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ABSTRACT

Molecular Dynamics (MD) is an important tool to simulate flows at the nanoscale.

The limitation of MD in simulating important biological and chemical systems hav-

ing a large length and time scale, increased the interest in efficient coarse-grained

(CG) models. Although many existing CG models for various fluids are able to cap-

ture structure and dynamics of the bulk fluid accurately, these models are not suited

to describe transport phenomena involving explicit walls in nano-channels. Previous

coarse-grained models for confined fluids are only optimized to match the structure

of the confined fluid. Here we introduce a complete CG transport model for a single

component fluid in nano-channels having explicit walls. The model, which was ap-

plied to the water-graphene system, was able to demonstrate a very good match, with

the structure (error< 7%) and dynamical (error<1%) equilibrium properties of MD

simulations. Moreover, the CG model was able to reproduce the MD results for water

transport in a Poiseuille flow configuration with an error < 5%. The accuracy of the

model was transferable through different configurations and forcing conditions up to

a critical force, where the MD slip velocity starts to deviate from the equilibrium

prediction. Finally, the CG model was able to achieve ≈ 20x speedup compared to

MD simulations, making it more suitable for flows close to experimental conditions,

where MD produces a poor signal to noise ratio.
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CHAPTER 1

INTRODUCTION

Molecular dynamics (MD) simulations, is a very powerful tool to study systems at

the atomic level. From simulating just hundreds of atoms in the 70s[1] to simulat-

ing virus cells with about 1 million atoms recently[2], MD simulations have led to

many groundbreaking discoveries (e.g., protein folding[3], DNA replication[4], and

ultra-fast transport of water through nanopores[5]). In spite of the advancement in

computational power, larger length and time scales are still inaccessible for MD. For

example, the time scale of relevance exceeds microseconds for some systems such as

viruses, cells and large protein chains[6]. Therefore, many attempts have been made

to develop coarse-grained (CG) models that reduce the computational footprint of

nano-scale simulations[7][8][9]. During coarse-graining, a set of atoms in the atom-

istic system are mapped into one particle at the center of mass of the atoms. Figure

1.1 shows a very simple example of how a water molecule can be coarse-grained. After

mapping the atomistic system, a new effective potential between the CG molecules

is optimized to match certain properties of interest, which is the main task of any

coarse-graining procedure.

Structure-preserving coarse-graining techniques have been extensively developed

for nano-fluidic systems. To replicate structure, a common practice is to choose the

radial distribution function of the center of mass of the all-atom molecule derived

from the all-atom MD simulations (AAMD), as a target for the CG system to imi-

tate. The interaction potential can take a specific analytical form, based on physical

motivation, or a numerical general form such as cubic splines, depending on the

coarse-graining method used. Successful structural CG methods include Iterative
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Figure 1.1: Illustration of how an atomistic water molecule representation that
includes particle charges is mapped into a coarse-grained neutral molecule.

Boltzmann Inversion(IBI), Force Matching, and Relative Entropy[8][9][10]. CGMD

simulations can be done using the same commercial packages used for the MD sim-

ulations. The only difference will be that the tabulated potentials produced by the

CG procedure will be used as an inter-atomic potential between the CG particles,

combined with a thermostat such as the Nose-Hoover(NH) thermostat. Moreover,

when using the NH thermostat, CG methods developed to match the structure of the

explicit system show tendency to have fast dynamics. Hence, the transport proper-

ties of these systems do not match the transport properties of the explicit atomistic

system.

Many attempts have been made to slow the dynamics of the CG system by sam-

pling the configuration space differently[11]. Changing the thermostat properties

will preserve structure and provide the ability to tune the dynamical properties of

the system. A commonly used thermostat is the dissipative particle dynamics(DPD)

thermostat[12]. The DPD thermostat adds two extra types of interatomic forces: a

dissipative force and a random force. The dissipative force will add a viscous effect

between the particles while the random force puts back the energy dissipated by the

dissipative force to satisfy fluctuation dissipation theorem. The magnitude of the

dissipative force will set the viscosity and diffusion coefficient of the system. These

methods were exclusively applied to bulk systems in previous works. Nevertheless,

in nano-fluidic systems, the fluid is confined in small channels, giving rise to prop-

erties specific to the wall-fluid combination. For example, it is well-known that the

layering of water over a hydrophobic Graphene sheet is different from the layering
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over hydrophilic silicon. Moreover, the slip length observed for these two systems are

different as well. A rigorous coarse-grained model should account for those properties

and match them with the all-atom reference system.

Apart from systematic coarse-graining, dissipative particle dynamics is one of the

mesoscopic methods used to simulate transport. DPD is a particle based method

used to model fluids at the mesoscale. It was first developed by Hogelburge and

Koleman in 1991 as an efficient particle based method, that is able to simulate the

correct hydrodynamic behavior over a large length and time scales, in addition of

having thermal fluctuations to replicate Brownian random motion[13]. Moreover,

particle based methods are better suited for systems with complex geometries than

continuum theories[14]. A DPD system, similar to MD, consists of a set of discrete

particles, that interact with each other through pairwise forces. Newton’s second law

is used to compute the trajectories of each of the particles in the system. The forces

include in addition to the thermostat forces mentioned above, a conservative force

that sets the structure of the system. The traditional method of obtaining these

forces is to match certain macroscopic flow properties. In addition, when using the

DPD in a channel scenario, no systematic method exists to find a wall-fluid force

that conserve the structure and dynamical properties in the confinement. Recently,

efforts have been made to systematically find the different DPD forces using the

mori-zwanzig formalism[15]. This method is very similar in spirit to dynamical force

matching used also to match the structure and dynamics of the atomistic system[16].

Nevertheless, both of these methods are not suitable for scenarios where a wall-fluid

interaction has to be defined as well.

In this work, a coarse-grained water transport model accounting for wall-fluid

interactions will be developed. The model combines the structure preserving CG

methods to obtain wall-fluid and fluid-fluid interaction potentials with the DPD

thermostat to control the viscosity of the fluid. The novelty here will be to include

the wall-fluid friction factor as an optimization target when obtaining the interaction

potentials, which makes this model suitable for nano-fluidic transport.

