigmod Record, volume 29, pages
427–438. ACM, 2000.

[7] T. Gao and J. R. Kitchin. Modeling palladium surfaces with density
functional theory, neural networks and molecular dynamics. Catalysis
Today, 2018.

[8] M. Hughes, J. K. Kodros, J. R. Pierce, M. West, and N. Riemer. Machine
learning to predict the global distribution of aerosol mixing state metrics.
Atmosphere, 9(1):15, 2018.

[9] S. Rasp, M. S. Pritchard, and P. Gentine. Deep learning to represent sub-
grid processes in climate models. Proceedings of the National Academy
of Sciences, 115(39):9684–9689, 2018. doi: 10.1073/pnas.1810286115.

96

[10] L. Ladický, S. Jeong, B. Solenthaler, M. Pollefeys, and M. Gross. Data-
driven fluid simulations using regression forests. ACM Trans. Graph., 34
(6):199:1–199:9, October 2015. ISSN 0730-0301. doi: 10.1145/2816795.
2818129.

[11] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating
Eulerian fluid simulation with convolutional networks. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70, pages 3424–3433. PMLR,
06–11 Aug 2017.

[12] Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodŕıguez. Certified reduced
basis methods and output bounds for the harmonic Maxwell’s equations.
SIAM Journal on Scientific Computing, 32(2):970–996, 2010.

[13] D. E. Breen, D. H. House, and M. J. Wozny. A particle-based model
for simulating the draping behavior of woven cloth. Textile Research
Journal, 64(11):663–685, 1994. doi: 10.1177/004051759406401106.

[14] N. Riemer, M. West, R. A. Zaveri, and R. C. Easter. Simulating the
evolution of soot mixing state with a particle-resolved aerosol model.
Journal of Geophysical Research: Atmospheres, 114(D9):D09202, 2009.
doi: 10.1029/2008JD011073.

[15] D. Morale, V. Capasso, and K. Oelschlager. An interacting parti-
cle system modelling aggregation behavior: from individuals to pop-
ulations. Journal of Mathematical Biology, 50(1):49–66, 2005. doi:
10.1007/s00285-004-0279-1.

[16] B. Giera, L. A. Zepeda-Ruiz, A. J. Pascall, J. D. Kuntz, C. M. Spadac-
cini, and T. H. Weisgraber. Mesoscale particle-based model of elec-
trophoresis. Journal of The Electrochemical Society, 162(11):D3030–
D3035, 2015. doi: 10.1149/2.0161511jes.

[17] D. O. Potyondy and P. A. Cundall. A bonded-particle model for rock.
International Journal of Rock Mechanics and Mining Sciences, 41(8):
1329–1364, 2004. doi: 10.1016/j.ijrmms.2004.09.011.

[18] Z. P. Bažant, M. R. Tabbara, M. T. Kazemi, and G. Pijaudier-Cabot.
Random particle model for fracture of aggregate or fiber composites.
Journal of Engineering Mechanics, 116(8):1686–1705, 1990. doi: 10.
1061/(ASCE)0733-9399(1990)116:8(1686).

[19] R.E.L. DeVille, N. Riemer, and M. West. Weighted Flow Algorithms
(WFA) for stochastic particle coagulation. Journal of Computational
Physics, 230(23):8427–8451, 2011. doi: 10.1016/j.jcp.2011.07.027.

97

[20] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo
Methods. pages 347–380. John Wiley & Sons, Inc., Hoboken, NJ, 2011.
ISBN 9781118014967. doi: 10.1002/9781118014967.

[21] P. Glasserman. Monte Carlo Methods in Financial Engineering. vol-
ume 53 of Stochastic Modelling and Applied Probability, pages 185–279.
Springer New York, New York, NY, 2003. ISBN 978-1-4419-1822-2. doi:
10.1007/978-0-387-21617-1.

[22] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction.
MIT press, 2018.

[23] R. Ranganath, S. Gerrish, and D. Blei. Black Box Variational Infer-
ence. In Samuel Kaski and Jukka Corander, editors, Proceedings of the
17th International Conference on Artificial Intelligence and Statistics,
volume 33 of Proceedings of Machine Learning Research, pages 814–822,
Reykjavik, Iceland, 22–25 Apr 2014. PMLR.

