
Copyright 2018 Kiumars Soltani

A DISTRIBUTED WORKLOAD-AWARE APPROACH TO PARTITIONING
GEOSPATIAL BIG DATA FOR CYBERGIS ANALYTICS

BY

KIUMARS SOLTANI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Informatics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Shaowen Wang, Chair
Professor Jiawei Han
Professor Jana Diesner
Professor Aditya Parameswaran

ABSTRACT

Numerous applications and scientific domains have contributed to tremendous growth of

geospatial data during the past several decades. To resolve the volume and velocity of such

big data, distributed system approaches have been extensively studied to partition data

for scalable analytics and associated applications. However, previous work on partitioning

large geospatial data focuses on bulk-ingestion and static partitioning, hence is unable to

handle dynamic variability in both data and computation that are particularly common for

streaming data.

To eliminate this limitation, this thesis holistically addresses computational intensity and

dynamic data workload to achieve optimal data partitioning for scalable geospatial appli-

cations. Specifically, novel data partitioning algorithms have been developed to support

scalable geospatial and temporal data management with new data models designed to rep-

resent dynamic data workload. Optimal partitions are realized by formulating a fine-grain

spatial optimization problem that is solved using an evolutionary algorithm with spatially

explicit operations. As an overarching approach to integrating the algorithms, data models

and spatial optimization problem solving, GeoBalance is established as a workload-aware

framework for supporting scalable cyberGIS (i.e. geographic information science and sys-

tems based on advanced cyberinfrastructure) analytics.

ii

To my family, who taught me that the darkest hour is just before the dawn and gave me the

strength to fight for life.

iii

ACKNOWLEDGMENTS

I have been very fortunate to complete my Ph.D. at the great University of Illinois at Urbana-

Champaign and work under the supervision of Dr. Shaowen Wang. Dr. Wang has always

encouraged me to work hard and pursue my goals. I am forever grateful for his support

and his wisdom, which has inspired me to improve both my academic and personal life. I

would also like to thank my committee members Drs. Jiawei Han, Jana Diesner and Aditya

Parameswaran for their valuable insights and guidance throughout my Ph.D.

Moreover, I would like to thank my colleagues at the CyberGIS Center and Cyberinfras-

tructure and Geospatial Information (CIGI) Laboratory for helping me to shape my research

ideas. Particularly, my deepest appreciation to Drs. Yan Liu and Anand Padmanabhan who

played an important role to bring my research visions to life.

I would like to dedicate this work to my family, who unconditionally loved me and believed

in me even when I did not believe in myself. I am extremely grateful to my dad, Kambiz,

who raised me to believe honesty is the greatest quality in a human being. He taught me

that life is a daring adventure and gave me the courage to explore my own journey. I owe

this achievement to my loving and caring mom, Shahindokht, an angel who has been with

me every step of the way. Her kindness gave me the confidence to become who I am today.

I am very thankful to Navid, the best brother-in-law that one can hope for. I know that he

is always on my side and I cherish his advice and care every day.

Above all, I am exceptionally grateful to my lovely sister Atousa, who is the most influential

person in my life. She has always stood by my side through thick and thin and taught me to

be a better version of myself. I could not imagine my life without her kindness and support.

iv

Atousa has always cheered me up when I was down and taught me that giving up is never

an option. I love her more than anything and anybody in the world and will work hard to

live a life that makes her proud.

v

GRANTS

This research is supported in part by the National Science Foundation (NSF) under grant

numbers: 0846655, 1047916, 1354329, 1429699 and 1443080.

Computational experiments used the Extreme Science and Engineering Discovery Environ-

ment(XSEDE) (resource allocation Award Number SES090019), which is supported by the

National Science Foundation with grant number 1053575; ROGER supercomputer, which is

supported by NSF under grant number 1429699 and Chameleon testbed supported by the

National Science Foundation.

vi

TABLE OF CONTENTS

CHAPTER 1 Introduction . 1
1.1 Research Problems . 3

CHAPTER 2 Motivating Case Studies . 11
2.1 MovePattern . 11
2.2 GeoHashViz . 13
2.3 UrbanFlow . 17
2.4 CyberGIS-Fusion . 19

CHAPTER 3 Static Workload-aware Load Balancing for Data-intensive Geospa-
tial Applications . 22
3.1 Overview . 22
3.2 Movement Aggregation and Summarization 26
3.3 Distributed Approximate Point-in-polygon 35
3.4 Concluding Discussion . 47

CHAPTER 4 Scalable Indexing of Geospatial Data 48
4.1 Background . 48
4.2 Geohash-based Indexing of Lines . 49
4.3 Geohash-based Indexing of Polygons . 51
4.4 Experiments . 54
4.5 Concluding Discussions . 55

CHAPTER 5 Dynamic Workload-aware Data Partitioning 56
5.1 Background . 56
5.2 Adaptive Workload-aware Partitioning . 57
5.3 Partitioning Fitness Evaluation . 60
5.4 Approach Layout . 63
5.5 Initialization . 64
5.6 Spatial Migration Procedure . 66
5.7 Experiments . 69
5.8 Concluding Discussions . 77

vii

CHAPTER 6 GeoBalance: Workload-aware Framework to Manage Real-time
Spatiotemporal Data . 78
6.1 Background . 78
6.2 Architecture . 80
6.3 Modeling Workload . 85
6.4 Elasticity Strategies . 87
6.5 Rolling Partitioning Migration . 88
6.6 Data Replication . 89
6.7 Experiments . 92
6.8 Concluding Discussions . 95

CHAPTER 7 Conclusion and Future Work . 96
7.1 Summary of Contributions . 96
7.2 Future Work . 98

REFERENCES . 100

viii

CHAPTER 1

INTRODUCTION

Geospatial sciences and technologies have witnessed a tremendous growth of geospatial data

produced over the past several decades. Sensors, GPS-enabled devices and satellites collect

data in accelerated rates with a variety of data models and formats. In this context, cyberGIS

(that is, geographic information science and systems based on advanced cyberinfrastructure)

and data-driven geography have emerged as new paradigms of data-intensive geospatial

research and education [Miller and Goodchild, 2015,Wang and Goodchild, 2019,Wang, 2016,

Wang, 2010]. However, extensive research is required to innovate geospatial algorithms and

cyberGIS analytics that can resolve the data intensity, particularly from the perspective

of dynamic and streaming data. Therefore, this thesis focuses on novel algorithms and

architectures to enable data-intensive cyberGIS analytics, where data velocity is the primary

challenge.

Previous work demonstrated that centralized architecture where data is stored on a single

powerful server is not suitable to resolve this challenge while distributed architecture for

geospatial data management is viable [Wang et al., 2015]. In such a distributed environment,

efficiently managing data is crucial and to achieve this goal a two-level indexing scheme

[Eldawy and Mokbel, 2015] is often employed, where (a) a global index determines how data

is partitioned among different nodes; and (b) local indexes manage storage of actual data in

each node (Figure 1.1).

Though data partitioning is critical to efficiently manage geospatial big data in a dis-

tributed environment, existing algorithms are not susitable for partitioning large and dy-

namic geospatial data. Particularly, previous work focuses on data quantity and static

1

Figure 1.1: Adapting two-level indexing scheme for cyberGIS applications.

partitioning methods designed for workloads (requests made by users to the system [Jain,

1990]) that rarely change over the time [Fox et al., 2013,Malensek et al., 2016,Eldawy, 2014].

This approach is not applicable to large real-time geospatial data that exhibits high variety

and comes in at high velocity, since static partitioning may lead to skewed partitions which

in turn result in high latency and poor resource utilization [Serafini et al., 2016]. Hence, an

effective partitioning approach for such data should address evolvability of workload fluctu-

ations over time by considering spatial and temporal changes in the workload in a holistic

fashion.

We have established a workload-aware approach for efficiently indexing, partitioning, and

replicating geospatial big data based on cloud computing architecture for achieving scale-out,

elasticity and high availability features of cyberGIS analytics [Cooper et al., 2010]. Specific

contributions of this research can be summarized as:

• A set of workload-aware load-balancing algorithms for cyberGIS applications that re-

2

quire data-intensive computation. These algorithms are implemented using the well-

known MapReduce model to take advantage of cloud computing infrastructure.

• A fast spatial indexing approach to high-velocity multi-tenant applications for indexing

and storing spatial objects with arbitrary shapes.

• A novel adaptive workload-aware framework for handling high velocity real-time geospa-

tial data. This framework applies an evolutionary algorithm to tune how data is spa-

tially distributed over time without re-partitioning data from scratch.

These contributions focus on three critical aspects of data-intensive software systems: scala-

bility, maintainability and reliability [Kleppmann, 2017]. In the first phase of this research,

we have developed algorithms for efficiently distributing data and computation among cloud

resources that can adaptively respond to inevitable changes in workloads. In the second

phase, we design and implement cloud-based architecture to enable seamless integration

of the algorithms that were studied in the first phase. The overarching goal of the pro-

posed framework is to a) resolve the growing complexity of data-intensive cyberGIS ap-

plications [Gupta et al., 2016]; and b) achieve horizontal scalability to increase resource

utilization [Hasselbring, 2016].

1.1 Research Problems

A typical cyberGIS-based knowledge discovery workflow includes at least one of the following

components deployed on advanced cyberinfrastructure:

1. Data management: includes efficient data storage, indexing, publishing, browsing,

search and transfer of data.

2. Data integration: Enables interoperable and scalable access to distributed data

resources and services.

3

3. Data-driven computing: Using parallel and distributed algorithms to process geospa-

tial data.

4. Interactive data analyses: Fast interaction capabilities for end-users.

These components have been extensively investigated in the context of various data-intensive

geospatial applications [Padmanabhan et al., 2014,Soltani et al., 2015a,Soltani et al., 2016,

Soltani et al., 2015b]. However, prior to implementing such capabilities, we should address

two main strategies regarding distributed data processing: domain decomposition and task

scheduling [Wang and Armstrong, 2009]. The two strategies are particularly critical in

geospatial applications, since real-world geospatial applications are often computationally

and data-intensive [Huang et al., 2002].

To design efficient domain decomposition and task scheduling strategies, we should con-

sider three main characteristics [Wang and Armstrong, 2009]. First, solely focus on operation

or data cannot handle the reality of geospatial applications. Therefore, the computational

intensity should be considered as the main criteria in designing such strategies. Second, do-

main decomposition and task scheduling strategies should be adaptable to inevitable changes

in the characteristics of spatial data and operations. Finally, the strategies should not be

tied to a specific parallel computer architecture.

In this thesis, novel workload-aware algorithms are developed to distribute computational

tasks and data services of cyberGIS applications among a multi-node cluster. The new

knowledge of workload allows us to a) consider integrated intensity of geospatial data and

operations; and b) adapt to changes in characteristics of data and operations.

1.1.1 Workload-aware Load Balancing for Data-intensive Geospatial
Applications

The 3V (variety, velocity, and volume) of geospatial big data impose significant computa-

tional and data challenges. In addition, geospatial data demonstrates unique characteristics

4

that need to be considered within an scalable cyberGIS software environment. As aforemen-

tioned, devising efficient strategies for domain decomposition and task scheduling is critical

for designing scalable geospatial applications. In this part of the thesis, we study these

strategies for geospatial applications that perform batch processing of massive geospatial

data. The main characteristic of such applications is the volume of data that are processed,

as the latency of computation and communication is not the main concern. We implement

our approach using the MapReduce model [Dean and Ghemawat, 2008] due to its wide

adoption [Eldawy and Mokbel, 2015].

Previous research proposed multiple strategies for partitioning geospatial data in dis-

tributed environments [Aji et al., 2013a, Cary et al., 2009a, Eldawy, 2014, Eldawy et al.,

2015b]. However, we can not solely rely on data partitioning to achieve scalability in such

applications.

First, in offline processing applications it is often unrealistic to assume any specific par-

titioning on the incoming data, since the data is usually stored in data lakes that include

unstructured or semi-structured data from multiple data sources. In addition, such massive

data is ingested by multiple applications with significantly varying characteristics. Therefore,

one application cannot force an specific partitioning on the data.

We address the aforementioned scenario by proposing an approach that does not assume

any particular pre-existing partitioning. We use either a theoretical analysis of the problem

or observed computational intensity to devise a computational plan that is customized for

each problem. The computational plan is a coarse-level mapping of individual records to

different nodes in the cluster, which is used to distribute the tasks.

We evaluate our approach using two well-known geospatial operations: multi-resolution

data aggregation and approximate point-in-polygon. The approximate point-in-polygon al-

gorithm demonstrates the effects of application parameters in adapting the load balancing

strategy. Both operations are evaluated in terms of load balancing capabilities, as well as

scalability when the problem size or number of nodes increases.

5

Adaptive Workload-aware Partitioning of Geospatial Data

Data-driven scientific research has suggested that a fourth paradigm should be added to the

three previously identified science paradigms: empirical science, theoretical science and com-

putational science [Miller and Goodchild, 2015]. This new paradigm has initiated changes

in fundamental understanding and practices of scientific discovery. Particularly, the ever-

increasing availability of various real-time geospatial data has led to the emergence of “data-

driven geography”, which entails a unique set of challenges, methods and practices. However,

current state-of-the-art tools and products are not well suited for handling geospatial big

data which is, in turn, limiting new research questions from being asked and answered.

Specifically, existing distributed geospatial data management systems are designed for static

and predictable data sources [Aly et al., 2015]. However, previous research has indicated

that dynamics of data and query load is inevitable in geospatial applications and should be

addressed properly [Kleppmann, 2017].

Therefore, this thesis focuses on the following question: how should realtime geospatial

big data be managed in order to efficiently support a large magnitude of concurrent requests

under dynamically changing workload (data and query distributions). To efficiently store

and query in distributed architecture, data and associated services should be distributed in

multiple nodes that communicate to each other over the network. However, in current lit-

erature there is a lack of efficient algorithms for partitioning large dynamic geospatial data.

Previous work mainly addresses the data volume challenge and exploit static partitioning

methods that are designed for predictable workloads that rarely change over time [Fox et al.,

2013,Malensek et al., 2016,Eldawy, 2014]. These methods often do not address the velocity

and variety aspects of big geospatial data. Particularly, when geospatial data exhibits high

variety and come in at high velocity, static partitioning may lead to skewed partitions, result-

ing in high latency and poor resource utilization [Serafini et al., 2016]. Hence, an effective

partitioning approach for dynamic data should consider spatial workload fluctuations over

6

time.

To address such requirements, we propose a workload-aware partitioning approach for

real-time geospatial data. Our approach addresses two specific research questions regarding

adaptive partitioning of geospatial data. The first question is how to model the performance

of an existing partitioning scheme in terms of load imbalance as data changes over time.

The model also serves as a guide for the evolution process of the partitions. Second, after

an existing partition becomes imbalanced, how to repartition data in an incremental and

non-disruptive way such that the data system and associated applications do not experience

interruptions or compromise the quality of service (maintains availability). This process

should preserve spatial contiguity of partitions to minimize distributing single data inser-

tion/retrieval requests into multiple nodes (distributed transactions), which is proven to be

as critical as balancing load [Serafini et al., 2016].

Our approach computes statistics for data and query distribution over time and space and

uses such statistics to evaluate the current partitioning scheme according to a fitness function

that measures load variation among partitions [Arzuaga and Kaeli, 2010]. We quantify such

partitions loads by representing the spatial extent of data and queries using a geohashing

algorithm [Niemeyer, 2008]. Geohash provides a hierarchical grid-based model, based on

a Z-order space filling curve, by interleaving bits from coordinate space of latitude and

longitude into a one dimensional string representation. Geohash has been extensively used

to encode and index large geospatial data since it can be efficiently computed, stored and

retrieved in key-value stores [Malensek et al., 2013a]. However, previous work has mainly

focused on simple spatial structures such as point data [Moussalli et al., 2015] or bounding

boxes [Malensek et al., 2013a]. Therefore, we have developed two algorithms to provide fast

geohashing of arbitrary-shaped line and polygon data.

If a shift in the data/query distribution results in a partitioning scheme that is deemed

inefficient, we use a spatial evolutionary algorithm to incrementally modify the existing

partitions until the balance is regained. Our algorithm uses a spatial mutation operator

7

that preserves contiguity at each step to avoid expensive contiguity checks and contiguity

repair operations [Liu et al., 2016]. This incremental approach to tuning existing partitions

avoids creating partitions from scratch, which is clearly inefficient [Aly et al., 2015] and

works by moving a limited number of spatial units among partitions to re-balance them.

Hence, our approach is able to autonomously scale-in when some partitions are underloaded

and scale-out when some partitions are overloaded. The overall process of our adaptive

partitioning algorithm is explained in Figure 1.2.

Figure 1.2: Adaptive workload-aware partitioning process.

To avoid disrupting the data ingestion/retrieval process while migration is happening, we

provide a rolling migration process among partitions by simultaneously holding two versions

of the partitioning (existing and future partitioning schemes), each differentiated by the

timestamps of the data they are holding. By using this technique, we do not interrupt the

operations of the framework while partition modification is in progress.

We evaluate the effectiveness of our partitioning approach by using an integrated dataset

that contains one year of Twitter geo-tagged tweets. In addition, we inject randomly gen-

erated hotspots into the dataset to simulate inevitable changes in the underlying workload.

Our experiments demonstrate the advantage of our adaptive partitioning approach over pre-

viously used static partitioning methods such as k-d tree, in terms of load balance metrics

and cost of changing partitions. Finally, we evaluate scalability by measuring latency and

throughput of our approach using a varying number of partitions and nodes.

8

1.1.2 Thesis Layout

In the first part of the thesis, we explain the motivating case studies for the algorithmic and

architectural innovations that are elaborated in Chapter 2. The case studies include multiple

data-driven geospatial applications encompassing the four main components of cyberGIS

data-driven workflows, i.e. data management, data integration, data-driven computing and

interactive analytics.

Chapter 3 explains our approach to workload-aware load-balancing of data-intensive geospa-

tial applications. We evaluate our load-balancing approach using two case studies: move-

ment aggregation and point-in-polygon. We report the load statistics for both operations

to demonstrate the load balancing effect of our approach. In addition, for both operations

we evaluate the “interactive scalability” of the associated workflow by performing stress test

with multiple types of queries.

In the next two chapters, we shift our focus into adaptive partitioning of data for applica-

tions that handle streaming data. In Chapter 4 describes a geohash-based model for indexing

geospatial data. This model is particularly beneficial for solving our problem since it can be

efficiently stored and retrieved using key-value data stores and can be updated concurrently

for high-velocity. Since geohash is primarily used to index points, we have developed two

efficient algorithms to index polygons and lines using geohash.

Chapter 5 describes a novel algorithm for adaptive partitioning of geospatial data. We

model the problem of finding the optimal partitions as a spatial optimization problem with

the multi-criteria objective function including load imbalance deviation and spatial com-

pactness (Section 5.3). This algorithm can gradually modify the partitions by performing

a spatially tuned mutation operation (Section 5.6). Section 5.7 highlights the advantages

of our adaptive partitioning approach compared to a static partitioning method and other

adaptive partitioning methods (e.g. Kd-Tree).

Chapter 6 explains the GeoBalance framework that takes advantage of the algorithms

9

described in Chapter 5 to efficiently manage high-velocity real-time geospatial data. Partic-

ularly, GeoBalance is based on a microservice-based architecture (Section 6.2) that integrates

a number of distributed and loosely connected services. In addition, we articulate how spa-

tiotemporal workload is modeled in GeoBalance (Section 6.3) according to the statistics

reported from multiple nodes.