The organization of this thesis will go as follows: In chapter 2, the developed
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transport model will be explained with all the necessary history and background.

Next, in chapter 3, the simulation details required to develop and test the model will

be provided. The results of these simulations are shown later in chapter 4. Finally,

a conclusion with future work suggestions is given in chapter 5.
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CHAPTER 2

MOLECULAR DYNAMICS AND THE
COARSE-GRAINED TRANSPORT MODEL

In this chapter, the focus is to explain how molecular dynamics simulations work,

and how to develop the coarse-grained model of the all-atom system. Hence, first,

a brief description of MD is provided to give the necessary background, where the

important details of how the simulations are run and how to extract the important

properties from the simulations are given. Next, the DPD thermostat will be intro-

duced, since it is an integral part of the coarse-grained molecular dynamics(CGMD)

simulations. Finally, the coarse-grained model is developed in detail, illustrating its

target properties, its numerical form, and the optimization scheme to determine the

necessary parameters.

2.1 Molecular Dynamics Simulations

Molecular dynamics(MD) is used to simulate matter at the atomic scale. Although

atoms are not the smallest building blocks of matter, they are small enough to capture

the important physical phenomena in many systems. One very important example is

the structure and transport of fluids inside nano-channels, where classical continuum

approximations fail to predict the behavior of the system. The atoms in solid and

fluid systems are always moving or vibrating, even when no external force is applied

on the system. The motion of these atoms is dictated by the inter-molecular forces

that the atoms exert on each other. Therefore, to be able to predict the behavior of

atomistic scale systems, a definition of the interaction potential between the particles
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is required. The particle positions are then updated based on Newton’s second law

of motion. Starting from an initial configuration r = {ri, i ∈ [1, N ]}, N being the

number of particles in the system, the acceleration of individual atoms is determined

through

ai =
Fi
m

(2.1)

where

Fi =
N∑
j 6=i

∂Uij(‖ ~rij‖)
∂r

eij

and ~rij = ~rj − ~ri, eij =
~rij
‖ ~rij‖ , and Uij is the interaction potential between particles i

and j.

Boundary conditions are crucial while setting MD simulations. When simulating

bulk material, the goal is to understand the behavior of the system atoms as if they

are present in the interior of an infinite medium made of the exact same material.

In that case, the behavior of the system is expected to be uniform throughout the

defined system with no direction dependence. These simulations are used to study

the behavior of systems away from interfaces, in the bulk of the material. Therefore

to achieve this goal, periodic boundary conditions in all directions should be used.

The system, in general, will be a 3D simulation box, with atoms located inside. If

an atom leaves the box from one side, it will enter the system back from the op-

posite side. On the other hand, when a fluid is simulated inside nano-channel, all

the bulk assumptions are not valid anymore. Choosing a boundary condition will

depend on the nano-channel shape and size. In this work, only the 2D slit channel

will be considered. In that case, the goal is to simulate the flow in an infinitely

long and infinitely wide channel, but the height being fixed in the nano-meter range.

Therefore, periodic boundary conditions will be applied in x and y-directions while

in the z-direction the boundary is fixed, and the frozen wall atoms will stop the fluid

molecules from exiting the system in the z-direction.

After defining the force-fields and boundary conditions, the simulation is run for
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a specific number of time steps. At the beginning of each time step, the accelera-

tion of each atom is calculated using equation 2.1. The velocity of each particle is

determined from the previous state. Using the accelerations and velocities, differ-

ent algorithms can be used to update the positions of the particles. Whatever the

algorithm used, the time step determines how far a particle will move. Since the

potentials have a hardcore part that induces a virtually infinite force when the parti-

cles become very close, a large time step can cause instability in the system through

unrealistically placing atoms at a very close distance. Hence a very small time step of

around 1fms is typically used. The small time step and heavy force calculations put a

big limitation on the time scale of MD simulations. Usually, the simulation time is in

the order of 10 nano-seconds for nano-meter scale systems having 1000-10000 atoms.

While running the simulations, important properties are dumped every specified

number of time steps. These properties mainly include particle positions, velocities,

and forces. All the other system properties can be derived from the three mentioned

quantities, including temperature, pressure, and structure. Of particular importance

to this work, the density of the fluid molecules, friction factor between wall and

fluid, velocity profiles and bulk viscosity are of particular importance. Hence the

calculation of these properties is explained in detail below.

2.1.1 Computing Density ρ

Since the bulk state is homogeneous and the system is uniform, density will be

constant in the system. On the other hand, the presence of a wall in the system makes

the density non-uniform the z-direction as shown in figure 2.1. The density will be

computed as a function of the confinement coordinate z. First, the confinement will

be split into equally sized bins with height ∆z = 0.5σwater = 0.01585 nm. Hence the
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density in each bin will be determined as:

ρ(i) = (
1

Nframes

)

Nframes∑
frame=1

N(zi, frame) (2.2)

where N(zi, frame) is the number of particles having a z coordinate in the interval

[zi, zi + ∆z] at a certain frame and zi = i ∗ ∆z. The bin number i goes from 0 to

Nbins−1 and Nbins = Lz

∆z
. Each frame represents a dumped state of the system during

the simulation, and the density at in every bin will be averaged over all the frames.

Figure 2.1: Illustration of the density layering in a graphene-water 2D slit
nano-channel.

2.1.2 Computing Friction ζ

Velocity slip at the interface is a common phenomenon in nano-confined fluidic trans-

port systems. The slip depends on two factors: operating conditions such as the

driving force applied, and the friction factor with the interfacial wall.
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The friction force at the interface is the result of multiple particles interacting with

the walls in that region. The value of the friction factor will highly depend on the

strength of the wall-fluid force and the structure of the wall atoms [17]. Since the

wall is discrete, the potential that the fluid atoms feel depends on the position paral-

lel to the wall. Hence there will be potential wells present in the region for the fluid

atoms. A smooth wall whose interaction with the fluid does not change much in the

direction parallel to the wall, provide less resistance to fluid motion compared to a

corrugated wall that will tend to increase the friction in the system.

