
© 2018 Mainak Ghosh

EFFICIENT DATA RECONFIGURATION FOR TODAY’S CLOUD SYSTEMS

BY

MAINAK GHOSH

DISSERTATION
Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the

University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Indranil Gupta, Chair
Professor Nitin Vaidya
Professor Luke Olson
Assistant Professor Aaron Elmore

Abstract

Performance of big data systems largely relies on efficient data reconfiguration techniques.

Data reconfiguration operations deal with changing configuration parameters that affect data

layout in a system. They could be user-initiated like changing shard key, block size in NoSQL

databases, or system-initiated like changing replication in distributed interactive analytics

engine. Current data reconfiguration schemes are heuristics at best and often do not scale

well as data volume grows. As a result, system performance suffers.

In this thesis, we show that data reconfiguration mechanisms can be done in the background

by using new optimal or near-optimal algorithms coupling them with performant system de-

signs. We explore four different data reconfiguration operations affecting three popular types

of systems – storage, real-time analytics and batch analytics. In NoSQL databases (storage),

we explore new strategies for changing table-level configuration and for compaction as they

improve read/write latencies. In distributed interactive analytics engines, a good replication

algorithm can save costs by judiciously using memory that is sufficient to provide the high-

est throughput and low latency for queries. Finally, in batch processing systems, we explore

prefetching and caching strategies that can improve the number of production jobs meeting

their SLOs. All these operations happen in the background without affecting the fast path.

Our contributions in each of the problems are two-fold – 1) we model the problem and

design algorithms inspired from well-known theoretical abstractions, 2) we design and build

a system on top of popular open source systems used in companies today. Finally, using

real-life workloads, we evaluate the efficacy of our solutions. Morphus and Parqua provide

several 9s of availability while changing table level configuration parameters in databases.

By halving memory usage in distributed interactive analytics engine, Getafix reduces cost of

deploying the system by 10 million dollars annually and improves query throughput. We are

the first to model the problem of compaction and provide formal bounds on their runtime.

Finally, NetCachier helps 30% more production jobs to meet their SLOs compared to existing

state-of-the-art.

ii

I dedicate my thesis to my family

iii

Acknowledgments

At the very start, I would like to thank my advisor, Professor Indranil Gupta (Indy). Over

the years, he has advised me on challenging problems to work on, books to read, food to try,

travel destinations. The fact that I could talk to him on a wide variety of topics (work and

non-work) helped me a lot in settling down in this place away from home. Thanks Indy for

guiding me through this long journey.

I would also like to thank my thesis committee members, Professor Nitin Vaidya, Professor

Luke Olson and Professor Aaron Elmore. Your feedback has been invaluable and has helped

in improving the thesis. Thanks to all the funding agencies who have supported my work. I

would also like to thank the department for giving me this opportunity to pursue Ph.D. in

this great institute. Thanks to all the professors whose courses I had the privilege to take

and learn from. Thanks to all the admins for your tireless work to ensure a smooth graduate

life here for me.

I have actively collaborated with researchers from industry and academia in my projects.

I would like to take this opportunity to thank, Wenting Wang, Gopalakrishna Holla, Yosub

Shin, Ashwini Raina, Le Xu, Xiaoyao Qian, Himanshu Gupta, Shalmoli Gupta, Nirman

Kumar, Professor Chandra Chekuri, Professor Aaron Elmore, Virajith Jalaparti, Chris Dou-

glas, Ashvin Agrawal, Avrilia Floratou, Ishai Menache, Joseph (Seffi) Naor, Sriram Rao,

Kaushik Rajan. I cherish the stimulating discussions we had on the different projects we

worked together. It was a learning experience and has helped me immensely in not only

understanding the problem at hand but also appreciate the big picture.

I have had the opportunity to make some wonderful friends in Urbana-Champaign. I have

had the pleasure of your company in restaurants, movies, travels, random discussions, cele-

brations. Thank you Sourabh, Ankita, Swarnali, Srijan, Sreeradha, Debapriya, Sangeetha,

Subhro, Faria, Le, Muntasir. I greatly value our time spent. A big shout out to the vibrant

communities I got to engage with – Distributed Protocols Research Group (DPRG), Bengali

Student’s Association (BSA), East Central Illinois Bengali Association (ECIBA) and ASHA

for Education.

Next, I would like to thank my mother, Kakali Ghosh and my father, Mrinmoy Kumar

Ghosh. You have cheered at all my milestones and helped me get up when I was feeling low.

Thank you for teaching me to value relationships, family, friends, objects, and life itself. I try

my best to follow your footsteps and be the person that you wanted me to be. At different

points in my growing up years, you chose to let go of smaller pleasures in your life to help

me succeed in my career and life. Pursuing a Ph.D. in the U.S.A. was one such moment

iv

when you let me go despite realizing how far I would have to move. I am sorry that you had

to sacrifice so much. I am not sure if I can ever make it up to you. Thank you for being the

best parents.

Finally, I would like to thank my partner, my confidant, my best friend, Shalmoli. I

am deeply indebted to the University for bringing us together. Shalmoli, you are the most

amazing person I have met. In the last few years, you have made the highs more special and

lows more bearable. Your enthusiasm and exuberance on different facets of life inspires me.

Thanks for being the special person of my life.

v

Table of Contents

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Challenges . 3
1.3 Contributions . 5
1.4 Roadmap . 6

Chapter 2 Morphus: Supporting Online Reconfigurations in Sharded NoSQL Systems 8
2.1 Introduction . 8
2.2 System Design . 10
2.3 Algorithms for Efficient Shard Key Reconfigurations 15
2.4 Network-Awareness . 18
2.5 Evaluation . 20
2.6 Related Work . 30
2.7 Summary . 31

Chapter 3 Parqua: Online Reconfigurations in Virtual Ring-Based NoSQL Systems 32
3.1 Introduction . 32
3.2 System Model & Background . 34
3.3 System Design and Implementation . 35
3.4 Experimental Evaluation . 38
3.5 Summary . 50

Chapter 4 Popular is Cheaper: Curtailing Memory Costs in Interactive Analytics
Engines . 51
4.1 Introduction . 51
4.2 Background . 54
4.3 Static Version of Segment Replication Problem 56
4.4 Getafix: System Design . 62
4.5 Evaluation . 68
4.6 Discussion . 77
4.7 Related Work . 78
4.8 Summary . 79

Chapter 5 Fast Compaction Algorithms for NoSQL Databases 80
5.1 Introduction . 80
5.2 Problem Definition . 82
5.3 Greedy Heuristics for BinaryMerging . 84
5.4 Simulation Results . 90
5.5 Conclusion . 95

vi

Chapter 6 Joint Network and Cache Management for Tiered Architectures 96
6.1 Introduction . 96
6.2 Motivation . 99
6.3 System Architecture . 102
6.4 Implementation . 105
6.5 Evaluation . 108
6.6 Related Work . 114
6.7 Conclusion . 115

Chapter 7 Conclusion and Future Work . 116

References . 119

vii

Chapter 1: Introduction

1.1 BACKGROUND

Data driven business intelligence (BI) has seen a steady adoption [1] across multiple sectors

(telecommunication, financial services, healthcare, technology, etc) and among corporations,

governments, non-profits, alike. Early BI tools were primitive and often required manual

sifting through multiple long spreadsheets. One of the key challenges was lack of software and

hardware capable of handling large volumes of data. The last decade has seen tremendous

growth in both areas which has enabled organization to make business critical decisions in

real time. Today, big data has impacted gene sequencing for faster drug discovery, making

smart energy efficient homes, self driving cars, solving food wastage, help farming with

precision tools, etc.

Tools for data driven business intelligence can be broadly classified into two categories –

storage and computation. While the former is required to store data generated in a company,

the latter is used for running analysis on the stored data. Computation systems are designed

to be massively parallel, fault tolerant, handle stragglers, etc. Storage systems provide high

availability, fault tolerance, consistency.

Google’s Mapreduce [2] was one of the early computation systems that has inspired today’s

systems like Hadoop [3] and Spark [4]. These systems are popularly called batch processing

systems. They handle large amount of data at rest and can run analytics jobs which can span

from few hours to few days. One of the first open-source batch processing systems, Hadoop

captures 21% [5] of the total analytics markets with 14K companies using and in some cases

actively contributing to the project. Spark is an academic project from UC Berkeley which

has henceforth been commercialized and has seen steady adoption in internet companies like

Facebook, Twitter, etc.

Along with Mapreduce, Google also built storage systems like Bigtable [6] and Google

File System [7] which stored petabytes of data across many servers. Later, GFS inspired

open source development of HDFS [8]. Similarly, Bigtable and Dynamo [9], a storage system

from Amazon around the same time, inspired some of the present day open source NoSQL

databases like HBase [8], Cassandra [10], MongoDB [11] etc. HDFS is the de facto stan-

dard for companies storage needs and works as the storage substrate for the popular batch

processing system Hadoop. NoSQL databases have been adopted in internet companies like

Facebook, Google, telecommunication companies like Verizon, retail chains like Walmart,

Amazon, etc.

Apart from batch analytics, there is an increased focus on analysis in real-time. Recent

1

studies have also shown that lack of realtime responses in ecommerce sites, can lead to re-

duced profitability anywhere between 25% to 125% [12]. Hadoop and Spark do not satisfy

these requirements as they were not built for response latencies in the order of seconds.

The real time analytics space has developed under two verticals – streaming analytics and

distributed OLAP. Systems like Samza [13], Heron [14] fall into the streaming space while

Apache Kylin [15], SQL Server [16] are some examples of OLAP systems. In the intersec-

tion lies distributed interactive analytics engine. Some popular systems in this space are

Druid [17], Presto [18]. This area is expected to grow to 13.7 billion dollars by 2021 [19].

Companies currently maintain separate pipelines for batch and realtime analytics.

In the next decade, we expect data volumes to reach hundreds of zettabytes [20, 21]. Simul-

taneously, companies will continue to add newer pipelines to satisfy specialized application

use-cases. Machine learning systems [22] are an example. Often many of these pipelines end

up sharing the same data. Data Lakes [23] have seen adoption because they allow easy data

sharing as well as independent scale out capabilities.

One of the major challenges in storage in this upcoming era is managing data reconfigura-

tion operations at scale. Reconfiguration operations handle how data is laid out in a cluster.

For example, shard key in a NoSQL database is a popular configuration that defines how to

partition data in a table. Changing shard key is a reconfiguration operation that involves

repartitioning and reassigning data to different physical machines. Reconfiguration opera-

tions are necessary in a system to improve performance. For example, changing shard key

helps in improving read/write latency in NoSQL databases. They can be user-initiated like a

sys-admin in a company or system initiated. They are commonly used in both compute and

storage systems. Since reconfiguration operations change properties associated with data,

these operations are I/O bound, often saturating network or disk.

Type of
System Reconfiguration

Performance
Metric Affected Applicable to Chapter

Storage

Table-level
Configuration

Change
Read/Write

Latency

NoSQL Databases
like MongoDB
and Cassadra

Chapter 2
Chapter 3

Compaction Read Latency
NoSQL Databases

like Cassandra Chapter 5

Real Time
Analytics Replication Query Throughput

Distributed Interactive
Analytics Engine

like Druid Chapter 4

Batch
Analytics

Prefetching
and Caching Meeting Job SLOs

Distributed File
System like HDFS Chapter 6

Table 1.1: Reconfiguration Operations Explored in this Thesis. We picked operations
that straddle different systems from storage to real-time analytics to batch processing
system. All of them affect a key system performance metric.

2

Table 1.1 lists four popular data reconfiguration operations commonly seen in storage and

computation systems of today and the performance metrics they affect. We observe that

current state-of-the-art solutions for these operations are heuristic at best and often involve

manual work from a sys-admin. In our thesis, we claim data reconfiguration mechanisms

can be done in the background by using new optimal or near-optimal algorithms coupled with

performant system designs..