Finally, in Chapter 7 we conclude this dissertation by summarizing the overarching re-

search contributions. In addition, we discuss the future research directions related to optimal

partitioning of geospatial data for cyberGIS analytics.

10

CHAPTER 2

MOTIVATING CASE STUDIES

This chapter reviews multiple related cyberGIS applications, which serve as the motivation

for the algorithmic and architectural innovations that will be discussed in the following

chapters. While each application serves specific analytical purposes, its associated algorithms

are designed in a generalized fashion and may be applied to similar problems. For instance,

UrbanFlow [Soltani et al., 2016] reveals intra-city human mobility patterns by combining

real-time social media data with authoritative landuse maps through a generic spatial data

synthesis approach that addresses one of the major problems in distributed spatial data

processing [Eldawy, 2014]. All of the following applications have been implemented within a

cutting-edge CyberGIS Gateway software environment [Liu et al., 2015,Wang et al., 2016].

2.1 MovePattern

MovePattern [Soltani et al., 2015a] is designed to achieve interactive and scalable visual-

ization of massive movement datasets, where movement is defined as a trajectory between

source S and destination D in time T. For instance, consider the movement of Twitter users

throughout the United States in the August of 2014 which was close to 76 million movements.

If we would visualize all the movements on a map, the end result could be too cluttered (and

computationally expensive to generate) to present any useful information [Liu et al., 2013].

MovePattern aims to resolve this challenge by efficiently generating a multi-resolution view

of the movements, providing various levels of details as users interactively explore patterns

of data visualization (Figure 2.1).

11

The aggregation and summarization methods of geographical movements are implemented

using the well-known distributed MapReduce model [Dean and Ghemawat, 2008] to provide

seamless scaling for massive movement datasets. However, real-world geospatial datasets

usually have heterogeneous spatial distributions [Soltani et al., 2015a]. For instance, Figure

2.2 reveals that the frequency of geo-tagged Twitter data in different locations follows a long

tail distribution. Therefore, our MapReduce algorithms take the skewed distribution of data

into consideration and devise an efficient scheme to balance the data and computation load

among parallel computing units. In Section 3.2, we will detail our approach to address the

spatial skew of movement data.

Figure 2.1: MovePattern web application

In addition, MovePattern emphasizes the importance of considering the workload of han-

dling user-driven visualization requests (Section 3.2.3), which was generally overlooked in

previous work [Zinsmaier et al., 2012,Daae Lampe and Hauser, 2011]. For instance, to eval-

uate the interactivity of the framework we used two different access patterns: 1) random

access pattern and 2) focused access pattern. While the first pattern focuses on randomly

generated user requests, the second one is modeling real-life scenarios where many users ac-

cess a focused section of data, e.g., due to hotspots caused by common attention to certain

locations.

MovePattern employs a vector-based visualization framework [Gansner et al., 2011] as

12

opposed to pixel-based approaches that were used in previous work [Zinsmaier et al., 2012].

In a pixel-based approach movement information is not straightforward to be linked back to

the original data, making it impossible for users to get specific information about individual

nodes/edges after a visualization product is presented. Therefore we use a vector-based

approach to increase the analytical capabilities of the framework.

Figure 2.2: Number of Tweets from Oct-Dec 2014 in a Uniform Grid with 32km×
32km Cells covering the Continental United States.

2.2 GeoHashViz

GeoHashViz [Soltani et al., 2015b] provides interactive analytics for understanding spa-

tiotemporal diffusion of Twitter hashtags (Figure 2.3). Recent research studies have con-

firmed that Twitter hashtags can be used effectively to track diffusion of ideas including

social memes, political trends and social movements [Kamath et al., 2013]. Hashtags are

13

proven to be more explicit and less noisy than the actual text of tweets, thus an effective

medium to study collective diffusion of ideas in the virtual world [Romero et al., 2011,Kamath

et al., 2013, Chang,]. GeoHashViz provides two types of analytics: 1) hashtag-based (spa-

tial spread, focus points and spread metrics) and 2) location-based (Top-k popular hashtags,

compare regions). Such analytics requires a series of pre-processing steps, implemented us-

ing Apache Hadoop and a highly interactive module that queries the result of pre-processing

steps and generate analytical outcome.

A key challenge of this research is to model diffusion of ideas using spatially-aware metrics.

For instance, to find the top-k popular hashtags in a selected region, we should query the

selected region, aggregate the hashtags by count and select the most popular ones. However,

this often might lead to a limited set of hashtags which are globally popular (e.g. #jobs) and

does not provide any valuable insight into that region. Therefore, we employed a Tf-idf like

metric [Sheng et al., 2010] to find the hashtags that are specifically popular in that region.

The first part of the metric, called CF − IRFh,C(t) is to define hashtag frequency. Suppose

that Oh
l (t) is the frequency of hashtag l in location h at time t. Then, the hashtag frequency

for geographical bound C is defined as:

CFh,C(t) =

∑
l∈C O

h
l (t)∑

l∈C Ol(t)
(2.1)

Now we focus on the importance of hashtag h in C which relates to the distribution of

locations which have used h over the entire region of study. We lay a gx × gy uniform grid

on top of data points. Similar to the definition of Oh
l we define Oh

g as the occurrences of

hashtag h in the gird cell g. Now we can define the hashtag importance as:

IRFh(t) = log
|gx × gy|

|{Oh
g (t)|Oh

g (t) 6= 0}
(2.2)

14

The final metric is then formulated as:

CF − IRFh,C(t) = CFh,C(t)× IRFh(t) (2.3)

By calculating this metric for all the hashtags that have appeared in bound C at time period

Figure 2.3: Visualizing top-k frequently used hashtags in a selected region using
GeoHashViz web application.

of t, we can find the top−K locally significant hashtags.

GeoHashViz requires access to massive records on a hashtag or a location. Therefore,

to ensure the interactivity of the framework, we pre-compute some analytical features of

hashtags and locations and combine them on-demand to answer user queries (Figure 2.4).

The result of the pre-computation step is stored using a denormalized data model. The data

model employs the denormalization optimization principles to reshape the data and store

multiple copies of data grouped and indexed differently (according to the users workload)

to provide faster read performance and avoid costly joins.

15

Figure 2.4: Architectural pipeline of GeoHashViz that includes pre-computing
steps and on-demand services.

16

2.3 UrbanFlow

Recent work suggested that geo-tagged tweets are complementary sources of information

to characterize urban landuse types [Frias-Martinez and Frias-Martinez, 2014]. Patterns ex-

tracted from geo-tagged tweets such as relative changes in number of tweets, number of users

and user movements were found to correlate with the urban activity patterns [Wakamiya

et al., 2011]. These interesting results motivate the development of open platforms for ana-

lyzing massive geo-located datasets. The demand for these platforms is high because of the

need to monitor and understand urban dynamics.

However, the lack of accurate user activity context, makes it challenging to use geo-

tagged social media data in urban dyanmics studies. UrbanFlow [Soltani et al., 2016] is

designed to solve this problem by integrating social media data with traditional authoritative

data sources such as landuse maps. For example, using UrbanFlow, researchers are able

to find users’ most frequently visited locations through spatial clustering and determine

their context by integrating those locations with their corresponding landuse types (e.g.

home, work, education, etc.). UrbanFlow provides visual insights to help understand urban

spatial networks based on identifying common frequent visitors between different urban

neighborhoods (Figure 2.5).

UrbanFlow includes a novel distributed approach to synthesizing spatial data in a dis-

tributed fashion using the MapReduce programming model. The integration problem in Ur-

banFlow can be solved through a classic point-in-polygon algorithm, while each geo-located

tweet is represented as a point and each land parcel is represented as a polygonal area. This

algorithm resolves the limitation of previous approaches [Zhang et al., 2015, esr, 2013] that

only treat small or modest sizes of landuse datasets. In addition our approach sustains the

inaccuracy in both polygon mapping and GPS locations by integrating points with their

nearest polygon if an exact match does not exist. In Section 3.3, we describe the distributed

approximated point-in-polygon algorithm used in UrbanFlow.

17

(a) Time series plot for number of tweets per hour
of the day and day of the week for each landuse
type

(b) Stack plot of dominant land use for top vis-
ited locations grouped by rank, confirming the
high preferential bias to tweet from residential
specially for top locations (rank1)

(c) box plot of clustering purity with most of the
clusters corresponding to a single land use parcel
(purity = 1.0)

Figure 2.5: Visual analytics in UrbanFlow’s web application [Soliman et al.,
2017]

18

UrbanFlow has been used by other researchers as an example of complex distributed

geospatial applications to examine cloud operation management platforms and study scal-

ability patterns. In one example [Keahey et al., 2017], researchers used UrbanFlow to test

their operation management platform for multi-cloud environments. As another example,

UrbanFlow was profiled in detail [Fu et al., 2018] to evaluate multiple dynamic data redis-

tribution mechanisms in Apache Hadoop.

2.4 CyberGIS-Fusion

CyberGIS-Fusion is developed to demonstrate CyberGIS capabilities for a large number

of users to perform computing and data-intensive, collaborative geospatial problem solving

enabled by advanced cyberinfrastructure. The main contributions of CyberGIS-Fusion are:

• Provide a fast and scalable framework to insert/retrieve spatiotemporal data.

• Synthesize heterogeneous geospatial datasets in a single integrated environment.

• Facilitate seamless integration of multiple microservices to take advantage of cloud

infrastructure.

To evaluate CyberGIS-Fusion, we chose the Beijing Taxi dataset 1 which includes more than

15 million taxi trips in Beijing from Feb 3rd to Feb 9th 2008 (Figure 2.6).

CyberGIS-Fusion is an example of real-time geospatial applications, where the ingestion-

rate is high and the data should be immediately available to be queried. This is funda-

mentally different than batch-processing systems such as Apache Hadoop [Shvachko et al.,

2010a]. Batch processing systems, while capable of dealing with massive datasets, are not

tailored to handle real-time data where bulk loading of the data is not feasible.

One major challenge in designing a scalable data management framework for handling

highly dynamic real-time data is related to how the data is distributed among different

1https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

19

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

Figure 2.6: CyberGIS-Fusion web application for accessing Beijing taxi data.

nodes. Throughout the development of CyberGIS-Fusion we observed that geospatial data

distribution may vary significantly over time (Figure 2.7), hence an effective partitioning

scheme can dramatically improve the resource utilization and throughput of CyberGIS-

Fusion. Particularly, we focus on adaptive workload-aware partitioning that a) uses both

query and data distribution in determining the optimal partitions and b) adapts to changes

in the data and query distribution over time. In Chapter 5, we discuss the algorithms for

adaptive workload-aware partitioning of real-time geospatial data.

20

Figure 2.7: Changes in spatial distribution of taxi data over different hours of
the day in the City of Beijing.

21

CHAPTER 3

STATIC WORKLOAD-AWARE LOAD BALANCING
FOR DATA-INTENSIVE GEOSPATIAL

APPLICATIONS

3.1 Overview

Geospatial scientists have taken advantage of advanced cyberinfrastructure to solve computation-

and data-intensive problems [Wang et al., 2005]. Traditional research in this area focused

on using high performance computing to design scalable algorithms and frameworks [Tang

et al., 2011, Liu and Wang, 2015]. However, the focus has shifted dramatically in the past

decade to cloud-based approaches [esr, 2013,Soltani et al., 2016]. Particularly in the case of

data-intensive applications, cloud computing provides scalable functionalities to distribute

geospatial data and parallelize spatial operations through exploiting data parallelism.

MapReduce has been adopted as a major programming paradigm of cloud computing

[Dean and Ghemawat, 2008]. The paradigm contains two main steps: map and reduce. In

the map phase input data is converted into series of intermediate (key, value) pairs. Then

after shuffling and sorting the intermediate pairs, the reduce phase will collect all the (key,

value) pairs that have the same intermediate key (Figure 3.1). This programming framework

can support automatic parallelization as the map operations are considered independent and

can be done in parallel. In addition, MapReduce can scale horizontally by seamlessly adding

new computing nodes for data hosting and processing.

Hadoop [Shvachko et al., 2010b] is an open-source implementation of MapReduce, which

is built on top of a distributed file system called Hadoop Distributed File System or HDFS.

Hadoop facilitates data-intensive computing on large commodity clusters by providing ca-

pabilities such as data distribution, parallel computing and fault tolerance. From early

22

Figure 3.1: MapReduce programming model.

days of Hadoop, geospatial communities have embraced the framework and used it to solve

data-intensive problems [Cary et al., 2009b, Liu et al., 2010]. However, previous work has

also proved that adapting spatial algorithms to the MapReduce programming model is a

challenging task [Eldawy and Mokbel, 2015]. First, Hadoop takes advantage of functional

programming model which requires fundamentally different thinking on how to design opti-

mized algorithms. In addition, Hadoop does not natively exploit spatial data characteristics.

Therefore, customized techniques need to be designed to handle distributed processing of

spatial data in the Hadoop ecosystem.

Previous research has extensively studied the issue of data partitioning and indexing on

Hadoop [Eldawy and Mokbel, 2015]. The main challenge regarding distributing spatial data

in Hadoop is the fact that data in HDFS works in an append-only fashion and data in HDFS

is immutable. To address this limitation, researchers have suggested to use a sample of the

data to build the index prior to storing the data in HDFS [Eldawy, 2014]. The index is

built in two different granularities: the global index that is accessible to all parallel workers

and the local index that is built locally for faster spatial operations. Using the two-level

indexing scheme, whenever a spatial operation has to be performed, the system can find

the associated data blocks using the global index and find corresponding answers by looking

into the local index of the data blocks. While the overall design stays the same, different

23

researchers have used different indexing algorithms such as uniform grid [Aji et al., 2013a],

Z-curve [Cary et al., 2009a], R-tree [Eldawy, 2014] or quadtree [Eldawy et al., 2015b].

Compared to extensive work on partitioning and indexing methods for static geospatial

applications, limited work has been done to consider expected workload into such approaches.

As previous researchers indicated the tight coupling between spatial domain decomposition

and task scheduling is problematic due to the inability of this approach to scale for new

data sources, operations and architectures [Wang and Armstrong, 2009]. Therefore, solely

focusing on data and operations is “logically inappropriate” for designing efficient domain

decomposition and task scheduling strategies [Wang and Armstrong, 2005]. We attempt

to address this issue by introducing workload and focusing on problems that are sensitive

to workload and more concerned with the variability of the computational tasks that are

applied to the data, rather than the distribution of the data. Specifically, we study the

methods and algorithms for spatial computational domain representation, using two well-

known examples: 1) multi-resolution data aggregation and 2) approximate point-in-polygon

problems. This study will complement the previous effort on using Hadoop for geospatial

problems by shedding light on a new dimension of distributed processing of geospatial data.

One of the most significant issues in MapReduce applications is to deal with skew [Kwon

et al., 2012]. While in Hadoop, input data is evenly distributed among mappers, based on

the configuration variable dfs.block.size, the applications can still suffer considerably from

skew among reducers. The reason for existence of such skew is the inability of Hadoop

to dynamically balance the load among reducers. Particularly real-world spatial data are

usually highly skewed and therefore a custom partitioner is required to balance Hadoop-

based computation. This skew is beyond the distribution of the original data and more

related to how the computation model is defined. Similar to the definition of computational

intensity, the problem of skew relates to spatial domain decomposition, spatial operations as

well as the distribution of data. Therefore, to avoid load imbalance we have to consider the

computational intensity of the problem in designing distributed algorithms [Soltani et al.,

24

2015a].

Our approach has two main steps. First, we use either a theoretical analysis of the

problem or a sample of workload to generate a computation plan. This will define how the

computation is going to be divided among reducers and is similar to the global index which

have been used in previous research. This step may be accompanied by spatially aware

partitioning of input data [Soltani et al., 2016]. Second, we use the computation plan to

run its corresponding MapReduce job. In the mapper stage, we use the global index to

determine which reducers the data should be assigned to. Furthermore, the reducers will

receive their portion of data, performs pre-processing steps such as spatial indexing and and

compute the final result.

The generation of a computation plan can be understood as a spatial computational

domain decomposition problem that is defined based on the nature of the problem and

computational intensity analysis of it [Wang and Armstrong, 2009]. This analysis may vary

from problem to problem. Therefore we cannot solely rely on a fixed data distribution

scheme, as done by some previous work [Eldawy, 2014, Aji et al., 2013a], and thus have

to consider a mechanism that can provide the decomposition for each problem (workload-

awareness). The computational intensity relies on the spatial distribution of data, complexity

of spatial operations, as well as surrounding geographical regions in some cases. Therefore,

the approach should be able to handle possibly overlapping regions for the decomposition.

In the rest of this chapter, we elaborate our approach by using two case studies.

We evaluate our approach from three different perspectives. First, we study the advantage

that our approach provides in terms of reducing the computational and data skew among

reducers. Particularly, we study how reducers’ data and computational loads are affected by

taking advantage of our spatial computational domain representation. Our second experi-

ment is focused on determining the optimal granularity for our spatial domain decomposition,

which is a critical issue for large-scale geospatial applications [Wang and Armstrong, 2009].

On one hand, the granularity should be coarse enough that justifies the computational ben-

25

efits of decomposition, compared to the overhead of parallelization. On the other hand, the

granularity should be sufficiently fine to allow for sub-domain to be processed in parallel.

Therefore, we evaluate our approach in both examples against multiple granularities to de-

termine the most efficient setting. Finally, since both examples are designed to be interactive

applications, we conduct experiments by simulating expected workload on the applications.

The goal of these experiments is to ensure that interactivity of the applications stay intact

under both temporally and spatially intense query workloads.

3.1.1 Geo-tagged Twitter Data

In both applications we heavily rely on geo-tagged Twitter data to demonstrate the value of

our approach. We collect geo-tagged tweets using a custom crawler specifically designed for

collecting tweets containing geographic coordinates or place information using Twitter’s open

access streaming API. The crawler records user id, location, time, text and some associated

flag variables (e.g. whether the tweet is a retweet). We exclude data outside of the North

American continent and collections over 2.5M tweets on a daily basis.

3.2 Movement Aggregation and Summarization

3.2.1 Background

Large amounts of data pose unique requirements for generating visualization in a scalable

fashion. Liu, et al. [Liu et al., 2013] formulate this problem by distinguishing the “interactive

scalability” from “perceptual scalability”. Perceptual scalability means avoiding plotting

every possible point so that users are not overwhelmed. Interactive scalability means that the

visualization provides fast responses to multiple users queries and eliminates long latencies in

user interaction. Data reduction techniques and detail-on-demand capability [Shneiderman,

1996] can provide an answer to the perceptual scalability problem [Zinsmaier et al., 2012].

26

However, we still may experience significant latency in the user queries that negatively affect

the user experience. Therefore, it is a common practice in large-scale visualization systems

to reduce query time by offloading some computation to the server side and adding a pre-

processing step [Keim, 2005,Liu et al., 2013].

