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ABSTRACT

This thesis explores the possibility of detecting the hidden presence of wire-

less eavesdroppers. Such eavesdroppers employ passive receivers that only

listen and never transmit any signals, making them very hard to detect. We

show that even passive receivers leak RF signals on the wireless medium.

This RF leakage, however, is extremely weak and buried under noise and

other transmitted signals that can be 3-5 orders of magnitude larger. Hence,

it is missed by today’s radios. We design and build Ghostbuster, the first

device that can reliably extract this leakage, even when it is buried under

ongoing transmissions, in order to detect the hidden presence of eavesdrop-

pers. Ghostbuster does not require any modifications to current transmitters

and receivers, and can accurately detect the eavesdropper in the presence of

ongoing transmissions. Empirical results show that Ghostbuster can detect

eavesdroppers with more than 95% accuracy up to 5 meters away.
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Chapter 1

INTRODUCTION

Eavesdropping on wirelessly transmitted data is a longstanding security threat

in wireless networks. Wireless radios often rely on cryptographic solutions

to defend against eavesdropping. However, encryption standards are under

constant attack and can certainly suffer from security loopholes. Vanhoef et

al. [1] is a classic example that shows how the universally adopted WPA2

WiFi security standard is vulnerable to a “key reinstallation attack,” allowing

the attacker to decrypt packets. Various side channel attacks have also been

shown to exploit electromagnetic or acoustic signals to extract the encryption

key [2, 3, 4, 5]. Furthermore, due to low cost, low power requirements, some

wireless IoT systems adopt weak encryption protocols or lack encryption

altogether, leaving them widely exposed to eavesdropping [6, 7, 8, 9].

Unfortunately, detecting the presence of an eavesdropper remains an open

problem. Wireless receivers are passive devices that only listen in on the

medium without transmitting any signal. Hence, there are no practical so-

lutions today to discover eavesdroppers. Yet, such a capability can serve as

a strong primitive in defending against eavesdroppers. In light of this situa-

tion, we ask whether it is possible to detect the hidden presence of a passive

wireless eavesdropper planted in the environment?

This thesis takes the first steps towards positively answering this question.

In doing so, we rely on the following key observation: even though a wireless

eavesdropper does not produce active signals, its underlying hardware does

leak RF signals on to the frequency spectrum. Specifically, every wireless

receiver must use a local oscillator to generate a sinusoidal signal at the cen-

ter frequency of operation, e.g., 2.4 GHz or 5 GHz for WiFi. This sinusoidal

signal is mixed with the received wireless signal to down-convert it to base-

band for digital sampling and processing as shown in Figure 1.1. Even if the

wireless radio is only receiving and not transmitting, this sinusoidal signal

can leak back through the antenna onto the wireless medium.
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Figure 1.1: Ghostbuster’s threat model.

The leakage, however, is extremely weak. In fact, it is significantly below

the noise floor and hence cannot be detected by today’s wireless receivers.

One solution is to capture the signal over a long time window, e.g. 1 sec,

and compute a multi-million point FFT over all collected samples in order to

average the leakage and bring it above the noise floor.1 However, taking such

a large time window is bound to include packets transmitted on the wireless

medium as well as leakages from other legitimate receivers. As a result, the

eavesdropper’s leakage will be buried under other transmitted signals which

can be three to five orders of magnitude larger.

In addressing the above challenge, we introduce Ghostbuster, a device that

can extract the leakage of a wireless eavesdropper buried under noise and

transmitted signals without requiring any modifications to current transmit-

ters and receivers. Ghostbuster leverages MIMO, multiple antenna systems,

to separate the leakage from the transmitted signals in the antenna/spatial

domain. Specifically, Ghostbuster can estimate the wireless channel from the

transmitter and use it to zero-force the transmitted signals. Once the signal

source is canceled, the leakage from the eavesdropper is revealed.

Of course, a robust separation of the weak leakage would require very ef-

ficient MIMO cancellation of the transmitted signals. While current MIMO

algorithms can separate signals transmitted from two or more sources of

comparable power for the purpose of decoding data bits, they cannot suffi-

1Note that the receiver used to capture the signal must configure its own local oscillator
to a slightly shifted center frequency in order to ensure that its own local sinusoid does
not overshadow the eavesdropper’s leakage.
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ciently cancel the transmitted signal for the purpose of extracting the leakage.

To understand why, recall that Ghostbuster must take an FFT over a very

large time window which would include several transmitted packets. Hence,

over this time window the transmitted signal will exhibit discontinuities.

These discontinuities manifest as artifacts and spurious frequencies in the

frequency domain that are hard to cancel with standard MIMO techniques

and ultimately leave a residual that continues to mask the leakage from the

eavesdropper.

To perfectly cancel the transmitted signal, Ghostbuster leverages a two-

stage recovery and cancellation algorithm that performs cancellation in two

domains: spatial domain and frequency domain. In the first stage, Ghost-

buster uses a new recovery algorithm that can extract the values of the fre-

quencies in the continuous frequency spectrum in order to properly estimate

the artifacts caused by discontinuities in the signal and cancel them in the

frequency domain. In the second stage, Ghostbuster estimates and computes

a higher resolution wireless channel across the different MIMO antennas that

allows us to efficiently cancel the transmitted signals and the artifacts after

taking a very large FFT in the spatial domain. This enables Ghostbuster to

extract the leakage signals from the eavesdropper.

In addition to canceling transmitted signals, Ghostbuster must also sep-

arate the leakage of the eavesdropper from the leakage of other legitimate

receivers. To do so, Ghostbuster leverages the frequency dimension where

hardware imperfections cause small frequency offsets at different receivers.

Ghostbuster exploits these hardware imperfections to separate the leakages

from different receivers.

We built a prototype of Ghostbuster with multiple antennas using USRP

N210 software-defined radios. We evaluated Ghostbuster in an office building

using both USRPs as eavesdroppers at 900 MHz, 1.8GHz and 5GHz as well

as WiFi cards placed in monitor mode at 5 GHz. We also ran experiments in

a large empty parking lot where there were no WiFi signals. Our results show

that Ghostbuster can detect the presence of USRP eavesdropper with more

than 95% accuracy up to 5 meters despite ongoing transmissions and leakages

from other receivers. For WiFi card based eavesdroppers, Ghostbuster can

detect them with 89% accuracy up to 1 meter in the presence of ongoing

transmissions and leakages from other WiFi cards.

Ghostbuster, to the best of our knowledge, is the first system that can
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practically discover the mere presence of hidden eavesdroppers passively lis-

tening on the wireless medium even in the presence of ongoing transmissions

and other receivers. In doing so, Ghostbuster does not require any changes

to the current wireless transmitters and receivers being used today. Hence,

it provides a readily deployable active defense layer against eavesdropping.

