
c© 2018 Shadi Abdollahian Noghabi

BUILDING INTERACTIVE DISTRIBUTED PROCESSING APPLICATIONS AT A
GLOBAL SCALE

BY

SHADI ABDOLLAHIAN NOGHABI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Roy H. Campbell, Chair

Professor Indranil Gupta, Chair

Professor Klara Nahrstedt

Dr. Victor Bahl, Microsoft Research

ABSTRACT

Along with the continuous engagement with technology, many latency-sensitive inter-

active applications have emerged, e.g., global content sharing in social networks, adaptive

lights/temperatures in smart buildings, and online multi-user games. These applications

typically process a massive amount of data at a global scale. In this cases, distributing stor-

age and processing is key to handling the large scale. Distribution necessitates handling two

main aspects: a) the placement of data/processing and b) the data motion across the dis-

tributed locations. However, handling the distribution while meeting latency guarantees at

large scale comes with many challenges around hiding heterogeneity and diversity of devices

and workload, handling dynamism in the environment, providing continuous availability

despite failures, and supporting persistent large state.

In this thesis, we show how latency-driven designs for placement and data-motion can

be used to build production infrastructures for interactive applications at a global scale,

while also being able to address myriad challenges on heterogeneity, dynamism, state, and

availability. We demonstrate a latency-driven approach is general and applicable at all layers

of the stack: from storage, to processing, down to networking.

We designed and built four distinct systems across the spectrum. We have developed

Ambry (collaboration with LinkedIn), a geo-distributed storage system for interactive data

sharing across the globe. Ambry is LinkedIn’s mainstream production system for all its me-

dia content running across 4 datacenters and over 500 million users. Ambry minimizes user

perceived latency via smart data placement and propagation. Second, we have built two

processing systems, a traditional model, Samza, and the avant-garde model, Steel. Samza

(collaboration with LinkedIn) is a production stream processing framework used at 15 com-

panies (including LinkedIn, Uber, Netflix, and TripAdvisor), powering >200 pipelines at

LinkedIn alone. Samza minimizes the impact of data motion on the end-to-end latency,

ii

thus, enabling large persistent state (100s of TB) along with processing. Steel (collaboration

with Microsoft) extends processing to the emerging edge. Integrated with Azure, Steel dy-

namically optimizes placement and data-motion across the entire edge-cloud environment.

Finally, we have designed FreeFlow, a high performance networking mechanisms for contain-

ers. Using the container placement, FreeFlow opportunistically bypasses networking layers,

minimizing data motion and reducing latency (up to 3 orders of magnitude).

iii

To my husband and parents for their eternal love, support, and belief in me.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisors, Prof.

Indranil Gupta (Indy) and Prof. Roy Campbell, for their invaluable guidance and continuous

support throughout my Ph.D. studies. Indy always pushed me to shoot for the stars and be

the best version of myself, and Roy’s deep belief in me and the freedom he gave me, shaped

me into a confident and independent person. I cannot believe the tremendous transformation

I have gone through in my Ph.D. journey, and simply put, I could not have done it without

the guidance and help of these two amazing advisors.

I would like to sincerely thank the rest of my committee members, Dr. Victor Bahl and

Prof. Klara Nahrstedt. Their invaluable feedback has played a big part in taking my work

from good to great. However, they were not just committee members for me. Klara has

always been a big inspiration for me, encouraging me that I can also become a successful

female researcher. Meeting Victor has been a big turning point in my life. Having a good

mentor is a treasured gift, and I have been extremely lucky to not only have good but, an

outstanding mentor.

I would like to thank all the collaborators throughout my journey. I was fortunate to work

with amazing people at LinkedIn for a big part of my Ph.D. Many thanks to my managers Sri-

ram Subramanian and Kartik Paramasivam who have also been amazing mentors for me and

thought me to think deeply about my life goals. Also thanks to the many other collaborators,

Yi Pan, Navina Ramesh, Jon Bringhurst, Wei Song, Xinyu Liu, Jagadish Venkatraman, Ja-

cob Maes, Chris Riccomini, Priyesh Narayanan, Sivabalan Narayanan, Gopalakrishna Holla,

Mammad Zadeh, Tianwei Li, Tofig Suleymanov, Arjun Shenoy and Dmitry Nikiforov and Jay

Wylie for their invaluable contributions and feedback towards my projects. Many thanks

also to outstanding collaborators during my time at Microsoft Research, especially, John

Kolb, Peter Bodik, Eduardo Cuervo, Tianlong Yu, Shachar Raindel, Hongqiang Liu, Jitu

v

Padhye, and Vyas Sekar, for their tremendous help and input.

I would also like to express my sincere gratitude to my colleagues in the Computer Sci-

ence Department. I was fortunate to be part of both the System Research Group (SRG)

and Distributed Protocols Research Group (DPRG). Many thanks to the members of both

these groups including Sayed Hadi Hashemi, Faraz Faghri, Read Sprabery, Imani Palmer,

Chris Cai, Mohammad Ahmad, Shayan Saeed, Faria Kalim, Le Xu, Shegufta Bakht Ah-

san, Mainak Ghosh, Mayank Bhatt, Luke Leslie, Jayasi Mehar, Mayank Pundir, Muntasir

Raihan Rahman, Shiv Verma, and Srujun Gupta. I am forever indebted to them for their

help, guidance, and support. Also, thanks to my many friends who made the small city of

Champaign seem like the most fun place on earth!

Many thanks to the staff of the Computer Science department, including but not limited

to: Kathy Runck, Kara MacGregor, Mary Beth Kelley, Viveka Perera Kudaligama, and

Maggie Metzger Chappell for their prompt help and support at multiple junctures of my

Ph.D. studies.

Finally, I could not have completed this difficult journey without the unconditional love

and support of my family. My husband, Hassan Eslami, has not only been a partner, but

also a friend and an anchor. He has always been there for me, putting me above all, and

a tower of strength helping me overcome any small or large challenge I faced. My family

had to endure the pain of being separated from me for several years. My dad is the reason

I am where I am and my mom is the reason I am who I am. I am forever grateful for

the inspiration my dad has been–as he is why I pursued a Ph.D.–and the endless effort my

mom has put to shape me as a fearless young woman that can reach anything she wishes.

My sister, Shana, and brother, Ali, are the most wonderful siblings one can ask for. I am

extremely proud of them, and even though I was not there for them as the older sister, they

have turned into outstanding individuals.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Contributions . 3
1.2 Related Work . 7
1.3 Thesis Organization . 9

CHAPTER 2 AMBRY: LINKEDIN’S SCALABLE GEO-DISTRIBUTED OB-
JECT STORE . 10
2.1 Introduction . 10
2.2 System Overview . 14
2.3 Load Balancing . 19
2.4 Components in Detail . 22
2.5 Replication . 31
2.6 Experimental Results . 33
2.7 Related Work . 50
2.8 Conclusion . 52

CHAPTER 3 SAMZA: STATEFUL STREAM PROCESSING AT SCALE 54
3.1 Introduction . 54
3.2 Motivation . 58
3.3 System Overview . 63
3.4 System Design . 70
3.5 Checkpointing VS. ChangeLog . 79
3.6 Evaluation . 81
3.7 Related Work . 93
3.8 Conclusion . 95

CHAPTER 4 STEEL: UNIFIED AND OPTIMIZED EDGE-CLOUD ENVIRON-
MENT . 96
4.1 Introduction . 96
4.2 Motivation and Background . 100
4.3 Design of Steel . 105
4.4 Experimental Evaluation . 123
4.5 Related Work . 129
4.6 Conclusion . 130

CHAPTER 5 FREEFLOW: HIGH PERFORMANCE CONTAINER NETWORKING132
5.1 Introduction . 132
5.2 Background . 136
5.3 Overview . 137
5.4 Design . 142

vii

5.5 Preliminary Implementation . 145
5.6 Related Work . 145
5.7 Conclusion and Discussion . 147

CHAPTER 6 CONCLUSION AND FUTURE WORK 149
6.1 Summary . 149
6.2 Future Work . 150

REFERENCES . 153

viii

CHAPTER 1: INTRODUCTION

In this era of increased engagement with technology, many latency-sensitive applications,

or so called interactive applications have emerged. For example, we expect social networks

to show our uploaded photos and videos immediately to all our friends (within seconds); ad

campaigns to orient and update ads based on the current (at most the past few minutes of)

user activity; Internet of Things (IoT) environments, like smart cities, to process and react

to sensor data within seconds; and multi-user online games to support delays of a couple

milliseconds. The sensitivity to latency is diverse across the applications, from milliseconds

to even minutes. However, in all cases, being reactive with low latency is a governing factor

with impacts on safety, engagement, or revenue [1–6].

In addition, a major portion of these interactive applications, are operating at a massive

scale from a large region (e.g., smart city) to even the entire globe (e.g., social networks).

When building an interactive application at a global scale, distributing the computation and

data becomes key. Distribution originates two main questions to be solved. First, where to

place the distributed processing or data (placement)? Second, how to move and propagate

data across the distributed locations (data-motion)?

At large scale, providing low latency and interactivity becomes increasingly challenging

with many complexities in placement and data-motion. Along with scale comes diversity

and heterogeneity across the environment including in: the data objects, the processing op-

erations, the physical machines/devices, and the network links. This diversity significantly

complicates optimizations [7–10]. Similarly, the environment becomes increasingly more

dynamic, with a combination of spiky, long-term, and periodic changes in the workloads,

necessitating adaptive approaches to hide this dynamism. To support certain latencies,

proximity to data/processing becomes extremely crucial, requiring geo-distribution across

multiple locations around the globe (or an area). Additionally, a majority of the com-

putations generates state (persistent data) alongside computation. When operating at a

1

Table 1.1: Systems developed/analyzed in the thesis and the placement and data-motion
notion in each.

System System Type Placement Data Motion

Ambry storage load balanced data placement geo-distributed data propagation

Samza processing task placement stateful stream processing

Steel processing task placement on edge edge cloud communication

FreeFlow networking abstract container placement container communication

large scale, the state also becomes large, and a main limiting factor for both placement and

movement.

In this thesis we have focused on the placement and data motion in a variety of pro-

duction systems used across multiple companies. The work spans a wide range of systems,

from a storage system, two processing systems–the traditional stream processing and the

avant-garde edge processing–and a networking mechanism. We worked on transparently

mitigating the challenges and requirements of a global (or sub-global) environment, includ-

ing the heterogeneity, dynamism, stateful processing and geo-distribution. This leads to our

thesis:

We show how latency-driven designs for placement and data-motion can be used to

build production infrastructures for interactive applications at a global scale, while addressing

myriad challenges on heterogeneity, dynamism, state, and availability.

A latency-driven design is an approach where achieving latency has the highest priority–

as latency is the main factor for interactivity. As suggested by the CAP theorem and its

PACELC extension [11,12], there is a fundamental trade-off between consistency, availability

and partition-tolerance, and in case of no failures, between latency, availability and consis-

tency. In a latency-driven design, when faced with such trade-offs, the priority is given to

latency. The decision of what to compromise instead, is use-case dependent, e.g., a photo

sharing network would probably care for having availability of service over strong consistency.

This latency-driven approach is applicable across all layers of storage, processing and

2

networking. Table 1.1, outlines the various systems we have developed and analyzed in this

thesis, which layer they belong to, and the definition of placement and data-motion in that

context. Our works spans across all layers, including:

• Storage: we have developed Ambry, a geo-distributed storage system where data

placement is designed with the goal of achieving load balance, and data is constantly

moved across multiple datacenters.

• Processing: we have built two processing systems, a traditional model, Samza, and

the avant garde model, Steel. Samza is a stream processing system, where we place

processing and support state at large scale, with the goal of minimizing data movement.

Steel extends processing to the emerging edge environment with smart placement and

data-motion across the entire edge-cloud environment.

• Networking: we have designed FreeFlow , a high performance networking mechanisms

for containerized environments, abstracting container placements and minimizing data

movement in container communications.

Figure 1.1 shows the big picture and how these various layers build the overall global

system.

In the remaining of this chapter, we briefly discuss the projects, the broad impact of each

system, and the intellectual merit of each.

1.1 THESIS CONTRIBUTIONS

Solving real-world problems faced by costumers has been a first class citizen in my work.

Most of my work is deployed at large-scale and in mainstream production systems (e.g.,

Ambry and Samza) with hundreds of millions of users. In this section, we highlight the

main contributions and impact of our proposed solutions.

3

Processing

Networking

DC 1 DC 2

DC n

Storage

Ambry

Samza

Steel

FreeFlow

Edge

Edge

Edge

…
Edge

…

Figure 1.1: Systems studied in the thesis and their interaction.

1.1.1 Ambry: Geo-distributed Low Latency Object Storage

In today’s high-tech connected world, an immense amount of data is generated every

second from all around the world. Social networks alone generated billions of variable-sized

media objects per day. This excessive amount of diverse data needs to be served with low

latency from all across the globe, while transparently scaling to match the ever-growing

amount of data. In collaboration with LinkedIn, we developed Ambry, a geo-distributed,

scalable, and low-latency object store for a broad range of objects (a few KBs to a few GBs)

[13]. For over 36 months, Ambry has been the mainstream storage for all LinkedIn’s media

objects, across all of its four datacenters, serving more than 500 million users.

1.1.2 Samza: Stateful Stream Processing at Scale

When it comes to large state, relying on an external storage is not a viable solution

(orders of magnitude degradation in latency and throughput). Therefore, we developed a

state handling mechanism leveraging the local storage of the computing nodes [14]. Samza

utilizes a partitioned local state along with a low-overhead background changelog mechanism,

allowing it to scale to massive state sizes (hundreds of TB) per application. Samza is

4

currently in use at LinkedIn by hundreds of production applications with more than 10,000

containers while processing trillions of events per day. Samza is an open-source Apache

project adopted by more than 15 companies (Uber, Netflix, TripAdvisor, etc.)

1.1.3 Steel: Optimizing and Simplifying Edge-Cloud Applications

Edge Computing is becoming a leading technology, opening the venue for a wide range

of interesting applications ranging from self-driving cars, smart cities/homes, to wireless

Virtual and Augmented Reality. Edges are heterogeneous, fast (near the data source), and

with limited resources and bandwidth. On the other hand, the cloud is a homogeneous

high(er)-latency resource. The cloud already provides a wide diversity of cloud service, e.g.,

streaming as a service. In this work we developed Steel that integrates the cloud and the edge

into one unified geo-distributed environment [15,16] . We support end-to-end development,

deployment, and monitoring, extending cloud services to the edge. In addition, we provide

optimizations for placement and communication in order to adapt to this more dynamic and

heterogeneous environment. Steel is developed on top of the Azure and Windows IoT stack,

and is in progress to be integrated with the production Azure code base.

1.1.4 FreeFlow: High Performance Container Networking

Containerization has piqued a strong interest in Big Data Analytics particularly because

of its high portability (easily moving around), and low overhead (as they are a process

on a common guest OS)[17]. However, the current cross-container networking mechanisms

do not take into account the hardware capabilities (e.g. RDMA-enabled) or the locations

of containers, thus, resulting in poor performance. Manual efforts to optimize networking

impacts the portability to new environments. To fill this gap, we designed and developed

FreeFlow, a high performance and portable container networking solution [18]. FreeFlow acts

as a middle layer between the applications and underlying network, transparently choosing

the optimal network option based on location (e.g., shared memory on the same host),

5

and hardware capabilities (e.g., use RDAM if available). FreeFlow is a general container

networking technology and can be applied to any of the containerization frameworks such

as Docker, Kubernetes, Mesos, YARN, CoreOS, etc. [19–23]. The team I worked with at

Microsoft are analyzing adding this contribution to their production container technology.

1.1.5 Overview of Techniques

In this thesis we have focused on placement and data-motion across a wide range of

system. Each system was developed with its own set of requirements fit for that system and

unique set of challenges around heterogeneity and dynamism. Towards reaching interactivity

while mitigating the challenges, we have employed a number of latency-driven techniques

including:

1. Leveraging locality by preferring local data, local storage, sticky processing and location

awareness. The term locality is used in the broad sense where it incorporates resource

locality (e.g., stickiness to a machine or using local storage), data locality (e.g., re-

access of data), and location awareness.

2. Background processing by pushing computation/data propagation to the background

out of the critical path of processing, along with optimization such as batching, com-

pression and compaction.

3. Prioritizing latency over consistency and availability

4. Tiered data access along with caching, indexing, and bloom filters

5. Opportunistic processing

6. Partitioning and parallelism

7. Load balancing and scaling

6

Table 1.2 summarizes the main requirements and challenges in each system, and gov-

erning placement and data-motion technique used to reach the goal of the system. In the

following chapters we describe each system and techniques used in more detail.

1.2 RELATED WORK

This thesis argues for a latency-driven approach when building frameworks for interactive

applications. We have shown this is a practical principal, employing it across a wide range of

systems. As PACELC theorem proves [12], latency comes in a trade-off with availability and

consistency. Others have used a similar latency-driven approach across many frameworks.

The whole trend of NoSQL systems, such as Cassandra, Amazon’s DynamoDB, Pileus and

others [24–27], prefer latency (in a static or dynamic manner) over consistency.

Despite the suitable fit of a latency-driven approach for interactivity, in many cases la-

tency is not the only or main requirement. Sometimes, guaranteeing consistency comes at

higher priority, e.g., a banking system, user profile settings, and an inventory system. Many

distributed storage systems, such as BigTable, Spanner, Yahoo’s PNUTS, and LinkedIn’s

Espresso [28–31] support strong consistency. These consistency-driven designs typically come

at cost on latency [27, 32] with techniques such as synchronous replications in multiple lo-

cations (vs. lazy background), master-slave and multi-phase approaches creating extra hops

in processing a request, or bottleneck-prone locking schemas with high idle times waiting

for locks. Similar trends are existent in processing systems. Many stream processing frame-

works, including Flink, Millwheel, Spark Streaming, and Trident [33–37], aim for “exactly-

once” processing (i.e., each incoming message is processed exactly once) using complex

tracking mechanism and by relying on external consistent storages.

Another approach is a resource/throughput oriented design. In cases with limited re-

sources or excessive amount of data, reaching high resources utilization and throughput

becomes the main priority. Many batch systems (e.g., Hadoop, Spark, Tez, Pig and Hive

7

T
ab

le
1.

2:
R

eq
u
ir

em
en

ts
,

ch
al

le
n
ge

s,
an

d
so

lu
ti

on
s

u
se

d
in

sy
st

em
s

of
th

is
th

es
is

w
it

h
fo

cu
s

on
p
la

ce
m

en
t

an
d

d
at

a-
m

ot
io

n
.

S
y
st

em
R

eq
u

ir
em

en
t

C
h

a
ll

en
g
e:

H
et

er
o
g
en

ei
ty

C
h

a
ll

en
g
e:

D
y
n

a
m

is
m

L
a
te

n
cy

-d
ri

ve
n

T
ec

h
n

iq
u

es

A
m

b
ry

-
g
e
o
-d

is
tr
ib
u
te
d
:

ac
ro

ss
m

u
lt

ip
le

d
at

ac
en

te
rs

-
st
a
te
:

p
er

si
st

en
t

an
d

re
li

-
ab

le
d

at
a

st
or

e
-
la
te
n
c
y
:

in
te

ra
ct

iv
e

sh
ar

-
in

g
ex

p
er

ie
n

ce

-
o
b

je
ct

si
ze

s
a
n

d
ty

p
es

-
m

a
ch

in
es

a
cr

o
ss

D
C

s
-

o
b

je
ct

a
cc

es
s

p
a
tt

er
n

-
li

n
k
s

b
et

w
ee

n
D

C
s

a
n

d
u

se
rs

-
w

o
rk

lo
a
d

(d
iu

rn
a
l,

sp
ik

es
)

-
cl

u
st

er
ex

p
a
n

si
o
n

-
d

ro
p

p
in

g
p

o
p

u
la

ri
ty

ov
er

ti
m

e

-
lo

ca
li

ty
(l

o
ca

l
d

a
ta

&
lo

ca
ti

o
n

-a
w

a
re

)
-

b
a
ck

g
ro

u
n

d
p

ro
ce

ss
in

g
(w

/
b

a
tc

h
in

g
&

co
m

p
a
ct

io
n

)
-

p
ri

o
ri

ti
zi

n
g

la
te

n
cy

ov
er

co
n

si
st

en
cy

-
ti

er
ed

st
o
ra

g
e

(w
/

ca
ch

in
g
,

in
d

ex
in

g
,

&
b

lo
o
m

fi
lt

er
s)

-
p

a
rt

it
io

n
in

g
a
n
d

p
a
ra

ll
el

is
m

-
lo

a
d

b
a
la

n
ci

n
g

S
am

za
-
st
a
te
:

st
at

ef
u

l
st

re
am

p
ro

-
ce

ss
in

g
-

la
te
n
c
y
:

n
ea

r
re

al
-t

im
e

p
ro

ce
ss

in
g

at
sc

al
e

-
in

p
u
t

so
u

rc
e

(b
a
tc

h
/
st

re
a
m

/
d

b
)

-
st

o
ra

g
e

o
p

ti
o
n

(m
em

,
d

is
k
,

re
m

o
te

)
-

o
p

er
a
ti

o
n

ty
p

e

-
in

p
u

t
st

re
a
m

lo
a
d

ch
a
n

g
es

-
fa

il
u

re
s

a
n

d
re

st
a
rt

s

-
lo

ca
li

ty
(l

o
ca

l
st

o
ra

g
e

&
st

ic
k
y

p
ro

ce
ss

-
in

g
)

-
b

a
ck

g
ro

u
n

d
p

ro
ce

ss
in

g
(w

/
b

a
tc

h
in

g
&

co
m

p
a
ct

io
n

)
-

p
ri

o
ri

ti
zi

n
g

la
te

n
cy

ov
er

av
a
il

a
b

il
it

y
-

ti
er

ed
st

o
ra

g
e

(w
/

ca
ch

in
g
)

-
p

a
rt

it
io

n
in

g
a
n
d

p
a
ra

ll
el

is
m

-
sc

a
li
n

g

S
te

el
-
g
e
o
-d

is
tr
ib
u
te
d
:

ac
ro

ss
m

an
y

lo
ca

ti
on

s
cl

os
e

to
u

se
rs

-
la
te
n
c
y
:

in
te

ra
ct

iv
e

p
ro

-
ce

ss
in

g
ex

p
er

ie
n

ce

-
ed

g
e

d
ev

ic
es

-
ed

g
e-

cl
o
u
d

n
et

w
o
rk

-
cl

o
u

d
se

rv
ic

es
-

co
st

/
p

er
f

m
o
d

el

-
p

er
m

a
n

en
t

lo
a
d

ch
a
n

g
es

-
fa

il
u

re
s

a
n

d
m

ig
ra

ti
o
n

-
sh

o
rt

sp
ik

es

-
lo

ca
li

ty
(l

o
ca

l
d

a
ta

&
lo

ca
ti

o
n

-a
w

a
re

)
-

b
a
ck

g
ro

u
n

d
p

ro
ce

ss
in

g
(w

/
b

a
tc

h
in

g
&

co
m

p
re

ss
io

n
)

-
p

ri
o
ri

ti
zi

n
g

la
te

n
cy

ov
er

av
a
il

a
b

il
it

y
-

p
a
rt

it
io

n
in

g
a
n
d

p
a
ra

ll
el

is
m

F
re

eF
lo

w
-
la
te
n
c
y
:

F
as

t
h

ig
h

p
er

fo
r-

m
an

ce
co

n
ta

in
er

n
et

w
or

k
in

g
-

n
et

w
o
rk

in
g

h
a
rd

w
a
re

’s
ca

p
a
b

il
it

ie
s

-
n

et
w

o
rk

in
g

te
ch

n
o
lo

g
ie

s

-
co

n
ta

in
er

fa
il

u
re

s
o
r

m
ov

e
to

n
ew

lo
ca

ti
o
n

-
lo

ca
li

ty
(l

o
ca

ti
o
n

-a
w

a
re

)
-

p
ri

o
ri

ti
zi

n
g

la
te

n
cy

ov
er

is
o
la

ti
o
n

-
o
p

p
o
rt

u
n

is
ti

c
b
y
p
a
ss

in
g

8

[38–42]), throughput oriented stream processing systems (e.g., Spark Streaming [36]), and

high throughput storage systems (e.g., HDFS, NFS, and GFS [43–45]) have been built with

this promise. Typically, throughput and resource utilization come in trade-off with latency,

for example when employing approaches such as large batching, compaction, compression,

and the use of slow but cheaper storage.

1.3 THESIS ORGANIZATION

The rest of the thesis is structured as follows. In the subsequent chapter we dive into each

system in more detail, along with experimental evaluations for each. Chapter 2 describes the

details of Ambry, a geo-distributed storage system. Chapters 3 and 4 respectively describe

Samza and Steel, a stateful stream processing system and extending processing to the edge.

Chapter 5 outlines FreeFlow, a high performance container technology. Finally, we conclude

by presenting our future directions Chapter 6.

9

CHAPTER 2: AMBRY: LINKEDIN’S SCALABLE GEO-DISTRIBUTED
OBJECT STORE

In this chapter we present Ambry, a geo-distributed storage system designed for managing

large objects with low latency, high throughput, and in a balanced manner. The infrastruc-

ture beneath a worldwide social network has to continually serve billions of variable-sized

media objects such as photos, videos, and audio clips. These objects must be stored and

served with low latency and high throughput by a system that is geo-distributed, highly

scalable, and load-balanced. Existing file systems and object stores face several challenges

when serving such large objects. We present Ambry, a production-quality system for storing

large immutable data (called blobs). Ambry is designed in a decentralized way and leverages

techniques such as logical object grouping abstractions, asynchronous replication, rebalanc-

ing mechanisms, zero-cost failure detection, and OS caching, towards smart placement and

data-motion. Ambry has been running in LinkedIn’s production environment for the past

3 years, serving up to 10K requests per second across more than 500 million users. Our

experimental evaluation reveals that Ambry offers high efficiency (utilizing up to 88% of

the network bandwidth), low latency (less than 50 ms latency for a 1 MB object), and load

balancing (improving imbalance of request rate among disks by 8x-10x).

2.1 INTRODUCTION

During the past decade, social networks have become popular communication channels

worldwide. Hundreds of millions of users continually upload and view billions of diverse

massive media objects, from photos and videos to documents. These large media objects,

called blobs, are uploaded once, frequently accessed from all around the world, never modi-

fied, and rarely deleted. LinkedIn, as a global large-scale social network company, has faced

the need for a geographically distributed system that stores and retrieves these read-heavy

blobs in an efficient and scalable manner.

10

Handling blobs poses a number of unique challenges. First, due to diversity in media

types, blob sizes vary significantly from tens of KBs (e.g., profile pictures) to a few GBs

(e.g., videos). The system needs to store both massive blobs and a large number of small

blobs efficiently. Second, there is an ever-growing number of blobs that need to be stored

and served. Currently, LinkedIn serves more than 800 million put and get operations per

day (over 120 TB in size). In the past 12 months, the request rate has almost doubled, from

5k requests/s to 9.5k requests/s. This rapid growth in requests magnifies the necessity for a

linearly scalable system (with low overhead). Third, the variability in workload and cluster

expansions can create unbalanced load, degrading the latency and throughput of the system.

This creates a need for load-balancing. Finally, users expect the uploading process to be

fast, durable, and highly available. When a user uploads a blob, all his/her friends from all

around the globe should be able to see the blob with very low latency, even if parts of the

internal infrastructure fail. To provide these properties, data has to be reliably replicated

across the globe in multiple datacenters, while maintaining low latency for each request.

LinkedIn had its own home-grown solution called Media Server, built using network

attached storage filers (for file storage), Oracle database (for metadata), and Solaris boxes.

Media Server had multiple drawbacks. It faced CPU and IO spikes caused by numerous

metadata operations for small objects, was not horizontally scalable, and was very expensive.

Given that LinkedIn was scaling rapidly and the future web content will be largely dominated

by media, it needed to find a replacement.

Several systems have been designed for handling a large amount of data, but none of them

satisfactorily meet the requirements and scale LinkedIn needs. There has been extensive re-

search into distributed file systems [43–47]. These systems have a number of limitations

when used for storing blobs, as pointed out by [48, 49]. For instance, the hierarchical direc-

tory structure and rich metadata are an overkill for a blob store and impose unnecessary

additional overhead.

Many key value stores [24, 25, 28, 50] have also been designed for storing a large number

11

of objects. Although these systems can handle many small objects, they are not optimized

for storing large objects (tens of MBs to GBs). Further, they impose extra overhead for

providing consistency guarantees while these are typically not needed for immutable data.

Some examples of these overheads include using vector clocks, conflict resolution mechanism,

logging, and central coordinators.

A few systems have been designed specifically for large immutable objects including

Facebook’s Haystack [48] along with f4 [51] and Twitter’s Blob Store [52]. However, these

systems do not resolve load imbalance, especially when cluster expansions occur.

In this work we present Ambry1, a production-quality system designed specifically for

diverse large and small immutable data with read-heavy traffic, where data is written once,

and read many times (>95% read traffic). Ambry is designed with four main goals in mind:

1. Low Latency and High Throughput: The system needs to serve a large number of

requests per second in a timely fashion, while working on cheap commodity hardware

(e.g., HDDs). In order to reach this goal, Ambry utilizes a number of techniques

including exploiting the OS cache, using zero copy when reading data from disk to

network, chunking data along with retrieving/storing chunks in parallel from multiple

nodes, providing configurable polices for the number of replicas to write and read, and

zero-cost failure detection mechanisms (Sections 2.2.3, 2.4.2, and 2.4.4).

2. Geo-Distributed Operation: Blobs have to be replicated in other geographically

distributed datacenters for high durability and availability, even in the presence of

failures. To achieve low latency and high throughput in this geo-distributed setting,

Ambry is designed as a decentralized multi-master system where data can be written to

or read from any of the replicas. Additionally, it uses asynchronous writes that write

data to the closest datacenter and asynchronously replicate to other datacenter(s).

Also, for higher availability, it uses proxy requests that forward requests to other

1Ambry is open-source and can be found at https://github.com/linkedin/ambry

12

datacenters when the data is not replicated in the current datacenter yet (Sections

2.2.3 and 2.4.2).

3. Scalability: With the ever-growing amount of data, the system has to scale out

efficiently with low overhead. To achieve this goal, Ambry makes three main design

choices. First, Ambry separates the logical placement of blobs from their physical

placement, allowing it to change the physical placement transparently from the logical

placement. Second, Ambry is designed as a completely decentralized system, with no

manager/master. Third, Ambry uses on-disk segmented indexing along with Bloom

filters and an in-memory cache of the latest segment, allowing for scalable and efficient

indexing of blobs. (Section 2.4.4).

4. Load Balancing: The system has to stay balanced in spite of growth. Ambry uses

chunking of large blobs along with a random selection approach to remain balanced in

a static cluster, and a re-balancing mechanism to return to a balanced state whenever

cluster expansion occurs (Section 2.3).

Ambry has successfully been in production for the last 36 months, across four datacenters,

serving more than 500 million users. Our experimental results show that Ambry reaches high

throughput (reaching up to 88% of the network bandwidth) and low latency (serving 1 MB

blobs in less than 50 ms), works efficiently across multiple geo-distributed datacenters, and

improves the imbalance among disks by a factor of 8x-10x while moving minimal data.

This chapter discusses the design and implementation of Ambry. The main contributions

of this work are:

• Design and implementation of a scalable load-balanced blob Store working across dat-

acenters, while maintaining low latency and high throughput.

• Evaluating various aspects of the system including latency, throughput, load-imbalance

and scalability in real-world clusters.

13

C
lu

st
er

 M
an

ag
er

Replication

C
lu

st
er

 M
an

ag
er

frontend node
frontend node

CDN

Data Center 1

frontend node

Frontend Layer

frontend nodeFrontend Node

Client

C
lu

st
er

 M
an

ag
er

http

Data Layer

...Disk 1 Disk k

Datanode

...Router Library

C
lu

st
er

 M
an

ag
er

C
lu

st
er

 M
an

ag
er

frontend node
frontend node

CDN

Data Center n

frontend node

Frontend Layer

frontend nodeFrontend Node

Client

C
lu

st
er

 M
an

ag
er

http

Data Layer

...Disk 1 Disk k

Datanode

Router Library

Figure 2.1: Architecture of Ambry.

• Analyzing the system over long period of time and varying workload using a simulator

based on real-world data.