Previous studies explore three groups of reduction methods for spatial movement data:

clustering, density-based and binned aggregation. Clustering approaches [Guo, 2009, Jia

et al., 2011] re-model the problem as a graph community detection problem which enables

them to define multiple level of abstractions for the movements. However, these approaches

tend to perform poorly on large datasets, since they require calculating modularity be-

tween large numbers of nodes. Density-based approaches use kernel density estimation with

adaptive bandwidth to provide multi-scale view of the movement graph [Zinsmaier et al.,

2012, Daae Lampe and Hauser, 2011]. In contrast to clustering methods, density-based ap-

proaches are usually very fast due to the fact that they can be efficiently implemented using

GPU. However, these methods employ a pixel-based approach where the visualization cannot

be linked back to the original data. Therefore the user cannot get specific information about

the edges after the visualization is produced. Binned aggregation is another approach which

defines the aggregates of the data based on pre-defined spatial bounds [Liu et al., 2013]. One

main advantage of this approach is that it can be easily parallelized over multiple computing

nodes [Eldawy et al., 2015b]. In addition, binned aggregation can form multiple views of

data using a hierarchical definition of bins. For demonstration of this work we adapted a

form of binned aggregation, known as hierarchical spatiotemporal data cube [Cao et al.,

2015] (3.2), which has been used to model multi-resolution movements [Padmanabhan et al.,

2014]. However, the framework is not limited to this data model and can be easily applied

to other binned aggregation data schemes as well.

27

Figure 3.2: MovePattern employs hierarchical data cube model.

3.2.2 MapReduce Algorithms for Movements Aggregation and
Summarization

In the MovePattern framework [Soltani et al., 2015a], there is an important need for process-

ing geographical movements and produce a multi-resolution view of collective movements.

This includes three main steps:

• Aggregate the movements based on a hierarchical data model.

• Summarize the aggregated graph by eliminating nodes that are not deemed as ”signif-

icant” compared to their local neighborhood.

• Filter edges associated with nodes that are filtered out in the previous step (using

Bloom Filter [Bloom, 1970]).

To build the spatial decomposition scheme, we used the recursive bisection approach that

partitions a space into a set of rectangles [Berger and Bokhari, 1987]. In this method at each

28

step, we divide the region into two sets to minimize the imbalance. One main variation of

our approach from the original recursive bisection method is that instead of alternating the

cut axis at each level, we choose the axis that achieves better balance among two sets.

The result spatial decomposition scheme is saved on HDFS and can be loaded at the

beginning of each MapReduce job, and indexed using R-tree, to determine how the compu-

tation is assigned to corresponding reducers. Algorithms 1 and 2 are examples of mapper

and reducer stage using this approach.

Algorithm 1: Mapper for spatial aggregation

function mapper(movement)
s← movement.source ;
t← movement.target ;
for l = 1...L do

id1← getCellId(s, l) ;
id2← getCellId(t, l) ;
merge(graphs[l], id1, Node(s, 1)) ;
merge(graphs[l], id2, Node(t, 1)) ;
if d(s, t) < threshold(l) then

merge(graphs[l], id1, Edge(id1, id2, 1)) ;

function cleanup()
for l = 1...L do

foreach key in graphs[l] do
p← rtree.search(key) ;
emit(p, [l, graphs[l].get(key)]) ;

Algorithm 2: Reducer for spatial aggregation

function reducer(key, Node[] values)
foreach value in values do

merge(graphs[value.level], value.id, value) ;

for l = 1...L do
foreach key in graphs[l] do

x← graphs[l].get(key) ;
write(“Nodes′′, x.level, x.coor, x.count) ;
write(“Edges′′, x.neighbors) ;

29

While multi-resolution spatial aggregation provides a generalized view of data, it can be

still too large to convey any clear patterns to users in a visualization interface. For instance,

if we divide North America into 512km × 512km cells, we will end up with 468 grid cells

which can have up to 109278 edges among them. Therefore, even for very coarse-level view

of data, we get a very cluttered graph; hence the result from node aggregation step needs to

be summarized for a less cluttered visualization.

Our summarization technique filters less “significant” nodes (grid cells) by assigning them

a score, reflecting how large their degree is comparing to neighboring cells. Then by compar-

ing the score to a pre-defined threshold we can decide whether to keep or drop a node from

the graph. As previous research has pointed out [Padmanabhan et al., 2014] geographical

distribution of real-life location-based data is highly skewed, with a small number of places

contributing most of the activities. Therefore, the definition of “significant” nodes should be

localized to their surrounding sub-regions as opposed to using the same significance measure

for the whole region of study.

The local neighborhood of point p is defined as {q ∈ P : d(p, q) < r}. Here P is the

set of all points in the graph (in the same spatial resolution as p), d(p, q) is the great-circle

distance between p and q and r is the neighborhood radius (Figure 3.3). By reducing r we

will have a more strict definition of a neighborhood which will lead to having more points

in the final graph. The value of r can be adjusted for each spatial resolution.

Using the neighborhood formulation, calculating local rank can be simply defined as the

percentile rank of point p in neighborhood(p):

localranking(p, neighborhood(p)) =
Σq∈neighborhood(p)cf(p, q)

|neighborhood(p)|
(3.1)

Where:

cf(p, q) =

 1 if degree(p) ≥ degree(q)

0 otherwise
(3.2)

30

To model this problem using MapReduce, we have to be cautious to avoid unnecessary com-

munication among different nodes. In the naive approach each node send their information

to every other node, and help them find about their neighborhoods. However, this will lead

to very expensive communication overhead. Instead we take advantage of the partitioning

scheme that was built in the initial stage of the data processing module to prune many choices

and end up with only a small set of cells as neighbor candidates. The uniform structure of

the grid enables us to easily extract the set of cells, which are in a certain distance from the

current cell. The outline of this MapReduce based approach is explained in Algorithms 3

and 4. The input of this job is the “Node” output of the aggregation step.

Figure 3.3: MovePattern requires a summarization step to eliminate insignificant
geographical nodes.

3.2.3 Experiments

To evaluate our approach, we designed an experiment on processing movements from Twitter

users starting August 1st, 2014 through October 31st, 2014 (Table 3.1). The tweets were

collected and geo-referenced based on the Twitter Streaming API [Padmanabhan et al.,

2014] and movements generated by forming a spatiotemporal trajectory for each user. To

31

Algorithm 3: Node Summarization Mapper

function getNeighborPartitions(node, level)
offset← cell len[level]× r[level] ;
result-set ← rtree.findNeighbors(

node.coor, offset) ;
return result-set ;

function mapper(node)
foreach p in getNeighborPartitions(node, node.level) do

emit(p, node) ;

Algorithm 4: Node Summarization Reducer

function reducer(key, Node[] values)
for l = 1...L do

rtrees[l]← new rtree() ;

foreach node in values do
if !rtrees[node.level].contains(node) then

rtrees[node.level].add(node) ;

for l = 1...L do
foreach node in rtrees[l] do

offset← cell len[node.level]× r[node.level] ;
result-set ← rtrees[node.level].f indNeighbors(

node.coor, offset) ;
rank ← percentile rank of node.count in result-set ;
if rank ¿ threshold then

write(”SummaryNode”,
node.id, node.level, node.coor, node.count) ;

32

divide the data into multiple spatial resolutions, a hierarchical uniform grid is formed with

10 levels, representing different levels of details for the North America continent. At the

finest level, a uniform grid with cell size of 30 arc seconds (approximately 1 km × 1 km)

is formed and the cells are iteratively merged to form the uniform grids on the higher level.

The merging operation is done in an exponentially increasing fashion forming cell sizes of

2, 4, . . . , 512 km. In addition, each cell is presented using the centroid of all the points

(location of tweets) within the cell.

The experiments were conducted on the cyberGIS supercomputer called ROGER1 su-

percomputer at the University of Illinois at Urbana-Champaign. For the Hadoop cluster,

we used 8 nodes each including 2 Intel Xeon E5-2660 2.6 GHz CPU (20 cores total), 256

GB of memory and 800GB of SSD hard drive. In this section, we present only two of the

experiments (see the original paper [Soltani et al., 2015a] for more experiments). First, we

evaluate our spatial decomposition method to test the load on each reducer. Table 3.2 shows

the statistics on reducers load when aggregating data for the 3-month dataset. This result

confirms that using the spatial decomposition method, described above, we can divide our

study space into multiple regions with similar computational load, which as we explained is

a critical issue in designing MapReduce-based algorithms. The next experiments focus on

the performance of spatial aggregation and summarization methods against the three test

datasets. Table 3.3 shows how aggregation and summarization methods affect the number

of locations and movements among them. These two experiments demonstrate the ability

of our approach to scale and dramatically reduce the movement graph size by intelligently

aggregate movements in multiple resolutions.

Duration Tweets Users Movements Size(GB)
1-month 107M 2.2M 76M 2.77
2-month 205M 2.9M 136M 5.43
3-month 368M 3.5M 179M 9.88

Table 3.1: Input data statistics

1Resourcing Open Geospatial Education and Research

33

of Reducers Avg Std Min Max
8 5,853,967 120,348 5,709,732 6,037,848
16 2,926,984 73,670 2,821,192 3,096,001
32 1,463,492 58,673 1,344,301 1,609,537
64 731,746 45,466 654,939 846,538

Table 3.2: The reducers’ load statistics in terms of associated keys to each
reducer.

Dataset Nodes Edges
1 month 2.67M → 939K 33.98M → 4.66M
2 months 3.18M → 1.08M 49.27M → 6.88M
3 months 3.48M → 1.16M 59.55M → 8.44M

Table 3.3: Combined Effect of aggregation and summarization on graph size

Interactive Scalability

To evaluate interactive scalability, we simulate two categories of queries that represent two

most common query patterns of users:

1. Population Query Pattern: Queries are distributed in a weighted fashion around

the region of study (here North America) with more queries on sub-regions with higher

number of tweets.

2. Hotspot Query Pattern: Queries are focused on a specific relatively small region

resembling occasional situations which an outburst will lead to large number of focused

access. For instance, a political visit or a natural disaster can attract user attentions

to a certain area.

The underlying assumption in both access patterns is that the framework is likely to get

more queries from regions where there are more tweets. Therefore, we generated the query

bounding box according to a sample of tweets, where more crowded regions are more likely

to be presented in the sample. In addition, the spatial resolution is randomly chosen in a

uniform fashion from {1, 2, ..., 10}.

34

For our experiments, we generated 3 sets of 2000 queries for overall and focused query pat-

tern. Then Apache JMeter 2, a load testing tool, is used to send this queries to MovePattern

with different rates of queries per second and the response time is measured. We launched

2000 queries in the duration of 50, 75 and 100 seconds, on the 3-month dataset. After per-

forming aggregation and summarization, this dataset contains over 1.16M nodes and 8.44M

edges. Table 3.4 shows statistics (average, median and 90% percentile) on the response time

of queries for both normal and focused patterns. The result shows that MovePattern can

sustain relatively large number of simultaneous queries, each based on different resolutions

and regions.

Population Pattern

Duration(s) Average Median 90% Percentile

50 42 29 96
75 34 23 79
100 31 21 72

Hotspot Pattern

Duration(s) Average Median 90% Percentile

50 36 24 82
75 31 21 69
100 28 19 63

Table 3.4: Stress test for 2000 queries on 3-month dataset (in ms)

3.3 Distributed Approximate Point-in-polygon

3.3.1 UrbanFlow Architecture

UrbanFlow collects input data using the Twitter Streaming API [Padmanabhan et al., 2014].

In the first step, two filters are applied to tweets: 1) spatiotemporal filter: to filter tweets

2http://jmeter.apache.org/

35

http://jmeter.apache.org/

based on spatial extent and timespan of the study and 2) user filter: to filter tweets from

users with very low engagement, indicating a very sparse present over time. The second

filter is particularly critical, since we want to capture actual mobility patterns of people and

eliminate inactive users with noisy behaviors.

In the next step, the processed tweets dataset is integrated with authoritative dataset using

our novel distributed point-in-polygon algorithm (refer to Section 3.3.2). Then we identify

frequently visited locations of each user (Section 3.3.1). Finally the clusters are joined with

the user-defined partitioning scheme to enable region-based analytics. All the above steps are

implemented using Apache Hadoop. Figure 3.4 demonstrates the architecture of UrbanFlow.

Figure 3.4: UbranFlow Architecture

Identifying Frequently Visited Locations

Previous studies have indicated that human mobility patterns can be explained by preferen-

tial return to few frequently visited locations (FLV) such as home, work, school, etc [Soliman

et al., 2015]. There are multiple methods to identify the FLVs, ranging from simple solutions

such as imposing a fixed grid on the users’ locations [Cao et al., 2015] to more advanced

methods such as spatial clustering techniques [Bora et al., 2014]. We identify FLVs by using

DBSCAN clustering algorithm [Ester et al., 1996] on each user’s recorded locations. DB-

36

SCAN method does not assume a predefined number of clusters or any particular spatial

shape. This is particularly beneficial for our application, due to heterogeneous nature of

human mobility. The result of this step is a series of clusters per user, marked by their spa-

tiotemporal characteristics as well as their rank in the user’s everyday activities. The rank of

a cluster demonstrates the tendency of the user to return to that FLV and determined based

on the number of tweets in the cluster. For instance, for most of the users the first rank

cluster is considered as home, while work/school may appear in the lower ranks [Soliman

et al., 2015].

We also introduce the purity metric of clusters, to evaluate the choice of clustering pa-

rameters. The purity of a cluster is defined as the frequency of the most common landuse

parcel to total number of points in that cluster. For instance, the purity of 1.0 indicates

that the cluster is completely located in/near one land use parcel. For a reasonable choice

of clustering parameters, we expect the most clusters to have high purity number.

3.3.2 Point-in-polygon Approach

Spatial Decomposition Method

UrbanFlow [Soltani et al., 2016] implements a scalable point-in-polygon algorithm that in-

tegrates geo-tagged tweets with fine-resolution authoritative landuse data. There are two

main challenges in designing such algorithms in a distributed fashion. First, in addition to

the large point dataset (tweets), our polygon dataset is also large and may contain hundreds

of thousands of polygons. Previous work on this problem [Zhang et al., 2015, esr, 2013] suf-

fered from the inability to scale when the number of polygons is large. This limitation is due

to the fact that these methods attempt to send all the polygons to every worker, which is

clearly inefficient for large number of polygons. In other word, these approaches only exploit

the parallelism to the points dataset. Second, due to the existence of noise and inaccuracy

in both measurements and movement patterns of humans, the approach should be able to

37

approximate point-in-polygon process to assign points to desirably close polygons, in case

an exact match does not exist (Figure 3.5).

Figure 3.5: Example of inaccuracy in human mobility patterns: the geo-tagged
location of tweet may not perfectly match with the building that the user is
associated to. Our approach will assign the geo-tagged tweets to its closest land
parcel if an exact match does not exist.

To address the above issues, we developed the following approach. First, we pre-process

the polygons and break them into smaller spatially contiguous chunks. This step is in-

terleaved with the spatial decomposition method. Therefore, for each decomposition, the

corresponding polygons that overlap with the region is determined as saved to a separate

file in HDFS.

Second, we expand the original point-in-polygon operation to find the closest point-in-

polygon. The goal here is to find the polygon that is closest to a given point, considering

a distance threshold (minDist). Let’s consider point p which lies into partition i with

bounding box BBi . If p matches a polygon that is presented in partition i, our work is done

(no approximation required). However, in case p does not match any polygon in partition i,

we should look for the polygon that has the minimum distance to p. The main issue is that

in partitions’ boundaries, this polygon may not intersect with BBi . We resolve this issue

by expanding the polygons in partition i to includes any polygon that is located in distance

38

minDist of bounding box BBi . While we expand the polygons in partition p beyond BBi

, we will not change the representative bound of partition i. This guarantees that a point

will match with one and only one partition. Otherwise an expensive post-processing step is

required to handle points that are associated with multiple partitions. Figure 3.6 illustrates

this process.

The Algorithm 5 explains the process of splitting the original polygons into smaller sets.

The division criteria (getPartitionWithHighestCI) is defined by the user according to the

desired model for computational intensity of the problem. Some candidates are number of

polygons, number of points based on a sample of data or the area of the region. We also

takes advantage of Median of Medians algorithm [Blum et al., 1973], which can calculate the

median of an array in linear time. In addition, Algorithm 6 explain how the splitting algo-

rithm is employed to generate computational spatial domain decomposition among reducers.

MapReduce Algorithms

Once the spatial decomposition is devised, a MapReduce job is designed that reads the space

decomposition index in the mapper stage and determines which reducer should receive the

point. The reducers (Algorithm 8) take care of the main point-in-polygon process. Each

reducer reads and indexes its associated partition only once and then use that to find the

closest polygon associated with each point. The spatial indexing (for bounds and partitions)

are done using R-tree.

3.3.3 Experiments

We conducted an experiment using geo-tagged tweets from January 2013 to January 2016

(2.42 billions of tweets for US boundaries) and filtered them to only keep tweets that match

Chicago’s bounding box (nearly 47 million tweets). To identify the landuse type of each

39

Figure 3.6: Example of splitting space into 4 partitions, illustrating how each
partition includes more polygons than its representative bounding box (colored
rectangles) to enable closest point-in-polygon operation. The non-filled rectan-
gles show the bounding box of all the polygons in each partition.

40

Algorithm 5: Split original polygons into partitions

function divideBounds(partition, divideDirection)
coordinates← partition.polygons.centroid[divideDirection] ;
median←MedianOfMedians(coordinates) ;
newBounds← newArray() ;
if divideDirection is x− axis then

newBounds[0]←
[partition.minX, partition.minY,median, partition.maxY] ;
newBounds[1]←
[median, partition.minY, partition.maxX, partition.maxY] ;

else
newBounds[0]←
[partition.minX, partition.minY, partition.maxX,median] ;
newBounds[1]←
[median,median, partition.maxX, partition.maxY] ;

return newBounds ;

function split(partition, threshold)
divideDirection←
alternate(parition.divideDirection) ;
newBounds←
divideBound(partition, divideDirection) ;
newPartitions← new Partition[2] ;
foreach polygon in partition.polygons do

if intersect(newBounds[0], polygon, threshold) then
newPartitions[0].addPolygon(polygon) ;

if intersect(newBounds[1], polygon, threshold) then
newPartitions[1].addPolygon(polygon) ;

newPartitions[0].divideDirection←
divideDirection ;
newPartitions[1].divideDirection←
divideDirection ;

return newPartitions ;

41

Algorithm 6: Generate computational spatial domain decomposition to guide re-
ducers.
function generate(polygons, maxPartitions, maxReducers, distanceThreshold)

partition← new Partition(polygons) ;
partitions← new Array() ;
partitions.add(partition) ;
while partitions.length ≤ maxPartitions do

splitPartition←
getPartitionWithHighestCI(partitions) ;
partitions.add(
split(splitPartition, distanceThreshold)) ;
partitions.remove(splitPartition) ;

reducersOrder ←
generateRandomPermutation(1,maxReducers) ;
bounds← new Array() ;
for i = 1...maxPartitions do

partitions[i].reducerId←
reducersOrder[i%maxReducers] ;
writeToHDFS(partitions[i]) ;
bounds.add(getBounds(partitions[i])) ;

writeToHDFS(bounds) ;

Algorithm 7: Mapper for point-in-polygon

tree← null ;
function setup(jobConfig)

bounds← ReadFromHDFS(jobConfig.boundsF ile) ;
tree← BuildQuadTree(bounds) ;

function mapper(point)
parition← tree.find(point.coordinates) ;
emit(partition.reducerId, point) ;

42

Algorithm 8: Reducer for point-in-polygon

tree← null ;
distanceThreshold← 0 ;
function setup(jobConfig)

id← jobConfig.getReducerId() ;
polygons←
ReadFromHDFS(jobConfig.partitionF iles[id]) ;
tree← BuildQuadTree(polygons) ;
distanceThreshold← jobConfig.distanceThreshold ;

function reducer(key, Point[] points)
foreach point in points do

matchedPolygons← tree.findByRadius(point, distanceThreshold) ;
f(p)← {distance(p, point) | p ∈
matchedPolygons} ;
closestPolygon← arg minp f(p) ;

write(closestPolygon.id, point) ;

tweet’s location, we use a highly detailed landuse map of Chicago 3 that includes 468,641

parcels. The approximation threshold to consider the closest polygon is set to 100m.