[24] S. M. T. Ehrlichman and S. G. Henderson. Adaptive control variates for
pricing multi-dimensional American options. Journal of Computational
Finance, 11(1):65–91, 2007. doi: 10.21314/JCF.2007.167.

[25] S. G. Henderson and B. Simon. Adaptive simulation using perfect con-
trol variates. Journal of Applied Probability, 41(3):859–876, 2004. doi:
10.1239/jap/1091543430.

[26] S. Kim and S. G. Henderson. Adaptive control variates for finite-horizon
simulation. Mathematics of Operations Research, 32(3):508–527, 2007.
doi: 10.1287/moor.1070.0251.

[27] B. Jourdain. Adaptive variance reduction techniques in finance. In H. Al-
brecher, W. J. Runggaldier, and W. Schachermayer, editors, Advanced
Financial Modelling, number 8 in Radon Series on Computational and
Applied Mathematics, pages 205–222. Walter de Gruyter, 2009. ISBN
9783110213140. doi: 10.1515/9783110213140.

[28] P. A. Maginnis, M. West, and G. E. Dullerud. Application of variance
reduction techniques for tau-leaping systems to particle filters. In Pro-
ceedings of the 51st IEEE Conference on Decision and Control (CDC
2012), pages 6683–6689. IEEE, 2012.

[29] P. A. Maginnis, M. West, and G. E. Dullerud. Exact simulation of
continuous time markov jump processes with anticorrelated variance re-
duced monte carlo estimation. In Proceedings of the 53rd IEEE Con-
ference on Decision and Control (CDC 2014), pages 3401–3407. IEEE,
2014.

98

[30] P. A. Maginnis, M. West, and G. E. Dullerud. Variance-reduced simula-
tion of lattice discrete-time markov chains with applications in reaction
networks. Journal of Computational Physics, 322:400–414, 2016.

[31] M. Benaim and J.-Y. Le Boudec. A class of mean field interaction models
for computer and communication systems. Performance Evaluation, 65
(11):823–838, 2008. doi: 10.1016/j.peva.2008.03.005.

[32] R. Carmona, F. Delarue, and A. Lachapelle. Control of McKean-Vlasov
dynamics versus mean field games. Mathematics and Financial Eco-
nomics, 7(2):131–166, 2013. doi: 10.1007/s11579-012-0089-y.

[33] A. Chattopadhyay, S. Das Sarma, and A. J. Millis. Transition temper-
ature of ferromagnetic semiconductors: a dynamical mean field study.
Phys. Rev. Lett., 87:227202, Nov 2001. doi: 10.1103/PhysRevLett.87.
227202.

[34] R. A. Zaveri, J. C. Barnard, R. C. Easter, N. Riemer, and M. West.
Particle-resolved simulation of aerosol size, composition, mixing state,
and the associated optical and cloud condensation nuclei activation
properties in an evolving urban plume. Journal of Geophysical Research:
Atmospheres, 115(D17), 2010. doi: 10.1029/2009JD013616.

[35] Y. Cao, M. Y. Hussaini, T. Zang, and A. Zatezalo. A variance reduction
method based on sensitivity derivatives. Applied Numerical Mathemat-
ics, 56(6):800–813, 2006. doi: 10.1016/j.apnum.2005.06.010.

[36] D. J. Aldous. Deterministic and stochastic models for coalescence (ag-
gregation and coagulation): a review of the mean-field theory for prob-
abilists. Bernoulli, 5(1):3–48, 1999. doi: 10.2307/3318611.

[37] R. I. Jennrich. Asymptotic properties of non-linear least squares estima-
tors. The Annals of Mathematical Statistics, 40(2):633–643, 1969. doi:
10.1214/aoms/1177697731.

[38] T. Amemiya. Advanced Econometrics. Harvard University Press, Cam-
bridge, MA, 1985. ISBN 9780674005600.