The rest of the chapter is organized as follows. In Section 2.2, we discuss the design

and architecture of Ambry. Section 2.6 evaluates the system with a number of experimental

results. Finally, we analyze the state-of-art related work in this are in Section 2.7 and

conclude in Section 2.8.

2.2 SYSTEM OVERVIEW

In this section we discuss the overall design of Ambry including the high-level architec-

ture of the system (Section 2.2.1), the notion of partition (Section 2.2.2), and supported

operations (Section 2.2.3).

2.2.1 Architecture

Ambry is designed as a completely decentralized multi-tenant system across geographi-

cally distributed data centers. The overall architecture of Ambry is shown in Figure 2.1. The

14

system is composed of three main components: Frontends that receive and route requests,

Datanodes that store the actual data, and Cluster Managers that maintain the state of the

cluster. Each datacenter owns and runs its own set of these components in a decentralized

fashion. The Frontends and Datanodes are completely independent of one another, and the

Cluster Managers are synchronized using Zookeeper [53]. We provide an overview of each

component below (details in Section 2.4):

• Cluster Manager: Ambry organizes its data in virtual units called partitions (Section

2.2.2). A partition is a logical grouping of a number of blobs, implemented as a large

replicated file. On creation, partitions are read-write, i.e., immutable blobs are read

and new blobs can be added. When a logical partition reaches its capacity, it turns

read-only. The Cluster Manager keeps track of the state (read-write/read-only) and

location of each partition replica, along with the physical layout of the cluster (nodes

and disk placement).

• Frontend: The Frontends are in charge of receiving and routing requests in a multi-

tenant environment. The system serves three request types: put, get, and delete.

Popular data is handled by a Content Delivery Network (CDN) layer above Ambry.

Frontends receive requests directly from clients or through the CDN (if the data is

cached). The Frontends forward a request to the corresponding Datanode(s) and

return the response to the client/CDN originating the request.

• Datanode: Datanodes store and retrieve the actual data. Each Datanode manages a

number of disks. Datanodes receive operations from Frontends and apply the opera-

tions on the disks they are in charge of. For better performance, Datanodes maintain a

number of additional data structures including: indexing of blobs, journals and Bloom

filters (Section 2.4.4).

15

… blob
entry

blob
entry

0 size

blob
contentheader blob

properties
user

metadata
blob

id
put blob

header delete flagblob
id

delete blob

blob
entry

Figure 2.2: Partition and Blob layout.

2.2.2 Partition

Instead of directly mapping blobs to physical machines, e.g., Chord [54] and CRUSH [55],

Ambry randomly groups blobs together into virtual units called partitions. The physical

placement of partitions on machines is done in a separate procedure. This decoupling of

the logical and physical placement enables transparent data movement (necessary for re-

balancing) and avoids immediate rehashing of data during cluster expansion.

A partition is implemented as an append-only log in a pre-allocated large file. Currently,

partitions are fixed-size during the life-time of the system 2. The partition size should be

large enough that the overhead of partitions, i.e., the additional data structures maintained

per partition such as indexing, journals, and Bloom filters (Section 2.4.4), are negligible.

On the other hand, the failure recovery and rebuild time should be small. We use 100 GB

partitions in our clusters. Since rebuilding is done in parallel from multiple replicas, we

found that even 100 GB partitions can be rebuilt in a few minutes.

Blobs are sequentially written to partitions as put and delete entries (Figure 2.2). Both

entries contain a header (storing the offsets of fields in the entry) and a blob id. The blob

id is a unique identifier, generated by the Frontend during a put operation, and used during

get/delete operations for locating the blob. This id consists of the partition id in which

2As part of future work we plan to investigate potential improvements by using variable-size partitions.

16

the blob is placed (8 Bytes), followed by a 32 Byte universally unique id (UUID) for the

blob. Collisions in blob ids are possible, but very unlikely (the probability is < 2−320). For

a collision to occur, two put operations have to generate equal UUIDs and chose similar

partitions for the blob. Collisions are handled at the Datanodes by failing the late put

request.

Put entries also include predefined properties including: blob size, time-to-live, creation

time, and content type. Also, there is an optional map of user defined properties followed

by the blob. Delete entries include a delete flag as an indicator of a delete entry.

In order to offer high availability and fault-tolerance, each partition is replicated on

multiple Datanodes. For replica placement, Ambry uses a greedy approach based on disk

spaces. This algorithm chooses the disk with the most unallocated space while ensuring

constraints such as: 1) not having more than one replica per Datanode and 2) having replicas

in multiple data centers. Currently, the number of replicas per partition is configurable by

the system administrator. As part of future work, we plan to adaptively change the number

of replicas based on the popularity of the partition, and use erasure coding for cold data to

even further reduce the replication factor.

On creation, partitions are read-write, serving all operations (put, get and delete). When

the partition hits its upper threshold on size (capacity threshold) it becomes read-only,

thereafter serving only get and delete operations.

The capacity threshold should be slightly less than the max capacity (80-90%) of the

partition for two reasons. First, after becoming read-only, replicas might not be completely

in-sync and need free space to catch-up later (because of asynchronous writes). Second,

delete requests still append delete entries.

Deletes are similar to put operations, but on an existing blob. By default, deletes result

in appending a delete entry (with the delete flag set) for the blob (soft delete). However, Am-

bry also supports hard deletes where data is overwritten with random values. Deleted blobs

are periodically cleaned up using an in-place compaction mechanism. After compaction,

17

…

Frontend
Router Library

Client

…Data node i

Disk Disk ...

Data node k

Disk Disk ...

3 3

1

3

p

Data node j

Disk Disk ...

44

5

2: Choose

4

Figure 2.3: Steps in processing an operation.

read-only partitions can become read-write if enough space is freed-up. In the rest of the

chapter we mainly focus on puts, due to the similarity of delete and put operations.

2.2.3 Operations

Ambry has a lightweight API supporting only 3 operations: put, get, and delete. The

request handling procedure is shown in Figure 2.3. On receiving a request, the Frontend

optionally conducts some security checks on the request. Then, using the Router Library

(that contains the core logic of operation handling) it chooses a partition, communicates with

the Datanode(s) in charge, and serves the request. In the put operation, the partition is

chosen randomly (for data balancing purposes), and in the get/delete operation the partition

is extracted from the blob id.

Operations are handled in a multi-master design where operations can be served by any

of the replicas. The decision of how many replicas to contact is based on user-defined poli-

cies. These policies are similar to consistency levels in Cassandra [24], where they control

how many (one, k, majority, all) replicas to involve in an operation. For puts (or deletes),

the request is forwarded to all replicas, and policies define the number of acknowledgments

18

needed for a success (trade-off between durability and latency). For gets, policies deter-

mine how many randomly selected replicas to contact for the operation (trade-off between

resources usage and latency). In practice, we found that for all operations the k = 2 replica

policy gives us the balance we desire. Stricter polices (involving more replicas) can be used

to provide stronger consistency guarantees.

Additionally, performing write operations to all replicas placed in multiple geo-distributed

datacenters in a synchronous fashion can affect the latency and throughput. In order to

alleviate this issue, Ambry uses asynchronous writes where puts are performed synchronously

only in the local datacenter, i.e., the datacenter in which the Frontend receiving the request

is located. The request is counted as successfully finished at this point. Later on, the blob

is replicated to other datacenters using a lightweight replication algorithm (Section 2.5).

In order to provide read-after-write consistency in a datacenter which a blob has not been

replicated yet (e.g., writing to one datacenter and reading from another), Ambry uses proxy

requests. If the Frontend cannot retrieve a blob from its local datacenter, it proxies the

request to another datacenter and returns the result from there. Although a proxy request

is expensive, in practice we found that proxy requests happen infrequently (less than 0.001

% of the time).

2.3 LOAD BALANCING

Skewed workloads, massively large blobs, and cluster expansions create load imbalance

and impact the throughput and latency of the system. Ambrytries to achieve balance in

terms of two factor a) disk usage and b) request rates. We study load balancing in two

cases: a static cluster where nodes and disks are not added or deleted and a dynamic cluster

with continuous expansion of the cluster.

19

2.3.1 Load Balancing a Static Cluster

In a static cluster Ambry uses a combination of three simple techniques: random place-

ment, chunking, and caching. By routing put operations to random partitions, it is expected

to have a balanced number of puts per partition. By splitting large blobs into multiple small

chunks, it is expected to have an balance size across blobs, thus, overall reaching a balance in

terms of the overall data stored at each partition and the disk usage. However, this does not

mean balanced request rates across disks. Ambry relies on caching, in a CDN layer above it,

to serve the extremely hot and outlier blobs. Since partitions are fairly large, with millions

of blobs per partition, partitions have a similar distribution of data, especially since the hot

outliers are served outside of Ambry. Using these techniques the load imbalance of request

rates and partition sizes in production gets to as low as 5% amongst Datanodes.

2.3.2 Load Balancing a Dynamic Cluster

In practice, read-write partitions receive all the write traffic and also the majority of

the read traffic (due to popularity). Since partitions grow in a semi-balanced manner, the

number of read-write partitions becomes the main factor of load imbalance. After cluster

expansion, new Datanodes contain only read-write partitions, while older Datanodes contain

mostly read-only partitions. This skewed distribution of read-write partitions creates a large

imbalance in the system. In our initial version, the average request rates of new Datanodes

were up to 100x higher than old Datanodes and 10x higher than the average-aged ones.

To alleviate this issue, Ambry employs a rebalancing mechanism that returns the cluster

to a semi-balanced state (in terms of disk usage and request rate) with minimal data move-

ment. The rebalancing approach reduces request rate and disk usage imbalance by 6-10x

and 9-10x respectively.

Ambry defines the ideal (load balanced) state as a triplet (idealRW, idealRO, idealUsed)

representing the ideal number of read-write partitions, ideal number of read-only partitions

20

and ideal disk usage each disk should have. This ideal state (idealRW, idealRO, idealUsed)

is computed by dividing the total number of read-write/read-only partitions and total used

disk space by the number of disks in the cluster, respectively. A disk is considered above (or

below) ideal if it has more (or less) read-write/read-only partitions or disk usage than the

ideal state.

The rebalancing algorithm attempts to reach this ideal state. This is done by moving

partitions from disks above ideal to disks below ideal using a two-phase approach, as shown

in the pseudo-code below.

Algorithm 2.1 Rebalancing Algorithm

1: // Compute ideal state.
2: idealRW=totalNumRW / numDisks
3: idealRO=totalNumRO / numDisks
4: idealUsed=totalUsed / numDisks

5: // Phase1: move extra partitions into a partition pool.
6: partitionPool = {}
7: for each disk d do
8: // Move extra read-write partitions.
9: while d.NumRW > idealRW do

10: partitionPool += chooseMinimumUsedRW (d)

11: // Move extra read-only partitions.
12: while d.NumRO > idealRO & d.used > idealUsed do
13: partitionPool += chooseRandomRO(d)

14: // Phase2: Move partitions to disks needing partitions.
15: placePartitions(read-write)
16: placePartitions(read-only)

17: function placePartitions(Type t)
18: while partitionPool contains partitions type t do
19: D=shuffleDisksBelowIdeal()
20: for disk d in D and partition p in pool do
21: d.addPartition(p)
22: partitionPool.remove(p)

Phase1 - Move to Partition Pool: In this phase, Ambry moves partitions from disks

above ideal into a pool, called partitionPool (Lines 6-13). At the end of this phase no disk

21

should remain above ideal, unless removing any partition would cause it to fall below ideal.

Ambry starts from read-write partitions (which are the main factor), and moves extra

ones solely based on idealRW threshold. The same process is repeated for read-only par-

titions, but with considering both idealRO and idealUsed when moving partitions. The

strategy of choosing which partition to move is based on minimizing data movement. For

read-write partitions, the one with the minimum used capacity is chosen, while for read-only

partitions, a random one is chosen since all such partitions are full.

Phase2 - Place Partitions on Disks: In this phase, Ambry places partitions from

the partition pool on disks below ideal (Lines 14-16), starting from read-write partitions

and then read-only ones. Partitions are placed using a random round-robin approach (Line

17-22). Ambry finds all disks below ideal, shuffles them, and assigns partitions to them in a

round-robin fashion. This procedure is repeated until the pool becomes empty.

After finding the the new placement, replicas are seamlessly moved by: 1) creating a

new replica in the destination, 2) syncing the new replica with old ones using the replication

protocol while serving new writes in all replicas, and 3) deleting the old replica after syncing.

Although the rebalancing algorithm has low complexity, moving data around can impact

the performance of the system. Thus, we are working on performing rebalancing in the

background when the load of the system is low, e.g., overnight.

2.4 COMPONENTS IN DETAIL

In this section we further discuss the main components of Ambry. We describe the

detailed state stored by the Cluster Manager (Section 2.4.1), extra responsibilities of Fron-

tends including chunking and failure detection (Section 2.4.2), and additional structures

maintained by the Datanodes (Section 2.4.4).

22

Table 2.1: Hardware layout in Cluster Manager.

Datacenter Datanode Disk Size Status

DC 1 Datanode 1

disk 1 4 TB UP

...

disk k 4 TB UP

DC 1 Datanode 2

disk 1 4 TB DOWN

...

disk k′ 4 TB UP

...

DC n Datanode j

disk 1 1 TB DOWN

...

disk k′′ 1 TB UP

2.4.1 Cluster Manager

The Cluster Manager is in charge of maintaining the state of the cluster. Each datacenter

has its local Cluster Manager instance(s) kept in-sync with others using Zookeeper. The state

stored by the Cluster Manager is very small (less than a few MBs in total), consisting of a

hardware and logical layout.

Hardware Layout

The hardware layout includes information about the physical structure of the cluster, i.e.,

the arrangement of datacenters, Datanodes, and disks. It also maintains the raw capacity

and status, i.e., healthy (UP) or failed (DOWN), for each disk. An example hardware layout

is shown in Table 2.1. As shown, Ambry works in a heterogeneous environment with different

hardware and configuration used inside and across different datacenters.

Logical Layout

Partitions act as logical placeholders for blobs such that blobs are mapped to partitions

completely unaware of the physical placement. Each partition has number of replicas, where

23

Table 2.2: Logical Layout in Cluster Manager.

Partition id State Placement

partition 1 read-write

DC 1: Datanode 1: disk 1

DC 1: Datanode 4: disk 5

...

DC 3: Datanode 7: disk 2

partition 2 read-only

DC 1: node 1: disk 1

...

DC 3: node 5: disk 1

...

partition p read-only

DC 1: Datanode 1: disk 1

...

DC 4: Datanode 5: disk 2

each replica is placed on a disk. The logical layout maintains the physical location of partition

replicas, and the state (read-only/read-write) of each partition. In order to find the state

of a partition, the Cluster Manager periodically contacts the Datanodes, and requests the

state of their partitions. This layout is used for choosing a partition to write a new blob to

(put operation), and locating the Datanode in charge of a given replica (all operations). An

example of this layout is shown in Table 2.2. As shown, replicas of a partition can be placed

on multiple Datanodes in one datacenter, and/or in different datacenters. Additionally, one

disk (e.g., DC 1: Datanode 1: disk 1) can contain replicas of distinct partitions, where some

are read-only and some are read-write. Partitions are added by updating the logical layout

stored in the Cluster Manager instances3.

2.4.2 Frontend Layer

The Frontend is the entry point to Ambry for external requests. Each datacenter has

its own set of Frontends. Frontends are decentralized involving no master or coordination,

3Currently, the system administrator manually adds partitions in order to prevent unwanted and rapid
cluster growths. However, this can easily be automated.

24

identically performing the same task, and stateless with all state stored in the Cluster Man-

ager (which is periodically pulled). This design enhances scalability (new Frontends can

be added without much performance penalty), fault-tolerance (requests can be forwarded to

any Frontend), and failure recovery (failed Frontends can quickly be replaced) for Frontends.

Frontends have three main responsibilities:

1. Request Handling: This involves receiving requests, routing them to the corresponding

Datanode(s) using the Router Library and sending back the response.

2. Security Checks: Optionally performing security checks, such as virus scanning and

authentication on requests.

3. Capturing Operations: Pushing events to a change capture system out of Ambry for

further offline analysis, such as finding request patterns of the system. We use Kafka

[56] as our change-capture system due to the high durability, high throughput, and

low overhead it provides.

At the core of the Frontend is the Router Library which actually performs the routing.

Upon receiving a request, the Frontend performs security checks, logs the operation, uses

the Router Library to route the request, and returns the response from the Router Library

back to the user. The following section discusses the details of the Router Library, and the

functionalities it supports.

2.4.3 Router Library

The Router Library contains all the core logic of handling requests and communicating

with Datanodes. Frontends simply embed and use this library. Clients can bypass Frontends

by embedding this library and directly serving requests. This library includes four main

procedures: A) policy-based routing, B) chunking large blobs, C) failure detection, and D)

proxy requests.

25

Chunks
ChunkId1

partitionId UUID

ChunkIdk

partitionId UUID
...

Figure 2.4: Content of the metadata blob used for chunked blobs.

A. Policy Based Routing: On receiving a request, the library decides which partition to

involve (randomly chosen for puts and extracted from blob id for gets/deletes). Then, based

on the policy used it communicates with the corresponding replica(s) until the request is

served/failed. It supports a variety of policies including {one, k, majority, all}, as discussed

in Section 2.2.3.

B. Chunking: Extremely large blobs (e.g., videos) create load imbalance, block smaller

blobs, and inherently have high latency. To mitigate these issues, Ambry splits large blobs

into smaller equal-size units called chunks. A large chunk size does not fully resolve the large

blob challenges and a small chunk size adds too much overhead. Based on our current large

blob size distribution, we found the sweet spot for the chunk size to be in the range of 4 to

8 MB4.

During a put operation, a blob b is split into k chunks {c1, c2, ..., ck}, each treated as an

independent blob. Each chunk goes through the same steps as a normal put blob operation

(Section 2.2.3), most likely being placed on a different partition. It is also assigned a unique

chunk id with the same format as a blob id. In order to be able to retrieve b Ambry creates

a metadata blob bmetadata for b. bmetadata stores the number of chunks and chunk ids in order,

as shown in Figure 2.4. This metadata blob is then put into Ambry as a normal blob and

the blob id of bmetadata is returned to the user as the blob id of b. If the put fails before

writing all chunks, the system will issue deletes for written chunks and the operation has to

4Chunk size is not fixed and can be adapted to follow the growth in blob sizes, improvements in network,
etc.

26

available

wait period

temp down
temp

available

wait period

temp down
temp

available available

Figure 2.5: Failure detection algorithm with maximum tolerance of 2 consecutive failed
responses.

be redone.

During a get, the metadata blob is retrieved and chunk ids are extracted from it. Then,

Ambry uses a sliding buffer of size s to retrieve the blob. Ambry queries the first s chunks

of the blob independently and in parallel (since they are most likely written on unique

partitions placed on separate Datanodes). When the first chunk in the buffer is retrieved,

Ambry slides the buffer to the next chunk, and so on. The whole blob starts being returned

to the user the moment the first chunk of the blob is retrieved.

Although an extra put/get is needed in this chunking mechanism (for the metadata blob),

overall, our approach improves latency since multiple chunks are written and retrieved in

parallel.

C. Zero-cost Failure Detection: Failures happen frequently in a large system. They range

from unresponsiveness and connection timeouts, to disk I/O problems. Thus, Ambry needs

a failure detection mechanism to discover unavailable Datanodes/disks and avoid forwarding

requests to them.

Ambry employs a zero-cost failure detection mechanism involving no extra messages,

such as heartbeats and pings, by leveraging request messages. In practice, we found our

failure detection mechanism is effective, simple, and consumes very little bandwidth. This

mechanism is shown in Figure 2.5. In this approach, Ambry keeps track of the number of

27

consecutive failed requests for a particular Datanode (or disk) in the last check period of

time. If this number exceeds a MAX FAIL threshold (in our example set to 2) the Datanode

is marked as temporarily down for a wait period of time. In this state all queued requests

for this Datanode will eventually time out and need to be reattempted by the user. After the

wait period has passed, the Datanode becomes temporarily available. When a Datanode

is in the temporarily available phase, if the next request sent to that Datanode fails, it

will move to the temporarily down phase again. Otherwise, it will be marked as available,

working as normal again.

D. Proxy Requests: As described in Section 2.2.3, Ambry uses proxy requests to reach

higher availability and read-after-write consistency in remote datacenters. When a blob has

not been replicated in the local datacenter yet, requests for that blob are forwarded to other

datacenters and served there (proxy requests). However, datacenter partitions can cause

unavailability of unreplicated data until the partition is healed and replicas converge.

Proxy requests are handled by the Router Library, transparently from the user issuing

the request. In practice, we found proxy requests occur less than 0.001% of the time, thus

minimally affecting the user experience.

2.4.4 Datanode Layer

Datanodes are in charge of maintaining the actual data. Each Datanode manages a

number of disks, and responds to requests for partition replicas placed on its disks. Puts

are handled by writing to the end of the partition file. Gets can be more time-consuming,

especially since the location of the blob in the partition is not known. To minimize both

read and write latencies, Datanodes employ a few techniques:

• Indexing blobs: Ambry stores an index of blob offsets per partition replica to prevent

sequential sweeps for finding blobs.

28

• Exploiting OS cache: Ambry utilizes OS caching to serve most reads from the RAM,

by limiting the RAM usage of other components.

• Batched writes, with a single disk seek: Ambry batches writes for a particular partition

together and periodically flushes the writes to disk. Thus, it incurs at most one disk

seek for a batch of sequential writes. The flush period is configurable and trades off

latency for durability. Although, batching can introduce overheads of flushing, dirty

buffers, and tuning, the benefits outweigh these overheads.

• Keeping all file handles open: Since partitions are typically very large (100 GB in

our setting), the number of partition replicas placed on a Datanode is small (a few

hundred). Thus, Ambry keeps all file handles open at all times.

• Zero copy gets: When reading a blob, Ambry utilizes a zero copy [57] mechanism, i.e.,

the kernel directly copies data from disk to the network buffer without going through

the application. This is feasible since the Datanodes do not perform any computation

on the data at get operations. Note that data read from disk is usually old and

less popular. A significant advantage of zero copy is that it also helps toward better

utilizing the OS cache by not copying less popular data into it.

These few simple techniques have significantly improved the latency and throughput

in Ambry. As we show in 2.6.1, we are able to reach 75%-88% of the maximum network

bandwidth by using these techniques. Below, we discuss two of these techniques (indexing

and OS Caches) in more detail.

Indexing

To find the location of a blob in a partition replica with low latency, the Datanode maintains

a light-weight in-memory indexing per replica, as shown in Figure 2.6. The indexing is sorted

by blob id, mapping the blob id to the start offset of the blob entry. The indexing is updated

in an online fashion whenever blobs are put (e.g., blob 60) or deleted (e.g., blob 20).

29

blob
id 40…

850 9000 100 GB

Partition

blob
id 20

200

blob
id 60

980

…

end offset

blob
id 20

1040

blob
id 70

Index segment 1

Index segment 2

Index segment 3

Start offset: 700
End offset: 1020

blob id offset flags TTL

20 980 del -

40 850 - ∞

60 900 - ∞

70 700 - 1/2/2017

700

Index

start offset of current
index segment

Figure 2.6: Indexing of blob offsets in a partition replica. When blobs are put (blob 60) or
deleted (blob 20) the indexing stucture is updated.

Similar to SSTables [28], Ambry limits the size of the index by splitting it into segments,

storing old segments on disk, and maintaining a Bloom filter for each on-disk segment.

The indexing also stores a flag indicating if a blob has been deleted and optionally a

time-to-live (TTL). During get operations, if the blob has expired or been deleted, an error

will be returned before reading the actual data.

Note that the indexing does not contain any additional information affecting the correct-

ness of the system, and just improves performance. If a Datanode fails, the whole indexing

can be reconstructed from the partition.

Exploiting The OS Cache

Recently written data, which is the popular data as well, is automatically cached without

any extra overhead (by the operating system). By exploiting this feature, many reads can

be served from memory, which significantly improves performance. Thus, Ambry limits

30

the memory usage of other data structures in the Datanode. Ambry bounds the indexing

by splitting it into segments, with only the latest segment remaining in-memory (Figure

2.6). New entries are added to the in-memory segment of the indexing. When the in-

memory segment exceeds a maximum size it is flushed to disk as a read-only segment. This

design also helps toward failure recovery since only the in-memory segment needs to be

reconstructed. Looking up blob offsets is done in reverse chronological order, starting with

the latest segment (in-memory segment). Thus, a delete entry will be found before a put

entry when reading a blob. This ensures deleted blobs are not retrievable.

Bloom Filters: To reduce lookup latency for on-disk segments, Ambry maintains an in-

memory Bloom filter for each segment, containing the blob ids in that index segment. Using

Bloom filters, Ambry quickly filters out which on-disk segment to load. Thus, with high

probability, it incurs only one disk seek. However, due to our skewed workload a majority

of reads just hit the in-memory segment, without any disk seeks.

2.5 REPLICATION

Replicas belonging to the same partition can become out of sync due to either failures, or

asynchronous writes that write to only one datacenter. In order to fix inconsistent replicas,

Ambry uses an asynchronous replication algorithm that periodically synchronizes replicas.

This algorithm is completely decentralized. In this procedure each replica individually acts

as a master and syncs-up with other replicas, in an all-to-all fashion. Synchronization is

done using an asynchronous two-phase replication protocol as follows. This protocol is a

pull-based approach where each replica independently requests for missing blobs from other

replicas.

• First Phase: This phase finds missing blobs since the last synchronization point.

This is done by requesting blob ids of all blobs written since the latest syncing offset

and then filtering the ones missing locally.

31

offset blob id

700 70

850 40

900 60

980 20

offset blob id

600 30

670 55

750 40

800 70

950 90

Journal of partition p,
replica r1

Journal of partition p,
replica r2

latestOffset r2 = 600

1. get blob ids after 600

2. ids ={55, 40, 70, 90}

3. filter out missing blobs
4. get blobs {55, 90}

5. blob 55 and blob 90

6. write blobs and set
latestOffset r2 = 950

Figure 2.7: Journals for two replicas of the same partition and an example of the
replication algorithm.

• Second Phase: This phase replicates missing blobs. A request for only the missing

blobs is sent. Then, the missing blobs are transferred and appended to the replica.

In order to find the recently written blobs quickly, the replication algorithm maintains

an additional data structure per replica, called a journal. The journal is an in-memory cache

of recent blobs ordered by their offset. The journal is the inverse of the Indexing table. It

can promptly return which new blobs have been added since a given offset.

Figure 2.7 shows example journals of two replicas (r1 and r2) and the two phase replication

procedure for r1 syncing with r2 from latestOffset 600. In the first phase, r1 requests all

recently added blobs in r2 after latestOffset; using the journal r2 returns a list B ={55, 40,

70, 90} of blob ids; and r1 filters out the missing blobs (blob 55 and 90). In the second phase,

r1 receives the missing blobs, appends the blobs to the end of the replica, and updates the

journal, indexing and latestOffset.

This replication protocol is periodically used in an all-to-all fashion between each pair

of replicas. The overall replication procedure is shown in the algorithm below. Since it is

desirable to minimize cross-datacenter traffic, replication algorithm is used separately for

in intra- and inter-datacenter with different periods. Inter-datacenter has a higher period

32

so that, with high probability, only one replica receives data from another datacenter and

replicates the data inside the datacenter, instead of multiple cross datacenter replications.

Algorithm 2.2 Replication Algorithm

1: for each partition p replica r1 do
2: for each remote replica r2 of p do
3: BlobIds = get blob IDs (latestOffset[r2])
4: MissingIds = find missing blobs(BlobIds)
5: Blobs=get blobs(MissingIds)
6: writeBlobs(Blobs)
7: update indexing()
8: update journal()
9: update last offset(r2)

To provide improved efficiency and scalability of the system, the replication algorithm

employs a number of further optimizations:

• Using separate thread pools for inter- and intra-datacenter replication with different

periods.

• Batching requests between common partition replicas of two Datanodes, and batching

blobs transferred across datacenters.

• Batching blobs transfered across datacenters

• Prioritizing lagging replicas to catch up at a faster rate (by using dedicated threads

for lagging replicas).

2.6 EXPERIMENTAL RESULTS

We perform three kinds of experiments: small cluster (Section 2.6.1), production cluster

(Section 2.6.2), and simulations (Section 2.6.3). We divide our evaluation into three parts,

each focusing on one of the main goals in Ambry. First we evaluate the latency and through-

put of the system. Second, we show the effectiveness of our multi-colo optimizations and

last we analyze the load-balancing mechanism over time.

33

2.6.1 Throughput and Latency

In this section we measure the latency and throughput of the system using a micro-

benchmark that stress-tests the system, under read-only, write-only and read-write work-

loads.

Micro-Benchmark: We first measure the peak throughput. We designed a micro-

benchmark that linearly adds load to the system (by adding more clients), until the satura-

tion point where no more requests can be handled. Each client sends requests one at a time

with the next request sent right after a response.

This benchmark has three modes: Write, Read, and ReadWrite. In Write mode, random

byte array blobs are being put by varying number of clients. In Read mode, first blobs

are written at saturation rate for a write-period of time. Then, randomly chosen blobs are

read from the written blobs5. In most experiments we set the write-period long enough that

most read requests (> 80%) are served by disk, rather than RAM. Read-Write is a similar

to Read, but serving 50% reads and 50% writes after the write-period. Since latency and

throughput are highly correlated with blob size, we use fixed-size blobs in each run, but vary

the blob size.

Experimental Setup: We deployed Ambry with a single Datanode. The Datanode

was running on a 24 core CPU with 64 GB of RAM, 14 1TB HDD disks, and a full-duplex 1

Gb/s Ethernet network. 4 GB of the RAM was set aside for the Datanode’s internal use and

the rest was left to be used as Linux Cache. We created 8 single-replica 100 GB partitions

on each disk, with a total of 122 partitions. Using 14 disks with a 1 Gb/s network might

look like an overkill. However, disk seeks are the dominant latency factor for small blobs.

Since a large portion of blobs are small (< 50 KB), we need the parallelism created by using

multiple disks. Note that Ambry is designed as a cost-effective system using cheap HDD

disks.

5The random strategy gives a lower bound on the system’s performance since real-world access patterns
are skewed toward recent data.

34

Clients send requests from a few machines located in the same datacenter as the Datan-

ode. These clients, that are acting as Frontends, directly send requests to the Datanode.

The micro-benchmark discussed above was used with varying blob sizes {25 KB, 50 KB, 100

KB, 250 KB, 500 KB, 1 MB, 5 MB}. We did not go above 5 MB since blobs are chunked

beyond that point.

Effect of Number of Clients

We ran the micro-benchmark with varying blob sizes, while linearly increasing the number

of clients. For Read mode, the write-period was set such that 6 times the RAM size, was first

written. Figure 2.8a shows the throughput in terms of MB/s served by the system. Adding

clients proportionally increases the throughput until the saturation point. Saturation occurs

at 75%-88% of the network bandwidth. The only exception is reading small blobs due to

frequent disk seeks (more details in following sections). Saturation is reached quickly (usually

≤ 6 clients) since clients send requests as fast as possible in the benchmark.

Figure 2.8b shows the latency normalized by blob size (i.e., average latency divided by

blob size). Latency stays almost constant before reaching saturation point, and then in-

creases linearly beyond the throughput saturation point. The linear increase in latency after

saturation indicates the system does not add additional overhead beyond request serving.

Effect of Blob Size

In Figures 2.9a and 2.9b we analyzed the maximum throughput (with 20 clients) under

different blob sizes and workloads. For large objects (> 200 KB), the maximum throughput

(in MB/s) stays constant and close to maximum network bandwidth across all blob sizes.

Similarly, throughput in terms of requests/s scales proportionally.