We deploy UrbanFlow on the ROGER supercomputer. ROGER’s Hadoop cluster for this

experiment, includes 11 nodes, each having 20 cores and 256GB of memory. Based on the

system’s setting, it can run the maximum of 121 mappers or 55 reducers at the same time

(the memory requirement for mappers and reducers are different in ROGER). The block size

for the HDFS, which determines the number of mappers is set to 64MB, with replication

factor of 2 and the number of reducers is set to 64, unless explicitly noted.

Point-in-polygon Algorithm

First experiment compares our point-in-polygon approach with the existing approach of

sharing all the polygons with every worker (from now on we refer to this approach as all-

to-all). One important note is that based on the Hadoop cluster configurations, running

the all-to-all approach may not be possible. This is due to the fact that in a standard

3Landuse Inventory for Northeastern Illinois - http://www.cmap.illinois.gov/data/
land-use/inventory

43

http://www.cmap.illinois.gov/data/land-use/inventory
http://www.cmap.illinois.gov/data/land-use/inventory

Hadoop cluster the available memory for one mapper/reducer is quite limited (usually less

than 1GB). The limitation is closely related to the nature of Hadoop clusters that are

intended as commodity clusters. Therefore, in most of the Hadoop clusters running all-to-all

approach for a slightly large number of polygons is impossible. However, since ROGER is

designed to provide real-time analytical capabilities for geospatial problems, it is equipped

with high memory nodes. This allows us to implement the all-to-all approach and compare

the performance with our distributed algorithm.

We compare the two points in polygon approaches using two metrics: a) spatial indexing

time which measures the average time it takes each reducer to build the spatial index based

on its associated set of polygons and b) the average query time for the reducers to find

the closest polygon. The time for pre-processing is excluded from this experiment, since

it has to be called only once per polygon datasets and accounts for a very small part of

the computation process. We set the number of partitions equal to the number of reducers

to get one partition per reducer, hence eliminating the effect of scheduling and shuffling

stages in MapReduce and focus on the core algorithm. As Figure 3.7a illustrates, using

our point-in-polygon approach we can significantly reduce the spatial indexing time, since

less data is required to be read and indexed. However, this reduction is not going to be

proportional to the number of partitions. The reason lies into the overlapping nature of

our partitions , which requires storing one polygon in multiple partitions. This time for the

all-to-all approach remains nearly constant since it has to index all the polygons regardless

of the number of reducers. In addition, we observe that the query time decreases using our

point-in-polygon approach (Figure 3.7b)). This decrease is not going to be as substantial as

the spatial indexing part since the querying complexity is O(log n) where n is the number

of polygons. Therefore, for a large n the speed up ratio will be very small.

44

(a) Time to build the spatial index. (b) Average query time for reducers.

Figure 3.7: Comparison of our approximate point-in-polygon algorithm with
all-to-all approach.

Optimal Number of Partitions

The decision about the optimal number of partitions and reducers is a trade-off. First, while

having more reducers usually leads to higher parallelism (if the available resources allow),

it will also add considerable overhead to the Hadoop framework. In addition, choosing

large number of partitions reduces the risk of highly dense regions and load imbalance.

However, by adding more partitions we also increase the number of duplicate polygons in

the boundaries. Table 3.5 shows the total computing time of point-in-polygon operation

for different number of partitions and reducers. Since each reducer should have at least

one partition to process the upper part of the table is undefined. We observe that for a

fix number of partitions, we usually get better performance as we move to larger number

of reducers. Based on Table 3.5 having 256 partitions with 128 reducers provides us with

the best computing time. Here by increasing the number of partitions, we reduce the time

required to build the spatial index, as well as reducing the risk of having skewed and dense

regions. However, we observe that by moving to 256 reducers the overhead of reducers

overcome the extra parallelism and the overall computing time increases.

45

Partitions/Reducers 8 16 32 64 128 256
8 317 - - - - -
16 303 158 - - - -
32 331 236 136 - - -
64 290 192 131 117 - -
128 282 173 139 121 118 -
256 279 183 145 114 106 123

Table 3.5: The point-in-polygon computing time for different combinations of
number of partitions and reducers (in seconds)

Measuring Interactivity

We evaluate interactivity of UrbanFLow by measuring the query latency for the two most

intense query patterns in our framework:

• getCluster : Query a region to get all of the clusters which are located in that region.

• getSpread : Query a region to find the spread of users from that region.

The pattern getSpread is particularly intense, since it requires two levels of queries to get

the users of that region and find out other frequently visited locations of those users. For

both patterns, we run queries on all the regions (2025) and measured mean, median and

90% percentiles of query latencies. Table 3.6 shows the result for query latencies in pattern

1 and 2. Using 90% percentile of query latencies we can conclude that the interaction of the

users is most likely take less than half a second, even for the most intense queries.

Query Pattern/Latency Mean Median 90% Percentile
getCluster 152 103 260
getSpread 247 154 466

Table 3.6: Query latency in UrbanFlow for defined patterns in milliseconds

Our experiments confirm that UrbanFlow can efficiently handle processing large datasets

while providing a fast interactive environment for the users to analyze the result.

46

3.4 Concluding Discussion

In this chapter, we explain our approach for balancing the computational and data loads

on reducers in the existence of skew which is very common for geospatial applications. Our

approach consider the computational intensity of the problems by looking at challenges

arising from both data and computational aspects. We demonstrate the approach using two

well-known problems of spatial data aggregation and point-in-polygon, which were used in

MovePattern and UrbanFlow applications, respectively.

Our experiments confirmed that our approach can effectively balance the load on reducers

by devising a computation plan in the pre-processing step. This plan determines the asso-

ciation of keys to reducers and will enable reducers to process a spatially contiguous block

of data that we demonstrated to be advantageous in other spatial operations such as spatial

nodes summarization.

In addition, we discussed the importance of interactive scalability which is often overlooked

in designing user-driven data-intensive geospatial applications. We evaluated the interactive

scalability of MovePattern and UrbanFlow by performing stress test, designed according to

the real-world workload. Both experiments confirmed that our frameworks can sustain the

sudden increase in users query loads and continue providing fast sub-second responses.

47

CHAPTER 4

SCALABLE INDEXING OF GEOSPATIAL DATA

4.1 Background

The importance of complex geospatial big data in understanding and addressing fundamental

problems in many domain sciences is being increasingly recognized. One of the fundamental

capability needed for handling big geospatial data is ability to index them for efficient storage

and quick access. Though the problem of indexing has been well studied in literature, the

approaches presented are not tailored in the context of large big data [Eldawy and Mokbel,

2015]. This limitation is due to the inability of classic systems to scale to today’s massive

data streams and the lack of sophisticated spatial support on modern data stores.

One well-studied technique to represent spatial data is Geohash. geohash is a form of

Z-order space-filling curve that recursively subdivides a space into smaller regions in a hier-

archical fashion interleaving latitude and longitude bits to represent a location’s coordinate

with a single number (Figure 4.1). Over the past few years, geohash has gained particular

attention to index large spatial data [Malensek et al., 2013a, Fox et al., 2013] because it

provides the following key advantages (1) an effective mapping from coordinate space into

a single key, which can be efficiently stored, updated, retrieved and distributed in modern

key-value datasets (compared to more classic techniques such as r-trees [Malensek et al.,

2013a]); (2) hierarchical nature that facilitates using fast bit operations to support multiple

resolution queries; (3) since geohash is a form of Z-order space-filling curves, locations that

are close by on coordinate space have close geohash value, and this property can be used to

support fast range-based and nearest neighbor queries; and (4) compared to common index

48

structures, geohash does not affect the indexing structure in a recursive fashion and has

only one “stratum” [Liu et al., 2014]. Therefore it facilitates situations where data has high

velocity and/or when the index needs to be concurrently updated.

Figure 4.1: Example of using geohashes with different resolutions

While geohash has been used to index point data [Moussalli et al., 2015], there has been

little efforts to index other spatial objects using geohash. This is mainly due to the complex

process of finding multiple geohashes (often with varying precision) to cover arbitrary spatial

objects [Malensek et al., 2013a]. In this chapter, we introduce two new algorithms to index

lines and polygons using geohashes. The conducted experiments demonstrates the ability of

the algorithms to efficiently index high-precision lines and polygons dataset.

4.2 Geohash-based Indexing of Lines

To index lines we should find all the unique geohashes that intersect with the line (Figure

4.2). This problem can be modeled as a line drawing problem over a digital grid that is

49

well-known to the computer graphics community.

We use a modified version of a fast ray-tracing algorithm [Amanatides and Woo, 1987] to

find all the geohashes. Our algorithm traces the line beginning from the geohash that covers

the starting point of the line, iteratively moving towards the geohash that covers the ending

point of the line. At each iteration we move to one of the neighboring geohash cells, which is

determined based on the line slope (stepX and stepY) and the progress made in the previous

iteration (maxX and maxY). Algorithm 9 illustrates this process. Our modification to the

original algorithm also enables us to overlay the geohash grids which have floating point

cells’ width and height.

Algorithm 9: Algorithm to encode lines using geohashes

input: (x1,y1), (x2,y2), cellWidth, cellHeight, precision
x, y ← 0,gHash1← GeoHash(x1, y1, precision),gHash2←
GeoHash(x2, y2, precision) ;

[endX, endY]← gHash2.point−gHash1.point
[cellWidth,cellHeight]

;

deltaX ← cellWidth
|x2−x1| and deltaY ← cellHeight

|y2−y1| ;

stepX ← sign(x2− x1) and stepY ← sign(y2− y1) ;
fracX ← x1− startGeohash.minX and fracY ← y1− startGeohash.minY ;
if stepX > 0 then maxX ← deltaX × (cellWidth− fracX) ;
else maxX ← deltaX × fracX ;
if stepY > 0 then maxY ← deltaY × (cellHeight− fracY) ;
else maxY ← deltaY × fracY ;
while xReached or yReached do

if maxX < maxY then
maxX ← maxX + deltaX ;
x← x+ stepX ;

else
maxY ← maxY + deltaY ;
y ← y + stepY ;

Result.add(GeoHash(x1 + x× cellWidth, y1 + y × cellHeight, precision)) ;
if x→ endX then xReached← true ;
if y → endY then yReached← true ;

return Result ;

After the set of geohash cells are produced, we merge geohash cells which are child of the

same parent using a greedy algorithm. For instance, suppose we have geohash cells with

50

binary codes 100011, 100010 and 10000. First, 100011 and 100010 will be merged into 10001

and then merged with 10000 to produce 1000. This approach allows us to reduce the number

of geohash cells produced by the algorithm, which results in a smaller indexing structure.

Figure 4.2: Indexing lines using geohashes.

4.3 Geohash-based Indexing of Polygons

Indexing polygons introduces additional challenges since a fixed precision approach [Malensek

et al., 2013b], will either lead to too many geohashes for large polygons or very coarse geo-

hash indexes for small polygons. Therefore, an efficient indexing scheme should consider

geohashes with various precision (Figure 4.3).

51

To address this issue, we designed an adaptive algorithm to recursively divides geohashes

until it reaches the desired accuracy. Therefore, a polygon will be indexed using geohashes

in multiple granularities. Algorithm 10 explains the steps required for finding geohashes that

cover a polygon.

Algorithm 10: Algorithm to encode polygons using geohashes

function geohash(polygon, maxPrecision)
coarsestGeo← find largest geohash that contains polygon ;
geohashRec(coarsestGeo, polygon,maxPrecision, result) ;
return result ;

function geohashRec(geohash, polygons, maxPrecision, result)
if geohash.precision ≥ maxPrecision then

result.add(geohash) ;
5 return ;

if polygon.contains(geohash.boundingBox) then
result.add(geohash) ;
return ;

childs← geohash.getChilds() ;
if polygon.intersect(childs[0].boundingBox) then

geohashRec(childs[0], polygon,maxPrecision, result) ;

if polygon.intersect(childs[1].boundingBox) then
geohashRec(childs[1], polygon,maxPrecision, result) ;

The performance of this algorithm highly depends on the implementation of contain and

intersect spatial operators, which can be expensive for high precision polygons. The cost of

these operations can be reduced using two approaches: (1) probabilistic method (e.g. Monte

Carlo methods) as opposed to the exact calculation; and (2) simplifying the polygon to

reduce the complexity of these two operations. The drawback of the first method is that we

may end up losing some required geohashes for an specific polygon that affects the accuracy

and correctness of the indexing process, while the second approach may result in some excess

geohashes that needs to be removed in the post-processing step. The choice between these

two approaches highly depends on the requirement of the application.

Due to the required accuracy of queries in our platform, we present a solution based on

52

the simplification approach. For high-precision polygons, we replace the original polygons

with their convex hull (using Graham Scan [Graham, 1972]) in the pre-processing step and

perform contain and intersect operations on the replaced simplified polygons. This will

result in dramatic reduction in the overall time of querying process (refer to 4.4). The choice

of simplification method come with a trade-off between the number of geohash cells which

are used to index a polygon and the time complexity of the algorithm. For instance, in most

cases by using concave hull we can achieve a more compressed and concise representation of

the original polygon. However, concave hull algorithms have much higher time complexity

compare to convex hull algorithms.

Figure 4.3: Indexing polygons using geohashes.

53

4.4 Experiments

To evaluate our indexing scheme, we use three datasets representing point, line and polygon

objects:

1. Point Dataset: USGS dataset for Cities and Towns of the United States, including

38186 cities.

2. Line Dataset: List of US Major Road Bases which is gathered by MapCruzin.com

in collaboration with Federal Communications Commissions. This dataset includes

47013 different roads (each of the roads may include multiple line segments).

3. Polygon Dataset: The counties for the entire United States, collected by United

States Census Bureau (500k resolution level). This dataset has 3232 counties (each

may include multiple polygons).

The result of experiments are presented in Table 4.1. For the polygon indexing we compare

the result of the original algorithm, to the modified algorithm (simplifying polygons). To

focus on the performance of the indexing approach we exclude the time for reading the

original data and writing back the result and only measure the indexing time. In addition, in

all the experiment the maximum geohash precision is set to 20 bits. As the result illustrates,

Experiment/Time Mean Median 90% Percentile Geohashes
Point Data 616.5 ns 347 ns 936 ns 38186
Line Data 0.001 ms 0.001 ms 0.003 ms 45363

Polygon Data (Original) 1.90 ms 0.16 ms 2.09 ms 31698
Polygon Data (Modified) 0.29 ms 0.09 ms 0.35 ms 32496

Table 4.1: The performance of our geohashing algorithms on 3 different datasets.

our algorithms can index complex spatial objects in few milliseconds. In addition, we observe

that using the modified algorithm, the indexing time decreases dramatically with slight

increase in the number of geohashes which is expected.

54

MapCruzin.com

4.5 Concluding Discussions

In this chapter, we presented two scalable algorithms to index arbitrary geospatial data

using geohashes. Geohash is a form Z-order space filling curve that has been increasingly

used to index large geospatial data. The main advantages of geohash-based indexing include

a) mapping 2D space into a single key which can be efficiently stored and retrieved and

b) faster update process, compared to traditional approaches such R-tree, in multi-tenant

applications where the index is frequently updated. While geohash has been mainly adapted

to index point data, we present two novel algorithms to efficiently index line and polygon

data using geohash. We use these algorithms to represent and index geospatial objects in

Chapters 5 and 6.

55

CHAPTER 5

DYNAMIC WORKLOAD-AWARE DATA
PARTITIONING

5.1 Background

Distributed frameworks for geospatial data is built on two core processes [Aly et al., 2015]:

1) partitioning data and distributing the resultant chunks among multiple nodes; and 2)

storing and indexing of these chunk. This scheme is also known as using global and local

indexes to distribute the data [Eldawy and Mokbel, 2015]. However, frameworks can vary

significantly when it comes to the details of partitioning and indexing, which is driven by

their use cases.

Most of the existing distributed geospatial management systems focus on read-heavy

batch-processing scenarios, where data comes in bulk with low velocity [Eldawy, 2014, Kini

and Emanuele, 2014, Yu et al., 2015, Aji et al., 2013a]. Such systems can effectively take

advantage of frameworks such as Apache Hadoop [Shvachko et al., 2010a] to distribute data

among multiple nodes, with a local index formed in each node. On the other hand, some

frameworks focus on dynamic data [Nishimura et al., 2013,Malensek et al., 2016,Fox et al.,

2013], where the data comes with high velocity and should be indexed and available to query

immediately. One main drawbacks of the existing distributed frameworks for geospatial data

is that they only support static partitioning of data. In static partitioning, the data is par-

titioned once, either by a fixed scheme [Fox et al., 2013, Nishimura et al., 2013, Malensek

et al., 2016] or based on a data sample [Eldawy, 2014,Yu et al., 2015]. In this case partitions

cannot get updated without re-partitioning the whole data from scratch.

However, over the course of an application, the workload may experience a skew due

56

to existence of hotspots, time-varying skew, load spikes and “honey-stick effect”(sudden

increase popularity of an application) [Taft et al., 2014]. In such cases, static partitioning

of data cannot address the dynamically changing nature of the data. In addition, previous

research highlighted the value of incorporating query workload into the partitioning approach

[Curino et al., 2010,Aly et al., 2015] and avoid presuming any assumption on the workload.

Workload-aware partitioning algorithms provide the solution to unpredictable shifts in the

workload by dynamically finding an optimal partitioning given a set of constraints.

In this chapter, we present an approaches for partitioning data based on a high-volume

and multi-tenant workload. This approach is optimized for the use cases where the ingestion

rate of the data is high and the workload may experience significant shifts on its spatial

distribution overtime.

5.2 Adaptive Workload-aware Partitioning

Adaptive workload-aware partitioning refers to a family of approaches that 1) take workload

into account in defining the partitions and 2) can dynamically change overtime to reflect

the shifts in the workload. There have been extensive studies on designing workload-aware

partitioning for Online Analytical Processing (OLAP) databases [Ghosh et al., 2016, Jin-

dal and Dittrich, 2011]. In these cases, the algorithm focuses on increasing parallelism by

avoiding co-locating popular data blocks in the same partition. In addition, OLAP-based

algorithms work with very coarse-grained data, which require a careful storage utilization

approach [Serafini et al., 2016,Jindal and Dittrich, 2011]. However, our approach is focused

on real-time spatial data which is related to Online Transaction Processing (OLTP).

