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Abstract

Peptide self-assembly has generated significant interest as a means for the bottom-up fabrication of highly
tunable biocompatible nanoaggregates. Individual peptides can be synthesized to include non-natural r-
conjugated subunits, endowing assembled aggregates with a range of optical and electronic properties
that render them useful in applications as biocompatible organic electronics. The immense number of
possible peptides, however, causes the exhaustive traversal of sequence space to be intractable. This mas-
sive composition space lends itself toward the use of computer simulation and data science tools to under-
stand molecular aggregation and guide experimental synthesis and design. In this dissertation, I present
work employing a hierarchy of molecular modeling techniques to identify self-assembling peptides with
specific photophysical properties by probing thermodynamic and structural characteristics of peptide ag-
gregation. We employ classical molecular dynamics simulation to probe the key molecular forces govern-
ing the morphology and free energy of oligomerization, time dependent density functional theory to pre-
dict photophysical properties as a function of aggregate morphology, and data-driven quantitative struc-
ture property models to perform high-throughput virtual screening of chemical space to identify promis-
ing peptide chemistries. This work establishes a multi-scale framework for the principled computational

design of self-assembling n-conjugated peptides with engineered photophysical properties.
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Chapter 1

Introduction

1.1 Peptide self-assembly

The self-assembly of peptides is a promising methodology for the fabrication of novel macromolecular
materials with desirable structural, functional, and biological properties [6-12]. Such materials have po-
tential applications in drug and protein delivery, material templating of inorganic structures, regenerative
medicine, and antimicrobials [7, 8, 12-19]. Assembly can be triggered by environmental variables such
as primary structure, pH, temperature, and salt concentration [20-28] allowing for many degrees of free-
dom with which to influence peptide assembly. In addition to standard amino acids, synthetic oligopep-
tides can be functionalized with polymeric 7-conjugated inserts [25,29-32], endowing the self-assembled
supramolecular aggregates with optoelectronic and photophysical activity. The resultant electrical and
electronic properties — electron transport or exciton coupling, for example — provide the basis for a di-
verse array of organic electronic devices, such as light-emitting diodes, field-effect transistors, and so-
lar cells [33-44]. Deterministic control of the structure, stability, and kinetics of self-assembled organic
electronics by tuning monomer chemistry and environmental conditions presents a powerful route to the
fabrication of “designer materials” possessing desirable structural and functional properties [45]. Conju-
gated peptides in particular offer a water-soluble and biocompatible medium to fabricate self-assembled
aggregates with tunable biological and electronic properties 2,4, 22, 39, 40, 46-49].

The chemical sequence space accessible to synthetic oligopeptides is vast, and it is of value to under-
stand the microscopic molecular forces and mechanisms governing assembly in order to provide rational
principles to guide experimental peptide design towards candidates with good assembly behavior. Such
properties, however, can be difficult to access experimentally. As a result, computational studies provide
an attractive method to elucidate these interactions [4, 50-57]. Specifically, molecular dynamics (MD)
simulations provide a useful tool for probing the structure, dynamics, and thermodynamics of molecular
systems [50-53, 58]. As a classical simulation, however, the excited state properties of a molecule are not

accessible to MD simulations. Density functional theory is a common simulation technique used to take



into account the quantum properties of a molecule due to its relatively high degree of accuracy without
too large of a computational cost [59-64]. Incorporating both large length and time scale thermodynamic
properties as well as quantum properties of self-assembling n-conjugated peptides will be important to
further understand these systems from a computational standpoint. The goal of this work is to establish a
procedure for the computational design of self-assembling peptides with tunable photophysical proper-
ties. In Chapter 2, we present work using MD simulations to probe the thermodynamic, kinetic, and struc-
tural properties of smaller scale aggregation of peptides having a DFAG-OPV3-GAFD composition. This
chapter lays the groundwork for our use of MD simulations to study peptides of this nature. In Chapter 3
we expand our computations to include a variety of amino acid sequences and core composition in order
to determine simple relationships between peptide composition and properties of interest in assembly.
This chapter demonstrates the applicability of QSPR modeling to the prediction of thermodynamic prop-
erties underpinning peptide aggregation, and sheds light on the relationship between these properties
and peptide alignment. In Chapter 4 we challenge the assumption of no aggregation in peptide systems at
neutral pH, and predict the extent of prenucleation in untriggered peptide systems. This chapter provides
abetter understanding for the initial conditions which govern the kinetics of peptide assembly. In Chapter
5 we present ongoing work relating the geometries observed in MD simulation to excited state properties
of peptide aggregates. This chapter lays the ground work for conducting in silico design of self-assembling
n-conjugated peptides with specific excited state properties of interest. Finally, in Chapter 6 we present
conclusions and future directions for this work.

Chapters 2-4 are based in full or in part on the following publications
* Thurston, B. A,; Tovar, J. D.; Ferguson, A. L. Mol. Sim. 42,12, 955-975 (2016).
* Thurston, B. A.; Ferguson, A. L. Mol. Sim. 44, 11, 930-945 (2018).

e Valverde, L. R,; Thurston, B. A.; Ferguson, A. L.; Wilson, W. L. Langmuir, 34, 25, 7346-7354 (2018).



Chapter 2

Molecular Modeling of Assembly

2.1 Introduction

In this chapter, we present a theoretical study of the self-assembly of synthetic ASP-PHE-ALA-GLY-OPV3-
GLY-ALA-PHE-ASP (DFAG) oligopeptides containing a n-conjugated oligophenylenevinylene (OPV) core
(Figure 2.1). This prototypical peptide-II-peptide triblock architecture presents a powerful and flexible ar-
chitecture for self-assembling optoelectronic peptidic biomaterials [4, 56]. Experimental work has shown
these peptides to exist as water-soluble monomers at neutral or basic pH, and under acidic conditions
— due to protonation of the carboxylic acid termini that screens inter-peptide Coulombic repulsion — to
self-assemble into 1D ribbons driven by inter-peptide hydrogen bonding and n-stacking of the conju-
gated cores [4,23,65,66]. Experimentally, self-assembled 1-D nanomaterials formed from a wide variety of
aromatic cores have been observed, including the phenylene vinylene subunit considered here, electron-
rich oligothiophenes, diimide-based electron-deficient 7-systems, and a series of polyaromatics of similar
composition but increasing size (i.e., bi, ter tetra, quinque and sexithiophene) [67, 68]. Electronic delo-
calization along the aromatic core of this supramolecular construct imbues these aggregates with useful
optoelectronic properties, making them putative candidates as biocompatible conductive ribbons at the
biotic-abiotic interface, and as a triggerable, biocompatible, electro-conductive material with biosensing
applications [22]. Previous experimental work has considered the impact of variations in the size of the
conjugated core, peptide sequence, and N-to-C polarity upon the structural and photophysical properties
of the peptide assemblies [4, 23, 30, 56, 69]. Theoretical work has probed the impact of peptide sequence
N-to-C polarity and the impact of the number of OPV subunits upon the thermodynamic driving forces
for dimerization and peptide sequence upon the morphology of peptide ribbons [4, 56], but the elemen-

tary kinetic steps and molecular mechanisms of self-assembly remain unknown. This chapter establishes

Most of this chapter is an excerpt from from ref. [55]. Used with permission from Thurston, B. A.; Tovar, J. D.; Ferguson, A. L. Mol.
Sim. 42,12, 955-975 (2016), available at https://doi.org/10.1080/08927022.2015.1125997. Copyright 2016 Taylor and Francis.
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fundamental understanding of the early stages of DFAG-OPV3-GAFD self-assembly using molecular sim-
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ulation.

Figure 2.1: Chemical structure of the DFAG-OPV3-GAFD peptide studied in this chapter. The N-terminus
to C-terminus directionality of each peptide wing proceeds away from the conjugated core, leading to an
oligopeptide architecture possessing two C-termini. The pK, of the carboxyl terminus and aspartic acid
side chain residing at the C-termini are 2.09 and 3.86, respectively [3]. At pH ~5 or greater, the oligopep-
tides are effectively fully deprotonated, carrying a formal charge of (—4) that precludes extended assembly
due to Coulombic repulsion [4]. At pH ~1 or less, the peptides are effectively fully protonated, and self-
assemble into aggregates stabilized by inter-peptide hydrogen bonding and n-stacking of the conjugated
cores.

Molecular dynamics simulations provide a means to study the atomistic structure of peptide assem-
blies and probe the thermodynamics and kinetics of peptide aggregation. In this chapter, we employ
atomistic molecular dynamics simulations in explicit water to study the thermodynamic stability and con-
figurational motions of isolated DFAG peptide monomers and the formation of peptide dimers. We then
use the atomistic free energy landscapes to parameterize an implicit-solvent forcefield for the DFAG pep-
tides that enables us to study the assembly of higher order aggregates (i.e., trimers, tetramers, pentamers)
atlength and time scales inaccessible to the explicit solvent model. As demonstrated by Mondal et al., an
understanding of higher-order aggregate formation, not just dimerization, is vital for a complete under-
standing of multi-body self-assembly [30]. Building upon a body of prior experimental and simulation
work [4, 23, 66], this study advances the fundamental understanding of the molecular forces and mecha-
nisms driving assembly of a prototypical peptide-II-peptide triblock molecular to help guide and inform

the design of self-assembly biocompatible and optoelectronic peptidic biomaterials.

2.2 Methods

2.2.1 Explicit solvent simulations

Molecular dynamics simulations were conducted using the GROMACS 4.6 simulation suite [70]. Initial
DFAG-OPV3-GAFD peptide configurations were constructed with the assistance of the GlycoBioChem

PRODRG?2 Server [71]. Peptides were prepared in two protonation states, a high-pH (pH > 5) deprotonated



state carrying a formal charge of (—4) on the terminal ASP residues, and alow-pH (pH < 1) protonated state
that was electrically neutral. The protonated state is of primary interest as it is in this state that the pep-
tides are observed to self-assemble into 1D ribbons [4]. Single peptides or pairs of peptides were placed in
a 10x10x10 nm cubic simulation box with three-dimensional periodic boundary conditions and solvated
with water molecules to a density 0of 0.994 g/cm?®. Where necessary, Na* counterions were added such that
the system carried no net charge. Peptides and ions were modeled using the CHARMM27 force field [72],
and water with the simple point charge (SPC) model [73]. Parameters for the OPV3 conjugated core do
not exist natively within the CHARMM27 force field, but were straightforwardly derived by analogy with
existing groups. Specifically, the aromatic rings were modeled using the parameters taken from the pheny-
lalanine residue, the carbonyl linker from a component of a peptide bond, and the vinyl group treated as
an alkene chain. In total, two additional bonds, 6 angles, and 11 proper dihedrals were added. All force
field files are available upon request. The size of the simulation box was sufficiently large that with a 1.0 nm
real space cutoff two peptides — each a maximum of 3.75 nm long in their fully extended configurations
- could be drawn far enough apart in our umbrella sampling of their dimerization pathway to be non-
interacting (cf. Section 2.2.3). High energy overlaps in the initial configurations were removed by steepest
descent energy minimization to eliminate forces exceeding 1000 kJ/mol.nm. Simulations were conducted
in the NVT ensemble — fixed number of particles N, volume V, and temperature T — at 298 K, employing
a stochastic dynamics approach to maintain the temperature by integrating the Langevin equation with
a friction constant of y = 2 ps~! [74, 75]. Initial atom velocities were randomly assigned from a Maxwell
distribution at 298 K and the equations of motion numerically integrated using a leap-frog algorithm with
a 2 fs time step [76]. Bond lengths were fixed using the LINCS algorithm to improve efficiency [77]. Elec-
trostatic interactions were treated using particle mesh Ewald (PME) with a real-space cutoff of 1.0 nm and
a0.12 nm Fourier grid spacing that were optimized during runtime [78]. Lennard-Jones interactions were
shifted smoothly to zero at 1.0 nm, and Lorentz-Berthelot combining rules used to determine interaction
parameters between unlike atoms [79]. A 1 ns equilibration run was conducted for each system, at which
time the temperature, pressure, energy, and peptide radius of gyration had reached steady values. This

equilibrated state served as the initial state for the umbrella sampling simulations detailed below.

2.2.2 Implicit solvent simulations

Simulations were conducted using the GROMACS 4.6 simulation suite [70] in which solvent was modeled
implicitly using the Generalized Born model with a relative dielectric constant of 78.3 [80-82]. Born radii

are calculated using the Onufriev, Bashford, Case (OBC) model with the OBC(II) optimized parameter set



ofe =1, B = 0.8, and y = 4.85 [83], and recalculated every time step with a cutoff of 3.4 nm and a di-
electric offset of 0.009 nm. Non-polar interactions are treated using the solvent-accessible surface area
model. Calculations were performed using an analytical continuum electrostatic (ACE) type model using
the Born radius of each atom and a surface tension parameter of 2.26 kJ/mol.nm? [84]. The Generalized
Born model has been known to overestimate the stability of inter-residue interactions [85-87], but has also
been shown to accurately treat solvent effects in simulating proteins [88-90] even when such proteins are
stabilized by solvent effects [91, 92]. Accordingly, we make use of this implicit solvent model in order to
reach the requisite time and length scales to observe peptide self-assembly, but — as detailed in Section
2.3.3 — we employed a rescaled version of the CHARMM?27 force field in which the Lennard-Jones and
Coulomb interactions were scaled such that intramolecular free energy landscapes for both the peptide
monomer and the dimerization free energy pathway in implicit solvent reproduced those computed un-
der explicit solvation. Simulations were otherwise conducted in the same manner as the explicit-solvent
systems except that Lennard-Jones interactions were shifted smoothly to zero at a cutoff of 3.4 nm, and
electrostatics were also treated by shifting to zero at a cutoff of 3.4 nm. As detailed in Section 2.3.3, we
employed a rescaled version of the CHARMMZ27 forcefield in which the Lennard-Jones and Coulomb in-
teractions were scaled such that intramolecular free energy landscapes for both the peptide monomer
and the dimerization free energy pathway in implicit solvent reproduced those computed under explicit

solvation.

2.2.3 Umbrella sampling

We employed umbrella sampling to compute the intramolecular and intermolecular peptide free energy
landscapes along a preselected order parameter by applying artificial biasing potentials to enforce good
sampling [93]. This free energy along a reaction coordinate is also referred to in the literature as the po-
tential of mean force (PMF). For single peptides we construct the free energy landscape for peptide col-
lapse by performing umbrella sampling along the intramolecular head-to-tail distance (h2r) between the
C.-atoms of the terminal aspartic acid residues. For pairs of peptides, we compute the dimerization free
energy landscape along the center of mass separation (rcom) between the peptides. For triplets, we com-
pute the free energy of monomer addition along the center of mass separation between a preassembled
dimer and a monomer. For quads we compute the free energy for (i) monomer addition to a trimer, and
(ii) assembly of two preassembled dimers along the center of mass separation between the two aggregates.
For quints, we compute the free energy of monomer addition along the center of mass separation between

a preassembled tetramer and a monomer. In all cases, we ensure that the umbrella sampling simulations



are conducted at sufficiently large separations that we reach a plateau in the free energy, indicating that
we have reached the regime at which the two aggregates in the simulation are effectively non-interacting
and the PMF ceases to be a function of separation.

Umbrella windows were initialized by nonequilibrium pulling of our system along the entire range of
the order parameter of interest over the course of 1 ns. Frames of this trajectory were harvested every
0.2 nm along the order parameter to serve as initial configurations for each umbrella sampling window.
Harmonic biasing potentials with a force constant of 1000 kJ/mol.nm? are applied to restrain the system
within each window and biased umbrella simulations conducted for 10 ns. The first 1 ns of each simulation
was used to let the system equilibrate and discarded prior to analysis. The weighted histogram analysis
method (WHAM) [94] implemented in the g wham module of GROMACS 4.6 [70, 95] was applied to the
umbrella sampling data to obtain the (relative) free energy of the system as a function of the umbrella
coordinate, also known as the potential of mean force (PMF). If a region is found to be poorly sampled -
around 15 times fewer samples than the best sampled regions — additional simulations were conducted in

the undersampled region.

2.3 Results

We now detail the results of our computational investigation of the early-stage self-assembly of the DFAG
peptide monomers. First we describe the calculation of the potentials of mean force for the collapse of
isolated peptide monomers and the dimerization of peptide pairs using computationally expensive ex-
plicit solvent simulations, and the use of these data to parametrize an implicit solvent model to access to
2-3 orders of magnitude longer time and length scales. We then describe our use of the implicit solvent
model to probe the thermodynamics and morphology of small oligomeric aggregates (n = 2-5) and directly

simulate the first 70 ns of self-assembly from an initial dispersion of monomers.

2.3.1 PMF of peptide collapse

The potential of mean force (PMF) for a single peptide parameterized by the intramolecular distance be-
tween the ASP C,, atoms quantifies the relative propensities for elongated versus collapsed conformations
of an isolated peptide. We present the PMFs calculated for the protonated peptide in explicit and implicit
solvent in Figure 2.2a. In its protonated (low-pH) state, the peptide PMF in explicit solvent is essentially
flat for head-to-tail distances h2¢ = 1.5-2.5 nm. Unfavorable configurations atlong extensions correspond

to energetically unfavorable extension of the torsional angles within the amino acid residues, and at short



extensions to unfavorable bending of the backbone. The PMF for peptide collapse is governed principally
by intramolecular interactions, with the conjugated OPV3 core remaining rather rigid and extended, and
rotation of the ® and ¥ dihedral angles of the peptide wings mediating close approach of the peptide head
and tail. The PMF computed in implicit solvent shows very good agreement with the explicit curve over

the range h2r = 0.5-3.0 nm, but poorer agreement at longer extensions.
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Figure 2.2: PMF curves for isolated DFAG-OPV3-GAFD peptides in explicit and implicit solvent in the (a)
protonated (low-pH) and (b) deprotonated (high-pH) states parameterized by the intramolecular head-
to-tail distance, h2t, between the C, atoms of the terminal aspartic acid residues. Error bars in this and
all subsequent PMF curves were computed by performing 100 bootstrap resamples of the data. Represen-
tative molecular structures extracted from our simulations and projected along the umbrella sampling
coordinate in this and all subsequent figures were rendered in VMD [5].

The PMF curves for peptides in the deprotonated (high-pH) state in Figure 2.2b also illustrate relatively
good agreement between the explicit and implicit solvent. The global free energy minimum in implicit
solventis at h2¢ = 2.6 nm compared to 42t = 3.4 nm for the explicit case, but the free energy difference is on

the order of only ~1 k5 T. As anticipated, the most probable peptide configurations are displaced to longer



extensions relative to the protonated state due to electrostatic repulsion between the doubly negatively

charged termini.

2.3.2 PMF of peptide dimerization

The PMF for dimerization parameterized by the distance between the center of mass of the respective
peptides estimates the changes in the free energy of a pair of peptides as they interact non-covalently
through dispersion, Coulombic, and hydrophobic interactions. The PMFs for protonated peptides in im-
plicit and explicit solvent are presented in Figure 2.3a. Five independent umbrella simulations were con-
ducted in both implicit solvent and explicit solvent. As expected, dimerization is thermodynamically fa-
vorable. In implicit solvent the change in free energy for a pair of peptides from a non-interacting state
to the minimum in free energy is AF;;mer = —(21.9 £ 1.0)ksT, which differs significantly from the value of
AFjimer = —(15.7 £ 0.7)kgT computed in explicit solvent. Consistent with simulations of DNA base flip-
ping in Ref. [96], we find simulations conducted in implicit solvent greatly overestimate the free energy
computed in explicit solvent, in this case by 40%.

The PMF curves for deprotonated peptides are presented in Figure 2.3b. We compute the free energy of
dimerization for deprotonated peptides in explicit solvent to be AF; ., = —(4.7 + 0.9)ks T, indicating that
formation of the contact pair is thermodynamically favored despite the electrostatic repulsion between
the negatively charged termini. Inspection of the configurational ensemble in the global free energy re-
veals the associated pair to exist in an “I-shaped” configuration in which the OPV3 cores align yielding a
favorable dispersion and n-stacking interactions between the hydrophobic conjugated cores while simul-
taneously orienting the negatively charged termini away from one another. As with the protonated pep-
tides, the implicit solvent model prediction for the dimerization free energy, AF imer = —(11.4 + 1.7)kgT,
overestimating that predicted by the explicit solvent model by 140%.

An understanding of higher-order aggregation is essential for a complete understanding of multi-body
self-assembly [30], but the assembly of larger aggregates proceeds at length and time scales beyond those
that can be reasonably obtained using explicit solvent. Implicit solvent simulations provide a means to ex-
plore the longer time assembly of larger aggregates, but the artifacts introduced by an implicit treatment
of solvent observed in the dimerization PMFs indicate that the implicit forcefield requires reparameter-
ization to match the atomistic results. We detail in Appendix B a systematic procedure to perform this

reparameterization.
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Figure 2.3: PMF curves for pairs of DFAG-OPV3-GAFD peptides in explicit and implicit solvent in the (a)
protonated (low-pH) and (b) deprotonated (high-pH) states parameterized by peptide center of mass sep-
aration, rcom. The dimerization free energy predicted by the explicit solvent model for the protonated
(low-pH) peptides is strongly favorable at AFEIZ; = —(15.7 £ 0.7) kgT, whereas that for the deprotonated

(high-pH) peptides is only weakly so at AFSP™" = (4.7 + 0.9) kpT.

dimer

2.3.3 Implicit solvent force field parameterization

We have observed that the use of an implicit solvent model introduces significant artifacts into the PMF
curves for dimerization (Figure 2.3). To lend confidence to the predictions of the implicit solvent model at
the length and time scales of multi-peptide assembly, we must reparameterize the CHARMM27 force field
in order to match the quantities of interest [97-100]. In a similar manner to Zhang et al. [101], we adopt a
minimally invasive strategy of rescaling interactions by a constant factor in order to optimally match the
free energies calculated from implicit solvent simulations to those obtained in explicit solvent. Seeking to

account for the absence of molecular water, we uniformly rescale the van der Waals and Coulomb interac-
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tions to reproduce the explicit solvent PMFs for peptide collapse and dimerization. This simple approach
can be considered a form of the PMF matching approach to force field parameterization frequently used
to optimize coarse-grained molecular potentials [96, 102, 103]. In this respect, our approach shares sim-
ilarities with Boltzmann inversion (BI) wherein interaction potentials in the coarse-grained system are
optimized to match distribution functions observed in all-atom simulations [100, 104]. In the case of pair
potentials, this reduces to matching of the pairwise PMFs [105]. More sophisticated procedures to adjust
the implicit solvent force field are possible [102, 104], but we demonstrate below that our simple strategy
results in an implicit solvent model that quantitatively reproduces the explicit solvent results.

In our implicit solvent simulations, the Coulombic interaction energy between two atoms i and j sep-
arated by a distance r;; is given by,

1 qiq;

) 2.1
dreg €1 @.1)

Vel(rij) =

where g; is the partial charge on atom i, ¢ is the permittivity of free space, and ¢, = 78.3 is the relative
dielectric constant of liquid water [82]. The dispersion interaction between atoms i and j is given by the

Lennard-Jones function,

Viy = 4€;;

12 6
CANNEAY) ”
rij Tij
where the ¢;; and o;; Lorentz-Berthelot combining rules were used to determine interaction parameters
between unlike atom types: o;; = (07; + 0;)/2 and €;; = /(€;€;) [79]. We adopt a minimally perturbative
approach to reparameterization of the CHARMM27 force field to account for the absence of molecular sol-

vent by rescaling the non-bonded Lennard-Jones and Coulomb interactions by a single tuning parameter,

@,
€ > ae q — Vagq, (2.3)
that produces a uniform rescaling of the non-bonded interactions,
V" = Ve + V- aV™, (2.4)

Considering the protonated and deprotonated peptides independently, we sought the value of « resulting

in an optimal match of the free energy well depth for dimerization AF;;,,., measured by the absolute value
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of the difference between the implicit and explicit well depths,

AAFgimer(@) = [AFS® (@) = AFSP |, 2.5)

dimer dimer

Implicit PMFs for the head-to-tail distance of an isolated monomer varied from those from the explicit
simulations by an average of no more than 1.5 kT for « = 0.6-0.9. Such variations are indistinguishable
from thermal fluctuations, making the monomer PMF relatively insensitive to rescaling of the non-bonded
interactions and a poor criterion by which to compute the optimal «.