However, for Read and Read-Write, the read throughput in terms of MB/s drops linearly

for smaller sizes. This drop is because our micro-benchmark reads blobs randomly, incurring

frequent disk seeks. The effect of disk seeks is amplified for smaller blobs. By further

35

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of Clients

5MB-Write
500KB-Write

50KB-Write

5MB-Read
500KB-Read

50KB-Read

Network BW

(a) Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

N
o
rm

a
liz

e
d
 L

a
te

n
c
y
 (

m
s
)

Number of Clients

Write 5MB
Write 500KB

Write 50KB
Read 5MB

Read 500KB
Read 50KB

(b) Latency normalized by blob size

Figure 2.8: Throughput and latency of read and write requests with varying number of
clients on different blob sizes. These results were gathered on a single Datanode
deployment and across various blob sizes {50 KB, 500 KB, 5 MB}

36

 10

 100

 1000

 10 100 1000 10000

M
a
x
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Blob Size (KB)

Write
Read

Read-Write
Network

(a) Throughput (MB/s)

 10

 100

 1000

 10000

 10 100 1000 10000

R
e
q
u
e
s
ts

 P
e
r

S
e
c
o
n
d

Blob Size (KB)

Write
Read

Read-Write
Network

(b) Throughput (requests/s)

 1

 10

 100

 10 100 1000 10000

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Blob Size (KB)

Write
Read

Read-Write

(c) Latency

Figure 2.9: Effect of blob size on maximum throughput, both in terms of MB/s and
requests/s, and latency. Results were gathered on a write-only, read-only, and mixed
(50%-50%) workload. Reads for small blob sizes (<200 KB) are slowed down by frequent
disk seeks, while other requests saturate the network link.

37

profiling the disk using Bonnie++ [58] (an IO benchmark for measuring disk performance),

we confirmed that disk seeks are the dominant source of latency for small blobs. For example,

when reading a 50 KB blob, more than 94% of latency is due to disk seek (6.49 ms for disk

seek, and 0.4 ms for reading the data).

Read and Write workload mostly utilize only the outbound and inbound link on the

Datanode, respectively. However, Read-Write workload has a better mix and evenly utilizes

both links reaching higher throughput. Therefore, in our full-duplex network infrastructure

the Read-Write mode is able to saturate both links reaching almost double the network

bandwidth (' 1.7 Gb/s in total out of the 2 Gb/s available). For smaller size objects it

reaches twice the Read throughput, since Read-Write is a 50-50 workload with reads being

the limiting factor.

Figure 2.9c demonstrates the trend in latency under various blob sizes. These results

are before the saturation point with 2 clients. Similar to throughput, latency grows linearly

except for reading small blobs. The higher latency in Read is because most read requests

incur a disk seek, while write requests are batched and written together. The Read-Write

latency falls halfway between Read and Write latency because of its mixed workload.

Variance in Latency

The tail and variance in request latencies are important. Figure 2.10 shows the CDFs

of Write, Read, and Read-Write mode experiments with 2 clients. The CDF of Read and

Write mode is very close to a vertical line, with a short tail and a majority of values close

to the median. The jump around 0.15 in Read mode (for 50 KB blob size) is because a

small fraction of requests are served using the Linux cache which is orders of magnitudes

faster than disk (discussed more in following Section). The Read-Write mode is a mixture

of the Read and Write CDF with a change around 0.5, following the 50% read - 50% write

workload pattern.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Latency (ms)

Write-50KB
Read-50KB

Read-Write-50KB

Write-5MB
Read-5MB

Read-Write-5MB

Figure 2.10: CDF of read and write latency with 2 clients for various blob sizes.
Read-Write falls in the middle with change around 0.5 due to the 50-50 mixed workload.

Table 2.3: Comparision of get request latency when most of requests (83%) are served by
disk (Disk Reads) and when all requests are served by linux cache (Cached Reads) for 50
KB blobs.

Average Max Min StdDev

Disk Reads 17 ms 67 ms 1.6 ms 9 ms

Cached Reads 3 ms 5 ms 1.6 ms 0.4 ms

Improvement 5.5x 13x 0 23x

Effect of Linux Cache

We ran the micro-benchmark on 50 KB blobs and 2 clients in two configurations: 1)

writing 6 times more than the RAM size before reading, so that most requests (83 %) are

served by disk (Disk Read), and 2) writing data equal to the RAM size to keep all data in

RAM (Cached Read). Table 2.3 compares these two modes.

The Cached Read experiment performed more than 2100 requests/s (104 MB/s reaching

79% network bandwidth) matching the maximum write throughput, compared to 540 re-

quests/s for Disk Reads. We also measured the average, maximum, minimum, and standard

deviation of latency, shown in Table 2.3. In both cases, the minimum is equal to reading from

39

the Linux Cache. However, the Cached Read case improves the average and max latency

by 5.5x and 13x, respectively. This shows the significance of exploiting the Linux Cache

(Section 2.4.4).

2.6.2 Geo-distributed Optimizations

Ambry is designed to work across multiple datacenters geographically distributed. We

analyzed our replication algorithm among 3 different datacenters at LinkedIn {DC1, DC2,

DC3}, located all across the US. All experiments in this section are from production work-

loads. Since Ambry treats each datacenter independently, except for the background repli-

cation that is cross-datacenter. This section focuses on the replication, where we evaluate

multiple aspects including the lag among replicas, the time to replicate, and bandwidth used

for replication.

Replication Lag

We define replication lag between a pair of replicas (r1, r2) as the difference of r2’s highest

used offset and r1’s latest synced offset with r2. Note that not all data in the replication lag

needs to be transfered to r1, since it could receive the missing blobs from other replicas as

well.

We measured the replication lag among all replicas of a given Datanode and the rest of

the cluster, and found that more than 85% of the values were 0. Figure 2.11 shows the CDF

of non-zero values grouped by datacenter. The 95th percentile is less than 1 KB for 100

GB partitions (in all datacenters), with slightly worse lag in datacenter 3 since it is placed

farther apart from others.

40

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 10 100 1000 10000 100000 1x10
6

C
D

F

Lag (Bytes)

DC1
DC2
DC3

Figure 2.11: CDF of Replication Lag among replica pairs of a given Datanode and the rest
of the cluster. Most values were zero, and are omitted from the graph.

Replication Bandwidth

Ambry relies on background replication to write data to other datacenters. We measured

the aggregate network bandwidth used for inter-datacenter replication during a 24 hour

period, shown in Figure 2.12. The aggregate bandwidth is small (< 10 MB/s), similar

across all datacenters, and correlated to request rates with a diurnal pattern. This value

is small because we batch replication between common replicas and due to the read-heavy

nature of the workload.

Figure 2.13 demonstrates the CDF of average replication bandwidth per Datanode, for

both intra- and inter-datacenter replication. Intra-datacenter bandwidth is minimal (< 200

B/s at 95th percentile), especially compared to inter-datacenter with 150-200 KB/s at 95th

percentile (1000x larger). The higher value for inter-datacenter is because of asynchronous

writes. However, the inter-datacenter bandwidth is still negligible (∼ 0.2% of a 1 Gb/s

link). The small difference among the 3 datacenters is due to the different request rates they

receive.

Figure 2.14 shows a zoomed in graph of only inter-datacenter bandwidth. Inter-datacenter

41

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 200 400 600 800 1000 1200 1400 1600

A
g

g
re

g
a

te
 R

e
p

lic
a

ti
o

n
 B

a
n

d
w

id
th

 (
K

B
/s

)

Time (minutes)

DC1
DC2
DC3

Figure 2.12: Aggregate network bandwidth used for inter-datacenter replication during a
24 hour period in production.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1x10
6

C
D

F

Average Replication Bandwidth per Datanode (B/s)

DC1-intra
DC2-intra

DC3-intra
DC1-inter

DC2-inter
DC3-inter

Figure 2.13: CDF of average network bandwidth used per Datanode for intra- and
inter-datacenter replication over a 24 hour period in production.

42

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50000 100000 150000 200000 250000

C
D

F

Average Replication Bandwidth per Datanode (B/s)

DC1-inter
DC2-inter
DC3-inter

Figure 2.14: CDF of average inter-datacenter network bandwidth used per Datanode over
a 24 hour period in production.

replication has a short tail with the 95th to 5th percentile ratio of about 3x. This short tail is

because of the load-balanced design in Ambry. Intra-datacenter replication has a longer tail,

as well as many zero values (omitted from the graph). Table 2.4 shows the exact values of

the 95th and 5th percentiles and their absolute difference and ratio. Replication either uses

almost zero bandwidth (intra-datacenter) or almost balanced bandwidth (inter-datacenter).

Table 2.4: Comparirsion of the 95th and 5th percentile of average replication bandwidth
used for both intra- and inter-datacenter, in three datacenters

95th 5th 95th-5th 95th ÷ 5th

Intra-DC1 68 0 68 ∞
Intra-DC2 113 0 113 ∞
Intra-DC3 178 0.007 178 27K

Inter-DC1 128K 40K 88K 3.2

Inter-DC2 150K 53K 97K 2.8

Inter-DC3 197K 63K 134K 3.1

43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 1005 1010 1015

C
D

F

Replication Latency (ms)

DC1
DC2
DC3

(a) Intra Datacenter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60 80 100 120 140 160 180 200

C
D

F

Replication Latency (ms)

DC1
DC2
DC3

(b) Inter Datacenter

Figure 2.15: CDF of average replication latency (i.e., time spent to recieve missing blobs)
for intra- and inter-datacenter in production environment.

Replication Latency

We define replication latency as the time spent in one iteration of the replication proto-

col, i.e., Tmissing blobs received minus Treplication initiated. Figure 2.15 demonstrates the CDF of

average replication latency for intra- and inter-datacenter, in our production workload.

Inter-datacenter replication latency is low with a median of less than 150 ms, and a very

short tail. Although this latency might appear to be high, the number of proxy requests

remain near-zero (< 0.001%). This is because users usually read data from the same local

datacenter to which they have recently written. Therefore, replication has a minimal effect

on user experience.

Surprisingly, intra-datacenter replication latency is relatively high (6x more than inter-

datacenter) and with little variance. This pattern is because of a pre-existing and pre-fixed

artificial added delay of 1 second, intended to prevent incorrect blob collision detections.

If a blob is replicated in a datacenter faster than the Datanode receives the initial put

44

request (which is possible with less strict policies), the Datanode might consider the put

as a blob collision and fail the request. The artificial delay is used to prevent this issue in

intra-datacenter replication. This relatively small delay does not have a significant impact

on durability or availability of data since intra-replication is only used to fix failed/slow

Datanodes, which rarely occurs.

2.6.3 Load Balancing

Since cluster growth occurs infrequently (every few months at most), we implemented

a simulator to show the behavior of Ambry over a long period of time (several years), and

at large scale (hundreds of Datanodes). We tried a workload that is based on production

workloads. All results in this section are gathered using the simulator.

Simulator Design

The simulator’s design resembles Ambry’s architecture with all its components such as

the Frontends, Data Nodes, Partitions and etc. Requests are also served using the same

path. However, there are no real physical disks. For handling requests, only the metadata

(blob id and size) is stored/retrieved, and the effect of requests are reflected (e.g., disk space

increase).

Workload: We use a synthetic workload closely resembling the real-world traffic at

LinkedIn. This workload preserves the rate of each type of request (read, write, and delete),

the blob size distribution, and the access pattern of blobs (based on age).

Cluster Expansion: The simulator starts with an initial set of Datanodes, disks, and

partitions in one datacenter. Over time, when partitions reach the capacity threshold, a new

batch of partitions are added using the replica placement strategy from Section 2.2.2. If

partitions cannot be added (e.g., if there is not enough unallocated space on disks), a batch

of new Datanodes are added.

45

Experiment Setup

The simulation is run in a single datacenter, with 10 Frontend nodes. The experiment

starts with 15 Datanodes, each with 10 4TB disks, and 1200 100GB partitions with 3 replicas.

At each partition and Datanode addition point, a batch of 600 partitions and 15 Datanodes

are added, respectively. The simulation is run over 400 weeks (almost 8 years) and up to

240 Datanodes. The simulation is run with and without rebalancing with the exact same

configuration, while measuring request rates, disk usage, and data movement.

Request Rate

We measured the read rate (KB/s) for each disk at any point of time. Figure 2.16

demonstrates the average, standard deviation, maximum and minimum among these values,

for the system with and without rebalancing. The results for write rates were similar and

removed due to lack of space.

The average, which is also the ideal, is a dropping step function. The drops are points

where new Datanodes were added to the cluster. In case of no rebalancing, a majority of the

disks are old read-only disks with almost zero traffic, while a few disks receive most of the

request. Thus, the minimum is close to zero. Also, the maximum and standard deviation

are significant (3x-7x and 1x-2x larger than the average, respectively). When rebalancing is

added, the minimum and maximum move close to the average, and the standard deviation

drops close to zero. We conclude that Ambry’s load balancing is effective.

Disk Usage

We analyzed the disk usage ratio, i.e., used space divided by total space among disks,

with and without rebalancing. As seen in Figure 2.17, without rebalancing, the maximum

stays at the capacity threshold since some disks become and remain full, while the minimum

drops to zero whenever new Datanodes are added. With rebalancing, the maximum and

46

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

R
e

a
d

 R
a

te
 (

K
B

/s
)

Time (weeks)

Average StdDev Max Min

(a) Without rebalancing

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

R
e

a
d

 R
a

te
 (

K
B

/s
)

Time (weeks)

Average StdDev Max Min

(b) With rebalancing

Figure 2.16: Average, standard deviation, maximum and minimum of average read rate
(KB/s) among disks over a 400 week interval. The system is bootstrapping in the first few
weeks, and the results are omitted.

47

Table 2.5: Improvement of range (max-min) and standard deviation of request rates and
disk usage over a 400 week interval. Results are from the system with rebalancing (w/ RB)
and without rebalancing (w/o RB).

Integral over 400 weeks Write Avg Read Avg Disk Usage

Range w/o RB 63,000 340,000 200

Range w/ RB 8,500 52,000 22

Improvement 7.5x 6x 9x

StdDev w/o RB 21,00 112,000 67

StdDev w/ RB 2500 11,000 6.7

Improvement 8x 10x 10x

minimum move closer to the average with temporary drops in the minimum until rebalancing

is completed. Additionally, the standard deviation drops significantly, becoming almost zero

with temporary spikes on Datanode addition points.

Evaluation Over Time

We evaluated the improvement over time by measuring the integral of range (max-min)

and standard deviation for request rate and disk usage over the 400 week interval. As shown

in Table 2.5, rebalancing has a prominent effect improving the range and standard deviation

by 6x-9x and 8x-10x, respectively.

Data Movement

At points where rebalancing is triggered, we measure the minimum data movement

needed to reach an ideal state and the data movement caused by rebalancing. We cal-

culate the minimum data movement by adding the difference between ideal and current disk

usage among all disks above ideal disk usage. This value is a lower bound on the minimum

data movement since data is moved in granularity of partitions, and reaching this ideal case

might not be feasible. As shown in Figure 2.18, the data movement of rebalancing is very

close and always below the minimum. This is because the rebalancing algorithms trades off

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

D
is

k
 U

s
a
g
e
 R

a
ti
o

Time (weeks)

Average StdDev Max Min

(a) Without rebalancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

D
is

k
 U

s
a
g
e
 R

a
ti
o

Time (weeks)

Average StdDev Max Min

(b) With rebalancing

Figure 2.17: Average, standard deviation, maximum and minimum of disk usage ratio (i.e.,
used space divided by total space) over a 400 week interval.

49

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14

D
a
ta

 M
o
v
e
m

e
n
t
(T

B
)

Rebalancing Points

Minimum
Rebalancer

Figure 2.18: Data movement of the rebalancing algorithm at each rebalancing point (i.e.,
whenever new Datanodes are added) over a 400 week interval.

perfect balance (ideal state) for less data movement. Specifically, the rebalancing algorithm

usually does not remove (or add) a partition from a disk if it would go below (or above) the

ideal state, even if this were to cause slight imbalance.

2.7 RELATED WORK

2.7.1 File Systems

The design of Ambry is inspired by log-structure file systems (LFS) [59, 60]. These file

systems are optimized for write throughput by sequentially writing in log-like data structures

and relying on the OS cache for reads. Although these single machine file systems suffer

from fragmentation issues and cleaning overhead, the core ideas are very relevant, especially

since blobs are immutable. The main differences are the skewed data access pattern in our

workload and additional optimization such as segmented indexing and Bloom filters used in

Ambry.

There has been work on handling metadata and small files more efficiently. Some of

50

these techniques include reducing disk seeks [61], using a combination of log-structured file

systems (for metadata and small data) and fast file systems (for large data) [62], and storing

the initial segment of data in the index block [63]. Our system resolves this issue by using

in-memory segmented indexing plus Bloom filters and batching techniques.

2.7.2 Distributed File Systems

Due to the extremely large amount of data and data sharing needs, many distributed file

systems such as NFS [44] and AFS [46], and even more reliable ones handling failures, such as

GFS, HDFS, and Ceph [43,45,47] have emerged. However, all these systems suffer from the

high metadata overhead and additional capabilities (e.g., nested directories, permissions,

etc.) unnecessary for a simple blob store. In many of these systems (e.g., HDFS, GFS,

and NFS) the metadata overhead is magnified by having a separate single metadata server.

This server adds an extra hub in each request, becomes a single point of failure, and limits

scalability beyond a point. Recent research has addressed this problem by either distributing

the metadata [47] or caching it [64]. Although these systems alleviate accessing metadata,

each small object still has a large metadata (usually stored on disk), decreasing the effective

throughput of the system.

2.7.3 Distributed Data Stores

Many key-value stores, such as [24,25,28,50], have been designed to handle a large number

of requests per second. However, these systems cannot handle massively large objects (tens

of MBs to GBs) efficiently, and add unnecessary overhead to provide consistency. Also, some

systems [24, 25, 50] hash data to machines, creating large data movement whenever nodes

are added/deleted.

PNUTS [30] and Spanner [29] are scalable geographically distributed systems, where

PNUTS maintains load balance as well. However, both systems provide more features and

stronger guarantees than needed in a simple immutable blob store.

51

Table 2.6: Placement and data-motion optimization in Ambry

Requirements Placement Data Motion

- geo-distributed across
multiple datacenters
- low-latency upload
and view
- persistent data
- continuous scaling

- partition abstraction for place-
ment
- random placement of objects
- mix of many objects in one par-
tition
- adaptive background load bal-
ancing

- CDN cache and OS cache
- indexing & bloom filters
- chunking
- async replication with journaling
- batching writes
- zero copy reads
- active-active (master free) design
- zero-cost failure detection

2.7.4 Blob Stores

A similar concept to partitions in Ambry has been used in other systems. Haystack

uses logical volumes [48], Twitter’s blob store uses virtual buckets [52], and Petal file system

introduces virtual disks [65]. Ambry is amenable to some optimizations in these systems such

as the additional internal caching in Haystack. However, neither Haystack nor Twitter’s blob

store tackle the problem of load-imbalance. Additionally, Haystack uses synchronous writes

across all replicas impacting efficiency in a geo-distributed setting.

Facebook has also designed f4 [51], a blob store using erasure coding to reduce replication

factor of old data (that has become cold). Despite the novel ideas in this system, which

potentially can be included in Ambry, our main focus is on both new and old data. Oracle’s

Database [66] and Windows Azure Storage (WAS) [67] also store mutable blobs, and WAS

is even optimized for a geo-distributed environment. However, they both provide additional

functionalities such as support for many data types other than blobs, strong consistency

guarantees, and modification to blobs, that are not needed in our use case.

2.8 CONCLUSION

This chapter described Ambry, a distributed storage system designed specifically for stor-

ing large immutable media objects, called blobs. We designed Ambry to serve requests in

a geographically distributed environment of multiple datacenters while maintaining low la-

52

tency and high throughput. Using a decentralized design, rebalancing mechanism, chunking,

and logical blob grouping, we provide load balancing and horizontal scalability to meet the

rapid growth at LinkedIn. Table 2.6 summarizes the requirements and techniques used in

Ambry, and how they are all focused around placement and data-motion.

As part of future work we plan to adaptively change the replication factor of data based on

the popularity, and use erasure coding mechanisms for cold data. We also plan to investigate

using compression mechanisms and its costs and benefits. Additionally, we are working on

reducing the replication footprint using location aware mechanism.

53

CHAPTER 3: SAMZA: STATEFUL STREAM PROCESSING AT SCALE

In this chapter, we present Apache Samza, a distributed system for stateful and fault-

tolerant stream processing. Distributed stream processing systems need to support stateful

processing, recover quickly from failures to resume such processing, and reprocess an entire

data stream quickly. Samza utilizes a partitioned local state along with a low-overhead

background changelog mechanism to minimize data-motion, allowing it to scale to massive

state sizes (hundreds of TB) per application. Recovery from failures is sped up by re-

scheduling the placement based on Host Affinity. In addition to processing infinite streams of

events, Samza supports processing a finite dataset as a stream, from either a streaming source

(e.g., Kafka), a database snapshot (e.g., Databus), or a file system (e.g. HDFS), without

having to change the application code (unlike the popular Lambda-based architectures which

necessitate maintenance of separate code bases for batch and stream path processing).

Samza is currently in use at LinkedIn by hundreds of production applications with more

than 10, 000 containers. Samza is an open-source Apache project adopted by many top-tier

companies (e.g., LinkedIn, Uber, Netflix, TripAdvisor, etc.). Our experiments show that

Samza: a) handles state efficiently, improving latency and throughput by more than 100×

compared to using a remote storage; b) provides recovery time independent of state size; c)

scales performance linearly with number of containers; and d) supports reprocessing of the

data stream quickly and with minimal interference on real-time traffic.

3.1 INTRODUCTION

Many modern applications require processing large amount of data in a real-time fashion.

We expect our websites and mobile apps to be deeply interactive and show us content based

on users’ most recent activities. We expect social networks to show us current global and local

hashtag trends within seconds, ad campaigns to orient ads based on current user activity,

and data from IoT (Internet of Things) to be processed within minutes.

54

Processing these streams of data in a real-time fashion poses some unique challenges.

First, at LinkedIn, as a global social network company, trillions of events are fed to our pro-

duction messaging system (Apache Kafka) and change capture system (Databus) per day.

To process this massive amount of data, we need to be able to use resources efficiently and at

scale, and to handle failures gracefully. Second, it is common for applications to access and

store additional stateful data while processing each received event. At LinkedIn, examples of

state include (depending on the application): user profiles, email digests, aggregate counts,

etc. State computations include aggregations/counts over a window, joining a stream with a

database, etc. Thus, we need mechanisms to: i) handle such state efficiently while maintain-

ing performance (high throughput and low latency), and ii) recover quickly after a failure in

spite of large state [68].

Third, it is common to require a whole database or the full received stream to be repro-

cessed completely. Such reprocessing is triggered by reasons ranging from software bugs to

changes in business logic. This is one of the primary reasons why many companies employ

the Lambda architecture. In a Lambda architecture [69], a streaming framework is used to

process real-time events, and in a parallel “fork”, a batch framework (e.g., Hadoop/Spark

[38,39,70]) is deployed to process the entire dataset (perhaps periodically). Results from the

parallel pipelines are then merged. However, implementing and maintaining two separate

frameworks is hard and error-prone. The logic in each fork evolves over time, and keeping

them in sync involves duplicated and complex manual effort, often with different languages.

Today, there are many popular distributed stream processing systems including Storm,

MillWheel, Heron, Flink [33,35,71,72], etc. These systems either do not support reliable state

(Storm, Heron, S4 [71–73]), or they rely on remote storage (e.g., Millwheel, Trident, Dataflow

[35, 37, 74]) to store state. Using external (remote) storage increases latency, consumes

resources, and can overwhelm the remote storage. A few systems (Flink, Spark [33,36,75]) try

to overcome this issue by using partitioned local stores, along with periodically checkpointing

the full application state (snapshot) for fault tolerance. However, full-state checkpointing is

55

known to be prohibitively expensive, and users in many domains disable it as a result [76].

Some systems like Borealis [77] run multiple copies of the same job, but this requires the

luxury of extra available resources [75].

In this work we present Samza, a distributed stream processing system that supports

stateful processing, and adopts a unified (Lambda-less) design for processing both real-time

as well as batch data using the same dataflow structure. Samza interacts with a change

capture system (e.g., Databus) and a replayable messaging system (e.g., Apache Kafka,

AWS Kinesis, Azure EventHub) [56, 78–80]. Samza incorporates support for fast failure

recovery particularly when stateful operators fail.

The Lambda-less approach is used by Spark and Flink [33, 36]. However, Flink still

requires the programmer to access two APIs for streaming and batch processing. We present

experimental comparisons against Spark. Samza’s unique features are:

• Efficient Support for State: Many applications need to store/access state along

with their processing. For example, to compute the click-through rate of ads, the

application has to keep the number of clicks and views for each ad. Samza splits a job

into parallel tasks and offers high throughput and low latency by maintaining a local

(in-memory or on-disk) state partitioned among tasks, as opposed to using a remote

data store. If the task’s memory is insufficient to store all its state, Samza stores state

on the disk. We couple this with caching mechanisms to provide similar latency to,

and better failure recovery than, a memory-only approach. Finally Samza maintains

a changelog capturing changes to the state, which can be replayed after a failure. We

argue that having a changelog (saving the incremental changes in state) is far more

efficient than full state checkpointing, especially when the state is non-trivial in size.

• Fast Failure Recovery and Job Restart: When a failure occurs or when the job

needs to be explicitly stopped and resumed, Samza is able to restart multiple tasks

in parallel. This keeps recovery time low, and makes it independent of the number of

56

affected tasks. To reduce overhead of rebuilding state at a restarted task, Samza uses

a mechanism called Host Affinity. This helps us reduce the restart time to a constant

value, rather than linearly growing with the state size.

• Reprocessing and Lambda-less Architecture: It is very common to reprocess an

entire stream or database. Common scenarios are rerunning using a different processing

logic or after a bug discovery. Due to the large scale of reprocessing, many companies

use a parallel batch [38] framework, creating duplicate and separate implementations

of the same job (high maintenance overhead). Ideally, reprocessing should be done

within one system (Lambda-less). Further, the reprocessing often needs to be done

alongside processing of streaming data while not interfering with the stream job and

without creating conflicting data. Samza provides a common stream-based API that

allows the same logic to be used for both stream processing and batch reprocessing (if

data is treated as a finite stream). Our architecture reprocesses data without affecting

the processing of real-time events, by: a) temporarily scaling the job, b) throttling

reprocessing, and c) resolving conflicts and stale data from reprocessing.

• Scalability: To handle large data volumes and large numbers of input sources, the

system has to scale horizontally. To achieve this goal, Samza: i) splits the input

source(s) using consistent hashing into partitions, and ii) maps each partition to a

single task. Tasks are identical and independent of each other, with a lightweight

coordinator per job. This enables near-linear scaling with number of containers.

Samza has successfully been in production at LinkedIn for the last 4 years, running

across multiple datacenters with 100s of TB total data. This deployment spans more than

200 applications on over 10, 000 containers processing Trillions of events per day. Samza is

open-source and over 15 companies, including Uber, Netflix and TripAdvisor, rely on it

today [81].

Our experimental results show that Samza handles state efficiently (improving latency

57

Friend request

Birthday/
New job

Recommended
friend

Settings

?
Opened

mail?
Digest into
single mail

Figure 3.1: Email Digestion System (EDS).

and throughput by more than 100× compared to using remote storage), provides parallel

recovery with almost constant time (regardless of the size of the state), scales linearly with

adding more containers, and supports reprocessing data with minimal effect on real-time

traffic, while outperforming batch systems. We experimentally compare against both vari-

ants of our own system (some of which capture other existing systems), and against Spark

and Hadoop in both production and test clusters.

3.2 MOTIVATION

3.2.1 Stateful Processing

Most event processing applications need to access state beyond the mere contents of

the events. In this chapter, we refer to state as any persistent data-structure defined by

the application or used internally in the system. Such state may arise from cumulative or

compact aggregates (computed from the stream), or static settings (e.g., user parameters),

or stream joins. To illustrate, we describe Email Digestion System (EDS), a production

application running at LinkedIn using Samza. EDS controls email delivery to users by

digesting all updates into a single email (Figure 3.1). EDS stores and accesses a large amount

of state across multiple users. For each user, EDS accumulates and aggregates updates over

a large window of time. To know the window size, EDS looks up the user digestion settings

(e.g., every 4 hours) stored in a remote database. Finally, to find the effectiveness of the

58

digested email, it computes if the email was opened in the last couple days, by joining two

streams of sent emails and opened emails over a multi-day window.

State is typically categorized into two types:

• Read-Only state: Applications look up “adjunct” read-only data, perhaps for each

event, to get the necessary information to process it. Examples of such static state

include user digestion settings in EDS or the user profile on each ad view event (accessed

to find the user’s field of expertise).

• Read-Write state: Some state is maintained and updated as the stream events

continue to be processed. Examples of this type of state include: state required for

joins of streams/tables over a windows, aggregations, buffers, and machine learning

models. Some applications of this state include rates/counter over a window of time

(used for monitoring ads or detecting Denial of Service attacks) and guaranteeing

exactly-once semantics by storing all processed message ids to verify uniqueness of

incoming message ids. In all these cases the state needs to be fault-tolerant while

providing non-trivial consistency guarantees such as “read your writes”.

3.2.2 Data Reprocessing

As described earlier, it is common to reprocess a stream or database, either in part or

entirety. For example, at LinkedIn, we use a critical production job to standardize user

profile information in order to offer relevant recommendations and advertisements. This job

uses a machine learning model (derived offline) to standardize incoming profile updates in

real-time. However, the model continually gets updated (even multiple times per week).

Upon each update, all existing user profiles (> 450 millions) have to be reprocessed while

still processing incoming updates in real-time and without creating conflicts.

In other scenarios, only a few hours worth of data has to be reprocessed (instead of a

whole database). For example, during an application upgrade, a software bug may come up.

59

With proper monitoring, the bug will most likely be detected within minutes or hours. The

need after that is to revert the application (or fix the bug), rewind the input stream, and

reprocess the data since the upgrade.

3.2.3 Application Summary

We summarize 9 major and diverse stream applications built using Samza that are cur-

rently running in LinkedIn’s production environments across multiple datacenters, in Table

3.1. The location of the application is determined by the data source, varying from a single

cluster to all clusters.

They are shown in Table 3.1. These are gathered from 10 YARN clusters with houndreds

of nodes and 110 TB of memory, spread across multiple geo-distributed datacenters 1.

There is a wide variety amongst applications with a diverse combination of joins, aggre-

gations, filters to even complex machine learning models. The applications studied are in

order:

• EDS : Digesting updates into one email. State is used in multiple phases: updates are

aggregated, user preference for digestion is looked up, and the stream of sent emails

and opened emails are joined.

• Call graph: Generating the graph of the route a service call traverses. For each service

call, a graph is incrementally generated (as the state) by aggregated the individual

routes the call has traversed.

• Inception: Extracting exception information from error logs. This is a stateless filtering

of the incoming data.

• Exception Tracing : Enriching exceptions with the exact source (machine) of the excep-

tion. This is done by joining the input stream with the table of source informations.

1Not all of the cluster capacity was used by the studied applications and other applications were also
running.

60

T
ab

le
3.

1:
A

p
p
li
ca

ti
on

s
ru

n
n
in

g
in

L
in

ke
d
In

’s
p
ro

d
u
ct

io
n

ac
ro

ss
m

u
lt

ip
le

d
at

ac
en

te
rs

.
S
ta

te
si

ze
ra

n
ge

s
fr

om
to

10
s

of
G

B
to

10
0s

of
T

B
s

(a
ct

u
al

si
ze

s
n
ot

sh
ow

n
d
u
e

to
co

n
fi
d
en

ti
al

it
y
).

M
ax

va
lu

es
sh

ow
n

in
b

ol
d
.

N
am

e
D

efi
n
it

io
n

C
on

ta
in

er
s

T
as

k
s

In
p
u
ts

T
h
ro

u
gh

p
u
t

m
sg

/s
S
ta

te
ty

p
e

E
D

S
D

ig
es

ti
n
g

u
p

d
at

es
in

to
on

e
em

ai
l

(a
gg

re
ga

-
ti

on
,

lo
ok

-u
p
,

an
d

jo
in

).
35

0
25

00
14

40
K

on
-d

is
k

C
al

l
gr

ap
h

G
en

er
at

in
g

th
e

gr
ap

h
of

th
e

ro
u
te

a
se

rv
ic

e
ca

ll
tr

av
er

se
s

(a
gg

re
ga

ti
on

).
15

0
9
5
0
0

62
0

1
M

il
li

o
n

in
-m

em

In
ce

p
ti

on
E

x
tr

ac
ti

n
g

ex
ce

p
ti

on
in

fo
rm

at
io

n
fr

om
er

ro
r

lo
gs

(s
ta

te
le

ss
fi
lt

er
).