While Ghostbuster can extract and separate the leakage of the eavesdrop-

per from other transmitters and receivers, a current limitation of our system

is its inability to tell which leakage corresponds to the eavesdropper and

which corresponds to the legitimate receiver. Our current threat model as-

sumes that Ghostbuster knows the number of legitimate receivers since they

are typically in plain sight and hence, can discover an eavesdropper by detect-

ing additional leakage signals. While this might be difficult in some office and

home WiFi networks, it can be adopted in secure facilities where the number

of radios can be known and controlled. Chapter 6 discusses the future work

to overcome such limitation.
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Chapter 2

PROFILING RF LEAKAGE

We will start by characterizing the RF leakage from wireless receivers. We

will focus on two types of receivers: WiFi cards and software-defined radios.

2.1 WiFi Cards

An adversary can configure a WiFi card to operate in monitor mode. In

this case, the card will not transmit any packets and will only receive, which

would hide the presence of the eavesdropper. While WiFi operates in the

2.4 GHz and 5 GHz bands, the leakage need not be at the same frequency.

The exact frequency of the leakage depends on the hardware architecture

of the receiver and the frequency of the local oscillator. We will describe

several architectures commonly used in off-the-shelf WiFi receivers. The

choice of architecture and trade-offs depends on circuit optimizations which

are beyond the scope of the work in this thesis. However, it is important to

examine these designs in order to determine the frequency of leakage that

will allow us to detect the presence of an eavesdropper.

We examined over 20 WiFi cards in desktops, laptops, cellphones and ac-

cess points that run different protocols including 802.11a, b, g, n, ac. The

cards use WiFi chipsets from three main manufacturers: Intel, Qualcomm,

and Broadcom. Figure 2.1 shows four different simplified architectural de-

signs used in these chipsets. The first design, shown in Figure 2.1(a), is

direct conversion where the local oscillator generates a 2.4 GHz or 5 GHz

signal that is directly used to down-convert the received signal to baseband.

The second design, shown in Figure 2.1(b), is commonly used in WiFi cards

that operate at 2.4 GHz. The local oscillator generates a 4.8 GHz signal

that is then divided to generate a 2.4 GHz which is mixed with the received

signal. In this case, the strongest leakage observed is at 4.8 GHz.
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Figure 2.1: Simplified receiver architectures used in commercial off-the-shelf
WiFi cards.
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The third and fourth leverage a heterodyne (multi-stage) architecture

where the signal is first down-converted to an intermediate frequency and

then again to baseband. For 2.4 GHz, shown in Figure 2.1(c), the main local

oscillator generates a signal between 3.2 GHz and 4 GHz that is divided to

generate a signal between 1.6 GHz and 2 GHz. This signal is used to down-

convert the received signal to a center frequency of 680 MHz. Then, another

local oscillator at 680 MHz is used to down-convert it to baseband. In this

case, the leakage is observed at both frequencies of the two oscillators. How-

ever, our observation reveals that the 680 MHz is typically weaker. Finally,

for 5 GHz, the signal is also down-converted twice. However, a single local

oscillator is used as shown in Figure 2.1(d).

To formalize this, we can express the frequency of the leaked signal fl as

a function of the center frequency fc for each one of the architectures:

(a) fl = fc

(b) fl = 2× fc
(c) fl = 2× (fc − 680 MHz)

(d) fl = 2/3× fc

(2.1)

It is important to understand the different designs in order to determine

at which frequency the leakage will occur and hence to set Ghostbuster to

receive at the desired frequency. As described earlier, Ghostbuster will set its

own center frequency f ′c slightly shifted from the leakage frequency to ensure

the leakage from its own local oscillator does not overwhelm the leakage from

the eavesdropper, i.e. Ghostbuster sets f ′c = fl + ∆f . It can then capture

samples over a long time window and take an FFT of the captured samples.

If an eavesdropper is present, it should see a sharp spike in the FFT bin

corresponding to a frequency of ∆f .

To verify the feasibility of detecting leakage from WiFi cards, we conducted

experiments on over 20 cards. To avoid interference from WiFi devices and

access points, we ran the experiments in a large parking lot with no WiFi

interference. We placed the WiFi cards in monitor mode to ensure they

are only receiving and used a USRP software radio placed 1 meter away to

measure the leakage. For each card, we collected signals over a window of 1

second and measured the SNR of the leakage. We verified that the leakage

disappears once the card is turned off.
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Table 2.1: Leakage measured 1 meter away for different WiFi eavesdroppers
listening at 2.437 GHz

WiFi Chipset/USRP Daughterboard Design
Leakage freq. Leakage SNR

in GHz @ 1m in dB

Broadcom: BCM43xx, BCM4329,
a 2.437 12.8 –23.0

BCM4360, BCM4352, BCM43526
Intel: 4965 c 3.514 19.8

Intel: 3165, 5100, 5300 b 4.874 12.6–19.7
Intel: 7260, 7265, 8260 b 4.874 10.1–13.1
Qualcomm: AR93XX b 4.874 11.3
Qualcomm: AR9271,

b 4.874 7.2–14.3
AR9485, AR9170

USRP N210: SBX board a 2.437 50.8
USRP N210: CBX board a 2.437 50.2
USRP N210: UBX board a 2.437 53.4

Table 2.2: Leakage measured 1 meter away for different WiFi eavesdroppers
listening at 5.745 GHz

WiFi Chipset/USRP Daughterboard Design
Leakage freq. Leakage SNR

in GHz @ 1m in dB

Broadcom: BCM43xx, BCM4329,
a 5.745 10.7-25.01

BCM4360, BCM4352, BCM43526
Intel: 4965 a 5.745 10.7

Intel: 3165, 5100, 5300 d 3.65 20.4-22.2
Intel: 7260, 7265, 8260 a 5.745 12.6–16.0
Qualcomm: AR93XX d 3.65 21.1

USRP N210: CBX board a 5.745 56.7
USRP N210: UBX board a 5.745 57.5

Tables 2.1 and 2.2 show the resulting leakage frequency and SNR of the

leaked signal when the WiFi card is set to frequency bands with center fre-

quency fc = 2.437 GHz and fc = 5.745 GHz respectively. Since many WiFi

cards, laptops and cellphones use the same underlying WiFi chipset, we re-

port the results for different chipsets. The tables show that the frequency

of the leakage depends on the WiFi chipset architecture and the leaked fre-

quency matches the expected value derived from Equation (2.1). The tables

also show that for all architectures, the leakage at 1 m is above 7 dB and can

reach 25 dB. Hence, it can be detected at even farther distances.

Two points are worth noting:

• Higher SNR can be achieved by averaging over a longer time window.

Specifically, we have used a time window of 1 sec. By collecting more

8



samples from a window that is K× larger, the SNR of the leakage signal

can increase by 10 log10(K) dB.