For each of the reconfiguration operations mentioned in Table 1.1, we make the following

two-fold contributions – 1) we model the problem and design algorithms inspired from well-

known theoretical abstractions, 2) we design and build a system on top of popular open

source systems used in companies today. We have the following goals for system design – 1)

reconfiguration should happen in the background without affecting the normal query path,

2) minimizing total data transfer required, 3) minimizing impact on query latency. Finally,

using real-life workloads, we evaluate the efficacy of our solutions. Our evaluation results

vindicate our thesis and shows that one can build efficient data reconfiguration strategies by

merging theory with practical design principles.

In Section 1.2, we describe the challenges involved in each of the reconfiguration operation

listed in Table 1.1. In Section 1.3, we outline the contributions we made to solve these

challenges.

1.2 CHALLENGES

1.2.1 Changing table-level configuration in NoSQL Databases

Distributed NoSQL databases like MongoDB [11], HBase [24], Cassandra [10] use config-

urations like shard key, block size, etc. at the level of a table to ensure good read and write

performance. Choosing good configuration parameter is highly workload dependent. For

example, if your workload constantly updates an inventory table by the product group id

(all hand towels fall under the same group), it should be selected as a shard key. If at a later

point, you decide to update individual products (hand towel brands) separately, changing

the shard key to product id is prudent from performance point of view. Currently, reconfig-

uration in these databases is done by a sys-admin and involves taking the table offline, and

manually exporting and re-importing the data to a new table with an updated schema. This

brute force approach has a high network overhead when the data size is large (in the order

of zettabytes). It will slow the reconfiguration down and end up hurting data availability,

one of the key selling points for these systems.

3

1.2.2 Selective Replication in Distributed Interactive Analytics Engines

Companies are increasing running their batch processing pipelines on top of a tiered ar-

chitecture. Data resides in a lake like S3 [25] often shared by multiple internal organizations.

Batch jobs with strict SLOs are submitted to frontend Yarn [26] cluster. Network bandwidth

connecting the backend and frontend cluster in public clouds like AWS, Azure is limited by

provider enforced limits and highly variable [27]. Further the front end storage space is orders

of magnitude smaller than the backend storage. Naive fetching of data during job execution

in such a setting can lead to SLO violations. This in turn leads to significant financial losses.

State-of-the-art caching algorithms [28] can help as lot of jobs share the same data in our

representative workload. Unfortunately, we see low correlation between the number of jobs

that read a file and the rate at which it is read. Caching algorithms account primarily for

access count and are oblivious to network bandwidth considerations. Using prefetching with

caching can help alleviate these scenarios. This solution requires solving a joint optimization

problem with limits on network and storage.

1.2.3 Compaction in Log Structured Databases

In write-optimized databases like Cassandra [10], Riak [29], Bigtable [6] data is stored

in a log structured file system. Writes are fast in these systems because delta updates are

appended to a log, sorted string table (SSTable). Reads have to merge these delta updates

to materialize the entry corresponding to the key. This is typically slow as data must be

read across multiple files residing in slower disks. Compaction is the process of proactively

and periodically merging SSTables to improve read performance. Compaction is I/O bound

as it reads and writes files to disk. Performance of these algorithms is critical to improve

read performance in log structured databases. Current compaction algorithm are heuristics

at best with little formal analysis. As data sizes grow, these algorithms will soon become a

bottleneck and lack of a formal understanding will hamper future efforts for improvement.

1.2.4 Prefetching and Caching in Batch Analytics

While the last two operations dealt with storage system, the next two handles reconfig-

uration in analytics system. Real-time analytics is an exciting new space that is defined

by fast real-time data ingestion, small query response time (in the order of seconds) and

high throughput. Distributed interactive analytics engines like Druid [17] and Pinot [30] are

popular in this space. These systems are massively parallel. Data is replicated to reduce

query hotspots. Further, for fast query response time, in memory computation is preferred

4

over out-of-core options like SSDs. A good replication strategy is thus characterized by

high memory utilization. State-of-the-art replication schemes [31] use heuristics that can

over-replicate, often adversely affecting performance. Blindly reducing replication will also

impact performance. We need a replication scheme that can find the “knee” of the curve in

terms of replication.

1.3 CONTRIBUTIONS

In this thesis, we make the following contributions:

1.3.1 Table-level Configuration Change with Morphus and Parqua

Network traffic volume directly affects reconfiguration completion time in NoSQL databases.

We model this as the well-known bipartite matching problem and provably show that min-

imum cost matching is optimal in minimizing the amount of data transfer required. Our

Morphus system uses these algorithmic insights to build a system which can perform data

migration with little impact on availability. While Morphus works on a database which uses

range partitioning, Parqua solves the problem in a hash partitioned system. Our experi-

ment with real world datasets show that both Morphus and Parqua provides several 9s of

availability even when reconfiguration is in progress.

Morphus has been published in proceedings of ICAC 2015 [32] and as journal in a special

issue of IEEE Transactions on Emerging Topics in Computing [33]. The Parqua system has

been accepted as a short paper in the proceedings of ICCAC 2015 [34].

1.3.2 Selective Replication using Getafix

In distributed interactive analytics engines, increasing data replication has a diminishing

returns in terms of query performance gain for a given workload and cluster size. Finding

the right replication factor which does not hurt performance is an important problem in

these systems. Replication is directly correlated with the amount of memory needed in the

frontend cluster which impacts deployment cost. We model the problem of query scheduling

in distributed interactive analytics engines as a colored variant of the well known balls and

bins problem. Under simplifying assumptions, we provably show that a popular bin packing

heuristic, best fit, can minimize the amount of replication required without hurting perfor-

mance. Deriving insights from this theory, we built our system, Getafix which dynamically

changes data replication in the background as queries are coming in. In our evaluation,

5

Getafix reduces memory required by 2.15x compared to Scarlett, a popular replication strat-

egy used today.

The work has been published in the proceedings of Eurosys 2018 [35].

1.3.3 Compaction in Log Structured Databases

Compaction in log structured databases is a popular technique to improve read perfor-

mance. Considering its importance, very little analysis exists on how good the present day

heuristics are. We know compaction is I/O bound as it merges files residing in disks. We

model compaction as a set merge problem where cost of a merge operation is directly pro-

portional to the number of keys read and written to disk after the merge. This problem

turns out to be a generalization of well known Huffman Coding problem. Based on this

insight, we devise heuristics inspired from the optimal greedy solution for Huffman coding.

We prove O(log n) approximation bounds for all the heuristics. Further, through simulation

using realistic workloads we show that the worst case bound does not happen in practice

and the heuristics perform much better.

The work has been published in the proceedings of ICDCS 2015 [36] (Theory track).

1.3.4 Prefetching and Caching in Batch Systems with NetCachier

Variable network bandwidth between compute and backend storage in public clouds severely

hampers jobs in production clusters from meeting their SLOs. Since productions jobs are pe-

riodic in nature, prefetching the input files for them before the job starts can help them meet

their SLOs. Limits on frontend cache space and network bandwidth means one must solve a

joint optimization problem such that the number of jobs meeting their SLOs is maximized.

As it turns out this problem is NP-Hard and even hard to approximate. Thus, we choose to

use simple heuristics to build NetCachier. Given a workload of jobs which is known upfront,

NetCachier picks while files to prefetch, how much bandwidth to allocate while fetching and

whether to cache it in the compute tier for later use or not. Netcachier improves number of

jobs meeting SLOs by 80% compared to naive strategy used today.

The work is currently under submission.

1.4 ROADMAP

The dissertation is organized as follows: Chapter 2 and Chapter 3 discusses the Mor-

phus and Parqua systems respectively. In these chapters, we discuss the algorithms and

6

techniques used to solve shard key change based reconfigurations in a range based parti-

tioning (MongoDB [11]) and a hash based partitioning system (Cassandra [10]) respectively.

Workload-aware dynamic replication strategies in our Getafix system is explained in Chap-

ter 4. Chapter 5 presents our results on better compaction algorithms which can be used in

write-optimized databases. We show how one can meet more job SLOs using smart prefetch-

ing algorithms in our NetCachier system in Chapter 6. Finally, we end with our conclusion

and some future directions of work in Chapter 7.

7

Chapter 2: Morphus: Supporting Online Reconfigurations in Sharded NoSQL
Systems

In this chapter, we discuss the problem of changing configuration parameters like shard

key, block size etc. at the level of a database table in a sharded NoSQL distributed database

like MongoDB. We motivate the problem in Section 2.1. We highlight our system techniques

in Section 2.2 and algorithmic contributions in Section 2.3. Since reconfiguration involves

significant amount of data transfer, Morphus uses network level optimizations described in

Section 2.4. Finally, we present results from our evaluation in Section 2.5.

2.1 INTRODUCTION

Distributed NoSQL storage systems comprise one of the core technologies in today’s cloud

computing revolution. These systems are attractive because they offer high availability and

fast read/write operations for data. They are used in production deployments for online

shopping, content management, archiving, e-commerce, education, finance, gaming, email

and healthcare. The NoSQL market is expected to earn $14 Billion revenue during 2015-

2020, and become a $3.4 Billion market by 2020 [37].

In production deployments of NoSQL systems and key-value stores, reconfiguration oper-

ations have been a persistent and major pain point [38, 39]. (Even traditional databases

have considered reconfigurations to be a major problem over the past two decades [40, 41].)

Reconfiguration operations deal with changes to configuration parameters at the level of a

database table or the entire database itself, in a way that affects a large amount of data all

at once. Examples include schema changes like changing the shard/primary key which is

used to split a table into blocks, or changing the block size itself, or increasing or decreasing

the cluster size (scale out/in).

In today’s sharded NoSQL deployments [24, 11, 6, 42], such data-centric1 global recon-

figuration operations are quite inefficient. This is because executing them relies on ad-hoc

mechanisms rather than solving the core underlying algorithmic and system design problems.

The most common solution involves first saving a table or the entire database, and then re-

importing all the data into the new configuration [43]. This approach leads to a significant

period of unavailability. A second option may be to create a new cluster of servers with the

new database configuration and then populate it with data from the old cluster [44, 45, 46].

This approach does not support concurrent reads and writes during migration, a feature we

1Data-centric reconfiguration operations deal only with migration of data residing in database tables.
Non-data-centric reconfigurations are beyond our scope, e.g., software updates, configuration table changes,
etc.

8

would like to provide.

Consider an admin who wishes to change the shard key inside a sharded NoSQL store like

MongoDB [43]. The shard key is used to split the database into blocks, where each block

stores values for a contiguous range of shard keys. Queries are answered much faster if they

include the shard key as a query parameter (otherwise the query needs to be multicast). To-

day’s systems strongly recommend that the admin decide the shard key at database creation

time, but not change it afterwards. However, this is challenging because it is hard to guess

how the workload will evolve in the future.

As a result, many admins start their databases with a system-generated UID as the shard

key, while others hedge their bets by inserting a surrogate key with each record so that it can

be later used as the new primary key. The former UID approach reduces the utility of the

primary key to human users and restricts query expressiveness, while the latter approach

would work only with a good guess for the surrogate key that holds over many years of

operation. In either case, as the workload patterns become clearer over a longer period of

operation, a new application-specific shard key (e.g., username, blog URL, etc.) may become

more ideal than the originally-chosen shard key.

Broadly speaking, admins need to change the shard key prompted by either changes in

the nature of the data being received, or due to evolving business logic, or by the need to

perform operations like join with other tables, or due to prior design choices that are sub-

optimal in hindsight. Failure to reconfigure databases can lower performance, and also lead

to outages such as the one at Foursquare [47]. As a result, the reconfiguration problem has

been a fervent point of discussion in the community for many years [48, 49]. While such

reconfigurations may not be very frequent operations, they are a significant enough pain point

that they have engendered multiple JIRA (bug tracking) entries (e.g., [38]), discussions and

blogs (e.g., [49]). Inside Google, resharding MySQL databases took two years and involved a

dozen teams [50]. Thus, we believe that this is a major problem that directly affects the life

of a system administrator – without an automated reconfiguration primitive, reconfiguration

operations today are laborious and manual, consume significant amounts of time, and leave

open the room for human errors during the reconfiguration.