Calculating the friction factor is done using a Green-Kubo approximation. The rela-

tion derived by Huang et. al. in ref[18], computes the friction factor as follows.

ζj =
<

∫∞
0
fwfx,j (0)fwfx,j (t)dt >

kBT+ <
∫∞

0
fwfx,j (0)vwfx,j (t)dt >

(2.3)

where ζj is the friction coefficient of particle j. fwfx,j and vwfx,j are the wall-fluid force

and velocity in the streaming direction of particle j. The integrands in the numerator

and the denominator are the force auto-correlation function(FACF) and the force-

velocity auto-correlation function(FVACF). The bracket symbol < ... > resembles

taking an ensemble average. Both of the integrals will be computed numerically

using data dumped at every 10 fs. This dumping time step is usually small enough

to give accurate values. Finally, the total friction factor between fluid and interface

is

ζ =
N∑
j

ζj (2.4)

where N is the total number of particles in the interfacial region. The interfacial

region is defined by z > Lz− δ and z < δ. Therefore as δ is increased, more particles

will be in that interfacial region, and hence ζ will increase. Nevertheless, there exists

a δmax after which the friction factor ζ does not increase significantly. To determine

δmax, zeta is computed using increasing values of δ starting from δ = 0 nm.The

distance δ at which the friction factor reaches a constant value as a function of δ is
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equal to δmax. When computing zeta in the CG system, the same δmax will be used

for consistency.

2.1.3 Viscosity µ

The viscosity of a fluid is one of the key properties that determine its transport

behavior. Since computing the property in the confined inhomogenious system is

not well established, the viscosity calculation will be done for the bulk system. After

running a bulk simulation for the considered fluid, the dumped pressure tensor will

be used to compute viscosity compute it using the Green-Kubo relation[19]:

µ =
V

KBT

∫ ∞
0

1

6

∑
α

∑
β 6=α

Pαβ(0)Pαβ(t)dt (2.5)

where α and β are directions in the Cartesian coordinates(x,y,z), V is the volume of

the system, and Pαβ is the αβ component in the pressure tensor. The integrand in

equation 2.16 is the pressure auto-correlation function (PACF). Again this integral

is computed numerically. The off-diagonal pressure components are dumped and

stored every 1 fs.

2.2 The DPD Thermostat

Simulating system in an isothermal state requires the use of a thermostat. The algo-

rithm briefly described above for MD simulations assume an NVE ensemble where

the temperature is allowed to change. For an NVT ensemble that fixes the number of

particles N, volume V and temperature T, a thermostat has to be used. The thermo-

stat adjusts the velocities of the atoms at each time step such that the temperature is

preserved while the total energy in the system is allowed to change. The typical ther-

mostat commonly used for MD simulations is the NoseHoover thermostat(NH)[20].
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The NH thermostat does not affect the viscosity or diffusion of the system. Hence

when researchers want to slow down the dynamics of CG systems as explained in

chapter 1, a different thermostat is used. A very common choice that will be used in

this work is the dissipative particle dynamics(DPD) thermostat. Dissipative particle

dynamics was first developed by Hogelburge and Koleman in 1991[13]. The goal was

to have an efficient particle based method that is able to simulate the correct hydro-

dynamic behavior over a large length and time scales, in addition of having thermal

fluctuations able to replicate Brownian random motion. Moreover, particle-based

methods are better suited for complex geometries compared to continuum methods.

[14]

The algorithm adds additional pairwise forces compared to MD simulations ran using

the NH thermostat. The total force acting on a particle i at a certain time step is

computed as the sum of the inter-particle forces between particle i and the rest of

the N − 1 particles in the system as:

Fi =
∑
j 6=i

FC
ij ( ~rij) + FD

ij ( ~rij, ~vij) + FR
ij ( ~rij) (2.6)

where FC is the conservative force, FD is the dissipative force, and FR is the random

force.

In MD simulations using NH thermostat, only the conservative force FC
ij is included,

where it is derived from the pair potential between atom i and atom j. The potentials

usually have a highly repulsive core such as the Lennard-Jones(LJ) 12-6 potential[21].

This forces the time step dt to be very small(order of a fs). In DPD the conservative

force is also derived from a potential. However, given that particles i and j are

pseudo-particles that do not correspond to a realistic physical structure, there is

no restriction on this potential, as long as it conserves the hydrodynamics. The

condition for that is simply that the inter-particle forces are equal and opposite.

Since this condition forces the conservation of momentum in the system, correct

hydrodynamics are automatically replicated[22]. Hence a simple soft core potential

is usually used to derive the conservative force in DPD. The oldest and most famous
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form is

FC
ij ( ~rij) = αij(1−

| ~rij|
rcut

) ~eij (2.7)

where rcut is the cutoff distance of the pairwise interaction. Using this form, a

relatively large time step can be used, which will allow for a longer simulation time.

The dissipative force is given as:

FD
ij ( ~rij, ~vij) = −γijωD( ~rij)( ~eij. ~vij) ~eij (2.8)

where ~vij = ~vj − ~vi is the velocity difference vector between particle i and j. This

force is proportional to the velocity difference between particles i and j, and act along

the line joining the centers of these particles in the direction opposite to the velocity

gradient. Hence it will act as a friction force that will decrease the velocity difference

between the particles producing a ‘viscous’ effect in the system. The strength of this

force is controlled through its coefficient γij. In addition, the dissipative force has an

inter-particle distance dependence specified by ωD( ~rij). The basic functional form of

the dissipative form coefficient is ωD( ~rij) = (1− | ~rij |
rcut

)2. In recent works, the power of

2 in this functional form is changed to improve the force matching between MD and

DPD[15].In this work, the traditional form will be used due to ease of implementation

using commercial packages.