• The best eavesdropper strategy is to use a card with a direct conversion

architecture as shown in Figure 2.1(a). This ensures that the leakage will

be in the same frequency band and will be masked by other transmitters

and receivers in the environment.

2.2 USRP Software-Defined Radios

An adversary can also use a USRP software-defined radio to eavesdrop on

ongoing transmissions. The advantage of using USRPs is that they are fre-

quency and protocol independent. An adversary can configure the software

radio to receive at any frequency between 10 MHz and 6 GHz and can decode

the received signal in software, independent of protocol. To operate at dif-

ferent frequencies, the USRP software radio requires an RF daughterboard

that supports the frequency range of operation. All daughterboards use the

direct conversion architecture and hence are expected to leak at the center

frequency of operation.

We experiment with USRP N210 using three daughterboards: SBX (400 MHz

– 4.4 GHz), CBX (1.2 GHz – 6 GHz) and UBX (10 MHz – 6 GHz). Tables 2.1

and 2.2 also show the leakage for an eavesdropper 1 meter away using a USRP

software radio with these daughterboards to eavesdrop on WiFi packets. In

this case, the SNR of the leakage signal is around 50 dB which is significantly

higher than WiFi cards. This, however, is expected since the USRP’s RF

circuits use a simple hardware architecture, whereas WiFi chips are heavily

optimized and use state-of-the-art components that minimize leakage.
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Chapter 3

GHOSTBUSTER

While the above shows the feasibility of detecting RF leakage from WiFi

cards and software-defined radios, it assumes there are no transmissions on

the medium. However, this is not the case in practice since taking an FFT

over a large time window (e.g. 1 sec) is bound to include transmitted packets.

To address this, we introduce Ghostbuster, a device that can extract the RF

leakage of a wireless eavesdropper even if it is buried under large transmitted

signals.

We will describe Ghostbuster in the context of WiFi networks. For sim-

plicity, we will first focus on the case where there is a single WiFi transmitter

and an eavesdropper. We will specifically describe Ghostbuster’s algorithms

for OFDM based packet transmissions since OFDM is the most prevalent

modulation scheme used today.

In order to extract the eavesdropper’s leakage, Ghostbuster must first nul-

lify the transmitted packets along two dimensions:

• Spatial Dimension: Ghostbuster leverages MIMO to cancel the trans-

mitted signal and separate it from the eavesdropper’s RF leakage.

• Frequency Dimension: Ghostbuster estimates and cancels artifacts and

spurious frequencies resulting from discontinuities in the time domain sig-

nal.

3.1 Spatial Cancellation with MIMO

Consider a Ghostbuster system with a two antenna MIMO. Let y1(t) and

y2(t) be two time-domain signals received concurrently on each antenna. Let

x(t) be the transmitted signal and e(t) be the eavesdropper’s leakage. Ghost-

10



buster receives:
y1(t) = he1e(t) + ht1x(t)

y2(t) = he2e(t) + ht2x(t)
(3.1)

where ht1 and ht2 are channels from the transmitter, and he1 and he2 are

channels from the eavesdropper to the two MIMO receivers of Ghostbuster.

We can rewrite the above equation in vector format:

~y = ~hee(t) + ~htx(t) (3.2)

Figure 3.1 shows a representation of these vectors in the antenna space. By

projecting on a direction ~h⊥t orthogonal to ~ht, we can cancel the signal from

the transmitter. The remaining projection ~ep = ~h⊥t · ~y will only correspond

to the eavesdropper’s leakage.

However, most wireless systems today like WiFi and LTE use OFDM.

Wideband OFDM signals experience frequency-selective fading. The wire-

less channel h must be computed per OFDM bin and cancellation must be

performed per bin. Hence, we can rewrite the above equations per OFDM

frequency bin:

Ŷ1(f) = He1(f)Ê(f) +Ht1(f)X̂(f)

Ŷ2(f) = He2(f)Ê(f) +Ht2(f)X̂(f)
(3.3)

In the equations above, the eavesdropper’s leakage signal is a single sinu-

soid, i.e. e(t) = cos(2πflt) and E(f) = δ(f −fl). Hence, the leakage appears

in a single OFDM bin. Typically, this is the DC (zero) OFDM bin since, as

discussed earlier, the optimal strategy of the eavesdropper is to set its center

frequency, the same as the transmitted signal. The DC OFDM bin contains

the signal from the transmitter’s local oscillator and thus modulated data

bits are not sent in the DC bin.

It is, however, hard to estimate the channel of the transmitter’s signal in

the DC bin in order to cancel this signal. First, no known preamble bits

are ever sent in the DC bin that would allow us to estimate Ht1(fDC) and

Ht2(fDC). Moreover, at any point, the bin contains the sum of the transmit-

ter’s signal and the eavesdropper’s leakage, making it hard to separate the

two and estimate the channels.

To address this issue, we rely on two key observations. First, we do not

need to know the exact values of the channels. The ratio of the channels is

11
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Figure 3.1: Ghostbuster leverages MIMO to cancel the signal from the
transmitter in the Antenna Space.

sufficient for cancelling the transmitter’s signal. Specifically, if we know the

ratios, we can compute:

Ŷ1(f)− Ht1(f)

Ht2(f)
Ŷ2(f)

=

(
He1(f)− Ht1(f)

Ht2(f)
He2(f)

)
Ê(f) = CÊ(f)

(3.4)

where C is some constant.

Second, the signal from the transmitter’s oscillator and the eavesdropper’s

leakage are not completely aligned in frequency. In particular, the oscillators

of the transmitter and eavesdropper are not physically synchronized. Hence,

they exhibit a small frequency offset which is typically referred to as carrier

frequency offset (CFO = ∆fc). This offset can be used to separate the two

signals along the frequency dimension by taking an FFT over a large time

window. By separating the two signals into two different frequency bins, we

can find a frequency bin that contains only the transmitter’s signal on both

of Ghostbuster’s receivers, i.e.,

Ŷ1(f) = Ht1(f)X̂(f)

Ŷ2(f) = Ht2(f)X̂(f)
(3.5)

By taking the ratio of the signals in this bin, we can compute the ratio of

the channel even if X̂(f) does not contain a known preamble bit.1

1Note that within a very narrow frequency band, e.g. 1 OFDM bin, the wireless channel
is flat.
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Unfortunately, simply taking an FFT over a large time window is not suffi-

cient to separate the signals in frequency domain. Over a large time window,

the signals exhibit discontinuities that result in artifacts and spurious fre-

quencies which mask the eavesdropper’s leakage. Hence, in order to detect

the eavesdropper’s leakage and cancel the transmitter’s signals, Ghostbuster

must first estimate and cancel the impact of discontinuities along the fre-

quency dimension.