We performed a series of umbrella sampling calculations of dimerization for both the protonated (low-
pH) and deprotonated (high-pH) peptides at values of the scaling parameter « = {0.80, 0.82, 0.85, 0.87, 0.90,
1.00} for protonated peptides and « = {0.52, 0.60, 0.68, 0.70, 0.72, 0.76, 0.84, 0.92, 1.00} for deprotonated
peptides. We illustrate in Figure 2.4 the corresponding values of AAF;,.,(a) calculated from these data.
In the case of the protonated peptide, linear interpolation substantiated by direct implicit simulation re-

veals that a value of o . = 0.87 accurately matches the explicit solvent dimerization free energy. For the

prot
deprotonated peptide, we determine an optimal value of a:lepro =0.72.

a) e 8
n 6
fza 4
= 2
~ 0
< —4

0.80 0.85 0.90 0.95 1.00
b) 10
& 8

A

~ 6
£ 4
2
> 0
< —4

0.6 0.7 0.8 0.9 1.0

«

Figure 2.4: AAF imer(@) = |AFimp (@) - AFS® | for (a) protonated peptides at values of the scaling param-

dimer dimer

eter a = {0.80, 0.82, 0.85, 0.87, 0.90, 1.00}, and (b) deprotonated peptides at & = {0.52, 0.60, 0.68, 0.70, 0.72,
0.76, 0.84, 0.92, 1.00}.

Despite our choice of a simple single-parameter approach to rescale the non-bonded interactions in

the CHARMM27 forcefield to account for the absence of molecular water, we achieved excellent agree-
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ment of the implicit solvent PMFs for peptide dimerization with those computed in explicit solvent. The
explicit and rescaled implicit dimer PMFs for the protonated peptides are illustrated in Figure 2.5a, from
which it is apparent that the rescaling of the non-bonded interactions has achieved quantitative agree-
ment of PMF(rcom) and AF; .. The analogous plots for the deprotonated peptides in Figure 2.5b show
less good agreement, and while we have quantitatively matched the depth of the dimerization PME the
minimum of the free energy well is shifted by (—0.10) nm from 0.74 nm in explicit solvent to 0.64 nm in im-
plicit. We note that it is the protonated peptides that assemble into the 1D ribbons and which are therefore
of primary interest in this chapter, so the slightly poorer quality of the deprotonated reparameterization is
not of undue concern. The PMFs for peptide collapse (Figure 2.2) are governed principally by intramolec-
ular interactions, and are minimally perturbed by the rescaling procedure (data not shown).

Colloquially, our results indicate that the standard (unscaled) CHARMM?27 force field in implicit sol-
vent makes the peptides too “sticky”, resulting in an artificial enhancement in the free energy of dimeriza-
tion. Accordingly, itis vital that we perform rescaling of the non-bonded interactions to eliminate these ar-
tifacts as much as possible and lend credence to the predicted behavior of monomers, dimers, and higher

order aggregates in our implicit solvent simulations.

2.3.4 Thermodynamics and morphology of higher order aggregation

Our reparameterized implicit solvent model permits us to efficiently perform umbrella simulations to
compute the free energy of association for the formation of higher order aggregates and probe the ele-

mentary events at the early stages of assembly.

Protonated peptides

Considering first protonated (low-pH) peptides, we computed the association free energies for the for-
mation of a pentamer along two different paths (i) successive monomeric addition, and (ii) dimer con-
densation followed by monomeric addition. We illustrate the two pathways and report the computed free
energy changes in Figure 2.6. Uncertainties are computed by standard propagation of errors over five in-
dependent runs accounting for the variance between runs and the bootstrap uncertainties within each
run. As illustrated in Figure 2.5, the dimerization free energy is highly favorable at AF;; = —(14.5 + 1.2)
kgT. The successive addition of two more monomers is also strongly spontaneous at AF».; = —(24.5+2.4)
kgT and AF3,1 = —(23.6 £ 3.0) kgT, with the larger magnitude value reflecting favorable interactions be-
tween the approaching monomer and the multiple monomers in the cluster. Condensation of two dimers

into a tetramer is also strongly favorable with AF,» = —(27.6 + 3.7) kgT. The free energy for tetramer for-
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Figure 2.5: PMF curves for pairs of DFAG-OPV3-GAFD peptides in explicit and implicit solvent at the op-

timal value of (a) a,, = 0.87 in the protonated (low-pH) and (b) ag, ., = 0.72 in the deprotonated (high-

pH) states parameterized by peptide center of mass separation, rcom. The dimerization free energy pre-
dicted by the rescaled implicit solvent model for the protonated (low-pH) peptides is strongly favorable

at AFP™' = —(14.5 + 1.2) ksT, whereas that for the deprotonated (high-pH) peptides is only weakly so at

dimer
AF;I%’Z? = —(4.0 £ 0.7) kgT. Both values are in excellent agreement with the explicit solvent predictions of
AFP™ = _(15.7+0.7) kyT and AFSP™ = _(4.7 + 0.9) k5T

mation by successive monomeric addition is AF,.;rq = (AF141 + AFoy1 + AF341) = —(62.5 £ 4.1) kgT, and by
dimer condensation is AF,e;rq = (2 X AFj41 + AFo42) = —(56.5 + 4.1) kT, where error bars are computed by
standard propagation of uncertainties. Since free energy is a pathway independent state variable, it serves
as an important internal validation of our methodology that the free energy for the assembly of a tetramer
by these two paths is in agreement within error bars. The free energy to form a pentamer by monomeric
addition to a tetramer is AFy,1 = —(25.0 + 1.9) kT.

Representative images of the equilibrium structure of each oligomer are also presented in Figure 2.6,

from which it is apparent that the preferred structural morphology of each oligomer is a 8-sheet-like stack

14



of monomers. Our umbrella sampling simulations constrained only the center of mass distance between
the peptide clusters. That they spontaneously adopted this structure provides evidence that the early
stages of self-assembly leads to the formation of short peptide stacks that serve as nuclei for subsequent

monomeric addition and elongation into the experimentally observed 1D ribbons [4, 23, 65].

AFy=-(145+12) kgl | AFyp=-(27.6£3.7) kpT

) +
£ | 3 AF4q =-(25.0 £1.9) kgT

SOV ‘

AFy,1 = -(24.5 £2.4) kT A

Figure 2.6: Elementary free energy changes for pentamer formation by monomeric addition (lower path)
and dimer condensation plus monomeric addition (upper path) for protonated (low-pH) peptides com-
puted by umbrella sampling using the reparameterized implicit solvent model. Uncertainties are com-
puted by standard propagation of errors over five independent runs accounting for the variance between
runs and the bootstrap uncertainties within each run. The free energy change for formation of the tetramer
from the dimer along the upper and lower paths are identical within error bars. For ease of comprehen-
sion, representative molecular structures of the equilibrium clusters are presented with cartoon diagrams
in which each red oblong represents a peptide monomer.

In Figure 2.7 we plot the free energy for monomer addition to small aggregates of protonated peptides
under low-pH conditions. It is expected that the free energy for the addition of monomer to a stack of n
peptides should become increasingly favorable with increasing rn, since there exist more atoms within the
cluster to provide favorable dispersion interactions with the approaching monomer. At sufficiently large
n, the free energy should saturate since the approaching monomer will not significantly interact with pep-
tides located far from the end of the stack. Figure 2.7 shows the monomeric addition free energy plateau-

ing surprisingly quickly at the trimer, with AF>.1 » AFs.1 » AFs.1 » —25kgT indistinguishable within error
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bars. This indicates that the free energy of monomeric addition in the early stages of assembly is both

strongly favorable and essentially independent of oligomer size.
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Figure 2.7: Free energy of monomeric addition to preassembled oligomers containing between one and
four peptides under protonated (low-pH) conditions computed by umbrella sampling. Uncertainties are
computed by standard propagation of errors over five independent runs accounting for the variance be-
tween runs and the bootstrap uncertainties within each run. The calculated free energy change for the
addition of a monomer to a dimer, trimer, or tetramer are indistinguishable within error bars, suggesting
that the free energy for monomer addition to the elongating 8-sheet-like stack is strongly favorable and
essentially independent of the size of the stack at AF,;; ~ —25kpT.

We can decompose the free energy of assembly of a peptide aggregate of size n from initially non-interacting

peptide monomers into its various energetic and entropic contributions,

AF, = AUrilntrapeptide n AUr;l)eptide—peptide " AUlgjeptide—water 4 AU;Nater—Water —TAS, + PAV (2.6)

where AUMTPePUde i¢ he change in the intramolecular peptide energy upon aggregation, AyPePtide-peptide

accounts for the intermolecular dispersion and electrostatic interactions between peptides in the cluster,
AUR? tide-water i< the change in the peptide-water interaction energy upon association, T is the temper-
ature, P the pressure, AS, the entropy change upon association, and AV the volume change. The value
for AF, for n = 1-5 is straightforwardly computed by summing the monomeric addition free energies re-
ported in Figures 2.6 and 2.7. By performing an energetic analysis of our equilibrated peptide monomers,
dimers, trimers, tetramers, and pentamers residing at the global free energy minimum of the potential

of mean force curves determined by umbrella sampling, we explicitly compute the values of Ay, ™"PePtide
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and AUPePide-Peptide - Agqming that the peptide configurational entropy does not change significantly
from the monomeric to oligomeric state, and neglecting pressure-volume work as a small contribution at
standard temperature and pressure for such small aggregates [106] we define the solvent mediated con-
tribution to the aggregation free energy as,

tide—wat — int tid tide— tid
AF,Sl'Olvem _ AU,IL)epl e-water | AU,‘lNater water _ TAvaater ~ AF, — Ayintrapeptide ;. peptide-peptide @.7

n n

We plotin Figure 2.8a the free energy of aggregation for oligomers of size n = 1-5, and its decomposition
into Ay Mapeptide ybeptide-peptide ) A psolvent The plot reveals that the moderately favorable free energy
of aggregation is the result of large competing energetic and entropic contributions. As anticipated, there
is alarge favorable peptide-peptide interaction on the order of ~-100 kg T per peptide that is balanced by a
small unfavorable intrapeptide energy change of ~10 kg T per peptide. That the latter contribution is rela-
tively small is consistent with the assumption that the configurational ensemble explored by the peptide
is relatively similar in the monomeric and oligomeric states, and a small change in peptide entropy upon
assembly. This contribution does grow with aggregate size, suggesting that peptides adopt increasingly
unfavorable configurations in larger clusters. The solvent mediates a net large and unfavorable contribu-
tion to assembly on the order of ~80 kpT per peptide. This contribution accounts for the unfavorable free
energy change associated with cavity formation and disruption of the hydrogen bonding network, loss of
peptide-water interactions due to formation of the oligomeric aggregate, and the entropy change induced
in the water due to oligomerization [106-108].

To unravel the relative contributions of the conjugated peptide core and peptide wings to the peptide-
peptide interaction energy, we have further decomposed this term as,

AU};eptide—peptide _ AUr\z/ving—wing " AU,fore_Core " AU,\l/ving—core (2.8)
where AU, ing-Wing 4 -counts for intermolecular dispersion and electrostatic interactions between the amino
acid wings of all of the peptides in the aggregate of size n, AUS°™~°°€ is the interaction between the conju-
gated cores, and AU, accounts for the cross interactions between the wings and cores. We plot this
decomposition in Figure 2.8b. Interactions between the aromatic cores account for approximately 20% of
the peptide-peptide interaction energy for all aggregate sizes considered. In small oligomers of size n =
2-3, the wing-core interactions dominate the intermolecular interactions, which can be understood from
the structure of the dimers and trimers wherein the peptide wings double back on themselves to interact

with the conjugated cores (cf. Figure 2.6).
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Figure 2.8: Decomposition of the energetic and entropic contributions to the free energy of association as
a function of aggregate size for oligomers containing between two and five peptides. (a) The free energy
of assembly of an aggregate of size n from non-interacting monomers AF, and its decomposition into the
P . intrapeptide . peptide—peptide . .
change in the intramolecular, AU, , and intermolecular, AU, , peptide energies, and
the solvent mediated contribution to aggregation, AFSOvent ~ AyPePide-water . g water-water _ 7 pgwater
neglecting pressure-volume work and the entropy change of the peptides upon assembly. Intermolecular
terms comprise dispersion and electrostatic interactions, while intramolecular terms comprise disper-
sion, electrostatic, and bonded interactions (b) Partitioning of AUP®PU4¢ PPt jn 4 interactions between
the peptide wings, aromatic cores, and cross interactions between the wings and cores. Error bars are

computed by the standard deviation of the energy computed over the course of the 10 ns simulation and
standard propagation of uncertainties.

18



Finally, we characterize the structure of the peptides within oligomers of various sizes by analyzing
the equilibrated peptide stacks containing n = 1-5 peptides in simulations conducted at the minimum of
the assembly PMF determined by umbrella sampling. In Figure2.9a,b we report the mean center of mass
spacing and angular offset between all pairs of nearest neighbors in the oligomeric aggregates. Consistent
with prior work [4, 56], we find the spacing between neighboring peptides to be ~0.45 nm, and insensi-
tive to aggregate size. The angular offset between neighboring peptide cores is determined by associating
to each peptide a vector between the terminal carbon atoms of the OPV3 core, and computing the dot
product between these vectors. Since the core is relatively rigid and linear (cf. Section 2.3.1), these vec-
tors provide a good representation of the spatial orientation of each peptide in the stack. We observe that
neighboring peptides in these small oligomers remain approximately parallel for all aggregate sizes stud-
ied, possessing a mean angular offset of (10.9 + 7.0)°. These structural characterizations indicate that the
n-conjugated cores of the peptides are closely stacked in well-aligned stacks. In Figure 2.9c we report the
number of intra and intermolecular hydrogen bonds per peptide as a function of aggregate size. A hydro-
gen bond is defined between an eligible donor and acceptor according to a geometric criterion such that
the donor-acceptor distance is less than 0.35 nm and the hydrogen atom lies not more than 30° offset from
the vector connecting the donor and acceptor [109, 110]. We detect hydrogen bonds using the g_hbond
program within the GROMACS 4.6 simulation suite [70]. The number of hydrogen bonds formed by each
peptide in an aggregate is relatively insensitive to oligomer size, with each peptide forming approximately
1 and 3 intra and intermolecular hydrogen bonds, respectively. These results indicate the importance of
inter-peptide hydrogen bonding in stabilizing the assembled oligomers. In sum, this structural character-
ization of the oligomers reveals that efficient stacking and alignment between peptides engenders favor-
able dispersion interactions and n-stacking between the aromatic cores and hydrogen bonding between

the peptide wings, promoting self-assembly into 3-sheet-like aggregates (cf. Figure 2.8).

Deprotonated peptides

Shifting our focus now to deprotonated peptides under high-pH conditions, we compute the free energy
for the formation of a pentamer, this time only along the monomeric addition pathway. As shown in Fig-
ure 2.10 the formation of dimers is slightly favorable with AF;,; = —(4.0 £ 0.7) kgT. Surprisingly, further
monomeric addition continues to be favorable with AF>,; = —(6.3 + 0.9) k3T, AF3,; = —(6.0 + 0.8) kT,
and AF.; = —(4.6 £ 1.2) kgT. Despite the Coulombic repulsion between doubly negatively charged ASP
termini, favorable dispersion interactions, hydrophobicity, and n-stacking between the aromatic peptide

cores is sufficient to drive the assembly of small oligomers. The morphology of the oligomers is less or-
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Figure 2.9: Structural characterization of oligomeric aggregates containing between two and five peptides.
(a) Mean center of mass separation between nearest neighbor peptides in the aggregate. (b) Mean angular
offset between nearest neighbor peptides computed by calculating the dot product between vectors ori-
ented along the OPV3 cores of the peptides. (c) Mean number of intra and intermolecular hydrogen bonds
per peptide. Error bars represent the standard deviation computed over the course of the 10 ns simulation.
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dered than under low-pH conditions, with the peptide wings orienting away from one another to mitigate
the unfavorable Coulombic repulsion while the cores associate into a weakly bound stack. The increasing
concentration of negative charge on the growing aggregate makes the addition of subsequent monomers
beyond the trimer successively less favorable and the aggregates more structurally disordered, suggesting

that assembly will be ultimately self-limiting.
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Figure 2.10: Free energy of monomeric addition to preassembled oligomers containing between one and
four peptides under deprotonated (high-pH) conditions computed by umbrella sampling. Uncertainties
are computed by standard propagation of errors over five independent runs accounting for the variance
between runs and the bootstrap uncertainties within each run. Monomer addition is thermodynamically
favored by dispersion interactions, hydrophobicity, and n-stacking between the aromatic cores, but signif-
icantly destabilized relative to the protonated (low-pH) conditions by unfavorable Coulombic repulsions
between the doubly negatively charged ASP termini. The increasing concentration of negative charge on
the growing oligomer makes monomer association increasingly unfavorable beyond the trimer.

2.3.5 Time scale correspondence in explicit and implicit solvent simulations

Compared to explicit solvent, the absence of molecular solvent in implicit solvent simulations may re-
sult in artificially accelerated dynamics [111]. In order to ascertain the time scale of the implicit solvent
runs, we follow an approach commonly used to define the time scale in coarse-grained simulations by
comparing the translational self-diffusion coefficient computed in the implicit calculations to that pre-
dicted from an explicit solvent calculation, which, possessing all atomic degrees of freedom, evolves with

real-time dynamics [112-114]. We performed five independent 20 ns simulations of a single isolated pep-
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tide in implicit solvent using the parameters given in Section 2.2.2 then calculated for each run the self-
diffusion coefficient by tracking the mean squared displacement of the peptide center of mass and apply-
ing the Einstein relation [115]. We take the mean of these five values as our estimate of the self-diffusivity,
and report uncertainties in our estimate as the standard deviation over the estimates from the five inde-
pendent runs, to determine a value of Diyp = (6.6 + 0.2) x 107 cm?/s. We compare this value to that of
Dexp = (7.1£0.6)x107° cm?/s, computed in explicit solvent from block averaging of a 10 ns simulation con-
ducted using the parameters given in Section 2.2.1, with the exception that we instead of a Langevin ther-
mostat we implement a Nosé-Hoover thermostat with a time constant of 0.5 ps, a value commonly used
in the literature [116, 117], that has been shown to reliably approximate the true dynamical time scales
of the atomic system [118]. The agreement of the implicit and explicit self-diffusion coefficients within
error bars indicates that the Langevin thermostat implemented within our implicit runs with a time con-
stant of 2 ps~! accurately mimics the dynamics of random collisions of solvent molecules with our pep-

tide [119-121] resulting in dynamical time scales in good agreement with explicit solvent simulations.

2.3.6 Aggregation and structural evolution in early-stage assembly

Our reparameterized implicit solvent model permits simulation of the self-assembly of hundreds of pro-
tonated peptides over the time scales of ~100 ns to probe in molecular detail the microscopic events in
the early stages of self-assembly [4, 23, 56]. Using the simulation parameters detailed in Section 2.2.2 and
rescaling time by the speed-up factor of 7.2 identified in Section 2.3.5, we performed 70 ns simulations
of 64 and 125 protonated (low-pH) peptides in a 50x50x50 nm cubic simulation box to simulate peptide
aggregation at concentrations of 0.85 mM and 1.66 mM. We selected these concentrations as experimen-
tally realizable values at which self-assembly of 7-conjugated peptide monomers has been observed [23].
(For reference, a concentration of 0.868 mM corresponds to 0.1 mg mL~!.) We conducted three indepen-
dent simulations at each concentration commencing from an initial monomeric dispersion in which the
peptides were evenly spaced over a 3D grid and assigned random initial velocities drawn from a Maxwell
distribution at 298 K. Each simulation required approximately 40 years of CPU time on high-performance
parallel computing facilities. By rendering accessible time and length scales 2-3 orders of magnitude larger
than those attainable by explicit solvent models, our implicit solvent model permits direct observation of
peptide collision, dissociation, and structural relaxation events over the first several tens of nanoseconds
of assembly.

We quantify the aggregation behavior by monitoring the formation of peptide clusters over the course

of the simulation. A cluster is defined as a set of contiguously connected peptides, where a pair of peptides
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is deemed connected if any of their respective atoms are separated by less than rcy; = 0.5 nm. This cutoff
was selected as a value close to the minimum of the Lennard-Jones potential for larger atoms, which is
expected to be sufficiently small to mitigate the chance of false positives, while sufficiently large that pep-
tides forming are part of the same aggregate will be recognized as such. Indeed, the location of the free

energy minimum in the dimerization PMF lies very close to 0.5 nm (cf. Figure 2.5).

Low concentration

We present in Figure 2.11 the time evolution of the cluster size distribution observed in each of the three
independent simulations at 0.85 mM concentration. In all three replicas we observe very similar trends in
the mass fraction of monomers, dimers, and trimers. Tetramers also exhibited similar trends, but the time
taken to form the first tetramer varies by 30 ns between runs. A single pentamer was observed at the end
of run 1, but beyond this no higher order aggregates were observed. This suggests that our simulations
are insufficiently large to furnish statistically robust data on clusters larger than trimers since the forma-
tion of such large aggregates over the course of a 70 ns simulation containing only 64 monomers is a very
rare event. Accumulating better statistics on larger aggregates at this concentration would require that
we simulate several times as many monomers in a correspondingly enlarged simulation box for a longer
duration.

The good agreement in the trends for the smaller clusters permits us to draw statistical conclusions
regarding their aggregation behavior. After an initial lag time of ~7 ns, the mass fraction of monomers
monotonically decreases over the course of the simulation, falling to ~20% by the end of the 70 ns run.
Recalling that the initial state of the system comprised of monomers evenly spaced over a 3D grid, this
lag time corresponds to the characteristic time for monomer-monomer collisions commencing from this
initial configuration. After the ~7 ns lag the mass fraction of dimers begins to grow from zero, increasing
monotonically for the first 55 ns to ~50% but then decreasing to ~40% by the end of the simulation. We
do observe a small number of trimer dissociation events, but the trimer mass fraction also grows nearly
monotonically beginning at ~13 ns to occupy ~15% of the system mass. Aggregation is observed to proceed
both through monomeric addition and the condensation of larger aggregates. Of the eight tetramers that
formed, three assembled through dimer-dimer condensation (cf. Table 2.1).

In Figure 2.12 we present selected snapshots over the course of a trimerization event observed in one
of the 0.85 mM simulations. We observe that smaller clusters of 2-4 peptides tend to relax to a well-aligned
B-sheet-like stack on the time scale of <10 ns, regardless of the configuration in which the peptides initially

associate.

23



1.0 1.0 1.
— 1-mer 08 08
""""""" 2-mer
os! V.. 3-mer || 09 0.6
[ e T AR 4-mer || 04 0.4
O e
— 0.2 0.2
% 0.6
g 00152030 40 50 60 70 OO 10 20 30 40 50 60 7
e
LL 10 1. )
B4 — Fun
o 0.8 0.8 — Run2
— Run3
> 0.6 0.6
02 0.4 0.4
0.2 0.2
0.0 L—= ! 00— —— o : I
010 20 30 40 350 60 70 10 20 30 40 50 60 7 1020 30 90 50 60 7

Time in ns

Figure 2.11: Mass fraction as a function of scaled simulation time for an unbiased simulation of 64 peptides
at0.85 mM for (a) one simulation, and (b-e) each of the three independent simulations tracking (b) 1-mers,
(c) 2-mers, (d) 3-mers, and (e) 4-mers.

Figure 2.12: Representative snapshots of a trimerization event observed in Run 2 of the 0.85 mM concen-
tration protonated (low-pH) peptide self-assembly simulations conducted over 70 ns using our reparame-
terized implicit solvent model. (a) Collision of two monomers att=5.3 nsinducesrise to internal structural
rearrangements until (b) the two conjugated cores are aligned to form the equilibrium dimer (cf. Figure
2.7) after ~5 ns. (c) Collision of the dimer with a third monomer at t = 12 ns results in (d) further struc-
tural reorganization and relaxation over 2 ns undergoes minor rearrangements to form (e) an equilibrium
trimer B-sheet-like stack (shown here at t = 36.7 ns) (cf. Figure 2.7).

High concentration

We present in Figures 2.13 and 2.14 plots for the cluster size distribution for the 1.66 mM runs. Under
these conditions, the largest cluster observed was an 11-mer, with the increased number of peptides and
the elevated concentration favoring the more rapid formation of heavier aggregates. We observe good cor-

respondence between the three independent simulations in the dynamical evolution of the mass fraction
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of monomers, dimers, and trimers, and tetramers Figure 2.13, but relatively poorer agreement in the case
of the higher order aggregates for which far fewer assembly or disassembly events occur Figure 2.14. Again,
larger and longer simulations would be required to furnish statistically robust data on the formation and
dissociation of larger aggregates.

At this concentration we observe more interesting assembly behaviors than at the lower concentration.
The mass fraction of monomers again falls essentially monotonically, but in this case drops to a terminal
value of only ~10%. Dimer assembly commences much more rapidly after alag period of only ~1 ns, lead-
ing to a peak in the dimer mass fraction of ~40% at ~15 ns and a subsequent drop off to ~20% by the end
of the simulation as the dimers contribute to the assembly of heavier aggregates. Trimer assembly com-
mences at ~5 ns and increases essentially monotonically to plateau at a terminal mass fraction of ~(15-
35)%. Tetramer assembly commences at ~15 ns, reaching a mass fraction of ~(10-15)% by the end of the
run. Finally, we observe the assembly of small numbers of pentamers, hexamers, heptamers, octamers,
decamers, and undecamers, but no nonamers. Assembly proceeds not only by monomeric addition, but
the agglomeration of higher order aggregates such as dimer-trimer and trimer-trimer association events
(cf. Figure 2.15 and Table 2.2). We also observed dissociation of all cluster sizes into smaller aggregates,

although only one such event was observed for the rarely observed heptamers and octamers.
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Figure 2.13: Mass fraction as a function of scaled simulation time for an unbiased simulation of 125 pep-
tides at 1.66 mM for (a) one simulation, and (b-e) each of the three independent simulations tracking (b)
1-mers, (c) 2-mers, (d) 3-mers, and (e) 4-mers.