One main distinguishing factor of OLTP-based algorithms is the higher cost of distributing

a transaction over multiple partitions (inter-partition access), which is known to have a

dramatic effect on the overall performance of the framework. For instance, one study showed

that even with 10% of the transactions distributed, the throughput may be cut in half [Pavlo

57

et al., 2012]. The algorithms for workload-aware partitioning for OLTP databases can be

differentiated over multiple aspects as follows:

• coarse-grained [Quamar et al., 2013] vs. fine-grained [Serafini et al., 2016, Taft et al.,

2014]: While fine-grained approaches can provide more balanced partitions, gathering

usage information for such fine-grained units is quite expensive. One solution to address

this issue is to use a two-step approach [Serafini et al., 2016,Taft et al., 2014]. In the

first step, some coarse-level statistics, such as cpu/memory usage or partition size, are

gathered for each partitions. The first step is continued until a constraint is violated,

e.g. the load imbalance ratio of the partitions exceeds a threshold δ. Then the collection

module moves into the second step, where specific fine-grained statistics are gathered

for a short period of time. The data that is gathered in the second step is used to

define the optimal partitions.

• Optimization approach: One common optimization approach is hypergraph partition-

ing [Curino et al., 2010, Quamar et al., 2013], where a graph is formed based on the

co-access pattern of entities and a k-way partition divides the space into k small com-

ponents minimizing an objective function. This approach is particularly popular since

the problem of graph partitioning is well-studied and efficient implementations of graph

partitioning approaches exist. However, this approach does not consider the existing

partition and generates a new partition from scratch, which is inefficient due to the

cost of moving data and distributing transactions. Another approach is to incremen-

tally tweak existing partitions to derive new partitions [Serafini et al., 2016,Taft et al.,

2014, Aly et al., 2015]. Due to the high complexity of the problem, such approaches

usually employ greedy methods to optimize the workload.

• Cost function: The definition of the cost function varies significantly among different

algorithms. Quamar et al [Quamar et al., 2013] minimize the inter-partition edges

weights while enforcing an upper limit on the load imbalance ratio. Other approaches

58

also limit load imbalance ratio, while minimizing different metrics such as the data

transfer cost [Taft et al., 2014] or inter-partition access count [Serafini et al., 2016].

While previous researchers proposed effective method to provide adaptive workload-aware

partitioning [Taft et al., 2014, Serafini et al., 2016], they are not tailored for spatial data.

Spatial data partitioning should guarantee spatial contiguity [Wu and Murray, 2008] of the

partitions to minimize transaction distribution, which has proven to be a critical factor in

the achieved throughput [Pavlo et al., 2012]. This is particularly challenging since checking

contiguity of a partitioning approach can be expensive [Liu et al., 2016]. In addition we

cannot run the partitioning algorithm in the individual record level, since a) calculating

the optimal partitioning in such fine-grained scale is time-consuming, due to high cost of

spatial operations such as intersect; and b) due to 2d nature of the data if the atomic level is

defined as spatial objects we may get overlapping partitions. Therefore we need to overlay

a fine-grained grid on top of the original data [Aly et al., 2015].

Previous approaches for adaptive workload-aware partitioning of spatial data either focus

on a single centralized server model [Tzoumas et al., 2009, Achakeev et al., 2012] or focus

on splitting some existing partitions as opposed to modify the current partitions [Aly et al.,

2015].

Our approach takes advantage of a distributed architecture and models the partitioning

problem as an optimization problem with spatial contiguity as one of the constraints. We

formulate the optimization problem as finding the partitioning scheme P ′ from partition P

by:

minimize
P ′

FP ′

subject to ∀p ∈ P ′ : p is spatially contigious.

(5.1)

We define FP as a metric to quantify the partitioning desirability which we will discuss

shortly in Section 5.3.

The spatial contiguity constraint make this optimization problem particularly challeng-

59

ing, since contiguity check is an expensive operation [Liu et al., 2016]. Therefore, we use an

incremental approach that migrate spatial units among partitions in a way that spatial con-

tiguity is preserved. Therefore, starting from spatially contiguous partitions, the contiguity

condition will hold in the rest of procedure.

5.3 Partitioning Fitness Evaluation

One of the main challenges in designing an effective partitioning scheme is to define a metric

that can capture the desirability of a partition. Particularly, since the focus of our parti-

tioning algorithm is to provide even loads to the nodes in a cluster, we are pursuing metrics

that quantify load imbalance. However, different metrics measure load imbalance in various

ways and provide different insights on how the load is distributed among different nodes.

In order to choose the best load imbalance metric, we need to consider how this metric

is being used in our approach. For instance, after new statistics regarding workload are

captured from the nodes, the current partitioning scheme is evaluated to determine whether

re-partitioning is required. In this particular scenario, we evaluate whether the Maximum

Load Imbalance Ratio surpasses a threshold. This ratio, which is calculated as a percentage

and defined as [DeRose et al., 2007]:

λ =
Lmax − L
Lmax

× n

n− 1
(5.2)

Here Lmax is the maximum and L is the average load among n partitions. Therefore, the

partition change process will be triggered if λ exceeds θ, which is the maximum allowed load

imbalance.

However, during the evolutionary re-partitioning algorithm we also continuously evaluate

the partitioning scheme to guide the optimization process. In this case, we need a metric

that is sensitive toward variation in the load distribution. The Maximum Load Imbalance

60

Ratio does not provide such information since it is only considering the maximum load. For

instance in Figure 5.1 both partitioning has the same λ value. However, the right partitioning

is considered a better solution in the evolutionary re-partitioning algorithm since it shows

less load variation among different partitions.

Figure 5.1: Two different partitioning with the same λ value that exhibit different
load variation.

To address this issue, we employ a new load imbalance metric as the coefficient of variation

[Arzuaga and Kaeli, 2010] of partitioning P :

CP =
σP
µP

(5.3)

Here σP is the standard deviation of the load among partitions and µP is the mean. This

metric does not solely depends on maximum load and considers the overall load distribution

among different partitions. Therefore, it can be effectively used in the optimization process.

5.3.1 Spatial Compactness

Spatial compactness is a property related to the shape of a spatial object. While there

are many different ways to evaluate compactness [Kai and Boa, 2010], the presence of it

61

in spatial partitioning is encouraged. For instance, consider Figures 5.2a and 5.2b as two

partitioning schemes. It is clear that partitions in Figure 5.2a are less desirable because the

probability of a request to be distributed in multiple partitions is significantly higher (due

to increased border perimeter).

(a) Low compactness (b) High compactness

Figure 5.2: Two partitioning where each partition has the same intensity of 16
with varying compactness.

In our approach, we quantify the spatial compactness using Non-linear Neighbor Method

which measures the number of neighboring cells that shares the same partition assignment

[Kai and Boa, 2010]:

compactness =
P∑
p=1

N∑
i=1

M∑
j=1

Aijpxijp (5.4)

Where

Aijp = xi−1jp + xi+1jp + xij−1p + xij+1p + xi−1j−1p + xi+1j+1p + xi−1j+1p + xi+1j−1p

∀p = 1, ..., P, i = 1, ..., N, j = 1, ...,M

(5.5)

Here xijp = 1 if cell xij has the partition assignment of p and otherwise it is 0.

The compactness is value in the [0, 1) range, where larger value exhibits higher compact-

62

ness which is the more desirable outcome. Therefore we define the combined fitness(P) of

a partitioning P as:

fitness(P) = w1 × CP + w2 × compactness(P) (5.6)

The value of CP can be potentially more than 1, however for such extreme cases with set

the value to 1, which indicates very high deviation. We choose w1 and w2 in a way that

w1 + w2 = 1. In Section 5.7 we present experiments on the effect of different w1 and w2

values on the final load imbalance.

5.4 Approach Layout

Our proposed algorithm is an evolutionary algorithm to solve the optimization problem,

explained in Equation 5.1. The algorithm is based on [Liu et al., 2016], that incrementally

modify the partitions to find one which satisfy the constraints. Checking for spatial contigu-

ity at each step is expensive, therefore we use an algorithm that given an initially spatially

contiguous partitioning scheme, and preserves the contiguity at each step.

The approach can be summarized as:

1. Initialize k new partitioning solutions given the current workload and form the initial

population or use an existing partitioning of data.

2. Repeat this process for maxIterations times:

• Select a member from the population using one of the parent selection methods.

• For the selected solution, run the random spatial migration procedure (explained

in Section 5.6) to derive a new partitioning solution p.

• If there is a partition p′ in the population where fitness(p′) < fitness(p) replace

it with p.

63

5.4.1 Parent Selection Methods

One crucial element of any evolutionary algorithm is the parent selection method which is

used at each step to select the member(s) of population which the evolutionary operation

is applied to. These methods are the gateway of entering solutions from one round of an

evolutionary algorithm to the next. In our approach, we provide three methods for parent

selection [Beasley et al., 1993]:

• Random Selection: In this approach, an individual is randomly selected from the

population.

• Tournament: This method forms a tournament among K randomly selected individ-

uals and introduce the winner of the tournament (individuals with the highest score)

as the parent.

• Rank Selection: Ranks individual in the population according to their fitness value.

Next, it randomly select a solution from the population where higher rank solutions

are more likely to be selected than the lower rank solutions.

In Section 5.7 we observe how the parent selection methods can affect the performance of

the partitioning approach.

5.5 Initialization

In the initialization step, given a query and data distribution, we design a partitioning

scheme that preserves spatial contiguity. We assume that the number of desired partitions

are |P |. We start by randomly selecting |P | geohashes where the probability of selecting cell

g is proportional to loadg. The selected geohash cells form our seed units for each partition.

Then we iteratively expand each partition by adding non-partitioned neighbor geohashes at

each step (Figure 5.3).

64

Algorithm 11: Initialization process to create new partitioning scheme.

function initialize(P, workload)
seeds← randomly select P geohash units, where p(geohash) ∝ load(geohash)
according to the workload
partitions = ∅
visited← Set()
for seed ∈ seeds do

partition← Partition()
partition← partition ∪ seed
visited[seed] = true

while |visited| < workload.geohashes.size do
partitions← sort− ascending(partitions) . grow more sparse partitions first
for partition ∈ partitions do

border ← partition.borderUnits
grow ← ∅
for g ∈ border do

grow ← grow ∪ neighbors(g)

for g ∈ grow do
if g /∈ visited then

partition← partition ∪ g
visited[g] = true

return (partition)

Figure 5.3: Partitions initialization procedure for 8 partitions.

The process is continued till all the geohashes are partitioned (Algorithm 11).

However the initialization approach may lead to form holes in the partitions (Figure 5.4).

There are two strategies to resolve this issue:

1. Select seeds on the boundary units of the study region. In this case, a partition cannot

be completely surrounded by another partition.

65

2. Detect if initialization algorithm result in hole (Refer to Algorithm 12 for hole detec-

tion) and re-run the algorithm till we achieve a hole-free partitioning.

Figure 5.4: The initialization algorithm may form holes in the partitions.

5.6 Spatial Migration Procedure

The goal of spatial migration is to move spatial units (geohashes) among partitions to get

more balanced partitions. Contrary to previous work that use static partitioning algorithms

such as k-d tree and grid partitioning [Eldawy et al., 2015a,Aji et al., 2013b,Fox et al., 2013],

our algorithm does not produce the partitions from scratch and incrementally balance the

partitions by moving small set of spatial units among partitions.

The spatial migration procedure (Algorithm 13) is based on the spatial mutation procedure

defined in [Liu et al., 2016]. In our fine-grained approach, a set of spatial units in partition

A will be selected as the candidates for migration in each iteration and they will move from

partition A to B if the spatial contiguity constraint holds.

We avoid expensive contiguity check by designing the migration procedure that preserves

spatial contiguity at all time. This is achieved by a) starting from a spatially contiguous

66

Algorithm 12: Hole detection algorithm.

function isHoleFree(partitions)
hasHole← true
for partition ∈ partitions do

if hasHole(partition) then
return true

return false

function hasHole(partition)
neighborGeohashes← ∅
for g ∈ partition.borderUnits do

neigbors← neighbor(g)
if size(neighbors) < 5 then

return false . geohash is in the region boundaries

neighborGeohashes← neighborGeohashes ∪ neighbors ;

neighborPartitions← ∅
for g ∈ neighborGeohashes do

neighborPartition← getPartition(g)
if neighborPartition = partition then

neighborPartitions← neighborPartitions ∪ neighborPartition
if size(neighborPartitions) > 1 then

return false . surrounded by more than one regions

return true

initial solution (explained in 5.5) and b) performing spatial operations that preserve conti-

guity. To guarantee the second condition, we change partition of unit g from partition p1 to

p2 if g is located in the border of p1 and p2 (Figure 5.5). This process will provide spatially

contiguous solutions.

Figure 5.5: Example of load migration to decrease load imbalance ratio.

While we guarantee spatial contiguity, there are situations where using this approach we

may break a contiguous partition into two disjoint partitions which is not allowed (Figure

67

Algorithm 13: Spatial Migration Procedure

function migrate(partitions)
src← random partition from partitions (weighted by partitions’ loads) ;
dst← {p|Lp < Lq∀q ∈ neighbors(src)} ;
if load(src) >= load(dst) then

shift(srcPartition, dstPartition) ;

function shift(srcPartition, dstPartition)
seeds← randomly select k units in srcPartition bordering dstPartition ;
candidates← seeds ;
updateUnits← ∅ ;
for iteration ∈ {1, ..,mutationsPerMigration} do

if {src \ candidates} is underloaded OR {dst ∪ candidates} is overloaded
then
break ;

updateUnits← updateUnits ∪ candidates ;
cNeighbors← neighbors(candidates) ;
candidates← ∅ ;
for g ∈ cNeighbors do

if partition(g) 6= src AND g /∈ updateUnits then
candidates← candidates ∪ g ;

dstPartition← dstPartition ∪ updateUnits ;
srcPartition← srcPartition \ updateUnits ;

5.6). We avoid this situation by making sure that every partition shift will keep the boundary

units of affected partitions within a closed path (Algorithm 14).

Figure 5.6: An example of a partition that is split as result of Algorithm 13.

68

Algorithm 14: Check if the migration procedure has caused the partition to be
split.

function split(partition)
borders← partition.getBorders() ;
current← Stack() ;
current.add(borders.iterator().next()) ;
while current 6= ∅ do

geohash← current.pop() ;
borders.remove(geohash) ;
for c ∈ neighbors(geohash) do

if c ∈ borders then
current.push(c) ;

if borders = ∅ then
return false ;

else
return true ;

5.7 Experiments

5.7.1 Experiments Setup

We evaluate our evolutionary partitioning approach by comparing it to the static partitioning

approach and adaptive k-d tree partitioning algorithm. To evaluate our approach we form

a hybrid workload that includes real geo-tagged Twitter data for the year of 2014 (Figure

5.7a) and a series of randomly formed hotspots (Figure 5.7b) to simulate sudden shifts in

the distribution of data. The seeds to generate hotspots are randomly selected from Twitter

data where regions with more data intensity are more likely to have a point represented in

the seeds. Therefore, the final dataset is a combination of actual Twitter data with some

intense regions getting more presentations in each batch of the data. Since spatially focused

and recent queries are more common, the random selection gives exponentially increasing

probability to smaller distances and shorter time periods. The procedure to generate the

test workloads is explained in Procedure 15.

69

Algorithm 15: The procedure to generate experimental workloads.

Procedure GenerateWorkload(tweets)
for recordi ∈ tweets do

With probability p:
Add (recordi) to workload

With probability 1− p:
Add formQuery(recordi) to workload

end
for i ∈ {1, ..., k} do

µ← random point in United States bounds
Ni ← Gaussian2D(µ,Σ)
Add H random records from Ni to hotspots

end
for recordi ∈ hotspots do

With probability p:
Add (recordi) to workload

With probability 1− p:
Add formQuery(recordi) to workload

end

The formQuery(recordi) forms a query around the input point (latitudei, longitudei) as

recordi = (latitudei, longitudei, timei, valuei) where latitude ∈ (latitudei ± d),longitude ∈

(longitudei ± d) and time ∈ (timei ± t). Here d is selected randomly from D = {0.008333,

0.016666, 0.033332, 0.066664,0.133328} in degrees (roughly translates to 1km,2km,...,16km).

In addition, t is randomly selected from T = {1, 2, 4, 8, 16} in days. Since spatially focused

and recent queries are more common, the random selection gives exponentially increasing

probability to smaller distances and shorter time periods.

(a) Real geo-tagged Twitter (b) Random hotspot with 5 seeds

Figure 5.7: Workload spatial distribution for the experiments.

70

The workload is formed in 12 batches, one batch for each month, where each batch includes

50 millions requests. The requests are divided equally between ingestion and query requests

(50% write ratio) which is considered a significantly write-heavy workload. We set k as the

number of hotspots to 10, H as the size of random workload equal to the tweets data.

For each batch, once approximately 10% of the workload is observed, we trigger the

partitioning change process to evaluate the existing partitioning scheme for the observed

workload. The statistics in each node is gathered based on overlaid geohash grid with the

precision of 20 bits which is roughly equals to 156km × 156km spatial units.

We evaluate the partitioning algorithm on three aspects. First, we demonstrate the effect

of using an adaptive partitioning versus an static fixed partitioning. Second, we study how

number of iterations, mutations per migration, the parent selection method and the weights

arrangement of the objective function would affect our evolutionary partitioning algorithm.

Finally, we compare the effectiveness of our evolutionary partitioning algorithm with k-d tree

partitioning. In all the experiments we set k = population− size = 50. All the experiments

were conducted five times and the median values are reported as the final metric. For

the experiments that include measurements in the level of iteration, we report the median

of the targeted metric among all batches. In addition, we define a new metric which is

used in multiple experiments. The partition change measures the weighted percentage of

spatial units (geohashes) that change their partition from arrangement P1 to P2. Specifically,

∆(P1, P2) = Σg∈P1δP1(g)P2(g)loadg/Σg∈P1loadg.

5.7.2 Adaptive vs. Static Partitioning

The goal of the first experiment is demonstrating the value of adaptive partitioning versus

static partitioning. For the static partitioning we use a sample of the data to generate a

partitioning arrangement which will stay constant during the course of the experiment. On

the other hand, the adaptive partitioning gets updated on every workload batch based on

71

the evolutionary algorithm. Figure 5.8 shows how using adaptive partitioning substantially

decrease load variation and the maximum load imbalance ratio.

● ●
● ● ● ●

●

● ●

●

● ●

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

C
P

(a) Load Variation

●
●

●
●

● ●

●

● ●

●

● ●

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12
Iteration

λ P

(b) Load Imbalance Ratio

Approach
● Adaptive

Static

Figure 5.8: Static vs. adaptive partitioning.

5.7.3 Evolutionary Algorithm Tuning

Fitness Function

The first tuning experiment examines the effect of choosing w1 and w2 in defining the fitness

function for a partitioning (Equation 5.6). We examined six different combinations of weights

(Table 5.1). While most of the weight combinations demonstrated a reasonable convergence

of optimization process to a low final load imbalance (Figure 5.9), {0.6, 0.4} shows the lowest

overall norm for all batches of data (Table 5.1). This shows that while load imbalance is still

the dominant factor in defining our fitness function, it should also have a significant trace

from compactness.

72

W1 W2 ‖CP‖ ‖λP‖
0.5 0.5 0.3354575 0.3379257
0.6 0.4 0.04267425 0.06839813
0.7 0.3 0.1170813 0.09567112
0.8 0.2 0.106588 0.0979354
0.9 0.1 0.1825416 0.2175683
1.0 0.0 0.1385816 0.1029528

Table 5.1: The performance of our Geohashing algorithms on 3 different datasets.

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●

0.0

0.1

0.2

0.3

0 250 500 750 1000
Iteration

C
P

(a) Load Variation

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●

0.0

0.1

0.2

0.3

0.4

0 250 500 750 1000
Iteration

λ P
(b) Load Imbalance Ratio

Weights
● 0.5−0.5

0.6−0.4
0.7−0.3
0.8−0.2
0.9−0.1
1.0−0.0

Figure 5.9: The effect of weights for the fitness function on the performance of
the partitioning approach for each iteration.