The random force takes the following form:

FR
ij ( ~rij) = σijω

R( ~rij)ζij∆t
−1/2 ~eij (2.9)

The randomness of this force is due to ζij which is a random variable generated from a

Gaussian distribution with zero mean and unit variance. σij determines the strength

of this force, and ωR( ~rij) controls the distance dependence. The first DPD scheme

proposed did not properly sample the canonical NVT ensemble. This is because the

fluctuation-dissipation theorem was not enforced. It was until 1995 when Espanol

and Warren derived the following constraints on the parameter space that will ensure
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that fluctuation dissipation theorem will be satisfied[23]:

σ2 = 2γkT (2.10)

ωD = [ωR]2 (2.11)

DPD can be used in AAMD or CGMD simulations as just a thermostat. In that case,

the FC
ij will be replaced by the AAMD or CGMD potentials, keeping the dissipative

and random forces the same. This will ensure that the temperature of the system is

fixed a a set temperature, in addition to slowing the dynamics of the system.

2.3 The Coarse-Grained Transport Model

The main objective of this work is to develop a coarse-grained transport model for

fluid molecules inside nano-channels. By coarse-graining an atomistic system, the

computational resources required to run the MD simulations will be less. The de-

crease in simulation time opens the door for simulating new phenomena efficiently.

A coarse-graining procedure is divided into four main steps. First, a mapping be-

tween the all-atom AAMD system and CGMD system should be developed. Since

the choice of mapping the fluid molecules highly depends on the studied system,

little focus will be given to this step. Briefly, in the case of water being the fluid,

each water molecule will be represented by one atom, instead of one oxygen and

two hydrogen atoms. The mapped system when simulated should match certain

properties of the MD system. Defining these target properties is the second step of

developing the CG model. Having the targets in mind, the functional form of the

interaction potential between the different types of particles will be determined in

the third step of the process. Finally, an optimization scheme should be devised to

obtain the potential parameters which specifically math the target properties of the

system of interest. To demonstrate the ability of the model in replicating structural

and dynamical properties in the confinement, it will be applied to the water-graphene
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system. To simplify the task at hand, we are going to restrict ourselves to the NVT

ensemble at a constant temperature of 300K. In addition, we are going to use a slit

shaped 2D nano-channel to develop and verify our model. Figure 2.2 shows a sample

explicit water-graphene system, alongside the mapped CG system of the same size.

Although the slit geometry is simple, it includes all the important aspects of trans-

port: slip at the wall, viscous stresses, and wall-fluid layering. The choice of water

as the fluid is due its importance from the scientific and practical point of view. The

flow of water is critical in many biological and chemical systems. In particular, the

water-graphene combination has been suggested previously for fast transport of wa-

ter in many applications. Hence developing a coarse-grained model for this system

will pave the way for developing coarse-grained models for other combinations of

fluids and nano-channel walls.

Figure 2.2: Illustration of mapping the water-graphene system from the full
atomistic representation(a) to the coarse-grained representation(b).

2.3.1 The Target Properties of The CG Model

The coarse-grained model developed should accurately match the transport behavior

simulated by MD. By matching the transport behavior, we mean that the steady-

state velocity profile of the CG model should quantitatively agree with the velocity
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profile obtained from all-atom MD under different driving conditions. Ideally, this

model should also be transferable for different geometric shapes and sizes. The non-

equilibrium simulations needed to obtain the velocity profiles are very expensive in

nature. Hence setting the velocity profile as a direct optimization target is not a

feasible option, since the objective function will include the velocity profile at dif-

ferent flow conditions. Therefore, the direct optimization target should be relevant

equilibrium properties that are less expensive to compute.

Classical hydrodynamic behavior is well described by the Navier-Stokes conservation

equations. Many researchers tried to use continuum methods to predict transport

in simple nano-fluidic geometries such as slits and cylindrical nanotubes[24]. Spe-

cific adjustments were made to the continuum models in order to match transport

behaviour. First, we know that in nano-channels, velocity slip at the walls occurs in

many systems. In addition, density in the confinement is not constant which needs

to be included in the conservation of momentum equation. The density variation

gives rise to viscosity changes as well, which also needs to be incorporated in the

equations for accurate transport prediction. Based on this, the three target proper-

ties for the CG model will be the density profile, wall fluid friction factor, and bulk

viscosity.

2.3.2 The Model Parameters

The CG model is expected to match the target properties of the AAMD system.

Computing the properties for the CG model requires running a CG molecular dynam-

ics(CGMD) simulation. The results of the simulations will depend on the interaction

potentials and the parameters that determine them. Below a detailed description of

the interaction potentials and the used thermostat will be provided. The force in

the developed model is computed as specified in equation 2.5. The system consists

of fluid CG particles and wall atoms. Fluid CG particles will be referred to as ‘CG’,

and wall particles as ‘W’. The conservative force on a CG particle i imparted by
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particle j will be given as:

FC
ij ( ~rij) =

∂Uij(‖ ~rij‖)
∂r

~eij (2.12)

Where

Uij(r) =

U(pf , r) if j is a fluid CG particle

U(pw, r) if j is a wall particle
(2.13)

pf and pw are the parameter sets for the interaction between CG particles and be-

tween CG particles and wall particles respectively. In recent works, a versatile spline

potential was used for the structure matching CG problems allowing for a larger sam-

ple space[25]. Nevertheless here the modified Lennard-Jones Gaussian potential form

is used, which has fewer parameters to optimize for simplicity[26]. The potential is

defined as:

U(p, r) =

UCKD(r) + le
−(r−t)2

2s2 − le
−(rc−t)2

2s2 r < rcut

0 r ≥ rcut
(2.14)

where

UCKD(r) =


4ε((σ

r
)12 − (σ

r
)6 + 1

4
) r < rc,LJ

−ε(cos2(
π(r−rc,LJ )

2wc
)) rc,LJ < r < rc,LJ + wc

0 rc,LJ + wc < r

and

rc,LJ = σ21/6

and

p = [σ, ε, wc, l, t, s]

The parameters σ and ε are the normal length and energy scales of the LJ potential.

wc is a smoothness parameter for the attractive part of the potential. l, t, and s are

the Gaussian parameters. Therefore there are 6 free parameters in this potential:

σ, ε, wc, l, t, and s. The units of energy and distance are KJ/mol and nm respectively.
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The thermostat used for the CGMD simulations is the DPD thermostat. The DPD

thermostat provides the versatility of tuning the viscosity of the fluid. For the dis-

sipative force computation, equations 2.8 and 2.9 will be invoked. This force will

only exist between the fluid particles. The results later will show that the wall-fluid

dynamics can be set to match target AAMD dynamics without the need of a dissi-

pative force. Trying to coarse-grian the system with the simplest possible model, no

dissipative force exists between the wall and CG particles, and therefore:

FD
ij ( ~rij, ~vij) =

−γ(1− ‖ ~rij‖
rcut

2( ~eij. ~vij) ~eij if j is a water CG particle

0 if j is a wall particle
(2.15)

And Similarly for the random force:

FR
ij ( ~rij) =


√

2γkT (1− ‖ ~rij‖
rcut

)ζij∆t
−1/2 ~eij if j is a water CG particle

0 if j is a wall particle
(2.16)

Hence, this model has thirteen parameters to optimize, twelve for the conservative

potentials and one for the thermostat. Namely, the parameters to optimize are

pf = [σf , εf , wc,f , lf , tf , sf ], pw = [σw, εw, wc,w, lw, tw, sw], and γ.

2.3.3 Optimization Scheme

After formulating the model, we need to set its free parameters to match the prop-

erties of interest of the MD system. The ensemble considered is the canonical NVT

ensemble. T will be fixed at 300K for all the simulations done in this work. The cutoff

distance rcut is chosen to be 1.2nm, which is a safe choice given that the conservative

potentials will become negligible at a smaller inter-particle distance. The proper-

ties of interest to be matched are divided into two categories: bulk fluid-specific

properties and wall-fluid properties. The first category includes the viscosity of the

bulk fluid and the second one include the wall-fluid friction factor ζ and the fluid
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confinement density profile ρ(z). Since the wall-fluid properties depend on the con-

finement height, the optimization will be done at a specific height. For example, for

the water-graphene system that will be considered here, the optimization will take

place in a 15σ = 15× 0.317 = 4.755nm channel. Later the results will be verified for

different channel sizes.

The parameters pw, pw, and γ each affect the target properties of the CGMD sys-

tem differently. The structure and friction coefficients depend on all the potential

parameters pf and pw. Although the dissipative force coefficient γ does not affect

the structure, the friction coefficient linearly depends on it as was found from the

CGMD simulations. The bulk viscosity only depends on pf and γ, since in bulk

simulations the interaction between CG and W is absent. Moreover, the density

profile and friction coefficient are wall-fluid properties that require confinement equi-

librium simulations to be computed, while the bulk viscosity is computed from bulk

simulations only. Based on how each parameter affects the target properties and the

simulation type it requires, obtaining the optimal parameter set is divided into three

steps. The strategy described here is not unique, but it was found the fastest route

to reach the optimal set of parameters.

In step I, pIf and pIw will be found through matching the density profile of water

in the confinement system. This means that the potentials UI = U(pIf , r), U(pIw, r)

will be updated in iterations until a satisfactory match between the confinement

CGMD density profile and AAMD density profile is reached. The DPD thermostat

will not be used, reflecting a case of γ = 0 and the temperature is set through the

Nose-Hoover thermostat. Formally we want to minimize the error between the two

equilibrium density profiles in the confinement defined as:

y1 = [
z=zmax∑

i

|ρCGMD(i)− ρAAMD(i)|] = Eρ (2.17)
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The optimization to reach the minimum is done using the downhill simplex algo-

rithm. Simplex is a gradient-free method, which allows for versatility in defining the

minimization target[25]. Simplex from n+ 1 set of initial points where n is the num-

ber of parameters. Based on the objective function value for each point, it updates

its parameter set to find the objective function at the newly added points. Given the

nonlinearity of the problem and the heuristic method used, convergence may not be

possible if the initial parameter set is not good enough. Adding to the difficulty is

the fact that evaluating y1 requires running a CGMD simulation using the updated

set of potentials UI. Nevertheless, the simulation time required to compute the den-

sity is around three times less than that required to compute friction factor in the

confinement. Therefore the friction factor is not included in the objective of this

step, which will allow us to run more iterations to find a point that matches density,

which will be a better starting point for friction+density optimization steps later.

At the end of the step, around 10 bulk simulations, with different γ values combined

the optimized pIf , will be done to determine the value of γI that matched bulk vis-

cosity. Therefore in step II below, the Nose-hoover thermostat will be replaced with

the DPD thermostat with the value γI for the dissipative force coefficient that was

found to match bulk viscosity.

After obtaining UI, UII will be found by adding the error in the friction factor ζ

to the error function. Therefore

y2 = [
z=zmax∑

i

|ρCGMD(i)− ρAAMD(i)|] + a(|ζCGMD − ζAAMD|) = Eρ + aEζ (2.18)

where Eρ and Eζ are the root-mean-squared error in density ρ and friction ζ, and a

is a weighting coefficient. In this step, we fix σ, ε, and wc to the values obtained for

UI, and allow only l, t and s to vary. Therefore this optimization will have a total of

6 parameters to optimize. This makes the optimization process faster and keeps the

solution close to the structure matched solution. The reason we divided the first two

steps, is to reduce the number of parameters when minimizing |ζCGMD − ζAAMD|.
The simulations done in step two are run for longer time, to be able to compute ζ
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from them. Hence minimizing the number of required iterations by decreasing the

number of optimized parameters is necessary. At the end of this step, again a new

value of γ has to be found since now a new set of fluid-fluid potential pIIf was found.

As a result, the friction factor may be slightly changed. Hence we need a final step,

where we fix γ to γII and pIIIf to pIIf and vary only pw. Exceptionally, if the change

in friction factor, after γ is optimized in step II, is not significant then step III will

not be needed. Figure 2.3 summarizes the different steps of the optimization scheme.

The fact that this model is using fitting parameters does not make it ad-hoc.