In Figure 2.15 we show snapshots of a sequence of aggregation events leading to the formation of a
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Figure 2.14: Mass fraction as a function of scaled simulation time for an unbiased simulation of 125 pep-
tides at 1.66 mM for (a) one simulation, and (b-e) each of the three independent simulations tracking (b)
5-mers, (c) 6-mers, (d) 7-mers, and (e) 8-mers.

heptamer. As was observed in the 0.85 mM simulations, smaller aggregates of n=2-4 monomers tend to
structurally relax into well-aligned S-sheet-like stacks, but those containing more n > 4 peptides tend to
lack this structural ordering. This finding suggests that larger aggregates are kinetically trapped into disor-
dered configurations on the time scale of our simulations, and the experimentally observed organization
into 1D ribbons exhibiting n-stacking of the conjugated cores occurs on the time scale of hundreds of ns

or longer (4,23, 65, 66].

t=16.0 ns

Figure 2.15: Representative snapshots of a heptamerization event observed in Run 3 of the 1.66 mM con-
centration protonated (low-pH) peptide self-assembly simulations conducted over 70 ns using our repa-
rameterized implicit solvent model. (a) Collision of two pre-assembled dimers at t = 16 ns produces (b) a
tetramer S-sheet after 4 ns that (c) interacts with a fifth monomer to produce a pentamer. (d) The pen-
tamer collides with a dimer to generate (e) a disordered heptamer that has not fully undergone structural
rearrangement into an ordered S-sheet-like stack by the termination of the simulation at t = 70 ns.
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2.3.7 Kinetics of early-stage self-assembly

Given the time evolution of the cluster size distribution for the protonated (low-pH) peptides, we can gain
insight into the microscopic assembly kinetics by extracting from these data effective rate constants for
transitions between different cluster sizes during the early stages of assembly. We posit that we may model
the aggregation process as a time homogeneous (i.e. stationary) continuous time Markov chain (CTMC)
between different cluster sizes [122-129]. This modeling approach assumes that the rate at which an ag-
gregate of a particular size transitions into an aggregate of a different size — when observed on sufficiently
long time scales [124, 125, 130] — can be approximated as spatially invariant, time invariant, and memo-
ryless. In other words, the transition rates do not depend upon the location of the aggregate or the time
at which it is observed, and neither the remaining time that the system will spend in the current state nor
the state to which it will transition next depend on its history. Since we initialize our system from a homo-
geneous mixture of monomers over a 3D grid, there should not — at least over relatively short time scales
— exist large concentration gradients in the system, suggesting that we need not spatially resolve the sys-
tem and may treat it as well-mixed. That time homogeneity should a priori be satisfied is less clear, since
the rate at which one aggregate transforms into another certainly depends on the aggregation state of its
neighbors with which it can collide. We provide below a posteriori validation that the rate constants ex-
tracted from our 70 ns simulations are not a function of the observation time. We select the lag time used to
estimate the transition rates from our simulation trajectories as that which best reproduces the observed
time evolution of the cluster size distribution, with good agreement between the predicted and observed
distributions validating the memoryless assumption. Furthermore, we will demonstrate that this lag time
exceeds the Markov time, verifying that the system possesses the Markov (i.e., memoryless) property on
this time scale [124].

We define the states of our Markov process as aggregates of different sizes. This necessarily discards any
information regarding the internal structure of the clusters, but we anticipate that omitting these details
will — at least for the relatively small cluster sizes observed during early-stage assembly — admit a Marko-
vian description provided that the internal cluster organization does not significantly affect the transition
rates between different aggregate sizes or that clusters are typically able to relax into 8-sheet-like configu-
rations prior to undergoing further transitions. We show below that the transition rates for aggregates of a
particular size are consistent over the multiple aggregates with different internal architectures observed in
three independent simulations. The instantaneous state of the system as at a time instant ¢ is represented
as a probability row vector of length » holding the mass fraction of the system existing as clusters of size

1 to n, p(t), where n is the largest aggregate observed in any of the three independent simulations at the
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concentration of interest. By the definition of the mass fraction, the i th element of this vector defines the
probability with which a peptide monomer exists in an aggregate of size i [131]. Employing the same def-
inition as above, a cluster is defined as a set of contiguously connected peptides, where pair of peptides
are defined as connected if any of their respective atoms are separated by less than r¢, = 0.5 nm.

We denote as Q the transition rate matrix — or infinitesimal generator matrix — whose off-diagonal el-
ements ¢;; are transition rates of monomers from aggregates of size i to aggregates of size j, and whose
diagonal elements are the negative sum of transition rates out of state i, g;; = — 27, gij [122]. By perform-
ing a Taylor expansion in time, the probability distribution of monomers among the various aggregate
sizes at time (¢ + Ar) given that it was distributed as p(¢) at time ¢, is given by p(¢ + Ar) ~ p(¢)(I+ ArQ), where
At is an infinitesimal time increment [122]. Defined as such, the monomer distribution among the various

cluster sizes at time ¢, given an initial distribution p(0), may be formally integrated to yield [122,123,130],

p(t) = p(0)e¥ = p(0)T(r), 2.9)

where T(r) = e is the transition matrix whose elements t; (¢) are the probabilities that a monomer will
be found in an aggregate of size j after an elapsed time ¢ given that it initially resided in an aggregate of
size i [123,124,128]. We estimate the matrix exponential using the scaling squaring method of Lawson
[132,133],

T(1) = e ~ [rm(Qt/2°)17, (2.10)

where r,,(x) is the [m/m] Padé approximation for e* and s is chosen so that ||Q¢/2%|| ~ 1. We perform
this estimation using the algorithm developed by Al-Mohy and Higham [134] and implemented in SciPy
(http://www.scipy.org). We note that because our simulations are out of thermodynamic equilibrium,
we do not enforce detailed balance in the estimation of our matrix elements [124].
We extract maximum likelihood estimator of the off-diagonal elements of Q from our simulation tra-
jectories using the expression [130],
N

1= (2.11)

where N;; is the number of occasions amonomer was observed to transition from a cluster of size i to one of
size j over the course of the simulation, and R; is the total holding time in cluster size i, defined as the sum
oftime periods that a cluster of size i was observed summed over all such clusters. To define whether or not
a transition has occurred, we adopt alag time, 7 such that ;; is incremented by one if a peptide is observed

to reside in a cluster of size i at time ¢ and in one of size j at time (¢ + 7). Small values of r are desirable in
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that they most closely reflect the assumption of a time continuous Markov process and provide fine time
resolution of the dynamics. Cluster association and dissociation events are, however, associated with high
frequency oscillations in the cluster size due to our definition of a hard cutoff in peptide proximity defining
monomer connectivity. Accordingly, the value of r should be sufficiently large such that the transition rate
estimates are not artificially elevated due to the short time fluctuations inherent to cluster agglomeration
and fragmentation events.

To select an appropriate value of the lag time, we compute the maximum likelihood estimates of the
transition rate matrix Q at various choices of v using Equation 2.11 to estimate its off-diagonal elements
q;; as an average over all time blocks of length 7 over the three independent simulations at each con-
centration. Diagonal elements are computed as g;; = — X7 g;; [122]. We then employ Equation 2.9 to
predict the evolution of our system from its initial state in which it exists exclusively as monomers (i.e.,
p(0) = [1,0,...,0,0]). By comparing the cluster size distribution predicted by our Markov model to that
directly observed in our simulations, we select the lag time that best reproduces the simulation data. As
anticipated, we observe a trade-off in accuracy as a function of the lag time: r must be sufficiently large to
average out the high frequency fluctuations in cluster association and dissociation, but sufficiently small
to resolve the short-time dynamics of the system. We find v = 100 ps to be optimal, or near-optimal, for
all six simulation trajectories as measured by root mean square deviation between the time evolution of
the cluster size distribution predicted by Equation 2.9 and those measured directly from the simulation
trajectory.

In Appendix A.1 we show that the estimates of g;; extracted from our simulation trajectories are time
invariant, supporting the assumption of a time homogeneous continuous time Markov chain. In Appendix
A.2we demonstrate that the time evolution of the cluster size distribution is also well modeled as a discrete
time Markov chain (DTMC) employing a lag time 7 = 100 ps. We also show that this lag time exceeds that
Markov time for the system, verifying that the discrete time Markov model constructed with this lag time

possesses the Markov (i.e., memoryless) property [124].

Low concentration

In Table 2.1, we report the maximum likelihood estimates of the transition rates ¢g;; extracted from our
0.85 mM concentration simulations using a lag time of r = 100 ps. In Figure 2.16, we compare the time
evolution of the cluster size distribution predicted from the transition rate matrix using Equation 2.9 to
that measured directly from the simulation trajectories. The CTMC predictions show good agreement

with the simulation results, reproducing the trends in the mass fraction observed over the course of the
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simulations. This good agreement validates that the system is well modeled as a temporally and spatially
homogeneous Markov process. We can understand this agreement by comparing the characteristic transi-
tion time for an aggregate of a size |, %, to the characteristic time for the structural relaxation of aggregates
of this size subsequent to their formation (c.f., Figures 2.12 and 2.15 for illustrative examples). Our anal-
ysis reveals the characteristic relaxation time to be shorter than the transition time for aggregates of size
<5, validating our assumption that small aggregates should structurally relax into 8-sheet-like aggregates
before their next transition, and therefore that our Markov state decomposition should be approximately
memoryless. For larger aggregates of size > 5, we find these time scales to be approximately equal, indicat-
ing that structural relaxation occurs on a similar time scale to the transition time, and that a Markov state
decomposition partitioning based on both aggregate size and geometry may be required to accurately de-
scribe the aggregation kinetics of much larger aggregates than those observed in this work.

The transition rates of this process provide insight into the microscopic kinetics of the early stage as-
sembly process. In particular, the relaxation times of the system — also known as the implied time scales —

t; are related to the (magnitude) of the eigenvalues of the transition matrix T as [124, 135],

]
b= 2.12)
YO (

where 7 is the lag time used to construct the transition matrix and 2; is a (possibly complex) eigenvalue of T
arranged in non-ascending order of magnitude {1, > A3 > ...} and neglecting the leading unit eigenvalue
A1 = 1 associated with the steady state distribution. The slowest relaxation time # provides an estimate
of the characteristic relaxation time of any system observable [136], and may therefore be related to ex-
perimental measurements of structural relaxation kinetics [129, 137]. For this system, we calculate a value
of rp ~ 2.5 us with a 95% confidence interval of 0.5 us to 9.3 us. (We numerically estimate the confidence
interval by generating 100,000 matrices with off-diagonal elements randomly drawn from a normal distri-
bution with mean and standard deviation reported in Table 2.1.)

Itis important to note that the absence of observations of higher order aggregates means that the tran-
sition rate matrix is a partial block of the full transition rate matrix between all possible cluster sizes of n =
1-64. As such, this relaxation time scale reflects only the subset of transitions that were actually observed
in our simulation trajectories, and may be interpreted as the slowest relaxation time associated with early-
stage assembly. Nevertheless, the estimation of a relaxation time from relatively short molecular simula-
tions by modeling aggregation as a CTMC is a powerful feature of this analysis technique [128, 136], and

suggests that simulations on the order of microseconds would be required to probe beyond early-stage
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assembly [136]. The large computational expense of such long simulations would likely require the use of

even more highly coarse-grained models than those presented herein.

Table 2.1: Maximum likelihood estimate of transition rates between aggregate sizes in units of us~! in the
continuous time Markov model for the 0.85 mM system employing a lag time of 7 = 100 ps. Off-diagonal
elements are estimated as an average over all time blocks of length 7 over the three independent simula-
tion trajectories, and uncertainties estimated as the standard error in the values constituting the mean.
Diagonal elements are computed as g;; = — 2.7, g;j, and the associated uncertainly estimated by standard
propagation of errors. Transition rates for which no such transitions were observed over the course of the
simulation trajectories, or the total residence time was less than the lag time, are reported as zero.

To 1-mer To 2-mer To 3-mer To 4-mer To 5-mer

From 1-mer | -26.4+5.8 21.1+3.0 29+09 1.5+0.8 1.0+ 0.7
From2-mer | 13.5+6.8 -25.4+8.0 9.1+2.6 28+14 0.0+0.0
From 3-mer 39+2.8 7.8+55 -30.7+13.1 19.0+10.8 0.0+0.0
From 4-mer 6.2+4.5 0.0+£00 18.7+13.6 -51.0+25.4 26.1=+20.1
From 5-mer 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 -0.0+0.0
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Figure 2.16: Comparison of the cluster size distribution in the 0.85 mM system predicted by the Markov
model with a lag time of r = 100 ps (dashed lines) to that directly observed in the simulations (sold lines
with every 20th point plotted) for aggregates of size n = 1-5. The simulation data is plotted as the mean
and standard deviation of the mass fraction over the three simulations. No error bars are reported when
only a single observation was obtained at that particular time interval.
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High concentration

In Table 2.2 and Figure 2.17 we present the inferred transition rates and predictions of the time evolution
of the cluster size distribution for our 1.66 mM concentration simulations using a lag time of = = 100 ps.
We obtain good agreement between the simulation results and our model predictions for the lower order
aggregates (n = 1-6), but poorer agreement for the larger aggregates (n = 7-11) for which our transition rate
estimates are less statistically robust due to very few observations of the formation and dissociation of the
larger clusters. Nevertheless, the qualitative trends in the time evolution in the mass fractions of all ag-
gregates are adequately recapitulated by the CTMC. As with the 0.866 mM simulation, we find that typical
structural relaxation occurs on time scales shorter than the characteristic transition time, validating our
assumption that a Markov state decomposition based on aggregate size should be approximately memo-
ryless. Encouragingly, we observe that nine of the twelve off-diagonal transition rates between the lower
order aggregates (n = 1-4) are in agreement within error bars between the two concentrations studied (cf.
Tables 2.1 and 2.2), suggesting that the transition rates inferred by our approach are not a strong function
of concentration and lending confidence in the CTMC modeling approach. Of the three transition rates
that fall outside of error bars, q14 differ by only 0.4 us~! after error, and q;3, and g3 by ~7 us~!. The absence
of resolved transitions out of the heptamers, decamers, and undecamers over the time and length scales
of our simulations reflects the behavior of these aggregates as sink states. At this concentration, we esti-
mate the largest relaxation time for early-stage assembly to be £ ~ 302 ns with a 95% confidence interval
of 105 ns to 423 ns. This time scale is around an order of magnitude smaller than that computed at the
lower concentration, but still suggests that simulations on the order of a microsecond would be required

to observe events beyond the early stage assembly events studied in this chapter [136].

2.4 Conclusions

We have conducted molecular dynamics simulations to study the early-stage assembly of DFAG-OPV3-
GAFD peptides in implicit and explicit solvent. We obtained the potential of mean force for the collapse of
individual peptides and for pairwise dimerization using umbrella sampling in explicit solvent, and rescaled
thenon-bonded interactions of the CHARMM?27 force field to reproduce these free energy landscapes with
implicit solvation. Using this model, we employed biased sampling techniques to compute the equilib-
rium morphologies and association free energies for the formation of peptide dimers, trimers, tetramers,
and pentamers under low-pH conditions where the four terminal carboxyl groups are protonated and the

peptides are electrically neutral. All aggregates exist as 3-sheet-like stacks mediated by n-stacking of the
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Table 2.2: Maximum likelihood estimate of transition rates between aggregate sizes in units of us~! in the
continuous time Markov model for the 1.66 mM system employing a lag time of = = 100 ps. Off-diagonal
elements are estimated as an average over all time blocks of length 7 over the three independent simula-
tion trajectories, and uncertainties estimated as the standard error in the values constituting the mean.
Diagonal elements are computed as ¢;; = — 2, j’.’zl qij, and the associated uncertainly estimated by standard
propagation of errors. Transition rates for which no such transitions were observed over the course of the
simulation trajectories, or the total residence time was less than the lag time, are reported as zero.

To 1-mer To 2-mer To 3-mer To 4-mer To 5-mer
From 1-mer -41.3+5.5 25.0+4.4 11.7+1.7 3.6+0.9 2.1+0.7
From 2-mer 25.0 +10.1 -56.3+11.2 21.6+2.9 46+1.4 3.8+1.4
From 3-mer 6.5+4.5 6.8+3.0 -42.9+7.6 14.7+3.5 8.4+2.7
From 4-mer 1.8+1.1 0.7+0.7 55+3.3 -28.0+7.0 14.3+5.1
From 5-mer 52+4.8 13.3+6.8 199+10.2 209+19.3 -107.0+34.2
From 6-mer 18.9 +18.2 0.0+0.0 8.3+8.4 0.0+0.0 94.3+91.1
From 7-mer 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0
From 8-mer 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
From 9-mer 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
From 10-mer 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
From 11-mer 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0 0.0+£0.0
To 6-mer To 7-mer To 8-mer To 9-mer To 10-mer To 11-mer
0.8+0.5 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
0.0+0.0 0.7+0.5 0.5+0.4 0.0+0.0 0.0+0.0 0.0+0.0
4.2+2.2 1.2+0.9 0.0+£0.0 0.0+0.0 0.0+0.0 1.0+1.1
0.0+0.0 26+1.8 14+14 0.0+0.0 1.7+1.7 0.0+0.0
42.5+24.3 5.3+3.8 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
-167.2 £102.3 0.0+0.0 6.7+6.8 0.0+0.0 39.1 +40.3 0.0+0.0
0.0+0.0 -0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
0.0+0.0 0.0+0.0 -75.8 + 83.3 0.0+0.0 0.0+0.0 75.8 +83.0
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0

aromatic cores and hydrogen bonding between the peptidic wings. We predict a favorable dimerization
free energy of AF ~ —15ksT, and compute a strongly favorable and approximately constant driving force
for further monomer addition to the elongating stack of AF ~ —25kpT. Interestingly, under high-pH condi-
tions where the peptides are deprotonated and carry a net -4 formal charge, we find dimerization to remain
favorable with AF ~ —4kgpT driven by dispersion interactions, hydrophobicity, and =-stacking between the
aromatic cores with the charged termini oriented away from one another in an “I-shaped” configuration.
Successive monomer addition to form trimers, tetramers, and pentamers is also marginally favorable with
AF ~ —5kgT, but becomes less so with increasing aggregate size due to higher concentrations of nega-
tive charge on the growing oligomer. These findings suggest that the peptides exist in smaller oligomeric
clusters under high-pH conditions that form the fundamental units of assembly in pH-triggered assem-

bly [4, 22, 23, 56].
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Figure 2.17: Comparison of the cluster size distribution in the 1.66 mM system predicted by the Markov
model with a lag time of r = 100 ps (dashed lines) to that directly observed in the simulations (sold lines
with every 20th point plotted) for aggregates of size (a) n = 1-6 and (b) n = 7-11. The simulation data is
plotted as the mean and standard deviation of the mass fraction over the three simulations. No error bars
are reported when only a single observation was obtained at that particular time interval.

The reparameterized implicit solvent model permitted us to access 2-3 orders of magnitude larger time
and length scales than are accessible in explicit solvent, permitting us to directly simulate the early stages
of self-assembly of the low-pH assembly of hundreds of protonated peptide monomers over 70 ns. At

0.85 mM concentration we see monotonic depletion of monomers leading to assembly of dimers, trimers,
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tetramers, and pentamers over the first 70 ns of assembly. These light aggregates are sufficiently small to
undergo rapid internal structural relaxation to form well-aligned -sheet-like stacks, but the assembly of
heavier aggregates proceeds on time scales in excess of several hundreds of ns. At 1.66 mM concentra-
tion we see rapid depletion of monomers to form aggregates of size n=2-11 by both monomeric addition
and the condensation of heavier aggregates. Morphologically, aggregates of size n < 4 undergo internal
structural rearrangement into well-aligned B-sheet-like stacks that serve as nuclei for further elongation
of the nascent ribbon. The larger aggregates appear to be kinetically trapped in disordered configurations
on time scales of tens of ns. By modeling the assembly dynamics observed in our simulations as a contin-
uous time Markov chain (CTMC), we extracted from our simulations transition rates between aggregates
of different sizes providing insight into the microscopic kinetics of early-stage assembly. The predictions
for the time evolution of the cluster size distribution from the CTMC are in good agreement with those
extracted directly from our simulations, and predict early stage assembly to possess a slowest relaxation
time on the order of several us.

Our observations suggest a hierarchical model of early-stage assembly at experimentally relevant con-
centrations, in which light n=1-4 aggregates first rapidly assemble and reorganize into thermodynami-
cally stable B-sheet-like stacks. These small subsequently agglomerate into larger disordered aggregates
with internal structural relaxation times exceeding several tens of ns. These early stages of peptide as-
sembly observed in our simulations resemble the initial stages of models of amyloid fibril formation in
which amyloid peptides nucleate into roughly spherical micelle-like structures bound by primarily hy-
drophobicity, before ripening into beta-sheet-like structures with a defined backbone and linear stacking
arrangement [138-143]. Moving beyond the 70 ns time horizon, our results suggest that the next phase of
assembly to be structural ripening of these larger aggregates into well-aligned 3-sheet-like stacks coupled
with the formation of larger aggregates. The aggregation of small clusters with high mobilities into larger,
less mobile clusters — we compute the self-diffusivity of monomers, tetramers, and octamers to be (6.6
+0.2), (1.64 + 0.04), and (0.74 + 0.02) x 1076 cm?/s respectively — suggests that higher order aggregation
will likely be diffusion-limited. Further testing of these hypotheses would require the simulation of larger
simulation boxes to gather sufficient data to draw statistically robust data on higher aggregate formation,
and longer simulation times to probe higher-order assembly on microsecond time scales. Work has been
done to push simulations to such time scales using high-level coarse-grained models [144].

This chapter lays the foundation for subsequent chapters in employing our reparameterized implicit
solvent model to investigate the impact of modifications to peptide sequence and the conjugated core

upon the thermodynamics, kinetics, and morphologies in early-stage assembly to make contact between
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monomer chemistry and assembly behavior. Specifically, we will study the DXXX-IT-XXXD peptide family
where X = {G,A,],V,F} [4,23,56,66,69], and IT corresponds to different conjugated cores of different charac-
ters and sizes, including oligophenylvinylenes, oligothiophenes, and rylene diimides [30,56,65] to identify
amino acid sequences and cores predicted to possess desirable assembly characteristics. Peptide compo-
sition has a direct influence on both the structure of the assembled nanomaterials, such as the extent of
fibrillization, as well as their functionality, such as the energy transport characteristics [2,4]. For example,
different peptide chemistries have been observed to produce nanomaterials with excited state exciton
outcomes spanning from the formation of “charge-trapped” excimer states that might be useful for light
emission applications, to the formation of strong electronic coupling relevant for charge carrier trans-
port [2]. Future computational studies can help to unravel the molecular-level morphologies underpin-
ning this structure and function, and help guide the rational design of new biocompatible optoelectronic

nanomaterials for energy transport and storage applications.
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Chapter 3

QSPR modeling for high-throughput
virtual screening

3.1 Introduction

We seek to expand the scope of our study to a variety of peptides of different composition in order to
probe the relationships between primary structure and aggregate properties. While computer simulation
can provide a great deal of insight, all-atom and even coarse-grained simulation at the length and time
scales relevant to supramolecular assembly can be prohibitively expensive. This computational expense,
coupled with the enormous palette of possible oligopeptide chemistries, makes it infeasible to directly
evaluate the self-assembly behavior of every possible chemistry. Quantitative structure-activity relation-
ship/quantitative structure-property relationship (QSAR/QSPR) models present a means to develop in-
expensive predictive models of molecular behavior that can be used to perform high-throughput compu-
tational screening of chemical space to evaluate vastly more candidate peptides than would be possible
by simulation and/or experimentation [146-149]. These models seek a predictive relationship between
molecular behavior that is expensive to evaluate and a set of physicochemical molecular descriptors that
are inexpensive to compute or measure. It is typically implicitly assumed that similar molecules behave
similarly and that the input descriptors are sufficient to predict the desired molecular behavior [150]. The
training of such models is a form of supervised learning, by which the relationship is extracted from a
limited set of training data, validated against some test data, and then used to perform high-throughput
“virtual screening”. The use of QSPR models has a long history in chemometrics [151, 152], and has been
applied to a diversity of peptidic systems in the context of structure, binding, drug loading, antimicrobial
activity, and aggregation [150, 153-159].