3.2 Frequency Cancellation of Artifacts

Before we describe how Ghostbuster deals with discontinuities, it is impor-

tant to first understand why discontinuities result in artifacts and spurious

frequencies.

A. Discontinuities & Artifacts:

To better understand this, let us first focus on a single OFDM subcarrier

in a single OFDM symbol shown in Figure 3.2(a). The transmitter takes

an inverse FFT of the OFDM symbol to transform it to the time domain

before it transmits it on the wireless channel as shown in Figure 3.2(b).

When Ghostbuster receives this symbol, it takes an FFT over a much larger

time window. This process can be viewed as taking a much longer periodic

time signal and windowing it to the length to the OFDM symbol as shown

in Figure 3.2(d). Multiplying a signal with a window in time is equivalent

to convolving it with a sinc function2 in frequency. Thus, the subcarrier

is convolved with a sinc and once Ghostbuster takes a very long FFT, the

side-lobes of the sinc will appear and mask the eavesdropper’s leakage.

2The sinc function is defined as sinc(x) = sin(x)/x.
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Figure 3.2: Discontinuities: Lack of periodicity of the OFDM symbols
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continue to mask the eavesdropper’s leakage.
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Figure 3.3: OFDM subcarriers’ side-lobes after taking a very long FFT.

The above description only considered one subcarrier from a single OFDM

data symbol. However, side-lobes from all the subcarriers from all OFDM

data symbols in the packet are going to sum up together, which manifests as

artifacts and spurious frequencies. Figure 3.3 shows that the side-lobes from

many OFDM subcarriers combine together.

B. Estimating & Cancelling Artifacts:

Consider an OFDM symbol with N subcarriers. Let x(t) be the time do-

main version of this OFDM symbol received at Ghostbuster. In the discrete

domain, we have:

x(t) =
N−1∑
k=0

ake
j2πfkt/N + w(t), t = 0, 1, ..., N − 1 (3.6)

where w(t) is additive white Gaussian noise, fk is the frequency of the kth

OFDM subcarrier3 and ak is a complex amplitude corresponding to mod-

ulated data bit weighted by the wireless channel. For example, for BPSK

modulation ak = ±H(fk) where H(fk) is the wireless channel.

In order to eliminate the side-lobes generated by these subcarriers, we need

to know the continuous values of the frequency estimates fk as well as the

accurate values of the amplitudes ak. The best estimates of f̃k and ãk would

3Note that due to CFO, the frequency of each subcarrier is shifted and no longer aligned
with integers of the FFT grid.
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minimize the following error function:

E(ã, f̃) =
N−1∑
t=0

∣∣∣∣∣x(t)−
N−1∑
k=0

ãke
j2πf̃kt/N

∣∣∣∣∣
2

(3.7)

where ã is a vector of ãk and f̃ is a vector of f̃k.

Ghostbuster uses an iterative algorithm in order to minimize the above

error function in Equation (3.7). It first finds ã that minimizes E for a fixed

f̃ . It then fixes ã and finds f̃ that minimizes E. Ghostbuster iterates back

and forth until the algorithm converges and the error is minimized.

Hence, in each iteration, Ghostbuster

• Solves for ã given a fixed f̃: In this case, the error function E is convex

in ã. In fact, the above optimization is a weighted least squares problem

and has the following closed-form solution:

ãk =
1

N

N−1∑
t=0

x(t)e−j2πf̃kt/N (3.8)

• Solves for f̃ given a fixed ã: In this case, the error function E is non-

convex in f̃ due to the complex exponentials. However, if we have good

initial estimates of f̃k that are within a small interval around fk, then

the function becomes convex within this interval and we can use gradient

descent to minimize it.

We start by showing that the error function is convex given good initial

estimates of f̃k. Let us consider a single subcarrier fk. Our goal is to find f̃k

and ãk that minimize the error function:

E(f̃k, ãk) =
N−1∑
t=0

∣∣∣akej2πfkt/N − ãkej2πf̃kt/N ∣∣∣2 (3.9)

We prove the following theorem about the error function:

Theorem 1. The error function E(f̃k, ãk) is convex for f̃k ∈ [fk − α, fk + α]

for any α < 2/5.

We provide the proof of the above theorem in Appendix A. Here, we present

the intuition behind it. Specifically, we show that the error function above
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Figure 3.4: Normalized error function for a single subcarrier at fk = 16,
ak = 1 and N = 64.

is the negative of the aliased sinc function and is given by:

E(f̃k, ãk) = |ak|2N − |ak|2/N

(
sin(π(fk − f̃k))

sin(π(fk − f̃k)/N)

)2

(3.10)

Figure 3.4 shows an illustration of the normalized error function, E(f̃k, ãk)/N

for fk = 16, ak = 1 and N = 64. As can be seen, if the initial estimate f̃k

used for gradient descent is within a fk ± 2/5, the error function is convex.

Hence, we can use gradient descent to minimize the error and achieve the

global minimum as the solution for f̃k.

But how do we obtain good initial estimates of fk? To do so, we leverage

the standard OFDM decoder. Specifically, we have:

fk = k +N∆fc/B (3.11)

where k is the integer index of the subcarrier on the FFT grid, ∆fc is the

carrier frequency offset (CFO) and B is the bandwidth of the OFDM symbol.

OFDM decoding naturally estimates the coarse CFO at the beginning of the

packet as well as the residual CFO for every data symbol. We can use these

CFO estimates to obtain very good initial estimate of fk on which we can

run gradient descent to further minimize the error.4

4Note that simply using these initial estimates as the true estimates results in a small
residual error that accumulates across symbols and continues to prevent us from accurately
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Given an initial f̃init and ãinit, Ghostbuster iterates between solving for f̃

and solving for ã until the error function converges. Ghostbuster does this

for every OFDM symbol in order to be able reconstruct and subtract the

side-lobes and, hence, eliminate the artifacts.

3.3 Overall Algorithm

In this section, we put together Ghostbuster’s overall cancellation algorithm.

As described earlier, Ghostbuster performs cancellation both in the spatial

and frequency dimensions using the following steps:

1. For each packet in the signal, Ghostbuster decodes the packet using stan-

dard OFDM decoding to obtain initial estimates of f̃ from carrier fre-

quency offset estimation.

2. For each symbol, Ghostbuster iterates between solving weighted least

squares and gradient descent to solve the following optimization problem.

f̃∗, ã∗ = arg min
f̃k,ãk

N−1∑
t=0

∣∣∣∣∣x(t)−
N−1∑
k=0

ãke
j2πf̃kt/N

∣∣∣∣∣
2

(3.12)

3. Ghostbuster then uses the estimates f̃∗ and ã∗ to recover an accurate

reconstruction x̃(t) of x(t). Ghostbuster does this for each MIMO receiver

and then subtracts all the subcarriers of x̃(t) other than the DC subcarrier

from x(t) to eliminate side-lobes that create artifacts.

