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Abstract

In part 1, we propose a pointwise inference algorithm for high-dimensional linear models with time-varying

coefficients and dependent error processes. The method is based on a novel combination of the nonparamet-

ric kernel smoothing technique and a Lasso bias-corrected ridge regression estimator using a bias-variance

decomposition to address non-stationarity in the model. A hypothesis testing setup with familywise error

control is presented alongside synthetic data and a real application to fMRI data for Parkinson’s disease.

In part 2, we propose an algorithm for covariance and precision matrix estimation high-dimensional

transpose-able data. The method is based on a Kronecker product approximation of the graphical lasso and

the application of the alternating directions method of multipliers minimization. A simulation example is

provided.

ii



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Blessing of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 High-Dimensional Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Lasso and Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Statistical Inference in High-Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Multi-Sample Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Lasso Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Time-Varying High-Dimensional Linear Models . . . . . . . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Notations and Preliminary Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Asymptotic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Real Data Example - Learning Brain Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3 Kronecker Structured Covariance Estimation . . . . . . . . . . . . . . . . . . . 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 The Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The Kronecker Covariance Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The Kronecker Graphical Lasso for One Group . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 The Joint Kronecker Graphical Lasso for Multiple Groups . . . . . . . . . . . . . . . . . . . . 40

3.4.1 The JKGLasso Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.3 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.4 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.5 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendix B References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii



Chapter 1

Introduction

Between 2005 and 2015, humanity watched its aggregate data multiply 10-fold every 2 years, a pattern driven

by automated data collection and advances in technology such as the falling cost of digital storage. It has

become cheaper and easier to gather everything than to consider what specific data to target and collect.

We cast increasingly larger nets in search of the golden fish to explain some phenomena of interest. Online

retailers log thousands of details about their customers to provide more personalized services. Genomics

and fMRI machines produce massive parallel datasets in an effort to better understand patients and disease.

Financial institutions collect vast arrays of data to produce better alpha for their investors. Over time, we

have seen the fields of technology, medicine, finance, and others embrace the collection and analysis of large

scale data.

Such an explosion has resulted in friction with traditional statistical theory, where it is typically assumed

that one is working with a large number of samples but only a handful of well chosen, relevant variables.

Since modern data collection relinquishes domain expertise in favor of a systematic approach by storing all

available information about customers, patients, and subjects, we are left with a large number of variables

rather than the handful from classical statistics. These numbers skyrocket even higher when we introduce

functions of existing variables such as interaction effects or n-tuples. Therefore, there is great interest in the

statistical analysis of problems where the number of variables or dimensions (p) in data exceeds its sample

size (n), a domain referred to as high-dimensional statistics.

1.1 The Curse of Dimensionality

The primary obstacle in high-dimensional statistics is the curse of dimensionality, a term coined by Richard

Bellman to describe the rapid growth of an optimization problem’s complexity with dimensionality, originally

in the context of exhaustive enumeration in a product space. [Bellman, 1961]

In nonparametric statistics, for example, we may have n i.i.d. vectors of predictor variables X1, ..., Xn ∈
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Rp and the corresponding responses Y1, ..., Yn ∈ R given by

Yi = f(Xi) + ei

where f is L-Lipschitz and ei ∼ i.i.d. N (0, 1). Let F be the functional class of all Lipschitz func-

tions on [0, 1]p and f̂ be some estimator of f using the observed responses. Minimax decision theory

[Ibragimov and Khasminskii, 1981] shows that for any estimator f̂ , we have

sup
f∈F

E
(
f̂(X)− f(X)

)2
≥ Cn−2/(2+p) , n→∞

where C is a constant which depends on the Lipschitz constant L. This very slow rate of convergence in

high-dimensions is the price of the curse of dimensionality. In order to estimate f to an accuracy of ε in the

example above, we would need O
(
ε−(2+p)/2

)
samples. Therefore, the appetite for data grows exponentially

with the number of variables p.

1.2 The Blessing of Dimensionality

The blessing of dimensionality is driven by the concentration of measure phenomenon. Generally speaking,

the concentration of measures states that Lipschitz functions such as the average of bounded, independent

random variables are concentrated around their expectations.

Take, for example, the concentration of Lipschitz functions of Gaussian random variables [Donoho, 2000].

Let (X1, ..., Xn) be a vector of i.i.d. Gaussian random variables and f : Rp → R is L-Lipschitz with respect

to the l2 metric. Then the random variable f(X)− E[f(X)] is sub-Gaussian such that

P
[
|f(X)− E[f(X)]| ≥ ε

]
≤ 2 exp

(
− ε2

2L2

)

Therefore, a Lipschitz function of standard Gaussian random variables is nearly constant and the tails, at

worst, behave like a scalar Gaussian variable with variance L2, regardless of dimension.

Similar tools exist for the concentrations of product measures with respect to l1 and Hamming metrics,

uniform measures over the unit sphere surface with respect to l2, and others. These concentrations of

measures are heavily used to establish theoretical results in high-dimensional statistics, most commonly for

the bounding of error probabilities.
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1.3 High-Dimensional Linear Regression

In the traditional linear regression model, we are given predictor measurements X1, ..., Xn ∈ Rp and the

responses Y1, ...Yn ∈ R to be modeled by

Y = Xβ + e

where X = (X>1 , ..., X
>
n )> ∈ Rn×p is the design matrix, Y ∈ Rn the response vector, e ∈ Rn the noise or

error vector, and β ∈ Rp the coefficient vector to be estimated. Typically, e is assumed to be independent

of X with mean zero.

To claim that the ordinary least squares (OLS) estimator has been well studied in low-dimensions would

be an understatement, but in the case where n > p, the OLS estimator can be written as

β̂OLS = (X>X)−1X>Y

This is well defined where the columns of X are linearly independent but this assumption clearly cannot

hold when p > n such that X>X is singular. Therefore the parameter estimation problem is ill-posed in

high-dimensions.

Furthermore in the simple case where ei are i.i.d. with variance σ2, the OLS linear regression estimator

has expected prediction error σ2 + pσ2/n with zero bias. Therefore, adding an additional variable Xp+1

contributes an extra σ2/n to the variance, regardless if said variable is linearly relevant (i.e. βp+1 = 0). We

can improve on the mean squared error (MSE) of our estimator by reducing the variance at the expense of

introducing bias, such as though shrinkage where coefficients are coerced towards zero. This is of particular

note in high-dimensions; While models may involve a large number of parameters such that p > n, there

often exists an underlying low-dimensional structure such as sparsity or smoothness which makes inference

a more realistic goal.

1.3.1 Ridge Regression

Regularization is a common tool used to address the issues of regression in high-dimensions which balances

a loss function such as squared error in the context of linear regression with regularization or penalization

to promote some underlying structure. Ridge regression [Hoerl and Kennard, 1970] is one of the simplest

forms of regularization for linear models, and its coefficients β̂Ridge ∈ Rp are defined by standardizing the
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columns of X and optimizing the following objective function

β̂Ridge = arg min
β∈Rp

1

2
‖Y −Xβ‖2 + λ‖β‖2 (1.1)

where λ ≥ 0 is a tuning parameter which controls the strength of shrinkage and the bias-variance tradeoff.

The case of λ = 0 corresponds to the ordinary linear regression estimator where we have no bias but large

variance. The case of λ =∞ shrinks all coefficients to β̂Ridge = 0, which has high bias but zero variance. In

the simple case where X is orthonormal, the shrinkage as a function of λ is given by

β̂Ridge =
β̂OLS
1 + λ

(1.2)

Furthermore, the existence property of the Ridge estimator guarantees the existence of some λ > 0 such

that the MSE of β̂Ridge is less than the MSE of β̂OLS . However, finding or choosing such an appropriate λ

is a somewhat contested topic, with cross-validation currently the most standard compromise.

A convenient property of the Ridge estimator is the differentiability of its objective function. As such,

it’s easy to obtain a closed form solution within the rowspace R(X).

β̂Ridge = (X>X) + λIp)
−1X>Y (1.3)

Bias(β̂Ridge) = −λ(X>X + λIp)
−1β (1.4)

Var(β̂Ridge) = σ2(X>X + λIp)
−1X>X(X>X + λIp)

−1 (1.5)

Therefore, the Ridge estimator β̂Ridge is asymptotically biased and not a consistent estimator of β. While its

distribution can be somewhat characterized, its bias still poses a challenge to performing statistical inference.

1.3.2 Lasso and Variable Selection

The Lasso [Tibshirani, 1996] also solves a similar penalized least squares regression problem using an l1

penalty, commonly with some assumption of sparsity.

β̂Lasso = arg min
β∈R[

1

2
‖Y −Xβ‖2 + λ‖β‖1 (1.6)

Unlike the Ridge regression, the Lasso’s objective function is not differentiable and its solution does not

necessarily have a closed form expression. However, there are many fast algorithms for obtaining the Lasso
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coefficients, and the effect of the regularization is essentially a soft-thresholding function.

Figure 1.1: A soft-thresholding function

Due to the nonlinear nature of the Lasso, its solution does not exist in the rowspace of X and its

distribution is difficult to characterize. Since the soft-thresholding effect coerces some coefficients to zero,

the Lasso effectively performs variable selection.

Let S0 = {j : βj 6= 0, j = 1, ..., p} denote the active set and Ŝ0 the estimated active set using a variable

selection technique such as the Lasso. The said method demonstrates model selection consistency if

P (Ŝ0 = S0)→ 1 p > n→∞ (1.7)

In the case of Lasso, model selection consistency requires a very strong set of assumptions on the design

matrix referred to as the irrepresentable condition and the beta-min condition. Roughly speaking, the

irrepresentable condition requires the columns of the design matrix X corresponding to the active set S0 to

be nearly orthogonal to columns of X corresponding to the inactive set SC
0 . As the name implies, the beta-

min condition imposes a nonzero lower bound to |βj |, j ∈ S0. We refer to [Meinshausen and Bühlman, 2006]

and [Zhao and Yu, 2006] for a more detailed study of these assumptions. The irrepresentable condition can

be relaxed to a restricted eigenvalue condition to obtain model screening consistency such that

P (Ŝ0 ⊇ S0)→ 1 p > n→∞ (1.8)

although the undesirable beta-min condition remains.

Furthermore, the Lasso yields an `2 consistent estimator [Meinshausen and Yu, 2009] under milder as-

sumptions with suitable λ �
√

log(p)/n, even when the variable selection assumptions are violated and the
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sparsity patterns cannot be recovered.

1.4 Statistical Inference in High-Dimensions

High-dimensional statistical theory has historically focused heavily on the estimation consistency, prediction

consistency, oracle inequalities, and variable selection. The assessment of uncertainty such as assigning

p-values in high-dimensional settings has remained an relatively poorly understood topic until only recently.

The primary measure of uncertainty discussed here will be the p-value in the context of hypothesis testing

for linear models. That is, for each j ∈ 1, ..., p, we are interested in testing

H0,j : βj = 0

Ha,j : βj 6= 0

We present several methods of assigning significance in high-dimensional linear models from current

literature.

1.4.1 Multi-Sample Splitting

Multi-sample splitting or selective inference [Meinshausen et al., 2009] is a general two-step method of per-

forming inference in high dimensions using a dimension reduction step and an inference in low-dimensions

step.

Given a high-dimensional dataset with n observations, multi sample splitting first partitions the indices

{1, ..., n} into two parts denoted I1 and I2 with |I1| = bn/2c, |I2| = dn/2e, I1∪I2 = {1, ..., n}, and I1∩I2 = ∅.

Let YIi and XIi) denote, respectively, the elements of Y and the rows of X corresponding to the Ii index,

i = 1, 2. A variable screening procedure is applied on (YI1 ,XI1) to obtain Ŝ0,I1 with cardinality |Ŝ0,I1 | ≤ |I2|.

The Lasso is a common candidate for variable screening and implicitly satisfies the cardinality condition under

weak assumptions. Indeed the choice of using roughly evenly sized partitions |I1| ≤ |I2| appears to cater

especially to the Lasso. While capable of screening consistency under stronger assumptions, a screening

property is not always necessary for the construction of valid p-values [Bühlmann and Mandozzi, 2014].

Let XI2,Ŝ0,I1
denote the columns of XI2 corresponding to the variables screened by Ŝ0,I1 . The second

step of the procedure simply regresses YI2 onto XI2,Ŝ0,I1
, which is readily solved by ordinary least squares

regression and produces the desired p-values.
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One glaring issue concerning the two-step selection and inference procedure is that the constructed p-

values are very sensitive to the choice of I1, I2, affectionately referred to by its authors as the p-value lottery.

The problem is somewhat addressed through repeated randomization in the sampling the partitions and

aggregating the constructed p-values. Overall, the multi sample splitting approach is a generalized method

with certain assumptions on variable screening and selection cardinality. However, the need for beta-min or

zonal conditions for most screening methods runs counter to the purpose of a significance test. Additionally,

its repeated sampling of partitions does not lend itself well to cases where complex dependencies exist in

noise, such as spatio-temporal data.

1.4.2 Lasso Projection

The de-sparsified Lasso or low-dimension projection estimator (LPDE), proposed by [Zhang and Zhang, 2014]

and [Dezeure et al., 2015] corrects the bias from Lasso using a projection onto a low-dimensional orthogonal

space constructed using nodewise regression.