In this chapter, we present a system that supports automated reconfiguration. Our system,

called Morphus, allows reconfiguration changes to happen in an online manner, that is,

by concurrently supporting reads and writes on the database table while its data is being

reconfigured.

Morphus assumes that the NoSQL system features: 1) master-slave replication, 2) range-

9

based sharding (as opposed to hash-based)2, and 3) flexibility in data assignment3. Several

databases satisfy these assumptions, e.g., MongoDB [11], RethinkDB [51], CouchDB [52],

etc. To integrate our Morphus system we chose MongoDB due to its clean documentation,

strong user base, and significant development activity. To simplify discussion, we assume a

single datacenter, but later present geo-distributed experiments. Finally, we focus on NoSQL

rather than ACID databases because the simplified CRUD (Create, Read, Update, Delete)

operations allow us to focus on the reconfiguration problem – addressing ACID transactions

is an exciting avenue that our chapter opens up.

Morphus solves three major challenges: 1) in order to be fast, data migration across servers

must incur the least traffic volume; 2) degradation of read and write latencies during recon-

figuration must be small compared to operation latencies when there is no reconfiguration;

3) data migration traffic must adapt itself to the datacenter’s network topology.

We solve these challenges via these approaches:

• Morphus performs automated reconfiguration among cluster machines, without needing

additional machines.

• Morphus concurrently allows efficient read and write operations on the data that is being

migrated.

• To minimize data migration volume, Morphus uses new algorithms for placement of new

data blocks at servers.

• Morphus is topology-aware by using new network-aware techniques which adapt data

migration flow as a function of the underlying network latencies.

• We integrate Morphus into MongoDB [43] focusing on the shard key change operation.

• Our experiments using real datasets and workloads show that Morphus maintains several

9s of availability during reconfigurations, keeps read and write latencies low, and scales

well with both cluster and data sizes.

2.2 SYSTEM DESIGN

We now describe the design of our Morphus system.

2Most systems that hash keys use range-based sharding of the hashed keys, and so our system applies
there as well. Our system also works with pure hash sharded systems, though it is less effective.

3This flexibility allows us to innovate on data placement strategies. Inflexibility in consistent hashed
systems like Cassandra [42] require a different solution, which is the target of a different project of ours.

10

Figure 2.1: Morphus Phases. Arrows represent RPCs. M stands for Master, S for
Slave.

2.2.1 MongoDB System Model

We have chosen to incorporate Morphus into a popular sharded key-value store, Mon-

goDB [11] v2.4. Beside its popularity, our choice of MongoDB is also driven by its clean

documentation, strong user base, and significant development and discussion around it.

A MongoDB deployment consists of three types of servers. The mongod servers store

the data chunks themselves – typically, they are grouped into disjoint replica sets. Each

replica set contains the same number of (typically 3) servers which are exact replicas of

each other, with one of the servers marked as a primary (master), and others acting as

secondaries (slaves). The configuration parameters of the database are stored at the config

servers. Clients send CRUD (Create, Read, Update, Delete) queries to a front-end server,

called mongos. The mongos servers also cache some of the configuration information from

the config servers, e.g., in order to route queries they cache mappings from each chunk range

to a replica set.

A single database table in MongoDB is called a collection. Thus, a single MongoDB

deployment consists of several collections.

11

2.2.2 Reconfiguration Phases in Morphus

Section 2.3 will describe how new chunks can be allocated to servers in an optimal way.

Given such an allocation, we now describe how to i) migrate data, while ii) concurrently

supporting operations on this data.

Overview: Morphus allows a reconfiguration operation to be initiated by a system admin-

istrator on any collection. Morphus executes the reconfiguration via five sequential phases,

as shown in Figure 3.1.

First Morphus prepares for the reconfiguration by creating partitions (with empty new

chunks) using the new shard key (Prepare phase). Second, Morphus isolates one secondary

server from each replica set (Isolation phase). In the third Execution phase, these secon-

daries exchange data based on the placement plan decided by mongos. In the meantime,

further operations may have arrived at the primary servers – these are now replayed at the

secondaries in the fourth Recovery phase. When the reconfigured secondaries are caught up,

they swap places with their primaries (Commit phase).

At this point, the database has been reconfigured and can start serving queries with the

new configuration. However, other secondaries in all replica sets need to reconfigure as well

– this slave catchup is done in multiple rounds, with the number of rounds equal to the size

of the replica set.

Next we discuss the individual phases in detail.

Prepare: The first phase is the Prepare phase, which runs at the mongos front-end. Reads

and writes are not affected in this phase, and can continue normally. Concretely, for the

shard key change reconfiguration, there are two important steps in this phase:

• Create New Chunks: Morphus queries one of the mongod servers and sets split points

for new chunks by using MongoDB’s internal splitting algorithm (for modularity).

• Disable Background Processes: We disable background processes of the NoSQL

system which may interfere with the reconfiguration transfer. This includes the MongoDB

Balancer, a background thread that periodically checks and balances the number of

chunks across replica sets.

Isolation: In order to continue serving operations while the data is being reconfigured,

Morphus first performs reconfiguration transfers only among secondary servers, one from

each replica set. It prepares by performing two steps:

• Mute Slave Oplog Replay: Normally, the primary server forwards the operation log

(called oplog) of all the write operations it receives to the secondary, which then replays

it. In the Isolation phase, this oplog replay is disabled at the selected secondaries, but

only for the collection being reconfigured – other collections still perform oplog replay.

12

We chose to keep the secondaries isolated, rather than removed, because the latter would

make Recovery more challenging by involving collections not being resharded.

• Collect Timestamp: In order to know where to restart replaying the oplog in the

future, the latest timestamp from the oplog is stored in memory by mongos.

Execution: This phase is responsible for making placement decisions (which we will describe

in Section 2.3) and executing the resultant data transfer among the secondaries. In the

meantime, the primary servers concurrently continue to serve client CRUD operations. Since

the selected secondaries are isolated, a consistent snapshot of the collection can be used to

run the placement algorithms (Section 2.3) at a mongos server.

Assigning a new chunk to a mongod server implies migrating data in that chunk range from

several other mongod servers to the assigned server. For each new chunk, the assigned server

creates a separate TCP connection to each source server, “pulls” data from the appropriate

old chunks, and commits it locally. All these migrations occur in parallel. We call this

scheme of assigning a single socket to each migration as “chunk-based”. The chunk-based

strategy can create stragglers, and Section 2.4.1 addresses this problem.

Recovery: At the end of the Execution phase, the secondary servers have data stored

according to the new configuration. However, any write (create, update or delete) operations

that had been received by a primary server, since the time its secondary was isolated, now

need to be communicated to the secondary.

Each primary forwards each item in the oplog to its appropriate new secondary, based

on the new chunk ranges. This secondary can be located from our placement plan in the

Execution phase, if the operation involved the new shard key. If the operation does not

involve the new shard key, it is multicast to all secondaries, and each in turn checks whether

it needs to apply it. This mirrors the way MongoDB typically routes queries among replica

sets.

However, oplog replay is an iterative process – during the above oplog replay, further

write operations may arrive at the primary oplogs. Thus, in the next iteration this delta

oplog will need to be replayed. If the collection is hot, then these iterations may take very

long to converge. To ensure convergence, we adopt two techniques: i) cap the replay at

2 iterations, and ii) enforce a write throttle before the last iteration. The write throttle

is required because of the atomic commit phase that follows right afterwards. The write

throttle rejects any writes received during the final iteration of oplog replay. An alternative

was to buffer these writes temporarily at the primary and apply them later – however, this

would have created another oplog and reinstated the original problem. In any case, the next

phase (Commit) requires a write throttle anyway, and thus our approach dovetails with the

Commit phase. Read operations remain unaffected and continue normally.

13

Commit: Finally, we bring the new configuration to the forefront and install it as the

default configuration for the collection. This is done in one atomic step by continuing the

write throttle from the Recovery phase.

This atomic step consists of two substeps:

• Update Config: The mongos server updates the config database with the new shard

key and chunk ranges. Subsequent CRUD operations use the new configuration.

• Elect Slave As Master: Now the reconfigured secondary servers become the new

primaries. The old primary steps down and Morphus ensures the secondary wins the

subsequent leader election inside each replica set.

To end this phase, the new primaries (old secondaries, now reconfigured) unmute their oplog

and the new secondaries (old primaries for each replica set, not yet reconfigured) unthrottle

their writes.

Read-Write Behavior: The end of the Commit phase marks the switch to the new shard

key. Until this point, all queries with old shard key were routed to the mapped server and all

queries with new shard key were multicast to all the servers (normal MongoDB behavior).

After the Commit phase, a query with the new shard key is routed to the appropriate server

(new primary). Queries which do not use the new shard key are handled with a multicast,

which is again normal MongoDB behavior.

Reads in MongoDB offer per-key sequential consistency. Morphus is designed so that it

continues to offer the same consistency model for data under migration.

Slave Isolation & Catchup: After the Commit phase, the secondaries have data in the

old configuration, while the primaries receive writes in the new configuration. As a result,

normal oplog replay cannot be done from a primary to its secondaries. Thus, Morphus

isolates all the remaining secondaries simultaneously.

The isolated secondaries catch up to the new configuration via (replica set size - 1) se-

quential rounds. Each round consists of the Execution, Recovery and Commit phases shown

in Figure 3.1. However, some steps in these phases are skipped – these include the leader

election protocol and config database update. Each replica set numbers its secondaries and

in the ith round (2 ≤ i ≤ replica set size), its ith secondary participates in the reconfigura-

tion. The group of ith secondaries reuses the old placement decisions from the first round’s

Execution phase – we do so because secondaries need to mirror primaries.

After the last round, all background processes (such as the Balancer) that had been

previously disabled are now re-enabled. The reconfiguration is now complete.

Fault-Tolerance: When there is no reconfiguration, Morphus is as fault-tolerant as Mon-

goDB. Under ongoing reconfiguration, when there is one failure, Morphus provides similar

fault-tolerance as MongoDB – in a nutshell, Morphus does not lose data, but in some cases

14

the reconfiguration may need to be restarted partially or completely.

Consider the single failure case in detail. Consider a replica set size of rs ≥ 3. Right after

isolating the first secondary in the first round, the old data configuration is still present at

(rs−1) servers: current primary and identical (rs−2) idle secondaries. If the primary or an

idle secondary fails, reconfiguration remains unaffected. If the currently-reconfiguring sec-

ondary fails, then the reconfiguration can be continued using one of the idle secondaries (from

that replica set) instead; when the failed secondary recovers it participates in a subsequent

reconfiguration round.

In a subsequent round (≥ 2), if one of the non-reconfigured replicas fails, it recovers and

catches up directly with the reconfigured primary. Only in the second round, if the already-

reconfigured primary fails, does the entire reconfiguration need to be restarted as this server

was not replicated yet. Writes between the new primary election (Round 1 Commit phase)

up to its failure, before the second round completes, may be lost. This is similar to the

loss of a normal MongoDB write which happens when a primary fails before replicating the

data to the secondary. The vulnerability window is longer in Morphus, although this can be

reduced by using a backup Morphus server.

With multiple failures, Morphus is fault-tolerant under some combinations. For instance,

if all replica sets have at least one new-configuration replica left, or if all replica sets have at

least one old-configuration replica left. In the former case, failed replicas can catch up. In

the latter case, reconfiguration can be restarted using the surviving replicas.

2.3 ALGORITHMS FOR EFFICIENT SHARD KEY RECONFIGURATIONS

A reconfiguration operation entails the data present in shards across multiple servers to

be resharded. The new shards need to be placed at the servers in such a way as to: 1) reduce

the total network transfer volume during reconfiguration, and 2) achieve load balance. This

section presents optimal algorithms for this planning problem.