30
0

30
0

8
8
0

70
0

K
st

at
el

es
s

E
x
ce

p
ti

on
T

ra
c-

in
g

E
n
ri

ch
in

g
ex

ce
p
ti

on
s

w
it

h
th

e
so

u
rc

e
(m

a-
ch

in
e)

of
th

e
ex

ce
p
ti

on
(j

oi
n
).

15
0

45
0

5
15

0
K

in
-m

em

D
at

a
P

op
u
la

ri
ty

C
al

cu
la

ti
n
g

th
e

to
p

k
m

os
t

re
le

va
n
t

ca
te

go
ri

es
of

d
at

a
it

em
s

(j
oi

n
an

d
m

ac
h
in

e
le

ar
n
in

g)
.

70
42

0
9

3.
5

K
on

-d
is

k

D
at

a
E

n
ri

ch
in

g
E

n
ri

ch
in

g
th

e
st

re
am

of
d
at

a
it

em
s

w
it

h
m

or
e

d
et

ai
le

d
in

fo
rm

at
io

n
(j

oi
n
).

35
0

70
0

2
10

0
K

on
-d

is
k

S
it

e
S
p

ee
d

C
om

p
u
ti

n
g

si
te

sp
ee

d
m

et
ri

cs
(e

.g
.,

av
er

ag
e

or
p

er
ce

n
ti

le
s)

fr
om

th
e

st
re

am
of

m
on

it
or

in
g

ev
en

ts
ov

er
a

5-
m

in
u
te

w
in

d
ow

(a
gg

re
ga

ti
on

).

35
0

60
0

2
60

K
in

-m
em

A
/B

te
st

in
g

M
ea

su
ri

n
g

th
e

im
p
ac

t
of

a
n
ew

fe
at

u
re

.
T

h
is

ap
p
li
ca

ti
on

fi
rs

t
ca

te
go

ri
ze

s
in

p
u
t

d
at

a
(b

y
th

ei
r

ta
g)

in
to

n
ew

an
d

ol
d

ve
rs

io
n
s

an
d

th
en

co
m

p
u
te

s
va

ri
ou

s
m

et
ri

cs
fo

r
ea

ch
ca

te
go

ry
(s

p
li
t

an
d

ag
gr

eg
at

e)
.

45
0

90
0

2
10

0
K

in
-m

em

S
ta

n
d
ar

d
iz

at
io

n
(>

15
jo

b
s)

S
ta

n
d
ar

d
iz

in
g

p
ro

fi
le

u
p

d
at

es
u
si

n
g

m
ac

h
in

e
le

ar
n
in

g
m

o
d
el

s.
T

h
is

ap
p
li
ca

ti
on

in
cl

u
d
es

>
15

jo
b
s,

ea
ch

p
ro

ce
ss

in
g

a
d
is

ti
n
ct

fe
at

u
re

s
su

ch
as

ti
tl

e,
ge

n
d
er

,
an

d
co

m
p
an

y
(j

oi
n
,
lo

ok
-

u
p
,

m
ac

h
in

e
le

ar
n
in

g)
.

5
5
0

55
00

3
60

K
in

-m
em

re
m

ot
e

on
-d

is
k

61

• Data Popularity : Calculating the top k most relevant categories of data items. This

involves enriching the data by doing joins and then using machine learning algorithms

to find the top k.

• Data Enriching : Enriching the stream of data items with more detailed information

by joining the stream with other tables.

• Site Speed : Computing site speed metrics (such as average and percentiles) from the

stream of monitoring events over a 5-minute window. This involves multiple aggrega-

tions for the various metrics gathered.

• A/B testing : Measuring the impact of a new feature. This application first categorizes

input data (by their tag) into new and old versions by splitting the input stream.

Then, for each category various metrics are computed using aggregations.

• Standardization: Standardizing profile updates using machine learning models. This

application includes > 15 jobs, each focusing on distinct features, such as title, gender,

and company. Each job has a unique machine learning model, and in some jobs joins

and data enriching is also used.

These applications exhibit a wide diversity along several angles: 1) Scale: throughput

(input messages processed per second) and the number of containers, tasks, and inputs; 2)

State handled : size and type of state; and 3) Lifetime: how long the job has been running.

Scale: The scale of applications varies widely based on the computational need of the

application, from 70 containers to more than 500 containers. The higher scale is either due to

higher throughput requirements (e.g., Inception) or computation load per event (e.g., EDS

and Standardization). Samza supports various input source types (Kafka, Databus, Kinesis,

etc.) as well as many input streams. Our applications range from 2 inputs to roughly 900

input streams with > 27, 000 total partitions. For example, Inception processes 880 input

streams (capturing exceptions) from multiple applications.

62

The number of tasks per container also varies significantly from 1 task per container

(Inception) to ≈65 tasks per container (Call graph), with an average value of 10 tasks.

A higher task per container ratio provides more flexibility when scaling out/in which is a

positive factor for stateful jobs.

State: Applications range widely from stateless jobs (e.g., filtering done by Inception)

to ones using a variety of different stores, ranging from fast in-memory stores to on-disk

local stores with higher capacity (100s of TB vs. a few TBs) and remote stores with faster

failure recovery. The type/size of the store is determined based on application requirements

on performance, capacity, and failure recovery.

Lifetime: At LinkedIn, the number of production applications built using Samza has

been growing rapidly, with a tenfold growth in the past 2 years (from 20 to 200). While

we have focused on only the most mature applications here, newer applications continue to

emerge.

3.3 SYSTEM OVERVIEW

In this section we present our end to end processing pipeline, Samza’s high-level archi-

tecture, and how jobs are handled.

3.3.1 Processing Pipeline

Our stream processing pipeline works as a feedback loop (Figure 3.2). It receives events

and updates from the service tier, processes them, and updates the service tier in return.

This is a common pattern adopted by many companies.

The service tier (top of Figure 3.2, e.g., the website and mobile app, where clients interact)

generates two main types of data that need to be processed. First, more than trillions of

events are generated per day. Use cases vary widely from capturing interactions with the

service tier (e.g., viewed ads, and shared articles) to background monitoring and logging

63

Change
Capture

Pub-Sub
System

StreamZ Job

Data Base

StreamZ Job

Pub-Sub
System

Samza Job

events

updates

updates

Data Base

output stream(s)

input stream(s)

Service Tier (e.g., website)

results/updates
In

ge
st

io
n

Pr
oc

es
si

ng
Se

rv
in

g

Figure 3.2: Stream processing pipeline at LinkedIn.

(e.g., site latency, exceptions and call tracing). Additionally, an often-overlooked source of

data are updates occurring on databases (both SQL and NoSQL). Our databases have a

transaction log capturing the stream of updates. For instance, every time a user changes

their profile, several downstream applications need to know this and react to it.

At the first phase in Figure 3.2, called the Ingestion layer, these stream of events and

updates are ingested into fault-tolerant and replayable messaging systems. We use Apache

Kafka [56], a large-scale publish-subscribe system (widely adopted by > 80 other companies

[82]), and Databus [80], a database change capture system, as our messaging system for

events and updates, respectively. Both these systems have the ability to replay streams to

multiple subscribers (or applications), from any offset per subscriber. Databus also supports

streaming a whole database from a snapshot.

64

Pr
of

ile

up
da

te
s

Split

Job
exctr.

Skill
exctr.

Samza Job - Trending tags

Tr
en

di
ng

ta

gsMerge

skills

Stream

jobs Stream

tags

tags
tags

TopK

tag
count

count

Count

Windowed

Figure 3.3: Example Samza job to find trending tags.

In the next phase, called the Processing layer, these multiple streams of events and

updates are fed to one or many Samza jobs. Samza acts as our core processing framework,

processing input and generating output in real-time. Finally, in the Serving layer, results of

the processing layer (e.g., connection recommendations and suggested feeds), are persisted

to an external database or a pub-sub system (e.g., Kafka). Results are also returned to the

service tier to update the services accordingly.

3.3.2 Processing Layer Design

A Samza job is an intact stage of computation: one or many input streams are fed to

the job; various processing–from simple operations (e.g., filter, join, and aggregation) to

complex machine learning algorithms–are performed on the input; and one or many new

output streams are generated.

Logical Representation

Samza represents jobs as a directed graph of operators (vertices) connected by streams

of data (edges). Figure 3.3 shows an example Samza job consuming a stream of user profile

updates, splitting the stream into skill and job updates, extracting tags, and computing the

top k trending tags (we use this as a running example in our discussion).

A stream is an infinite sequence of messages, each in the form of a (key, value) pair,

65

Table 3.2: Operators supported in Samza.

Type Options Definition

1:1

map applying a defined function on each message.

filter filtering messages based on a function.

window splitting a stream into windows and aggregating elements in
the window.

partition repartitioning a stream on a different key.

m:1
join joining ≥ 2 streams into one stream based on a given function

merge merging ≥ 2 two streams into one stream.

1:m user-defined user-defined split or replication of a stream into ≥ 2 streams.
This is achieved by allowing multiple operators consume the
same stream.

flowing through the system. A stream is internally divided into multiple partitions, based

on a given entry. There are three types of streams: 1) input streams that enter the job,

without a source operator (e.g., Profile updates); 2) output streams that exit the job, without

a destination operator (e.g., Trending tags); and 3) intermediate streams that connect and

carry messages between two operators (e.g., skills, jobs, tags and counts).

An operator is a transformation of one or many streams to another stream(s). Based on

the number of input and output streams, Samza supports three types of operators: a) 1:1

operators transforming one stream to another (e.g., Count), b) m:1 operators transforming

many streams to one (e.g., Merge), and c) 1:m operators transforming one stream to many

(e.g., Split), as shown in Table 3.2.

System API: The API of Samza is based on Java 8 Stream package [83] because of its

ease of programming and functional programming capabilities. Listing 3.1 demonstrates the

sample code for the Trending Tags job (Figure 3.3).

The basic 1:1 operators are: a) map: applying a user-defined function on each message

(e.g., SkillTagExtractor extracting tags using a machine learning model or MyCounter

updating a local store); b) filter: comparing each message against a filter condition (e.g.,

66

Listing 3.1: Sample API – Trending Tags Job.

public void create(StreamGraph graph , Config conf) {

// initialize the graph

graph = StreamGraph.fromConfig(conf);

MsgStream <> updates = graph.createInStream ();

OutputStream <> topTags = graph.createOutStream ();

// create and connect operators

MsgStream skillTags = updates.filter(SkillFilter f_s)

.map(SkillTagExtractor e_s);

MsgStream JobTags = updates.filter(JobFilter f_j)

.map(JobTagExtractor e_j);

skillTags.merge(jobTags).map(MyCounter)

.window (10, TopKFinder).sendto(topTags);

//10 sec window

}

class MyCounter implements Map <In, Out >{

//state definition

Store <String , int > counts = new Store();

public Out apply (In msg){

int cur = counts.get(msg.id) + 1;

counts.put(msg.id , cur);

return new Out(msg.id, cur)

}

}

SkillFilter); c) window: partitioning a stream into windows and applying a user-defined

function on the window (e.g., TopKFinder over 10 s windows); and d) partition: repar-

titioning and shuffling a stream on a different key. The main m:1 operators are: e) join:

joining two streams on a user-defined condition, and f) merge: merging two streams into

one (e.g., merging skillTags and jobTags). Finally, the 1:m operators are defined by feed-

ing the same stream into different operators (e.g., feeding update stream into two different

filters).

The combination of diverse operator types and support for arbitrary user-defined func-

tions enables handling a wide range of applications. For example, to perform aggregation

67

Resource Manager (e.g., Yarn, Mesos, etc.)

Coordinator

Container 1

Task 1 Task 5 ...
Container k

Task 2

Sa
m

za
 Jo

b

Input Stream 1

...

Output
Stream 1

Output
Stream j ...

P1 P2 Pp

...
...

Input
Stream i

Figure 3.4: The internal architecture of a job.

(1:1 operator), depending on whether to be done over an entire stream or a window of data,

a single aggregation logic (e.g., count) can be used in a map or window operator, respectively.

Physical Deployment

Internally, as depicted in Figure 3.4, a job is divided into multiple parallel, independent,

and identical tasks, and an input stream is divided into partitions (e.g., {P1, ..., Pp}). Each

task executes the identical logic, but on its own input partition (a data parallelism approach).

Each task runs the entire graph of operators. For each incoming message, the task flows the

message through the graph (executing operators on the message), until an operator with no

output or the final output stream is reached.

Most intermediate stream edges stay local to the task, i.e., they do not cross the task

boundary. This keeps most communications local and minimizes network I/O. The only ex-

ception is the partition operator, where messages are redistributed across all tasks based

68

on the partitioning logic. For non-local streams and the job’s input and output streams,

Samza utilizes a fault-tolerant (no message loss) and replayable (with large buffering ca-

pabilities) communication mechanism. At LinkedIn, we mainly use Kafka, although other

communications mechanism supporting partitioning, e.g., Kinesis or Azure EventHub [78,79]

can be used instead.

By employing replayable communication with large buffering capabilities, Samza can

temporarily overcome congestion. Lagging messages are buffered without impacting up-

stream jobs, and replayed with the pace of the slow job. This is particularly important at

non-local streams with high potential of creating congestion. Although this approach does

not fully resolve the issue, it gives enough time for a temporary spike to pass, or to scale-out

a slow job.

We leverage the partitioning already performed by the input streams in order to split

jobs into tasks. The number of partitions of the input streams (configured by the application

developer) indicates the number of tasks. For a single stream, each partition is mapped to a

single task. However, partitions of different streams (e.g., partition 1 stream A and partition

1 stream B) can be mapped to the same task (used for joining two streams). A higher number

of tasks provides more parallelism and finer granularity when scaling. However, too many

tasks can create excessive overhead.

Resource Allocation: Tasks are grouped together into containers using a round-robin,

random, or user-defined strategy. The number of threads is configurable, ranging from one

per container up to one per task2. The spectrum of choices defined by these extremes

also defines a trade-off between ease of programming (with no race conditions in a single-

threaded model) and performance (with potentially higher throughput by exploiting more

parallelism).

The application developer configures the number and capacity of containers, which de-

2Within a tasks users can implement multi-threaded logic.

69

fines the amount of resources assigned to a job3. Samza offloads container allocation and

placement to a separate Resource Manager layer. This layer manages the available resources

in cluster by handling: resource allocation, monitoring, failure detection, and failure recovery

(by restarting or reallocation). This layered and modular design provides pluggability and

flexibility. Currently, we use Apache YARN [22], one of the most popular resource managers,

in our pipeline. Samza is also available as standalone Samza, an embeddable client library

allowing applications to be hosted in any environment.

Coordinator: Each job has a lightweight Coordinator managing and tracking the job.

The Coordinator maintains several pieces of metadata pertinent to the job including: i) job

configuration (such as the number of containers and input sources); ii) placements (mapping

of containers to machines, tasks to containers, and input partitions to tasks). When using

YARN, the coordinator is part of YARN’s Application Master, and when using standalone

Samza, the coordinator uses Zookeeper to elect a singleton leader.

3.4 SYSTEM DESIGN

In this section we discuss Samza’s goal (Section 1), existing ways to address it, and key

design techniques in Samza.

3.4.1 Efficient Access to State

Several applications (Section 3.2.1) access/store large amou/nts of state along with pro-

cessing incoming events. Some streaming engines have tackled this problem by using a

reliable external remote store [35, 37], e.g., MillWheel persists data in Bigtable [28]. This

remote store has to independently handle fault-tolerance (by replicating data) while still

providing some notion of consistency (the weakest requirement is usually read-your-writes

consistency per task).

3Configuring the optimal number of containers is a challenging problem, especially in the presence of unpredictable workload
changes [84]. As future work, we are working on dynamically and adaptively scaling the number of containers (based on the
job’s load and requirements).

70

While storing state in an external file system outsources the responsibility of fault-

tolerance, this approach is not efficient. It consumes network and CPU resources, increases

average and tail latency, and limits throughput. It may also overwhelm the remote store (e.g.,

in presence of spikes), negatively impacting other applications using the shared store. When

a single input message generates multiple remote requests, this is further amplified. For ex-

ample, Millwheel and Trident provide exactly-once semantics by storing processed message

keys (one write per message) along with verifying that incoming messages are unique (one

read per message).

Another approach is to keep data local and, for fault-tolerance, use periodic checkpointing,

i.e., a snapshot of the entire state is periodically stored in a persistent storage [33, 36, 75].

However, full state checkpointing in general slows down the application. It is particularly

expensive when state is large, such as 100s of TB (Section 3.5); users tend to disable full

state checkpointing for even smaller state sizes [76].

State in Samza

Samza moves the state from a remote store to instead being local to tasks – the task’s

local store (memory and disk) is used to store that task’s state. This is particularly feasible

in Samza with independent tasks (Figure 3.5).

Samza supports both in-memory and on-disk stores as options to trade off performance,

failure recovery, and capacity. The in-memory approach is the fastest, especially for appli-

cations with random access (poor data locality). The on-disk store can handle state that is

orders of magnitude larger while reducing failure recovery time. For our on-disk store we

use RocksDB, a high-performance and low-latency single machine storage, widely used [85].

Other embeddable stores, e.g., LevelDB and LMDB, can be used as well.

Samza further improves on-disk stores by leveraging memory as a 3-layer cache. At the

deepest layer, each RocksDB instance caches the most popular items using a least recently

used (LRU) mechanism. To mitigate the deserialization cost of RocksDB, Samza provides

71

X = 5
W = 30

Task 1

...

Y = 40Pa
rti

tio
n

1

Pa
rti

tio
n
k

...

C
ha

ng
el

og

Local DB
X = 5

X = 10

X = 10

Coordinator
Task k

Local DB

Output
Stream 1 ... Output

Stream j

Input
Stream 1 ... Input

Stream i

X = 10

Latest
Changelog

offset

Figure 3.5: Layout of local state in Samza, and how fault-tolerance is provided.

a caching layer of deserialized data in front of RocksDB. Finally, we rely on OS caches to

keep the frequently accessed pages around (similar to [13]). Our experiments show that for

applications with good-locality workloads, caching mechanisms ensure on-disk stores perform

close to in-memory stores. For random access workloads, on-disk still achieves acceptable

performance.

In most cases, state is partitioned across tasks using the same partitioning function and

key as used for the input stream. Hash or range partitioning can be used. For instance, in a

word-count job, a task is assigned to process words in a specified range (e.g., words starting

with [a− g]) and stores state for the same range (e.g., counts of words starting with [a− g]).

Joins, aggregations, metric computation (count/rates), are all supported in this manner.

For applications that absolutely need to use a remote store, Samza supports asynchronous

processing of remote requests for efficiency and concurrency. When using asynchronous pro-

cessing, Samza handles out of order event processing while ensuring at-least-once guarantees

(even in the event of failures). This may be needed if the input partitioning is different from

the state partitioning. In a job enriching place-of-birth updates with country information,

72

the input is a stream of profile updates (key = userid) while the store is keyed by country

(key = countryid). In such cases, if the state is small (tens of GB), Samza can broadcast

the state to all tasks and store it locally, otherwise, Samza uses a remote store along with

caching (for performance). Another use case is when tasks need to share state, or state

needs to be queried from outside the job, where a remote store satisfying the consistency

requirements of the job is used.

Although local state provides better performance, it comes at the cost of lower flexibility

and losing independence of state from computation. This brings up major challenges includ-

ing: what if a failure occurs?, how to recover from failures with low overhead?, and How to

scale jobs out/in?. These challenges are addressed in the following sections.

Fault-Tolerance

Using local state, requires solving a main challenge that arises out of it: how to provide

efficient fault-tolerance? Samza equips each task with a changelog that captures all updates

done on the local store (Figure 3.5). A key feature of the changelog is that it is only

capturing incremental changes rather than the entire state. The changelog is an append-

only log maintained outside of the job architecture. Samza stores the changelog in Kafka,

enabling fast and easy replays in case of a failure, although, any other durable, replayable

and ordered messaging system can be used.

For efficiency, the changelog is kept out of the hot path of computation. Updates are

batched and periodically sent to Kafka in the background using the spare network band-

width. After successfully writing a batch of updates, the latest offset–indicating the latest

successfully processed input message–is persisted in the Coordinator (Figure 3.5). After a

failure, state is rebuilt by replaying the changelog, then, all messages after the latest offset

are reprocessed.

Moreover, to reduce changelog overheads and prevent an indefinitely growing changelog,

Samza utilizes Kafka’s compaction features. Compaction retains the latest value for each

73

key by removing duplicate updates. Compaction is performed in the background and outside

the hot path. Compaction is used in two cases: 1) compacting the batch of updates sent to

the changelog (reducing the network overhead); 2) compacting the changelog itself (reducing

storage overhead). Right after compaction, the changelog is no larger than a snapshot of

the task’s most critical state.

It is well-known that providing exactly-once semantics is either slow or overloads the

remote file system [35]. Samza guarantees at-least-once processing, preferring performance

over consistency. In practice, we observe that at-least-once is sufficient for our applications

requirements. For a few cases requiring exactly-once, it is implemented by the application

(with low overhead) by leveraging local state.

The changelog approach in Samza provides a read-your-writes consistency level on a

per task basis. Without failures, data is stored locally on single replica, straightforwardly

providing read-your-writes consistency. In presence of a failure, processing and state are

rolled back to the point of time where consistency is conserved, i.e., the latest persisted offset,

wherein all updates from processed messages up to the latest offset are reliably reflected in

the state.

The changelog in Samza adds less than 5% performance overhead. An append-only log

has been measured to be far more efficient (2 million op/s with 3 machines in Kafka [86])

compared to accessing a remote store (at most 100K op/s with 3 machines [87,88]).

Fast state recovery

After a failure, a job or a portion of it needs to be restarted. Failures may include

node, container, or disk failures. Restart may also be warranted upon preventive mainte-

nance (either stop-the-world or one container at a time), and configuration updates (due to

misconfiguration or workload changes).

Replaying the changelog (even compacted) can still introduce excessive overhead and long

pauses, e.g., with 100s of TBs of state. This will be especially pronounced when the changelog

74

is accessed remotely. To mitigate this, Samza uses a fast state recovery mechanism called

Host Affinity (HAff). The key idea in HAff is to leverage the state already stored on disk (in

RocksDB) by preferring to place a restarting task on the same physical machine where it was

running prior to the failure (stored in the Coordinator). This is a best-effort mechanism, and

will continually try to optimize placement, even in presence of repeated failures. However,

HAff is not effective in case of permanent machine failures, where replaying the changelog is

used instead.

To make HAff feasible, Samza stores state in a known directory (in the native file system)

outside of the container namespace. This allows state to live independent of the application

lifecycle. A garbage collection agent runs in the background, removing state of permanently

deleted applications. Since the underlying system cannot distinguish between stopped and

deleted applications, we rely on the application developer to manually mark applications as

deleted.

In production, we found that HAff is effective in over 85% of restart cases. By using HAff

in our large stateful applications (≈ 100 of TBs of state), we were able to reduce recovery

time by 60× (from 30 minutes to 30 seconds).

3.4.2 Lambda-less

Inevitable software bugs and changes along with inaccuracies (late or out-of-order ar-

rivals) can require parts (or even a whole) stream to be reprocessed. To mitigate this issue,

many companies [89] utilize a Lambda architecture, wherein data is dispatched in a parallel

“fork” to both an online stream and offline batch path (e.g., Hadoop or Spark), as shown

in Figure 3.6). The stream path processes incoming data in real-time (latency is first-class)

while the batch path acts as source-of-truth, periodically generating batch views of accurate

results (accuracy is first-class). Final results are computed by merging stream and refined

batch views [69]. To reprocess data it is sent via the batch path. This separation allows

data to be reprocessed completely via the batch path (if needed).

75

Merge
Stream path

Stream view Stream view

Batch path Serving Layer

...

Ground truth Batch view

...
updates

updatesSe
rv

ic
e

Ti
er

Figure 3.6: Lambda architecture.

However, the Lambda architecture comes at a high management cost, requiring duplicate

development of stream and batch logic and code for the same application, and keeping these

logics in sync as the application evolves over time. The Lambda approach also consumes

double resources (two systems need to be running for both stream and batch processing).

In the batch path inaccuracies could still occur–there can be late arrivals at the beginning,

and missing data at the end of the batch interval.

Samza instead adopts a unified model supporting both stream and batch. The main

challenges are: 1) to process late events, and 2) to reprocess a stream or database without

impacting incoming messages or pressuring the database/service. 3) to support an easy-to-

use API (Section 3.3.2) readily available in batch systems [36,41,42].

Unified Model: Similar to [74,90], Samza treats batch data as a finite stream of data, with a

special token indicating the end of the stream. Application logic is developed and maintained

in one place using a unified API. A single application can switch between real-time traffic,

batch data from HDFS (integrated with Samza), or a database snapshot. Depending on the

input source fed to the application, stream of incoming messages or old batched data, the

job will become stream or batch job.

Processing Late Events: Samza employs a reactive approach, i.e., processing and fixing

previous results when late or out-of-order results arrive (this bears similarities to Millwheel

[35]). To avoid reprocessing the entire stream, the input is split into windows. Upon pro-

76

cessing a late message, the impacted windows are found, rolled back, and recomputed [74].

State management is a key element in late event handling. Generally, the whole window

of messages should be stored (e.g., a join operation). For some operations, storage can be

optimized where a compact final “result” is available (e.g., for a counter or aggregations).

Currently, the application is in charge of implementing the late arrival logic 4. However,

the windowing functionality along with the efficient state handling make Samza an perfect

fit for this I/O intensive feature.

Reprocessing: To reprocess an entire stream or database (Section 3.2.2), Samza leverages:

a) Kafka’s replaying capability to reprocess a stream, and b) Databus’ bootstrapping capa-

bility to reprocess a database. During bootstrapping, Databus generates a stream from a

database snapshot (without impacting the database service) followed by the stream of new

updates after the snapshot.

To perform reprocessing, Samza simply switches between different inputs: real-time traf-

fic, replayed stream, or bootstrap stream, in single intact application. Reprocessing can be

done in two modes: 1) blocking where real-time computation blocks until all reprocessing is

complete, or 2) non-blocking where reprocessing is done in parallel with real-time processing.

Typically, blocking reprocessing is used with small datasets, e.g., rolling-back latest upgrade

due to a bug, while non-blocking processing is used with massive datasets, e.g., business logic

change requiring reprocessing of whole database. In non-blocking reprocessing, Samza min-

imizes the impact on the real-time processing via: i) throttling reprocessing, ii) temporary

job scale out.

Late events may create conflicts. A merge job is used to resolve conflicts (between the

reprocessing and real-time stream) and prioritize the real-time results. This is developer

specified logic. For instance, in the Standardization job, the user may change the profile,

pnew, while the reprocessing will also process the user’s old profile, pold. If reprocessing of

pold occurs after processing pnew, it can override the results of the new profile. Thus, a merge

4As future work, we are adding late event handling as a built-in support in Samza.

77

job is needed to merge both updates and prioritize the results of pnew.

Although there is no technical size limit to what you can reprocess in a streaming system

like Samza, there comes a point where you might need thousands of machines to do the

reprocessing in a reasonable amount of time, e.g. a dataset which is hundreds of terabytes or

more. At LinkedIn, such datasets are reprocessed only in our Hadoop grids. This separation

of clusters avoids network saturation and other DOS triggers in our online clusters.

3.4.3 Scalable Design

Samza provides scalability via a decentralized design, maximizing independence among

its components. These design principals have helped Samzato scale in multiple fronts:

1. Scaling resources: As discussed in Section 3.3.2, a job is split into independent and

identical tasks (with input/state partitioning). Then, independently tasks are allocated

on containers. This decoupling allows tasks to be flexibly scheduled and migrated if

necessary. The system easily scales by spreading tasks across a larger number of

containers. Based on our result, we scale almost linearly with adding more containers.

2. Scaling state: Samza scales to a massive amount of state, by leveraging independent

partitioned local stores. State can easily scale by spreading the local stores across more

machines (or containers). Also, state recovery is done in parallel across tasks and is

not impacted by the number of failed containers.

3. Scaling input sources: Samza treats each input stream autonomously from other in-

puts. This enables scaling to many inputs, e.g., the Inception application (Table 3.1)

processes exceptions from more than 850 different streams sources. Due to its mod-

ular design, Samza works with a variety of systems including: Databus, DynamoDB

Streams, Kinesis, ZeroMQ and Mongo DB [56,79,80,91–93], and this set is continuously

growing.

78

Table 3.3: Main parameters of data generation in each approach, and the range of values
studied.

Approach Parameter Definition Range

Checkpoint
interval time between two consecutive check-

points.
10 min - 90 min

state size total size of state in Bytes 100 GB - 100 TB

Changelog
change rate rate of entry changes in the state

(msg/s). 10 K - 10 M

entry size size of each entry of the state in Bytes 10 B - 1 KB

4. Scaling the number of jobs: Samza utilizes a decentralized design with no system-

wide master. Instead, each job has a lightweight Coordinator managing it. Also, jobs

maintain their independence from each other, and each job is placed on its own set of

containers. This enables Samza to scale to large numbers of jobs. We have seen a 10×

growth in the number of applications over the past 2 years.

3.5 CHECKPOINTING VS. CHANGELOG

To provide fault-tolerance, Samza uses a changelog capturing changes to the state in

the background. Another popular approach is full state checkpointing, where periodically

a snapshot of the entire state is taken and stored in an external storage [33, 36, 75, 94].

Checkpointing can be either synchronous (pause, checkpoint, and resume) or asynchronous

(in the background)–a more performant but also more complex approach. In both cases, the

overhead of checkpointing can be prohibitive especially for large state sizes.

In this section, we quantitatively compare full-state checkpointing vs. Samza’s changelog

approach, taking into account characteristics of real applications from production.

The average amount of additional data generated (Bytes/s) is the main source of overhead

in both checkpointing and changelog. Table 3.3 summarizes the parameters that affect it,

and thus, the focus of this study.

For checkpointing, data generation depends on checkpointing interval (interval) and

79

size of each checkpoint (state size). The interval trades off checkpointing overhead (less

for larger intervals) and the amount of work needed to be redone in the case of a failure

(more for larger intervals). On the other hand, changelog depends on the rate of changes

(change rate) and the size of each change (entry size). Thus, the average rate of data

generation for these approaches are:

Datacheckpoint =
state size

interval

Datachangelog = change rate× entry size

We define the break-even point, bp, as where Datacheckpoint equals to Datachangelog. For

any change rate value below bp, changelog is the preferred approach, and for any value

above, checkpointing. For various checkpointing configurations (interval and state size)

and entry size values, we measure change rate at break-even point. This is depicted as the

lines in Figure 3.7. For example, for a state size of 100 TB, an interval of 20 minutes, and

entry size of 10 B, bp is ≈ 10 Trillion changes/s. For any change rate below 10 Trillion/s,

changelog would be a better option.

Based on our production application configurations (Section 3.2.3) a change rate of Tril-

lions of changes/s is not realistic. As a pessimistic estimate of the change rate (accounting

for our application growth over the next few years), we use the throughput achieved in our

production applications (Table 3.1) as a proxy for the change rate and multiply it by 10.

This range, is shown by the shaded area in Figure 3.7.

We observe that for large state size values (100 TB), changelog is clearly a better choice

(the shaded area is below the 100 TB lines). A small state size with a large entry size (100

GB - 1 KB, the lowest line in the plot) is also uncommon in production-scale applications,

since the state should compose of only a few entries. For a small state size and a small

entry size (100 GB–10 B, second lowest line in plot), at a change rate of around 10 M

80

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 10 20 30 40 50 60 70 80 90

C
h
a
n
g
e
 r

a
te

 (
1
0
0
0
 m

s
g
/s

)
a
t
b
re

a
k
-e

v
e
n
 p

o
in

t

Checkpoint interval (minutes)

100TB - 10B
100TB - 1KB

100GB - 10B
100GB - 1KB

10M change/s
10K change/s

Figure 3.7: Comparison of checkpointing under various state size (100 TB and 100 GB)
and interval values with changelog under various entry size (10 B and 1 KB) and
change rate values. Shaded region shows 10× typical values from applications (Table 3.1)

change/s, changelog performs worse than checkpointing. To mitigate this issue, Samza uti-

lizes batching along with a compaction mechanism (removing redundant keys) to reduce the

effective change rate. By batching data for a couple of seconds, even with a change rate

of 10 M change/s (given the total state has ≈ 10 Million entries in the 100GB–10B case),

the effective change rate is reduced significantly, keeping changelog efficient and the more

preferable technique.

3.6 EVALUATION

Our evaluation addresses the following questions:

1. How effective is local state, versus alternative options?

2. What is the effect of failures, and how fast is recovery? How much does Host Affinity

help in failure recovery?