Let Xj ∈ Rn denote the column of X corresponding to variable j = 1, ..., p and X−j ∈ Rn×(p−1) denote

the other columns. Let Zj ∈ Rn denote the residuals of the Lasso regression of Xj onto X−j . Then, for any

Zj ,

Y >Zj
X>j zj

= βj +
∑
k 6=j

X>k Zj
XjZj

βk +
e>Zj
X>j Zj

(1.9)

Therefore, the bias corrected plugin estimator using an initial Lasso estimate of β is

β̂j,LPDE =
Y >Zj
X>j zj

−
∑
k 6=j

X>k Zj
XjZj

β̂k,Lasso (1.10)

The LPDE estimator admits a Gaussian distribution under compatibility conditions on X, when the

sparsity is s0 = o (
√
n/ log(p)), the rows of X are i.i.d. N (0,Σ) with a positive lower bound on the eigenvalues

of Σ, and Σ−1 is row-sparse. Aside from some somewhat undesirable assumptions on the fixed design,

the LPDE estimator is very computationally demanding, roughly 2 orders of magnitude over multi-sample

splitting and Ridge projection. On the other hand, it does not make any assumptions on the underlying β

coefficients besides sparsity and achieves the Cramer-Rao efficiency bound, which the Ridge projection does

not.
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Chapter 2

Time-Varying High-Dimensional
Linear Models

2.1 Introduction

We consider the following time-varying coefficient models (TVCM)

y(t) = x(t)>β(t) + e(t) (2.1)

where t ∈ [0, 1] is the time index, y(·) the response process, x(·) the p × 1 deterministic predictor process

(i.e. fixed design), β(·) the p × 1 time varying coefficient vector, and e(·) the mean zero stationary error

process. The response and predictors are observed at evenly spaced time points ti = i/n, i = 1, ..., n, i.e.

yi = y(ti),xi = x(ti) and ei = e(ti) with known covariance matrix Σe = Cov(e) where e = (e1, · · · , en)>.

TVCM is useful for capturing the dynamic associations in the regression models and longitudinal data

analysis [Hoover et al., 1998] and it has broad applications in biomedical engineering, environmental science

and econometrics. In this work, we shall consider the fixed design case and focus on the pointwise inference for

the time-varying coefficient vector β(t) in the high-dimensional double asymptotics framework min(p, n)→

∞. Moreover, different from longitudinal setting, we consider only observations from one subject (xi, yi).

Nonparametric estimation and inference of the TVCM in the fixed dimension has been extensively stud-

ied in literature, e.g. see [Robinson, 1989, Hoover et al., 1998, Fan and Wenyang, 1999, Zhang et al., 2002,

Orbe et al., 2005, Zhang and Wu, 2012, Zhou and Wu, 2010]. In the high-dimensional setting, variable selec-

tion and estimation of varying-coefficient models using basis expansions have been studied in [Wei and Huang, 2010]

and [Wang et al., 2014]. Nevertheless, our primary objective is not to estimate β(t), but rather to perform

the statistical inference on the coefficients. In particular, for any t ∈ (0, 1), we wish to test the following

local hypothesis

H0,j,t : βj(t) = 0 VS H1,j,t : βj(t) 6= 0, ∀j = 1, · · · , p. (2.2)

By assigning p-value at each time point, our goal is to construct a sequence of coefficient vectors that allows

8



us to assess the uncertainty of the dynamic patterns such as modeling the brain connectivity networks. Confi-

dence intervals and hypothesis testing problems of lower-dimensional functionals of the high-dimensional con-

stant coefficient vector β(t) ≡ β,∀t ∈ [0, 1], have been studied in [Bühlmann, 2013], [Zhang and Zhang, 2014],

and [Javanmard and Montanari, 2014]. To our best knowledge, little has been done for inference of high-

dimensional TVCM. Therefore, our goal is to fill the inference gap between the classical TVCM and high-

dimensional linear model.

As another key difference of this thesis from the existing inference literature on high-dimensional lin-

ear models based on the fundamental i.i.d. error assumption [Bühlmann, 2013], [Zhang and Zhang, 2014],

[Javanmard and Montanari, 2014], the second main contribution is to provide an asymptotic theory for an-

swering the following question: To what extent can the statistical validity of a proposed inference procedure

for i.i.d. errors hold for dependent error processes? Allowing temporal dependence is of practical interest

since many datasets such as fMRI data are spatio-temporal in nature and the errors are correlated in the

time domain. On the other hand, theoretical analyses reveal that the temporal dependence has delicate

impact on the asymptotic rates for estimating the covariance structures [Chen et al., 2013]. Therefore, it

is more plausible to build an inference procedure that is also robust in the time series context. The error

process ei is modelled as a stationary linear process

ei =

∞∑
m=0

amξi−m, (2.3)

where a0 = 1 and ξi are i.i.d. mean-zero random variables (a.k.a. innovations) with variance σ2. When ξi

have normal distributions, linear processes of form (2.3) is a Gaussian processes that covers the auto-regressive

and moving-average (ARMA) models with i.i.d. Gaussian innovations as special cases. For the linear process,

we shall deal with both weak and strong temporal dependencies. In particular, if am = O(m−%), % > 1/2,

then ei is well-defined and it has: (i) short-range dependence (SRD) if % > 1; (ii) long-range dependence

(LRD) or long-memory if 1/2 < % < 1. For the SRD processes, it is clear that
∑∞
m=0 |am| <∞ and therefore

the long-run variance is finite.

The chapter is organized as follows. In Section 2.2, we describe our method in details. Asymptotic theory

is presented in Section 2.3. In Section 2.4, we mention some practical implementation issues and extension

of the noise model to more general non-Gaussian and heavy-tailed distributions. Section 2.5 presents some

simulation results and Section 2.6 demonstrates a real application to an fMRI dataset. Proofs are available

in the Appendix.
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2.2 Method

2.2.1 Notations and Preliminary Intuition

Let K be a non-negative symmetric function with bounded support in [−1, 1],
∫ 1

−1K(x)dx = 1 and bn be

a bandwidth parameter satisfies the natural condition bn = o(1) and n−1 = o(bn). For each time point

t ∈ $ = [bn, 1− bn], the Nadaraya-Watson smoothing weight is defined as

w(i, t) =


Kbn (ti−t)∑n

m=1Kbn (tm−t) if |ti − t| ≤ bn

0 otherwise

, (2.4)

where Kb(·) = K(·/b). Let Nt = {i : |ti − t| ≤ bn} be the bn-neighborhood of time t, |Nt| be the cardinality

of the discrete set Nt, Wt = diag(w(i, t)i∈Nt
) be the |Nt| × |Nt| diagonal matrix with w(i, t), i ∈ Nt on the

diagonal, and Rt = span(xi : i ∈ Nt) be the subspace in Rp spanned by xi, the rows of design matrix X

in the Nt neighborhood. Let Xt = (w(t, i)1/2xi)
>
i∈Nt

, Yt = (w(i, t)1/2yi)
>
i∈Nt(i)

and Et = (w(i, t)1/2ei)
>
i∈Nt(i)

.

Then, the singular value decomposition (SVD) of Xt is

Xt = PDQ> (2.5)

where P and Q are |Nt| × r, and p × r matrices such that P>P = Q>Q = Ir. D = diag(d1, · · · , dr) is a

diagonal matrix containing the r nonzero singular values of Xt. Now let PRt be the projection matrix onto

Rt. Then,

PRt
= X>t (XtX>t )−Xt = QQ> (2.6)

where (XtX>t )− = PD−2P> is the pseudo-inverse matrix of XtX>t . Let θ(t) = PRt
β(t) be the projection of

β(t) onto Rt, the row subspace of Xt such that B(t) = θ(t)− β(t) is the projection bias. Let

Ω(λ) = (X>t Xt + λIp)
−1X>t W

1/2
t Σe,tW

1/2
t Xt(X>t Xt + λIp)

−1, (2.7)

where Σe,t = Cov((ei)i∈Nt(i)), and Ωmin(λ) = minj≤p Ωjj(λ) be the smallest diagonal entry of Ω(λ). For

a generic vector b ∈ Rp, we denote |b|q = (
∑p
j=1 |bj |q)1/q if q > 0, and |b|0 =

∑p
j=1 1(bj 6= 0) if q = 0.

Denote wt = infi∈Nt w(i, t) and wt = supi∈Nt
w(i, t). For an n × n square symmetric matrix M and an

n×m rectangle matrix R, we use ρi(M) and σi(R) to denote the i-th largest eigenvalues of M and singular

values of R, respectively. If k = rank(R), then σ1(R) ≥ σ2(R) ≥ · · · ≥ σk(R) > 0 = σk+1(R) = · · · =
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σmax(m,n)(R), i.e. zeros are padded to the last max(m,n)−k singular values. We denote ρmax(M), ρmin(M)

and ρmin 6=0(M) be the maximum, minimum and nonzero minimum eigenvalues of M , respectively, and

|M |∞ = max1≤j,k≤p |Mjk|. Let

ρmax(M, s) = max
|b|0≤s,b6=0

|b>Mb|2
|b|22

.

If M is non-negative definite, then ρmax(M, s) is the restricted maximum eigenvalues of M at most s columns

and rows.

Before proceeding, we pause to explain the intuition behind our method. The p-dimensional coefficient

vector β(t) is decomposed into two parts via projecting onto the |Nt|-dimensional linear subspace spanned

by the rows of Xt and its orthogonal complement; see Figure 2.1(a). A key advantage of this decomposition

is that the projected part can be conveniently estimated in the closed-form for example by ridge estimator

since it lies in the row space of Xt and thus amenable for the subsequent inferential analysis. In the high-

dimensional situation, this projection introduces a non-negligible shrinkage bias in estimating β(t) and

therefore we may lose information because p� |Nt|. On the other hand, the shrinkage bias can be corrected

by a consistent estimator of β(t). As a particular example, we shall use the Lasso estimator. However, any

sparsity-promoting estimator attaining the same convergence rate as the Lasso should work. Because of the

time-varying nature of the nonzero functional β(t), the smoothness on the row space of Xt along the time

index t is necessary to apply nonparametric smoothing technique; see Fig. 2.1(b). As a special case when the

nonzero components β(t) ≡ β are constant functions and the error process is i.i.d. Gaussian, our algorithm is

the same as [Bühlmann, 2013]. However, the emphases of this work are: (i) time-varying (i.e. non-constant)

coefficient vectors; (ii) the errors are allowed to have heavy-tails by assuming milder polynomial moment

conditions and to have temporal dependence, including both SRD and LRD processes. As mentioned earlier,

there are other inferential methods for high-dimensional linear models such as [Zhang and Zhang, 2014] and

[Javanmard and Montanari, 2014]. We do not explore specific choices here since the contribution is a general

framework of combining nonparametric smoothing and bias-correction methods to make inference for high-

dimensional TVCM. However, we expect that the non-stationary generalization would be feasible for those

methods as well.
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(a) Bias correction by projection to the row space
of Xt.

(b) Smoothly time-varying row space of Xt.

Figure 2.1: Intuition of the proposed algorithm in Section 2.2.2.

2.2.2 Inference Algorithm

First, we estimate the projection bias B(t) by B̃(t) = (PRt − Ip)β̃(t), where β̃(t) is the time-varying Lasso

(tv-Lasso) estimator

β̃(t) = arg min
b∈Rp

∑
i∈Nt

w(i, t)(yi − x>i b)2 + λ1|b|1 (2.8)

= arg min
b∈Rp

|Yt −Xtb|22 + λ1|b|1.

Next, we estimate θ(t) = PRt
β(t) using the time-varying ridge (tv-ridge) estimator

θ̃(t) = arg min
b∈Rp

∑
i∈Nt

w(i, t)(yi − x>i b)2 + λ2|b|22

= (X>t Xt + λ2Ip)
−1X>t Yt. (2.9)

We shall defer the discussion of tuning parameters choice λ1 and λ2 in Section 2.3 and 2.4. Then, our

tv-Lasso bias-corrected tv-ridge regression estimator for β(t) is constructed as

β̂(t) = θ̃(t)− B̃(t). (2.10)

Now, based on β̂(t) = (β̂1(t), · · · , β̂p(t))>, we calculate the raw two-sided p-values for individual coefficients

P̃j = 2

[
1− Φ

(
|β̂j(t)| − λ1−ξ1 maxk 6=j |(PRt

)jk|
Ω

1/2
jj (λ2)

)]
, j = 1, · · · , p, (2.11)
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where ξ ∈ [0, 1) is user pre-specified number, which depends on the number of nonzero β(t), i.e. sparsity. In

particular, if |supp(β(t))| is bounded, then we can choose ξ = 0. Generally, following [Bühlmann, 2013], we

use ξ = 0.05 in our numeric examples to allow the number of nonzero components in β(t) diverges at proper

rates. Let v(t) = (V1(t), · · · , Vp(t))> ∼ N(0,Ω(λ2)) and define the distribution function

F (z) = P
(

min
j≤p

2
[
1− Φ

(
Ω
−1/2
jj (λ2)|Vj(t)|

)]
≤ z
)
. (2.12)

We adjust the P̃j for multiplicity by Pj = F (P̃j+ζ), where ζ is another predefined small number [Bühlmann, 2013]

that accommodates asymptotic approximation errors. Finally, our decision rule is defined as: Reject H0,j,t

if Pj ≤ α for α ∈ (0, 1). For i.i.d. errors, since Σe = σ2Idn and

Ω(λ2) = σ2(X>t Xt + λ2Ip)
−1X>t WtXt(X>t Xt + λ2Ip)

−1,

we see that F (·) is independent of σ. Therefore, F (·) can be easily estimated by repeatedly sampling

from the multivariate Gaussian distribution N(0,Ω(λ2)). Similar observations have been pointed out in

[Bühlmann, 2013].