We present two algorithms for placement of the new chunks in the cluster. Our first

algorithm is greedy and is optimal in the total network transfer volume. However, it may

create bottlenecks by clustering many new chunks at a few servers. Our second algorithm,

based on bipartite matching, is optimal in network transfer volume among all those strategies

that ensure load balance.

15

(a) Balanced Old Configura-
tion.

(b) Unbalanced Old Configuration.

Figure 2.2: Greedy and Hungarian strategy for shard key change using: (a) Balanced,
(b) Unbalanced old chunk configuration. S1 - S3 represent servers. OC1 - OC3 and NC1

- NC3 are old and new chunks respectively. Ko and Kn are old and new shard keys
respectively. Edges are annotated with WNCi,Sj weights.

2.3.1 Greedy Assignment

The greedy approach considers each new chunk independently. For each new chunk NCi,

the approach evaluates all the N servers. For each server Sj, it calculates the number of

data items WNCi,Sj
of chunk NCi that are already present in old chunks at server Sj. The

approach then allocates each new chunk NCi to that server Sj which has the maximum value

of WNCi,Sj
, i.e., argmaxS∗(WNCi,Sj

). As chunks are considered independently, the algorithm

produces the same output irrespective of the order in which chunks are considered by it.

The calculation of WNCi,Sj
values can be performed in parallel at each server Sj, after

servers are made aware of the new chunk ranges. A centralized server collects all the WNCi,Sj

values, runs the greedy algorithm, and informs the servers of the allocation decisions.

Lemma 2.1 The greedy algorithm is optimal in total network transfer volume.

Proof: The proof is by contradiction. Consider an alternative optimal strategy A that

assigns at least one new chunk NCi to a server Sk different from S ′ = argmaxS∗(WNCi,Sj
),

such that WNCi,S′ > WNCi,Sk
– if there is no such NCi, then A produces the same total

network transfer volume as the greedy approach. By instead changing A so that NCi is

16

re-assigned to S ′, one can achieve a reconfiguration that has a lower network transfer volume

than A, a contradiction.

For each of the m new chunks, this algorithm iterates through all the N servers. Thus its

complexity is O(m.N), linear in the number of new chunks and cluster size.

To illustrate the greedy scheme in action, Fig. 2.2 provides two examples for the shard

key change operation. In each example, the database has 3 old chunks OC1 − OC3 each

containing 3 data items. For each data item, we show the old shard key Ko and the new

shard key Kn (both in the ranges 1-9). The new configuration splits the new key range

evenly across 3 chunks shown as NC1 −NC3.

In Fig. 2.2a, the old chunks are spread evenly across servers S1− S3. The edge weights in

the bipartite graph show the number of data items of NCi that are local at Sj, i.e., WNCi,Sj

values. Thick lines show the greedy assignment.

However, the greedy approach may produce an unbalanced chunk assignment for skewed

bipartite graphs, as in Fig. 2.2b. While the greedy approach minimizes network transfer

volume, it assigns new chunks NC2 and NC3 to server S1, while leaving server S3 empty.

2.3.2 Load Balance via Bipartite Matching

Load balancing chunks across servers is important for several reasons: i) it improves

read/write latencies for clients by spreading data and queries across more servers; ii) it re-

duces read/write bottlenecks; iii) it reduces the tail of the reconfiguration time, by preventing

allocation of too many chunks to any one server.

Our second strategy achieves load balance by capping the number of new chunks allocated

to each server. With m new chunks, this per-server cap is dm/Ne chunks. We then create

a bipartite graph with two sets of vertices – top and bottom. The top set consists of

dm/Ne vertices for each of the N servers in the system; denote the vertices for server Sj as

S1
j − Sdm/Nej . The bottom set of vertices consist of the new chunks. All edges between a top

vertex Skj and a bottom vertex NCi have an edge cost equal to |NCi| −WNCi,Sj
i.e., the

number of data items that will move to server Sj if new chunk NCi were allocated to it.

Assigning new chunks to servers in order to minimize data transfer volume now becomes

a bipartite matching problem. Thus, we find the minimum weight matching by using the

classical Hungarian algorithm [53]. The complexity of this algorithm is O((N.V +m).N.V.m)

where V = dm/Ne chunks. This reduces to O(m3). The greedy strategy of Section 2.3.1

becomes a special case of this algorithm with V = m.

Lemma 2.2 Among all load-balanced strategies that assign at most V = dm/Ne new chunks

to any server, the Hungarian algorithm is optimal in total network transfer volume.

17

Proof: The proof follows from the optimality of the Hungarian algorithm [53].

Fig. 2.2b shows the outcome of the bipartite matching algorithm using dotted lines in the

graph. While it incurs the same overall cost as the greedy approach, it additionally provides

the benefit of a load-balanced new configuration, where each server is allocated exactly one

new chunk.

While we focus on the shard key change, this technique can also be used for other recon-

figurations like changing shard size, or cluster scale out and scale in. The bipartite graph

would be drawn appropriately (depending on the reconfiguration operation), and the same

matching algorithm used. For purpose of concreteness, the rest of the chapter focuses on

shard key change.

Finally, although we have used datasize (number of key-value pairs) as the main cost

metric. Instead we could use traffic to key-value pairs as the cost metric, and derive edge

weights in the bipartite graph (Fig. 2.2) from these traffic estimates. Hungarian approach

on this new graph would balance out traffic load, while trading off optimality – further

exploration of this variant is beyond our scope in this chapter.

2.4 NETWORK-AWARENESS

In this section, we describe how we augment the design of Section 2.2 in order to handle

two important concerns: awareness to the topology of a datacenter, and geo-distributed

settings.

Figure 2.3: Execution phase CDF for chunk-based strategy on Amazon 500 MB
database in tree network topology with 9 mongod servers spread evenly across 3
racks.

2.4.1 Awareness to Datacenter Topology

Datacenters use a wide variety of topologies, the most popular being hierarchical, e.g., a

typical two-level topology consists of a core switch and multiple rack switches. Others that

18

are commonly used in practice include fat-trees [54], CLOS [55], and butterfly [56].

Our first-cut data migration strategy discussed in Section 2.2 was chunk-based: it assigned

as many sockets (TCP streams) to a new chunk C at its destination server as there are

source servers for C i.e., it assign one TCP stream per server pair. Using multiple TCP

streams per server pair has been shown to better utilize the available network bandwidth [57].

Further, the chunk-based approach also results in stragglers in the execution phase as shown

in Figure 2.3. Particularly, we observe that 60% of the chunks finish quickly, followed by a

40% cluster of chunks that finish late.

To address these two issues, we propose a weighted fair sharing (WFS) scheme that takes

both data transfer size and network latency into account. Consider a pair of servers i and

j, where i is sending some data to j during the reconfiguration. Let Di,j denote the total

amount of data that i needs to transfer to j, and Li,j denote the latency in the shortest

network path from i to j. Then, we set Xi,j, the weight for the flow from server i to j, as

follows:

Xi,j ∝ Di,j × Li,j (2.1)

In our implementation, the weights determine the number of sockets that we assign to

each flow. We assign each destination server j a total number of sockets Xj = K ×
∑

iDi,j∑
i,j Di,j

,

where K is the total number of sockets throughout the system. Thereafter each destination

server j assigns each source server i a number of sockets, Xi,j = Xj × Ci,j∑
i Ci,j

.

However, Xi,j may be different from the number of new chunks that j needs to fetch from

i. If Xi,j is larger, we treat each new chunk as a data slice, and iteratively split the largest

slice into smaller slices until Xi,j equals the total number of slices. Similarly, if Xi,j is smaller,

we use iterative merging of the smallest slices. Finally, each slice is assigned a socket for

data transfer. Splitting or merging slices is only for the purpose of socket assignment and to

speed up data transfer; it does not affect the final chunk configuration which was computed

in the Prepare phase.

Our approach above could have used estimates of available bandwidth instead of latency

estimates. We chose the latter because: i) they can be measured with a lower overhead, ii)

they are more predictable over time, and iii) they are correlated to the effective bandwidth.

2.4.2 Geo-Distributed Settings

So far, Morphus has assumed that all its servers reside in one datacenter. However, typical

NoSQL configurations split servers across geo-distributed datacenters for fault-tolerance.

Naively using the Morphus system would result in bulk transfers across the wide-area network

and prolong reconfiguration time.

19

(a) Read Only (Uniform). (b) Uniform.

(c) Zipf. (d) Latest.
Figure 2.4: Read Latency for: (a) Read only operations (no writes), and three read-
write workloads modeled after YCSB: (b) Uniform, (c) Zipf, and (d) Latest. Times
shown are hh:mm:ss. Failed reads are shown as negative latencies. Annotated “Pri-
mary Change” point marks the start of the leader election protocol in the first round.

To address this, we localize each stage of the data transfer to occur within a datacenter.

We leverage MongoDB’s server tags [58] to tag each replica set member with its datacenter

identifier. Morphus then uses this information to select replicas, which are to be reconfigured

together in each given round, in such a way that they reside within the same datacenter. If

wide-area transfers cannot be eliminated at all, Morphus warns the database admin.

One of MongoDB’s invariants for partition-tolerance requires each replica set to have

a voting majority at some datacenter [58]. In a three-member replica set, two members

(primary and secondary-1) must be at one site while the third member (secondary-2) could

be at a different site. Morphus obeys this requirement by selecting that secondary for the

first round which is co-located with the current primary. In the above example, Morphus

would select the secondary-1 replicas for the first round of reconfiguration. In this way, the

invariant stays true even after the leader election in the Commit phase.

2.5 EVALUATION

Our experiments are designed to answer the following questions:

20

• How much does Morphus affect read and write operations during reconfiguration?

• For shard key change, how do the Greedy and Hungarian algorithms of Section 2.3

compare?

• How does Morphus scale with data size, operation injection rate, and cluster size?

• How much benefit can we expect to get from the network-aware (datacenter topology

and geo-distributed) strategies?

2.5.1 Setup

Data Set: We use the dataset of Amazon reviews as our default collection [59]. Each data

item has 10 fields. We choose productID as the old shard key, userID as the new shard key,

while update operations use these two fields and a price field. Our default database size is

1 GB (we later show scalability with data size).

Cluster: The default Morphus cluster uses 10 machines. These consist of one mongos

(front-end), and 3 replica sets, each containing a primary and two secondaries. There are 3

config servers, each co-located on a physical machine with a replica set primary – this is an

allowed MongoDB installation. All physical machines are d710 Emulab nodes [60] with a 2.4

GHz processor, 4 cores, 12 GB RAM, 2 hard disks of 250 GB and 500 GB, 64 bit CentOS

5.5, and connected to a 100 Mbps LAN switch.

Workload Generator: We implemented a custom workload generator that injects YCSB-

like workloads via MongoDB’s pymongo interface. Our default injection rate is 100 ops/s

with 40% reads, 40% updates, and 20% inserts. To model realistic key access patterns, we

select keys for each operation via one of three YCSB-like [61] distributions: 1) Uniform (de-

fault), 2) Zipf, and 3) Latest. For Zipf and Latest distributions we employ a shape parameter

α = 1.5. The workload generator runs on a dedicated pc3000 node in Emulab running a

3GHz processor, 2GB RAM, two 146 GB SCSI disks, 64 bit Ubuntu 12.04 LTS.

Morphus default settings: Morphus was implemented in about 4000 lines of C++ code.

The code is publicly available at http://dprg.cs.uiuc.edu/downloads. A demo of Mor-

phus can be found at https://youtu.be/0rO2oQyyg0o. For the evaluation, each plotted

datapoint is an average of at least 3 experimental trials, shown along with standard deviation

bars.

2.5.2 Read Latency

Fig. 2.4 shows the timelines for four different workloads during the reconfiguration, lasting

between 6.5 minutes to 8 minutes. The figure depicts the read latencies for the reconfigured

21

database table (collection), with failed reads shown as negative latencies. We found that

read latencies for collections not being reconfigured were not affected and we do not plot

these.