In this chapter, we conduct molecular dynamics simulations of a limited number of synthetic oligopep-

tide chemistries, and use these data to train QSPR models to predict oligomerization thermodynamics

Most of this chapter is an excerpt from ref. [145]. Used with permission from: Thurston, B. A.; Ferguson, A. L. Mol. Sim. 44,11,
930-945 (2018), available athttps://doi.org/10.1080/08927022.2018.1469754. Copyright 2018 Taylor and Francis.
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from molecular physicochemical descriptors. These models are then used to inform the important deter-
minants of assembly behavior and perform high-throughput computational screening to identify peptide
candidates with good predicted assembly behaviors. We focus our study on a class of synthetic oligopep-
tides with a peptide-II-peptide symmetric triblock architecture of the form ASP-X3-X5-X; -IT-X; -X2-X3-ASP,
where {Xj, X5, X3} are amino acids from the set {ALA (A), PHE (F), GLY (G), ILE (I), VAL (V)} and the IT insert
is either a naphthalenediimide (NDI) or a perylenediimide (PDI) conjugated core Figure 3.1). The peptide
family represents a flexible archetype that may be readily synthesized by on-resin dimerization [65], and
which has been previously shown in a number of prior computational [4, 24, 55, 56, 144] and experimen-
tal studies (2, 4, 23, 56, 65, 66] to possess a variety of desirable properties. Specifically, these biocompat-
ible and water-soluble oligopeptides exist as dispersed small aggregates at neutral pH that are triggered
to assemble into micron-sized pseudo-1D fibrils upon acidification due to protonation of the terminal
ASP residues. This eliminates the electrostatic repulsion between the ASP residues, and promotes assem-
bly by hydrophobic, hydrogen bonding, and n-stacking interactions. Delocalization of electrons between
the n-conjugated cores provides the assemblies with functional electronic and photophysical properties,
including electron transport and exciton migration, fluorescence, and gate voltage dependent current,
which make such peptides viable materials to be used in biosensing, tracking molecular delivery to cells,
energy transport and harvesting, imaging, field effect transistors, and other bioelectronic applications
[2,4,48,48,49,55,65,68,69,160]. Previous studies have probed the role of N-to-C polarity, peptide concen-
tration, pH, and particular peptide sequences and core chemistries upon assembly [4, 24, 55, 56, 65, 161],
but no work to date has sought to develop predictive physicochemical models of assembly to identify the
important determinants promoting the formation of the ordered pseudo-1D assemblies required for good
optoelectronic functionality and enable virtual screening of peptide sequence space. It is the principal
motivation of this chapter to achieve these goals, and computationally test the model predictions by di-
rect simulation of the assembly behavior of identified candidates in large-scale molecular simulations.
We structure this project around two hypotheses. First, we propose that physicochemical molecular
descriptors can be used to develop predictive models of oligomerization free energies. A prerequisite to
predicting large-scale many-body aggregation is a proper understanding of the mechanisms and ther-
modynamics of oligomerization [57]. We demonstrate that QSPR models can ably predict oligopeptide
dimerization and trimerization free energies for non-polar oligopeptides from small numbers of molec-
ular descriptors, revealing the important physicochemical determinants of association and setting the
stage for our second hypothesis. Second, we propose that the large-scale assembly behavior can be pre-

dicted from the thermodynamics of oligomerization. We ground this conjecture in the well-known prin-
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Figure 3.1: Chemical structure of the ASP-X3-X-X; -IT-X; -X,-X3-ASP peptide family. {X;, X», X3} may be
tuned to any one of the 20 natural amino acids, and the IT insert is a conjugated aromatic core, which in this
chapter we restrict to be either a naphthalenediimide (NDI) or a perylenediimide (PDI) conjugated core.
The N-to-C directionality of each peptide points away from the core, such that the oligopeptide sequence
is antisymmetric and possesses two C-termini. The terminal aspartic acid residues and carboxyl termini
are deprotonated at pH > 5 such that the peptides carry a (-4) formal charge, and large-scale assembly
is prohibited by electrostatic repulsion; at pH < 1, the termini protonate and assembly proceeds by n-x
stacking, hydrogen bonding, and hydrophobic interactions [4].

ciple for self-assembling systems in general [162, 163], and experimental findings for this oligopeptide
family in particular [4, 66, 69, 161], that interactions between self-associating building blocks should be
sufficiently strong to mediate assembly, but not so strong as to prevent mutual rearrangements into or-
dered structures as opposed to kinetically trapped states. Our results provide good support that our QSPR
model can accurately identify non-polar oligopeptides possessing intermediate oligomerization thermo-
dynamics, and that these chemistries robustly assemble into aggregates with good in-register parallel
stacking between neighboring molecules. We deploy our model to perform high-throughput screening of
oligopeptide chemical space, and identify a number of novel candidate sequences that form well-ordered
parallel-stacked nanoaggregates in large-scale molecular simulation. The structure of the remainder of
this manuscript is as follows. In Section 3.2, we describe our simulation methodology and QSPR model
development. In Section 3.3, we report the results of our free energy and alignment simulations, the imple-
mentation of a QSPR model to predict simulation results, and a high-throughput screening of chemistries

based on this model. Finally, in Section 3.4, we close with our conclusions and outlook for future work.
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3.2 Methods

3.2.1 Explicit solvent simulations

Molecular dynamics (MD) simulations of peptides in explicit solvent were conducted using GROMACS
4.6.7 [164,165] in order to compute free energy profiles for peptide collapse and dimerization that we sub-
sequently used to parametrise an implicit solvent model [55]. Peptide geometries were obtained using the
GlycoBioChem PRODRG2 Server [71], and modelled using AMBER99SB [98, 166]. Terminal ASP residues
were fully protonated to order simulate a low pH environment. The NDI and PDI cores are non-standard
groups within AMBER99SB force field. Bonded parameters for the cores were determined using the parm-
chk2 method from Antechamber [167]. Native AMBER99SB parameters were unavailable for three bond
angle interaction types, that instead were adopted from the Generalized Amber Force Field (GAFF) [168].
In keeping with methodology used for the derivation of partial charges for the AMBER force field [169],
we compute partial charges on the core atoms by means of the Restrained Electrostatic Potential (RESP)
method [170] using the RESP ESP charge Derive Server (REDS) [171]. Cores were parametrised as frag-
ments by adding N-methylamide groups to either side and enforcing charge neutrality. The server com-
putes charges utilizing a single configuration in two different orientations in each run [170, 172], and em-
ploys Gaussian09 [173] at the Hartree Fock/6-31G(d) level of theory to obtain the partial charges. Peptides
were placed in a rhombic dodecahedral box with periodic boundary conditions and solvated in TIP3P
water [174]. The box size was sufficiently large to accommodate the umbrella sampling calculations de-
tailed in Section 3.2.4. The system was subjected to steepest descent energy minimization until the max-
imum force on any given atom was less than a threshold of 1000 kJ/mol.nm. Atomic velocities were ini-
tialized from a Maxwell distribution at 298 K and the system equilibrated for 100 ps in an NVT ensemble
at a temperature of 298 K using a stochastic velocity rescaling thermostat [175] with a time constant of
0.5 ps, and finally for 100 ps in an NPT ensemble using the same thermostat and a Parrinello-Rahman
barostat [176, 177] at a pressure of 1 atm with a time constant of 1 ps and a compressibility of 4.5 x107°
bar~!. Production runs were conducted in the NPT ensemble using the same barostat and a Nosé-Hoover
thermostat [178, 179] with a time constant of 0.5 ps to maintain a temperature of 298 K. The equations of
motion were integrated using the leap-frog algorithm with a 2 fs time step [180]. Electrostatic interactions
were treated using Particle Mesh Ewald (PME) with a cutoff of 1.0 nm and a 0.12 nm Fourier grid spacing
that were optimized during runtime [78]. Lennard-Jones interactions were shifted smoothly to zero at 1.0
nm. Bond lengths were fixed using the LINCS algorithm [77], and Lorentz-Berthelot combining rules were

used to determine interaction parameters between unlike atoms [79]. Execution speeds of 3.3 ns/day were
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achieved on one core of an Intel i7-4820K processor.

3.2.2 Implicit solvent simulations

To reach the long length and time scales necessary to observe peptide self-assembly and realize computa-
tional efficiency gains to enable us to simulate more molecular chemistries, we parametrised an implicit
solvent model similar to that we previously employed in our study of the self-assembly of ASP-PHE-ALA-
GLY-OPV3-GLY-ALA-PHE-ASP peptides [55]. Peptides were modelled using the AMBER99SB force field as
described above [98, 166], but the water solvent is now represented implicitly using the Generalized Born
model to treat polar interactions between peptide and solvent, and the solvent accessible surface area ap-
proximation to treat nonpolar interactions [80]. Nonpolar interactions were treated using an analytical
continuum electrostatic (ACE) approximation [84] with a value of 2.259 kJ/mol.nm? for the surface ten-
sion [110]. Born radii were calculated using the method of Onufriev, Bashford, and Case with a relative
dielectric constant of 78.3 and the standard parameter set of « = 1, 8 = 0.8, and y = 4.85 [83]. Coulombic
interactions were treated using a cutoff of 3.4 nm and a dielectric offset of 0.009 nm. Lennard-Jones inter-
actions were shifted smoothly to zero at 3.4 nm. All simulations were conducted in the NVT ensemble at
298 K by integrating the Langevin equation with a friction constant of 0.5 ps~! [110]. Following our previ-
ous work [55], we rescale the non-bonded interactions within the AMBER99SB force field to compensate
for the use of an implicit solvent model that overestimates inter-residue interaction strengths [85-87]. As
detailed in Appendix B, we compute the optimal rescaling factor of = 0.75 from a best fit of the potential
of mean force profiles for single peptide collapse (Section 3.2.3) and peptide dimerization (Section 3.2.4)
to those computed in explicit solvent for a representative peptide chemistry ASP-PHE-ALA-GLY-NDI-GLY-
ALA-PHE-ASP. Execution speeds of 33 ns/day were achieved on one core of an Intel i7-4820K processor,

representing a ~10-fold speedup relative to the explicit solvent model.

3.2.3 Potential of mean force for peptide collapse

The potential of mean force (PMF) profile in the head-to-tail extent of a single oligopeptide specifies the
free energy of the molecule as a function of its linear extent, quantifying the relative favorability of ex-
tended and collapsed configurations [93-95]. We determine PMF profiles for isolated oligopeptides in
both explicit and implicit solvent and use these profiles to parametrise the implicit solvent model (Sec-
tion 3.2.2). The PMF profiles were calculated by performing umbrella sampling in the molecular head-to-
tail distance (h2r) defined as the distance between the C, atoms in the terminal aspartic acid residues [93].

Umbrella windows were placed at evenly spaced 0.1 nm intervals over the range h2¢ = 0-4.0 nm. Initial con-
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figurations for each umbrella window were obtained from non-equilibrium pulling of an initially fully ex-
tended peptide to induce collapse. Harmonic biasing potentials with a force constant of 1000 kJ/mol.nm?
were applied in each umbrella window, and simulations run for 20 ns discarding the first 1 ns for equi-
libration. The unbiased PMF profile was estimated from the biased umbrella sampling data by solving
the WHAM equations [94] using the g wham program within GROMACS 4.6.7 [164, 165]. The PMFs re-
sulting from each of the two independent umbrella sampling calculations are mutually aligned within the
large-h2t bond-stretching regions of the PMFs, and then averaged. Uncertainties in each individual PMF
are estimated from 100 rounds of bootstrap resampling, and in the average by standard propagation of

uncertainties.

3.2.4 Potential of mean force for peptide oligomerization

We also computed the PMF profiles for the formation of oligopeptide dimers (n = 2) and trimers (n=3) asa
function of the center of mass separation rcopm between a monomer and a preassembled (n — 1) oligopep-
tide stack. Initial stacks of n peptides were prepared by first stretching a monomer to its maximum head-
to-tail extent, replicatingit n times, and constructing parallel stacks of the copies with inter-monomer sep-
arations of 0.45 nm, corresponding approximately to the global free energy minimum of the dimerization
PMF for stacked oligopeptides [55]. The system was allowed to equilibrate for 20 ps with the positions of
the core atoms restrained, and then for another 20 ps with core restraints removed. This procedure allowed
for peptides to relax into a well-stacked configuration. We then simulated the system for 1.5 ns, and used
the system geometry at 0.5 ns, 1.0 ns, and 1.5 ns as the starting point for a non-equilibrium pulling runs.
Nonequilibrium pulling is applied to the center of mass separation rcom between a terminal monomer
and the remaining (n — 1) monomer stack. The configurations over the course of each pull are used to
initialize umbrella sampling runs at evenly spaced 0.1 nm intervals over the range rcom = 0-2.5 nm in the
case of dimer aggregation and over the range rcom = 0-3.0 nm in the case of trimer aggregation, where
the upper bound of the range is specified to be sufficiently large that the two groups are effectively non-
interacting. Harmonic biasing potentials with a force constant of 1000 kJ/mol.nm? were applied in each
umbrella window, and simulations run for 20 ns discarding the first 1 ns for equilibration. The unbiased
PMF profile was estimated from the biased umbrella sampling data by solving the WHAM equations [94]
using the g wham program within GROMACS 4.6.7 [164, 165]. The AF.orr = -2kpT In(rcom) correction is
applied to each PMF to remove the purely entropic effects attributable to restraining the two groups to
a particular separation [110, 181, 182]. The PMFs resulting from each of the three independent umbrella

sampling calculations are mutually aligned within the large-rcoym plateau regions of the PMFs where the
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two groups are non-interacting, and then averaged. Uncertainties in each individual PMF are estimated
from 100 rounds of bootstrap resampling, and in the average by standard propagation of uncertainties.
The dimerization AF, and trimerization AF; free energies are defined as the difference in free energy be-
tween the large-rcom non-interacting plateau of the PMF and the global free energy minimum containing

the associated configurations.

3.2.5 Measurement of structural alignment

We ultimately seek to relate the AF, and AF; values predicted by our model to a measure of the quality
of structural alignment within self-assembled aggregates formed by large numbers of peptides. Since we
are interested in engineering peptides for optoelectronic functionality, our primary design objective is to
establish good n-x stacking between neighboring oligopeptides within the self-assembled stacks. Essen-
tially, we are using good parallel stacking of the 7-conjugated aromatic cores as a classical proxy for good
quantum delocalization of electrons over the backbone of the self-assembled stacks. We quantify the de-
gree of structural alignment exhibited by a particular peptide chemistry by conducting 50 ns unbiased
simulations of 64 peptides in a 50x50x50 nm? implicit solvent box, corresponding to a concentration of
0.85 mM. This concentration is both experimentally achievable and at which oligopeptide assembly has
previously been observed [23]. The structure of aggregates is tracked as a function of time to monitor the
formation of well-aligned parallel stacked clusters. The association distance between two oligopeptides is
defined as [144,183],

RZ5°¢ = minmin r;j, 3.1
’ ica jeb

where r;; is the distance between atom i in oligopeptide a and atom j in oligopeptide b. Two oligopeptides

are defined to be associated if R7°° < 0.5 nm. The alignment distance is defined as [144, 183],

= max [( max min r;;), ( max min ryi)]. 3.2
[(i€(core a) je(core b) ”) (i’E(core b) j'€(core a) H )] ( )

The first term in round brackets defines the minimum intermolecular distance from each atom i in the
n-conjugated core of oligopeptide a to each atom j in the n-conjugated core of oligopeptide b, and selects
the maximum of these. The second term in round brackets defines the reciprocal of this, computing the
maximum minimum distance from any core atom i’ in oligopeptide b to any core atom j’ in oligopeptide a.
In the square brackets we then take the maximum of the two terms. As has been previously observed, this
distance is equivalent to the graph diameter [183,184]. This measure presents a relatively strict definition

of molecular association, with small alignment distances only reported that if all atoms within the cores
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of the two molecules are in close proximity. Accordingly, it presents a means to identify whether the cores

of a pair of oligopeptides are in a parallel stacked configuration with in-register alignment between all of

align

the fused aromatic cores. Two oligopeptides are defined to be aligned if R, ;

< 0.5 nm. We specify the
two cutoffs based on the observed mean separation of two peptides in a 20 ns unbiased run starting from
awell-aligned, n-stacked configuration. Based on these definitions, we define the alignment metric a for
a particular snapshot of our molecular simulation as the ratio of the average size of aligned oligopeptide

clusters to associated oligopeptide clusters,

(3.3)

where 7, is the mean number of peptides in an aligned cluster and 7, is the mean number of peptides in
an associated cluster. The subtraction of unity in the numerator and denominator assures that the metric
does not spuriously assign high alignment scores to oligopeptide monomers, for which a is undefined.
Averaging a over the equilibrated portion of our simulation trajectory provides a measure of the likelihood

with which oligopeptides form well aligned clusters upon aggregation.

3.3 Results and Discussion

3.3.1 Dimerization and trimerization free energies computed by molecular

simulation

Containing three independently mutable amino acid residues and NDI or PDI as potential 7-conjugated
cores, our ASP-X3-X;-X; -TT1-X; -X;-X3-ASP peptide family comprises 203x2 = 16,000 members. Even with
our implicit solvent model, exhaustive calculation of the dimerization and trimerization free energies
from molecular simulation is computationally intractable. Accordingly, we instead perform these calcu-
lations over the restricted subset of oligopeptide chemistries DFAX-IT-XAFD, DFXG-IT-GXFD, and DXAG-
I1-GAXD, where X € {A, E G, 1, V} and IT € {NDI, PDI}. This choice of 26 different chemistries was motivated
by experimental work showing good assembly behaviors of peptides belonging to these and similar fam-
ilies [2, 4, 65, 185], and the decision to avoid charged and/or polar residues that are expected to interfere
with the triggerable low-pH association. We present in Table 3.1 the dimerization AF, and trimerization
AF; free energies computed from the implicit solvent umbrella sampling simulations described in Section
3.2.4.

Analysis of the data reveals a significant difference between the free energies of interaction between
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Table 3.1: Free energies of dimerization AF, and trimerization AF; computed from implicit solvent um-
brella sampling calculations for the 26 chemistries in the families DFAX-IT-XAFD, DFXG-II-GXFD, and
DXAG-II-GAXD, where X € {A, E G, I, V} and II € {NDI, PDI}. Values are computed as the mean over the
three independent runs, and uncertainties are estimated by propagation of uncertainties and bootstrap
resampling. Eight of the 26 peptides were selected for large-scale simulations to assess the alignment qual-
ity of the self-assembled supramolecular assemblies (Section 3.3.4). We report for these eight chemistries
the alignment metric a (Equation 3.3) averaged over the equilibrated portion of simulations of the assem-
bly of 64 oligopeptides at a concentration of 0.85 mM as a measure of the probability oligopeptides will
assemble into well-aligned stacks with in-register parallel stacking between the n-conjugated cores. Un-
certainties were estimated by five-fold block averaging the equilibrated portion of the trajectory.

Chemistry AF AF3 a

DAAG-NDI | -8.1+1.2 -13.8+4.8 -
DAAG-PDI | -22.3+1.6 -25.5+3.2 0.584 +0.039
DFAA-NDI | -7.7+2.6  -8.9+3.1 -
DFAA-PDI | -18.8+3.5 -22.5+3.1 -
DFAF-NDI | -11.8+2.4 -15.9+6.0 0.016 +0.007
DFAF-PDI | -24.0+3.2 -30.6+3.9 0.303 +0.039
DFAG-NDI | -8.1+2.1 -7.6+1.9 0.021 £0.016
DFAG-PDI | -22.1+2.8 -25.3+3.2 0.537 +0.042
DFAI-NDI | -9.4+3.1 -14.7+2.8 -

DFAI-PDI | -21.8+2.8 -34.9+4.0 0.268 +0.042
DFAV-NDI | -9.0+2.1 -17.8+3.6 0.020 +0.006
DFAV-PDI | -27.3£3.0 -21.2+2.9 0.348 +0.033

DFFG-NDI | -12.2+1.9 -16.6+4.9 -
DFFG-PDI | -29.2+3.1 -29.8+3.9 -

DFGG-NDI | -7.0£1.0 -9.1+2.7 -
DFGG-PDI | -26.9+2.7 -23.6+2.3 -
DFIG-NDI | -8.5+2.1 -14.6+2.6 -
DFIG-PDI | -27.6+4.7 -24.5+3.0 -

DFVG-NDI | -7.6+2.8 -12.9+3.2 -
DFVG-PDI | -22.9+2.6 -34.2+7.4 -

DGAG-NDI | -8.9+1.0 -5.7+2.5 -
DGAG-PDI | -26.9+1.7 -29.3+2.6 -
DIAG-NDI | -6.5+1.4  -8.0+3.1 -
DIAG-PDI | -24.4+3.3 -28.5+2.7 -
DVAG-NDI | -7.7+1.4  -4.6+1.2 -
DVAG-PDI | -20.3+1.6 -21.5+5.1 -

PDI and NDI cores: the most strongly interacting NDI peptides (DFFG-NDI for dimers and DFAV-NDI for
trimers) possess more shallow free energy wells that the most weakly interacting PDI peptides (DFAA-PDI
for dimers and DFAV-PDI for trimers). Interestingly, we observe that stronger free energy changes for the
formation of a dimer do not necessarily imply stronger free energy wells in the formation of a trimer, indi-
cating the importance of going beyond purely pairwise interactions in characterizing multi-body assem-
bly [57]. For example, DFAV-PDI has one of the largest AF, values but one of the lowest AF; values. While
itis clear that the larger PDI n-conjugated cores tend to elevate oligomerization free energies over that for

NDI cores by a factor of 2-3, discerning more subtle trends based on peptide composition and sequence by
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inspection or intuition is challenging. In the following sections, we describe the development and interro-
gation of a QSPR model to assist in the discovery of the key determinants governing the thermodynamics

of oligopeptide oligomerization.

3.3.2 QSPR modelling of oligomerization thermodynamics

We engage our hypothesis that oligomerization thermodynamics can be predicted from physicochemical
molecular descriptors by training a QSPR model to predict oligopeptide dimerization and trimerization
free energies computed by umbrella sampling. Training is conducted over data for the 26 chemistries re-
ported in Table 3.1. Although these particular oligopeptides represent no more than a small sampling of
the 16,000 possible ASP-X35-X,-X; -I1-X; -X,-X3-ASP chemistries, we show that it was sufficient to produce
QSPR models capable of quantitatively predicting oligomerization free energies of a diversity of non-polar
oligopeptides with diverse residue composition and sequence. Training of our QSPR model constitutes a
form of supervised learning to regress a relationship of the form {AF;, AF}} = f (d;), where AF, and AF;
are the dimerization and trimerization free energies computed from molecular simulation, d is a vector of
physicochemical molecular descriptors that can be inexpensively computed from the chemical sequence
and/or three-dimensional structure of the peptide monomer, i indexes the particular peptide chemistry,
and f is the functional mapping that is sought. Development of the QSPR model comprises four main
steps: descriptor generation, descriptor cleaning, model construction, and model validation. An illustra-

tion of the QSPR training procedure is depicted in Figure 3.2.

Descriptor generation.

A molecular descriptor is a numerical quantity that can be computed directly from the molecular chem-
istryand/or structure [148,186]. The PaDEL software package [187] was used to compute a total of 1444 1D
(dependent only on composition) and 2D (dependent on bond network) descriptors, and 431 3D (depen-
dent on three-dimensional structure) descriptors. These descriptors correspond to a number of physical
and chemical attributes, examples of which include numbers of atoms of various types, autocorrelations
between atoms separated by particular numbers of bonds weighted by quantities such as electronegativ-
ity, and three-dimensional weighted radial distribution functions. Peptide structures required by PaDEL
were generated by steepest descent energy minimization from an initially extended configuration until
the maximum force in the system does not exceed 1000 kJ/mol.nm. The resulting file is converted to an
MDL MOL format using Babel [188] and aromatic bonds manually assigned. When descriptors involve

atomic partial charges, PaDEL computes them using the Gasteiger-Marsili method [189]. The resultant
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Figure 3.2: Schematic illustration of the QSPR model development protocol.

descriptors produced over the 26 chemistries are Z-scored such that they are centered, standardized, and
de-dimensionalized [190]. To increase the diversity of descriptors and potentially improve their inter-
pretability, we apply the descriptor generation protocol to the entire oligopeptide, the 7-conjugated core
alone, and the variable X; -X»-X3 amino acid triplet. In this manner, we generate a total of 5625 descriptors

for each of the 26 chemistries.

Descriptor cleaning.