2.3 Asymptotic Results

In this section, we present the asymptotic theory of the inference algorithm in Section 2.2.2. First, we state

the main assumptions for i.i.d. Gaussian errors.

1. Error. The errors ei ∼ N(0, σ2) are independent and identically distributed (i.i.d.).

2. Sparsity. β(·) is uniformly s-sparse, i.e. supt∈[0,1] |S0t| ≤ s, where S0t = {j : βj(t) 6= 0} is the support

set.

3. Smoothness.

(a) β(·) is twice differentiable with bounded and continuous first and second derivatives in the

coordinate-wise sense, i.e. βj(·) ∈ C2([0, 1], C0) for each j = 1, · · · , p and C0 is an upper bound

for the partial derivatives.

(b) The bn-neighborhood covariance matrix Σ̂�t = |Nt|−1
∑
i∈Nt

xix
>
i := X �t

>X �t satisfies the following

conditions:

ρmax(Σ̂�t , s) ≤ ε−20 <∞. (2.13)
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4. Non-degeneracy.

lim inf
λ↓0

Ωmin(λ) > 0. (2.14)

5. Identifiability.

(a) The minimum nonzero eigenvalue condition

ρmin 6=0(Σ̂�t ) ≥ ε20 > 0. (2.15)

(b) The restricted eigenvalue condition is met:

φ0 = inf

{
φ > 0 : min

|S|=s
inf

|bSc |1≤3|bS |1

b>Σ̂tb

|bS |21
≥ φ2

s
holds for all t ∈ [0, 1]

}
> 0, (2.16)

where Σ̂t = X>t Xt is the kernel smoothed covariance matrix of the predictors.

6. Kernel. The kernel function K(·) is non-negative, symmetric around 0 with bounded support in

[−1, 1].

Here, we comment the assumptions and their implications. Assumption 1 and 6 are standard. The Gaussian

distribution is non-essential and it can be relaxed to sub-Gaussian and heavier tailed distributions; see Section

2.4 for more discussions. Assumption 2 is a sparsity condition for the nonzero functional components and we

allow s→∞ slower than min(p, n). It is a key condition for maintaining the low-dimensional structure when

the dimension p grows fast with the sample size n. In addition, by the argument of proving [Zhou et al., 2010,

Theorem 5], it also implies that the number of nonzero first and second derivatives of β(t) is bounded by

s almost surely on [0, 1]. Assumption 3 ensures the smoothness of the time-varying coefficient vector and

the design matrix so that nonparametric smoothing techniques are applicable. Examples of assumption 3(a)

include the quadratic form β(t) = β+αt+ξt2/2 and the periodic functions β(t) = β+α sin(t)+ξ cos(t) with

|α|∞+|ξ|∞ ≤ C0. Assumption 3(b) can be viewed as the Lipschitz continuity on the local design matrix that

is smoothly evolving [Zhou and Wu, 2010]. However, it is weaker than the condition that ρmax(Σ̂�t ) ≤ ε−20

because the latter may grow to infinity much faster than the restricted form (2.13).

Assumption 4 is required for non-degenerated stochastic component of the proposed estimator which

is used for the inference purpose. Assumption 5(a) and 5(b), i.e. (2.15) and (2.16), together impose the

identifiability conditions for recovering the coefficient vectors. Analogous condition of the time-invariant
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version have been extensively used in literature to derive theoretical properties of the Lasso model; see e.g.

[Bickel et al., 2009][van de Geer and Bühlmann, 2009].

Now, for the tv-lasso bias-corrected tv-ridge estimator (2.17), we establish a representation that is fun-

damental for the subsequent statistical inference purpose.

Theorem 2.1 (Representation). Fix t ∈ $ and let

Lt,` = max
j≤p

[∑
i∈Nt

w(t, i)`X2
ij

]1/2
, ` = 1, 2, · · · , λ0 = 4σLt,2

√
log p, (2.17)

and λ1 ≥ 2(λ0 + 2C0Lt,1bn(s|Nt|wt)1/2ε−10 ). Under assumptions 1-6 and C ≤ |Nt|wt ≤ |Nt|wt ≤ C−1 for

some C ∈ (0, 1), our estimator β̂(t) in (2.10) admits the following decomposition

β̂(t) = β(t) + z(t) + γ(t), (2.18)

z(t) ∼ N(0,Ω(λ2)), (2.19)

|γj(t)| ≤
λ2|θ(t)|2 + 2C0s

1/2bn
Cε20

+
4λ1s

φ20
|PRt − Id|∞, j = 1, · · · , p, (2.20)

with probability at least 1− 2p−1. In addition, if βj(t) = 0, then we have

Ω
−1/2
jj (λ2)(β̂j(t)− γj(t))

d
= N(0, 1), (2.21)

where

|γj(t)| ≤
λ2|θ(t)|2 + 2C0s

1/2bn
Cε20

+
4λ1s

φ20
max
k 6=j
|(PRt

)jk|. (2.22)

Remark 1. Our decomposition (2.18) can be viewed as a local version of the one proposed in [Bühlmann, 2013,

Proposition 2]. However, due to the time-varying nature of the nonzero coefficient vectors, both the stochastic

component z(t) in (2.19) and the bias component γ(t) in (2.20) of the representation (2.18) have a number

of key differences from [Bühlmann, 2013]. First, our bound (2.20) for bias has three terms, arising from

ridge shrinkage bias, non-stationary bias, and Lasso correction bias. All three sources of bias have localized

features, depending on the bandwidth of the sliding window bn and the smoothness parameter C0. Second, the

stochastic part (2.19) also has time-dependent features in the second-order moment (Ω(λ2) implicitly depends

on t though Xt) and the scale of normal random vector is different from [Bühlmann, 2013]. Delicate balance

among them allows us to perform valid statistical inference such as hypothesis testing and confidence interval

construction for the coefficients and, more broadly, their lower-dimensional linear functionals.
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Example 2.1. Consider the uniform kernel K(x) = 0.5I(|x| ≤ 1) as an important special case, which is the

kernel used for our numeric experiments in Section 2.5. In this case, wt = (2nbn)−1 and |Nt|wt = |Nt|wt = 1.

It is easily verified that conditions of Theorem 2.1 are satisfied and, under the local null hypothesis H0,j,t,

(2.22) can be simplified to

γj(t) = O

(
λ2|θ(t)|2 + s1/2bn + λ1smax

k 6=j
|(PRt

)jk|
)
.

From this, it is clear that the three terms correspond to bias of ridge-shrinkage, non-stationarity and Lasso-

correction. The first and last components have dynamic features and the non-stationary bias is controlled by

the bandwidth and sparsity parameters. The condition C ≤ |Nt|wt ≤ |Nt|wt ≤ C−1 in Theorem 2.1 rules

out the case that the kernel does not use the boundary rows in the localized window and therefore avoids any

jump in the time-dependent row subspaces.

Remark 2. In Theorem 2.1, the penalty level for the tv-Lasso estimator can be chosen as O(σLt,2
√

log p+

Lt,1s
1/2bn). We comment that the second term in the penalty is due to the non-stationarity of β(t) and the

factor s1/2 arises from the weak coordinatewise smoothness requirement on its derivatives (assumption 3(a)).

In the Lasso case with β(t) ≡ β and w(i, t) ≡ n−1, an ideal order of the penalty level λ1 is

σn−1 max
j≤p

(

n∑
i=1

X2
ij)

1/2(log p)1/2

see e.g. [Bickel et al., 2009]. In the standardized design case n−1
∑n
i=1X

2
ij = 1 so that Lt,1 = 1 and

Lt,2 = n−1/2, the Lasso penalty is O(σ(n−1 log p)1/2), while the tv-Lasso has an additional term s1/2bn that

may cause larger bias. However, in our case, we estimate the time-varying coefficient vectors by smoothing

the data points in the localized window. Thus, it is unnatural to standardize the re-weighted local design

matrix to have unit `2 length and the additional bias O(s1/2bn) is due to non-stationarity. Consider the case

that Xij are i.i.d. Gaussian random variables without standardization and we interpret the linear model as

conditional on X. Then, under the uniform kernel, we have L2
t,2 = OP(log p/|Nt|) and in the Lasso case

penalty level is O(σ|Nt|−1/2 log p). If s = O(log p) and the bandwidth parameter bn = O((log p/n)1/3), then

the choice in Theorem 2.1 has the same order as the Lasso with constant coefficient vector.

Based on Theorem 2.1, we can prove that the inference algorithm in Section 2.2.2 can asymptotically

control the family-wise error rate (FWER). Let α ∈ (0, 1) and FPα(t) be the number of false rejections of

H0,j,t based on the adjusted p-values.
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Theorem 2.2 (Pointwise inference: multiple testing). Under the conditions of Theorem 2.1 and suppose

that

λ2|θ(t)|2 + s1/2bn = o(Ωmin(λ2)1/2) (2.23)

we have for each fixed t ∈ $

lim sup
n→∞

P(FPα(t) > 0) ≤ α. (2.24)

The proof of Theorem 2.2 is achieved by combining the argument of [Bühlmann, 2013, Theorem 2] and

Theorem 2.1 in the appendix. Condition (2.23) requires that the shrinkage and non-stationarity biases of the

tv-ridge estimator together are dominated by the variance; see also the representation (2.18), (2.19), (2.20)

and (2.21). This is mild condition for the following two reasons. First, considering that the variance of the

tv-ridge estimator is lower bounded when λ2 is small enough; c.f. (2.14), the first term is quite weak in the

sense that the tv-ridge estimator acts on a much smaller subspace with dimension |Nt| than the original p-

dimensional vector space. Second, for the choice of penalty parameter of λ1 in Theorem 2.1, the term s1/2bn

in (2.23) is at most λ1. Hence, the bias correction (including the projection and non-stationary parts) in

the inference algorithm (2.11) has a dominating effect for the second term of (2.23). Consequently, provided

λ2 is small enough, the bias correction step in computing the raw p-value asymptotically approximates the

stochastic component in the tv-ridge estimator.

Next, we relax the i.i.d. Gaussian error assumption. For the Gaussian process errors, we have the

following result.

Theorem 2.3. Suppose that the error process ei is a mean-zero stationary Gaussian process of form (2.3)

such that |am| ≤ K(m+ 1)−% for some % ∈ (1/2, 1) ∪ (1,∞) and finite constant K > 0. Under assumptions

2-6 and using the same notations in Theorem 2.1 with

λ0 =

 4σLt,2|a|1
√

log p if % > 1

C%,KσLt,2n
1−%√log p if 1 > % > 1/2

, (2.25)

we have the same representation of β̂(t) in (2.18)–(2.22) with probability tending to one.

Clearly, the temporal dependence strength has a dichotomy effect on the choice of λ0 and therefore on

the asymptotic properties of β̂(t). For ei has SRD, we have |a|1 <∞ and λ0 � σLt,2
√

log p. Therefore, the

bias-correction part γ(t) of estimating β(t) has the same rate of convergence as the i.i.d. error case. The

temporal effect only plays a role in the long-run covariance matrix of the stochastic part z(t). On the other
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hand, if ei has LRD, then the temporal dependence has impact on both γ(t) and z(t). In addition, choice of

the bandwidth parameter bn will be very different from the SRD and i.i.d. cases. In particular, the optimal

bandwidth for % ∈ (1/2, 1) is O((log p/n%)1/3) which is much larger than O((log p/n)1/3) in the i.i.d. and

SRD cases where s is bounded.

2.4 Extensions

We assume that the noise variance-covariance matrix Σe is known. In the i.i.d. error case Σe = σ2Idn,

we have seen that the distribution F (·) is independent of σ2, and therefore its value does not affect the

inference procedure. The noise variance only impacts the tuning parameter of the initial Lasso estimator.

In practice, we use the scaled Lasso to estimate σ2, such as in our numeric and simulation studies. Given

that |σ̂/σ− 1| = oP(1) [Sun and Zhang, 2012], the theoretical properties of our estimator (2.10) remains the

same if we plug in the scaled Lasso variance output to our method. For temporally dependent stationary

error process, estimation of Σe becomes more subtle since it involves n autocovariance parameters. We

propose a heuristic strategy: first, run the tv-Lasso estimator to obtain the residuals; then calculate the

sample autocovariance matrix and apply a banding or tapering operation Bh(Σ) = {σjk1(|j − k| ≤ h)}pj,k=1

[Bickel and Levina, 2008][Cai et al., 2010][McMurry and Politis, 2010].

We provide some justification on the heuristic strategy for SRD time series models. To simplify expla-

nation, we consider the uniform kernel and the bandwidth bn = 1. Suppose we have an oracle where β(t)

is known and we have access to the error process e(t). Let Σ∗e be the oracle sample covariance matrix of ei

with the Toeplitz structure i.e. the h-th sub-diagonal of Σ∗e is σ∗e,h = n−1
∑n−h
i=1 eiei+h. We first compare

the oracle estimator and the true error covariance matrix Σe. Let α > 0 and define

T (α,C1, C2) =

{
M ∈ ST p×p :

p∑
k=h+1

|mk| ≤ C1h
−α, ρj(M) ∈ [C2, C

−1
2 ], ∀j = 1, · · · , p

}
,

where ST p×p is the set of all p× p symmetric Toeplitz matrices. If ei has SRD, then Σe ∈ T (%− 1, C1, C2).