Mutations Per Migration

Our evolutionary partitioning algorithm incrementally modify the partitions arrangement

by migrating candidate spatial units between partitions in each iteration. The purpose

of our next experiment is determining the effect of number of iterations and number of

mutations per migration (that reflects the size of migration candidate) in balancing loads

among different partitions. Figure 5.10 illustrates load variation and load imbalance ratio

for different iterations and multiple mutations per migration setting. The figure shows that

small choice for mutations per migration (1) is not effective since it is migrating only one

73

spatial unit in each iteration. On the other hand, we observed that using larger values for

mutations per migration (e.g. 10 and 15) may lead to slight increase in ∆ since there will

be more changes made in each iteration. Overall, all the values larger than 1 does not show

any significant improvements over each other.

●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

0.0

0.1

0.2

0.3

0.4

250 500 750 1000
Iteration

C
P

(a) Load Variation

●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●

0.0

0.1

0.2

0.3

0.4

250 500 750 1000
Iteration

λ P

(b) Load Imbalance Ratio

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

0.0

0.1

0.2

0.3

250 500 750 1000
Iteration

∆
(%

)

(c) Partition Change

Mutations per Migration
● 1

5
10
15

Figure 5.10: Performance of the evolutionary partitioning based on number of
iterations and mutations per migration.

Parent Selection Method

As we explained in the layout of the evolutionary partitioning algorithm, we can use multiple

methods to select a partitioning arrangement from the population. This is a crucial step

in evolutionary algorithms in general, known as parent selection. In this experiment, we

evaluate multiple well-known parent selection methods including a) random selection which

randomly select a solution from the population; b) tournament selection which randomly se-

lect a set of parents from the population and select the best solution among those candidates

as the result and c) rank selection that ranks individual in the population according to their

fitness value. Next, it randomly select a solution from the population where higher rank so-

lutions are more likely to be selected than the lower rank solutions. Figure 5.11 shows that

rank selection method outperforms both random and tournament selection methods. The

gap is particularly evident after some iterations where fitness values of partitions are close

74

to each other and using pure fitness proportional methods would not give enough advantage

to better solutions.

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

0.0

0.1

0.2

250 500 750 1000
Iteration

C
P

(a) Load Variation

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●

0.0

0.1

0.2

250 500 750 1000
Iteration

λ P

(b) Load Imbalance Ratio

Parent Selection
● random

rank
tournament

Figure 5.11: Comparison of parent selection methods in evolutionary partition-
ing performance.

Re-partitioning Time

In the last tuning experiment, we measure the running time of the re-partitioning algorithm

(explained in Section 5.6). In Figure 5.12 we plot the offset time (in ms) against CP and

λP . The offset time at any moment is calculated as difference of current time and when the

re-partitioning was started. As expected in evolutionary optimization methods, the figures

illustrate that we can reach a reasonable level of optimization very quickly. However, as we

go along the optimization process rate decreases and it would be more expensive to further

maximize the fitness function. Therefore, specific applications that require more relaxed

constraints on the tolerated load imbalance ratio, may terminate the migration process

much sooner than the maximum number of iterations.

In addition, Figure 5.13 shows the running time for each iteration. We observe that offset

time has a linear relationship to the number of iteration, which conveys that in each iteration

we expect similar computational intensity, determined by mutationsPerMigrations.

75

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●●

● ●

●● ●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0 3000 6000 9000
Time Offset (ms)

C
P

(a) Load Variation

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0 3000 6000 9000
Time Offset (ms)

λ P

(b) Load Imbalance Ratio

Figure 5.12: Offset time (in ms) vs. performance of the migration process.

●●
●
●●●●●●●●
● ●●

●●

●

●●●
●
●●
●

●●●
●

●

●
●
●

●
●
●

●

●●●
●
●

●
●
●

●

●
●

●

●●●

●
●

●

●
●

●

●●

●

●●●

●
●
●
●●

●

●
●

●

●●●

●
●
●

●
●

●

●
●

●

●
●●

●
●
●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

0

3000

6000

9000

250 500 750 1000
Iteration

T
im

e
O

ffs
et

 (
m

s)

Figure 5.13: Offset time (in ms) for each iteration of the migration process.

5.7.4 Evolutionary Algorithm vs. Adaptive K-d Tree

The this experiment compares our evolutionary partitioning algorithm to adaptive k-d tree

partitioning which adapt the partitioning based on the observed sample of data, similar

to our evolutionary approach. We compare these approaches in terms of load variation,

load imbalance ratio and partition change. Figure 5.14 shows that evolutionary partitioning

method outperforms adaptive k-d tree in terms of load variation and load imbalance ratio

since it operates on a finer grain by optimizing the assignment of each individual spatial

unit. In addition, we observe that evolutionary approach demonstrates lower ∆ since it does

not generate the partitions from scratch and modify the existing partitions.

76

● ●

●

●

●

●
●

●

●

●

●

●

0.000

0.025

0.050

0.075

0.100

0.125

1 2 3 4 5 6 7 8 9 10 11 12
Iteration

C
P

(a) Load Variation

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

λ P

(b) Load Imbalance Ratio

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

∆
(%

)

(c) Partition Change

Algorithm
● Adaptive Kd−Tree

Evolutionary

Figure 5.14: Comparison of different partitioning approach in terms of load
variation, load imbalance ratio and changes in the partitions.

5.8 Concluding Discussions

In this section, we discuss our novel adaptive partitioning algorithm for geospatial data.

Our algorithm addresses the shortcoming of previous static partitioning approaches which

were unable to react to changes in the workload. Our approach models the partitioning

problem as a fine-grained spatial optimization problem, which we solve using an spatially-

tuned evolutionary algorithm. The evolutionary procedure gradually modify the existing

partitioning of data to regain the balance among partitions.

We evaluated our approach using a simulated dataset that includes both normal workload

and hotspots. The experiments demonstrated that our approach outperforms static parti-

tioning algorithms in terms of final load imbalance. In addition, we successfully showed that

our approach outperforms adaptive Kd-Tree approach in terms of both load imbalance and

cost of changing the partitions.

In the next chapter we discuss GeoBalance, a framework that implements our adaptive

partitioning approach on top of a cloud-based cyberGIS infrastructure.

77

CHAPTER 6

GEOBALANCE: WORKLOAD-AWARE
FRAMEWORK TO MANAGE REAL-TIME

SPATIOTEMPORAL DATA

6.1 Background

Over the past two decades cloud-based systems have stabilized themselves as the most pop-

ular choice for data-driven applications. In particular, Geospatial community has embraced

the cloud architecture to host data-intensive applications [Yang et al., 2011, Wang et al.,

2015]. The strength of cloud-based systems comes from three main capabilities [Cooper

et al., 2010]:

• Scale-out to support large dataset and high request rate.

• Elasticity to easily add more resources to improve the performance.

• High availability to provide reliable services.

To fully take advantage of cloud computing, the system should also adapt a highly decentral-

ized architecture [Gupta et al., 2016]. This principle strongly influences the optimal design

for data-driven frameworks. While some previous research [Eldawy and Mokbel, 2015] has

claimed that built-in data management system are more efficient than designing a separate

and independent data management layer, they did not take into consideration requirements

that arise from running data-driven applications in the cloud space. First, the layered design

is crucial to address the growing complexity of data-driven applications [Gupta et al., 2016].

In addition, tightly integrated database can limit the horizontal scalability due to ineffec-

tive resource utilization [Hasselbring, 2016]. Therefore, we propose an independent data

management middleware that can be easily linked to different data storage technologies.

78

One phenomena which has been tightly coupled with cloud computing over the past few

years, is the design principle of having lightweight and highly focused services, called mi-

croservices. Microservices are introduced to increase the cohesion of the systems and decrease

the coupling by providing set of small services that communicate through a fast network-

protocol. The main advantages of using microservices are [Newman, 2015]:

• Technology heterogeneity: The ability to choose different technologies for different

components that best fit the task, as oppose to one-size-fit-all approach.

• Resilience: The system can continue functioning, even if a component fails (no failure

cascading).

• Scaling: As oppose to monolithic system, where all the components should scale to-

gether, we can choose which part of the system to scale.

• Organization alignment: Provides higher efficiency by allocating tasks to small teams.

• Composability: The opportunity to reuse functionalities for different scenarios.

In this chapter, we introduce GeoBalance, a workload-aware framework which is designed

for managing real-time spatiotemporal data sources. This framework takes advantage of the

adaptive workload-aware partitioning algorithm that we discuss in Chapter 5 and provide a

scalable and reliable environment for write-intensive geospatial applications. In the rest of

this chapter, we will discuss the architecture of GeoBalance and discuss strategies for model-

ing workload, adding/removing nodes on demand (elasticity), rolling partitioning migration

and data replication. In addition, we present multiple experiments to demonstrate the scal-

ability of GeoBalance approach, as well as the advantage of using our adaptive partitioning

algorithm in the framework.

79

6.2 Architecture

GeoBalance takes advantage of a highly decentralized architecture to follow the separation of

concerns (SoC) design principle, which is crucial to address the growing complexity of data-

driven applications [Gupta et al., 2016]. GeoBalance consists of loosely coupled microservies

that communicate together via the network and provide high availability and scalability

that cannot be achieved using monolithic designs. Since each of the services are operating

independently from each other, failure does not cascade in the system. Furthermore, each

component can scale separately to address the application’s needs. Tightly integrated data

management systems can limit the horizontal scalability due to ineffective resource utilization

[Hasselbring, 2016].

The architecture of GeoBalance has a specific focus on real-time spatiotemporal data

and designed to handle highly skewed spatiotemporal data that can experience significant

workload shifts over time. It is important to emphasize that GeoBalance focuses on real-

time data and stores data for a limited time window. After the time window has passed, the

data is expired and may be moved to another data management system which is designed to

answer queries for historical data. The separation of batch(historical) and streaming(real-

time) processing of data is known as Lambda architecture [Marz and Warren, 2015] which

is a common practice in systems that require handling a massive amount of data. In this

architecture, the real-time portion is focused on fast ingestion of data as opposed to the

historical portion which provides analytical capabilities for very large data and is designed

for read-heavy workloads.

There are four main components in the GeoBalance framework (Figure 6.1): (i) data nodes;

(ii) broker nodes; (iii) configuration store; and (iv) coordinator nodes; which are implemented

as microservices that can be deployed on multiple nodes in a distributed fashion. The roles

and responsibilities of each are detailed below.

1. Data nodes are each responsible for indexing and storing a portion of the data. Data

80

nodes encode spatial objects using geohash-based algorithms and store them using a

technique which is described in Section 6.2.1. As we explained earlier, the data nodes

will expire the data after time window t and schedule them to be removed. Finally,

the data nodes periodically contact the configuration store to announce their observed

workload and usage statistics.

2. Broker nodes act as routers for incoming users requests. Using up-to-date partition-

ing information synchronized from the configuration store, the broker nodes determine

which data node(s) should be contacted to insert/retrieve the data. In our current im-

plementation of GeoBalance, broker nodes focus on spatial and temporal dimensions

of the data to determine the related partitions.

3. Configuration store is distributed data storage that can efficiently share config-

uration data among multiple microservices. The store, implemented using Apache

Zookeeper [Hunt et al., 2010], synchronizes the data among multiple services and

guarantees eventual consistency.

4. Coordinator nodes periodically contact the configuration store to capture usage

statistics and workload of each node. They use this information to decide whether a)

scale-in/out is required and/or b) partitions should change to maintain load balance

tolerance. In the case that a change is required, the coordinator nodes initiate the

transition process.

The data nodes in GeoBalance are implemented using Vert.x, a Java-based event-driven

framework 1 and store data using RocksDB 2. RocksDB is an embedded database which was

developed by Facebook and optimized for low-latency storage, such as SSDs or memory.

RocksDB uses Log Structured Merge (LSM) tree [O’Neil et al., 1996] (Section 6.2.1) which

is optimized for write-heavy workloads where the index is frequently updated [Kim et al.,

1https://vertx.io
2https://rocksdb.org

81

https://vertx.io
https://rocksdb.org

Figure 6.1: GeoBalance micorservice-based architecture.

2017]. In addition, we configure the RocksDB instances to use memory and tune them for

in-memory prefix-search workloads which we take advantage of to perform spatial queries.

The core contribution of GeoBalance is the workload-aware spatiotemporal partitioning

approach (Chapter 5). In this approach, coordinator nodes gather statistics regarding work-

load intensity (Section 6.3). Based on these statistics, an objective function is defined to re-

flect the desirability of current partitions in terms of load imbalance. Based on a pre-defined

set of constraints, such as the maximum load-imbalance threshold, coordinator nodes may

trigger a partition change in case one or more constraints are violated. In the partition

change process, we start from the existing partition and incrementally modify the partitions

to achieve more balanced partitions.

In addition, GeoBalance is able to provide elasticity by enabling scale-out and scale-in

capabilities for horizontal scaling. If multiple nodes are overloaded or if the partitioning

algorithm cannot provide a feasible answer for the existing workload, a node will be added

to the cluster and the partition change process is triggered again to find a feasible solution

in the modified cluster. Similarly, in case one or more nodes are underloaded, a node will

82

be removed from the cluster and the partitions will be updated accordingly. The details of

elasticity strategies is explained in Section 6.4.

GeoBalance provide reliable service to the users by a) employing a rolling migration ap-

proach for changes in the partitioning scheme to continue serving queries while re-partitioning

is happening (Section 6.5) and b) provide data replication capabilities to handle possible fail-

ures in the data nodes (Section 6.6).

6.2.1 Log structured Merge Trees

Log Structured Merge Trees (LSM-trees) [O’Neil et al., 1996] is a popular approach to store

data for write-intensive application, which is used in systems such as LevelDB 3, Apache

Cassandra [Lakshman and Malik, 2010] and RocksDB. The power of LSM-tree comes from

its multi-level structure to store data which can support fast ingestion of data.

LSM-trees stores the incoming data into an in-memory write buffer, called mem-table.

Mem-tables are usually implemented using sorted tree structures such as Red-black tree

[Guibas and Sedgewick, 1978]. In addition to mem-table, the data is inserted into a Write-

Ahead Log (WAL) which is used for recovery purposes when failure happens in the system.

When the size of mem-tables reach a limit (defined based on the application), three opera-

tions happen:

1. A new mem-table and WAL is created to service the future write requests.

2. The old mem-table is flushed to a “Sorted Sequence Table” (SST) file.

3. After the old mem-table content is flushed, WAL and mem-table of the flushed data

are discarded.

Over the time, the number of SST files may increase, which in turn will lead to performance

degradation. This is mainly due to a) possible existence of multiple versions of the same

3http://leveldb.org

83

http://leveldb. org

record and b) data for the same key exists in multiple SST files [Kleppmann, 2017]. To

address this issue, LSM-tree use a process called compaction to merge smaller SST files into

larger ones with non-overlapping key ranges. This process also ensures that out-dated values

for the keys are discarded. Compaction is the most crucial step in LSM-trees and ensures

that the performance of the LSM-tree does not degrade significantly as the new data arrives.

Due to sorted nature of SST files, the compaction process can be done quite efficiently

by employing methods such as Merge Sort. In addition, all the writes in the compaction

process are performed using sequential I/O and in bulk, which is the main reason for lower

write amplification of LSM-tree compared to other approaches such as B-tree [Dong et al.,

2017]. Finally, the compaction process can be run in the background to avoid disrupting the

ingestion and retrieval of data.

The compaction process is usually implemented in multiple levels (called leveled com-

paction) to give higher priority to more recent data and avoid having many SST files in a

single level. In this scheme, if size of all SSTs in level L surpass a threshold, then one or

multiple SSTs of level L are merged with their overlapping SSTs in level L+ 1.

Despite the fast and low-latency processing of write requests in LSM-tree, the read requests

can be quite expensive. For read requests, we first need to check the memtable to see if it

contains the data. If not, we move to the most recent segments which is stored on the disk.

Subsequently we may need to check multiple levels of SSTs to find the key. To speed up the

process, most implementation of LSM-trees store a) in-memory index of multiple offsets for

the SSTs to speed up the look-up process and b) maintain a Bloom Filter [Bloom, 1970] of

the keys, which enables fast checking for keys which do not exist in the ingested data.

The overall process of LSM-tree for read/write requests is demonstrated in Figure 6.2.

84

Figure 6.2: Log Structured Merge Tree.

6.3 Modeling Workload

As we explained in Section 6.2, coordinator nodes periodically contact the Zookeeper store

to get a record of the most recent workload data, which were collected from data nodes.

In addition, the data nodes may call coordinator nodes to trigger a partition check if the

resource usage of a node (disk, memory, etc.) surpasses a certain threshold. In each update,

two entities are being tracked: data and query distribution as the workload distribution and

resource usage of each node in terms of percentage (resourceused/resourcemax).

The workload distribution is reported based on geohashes with a fixed precision (grid

representation) defined by the user. The algorithms explained in Chapter 5 are used to form

the grid-based representation of spatial objects. The grid representation enables efficient

workload monitoring and the fast comparison of two partitioning solutions. In addition, the

grid representation provides faster spatial operations, such as border detection and finding

85

neighboring regions. The size of the grid dictates the trade-off between more fine-grained

optimization and time and resources spent for the collection of metrics. The grid cells are

the most basic unit for the optimization problem, therefore a partitioning scheme is defined

by assigning each geohash cell to a partition.

It is common for a data node to experience temporary load spikes [Malensek et al., 2016],

which are sudden increases in the intensity of data and/or query associated with a particular

data node that lasts for a short period of time. To avoid changing the distribution for such

short-term changes, we extend the definition of workload distribution to the past k reported

metrics. Therefore at time t, the workload of node i is defined as:

Workload′i(t) =
k∑
j=1

workloadi(t− j)× wj (6.1)

We use the same formula to calculate the smoothed resource usage over time. Here w =

[w1, ..., wk] is the window kernel, which is defined based on exponential decay to put more

emphasis on more recent collected statistics. Using this strategy, given λ as the exponential

decay constant, the value of wj is calculated as:

wj = w0e
−λj (6.2)

In our case, we have the additional constraints of
∑k

j=1wj = 1. Therefore:

k∑
j=1

w0e
−λj = 1→ w0 =

e−λ − 1

e−λk − 1
× eλ (6.3)

The λ parameter determines how much relative effect is given to the previous workloads.

Larger value of λ results in giving more weight to more recent workloads observations. Figure

6.3 demonstrates the effect of λ in selecting weights for 8 partitions.

Once the smoothed workload is calculated, Li, the load of partition i, is defined as the

sum of geohash cells’ loads that exist in that partition.

86

Figure 6.3: The effect of λ in determining workload weights based on exponential
decay formula.

6.4 Elasticity Strategies

GeoBalance employs strategies to add/remove nodes on demand to provide better resource

utilization according to the observed workload. In this section, we explain the condition and

process of adding/removing nodes to the framework.

A node will be added if there exists a node i which is overloaded or if Resourcei >

γ ×Max − Resourcei (γ is the resource threshold). Similarly, a node will be removed if

it is marked as underloaded. Assuming θ as the maximum load imbalance allowed in the

framework, we call partition i overloaded if Li > (1 + θ)L and underloaded if Li < (1− θ)L

[Serafini et al., 2016].