We clean the ensemble of 5625 descriptors to eliminate unstable, uninformative or redundant descrip-
tors [190,191]. First, we eliminated 1230 descriptors with a sensitive dependence on the three-dimensional
structure of the oligopeptide. The oligopeptides are known to adopt a diversity of configurations both
in isolation and within self-assembled aggregates, so we wished to discard descriptors that vary strongly
with the peptide conformational state, and may be strongly influenced by the particulars of the method-
ology used to generate the initial peptide conformation. We compare descriptor values for all peptide
chemistries in the training data set that are generated from our energy minimized peptide structure with
those that are generated from the terminal configuration of a 20 ns simulation of an isolated peptide in

implicit solvent, and select only those descriptors for which the root mean square deviation across all

47



chemistries was less than a cutoff value of 0.15. Second, we eliminate 1686 descriptors that were found
to be constant or nearly constant (defined as having a standard deviation less than 0.0001) over the 26
chemistries. Third, we removed 2462 highly correlated descriptors, identified from descriptor pairs pos-
sessing a Pearson correlation coefficient with magnitude in excess of p = 0.90. Highly correlated descrip-
tors are removed in an iterative procedure. We first identify and retain the descriptor that is least corre-
lated with all other descriptors, and then eliminate all descriptors with which it is highly correlated (i.e.,
p > 0.90). The next least correlated descriptor, of those that have not been selected or rejected, is then
selected and those descriptors with which it is highly correlated are rejected, and so on. Together, these

three cleaning protocols down-selected the number of descriptors from 5625 to 247.

Model construction.

We randomly partition the 26 chemistries into a training set consisting of 21 peptide chemistries (80% of
the data) and a testing set comprising the remaining five chemistries. We train a QSPR model over the
training data to regress a relationship of the form {AF,, AR} = f (c?), where d is a vector of the 247 descrip-
tors retained after cleaning. A number of choices of functional forms and machine learning approaches to
determine f are possible, including artificial neural networks, support vector regression, Gaussian process
regression, and nonlinear regression. In this chapter, we choose to employ simple multiple linear regres-
sion (MLR) for its simplicity, interpretability, and appropriateness for the high-dimensional low-sample

size (HD-LSS) regime in which we are operating. As such, we seek a relationship of the form,
AF = co+ ) cidi + €, (3.4)
=1

where i indexes the particular oligopeptide chemistry, j indexes the descriptor, AF’ is either the dimer-
ization or trimerization free energy computed for oligopeptide i, d}' is the j™ descriptor associated with
chemistry i, {¢;})Y, are the regression coefficients to be determined, and ¢; is the residual error associated
with chemistry i. In principle, regression may be conducted over all N = 247 descriptors retained after
the cleaning procedure. Typically, however, it is valuable to perform some form of descriptor selection in
order to generate more simple, interpretable, and generalizable models in which a large number of the ¢;
are constrained to be zero [190, 191]. A number of means exist to perform wrapped and/or embedded de-
scriptor selection, including genetic algorithms [192] and various flavors of regularization including ridge
(L), LASSO (L;), and elastic net (L; and Ly) [193-195]. In this chapter, we implement a combination of ex-

haustive and pseudo-greedy forward stepwise descriptor selection to regularize our models, and we avoid
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overfitting by dividing data into training and testing datasets and monitoring errors over the test set [196].
Specifically, we exhaustively compute all (2‘117) =247 univariate, (237) =30,381 bivariate, and (2§7) =2,481,115
trivariate MLR models by least squares fitting of Equation 3.4 over the 21 training chemistries. Exhaustive
consideration of all (227) = 151,348,015 tetravariate models proved computationally expensive, so we in-
stead greedily considered the 12,200 tetravariate models formed by adding one more descriptor to the top
50 trivariate models. Exhaustive computation of trivariate models proved to yield no significant benefit
over trivariate models obtained using this greedy approach, so the final analysis was conducted using a
greedy search approach for trivariate models as well and lending support for our use of this technique.
Models were computed for 15 separate random divisions of data into training and testing sets in order to
evaluate uncertainties in training and testing errors. In principle, we could have extended this stepwise
selection procedure to models of arbitrary complexity, but in practice, we found tetravariate models or
smaller were sufficient to predict dimerization and trimerization free energies with estimated uncertain-
ties better that the accuracy with which these quantities were computed from our simulations. Further-
more, testing errors were observed to increase for both dimerization and trimerization free energies for
higher than tetravariate models, indicating that the small size of our data set places us in a regime prone
to overfitting. We avoid overfitting by controlling model complexity so as to minimize the testing error,
but elect not to exacerbate the overfitting danger through the incorporation of nonlinear terms in our re-

gression model. This also has the advantage of leading to more interpretable models formed from simple

linear descriptor combinations.

Model validation.

At each order of model complexity N = {1,2,3,4} the MLR models were validated and ranked according
to their root mean squared error (RMSE) in leave-one-out cross-validation of AF, and AF; over the 21
chemistries constituting the training data. The performance of the top ranked N ={1,2,3,4} models over the
training and testing data for a random division of the data into training and testing datasets are illustrated
in Figure 3.3.

In principle, we could have terminated our QSPR validation procedure here, and selected from the four
top-ranked models with the smallest RMSE over the testing data as our terminal model. However, we seek
to further improve our predictive accuracy by developing ensemble regressors that average over the top
several models at each level of model complexity (i.e., the univariate, bivariate, trivariate, and tetravariate
MLR models). It is well known that such ensemble models frequently exhibit better performance than

any one of the constituent models alone [197-199]. We determine an appropriate number of top-ranked
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models over which to average at each level of model complexity by performing 15 rounds of shuffled cross-
validation, in which we train the ensemble predictor on a randomly selected split of 80% of the training
data and measure its prediction accuracy on the remaining 20%. We identify the optimal number of top-
ranked models over which to average by identifying a knee in the curve of test RMSE against number of
models participating in the average. This analysis identifies optimized ensemble predictors that average
over the top one N = 1 order MLR models, top four N = 2 order models, top nine N = 3 order models, and
top six N =4 order models for AF,, and the top three N = 1 order MLR models, top nine N = 2 order models,
top four N = 3 order models, and top two N = 4 order models for AF;. The performance of these ensemble
models at each level of model complexity over the training and testing data is illustrated in Figure 3.4,
from which we identify the N = 2 ensemble predictor to be optimal for prediction of AF,, and the N =
1 ensemble predictor optimal for prediction of AF;. The increase in testing error for models containing
higher numbers of descriptors is a result of overfitting over our small dataset, and we avoid overfitting by
selecting the model with the minimum testing error. The functional form of the best AF, ensemble model

averaging over the four top-ranked N =2 MLR models is,

AF, =%[(9.68 x MATS3c + 4.58 x MATS1c_wing — 16.43)
+(9.85 x MATS3c + 4.90 x ATSC4e_wing — 16.43) 3.5
+ (=5.05 x SpMax6_Bhs — 10.73 x piPC3 — 16.43)
+(3.73 X AVP_5 — 7.98 x piPC3 - 16.43)]
and that of the best AF; ensemble model averaging over the three top-ranked N = 1 MLR models is,
AF;3 =%[(—7.80 x piPC3 - 19.30)
+(7.81 x maxHBint10 — 19.30) (3.6)

+(7.83 x GATS2i - 19.30)]

An assessment of the statistical performance of these two ensemble models is presented in Table 3.2.
The particular descriptors resolved in our terminal AF> QSPR model are the Moran autocorrelation
[200] of lag 3 weighted by partial charges (MATS3c) and Moran autocorrelation oflag 1 of the amino acids
on one side of the core minus the ASP residue on the end weighted by partial charges (MATS1c_wing), and
the centered Broto-Moreau autocorrelation [201] of lag 4 weighted by the Sanderson electronegativities
[202] of the peptide wing (ATSC4e_wing), the 6" largest eigenvalue of the modified Burden matrix [203]

weighted by relative intrinsic state [204] (SpMax6_Bhs), conventional bond order ID number of order 3
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Table 3.2: Statistical measures of our computed QSPR model for AF, and AF; for both training data and
testing data. RMSE is the root mean square error of the model measured in kzT, R? is the Pearson corre-
lation coefficient, g2 is the correlation coefficient over the leave one out cross validation of the training
data, MAE is the mean average error of the model measured in k3T, and Rﬁ di is the adjusted correlation
coefficient [1]. Error values are comparable to errors obtained in simulation. High values of the correla-
tion coefficient and similar values of the adjusted correlation coefficient indicate the data are fit well by
the model without overfitting.

RMSE  R? g> MAE R?.
adj

AF, training 1.9 095 090 15 091
AF, testing 3.0 0.83 - 26 075
AF; training 3.7 0.83 068 3.0 0.79
AF; testing 3.9 0.72 - 33 0.68

[186] (piPC3), and the average valance path of order 5 [205] (AVP_5). The particular descriptors resolved
in our terminal AFs QSPR model are the conventional bond order ID number of order 3 [186] (piPC3),
the maximum electrotopological state [204] descriptor of strength for potential hydrogen bonds of path
length 10 (maxHBint10), and the Geary autocorrelation [206] of lag 2 weighted by first ionization potential
(GATS2i).

Importantly, the simple ensemble MLR QSPR models defined in Equations 3.5 and 3.6 provide quan-
titatively accurate predictions of the dimerization and trimerization free energies to within calculation
accuracy of ~4 kgT using just a handful of easily calculable molecular properties. Indeed, computation of
the eight molecular descriptors required by these two expressions for a particular oligopeptide chemistry
requires only about 4 s of computation on one core of an Intel i7-4820K processor, amounting to approx-
imately a 3 million-fold speedup over direct calculation of AF, and AF; by molecular simulation. Accord-
ingly, these models can be used to perform high-throughput virtual screening for oligopeptide chemistries

possessing desirable oligomerization free energies.

3.3.3 Trained QSPR models provide molecular insight into determinants of

oligomerization thermodynamics

We now proceed to interrogate the particular descriptors and associated regression coefficients appearing
in the optimal MLR ensemble predictors in Equations 3.5 and 3.6. In doing so we pick apart the physico-
chemical properties reflected in each descriptor, and develop insight into the key molecular features gov-
erning the oligomerization thermodynamics.

MATS3cis the Moran autocorrelation [200] of lag 3 weighted by partial charges. Physically, this descrip-

tor measures the correlation between atomic charges separated by three bonds. This descriptor appears
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twice with large positive regression coefficients in the expression for AF,, indicating that large positive
values of MATS3c favor large positive (i.e., unfavorable) values of AF,. Bulkier aromatic residues and the
larger PDI core tend to have lower values of MATS3c due to lower correlation between charges in atoms
separated by three bonds in such residues compared to the higher correlation in the peptide backbone.

MATS1c_wing is the Moran autocorrelation weighted by partial charges between adjacent atoms in
the peptide wing. This descriptor also appears with a positive coefficient in the expression for AF,. This
quantity islowest for residues with multiple hydrogen atoms bonded to a single carbon atom in the peptide
wings due to such a configuration resulting in the most polarized bonds in our training dataset. Aromatic
residues, on the other hand, take on higher values. This term appears with and provides a correction to
the MATS3c term by decreasing the magnitude of free energy wells for peptides containing wings with a
higher fraction of aromatic atoms.

ATSC4e_wingis the centered Broto-Moreau autocorrelation [201] of lag 4 weighted by Sanderson elec-
tronegativities [202] of the peptide wing. This descriptor also has a positive correlation with AF,. The
Sanderson measure of electronegativity takes negative values for C and H atoms and positive values for N
and O atoms. Due to spacing between atoms in the amino acid backbone, ALA and GLY residues tend to
have lower values of this descriptor. Similar to MATS1c_wing, this descriptor appears with MATS3c and
provides corrections to this term, in this case by predicting a larger free energy well for peptides containing
more ALA and GLY residues.

piPC3 is the conventional bond order ID number of order 3 [186]. Physically, it measures the degree
of branching in the bonded structure of the molecule. Aromatic bonds are weighted more heavily than
single bonds so larger peptides, especially those containing large numbers of aromatic elements, with
have larger values of this quantity. This descriptor appears twice in the expression for AF, and once in
that for AF;, in each case with large negative regression coefficients. PDI cores possess significantly larger
values of piPC3 than NDI, with this descriptor reflecting the more favorable association free energies of
the former relative to the latter. Less clear-cut correlations between residue size and lower free energies
may play a role as well.

SpMax6_Bhs is the 6'" largest eigenvalue of the modified Burden matrix [203] weighted by relative
intrinsic state [204]. It appears with piPC3 with a negative regression coefficient in the expression for
AF,. This descriptor does not have a simple physical interpretation, but is strongly negatively correlated
r = —0.922 with the number of aromatic atoms. This descriptor appears to correct the piPC3 term by de-
creasing the free energy well for peptides containing a larger number of aromatic atoms, and increasing

the free energy well for peptides containing fewer.
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AVP_5 is the average valance path of order 5 [205]. It is positively correlated with AF, and appears with
piPC3. AVP_5 can be thought of as a measure of molecular compactness: molecules with more paths of
length 5 that contain heavier atoms with fewer valance electrons or atoms to which many hydrogen atoms
are bound will have higher values for this descriptor. For the standard amino acids, this quantity will in
general be larger when the ratio of hydrogen atoms to other atoms is larger. Accordingly, atoms containing
PHE or ILE residues possess higher values, while NDI and PDI cores are not significantly differentiated
from one another. This term appears to correct the piPC3 term that tends to overestimate the importance
of residue size in determining AF,.

maxHBint10 is the maximum electrotopological state [204] descriptor of strength for potential hydro-
gen bonds of path length 10. This descriptor is positively correlated with AF;. Physically, the small size of
the NDI core allows this path length to span across the core between two viable atoms, which is not possi-
ble for the PDI core. As aresult, oligopeptides with NDI cores possess higher values for this descriptor than
PDI peptides, resulting in less favorable trimerization free energies. Furthermore, the presence of atoms
with lower Kier-Hall electronegativity in residues adjacent to the NDI core or residues one position away
from the PDI core leads to lower values for this descriptor and deeper free energy wells for trimerization.

GATS2i is the Geary autocorrelation [206] of lag 2 weighted by first ionization potential. It has posi-
tive correlation with AF;. This quantity is an inverse measure of autocorrelation (i.e., values > 1 indicate
negative correlation and values < 1 indicate positive correlation) between the first ionization potential of
atoms separated by two bonds. This quantity tends to reveal a weak negative correlation across all pep-
tides, but the positive correlation between atoms in larger aromatic regions, such as PDI cores and PHE
side chains, lowers the strength of this negative correlation and so the value of this descriptor. The second
hydrogen in glycine residues also tends to decrease the strength of the negative correlation, so peptides
containing more GLY will have lower values for this descriptor.

In sum, the QSPR model has identified a small number of physicochemcial properties that are the prin-
cipal determinants of dimerization and trimerization free energies. Synthesizing the above analyses pro-
vides the following three physical insights into the molecular mechanisms governing assembly. First, the
larger PDI cores lead to deeper free energy wells for dimerization and trimerization. Each set of descrip-
tors for dimerization and each descriptor for trimerization has some way of drawing a sharp distinction
between PDI and NDI cores. Specifically, this model predicts a ~ 15kgT difference between PDI and NDI
cores in both dimerization and trimerization free energies. Second, larger residues, especially PHE, are
predicted to yield stronger free energies of aggregation, but that can easily be overestimated. Each pair of

descriptors in the AF, model is characterized by the same general trend: one term distinguishes between
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PDI and NDI cores and overestimates the stability of larger residues, and the second term corrects for this.
Specifically, this model predicts an average increase in well depth over the range of simulated chemistries
of ~ 2.5kgT for replacing a given residue with PHE, with this effect larger for NDI than PDI cores. Third,
larger residues with lower electronegativity nearer to the NDI core seem to play an important role in sta-

bilizing the NDI trimer, while such residues are not as important in PDI trimers.

3.3.4 Correlation of oligomerization thermodynamics with self-assembled
alignment quality.

Having developed a predictive QSPR model of dimerization and trimerization free energies, we now move
to test our second hypothesis that oligomerization thermodynamics can predict the large-scale self-assembly
behavior. Following the precept that self-assembling building blocks should possess sufficiently strong
interactions to stabilize self-assembled aggregates but not so strong as to impose kinetic trapping and
prohibit mutual rearrangements and healing of defects to form ordered aggregates [162], it is our conjec-
ture that peptide chemistries with intermediate AF, and AF; values should show the best assembly into
well-ordered aggregates with in-register stacking of the n-conjugated cores. Experimental support for this
assertion in the context of these oligopeptides comes from recent work showing significant differences in
photophysical and conductive properties of assembled peptides resulting from variation of peptide amino
acid sequence [2, 4, 185]. These results are hypothesized to be caused by kinetically trapped aggregates
forming at early stages of assembly [4] and variations in local packing order [185]. While these results are
rather qualitative and pertain to different n-conjugated cores than those studied here, they nevertheless
support the hypothesis that the formation of kinetically trapped states, most likely resulting from overly
attractive peptide interactions, have a negative impact on core alignment. To test this conjecture, we con-
duct large scale simulations of assembly during which we monitor the degree of in-register parallel stack-
ing of the n-conjugated cores. The computational expense associated with these calculations precluded us
from conducting these runs for all 26 chemistries, and so we judiciously selected DFAG-NDI, DFAG-PD],
DFAF-NDI, DFAF-PDI, DFAV-NDI, DFAV-PDI, DFAI-PDI, and DAAG-PDI as eight oligopeptides spanning
a wide range of dimerization and trimerization free energies (cf. Table 3.1). We track alignment quality
using the alignment metric a defined in Equation 3.3 as a measure of the probability that associated pep-
tides will form well-aligned parallel stacks. The time evolution of this quantity over the 50 ns simulations
are reported in Figure 3.5a, and the average a values over the equilibrated portion of the runs reported
alongside AF, and AF; in Table 3.1.

Our calculations reveal that oligopeptides with the smaller NDI core tend not to form well-aligned ag-
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gregatesregardless of peptide wing chemistry. Peptides possessing a PDI core show two distinct groupings:
DFAG-PDI and DAAG-PDI align most readily, while DFAV-PDI, DFAF-PDI, and DFAI-PDI do not align as
well, although still better than those with an NDI core (Figure 3.5a). We quantify this relationship by fitting

a bivariate Gaussian relating alignment quality and dimerization and trimerization free energies,

(AF> — pap, )? _ (AR - HAR, )

2 2
ZO'AF2 ZO'AF3

a=apexp|— , 3.7
where ag = 0.548, pap, = -22.2 kT, par, = -25.3 kgT, and oap, = oar, = 6.6 kgT provide a good fit to the
data (Figure 3.5b). This fit illuminates a “goldilocks” regime in which peptides possessing intermediate
AF, =~ AF3 ~ -25 kgT exhibit the best alignment, pointing towards an optimal tradeoff between sufficiently
strong interaction strength to mediate assembly, but not so strong as to result in kinetic trapping in poorly

ordered clusters.

3.3.5 High-throughput virtual screening

The good fit of the alignment metric to the dimerization and trimerization free energies — although based
on arelatively small training set of only eight peptides — gives confidence that we can use our QSPR model
to perform high-throughput screening of chemical space to identify peptides with AF, and AF; values
predicted produce well-aligned stacks. Computing the eight molecular descriptors required by the QSPR
model takes only 4 s per oligopeptide on a single Intel i7-4820K core, enabling traversal of orders of mag-
nitude more chemistries than would be possible by molecular simulation. We search over the 173x2 =
9,826 chemistries in the ASP-X3-X5-X; -IT-X; -X2-X3-ASP peptide family, where IT € {NDI, PDI} and {X;, X»,
X3} take on all possible natural amino acids with the exception of Lys, His, and Arg. These three residues
are neglected since they are positively charged at low pH, and would therefore disrupt the pH-triggered
assembly mechanism due to electrostatic repulsion. We present in Table 3.3 the predicted AF, and AF;
values from our QSPR model (Equations 3.5 and 3.6) and alignment metric a from our bivariate Gaussian
fit (Equation 3.7) for a selected fraction of the 9,826 chemistries.

In order to test our model predictions, we select from our list four oligopeptide chemistries predicted
to possess good alignment metrics, and also seven controls. We select DMPP-PDI and DAIA-PDI as the
two highest ranked chemistries. We also select DAVG-PDI as the highest ranked chemistry possessing
a GLY residue adjacent to the core, as experimental work has previously suggested this as an important
factor in dictating good assembly [2, 4, 185]. We also select DWWW-NDI as the highest ranked NDI core
chemistry. Finally we also select DWNN-PDI, DTCT-NDI, DWCG-PDI, DWYW-NDI, DSSW-PDI, DYGA-
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Table 3.3: Dimerization AF, and trimerization AF; free energies predicted by Equations 3.5 and 3.6 and
alignment metric a predicted by Equation 3.7 for a selected number of the 9,826 chemistries in the ASP-
X3-Xp-X -I1-X; -X2-X3-ASP peptide family, where IT € {NDI, PDI} and {X;, X», X3} take on all possible natural
amino acids with the exception of Lys, His, and Arg. Chemistries are ordered by the magnitude of the
predicted alignment metric. Uncertainties in AF, and AF; are the mean error in prediction of the testing
data over 15 rounds of shuffled cross validation. Uncertainties in a are estimated by applying Equation 3.7
to 10° {AF,, AFs} pairs generated by sampling from a Gaussian distribution with the specified mean and
standard deviation and taking the standard deviation of the result. DMMP-PDI and DAIA-PDI are selected
for further simulation as the chemistries with the highest predicted alignment, DAVG-PDI is selected as
the chemistry having a GLY residue nearest the core with the highest predicted alignment, and DWWW-
NDI is selected as the NDI core with the highest predicted alignment. Finally, DWCG-PDI, DWYW-ND],
DSSW-PDI, DYGA-PDI, DYGG-PDI, DTCT-NDI, and DWNN-PDI are all selected as controls having a wide
variety of predicted free energies, alignments, and constituent amino acids.

Chemistry | Predicted AF, Predicted AF; Predicted alignment a
DMMP-PDI -22.4+3.0 -25.5+3.9 0.430 + 0.096
DAIA-PDI -22.4+£3.0 -25.2+39 0.430 + 0.097
DAMI-PDI -22.0+3.0 -25.4+3.9 0.430 + 0.097
DCMV-PDI -22.3+3.0 -25.7+3.9 0.429 + 0.097
DVAV-PDI -22.2+3.0 -254+3.9 0.429 + 0.097
DMMI-PDI -22.6 £3.0 -254+3.9 0.429 + 0.097
DMIM-PDI -22.6+3.0 -25.5+3.9 0.429 + 0.097
DMIA-PDI -22.3+£3.0 -249+39 0.429 + 0.097
DAIM-PDI -22.0+3.0 -25.6 £3.9 0.429 + 0.097
DCVM-PDI -22.3+3.0 -25.7+3.9 0.429 + 0.097
DAVG-PDI -22.0+£3.0 -24.9+3.9 0.429 + 0.097
DAMP-PDI -21.9+3.0 -25.7+3.9 0.429 + 0.097
DAAP-PDI -22.5+£3.0 -24.8+3.9 0.429 + 0.098
DVMM-PDI -21.6 £3.0 -25.2+3.9 0.429 + 0.097
DWWW-NDI -22.7+3.0 -25.6 £3.9 0.428 + 0.098
DWCG-PDI -26.1£3.0 -22.7+3.9 0.351 +£0.123
DWYW-NDI -33.6 £3.0 -23.8+3.9 0.123 + 0.088
DSSW-PDI -35.7+3.0 -23.2+3.9 0.074 + 0.065
DYGA-PDI -38.4+3.0 -24.6+3.9 0.036 + 0.039
DYGG-PDI -38.8£3.0 -245+3.9 0.032 + 0.036
DTCT-NDI -37.6 £3.0 -6.6 3.9 0.002 + 0.006
DWNN-PDI -72.6 £3.0 -28.1+3.9 0.000 + 0.000

PDI, and DYGG-PDI as controls possessing a range of predicted free energies and alignments, and con-
stituent amino acids. Several of these oligopeptides contain polar amino acids, which were not contained
in the training data set, and so allow us to assess the generalizability and transferability of our model. These
11 oligopeptides were then subjected to implicit solvent molecular simulation to evaluate their dimeriza-
tion and trimerization free energies, and large-scale 40 ns simulations of 64 peptides at 0.85 mM to assess
their alignment behaviors. We report the predicted and calculated values of AF,, AF;, and a in Table 3.4.
Comparison of the predicted and calculated values of AF, and AF; show that our QSPR model accu-

rately predicts the oligomerization thermodynamics for both NDI and PDI oligopeptides containing non-
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Table 3.4: Predicted and calculated dimerization free energy AF,, trimerization free energy AF;, and align-
ment metric a for the 11 oligopeptide chemistries selected from our high-throughput virtual screening.
Chemistries above the horizontal line possess non-polar amino acid residues for which QSPR model pre-
dictions of the oligomerization thermodynamics and alignment quality are generally very good. The po-
lar oligopeptide chemistries — defined as those containing a difference in partial charge between any two
bonded atoms greater than 1.0 e — reside below the line, for which the model predictions are relatively

poor. Chemistries are ordered by the magnitude of the predicted alignment metric.