4. Ghostbuster then uses the MIMO receivers to null the remaining transmit-

ter’s signal in the DC bin and its side-lobes from the packet as described

in Section 3.1.

5. Finally, Ghostbuster combines the samples from all the nulled packets and

takes a very large FFT across all samples.

6. At this point, the transmitter’s signal including the artifacts are com-

pletely nulled and the eavesdropper’s leakage is revealed.

detecting the eavesdropper’s leakage.
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A pseudocode of this algorithm is shown in Algorithm 1.

Algorithm 1 Ghostbuster’s Cancellation Algorithm

1: for kth packet do

2: for mth MIMO Receiver do

3: Decode packet using standard OFDM decoder.

4: for Each OFDM Symbol do

5: f̃ (0) ← CFO coarse & fine estimates

6: i← 1

7: while E(f̃ (i−1), ã(i−1)) ≥ Threshold do

8: ã(i) ←WeightedLeastSq(f̃ (i−1), xm(t))

9: f̃ (i) ← GradientDescent(ã(i), xm(t))

10: i← i+ 1

11: end while

12: x̃m(t)← ã∗, f̃∗ (other than the DC bin)

13: rm(t)← xm(t)− x̃m(t)

14: end for

15: pm(t)← combination of rm(t) from all symbols

16: Pm(f)← FFT (pm(t))

17: Hm(fDC)← Pm(fDC)

18: end for

19: sk(t)← spatial cancellation using each Hm(fDC)

20: end for

21: s(t)← combination of sk(t) from all packets

22: S(f)← FFT (s(t))

23: Find spike of eavesdropper’s RF leakage.

For the above algorithm to work in practice, Ghostbuster must address

two issues in order to efficiently estimate and cancel the artifacts.

(1) Sampling & Packet Detection Offset: In order to perform the above

optimization and reconstruct the artifacts that result from discontinuities,

Ghostbuster must be able to detect the exact start of the packet and estimate

and compensate for any sampling offsets. To do this, Ghostbuster leverages

the fact that a packet detection and sampling offset ∆t manifests as a linear
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phase versus frequency in the frequency domain. Formally,

x(t−∆t) =
N−1∑
k=0

ake
j2πfk(t−∆t)/N (3.13)

Thus, we can write the phase in frequency as:

φ = 2πfk∆t/N (3.14)

By performing linear regression on the phase versus the frequency, Ghost-

buster can accurately estimate and compensate for sampling offsets.

(2) Cyclic Prefix: The above optimization was described in the context

of N samples of the OFDM symbol. However, for each OFDM symbol, the

transmitter appends a cyclic prefix which is a simple repetition of CP samples

of the symbol in time domain. Ghostbuster must model the artifacts while

taking the cyclic prefix into account.

One option is to run the optimization problem over all the samples includ-

ing the cyclic prefix. Unfortunately, the cyclic prefix is typically large. For

example, in WiFi, the cyclic prefix could be as large as 1/4 of the symbol

length. Running the optimization problem on N +CP samples significantly

breaks the orthogonality of the subcarriers, rendering our initial estimates of

fk outside the convex region and thus yielding poor results. Another option

is to run the optimization problem only over the N samples and use the

result to reconstruct the cyclic prefix. However, this too yields poor results

since the error increases with more samples outside the N symbol samples

on which we ran the optimization.

To address this, Ghostbuster splits the symbol into two overlapping regions

of length N . The first takes samples from [0, 1, · · · , N − 1]. The second

takes samples from [CP,CP + 1, · · · , CP + N − 1]. Ghostbuster runs the

optimization algorithm on both regions and then combines the results by

using the second region to estimate and compensate for the CP samples.
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3.4 Detecting Eavesdroppers in the Presence of Other

Receivers

So far, we have focused on the case where there is a single transmission and

RF leakage only from the eavesdropper. However, in practice multiple legiti-

mate receivers might be present and listening on the wireless medium. These

receivers will also leak RF signals from their local oscillators. Ghostbuster

can separate these leakages from the leakage of the eavesdropper along the

frequency dimension. Leveraging the fact that different receivers have dif-

ferent CFOs due to hardware imperfections, Ghostbuster can separate the

leakage from different receivers by taking a very large FFT over a long time

window.

Ghostbuster can use time windows of 1 second to tens of seconds, to sep-

arate leakage from different receivers as long as the CFO between them is

larger than tens of Hz. Typical values of CFO in practice, however, are 100s

of Hz to few kHz. Hence, Ghostbuster can easily separate the leakage from

multiple receivers as we will show in our results. Ghostbuster can then count

the number of receivers in the environment and check against the expected

number of legitimate receivers to detect the presence of an eavesdropper.

Note, however, that this requires knowing the number of legitimate receivers

a priori which is a current limitation of Ghostbuster as discussed in Chap-

ter 6.
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Chapter 4

IMPLEMENTATION

We implemented Ghostbuster using USRP N210 software-defined radios and

evaluated in an indoor office environment with standard multipath. We ex-

perimented with two types of eavesdroppers:

• USRP Software-Defined Radio: We used USRP N210 as eavesdropper

and we ran experiments in the 900 MHz ISM band to minimize interference

and more easily collect benchmark results of Ghostbuster’s performance.

We also ran experiments at 1.8 GHz and 5.745 GHz.

• WiFi Cards: We used WiFi cards on MacBook Pro laptops. The cards

were placed in monitor mode and set to the 5.745 GHz WiFi band. We

chose this band since it was unused in our office building.

In each experiment, we placed one USRP as transmitter. The USRP trans-

mits standard WiFi packets with OFDM modulation. We varied the location

of the eavesdropper from a few cm to 14 meters. We ran the experiments in a

total of 500 locations for USRP eavesdroppers and 430 locations for WiFi card

eavesdroppers. In each location, we collected 1 second long measurements.

We also varied the number of receivers listening in on these transmissions

and leaking RF signals from their oscillators.
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Chapter 5

EVALUATION RESULTS

In order to provide some insights into Ghostbuster’s performance, we first

provide some microbenchmark results and then evaluate the overall perfor-

mance. We start by examining the case when there are no other transmitters

or receivers and evaluate how well Ghostbuster can detect the leakage of the

eavesdropper. We then move to the case when there is a single transmitter

continuously sending OFDM packets. Finally, we evaluate Ghostbuster in

the presence of transmissions as well as multiple receivers.

To evaluate the performance of Ghostbuster, we use the following metrics:

• False Negative Rate: Ratio of the number of runs where Ghostbuster failed

to detect the presence of an eavesdropper to the total number of runs where

the eavesdropper was present.