If a new node is added to the framework, we should increase the number of partitions to

accommodate the new resource. This process is different than the re-partitioning process

which is explained in Chapter 5, since the re-partitioning algorithm modify the current exist-

ing partitions. When a new node is added to the framework, the partition with the highest

87

load is selected as the candidate and the two most dense spatial units in that partition are

chosen as the seed point. Then an expansion procedure (similar to the algorithm explained

in Section 5.5) is run to expand these two seed points into partitions. The only additional

constraint is that the expansion procedure is not allowed to go beyond the borders of the

original partition.

In addition, when a node is removed from the framework we should assign its partitions to

other nodes. However, this process should maintain the spatial contiguity of the partitions.

In our approach, for each partition that needs to be reassigned, we merge the partition with

the neighbor partitions that has the least load.

It is crucial to note that when the partitioning reassignment is done as the result of

adding/removing new nodes, we may need to run the re-partitioning algorithm to balance

the loads of partitions.

6.5 Rolling Partitioning Migration

GeoBalance is designed to be a highly available framework; therefore, the framework should

continue to serve users requests during the partition transition period. We define the par-

tition transition period as the period of time where there are still data in the framework

which had been distributed according to the old partitions. This period starts when the new

partitioning approach is deployed and ends when all the data from previous partitioning

approach are marked as expired. During this period, insert operations will be made accord-

ing to the most up-to-date partitioning scheme. However, based on the temporal range of

the query, we may need to look for the data according to the older partitioning scheme as

well. For instance, if new partitions are employed at 2:00PM, a query that requests data for

1:55PM to 2:05PM needs to explore both old and new partitioning schemes to determine

nodes where matching data might exist.

To maintain the availability of system during the partition transition period, we use a

88

“rolling-based” technique, which gradually migrates partitions by maintaining multiple par-

titioning schemes of the data to hide the partitioning details from users and provide con-

tinuous access to the system. Figure 6.4 demonstrates an example of the rolling migration

technique for two partitioning schemes. While in theory this approach can host multiple

partitioning schemes concurrently, in practice the number of concurrent partitions is lim-

ited due to the quick expiration policies of real-time systems. The rolling-based technique

provides a temporal element into our partitioning approach by distributing queries on older

and recent data separately.

One final consideration related to the transition period is the potential inconsistency

of broker nodes regarding the up-to-date partitions. Since Zookeeper provides eventual

consistency, for a very brief period of time, nodes might not be in sync about the most

up-to-date partitions. To guarantee the correctness of queries which are related to this time

window, we take into account a grace period for the partitions to get deployed into all nodes.

Therefore, if the transition period ends at time t, we will not expire the old partition until

t+ α, where α is the grace period to make sure there is no data loss in the query result.

6.6 Data Replication

GeoBalance provides the optional functionality of data replication as a failure recovery mech-

anism when one or multiple node become unavailable. In that case, broker nodes will use the

replica partitions until the failed node is up and running again. This is a crucial capability

to ensure the reliability of the framework, since node failures is quite common in commodity

clusters.

In order to assign partitions and their replicas to nodes it is required that: 1) partition

i should be assigned to exactly ki unique nodes and 2) the load imbalance among different

nodes should be minimized. We model the replication assignment problem using the m× n

matrix B where:

89

Figure 6.4: Using rolling-based migration to provide continuous access to the
framework in the partition transition period.

Bij =

 1 if partitioni ∈ nodej

0 otherwise
(6.4)

In Section 5.3, we introduced two metrics for measuring load imbalance. For replication, we

use Equation 5.2 since we are interested in minimizing the maximum load that a node in

the cluster sustain. Therefore, the problem can be formulated as:

minimize
B

Lmax = max({
m∑
i=1

Bij × Li : j ∈ {1, ..., n}}

subject to
n∑
j=1

Bij = ki ∀i ∈ {1, ...,m}
(6.5)

We then convert this problem to a mixed integer programming problem by introducing the

90

dummy variable γ:

minimize
B

γ

subject to
n∑
j=1

Bij = ki ∀i ∈ {1, ...,m},

m∑
i=1

Bij × Li ≤ γ ∀j ∈ {1, ..., n}

(6.6)

This assignment can be easily solved using common mixed integer programming methods.

Figure 6.5 demonstrates an example of assigning 8 partitions to 4 nodes using fixed repli-

cation factor of 2 (each partition will be assigned to 2 nodes).

Figure 6.5: Data replication example with fixed replication factor.

However, based on the requirement of the application, we can set different replication

91

factor. This is particularly useful when we want to balance out query loads of different

partitions without re-partitioning the data. Figure 6.6 demonstrates an example where the

replication factor varies among different partitions.

Figure 6.6: Example of data replications where replication factor varies among
different partitions.

6.7 Experiments

GeoBalance’s architecture allows the framework to scale in two dimensions. First, we can

add new partitions by adding new nodes and launching data node services on those nodes.

Data nodes adapt a “shared nothing” architecture and operate independently of each other.

92

However, we can also scale GeoBalance by adding more data node microservices to each

node to take advantage of multi-core processors. Contrary to how data nodes act across

nodes, data node instances are interacting with data through a shared storage space, which

is the RocksDB database. Therefore they are competing for resources and may require some

level of synchronization in the ingestion process.

For the experiment of this section, we use the same simulated dataset as Chapter 5. The

dataset includes 12 batches (one for each month of 2014) and includes hotspots.

In the first experiment, we study how GeoBalance scales when 1) the number of nodes

increases by adding partitions (Figure 6.7), and 2) the number of data node microservices

increase in a single node (Figure 6.8). We conclude that while by increasing instances

in a node we may observe an slightly higher latency due to instances competing for the

shared resource and the inevitable context switch, overall we reach a better throughput by

interleaving request processing time and database access latency. However, we also observe

that having 20 instances per node slightly outperforms having 30 instances per node. This

is due to the fact that by launching too many microservices on a single node, the resource

contention outweighs the benefits of concurrent request processing.

In the last experiment, we compare our evolutionary adaptive partitioning algorithm versus

static partitioning, which will stay constant during the course of the experiment. While in

Chapter 5 we compared these two approaches in terms of load variation and load imbalance,

in this experiment we examine the effect of these algorithms on the throughput. Figure 6.9a

demonstrates that our algorithm consistently outperforms static partitioning for all batches

of data (although for the first batch, both algorithms practically use the same partitioning).

However, the overall throughput is dominated by the effect of long-running queries, which

result in thousands of responses. Therefore, in Figure 6.9b we examine the throughput by

looking into the distribution of time it took partitions to serve all the requests (ingestion +

retrieval). This figure shows that partitions which were generated by the static partitioning

algorithm are a) inconsistent in their running time as they may deal with a significantly

93

● ● ● ● ●
● ● ● ● ● ● ●

5 × 10+5

1 × 10+6

1.5 × 10+6

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

T
hr

ou
gh

pu
t

(R
eq

ue
st

s/
se

c)

(a) Minimum Throughput

● ● ● ● ● ● ● ● ● ● ● ●

5 × 10+5

1 × 10+6

1.5 × 10+6

2 × 10+6

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

T
hr

ou
gh

pu
t

(R
eq

ue
st

s/
se

c)

(b) Maximum Throughput

Number of Partitions
● 1

2
4
8

Figure 6.7: Partitions’ minimum and maximum throughput for increasing num-
ber of partitions (number of microservices per node = 20).

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●● ●●●●●●●●

●●●●●●●●

●●●●●●●●

5 × 10+5

6 × 10+5

7 × 10+5

8 × 10+5

9 × 10+5

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

T
hr

ou
gh

pu
t

(R
eq

ue
st

s/
se

c)

(a) Throughput

●●●●●●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●● ●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

100

125

150

175

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

La
te

nc
y(

µs
)

(b) Latency

Microservices per Node
● 10

20
30

Figure 6.8: GeoBalance throughput and latency when number of microservices
per node increase (number of partitions = 8).

different number of requests and b) may experience long running times (the long tail). On

the other hand, our approach produces partitions which deal with roughly the same number

of requests, which leads to less deviation in their running time and better throughput.

94

●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●● ●●●●●●●● ●●●●●●●●

●●●●●●●●

●●●●●●●●

5 × 10+5

6 × 10+5

7 × 10+5

8 × 10+5

9 × 10+5

1 2 3 4 5 6 7 8 9 10 11 12
Workload Batch

T
hr

ou
gh

pu
t

(R
eq

ue
st

s/
se

c)

(a) Throughput

0.00

0.01

0.02

0.03

0.04

0.05

25 50 75 100
Total Time(s)

D
en

si
ty

(b) Distribution of time per partition.

Approach
● Adaptive

Static

Figure 6.9: Adaptive vs. static partitioning.

6.8 Concluding Discussions

In this chapter, we presented GeoBalance as a workload-aware framework to manage real-

time spatiotemporal data that deploys our adaptive partitioning algorithm (Chapter 5).

GeoBalance takes advantage of a highly decentralized microservice-based architecture which

provides scalability, elasticity and availability. Particularly, we discussed GeoBalance’s ap-

proaches to characterize the workload, replicate data, add/remove nodes on demand and

migrating partitions. In addition, we used the simulated dataset which was generated

in Chapter 5 to measure observed latency and throughput of read/write requests for the

GeoBalance framework.

95

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary of Contributions

My research explores scalable algorithms and architectures that embrace workload as a crit-

ical component to efficiently distribute data in data-intensive geospatial applications. The

workload focus introduces significant new challenges in designing both static and dynamic

data-intensive applications. In this first phase of my research, I focused on scalability and

evolvability of data-intensive geospatial software systems. Throughout my research, I de-

signed algorithms that can scale for high-volume and fast-pace data streams and explored

approaches that can efficiently adapt to changes in the intensity of data and related services

as the system evolves. In addition, I designed and implemented multiple interactive geospa-

tial applications in the process to a) explore real-life requirements of data-intensive geospatial

applications and b) evaluate our proposed algorithms and architectures in practice. In Chap-

ter 2, I demonstrate MovePattern, GeoHashViz, UrbanFlow and CyberGIS-Fusion as four

applications based on intensive geospatial data. The requirements of such applications are

the main motivations behind the rest of the thesis.

The overarching goal of the research is to use workload-aware spatial data management

to achieve three critical goals in designing data-intensive software applications: scalabality,

maintainability and reliability [Kleppmann, 2017]:

Scalability: In Chapter 3, we introduce novel algorithms to achieve load balancing in

data-intensive geospatial applications. Our approach uses a sample of the data or a theo-

retical analysis to build a computational plan, which is used to assign tasks to distributed

96

workers. The plan can be efficiently updated as the requirements of the applications change.

We evaluated our load balancing approach using two well-known spatial operations, multi-

resolution aggregation and point in polygon. Our experiments demonstrate that our load

balancing approach enables the spatial operations to seamlessly scale as the data grows.

In addition, we evaluated the “interactive scalability” [Liu et al., 2013] of the two applica-

tions built on top of the spatial operations. The goal of this experiment is to confirm that

our approach can sustain its performance under dynamic workload. Our experiments con-

firmed that increasing access rate and short-term popularity of specific regions (which are

quite common scenarios in data-intensive geospatial applications) do not cause significant

increase in the latency of interacting with the applications.

Maintainability: In a data-intensive application, maintainability refers to the ability of

the application to adapt to changes in their lifetime [Kleppmann, 2017]. This is particularly

critical for today’s data-intensive geospatial applications, as new data sources are revealed

in a fast pace. Chapter 5 explores algorithms for adaptive workload-aware partitioning

of geospatial data. Our algorithm is specifically designed to address inevitable workload

changes, by modeling the partitioning process as an spatial optimization problem that is

continuously evaluated against the observed workload. We propose an evolutionary algo-

rithm to re-partition data when load imbalance is observed. Therefore, we do not partition

the data from scratch, as opposed to previous methods such as Adaptive K-d Tree. Our

experiments confirm the advantage of our approach over static partitioning methods and

previous adaptive partitioning methods in terms of maximum load imbalance ratio, load

imbalance deviation and cost of changing the partitions.

Reliability: Chapter 6 introduces the GeoBalance framework, which implements the

adaptive partitioning algorithm discussed in Chapter 5. The main research contribution of

GeoBalance is to achieve reliability by designing cloud-based elastic architecture and address

possible failures of services. Particularly, GeoBalance realizes a) Elasticity (Section 6.4) by

dynamically allocating resources to different distributed components; b) Replication (Section

97

6.6) and c) Rolling Migration (Section 6.5), which is used to sustain the availability of the

framework when a partition change is in progress. We evaluated GeoBalance framework

under different number of nodes and services per node. Our experiments highlight the

measured performance of GeoBalance (in terms of throughput and latency) using innovative

microservice-based architecture, in addition to taking advantage of the adaptive partitioning

algorithm.

7.2 Future Work

The workload-aware management of geospatial big data is a research topic that has gained

increasing attention during recent years [Aly et al., 2015, Taft et al., 2014, Serafini et al.,

2016,Quamar et al., 2013]. This is particularly critical in cloud-based architectures, since if

data cannot be optimally distributed, we have to allocate resources based on the maximum

needs of applications which leads to poor performance utilization [Serafini et al., 2016].

This challenge has been tackled by the innovation of evolutionary architecture which is

designed to automatically adapt to the changes in both resources and workload. Evolutionary

architecture has quickly became a critical factor in many data-intensive applications, as

simple heuristics cannot adapt to the pace of changes.

While we studied algorithms and architectures that enable workload-aware management

of dynamic and massive geospatial data, the evolutionary architecture philosophy can be

applied to other important tasks in managing the data as well. For instance, one of the

most important and time-consuming operations in data-intensive geospatial applications is

multi-dimensional indexing [Malensek et al., 2016]. In many real-world applications, the

geospatial data sources are accompanied by other types of data, e.g. time, environmental

measures and texts. In this scenario, an effective indexing approach is desirable to index

the data in multiple dimensions to take into account the growing complexity of the data.

However, according to evolutionary architecture, the data intensity may grow in different

98

directions over time. Therefore, the indexing approach should be able to address this growth

by optimizing indexing over time. One immediate use case of such indexing approach is

smart city applications. In such applications data comes from multiple different sources,

measuring fundamentally different quantities with varying spatial and temporal resolutions.

An adaptive geospatially tuned indexing approach could digest such data without manual

intervention that is not practical for dynamic data sources.

In addition, I am planning to extend our workload modeling to a graph-based model where

the intensity of a workload is not only defined based on the intensity of each spatial unit, but

also with the joint intensity among neighboring spatial units. This graph-based model can be

effectively used in data partitioning processes to assign spatial units that are accessed more

frequently with each other (in both query and data workload) into the same partition. This

strategy promises to dramatically improve the performance of the partitioning approach by

eliminating the number of distributed transactions, which is proved to be a major cause of

performance degradation in distributed data management [Serafini et al., 2016].

99

REFERENCES

[esr, 2013] (2013). Esri gis-tools-for-hadoop. https://github.com/Esri/
gis-tools-for-hadoop.

[Achakeev et al., 2012] Achakeev, D., Seeger, B., and Widmayer, P. (2012). Sort-based
query-adaptive loading of r-trees. In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages 2080–2084. ACM.

[Aji et al., 2013a] Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J.
(2013a). Hadoop gis: a high performance spatial data warehousing system over mapreduce.
Proceedings of the VLDB Endowment, 6(11):1009–1020.

[Aji et al., 2013b] Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., and Saltz, J.
(2013b). Hadoop gis: A high performance spatial data warehousing system over mapre-
duce. Proc. VLDB Endow., 6(11):1009–1020.

[Aly et al., 2015] Aly, A. M., Mahmood, A. R., Hassan, M. S., Aref, W. G., Ouzzani, M.,
Elmeleegy, H., and Qadah, T. (2015). Aqwa: adaptive query workload aware partitioning
of big spatial data. Proceedings of the VLDB Endowment, 8(13):2062–2073.

[Amanatides and Woo, 1987] Amanatides, J. and Woo, A. (1987). A fast voxel traversal
algorithm for ray tracing. In In Eurographics ’87, pages 3–10.

[Arzuaga and Kaeli, 2010] Arzuaga, E. and Kaeli, D. R. (2010). Quantifying load imbalance
on virtualized enterprise servers. In Proceedings of the First Joint WOSP/SIPEW Inter-
national Conference on Performance Engineering, WOSP/SIPEW ’10, pages 235–242,
New York, NY, USA. ACM.

[Beasley et al., 1993] Beasley, D., Bull, D. R., and Martin, R. R. (1993). An overview of
genetic algorithms: Part 1, fundamentals. University Computing, 15(2):58–69.

[Berger and Bokhari, 1987] Berger, M. and Bokhari, S. (1987). A partitioning strategy
for nonuniform problems on multiprocessors. Computers, IEEE Transactions on, C-
36(5):570–580.

[Bloom, 1970] Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426.

[Blum et al., 1973] Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L., and Tarjan, R. E.
(1973). Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461.

100

https://github.com/Esri/gis-tools-for-hadoop
https://github.com/Esri/gis-tools-for-hadoop

[Bora et al., 2014] Bora, N., Chang, Y.-H., and Maheswaran, R. (2014). Social Computing,
Behavioral-Cultural Modeling and Prediction: 7th International Conference, SBP 2014,
Washington, DC, USA, April 1-4, 2014. Proceedings, chapter Mobility Patterns and User
Dynamics in Racially Segregated Geographies of US Cities, pages 11–18. Springer Inter-
national Publishing, Cham.

[Cao et al., 2015] Cao, G., Wang, S., Hwang, M., Padmanabhan, A., Zhang, Z., and Soltani,
K. (2015). A scalable framework for spatiotemporal analysis of location-based social media
data. Computers, Environment and Urban Systems, 51:70 – 82.

[Cary et al., 2009a] Cary, A., Sun, Z., Hristidis, V., and Rishe, N. (2009a). Experiences on
processing spatial data with mapreduce. In International Conference on Scientific and
Statistical Database Management, pages 302–319. Springer.

[Cary et al., 2009b] Cary, A., Sun, Z., Hristidis, V., and Rishe, N. (2009b). Experiences
on Processing Spatial Data with MapReduce, pages 302–319. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Chang,] Chang, H.-C. A new perspective on twitter hashtag use: Diffusion of innovation
theory. Proceedings of the American Society for Information Science and Technology,
47(1):1–4.

[Cooper et al., 2010] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears,
R. (2010). Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA. ACM.

[Curino et al., 2010] Curino, C., Jones, E., Zhang, Y., and Madden, S. (2010). Schism: A
workload-driven approach to database replication and partitioning. Proc. VLDB Endow.,
3(1-2):48–57.

[Daae Lampe and Hauser, 2011] Daae Lampe, O. and Hauser, H. (2011). Interactive visu-
alization of streaming data with kernel density estimation. In Proceedings of the 2011
IEEE Pacific Visualization Symposium, PACIFICVIS ’11, pages 171–178, Washington,
DC, USA. IEEE Computer Society.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified
data processing on large clusters. Communications of the ACM, 51(1):107–113.

[DeRose et al., 2007] DeRose, L., Homer, B., and Johnson, D. (2007). Detecting applica-
tion load imbalance on high end massively parallel systems. In Proceedings of the 13th
International Euro-Par Conference on Parallel Processing, Euro-Par’07, pages 150–159,
Berlin, Heidelberg. Springer-Verlag.

[Dong et al., 2017] Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor, T., and
Strum, M. (2017). Optimizing space amplification in rocksdb. In CIDR.