Fig. 2.4a shows the read latencies when there are no writes (Uniform read workload). We

observe unavailability for a few seconds (from time t =18:28:21 to t =18:28:29) during the

Commit phase when the primaries are being changed. This unavailability lasts only about

2% of the total reconfiguration time. After the change, read latencies spike slightly for a few

reads but then settle down. Figs. 2.4b to 2.4d plot the YCSB-like read-write workloads. We

observe similar behavior as Fig. 2.4a.

Read Write
Read Only 99.9 -

Uniform 99.9 98.5
Latest 97.2 96.8

Zipf 99.9 98.3
Table 2.1: Percentage of Reads and Writes that Succeed under Reconfiguration.
(Figs. 2.4 and 2.6)

Fig. 2.4d indicates that the Latest workload incurs a lot more failed reads. This is because

the keys that are being inserted and updated are the ones more likely to be read. However,

since some of the insertions fail due to the write throttles at various points during the

reconfiguration process (t =14:11:20 to t =14:11:30, t =14:13:15 to t =14:13:20, t =14:15:00

to t =14:15:05 from Fig. 2.6c), this causes subsequent reads to also fail. However, these

lost reads only account for 2.8% of the total reads during the reconfiguration time – in

particular, Table 2.1 (middle column) shows that 97.2% of the reads succeed under the

Latest workload. The availability numbers are higher at three-9’s for Uniform and Zipf

workload, and these are comparable to the case when there are no insertions. We conclude

that unless there is temporal and spatial (key-wise) correlation between writes and reads

(i.e., Latest workloads), the read latency is not affected much by concurrent writes. When

there is correlation, Morphus mildly reduces the offered availability.

To flesh this out further, we plot in Fig. 2.5 the CDF of read latencies for these four settings,

and when there is no reconfiguration (Uniform workload). Notice that the horizontal axis

is logarithmic scale. We only consider latencies for successful reads. We observe that the

96th percentile latencies for all workloads are within a range of 2 ms. The median (50th

percentile) latency for No Reconfiguration is 1.4 ms, and this median holds for both the

Read only (No Write) and Uniform workloads. The medians for Zipf and Latest workloads

are lower at 0.95 ms. This lowered latency is due to two reasons: caching at the mongod

servers for the frequently-accessed keys, and in the case of Latest the lower percentage of

22

Figure 2.5: CDF of Read Latency. Read latencies under no reconfiguration (No
Reconf), and four under-reconfiguration workloads.

successful reads.

We conclude that under reconfiguration, the read availability provided by Morphus is high

(two to three 9’s of availability), while the latencies of successful read operations do not

degrade compared to the scenario when there is no reconfiguration in progress.

2.5.3 Write Latency

We next plot the data for write operations, i.e., inserts, updates and deletes.

Figs. 2.6a to 2.6c show writes in the same timelines as Figs. 2.4b to 2.4d. We observe

that many of the failed writes occur during one of the write throttling periods (annotated

as “WT”). Recall from Section 2.2.2 that there are as many write throttling periods as the

replica set size, with one throttle period at the end of each reconfiguration round.

Yet, the number of writes that fail is low: Table 2.1 (last column) shows that for the

Uniform and Zipf workloads, fewer than 2% writes fail. The Latest workload again has a

slightly higher failure rate since a key that was attempted to be written (unsuccessfully) is

more likely to be attempted to be written again in the near future. Yet, the write failure

rate of 3.2% is reasonably low.

To flesh this out further, the CDF of the write latencies (ignoring failed writes) is shown

in Fig. 2.6d. The median for writes when there is no reconfiguration (Uniform workload)

in progress is 1.45 ms. The Zipf and Latest workloads have a similar median latency. Uni-

form has a slightly higher median latency at 1.6 ms – this is because 18% of the updates

experience high latencies. This is due to Greedy’s skewed chunk assignment plan (discussed

and improved in Section 2.5.4). Greedy assigns a large percentage of new chunks to a single

replica set, which thus receives most of the new write traffic. This causes MongoDB’s peri-

odic write journal flushes 4 to take longer. This in turn delays the new writes arriving around

4MongoDB maintains a write-ahead (journal) log for durability which is periodically flushed to disk.

23

(a) Uniform. (b) Zipf.

(c) Latest. (d) CDF of Write Latency Distribution.
Figure 2.6: Write Latency for three read-write workloads modeled after YCSB: (a)
Uniform, (b) Zipf, and (c) Latest. Times shown are hh:mm:ss. Failed writes are
shown as negative latencies. Annotations marked “WT” indicate the start of each
write throttle phase. (d) CDF of Write Latency Distribution for no reconfiguration
(No Reconf) and three under-reconfiguration workloads.

the journal flush timepoints. Many of the latency spikes observed in Figs. 2.6a to 2.6c arise

from this journaling behavior.

We conclude that under reconfiguration, the write availability provided by Morphus is

high (close to two 9’s), while latencies of successful writes degrade only mildly compared to

when there is no reconfiguration in progress.

2.5.4 Hungarian vs. Greedy Reconfiguration

Section 2.3 outlined two algorithms for the shard key change reconfiguration – Hungarian

and Greedy. We implemented both these techniques into Morphus – we call these variants

as Morphus-H and Morphus-G respectively. For comparison, we also implemented a random

chunk assignment scheme called Morphus-R.

Fig. 2.7 compares these three variants under two scenarios. The uncorrelated scenario (left

pair of bars) uses a synthetic 1 GB dataset where for each data item, the value for its new

shard key is selected at random and uncorrelated to its old shard key’s value. The plot shows

24

Figure 2.7: Greedy (Morphus-G) vs. Hungarian (Morphus-H) Strategies for shard
key change. Uncorrelated: random old and new shard key. Correlated: new shard
key is reverse of old shard key.

the total reconfiguration time including all the Morphus phases. Morphus-G is 15% worse

than Morphus-H and Morphus-R. This is because Morphus-G ends up assigning 90% new

chunks to a single replica set which results in stragglers during the Execution and Recovery

phases. The underlying reason for the skewed assignment can be attributed to MongoDBs

split algorithm which we use modularly. The algorithm partitions the total data size instead

of total record count. When partitioning the data using the old shard key, this results in

some replica sets getting a larger number of records than others. Morphus-R performs as

well as Morphus-H because by randomly assigning chunks to servers, it also achieves load

balance

The correlated scenario in Fig. 2.7 (right pair of bars) shows the case where new shard

keys have a reversed order compared to old shard keys. That is, with M data items, old

shard keys are integers in the range [1,M], and the new shard key for each data item is set as

= M−old shard key. This results in data items that appeared together in chunks continuing

to do so (because chunks are sorted by key). Morphus-R is 5x slower than both Morphus-G

and Morphus-H. Randomly assigning chunks can lead to unnecessary data movement. In the

correlated case, this effect is accentuated. Morphus-G is 31% faster than Morphus-H. This is

because the total transfer volume is low anyway in Morphus-G due to the correlation, while

Morphus-H additionally attempts to load-balance.

We conclude that i) the algorithms of Section 3 give an advantage over random assignment,

especially when old and new keys are correlated, and ii) Morphus-H performs reasonably well

in both the correlated and uncorrelated scenario and should be preferred over Morphus-G

and Morphus-R.

25

(a) Data Size. (b) Operation Rate.

(c) Number of Replica Sets. (d) Size of Replica Set.
Figure 2.8: Morphus Scalability with: (a) Data Size, also showing Morphus-H phases,
(b) Operation injection rate, also showing Morphus-H phases, (c) Number of replica
sets, and (d) Replica set size.

2.5.5 Scalability

We explore scalability of Morphus along three axes – database size, operation injection

rate, and size of cluster. These experiments use the Amazon dataset.

Database Size: Fig. 2.8a shows the reconfiguration time at various data sizes from 1 GB

to 10 GB. There were no reads or writes injected. For clarity, the plotted data points are

perturbed slightly horizontally.

Firstly, Fig. 2.8a shows that Morphus-H performs slightly better than Morphus-G for the

real-life Amazon dataset. This is consistent with our observations in Section 2.5.4 since the

Amazon workload is closer to the uncorrelated end of the spectrum.

Secondly, the total reconfiguration time appears to increase superlinearly beyond 5 GB.

This can be attributed to two factors. First, reconfiguration time grows with the number

of chunks – this number is also plotted, and we observe that it grows superlinearly with

datasize. This is again caused by MongoDB’s splitting code 5. Second, we have reused

MongoDB’s data transfer code, which relies on cursors (i.e., iterators), which are not the

best approach for bulk transfers. We believe this can be optimized further by writing a

5Our results indicate that MongoDB’s splitting algorithm may be worth revisiting.

26

module for bulk data transfer – yet, we reiterate that this is orthogonal to our contributions:

even during the (long) data transfer time, reads and writes are still supported with several

9s of availability (Table 1). Today’s existing approach of exporting/reimporting data with

the database shut down, leads to long unavailability periods – at least 30 minutes for 10 GB

of data (assuming 100% bandwidth utilization). In comparison, Morphus is unavailable in

the worst-case (from Table 1) for 3.2% × 2 hours = 3.84 minutes, which is an improvement

of about 10x.

Fig. 2.8a also illustrates that a significant fraction of the reconfiguration time is spent

migrating data, and this fraction grows with increasing data size – at 10 GB, the data transfer

occupies 90% of the total reconfiguration time. This indicates that Morphus’ overheads fall

and will become relatively small at large data sizes.

We conclude that the reconfiguration time incurred by Morphus scales linearly with the

number of chunks in the system and that the overhead of Morphus falls with increasing data

size.

Operation Injection Rate: An important concern with Morphus is how fast it plays

“catch up” when there are concurrent writes during the reconfiguration. Fig. 2.8b plots the

reconfiguration time against the write rate on 1 GB of Amazon data. In both Morphus-G

and Morphus-H, we observe a linear increase. More concurrent reads and writes slow down

the overall reconfiguration process because of two reasons: limited bandwidth available for

the reconfiguration data transfers, and a longer oplog that needs to be replayed during the

Recovery Phase. However, this increase is slow and small. A 20-fold increase in operation

rate from 50 ops/s to 1000 ops/s results in only a 35% increase in reconfiguration time for

Morphus-G and a 16% increase for Morphus-H.

To illustrate this further, the plot shows the phase breakdown for Morphus-H. The Recov-

ery phase grows as more operations need to be replayed. Morphus-H has only a sublinear

growth in reconfiguration time. This is because of two factors. First Morphus-H balances

the chunks out more than Morphus-G, and as a result the oplog replay has a shorter tail.

Second, there is an overhead in Morphus-H associated with fetching the oplog via the Mon-

goDB cursors (iterators) – at small write rates, this overhead dominates but as the write

rate increases, the contribution of this overhead drops off. This second factor is present in

Morphus-G as well, however it is offset by the unbalanced distribution of new chunks.

We conclude that Morphus catches up quickly when there are concurrent writes, and that

its reconfiguration time scales linearly with write operation injection rate.

Cluster Size: We investigate cluster size scalability along two angles: number of replica

sets, and replica set size. Fig. 2.8c shows that as the number of replica sets increases from

3 to 9 (10 to 28 servers), both Morphus-G and Morphus-H eventually become faster with

27

(a) (b)
Figure 2.9: (a) Execution Phase Migration time for five strategies: (i) Fixed Sharing
(FS), (ii) Chunk-based strategy, (iii) Orchestra with K = 21, (iv) WFS with K = 21,
and (v) WFS with K = 28. (b) CDF of total reconfiguration time in chunk-based
strategy vs. WFS with K = 28.

scale. This is primarily because of increasing parallelism in the data transfer, while the

amount of data migrating over the network grows much slower – with N replica sets, this

latter quantity is approximately a fraction N−1
N

of data. While Morphus-G’s completion time

is high at a medium cluster size (16 servers) due to its unbalanced assignment, Morphus-H

shows a steady improvement with scale and eventually starts to plateau as expected.