[39] J. Ching, N. Riemer, and M. West. Black carbon mixing state impacts
on cloud microphysical properties: effects of aerosol plume and environ-
mental conditions. Journal of Geophysical Research: Atmospheres, 121
(10):5990–6013, 2016. doi: 10.1002/2016JD024851.

[40] L. Fierce, T. C. Bond, S. E. Bauer, F. Mena, and N. Riemer. Black
carbon absorption at the global scale is affected by particle-scale diver-
sity in composition. Nature Communications, 7, 2016. doi: 10.1038/
ncomms12361.

99

[41] J. H. Friedman. Multivariate adaptive regression splines. The Annals
of Statistics, 19(1):1–67, 1991. doi: 10.1214/aos/1176347963.

[42] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New
York, NY, 2009. ISBN 978-0-387-84857-0. doi: 10.1007/b94608.

[43] S. Milborrow. Derived from mda:mars by T. Hastie and R. Tibshirani.
earth: Multivariate Adaptive Regression Splines, 2011. URL http://

CRAN.R-project.org/package=earth. R package.

[44] S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury. Simulation opti-
mization: a review of algorithms and applications. Annals of Operations
Research, 240(1):351–380, May 2016.

[45] P. Rakshit, A. Konar, and S. Das. Noisy evolutionary optimization
algorithms-a comprehensive survey. Swarm and Evolutionary Computa-
tion, 2016.

[46] P. Köchel and U. Nieländer. Simulation-based optimisation of multi-
echelon inventory systems. International Journal of Production Eco-
nomics, 93:505–513, 2005.

[47] P. Prakash, G. Deng, M. C. Converse, J. G. Webster, D. M. Mahvi, and
M. C. Ferris. Design optimization of a robust sleeve antenna for hepatic
microwave ablation. Physics in Medicine and Biology, 53(4):1057, 2008.

[48] J. Xie, P. I. Frazier, S. Sankaran, A. Marsden, and S. Elmohamed. Op-
timization of computationally expensive simulations with Gaussian pro-
cesses and parameter uncertainty: Application to cardiovascular surgery.
In Communication, Control, and Computing (Allerton), 2012 50th An-
nual Allerton Conference on, pages 406–413. IEEE, 2012.

[49] P. A. Romero, A. Krause, and F. H. Arnold. Navigating the protein
fitness landscape with Gaussian processes. Proceedings of the National
Academy of Sciences, 110(3):E193–E201, 2013.

[50] X. M. Chen, L. Zhang, X. He, C. Xiong, and Z. Li. Surrogate-based
optimization of expensive-to-evaluate objective for optimal highway toll
charges in transportation network. Computer-Aided Civil and Infras-
tructure Engineering, 29(5):359–381, 2014.

[51] C. Osorio and M. Bierlaire. A simulation-based optimization approach
to perform urban traffic control. In TRISTAN VII, Triennial Symposium
on Transportation Analysis, number EPFL-TALK-152410, 2010.

100

[52] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian opti-
mization of machine learning algorithms. In Advances in Neural In-
formation Processing Systems, pages 2951–2959, 2012. URL https:

//github.com/JasperSnoek/spearmint.

[53] J. Wu and P. Frazier. The parallel knowledge gradient method for batch
Bayesian optimization. In Advances in Neural Information Processing
Systems, pages 3126–3134, 2016.

[54] Y. Wang, J.-Y. Audibert, and R. Munos. Algorithms for infinitely many-
armed bandits. In Advances in Neural Information Processing Systems,
pages 1729–1736, 2009.

[55] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed bandits.
Journal of Machine Learning Research, 12(May):1655–1695, 2011.

[56] H. Robbins and S. Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, pages 400–407, 1951.

[57] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of
a regression function. The Annals of Mathematical Statistics, 23(3):
462–466, 1952.

[58] J. C. Spall. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Transactions on Automatic
Control, 37(3):332–341, 1992.

[59] J. C. Spall. Introduction to stochastic search and optimization: estima-
tion, simulation, and control, volume 65. John Wiley & Sons, 2005.