Chemistry \ AF, (pred) AP (sim) AF; (pred) AF;3 (sim) a (pred) a (sim)
DMMP-PDI | -224+3.0 -21.3+23 -255+3.9 -22.8+3.3 0.430 +0.096 0.245+0.014
DAIA-PDI | -224+3.0 -25.8+2.1 -25.2+3.9 -29.1+5.2 0.430 + 0.097 0.579 +0.048
DAVG-PDI | -22.0+3.0 -23.2+2.0 -24.9+3.9 -25.4+3.2 0.429 + 0.097 0.640 + 0.072
DWWW-NDI | -22.7+3.0 -21.8+2.3 -25.6+3.9 -30.1+4.9 0.428 +0.098 0.016 + 0.005
DWCG-PDI | -26.1 +3.0 -32.0+3.8 -22.7+3.9 -27.0+4.6  0.350+0.123 0.272 +0.048
DWYW-NDI | -33.6+3.0 -222+7.1 -23.8+3.9 -30.5+3.9 0.123 +0.089 0.000 = 0.000
DSSW-PDI | -35.7+3.0 -51.2+5.3 -23.2+3.9 -103.5+38.5 0.074+0.064 0.269 +0.021
DYGA-PDI | -384+3.0 -304+26 -24.6+3.9 -36.5+7.9 0.036 + 0.039 0.600 + 0.085
DYGG-PDI | -38.8+3.0 -26.1+4.6 -245+3.9 -40.3 +6.8 0.032 +0.036 0.468 + 0.047
DTCI-NDI | -37.6 +3.0 -83.4+9.2 -6.6+3.9 -91.8+28.9 0.002+0.005 0.037+0.010
DNWW-PDI | -72.6+3.0 -31.2+3.6 -28.1+3.9 -49.6 + 4.2 0.000 + 0.000 0.139 +0.020

polar amino acid residues (Table 3.4, upper). For all five such chemistries, the predicted and calculated
quantities li.e. well within the estimated uncertainties. Importantly, this group of chemistries contains
MET (M), PRO (P), CYS (C), and TRP (W) residues that were not part of the training ensemble, but the
model is sufficiently transferable to give good predictive performance. Further, the model correctly pre-
dicts that the six TRP residues in the peptide wings lead to strong associations in the DWWW-NDI chem-
istry, despite the fact that very few of the NDI training examples had dimerization and trimerization free
energies that were even half as large (Table 3.1). This indicates the model is able to accurately estimate the
impact bulkier aromatic regions have on the free energies of aggregation. Considering now the six polar
chemistries (Table 3.4, lower), we see poor agreement of the predicted and calculated free energies. These
chemistries all contain one or more polar residues SER (S), ASN (N), THR (T), or TYR (Y) containing OH or
NH, polar moieties. The poor predictive performance of our QSPR model may be attributed to the fact that
our training data contained only the non-polar residues ALA(A), PHE (F), GLY (G), ILE (I), and VAL (V), and
clearly demonstrates that our current model cannot be reliably extrapolated to strongly polar molecules.

We observe similar trends in the QSPR model prediction of the alignment metric a. We see relatively
good, although not quantitative, agreement between the predicted and calculated a values for the five
non-polar chemistries, with the only outlier being DWWW-NDI. The large deviation for this chemistry
may be attributed to the fact that although the dimerization and trimerization free energies li.e. within the
identified optimal range, the association is mediated in large part through the aromatic groups in the pep-

tide wings rather than the aromatic core. Accordingly, good core-core parallel stacking is compromised by

57



core-wing n-n stacking interactions. It is a failure of our simple model predicting alignment quality from
oligomerization free energies alone that we do not distinguish the structural locale of the n-interactions
within the oligopeptide. Conversely, our model shows very poor performance in predicting the alignment
quality of the polar oligopeptide chemistries.

Our results support our hypothesis that the AF, and AF; of non-polar peptide oligomers can be accu-
rately predicted by our QSPR model, and these oligomerization free energies used to identify non-polar
oligopeptide chemistries — excluding those possessing high aromatic residue contents — likely to possess
good alignment (a 2 25%) within the self-assembled aggregates. In particular, we identify a chemistry
DAVG-PDI previously unstudied by either simulation or experiment showing very high structural align-
ment propensity of a = 0.64. Arepresentative snapshot of the equilibrium aggregates formed by this oligopep-

tide chemistry is presented in Figure 3.6.

3.4 Conclusions

We conducted molecular dynamics simulations and developed QSPR models to understand and engineer
self-assembling 7-conjugated ASP-X3-X5-X; -IT-X; -X»-X3-ASP oligopeptides. These molecules exhibit pH-
triggered assembly with in-register parallel - stacking between the conjugated aromatic cores leading
to electronic delocalization along the nanoaggregate backbones and the emergence of desirable optical
and electronic properties. Our study was founded on two hypotheses: that physicochemical properties of
the oligopeptides can be used to accurately predict dimerization and trimerization thermodynamics, and
that chemistries possessing moderate oligomerization free energies produce the best ordered nanoaggre-
gates. To engage these hypotheses, we parametrised an implicit solvent molecular model against explicit
solvent all-atom calculations, and used this efficient model to compute the dimerization AF, and trimer-
ization AF; free energies for 26 oligopeptides generated from all ALA (A), PHE (F), GLY (G), ILE (I), and
VAL (V) point mutants — excluding the distal ASP (D) residues required for pH-triggered assembly — of
DFAG-TI-GAFD oligopeptides containing NDI and PDI cores. These results revealed the larger PDI cores
to give rise to AF, ~ (-24) kgT and AF; ~ (-27) kgT compared to only AF, ~ (-9) kgT and AFs ~ (-12) kT for
NDI inserts. To parse more subtle trends based on the composition and sequence of the peptide wings,
we parametrised a QSPR model based on eight molecular descriptors that was capable of quantitatively
predicting the dimerization and trimerization of non-polar oligopeptides. The predictive performance
for polar chemistries was poor, and attributable to the fact that the model was developed exclusively over

non-polar training examples. The particular descriptors identified by the model are informative as to the
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underlying determinants of the oligomerization thermodynamics. It predicts oligomerization free ener-
gies to be ~15 kgT larger for PDI cores as compared with NDI, and bulkier residues, especially PHE, to
increase free energies of association by ~2.5 kg T. Finally, we observe that amino acids having lower elec-
tronegativity near the peptide core may play an important role in stabilizing formation of the NDI trimer.
In developing a qualitatively accurate QSPR model for non-polar oligopeptide dimerization and trimer-
ization thermodynamics, we provide strong support for our first hypothesis. This result is weakened by the
poor performance for polar chemistries, but we anticipate that expansion of the training set to encompass
polar training examples can produce similarly accurate models for this class of molecules.

We then correlated the alignment quality of associated peptides with the computed oligomerization
free energies to develop a model that supported the existence of optimal dimerization and trimerization
free energies of AF, ~ AF; ~ (-25) kgT. Heartened by this support for our second hypothesis, we per-
formed a high-throughput screen of oligopeptide chemical space to identify a number of novel candi-
date chemistries predicted to exhibit good alignment behavior alongside a number of controls. Direct
large-scale simulation showed our QSPR model to be a good, but not quantitatively accurate, predictor
of alignment quality for non-polar oligopeptides. Using this approach, we were able to computationally
identify and validate DAVG-PDI-GVAD as a promising oligopeptide chemistry not previously studied by
experiment or simulation that exhibits good ordering in its self-assembled pseudo-1D nanoaggregates,
and is therefore disposed to desirable optical and electronic functionality.

In future work, we aim to expand the training data to incorporate polar oligopeptide chemistries in or-
der to build a more general and transferable QSPR model. Moreover, we would like to expand the training
setto incorporate side chains of differinglengths and a wider variety of II cores, including oligophenylvinylenes,
oligothiophenes, and other rylene diimides. We also propose to incorporate additional computational
techniques, including deep learning techniques that obviate the need for descriptors [207-209], Markov
state models parametrised by molecular simulation data to reach longer length and time scales [55, 125],
and time-dependent density functional theory (TD-DFT) to explicitly engage the electronic properties
of the self-assembled aggregates. Finally, we will work with experimental collaborators to explicitly test
the optimal designs identified under our computational screening protocol thereby guiding and accel-
erating experimental discovery efforts, and also incorporate the experimental results into our modelling
paradigm to refine and improve our computational screens. These endeavors will continue to pave the
way for design and realization of self-assembling oligopeptides as novel biocompatible supramolecular

optoelectronic materials.
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Figure 3.3: Performance of top-ranked MLR models comprising N =1 (red dots), 2 (green dots), 3 (cyan
dots), and 4 (black dots) molecular descriptors in predicting (a) dimerization free energy and (b) trimer-
ization free energy computed in simulation. Free energies are reported in units of k3T, where kg is Boltz-
mann’s constant and T = 298 K. The MLR models are fitted by least-squares fitting over the 21 training
chemistries (blue bars), and their performance evaluated over the five testing chemistries (yellow bars).
Black error bars indicate the estimated uncertainties in the AF, and AF; values computed from molec-
ular simulation. The particular descriptors constituting the top ranked models are reported in the leg-
ends where GATS2i is the Geary autocorrelation of lag 2 weighted by first ionization potential, MATS3c
is the Moran autocorrelation of lag 3 weighted by charges, MATS1c-aaWing is the Moran autocorrela-
tion of lag 1 weighted by charges of the peptide wing, MDEC-23 is the molecular distance edge between
all secondary and tertiary carbons, AATS6s-aaWing is the Average Broto-Moreau autocorrelation of lag 6
weighted by I-state of the peptide wing, SpMax6-Bhs is the sixth largest absolute eigenvalue of the Burden
modified matrix weighted by the relative I-state, piPC3 is the conventional bond order ID number of order
3, maxsssCH-aaWing is the maximum atom-type E-State for singly bonded carbons with one hydrogen
of the peptide wing, ATSC4p-aaWing is the centered Broto-Moreau autocorrelation of lag 4 weighted by
polarizabilities, SpMAD-Dzp is the spectral mean absolute deviation from Barysz matrix weighted by po-
larizabilities, GATS2c is the Geary autocorrelation of lag 2 weighted by charges, SpMin5-Bhm is the fifth
smallest absolute eigenvalue of Burden modified matrix weighted by relative mass, GATS6i-aaWing is the
Geary autocorrelation of lag 6 weighted by the first ionization potential of the peptide wing, and MATS8s
is the Moran autocorrelation of lag 8 weighted by I-state.
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Figure 3.4: Performance of the optimal ensemble models at each level of model complexity over the train-
ing (green) and testing (blue) data in predicting the (a) dimerization free energy and (b) trimerization free
energy computed in simulation. Free energies are reported in units of kzT, where k; is Boltzmann’s con-
stantand T =298 K. For AF,, the optimal ensemble model comprising N = 1 molecular descriptors averages
over the single top-ranked MLR model, N = 2 over the top four, N = 3 over the top nine, and N =4 over the
top six. For AF3, the optimal ensemble model comprising N = 1 molecular descriptors averages over the
three top-ranked MLR models, N = 2 over the top nine, N = 3 over the top four, and N = 4 over the top
two. The uncertainty in the AF, and AF; computed from simulation is depicted as a horizontal red line.
Uncertainties in the model predictions are estimated from K = 15 rounds of shuffled cross-validation and
depicted as error bars. This analysis reveals the N = 2 ensemble predictor to be optimal for prediction
of AF,, and the N =1 ensemble predictor optimal for prediction of AF;. The increase in testing error for
models that utilize higher numbers of descriptors indicates that such models are overfitting the data.
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Figure 3.5: Alignment assessment of oligopeptide aggregates. (a) Time evolution of the alignment metric
a (Equation 3.3) over the course of 50 ns runs of the self-assembly of 64 oligopeptides at a 0.85 mM initial-
ized from randomly oriented monomers deposited over a grid. Values of a averaged over the equilibrated
portion of the trajectory are reported in Table 3.1. (b) Scatter plot of the dimerization AF, and trimeriza-
tion AF; free energies with points colored by the computed alignment metric a. Characteristic snapshots
of the oligopeptide aggregates extracted from our molecular simulations show that DFAG-PDI and DAAG-
PDI tend to form well-aligned stacks, DFAV-PDI, DFAF-PDI, and DFAI-PDI show a weaker propensity for
good alignment, and DFAV-NDI, DFAF-NDI, and DFAG-NDI do not associate into well-formed stacks. The
contour plot represents a best fit bivariate Gaussian with uap, = -22.2 kgT, pap, =-25.3 kgT, and oar, = 0 ar,
=6.6 kgT, where kg is Boltzmann’s constant ant T = 298 K. The data and fit support the assertion that in-
termediate AF, and AF; values result in the optimal oligopeptide alignment.
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Figure 3.6: Representative snapshot of a self-assembled aggregate formed by the DAVG-PDI oligopeptide
chemistry in 40 ns implicit solvent molecular dynamics simulations of 64 peptides at 0.85 mM.
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Chapter 4

Prenucleation of pH-triggered assembly

4.1 Introduction

Utilizing the simulation and analysis of the techniques discussed in Chapter 2, we now turn to a study of
the morphology and thermodynamics of 7-conjugated oligopeptides in their high-pH charged state prior
to acid-triggered assembly. This understanding is an important prerequisite to the principled control and
manipulation of low-pH assembly [211]. This synthetic oligopeptide system consisting of a 7-conjugated
core flanked by symmetric sequences of amino acids has been explored in various permutations, [23, 30,
49, 66, 212] including recent work exploring the acid-mediated assembly of DFAG-II-GAFD, where IT can
be one of various n-conjugated systems including quaterthiophene (OT4), oligo(p-phenylenevinylene)
(OPV3), and perylene-diimide (PDI). The n-conjugated cores of these materials can be tuned for the spe-
cific applications desired, such as making p-type semiconductors with OT4 and OPV3 cores and n-type
with PDI. The pKa of the carboxyl terminus and C-terminal aspartic acid are 2.09 and 3.86, respectively [3].
Under the Henderson-Hasselbalch formalism, we can estimate that at pH 5 or higher the monomers are
essentially completely deprotonated carrying a formal charge of (-4)e that precludes large-scale assem-
bly by Coulombic repulsion. At pH 1 or lower, they are essentially completely protonated and electrically
neutral, eliminating the Coulombic repulsion and favoring assembly through van der Waals, hydropho-
bic, hydrogen bonding, and n-r stacking interactions [55]. Upon introduction to an acidic environment,
the titratable sites become fully protonated, and as a result peptide hydrophobicity, and peptide interac-
tion via van der Waals forces, hydrogen bonding, hydrophobic interactions, and =-r stacking of the cores
drive the peptides to assemble to form S-sheet-like aggregates [4, 56]. Ideally, these unassembled units
would continue to stack in a ladderlike fashion with a helical twist (Figure 4.1 A and B) ultimately forming

long fibers. Although these fibers can be seen experimentally (Figure 4.1D), very little is understood about

Most of this chapter is an excerpt from ref. [210]. Reprinted with permission from Valverde, L. R.; Thurston, B. A.; Ferguson, A.
L.; Wilson, W. L. Langmuir, 34, 25, 7346-7354 (2018). Copyright 2018 American Chemical Society.
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their assembly dynamics. Theoretical models suggest a variety of mechanisms by which these amyloid-
like structures may form, with the classic example being an initial nucleation stage followed successive
elongation stages [213,214]. However, reaction speed upon introduction of acid to this system has made

characterization of the initial stages difficult.

A L] “ G
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nucleation phase . elongation phase

Figure 4.1: Illustration of DFAG-OT4 structure, aggregation, and FCS detection. A) Chemical structure
and idealized stacking behavior of DFAG-OT4. B) Standard model for amyloid formation via nucleation-
dependent aggregation. C) Confocal spot and observation volume (ellipsoid) used for FCS. As aggregates
of various sizes pass into and out of the observation volume fluctuations in fluorescence intensity are de-
tected. D) Atomic Force Microscope (AFM) image of DFAG-OT4 fibers deposited on Si.

We have previously employed molecular dynamics simulations to probe the smaller-scale early time
assembly behaviors of DFAG-OPV-GAFD peptides. Simulations have analyzed the impact of peptide sym-
metry [56], concentration [144], pH, and fluid flow [24] on assembly thermodynamics, kinetics, and mor-
phology. We observed a strongly favorable free energy well at ~15 kg T for the dimerization of DFAG-OPV3-
GAFD peptide in a low pH environment. Addition of each subsequent monomer was found to yield a
further decrease in free energy of ~25 ks T, indicating that monomeric addition of peptides beyond dimer-
ization is increasingly favorable. Our simulations suggest that aggregates at the free energy minima ex-
ist as well-aligned stacks with significant 7-stacking between cores. In addition, simulations probing the
dynamics of assembly of protonated peptides beginning in the monomeric state indicated that peptides
rapidly coalesce into spherical micelle-like structures, and then structurally ripen to form the well-ordered
B-sheet stacks observed in free energy simulations on times scales larger than several tens of ns. The spon-
taneous formation of these self-assembled stacks in free energy simulations and the increasingly favor-
able changes in free energy upon further aggregation agree well with the suspected amyloid-like nucle-

ation and monomeric addition and elongation into larger 1-D fibers that have been observed experimen-
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tally [23, 55, 66,212].

Surprisingly, simulations of DFAG-OPV-GAFD under high-pH conditions also exhibited favorable dimer-
ization with a change in free energy of ~4 kzT due to hydrophobicity, n-stacking, and dispersion inter-
actions [55]. Furthermore, the formation of higher order structures such as pentamers remain thermo-
dynamically favorable with free energy change of ~5 kgT [55]. These simulations suggest a paradigm in
which early stage assembly consists of light aggregates which rapidly assemble and subsequently reor-
ganize into more thermodynamically stable B-sheet-like structures, which in turn grow and elongate as
further oligomeric units are added and structurally relaxed in alow-pH environment. The high-pH assem-
bly predicted furthermore implies that when acid-mediated assembly is induced, the peptide precursor
solution exists in a prenucleated state, significantly impacting how one should view the assembly kinetics
in acid-mediated assembly experiments.

While most of the low-pH simulation observations support what has already been observed experi-
mentally [23], other work has provided support for the possibility of spontaneous assembly at high-pH
[215]. These recent microrheological observations demonstrate peptide assembly only down to concen-
trations of 0.1 mM with no evidence of assembly below that concentration. This lack of experimental evi-
dence isinlarge part due to the length scales and numbers of molecules under consideration. Microrheol-
ogyrelies on large, brightly fluorescing probes to correlate observed fluorescence with material properties.
The microrheologically observed critical fiber formation concentration is likely due to limitations of the
technique rather than actual physical phenomena. Thus, we have worked with experimental collabora-
tors Dr. Bill Wilson and Dr. Lawrence Valverde to employ fluorescence correlation spectroscopy (FCS), a
single-molecule technique that allows us to directly detect peptide fluorescence to measure molecule size
and to distinguish between low order aggregates of different sizes. We have conducted complementary
simulation work to gain molecular-level insight into high-pH assembly and interpret the experimental

data.

4.2 Methods

For the generic aggregation process in which molecular species A and B form a complex AB
A+B—AB

the thermodynamic equilibrium constant can be estimated from molecular simulation as [182,216]

K® =Kc® =

b
/ dranr?e PF" (4.1)
VGO'AB 0
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where o 45 is the symmetry number (2 for A = B, 1 otherwise), r;, is the center of mass cutoff distance below
which an aggregate is considered to have formed, 8 = (kg T)7!, kp is Boltzmann’s constant, T is the temper-
ature, F(r) is the calculated potential of mean force at a center of mass separation value of r, and c® = 1/v®
is the standard number concentration. The thermodynamic equilibrium constant may be related to the

concentrations of the reactants and product as

4.2)

where [X] is the number concentration of species X, and it is assumed that the system is sufficiently di-
lute that concentrations may be used instead of activities. So, by combining Equations 4.1 and 4.2 and
given the potential of mean force (PMF) for the aggregation of A and B to form complex AB, we can predict

concentration equilibrium constants,

Ty
K =K%° = —[AB] = L'/ dranr?e Pr0 (4.3)
[Al[B] o4 Jo

For a system of monomeric self-assembly, by conservation of mass, the concentration of peptide in the
system can be expressed as

[P] =[M]+2[D]+3[T]+--- (4.4)

where [P] is the total peptide concentration, [M] is the concentration of peptides that exist as monomers,
[D] is the concentration of peptides that exist as dimers, [T] is the concentration of peptides that exist as

trimers, and so forth. From Equations 4.3 and 4.4, we then have
[P] = [M] + 2Ko[M]* + 3K K3 [M]® + - -- 4.5)

where K is the equilibrium constant for the formation of dimers by M + M == D, Kj is the equilibrium
constant for the formation of trimers by D + M == T, and so forth. Equation 4.5 defines a polynomial
in the peptide monomer concentration that can be solved for [M] and from which all higher aggregate
concentrations can be computed using the calculated values of K3, K3, and so on [217]. For the peptides
and concentrations investigated in this chapter, the equilibrium concentrations of aggregates heavier than
six peptides are sufficiently low that the root of the polynomial is insensitive to truncation beyond the sixth
term, so it is only necessary to compute equilibrium constants for the hexamers and lighter aggregates.
We have verified the insensitivity of the polynomial solution by incorporating terms up to 200 employing

extrapolated equilibrium constants, and find that the computed value of [M] changes by less than 0.01%.
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We use GROMACS 4.6.7 [164,165] to conduct all molecular dynamics simulations, with the AMBER99SB
force field [166, 169], and used the GlycoBioChem PRODRG2 Server [71] to obtain initial peptide geome-
tries. The terminal ASP residues and carboxyl termini were fully deprotonated to simulate a high pH (pH
> 5) environment in which each peptide carries a formal (-2)e charge at each terminus [3, 55]. We con-
ducted explicit solvent simulations in TIP3P water [174] with initial velocities generated from a Maxwell-
Boltzmann distribution. Electrostatics were treated using the particle mesh Ewald scheme [78] with a cut-
off of 1.0 nm and a 0.12 nm Fourier grid spacing. Lennard-Jones interactions were smoothly shifted to
zero at a cutoff of 1.0 nm. Bond lengths were fixed using the LINCS algorithm [77], and Lorentz-Berthelot
combining rules were used to determine interaction parameters between unlike atoms [79]. The system
was integrated using the leapfrog algorithm with a 2 fs time step [180].

Energy minimization was conducted using the method of steepest descents until the maximum force
on any atom was less than 1000 kJ/mol-nm. The system was then equilibrated in an NVT ensemble using
a stochastic velocity rescaling thermostat [175] to a constant temperature of 298 K. Further simulations
were conducted in an NVT ensemble using a NoseIA-Hoover thermostat [178,179] with a time constant of
0.5 ps.

Following our previous approach [55] we also conduct molecular dynamics simulations in implicit
solvent with a modified model that rescales interactions to more accurately match explicit solvent. Po-
lar interactions between solute and solvent are treated with the Generalized Born model while nonpolar
interactions are implemented with a solvent accessible surface area approximation [80]. An analytical
continuum electrostatic (ACE) type approximation [84] with a value of 2.259 kJ/mol-nm? for the surface
tension [110] is made in treating nonpolar interactions. We calculated Born radii using the method of
Onufriev, Bashford, and Case with a relative dielectric constant of 78.3 and with the standard parameter
setof @ =1, 8 =0.8, and y = 4.85 [83]. Since the peptides are not neutrally charged, implicit solvent sim-
ulations are conducted without the use of periodic boundary conditions. Coulombic and Lennard-Jones
interactions are smoothly shifted to zero at the large cutoff value of 3.4 nm for the sake of stability.

We employed umbrella sampling [93] to compute the PMF in implicit solvent as a function of center
of mass separation between peptide aggregates. To compute the PMF for the formation of an rn-mer from
an (n - 1)-mer and a monomer, the initial geometry of an n-mer aggregate is obtained by stacking n pep-
tides at a core-core separation of 0.45 nm. The system was first equilibrated using the method of steepest
descents until the maximum force on any given atom was less than 1000 kJ/mol-nm. Initial velocities of
atoms were then drawn from a Maxwell-Boltzmann distribution and the system was equilibrated for 20 ps

with the positions of the cores restrained in an NVT ensemble at a temperature of 298 K using a Langevin

68



integrator as a thermostat with a friction constant of 0.5 ps~1, [110] and for another 20 ps with unrestrained
cores under the same conditions. The system was then simulated for 1.5 ns and the configuration at the
end of each 0.5 ns served as the initial configuration for a series of three independent simulations. Each
initial configuration was then pulled both closer together and farther apart at a rate of 0.04 nm/ps using
a harmonic biasing potential with a spring constant of 1000 kJ/mol-nm2 between the center of mass of (n
- 1) peptides and the center of mass of the remaining monomer. These simulations were run for a suffi-
ciently long time to allow the monomer to reach a distance from the (n - 1)-mer at which the two were no
longer able to interact. From these three separate pulling simulations, we then conducted three different
umbrella sampling simulations by utilizing configurations over the course of each pulling simulation as
the initial geometries for the restrained umbrella sampling. Windows were selected at evenly spaced in-
tervals of 0.1 nm, were restrained using the same harmonic potential as the pulling simulation, and were
run for 20 ns each. The first nanosecond of each simulation at each window was discarded to allow the
system to equilibrate. We then used the weighted histogram analysis method (WHAM) [94, 95] to recon-
struct the unbiased PME Statistical errors in each PMF were computed using 100 bootstrap resamples of
the data, and sampling errors were computed as the standard of deviation between each of the three um-
brellaruns. In each case, the —2kzTlog(r) noninteracting entropic contribution to the PMF was removed in
order to avoid double counting this entropic contribution which is already contained in the 4712 Jacobian

of Equation 4.3 [110, 181].