Next, Fig. 2.8d shows the effect of increasing replica set size. We observe a linear increase

for both Morphus-G and Morphus-H. This is primarily because there are as many rounds

inside a reconfiguration run as there are machines in a replica set.

We conclude that Morphus scales reasonably with cluster size – in particular, an increase

in number of replica sets improves its performance.

2.5.6 Effect of Network Awareness

Datacenter Topology-Awareness: First, Fig. 2.9a shows the length of the Execution

phase (using a 500 MB Amazon collection) for two hierarchical topologies, and five migration

strategies. The topologies are: i) homogeneous: 9 servers distributed evenly across 3 racks,

and ii) heterogeneous: 3 racks contain 6, 2, and 1 servers respectively. The switches are

Emulab pc3000 nodes and all links are 100 Mbps. The inter-rack and intra-rack latencies

are 2 ms and 1 ms respectively. The five strategies are: a) Fixed sharing, with one socket

assigned to each destination node, b) chunk-based approach (Section 2.4.1), c) Orchestra [57]

with K = 21, d) WFS with K = 21 (Section 2.4.1), and e) WFS with K = 28.

We observe that in the homogeneous clusters, WFS strategy with K = 28 is 30% faster

than fixed sharing, and 20% faster than the chunk-based strategy. Compared to Orchestra

which only weights flows by their data size, taking the network into account results in a 9%

28

improvement in WFS with K = 21. Increasing K from 21 to 28 improves completion time

in the homogeneous cluster, but causes degradation in the heterogeneous cluster. This is

because a higher K results in more TCP connections, and at K = 28 this begins to cause

congestion at the rack switch of 6 servers. Second, Fig. 2.9b shows that compared to Fig. 2.3

(from Section 2.4), Morphus’ network-aware WFS strategy has a shorter tail and finishes

earlier. Network-awareness lowers the median chunk finish time by around 20% in both the

homogeneous and heterogeneous networks.

We conclude that WFS strategy improves performance compared to existing approaches,

and K should be chosen high enough but without causing congestion.

Geo-Distributed Setting: Table 2.2 shows the benefit of the tag-aware approach of Mor-

phus (Section 2.4.2). The setup has two datacenters with 6 and 3 servers, with intra- and

inter-datacenter latencies of 0.07 ms and 2.5 ms respectively (based on [62]) and links with

100 Mbps bandwidth. For 100 ops/s workload on 100 MB of reconfigured data, tag-aware

Morphus improves performance by over 2x when there are no operations and almost 3x when

there are reads and writes concurrent with the reconfiguration.

Without With
Read/Write Read/Write

Tag-Unaware 49.074s 64.789s
Tag-Aware 21.772s 23.923s

Table 2.2: Reconfiguration Time in the Geo-distributed setting.

2.5.7 Large Scale Experiment

In this experiment, we increase data and cluster size simultaneously such that the amount

of data per replica set is constant. We ran this experiment on Google Cloud [63]. We used

n1-standard-4 VMs each with 4 virtual CPUs and 15 GB of memory. The disk capacity was

1 GB and the VMs were running Debian 7. We generated a synthetic dataset similar to

the one used in Section 2.5.4. Morphus-H was used for reconfiguration with WFS migration

scheme and K = number of old chunks.

Fig. 2.10 shows a sublinear increase in reconfiguration time as data and cluster size in-

creases. Note that x-axis uses log scale. In the Execution phase, all replica sets communicate

among each other for migrating data. As the number of replica sets increases with cluster

size, the total number of connections increases leading to network congestion. Thus, the

Execution phase takes longer.

The amount of data per replica set affects reconfiguration time super-linearly. On the

contrary, cluster size has a sublinear impact. In this experiment, the latter dominates as the

29

Figure 2.10: Running Morphus-H with WFS (K = number of old chunks) for recon-
figuring database of size (25GB, 50GB, 100GB) running on a cluster size (25 machines
(8 replica sets * 3 + 1 mongos), 49 machines (16 replica sets) and 100 machines (33
replica sets)).

amount of data per replica set is constant.

2.6 RELATED WORK

Research in distributed databases has focused on query optimization and load-balancing [64],

and orthogonally on using group communication for online reconfiguration [65], however,

they do not solve the core algorithmic problems for efficient reconfiguration. Online schema

change was targeted in [66], but the resultant availabilities were lower than those provided

by Morphus. In a parallel work, Elmore et. al. [67] have looked into the reconfiguration

problem for a partitioned main memory database like H-Store. Data placement in parallel

databases have used hash-based and range-based partitioning [68, 69], but they do not target

optimality for reconfiguration.

The problem of live migration has been looked into in the context of databases. Alba-

tross [45], Zephyr [46] and ShuttleDB [44] addresses live migration in multi-tenant trans-

actional databases. Albatross and ShuttleDB uses iterative operation replay like Morphus,

while Zephyr routes updates based on current data locations. Data migration in these sys-

tems happen between two different sets of servers while Morphus achieves this inside the same

replica sets. Also, they do not propose optimal solutions for any reconfiguration operation.

Opportunistic lazy migration explored in Relational Cloud [70] entails longer completion

times. Tuba [71] looked into the problem of migration in a geo-replicated setting. They

avoided write thottle by having multiple masters at the same time. MongoDB does not

support multiple masters in a single replica set, which dictated Morphus’s current design.

Morphus’ techniques naturally bear some similarities with live VM migration. Pre-copy

techniques migrate a VM without stopping the OS, and if this fails then the OS is stopped [72].

Like pre-copy, Morphus also replays operations that occurred during the migration. Pre-copy

30

systems also use write throttling [73]. Pre-copy has been used in database migration [74].

For network flow scheduling, Chowdhury et.al [57] proposed a weighted flow scheduling

which allocates multiple TCP connections to each flow to minimize migration time. Our WFS

approach improves their approach by additionally considering network latencies. Morphus’

performance is likely to improve further if we also consider bandwidth. Hedera [75] also

provides a dynamic flow scheduling algorithm for multi-rooted network topology. Even

though these techniques may improve reconfiguration time, Morphus’ approach is end-to-

end and is less likely to disrupt normal reads and writes which use the same network links.

2.7 SUMMARY

This chapter described optimal and load-balanced algorithms for online reconfiguration

operation, and the Morphus system integrated into MongoDB. Our experiments showed

that Morphus supports fast reconfigurations such as shard key change, while only mildly

affecting the availability and latencies for read and write operations. Morphus scales well

with data size, operation injection rate, and cluster size.

31

Chapter 3: Parqua: Online Reconfigurations in Virtual Ring-Based NoSQL
Systems

In this chapter, we discuss the problem of changing configuration parameters like shard

key, block size etc. at the level of a database table in a virtual-ring based NoSQL distributed

database like Cassandra. Virtual-ring based databases pose its unique set of challenges

because of which techniques in Morphus are not applicable here. We outline them in in

Section 3.1. We define the system model in Section 3.2. We describe the key technique in

Parqua in Section 3.3. Finally, we summarize the results from our evaluation in Section 3.4.

3.1 INTRODUCTION

Key-value/NoSQL systems today fall into two categories: 1) (virtual) ring-based and 2)

sharded databases. The key-value/NoSQL revolution started with ring-based databases.

The Dynamo system [76] from Amazon. Dynamo, and subsequent open-source variants of

it including Facebook’s Apache Cassandra [42], Basho’s Riak [29], and LinkedIn’s Volde-

mort [77] all rely on the use of a “virtual ring” to place servers as well as keys; keys are

assigned to servers whose segment they fall into. For fault-tolerance, a key and its values

are replicated at some of the successor servers as well.

Unlike the ring-based databases, sharded databases like MongoDB [11], BigTable [6], etc.,

rely on a fully flexible assignment of shards (sometimes called chunks or blocks) across

servers, along with some degree of replication. Both the ring-based and sharded NoSQL

databases have grown very quickly in popularity over the past few years, and are expected

to become a $3.4 billion market by 2020 [37].

In these databases, performing reconfiguration operations seamlessly is a major pain point.

Such operations include changing the primary key or changing the structure of the ring (e.g.,

where servers and keys are hashed to) – essentially such operations have the potential to

affect all of the data inside the table. Today’s “state of the art” approach involves exporting

and then shutting down the entire database, making the configuration change, and then re-

importing the data. During this time the data is completely unavailable for reads and writes.

This can be prohibitively expensive – for instance, anecdotes suggest that every second of

outage costs $1.1K at Amazon and $1.6K at Google [78].

The reconfiguration operation itself, though not as frequent as reads and writes, is in fact

considered a critical need by system administrators. When a database is initially created,

the admin may play around with multiple prospective primary keys in order to measure the

impact on performance, and select the best key. Later, as the workload or business require-

32

ment changes, such reconfiguration operations may become less frequent but their impacts

(on availability) are significant, because they are being made on a live database. Thus the

need is for a system that allows administrators to perform reconfigurations anytime, auto-

matically, and seamlessly, i.e., completely in the background, without affecting the serving

of reads and writes.

The lack of an efficient online reconfiguration operation has led to outages at Foursquare [47],

JIRA (bug tracking) issues that are hotly debated [38], and many blogs [48, 49]. The manual

approach to resharding took over two years at Google [50].

In our past work [79], we have solved the problem of online reconfiguration for sharded

NoSQL databases such as MongoDB. That system, called Morphus, leveraged the full flexi-

bility of being able to assign any shards to any server, in order to derive an optimal allocation

of shards to servers. The optimal allocation was based on maximal matching, which both

minimized the network traffic and ensured load balancing.

Unfortunately, the techniques of Morphus cannot be extended to ring-based key-value/NoSQL

stores like Cassandra, Riak, Dynamo, and Voldemort. This is due to two reasons. First,

since ring-based systems place data strictly in a deterministic fashion around the ring (e.g,

using consistent hashing), this constrains which keys can be placed where. Thus, our optimal

(maximal matching-based) placement strategies from Morphus no longer apply to ring-based

systems. Second, unlike in sharded systems (like MongoDB), ring-based systems do not al-

low isolating a set of servers for reconfiguration (a fact that Morphus leveraged). In sharded

databases each participating server exclusively owns a range of data (as master or slave).

In ring-based stores, however, ranges of keys overlap across multiple servers in a chained

manner (because a node and its successors on the ring are replicas), and this makes full

isolation impossible.

This motivates us to build a new reconfiguration system oriented towards ring-based key-

value/NoSQL stores. Our system, named Parqua 1, enables online and efficient reconfigu-

rations in virtual ring-based key-value/NoSQL systems. Parqua suffers no overhead when

the system is not undergoing reconfiguration. During reconfiguration, Parqua minimizes the

impact on read and write latency, by performing reconfiguration in the background while

responding to reads and writes in the foreground. It keeps the availability of data high dur-

ing the reconfiguration, and migrates to the new reconfiguration at an atomic switch point.

Parqua is fault-tolerant and its performance improves with the cluster size.

We have integrated Parqua into Apache Cassandra. Our experiments show that Parqua

provides high nines of availability with little impact on read and write latency. The system

scales well with data and cluster size.

1The Korean word for “change.”

33

3.2 SYSTEM MODEL & BACKGROUND

In this section, we present the system model and background for Parqua system. We

demonstrate assumptions about the underlying distributed key-value store in order to im-

plement Parqua. Then, we provide background information on Apache Cassandra.

3.2.1 System Model

Parqua is applicable to any key-value/NoSQL store that satisfies the following assump-

tions. First, we assume that a distributed key-value store is fully decentralized without the

notion of a single master node or replica. Second, each node in the cluster must be able

to deterministically decide the destination of the entries that are being moved due to the

reconfiguration. This is necessary because there is no notion of the master in a fully decen-

tralized distributed key-value store, and for each entry all replicas should be preserved after

the reconfiguration is finished. In our implementation of Parqua on Apache Cassandra, we

use consistent hashing [80] for determining the destination of an entry, but we could alterna-

tively use any other partitioning strategies that satisfy our assumption. Third, we require the

key-value store to utilize SSTable (Sorted String Table) to persist the entries permanently.