By the argument in [Bickel and Levina, 2008] and Lemma A.4, we can show that

ρmax(Bh(Σ∗e)− Σe) ≤ ρmax(Bh(Σ∗e)−Bh(Σe)) + ρmax(Bh(Σe)− Σe)

.P h

√
log h

n
+ h−(%−1).
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Choosing h∗ � (n/ log n)1/(2%), we get

ρmax(Bh(Σ∗e)− Σe) = OP

((
log n

n

) %−1
2%

)
.

This oracle rate is sharper than the one established in [Bickel and Levina, 2008] for regularizing more general

band-able matrices if n = o(p). Here, the improved rate is due to the Toeplitz structure in Σe. Since Σe has

uniformly bounded eigenvalues from zero and infinity, the banded oracle estimator Bh(Σ∗e) can be used as a

benchmark to assess the tv-Lasso residuals Ẽt = Yt −Xtβ̃(t).

Proposition 2.1. Suppose Σe ∈ T (%− 1, C1, C2) and conditions of Lemma A.3 are satisfied except that (ei)

is an SRD stationary Gaussian process with % > 1. Then

ρmax(Bh(Σ̂e)−Bh(Σ∗e)) = OP(hλ1s
1/2). (2.26)

With the choice h∗ � (n′/ log n′)1/2% where n′ = |Nt|, we have

ρmax(Bh(Σ̂e)− Σe)) = OP

((
log n′

n′

) %−1
2%

+

(
n′

log n′

) 1
2%

(√
s log p

n′
+ sbn)

))
. (2.27)

It is interesting to note that the price we pay to choose h for not knowing the error process is the second

term in (2.27). Bandwidth selection for the smoothing parameter bn is a theoretically challenging task in

the high dimension. Asymptotic optimal order for the parameter is available up to some unknown constants

depending on the data generation parameters. We use cross-validation (CV) in our simulation studies and

real data analysis examples.

In the i.i.d. error case, the noise is assumed to be zero-mean Gaussian. First, it is easy to relax this

assumption to distributions with sub-Gaussian tails and Theorem 2.1 and 2.2 continue to hold, in view

that the large deviation inequality and the Gaussian approximation for a weighted partial sum of the error

process only depend on the tail behavior and therefore moments of ei. Second and more importantly, the

sub-Gaussian assumption may even be knocked down by allowing the i.i.d. noise processes with algebraic

tails, or equivalently ei have moments up to a finite order. The consequence of this relaxation is that larger

penalty parameter for the tv-Lasso is needed for errors with polynomial moments. This is the content of the

following theorem. For simplicity, we assume K(·) is the uniform kernel in Theorem 2.4.

Theorem 2.4 (Heavy-tailed errors). Let conditions in Theorem 2.1 be satisfied and suppose E|ei|q <∞, q >
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2. Choose

λ0 = Cq max
{

(pµn,q)
1/q, σLt(log p)1/2

}
, for large enough Cq > 0, (2.28)

where µn,q =
∑
i∈Nt

|w(t, i)Xij |q. Then, we have the same representation (2.18) and Theorem 2.2 holds with

probability tending to one.

2.5 Simulation Results

In this section, we observe the performance of the proposed time-varying bias corrected ridge inference

procedure through simulation studies. We first generate an n × p design matrix using n i.i.d. rows from

Np(0, I), with n = 300 and p ∈ {300, 500}. The time-varying coefficient vectors β(t) are set up such that

there are s = 3 non-zero elements and p − 3 zeros for all t ∈ [0, 1]. These non-zero elements in β(t) are

generated by sampling nodes from a uniform distribution U(−b, b) at regular time points and smoothly

interpolating on the interval [0, 1] using cubic splines.

Figure 2.2: Simulated non-zero β(t) with b = 2.5

We simulated several sets of stationary error processes:

1. ei are i.i.d. Nn(0, I).

2. ei is an AR(1) process ei = ϕei−1 + εi where ϕ = 0.7 and εi are i.i.d. Nn(0, I).

3. ei are i.i.d. Student’s t(3)/
√

3.

The remaining parameters include the kernel bandwidth bn = 0.1, λ1 =
√

2 log(p)/n, λ2 = 1/n, and ζ = 0.

Again, we highlight that no tuning is required from the proposed method.
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For individual testing H0 : βj = 0 at time t, we reject the null hypothesis at significance level α if

the corresponding raw p-value P̃j,t ≤ α. Using the framework above with an empty active set S = ∅

demonstrates a < 5% nominal type I error rate, albeit conservatively.

Figure 2.3: Raw p-values under Null

For multiple testing H0 : βj = 0, j ∈ G at time t, we reject the null hypothesis at significance level α if

the corresponding multiplicity-adjusted p-value Pj,t ≤ α. Therefore, our proposed method’s false positive

(FP) rate over the interval B = [bn, 1− bn] is written as

1

n(1− bn)(p− s)
∑
j∈Sc

∑
t∈B

P(Pj,t ≤ α) (2.29)

and the false negative (FN) rate is written as

1

n(1− bn)s

∑
j∈S

∑
t∈B

P(Pj,t > α) (2.30)

The familywise error rate (FWER) in our simulation setup is defined as the proportion of multiplicity-

adjusted tests with at least 1 type I error.

FWER =
1

n(1− bn)

∑
t∈B

P

 ⋂
j∈Sc

{Pj,t|Pj,t ≤ α} 6= ∅

 (2.31)

For each simulation setup, we report the false positive counts and rates, false negative counts and rates,

family-wise error rates, and root mean square errors (RMSE) of β. These examples are high-dimensional

since we have ns(1− bn) = 720 nonzero parameters and a sample size of 300. We compared the performance

of the proposed method against the following procedures:
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1. (TV-Lasso) - The time-varying Lasso, an adaptation of the standard LASSO to the kernel smoothing

environment with bn = 0.1 and λ1 selected using cross validation. (Generally on the order of 1.5 ×√
2 log(p)/n)

2. (FP-Lasso) - The false-positive Lasso, where λ1 is tuned to match the type I error rate of the proposed

method. (Generally on the order of 5×
√

2 log(p)/n). This allows us to compare power at similar levels

of individual and family-wise errors. In practice, such precise tuning of λ1 on type I errors would be

impossible since the active set S is unknown, making FP-Lasso “pseudo-oracle.”

3. (FP-LPDE) - An adaptation of the de-biased LASSO [Zhang and Zhang, 2014] inference procedure

with the estimator

β̂DeBias(t) = β̂Lasso(t)+(nbn)−1MtX>t (Yt−Xtβ̂Lasso(t)), where the multiplicity-adjusted significance

level α is selected to yield identical type I error rates as the proposed method. Also “pseudo-oracle”.

4. (Non-TV) - The original non-time-varying method of [Bühlmann, 2013] which ignores the dynamic

structures.
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Our results are shown in Tables 2.5 and 2.5, with 20 replications for each setting.

i.i.d. N (0, 1)

Method FP(%) FP(n) FN(%) FN(n) FWER RMSE

TV-Lasso 0.0751 5355.3 0.0551 39.70 1 0.0537
FP-Lasso 1.3× 10−4 9.30 0.2469 177.80 0.0369 0.1122
FP-LPDE
Proposed 1.3× 10−4 9.30 0.2184 157.25 0.0371 0.1541
Non-TV 0.5222 37224 0.1333 96 1 0.4507

AR(1), ϕ = 0.7

Method FP(%) FP(n) FN(%) FN(n) FWER RMSE

TV-Lasso 0.0755 5382.5 0.0544 39.15 1 0.0532
FP-Lasso 1.1× 10−4 7.80 0.2647 190.60 0.0319 0.1120
FP-LPDE
Proposed 1.1× 10−4 7.85 0.2272 165.80 0.0321 0.1546
Non-TV 0.5337 38040 0.0667 48 1 0.4531

i.i.d. t(3)/
√

3

Method FP(%) FP(n) FN(%) FN(n) FWER RMSE

TV-Lasso 0.0693 4938.6 0.0544 39.15 1 0.0525
FP-Lasso 1.7× 10−4 12.00 0.2460 177.15 0.0402 0.1112
FP-LPDE
Proposed 1.7× 10−4 12.00 0.2303 165.80 0.0410 0.1542
Non-TV 0.5244 37380 0.1667 120 1 0.4510

Table 2.1: Simulation results for the case of n = 300, p = 300, s = 3, b = 2.5.
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i.i.d. N (0, 1)

Method FP(%) FP(n) FN(%) FN(n) FWER RMSE

TV-Lasso 0.0484 5776.7 0.0655 47.15 1 0.0392
FP-Lasso 3.1× 10−5 3.65 0.2528 182.05 0.0152 0.0798
FP-LPDE 3.1× 10−5 3.65 0.2296 165.30 0.0150 0.0664
Proposed 3.1× 10−5 3.65 0.2240 161.30 0.0150 0.1260
Non-TV 0.0299 3564 0.6000 432.00 1 0.1885

AR(1), ϕ = 0.7

Method FP(%) FP(n) FN(%) FN(n) FWER RMSE

TV-Lasso 0.0486 5801.3 0.0619 44.55 1 0.0393
FP-Lasso 3.0× 10−5 3.60 0.2645 190.45 0.0148 0.0810
FP-LPDE 3.0× 10−5 3.60 0.2431 175.05 0.0150 0.0690
Proposed 3.0× 10−5 3.60 0.2308 166.20 0.0150 0.1260
Non-TV 0.0330 3936 0.5667 408 1 0.1892

i.i.d. t(3)/
√

3

Method FP(%) FP(n) FN(%) FN(n) FWER RMSE

TV-Lasso 0.0469 5591.8 0.0672 48.35 1 0.0397
FP-Lasso 4.1× 10−5 4.85 0.3828 275.60 0.0188 0.0965
FP-LPDE 4.1× 10−5 4.85 0.2706 194.85 0.0149 0.0701
Proposed 4.1× 10−5 4.85 0.2351 169.30 0.0158 0.1260
Non-TV 0.0321 3828 0.6333 456 1 0.1893

Table 2.2: Simulation results for the case of n = 300, p = 500, s = 3, b = 2.5.

Empirically, we see that family-wise error control is not maintained in the non-time-varying case using

[Bühlmann, 2013], since it’s unable to accommodate the flip-flopping nature of β(t). The proposed method

does maintain FWER control in all simulation setups, but is conservative in the case of p = 500. This FWER

control naturally demands a very small false positive rate, whereas the time-varying Lasso has much greater

false positive rates due to the the bias from l1 regularization.

We also observe that the proposed method fares worse in terms of RMSE than the other time-varying

methods. This is largely due to fixing λ2 to be small in order to circumvent complications surrounding

parameter tuning such as cross validation and to make the problem more amenable to the conditions of 2.1.

Due to the bounds on Var
(
β̂j(t)

)
, minimizing RMSE is likely to be sub-optimal for detection, in terms of

λ2 selection.
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At similar type I error levels, the proposed time-varying de-biased ridge method yields greater detection

power in all simulation setups. De-biasing the Lasso helps bring the two methods closer in terms of power,

but comes at the expense of substantially increased complexity and computation time. The simulations were

performed using an Intel i5-4970K running R 3.2.2 for Windows with Intel MKL linear algebra libraries.

Method Runtime

TV-Lasso 1
FP-Lasso 19
FP-LPDE 1445
Proposed (raw p-values only) 9
Proposed (adjusted p-values) 26
Non-TV < 1

Table 2.3: Time to run 20 replications, in minutes. p = 500 with N (0, 1) i.i.d. errors

The Lasso and De-Biased Lasso are based on code from glmnet and SSLasso by J. Friedman and A.

Javanmard, respectively [Friedman et al., 2010a][Javanmard and Montanari, 2014]. The reported run times

for FP-Lasso and FP-LPDE includes time spent on divide and conquer λ1 and α searches for FPR matching.

The additional computation time is quite substantial in the former case and negligible in the latter. The

time-varying methods above are bottle-necked by estimation of the covariances of X within local bandwidths,

which we attempt to remedy in Chapter 3 using structure decomposition.

By varying the signal magnitude scalar b from 0.25 to 2.5, we can examine the behavior of the proposed

method and its FWER control at various signal-to-noise ratios (S/N).

Figure 2.4: Type I Errors vs S/N Figure 2.5: Familywise Errors vs S/N
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Figure 2.6: Power vs S/N

The proposed method maintains FWER control across the spectrum of signal-to-noise ratios examined

above, although of course the power suffers at lower signal-to-noise ratios.

2.6 Real Data Example - Learning Brain Connectivity

We illustrate our proposed method with a problem about estimating functional brain connectivity in patients

from a Parkinson’s disease study. The principle of functionally segregated brain organization in humans is

well established in imaging neuroscience, and connectivity is understood as a network of statistical depen-

dencies between different regions of the nervous system.