3. How fast is reprocessing, especially compared to existing systems?

81

4. How does Samza scale?

In doing so, we compare Samza with existing systems including Spark and Hadoop, as

well as against other alternative Samza-like designs.

3.6.1 Experimental Setup

We evaluated the system using both production jobs and microbenchmarks, subject-

ing the system to much higher stress than production workloads. Our experiments were

performed on both small (6 nodes) and large (500 nodes) production clusters at LinkedIn.

Microbenchmarks were performed on a test YARN and Kafka cluster. We used a 6 node

YARN cluster, with 4 Resource Managers (RMs) and 2 Node Managers (NMs). Each NM

was a high-end machine with 64GB RAM, 24 core CPUs, a 1.6 TB SSD, 2 1TB HDDs, and

a full-duplex 1 Gbps Ethernet network. We also used an 8 node Kafka cluster of similar

machines. We tested the system using two applications: a ReadWrite and ReadOnly job.

The ReadWrite job contains a map of ids to counters. For each input message, an

embedded id is extracted, current count for id is read, the counter is incremented, and then

written back. This job mimics the trend in real-world aggregation and metrics collecting

jobs, e.g., EDS, Call Graph, Site Speed, and A/B Testing in Table 3.1.

The ReadOnly job consists of a join between a database and an input stream. For each

message, an embedded id is extracted, value val for id is read from a database, val is joined

with (a fraction of) the input message, and outputted as a new message. This follows the

pattern used in many real-world enriching jobs, e.g., Data Enriching (enriching a stream

of data with additional details) and Exception Tracing (enriching exceptions with source

information).

We use a single input stream with infinite tuples (id, padding). id is a randomly generated

number in the range [1, 10k] and padding is a randomly generated string of size m. We use k

and m as tuning knobs of the workload. k trades off state size for locality–a larger k creates

82

more entries (larger state) while decreasing the chance of reading the same data twice. m

is used to tune CPU/network usage. Since the serialization/deserialization overhead and

header overhead per message is almost constant, m tunes the ratio of overhead to Bytes/s

processed. We chose m such that the system is under stress (CPU and network utilization

≥ 60%). We found 100 and 130 Bytes padding to be the appropriate values for ReadWrite

and ReadOnly, respectively.

Before submitting a job, we pre-populate the input stream, so that no time is spent on

waiting for new data (inter-arrival between messages is 0). Additionally, in ReadOnly case,

we pre-populate the store with random values for all keys.

3.6.2 Effectiveness of Local State

In order to evaluate our design of local state, we compare our choice against other alter-

native designs. The stores we consider are as following:

• in-mem and on-disk : A partitioned in-memory store (our homegrown key-value store)

or on-disk store (Rocks/DB), without any fault-tolerance mechanism. Stateless sys-

tems, such as Storm and Heron, use these type of stores (typically in-mem). Addition-

ally, without considering the checkpoint overhead which depends on the interval and

state size (Section 3.5), systems using checkpointing, e.g., Flink and Spark [33,36,75],

also fall here.

• in-mem + Clog and on-disk + Clog : Samza’s in-mem or on-disk store along with

changelog for fault-tolerance. This a new store developed by Samza.

• on-disk no cache: On-disk with no in-memory caching. This mimics the behavior of

applications with large state and poor data locality (high cache misses).

• remote store: An external remote storage, used in many systems including Millwheel,

Trident, Dataflow [35,37,74].

83

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

in-m
em

in-m
em + C

Log

on-disk

on-disk + C
Log

on-disk no cache

remote D
B

3
0
 K

9
1
 K

M
a
x
 T

h
ro

u
g
h
p
u
t
(r

e
q
/s

)

ReadWrite
ReadOnly

Max-Net ReadOnly
Max-Net ReadWrite

 1

 10

 100

 1000

 10000

 100000

in-m
em

in-m
em + C

Log

on-disk

on-disk + C
Log

on-disk no cache

remote D
B

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

u
 s

e
c
)

Figure 3.8: Comparision of storing state using an in-memory structure, local on-disk
storage, or a remote database, with and without a changelog (CLog). Theses graph show
throughput and latency in a read only and a 50-50 read write workload.

Although our Samza implementation supports all these variants, the default is on-disk +

Clog. This variant performs the best, has large state support (hundreds of TBs), and offers

low cost failure recovery (close to stateless).

To evaluate state, we used ReadWrite and ReadOnly micro-benchmarks. In each test we

continuously added containers until throughput is saturated. Figure 3.8 shows maximum

achieved throughput and average latency for different stores. We computed the theoretical

maximum throughput achievable by the network (Max-Net), i.e., network bandwidth divided

84

by the message size. Since ReadOnly messages are larger than ReadWrite, both maximum

and achieved network throughput are smaller.

In-memory vs. On-disk

As shown in Figure 3.8, in-mem and on-disk stores perform similarly, and both approach

the network maximum (Max-Net). The in-mem and on-disk stores do not handle fault-

tolerance. However, even when we add fault-tolerance using a changelog, the overhead is

negligible.

To measure the effect of caches, we also plot numbers from disabling all internal caches,

including the caching layer provided by Samza and Rocks DB (on-disk no cache). This

reduced throughput by only 50-60%, indicating the caching is not solely responsible for our

performance gains.

We conclude that on-disk state coupled with a caching strategy can achieve the same

performance as using in-mem store, but it also achieves better fault-tolerance and supports

larger state than in-mem (TBs vs tens of GBs).

Local vs. Remote state

We compared using local state (in-mem or on-disk) to remote state. As our remote state

we used Espresso [31], a scalable key-value store widely used in LinkedIn’s production (e.g.,

storing user profiles). We used an additional 5 node cluster (4 data nodes and a router) with

nodes similar to the Kafka cluster. As shown in Figure 3.8, even with additional resources

used for the remote store, latency increases by 3 orders of magnitude (a few µs to a few

ms). This is due to traversing multiple hubs (router, data nodes, replication, and back to

the user) which each takes hundreds of µs.

Throughput is impacted less than latency, and drops by two orders of magnitude (100-

150 ×), since requests are issued in parallel. ReadOnly achieves 3× better throughput than

85

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

in-m
em

in-m
em + C

Log

on-disk

on-disk + C
Log

on-disk no cache

remote D
B

%
 o

f
R

e
s
o
u
rc

e
 U

ti
liz

a
ti
o
n
 p

e
r

N
o
d
e

Network - RW
Network - RO

CPU - RW
CPU - RO

Figure 3.9: Utilization of network (in bound link) and CPU when using in-mem, on-disk
and remote state, with and without a changelog (CLog).

ReadWrite because a) the former issues fewer requests per message (one vs. two), and b)

reads have lower overhead vs. writes (no replication needed).

We expect this large difference between local and remote state to hold beyond Espresso.

Other studies [87,88] show that most popular stores, such as Cassandra, HBase, Voldemort,

MySQL, Couchbase, and Redis [24, 50, 95–98], can only reach tens of 1000s of requests/s

using of 4 nodes. When using local state we perform millions of requests/s.

Resource Utilization

Figure 3.9 measures the resource utilization (CPU, disk, network) for each test. We

elide disk utilization (being < 5% for all except for no-cache case) and outbound network

(following the same pattern as inbound link) due to space.

When using in-mem store or on-disk with caching (with or without changelog), we satu-

rate the network (utilizing ≥ 85%). Note that our benchmarks are configured to stress-test

the system using ≥60% of CPU resources, while in production this value is typically below

20%.

86

Adding changelog has a small impact (≈ 15%) on CPU utilization (additional serialization

and deserialization overhead), and less than 2% effect on network. Similarly, removing the

internal caches (on-disk no cache) causes a spike in CPU usage, though it is processing fewer

messages–this is because of RocksDB’s serialization/deserialization overhead.

The remote DB has a low utilization (< 20%) in all resources, since the job is mostly

idle–waiting for a response from the database. The resources are used inefficiently as well.

For example, using remote store, the amount data transfered over the network for processing

a single message is 5-10× higher than local store.

Latency Tail and Variance

The tail and variance of latency are important factors in many applications. We define

latency as the total time spent in processing a message (event), including time spent in

fetching the message from the input source. Figure 3.10 shows the Cumulative Distribution

Function (CDF) of latencies in all cases. Since Samza fetches messages in batches (50 K

messages in our test), a few messages incur very long latencies causing long tails in the CDF.

However, for the rest, the variance is low and a majority of values are close to the median

(CDF is very close to a vertical line).

3.6.3 Failure Recovery

The main advantage remote store is fast seamless state recovery (with no overhead on

the stream job), a luxury diminished when using local storage: state has be restored locally

before continuing processing. To measure failure recovery overhead when using local state,

we randomly killed a percentage of containers (6% to 50%) in a stateful job. We measured

the recovery time–the time spent between the first failure until all containers are up and

running–both with Host Affinity disabled and enabled (w/ HAff). In Host Affinity, we

used a success rate of 100%, i.e., ratio of containers placed on the same machine as before.

Although this might seem extreme, it is not far from our production success rate (85-90%).

87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

remote DB

on-disk no cache

others

C
D

F

Latency (ns)

in-mem
in-mem + CLog

on-disk

on-disk + CLog
on-disk no cache

remote DB

Figure 3.10: CDF of latency when using local and remote state, with and without a
changelog (CLog).

In production, the main reason for misses are permanent node failures, and being a shared

cluster with other jobs filling the free capacity.

In this experiment we used the ReadWrite workload, 16 8GB containers, on-disk + Clog

store, and an input stream containing all keys in the range [1 − 1012] in order. For each

input message processed a new entry was stored locally and added to the changelog.

As Figure 3.11 shows, without Host Affinity, recovery time increases proportionally with

state size. With Host Affinity recovery time becomes near constant independent of the state

size. In our production jobs, recovery time reduced from 30 minutes to less than 30 seconds

using Host Affinity.

Furthermore, failure recovery time was nearly independent of the percentage of containers

failing. This is because tasks are recovered in parallel. This shows the significance of having

a scalable design that partitions jobs into tasks with little interdependency.

88

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2x107 4x107 6x107 8x107 1x108

R
e

co
ve

ry
 T

im
e

 (
s)

Store Size per Container (Num Entries)

6% Fail
50% Fail

6% Fail - w/ HAff
50% Fail - w/ HAff

Figure 3.11: Failure recovery time using different store sizes with and without Host Affinity
(HAff). The results are with a ReadWrite workload when 6% and 50% of the containers
fail.

3.6.4 Reprocessing

We analyzed the impact of reprocessing in our production jobs. We evaluated the Stan-

dardization job, our most frequently reprocessed job, over a 24 hour period. Standardization

consumes profile updates and using a machine learning model, transforms the update to a

standardized text. After 2 hours, we started reprocessing the entire database of user profiles

(> 450 Million entries). Simultaneously, we scaled-out the job from 8 containers to 24.

Figure 3.12 shows the reprocessing throughput. Reprocessing peaks and remains at

10,000 messages per second (due to our throttling mechanism). After all the data is processed

(≈16 hours), reprocessing throughput drops and starts catching up with the real-time data.

At this point, we stop reprocessing and scale-in the job. Reprocessing time can be reduced,

similar to a batch job, by simply allocating more resources. The combination of scale-out

and throttling mechanisms ensure that reprocessing does not affect real-time processing

performance.

89

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

real time reprocessing

Figure 3.12: Throughput of Standardization job while performing a reprocessing (starting
after 2 hours).

Batch Processing using Samza

We compared Samza’s reprocessing/batch solution with other mainstream batch process-

ing solutions including Spark and Hadoop [38, 39]. Spark offers high similarity of code for

batch and stream processing, thus making it a near-Lambda-less architecture. Hadoop is a

system that might be used modularly inside the Apache Beam architecture.

In this experiment we used Members Per Country (MPC), a real-world batch job running

at LinkedIn, and reimplemented the job in Samza (with HDFS consumer). MPC reads a

snapshot of all user profiles, groups them by country (Map), and then counts the members

in each country (Reduce). We used 450 million profile records stored across 500 files (250

GB of data) in a production YARN cluster (≈ 500 nodes), and single core containers with

4GB RAM.

Figure 3.13 shows Samza has better throughput than Spark and Hadoop5. This is because

it streams data to downstream operators as soon as it becomes available, while Hadoop and

Spark (in batch mode) are limited by the barrier between Map and Reduce phases [99] 6.

5Latencies are higher in Hadoop due to the barrier and Spark due to micro-batching; these are not plotted.
6Samza is also able to exploit more parallelism than the other frameworks, better utilizing CPU cores.

90

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

100
200

500

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of Containers

StreamZ Hadoop Spark

Figure 3.13: Comparison of Samza with other batch processing frameworks in reprocessing
data.

3.6.5 Scalability

Figure 3.14 shows maximum throughput and average latency in Samza as the number of

containers increases (in the ReadWrite workload). Throughput increases linearly, saturating

just beyond 60 containers. The saturation point is very close to the optimum throughput

possible in the network. Latency stays low at first and increases thereafter. This knee of

increase in latency coincides with the throughput saturation, and thus, can be used as an

indicator of when to stop scaling. For maximizing throughput, there is low marginal utility

in scaling beyond the saturation point.

Figure 3.14(c) shows the CDF of the latency. Even with twice more containers than

needed, a majority of messages (> 80%) are processed within a few microseconds, and with

small variance. The tail prolongs when containers are beyond the throughput saturation

point, primarily because more time is spent waiting for the next events than processing

them. We also observe that latencies are higher with more containers (e.g., 128 vs. 32).

This is because the latency is calculated from message fetch time to processing completion.

With more containers, more outlier messages need to be fetched remotely, and this drives

up the average.

91

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 0 20 40 60 80 100 120 140 160 180

M
a

x
 T

h
ro

u
g
h

p
u
t
(r

e
q
/s

)

Num Containers

Measured Max Network

(a) Throughput

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180
A

v
e
ra

g
e
 L

a
te

n
c
y
 (

m
ic

ro
 s

e
c
o
n
d
)

Num Containers

ReadWrite

(b) Latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

C
D

F

Latency (ns)

128-contianers
64-containers

32-containers
1-container

(c) Latency CDF

Figure 3.14: Throughput, average latency and CDF of latency in scalability study adding
containers, under a 50-50 read write workload using local state. The saturation point of
the system is 64 containers.

92

3.7 RELATED WORK

State management: State management varies significantly among stream processing

solutions. Many industrial scale systems, such as Apache Storm, Heron and S4 [71–73] are

built with no support for state. Trident and MillWheel [35, 37] manage state by using a

combination of “hard state” persisted in an external store along with “soft state” stored in

memory as a non-fault-tolerant cache. Thus, they either incur high overhead by relying on

a remote storage or accept the chance of losing data.

There has been some work on partitioning state similar to the idea of local state [33,

36]. StreamCloud [100] discusses elastic and load-balanced state partitioning. However,

partitioning is only supported for specific operators (join and aggregation) and it does not

address fault-tolerance. S-Store [101] proposes transactional state management for stream

data that is a potential add-on to Samza.

Fault-tolerance in local state: Upstream backup recovery [71, 77] successfully restore

processing, but not the state. One approach to add fault-tolerance is by using replication

[77] (as studied in [102]). However, this requires the luxury of extra available resources [75],

and approaches like Sweeping checkpointing [103] do not ameliorate this problem.

Another popular approach is continuous full-state checkpointing of state along with input

replay in presence of failures. Fernandez et al. [75] discuss scale-out state management for

all operators by partitioning state and using checkpoint. Many others [33, 36, 104–106] also

employ checkpointing mechanism to ensure fault-tolerance. The SDG approach [94] enables

asynchronous checkpointing by locking the state, keeping a dirty buffer for incoming changes

during checkpointing, and then applying the dirty buffer on the state. [105] generates a global

snapshot by using a blocking variation of Chandy-Lamport snapshot [107] where it blocks

on on-the-fly messages before generating the snapshot. Instead of blocking, IBM System S

[106] persists checkpoints in the external DBMS (which is slow), and [75] captures pending

asynchronous operations as part of the state (which is complex). The excessive overhead of

93

full-state checkpointing, especially with large state sizes, make these approaches prohibitive.

Sebepou et al. [108] partition state into smaller chunks, with incremental updates. However,

it was only evaluated for aggregation operators, and it is unclear how effective it will be on

user-defined logic.

Unified stream and batch: MapReduce Online [99] has explored processing batch jobs

in an online barrier-free manner, but they do not fully support stream-processing. Liquid

[109] also has a unified integration stack, but still maintains two separate subsystems.

Apache Beam, Dataflow, and Flink [33, 74, 90] have moved toward integrating batch

into stream as a unified environment. Dataflow and Borealis [74, 77] have investigated how

to handle inaccuracies caused by out-of-order messages occurring in stream frameworks.

However, Dataflow relies on a remote store (not handling large state efficiently), and Flink is

not fully unified (separate APIs for batch and stream). Samza can be used modularly inside

Beam which acts as a wrapper API. Besides, Dataflow and Beam incur extra overhead

by not leveraging the inherent partitioning capabilities of systems like Kafka, Kinesis, or

EventHub. Spark Streaming [36] also has a unified environment, however, it processes data

in micro-batches incurring higher processing latency. Also, Flink and Spark Steaming are

not available as a standalone version and lose the deployment flexibility.

Scalability: Scaling to large state necessitates going beyond relying on memory, e.g., by

using disk spilling [110]. This is orthogonal to our approach and could be used as an extra

optimization in Samza. For better scalability, operators need to work with maximum inde-

pendence. Thus, many systems have opted to use reliable, replayable communication mech-

anisms to handle data buffering between operators, e.g., Streamscope and Heron [72, 104].

IBM System S [106, 111] utilizes fault-tolerant replayable communication and distributes

operations into a set of independent component-local operators. These systems deploy a

similar approach to the scalable design in Samza. However, none of them target large state

or reprocessing.

94

Table 3.4: Placement and data-motion optimizations in Samza

Requirements Placement Data Motion

- large state handling
- low-latency processing
- fast failure recovery
- batch as a stream
(lambda-less)
- continuous scaling

- abstracting operations and
placement
- locality-aware task placement
- sticky placement on restart
(Host Affinity)
- scaling at spikes (batch as a
stream)

- locality aware (local) storage
- lazy background replication
- batching updates
- background compaction
- abstracting inputs and data flows
- caching in memory
- throttled processing at spikes
(batch as a stream)

3.8 CONCLUSION

This chapter described Samza, a distributed system that supports stateful processing of

real-time streams, along with reprocessing of entire data streams. Samza recovers quickly

from failures, with recovery time independent of application scale (number of containers). It

can support very large scales of state in spite of limited memory, by combining local on-disk

storage, an efficient changelog, and caching. Table 3.4 summarizes the techniques used for

data placement and data motion in Samza and the requirements they satisfy.

Our experiments showed Samza has higher throughput than existing systems like Spark

and Hadoop. Samza runs both batch and stream processing in a unified way while minimizing

interference between them. We also described several applications that rely on Samza.

Samza’s approach opens up many interesting future directions including: dynamic rebal-

ancing and task re-splitting (changing number of tasks), automatic configuring and scaling

of resources (containers), investigating stragglers (not a major issue so far), and handling

hot vs. cold partitions.

95

CHAPTER 4: STEEL: UNIFIED AND OPTIMIZED EDGE-CLOUD
ENVIRONMENT

In this chapter we discuss Steel, an unified and optimized framework for building edge-

cloud applications. Internet of Things (IoT) applications have seen a phenomenal growth

with estimates of growing to a 25 Billion dollar industry by 2020. With the scale of IoT

application growing and stricter requirements on latency, edge computing has piqued the

interest for such environments. However, the industry is still in its infancy, with no proper

support for applications running the entire edge-cloud environment, and an array of manual

tedious per-application optimizations. In this work, we propose Steel, a unified framework

for developing, deploying, and monitoring applications in the edge-cloud. Steel supports

dynamically adapting and easily moving services back and forth between the edge and cloud.

Steel is extensible where common optimizations (but crucial for the edge) can be built

as pluggable and configurable modules. We have added two very common optimizations:

placement and adaptive communication, to cope with both short and long term changes in

the workload and environment.

Steel is integrated with Azure Cloud services. Based on our evaluation, we reduce the

initial development effort (1.7x–3.5x reduction in lines of config) and support dynamic moves

with minimal changes (∼2 lines of config per move, reducing 95% of the overhead). Our

placement optimizer (added with only 500 lines of code) reduces cost (by up to 40%) and

improves edge resource utilization (by up to 75%), and our communication optimizer reacts

quickly to network or workload changes (within less than a second).

4.1 INTRODUCTION

Internet of Things (IoT) solutions are growing more popular and disruptively in scale.

Gartner Inc. estimates that the number of deployed IoT devices will grow from 5 Billion

in 2015 to 25 Billion in 2020 creating a multi-billion dollar market [112, 113]. This growth

96

has led to many industrial services offering to simplify development and management of IoT

applications, e.g., C3 IoT and IoT frameworks from all major cloud providers [114–117].

Initially, AWS, Azure and Google offered managed solutions based completely in the cloud.

An IoT management service (such as IoT Hub from Azure) securely manages the remote

devices, their configuration, and receives the sensor data. The rest of the processing pipeline

is built using regular cloud services for computation (Azure Function, or Stream Analytics),

communication (Event Hub), and storage (CosmosDB, Blobs).

As the IoT solutions scale up in the number of devices and messages sent, there is greater

need to process data closer to the IoT sensors using the edge. Processing on the edge has

several advantages including: reducing end-to-end latency especially when the application is

actually controlling the devices (e.g., shutting down operations in case of failures), providing

continuation of service despite low connectivity to the cloud, reducing the bandwidth usage,

and reducing monetary cost of using cloud services.

However, the IoT industry is still in its infancy. Building an IoT solution comes with a

lot of challenges and complexities in deployment, monitoring, and optimizing the end-to-end

solution. Even a simple remote monitoring application will consist of several components

on the edge to receive, preprocess, and send the data to the cloud along with services in the

cloud for additional processing, machine learning, publish-subscribe systems, and storage.

Deploying such an application requires a lot of error-prone and complicated scripting. Since

each cloud service has grown organically and independently, there is a great diversity among

them in terms of their cost models, monitoring, API, etc, and this diversity has created

many compatibility constraints across services.

Moreover, naive implementations of IoT applications can often be very inefficient both

in terms of cost and performance. For example, processing all in the cloud a) requires a

lot of bandwidth to send sensor measurements (typically encoded as JSON strings), and b)

becomes expensive for large datasets. Therefore, developers manually optimize the process-

ing pipeline by batching data for upload, compressing data, and determining component

97

Steel

Abstraction (Logical Spec)

Compile Deploy Monitor

Placement Communication …

Fabric

Optimization

Modules

Load

Balancing

Applications

Edge-Cloud Ecosystem

Cost

Model

Performance

Model

Prediction

Model

Analysis

Engine

Figure 4.1: High level architecture of Steel, a middle layer between the applications and
edge-cloud environment.

placements. Making these decisions is non-trivial because the best configuration depends

on the available resources, the workload, and accurate estimations of a new configuration.

Also, companies deploy a wide range of heterogeneous edge devices [118] (from Raspberry Pi

to large servers) and use different connectivity options (optical, WiFi, cellular, or satellite)

further complicating this decision.

We present a system, Steel, that allows users to declaratively describe the IoT appli-

cation, while managing its deployment and monitoring and automatically optimizing it for

performance and cost. As shown in Figure 4.1, Steel acts as a middle layer between the

application and the edge-cloud environment. Steel consists of four main components: 1)

a high level abstraction to describe location agnostic applications, 2) a fabric materializing

and deploying the application, 3) an analysis engine building analysis and prediction models

of the application, and 4) a set of control modules that optimize the performance and cost

of the application in response to changes in workload, resource demands, or failures.

Instead of directly deploying individual modules, in Steel, developers describe their ap-

plication in a logical abstraction. The abstraction defines the source data for the application

98

(e.g., all temperature sensors in building 43), the processing modules (e.g., computing aver-

age temperature on each floor), and how the modules are connected into a directed acyclic

graph (DAG). The IoT Fabric takes the abstraction as an input, adds other necessary com-

ponents (such as data compression and decompression) and deploys the application auto-

matically. The IoT Fabric also monitors all executing components and reports performance

and resource usage metrics.

On top of the fabric, the analysis engine consumes monitoring metrics and builds cost

and performance models across the operations in a application. These models along with a

predicting model are used to answer “what-if” questions.

Then, using the analysis engine, Steel runs several control modules. These modules

monitor the running IoT application and adjust its configuration at runtime in response to

changes in workload and environment. In this work, we focus on placement and commu-

nication optimizations. However, Steel provides a pluggable and extensible framework for

adding other control modules such as a load-balancer.

The main contributions of this work are:

• Steel, an integrated framework for automated compilation, deployment, and moni-

toring of declaratively specified complex IoT applications, across entire edge-cloud

environment

• global optimization of component placement across edge and cloud environments in

response to changes in workload and resource availability based on shadow profiling

and cloud cost prediction,

• adaptive data compression policy that periodically adapts data batching, encoding, and

compression based on available CPU and bandwidth resources and uses efficient JSON

parsing.

We implemented Steel on top of an IoT edge/cloud stack from one of the leading cloud

providers (Azure IoT stack) and demonstrate that we can deploy realistic IoT applications

99

FunctionsDevices

Devices

Devices

DB
Stream

Analytics

Edge

Hub

IoT

Hub
Functions

DB
Stream

Analytics

Edge

Hub
IoT

Hub
Functions

DB
Event

Hub
Functions

Stream

Analytics

IoT

Hub

Edge Cloud

Stream

Analytics
Functions DBDevicesApplication:

filter detect anomaly store

Figure 4.2: Sample anomaly detector IoT application.

from a simple job spec. We evaluate our system with set of 6 diverse real-world production

applications. Based on our results, we reduce the number of lines of config (loc) for the initial

application development by 1.7x–4.8x, and in presence of a change or move, we reduce the

changes to ∼2 loc per move, a >95% reduction. Our placement optimizer (added with only

500 lines of code) reduces cost (by up to 40%) and improves edge resource utilization (by

up to 75%), and our communication optimizer effectively adapts to dramatic changes to

network within less than 1 second.

4.2 MOTIVATION AND BACKGROUND

Steel’s target are large scale enterprise IoT scenarios using the cloud with several sensors

(millions) and edge devices (hundreds). The sensors usually produces data in the form

of time series, i.e., a stream of (time stamp, data point) tuples. These applications have

a common pipeline: measure and send data, process, store and visualize. This pipeline

is typically constructed of multiple cloud services, connected to each other in form of a

directed acyclic graph (DAG). The processing is commonly from a small set of services, for

example, in Azure the typical services are Stream Analytics, Functions, Machine Learning,

and Storage [15,114,119] (equivalents used in Google Cloud Engine [120]). Figure 4.2 shows

100

a simple anomaly detector application built using Azure services. This application reads

sensor data, filters values (Stream Analytics), detects anomalies (Functions), and writes the

results to a database (Document DB).

There data enters the cloud through an entry point service, e.g., IoT Hub in Azure

or AWS Greengrass. This entry point reliably routes the data to the appropriate cloud

service(s). In case of using an edge, data first is sent to communication service on the edge,

e.g, Edge Hub in Azure, which in turn communicates with the cloud. At the edge, for

portability (being able to quickly move services) and isolation across services, it is common

to run each service in a separate container [89,121–124].

For the rest of this chapter, we focus on Azure, one of the leading cloud service providers

in the IoT space. We use Azure IoT hub in the cloud and Azure IoT Edge at the edge.

However, the problems and challenges outlines are a fundamental problem applicable to

other platforms as well.

4.2.1 Challenges

Using the cloud for these enterprise IoT applications is a trending and well-established

option given the many scalable, reliable, and flexible cloud services available. However,

porting these applications to work across this emerging edge-cloud environment brings up a

number of new challenges. Bellow we mention a few of the major ones.

Dynamic Environment at the Edge

Edges also have limited resources (for economic and practical reasons) while workloads

are dynamic. Thus, the only cost-effective, peak-tolerant option is to adaptively balance and

move services. Also, edges are faulty, with more sources of failure (e.g., a power outage), and

longer recovery procedures, necessitating dynamic movement and replication for continued

availability. Furthermore, the connection from the edge is poor, costly, and intermittent,

demanding dynamic batching and compression [125–127]. To enable these optimizations, it is

101

essential to be able to readily move services back and forth between various edge deployments

and the cloud and dynamically adapt to the environment.

Configuration, Deployment and Monitoring

Manually developing, deploying, and monitoring these multi-service applications is hard,

time-consuming and error-prone. First, most cloud services have each developed organically

and independently, therefore, they exhibit wide diversity and suffer from inter-service com-

patibility constraints. These compatibility issues can be resolved by adding intermediate

glue services. However, the glue services depend on the location of services (edge or cloud).

For example, in the anomaly detector (Figure 4.2), depending on the location of the dif-

ferent services, the glue services required (shown in blue) change substantially. Manually

configuring these glue services to support migration is intractable because it is error-prone

and cannot be done in real time.

Second, the deployment process is complex. Deploying the anomaly detector application

in Figure 4.2 (all in cloud) through the web portal takes roughly 25 minutes for an expert,

and building a deployment template requires >250 lines of config. Although this overhead

can be acceptable as a one-time effort, the conventional case for cloud-only applications,

it becomes a major barrier to dynamic movement of services between the cloud and the

edge. Listing 4.1 shows a sample Azure template required just for deploying (without fully

connecting) a Document DB service. The template requires a verbose specification of the

service’s properties, such as its detailed location and unique name, on lines 1–16. Lines

17–27 specify the output values that should be passed back to the user after the service is

deployed and cannot be generated beforehand, e.g., the unique ID and URI that must be

known to applications and services that will connect to the database.

Furthermore, after deployment, each service within an application is monitored indepen-

dently. There is no global view of the entire application and end-to-end monitoring across

all services, especially for the parts running in the edge.

102

Listing 4.1: ”Sample Azure Config for deploying a simple Document DB service”

1{ ”$schema” : ‘ ‘ http : //schema . management . azure . com / . . . ’ ’ ,
2 ‘ ‘ contentVersion ’ ’ : ‘ ‘ 1 . 0 . 0 . 0 ’ ’ ,
3 ‘ ‘ resources ’ ’ : [{
4 ‘ ‘ apiVersion ’ ’ : ‘ ‘ 2015−04−08 ’ ’ ,
5 ‘ ‘ kind ’ ’ : ‘ ‘ GlobalDocumentDB ’ ’ ,
6 ‘ ‘ type ’ ’ : ‘ ‘ Microsoft . DocumentDb/databaseAccounts ’ ’ ,
7 ‘ ‘ name ’ ’ : ‘ ‘ test−name ’ ’ ,
8 ‘ ‘ location ’ ’ : ‘ ‘ westus ’ ’ ,
9 ‘ ‘ properties ’ ’ : {

10 ‘ ‘ databaseAccountOfferType ’ ’ : ‘ ‘ Standard ’ ’ ,
11 ‘ ‘ locations ’ ’ : [
12 { ‘ ‘ id ’ ’ : ‘ ‘ test−id ’ ’ ,
13 ‘ ‘ failoverPriority ’ ’ : 0 ,
14 ‘ ‘ locationName ’ ’ : ‘ ‘ West Us ’ ’ }] } ,
15 ‘ ‘ tags ’ ’ : { ‘ ‘ defaultExperience ’ ’ : ‘ ‘ DocumentDB ’ ’ }
16 }] ,
17 ‘ ‘ outputs ’ ’ : {
18 ‘ ‘ EndpointUri ’ ’ : {
19 ‘ ‘ value ’ ’ : ‘ ‘ [reference (’ . . . ’) . documentEndpoint] ’ ’ ,
20 ‘ ‘ type ’ ’ : ‘ ‘ string ’ ’ } ,
21 ‘ ‘ PrimaryKey ’ ’ : { ‘ ‘ value ’ ’ : ‘ ‘ [listKeys (. . .) ’] ’ ,
22 ‘ ‘ type ’ ’ : ‘ ‘ string ’ ’ } ,
23 ‘ ‘ resourceId ’ ’ : {
24 ”value” : ‘ ‘ [concat (’ subscriptions / ’ , subscription () . subscriptionId ,←↩

. . . ’)] ’ ’ ,
25 ‘ ‘ type ’ ’ : ‘ ‘ string ’ ’ }
26 }
27}

Heterogeneity and Diversity

There are many sources of diversity and heterogeneity in both the cloud and edge [7–10].