• False Positive Rate: Ratio of the number of runs where Ghostbuster falsely

detected the presence of an eavesdropper to the total number of runs where

eavesdropper was not present.

• Hit Rate: Ratio of the number of runs where Ghostbuster correctly de-

tects the presence of an eavesdropper to the total number of runs where

eavesdropper was present.

• Detection Accuracy: Ratio of number of runs where Ghostbuster correctly

classified the presence of an eavesdropper to the total number of runs.

• Count of Receivers: Counting the correct number of receivers in range.

• Leakage SNR: Signal-to-noise ratio of the RF leakage per FFT frequency

bin.
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5.1 Eavesdropper’s RF Leakage

In this part, we evaluate what happens in the absence of other transmitters

and receivers. We start by examining the variation of the SNR of RF leakage

versus distance.

We use one MacBook Pro laptop as an eavesdropper and a USRP as a

Ghostbuster receiver. We place the eavesdropper at a total of 105 different

locations at distances varying from 1 m to 7 m. We collect samples over a

window of 1 sec and take an FFT over all the samples. We repeat the same

experiment with a USRP eavesdropper set to listen at 5.745 GHz. We place

it at a total of 210 locations at distances ranging from 1 m to 14 m and use an

FFT window on 10 ms. Figure 5.1 and 5.2 show the variation of the leakage

SNR versus distance for the two cases. As expected the SNR decreases with

distance, but even at 14 meters the leakage SNR from the USRP is around

10 dB and can be accurately detected. Similarly, the leakage SNR from the

WiFi card is around 16 dB at a distance of 7 m. However, WiFi cards require

a much longer FFT window of 1 sec to achieve such SNR. Note that due to

multipath, the SNR in different locations at the same distance can vary by

as much as 18 dB.
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Figure 5.1: SNR in dB versus Ghostbuster’s distance from a Wifi card
eavesdropper with FFT window size of 1 sec.

Next we wish to examine how small an FFT window we can use while

accurately detecting the presence of the eavesdropper. For, this we did ex-
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Figure 5.2: SNR in dB versus Ghostbuster’s distance from a USRP
eavesdropper with FFT window size of 10 ms.

periments with a MacBook Pro laptop and a USRP at 1 m and 5 m away

from Ghostbuster. We collected measurements at 30 locations for both. We

start from a small FFT window of length 10 µs and increase it till 1 s. We

classify an eavesdropper to be present if the SNR per FFT bin is more than

6 dB. Using this threshold, we computed Ghostbuster’s hit rate in detecting

the eavesdropper versus the FFT window size at 1 m as shown in Figure

5.3 and 5 m as shown in Figure 5.4. The results show that performance of

eavesdropper detection improves for both USRP and MacBook as the FFT

window is increased, and can reach 100% as the window length reaches 100

ms at a distance of 1 m and 1 sec at a distance of 5 m.

5.2 Detection in the Presence of Ongoing

Transmissions

In this part, we evaluate what happens in the presence of ongoing trans-

missions. We vary the number of MIMO receivers on Ghostbuster between

2, 3 and 4. We conducted experiments by placing the eavesdropper at 350

different locations at distances varying from 1 m to 5 m from Ghostbuster.

We run Ghostbuster’s algorithm over an FFT window of 5 ms. We compute

the false positives and false negative rates in 4 cases:
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Figure 5.3: Hit rate for WiFi card and USRP eavesdroppers versus FFT
window size when the eavesdropper is placed 1 m away from Ghostbuster.
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Figure 5.4: Hit rate for WiFi card and USRP eavesdroppers versus FFT
window size when the eavesdropper is placed 5 m away from Ghostbuster.
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Figure 5.5: CDF of false positive and false negative rates showing impact of
MIMO chains on Ghostbuster’s performance.

• No MIMO: Ghostbuster has a single receiver

• 2 MIMO receivers at Ghostbuster

• 3 MIMO receivers at Ghostbuster

• 4 MIMO receivers at Ghostbuster

Figure 5.5 shows the cumulative distributions of false positive and false

negative rates obtained for the 4 cases. As expected in the absence of MIMO,

it is hard to separate the eavesdropper’s leakage from the transmitter’s signal

especially in the DC bin, and hence the false negative and false positive rates
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are roughly 50% which is no better than a random guess as to whether the

eavesdropper is there or not. Just by using 2 MIMO already, the results

improve a lot with median false positives of zero and median false negatives

of 10%. As we add more MIMO chains, the median false negative rate goes

down to zero for 3 MIMO and 4 MIMO.

An interesting observation, however, arises by looking at the 90th per-

centile. The 95th percentile false negative rate is 70%, 20% and 10% for 2

MIMO, 3 MIMO and 4 MIMO respectively. The 95th percentile false positive

rate is 0%, 0.1% and 3% for 2 MIMO, 3 MIMO and 4 MIMO respectively.

This can be a bit counterintuitive.

Adding more MIMO chains does reduce the false negative rate since it

provides better separation in the higher dimensional antenna space. By pro-

jecting onto a space orthogonal to the transmitter’s signal, the transmit-

ter’s signal is nulled and the eavesdropper’s leakage is revealed. With larger

MIMO, the extra dimensions in the orthogonal space amplify the leakage and

the probability of missing the presence of an eavesdropper (i.e. false nega-

tives) decreases. On the other hand, in the absence of an eavesdropper, errors

in channel estimation would cause an imperfect nulling of the transmitter’s

signal and a residual error in the orthogonal space. With larger MIMO, the

extra dimensions in the orthogonal space would also amplify this residual

error and hence the false positives would increase.

Luckily, our results in Figure 5.5 show that the increase in false positives

is tolerable and the gains in decreasing false negatives that come from using

larger MIMO are much more significant. This can be better understood by

examining the receiver operating characteristic (ROC) curve which shows the

variation in true positive rate (1- false negative rate) versus the false positive

rate as we sweep the detection threshold. Figure 5.6 shows the ROC curve

for the same experiment. We have zoomed the ROC curve to better visualize

the result. As can be seen, larger MIMO provides a better ROC curve with

higher true positive rate and lower false positive rate. This result shows that

the rate at which MIMO helps improve the eavesdropper’s leakage is much

higher than the rate at which it increases the residual error from nulling.
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Figure 5.6: ROC curves for varying MIMO chain length.

5.3 Detection in the Presence of Other Receivers and

Ongoing Transmissions

So far we have discussed recovering the leakage of an eavesdropper in the

presence of ongoing transmissions. In this section, we focus on the scenario

when other receivers are present. Our goal is to estimate the correct number

of receivers in order to be able to identify whether an eavesdropper is there

or not.

In our experiments, we took 4 USRP N210 radios, one of them being an

eavesdropper and the other three being legitimate receivers. The radios were

placed at 200 different locations with distances varying from 1 m to 5 m from

Ghostbuster. In each location, we ran Ghostbuster’s algorithm over an FFT

window of 750 ms using a 2 MIMO receiver.