4.3 Results and Discussion

Computing the PMF for the formation of aggregates of sizes 2-6 by means of monomeric addition at neu-
tral pH (Figure 4.2), we observe free energy changes favoring aggregation on the order of 10 k3T in each
case. The dimerization of two peptides exhibits the largest free energy change at AF = (-15.2 + 1.1) kgT,
while larger aggregates exhibit smaller free energy changes, although the formation of larger aggregates
remains thermodynamically favorable. Despite repulsion between negatively charged termini, the mini-
mum free energy configurations for each aggregate size exhibit a high degree of core-core stacking. Aggre-
gates of 4 or fewer peptides also display a high degree of alignment in this stacking and frequently adopt
linear stacks of parallel peptides. Aggregates of 5-6 peptides often favor configurations of 2-4 peptides ex-
isting in the same well aligned linear stacks with the remaining peptides stacking with one another. These
results indicate that hydrophobic and =-r stacking interactions between the conjugated cores mean that

it is favorable for peptides to form oligomeric aggregates even at neutral pH where the deprotonated ASP
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termini mediate substantial electrostatic repulsion.
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Figure 4.2: Computational prediction for n-n stacked association when deprotonated for (A) dimers, (B)
trimers, (C) tetramers, (D) pentamers, and (E) hexamers with representative configurations of aggregates
at various points along the reaction coordinate.

The thermodynamics of self-assembling systems involve a nontrivial interaction between competing
interactions [211,218]. Different interactions including hydrogen-bonding, 7-x interactions, hydrophobic
interactions, and entropy all contribute to the thermodynamics governing peptide assembly. In order to
more fully understand some of these contributions to the aggregation of our system, we follow a similar
approach to Chapter 2 [55] and break the free energy of aggregation down into constituent components.

In the implicit solvent systems studied, the change in free energy for the formation of an aggregate of size

n may be written as
AF, = AUrllntralpeptlde LA Ur}l)eptlde—peptlde LA U}l)eptlde—water +A U’\l/vater—water —TAS, (4.6)

where AUMPePUe jo the change in intramolecular peptide energy upon aggregation (including changes
in intramolecular Lennard-Jones and Coulombic interactions, as well as angular stretching and dihedral

. tide—peptide .
torsions), AypePHeepeplice

is the change in intermolecular interactions between peptides upon peptide
association, AUP? tide-water , -ounts for the change in dispersion and electrostatic interactions between
peptide and solvent, AU¥ater-water jg the change in energy due to solvent-solvent interactions, T is the tem-
perature, and AS,, accounts for the change in entropy of the system on aggregation. To elucidate differ-
ent contributing factors, we divide peptide-peptide interactions into their Lennard-Jones and Coulombic

components. The entropic contribution may be divided into changes in solvent entropy and changes in
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peptide entropy. Grouping all solvent related terms together, we define

A Fsolvent AUPePUde water +A Ur\l/vater—water —TA S:/lvater 4.7)

Assuming that the peptide configurational entropy does not change substantially upon aggregation allow-

ing us to neglect the entropy change of the peptides [55], we then have

AF, ~ AUrllntrapeptlde + AUr;l)eptlde—peptlde—LI n AU’}l)eptlde—peptlde—Coulomb +A Fnsolvent (4.8)

The change in free energy AF, on the left-hand side is precisely the well depth of the PMF computed by
umbrella sampling. The three energetic terms on the right-hand side AU""™PePtide | yypeptide-peptide-L] 5 q
Agpeptide-peptide=Coulomb ., ) he computed directly from our simulations from the energies of the various
aggregate sizes averaged over 20 ns unbiased MD simulations. The solvent contributions AF, solvent fol-

low from the residual on the right-hand side of Equation 4.8.
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Figure 4.3: Decomposition of the free energy of association AF, into energetic and solvent-mediated
contributions for n = (1-6)-mers (Equations 4.6-4.8). The strongly unfavorable Coulombic repulsion

Agpeptide-peptide=Coulomb ;o 1141 ced by a favorable solvent-mediated term AFSOlVvent,

We illustrate the results of this analysis for peptide aggregates ranging from two to six peptides in Fig-
ure 4.3. For each aggregate size we observe small favorable contributions in both intrapeptide interaction
and L] interaction between peptides. As anticipated, the most significant unfavorable contribution is due
to Coulombic repulsion, but that this is balanced by a large favorable solvent contribution and smaller fa-
vorable dispersion and intrapeptide energetic contributions. We do observe that this decomposition was

computed for an implicit solvent model, and that a more detailed analysis would employ a fully explicit
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solvent model with a polarizable force field.
From Equation 4.3, the equilibrium constants for the formation of aggregates are computed from these

PMFs along with 90% confidence intervals (Table 4.1).

Table 4.1: Equilibrium Constants for the Formation of an Aggregate of Size n from a Tightly-Bound (n -
1)-mer and a Monomer

Aggregate size | Equilibrium Constant, K (M) 90% CI, (M~1)
2 1.8 x106 (5.1 x105, 6.4 x10%)
3 6.6 x10° (1.2 x105, 3.9 x10%)
4 4.7 x10* (4.9 x103, 4.7 x105)
5 2.8 x10% (3.9 x103, 2.1 x10°)
6 1.0 x10° (9.7 x103, 1.1 x10%)

Confidence intervals are estimated by randomly generating 106 PMFs by shifting each point on the
PMF by the product of the bootstrap error at that point with a single number randomly generated from
a Gaussian distribution with zero mean and unit standard deviation. Each PMF is then integrated over
the binding region to obtain 10° different values for each equilibrium constant, the middle 90% of which
defines the confidence interval.

Despite the favorable PMFs, low overall peptide concentrations favor light aggregate distributions.
From Equations 4.3 and 4.5, we calculate the predicted distribution of aggregate sizes in deprotonated
peptides from the computed PMFs based on the overall peptide concentration (Figure 4.4). Error esti-
mates are obtained by randomly sampling equilibrium constants within the 90% confidence intervals. We
predict that at a concentration of 10 nM the vast majority (~96%) of the peptides tend to exist as isolated
monomers. When the peptide concentration is increased to 100 nM we observe a significant shift in the
distribution of peptide sizes that indicates an appreciable amount of aggregation of peptide into larger
aggregates, including dimers (22%) and trimers (2%). Such a transition is in qualitative agreement with
what is observed experimentally [210].

Given the above observations, it is reasonable to generalize our findings to any acid-mediated system
that also relies upon hydrophobic and/or n-n interactions for self-assembly. In any such case, the driving
forces for assembly always exist and the role of protonation is to further shift the thermodynamic equilib-
rium in favor of assembly by eliminating electrostatic counterforces. Thus, we expect any acid-triggered
system with synergistic avenues for self-assembly such as hydrophobic, n-x, or other van der Waals inter-

actions to be in actuality an acid-mediated system beginning in a prenucleated state.
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Figure 4.4: Predicted fraction of peptide existing in various aggregate sizes at peptide concentrations of
10 nM (green) and 100 nM (blue). Lines are drawn to guide the eyes. Error bars are estimated by random
sampling of K values within the 90% confidence interval.

4.4 Conclusions

We have conducted molecular dynamics simulations to confirm the consistency of assembly behavior
between previously computed DFAG-OPV3-GAFD peptides and their DFAG-OT4-GAFD cousins. These
simulations demonstrate that, for both materials, not only is the macroscopically observable assembly
triggered by lowering a solution’s pH, but also even in nonprotonating environments some degree of ag-
gregation is thermodynamically favorable. Single molecule measurements using fluorescence correlation
spectroscopy provide experimental support for these computational predictions [210]. We find that aque-
ous solutions of peptides in concentrations as low as 100 nM will spontaneously aggregate to form het-
erogeneous solutions. However, below 100 nM, solutions appear to be homogeneous solutions of largely
unassembled monomer. These results indicate that previously assumed paradigms of acid-triggered as-
sembly in this system whereby monomer aggregates upon protonation were incomplete. In fact, the sys-
tem only exists as pure monomer in very low concentrations, and under experimental conditions the high-

pH un-triggered solution already exists in a prenucleated state.

73



Chapter 5

Design of spectroscopic properties

5.1 Introduction

In this chapter we present ongoing work looking at relating the structural properties of peptide aggregates
to the excited state properties that can be measured in experiment. Our experimental collaborators —J.D.
Tovar and Howard Katz at Johns Hopkins University — have recently conducted a study looking at alter-
ations in excited state properties of assembled DXX-OT4-XXD peptides where OT4 is a quaterthiophene
n-conjugated insertand Xin {A, E G, I, V} (Figure 5.1) [2]. Each peptide studied caused different shifts in the
peak excitation wavelength of the absorption spectrum as compared with the unassembled system. The
shifts for DGG and DAA were the most pronounced, leading to a blue-shift upon aggregation of ~50 nm
as compared with ~10 nm for other peptides. The photoluminescence (PL) spectrum also showed similar
differences wherein each peptide composition revealed shifting and quenching of the PL spectrum upon
assembly, but DGG and DAA peptides led to an almost complete quenching of the spectrum as compared
with the others. These significant differences seem to indicate that the size of the amino acid side chain
could play a significant role in determining the photophysical properties of peptide aggregates. The pre-
cise dependence of these properties on the geometric configurations adopted by the peptides, however,
remains unknown.

We conduct fully atomistic molecular simulations to probe both the geometric properties and spectro-
scopic properties of peptide aggregates as a function of chemistry. Due to the longrelaxation times for pep-
tide aggregates (see Chapter 2), we elect to study aggregate structure with purely classical MD simulations,
and use the configurations obtained from them for time-dependent density functional theory (TDDFT)
computation of the absorption spectrum. Such information is useful to understanding the geometric ori-
gin of excited state properties observed in experiment. Furthermore, the determination of simple rela-
tionships between geometric properties of peptides observed in MD simulation and the corresponding
spectral properties enables the prediction of these properties directly from MD, allowing for prediction

of spectral shifts for previously untested peptide systems. Coupling such results with our previous work
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(Chapter 3) can ultimately enable the computational design of self-assembling peptides having specific

properties.
0
Ho% o
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Figure 5.1: Peptide compositions studied in this chapter, where all R groups are the same and include A, F
G, I, and V, for a total of five different peptides.

5.2 Methods

5.2.1 Molecular dynamics simulations

We conduct molecular dynamics (MD) simulations for peptides of each composition, using fully proto-
nated ASP residues (low pH environment). Based on our previous work, we also conduct simulations
on fully deprotonated ASP residues (high pH environment) containing four peptides, since we expect
the measured absorption spectra to contain some smaller pre-assembled peptide aggregates (Chapter
4) [210].

Simulations are conducted using GROMACS 4.6.7 [164, 165] using the AMBER99sb [98, 166] force field.
Partial charges for OT4 residues were obtained using the RESP/ESP charge Derive Server (REDS) [171]
which utilized Gaussian for Hartree-Fock calculations [173] (see refs [170, 172] for details on the method).
Non-bonded parameters were obtained by analogy using the parmchk2 program from Antechamber [167]
and the generalized Amber force field (GAFF) [168]. Due to the slow aggregation times for assembly of
larger aggregates from disperse solution (Chapter 2), we initialize all simulations in a partially pre-assembled
state. Peptides are stretched out to a maximum distance of separation between the a-carbons in the ASP
residues on either side of the peptide. These monomers are then replicated to form a linear stack of peptide
monomers with adjacent peptides separated by 0.45 nm, near the expected equilibrium distance between
peptides in an aggregate [55]. Each peptide is rotated a small amount with respect to its nearest neighbors
(75 rad) in order to help avoid steric clashes between adjacent peptides.

This system is then solvated in a rhombic dodecahedron with water using the TIP3P model [174]. The
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box is made to be large enough that the all peptides are atleast 1.0 nm from the edge of the box. In high pH
simulations, Na* counterions are added to make the whole system neutrally charged when necessary. The
system is then minimized using the steepest descent algorithm until the maximum force on any atom was
less than 1000 kJ/mol.nm. Initial velocities were obtained by sampling a Maxwell distribution at 298 K.
The system is subject to a 100 ps NVT equilibration run in which the positions of atoms in the cores were
restrained. Temperature was maintained by a stochastic velocity rescaling thermostat [175] with a time
constant of 0.5 ps. The system then underwent a 100 ps NPT equilibration run with cores still restrained
using the same thermostat. Pressure was equilibrated to 1.0 atm using the Berendsen pressure coupling
scheme [219] with a compressibility of 4.6x 107° bar™! and a time constant of 2.0 ps [110]. Electrostatic
interactions were treated using Particle Mesh Ewald (PME) with a cutoff of 1.0 nm and a 0.12 nm Fourier
grid spacing that were optimized during runtime [78]. Lennard-Jones interactions were shifted smoothly
to zero at 1.0 nm. Bond lengths were fixed using the LINCS algorithm [77], and Lorentz-Berthelot combin-
ing rules were used to determine interaction parameters between unlike atoms [79]. A leap frog algorithm
with a time step of 2 fs was used to integrate the system [180]. Initially, we run one system of 20 protonated

peptides for each chemistry for 150 ns.

5.2.2 Core contributions

Even using less expensive methods for probing the absorption spectrum proves to be computationally in-
feasible for larger peptide aggregates. The peptide aggregates probed in Section 5.2.1 contain upwards of
two thousand atoms, a single calculation of which is beyond our computational capacity. Furthermore, we
wish to incorporate several different configurations observed across the MD runs for each of the five dif-
ferent peptides compositions. Accordingly, it is necessary to make approximations to reduce the system to
a tractable size for study by TDDFT methods. We conduct this system size reduction using two fundamen-
tal approximations: (i) that the experimental trends observed in Reference [2] will be reproducible when
observing systems containing fewer peptides (this is equivalent to assuming the absorption spectrum of
awhole aggregate will be related to the absorption spectrum of the sum of its parts), and (ii) that the spec-
tral response is governed primarily by the electronic transitions within the OT4 n-conjugated cores, and
the influence of the peptide wings upon the spectra is only to modulate the morphological stacking of the
cores. Under these two assumptions, we predict the spectral response of the oligopeptide aggregates by
conducting TDDFT analyses of small OT4 stacks extracted from MD simulations of the full peptides. The
first approximation is absolutely necessary; due to the expense of TDDFT calculations it is not feasible

to perform many computations on thousands of atoms. The second approximation may be justified by
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several observations. First, the unassembled absorption spectrum is known from experimental work not
to depend strongly on amino acid composition [2]. Therefore, the amino acid wings do not significantly
alter the absorption spectrum on their own. Second, the experimental results appear to indicate that the
differences in the absorption spectra are correlated with the size of the amino acids. This could be indica-
tive of bulkier residues altering the stacking configurations of the peptide cores. Third, we expect the most
significant contributions to the excited state properties of the system to come from the semiconducting

quaterthiophene cores .

Figure 5.2: Pictorial summary of the two fundamental approximations made in determining the molecular
configurations to study with LR-TDDFT. The first step involves the approximation that trends highlighting
the differences between chemistries will still be visible when computing excitation wavelengths for a small
subset of molecules. This amounts to the approximation that the absorption spectrum of the whole will
be the sum of the absorption spectra of its parts. The second step involves the assumption that the most
significant impact the peptide wings have on the spectroscopic properties of the system is the extent to
which they influence the stacking geometries of the n-conjugated cores and may therefore be neglected
in the TDDEFT calculations.

5.2.3 Linear response time dependent density functional theory

Selected configurations explored by the system during MD simulation were extracted and subjected to
electronic structure analysis using TDDFT. There are a number of methods commonly used for comput-
ing excited state properties of molecules a few of which include, the configuration interaction-singles (CIS)
approach [220], time-dependent density functional theory (TDDFT) [64,221-223], the Bethe-Salpeter Green’s
function perturbation approach (BSE) [224-228], and the equation-of-motion coupled-cluster method
(EOM CQC) [229-231] (see References [232-234] for more details). Among the many available methods,
TDDFT is a very commonly used method that provides a good tradeoff between accuracy and computa-

tional efficiency [232, 235-240]. Linear-response TDDFT (LR-TDDFT) is a common approach within the

77



TDDFT formalism for studying the absorption properties of a molecular system [223,238,239]. LR-TDDFT
amounts to solving for the smallest eigenvalues of a matrix containing transitions between different states
obtained in standard DFT. These eigenvalues give the excitation energies for the absoprtion spectrum.
Their corresponding osccilator strengths may be determined from the eigenvectors [223, 238]. It is pos-
sible to improve upon the results obtained in LR-TDDFT by incorporrating transitions between different
vibrational modes in the molecules [64,233,241-243]. This method, however, requires the optimization of
the geometry of the excited state system, and the subsequent sampling of its normal modes in order to ob-
tain their associated frequencies, both of which can be very computationally intensive for larger systems.
As aresult, this method is too expensive for our purposes, so we elect to utilize basic LR-TDDFT formalism
to study the absorption spectrum of these peptides. Our approach is then to extract core configurations
from MD simulation and then use LR-TDDFT to compute the roots and oscillator strengths of the excited
states, from which we can estimate the wavelength at which the absorption spectrum is at a maximum.
We employ NWChem version 6.6 for all TDDFT calculations [244], using all default parameters unless
otherwise noted. We use the hybrid B3LYP functional for all of our calculations [245-247] along with the 6-
31G* basis set [248,249]. This functional and basis set have been shown to be quite accurate [235,239, 246,
250, 251]. The “fine” grid option is selected for DFT. All computations are conducted in the gas phase (as
isolated molecules). The 40 lowest lying excited singlet-singlet transitions are computed in each compu-
tation. The peak excitation wavelength is obtained from by broadening the roots and oscillator strengths

with gaussians having a full width half max of 50 nm.

5.2.4 Geometric model

In order to probe the geometric properties governing the computed TDDEFT spectra, construct models to
predict the wavelength of maximum absorbance 1,,,, in the computed LR-TDDFT spectra from structural
properties of the oligopeptide aggregates. This approach may be considered to be a form of quantitative
strcuture-property relationship (QSPR) modeling. We recall that we explicitly consider only the OT4 n-
conjugated cores in our calculations of the absorbance spectra, so the spectral differences are attributable
exclusively to the spatial arrangement of these cores within the assembled aggregate. The effect of the pep-
tide wings—and therefore chemical differences between the peptides—is treated implicitly through their in-
fluence on the stacking of the cores. We construct QSPR models to predict 2,,,, from (a subset of) the fol-
lowing easily-computable and physically-interpretable structural features of the oligopeptide aggregates.
In this manner we seek to construct a surrogate model that can be used to efficiently predict 2,,,, from

the geometric structure of an aggregate without running expensive first principles calculations, and also
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provide mechanistic insight into the key structural determinants of A,,,,. (i) The first, second, and third
nearest neighbor distances between cores (nn;, nny, nn3). (ii) We define the alignment angle between two
adjacent cores to be the angle between the vectors parallel to the peptide backbone, and utilize the angle
between the first, second, and third nearest neighbors (61, 62, 63). (iii) We define the tilt between two ad-
jacent cores to be the angle between the vectors normal to the central thiophene rings and compute the
tilt angle between first, second, and third nearest neighbors (¢1, ¢2, ¢3). (iv) The radius of gyration (Ry),
defined as

|2\ 2
1@:(%) (5.1)

(v) We use lienar regression to fit the coordinates of the atoms to the equation of a plane and compute the
RMS deviation of the atoms from that plane (RMS;?arﬁ o). (vi) We follow the same approach to compute the
RMS deviation of the atoms in each thiophene ring from a plane (RMSSII;l ie). (vii) We use the normal vectors
of each of these planes of best fit for individual thiophene rings and compute the mean angle between the

planes of adjacent cores (y'"8), (viii) We also consider the Steinhardt bond order parameters [252-254].

The Steinhardt bond order parameter of order j is given by

Q=

e S| 62

where Q;,, is

o= ¥y 2 i (Pig) 53
TSN NG ‘

N gives the number of particles in the system, i and j are used as indices indicating individual particles,

Ny (i) is the number of particles within a given cutoff distance of particle i, 7;; is the unit vector going from
particle i to particle j, and Y;,, are the spherical harmonics. Accordingly, Q;,, is the average sum of the
spherical harmonics of the unit vectors connecting a given particle to its nearest neighbors, averaged over
all particles in the system. The Q, define a rotationally invariant global parameter of the system which can
be used to distinguish between different particle stacking schemes [253]. They are nonzero only for even
values of I > 2. We find that higher orders of the Q; become increasingly invariant over the different core
configurations we observe. Accordingly, we use the parameters for I = 4, 6 for our model (Q4, Qg).

We utilize elastic net linear regression [195] to construct a model to fit the peak excitation wavelength
from the geometric parameters we have defined. We expect that some of the geometric parameters that
we proposed will not prove to be useful in determining peak excitation wavelength, so the regularization

terms of elastic net regression will enable us to determine which parameters are and are not useful, and
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help us to avoid overfitting our data. Elastic net regression is a form of linear regression that employs
regularization to penalize both the L1 and L2 norms of the coefficients of the by minimizing the objective
function [255]

M”

. 1 2 a 2
min (5 1Xw - y1§ + aplwl + “ 2l (5.4

where w is the set of coefficients being optimized, X is the matrix of features used in the fit (here the struc-
tural descriptors listed above), y is the vector of data to be fit (here Aax), 7 is the number of samples, and
p and « are hyperparameters determining the regularization. The complexity and L1 ratio hyperparame-
ters @ and p control the absolute and relative strengths of the L1 and L2 regularization penalties. Elastic
net regression subsumes both pure LASSO regression (p = 1, L1-norm only) and pure ridge regression (p =
0, L2-norm only). These hyperparameters are tuned using leave-one-out cross-validation (LOO-CV) over

the training data set.

5.3 Results

5.3.1 Wing removal

In order to validate our assumption that the absorption spectra is governed largely by the optoelectronic
response of the n-conjugated cores and that the peptide wings may be neglected in these calculations,
we use LR-TDDFT to compute the absorption spectra of selected isolated peptides and peptide dimers
with and without the peptide wings (Table 5.1). We determine removing the peptide wings does lead to a
blue-shift in the absorption spectrum of about 30 nm. This shift, however, is revealed to be independent
of peptide composition. This indicates that while this approximation may change the absolute position
of the absorption peak, the relative differences caused by differences in composition will be preserved.
This serves as a posteriori validation of our second approximation at the level peptide monomers and
dimers where this comparative calculation is computationally tractable. If we were to apply this shift as a
correction to all of the results we obtain for A,,,x from TDDFT it would cause our results to be much further
from the peak excitation wavelengths measured in experiemnt. This likely indcates there is cancellation
between different sources of error that enables our computations to be as close to experiment as they are
(see Table 5.3). Finally, since we are concerned only about the relative differences between absorption

spectra of different peptides, we neglect any shift in the spectra caused by removing peptide wings.
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Table 5.1: Shift in peak excitation wavelength of absorption spectrum of selected isolated peptides and
peptide dimers with and without the peptide wings. Shifts are approximately independent of wing com-
position within error, indicating that the absolute position of the peak of the absorption spectrum will be
affected by this approximation, but the relative differences between different compositions will be pre-
served.

Composition Shift in peak excitation wavelength in nm
DAA-OT4-AAD (monomer) 31.3
DAA-OT4-AAD (dimer) 31.3
DFF-OT4-FFD (monomer) 32.5
DGG-0T4-GGD (monomer) 34.9
DII-OT4-IID (monomer) 30.7
DVV-0T4-VVD (monomer) 31.3

5.3.2 Peak excitation model

We adopt a hierarchical multi-scale approach in which classical MD simulations supply self-assembled
peptide configurations for study by LR-TDDFT. MD simulations contain 20 peptides each and are run for
150 ns. We one run MD simulation for each of the five differnt peptides identified in Figure 5.1. We harvest
three different frames at 100, 110, and 120 ns from each MD run. Due to the computational cost of LR-
TDDFT, we are unable to directly calculate the absorption spectrum of each 20-peptide stack directly, and
so we partition the stack into five sets of contiguous clusters of four peptides, and compute the absorption
for each stack. A four core system is the largest that we can comfortably study with the resources available
to us. This procedure is motivated by the high computational cost of LR-TDDFT and assumes that the
spectral response of the system may be adequately modeled by the mean response of data obtained from
tetrapeptide stacks.