Cloud services have very diverse models and structure. As a result, they exhibit a wide

diversity in their pricing models with varieties in: granularity, metrics to charge (bytes, CPU,

etc.) with some combined opaque metrics (Streaming Units for Azure Stream Analytics),

time scales, and provisioning model. Table 4.1 shows a few of these aspects across three

different Azure services. This diversity complicates cost prediction, especially in case of a

move where hidden glue components are added and removed.

103

Table 4.1: Pricing models of a select Azure services.

System Scaling Model Primary Metrics Granularity Time Scale

IoT Hub manual provision-
ing

incoming messages 400K mes-
sages

daily

Azure Functions dynamic scaling exec. time,
memory footprint

100 ms,
128 MB

function invoca-
tion

Stream Analytics manual provision-
ing

Streaming Units 1 Unit hourly

The edges also exhibit great diversity in the hardware, network links, and locations

(proximity). Edge hardware ranges from raspberry pi (or even smaller) to large servers.

This diversity complicates predicting the resource demand and performance of a move, e.g.,

whether a service running in the cloud can be moved to a specific edge. The limited resources

on the edge make running and profiling a target move an expensive and intrusive operation.

Since the network is commodity networks, the bandwidth is variable and the connectivity is

intermittent, both across edges and time.

Manual optimizations

Naive implementations of IoT applications can be inefficient and unable to cope with

dynamism of the edge. When using the edge, many optimizations, that are usually op-

tional in the cloud, become crucial. Examples of such optimizations include placement,

load balancing, adaptive communication, and fault-tolerance. Individual edge deployments

and their networks are heterogeneous and diverse in terms of cost, performance, availability,

etc., generating a large search space of potential placements. The network is also limited

and variable. Naively sending measured data as small JSON messages, as typically done

today, wastes the communication link. Currently, application developers have to manually

incorporate these optimizations, which is a significant amount of work, without the ability

to reuse them. However, ideally, these should be modular pluggable features.

104

4.3 DESIGN OF STEEL

Steel’s goal is to simplify a) developing multi-service applications, b) deploying them

across the entire environment, c) dynamically adapting and moving parts of them, and d)

applying common optimizations to them. We found the placement and communication opti-

mizations as the main optimizations for IoT, and therefore the main focus of this work. Steel

acts as middle layer between application developers and the edge-cloud, hiding the under-

lying complexities. As shown in Figure 4.1, Steel consists of four main layers: abstraction,

fabric, analysis engine, and optimization modules.

4.3.1 Abstraction

The abstraction includes: a) the logical DAG of the application, i.e., the main services

and their connections excluding the glue services and b) the location of each service. We

argue this information is sufficient to support adaptable and movable services across the

entire environment.

Listing 4.2 shows the anomaly detector (Figure 4.2) in this abstraction. As shown, it

provides full flexibility and extensibility of the internals of each service. Each service can be

defined similar to using the typical templates, e.g., using a SQL query as a streaming job or

setting service specific configs like ”Streaming Units”. This abstraction gives flexibility and

transparency for placement. To move a service, simply, the location mapping needs to be

updated.

4.3.2 Fabric

The Fabric materializes the abstraction of an application into an actual physical deploy-

ment. The Fabric compiles the abstraction, deploys it across the edge-cloud environment,

and monitors it end-to-end. Figure 4.3 shows this pipeline and the transformation steps.

105

Listing 4.2: ”Sample Application in Steel’s Abstraction”

1{ ”Name” : ”test job” ,
2”Services” : [
3{”Name” : ”filter” ,
4”Type” : ”AsaJob” ,
5”Query” : ”SELECT ∗ FROM input0 WHERE tmp > 60”} ,
6”Streaming Units” : 10
7 . . .
8] ,
9”Connections” : [

10{”From” : ”filter” , ”To” : ”anomaly detector”} ,
11{”From” : ”anomaly detector” , ”To” : ”anomaly db”}] ,
12”Locations” : {
13”filter” : {”Type” : ”edge” , ”Id” : ”dev1”} ,
14”anomaly detector” : {”Type” : ”cloud” , ”Id” : ”westus”} ,
15”anomaly db” : {”Type” : ”cloud” , ”Id” : ”westus”}
16} }

Abstraction

- job DAG

- location

Verify Split

Cloud

Edge

Compile

Compile

Cloud

Edge

Azure

Physical

Template

Abstraction Compiler

Deploy

Deploy

Edge

Deployer

Monitor

Monitor

Analyzer

Monitor Analysis

Fabric

Figure 4.3: Compilation and deployment pipeline in the fabric

The fabric pipeline is split to a cloud and edge path. Since the cloud and the edges

exhibit very different behaviors, they are treated and managed separately. Clouds have well-

established resource mangers and deployment templates for instantiation of services (e.g.,

Listing 4.1 is a sample for Document DB service in the cloud) along with already defined APIs

for metric collection. At the edge there is a number of emerging libraries and frameworks

with their unique (different from the Cloud) APIs for starting services and metric collection.

Steel uses the Azure IoT Edge [122] at the edge because of its better compatibility. However

it can be easily and modularly extended to other options, e.g, AWS Greengrass [128]. We

describe each step in more detail below.

106

Compiler

The compiler converts the abstraction to detailed deployment templates, based on the

location of each service. First, it verifies the location settings are valid, both preventing

misconfiguration and also imposing user-specified constraints. Some services cannot move

to the edge or cloud, e.g, a permanent storage on the edge, and there can be user-specified

constrains, e.g., service A and B should be placed together. Second, the overall job abstrac-

tion and DAG is split into sub-jobs per location i.e., the sub-DAG running at that location,

and treated in separate edge and cloud paths.

Finally, the job is compiled into physical templates. In the compilation, glue services are

added to fix the compatibility constraints and routes are set-up. Figure 4.2 shows a simple

3-service application, and how the glue components (shown in blue) change based on the

location settings. The routes and connections are configured to connect services, including

glue services, and the actual deployable templates are built. These template differ based on

whether they are targeted for the edge (edge version wrapped as containers) or the cloud

(Azure templates). The compiler masks these complexities.

Deployer

The deployer deploys the templates across the entire environment. Using the application’s

DAG of services, it automatically detects dependencies among services to ensure that a

service is deployed only after its dependencies, and deploys these services stage-by-stage,

with multiple parallel deployments within each stage. For example, a Functions instance

connected to a Document DB needs to know the endpoint URI of the DB service (which

is only available once the DB has been deployed), and therefore, must be instantiated in a

stage after the DB. The deployment is distributed and done independently at each location,

thus, resulting in parallel deployments across locations.

107

Monitoring

Similar to cloud-based tools [129–133], the monitoring gathers real-time metrics for ser-

vices, but across the entire edge-cloud environment. It digests and unifies the metrics in

an end-to-end application level, rather than per service. We collect 4 main categories of

metrics: a. resource usage metrics (CPU, memory, network, etc.), b. message flow metrics

(input rate, output rate, process rate), c. latency metrics: processing latency, idle latency,

etc., and d. cost metrics. We use a combination of already provided metrics by services and

our own instrumentations to collect these metrics.

The monitoring hides the diversity of cloud services (each with their own metrics and

models), and heterogeneity of the edge devices. For example, in terms of cost, it hides

the differences of pricing structures across services: the different metrics (bytes, CPU, IO),

granularities, reserve costs, etc. Monitoring is crucial for checking the health of the program,

and also a major piece for further analysis such as for bottleneck detection, allocation and

placement optimizations, load balancing, adaptive communication, etc.

4.3.3 Analysis Engine

The edge-cloud environment exhibits wide diversity, both across the edge devices and

the cloud services. The analysis engine aims at hiding these complexities, and providing

a holistic view of the application for further analysis. In particular, it builds models for

cost and performance of the different components in an application, along with a prediction

model to predict effect of changes (e.g., moving a components) and answer “what-if” analysis

question.

Cost Model

As mentioned in Section 4.2.1, services have diverse pricing structures with different

metrics and granularities across services. In addition, there is the cost of both a) the network

108

(a) Application (b) Cost Model

Figure 4.4: Cost model over time of a simple alerting application

links between edges and the cloud, and b) the hidden cost of glue services (depending on the

location). This component builds cost models for the various components of an application.

At runtime, depending on the placement and using the metrics gathered by the fabric, it

computes the monetary cost of running an application. This component can also be used at

development time with predefined metrics to estimate cost of running an application, before

actually deploying it.

Figure 4.4 shows the output cost model of a simple alerting application. This application

filters incoming data (detecting alerts) using a Stream Analytics job, and stores the raw

data and alerts in two different stores, accordingly. We linearly increase the incoming rate

of messages (dotted line), and the cost models adjust accordingly. As seen the various

services demonstrate different behaviors: a) some services are more sensitive to load, b)

the cost growth is a step function rather than a smooth linear one, and c) the step function

follows the cost model of the service demonstrating irregular steps, typically due to the lower

amortized cost at higher scale.

109

Performance Model

When using the edge, the environment is heterogeneous at its extreme. A typical en-

terprise deployment has hundreds or thousands of edges, with many different types, archi-

tectures, and computation powers, ranging from a small Raspberry Pi to a large multi core

machine. The goal of the performance model component is to predict performance of running

a component on a (new) edge, i.e., how much resources are required to run that component.

It builds performance models across the entire application, also detecting bottlenecks within

the application DAG. Performance models are built using a combination of modeling and

profiling.

Modeling: Similar to [134,135], these models try to normalize the resources at the edges

using resource vectors, e.g., ~Edge1 = (1.5 cpu, 2GB mem, 1 TB disk, ...). Then, using the

performance characteristic of a component on one edge, they predict the performance on

another edge (based on normalized resources).

While normalizing and modeling work well for most resources, it performs poor in nor-

malizing the CPU with more sources of unpredictability [9, 10, 136]. For example, if an

application uses 1 core in one machine, it would not simply use 0.5 core on another machine

that has a CPU specification that is 2 times faster. The performance depends on various

factors such as the architecture, the cache sizes, the type of operations, etc., which are not

captured in a resource vector model. Therefore, along with modeling, Steel uses profiling of

actual runs to build comprehensive performance models.

Profiling: Steel employs a shadow profiling approach. In order to build a performance

model of a component C on a given edge edgei, it starts a shadow instance of the component

Cshadow on the edge edgei. A copy of the input traffic of C is redirected to Cshadow. Using

the performance metrics gathered by the fabric a performance model on C on edgei is built.

Edges have limited resources and are not scalable. When using the cloud, an enterprise

or company can continuously scale by launching more instances on-demand, however, at the

edge the enterprise is limited to whatever resources they already own. These resources should

110

0

20

40

60

80

100

0 10 20 30 40

C
P

U
 p

er
ce

n
ta

g
e

Time (s)

shadow1 shadow2 shadow3

Figure 4.5: Performance monitoring over time (CPU usage) for 3 shadow components.

be shared between the actual computation running on the edge and for profiling. Profiling is

also noisy and variable requiring a run over a larger window until the computation stabilizes.

Figure 4.5 shows metrics collected during a shadow profiling, where it takes a couple minutes

for the shadow profiling to stabilize. Therefore, Steel runs a sampled profiling. Profiling is

assigned a constant and limited share of the edge resources. The input data is randomly

sampled and sent to the shadow component. The sampling ratio is gradually increased until

the fixed profiling cap is reached, where the performance model is extrapolated from there

(for a 100% sampling rate).

In addition, to reduce the overhead of profiling attempts, edges with similar hardware

specifications are grouped into categories, e.g, Raspberry Pi as one category. Profiling is

done per category, instead of per edge. Results from similar historic runs are used to build

models for current runs1.

1Steel currently uses the average of 3 historic runs. As part of future work, we plan to adaptively choose
the number of required historic runs based on the variance in the runs.

111

Functions

Devices DB
Stream

Analytics

IoT

Hub

Edge Cloud

Devices
Stream

Analytics
IoT

Hub
DB

cost savings cost increases

100 msg/s100 msg/s 50 msg/s

100 msg/s 50 msg/s 50 msg/s 50 msg/s

$y cost

$z cost

$x cost

$
𝒙

𝟐
cost

$0 cost

Figure 4.6: Profile prediction example of a component move

Profile Prediction

The analysis engine enables ”what-if” analysis, i.e., to predict impact of changes without

actually applying a change. Examples of such changes are moving a component, enabling

compression, changing batch sizes, or scaling a job. The profile prediction uses the cost and

performance models to enable this.

The profile prediction relies on the fabric (specifically, the compiler) to predict the new

physical layout of a job given a change, e.g., the new glue components added. It populates

profiles of current layout to the new layout for unchanged components; propagates profiles

and data-flow metrics accordingly (rates of data across the edges); predicts profile for missing

components and edges (particularly, new glue services); and uses cost models to predict the

new cost. The abstraction and transparent compiler provided by the fabric, along with its

end-to-end view of the application are an essential part to building this analysis engine,

as they remove the manual configuration and compilation otherwise required. Figure 4.6

shows a sample application and its profile, and the output of the prediction engine from

analyzing the move of a component. The prediction engine takes into account changes into

many factors including the new physical layout, glue components added and deleted, the

network savings of sending less data, and the entry point (IoT Hub) saving of processing

fewer messages.

112

4.3.4 Optimization Modules

Inherently, the edge comes with many complexities such as increased chances/causes of

failures, higher recovery time, poor and variable network links, extreme heterogeneity among

resources, and unbalanced distribution of workloads over space and time. These complexities

give rise to the need for additional, but common, optimizations. Steel’s design enables the

modular, pluggable, and extensible implementation of these optimization. Below, we list

a few of the common optimizations, and how they benefit from Steel’s Fabric, abstraction,

and design.

• Communication: Edges are often characterized by limited bandwidth or intermittent

connectivity to the larger Internet, such as at a remote oil refinery, making the network

a critical factor for performance. Also, both the network and the entry point at the

cloud have a high cost, e.g., the Azure IoT hub (entry point to Azure) charges per

message or cellular networks charge Byte. To this end, it is common to optimize

the communication by using smart batching, compression, and compaction. Steel’s

connection abstraction enables these optimizations to be done behind the scenes, in

a pluggable and configurable manner, and its unified monitoring enables intelligent

optimizations for both cost and performance.

• Placement: Applications running across the edge-cloud need a placement plan: Which

parts of the application should be placed on the cloud and which on the edge? Which

edge to choose? In an edge deployment, the search space of potential placements

grows significantly. Edges are heterogeneous (from a Raspberry Pi to multi-GPU ma-

chines), large in number (∼ 1000s of edges in a typical factory), and with diverse

network bandwidths. An application is distributed across the edge and cloud. The

optimal placement depends on the workload, available capacity, cost of bandwidth,

etc. Manually deciding the placement is tedious, and in presence of a change, e.g., a

new application, the procedure has to be repeated. Thus, a common optimization is

113

to automatically decide the placement. The decoupling of the application and its loca-

tion, the end-to-end monitoring provided by fabric, and the what-if analysis provided

by the analysis engine, are essential to make placement automated and smart.

• Load balancing: Edges decentralize computation across a spatial area, where ideally

each edge processes workloads geographically closest to it. However, in practice, work-

loads and edges are not uniformly distributed across the area. For example, there could

be a large cluster of sensors all close to one edge, or, the load could see sudden spikes

or long-term changes over time. Since edges do not have the luxury of gathering and

distributing data in a centralized location, as in the cloud, they need to dynamically

balance load by moving services to other edge locations or the cloud while also brining

services back upon drop of load. The ability to transparently and easily move services

provided by Steel, is an important feature for load balancing.

• Fault-tolerance: Compared to the cloud, the edge is a more unreliable environment

with many conventionally uncommon failure cases, e.g., hours of power outage (with

no backup power), or falling and breaking [137, 138]. Fixing and/or replacing failed

resources also takes longer, either because the edges are owned by non-experts (rather

than cloud providers), or the inherent physical challenges. Thus, having a proper fault-

tolerance mechanism–that continues the service despite the failures–is essential at the

edge. In case of failures, it is common to move services either back to the cloud or a

nearby edge. If high availability is a priority, using multiple instances of the service or

a hot standby may also be needed. Steel’s abstraction provides the flexibility to move

services or create multiple instances of them, without impacting the application’s logic.

Steel includes a 2-tier optimization schema of a global and local optimizer, handling both

short-term and long-term spikes in the workload and changes in the resources available in

the environment (e.g., expansions or failures). The goal of Steel’s optimizers are to mini-

mize the monetary cost of running applications (therefore, increasing the edge utilization),

114

without hurting the performance of applications (i.e., reaching similar or better performance

compared to the all-cloud model). In other words, the optimizers try to find the cheapest

setting that satisfies the performance requirement.

Global Optimizer: This tier has a global view of the application and all the different

components in the application DAG. The global optimizer is in charge of handling long-

term changes in the environment or workload. The global optimizer runs in the cloud with

a relatively high reaction time–reacting to changes in a order of minutes. Placement and

load balancing optimization would run in this tier.

Local Optimizer: This tier has local views of particular devices and specific compo-

nents of applications. The local optimizer is running on each edge device, fine-tuning the

optimization. This tier handles short spikes2, running at a low reaction time–reacting to

changes in a order of seconds. Communication optimization (e.g., batching and compression

to increase network capacity) and fine-tuning the allocation fall in this tier.

In this work we focus on the placement and communication optimization, as we found

these two optimizations the most essential optimizations based on the need of current Azure

IoT customers.

4.3.5 Placement Optimizer

One of the common and complex optimizations for IoT applications is the placement of

different components. In a typical industrial setting with hundreds of thousands of sensors

and hundreds of edges, manually optimizing the placement, if even possible, is sub-optimal,

error-prone and not adaptive. We developed a placement optimizer that takes the cost and

performance models of various components and automatically optimizes the placement (edge

or cloud, and which edge).

The optimizer, automatically and iteratively, decides the placement of operators across

all the applications running in a deployment, e.g., all application in a factory. The optimizer

2The spikes could be due to the workload or changes in resources/network.

115

starts with an initial all-cloud deployment. Then, in a greedy manner moves the most

expensive operators (normalized by resource usage) to the edge, until the edge capacities are

full. Algorithm 4.1 shows the pseudo code of the detail steps.

The optimizer deploys all applications in-cloud, monitoring them and building cost mod-

els for each operator in each application. Then, in a greedy manner based on cost, in finds

a candidate list of operators to move, up to a maximum count of MAX CANDIDATE (lines

18-32). Candidates are operators on the boundary of the edge and the cloud (so called

the frontier). For each candidate operator, a couple locations are suggested (up to a fixed

MAX LOC count). These locations are either from the location of upstream operators before

this candidate (if an upstream exists) or randomly chosen locations from locations close to

the data source. Then, the performance profile is built for these candidates via the analysis

engine, with shadow profiling if needed. Based on the cost and performance profile of the

candidates, the most expensive operators (normalized by resources) are moved. Moves are

monitored and verified that they do not created performance bottlenecks, and if so, the move

is reverted and performance profile updated. This optimization loop continues until there

are no more feasible moves, i.e., moves that do not create bottlenecks performance).

The optimizer works in a multi-tenant environment, optimizing across multiple appli-

cations. The current version treats all applications equally, and prioritizes among them

based on cost and resources. As part of future work, we are investigating other priority

schemas including user defined priorities and service level agreement (SLA) driven policies

(e.g., prioritizing the more latency-sensitive parts).

4.3.6 Communication Optimization

One of the critical factors in the performance and cost of an IoT application is the

network traffic between its cloud and edge components. Edges have commodity network

links to the broader Internet, with variability in the bandwidth, latency and connectivity,

116

Algorithm 4.1 Placement Optimization Algorithm

1: List<App> apps ={app1, app2, ...}
2: Map< op, loc > locMap; // init all-in-cloud for all apps
3: deploy(apps, locMap)
4: while ! End of Optimization do
5: //Build cost model
6: cost=analysisEngine.buildCostModel(apps, locMap)
7: candidateList< op, loc > = chooseCandidates(cost);
8: perf = analysisEngine.buildPerModel(candidateList)
9: moveList< op, loc >=chooseMoves(candidateList)

10: if !moveList.isEmpty() then
11: deploy(moveList, locMap) //updates locMap
12: verifyMove() //reverts if needed
13: else
14: End of Optimization = true

15: function buildPerfModel(List< op, loc > list)
16: for candidate c< op, loc > in list do
17: if !analysisEngine.contains(op, deviceType(loc)) then
18: shadow (op, loc)

19: function chooseCandidates(CostProfile cost, apps)
20: List< op > frontiers, candidates < op, loc >
21: MAX LOC, MAX CANDIDATE
22: for application appi in apps do
23: //traverse application DAG
24: //add ops on boundry of edge & cloud to frontiers
25: traverseAndAddFrontier(appi, frontiers)

26: sort(frontiers) //sort based on cost
27: int count = 0
28: for operator op in frontiers do
29: for i in 1 to MAX LOC do
30: if count < MAX CANDIDATE then
31: //loc either where op’s upstream operator placed or random location close to the

data source
32: candidates.put(op, chooseLoc(op))
33: count++

34: function chooseMoves(candidateList< op, loc >)
35: Map< op, loc > moves
36: sortedList=sort(candidateList) // based on cost

perf
37: for candidate c< op, loc > in sortedList do
38: if !moves.contains.(c.op) then
39: moves.put (c.op, c.loc)

40: return moves

117

e.g., when remotely located devices transmit data over cellular networks3. Furthermore,

network communications incur a financial cost in two major forms: fees assessed by the ISP

for bandwidth consumption and charges assessed by the cloud provider for ingesting and

processing the incoming messages.

In this work, we specifically consider the case of streams of timeseries data that are

emitted by sensors, arguably the dominant form of traffic that flows from the edge to the

cloud in the vast majority of IoT deployments today. In many applications, including the two

real-world deployments that form the basis of our evaluation, sensor messages are naively sent

to the cloud as JSON documents. This approach is admittedly convenient, as the ubiquity of

JSON lends itself to easy interoperability between components, but it induces unnecessary

traffic from the edge to the cloud. JSON is an inefficient compression for numerical data,

and JSON documents commonly feature redundant fields that are static for the lifetime of

the timeseries stream and need not be included in every message.

We therefore introduce an intelligent batching and compression control module that gives

IoT applications the ability to cope with variability or outages in network service and to

dynamically adapt to constantly changing network conditions in order to minimize cost.

The implementation of this control module addresses several challenges. Sensor messages

are batched as necessary to deal with network outages and to facilitate transformations

like compression. The communication control module must also periodically identify an

appropriate strategy for transforming and compression timeseries data batches on the fly, as

network conditions change, from a large search space of potential choices.

These techniques are not new, yet they have historically been integrated directly into

IoT applications in the form of one-off implementations. Not only does this situation force

developers to re-implement logic and optimizations that can be shared across a wide array

of IoT applications, it also means that these applications become unnecessarily complicated

3With the deployment of 5G in the future, other interesting optimizations can be performed which is out
of the scope of this project.

118

with communication logic. Our control module enables applications to optimize their com-

munications without significant changes to the code, relieving developers of the burden of

implementing their own optimization and adaption strategies and simplifying their produc-

tion code.

Data compression Strategies

We have implemented 12 different techniques for transforming message batches within a

timeseries stream. Each of these techniques is a combination of one or more of the following

compression strategies:

• Omitting Metadata from JSON : Static information that is redundantly included in each

element within a timeseries stream, such as a sensor ID or the units of measurement,

is exchanged just once between the sender and receiver, when initializing the channel.

Redundant metadata is ommitted from all subsequent document batches, which are

sent as JSON.

• Binary Packing : Metadata is omitted from all batches, and each timeseries element

is represented as an 8-byte integer for the timestamp and an 8-byte float for the

corresponding value.

• Timestamp Delta: Metadata is omitted from all batches, and time series elements

are represented in binary. However, only the first timeseries element in each batch

contains a full 8-byte timestamp. All subsequent elements contain a 2-byte timestamp

representing the delta from the previous element’s timestamp. Values remain 8-byte

floats.

• Fixed Precision: Metadata is omitted from all batches, and timestamps are repre-

sented as 8-byte integers. Because users often only care about measurements up to a

certain precision, values are not represented as 8-byte floats. Instead, the channel is

119

initialized with a specific lower bound, upper bound, and precision, and the value in

each timeseries element expresses a point within this range. For example, a channel for

temperature data might have numerical bounds of 50 and 100 and a desired precision

of 0.5. With only 100 distinct possibilities, timeseries values can be represented in 1

byte instead of 8.

• Gzip: Gzip compression is applied to each batch of timeseries values (however they

happen to be encoded) before they are sent. Specifically, this strategy opts for the

best possible compression at the potential cost of increased computation.

• Fast Gzip: Gzip compression is applied to each timeseries batch, but with settings

that offer greater speed (i.e. less computational cost) at the potential expense of the

effectiveness of the compression.

Adaptive Communication Optimizer

The communication optimizer dynamically choses the best a) compression strategy, and

b) batch size.

Compression Strategy: The choice of compression strategy must make judicious use

of both the available network bandwidth and available CPU resources at the edge. For

example, an aggressive compression algorithm might dramatically reduce the volume of data

transmitted from cloud to edge, but at the same time incur a prohibitively high load on the

edge node. Each technique presents a different balance between computational intensity and

the compression effectiveness.

Figure 4.7 illustrates the trade-off space for the 12 compression techniques in a real-

world smart building data set (from Microsoft’s smart building deployments in the Redmond

Campus). Each compression scheme was used to process a fixed-size batch of messages, and

we measured the size of the uncompressed batch relative to the compressed batch as well as

the CPU cost incurred by the compression. In the figure, schemes further to the right on the

120

Omit Metadata from JSON

Gzipped JSON w/o

Metadata

Fast Gzipped JSON w/o

Metadata

Binary Packing

Gzipped Binary Packing

Fast Gzipped Binary

Packing

Timestamp Delta

Gzipped Timestamp Delta

Fast Gzipped

Timestamp Delta

Fixed Precision

Gzipped Fixed Precision

Fast Gzipped Fixed

Precision

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12

C
o
m

p
re

ss
io

n
 R

a
ti

o

Cpu Utilization (Percent)

Figure 4.7: The tradeoff between compression and computation for various data
compression schemes

x axis exhibited higher CPU consumption, while schemes higher on the y axis achieved a

better compression ratio. The best schemes are therefore in the top left region of the figure.

Batch Size: Additionally, there is a trade-off between data staleness and the effective-

ness of compression applied at the edge. A larger batch size enables better compression

ratios for some compression strategies, but increases the lag time between the generation of

a sensor message and its arrival at the cloud. The benefits of larger batch sizes also exhibit

diminishing returns. Figure 4.8 shows the effect of batch size for different strategies and the

diminishing return point for each (on the smart building data-set). For some compression

strategies, such as the fixed precision scheme, batch size does not affect compression ratio

because each message in the batch is compressed individually. For Gzip-based schemes, how-

ever, larger batches yield better compression ratios, up to a size of about 250 items, because

messages are compressed collectively.

Optimization Algorithm: The communication optimizer presents the abstraction of

a set of channels, each representing a stream of messages to be sent from the edge to the

cloud. Periodically (once per second in the current implementation), the communication

121

0

20

40

60

80

100

120

0 200 400 600 800 1000

C
o

m
p

re
ss

io
n

 R
a

ti
o

Batch Size

Omit Metadata from

JSON

Binary Packing

Gzipped Binary Packing

Fixed Precision

Gzipped Fixed Precision

Fast Gzipped Fixed

Precision

Figure 4.8: Diminishing returns with larger batch sizes

optimizer compresses the messages that have accumulated for each channel and sends them

to the cloud, transmitting as many messages as possible while respecting two constraints:

1. A cap on the amount of CPU time that can be devoted to compression, specified by

the user

2. A cap on the total size of all transmitted message batches (bandwidth consumption),

specified by the user or derived from periodic observations of network conditions

To choose the best compression scheme for each channel while respecting these con-

straints, the communication optimizer relies on one table containing the CPU compression

cost and another containing the compressed size of batches of timeseries messages as batch

size and compression scheme vary. For such a table T , T [i][j] gives the relevant measure-

ment when applying scheme i to compress a batch of j messages. These tables can be easily

precomputed by running a controlled set of experiments on the relevant hardware before the

communication optimizer is used.

We restrict our attention only to compression schemes along the Pareto curve of Figure

122

4.7 and order these schemes from those that are most computationally efficient but yield

the worst compression to those that are most computationally expensive but yield the best

compression, i.e., scheme i+1 has a higher CPU cost but also higher compression ratio than

scheme i.

Each time it is invoked, the compression optimizer first predicts the CPU and bandwidth

required to send all messages accumulated across all channels while using the least compu-

tationally intensive compression scheme. The optimizer iteratively improves the choice of

compression schemes for the channels until both constraints are satisfied. Pseudocode for

the optimization is presented in Algorithm 4.2.

4.4 EXPERIMENTAL EVALUATION

Our Evaluation addresses the following questions

1. How easy is it to develop and configure an application spanning the edge and cloud?

2. How easy is it to move parts of an application between edge and cloud?

3. Can Steel efficiently automate the placement of applications?

4. Can Steel effectively cope with network and workload changes?

We evaluate Steel across a diverse set of real-world IoT Applications, as well as emulated

results.

4.4.1 Development Effort

The big promise of Steel is ease of development, and adaption of services. To compare

our abstraction (Steel) to conventional templates/scripts (current), we implement real world

applications in both systems on top of Azure. We measure the development effort in terms

123

Algorithm 4.2 Communication Optimization Algorithm
1: C = Precomputed table where C[i][j] = CPU cost of applying scheme i to batch of j messages
2: B = Precomputed table where B[i][j] = Bandwidth cost of applying scheme i to batch of j

messages
3: function OptimizeConfig(channels, cpuCap, bwCap)
4: for c ∈ channels do
5: c.scheme = 0
6: i = 0
7: while i < MAX ITERS do
8: if channels = ∅ then return Failure

9: totalCPU =
∑
{C[c.scheme][c.size] | c ∈ channels}

10: totalBw =
∑
{B[c.scheme][c.size] | c ∈ channels}

11: if totalCPU < cpuCap and totalBw < bwCap then return {c.scheme | c ∈ channels}
12: else if totalCPU > cpuCap and totalBw > bwCap then
13: // We have failed to find a feasible solution, remove a channel
14: chan = arg max

c
{c.size | c ∈ channels}

15: channels = channels− {chan}
16: else if totalCPU > cpuCap and totalBw ≤ bwCap then
17: // We’ve gone from meeting CPU cap to exceeding it without ever satisfying BW

cap
18: // Remove a channel
19: chan = arg max

c
{c.size | c ∈ channels}

20: channels = channels− {chan}
21: else
22: // totalCPU ≤ cpuCap and totalBw > bwCap
23: // Adjust channel compression scheme to yield greatest ratio of BW reduction to

CPU increase
24: if {c | c ∈ channels, c.scheme 6= Max Scheme} = ∅ then
25: // We’ve tried as much compression as possible; remove a channel
26: chan = arg max

c
{c.size | c ∈ channels}

27: channels = channels− {chan}
28: else

29: chan = arg max
c

B[c.scheme][c.size]−B[c.scheme + 1][c.size]

C[c.scheme + 1][c.size]− C[c.scheme][c.size]
,

c ∈ channels, c.scheme 6= Max Scheme
30: chan.scheme = chan.scheme + 1

31: i = i + 1

124

A B C D E

…

1

2

3

4

5

6

Figure 4.9: DAG of studied applications. Dotted and full circles show the data source and
services, respectively.

of lines of config (loc), i.e., the number of lines of changes required in the configuration4. We

evaluate both the initial development and the changes required for moving services.

We chose 6 diverse applications from a combination of common and pre-configured appli-

cations [139]. Figure 4.9 shows the logical DAG (without glue services) of the applications:

1. a simple data persisting application (two stores, raw and filtered), 2. a predictive main-

tenance application using machine learning, 3. Bluetooth sensor connector and analyzer

(convert format, add meta-data, filter, average, and store), 4. a factory remote monitoring

and alert generator, 5. a campus-wide statistics generator (aggregate locally, join globally,

build statistics, and store), and 6. an anomaly detector (Figure 4.2)

4.4.2 Initial Development

We compare the initial development effort in terms of loc in both Steel and the current

cloud environments. Figure 4.10 shows the results for the 6 chosen applications. Our ab-

straction reduces the loc between 1.7x to 4.8x across the different applications compared to

the current system. This improvement is due to two main factors: 1. the hidden glue services

added automatically by the system, and 2. the substantially reduced configurations (≈ 1–2

loc) required for connecting services. Our abstraction works best when there are multiple

4Steel only modifies deployment configurations and code binaries remain untouched.