[60] S. Taghiyeh and J. Xu. A new particle swarm optimization algorithm for
noisy optimization problems. Swarm Intelligence, 10(3):161–192, 2016.

[61] R. R. Barton and J. S. Ivey Jr. Nelder-mead simplex modifications for
simulation optimization. Management Science, 42(7):954–973, 1996.

[62] R. C. Ball, T. M. A. Fink, and N. E. Bowler. Stochastic annealing.
Physical Review Letters, 91(3):030201, 2003.

[63] F. Neri and A. Caponio. A differential evolution for optimisation in
noisy environment. International Journal of Bio-Inspired Computation,
2(3-4):152–168, 2010.

[64] E. J. Anderson and M. C. Ferris. A direct search algorithm for optimiza-
tion with noisy function evaluations. SIAM Journal on Optimization,
11(3):837–857, 2001.

101

[65] A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in un-
constrained nonlinear optimization without derivatives. Mathematical
Programming, 79(1):397–414, 1997.

[66] R. G. Regis and C. A. Shoemaker. A stochastic radial basis function
method for the global optimization of expensive functions. INFORMS
Journal on Computing, 19(4):497–509, 2007.

[67] R. T. Haftka, D. Villanueva, and A. Chaudhuri. Parallel surrogate-
assisted global optimization with expensive functions–a survey. Struc-
tural and Multidisciplinary Optimization, 54(1):3–13, 2016.

[68] E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis. Parallel Gaussian
process optimization with upper confidence bound and pure exploration.
In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 225–240. Springer, 2013.

[69] T. Desautels, A. Krause, and J. W. Burdick. Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization. The
Journal of Machine Learning Research, 15(1):3873–3923, 2014.

[70] A. Shah and Z. Ghahramani. Parallel predictive entropy search for
batch global optimization of expensive objective functions. In Advances
in Neural Information Processing Systems, pages 3330–3338, 2015.

[71] J. Azimi, A. Fern, and X. Z. Fern. Batch Bayesian optimization via
simulation matching. In Advances in Neural Information Processing
Systems, pages 109–117, 2010.

[72] J. González, Z. Dai, P. Hennig, and N. Lawrence. Batch Bayesian op-
timization via local penalization. In Artificial Intelligence and Statis-
tics, pages 648–657, 2016. URL https://github.com/SheffieldML/

GPyOpt.

[73] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning, volume 1. MIT press Cambridge, 2006.

[74] J. Quinonero-Candela and C. E. Rasmussen. Analysis of some methods
for reduced rank Gaussian process regression. In Switching and Learning
in Feedback Systems, pages 98–127. Springer, 2005.

[75] R. G. Regis and C. A. Shoemaker. Parallel stochastic global optimization
using radial basis functions. INFORMS Journal on Computing, 21(3):
411–426, 2009.

[76] R. G. Regis. Trust regions in Kriging-based optimization with expected
improvement. Engineering Optimization, 48(6):1037–1059, 2016.

102

[77] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository,
2017. URL https://archive.ics.uci.edu/ml.

[78] Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of
handwritten digits. URL http://yann.lecun.com/exdb/mnist/.

[79] J. Wu, M. Poloczek, A. G. Wilson, and P. Frazier. Bayesian optimization
with gradients. In Advances in Neural Information Processing Systems,
pages 5267–5278, 2017.

[80] Tensorflow tutorial. URL https://www.tensorflow.org/versions/

r1.1/get_started/mnist/beginners.

[81] B. L. Nelson, J. Swann, D. Goldsman, and W. Song. Simple procedures
for selecting the best simulated system when the number of alternatives
is large. Operations Research, 49(6):950–963, 2001.

[82] E. C. Ni, S. R. Hunter, and S. G. Henderson. Ranking and selection in
a high performance computing environment. In Simulation Conference
(WSC), 2013 Winter, pages 833–845. IEEE, 2013.

[83] R. A. Zaveri, R. C. Easter, J. D. Fast, and L. K. Peters. Model for
simulating aerosol interactions and chemistry (MOSAIC). Journal of
Geophysical Research: Atmospheres, 113(D13), 2008. doi: 10.1029/
2007JD008782.

103