Slowly time-varying graphs have strong implications in modeling brain connectivity networks using resting

state functional magnetic resonance imaging (fMRI) data. Traditional correlation analysis of resting state

blood-oxygen-level-dependent (BOLD) signals of the brain show considerable temporal variation on small

timescales [CITE], and many treatments for Parkinson’s disease are evaluated by medical professionals based

on changes to a subject’s connectivity network. For example, patients with Parkinson’s disease generally

have increased connectivity in the primary motor cortex, especially during “off state” times. [CITE]

Furthermore, in view of the high spatial resolution of fMRI data, brain networks of subjects at rest are

believed to be structurally homogeneous with subtle fluctuations in some, but a small number, of connectivity

edges [CITE]. Therefore, a popular approach to learn brain connectivity is the node-wise regression network

(i.e. the neighborhood selection procedure), where the time-varying coefficients represent dynamic features of

the corresponding edges. We do remark, however, that the neighborhood selection approach we adopt in this
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example is merely an approximation of the full multivariate distributions due to ignoring correlation among

node-wise responses. This may lead to some power loss in finite samples, but is asymptotically equivalent in

terms of variable selection.

Our real data example uses fMRI data collected from a study of patients with Parkinson’s disease (PD)

and their respective normal controls. PD is typically characterized by deviations in functional connectivity

between various regions of the brain. Additionally, resting state functional connectivity has been shown as

a candidate biomarker for PD progression and treatment, where more advanced stages or manifestations of

PD are associated with greater deviations from normal connectivity. Each resting state data matrix in our

example contains 240 time points and 52 brain regions of interest (ROI). The time points are evenly sampled

and the time indices are normalized to [0,1]. Previous study of this dataset showed that the temporal and

spatial connectivity patterns differ significantly between PD and control subjects [Liu et al., 2014].

The brain connectivity network is constructed using the neighborhood selection procedure. In essence,

it is a sequence of time-varying linear regressions by enumerating each ROI as the response variable and

sparsely regressing on all the other ROIs. Since fMRI data was collected from subjects at rest rather than

subjects assigned specific tasks at certain times, we did not pool the data across subjects for analysis.
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Figure 2.7: Connectivity Network in Control Subject around t = 0.25

Figure 2.8: Connectivity Network in Parkinson’s Subject around t = 0.25

In the examples above, we plot the connectivity networks of one healthy and one Parkinson’s diagnosed

patient for 3 sequential time points surrounding t = 0.25. Regions of the brain known to be associated with

motor control are highlighted using red nodes. In contrast, blue nodes designate areas of the brain either

known to be unrelated to motor control or whose functions in humans are not well understood. Different

patterns of connectivity in the networks can be found by comparing the PD and control subjects. From the

graphs, we can observe the slow change in the networks over time. Most edges are preserved on a small

timescale, but there are a few number of edges changing. For instance in the PD subject, ROI 01 → 40

is unconnected in the first time point but is connected in the second and remains connected in the third.

Generally, when there is substantial activity to study, we tend to observe a more diverse set of edges in

healthy subjects and greater connectivity involving the motor-related regions in PD subjects.
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Figure 2.9: Connectivity Network in Control Subject around t = 0.80

Figure 2.10: Connectivity Network in Parkinson’s Subject around t = 0.50

There are also times when, due to the nature of stringent FWER control and variable selection process,

that the estimated connectivity networks may be exceptionally sparse or empty. This serves to reinforce the

importance of the time-varying design, particularly for resting state data, since traditional methods which

don’t study temporal variations have less power to detect differences between subjects when the signals only

manifest for short periods of time.

29



Chapter 3

Kronecker Structured Covariance
Estimation

3.1 Introduction

There has been much recent interest in the estimation of sparse graphical models in the high-dimensional

setting for an n× p Gaussian matrix X, where the observations x1, ...,xn are i.i.d. N (µ,Σ), µ ∈ Rp, and Σ

is a positive definite p×p matrix. A graphical model can be built by using the variables or features as nodes

and by using non-zero elements of the precision or inverse covariance matrix Ω = Σ−1 as edges such that

nodes representing features i, j are connected if Ωij 6= 0. The zeroes in Ω correspond to no connecting edge,

indicating that the pair of variables are conditionally independent of each other, given the other variables in

X [Lauritzen, 1996]. These models see applications in various fields such as meteorology, communications,

and genomics. For example, graphical models are frequently used in gene expression analysis to study

patterns of association between different genes and create therapies targeting these pathways.

The classical method of estimating the covariance matrix Σ is the sample covariance matrix:

Ŝ =
1

n− 1
X>X (3.1)

While the sample covariance matrix is an unbiased estimator of the true covariance matrix, it suffers from

high variance in a high-dimensional setting where n < p. Furthermore, the resulting matrix is singular and

incompatible with problems where Ω = Σ−1 is the parameter of interest. Alternatively, a low rank approx-

imation is sometimes used where we take the r greatest principle components from an eigendecomposition

of Ŝ.

ŜPCA =

r∑
i=1

σ2
i viv

>
i (3.2)

The PCA estimator has a very useful interpretation in that it solves the rank constrained Frobenius norm
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minimization problem [Eckart and Young, 1936].

arg min
S∈S++,rank(S)≤r

|Ŝ− S|2F (3.3)

However, the PCA estimator yields substantial bias in the high-dimensional setting. [Lee et al., 2010]

[Rao et al., 2008]

The maximum likelihood approach is a direct estimation method where the precision matrix estimator

Ω̂MLE is obtained by maximizing the likelihood with respect to Σ−1, and explained in more detail in the

Graphical Lasso section below. For the purpose of graphical models, however, the maximum likelihood

precision matrix estimator lacks interpretability and yields high variance in a high-dimensional setting.

Specifically, ˆΩMLE will not have any elements which are exactly zero. Consequently, graphs constructed

using Ω̂MLE would not be useful for identifying conditional independence between pairs of variables since

edges exist between all pairs of nodes.

Thus arises a need for the estimation of a sparse dependence structure where many elements of the

inverse covariance matrix estimator are set to zero. This literature advocating sparse estimation of covariance

and inverse covariance matrices can be traced back to [Dempster, 1972]. An early approach to achieving

a sparse estimator is the backwards selection method, where the least significant edges are sequentially

removed from a fully connected graph until the remaining edges are all significant according to partial

correlation tests. The backwards selection method did not take multiple testing into consideration, although

[Drton and Perlman, 2007] later proposed a conservative procedure which did.

More recent work in graphical model estimation involves nodewise regression procedures similar to the

Parkinson’s data example from Chapter 1. [Meinshausen and Bühlman, 2006] proposed regressing each vari-

able on all the other variables using `1 penalized regression, with graph edges representing the significant

regression results. [Zhou et al., 2009] further extended the method to other variants of penalized regression

such as the adaptive LASSO. These nodewise regression methods are able to consistently recover the support

of Ω to produce a directed graphical model but cannot estimate the elements of Ω themselves.

A maximum likelihood approach with the `1 penalty was studied by [Yuan and Lin, 2007],

[Banerjee et al., 2008], [Friedman et al., 2010b], and [d’Asprémont et al., 2008]. These approaches were later

generalized to the smoothly clipped absolute deviation (SCAD) penalty [Fan et al., 2009], [Lam and Fan, 2009].

This chapter explores the algorithms, properties, and performance of Kronecker graphical lasso (KGLasso)

methods for the purposes of constructing Gaussian graphical models and the estimation of Kronecker

decompose-able covariance and precision matrices. We begin with ordinary KGLasso [Tsiligkaridis, 2014],
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followed by our extension to the joint Kronecker graphical lasso (JKGLasso) case for the estimation of

covariance matrices across different groups of subjects.

3.1.1 Notation

Denote Ip to be the p×p identity matrix and 1p a vector of length p with all entries equal to 1. Define vec to

be the matrix vectorization function in Rp×q → Rpq such that vec(M) is the vectorized form of M obtained

by concatenating the columns of M. For higher tensor spaces, let vec : Rp1×...×pK → Rp1...pK be the tensor

vectorization function where we concatenate via the array dimensions in reverse order beginning with K.

Let S(·) denote the soft thresholding operator S : R2 → R1 such that S(x, c) = sign(x) max(|x| − c, 0)

Define |M|1 to be the L1 norm of a matrix M. Define |M|F to be the Frobenius norm of a matrix M.

Define Sp = {M ∈ Rp×p : M = M>} to be the set of p × p symmetric matrices, and let Sp+ denote the

set of symmetric positive definite matrices and Sp++ the set of symmetric semi-positive definite matrices.

Denote Mij and (M)ij to be the (i, j)-th element in matrix M where i, j ∈ N1. Define MIJ and (M)IJ ,

I ∈ Np1 , J ∈ Np2 to be the sub-matrix of M corresponding to the (i, j)-th elements in M such that i ∈ I

and j ∈ J .

For a sequence of positive real numbers {an}n∈N and random variables {Xn}n∈N on space (Ω,F , P ), define

Xn = OP (1) to say that Xn is stochastically bounded: ∀ε > 0,∃M > 0 such that P(|Xn| > M) < ε ∀n.

Define Xn = OP (an) to say Xn

an
= OP (1).

3.1.2 The Graphical Lasso

Given a set of n i.i.d. multivariate Gaussian observations {xj}nj=1, xj ∈ Rp with mean zero (without loss of

generality), positive definite covariance matrix Σ ∈ Sp++, and sample covariance matrix Ŝ = 1
n

∑n
j=1 xjx

>
j ,

then the log-likelihood l(Σ) is written

l(Σ) = log det(Σ−1)− tr(Σ−1Ŝ) (3.4)

The late 2000’s saw an interest in `1-regularized maximum likelihood estimators [Banerjee et al., 2008]

[Friedman et al., 2010b] [Ravikumar et al., 2010] for Σ known as the graphical Lasso (GLasso) estimators
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and are obtained by solving the `1-regularized minimization problem

Σ̂ = arg min
Σ∈Sp

++

−l(Σ) + λ|Σ−1|1 (3.5)

= arg min
Σ∈Sp

++

tr(ŜΣ−1)− log det
(
Σ−1

)
+ λ|Σ−1|1 (3.6)

where λ ≥ 0 is a tuning parameter. [Friedman et al., 2010a] introduced an iterative algorithm using

block coordinate descent to obtain the GLasso estimators in O(p4) time, and O(p3) in the sparse case. An

alternative algorithm was introduced by [Hsieh et al., 2011] with the same computational complexity.

[Rothman et al., 2008] and [Zhou et al., 2010] showed the high dimensional consistency in Frobenius norm

of the GLasso estimators for an appropriate choice of λ

‖Σ̂−1 −Σ−1‖F = OP

(√
(p+ s) log(p)

n

)
(3.7)

where Σ̂ is the GLasso estimator and s is a measure of sparsity denoting an upper bound on the number

of nonzero off-diagonal entries in Σ−1

3.2 The Kronecker Covariance Framework

We consider the Kronecker covariance model:

Σ = A⊗B (3.8)

Where Σ is the p × p covariance matrix for the observed data and A and B are pA × pA and pB × pB

positive definite matrices, respectively, such that pApB = p. This type of low-dimensional Kronecker covari-

ance matrix representation can be found in communications to model signal propagation from systems

with multiple input multiple output (MIMO) radio antenna arrays such as modern home wi-fi routers

[Werner and Jansson, 2007][Werner et al., 2008], in genomics to estimate correlations between genes and

their associated factors [Yin and Li, 2012], facial recognition [Zhang and Schneider, 2010], recommendation

systems, and missing data imputation [Allen and Tibshirani, 2010]. Typically, the motivation behind using

the Kronecker model is the pursuit of computational and mathematical tractability or a very low dimensional

representation given the model assumptions.

An immediate concern when using the Kronecker covariance model is that estimators for A and B are
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not unique, since each is identifiable only up to a constant. This is true of the methods introduced in this

chapter, although the resulting estimator for Σ = A⊗B is unique.

[Allen and Tibshirani, 2010] referred to this model as a transpose-able model, where both the rows and

columns are considered to be features of interest. Transpose-able models and the Kronecker covariance model

are special cases of the matrix variate normal distribution from [Efron, 2009], where separate covariance

matrices are used for the rows and columns. The authors provided a concept of a movie recommendation

engine which used this model such that the relationship between Customer A’s rating of Movie 1 and

Customer B’s rating of Movie 2 is modeled using the interaction between Customers A and B, and Movies

1 and 2.

Generally speaking, the simple Kronecker product covariance structure follows when we have a data

matrix X ∈ Rn×p with row means v ∈ Rn, column means u ∈ Rp, row covariance A ∈ Rn×n, and column

covariance B ∈ Rp×p. By vectorizing the data matrix X, we have

vec(X) ∼ N
(
vec(v1>p + 1nu>),A⊗B

)
(3.9)

where 1k is a vector of length k with all entries equal to 1. Therefore, an element Xij in X is distributed

Xij ∼ N (vi + uj , σij) and follows a mixed effects model without an assumption of independence between

errors from the rows and columns.

The model can be readily extended beyond 2 dimensional arrays for X using appropriate vectorization.

[Flaxman et al., 2015] and [Bonilla et al., 2008] compared the Kronecker covariance structure to tensor Gaus-

sian products.