125

0

100

200

300

400

L
in

es
 o

f
C

o
n

fi
g

s

Steel current

Figure 4.10: Comparison of lines of config required for developing applications in Steel and
current systems.

services per location. For examples, Application 5 is spread across many edges, each edge

performing one service and the cloud joining the results (followed by additional computa-

tion). Since the edge part is simple (single stage), there is little improvement there, and the

improvement mostly comes from the cloud part, resulting in an overall smaller improvement

(1.7x).

4.4.3 Modifications

Being able to move services dynamically is a crucial feature when using the edge. We

evaluate the changes required when making a move. We start with an all-cloud deployment

of Application 3 (the longest chain), and move its services {A,B,C,D} one by one to the

edge5. We measure the loc changes (add, modify, or delete) required at each step, compared

to the all-cloud deployment. As shown in Figure 4.11, Steel provides a constant and small

over head of around 2 loc per change of a service location, as only the location map needs to

be updated (in Figure 4.3.1). However, current systems need 100s of loc changes, between

260–360 loc for Application 3, both to add glue components and to reconnect the services.

Steel reduces over 95% of this overhead. Note that the loc is an almost constant value

5Steel modifies configuration during runtime. There is a short period of pause (≈ 10s of seconds) during
reconfiguration.

126

2 4 6 8
0

50

100

150

200

L
in

es
 o

f
co

n
fi

g
 (

L
o

C
) Steel current

Figure 4.11: Comparison of lines of config required for moving services within an
application in Steel and current systems. This experiment moves services {A,B,C,D} in
Application 3 (Figure 4.9)

for one component move, thus, when a change involves multiple components (e.g., in the

placement optimizer) the total loc would be the constant overhead times the number of

moving components.

4.4.4 Placement Optimization

We measured the effectiveness of our Placement optimizer using a set of multi-stage

applications. We start with an all-cloud configuration, then, in an iterative manner, we

shadow components, find the best ones to move and push them to the edge. The goal of

this process is to reduce the cost of running an application (by pushing processing to the

edge). This process is continued until the edge resources are (almost) fully utilized. Figure

4.12 shows a sample run of a multi-stage application. At each iteration, the overall cost is

reduced by ≈ 40% as components move from the cloud to the edge. Along with that, the

resource utilization of the edge increases from 10% to 75%.

127

0

20

40

60

80

100

0

50

100

150

200

250

300

0 100 200 300 400 500

R
es

o
u
rc

e
U

ti
li

za
ti

o
n
 %

C
o
st

 i
n
 $

 p
er

 m
o
n
th

Time (s)

Cost ($) CPU (%)

Figure 4.12: Reduction of price and improvement of edge utilization with the placement
optimizer over time.

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70

B
an

d
w

id
th

 (
B

y
te

s)

Time (minutes)

Capacity Sent

Figure 4.13: Bandwidth consumed by the communications optimizer as network
constraints are changed

128

4.4.5 Communication Optimizer

We also evaluated performance of our communication optimizer module. Figure 4.13

shows the compression control module in action with replayed messages drawn from a real-

world smart factory deployment. This trace begins with a generous bandwidth cap (shown

in blue) that is later lowered, mimicking temporary congestion. The optimizer adapts the

encoding scheme and batch size to limit its bandwidth consumption (shown in red). Although

the consumption does not stay strictly under the specified cap, it does stay reasonably close

(up to 2.3x at peak). When cap is finally increased, the optimizer drains its buffer of

backlogged data, explaining the brief peak in bandwidth consumption before it levels off to

a steady rate at the end of the trace.

4.5 RELATED WORK

Abstractions: Mobile fog [140], Beam [90], and [141] propose abstractions to hide the

complexities and standardize the heterogeneity of the edge. General purpose abstractions,

such as Orleans [142], have also emerged for building large-scale, elastic, and reliable appli-

cations. However, none address of integrating with existing cloud services for multi-service

applications.

Edge-Cloud Frameworks: To leverage the edge, many end-to-end edge-cloud frameworks

have emerged, e.g., FarmBeats for agricultural IoT, Race, and GigaSight [137, 143, 144].

Although these systems handle abstraction, deployment, and optimizations, they are each

tailored for a specific use case (e.g, remote agriculture fields), and do not generalize to custom

data-processing applications.

Edge Deployment: Dynamic deployment across heterogeneous edges is essential for the

usability of the edge. Micro-cloud, Cloudlets, Openstack++, and others [141,145–150] have

proposed infrastructures to provide portability and dynamism using either containers or vir-

tual machines. These infrastructures provide interoperability between edges and the cloud,

129

Table 4.2: Placement and data-motion optimizations in Steel

Requirements Placement Data Motion

- geo-distributed and trans-
parent processing across
many locations
- interactive processing ex-
perience
- reduced network usage w/
tolerable latency impact

- abstracting and unifying envi-
ronment and placement
- network, device, and locality
aware placement
- placement aware models for
performance and cost with back-
ground profiling and a prediction
engine

- accessing local data and stor-
age (instead of remote cloud)
- data motion reduction with
adaptive batching and com-
pression
- throttled-based batching at
spikes with prioritization

a crucial feature for the edge. However, this is orthogonal to the need of simplifying the

development of edge-cloud applications.

Migration and Placement: Dynamically placing and moving computation is not a new

concept. Maui and CloneCloud [151, 152] have explored this with mobiles as the edge.

MigCEP [126], VM Handoff [125], and [127] optimize the dynamic migration between edges,

based on different constraints, e.g., latency. These works do not support current cloud ser-

vices, while works like [153] emphasize the importance of doing so. However, their approaches

can be added as optimizations modules to Steel.

4.6 CONCLUSION

This chapter describes Steel, a high-level framework designed specifically for building

complex data processing applications in the emerging edge-cloud environment. We design

Steel to hide the complexities of developing, deploying, and monitoring data processing

applications using many cloud services, and to support dynamically adapting and easily

moving services back and forth between the edge and the cloud. Steel is an extensible

framework where common but crucial optimizations for the edge can be built as pluggable

and configurable modules. We have added two very common optimizations: placement and

adaptive communication, to cope with both short and long term changes in the workload

and environment. Table 4.2 summarizes the techniques used for data placement and data

130

motion in Steel and the requirements they satisfy.

As part of future work, we plan to further investigate other main optimizations required

in an edge-cloud environment. We plan to develop efficient edge-oriented solutions for re-

source allocation, fault-tolerance, and load balancing and add them to Steel as pluggable

modules. In addition, we are working on extending Steel’s abstraction to include service level

agreements (SLAs) for latency, throughput, and availability, and incorporate these SLAs into

the optimization modules.

131

CHAPTER 5: FREEFLOW: HIGH PERFORMANCE CONTAINER
NETWORKING

In this chapter, we present FreeFlow, a solution for reaching high performance and

portable networking between containers. As the popularity of container technology grows,

many applications are being developed, deployed and managed as groups of containers that

communicate among each other to deliver the desired service to users. However, current

container networking solutions have either poor performance or poor portability, which un-

dermines the advantages of containerization. We propose FreeFlow, a container networking

solution which achieves both high performance and good portability. FreeFlow leverages two

insights: first, in most container deployments a central entity (i.e. the orchestrator) exists

that is fully aware of the location of each container (placement-awareness). Second, strict

isolation is unnecessary among containers belonging to the same application. Leveraging

these two observations allows FreeFlow to use a variety of technologies such as shared mem-

ory and RDMA to improve network performance (reducing data-motion), while maintaining

full portability – and do all this in a manner that is completely transparent to application

developers.

5.1 INTRODUCTION

The history of all hitherto computer science is (often) the history of a struggle

between isolation, portability and performance.

(With apologies to Karl Marx.)

At the dawn of computing, applications had access to (and had to manage) raw hard-

ware. Applications were not portable, and isolation between applications was non-existent.

Operating systems emerged and offered a modicum of isolation and portability. As users de-

manded more portability and better isolation across applications, OSes became more sophis-

ticated, and deep layering became the norm; the modern TCP/IP stack is a classic example.

132

Layering improves the application’s portability across systems and types of networks, but

incurs well-known performance issues [154, 155]. Soon enough, solutions like DPDK [156]

and RDMA [157] emerged that traded off some portability and isolation to provide better

performance. The trend continued with virtualization, which offers even more isolation, and

additional portability (e.g., you can pack up and move VMs at will, even live-migrate them).

In return, performance – especially the network performance is further reduced [158]. Nu-

merous technologies have been proposed to remedy the situation (e.g., [155,156,158,159]) –

again at the cost of isolation and portability.

The latest step in this trend is containerization [19,160,161]. By wrapping a process into a

complete filesystem and namespace cell, a container has everything needed to run the process,

including executables, libraries and system tools. A container has no external dependencies

(it only has a set of dependencies on a standard API), which makes it highly portable.

The namespace of the container is isolated from other containers, eliminating worries about

naming and version conflicts. Such portability and independence significantly simplifies the

life cycle of a containerized application, from testing to high availability maintenance.

Unfortunately, containers too suffer the curse of having to sacrifice one or more of perfor-

mance, isolation, and portability. To understand these potential performance bottlenecks,

we conducted a simple experiment. We set up two Docker containers on a single server1. We

consider three ways for the containers to communicate with each other: (1) Shared Memory:

This requires special setup2 to bypass the namespace isolation, and offers the least isolation,

and the least portability; (2) Host mode: in which a container binds an interface and a

port on the host and uses the host’s IP to communicate, like an ordinary process. Hence,

containers are not truly isolated as they must share the port space; and (3) Overlay mode:

in which the host runs a software router which connects all containers on the host via a

bridge network. The software routers enable overlay routing across multiple hosts to provide

1See Section 5.5 for HW and SW details
2We setup the shared memory data transfer through shared memory object in a shared IPC namespace

and measure the time to pass the pointer and make one copy of the data.

133

overlay host shm

Th
ro

ug
hp

ut
 (G

b/
s)

0

20

40

60

80

100

(a)

mem bw

overlay host shm

La
te

nc
y

(u
s)

0

500

1000

1500

(b)

27 0.37

Figure 5.1: Performance comparison of two modes of container networking and shared
memory IPC.

maximum portability as each container can even have public IPs assigned.

Figure 5.1 is a demonstration of the fundamental tussle between portability, isolation,

and performance. We make two observations from this figure. First, the throughput and

latency of host and overlay modes of inter-container communication are significantly worse

than the throughput and latency of shared memory based communication. The reason is

obvious: both host and overlay modes require a “hairpin” path through the full TCP/IP

stack.

Second, the performance of overlay networking is worse than host mode. The reason,

again, is simple: in case of overlay networking, hairpinning happens twice, since the packets

must traverse through the software router as well. This figure thus clearly illustrates the

performance cost of isolation and portability.

As the popularity of container networking grows, this inefficiency must be addressed. On

one hand, the low throughput and high latency directly impacts the overall performance of

large scale distributed systems, such as big data analytics [162–165], key-value stores [166],

machine learning frameworks [167], etc. On the other hand, it forces the applications to

reserve substantial CPU resources to merely perform traffic processing, which significantly

raises the cost of running the applications.

One may argue that there is nothing new here: virtualization suffers from similar in-

134

efficiencies and we know how to address them using techniques like SR-IOV [159] and

NetVM [158]. Unfortunately, these ideas cannot be directly applied to the container world.

SR-IOV typically scales to tens of VMs per server. In typical deployments, there are hundreds

of containers per server. The cost of supporting so many containers in the NIC hardware

will be prohibitive. NetVM [158] cannot be used directly with containers, since it destroys

portability – it only works when two VMs are on the same server. Developers prize contain-

ers especially for their portability: indeed, one of the main selling points of containerization

is that a containerized application that runs on developer’s desktop will run in the cloud

without any changes! [168].

In this work we outline a solution, called FreeFlow to address this issue. Our vision

is to develop a container networking solution that provides high throughput, low latency

and negligible CPU overhead and fully preserves container portability in a manner that is

completely transparent to application developers.

To achieve these seemingly conflicting goals, we observe an opportunity to leverage two

key aspects of typical container deployments: (1) they are typically managed by a central

orchestrator (E.g., Mesos, YARN and Kubernetes [21, 22, 160]) and (2) they are typically

deployed over managed network fabrics (e.g., a public cloud provider). Taking advantage of

these easily available additional bits of information, we sketch a roadmap of an overlay-based

solution that obtains the relevant deployment-specific information from the aforementioned

container orchestrator and fabric manager and use this in conjunction with the ”right” I/O

mechanism (e.g., shared memory when containers are co-located, vs. RDMA when they are

not).

While this sounds conceptually simple, there are several architectural and system design

challenges in realizing this vision in practice. In the rest of the chapter, we discuss these

challenges and sketch a preliminary design. We will also present results from an early

prototype.

135

5.2 BACKGROUND

Container technology has gained tremendous popularity [17, 169, 170] since it enables a

fast and easy way to package, distribute and deploy applications and services.

Containers are essentially processes, but they use mechanisms as chroot [171] to provide

namespace isolation. The dependencies of containerized applications are bundled together

with the application, making them highly portable: they can be easily distributed and

deployed [19]. Compared to VMs, containers are much more lightweight and can be initialized

much faster [172, 173]. Containers can be deployed both within a VM or on bare metal.

Containers are supported by both Linux and Windows operating system. Docker [19] is

perhaps the most popular container management system, although there are many others

as well [160,161].

Most containerized applications are usually composed of multiple containers. For exam-

ple, each mapper and reducer node in Hadoop [38] is an individual container. A modern

web service with multiple layers (load balancers, web servers, in-memory caches and backend

databases) is deployed with multiple containers in each layer. These containers are usually

deployed into a multi-host server cluster, and the deployment is often controlled by a cluster

orchestrator, e.g. Mesos [21] or Kubernetes [160]. Such an architecture makes it easier to

upgrade the nodes or mitigate failures, since a stopped container can be quickly replaced

by a new one on the same or a different host. Working as a single application, containers

need to exchange data, and the network performance has a significant impact on the overall

application performance [162–165]

Depending on whether containers run on bare-metal hosts or VM hosts, there are four

cases any container networking solution must handle. These cases are illustrated in Fig-

ure 5.2. For maximum portability, containers today often use overlay networks. A number

of software solutions are available to provide overlay fabrics, such as Weave [174] and Cal-

ico [175]. In these solutions, the host (i.e., the server or the VM) runs the software router

136

HostOS Hypervisor

(a) same physical
machine

(b) different physical
machines

(c) same physical
machine, different VMs

(d) different physical
machines and VMs

Container
Physical
Machine

GuestOS

Figure 5.2: Representative running environments of containers.

which connects to the NIC of the host and to the virtual interfaces of the containers on the

host via a software bridge. The router also performs appropriate tunneling (encapsulation

and decapsulation) to move traffic between the physical network and the overlay fabric. The

router uses standard networking protocols like BGP to connect with software routers on

other hosts. Containers send and receive IP packets via this overlay, and hence are agnostic

to location of other containers they are communicating with.

The CPU overhead of processing packets in the software bridge, as well as in the soft-

ware router (for off-host communication) is the primary performance bottleneck in overlay

networks, as illustrated in Figure 5.3. This figure shows throughput and CPU utilization of

two containers, running iPerf3. For Figure 5.3(a), the containers were on the same server,

communicating via host mode. For Figure 5.3(b), the containers were on different servers,

connected via overlay routing using Weave [174]. We vary the iPerf traffic generation rate,

and plot the achieved throughput and corresponding CPU utilization. We see that in host

mode, the throughput tops off at 30Gbps, while in overlay mode it is just 20Gbps. In both

cases, the CPU is the bottleneck – the sender and the receiver CPUs are fully utilized.

5.3 OVERVIEW

In this section, we discuss the overall architecture of FreeFlow, and discuss the key

insights that enable FreeFlow to achieve a high network performance without sacrificing

portability of containers.

137

Bandwidth Cap(Gb/s)
0 10 20 30 40 50

Th
ro

ug
hp

ut
 (G

b/
s)

0

20

40

60

80

100 100%

0%

C
PU

 (%
)

(b) overlay

sender cpu
receiver cpu
throughput

Bandwidth Cap(Gb/s)
0 10 20 30 40 50

Th
ro

ug
hp

ut
 (G

b/
s)

0

20

40

60

80

100 100%

0%

C
PU

 (%
)

(a) host

sender cpu
receiver cpu
throughput

Figure 5.3: CPU limits overlay networking throughput.

5.3.1 High network performance without sacrificing portability

Container deployments opt for overlay-based networking since it is most portable: a

container does not have to worry about where the other endpoint is. For example, in

Figure 5.4(a), Container 1 and Container 3 cannot distinguish whether Container 2 is on

Host 1 or Host 2, as long as Container 2 keeps its overlay IP address (2.2.2.2) and the overlay

routers know how to route packets to this IP.

Existing overlay-based container networks sacrifice performance for good portability, be-

cause traffic needs to go through a deep software stack, as shown in Figure 5.4(a). The key

to achieve high performance and low overhead overlay network for containers is to avoid, in

the data-plane, any performance bottlenecks such as bridges, software routers and host OS

kernel. Given that containers are essentially processes, the communication channels provided

by host-based IPC and hardware offloaded network transports (RDMA) give us numerous

options to build a better container network. For instance, containers within a single host,

like Container 1 and Container 2 in Figure 5.4(a), can communicate via a shared-memory

channel, and overlay routers in different hosts can talk via RDMA (or DPDK) to bypass

the performance bottlenecks. Note that communication paradigms like shared-memory and

RDMA partially sacrifice the isolation of containers. However, since in most cases contain-

ers that communicate with each other are part of the same larger, distributed application

138

Overlay Router

Container1
IP: 1.1.1.1

Host1

Host Network

TCP/IP Stack

vNIC

NetAPI

Application

NetLib

Container2
IP: 2.2.2.2

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container3
IP: 3.3.3.3

Host2

Host OS

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container1
IP: 1.1.1.1

Host1

Host Network

vNIC

NetAPI

Application

NetLib

Container2
IP: 2.2.2.2

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container3
IP: 3.3.3.3

Host2

vNIC

NetAPI

Application

NetLib

PhyNIC

RDMA, DPDK, etc.

(a) Legacy Overlay Containers Networks (b) FreeFlow

Network Orchestrator

co
n

ta
in

e
r

lo
ca

ti
o

n
s

shm-obj

IPC shared-
mem space

(a) Legacy overlay container networks

Overlay Router

Container1
IP: 1.1.1.1

Host1

Host Network

TCP/IP Stack

vNIC

NetAPI

Application

NetLib

Container2
IP: 2.2.2.2

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container3
IP: 3.3.3.3

Host2

Host OS

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container1
IP: 1.1.1.1

Host1

Host Network

vNIC

NetAPI

Application

NetLib

Container2
IP: 2.2.2.2

vNIC

NetAPI

Application

NetLib

PhyNIC

Overlay Router

Container3
IP: 3.3.3.3

Host2

vNIC

NetAPI

Application

NetLib

PhyNIC

RDMA, DPDK, etc.

(a) Legacy Overlay Containers Networks (b) FreeFlow

Network Orchestrator

co
n

ta
in

e
r

lo
ca

ti
o

n
s

shm-obj

IPC shared-
mem space

(b) FreeFlow

Figure 5.4: The overall system architecture of existing overlay network and FreeFlow.
Gray boxes are building blocks of FreeFlow.

139

deployed by a single tenant. Therefore, we believe that trading off a little isolation for a

large boost in performance is acceptable. We will discuss security implications of our design

in more detail later in the chapter.

Generally, one container should decide how to communicate with another according to

the latter’s location, using the optimal transport for high networking performance. There are

two issues to realize this key idea: (1) How to discover the real-time locations of containers;

(2) How to enable containers to use different mechanisms to communicate with different

peers.

One way is to solve these two issues is to depend on containerized applications themselves:

the applications can discover and exchange location information and agree on a communi-

cation mechanism to use. This method requires applications to do extra work (and the

code can become quite complicated, as the programmer deals with different communication

methods), and hence is undesirable.

Instead, we take an alternative approach: using a (conceptually) centralized orchestrator

to decide how containers should communicate, and keeping the container locations and

the actual communication mechanisms transparent to containerized applications. Our key

insight is that since currently most of the container clusters are managed by a centralized

cluster orchestrator (e.g., Mesos, Kubernetes, and Docker Swarm)3, the information about

the location of the other endpoints can be easily obtained by querying the orchestrator.

By leveraging this information, we can choose the right communication paradigm for the

specific scenario. Furthermore, all of the complexity of communication mechanism selection

and execution can be hidden from the application by bundling it into a customized network

library supporting standard network APIs. Next, we sketch the architecture of our solution.

3They can easily be deployed on private bare-metal clusters or cloud VM clusters without any special
supports from cloud providers.

140

5.3.2 The architecture of FreeFlow

Figure 5.4(a) shows the architecture of existing overlay networking solutions for contain-

ers. Each container has a virtual NIC that is attached to the overlay router of the host via

software bridge. Different overlay routers exchange routing information and build routing ta-

bles via standard routing protocols, such as BGP. The fabric built by virtual NICs, bridges,

overlay routers, physical NICs and the host network is the actual data-plane for packets

traversing the overlay from container to another one. Inside each container, applications use

standard network APIs to access the network. The API calls are implemented in network

libraries, such as glibc for Socket API, and libibverbs for RDMA Verbs API.

FreeFlow reuses many control-plane features like IP allocation and routing implemented

by existing solutions such as Weave. However, FreeFlow modifies multiple existing modules

in the networking stack to achieve a smarter and more efficient data-plane.

Figure 5.4(b) shows the overall architecture of FreeFlow. The gray boxes in Figure 5.4(b)

represent the three key building blocks of FreeFlow: customized network library, customized

overlay router and customized orchestrator.

FreeFlow’s network library is the core component which decides which communication

paradigm to use. It supports standard network programming APIs, e.g. Socket for TCP/IP,

MPI and Verbs for RDMA, etc. It queries the network orchestrator for the location of the

container it wishes to communicate with. Whenever possible, it uses shared memory to com-

municate with the other container, bypassing the overlay router. FreeFlow’s overlay routers

are based on existing overlay routers. We add two new features: (1) the traffic between

routers and its local containers goes through shared-memory instead of software bridge; and

(2) the traffic between different routers is delivered via kernel bypassing techniques, e.g.

RDMA or DPDK, if the hardware on the hosts is capable. The network orchestrator keeps

track of the realtime locations of each container in the cluster. Our solution extends exist-

ing network orchestration solutions, and allows FreeFlow’s network library to query for the

physical deployment location of each container.

141

The architecture enables the possibility to make traffic among containers flow through

an efficient data-plane: shared-memory for intra-host cases and shared-memory plus kernel

bypassing networking for inter-host cases.

However, we have two challenges to achieve FreeFlow’s simple vision. First, the network

library of FreeFlow should naturally support multiple standard network APIs for trans-

parency and backward compatibility. Second, for inter-host cases, overlay routers should

connect the shared-memory channel with local containers and the kernel bypassing channel

between physical NICs to avoid overhead caused by memory copying. In next section, we

discuss how FreeFlow addresses these challenges.

5.4 DESIGN

This section presents the designs of FreeFlow’s major components. More details of each

component is discussed below.

5.4.1 The network library of FreeFlow

The network library of FreeFlow is the key component which makes the actual com-

munication paradigm transparent to applications in the containers. It has two goals: (1)

supporting most common network APIs, such as Socket (TCP/IP), Verbs (RDMA), MPI

(parallel computing) and so on; and (2) selecting the most efficient communication paradigm

no matter which network API is used.

One straightforward way to build the network library is to develop several independent

libraries each of which deals with a specific network API. For instance, we extend the socket

implementation of glibc for supporting Socket API and design a new libibverbs for RDMA

Verbs API. However, writing different libraries is clearly suboptimal. Instead, as shown in

Figure 5.5, we merely develop a new library for RDMA API, and use existing “translation”

libraries such as [176–179] to support socket and MPI APIs atop the RDMA API. Note that

142

RDMA Verbs Library (FreeFlow version)

Socket over RDMA

Socket API RDMA API

MPI over RDMA

MPI

Data in Shared Memory
Sharing with overlay

router (inter-host)

Sharing with other
container (intra-host)

NetLib

Figure 5.5: The internal structure of FreeFlow’s network library. The gray box is the built
by FreeFlow.

we could have made the choice the other way as well: e.g. support socket API natively and

use translation libraries to support other APIs atop it. We chose RDMA API as our primary

interface, since we believe that the message-oriented interface it supports maps naturally to

communication patterns of many containerized applications. The shared memory IPC API

also maps naturally and easily to the RDMA API.

After the network library receives calls to send data to another container, it first checks

(from the network orchestrator) the receiver container’s location. If the container is on the

same host, it will put the data into a shared memory block and send the pointer of the

memory block to the receiver’s network library module. The latter will use correct API

semantics to notify the application on the receiver container that the data is ready to read.

Otherwise, if the receiver container is on a different host, the network library will share the

data with the overlay router on the same host, and tell the overlay router send the data to

the receiver container’s IP. Then it relies on the overlay routers to deliver the data to the

destination.

5.4.2 The overlay router of FreeFlow

Overlay router has functionalities in both control-plane and data-plane. In control-plane,

it allocates IP addresses for new containers according to default or manually configured

143

Overlay Router

NetLib

Overlay Router

NetLib

(1) sharing data (2) send(dataPtr,
length, dstAddr)

(3) finding next
hop to dstAddr

(5) receive(&dataPtr,
&length, &srcAddr)

(4) RDMA Write data to
remote overlay router

Host 1 Host 2

Figure 5.6: The working flow of sending data from one host to another via overlay routers
in FreeFlow.

policies. It also exchanges routing information and compute routings to all containers in

the cluster. FreeFlow inherits the control-plane behaviors from existing overlay network

solutions.

In the data-plane, FreeFlow has its own implementation to make the data transfer more

efficient. Figure 5.6 shows an example of how overlay routers deliver data from a sender

container to a receiver container. As described in §5.4.1, the network library in the sender

container will share the data with its local overlay router (Step 1) if the former finds that

the receiver is on another host. After that, the network library will tell the overlay router to

send the data to the receiver’s IP address (Step 2). The overlay router will check its routing

table to find the next hop router towards the receiver (Step 3) and (Step 4) it writes the

data to the next hop overlay router via RDMA (or DPDK, if available). If RDMA or DPDK

are not available, normal IP communication is used. If the next hop router finds the receiver

is on its host, it will share the received data with the network library on the same host and

notify the latter that the data is ready to fetch (Step 5).

Note that in this design, there is only a one time data copy from one host to another

host, which is unavoidable. The communications between network library and overlay router

on the same host are all performed via shared-memory.

144

5.4.3 The network orchestrator

The main functionality of the network orchestrator is to maintain the real-time infor-

mation of container locations and VM locations (if needed). Since containers are typically

started and managed by a cluster orchestrator (e.g. Mesos), the container to host mapping

can be easily accessed from the cluster orchestrator. FreeFlow only adds a small module into

existing clusters orchestrator to allow the network library modules to query the container-to-

host mapping. Note that the orchestrator can either push the mappings to network libraries,

or the libraries can pull it. The two choices have different scalability implications. We are

investigating this tradeoff further.

5.5 PRELIMINARY IMPLEMENTATION

We have implemented a prototype of FreeFlow on a testbed of clustered bare-metal

machines (Intel Xeon E5-2609 2.40GHz 4-cores CPU, 67 GB RAM, 40Gbps Mellanox CX3

NIC, CentOS 7). The prototype selects the most efficient data-plane mechanism based on the

location of two containers: if the two containers are intra-host, shared-memory mechanism

will be selected for data transfer, and if the two containers are inter-host, RDMA will

be selected. We implemented the shared-memory via multiplexing IPC namespace, and

enabled containers to use RDMA by using the host mode. We evaluated our prototype

and compare it with state-of-the-art container overlay network - Weave. The results are

shown in Figure 5.7. We see that the FreeFlow prototype achieves higher throughput and

lower latency. The CPU utilization per bit/second is also significantly lower for FreeFlow

compared to that of Weave.

5.6 RELATED WORK

Inter-VM Communication: The tussle between isolation and performance is not

unique to containers. The issue has also been studied in the context of Inter-VM Com-

145

weave protoTh
ro

ug
hp

ut
 (G

b/
s)

0

50

100

weave proto

La
te

nc
y

(u
s)

0

500

1000

1500

0.37

weave protoTh
ro

ug
hp

ut
 (G

b/
s)

0

10

20

30

40

1.31

weave proto
La

te
nc

y
(u

s)
0

500

1000

1500

1.33

(a) Intra-host

(b) Inter-host

Figure 5.7: Compare FreeFlow prototype with weave.

munication. For example, NetVM[158] provides a shared-memory framework that exploits

the DPDK library to provide zero-copy delivery between VMs. Netmap[155] and VALE[180]

(which is also used by ClickOS[181]) are sharing buffers and metadata between kernel and

userspace to eliminate memory copies. However, these systems cannot be directly used in a

containerized setting. For example, the NetVM work is applicable only to intra-host setting,

constrained by the possibility of shared memory. It does not handle inter-host communica-

tion. Similarly, the Netmap and VALE solutions are sub-optimal when the VMs/containers

are located on the same physical machine: shared memory provides a much more efficient

communication mechanism.

RDMA and HPC: RDMA originated from the HPC world, in the form of InfiniBand.

The HPC community proposed RDMA enablement solutions for virtualization [182] and

containerization [183] technologies. These solutions are addressing the challenges in exposing

RDMA interfaces to virtualized/containerized applications, treating each VM/container as

if it resides on a different node.

146

Table 5.1: Placement and data-motion optimization in FreeFlow

Requirements Placement Data Motion

- fast and high-
performance container
networking

- abstracting container place-
ment and networking capabili-
ties per location
- transparent placement update

- optimizing data-motion based on
location
- opportunistic kernel bypassing
based on hardware capabilities

The HPC community has also been using shared-memory based communication [184–186]

for intra-node communication. These solutions are targeting MPI processes residing on

a shared non-containerized, non-virtualized machine. They do not attempt to pierce the

virtualization/containerization for additional performance.

The same concepts described for FreeFlow can also be applicable for MPI run-time li-

braries. This can be achieved either by layering the MPI implementation on top of FreeFlow,

or by implementing a similar solution in the MPI run-time library.

General improvements: A significant amount of work has been spent attempting to

improve the performance of the networking stack [178,187,188] in various scenarios. However,

none of them were aiming at optimizing the performance of networking communications

between co-residing containers. While the performance of intra-node communication for

containers was identified as relevant before [189], to our knowledge there was no attempt at

addressing this challenge.

5.7 CONCLUSION AND DISCUSSION

In this chapter, we discussed how to build a network solution for containers, named

FreeFlow. It offers high performance, good portability and acceptable isolation. We sketched

the design of FreeFlow which enables containers to communicate with the most efficient way

according to their locations and hardware capabilities and keeps the decisions transparent

to applications in containers. Table 5.1 summarizes the requirements, and placement and

data-motion optimizations used in FreeFlow.

147

We are currently building a production version of FreeFlow, and we list a few important

considerations below:

• Live migration: FreeFlow could be a key enabler for containers to achieve both high-

performance and capability for live migration. It will require the network library to

interact with the orchestrator more frequently, and may require maintaining additional

per-connection state within the library. We are currently investigating this further.

• Security and middle-box: One valid concern for FreeFlow is how legacy middle-

boxes will work for communication via shared-memory or RDMA, and whether security

will be broken by using shared-memory or RDMA. We do not yet have complete answer

to this issue. We envision that for security, FreeFlow would only allow shared-memory

among trusted containers, for example, container belongs to the same vendor (e.g.,

running spark or storm). We are investigating how best to support existing middle-

boxes (e.g. IDS/IPS) under FreeFlow.

• VM environment: So far our evaluation and prototype is based on containers

running on bare-metal. But our design easily generalizes to containers deployed in-

side VMs. Some issues, such as efficient inter-VM communication (perhaps using

NetVM [158]) need to be addressed, but we believe that it can be easily done within

the context of FreeFlow design.