Figure 5.7 shows the confusion matrix of overall classification probability

of detecting i given the presence of j receivers for distances varying from 1

to 5m. The figure shows that the classification accuracy is above 95% for 0,

1, and 2 receivers and remains above 89% for 4 receivers.

We repeat the above experiment for WiFi cards. The laptops are placed

1 m away from Ghostbuster and an FFT window of 1.25 s is used with

a 2 MIMO receiver. We vary the number of cards between 0, 1, and 2.

Figure 5.8 represents the confusion matrix for WiFi cards. For 1 card, the

accuracy of detection is about 92% and drops to 89% for 2 cards. This is

29



97.97% 0.68% 0.68% 0% 0.68% 0

2.16% 96.55% 1.01% 0.29% 0 0

0 2.8% 95.43% 1.47% 0.15% 0.15%

0 0.29% 3.74% 91.81% 3.16% 1.01%

0 0 0.29% 7.61% 89.94% 2.16%

0 1 2 3 4 ≥	5 
Estimated Number of Receivers

2

3

0

4

1
Ac

tu
al

 N
um

be
r o

f R
ec

ei
ve

rs

Figure 5.7: Confusion matrix of classification probabilities obtained on
experiments on USRP receivers in the range 1 m to 5 m.
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Figure 5.8: Confusion matrix of classification probabilities obtained on
experiments on WiFi cards.

expected since as we have seen, the leakage from WiFi card is much smaller.

This result can potentially be improved by adding more MIMO chains and

increasing the FFT window. However, this would require handling an even

larger computational load.

Finally, we examine the overall accuracy for detecting an eavesdropper us-

ing a COTS WiFi card. We ran an experiment with one transmitter, one

legitimate receiver using a MacBook laptop and one eavesdropper using an-

other MacBook laptop. We vary the size of the FFT window and compute

the detection accuracy which incorporates both false positives and false neg-

atives. Figure 5.9 shows the detection accuracy versus the window size. As
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Figure 5.9: Detection accuracy achieved for WiFi cards versus changing
FFT window length.

can be seen, as we increase the window size the accuracy increases, and for

a window size of 1.25 sec, Ghostbuster can achieve a detection accuracy of

94%.

31



Chapter 6

LIMITATIONS AND DISCUSSION

Ghostbuster takes the first steps towards detecting the presence of passive

eavesdroppers. However, there are several limitations that require further

work before such system can be used in practice.

• Identifying the Eavesdropper’s Leakage: A current limitation of

Ghostbuster is its inability to distinguish the leakage of a legitimate receiver

from the leakage of an eavesdropper. Hence, to be able to detect the pres-

ence of an eavesdropper, our current threat model assumes that Ghostbuster

knows the number of legitimate receivers in the environment. By counting the

number of receivers, Ghostbuster can detect the presence of an eavesdropper.

While this is a strong assumption, we do believe the current system can still

be useful for certain highly secured facilities where the number of receivers is

known a priori and the mere presence of an additional receiver would trigger

an alarm.

To address this limitation in future work, one can potentially leverage the

fact that legitimate receivers constantly transition between transmitting and

receiving signals. An eavesdropper, on the other hand, is passive and does

not transmit packets to avoid being detected. By correlating the receivers’

leakage with the transmitters’ leakage in the DC OFDM bin, one can po-

tentially discover which receivers never transmit and identify them as the

eavesdroppers. This idea, however, requires significant research and is left

for future work.

• Detection Range: Ghostbuster’s current detection range in the presence

of ongoing transmissions is limited to 5 meters for software-defined radios

and 1 meter for COTS WiFi cards. These ranges are significantly lower than

the current range of WiFi transmissions. One solution is to deploy several

Ghostbuster receivers in the environment to ensure coverage. Alternatively,
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for certain applications, one can potentially decrease the transmit power

to ensure that the detection range and transmission range are similar and

detection is possible within the transmission range.

The detection range, however, can be increased by taking larger time win-

dows as we have shown in Chapter 5. In our experiments, the maximum time

window used is 1.25 sec due to our hardware constraints. While increasing

the time window would have improved the range, it comes at the cost of high

computational complexity as we discuss next.

• Computational Overhead: Ghostbuster’s algorithm must process sam-

ples from a very large time window. The larger the time window, the higher

the detection accuracy, but this comes at the cost of higher computational

overhead. In our current implementation, we can process time windows up

to 1.25 sec with 25 million samples on an Intel i7 machine with 16 GB mem-

ory in 30 secs. The main two sources of computational complexity are the

gradient descent optimization and the computation of a several million-point

FFT. Luckily, both are highly parallelizable. A more efficient implementation

can potentially reduce the processing time. However, the trade-off between

detection accuracy and computational overhead will remain.

• Packet Collisions and MIMO Transmitters: Our current evaluation

assumes that the received transmissions come from a single antenna trans-

mitter and have not experienced collisions. Some WiFi devices, however, do

use MIMO and their packets can experience collisions. To address such cases,

Ghostbuster must use more MIMO antennas to separate the signals in the

spatial domain. Specifically, an n-antenna MIMO receiver can decode n sig-

nals in parallel. Hence, for k antenna transmitter or a collision of k packets,

Ghostbuster needs k+1 antennas to be able to project on a space orthogonal

to all transmissions in order to null them and reveal the eavesdropper.1

1In certain cases of packet collisions, the packet preambles might overlap and prevent
us from properly estimating the channels of the transmitters. In such cases, we would
need to rely on statistical techniques like PCA or ICA to separate the transmissions.
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Chapter 7

RELATED WORK

7.1 Eavesdropper Detection

Detecting eavesdroppers has been studied in the literature. These studies,

however, have been largely analytical. The closest to our work is a theoretical

work on detecting eavesdroppers from RF leakage [10]. This work, however,

requires all RF devices in the vicinity to periodically pause communication

so they can sense a “clear” channel, and thereby listen for the leakages from

passive eavesdroppers. Unfortunately, this is not practical in real settings,

since other wireless transmitters and receivers in the vicinity may not turn

off. Ghostbuster, in contrast, can detect eavesdroppers in the presence of

other transmissions without requiring any modifications to the transmitters.

Ghostbuster is also implemented and empirically tested.

In [11], the authors propose a method for detecting eavesdroppers in the

context of near-field inductively-coupled communication, e.g. RFID based

smart cards. Specifically, the inductive coupling channel can be computed us-

ing the relative-geometry and the properties of the transmitter and receiver.

An eavesdropper in the vicinity would also couple with the transmitter and

receiver and hence change the channel. The change in channel can be used

as an indicator of the eavesdropper’s presence. Unfortunately, in our context

the communication is far-field and thus the presence of an eavesdropper does

not change the wireless channel between the transmitter and the receiver.