3.3 The Kronecker Graphical Lasso for One Group

Suppose we have n i.i.d. observations from a multivariate Gaussian distribution with mean zero and covari-

ance Σ = A⊗B where A ∈ SpA++,B ∈ S
pB
++ then the `1-penalized maximum likelihood estimator is obtained

by solving

Σ̂ = arg min
Σ∈Sp

++

tr(ŜΣ−1)− log det
(
Σ−1

)
+ λ|Σ−1|1 (3.10)

= arg min
Σ∈Sp

++

tr
[
Ŝ(A−1 ⊗B−1)

]
− pB log det

(
A−1

)
− pA log det

(
B−1

)
+ λ|A−1|1|B−1|1 (3.11)
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where λ ≥ 0 is a regularization parameter. When A or B is fixed in the objective minimization function

above, then the function is convex with respect to the other argument [Tsiligkaridis and Hero, 2013]. There-

fore, we consider an alternating or “flip-flop” approach to handling the dual problem of fixing one half of

the Kronecker covariance matrix and optimizing over the other half.

The original penalized flip-flop (FFP) algorithm introduced by [Tsiligkaridis, 2014] and [Allen and Tibshirani, 2010]

is given below. Both minimization steps are solved using GLasso.

Flip Flop Algorithm for KGLasso

Input Ŝ, λ > 0, ε > 0

Initialize Σ̂−1 = Ip and A−1 ∈ SpA++

repeat

Σ̂−1prev ← Σ̂−1

TA ← 1
pA

∑pA
i,j=1 A−1i,j Ŝj,i

λA ← λ|A−1|1
pA

B−1 ← arg minB∈SpB
++

[
tr(B−1TA)− log det

(
B−1

)
+ λA|B−1|1

]
TB ← 1

pB

∑pB
i,j=1 B−1i,j Ŝj,i

λB ← λ|B−1|1
pB

A−1 ← arg minA∈SpA
++

[
tr(A−1TB)− log det

(
A−1

)
+ λB |A−1|1

]
Σ̂−1 ← A−1 ⊗B−1

until ‖Σ̂−1 − Σ̂−1prev‖ ≤ ε

The flip flop algorithm for KGLasso has complexity in O(p4A + p4B) compared to GLasso’s O(p4Ap
4
B).

3.3.1 Simulation Results

We consider moderately sparse covariance matrices Σ with dimension p = 400, decompose-able into smaller

matrices Σ = A⊗B with dimensions pA = pB = 20. We construct A,B from different distributions including

a block Toeplitz structure whose block structure is likely to favor the Kronecker product representation, and

a more general structure based on a positive definite Erdös - Rényi graph [Erdös and Rényi, 1960]. A

visualization of the latter is given below, where greys represent zeros, lighter shades represent more positive

values, and darker shades represent more negative values.
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Figure 3.1: A covariance map and graph of A

Figure 3.2: A covariance map and graph of B

Taking the Kronecker product, we obtain Σ which demonstrates some clustered connectivity.
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Figure 3.3: A covariance map and graph of Σ = A⊗B

We compared the performance of 4 different methods: The KGLasso, the näıve GLasso without con-

sideration of the Kronecker covariance structure, the non-sparsified KGLasso based on the flip flop al-

gorithm of the corresponding un-penalized maximum likelihood, and the CLIME by [Cai et al., 2011].

We evaluated the performance using Frobenius norm losses on the covariance and precision matrices for

n ∈ {10, 25, 50, 100, 200, 400, 800, 1000}, and the tuning parameter λ was chosen experimentally and sepa-

rately for each method to minimize Frobenius norm loss on the covariance matrix (Usually close to λ = 0.4).

In the case of CLIME, λ was selected automatically using the fastclime package in R and its precision

matrix estimator was further thresholded below to promote sparsity. The threshold cutoff was selected ex-

perimentally to minimize Frobenius norm loss on the covariance matrix. 100 trials were run for each method

for each value of n.
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A sample visualization of the graph produced by each method is given below for the case of n = 100.

Figure 3.4: Graphs of Σ and Σ̂ from GLasso, KGLasso, and CLIME

From these graphs we can see that all 3 methods above are able to discriminate between clusters of

connected nodes, although edge detection within those clusters is far from perfect. We can also observe

that by not imposing a Kronecker product structure, the GLasso does not falsely detect many edges outside

of clusters, in contrast to the more heavily connected upper hemisphere of the KGLasso graph. This is

likely due to an edge being incorrectly detected in either of the component covariance matrices A or B

and amplified through taking the Kronecker product. On the other hand, such structure enables KGLasso

to more closely approximate networks within clusters than GLasso since information can be extrapolated

outside of hubs.
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Figure 3.5: Frobenius norm loss for covariance matrix Σ

From the Frobenius norm losses on the covariance matrix Σ, we observe that the methods which assume a

Kronecker covariance structure perform well. Both KGLasso and it’s un-sparsified maximum likelihood form

yield almost identical performance. KGLasso outperforms näıve GLasso and CLIME for all n considered

above with respect to Frobenius norm loss on the covariance matrix.

Figure 3.6: Frobenius norm loss for precision matrix Ω = Σ−1

For precision matrix estimation, KGLasso outperforms the other methods as measured by Frobenius

norm loss. Despite taking advantage of the underlying Kronecker structure, the un-sparsified maximum

likelihood estimator is outperformed by CLIME and KGLasso, the former of which does not contain any

structure decomposition information.
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Method Precision Recall Run Time (1000 runs)

KGLasso 0.683 0.763 71 seconds
GLasso 0.275 0.189 85 seconds
CLIME 0.224 0.908 610 seconds

Table 3.1: Precision, Recall, and Run Time for n = 100

We can see that for n = 100, KGLasso outperforms näıve GLasso in terms of precision and recall for

edge detection. CLIME obtains better recall through over-selection and consequently yields poor precision.

On average during our trials, CLIME selected over 3 times as many edges as KGLasso (1894 vs 535). The

average number of edges in the underlying models was 320.

In terms of computational cost, both KGLasso and GLasso are very efficient. The overhead caused by

the flip flop algorithm and dual problem appears to almost negate the complexity advantage of KGLasso for

pA = pB = 20, but greater dimensionality would better demonstrate the advantages of KGLasso’s simpler

representation.

On the Selection of Tuning Parameters

The selection of tuning parameters λA and λB provides an interesting challenge for the Kronecker covariance

model. Most commonly, the practice of selecting an appropriate λ involves optimizing a scalar c in λ =

cf(s, p) over a metric such as squared error loss or false discovery rate via cross-validation [Li et al., 2013].

However, the inter-connectivity of the Kronecker model complicates the partitioning of data into training and

testing sets, which we will attempt to address in our real data example using the Joint Kronecker Graphical

Lasso algorithm.

3.4 The Joint Kronecker Graphical Lasso for Multiple Groups

We consider the problem of joint covariance and precision matrix estimation in a high dimensional setting. In

the traditional KGLasso setup, all observations are assumed to originate from the same Gaussian distribution.

However, many datasets do not reflect such an assumption, and include observations which may come from

different groups. For example, a genomics researcher may be studying gene co-expression networks in subjects

with and without a certain gene. Those without the gene or those with an inactive copy will be lacking

the respective hub in the co-expression networks versus those with an active gene, yet other parts of the

networks should largely be the same. In section, we introduce an algorithm for obtaining joint covariance

and precision matrix estimates and compare its performance via simulations and a real data example to
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Figure 3.7: Two similar networks. Note that Group 2 differs from Group 1 in that a sub-network near the
center of the image is present in Group 1 but not in Group 2.

other graphical methods including KGLasso applied separately to each group.

Given K sets of nk i.i.d. multivariate Gaussian observations {xjk}nk
j=1, xjk ∈ Rp with mean zero (without

loss of generality) and positive definite covariance matrix Σk ∈ Sp++, then the joint Kronecker graphical lasso

(JKGLasso) covariance model is given by

Σk = Ak ⊗Bk k = 1, ...,K (3.12)

and the log-likelihood takes form proportional to

l(Σ) =

K∑
k=1

log det
(
Σ−1k

)
− tr(ŜkΣ

−1
k ) (3.13)

=

K∑
k=1

pB log det
(
A−1k

)
+ pA log det

(
B−1k

)
− tr

[
Ŝk(A−1k ⊗B−1k )

]
(3.14)

However, the maximum likelihood estimates yield poor performance in the sense that the they present high

variance when p ∼ nk. In the high dimensional setting where p > nk, the maximum likelihood estimates may

be singular or ill-defined, although the lower dimensional Kronecker structure may alleviate this somewhat.

Lastly, the lack of sparsity enforcement when using maximum likelihood makes Σ̂−1k difficult to interpret,

especially from a graphical standpoint, since all entries in Σ̂−1k would be nonzero and the every pair of nodes

would contain a connecting edge in its corresponding graph. Therefore, we consider a penalization scheme
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similar to the ordinary Kronecker Graphical Lasso. However, since the Joint Kronecker Graphical Lasso

studies K groups with similar covariance matrices Σk, we’d like to penalize the log-likelihood using a term

that both promotes sparsity and similarity between the Σ−1k estimators.

The group Lasso penalty accomplishes these goals. The resulting objective function for the Joint Kro-

necker Graphical Lasso (JKGLasso) is convex and encourages both sparsity within Σ−1k and similarity

between, and takes the form

f =

K∑
k=1

[
tr(ŜkΣ

−1
k )− log det

(
Σ−1k

)]
+

λ1 K∑
k=1

|Σ−1k |1 + λ2
∑
i 6=j

√√√√ K∑
k=1

[(Σ−1k )i,j ]2

 (3.15)

=

K∑
k=1

[
tr(ŜkΣ

−1
k )− log det

(
Σ−1k

)
+ λ1|Σ−1k |1

]
+ λ2

∑
i 6=j

√√√√ K∑
k=1

[(Σ−1k )i,j ]2 (3.16)

where i, j = 1, ..., p, and (Σ−1k )i,j denotes the element from Σ−1k in row i, column j. Furthermore, the

group Lasso penalty separates the objective function into two parts above, the left of which allows isolation by

group k and is amenable to many fast convex optimization methods. Extending to the Kronecker covariance

model, we obtain the objective function

f =

K∑
k=1

[
tr
(
Ŝk(A−1k ⊗B−1k )

)
− log det

(
A−1k ⊗B−1k

)
+ λ1

(
|A−1k |1|B

−1
k |1

)]
(3.17)

+ λ2

 ∑
iA 6=jA

√√√√ K∑
k=1

[(A−1k )iA,jA ]2 +
∑
iB 6=jB

√√√√ K∑
k=1

[(B−1k )iB,jB ]2

 (3.18)

where iA, iB = 1, ..., pA and iB , jB = 1, ..., pB . Note that we impose the group Lasso penalty sep-

arately on A−1 and B−1 to reinforce similarity in A−1k across k and B−1k across k. While this natu-

rally produces similarity in Σ−1 = A−1 ⊗ B−1, such a penalty is not imposed directly on Σ−1 because∑
i 6=j

√∑K
k=1[(A−1k ⊗B−1k )i,j ]2 is not jointly convex.
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3.4.1 The JKGLasso Algorithm

The separability of the objective function f by Kronecker component matrices A and B yields the sub-

expression containing A:

fA =

K∑
k=1

[
tr
(
Ŝk(A−1k ⊗B−1k )

)
− pB log det

(
A−1k

)
+ λ1|A−1k |1

]
(3.19)

+ λ2
∑
iA 6=jA

√√√√ K∑
k=1

[(A−1k )iA,jA ]2 iA, jA = 1, ..., pA (3.20)

and a corresponding sub-expression fB for B. Since both the negative log likelihood and penalty terms

are bi-convex, the objective function f is bi-convex and iterative block coordinate-wise minimization of

f with respect to A−1 and B−1. Since the Kronecker covariance maximum likelihood estimator exists

for n ≥ max
(
pA
pB
, pBpA

)
+ 1 [Dutilleul, 1999], the objective function f(A−1,B−1) is bounded below. The

iterative block coordinate-wise minimization of f yields a decreasing sequence over iterations, so the algorithm

converges. Additionally, the algorithm converges to a local minimum on f and each iteration yields strict

descent. The proof mirrors Theorem II.6 of [Tsiligkaridis, 2014].

Let, {A−1} = {A−11 , ...,A−1K } and {B−1} = {B−11 , ...,B−1K }. The Joint Kronecker Graphical Lasso

algorithm introduced above can be summarized by:

Input Ŝk, λ1 > 0, λ2 > 0, ε > 0

Initialize Σ̂−1 = Ip and A−1 ∈ SpA++

repeat

Σ̂−1k,prev ← Σ̂−1k k = 1, ...,K

{B−1} ← arg min{B−1} f({A−1}, {B−1}) = arg min{B−1} fB({A−1}, {B−1})

{A−1} ← arg min{A−1} f({A−1}, {B−1}) = arg min{A−1} fB({A−1}, {B−1})

Σ̂−1k ← A−1k ⊗B−1k k = 1, ...,K

until
∑K
k=1 ‖Σ̂

−1
k − Σ̂−1k,prev‖ ≤ ε

Each update of A−1 and B−1 is handled using the Alternating Directions Method of Multipliers (ADMM)

algorithm introduced by [Boyd et al., 2010].