As will be shown later, once the fitting parameters are found for one system, they

enjoy generality for different channel widths and driving forces. This is a merit of the

fact that the parameters are found by matching key microscopic physical properties

that determine the structure and the dynamics of the system. The optimization

scheme described here is not unique, but was found to be the most efficient given

the high computational cost of MD simulations.
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Figure 2.3: Illustration of the optimization scheme used to determine the model
parameters.
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CHAPTER 3

METHODS AND SIMULATION DETAILS

After developing the CG model and the outlining the procedure needed to determine

its free parameters, the numerical details of the necessary simulations will be provided

in this chapter. First, in section 3.1, the simulation details of the fine-grained all-atom

molecular dynamics system are provided. Next section 3.2, discusses the difference

in simulating the AAMD and coarse-grained system. Finally, section 3.3 talks about

running the optimization using the VOTCA package which was developed to optimize

potentials of CG simulations.

3.1 All-atom Molecular Dynamics Simulations

The transport system that will be studied in this work is a rectangular 2 dimen-

sional(2D) Graphene channel. Although the slit geometry is simple, it includes all

the important aspects of transport: slip at the wall, viscous stresses, and wall-fluid

layering. Moreover, Graphene has emerged as a very interesting material to drive

water at high speeds. Hence, the channel walls used in this work are single-layered

hexagonal graphene. As shown in figure 3.1, the lateral dimensions of the graphene

sheets are 5.15x5.10nm with a height h, which will be in the range of 3-7nm. As

mentioned earlier the fluid in the channel is explicit water.

The NVT ensemble is used to carry the simulations. The volume is fixed a pri-

ory by the box dimensions and T is fixed at 300K. The number of particles is chosen
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Figure 3.1: All-atom molecular dynamics system initial configuration. Carbon
hexagonal Graphene atoms are shown in blue, while water molecules colored with
red(Oxygen) and white(Hydrogen).
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such that the water in the confinement is at equilibrium with bulk water at a pressure

of 1 bar and temperature of 300K. The number is determined through the method

described in reference [27], through which we add or remove particles from the con-

finement system until the bulk region in the channel has a density equal to 33.46

nm−3 which is the density of water at 1 bar and 300K.

All the MD simulations are run using LAMMPS. The water model used for the

all-atom simulations is the extended simple point charge(SPC/E) model[28]. The LJ

12-6 interaction is used between the carbon and oxygen atoms. The σ and ε of the

oxygen-oxygen(OO) and carbon-carbon(CC) are given in table 3.1. The arithmetic

mixing rule available in LAMMPS was used to derive the other LJ interaction param-

eters. The cutoff of all the LJ interactions is set at 1.2nm. Electrostatic interactions

are computed using a particle Mesh Ewald (PME) method[29]. A vacuum space is

placed in the z-direction to isolate the top and bottom parts of the confinement.

Periodic boundary conditions are used in the x and y directions. The wall atoms are

fixed in their initial positions during the simulations. The NH thermostat is used to

fix the temperature at 300K. The time step of the simulations is 1 fs.

A constant force is used to transport the fluid in the non-equilibrium simulations.

This is done by applying a constant force in the x-direction on each particle. Given

that the thermostat computes the temperature based on the velocity of the fluid,

only the z and y-direction speeds will be used in the temperature calculations. Non-

equilibrium simulations are run in 5 batches each for 10ns after 2ns of equilibration

unless otherwise specified. The particle velocities and positions are dumped every

20 fs.

Table 3.1: LJ interaction parameters for the AAMD simulations

σCC(nm) σOO(nm) εCC(KJ/mol) εOO(KJ/mol) rcut(nm)

0.3390 0.3165 0.233 0.6503 1.2
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Figure 3.2: Coarse-grained system initial configuration. Carbon hexagonal
graphene atoms are shown in blue, while water CG particles colored with red.

3.2 Coarse-grained Simulations

The CG simulations are performed to develop and test the CG transport model. The

confinement system is identical to the AAMD system described above, except that

the explicit water molecule will be replaced with a CG water molecule as shown in

figure 3.2. The number of CG water molecules in the confinement is equal to the

number determined for the AAMD system. The conservative interaction between

the particles, and between the particles and the wall is given through tabulated

potentials generated using the modified LJ potential described in chapter 2. We

use the DPD force field available in LAMMPS with specifying the γ, rcut and T .

The DPD conservative force is set to zero because it is replaced by the tabulated

potentials, which is overlayed on the DPD potential. The DPD force acts as a

thermostat. Therefore no additional thermostat will be used.

In addition to the confinement simulations, bulk simulations are needed to optimize

25



for bulk viscosity. The dissipative force magnitude γ of the model is determined

by matching the bulk viscosity of the coarse-grained water, with the bulk viscosity

of water. Therefore bulk simulations of both the CG system were performed to

obtain their viscosity and determine the γ value that matches the viscosity of SPC/E

water. The bulk CGMD simulations will only differ from the confinement CGMD

simulations through the fact that no wall molecules are present. Simulations are run

for 5ns, where the pressure tensor is output every 1 fs. This ensures for that the

integral in equation 2.5 converges accurately.

3.3 CG Model Optimization

VOTCA is a package developed to generate coarse-grained potentials[30], that are

able to match the structure and thermodynamic properties of a target all-atom

molecular dynamics system. Many coarse-graining methods are available for use

with VOTCA. In this work, we will use the downhill simplex optimizer to obtain our

coarse-grained potentials. Since simplex is a gradient-free method, it will allow us to

easily incorporate the friction factor between water and the walls into the objective

function.

During the optimization procedure, the potential is iteratively updated, until a sat-

isfactory match is found for the target properties. In each iteration, the objective

function is evaluated by running a CG simulation and post-processing it to extract

the properties of interest. These are then compared to the target values obtained

from the AAMD simulations, and a suitable update is made on the potential parame-

ters. The target quantities of the AAMD system are obtained by running equilibrium

simulations in bulk and confinement for 10ns each. The CG simulations are ran for

1.5ns during the objective function evaluation that involves the calculation of friction

factor. On the other hand, when the objective function only includes the error in

density, it is enough to run the CG simulations for 750 ps to extract a well-converged
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density estimate. Finally, since the VOTCA package does not support optimization

for friction factor, computing friction was added to the package by implementing the

method outlined in section 2.5.2.
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CHAPTER 4

RESULTS

In this chapter, the results of applying the developed CG model on the Water-

Graphene system are shown. First, the success of the optimization scheme is demon-

strated, showing an excellent match with the AAMD system in all the set target

properties. Moreover, the results of the non-equilibrium transport in the CG system

will be compared to the AAMD results to test the performance of the developed

model.