[Eldawy, 2014] Eldawy, A. (2014). Spatialhadoop: Towards flexible and scalable spatial
processing using mapreduce. In Proceedings of the 2014 SIGMOD PhD Symposium, SIG-
MOD’14 PhD Symposium, pages 46–50, New York, NY, USA. ACM.

101

[Eldawy et al., 2015a] Eldawy, A., Alarabi, L., and Mokbel, M. F. (2015a). Spatial parti-
tioning techniques in spatialhadoop. Proc. VLDB Endow., 8(12):1602–1605.

[Eldawy and Mokbel, 2015] Eldawy, A. and Mokbel, M. F. (2015). The era of big spatial
data: Challenges and opportunities. In Proceedings of the 2015 16th IEEE International
Conference on Mobile Data Management - Volume 02, MDM ’15, pages 7–10, Washington,
DC, USA. IEEE Computer Society.

[Eldawy et al., 2015b] Eldawy, A., Mokbel, M. F., Alharthi, S., Alzaidy, A., Tarek, K.,
and Ghani, S. (2015b). Shahed: A mapreduce-based system for querying and visualizing
spatio-temporal satellite data. In Data Engineering (ICDE), 2015 IEEE 31st International
Conference on, pages 1585–1596. IEEE.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based
algorithm for discovering clusters in large spatial databases with noise. pages 226–231.
AAAI Press.

[Fox et al., 2013] Fox, A., Eichelberger, C., Hughes, J., and Lyon, S. (2013). Spatio-temporal
indexing in non-relational distributed databases. In Big Data, 2013 IEEE International
Conference on, pages 291–299.

[Frias-Martinez and Frias-Martinez, 2014] Frias-Martinez, V. and Frias-Martinez, E. (2014).
Spectral clustering for sensing urban land use using twitter activity. Engineering Appli-
cations of Artificial Intelligence, 35:237–245.

[Fu et al., 2018] Fu, Q., Timkovich, N. P., Riteau, P., and Keahey, K. (2018). A step towards
hadoop dynamic scaling. In Proceedings of the 20th IEEE International Conference on
High Performance Computing and Communications (HPCC-2018).

[Gansner et al., 2011] Gansner, E., Hu, Y., North, S., and Scheidegger, C. (2011). Multi-
level agglomerative edge bundling for visualizing large graphs. In Pacific Visualization
Symposium (PacificVis), 2011 IEEE, pages 187–194.

[Ghosh et al., 2016] Ghosh, M., Xu, L., Qian, X., Kao, T., Gupta, I., and Gupta, H. (2016).
Getafix: Workload-aware distributed interactive analytics. UIUC Ideals.

[Graham, 1972] Graham, R. L. (1972). An efficient algorith for determining the convex hull
of a finite planar set. Information processing letters, 1(4):132–133.

[Guibas and Sedgewick, 1978] Guibas, L. J. and Sedgewick, R. (1978). A dichromatic frame-
work for balanced trees. In Foundations of Computer Science, 1978., 19th Annual Sym-
posium on, pages 8–21. IEEE.

[Guo, 2009] Guo, D. (2009). Flow mapping and multivariate visualization of large spatial in-
teraction data. IEEE Transactions on Visualization and Computer Graphics, 15(6):1041–
1048.

102

[Gupta et al., 2016] Gupta, A., Yang, F., Govig, J., Kirsch, A., Chan, K., Lai, K., Wu, S.,
Dhoot, S., Kumar, A. R., Agiwal, A., Bhansali, S., Hong, M., Cameron, J., Siddiqi, M.,
Jones, D., Shute, J., Gubarev, A., Venkataraman, S., and Agrawal, D. (2016). Mesa: A
geo-replicated online data warehouse for google’s advertising system. Commun. ACM,
59(7):117–125.

[Hasselbring, 2016] Hasselbring, W. (2016). Microservices for scalability: Keynote talk ab-
stract. In Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering, ICPE ’16, pages 133–134, New York, NY, USA. ACM.

[Huang et al., 2002] Huang, H.-C., Cressie, N., and Gabrosek, J. (2002). Fast, resolution-
consistent spatial prediction of global processes from satellite data. Journal of Computa-
tional and Graphical Statistics, 11(1):63–88.

[Hunt et al., 2010] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010). Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA. USENIX Association.

[Jain, 1990] Jain, R. (1990). The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. John Wiley & Sons.

[Jia et al., 2011] Jia, Y., Garland, M., and Hart, J. C. (2011). Social network clustering and
visualization using hierarchical edge bundles. Computer Graphics Forum, 30(8):2314–
2327.

[Jindal and Dittrich, 2011] Jindal, A. and Dittrich, J. (2011). Relax and let the database
do the partitioning online. In International Workshop on Business Intelligence for the
Real-Time Enterprise, pages 65–80. Springer.

[Kai and Boa, 2010] Kai, C. and Boa, H. (2010). Comparison of spatial compactness evalua-
tion methods for simple genetic algorithm based land use planning optimization problem.
In Proceedings of the Joint International Conference on Theory, Data Handling and Mod-
elling in GeoSpatial Information Science, pages 26–28.

[Kamath et al., 2013] Kamath, K. Y., Caverlee, J., Lee, K., and Cheng, Z. (2013). Spatio-
temporal dynamics of online memes: a study of geo-tagged tweets. In Proceedings of the
22nd international conference on World Wide Web, pages 667–678. ACM.

[Keahey et al., 2017] Keahey, K., Riteau, P., and Timkovich, N. P. (2017). Lambdalink: an
operation management platform for multi-cloud environments. In Proceedings of the10th
International Conference on Utility and Cloud Computing, pages 39–46. ACM.

[Keim, 2005] Keim, D. (2005). Scaling visual analytics to very large data sets. Workshop
on Visual Analytics.

[Kim et al., 2017] Kim, Y. S., Kim, T., Carey, M. J., and Li, C. (2017). A comparative
study of log-structured merge-tree-based spatial indexes for big data. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE), pages 147–150.

103

[Kini and Emanuele, 2014] Kini, A. and Emanuele, R. (2014). Geotrellis: Adding geospatial
capabilities to spark. Spark Summit.

[Kleppmann, 2017] Kleppmann, M. (2017). Designing Data-Intensive Applications: The Big
Ideas Behind Reliable, Scalable, and Maintainable Systems. ” O’Reilly Media, Inc.”.

[Kwon et al., 2012] Kwon, Y., Balazinska, M., Howe, B., and Rolia, J. (2012). Skewtune:
Mitigating skew in mapreduce applications. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages 25–36, New York,
NY, USA. ACM.

[Lakshman and Malik, 2010] Lakshman, A. and Malik, P. (2010). Cassandra: a decentral-
ized structured storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40.

[Liu et al., 2014] Liu, J., Li, H., Gao, Y., Yu, H., and Jiang, D. (2014). A geohash-based
index for spatial data management in distributed memory. In 2014 22nd International
Conference on Geoinformatics, pages 1–4.

[Liu et al., 2015] Liu, Y., Padmanabhan, A., and Wang, S. (2015). Cybergis gateway for
enabling data-rich geospatial research and education. Concurrency and Computation:
Practice and Experience, 27(2):395–407.

[Liu et al., 2010] Liu, Y., Wu, K., Wang, S., Zhao, Y., and Huang, Q. (2010). A mapreduce
approach to gi*(d) spatial statistic. In Proceedings of the ACM SIGSPATIAL Interna-
tional Workshop on High Performance and Distributed Geographic Information Systems,
HPDGIS ’10, pages 11–18, New York, NY, USA. ACM.

[Liu et al., 2016] Liu, Y. Y., Cho, W. K. T., and Wang, S. (2016). Pear: a massively parallel
evolutionary computation approach for political redistricting optimization and analysis.
Swarm and Evolutionary Computation, 30:78 – 92.

[Liu and Wang, 2015] Liu, Y. Y. and Wang, S. (2015). A scalable parallel genetic algorithm
for the generalized assignment problem. Parallel computing, 46:98–119.

[Liu et al., 2013] Liu, Z., Jiang, B., and Heer, J. (2013). immens: Real-time visual querying
of big data. Computer Graphics Forum (Proc. EuroVis), 32.

[Malensek et al., 2013a] Malensek, M., Pallickara, S., and Pallickara, S. (2013a). Polygon-
based query evaluation over geospatial data using distributed hash tables. In Utility and
Cloud Computing (UCC), 2013 IEEE/ACM 6th International Conference on, pages 219–
226.

[Malensek et al., 2013b] Malensek, M., Pallickara, S., and Pallickara, S. (2013b). Polygon-
based query evaluation over geospatial data using distributed hash tables. In Proceedings
of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing,
pages 219–226. IEEE Computer Society.

104

[Malensek et al., 2016] Malensek, M., Pallickara, S., and Pallickara, S. (2016). Autonomous
cloud federation for high-throughput queries over voluminous datasets. IEEE Cloud Com-
puting, 3(3):40–49.

[Marz and Warren, 2015] Marz, N. and Warren, J. (2015). Big Data: Principles and best
practices of scalable realtime data systems. Manning Publications Co.

[Miller and Goodchild, 2015] Miller, H. J. and Goodchild, M. F. (2015). Data-driven geog-
raphy. GeoJournal, 80(4):449–461.

[Moussalli et al., 2015] Moussalli, R., Srivatsa, M., and Asaad, S. (2015). Fast and flex-
ible conversion of geohash codes to and from latitude/longitude coordinates. In 2015
IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing
Machines, pages 179–186.

[Newman, 2015] Newman, S. (2015). Building Microservices. O’Reilly Media, Inc., 1st
edition.

[Niemeyer, 2008] Niemeyer, G. (2008). Geohash.

[Nishimura et al., 2013] Nishimura, S., Das, S., Agrawal, D., and El Abbadi, A. (2013).
\mathcal {MD}-hbase: design and implementation of an elastic data infrastructure for
cloud-scale location services. Distributed and Parallel Databases, 31(2):289–319.

[O’Neil et al., 1996] O’Neil, P., Cheng, E., Gawlick, D., and O’Neil, E. (1996). The log-
structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385.

[Padmanabhan et al., 2014] Padmanabhan, A., Wang, S., Cao, G., Hwang, M., Zhang, Z.,
Gao, Y., Soltani, K., and Liu, Y. (2014). Flumapper: A cybergis application for interac-
tive analysis of massive location-based social media. Concurr. Comput. : Pract. Exper.,
26(13):2253–2265.

[Pavlo et al., 2012] Pavlo, A., Curino, C., and Zdonik, S. (2012). Skew-aware automatic
database partitioning in shared-nothing, parallel oltp systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data, SIGMOD ’12, pages
61–72, New York, NY, USA. ACM.

[Quamar et al., 2013] Quamar, A., Kumar, K. A., and Deshpande, A. (2013). Sword: scal-
able workload-aware data placement for transactional workloads. In Proceedings of the
16th International Conference on Extending Database Technology, pages 430–441. ACM.

[Romero et al., 2011] Romero, D. M., Meeder, B., and Kleinberg, J. (2011). Differences
in the mechanics of information diffusion across topics: Idioms, political hashtags, and
complex contagion on twitter. In Proceedings of the 20th International Conference on
World Wide Web, WWW ’11, pages 695–704, New York, NY, USA. ACM.

[Serafini et al., 2016] Serafini, M., Taft, R., Elmore, A. J., Pavlo, A., Aboulnaga, A., and
Stonebraker, M. (2016). Clay: fine-grained adaptive partitioning for general database
schemas. Proceedings of the VLDB Endowment, 10(4):445–456.

105

[Sheng et al., 2010] Sheng, C., Zheng, Y., Hsu, W., Lee, M. L., and Xie, X. (2010). Answer-
ing top-k similar region queries. In Proceedings of the 15th International Conference on
Database Systems for Advanced Applications - Volume Part I, DASFAA’10, pages 186–
201, Berlin, Heidelberg. Springer-Verlag.

[Shneiderman, 1996] Shneiderman, B. (1996). The eyes have it: a task by data type tax-
onomy for information visualizations. In Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336–343.

[Shvachko et al., 2010a] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010a). The
hadoop distributed file system. In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10.

[Shvachko et al., 2010b] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010b). The
hadoop distributed file system. In Mass storage systems and technologies (MSST), 2010
IEEE 26th symposium on, pages 1–10. IEEE.

[Soliman et al., 2017] Soliman, A., Soltani, K., Yin, J., Padmanabhan, A., and Wang, S.
(2017). Social sensing of urban land use based on analysis of twitter users’ mobility
patterns. PloS one, 12(7):e0181657.

[Soliman et al., 2015] Soliman, A., Yin, J., Soltani, K., Padmanabhan, A., and Wang, S.
(2015). Where chicagoans tweet the most: Semantic analysis of preferential return lo-
cations of twitter users. In Proceedings of the First ACM SIGSPATIAL International
Workshop on Smart Cities and Urban Analytics, UrbanGIS ’15.

[Soltani et al., 2015a] Soltani, K., Padmanabhan, A., and Wang, S. (2015a). Movepattern:
Interactive framework to provide scalable visualization of movement patterns. In Pro-
ceedings of the 8th ACM SIGSPATIAL International Workshop on Computational Trans-
portation Science, IWCTS ’15.

[Soltani et al., 2015b] Soltani, K., Parameswaran, A., and Wang, S. (2015b). Geohashviz:
Interactive analytics for mapping spatiotemporal diffusion of twitter hashtags. In Pro-
ceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced
Cyberinfrastructure, XSEDE ’15, pages 37:1–37:2, New York, NY, USA. ACM.

[Soltani et al., 2016] Soltani, K., Soliman, A., Padmanabhan, A., and Wang, S. (2016).
Urbanflow: Large-scale framework to integrate social media and authoritative landuse
maps. In Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science
at Scale, XSEDE16, pages 2:1–2:8, New York, NY, USA. ACM.

[Taft et al., 2014] Taft, R., Mansour, E., Serafini, M., Duggan, J., Elmore, A. J., Aboulnaga,
A., Pavlo, A., and Stonebraker, M. (2014). E-store: Fine-grained elastic partitioning
for distributed transaction processing systems. Proceedings of the VLDB Endowment,
8(3):245–256.

[Tang et al., 2011] Tang, W., Bennett, D. A., and Wang, S. (2011). A parallel agent-based
model of land use opinions. Journal of Land Use Science, 6(2-3):121–135.

106

[Tzoumas et al., 2009] Tzoumas, K., Yiu, M. L., and Jensen, C. S. (2009). Workload-aware
indexing of continuously moving objects. Proceedings of the VLDB Endowment, 2(1):1186–
1197.

[Wakamiya et al., 2011] Wakamiya, S., Lee, R., and Sumiya, K. (2011). Urban area charac-
terization based on semantics of crowd activities in twitter. In International Conference
on GeoSpatial Sematics, pages 108–123. Springer.

[Wang, 2010] Wang, S. (2010). A cybergis framework for the synthesis of cyberinfras-
tructure, gis, and spatial analysis. Annals of the Association of American Geographers,
100(3):535–557.

[Wang, 2016] Wang, S. (2016). Cybergis and spatial data science. GeoJournal, 81(6):965–
968.

[Wang and Armstrong, 2005] Wang, S. and Armstrong, M. P. (2005). A theory of the spatial
computational domain. In Proceedings of GeoComputation, pages 1–3.

[Wang and Armstrong, 2009] Wang, S. and Armstrong, M. P. (2009). A theoretical ap-
proach to the use of cyberinfrastructure in geographical analysis. Int. J. Geogr. Inf. Sci.,
23(2):169–193.

[Wang et al., 2005] Wang, S., Armstrong, M. P., Ni, J., and Liu, Y. (2005). Gisolve: A grid-
based problem solving environment for computationally intensive geographic information
analysis. In challenges of large applications in distributed environments, 2005. CLADE
2005. proceedings, pages 3–12. IEEE.

[Wang and Goodchild, 2019] Wang, S. and Goodchild, M. F. (2019). CyberGIS for Trans-
forming Geospatial Discovery and Innovation, pages 3–10. Springer Netherlands, Dor-
drecht.

[Wang et al., 2015] Wang, S., Hu, H., Lin, T., Liu, Y., Padmanabhan, A., and Soltani, K.
(2015). Cybergis for data-intensive knowledge discovery. SIGSPATIAL Special, 6(2):26–
33.

[Wang et al., 2016] Wang, S., Liu, Y., and Padmanabhan, A. (2016). Open cybergis software
for geospatial research and education in the big data era. SoftwareX, 5:1–5.

[Wu and Murray, 2008] Wu, X. and Murray, A. T. (2008). A new approach to quantifying
spatial contiguity using graph theory and spatial interaction. International Journal of
Geographical Information Science, 22(4):387–407.

[Yang et al., 2011] Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y.,
Bambacus, M., and Fay, D. (2011). Spatial cloud computing: how can the geospatial
sciences use and help shape cloud computing? International Journal of Digital Earth,
4(4):305–329.

107

[Yu et al., 2015] Yu, J., Wu, J., and Sarwat, M. (2015). Geospark: A cluster computing
framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, page 70. ACM.

[Zhang et al., 2015] Zhang, J., You, S., and Gruenwald, L. (2015). Lightweight distributed
execution engine for large-scale spatial join query processing. In Big Data (BigData
Congress), 2015 IEEE International Congress on, pages 150–157.

[Zinsmaier et al., 2012] Zinsmaier, M., Brandes, U., Deussen, O., and Strobelt, H. (2012).
Interactive level-of-detail rendering of large graphs. IEEE Transaction on Visualization
and Computer Graphics, 18(12):2486–2495.

108

	CHAPTER 1 Introduction
	Research Problems
	Workload-aware Load Balancing for Data-intensive Geospatial Applications
	Thesis Layout

	CHAPTER 2 Motivating Case Studies
	MovePattern
	GeoHashViz
	UrbanFlow
	CyberGIS-Fusion

	CHAPTER 3 Static Workload-aware Load Balancing for Data-intensive Geospatial Applications
	Overview
	Geo-tagged Twitter Data

	Movement Aggregation and Summarization
	Background
	MapReduce Algorithms for Movements Aggregation and Summarization
	Experiments

	Distributed Approximate Point-in-polygon
	UrbanFlow Architecture
	Point-in-polygon Approach
	Experiments

	Concluding Discussion

	CHAPTER 4 Scalable Indexing of Geospatial Data
	Background
	Geohash-based Indexing of Lines
	Geohash-based Indexing of Polygons
	Experiments
	Concluding Discussions

	CHAPTER 5 Dynamic Workload-aware Data Partitioning
	Background
	Adaptive Workload-aware Partitioning
	Partitioning Fitness Evaluation
	Spatial Compactness

	Approach Layout
	Parent Selection Methods

	Initialization
	Spatial Migration Procedure
	Experiments
	Experiments Setup
	Adaptive vs. Static Partitioning
	Evolutionary Algorithm Tuning
	Evolutionary Algorithm vs. Adaptive K-d Tree

	Concluding Discussions

	CHAPTER 6 GeoBalance: Workload-aware Framework to Manage Real-time Spatiotemporal Data
	Background
	Architecture
	Log structured Merge Trees

	Modeling Workload
	Elasticity Strategies
	Rolling Partitioning Migration
	Data Replication
	Experiments
	Concluding Discussions

	CHAPTER 7 Conclusion and Future Work
	Summary of Contributions
	Future Work

	REFERENCES