The ADMM approach rewrites fA as a Lagrangian dual problem by adding Lagrange multipliers to

handle additional constraints. Introducing k additional variables Zk, k = 1, ...,K subject to Zk = Ak

allows separation of the log-likelihood of individual groups from the group penalty so that each group can
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be handled individually in the primal problem. We minimize

gA =

K∑
k=1

[
tr
(
Ŝk(A−1k ⊗B−1k )

)
− pB log det

(
A−1k

)]
(3.21)

+ λ1

K∑
k=1

|Z−1k |1 + λ2
∑
i 6=j

√√√√ K∑
k=1

[(Z−1k )i,j ]2 i, j = 1, ..., pA (3.22)

subject to positive definiteness Ak ∈ Sp++ and Zk = Ak for k = 1, ...,K. The corresponding Lagrangian

takes the form

L({A−1}, {Z−1}, {U}) =

K∑
k=1

[
tr
(
Ŝk(A−1k ⊗B−1k )

)
− pB log det

(
A−1k

)]
(3.23)

+ λ1

K∑
k=1

|Z−1k |1 + λ2
∑
i 6=j

√√√√ K∑
k=1

[(Z−1k )i,j ]2 i, j = 1, ..., pA (3.24)

+ ρ

K∑
k=1

|Ak
−1 − Z−1k + Uk|2F (3.25)

where Uk is the dual variable. Let A−1k(i),Zk(i),Uk(i) denote the i-th iteration of A−1k ,Zk,Uk, respectively.

Let {A−1(i) }, {Z(i)}, {U(i)} denote the i-th iteration of {A−1}, {Z}, {U}, respectively. Each iteration, {A−1}

and {Z−1} are updated sequentially to minimize the Lagrangian until the duality gap closes and the ADMM

algorithm converges so the resulting estimators {Â} can be returned to the flip stop step.

To update {A−1(i) } = arg min{A−1} L({A−1}, {Z−1(i−1)}, {U(i−1)}), we minimize the relevant parts of the

Lagrangian containing A−1k

LA({A−1}, {Z−1}, {U}) =

K∑
k=1

[
tr
(
Ŝk(A−1k ⊗B−1k )

)
− pB log det

(
A−1k

)]
(3.26)

+ ρ

K∑
k=1

|A−1k − Z−1k + Uk|2F (3.27)

Since each term corresponding to a unique k is separable, the solution amounts to K separate, Frobenius-

penalized ordinary Graphical Lasso problems which can be solved using the eigen-decomposition approach

of [Witten and Tibshirani, 2009] and [Allen and Tibshirani, 2010].

We have the scaled augmented Lagrangian for some fixed k,

[
tr
(
Ŝk(A−1k ⊗B−1k )

)
− pB log det

(
A−1k

)]
p−1B + ρn−1k |A

−1
k − Z−1k + Uk|2F (3.28)
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Let Ŝ[i,j] ∈ RpB×pB denote the sub-matrix in Ŝ corresponding to block row i and block column j where each

block is pA × pA, and let Ck ∈ RpA×pA denote the matrix whose elements are (Ck)i,j = tr(Ŝ[i,j]Bk) for

i = 1, ..., pB j = 1, ..., pB . Then, we have the first order equation

0 = Cnk − pBnkAk + ρ(A−1k − Z−1k + Uk) (3.29)

=
ρ

pBnk
A−2k +

(
C

pB
−
ρZ−1k
pbnk

+
ρUk

pBnk

)
A−1k − IpA (3.30)

Let VkDkV
>
k be the eigen-decomposition of

C

pB
−
ρZ−1k
pbnk

+
ρUk

pBnk
.

Then the solution to the first order equation is given by Â−1k = VkD̂kVk
>, where D̂k is a diagonal

matrix with entries

(D̂k)j,j =
pBnk

2ρ

(
−(Dk)j,j +

√
(Dk)2j,j +

4ρ

pBnk

)
(3.31)

The Kronecker structure is particularly important in this solution since the eigen-decomposition of a large

p× p matrix can be very expensive compared to the eigen-decompositions of several much smaller matrices

of sizes pA × pA and pB × pB . [Witten et al., 2011]

To update {Z(i)} = arg min{Z} L({A−1(i) }, {Z
−1}, {U(i−1)}), we minimize the relevant parts of the La-

grangian containing Zk

L({A−1}, {Z}, {U}) = λ1

K∑
k=1

|Z−1k |1 + λ2
∑
i6=j

√√√√ K∑
k=1

[(Z−1k )i,j ]2 i, j = 1, ..., pA (3.32)

+ ρ

K∑
k=1

|Ak
−1 − Z−1k + Uk|2F (3.33)

which is the ordinary group Lasso penalty and has solution:

(Ẑ−1k )i,j =



(Â−1k )i,j i = j

S
(

(Â−1k )i,j , 2λ1/ρ
)1− λ2

2ρ

√∑K
k=1 S

(
(Â−1k )i,j , 2λ1/ρ

)2
 (3.34)

The dual variable update is trivial. {U(i)} = {A−1(i) } − {Z
−1
(i) }+ {U(i−1)}
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3.4.2 Simulation Results

In this subsection, we compare simulation performances of the Joint Kronecker Graphical Lasso (JK-

GLasso) with several other methods including näıve Graphical Lasso (GLasso), the Kronecker Graphical

Lasso (KGLasso) where all subjects are considered to come from a single group, the Joint Graphical Lasso

(JGLasso) where the Kronecker covariance assumption is withheld, universal thresholding (Thresh), the con-

strained `1-minimization for inverse matrix estimation (CLIME) [Cai et al., 2011], the neighborhood pursuit

method (Neigh) of [Meinshausen and Bühlman, 2006], and the time-varying ridge method introduced in

Chapter 2 (TV-Ridge).

We evaluated the performance of these methods using precision and recall of edge selection. For methods

which provide inverse covariance matrix estimators (Excludes Neigh and TV-Ridge), we compared total

Frobenius norm error loss on Σk and Σ−1k , summed across groups.

In our simulations, we considered setups with K = 3 and 50 groups. We generated Σ−1k = A−1k ⊗B−1k

where A−1k and B−1k are 100 × 100 inverse covariance matrices. A−11 and B−11 were generated using the

cluster technique from the high dimensional undirected graph estimation package (huge) in R. Subsequent

groups were generated using the previous group with uniform probability to add a cluster, remove a cluster,

or remain unchanged. The record of group ordering was kept and treated as a time variable for the TV-Ridge

method. A previous example is given again below to illustrate.

Figure 3.8: Graphs of A−11 and A−12

46



The KJGLasso algorithm generally converged within 1000 iterations. The example below shows the

behavior of the overall objective function through iterations. Spikes in the plot correspond to the initialization

stages of the ADMM algorithm. Behavior between spikes is characterized by the ADMM optimization routine

itself. Behavior of the spikes is characterized by the flip-flop routine.

Figure 3.9: The scaled objective function over the JKGLasso algorithm’s inner loop iterations
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Appendix A

Proofs

A.1 Lemmas

Lemma A.1. Let X be an n× p matrix and D = diag(d1, · · · , dn) with |di| ≤ b and b ≥ 0. Then

ρmax(X>DX, s) ≤ 2bρmax(X>X, s).

If di ∈ [0, b], then ρmax(X>DX, s) ≤ bρmax(X>X, s).

Proof. Let As = {a ∈ Rp : |a|2 ≤ 1, |a|0 ≤ s}. Write di = d+i − d
−
i , where d+i = max(di, 0) and d−i =

max(−di, 0) are the positive and negative parts, respectively. By definition

ρmax(X>DX, s) = max
a∈As

|a>X>DXa| = max
a∈As

|tr(D(Xaa>X>))|

= max
a∈As

∣∣∣∣∣
n∑
i=1

(d+i − d
−
i )(Xaa>X>)ii

∣∣∣∣∣ ≤ 2b max
a∈As

n∑
i=1

(Xaa>X>)ii

= 2b max
a∈As

tr(Xaa>X>) = 2b max
a∈As

a>X>Xa = 2bρmax(X>X, s),

because X>X is nonnegative definite. The second claim follows from the same lines with d−i = 0.

Lemma A.2. Let t ∈ $ and Σ̂t be the kernel smoothed sample covariance at time t and Σ̂�t = X �t
>X �t .

Suppose that X �t has full row rank. Assume further (2.15), (2.13) and assumption 6 hold, then we have

ρmin 6=0(Σ̂t) ≥ |Nt|wtε20 (A.1)

ρmax(Σ̂t, s) ≤ |Nt|wtε−20 . (A.2)

Proof. Since X �t is of full row rank, r = |Nt|. Note that Xt = (|Nt|Wt)
1/2X �t , ρi(Σ̂t) = σ2

i (Xt) and

ρi(Σ̂
�
t ) = σ2

i (X �t ). By the generalized Marshall-Olkin inequality, see e.g. [Wang and Zhang, 1992, Theo-
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rem 4], assumption 6 and (2.15), we have

ρmin6=0(Σ̂t) = ρmin(XtX>t ) = |Nt|ρmin(W
1/2
t X �t X �t

>W
1/2
t )

= |Nt|ρmin(X �t X �t
>Wt) ≥ |Nt|ρmin(Wt)ρmin(X �t X �t

>) ≥ |Nt|wtε20.

The second inequality (A.2) follows from assumption 3(b) and Lemma A.1 applying to Σ̂t = |Nt|X �t
>WtX �t

and Wt ≥ 0.

Lemma A.3. Suppose assumption 1, 2, 3 and 5(a) hold. Let t ∈ $ be fixed and λ0 be defined in (2.17).

Then, for λ1 ≥ 2(λ0 + 2C0Lt,1s
1/2ε−20 bn|Nt|wt) where λ0 is defined in (2.17), we have, with probability

1− 2p−1,

|Xt[β̃(t)− β(t)]|22 + λ1|β̃(t)− β(t)|1 ≤ 4λ21
s

φ20
. (A.3)

Proof. By definition (2.8),

|Yt −Xtβ̃(t)|22 + λ1|β̃(t)|1 ≤ |Yt −Xtβ(t)|22 + λ1|β(t)|1,

which implies that

|Xt[β̃(t)− β(t)]|22 + λ1|β̃(t)|1 ≤ λ1|β(t)|1 + 2
〈
Yt −Xtβ(t),Xt[β̃(t)− β(t)]

〉
.

By assumption 2 and Taylor’s expansion in the bn-neighborhood of t, we see that

Yt −Xtβ(t) = Et +MtXtβ′(t) + Xtξ, (A.4)

where Mt = diag((ti−t)i∈Nt) and ξ is a vector such that |ξ|∞ ≤ C0b
2
n/2 and |ξ|0 ≤ s. Let J = {2|E>t Xt|∞ ≤

λ0}. Observe that |E>t Xt|∞ = maxj≤p |
∑
i∈Nt

w(t, i)Xijei| and, by assumption 1,

∑
i∈Nt

w(t, i)Xijei ∼ N

(
0, σ2

∑
i∈Nt

w(t, i)2X2
ij

)
. (A.5)

Then, by the standard Gaussian tail bound and the union inequality, we obtain that

P
(

max
j≤p

∣∣∣∣
∑
i∈Nt

w(t, i)Xijei

σLt,2

∣∣∣∣ ≥√ε2 + 2 log p

)
≤ P(max

j≤p
|Zj | ≥

√
ε2 + 2 log p) ≤ 2 exp

(
−ε

2

2

)
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for all ε > 0, where Zj ∼ N(0, 1). Now, choose ε = (2 log p)1/2 and λ0 = 4σLt,2(log p)1/2, we have

P(J ) ≥ 1− 2p−1. Further, we have

|β′(t)>X>t MtXt[β̃(t)− β(t)]| ≤ |β̃(t)− β(t)|1|X>t MtXtβ′(t)|∞

≤ |β̃(t)− β(t)|1 max
j≤p

(∑
i∈Nt

w(t, i)X2
ij

)1/2 [
β′(t)>X>t M2

t Xtβ
′(t)
]1/2

(Cauchy-Schwarz)

≤ |β̃(t)− β(t)|1Lt,1
√
ρmax(X>t M2

t Xt, s)|β
′(t)|2 (assumption 2)

≤ |β̃(t)− β(t)|1Lt,1C0s
1/2bn

√
ρmax(X>t Xt, s) (Lemma A.1, assumption 2 and 3)

≤ |β̃(t)− β(t)|1Lt,1C0(|Nt|wts)1/2bnε−10 (Lemma A.2, equation (A.2)).

Similarly, we can show that |ξ>X>t Xt[β̃(t) − β(t)]| = O(Lt,1(|Nt|wts)1/2b2nε−10 |β̃(t) − β(t)|1). Therefore, it

follows that, with probability at least (1− 2p−1),

∣∣∣〈Yt −Xtβ(t),Xt[β̃(t)− β(t)]
〉∣∣∣ ≤ [λ0 + 2Lt,1C0(|Nt|wts)1/2bnε−10 (1 + o(1))

]
|β̃(t)− β(t)|1.

Now, choose λ1 ≥ 2(λ0 + 2Lt,1C0(|Nt|wts)1/2bnε−10 ), we get

2|Xt[β̃(t)− β(t)]|22 + 2λ1|β̃(t)|1 ≤ λ1|β̃(t)− β(t)|1 + 2λ1|β(t)|1.

Denote S0 := S0(t) = supp(β(t)). By the same argument as [Bühlmann and van de Geer, 2011, Lemma

6.3], it is easy to see that, on J ,

2|Xt[β̃(t)− β(t)]|22 + λ1|β̃Sc
0
(t)|1 ≤ 3λ1|β̃S0

(t)− βS0
(t)|1.