An SSTable is essentially an immutable sorted list of entries stored on disk [6]. We utilize

SSTables in Parqua for efficient recovery of entries in the Recovery phase. Next, we assume

each write operation accompanies a timestamp or a version number which can be used to

resolve a conflict. Finally, we assume the operations issued are idempotent. Therefore, sup-

ported operations are insert, update, and read operations, and non-idempotent operations

such as counter incrementation are not supported.

3.2.2 Cassandra Background

We incorporated our design in Apache Cassandra, which is a popular ring-based distributed

key-value store [42]. Cassandra borrows the architecture designs heavily from Distributed

Hash Tables (DHTs) such as Chord [80].

Machines in Cassandra (henceforth called nodes) are organized logically in a ring, without

involving a central master. Nodes may be either hashed to a ring or assigned uniformly within

the ring. In the Cassandra data model, each row is uniquely identified with a primary key.

The primary key of each entry is hashed onto the ring, and whichever node’s segment it falls

into, stores that key/value. A node’s segment is defined as the portion of the ring between

the node and its predecessor node. Some of the successors of that node may also replicate

the key-value for fault-tolerance.

34

A read or write request can go from a client to any node on the ring, and the contacted

node is called a coordinator. The coordinator routes the requests to the correct node(s) by

hashing the primary key used in the query. Cassandra serves writes by appending a log to a

disk-based commit log, and adding an entry to an in-memory dictionary data structure called

Memtable. When a Memtable’s size exceeds certain threshold, the Memtable is flushed to

disk. This on-disk file is called a SSTable, and it is immutable. When a read request is issued

and routed to the correct node, the node goes through the Memtable and possibly multiple

SSTables that store the requested primary key’s value. If there are multiple instances of the

same column’s value in the aggregated entry, the value with higher timestamp is chosen.

A single database table is called a column family. A database, also called a keyspace,

contains multiple column families. Each column family has its own primary key. Cassandra

supports adjustable consistency levels where a client can specify for each query the minimum

number of replicas it needs to touch – popular consistency levels include ONE, QUORUM,

and ALL.

3.3 SYSTEM DESIGN AND IMPLEMENTATION

This section describes the design of our Parqua system, intended to support online and

automated reconfigurations in any ring-based key-value store. For concreteness, we have in-

tegrated Parqua into Apache Cassandra. Below, we first give the overview of Parqua system.

Then we describe the design of our system and its individual phases during reconfiguration.

3.3.1 Parqua: Overview

Parqua runs reconfiguration in four phases. The graphical overview of Parqua phases is

shown in Fig. 3.1. When the reconfiguration is initiated, Parqua starts first with the Isolate

phase, where it creates a new reconfigured database table (column family in Cassandra) with

the desired new configuration that will supersede the original database table. Second, in the

Execute phase, Parqua copies entries from the original database table to the reconfigured

database table. Third, once entries are copied to the reconfigured database table, the Commit

phase updates the two database tables by atomically swapping their SSTables and schemas.

Finally, Parqua executes the Recovery phase which applies missing updates that were not

copied in the Execute phase.

Parqua can support any reconfiguration operation that involves a large amount of data

movement among nodes. In this work, our implementation of Parqua addresses primary key

changes in Cassandra, where a primary key is composed of a single partition key column.

35

Figure 3.1: Overview of Parqua phases. The gray solid lines represent internal entry
transfers, and the gray dashed lines mean client requests. The phases progress from
left to right.

Next, we discuss these individual phases in detail.

3.3.2 Reconfiguration Phases in Parqua

Isolate phase: In this phase, the initiator node – the node in which the reconfiguration

command is run – creates a new (and empty) column family (database table), denoted as

Reconfigured CF (column family), using a schema derived from the Original CF except it

uses the desired key as the new primary key. The Reconfigured CF enables reconfiguration

to happen in the background while the Original CF continues to serve reads and writes

using the old reconfiguration. We also record the timestamp of the last operation before the

Reconfigured CF is created so that all operations which arrive while the Execute phase is

running, can be applied later in the Recovery phase. We disable automatic compaction in

this phase in order to prevent disk I/O overhead during reconfiguration and to avoid copying

unnecessary entries in the Recovery phase (later, our experimental results will explore the

impact of doing compaction).

Execute phase: The initiator node notifies all other nodes to start copying data from the

Original CF to the Reconfigured CF. Each node can execute this migration in parallel. Read

and write requests from clients continue to be served normally during this phase.

At each node, Parqua iterates through all entries that it is responsible for, and sends them

to the appropriate new destination nodes. The destination node for an entry is determined

by: 1) hashing the new primary key value on the hash ring, and 2) using the replica number

36

associated with the entry. Key-value pairs are transferred between corresponding nodes that

have matching replica numbers in the old configuration and the new configuration. For

example, in the Execute phase of Fig. 3.1, the entry with the old primary key ‘1’ and the

new primary key ‘10’ have replica number of 1 at node A, 2 at B, and 3 at C. In this example,

after primary key is changed, the new position of the entry on the ring is between node C

and D, where node D, E, and F are replica numbers 1, 2, and 3, respectively. Thus, in the

Execute phase, the said entry in node A is sent to node D, and similarly the entry in B is

sent to E, and from C to F.

Commit phase: After the Execute phase, the Reconfigured CF has the new configura-

tion and the entries from Original CF have been copied to Reconfigured CF. Now, Parqua

atomically swaps both the schema and the SSTables between the Original CF and the Re-

configured CF. The write requests are locked in this phase while reads still continue to be

served. In our implementation, we drop the write requests, in order to prevent any success-

fully returned writes from being lost during this phase. Reads are served from the Original

CF before column families are swapped, and from Reconfigured CF after they are swapped.

The schema is updated for both column families by modifying the “system” keyspace – a

special keyspace in Cassandra that stores metadata of the cluster such as schema information

– with the appropriate primary key. For SSTable swap, first, the Memtables are flushed to

disk. This is because the recent updates might be still residing in the Memtables. To

implement the actual swap, we leverage the fact that SSTables are maintained as files on

disk, stored in a directory named after the column family. Therefore, we move SSTable files

from one directory to another. This does not cause disk I/O as we only update the inodes

when moving files. Note that we do not simply drop the Original CF, but swap it with the

Reconfigured CF. This is because the write requests that were issued since the reconfiguration

has started are stored in the Original CF and need to be copied to the Reconfigured CF.

At the end of the Commit phase, the write lock is released at each node. At this point,

all client facing requests are processed according to the new configuration. In our case, the

new primary key is now in effect, and the read requests must use the new primary key.

Recovery phase: During this phase, the system catches up with the recent writes that are

not transferred to Reconfigured CF in the Execute phase. Read/write requests are processed

normally. The difference is that until the recovery is done, the read requests may return stale

results. 2 Once SSTables are swapped in the Commit phase, the updated entries which need

to be replayed are in the Original CF. The initiator notifies nodes to start the Recovery

phase.

At each node, Parqua iterates through the SSTables of Original CF to recover the entries

2This is acceptable as Cassandra only guarantees eventual consistency.

37

that were written during the reconfiguration. The SSTable is an immutable data structure

such that a SSTable created at time t can only store updates written prior to time t. We

leverage this fact to limit the amount of disk accesses required for recovery by only iterating

the SSTables that are created after the reconfiguration has started. The iterated entries are

routed to appropriate destinations in the same way as the Execute phase.

Since all writes in Cassandra carry a timestamp [81], Parqua can ensure that the recovery

of an entry does not overshadow newer updates, thus guaranteeing the eventual consistency.

For example, if an entry is updated at time t1 during the Execute phase and again at t2 in the

Recovery phase where t1 < t2, the update originally issued at t1 recovers at t3 where t2 < t3.

In this case, once the reconfiguration is over, a read request on this entry would return the

correct result with the timestamp t2, because Cassandra aggregates SSTables favoring the

value with the highest timestamp.

3.3.3 Fault Tolerance of Parqua

Parqua can tolerate the failure of non-initiator nodes on the condition that there are

enough replicas and appropriate consistency levels. If a non-initiator node fails in any of the

phases, the Parqua guarantees the same fault tolerance model as the underlying distributed

key-value store.

In a ring-based distributed key-value store, the key-value store is available upon failure of

upto k nodes, if the consistency level of requests is less than or equal to N − k, where N

is the replication factor. This is because there is always at least (consistency level) number

of replicas available for any entry. Otherwise, the key-value store can still be recovered if

k ≤ (N − 1), since in this case there is at least one unfailed replica for all entries.

For instance, if a non-initiator node fails during the Execute phase, the entries that were

stored in the failed node are not transferred to the new destination nodes. However, if the

replication factor is 3 and the consistency level is 1 for read/write requests, there are still

at least two replicas available for the any entries – including the entries from the crashed

node – and the reconfiguration can continue without interrupted. This is the same guarantee

offered by the underlying distributed key-value store.

3.4 EXPERIMENTAL EVALUATION

In our experiments, we would like to answer the following questions:

• Does Parqua perform robustly under different workload patterns?

38

• How much does Parqua affect normal read and write operations of Cassandra, especially

during the reconfiguration?

• Is Parqua scalable in terms of size of the cluster, database size, and the operation injection

rate?

3.4.1 Setup

Data Set: We used the Yahoo! Cloud Service Benchmark(YCSB) [61] to generate a dataset

and workload. Each entry (key, values pair) has 10 columns with each column’s size being

100 bytes, and an additional column that serves as the primary key. In all experiments, our

default database size is 10 GB in all experiments.

Cluster: The default Parqua cluster used 9 machines running 64 bit Ubuntu 12.04. We

used Emulab cluster’s d710 machines [60]. Each d710 machine has a 2.4 GHz quad-core

processor, 12 GB memory, 2 hard disks of capacities 250 GB and 500 GB, and 6 Gigabit

Ethernet NICs.

Workload Generator: We used YCSB as our workload generator. Our operations consist

of 40% reads, 40% updates, and 20% inserts. With YCSB, we used the key access patterns

of ‘uniform’, ‘zipfian’, and ‘latest’ – these model the pattern in which queries are distributed

(uniform) or clustered across keys (zipfian) as well as time (latest). For zipfian distribu-

tion, the zipfian parameter of 1.50 was used. The default operation injection rate for our

experiments was 100 operations per second, and the default key access pattern used was the

uniform distribution.

We made a few minor modifications to YCSB in order to perform our experiments. First,

to measure latency distributions accurately, we changed the granularity of the latencies

histogram to 0.1 ms instead of the default setting of 1 ms. Second, we modified YCSB so

that only one reconfiguration was executed at a time.

Cassandra: Parqua is integrated into Apache Cassandra version 2.0.8. The Parqua system

was written in Java and has about 2000 lines. We used the simple replication strategy with

the default replication factor of 3, and the Murmur3 hash-based partitioner [42]. We also

enabled the virtual nodes in which each peer is assigned 256 tokens, and used the size-tiered

compaction strategy. In order to offer strong consistency under read/write operations, we

used the write consistency level of ALL and the read consistency level of ONE.

Parqua: In our reconfiguration experiments, we set the Parqua system to change the old

partition key from y id to the new partition key field0. Each plotted data point is an average

of at least 3 trials, and is shown with standard deviation error bars.

39

3.4.2 Reconfiguration Time

Figure 3.2: Time taken for reconfiguration for different workload types and breakdown
by individual phases.

In this experiment, we measured the time taken to complete the reconfiguration and the

availability of queries during the reconfiguration for different workload distributions. Fig. 3.2

shows the contribution of the three major phases to the overall reconfiguration time. We

observe that the Execute phase dominates for all workload types. This is expected due to

the large volume of data being migrated during this phase. The duration of the Commit

phase stays constant across different workloads (0.8 % - 1 %) – Parqua is able to obtain this

advantage because it decouples data migration from the data querying.