4.1 Optimization Scheme

The goal of the optimization scheme is to obtain the model parameters at which

the CGMD model matches the key properties of the AAMD system. Following

the strategy outlined in section 2.4, a great match was obtained in all the different

properties. The error in the density profile was less than 7%, and that can be seen

from the great match in figure 4.1. An exact match was possible for bulk viscosity

and an error of less than 1% for friction coefficient, as shown in table 4.1 below.

Table 4.1: Comparison of optimization targets ζ and µ at the end of each phase
with AAMD values

Parameter AAMD CG

Friction factor ζ( KJ.ps
mol.nm2 ) 16.18 16.23

Viscosity µ(cP) 0.601 0.599
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Figure 4.1: Density ρ profile comparison between the all-atom system and CG
system after the final optimization step.

The downhill simplex algorithm convergence was good considering the highly non-

linear nature of the objective function. The algorithm starts from a set of initial

points and then replaces the worst one with a linear combination of the other points.

It then keeps on updating the list of points it is considering based on the function

value at each one. In figure 4.2, the plot shows the minimum value of the objective

function as a function of the simplex iteration. Since not all the iterations will

introduce a more optimal set, the plot of y1 as a function of simplex iteration is

varying discontinuously. The error in density in step I decreases from around 9% to

around 6.5% in 150 iterations. The initial error value was acceptable, which means

that the choice of initial parameters was good. Some of the initial parameter sets

introduced high errors of 30%, but they do not appear in the plot since we are always

showing the minimum error value at a certain iteration. Nevertheless, although

quantitatively the error does not appear to decrease significantly, fine details in the

density profiles were vastly improved. These changes occur specifically at the peaks

of the plot, which will not contribute greatly to the error. After determining pIw

and pIf through the simplex optimization, γI is found by running bulk simulations to
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compute bulk viscosity. The results came such that γI = 26KJ/mol.nm would match

the viscosity of the AAMD system. Using this γ value, step II attempts to minimize

y2. Since the density starts from its optimal solution point, and the weight of density

error is higher in the objective function y2, in figure 4.3 the error decreases slightly

from around 8% to 6%. The error in ζ decreased from around 15% to around 0.3%

at the end of the simplex optimization of step II. The interaction potential between

CG particles did not change significantly between the two steps, causing the value

of γ that matches the viscosity to stay at around 26.0 KJ/mol.nm. Therefore, step

III was not needed in for this system. In total, 300ns of simulation time was needed

to obtain the CG model parameters.

Figure 4.2: The convergence of the objective function y1 for step I of the
optimization scheme.
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Figure 4.3: The convergence of the objective function y2 for step I of the
optimization scheme. The individual relative errors in density Eρ and in friction Eζ
are also shown.

The potential form used in the model definition proved to be sufficient to match

the desired properties. The interaction between CG molecules shown in figure 4.4,

had the double well feature reported in previous work for the interaction between

CG water single beads[26]. Table 4.2 lists the potential parameters at the end of

each step. It can be observed how the parameters only changed slightly after step I

and this is reflected in the slight change in the potential plot in figure 4.4 and figure

4.5. On the other hand, the interaction between W and CG molecules was closer to a

pure LJ interaction as figure 4.5 shows. The pure LJ form was not forced, but rather

was a result of the optimization procedure. The plot shows that also in this case the

potentials did not change much after the density matching step. Nevertheless, the

slight change in the potentials allowed the friction factor to change and match the
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AAMD value. The final potential parameters, found in table 4.2, will be used to run

the non-equilibrium flow simulations in the next section.

Table 4.2: The CG model parameters after step I and II.

pw pf

Step σ ε wc l t s σ ε wc l t s γ
(nm) ( KJ

mol
) (nm) ( KJ

mol
) (nm) (nm) (nm) ( KJ

mol
) (nm) ( KJ

mol
) (nm) (nm) ( KJ

mol.nm
)

I 0.265 3.000 0.243 4.938 0.263 0.091 0.261 3.511 0.265 5.291 0.316 0.054 25.5
II 0.265 3.000 0.243 5.234 0.253 0.095 0.261 3.511 0.265 5.322 0.320 0.057 26.0

Figure 4.4: Modified LJ potentials of the CG-CG interaction after step I and II
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Figure 4.5: Modified LJ potentials of the W-CG interaction after step I and II

4.2 Non-equilibrium Simulations

After obtaining a CG model that can replicate the key transport properties, non-

equilibrium CGMD and AAMD simulations were run to compare the transport be-

havior of the two systems. More precisely, Poiseuille flow will be simulated in the

same slit system used for optimizing the model. The flow will be simulated in three

different channels that vary by the height which will be set to 10σ, 15σ(where the

model was optimized) 20σ. The diameter of the water molecule is estimated to be

σ = 0.317nm. The Poiseuille-like flow is simulated by applying a constant accelera-

tion g to the system. The equivalent pressure gradient in a poissoille flow is dp
dx

= ρg.

Figure 4.6 shows the velocity and density profile of the flow in a 15 σ channel at

g = 0.1J/mol.nm.
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Figure 4.6: Comparison of velocity and density profile between the AAMD and CG
systems. h = 15σ and Fdrive = 0.1 J/mol.nm

The simulated velocity profiles will be compared to the continuum prediction based

on calculated equilibrium properties. The reason behind this comparison is to check

in which operating conditions will the CG model agree with the linear regime pre-
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Figure 4.7: The average velocity Vavg in the 15σ channel as a function of gravity as
predicted by the CGMD, AAMD, and EMD simulations.