But then, (A.3) follows from the restricted eigenvalue condition (assumption 4) with the elementary inequality

4ab ≤ a2 + 4b2 that

2|Xt[β̃(t)− β(t)]|22 + λ1|β̃(t)− β(t)|1 ≤ 4λ1|β̃S0
(t)− βS0

(t)|1 ≤ |Xt[β̃(t)− β(t)]|22 + 4λ21s/φ
2
0.
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Lemma A.4. Let ξi be a sub-Gaussian random variable with mean zero and variance factor σ2, and ei =∑∞
m=0 amξi−m be a linear process. Let w = (w1, · · · , wn) be a real vector and Sn =

∑n
i=1 wiei be the weighted

partial sum of ei.

1. (Short-range dependence). If |a|1 =
∑∞
i=0 |ai| <∞, then for all x > 0 we have

P(|Sn| ≥ x) ≤ 2 exp

(
− x2

2|w|2|a|21σ2

)
. (A.6)

2. (Long-range dependence). Suppose K = supm≥0 |am|(m + 1)% < ∞, where 1/2 < % < 1. Then, there

exists a constant C% that only depends on % such that

P(|Sn| ≥ x) ≤ 2 exp

(
− C%x

2

|w|2n2(1−%)σ2K2

)
. (A.7)

Proof. Put am = 0 if m < 0 and we may write Sn =
∑
m∈Z bmξm, where bm =

∑n
i=1 wiai−m. By the

Cauchy-Schwartz inequality,

∑
m∈Z

b2m ≤
∑
m∈Z

(
n∑
i=1

w2
i |ai−m|

)(
n∑
i=1

|ai−m|

)
≤ |w|2|a|21.

Then, (A.6) follows from the Cramér-Chernoff bound [Boucheron et al., 2013]. Let ām = maxl≥m |al| and

Am =
∑m
l=0 |al|. Note that An ≤ K

∑n
l=0(l+ 1)−% ≤ C%K(n+ 1)1−%, where C% = (1− %)−1. Then, we have

n∑
m=1−n

b2m ≤
n∑

m=1−n

(
n∑
i=1

w2
i |ai−m|

)(
n∑
i=1

|ai−m|

)
≤ |w|2A2

2n.

If m ≤ −n, then |bm| ≤ |w|1ā1−m and therefore

∑
m≤−n

b2m ≤ |w|21
∑
m≤−n

ā21−m ≤ C%n|w|2K2n1−2%,

where the last inequality follows from Karamata’s theorem; see e.g. [Resnick, 1987]. Hence, the proof is

complete by invoking the Cramér-Chernoff bound for sub-Gaussian random variables.
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A.2 Proof of Theorem 2.1

Observe that Xtβ(t) = Xtθ(t) since θ(t) = PRtβ(t). Using the closed-form formulae for the tv-ridge

estimator (2.9) and by (A.4), we have

bias(θ̃(t)) = E(θ̃(t))− θ(t) = (X>t Xt + λ2Ip)
−1X>t [Xtθ(t) +MtXtβ′(t) + Xtξ]− θ(t), (A.8)

where |ξ|∞ ≤ C0b
2
n/2 and |ξ|0 ≤ s almost surely t ∈ $. First, we bound the shrinkage bias of the tv-ridge

estimator. By the argument in Section 3 of [Shao and Deng, 2012], we can show that

(X>t Xt + λ2Ip)
−1X>t Xtθ(t)− θ(t) = −Q(λ−12 D2 + Ir)

−1Q>θ(t).

Then, it follows from Lemma A.2 that

|Q(λ−12 D2 + Ir)
−1Q>θ(t)|2 ≤ |θ(t)|2

ρmin(λ−12 D2 + Ir)
(A.9)

=

(
λ2

λ2 + minj≤r d2j

)
|θ(t)|2 ≤

λ2|θ(t)|2
ρmin6=0(Σ̂t)

≤ λ2|θ(t)|2
|NT |wtε20

,

where d2j = ρj(Σ̂t), j = 1, · · · , r. Next, we deal with the non-stationary bias of the tv-ridge estimator (A.8)

by a similar argument for (A.9). Indeed, let Q⊥ be the orthogonal complement of Q such that Q>⊥Q⊥ = Ip−r

and Q>⊥Q = 0(p−r)×r. Let Γ = [Q;Q⊥]; then, ΓΓ> = Γ>Γ = Ip. By the SVD of Xt, equation (2.5), we may

write

(X>t Xt + λ2Ip)
−1X>t MtXtβ′(t) = Γ

(
Γ>(QD2Q> + λ2Ip)Γ

)−1
Γ>X>t MtXtβ′(t)

= [Q;Q⊥]


 Q>

Q>⊥

 (QD2Q> + λ2Ip)[Q;Q⊥]


−1  Q>

Q>⊥

QDP>MtXtβ′(t)

= [Q;Q⊥]

 (D2 + λ2Ir)
−1 0

0 λ−12 Ip−r


 DP>MtXtβ′(t)

0


= Q(D + λ2D

−1)−1P>MtXtβ′(t).
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Hence, by Lemma A.2 we have

|(X>t Xt + λ2Ip)
−1X>t MtXtβ′(t)|2 ≤

bn|Xtβ′(t)|2
ρmin(D + λ2D−1)

≤ C0bn(s|Nt|wt)1/2ε−10

minj≤r(dj + λ2/dj)
,

where wt = supi∈Nt
w(i, t). Since λ2 = o(1) and dj ≥ (|Nt|wt)1/2ε0, the denominator of last expression is

lower bounded by [(|Nt|wt)1/2ε0 + λ2/((|Nt|wt)1/2ε0)] for large enough n. Therefore, we have

|(X>t Xt + λ2Ip)
−1X>t MtXtβ′(t)|2 ≤

C0bn(s|Nt|wt)1/2

(|Nt|wt)1/2ε20
≤ C0bns

1/2

Cε20
. (A.10)

Similarly, upper bound for the remainder term of (A.8) can be established as follows

|(X>t Xt + λ2Ip)
−1X>t MtXtξ|2 ≤

C0b
2
ns

1/2

2Cε20
, for almost surely t ∈ $. (A.11)

In addition, θ̃(t) − E[θ̃(t)] = (X>t Xt + λ2Ip)
−1X>t Et is the stochastic part of the tv-ridge estimator. Since

ei ∼ N(0, σ2In) are i.i.d., Et ∼ N(0, σ2Wt). Hence, θ̃(t) − E[θ̃(t)] ∼ N(0,Ω(λ)), where Ω(λ) is defined in

(2.7), and thus

Var(θ̃j(t)) = σ2Ωjj(λ2) ≥ σ2Ωmin(λ2). (A.12)

Now, we consider the initial tv-lasso estimator. By Lemma A.3,

|β̃(t)− β(t)|1 ≤ 4φ−20 λ1s. (A.13)

Then, (2.18), (2.19) and (2.20) follow by assembling (A.9), (A.10), (A.11) and (A.13) into (2.10)

β̂(t) = β(t) + bias(θ̃(t)) + {θ̃(t)− E[θ̃(t)]} − {(PRt
− Ip)[β̃(t)− β(t)]}.

The marginal representation (2.21) and (2.22) follow from similar argument by noting thatBj(t) =
∑
k 6=j(PRt)jkβk(t)

under H0,j,t.
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A.3 Proof of Theorem 2.3

The proof of Theorem 2.3 is similar to Theorem 2.1 so we only highlight the difference involving the error

process. First, Cov(Et) = W
1/2
t Σe,tW

1/2
t . Second, instead of using (A.5) in proving Lemma A.3, we shall

use Lemma A.4 to get for all λ > 0

P

(
max
j≤p

∣∣∣∣∣∑
i∈Nt

w(t, i)Xijei

∣∣∣∣∣ ≥ λ
)
≤ 2p exp

(
− λ2

2L2
t |a|21σ2

)
if % > 1;

and

P

(
max
j≤p

∣∣∣∣∣∑
i∈Nt

w(t, i)Xijei

∣∣∣∣∣ ≥ λ
)
≤ 2p exp

(
− C%λ

2

L2
tn

2(1−%)σ2K2

)
if % ∈ (1/2, 1).

A.4 Proof of Theorem 2.4

The proof essentially follows the lines in Theorem 2.1, however with two key differences of requiring a larger

penalty parameter λ1 of the tv-Lasso. First, by the Nagaev inequality [Nagaev, 1979], we have for any ε > 0,

P

(
max
j≤p

∣∣∣∣∣∑
i∈Nt

w(t, i)Xijei

∣∣∣∣∣ ≥ σLtε
)
≤ (1 + 2/q)qκq

pµn,q
(σLtε)q

+ 2p exp
(
−cqε2

)
,

where cq = 2e−q(q + 2)−2 and κq is the q-th absolute moment of e1. Then, choosing

ε = Cq max

{
(pµn,q)

1/q

σLt
, (log p)1/2

}
for large enough Cq > 0,

we have maxj≤p |
∑
i∈Nt

w(t, i)Xijei| = OP(λ0). Second, let Ξ = (X>t Xt + λ2Ip)
−1X>t W

1/2
t and E�t =

(ei)
>
i∈Nt

. Recall that θ̃(t)−E[θ̃(t)] = ΞE�t and denote ξj be the columnized j-th row of Ξ. By the Gaussian

approximation, e.g. [Shao, 1995, Theorem B], there exist i.i.d. Gaussian random variables gi ∼ N(0, σ2ξ2ji)

defined on a richer probability space such that for every t > 0

P

(∣∣∣∣∣θ̃j(t)− E[θ̃j(t)]−
∑
i∈Nt

gi

∣∣∣∣∣ ≥ t
)
≤ (Cq)q

∑
i∈Nt

E|ξjiei|q

tq
.

Thus, it follows that

θ̃j(t)− E[θ̃j(t)] = N(0, σ2Ωjj(λ2)) +OP(|ξj |q).
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Then, the proof is complete if |ξj |q = o(Ω
1/2
jj (λ2)). Since K(·) is the uniform kernel such that Wt =

|Nt|−1I|Nt| and Xt = X �t , this follows from Ξ = (X>t Xt + λ2Ip)
−1X>t W

1/2
t = |Nt|−1/2Q(D + λ2D

−1)−1P>

and

ρ1/2max(Ω(λ2)) ≤ ε0σ

|Nt|1/2(ε20 + λ2)
→ 0, as n→∞.

A.5 Proof of Proposition 2.1

Since we consider the uniform kernel, we may assume bn = 1, |Nt| = n and then rescale. Observe that

max
|k|≤h

|σ̂2
e,k − σ∗2e,k| = max

|k|≤h

1

n

∣∣∣∣∣
n−k∑
i=1

(êiêi+k − eiei+k)

∣∣∣∣∣
≤ max

|k|≤h

1

n

∣∣∣∣∣
n−k∑
i=1

êi(êi+k − ei+k)

∣∣∣∣∣+

∣∣∣∣∣
n−k∑
i=1

ei+k(êi − ei)

∣∣∣∣∣
≤ max

|k|≤h

1

n

(
n−k∑
i=1

ê2i

)1/2(n−k∑
i=1

(êi+k − ei+k)2

)1/2

+ max
|k|≤h

1

n

(
n−k∑
i=1

e2i+k

)1/2(n−k∑
i=1

(êi − ei)2
)1/2

≤

( 1

n

n∑
i=1

ê2i

)1/2

+

(
1

n

n∑
i=1

e2i

)1/2
( 1

n

n∑
i=1

(êi − ei)2
)1/2

.

By Lemma A.3,

1

n

n∑
i=1

(êi − ei)2 = |Ẽt − Et|22 = |Xt[β̃(t)− β(t)]|22 = OP(λ21s).

Then, it follows from the last expression and n−1
∑n
i=1 e

2
i = OP(1) that

max
|k|≤h

|σ̂2
e,k − σ∗2e,k| = OP(λ1s

1/2).

Therefore

ρmax(Bh(Σ̂e)−Bh(Σ∗e)) . h max
|k|≤h

|σ̂2
e,k − σ∗2e,k| = OP(hλ1s

1/2).

55



Appendix B

References

[Allen and Tibshirani, 2010] Allen, G. I. and Tibshirani, R. (2010). Transposable regularized covariance
models with an application to missing data imputation. The Annals of Applied Statistics, 4:764–790.

[Banerjee et al., 2008] Banerjee, O., Ghaoui, L. E., and d’Asprémont, A. (2008). Model selection through
sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine
Learning Research, 9:485–516.

[Bellman, 1961] Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University
Press, Princeton.

[Bickel and Levina, 2008] Bickel, P. and Levina, E. (2008). Covariance regularization by thresholding. The
Annals of Statistics, 36:2577–2604.

[Bickel et al., 2009] Bickel, P., Ritov, Y., and Tsybakov, A. (2009). Simultaneous analysis of lasso and
dantzig selector. The Annals of Statistics, 37:1705–1732.

[Bonilla et al., 2008] Bonilla, E., Chai, K. M., and WIlliams, C. (2008). Multi-task gaussian process predic-
tion. Advances in Neural Information Processing Systems, 20:153–160.

[Boucheron et al., 2013] Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford.

[Boyd et al., 2010] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and Trends
in Machine Learning, 3:1–122.

[Bühlmann, 2013] Bühlmann, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli,
19:1212–1242.
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