• Scalability of FreeFlow : Scalability of FreeFlow is a major focus of our ongoing

work. The design proposed in §5.4 has a few potential scalability challenges. For

example, overlay routers in FreeFlow may end up having to maintain per-flow state if

they communicate with co-located containers using shared memory and with remote

routers using RDMA – if done näively, the router may end up maintaining one queue

pair for each pair of communicating containers. To solve this problem, we need to to

multiplex a single queue pair on overlay routers for multiple container sessions.

148

CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 SUMMARY

In this thesis, we have shown how latency-driven designs for placement and data-motion

can be leveraged to build production-quality interactive applications at a global scale, while

also being able to address myriad challenges on heterogeneity, dynamism, state, and avail-

ability. In doing so, we have applied a latency-driven approach at all layers of storage,

processing, and networking, developing four interactive systems.

Our first contribution, Ambry (a collaboration with LinkedIn) is a geo-distributed storage

system. Ambry is the mainstream production system for storing LinkedIn’s media content

across the globe. Ambry’s main goal is to minimize the user-perceived latency of upload

and viewing content while using resources efficiently. Ambry uses a combination of locality-

aware storage, background replication, load balancing and other techniques to place data in

multiple datacenters around the world, while also minimizing the cross-datacenter traffic.

Our second system, Samza (a collaboration with LinkedIn) is a stream processing system

capable of handling a large amount of state along with processing. Samza is an opensource

project adapted by many companies, including LinkedIn, Uber, Netflix, etc. Samza aims

at processing streams of events and generating actions/outputs, at a global scale, which in

turn requires stateful processing (e.g., aggregations, averages, or joins) at a massive scale.

We leverage data locality, and tiered storage along with background mechanism to store and

replicate state with low latency.

Our third system, Steel (a collaboration with Microsoft), extends the traditional cloud-

only computation to the emerging edge computing environment. Steel leverages the locality

and proximity of edge devices to data sources towards building interactive applications (in

a placement optimizer), along with a load-aware background edge-cloud networking mecha-

nism (in a communication optimizer).

149

Finally, our fourth contribution, FreeFlow (a collaboration with Microsoft), is a container

networking technology aiming at providing fast high throughput communication. Free Flow

uses container locations, hardware capabilities, and opportunistic bypassing to minimize the

data movement, and in turn the networking latency.

Overall, we have shown that with latency-driven designs in placement and data-motion,

such as leveraging locality, background processing, tiered data access, partitioning and par-

allelism, opportunistic processing, load balancing and scaling, it is practical to develop large-

scale interactive systems with hundreds of millions of users around the world. Furthermore,

this latency-driven approach can be used at all layers of storage, processing, and networking.

6.2 FUTURE WORK

We have studied how to build interactive systems at a global scale in a number of pro-

duction systems. We suggest several directions for future work related to this thesis.

6.2.1 Extending Global Interactivity

This thesis has shown how a latency-driven approach can be used at all layers of storage,

processing, and networking towards reaching interactivity. This work has focused on each

layer independently. An interesting future direction would be to study a more holistic and

cross-layer approach. There are potential benefits of having a integrated design, e.g., the

networking mechanism that has insight into the replication mechanism of the storage system

can optimize towards it. The main challenge is finding the right level of sharing across layers

such that each system is still operated and managed independently.

An extension direction to this thesis is reaching the perception of one global system

operating seamlessly across the globe. While this thesis has focused on interactivity and

latency of individual components/systems to build such a system, there is a need for a

general and comprehensive view of this problem from other angles such as fault-tolerance and

150

continued availability. Achieving this unified global environment would require integrating

existing large-scale frameworks and building new ones that are tailored for the access patterns

of global applications. A first step toward this goal would be defining and analyzing the

design patterns and best practices for latency-driven designs.

This work has focused on latency as the metric of interactiveness. However, other metrics

can be used as well, e.g., Quality of Experience (QoE) that focuses on users to derive

priorities of task. Additionally, with the current advancements in Artificial Intelligence

(AI), an interesting next step would be to try and leverage AI toward building adaptive

versions of the solutions discussed in this thesis.

6.2.2 Interactive Storage

The storage system design in this work (Ambry) focused on immutable objects. The

immutable nature simplifies many requirements on consistency and enables lazy techniques

like background replication. A future direction would be to employ a latency-driven approach

for handling inconsistencies in mutable objects.

Not all objects are equally latency-sensitive, e.g., older objects become less popular and

important. Another research direction is to create hybrid sensitivity-aware approaches for

both sensitive and non-sensitive objects, where resources are better utilized. Smart and

dynamic use of compression, erasure coding, and compaction along with reducing replication

factor can be employed to reduce the resource usage of non-sensitive objects.

6.2.3 Interactive Processing

Similar to storage, not all paths in a job are equally critical (or influential on latency).

This thesis has used this concept by moving most non-critical computation out of the main

processing path. However, this has been done in per-system fashion. A thought provoking

direction would be to generalize these system-tailored techniques to fit many systems. Ideally,

151

developers should be able to indicate sensitive and non-sensitive parts of a job/framework,

and the underlying system should transparently optimize the sensitive paths.

Given the many sources of dynamism and heterogeneity in the cloud, and even more in

the edge, a general idealistic direction is to move toward an auto-pilot system coping with

changes automatically and dynamically. A well-desired example feature is adaptive scaling

of resources. Despite the many research solutions in this area [84, 190–192], it still remains

a fairly uncharted territory, especially when being solved in a reliable, low-overhead, and

practical manner. There is an even greater need for this feature in the unreliable, varied

bandwidth, and widely heterogeneous edge computing environment.

Another potential future direction is to study functional parallelism. Samza is a data

parallel system, i.e., data is partitioned and processed in parallel, which is a great fit for its

text-based workloads. An alternative option is functional parallelism, i.e., partitioning the

processing across machines. Studying the trade-off of functional parallelism vs. data paral-

lelism especially in the context of other workloads (e.g., media) is an interesting direction,

particularly, given that the latency-consistency trade-off can have a different optimal result

based on the workload (e.g., in case of a media workload).

6.2.4 Interactive Networking Mechanism

This thesis optimizes networking in a reactive manner, i.e., after a job’s container place-

ment is determined. An interesting direction would be to make this proactive. The network-

ing layer can leverage its global view of all data flows along with historical application runs

towards a better placement, e.g., placing a pair of heavily communicating containers in the

same physical machine.

152

REFERENCES

[1] “The real cost of slow time vs downtime,” http://www.webperformancetoday.com/
2014/11/12/real-cost-slow-time-vs-downtime-slides/.

[2] Oracle, “How does load speed affect conversion rate?” https://blogs.oracle.com/
marketingcloud/how-does-load-speed-affect-conversion-rate, 2016 (accessed Mar,
2018).

[3] Skilled, “Why faster page load time is better for your website,” 2016 (accessed Mar,
2018).

[4] S. E. Land, “The need for speed: 7 observations on the impact of page speed to the
future of local mobile search,” 2016 (accessed Mar, 2018).

[5] Kissmetrics, “How loading time affects your bottom line,” 2011 (accessed Mar, 2018).

[6] D. F. Galletta, R. Henry, S. McCoy, and P. Polak, “Web site delays: How tolerant are
users?” Journal of the Association for Information Systems, vol. 5, no. 1, p. 1, 2004.

[7] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous” warehouse-scale
computers: A performance opportunity,” IEEE Computer Architecture Letters, vol. 10,
no. 2, pp. 29–32, 2011.

[8] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity
and dynamicity of clouds at scale: Google trace analysis,” in Proceedings of the Third
ACM Symposium on Cloud Computing. ACM, 2012, p. 7.

[9] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for heterogeneous
datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 77–88.

[10] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang, “Cher-
rypick: Adaptively unearthing the best cloud configurations for big data analytics.”
in NSDI, vol. 2, 2017, pp. 4–2.

[11] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services,” Acm Sigact News, vol. 33, no. 2, pp. 51–59,
2002.

[12] D. Abadi, “Consistency tradeoffs in modern distributed database system design: Cap
is only part of the story,” Computer, vol. 45, no. 2, pp. 37–42, 2012.

[13] S. A. Noghabi, S. Subramanian, P. Narayanan, S. Narayanan, G. Holla, M. Zadeh,
T. Li, I. Gupta, and R. H. Campbell, “Ambry: Linkedin’s scalable geo-distributed
object store,” in Proc. SIGMOD. ACM, 2016.

[14] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and
R. H. Campbell, “Streamz: Stateful stream processing at scale,” Proc. VLDB, 2017.

153

[15] S. A. Noghabi, J. Kolb, P. Bodik, and E. Cuervo, “Steel: Simplified development and
deployment of edge-cloud applications,” in Proc. HotCloud. USENIX, 2018.

[16] S. A. Noghabi, J. Kolb, P. Bodik, E. Cuervo, I. Gupta, and R. H. Campbell, “Steel:
Simplified management and optimization of edge-cloud iot applications,” (in progress)
to be submitted to ACM Symposium on Cloud Computing (SoCC), 2018.

[17] Docker, “Docker community passes two billion pulls,” https://blog.docker.com/2016/
02/docker-hub-two-billion-pulls/, 2016.

[18] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar, “Freeflow: High
performance container networking,” in Proc. HotNet. ACM, 2016.

[19] “Docker,” http://www.docker.com/.

[20] “Kubernetes,” http://kubernetes.io/.

[21] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing in
the data center.” in Proc. USENIX NSDI, 2011.

[22] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar et al., “Apache
hadoop YARN: Yet Another Resource Negotiator,” in Proc. SOSP. ACM, 2013, p. 5.

[23] “CoreOS,” https://coreos.com/.

[24] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system,”
in Proceeding of the ACM SIGOPS Operating Systems Review (OSR), no. 2, 2010.

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly available
key-value store,” in Proceeding of the ACM SIGOPS Operating Systems Review (OSR),
2007.

[26] A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of databases
for big data analytics-classification, characteristics and comparison,” arXiv preprint
arXiv:1307.0191, 2013.

[27] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H. Abu-
Libdeh, “Consistency-based service level agreements for cloud storage,” in Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 2013,
pp. 309–324.

[28] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured
data,” ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, 2008.

154

[29] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser et al., “Spanner: Google’s globally-distributed database,” in
Proceeding of the USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2012.

[30] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, A. Ja-
cobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts: Yahoo!’s hosted data serving
platform,” In Proceeding of the Very Large Data Bases Endowment (VLDB), vol. 1,
no. 2, 2008.

[31] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman et al., “On brewing fresh
espresso: Linkedin’s distributed data serving platform,” in Proc. SIGMOD. ACM,
2013, pp. 1135–1146.

[32] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency rationing in the
cloud: pay only when it matters,” Proceedings of the VLDB Endowment, vol. 2, no. 1,
pp. 253–264, 2009.

[33] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache
flink: Stream and batch processing in a single engine,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, vol. 36, no. 4, 2015.

[34] Apache, “Flink,” https://flink.apache.org.

[35] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman et al., “Millwheel:
fault-tolerant stream processing at internet scale,” Proc. VLDB, pp. 1033–1044, 2013.

[36] M. Zaharia, T. Das, H. Li et al., “Discretized streams: an efficient and fault-tolerant
model for stream processing on large clusters,” in Proc. HotCloud, 2012, pp. 10–10.

[37] “Trident,” http://storm.apache.org/Trident-tutorial.html.

[38] Apache, “Hadoop,” http://hadoop.apache.org/.

[39] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: cluster
computing with working sets.” in Proc. HotCloud, 2010, p. 95.

[40] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino, “Apache
tez: A unifying framework for modeling and building data processing applications,” in
Proceedings of the 2015 ACM SIGMOD international conference on Management of
Data. ACM, 2015, pp. 1357–1369.

[41] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka et al., “Hive: A warehousing
solution over a map-reduce framework,” Proc. VLDB, vol. 2, no. 2, pp. 1626–1629,
2009.

[42] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: a not-so-
foreign language for data processing,” in Proc. SIGMOD. ACM, 2008, pp. 1099–1110.

155

[43] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File
System,” in Proceeding of the IEEE Mass Storage Systems and Technologies (MSST),
2010.

[44] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design and imple-
mentation of the Sun network file system,” in Proceeding of the USENIX Summer
Technical Conference, 1985.

[45] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in Proceeding
of the ACM SIGOPS Operating Systems Review (OSR), 2003.

[46] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. Rosenthal, and
F. D. Smith, “Andrew: A distributed personal computing environment,” Communi-
cations of the ACM (CACM), vol. 29, no. 3, 1986.

[47] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph: A scalable,
high-performance distributed file system,” in Proceeding of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2006.

[48] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a needle in Haystack:
Facebook’s photo storage.” in Proceeding of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[49] Hortonworks, “Ozone: An object store in HDFS,” http://hortonworks.com/blog/
ozone-object-store-hdfs/, 2014 (accessed Mar, 2016).

[50] A. Auradkar, C. Botev, S. Das, D. De Maagd, A. Feinberg, P. Ganti, L. Gao, B. Ghosh,
K. Gopalakrishna et al., “Data infrastructure at LinkedIn,” in Proceeding of the IEEE
International Conference on Data Engineering (ICDE), 2012.

[51] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar, V. Sivaku-
mar et al., “F4: Facebook’s warm blob storage system,” in Proceeding of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[52] Twitter, “Blobstore: Twitter’s in-house photo storage system,” https://blog.twitter.
com/2012/blobstore-twitter-s-in-house-photo-storage-system, 2011 (accessed Mar,
2016).

[53] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination
for internet-scale systems.” in Proceeding of the USENIX Annual Technical Conference
(ATC), 2010.

[54] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for Internet applications,” in Proceeding of the
ACM Special Interest Group on Data Communication (SIGCOMM), 2001.

[55] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “CRUSH: Controlled, scal-
able, decentralized placement of replicated data,” in Proceeding of the IEEE High
Performance Computing, Networking, Storage and Analysis (SC), 2006.

156

[56] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging system for
log processing,” in Proceeding of the USENIX Networking Meets Databases Workshop
(NetDB), 2011.

[57] D. Stancevic, “Zero copy I: User-mode perspective,” Linux Journal, vol. 2003, no. 105,
2003.

[58] “Bonnie++,” http://www.coker.com.au/bonnie++/, 2001 (accessed Mar, 2016).

[59] M. Rosenblum and J. K. Ousterhout, “The design and implementation of a log-
structured file system,” ACM Transactions on Computer Systems (TOCS), vol. 10,
no. 1, 1992.

[60] M. Seltzer, K. Bostic, M. K. Mckusick, and C. Staelin, “An implementation of a
log-structured file system for UNIX,” in Proceeding of the USENIX Winter Technical
Conference, 1993.

[61] G. R. Ganger and M. F. Kaashoek, “Embedded inodes and explicit grouping: Exploit-
ing disk bandwidth for small files.” in Proceeding of the USENIX Annual Technical
Conference (ATC), 1997.

[62] Z. Zhang and K. Ghose, “hFS: A hybrid file system prototype for improving small
file and metadata performance,” in Proceeding of the ACM European Conference on
Computer Systems (EuroSys), 2007.

[63] S. J. Mullender and A. S. Tanenbaum, “Immediate files,” Software: Practice and
Experience, vol. 14, no. 4, 1984.

[64] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “Indexfs: Scaling file system metadata
performance with stateless caching and bulk insertion,” in Proceeding of the IEEE
High Performance Computing, Networking, Storage and Analysis (SC), 2014.

[65] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual disks,” in Proceeding of
the ACM Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 1996.

[66] Oracle, “Database securefiles and large objects developer’s guide,” https://docs.oracle.
com/database/121/ADLOB/toc.htm, 2011(accessed Mar, 2016).

[67] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,
S. Srivastav, J. Wu et al., “Windows Azure storage: A highly available cloud storage
service with strong consistency,” in Proceeding of the ACM Symposium on Operating
Systems Principles (SOSP), 2011.

[68] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of real-time stream
processing,” SIGMOD Record, vol. 34, no. 4, pp. 42–47, 2005.

[69] N. Marz and J. Warren, Big Data: Principles and Best Practices of Scalable Realtime
Data Systems, 1st ed. Manning Publications Co., 2015.

157

[70] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”
CACM, vol. 51, no. 1, pp. 107–113, 2008.

[71] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel et al., “Storm@ twit-
ter,” in Proc. SIGMOD, 2014, pp. 147–156.

[72] S. Kulkarni, N. Bhagat, M. Fu et al., “Twitter heron: Stream processing at scale,” in
Proc. SIGMOD, 2015, pp. 239–250.

[73] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream computing
platform,” in Prod. ICDM Workshop. IEEE, 2010, pp. 170–177.

[74] T. Akidau, R. Bradshaw, C. Chambers et al., “The dataflow model: a practical ap-
proach to balancing correctness, latency, and cost in massive-scale, unbounded, out-
of-order data processing,” Proc. VLDB, vol. 8, no. 12, pp. 1792–1803, 2015.

[75] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch, “Integrating
scale out and fault tolerance in stream processing using operator state management,”
in Proc. SIGMOD. ACM, 2013, pp. 725–736.

[76] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell, “Zorro: Zero-cost reactive
failure recovery in distributed graph processing,” in Proc. SoCC. ACM, 2015, pp.
195–208.

[77] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack et al., “The
design of the Borealis stream processing engine.” in Proc. CIDR, 2005, pp. 277–289.

[78] Microsoft, “Azure event hub,” https://azure.microsoft.com/en-us/services/
event-hubs/.

[79] Amazon, “Kinesis,” https://aws.amazon.com/kinesis/.

[80] “Databus,” https://github.com/linkedin/databus.

[81] “Powered by samza,” https://cwiki.apache.org/confluence/display/SAMZA/
Powered+By.

[82] Apache, “Kafaka - powered by,” https://cwiki.apache.org/confluence/display/
KAFKA/Powered+By.

[83] Oracle, “Package java.util.stream,” https://docs.oracle.com/javase/8/docs/api/java/
util/stream/package-summary.html.

[84] L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems to scale-in
and scale-out on-demand,” in Proc. IC2E, 2016, pp. 22–31.

[85] “RocksDB,” http://rocksdb.org.

[86] L. Engineering, “Benchmarking apache kafka: 2 million writes per second (on three
cheap machines),” https://engineering.linkedin.com/kafka.

158

[87] T. Rabl, S. Gómez-Villamor, M. Sadoghi et al., “Solving big data challenges for en-
terprise application performance management,” Proc. VLDB, vol. 5, no. 12, pp. 1724–
1735, 2012.

[88] E. P. Corporation, “Benchmarking top nosql databases,” Technical Report, p. 19, 2015.

[89] A. AWS, “Lambda,” https://aws.amazon.com/lambda/.

[90] Apache, “Beam,” http://beam.incubator.apache.org.

[91] Amazon, “DynamoDB streams,” http://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/Streams.html.

[92] P. Hintjens, ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc., 2013.

[93] “MongoDB,” https://www.mongodb.com.

[94] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch, “Making state
explicit for imperative big data processing,” in Proc. ATC. USENIX, 2014, pp. 49–
60.

[95] T. A. S. Foundation, “Apache HBase,” http://hbase.apache.org/.

[96] MySQL, “Mysql,” http://www.mysql.com.

[97] Couchbase, “Couchbase,” http://www.couchbase.com.

[98] S. Sanfilippo, “Redis,” http://redis.io.

[99] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein et al., “Mapreduce online.” in Proc.
NSDI, 2010, pp. 20–25.

[100] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez,
“Streamcloud: An elastic and scalable data streaming system,” TPDS, vol. 23, no. 12,
pp. 2351–2365, 2012.

[101] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel et al., “S-store: Streaming
meets transaction processing,” Proc. VLDB, pp. 2134–2145, 2015.

[102] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel et al., “High-availability algo-
rithms for distributed stream processing,” in Proc. ICDE’05, 2005, pp. 779–790.

[103] Y. Gu, Z. Zhang, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu, “An empirical study of
high availability in stream processing systems,” in Proc. Middleware, 2009, p. 23.

[104] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou, “Streamscope: continuous
reliable distributed processing of big data streams,” in Proc. NSDI, 2016, pp. 439–454.

[105] G. Jacques-Silva, F. Zheng, D. Debrunner, K.-L. Wu, V. Dogaru et al., “Consistent
regions: Guaranteed tuple processing in ibm streams,” Proc. VLDB, vol. 9, no. 13, pp.
1341–1352, 2016.

159

[106] R. Wagle, H. Andrade, K. Hildrum, C. Venkatramani et al., “Distributed middleware
reliability and fault tolerance support in system s,” in Proc. DEBS, 2011, pp. 335–346.

[107] K. Chandy and L. Lamport, “Distributed snapshots: Determining global states of
distributed systems,” TOCS, pp. 63–75, 1985.

[108] Z. Sebepou and K. Magoutis, “Cec: Continuous eventual checkpointing for data stream
processing operators,” in Proc. IEEE/IFIP DSN, 2011, pp. 145–156.

[109] R. Fernandez, P. Pietzuch et al., “Liquid: Unifying nearline and offline big data inte-
gration,” in Proc. CIDR, p. 8.

[110] B. Liu, Y. Zhu, and E. Rundensteiner, “Run-time operator state spilling for memory
intensive long-running queries,” in Proc. SIGMOD. ACM, 2006, pp. 347–358.

[111] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King et al., “SPC: a distributed,
scalable platform for data mining,” in Proc. IWMSSP. ACM, 2006, pp. 27–37.

[112] “Gartner Says 4.9 Billion Connected ”Things” Will Be in Use,” http://www.gartner.
com/newsroom/id/2905717, accessed: 02/2018.

[113] D. Evans, “The Internet of Things. How the next evolution of the Internet is changing
everything,” Tech. Rep., 2011.

[114] “Azure Internet of Things,” https://azure.microsoft.com/en-us/suites/iot-suite/, ac-
cessed: 02/2018.

[115] “Google Cloud IoT Platform,” https://cloud.google.com/iot/platform, accessed:
02/2018.

[116] “AWS Internet of Things,” https://aws.amazon.com/iot/, accessed: 02/2018.

[117] “C3 Internet of Things,” https://c3iot.com/, accessed: 02/2018.

[118] “Azure Certified for IoT device catalog - Preview,” https://catalog.azureiotsuite.com/,
accessed: 08/2017.

[119] “Predictive maintenance preconfigured solution walkthrough,” https://docs.microsoft.
com/en-us/azure/iot-suite/iot-suite-predictive-walkthrough, accessed: 08/2017.

[120] “Google Cloud IoT Solutions,” https://cloud.google.com/solutions/iot/, accessed:
02/2018.

[121] “Deploy Azure Function as an IoT Edge module - preview,” https://docs.microsoft.
com/en-us/azure/iot-edge/tutorial-deploy-function, accessed: 08/2017.

[122] “Azure IoT Edge,” https://azure.microsoft.com/en-us/services/iot-edge/, accessed:
08/2017.

160

[123] C. Pahl and B. Lee, “Containers and clusters for edge cloud architectures–a technology
review,” in Future Internet of Things and Cloud (FiCloud), 2015 3rd International
Conference on. IEEE, 2015, pp. 379–386.

[124] B. I. Ismail, E. M. Goortani, M. B. Ab Karim, W. M. Tat, S. Setapa, J. Y. Luke,
and O. H. Hoe, “Evaluation of docker as edge computing platform,” in Open Systems
(ICOS), 2015 IEEE Confernece on. IEEE, 2015, pp. 130–135.

[125] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satyanarayanan, “Adap-
tive vm handoff across cloudlets,” Technical Report CMU-CS-15–113, CMU School of
Computer Science, 2015.

[126] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran, “Migcep: opera-
tor migration for mobility driven distributed complex event processing,” in Proceedings
of the 7th ACM international conference on Distributed event-based systems. ACM,
2013, pp. 183–194.

[127] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic service
migration in mobile edge-clouds,” in IFIP Networking Conference (IFIP Networking),
2015. IEEE, 2015, pp. 1–9.

[128] “AWS Greengrass,” https://aws.amazon.com/greengrass/, accessed: 08/2017.

[129] “Datadog – Modern monitoring & analytics,” https://www.datadoghq.com/, accessed:
08/2017.

[130] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W. Ong,
B. Schaller, P. Shan, B. Viscomi et al., “Canopy: An end-to-end performance tracing
and analysis system,” in Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017, pp. 34–50.

[131] “Stackdriver Monitoring,” https://cloud.google.com/monitoring/, accessed: 08/2017.

[132] “Amazon CloudWatch,” https://aws.amazon.com/cloudwatch/, accessed: 08/2017.

[133] “Applciation Insights,” https://azure.microsoft.com/en-us/services/
application-insights/, accessed: 08/2017.

[134] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-
scale cluster management at google with borg,” in Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015, p. 18.

[135] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das, “Modeling and
synthesizing task placement constraints in google compute clusters,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 3.

[136] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger, “3sigma:
distribution-based cluster scheduling for runtime uncertainty,” in Proceedings of the
Thirteenth EuroSys Conference. ACM, 2018, p. 2.

161

[137] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha, A. Kapoor,
M. Sudarshan, and S. Stratman, “FarmBeats: An iot platform for data-driven agri-
culture,” in NSDI, 2017, pp. 515–529.

[138] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and K. Ha, “The role
of cloudlets in hostile environments,” IEEE Pervasive Computing, vol. 12, no. 4, pp.
40–49, 2013.

[139] “What is Azure IoT Suite,” https://docs.microsoft.com/en-us/azure/iot-suite/
iot-suite-what-are-preconfigured-solutions, accessed: 08/2017.

[140] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe, “Mobile
fog: A programming model for large-scale applications on the internet of things,”
in Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing.
ACM, 2013, pp. 15–20.

[141] “Multi-access Edge Computing,” http://www.etsi.org/technologies-clusters/
technologies/multi-access-edge-computing, accessed: 08/2017.

[142] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin, “Orleans: cloud
computing for everyone,” in Proceedings of the 2nd ACM Symposium on Cloud Com-
puting. ACM, 2011, p. 16.

[143] B. Chandramouli, J. Claessens, S. Nath, I. Santos, and W. Zhou, “Race: Real-time
applications over cloud-edge,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM, 2012, pp. 625–628.

[144] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and
B. Amos, “Edge analytics in the internet of things,” IEEE Pervasive Computing,
vol. 14, no. 2, pp. 24–31, 2015.

[145] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and E. Rivière, “On
using micro-clouds to deliver the fog,” IEEE Internet Computing, vol. 21, no. 2, pp.
8–15, 2017.

[146] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE pervasive Computing, vol. 8, no. 4, 2009.

[147] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. S. Rosing, J. Wawrzynek, D. Wessel,
J. Rabaey, K. Pister, A. Sangiovanni-Vincentelli, S. A. Seshia et al., “The swarm at
the edge of the cloud,” IEEE Design & Test, vol. 31, no. 3, pp. 8–20, 2014.

[148] K. Ha and M. Satyanarayanan, “Openstack++ for cloudlet deployment,” School of
Computer Science Carnegie Mellon University Pittsburgh, 2015.

[149] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing:
A key technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

162

[150] K. Bhardwaj, S. Sreepathy, A. Gavrilovska, and K. Schwan, “Ecc: Edge cloud com-
posites,” in Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014
2nd IEEE International Conference on. IEEE, 2014, pp. 38–47.

[151] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, “Maui: making smartphones last longer with code offload,” in Proceedings of
the 8th international conference on Mobile systems, applications, and services. ACM,
2010, pp. 49–62.

[152] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution
between mobile device and cloud,” in Proceedings of the sixth conference on Computer
systems. ACM, 2011, pp. 301–314.

[153] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing the state of mo-
bile cloud computing,” in Proceedings of the third ACM workshop on Mobile cloud
computing and services. ACM, 2012, pp. 21–28.

[154] Y. Zhu, H. Eran, D. Firestone, C. Guo et al., “Congestion control for large-scale RDMA
deployments,” in ACM SIGCOMM, vol. 45, no. 4, 2015.

[155] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in USENIX Security
Symposium, 2012.

[156] “Data plane development kit (DPDK),” http://dpdk.org/, accessed 2016.

[157] Mellanox, “RDMA aware networks programming user manual,” http://www.mellanox.
com/, Rev 1.7.

[158] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: high performance and flexi-
ble networking using virtualization on commodity platforms,” IEEE Transactions on
Network and Service Management, vol. 12, no. 1, 2015.

[159] P. S. I. Group, “Single root I/O virtualization,” http://pcisig.com/specifications/iov/
single root/, accessed 2016.

[160] “Kubernetes,” http://kubernetes.io/.

[161] “CoreOS,” https://coreos.com/, accessed 2016.

[162] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with varys,” in
ACM SIGCOMM, 2014.

[163] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing data
transfers in computer clusters with orchestra,” in ACM SIGCOMM, 2011.

[164] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris, “Reining in the outliers in map-reduce clusters using mantri.” in USENIX
OSDI, 2010.

163

[165] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior knowledge,”
in ACM SIGCOMM, 2015.

[166] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm: fast remote mem-
ory,” in USENIX NSDI, 2014.

[167] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient distributed
machine learning with the parameter server,” in Advances in Neural Information Pro-
cessing Systems, 2014.

[168] Docker, “Devops page on docker website,” https://www.docker.com/use-cases/devops,
accessed 2016.

[169] Iron.io, “Docker in production – what we’ve learned launching over 300 million con-
tainers,” https://www.iron.io/docker-in-production-what-weve-learned/, 2014.

[170] Datadog, “8 suprising facts about real Docker adoption,” https://www.datadoghq.
com/docker-adoption/, 2016.

[171] FreeBDS, “chroot – FreeBDS Man Pages,” http://www.freebsd.org/cgi/man.cgi,
FreeBDS 10.3 Rel.

[172] D. Merkel, “Docker: Lightweight linux containers for consistent development and de-
ployment,” Linux J., vol. 2014, no. 239, 2014.

[173] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire et al., “Jitsu: Just-in-
time summoning of unikernels,” in USENIX NSDI), 2015.

[174] “Weave Net,” https://www.weave.works/, accessed 2016.

[175] “Project calico,” https://www.projectcalico.org/.

[176] S. Hefty, “Rsockets,” in OpenFabris International Workshop, 2012.

[177] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D. K. Panda,
“Sockets direct protocol over infiniband in clusters: is it beneficial?” in IEEE ISPASS,
2004.

[178] M. Fox, C. Kassimis, and J. Stevens, “IBM’s Shared Memory Communications over
RDMA (SMC-R) Protocol,” RFC 7609 (Informational), Internet Engineering Task
Force, 2015.

[179] J. Liu, J. Wu, and D. K. Panda, “High performance RDMA-based MPI implementation
over infiniband,” International Journal of Parallel Programming, vol. 32, no. 3, 2004.

[180] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,” in ACM
CoNEXT, 2012.

[181] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici,
“Clickos and the art of network function virtualization,” in USENIX NSDI, 2014.

164

[182] A. Ranadive and B. Davda, “Toward a paravirtual vRDMA device for VMware ESXi
guests,” VMware Technical Journal, Winter 2012, vol. 1, no. 2, 2012.

[183] L. Liss, “Containing RDMA and high performance computing,” in ContainerCon,
2015.

[184] B. Goglin and S. Moreaud, “Knem: A generic and scalable kernel-assisted intra-
node MPI communication framework,” Journal of Parallel and Distributed Computing,
vol. 73, no. 2, 2013.

[185] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. D. Gropp,
V. Kale, and R. Thakur, “Mpi + mpi: A new hybrid approach to parallel programming
with mpi plus shared memory,” Computing, vol. 95, 2013.

[186] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel programming
on clusters of multi-core smp nodes,” in Euromicro International Conference on Par-
allel, Distributed and Network-based Processing, 2009.

[187] J. Brandeburg, “Reducing network latency in linux,” in Linux Plumbers Conference,
2012.

[188] J. Wang, K.-L. Wright, and K. Gopalan, “Xenloop: A transparent high performance
inter-vm network loopback,” in ACM HPDC, 2008.

[189] J. Claassen, R. Koning, and P. Grosso, “Linux containers networking: Performance
and scalability of kernel modules,” in IEEE/IFIP NOMS, 2016.

[190] S. A. Noghabi, “Auto-scaling containers in samza,” https://issues.apache.org/jira/
browse/SAMZA-719.

[191] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for data stream
processing,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1447–1463, 2014.

[192] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch, “Integrating
scale out and fault tolerance in stream processing using operator state management,”
in Proceedings of the 2013 ACM SIGMOD international conference on Management
of data. ACM, 2013, pp. 725–736.

165