Elastic net regression is then conducted to fit all computed QSPR models of A,,,, predicted from the
ensemble of structural features detailed in Section 5.2.4. Data are divided into training and testing data
sets by random selection of 80% of the data for the former and the remaining 20% for the latter. Values of
the selected descriptors are normalized (Z-scored) by shifting the mean and standard deviation of each
over the training data set to zero and one respectively. No descriptors were found to be highly correlated
(p > 0.9) with other descriptors. Hyperparameters of the elastic net regression are tuned using LOO-CV on
the training data set using the ElasticNetCV method of scikit-learn [255]. The performance of the model is
then assessed by its ability to predict the peak excitation wavelengths of the absorption spectrum for the
testing data set (Figure 5.3). We find that the model is able to accurately predict A« for both the training
data set (RMSE = 3.9 nm) and the testing data set (RMSE = 5.4 nm).

The coefficients of each descriptor within the linear regression model indicate which play the most

important role in relating structural properties to peak excitation wavelengths. In order to systematically

81



Predicted \,.x

@® @ Train Dataset
@ @ Test Dataset
— Exact

405 410 415 420 425 430 435 440
Measured A\«

Figure 5.3: Elastic net regression fit applied to self-assembled aggregates containing four peptide cores.
Despite the simplicity of the linear regression model, we find that it performs quite well in quantitatively
predicting the value of 4,,,, computed by LR-TDDFT, possessing an RMS error of 4.3 nm in the fitting the
training data set and 4.7 nm in fitting the testing data set.

quantify this, we conduct 50 random divisions of the data into training and testing sets and observe the
variation in these coefficients (Figure 5.4). Over all 50 random divisions, we obtain a mean RMS error of
*4.5 + 0.2) nm over the training data set and a mean RMS error of (5.0 + 0.7) nm over the testing data set.
The complexity parameter « takes a mean value of (0.64 + 0.15), while the L1 ratio parameter p takes a
mean value of (0.92 + 0.15), indicating the fit is close to pure LASSO regression.

Over this series of fits, the only parameters that are systematically nonzero are the first, second, and
third nearest neighbor distances (nn;, nny, nns), the angle between the axes of nearest neighbor peptides
(61), and the radii of gyration of the peptide cores (R,). The signs of these results indicate that smaller
distances between cores, smaller angle between nearest neighbors, and more extended peptide cores all
lead to larger blue shifting of the spectrum, and these structural properties can be controlled through the
amino acid sequence of the peptide wings. As a result of this analysis, we construct a least-squares linear

regression model in these five features over the full training data to obtain our final QSAR model,

Amax = 2.5nm + 2.3nny + 1.4nnz + 1.201 — 2.3R, +428.0 (5.5)

This model applies after Z-scoring the descriptors to fix their mean value to zero and standard deviation

to one employing parameters detailed in Table 5.2.
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Table 5.2: Values used to z-score the descriptors.

Parameter | Z-Score Mean Z-Score Standard Deviation
nn; 0.51 0.07
nny 0.78 0.15
nns 1.06 0.21
ang; 17.6 7.6
rg 0.455 0.001
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Figure 5.4: Mean elastic net coefficients for each geometric parameter over several random divisions of
data into training and testing sets. Results indicate that nearest neighbor distances (nn;, nny, nns), angle
with nearest neighbor (61), and radius of gyration (Rg) are the only consistently meaningful parameters in
fitting the results.

5.3.3 Peak excitation model application and evaluation

We test out model by applying it to independent MD simulations of the self-assembly of each of the five
peptide chemistries in systems containing 4, 10, 20, and 40 protonated peptides, and 4 deprotonated pep-
tides. The former simulations model aggregation of increasingly larger systems under acidic conditions,
and the latter the assembly of small oligomers under high-pH conditions (Chapter 4). Runs for four depro-
tonated peptides and for four and twenty protonated peptides are run for 300 ns while others are run for
150 ns due to time constraints. All simulation procedures are the same, except in the case of the 40 peptide
runs, which are initialized as two parallel stacks of twenty peptides each rather than a single stack of forty
peptides. This serves to significantly decrease the size of the box necessary to contain the peptides.

We can then apply our regression model to each MD run. The set of parameters used in the model takes
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a different set of values for each peptide contained in the system. Accordingly, each peptide within a run
provides a different prediction for the value of the peak excitation wavelength. We calculate this value for
each peptide in the system at a given time window and average over all peptides to obtain an estimate for
Amax at that time. We apply this for every step of the MD run to obtain estimates as a function of simulation
time (Figure 5.5). We can the average over the final 50 ns of each MD run in order to obtain an estimate of
the peak excitation wavelength for a system of peptides at that size (Table 5.3).

Smaller system sizes are difficult to distinguish from one another within error bars. This fits with exper-
imental results in that unassembled, deprotonated peptides all exhibited the same absorption spectrum,
independent of peptide composition. The exception is that DII-OT4 peptides are predicted to have amuch
higher peak excitation wavelength than any of the other peptides for both protonated and deprotonated
tetramers. We expect that this is indicative of an unwaranted extrapolation of the model resulting from
fundamentally different configuration observed in these runs than were seen in the training data set (see
Figure 5.6). Itis our immediate goal to conduct LR-TDDFT calculations for the DII-OT4 system and incor-
porate these data into our QSPR model to increase its predictive power.

Larger systems all place DAA and DGG at lower peak excitation wavelengths than the other three pep-
tides, which also is in qualitative agreement with experiment, though the magnitude of the difference be-
tween these two sets is not nearly as large as in experiment. The model also consistently predicts the cor-

rect ordering of DVV and DII peaks relative to one another for larger runs.

Table 5.3: Mean predicted peak excitation wavelength Aax in nm over the last 50 ns of simulation for
aggregates of different sizes and compositions. Table rows are in order of increasing peak excitation wave-
length as measured experimentally. Experimental values are taken from Figure 9 from Reference [2], and
experimental errors are the estimated error in locating the peak value of the data.

4highpH 4lowpH 10lowpH 20lowpH 40lowpH Experiment

DGG-0OT4 | 4229+39 4295+34 4167+16 4206=+1.1 4175+0.7 361 +3
DAA-OT4 | 421.2+3.4 418.1+2.4 4225+1.7 4199+1.0 4199=+0.7 365+3
DVV-OT4 | 421.6+3.1 421.2+25 4286=+18 421.1+1.0 423.8+0.8 404 +3
DII-OT4 | 440.4+4.5 4399+28 4262+18 4249+1.1 426.4+0.9 408 +3
DFF-OT4 | 427.3+5.5 424.8+2.3 4239+1.7 425.0+1.1 421.2+0.7 411+3

To further test the predictive capabilities of this model, we perform TDDFT calculations on sets of six
peptides extracted from the same MD runs, as well as on sets of four peptides extracted from runs contain-
ing only four peptides (Figure 5.6). Our performs reasonably well for predictions involving six peptides
(RMSE = 7.2 nm), though it is difficult to say anything definitive as a result of the small sample size due to
the expense of such computations. Our model does tend to underestimate the extent of the blue shift in
the spectrum at lower values of peak excitation wavelength in that it systematically predicts values of Amax

that are too high for lower computed values of A1,ax. This trend may be accentuated for systems containing

84



— DAA-OT4 — DGG-OT4 DVV-0T4
— DFF-OT4 DII-OT4

430-

428 -

m
IS
%)
(=)

IS
)
=~

,/Lu\v.‘/‘n“fﬂyi’”'\;\

Predicted \,.x in n

0 50 100 150 200 250 300
Simulation time in ns

Figure 5.5: Application of the QSPR regression model to predict the peak excitation wavelength of pep-
tides as a function of simulation time for simulations containing 20 fully protonated peptides of a given
composition. Qualitative ordering of peaks is correct relative to experiment with DAA and DGG having the
lowest peak excitation, followed by DVV, with DII and DFF having the highest values of Anax.

six peptides. The model’s predictive accuracy falls significantly when applied to tetramers extracted from
tetramer simulations (RMSE = 11.2 nm). This indicates that the configurations that tetramers adopt in a
lone tetramer simulation are somewhat different from those that experience the forces applied by other
peptidesin alarger aggregate. Thisis an interesting result, but not necessarily a cause for concern since the
intended application of our model is in predicting the absorption behavior in self-assembled aggregates

of large numbers of peptides.

5.4 Conclusions and future work

We conducted MD simulations of peptides having five different compositions, from which we extracted
configurations for LR-TDDFT calculations. We used these data to train a QSPR model to predict the wave-
length of maximum absorption 2,,,, from simple structural properties of the oligopeptide aggregates to
gain insight into the underlying relationship between aggregate structure and optoelectronic response.
Encouragingly, we see significant agreement with qualitative trends and rank ordering observed in exper-
iment suggesting that our model is robustly identifying some of the key factors determining the observed
spectral responses. We also find evidence validating the assumption that primary impact alterations in

amino sequence have on the absorption spectra of peptide aggregates results from the alterations induced
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Figure 5.6: Application of the regression model in predicting data in the training and testing data sets,
as well as predicting wavelengths for hexamers pulled from the same 20 peptide MD runs and tetramers
pulled from runs containing four protonated peptides. The model does reasonably well in predicting the
peak excitation wavelengths of the hexamers, but doesn’t do quite as well at prediction of tetramers pulled
from different MD runs. This is indicative of these runs exploring different core configurations than are
observed in those extracted from 20 peptide simulations.

in core stacking configurations.

The principal result of our analysis is to show that some of the key structural properties of the pep-
tide aggregates governing the wavelength of maximum absorption are the linear distances between first,
second, and third nearest neighbors, the twist angle between nearest neighbors, and the radius of gyra-
tion of the constituent oligopeptides. These structural properties, and hence the absorbance spectra of the
peptide aggregates, can be controlled by the sequence of the peptide wings providing a route to sequence-
defined control of optoelectronic response.

Going forward, this model can be improved by incorporation of more data in the training process for
a greater diversity of peptide chemistries, and, subject to the availability of more computer power, larger
self-assembled aggregates. We are also working with collaborators in the Schleife group to uncover the
exact atom to atom transitions causing the observed excited state properties. This work will enable the
guided design of more accurate descriptors, which will improve the predictive capabilities of our model.
It may also be possible to implement a semi-empirical approach to excited state calculations to increase
the system size we are capable of sampling, allowing for more accurate excited state calculations [256—

258]. With a sufficiently accurate model, we will conduct MD simulations on peptide compositions that
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have not yet been tested experimentally in order to identify peptides that optimize blue shift in assembly,

enabling the design of assembling peptides with specific spectroscopic properties.
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Chapter 6

Conclusion and future work

This thesis work utilized multi-physics and multi-scale computational methods to study the self-assembly
of n-conjugated oligopeptides and their excited state properties. Peptide self-assembly provides a power-
ful approach for the design and creation of novel nano-materials that are both environmentally friendly
and biocompatible. Such materials have application in the field of organic electronics as organic light-
emitting diodes, field effect transistors, and photovoltaics. The use of molecular simulation and simple
machine learning models provides the exciting possibility of in silico design of self-assembling materials
with desired properties. Our work lays the foundation for this process.

In Chapter 2, we employed all-atom and implicit solvent MD simulations to study the thermodynam-
ics, kinetics, and morphologies of a prototypical self-assembling 7-conjugated oligopeptide. We uncov-
ered a favorable dimerization free energy of AF ~ —15kgT and found the increase in free energy upon
further aggregation by monomeric addition to be AF ~ —25kzT independent of aggregate size, indicating
that the dimerization and trimerization free energies are of particular importance when studied thermo-
dynamics of aggregation. We also studied the dynamics of assembly using Markov state modeling, and de-
termined the growth of the system to occur by means of rapid aggregation and structural reorganization,
followed by slower diffusion-limited aggregation. We determined a time scale on the order of microsec-
onds that would be required to probe beyond the early time aggregation process. Finally we established
the use of a rescaling procedure to improve accuracy of implicit solvent simulations for studying free ener-
gies of peptide aggregation. This study established the use of molecular simulation protocols for probing
assembly of these n-conjugated peptides.

In Chapter 3, we expanded our study to include a variety of peptides with different compositions.
We developed a QSPR model able to predict the changes in free energy upon formation of dimers and
trimers directly from the peptide composition. This model was found to be able to predict dimerization
and trimerization free energies within simulation error for non-polar peptides sufficiently similar to those
contained in the training data. We related these free energies to peptide alignment and the existence of a

window for dimerization and trimerization free energies enabling optimal alignment. It is also clear from
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this study that more than just the changes in free energy upon aggregation are necessary to fully charac-
terize the extent of alignment in aggregates. These models enabled us to conduct a high-throughput scan
of all peptide wings searching for those that exhibit optimal core alignment. Through this approach, we
identified a previously untested peptide that is currently being examined by our experimental collabora-
torsin the group of].D. Tovar at Johns Hopkins University. This chapter established descriptor based-QSPR
modeling as being useful for predicting peptide assembly thermodynamics from primary structure, and
shed light on the properties underpinning aggregate alignment.

In Chapter 4, we studied the peptide system in a deprotonated environment. Through MD simulation
computing the aggregation thermodynamics of this system, we were able to formulate equations to predict
the extent of peptide alignment prior to acid-triggered self-assembly. This revealed that at concentrations
of 100 nM or larger, the peptides system does not exist as a system of isolated monomers even in a neutral
pH environment, contrary to prior assumption. Our predictions were corroborated by experimental evi-
dence from fluorescence correlation spectroscopy collected by experimental collaborators Dr. Bill Wilson
and Dr. Lawrence Valverde. This work constituted an important development in the understanding of the
initial stages of the kinetics of the assembly process.

Finally, in Chapter 5 we probed the spectroscopic properties of peptide aggregates in order to deter-
mine relationships between structural conformations and the resultant absorption spectrum. We found
evidence supporting our hypothesis that the primary impact peptide wings have on the excited state prop-
erties of the system is caused by the induced alterations in stacking of the 7-conjugated cores. We also con-
structed a model able to accurately predict the peak absorption wavelength of a peptide aggregate from
the geometry of its 7-conjugated cores. Applying this model to MD simulations yielded predictions of the
peak absorption wavelength that were qualitatively in agreement with experiment. This study constitutes
a major piece of the process requisite for conducting high throughput scans of peptide composition to
engineer peptides with desired optoelectronic responses.

There are several avenues for future progress on this work. The model obtained in Chapter 5 can be
improved by incorporation of data for more diverse peptide chemistries and DFT-guided descriptors. The
model could also be coupled with the use of extrapolation to more accurately predict the quantitative
shifts in absorption that result from aggregation. Such a model could then be employed with several MD
simulations of various sizes to estimate the minimum size and time of MD simulation necessary to be able
to predict absorption properties of aggregates. With this knowledge in hand, minimal size MD simulations
could be conducted for a wide variety of amino acid sequences in order to develop structure property

relationships similar to Chapter 3. All of this would lead to the ability to conduct a high-throughput scan
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of peptides containing arbitrary n-conjugated units in order to design assembling peptides with controlled
absorption properties.

Going further beyond the work conducted here, there are a number of variables that could be stud-
ied, including looking at non-standard amino acid groups [49], polydisperse peptide solutions [47], and
multivalent peptide cores [259]. Other quantum mechanical approaches could also be employed to study
properties going beyond the absorption spectrum, to study photoluminescence, charge transfer, CD spec-

tra, and conductivity of peptide aggregates.
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Appendix A

Markov chain time dependence

A.1 Time dependence of transition rate matrix

Bymodeling the aggregation of DFAG-OPV-GAFD peptide as a time homogeneous continuous time Markov
chain, we implicitly assume that the elements of the transition rate matrix Q are time invariant. We present

a posteriori validation of this assumption by dividing each 70 ns simulation trajectory into contiguous 3.5

ns blocks, and computing the maximum likelihood estimates for the off-diagonal elements of the matrix

gi; in each block as an average over all time intervals of length equal to the lag time of T = 100 ps over the

three independent simulations at each concentration. Uncertainties are estimated as the standard error in

the values constituting the mean. Diagonal elements are computed as q;; = — 2]'.‘:1 qij, and the associated

uncertainly estimated by standard propagation of errors.

In Figure A.1, we present a time resolved plot of the estimates of the transition rate matrix elements
for the 0.85 mM concentration and in Figure A.2 analogous plots for the 1.66 mM concentration. Rarely
observed transitions precluded the reporting of reliable transition rate estimates for all time blocks, but
the calculable transition rates are time invariant within estimated uncertainties. By conducting additional
simulations, it is possible that these uncertainties may be reduced to the point that statistically meaningful
time dependencies in the transition rates may be extracted, but the observed insensitivity of the transition
rates to the observation time coupled with the good reproduction of the time evolution of the cluster size
distribution (cf. Figures 2.11, 2.13 and 2.14) supports the assertion that the dynamical evolution is ade-

quately modeled as a time homogeneous Markov process.

A.2 Discrete time Markov chain (DTMCQC)

Our molecular simulation trajectories are continuous in time, making it possible to estimate the transition
rate matrix Q directly from the data and model the system evolution as a continuous time Markov chain

(CTMC). We may then predict the time evolution of the cluster size distribution at any future time ¢ by
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Figure A.1: Time dependence of the transition rate matrix elements extracted from three 70 ns simulations
of the aggregation of 64 protonated (low-pH) peptides at a concentration of 0.85 mM using our reparame-
terized implicit solvent model. Off-diagonal elements g;; are reported over 3.5 ns time blocks as an average
over all time intervals of length equal to the lag time of T = 100 ps over the three independent simulations.
Uncertainties are estimated as the standard error in the values constituting the mean. Diagonal elements
are computed as g;; = — .7, qij, and the associated uncertainly estimated by standard propagation of er-
rors. The absence of an error bar implies that the transition was sufficiently rare that fewer than three data
points were obtained for that time interval. The absence of data at a given time implies that no peptides
of that size existed in any of the simulations at that time so the transition rate out of such a state cannot
be quantified.

forming the matrix exponential e¥ and applying Equation 2.9 [122]. We favor the continuous time for-
mulation for its attractive capacity to predict the cluster size distribution at an arbitrary future time point,
but it is also possible to model the system as a discrete time Markov chain (DTMC). In the discrete-time
formulation, the transition matrix T(r) containing the transition probabilities between the various cluster
sizes over a particular observation interval, or lag time, 7 is estimated directly from the data, rather than
as the exponential of the transition rate matrix Q (cf. Equation 2.9). Similar to the CTMC approach, the
discrete time treatment assumes that the transition probabilities possess neither temporal nor spatial de-
pendencies, and depend only on the current state of the system and not its past history. The cluster size
distribution at some integer multiple of the lag time can be estimated from repeated applications of the
transition matrix as [124,128],

p(nt) = p(0) [T(1)]". (A.1)
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Figure A.2: Time dependence of the transition rate matrix elements extracted from three 70 ns simulations
ofthe aggregation of 125 protonated (low-pH) peptides at a concentration of 1.66 mM using our reparame-
terized implicit solvent model. Off-diagonal elements g;; are reported over 3.5 ns time blocks as an average
over all time intervals of length equal to the lag time of T = 100 ps over the three independent simulations.
Uncertainties are estimated as the standard error in the values constituting the mean. Diagonal elements
are computed as g;; = — .7, qij, and the associated uncertainly estimated by standard propagation of er-
rors. The absence of an error bar implies that the transition was sufficiently rare that fewer than three data
points were obtained for that time interval. The absence of data at a given time implies that no peptides
of that size existed in any of the simulations at that time so the transition rate out of such a state cannot
be quantified.

This relationship makes clear that the discrete time formulation is restricted to predict the cluster size dis-
tribution at discrete time intervals. The element #;;(7) of the transition matrix T represents the probability
thatamonomer will be found in an aggregate of size j after alagtime t given that itinitially resided in an ag-
gregate of size i. Maximum likelihood estimates for the transition probabilities are given by [124,128,130],
N;i(1)
4j(t) = =3z =

Nim(T),

m=1

(A.2)

where Nj; is the number of transitions observed from state i to state j over the observation interval 7. We
estimate transition probabilities as an average over all time blocks of length 7 over the three independent
simulations conducted at each concentration. For the DTMC to possess the Markov (i.e., memoryless)

property, the lag time must exceed the Markov time for the system [124]. The Chapman-Kolmogorov ap-
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plied to a time homogeneous DTMC possessing the memoryless property states that [124],

T(nt) = [T(1)]", (A.3)

providing a mathematical statement that n repeated application of a transition matrix constructed with a
lag time of  should be equivalent to a single application of a transition matrix constructed with a lag time
of nt. Testing this condition provides a commonly used validation that the lag time 7 is sufficiently large
that the system is Markovian [124].

In Figure A.3, we compare the observed time evolution of the cluster size distribution measured di-
rectly from our simulations at 0.85 mM concentration to that predicted from the CTMC using Equation
2.9 and employing a lag time of 100 ps, and two DTMCs using Equation A.1, and employing lag times of
100 ps and 400 ps. In Figure A.4 we present the analogous plot for the 1.66 mM concentration system. The
predictions of the three Markov models are in excellent agreement, demonstrating that the time evolu-
tion of the system can be equally well formulated as a CTMC or DTMC, and that a lag time of = 100 ps is

sufficiently high to assure Markovian behavior.
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Figure A.3: Comparison of the cluster size distribution in the 0.85 mM system predicted by the (i) CTMC
with 7 = 100 ps (blue dot-dash lines), (ii) DTMC with a lag time of T = 100 ps (red dashed lines), (iii) DTMC
with a lag time of 47 = 400 ps (green dashed lines) to that directly observed in the simulations (solid black
lines, every 20th point plotted). The simulation data is plotted as the mean and standard deviation of
the mass fraction over the three simulations. We present in each panel the results for (a) monomers, (b)
dimers, (c) trimers, and (d) tetramers. No error bars are reported when only a single observation was ob-
tained at that particular time interval.
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Figure A.4: Comparison of the cluster size distribution in the 1.66 mM system predicted by the (i) CTMC
with 7 =100 ps (blue dot-dash lines), (i) DTMC with a lag time of T = 100 ps (red dashed lines), (iii) DTMC
with a lag time of 47 = 400 ps (green dashed lines) to that directly observed in the simulations (solid black
lines, every 20th point plotted). The simulation data is plotted as the mean and standard deviation of
the mass fraction over the three simulations. We present in each panel the results for (a) monomers, (b)
dimers, (c) trimers, (d) tetramers, (e) pentamers, (f) hexamers, (g) heptamers, (h) octamers, (i) decamers,
and (j) undecamers. No nonamers were formed during our simulations. No error bars are reported when
only a single observation was obtained at that particular time interval.
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Appendix B

AMBER scaling

We demonstrated in our previous work that the GBSA implicit solvent model substantially overestimates
the strength of non-bonded interactions between peptides, and that it is necessary to rescale these inter-
actions in order to reliably reproduce the thermodynamics of peptide aggregation [55]. Following our pre-
vious protocol, we adopt the minimally invasive strategy of uniformly rescaling the non-bonded interac-
tions within the peptide force field in implicit solvent to best reproduce the potential of mean force (PMF)
profiles for single peptide collapse (Section 3.2.3) and peptide dimerization (Section 3.2.4) computed in
explicit solvent [55,101]. This rescaling protocol can be considered a form of PMF matching [96,102,103].
Despite its simplicity, we previously showed the approach to produce satisfactory performance in repro-
ducing explicit solvent results [55]. We adopt DFAG-NDI-GAFD as a prototypical oligopeptide for which
to perform the fitting procedure and ascertain the optimal value of the rescaling factor.

The non-bonded interactions comprise Coulombic and Lennard Jones interactions V"?(r) = V¢(r) +
V. ;(r) that are each pairwise decomposable functions of interatomic separation r. As detailed in Ref. [55],
a uniform rescaling of these pairwise interactions V"? — V"’ amounts to rescaling the Lennard-Jones
interaction parameter by a factor of « and the partial charges by a factor of va. We define the optimal

scaling factor as that which minimizes the error function,
RMSE(a) = RMSE; () + RMSE (), (B.1)

where RMSE; and RMSE; are, respectively, the root mean squared error between the PMF for single pep-
tide collapse and peptide dimerization computed in explicit and implicit solvent. We computed the im-
plicit solvent PMF curves at values of « = [0.50, 0.60, 0.70, 0.72, 0.75, 0.78, 0.80, 0.90, 1.00], and report in
Figure B.1 the values of RMSE, RMSE;, and RMSE; as a function of «. From these results, we discern « =
0.75 to be the optimal value of the scaling factor at which the PMF profiles for peptide collapse agree to

within a root mean squared error of 0.7 kzT and for peptide dimerization within 1.3 kpT.
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Figure B.1: Root mean squared error between the PMF profiles for single peptide collapse and peptide
dimerization in implicit and explicit solvent as a function of the scaling factor for the implicit solvent non-
bonded interactions. The agreement for single peptide collapse RMSE; and peptide dimerization RMSE,
both attain their optima at a scaling factor of @ = 0.75. Uncertainties are estimated by 100 bootstrap re-
samples of the simulation data used to compute the PMF profiles.
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