Figure 4.8: The average velocity Vavg in the 10σ channel as a function of gravity as
predicted by the CGMD and AAMD simulations.
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Figure 4.9: The average velocity Vavg in the 20σ channel as a function of gravity as
predicted by the CGMD and AAMD simulations.

dicted using the same properties that CGMD matches. The continuum model is

described in previous works extensively. Here a brief description will be made based

on simplifying assumptions. First, since the flow velocity is plug-like in regimes

simulated, the average velocity of the flow will be very close to the slip velocity as

can be seen from figures 4.6, 4.10 and 4.11. Slip velocity in the linear regime with

constant friction factor is computed as Vslip = mg
ζ

[31]. Based on the first assumption

the average velocity is

Vavg = Vslip =
mg

ζ
=
Fdrive
ζ

. The previous equation will be referred to later as the equilibrium molecular dynam-

ics (EMD) prediction. Figure 4.7 shows the good match between CGMD, AAMD

and EMD predictions in the low-velocity regime. Hence the CG model has the same

slip velocity that its equilibrium behavior was optimized to match.

The flow simulations in the different channels and conditions showed a good match

between CGMD and AAMD simulations. In the 15σ channel, in which the model

was developed, the agreement was exact in the low-velocity linear regime. Figure 4.7

shows the averaged velocity Vavg as a function of gravity applied in the 15σ channel.
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The linear increase in average velocity stops at g = 0.2J/mol.nm for the AAMD

system after which the velocity diverges from the EMD prediction. Figures 4.9 and

4.8 compares the prediction of CGMD and AAMD in the 10σ and 20σ channels.

Again the same trend persists, where the transport predicted from the CG model

is in good agreement with the AAMD system in the low-velocity regime, but then

starts to deviate at higher velocities. For the three systems studied, the AAMD slip

velocity starts to deviate from the equilibrium prediction at around 50m/s.

The CGMD simulations were approximately 15 times faster than the AAMD simu-

lations. The mapping of the atomistic system into the coarse-grained system reduced

the number of atoms and removed the electrostatic interaction between the atoms.

As a result, the computational resources required for the same number of steps was

about 4 times less for the CGMD system. The additional factor of 5 comes from

the fact that the CGMD model can be run at a time step of 5fms compared to 1fms

for the AAMD simulations. The benefit of this speedup is most significant for the

flow simulations with low velocities. It is known that for the experimentally relevant

velocity range of cm/s, the AAMD simulations have a poor signal to noise ratio. The

reason is that the streaming velocity is close to the thermal velocity, and therefore

the AAMD simulations will require longer simulation times to get well-converged

results. Hence, with the 15 times speedup the great accuracy at low velocity, the

CGMD model becomes more suitable for studying experimentally relevant flows.

In summary, the CG model was able to match the key transport properties and

simulate accurate nano-scale transport faster in the low-velocity regime. The fric-

tion factor ζ and viscosity µ of the CGMD system were within 1% of the AAMD

result, and the averaged relative error in density was less than 7%. The good match

in the equilibrium properties led to a good match in the transport behavior. The

CGMD reasonably predicted the velocity profile of the AAMD system, in the regime

where the AAMD behavior was linear that extends over all the experimentally rel-
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evant flow conditions. Finally, the CGMD model was about 15 times faster than

AAMD simulations.
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Figure 4.10: Comparison of velocity and density profile between the AAMD and
CG systems. h = 10σ and g = 0.15 J/mol.nm
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Figure 4.11: Comparison of velocity and density profile between the AAMD and
CG systems. h = 20σ and g = 0.05 J/mol.nm
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The main goal of this work was to develop a coarse-grained molecular dynamics

model that is able to simulate transport in nano-fluidic systems. After developing

the model and determining the required targets, an optimization scheme was formu-

lated to find a parameter set of the model which achieve the set targets. The novelty

of this CG model is that unlike other CG methods that replicate structure in nano-

confinement, this model was designed to match friction factor and bulk viscosity as

well. It was shown in this work that by matching structural and dynamical prop-

erties the CG model was able to simulate transport accurately in the linear regime

compared to all-atom molecular dynamics.

The model was applied to water in the graphene nano-channel system. The results

came such that the targets (density layering, friction factor, and bulk viscosity) were

matched with the AAMD system by a multi-step optimization using the downhill

simplex algorithm. In addition to matching density layering, the CG model matched

friction factor simultaneously. Moreover, by carefully setting the thermostat prop-

erties, the bulk viscosity of CG water was matched with AAMD water. Using the

developed model it was possible to simulate transport accurately and 15 times faster

than AAMD in the low-velocity linear regime. Since in this experimentally relevant

operation domain AAMD simulations are prohibitively slow, the developed model
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will enable researchers to simulate these flows accurately and with a more reasonable

computational cost.

5.2 Future Work

The accuracy of the model can be improved by changing the potential form and ther-

mostat used. One of the main shortcomings of the model was to simulate transport

at high shear rates where the molecular dynamics simulations start to deviate from

linear regime behavior. The first challenge here will be to characterize the non-linear

behavior efficiently, to be able to optimize the model to achieve it. The second chal-

lenge will be to change the model so that it will be able to match the low-velocity

and high-velocity regime simultaneously. One possibility will be to replace the tradi-

tional DPD thermostat with a more versatile thermostat where the dissipative force

will have an extra component. The effect of such thermostat should be studied to

check how it can improve the accuracy of the current model. Another possibility

will be to change the potential form to a numerical form such as a cubic spline. The

suggested modifications may be necessary to include for other systems to achieve a

similar performance that the current model achieved for the water-graphene system.

The second front on which research should be done is the model efficiency. The rea-

son behind doing coarse-graining is to simulate systems faster. Although this method

was 15 times faster than MD, a higher speedup may be possible. Researchers that

use DPD to simulate mesoscale flows, usually combine more than one fluid molecule

to form one CG particle. A similar attempt can be made for this model. New

wall-fluid and fluid-fluid potentials should be optimized again to match the target

properties. Finally, the optimization algorithm should be studied more to decrease

the computational cost associated with finding the optimal parameter set. Although

the optimization is a one-time procedure for every system, a more efficient algorithm

can find better solution points, which may be necessary for systems where a good

initial parameter set is hard to find causing the simplex algorithm to get stuck at
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non-satisfactory points. The challenge posed here is that the objective function is

highly non-linear and requires a molecular dynamics simulation to evaluate it. Hence

any optimization algorithm used will have to be gradient-free, where no gradient def-

inition is necessary.
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