7.2 Radio Detection

RF leakage has also been studied in the context of cognitive radio networks.

Cognitive radios need to detect the presence of “primary” devices; such de-
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tection can be valuable for the “secondary” device to back out and avoid

interfering with “primary” devices. A body of work in this domain has pro-

posed theoretical analysis [12, 13] on the achievable SNR of leakage signals

and detection range. In [14], the authors propose similar results in the con-

text of WiMAX and UWB co-existence. Reference [13] demonstrates the

feasibility of detecting the leakage by connecting the output of a TV tuner

to a light diode configured to detect the desired frequency. Reference [15]

also shows the possibility of detecting leakage from USRP B210 up to 50 cm.

All the above work, however, assumes a single “primary” receiver and no

transmissions making the problem relatively easy. The presence of transmis-

sions would negate the need for detecting RF leakage since in the context of

cognitive radios, if the channel is not idle, a “secondary” device must switch

to a different channel. The core problem formulation in Ghostbuster, on the

other hand, is adversarial. Hence, Ghostbuster must continue to detect RF

leakage in the presence of ongoing transmissions.

TV detector vans have been used by the BBC channel in the UK to identify

users who are not paying the license fees but still tune their TV to the BBC

channel. It has been speculated that this is done by detecting the RF leakage

from the TV tuner. However, BBC refuses to disclose any information on

how the vans work. Furthermore, recent discoveries suggest that this is

simply a PR stunt and there is no evidence that these detectors actually

work [16, 17, 18]. In fact, the detectors have never been used to prosecute

any of the people who did not pay the license fees [18].

A body of work aims to detect the presence of radio receivers in the con-

text of remotely triggered explosives [19, 20, 21, 22, 23]. The work proposes

actively transmitting a known stimulation signal that triggers the receiver cir-

cuit to reflect unintended electromagnetic transmissions. By using FMCW

radar signals as the stimulus, [20, 21] can further range the receiver’s location.

However, all this work assumes a super-heterodyne or a super-regenerative

receiver architecture which are far less common in WiFi cards as can be seen

in Tables 2.1 and 2.2. The work has been experimentally tested only for

frequencies < 500 MHz where signals can propagate farther. Furthermore,

transmitting the stimulation signals requires halting ongoing communication

to avoid interference. On the other hand, Ghostbuster leverages an orthog-

onal passive approach that focuses on WiFi communication and does not

require transmitting a stimulation signal. Ghostbuster has also been demon-
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strated to work for direct conversion receiver architectures, in the presence

of ongoing transmissions and for frequencies up to 5.7 GHz.

RF and EM leakage has also been used to launch side-channel attacks.

In [24, 5], the authors detected low-frequency EM leakage from smart-cards

and ultimately demonstrate that cryptographic keys can be completely deci-

phered from this leakage. The work [25, 2] also shows that EM leakage from

powerful computers can reveal the programs running on them.

7.3 Leakage Suppression

Finally, we are aware of arguments that suggest that leakages can be sup-

pressed, either through modifications in the circuit design, or via physical

packaging and shielding [26, 27, 28]. However, the commercial off-the-shelf

(COTS) wireless devices do not employ leakage cancellation circuits, neither

is there any special shielding to the best of our knowledge. As discussed

earlier, we have successfully detected leakage from various RF devices across

different vendors. The work mentioned in this thesis aims at thwarting at-

tacks with such COTS devices.
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Chapter 8

CONCLUSIONS

This thesis takes the first practical steps toward developing systems that can

detect the hidden presence of eavesdroppers. Our results show that one can

reliably detect the presence of an eavesdropper up to five meters, even in the

presence of other receivers and ongoing transmissions. One can potentially

push these results further with more computational power that would allow

one to compute even larger FFTs. We believe that such capability can serve

as a strong primitive that provides a defense-in-depth against eavesdropping.
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1. The error function E(f̃k, ãk) is convex for f̃k ∈ [fk − α, fk + α]

for any α < 2/5.

Proof. Recall that the error function E(f̃k, ãk) is defined as:

E(f̃k, ãk) =
N−1∑
t=0

∣∣∣akej2πfkt/N − ãkej2πf̃kt/N ∣∣∣2 (A.1)

We wish to find the f̃k and ãk that minimize the error. For a fixed f̃k,

the ãk that minimizes the error can be obtained by solving a weighted least

squares problem. This is done by projecting the given samples on the vector

of ej2πf̃kt/N . Thus,

ãk = arg min
ãk

E(f̃k, ãk)

=
1

N

N−1∑
t=0

ake
j2π(fk−f̃k)t/N

=
ak
N

ej2π(fk−f̃k) − 1

ej2π(fk−f̃k)/N − 1

(A.2)

Given the above solution for ãk, we now show the error function is convex

in f̃k. We can expand the error function as follows:

E(f̃k, ãk) =
N−1∑
t=0

∣∣akej2πfkt/N ∣∣2 +
N−1∑
t=0

∣∣∣ãkej2πf̃kt/N ∣∣∣2
−

N−1∑
t=0

akã
∗
ke
j2π(fk−f̃k)t/N −

N−1∑
t=0

a∗kãke
−j2π(fk−f̃k)t/N

= N |ak|2 +N |ãk|2

− akã∗k
ej2π(fk−f̃k) − 1

ej2π(fk−f̃k)/N − 1
− a∗kãk

e−j2π(fk−f̃k) − 1

e−j2π(fk−f̃k)/N − 1
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where (∗) is the complex conjugate operator. We can then replace ãk from

Equation (A.2) to get:

E(f̃k, ãk) = N |ak|2 + |ak|2/N

∣∣∣∣∣ ej2π(fk−f̃k) − 1

ej2π(fk−f̃k)/N − 1

∣∣∣∣∣
2

− 2|ak|2/N

∣∣∣∣∣ ej2π(fk−f̃k) − 1

ej2π(fk−f̃k)/N − 1

∣∣∣∣∣
2

= |ak|2N − |ak|2/N

(
sin(π(fk − f̃k))

sin(π(fk − f̃k)/N)

)2

Thus, the error function is the negative of the square of discrete sinc func-

tion. Figure 3.4 shows an example of the error function. By taking the

second derivative of E(f̃k, ãk) with respect to f̃k, we can show that ∀N ,

∂2E

∂f̃ 2
k

> 0 ∀f̃k ∈ [fk − 0.4, fk + 0.4] (A.3)

Hence, the error function E(f̃k, ãk) is convex in f̃k within the interval

[fk − 0.4, fk + 0.4] around fk. It is sufficient to ensure the initial values of f̃k

are within this interval to guarantee that the gradient descent converges to

the optimal minimum of the error function.
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