In the Recovery phase, the read only workload finishes this phase very quickly because

there are no entries to catch up in the Recovery phase. Also, in the same phase, we observe

that uniform workload takes almost four times longer than zipfian and latest workloads.

This is because uniform workload spreads writes over keys evenly, thus having more unique

entries that need to be sent to different peers in the Recovery phase. However, since the

overall reconfiguration time is dominated by the Execute phase (consisting 88 % - 98 % of

overall reconfiguration time), this has a small effect on the overall reconfiguration time.

The overall reconfiguration time is small considering that the size of unique entries is 10

GB. Compared to our past work on Morphus [79], Parqua’s reconfiguration time is 10 times

faster (10 % of Morphus). This improvement is largely due to our design decision to migrate

all replicas concurrently.

From this experiment, we conclude that Parqua offers predictable reconfiguration time

under different workload patterns.

40

Read (%) Write (%)
Read only 99.17 -
Uniform 99.27 99.01
Latest 96.07 98.92
Zipfian 99.02 98.92

No reconfig (Uniform) 100.00 100.00
No reconfig (Latest) 99.52 100.00

Table 3.1: Percentage of reads and writes that succeed during reconfiguration.

3.4.3 Availability

Next, we measure the availability of Parqua system during the reconfiguration. In our

system, the point at which the primary key actually changes is at the end of the Commit

phase. Starting from this point onwards, any queries that were using the only the old primary

key need to also include the new primary key. Therefore, we calculate the overall availability

of our system by combining the availabilities of the system for queries with old primary key

before the Commit phase is finished, and the availability for queries with the new primary

key after the Commit phase is finished.

In Table 3.1 we observe that the read and write availabilities for read only, uniform, and

zipfian workloads are in the range of 99.02–99.27 % and 98.92 - 99.01 %, respectively. We

point out that this slight degradation of the availability is far more preferable than the

current solution of shutting down the database during the reconfiguration. We will explore

this issue further in Section 3.4.4.

The lowest availability is the read availability of the latest workload at 96.07 %. This

is because the multi-threaded YCSB workload generator assumes the most recent insert

queries are already committed even before receiving the successful responses. Therefore,

YCSB frequently tries and fails to read entries that are not yet inserted, causing degraded

availability. This behavior is inherent to the architecture of YCSB, rather than Parqua.

We can see a similar degradation of read availability under no reconfiguration for the latest

workload. The reason for larger degradation under reconfiguration is due to increased average

latency during reconfiguration as depicted in Section 3.4.4.

3.4.4 Read Latency

We now further explore the distributions of read latency during reconfiguration under

Parqua.

Read Latency Over Time: In this section, we investigate the read latency characteristics

for different workloads, during reconfiguration.

41

Figure 3.3: CDF of read latencies for different workloads under reconfiguration, and
the CDF of read latency under no reconfiguration for baseline measurement. The x-
axis is read latency in logarithmic scale, while the y-axis is the cumulative probability.

First, Fig. 3.4 shows the read latencies over time for four different workloads during the

reconfiguration of Cassandra using Parqua. Fig. 3.4a shows the read latencies when no

update/insert queries were issued. The reconfiguration starts at time 00:00:00 (hh:mm:ss),

and the Execute phase ends at 00:08:08. The Commit phase is over at 00:08:12, and the

reconfiguration ends at 00:08:18. The Recovery phase duration for read only workload is

much shorter than that of other workloads, as explained in Section 3.4.2. Fig. 3.4 (b), (c),

and (d) depict read latencies for different YCSB workloads: uniform, zipfian, and latest

respectively.

There are two latency lines for this experiment – Original CF and Reconfigured CF (CF =

Column Family). These refer to the queries using the old primary key and the new primary

key respectively, with the switch-over happening at the atomic commit point. We only query

using the primary key because using secondary index is not recommended for our use case,

where the cardinality of the columns that participate in the reconfiguration is too high [82].

During the reconfiguration, we can see occasional latency spikes in the different workloads.

This is due to increased disk activities during migration, where a lot of entries are read off

the disk. We observe less frequent latency spikes in zipfian and latest workloads than in read

only and uniform workloads. This is because of the skewed key access patterns under zipfian

and latest workloads and the effect of caching for “popular” keys.

Negative values for read latency show failed reads (unavailability). We observe higher read

unavailability in the Commit phase when SSTables of the Original CF and the Reconfigured

CF are being swapped. In the Commit phase, each Cassandra peer swaps the physical

SSTables of the Original CF and Reconfigured CF in its local file system, and reloads the

42

(a) Read Only. (b) Uniform.

(c) Zipfian. (d) Latest.
Figure 3.4: Read Latency for (a) Read only operations (no writes), and three read-
write YCSB workloads: (b) Uniform, (c) Zipfian, and (d) Latest. Times shown are in
hh:mm:ss. Failed reads are shown as negative latencies.

column family definitions. Although reads are not explicitly blocked during the Commit

phase, swapping physical SSTables and reloading the column family definitions cause some

read operations to fail. This is because SSTable swap and schema reload does not happen

exactly at the same time.

Fig. 3.4d shows many failed reads throughout the time. This is because the multi-threaded

YCSB workload generator tries to read some of the most recent writes even before they are

committed. Such read requests appear to fail, since the primary key being searched is not

inserted yet. As explained in Section 3.4.3, this is inherent to the multi-threaded YCSB

workload generator.

Read Latency CDF: Fig. 3.3 shows the CDF of read latencies under various workloads

while reconfiguration is being executed. As a baseline, we also plot the CDF of read latency

when no reconfiguration is being run. When measuring the latencies, we only considered

43

latencies for successful reads. Note that overall availability of Parqua system is high as

presented in Table 3.1.

First, the read only workload shows the same median (50th percentile) latency as the

baseline, and only shows degraded tail latency above the 80th percentile. The uniform

workload has a slightly higher latency than the read only workload, indicating that the

injection of write operations adds a slight increase of latency. Compared to the uniform

workload, zipfian and latest workload performs better for the slowest 30th percentile of

queries (beyond 70th percentile point). This is explained by the fact that the key access

patterns of zipfian and latest workloads are concentrated at a smaller number of keys whereas

uniform workload chooses keys uniformly. As a result, these frequently-accessed key-value

pairs in the former two workloads are available in the disk cache, while the latter workload

incurs a lot of disk seeks.

Next, when we compare latest and zipfian workloads, we observe the latest workload is

slightly faster up to the 90th percentile level, and they share similar read latency above

that percentile. This is because for latest workload, the most frequently accessed keys are

among those that were inserted most recently. Therefore, these recently inserted entries are

present in Memtables, and the read queries on such entries invoke fewer disk seeks and are

answerable directly from memory. For the slowest reads however, the large number of disk

seeks during the Execute phase and the Recovery phase makes the tail longer for Parqua,

independent of workload pattern. Nevertheless, we point out that having a small (20%)

fraction of reads answered slower is preferable to shutting down the entire database.

3.4.5 Write Latency

In our next set of experiments, we investigate the write latency characteristics of Parqua

system. Similar to Section 3.4.4, we aim to observe the effect of the reconfiguration on

normal write operations.

Write Latency Over Time: Fig. 3.5 (a), (b), and (c) depict the write latencies over time

for different workloads under reconfiguration. This is for the same experiment as Fig. 3.4.

We see that many operations fail in the Commit phase, similar to Section 3.4.4. As explained

in Section 3.3.2, in the Commit phase the coordinator locks writes for the column family

being reconfigured, and unlocks it when the primary key of that column family is updated.

Once writes are unlocked, the query with the new primary key starts to succeed while the

query with the old partition key fails.

Similar to Section 3.4.4, we also observe the latency spikes in the Execute phase and

the Recovery phase. However, unlike in Section 3.4.4, we do not see differing behaviors of

44

(a) Uniform. (b) Zipfian.

(c) Latest. (d) CDF of update latency Distribu-
tion.

Figure 3.5: Update latencies over time for three YCSB workloads: (a) Uniform, (b)
Zipfian, and (c) Latest. (d) depicts CDF of write latencies for various workloads.
Times shown are in hh:mm:ss. Failed inserts are shown as negative latencies.

latencies across workloads. This is because Cassandra is a write-optimized database, which

does not incur a disk seek. After the reconfiguration is over, the write latency stabilizes and

behaves similar to before the reconfiguration has begun.

Write Latency CDF: In Fig. 3.5d, we plot the CDF of update latencies for different work-

loads. We observe the three workloads perform similarly across different latency percentiles.

This is because Cassandra’s write path consists of appending to commit log and writing

into Memtable, and there is little disk I/O involved. Compared to baseline, Parqua shows

degraded tail latency above the 80th percentile. This is due to higher disk utilization level

when the reconfiguration is taking place, thus commit log appending faces interferences and

takes longer. The tail latency is aggravated by the use of consistency level of ‘ALL’, since

the coordinator node has to wait for acknowledgements from all of the replicas.

45

As a result, we conclude that Parqua exhibits slightly degraded write latency during the

reconfiguration, especially at the tail. However, the write latency is not affected by various

workload patterns, and recovers after the reconfiguration is completed.

Figure 3.6: Reconfiguration time for number of injected update operations under two
different implementations of Parqua system.

3.4.6 Scalability

Next, we measure how well Parqua scales with: (1) database size, (2) operation injection

rate, (3) cluster size, and (4) replication factor. To evaluate our system’s scalability, we

measured the total reconfiguration times along with a breakdown by phase.

Database Size: Fig. 3.7a depicts the reconfiguration time as the database size is increased

up to 30 GB. Since the replication factor was 3, 30 GB here means 90 GB overall amount

of entries (without accounting for duplicate entries). In this plot, we observe the total re-

configuration time scales linearly with database size. This is expected as a bulk of the

reconfiguration time is spent transferring data (the Execute phase), and this is three over-

lapping lines in the plot.

Operation Injection Rate: Fig. 3.7b shows the result of varying the operation injection

rate from 0 ops/s to 1500 ops/s. (database size was fixed at 10 GB)

The reconfiguration time increases linearly with the operation injection rate. We present

the explanation for completion time of each phase. First, the Recovery phase duration

increases steadily with operation rate. This happens because as more operations are injected

during reconfiguration, their replay during the Recovery phase takes longer. This is evident

from the growing gap between the “Reconfiguration done” and the “Commit phase done”

lines.

46

(a) Data Size. (b) Operation Injection Rate.

(c) Number of Cassandra Machines. (d) Replication Factor.
Figure 3.7: Morphus Scalability with: (a) Data Size, (b) Operation injection rate,
measured in number of YCSB workload threads, (c) Number of machines, and (d)
Replication Factor.

Second, the Commit phase duration (the time between the Execute phase and the Commit

phase lines) stays almost at constant across the increasing operation rate. This is because

the Commit phase swaps the SSTables of Original CF with Reconfigured CF and reloads the

schema with the new primary key, and both operations are independent of operation rate.

Third, the Execute phase also increases steadily along with the operation rate. The in-

crease is due to accumulation of injected operations. In the Execute phase, each node iterates

the primary key ranges that it is responsible for, and sends the entries to the appropriate

destination nodes. Therefore, if a new entry is injected in the Execute phase before its key

is iterated, this entry would be transferred to other nodes when Parqua iterates over that

key, thus increasing the overall amount of the transferred data. The rate of increase at the

Execute phase is much slower than at the Recovery phase, because not all newly injected

operations are migrated in the Execute phase.

47

Replication Factor: Next, Fig. 3.7d shows the effect of increasing replication factor (num-

ber of replicas of each key) on the total reconfiguration time. We observe that the reconfigu-

ration time increases as the replication factor increases. This is because a higher replication

factor implies that more data exists in the underlying SSTables, and thus migration takes

longer.

Cluster Size: Finally, we demonstrate the reconfiguration time as we scale the cluster size.

Database size was fixed at 10 GB. In Fig. 3.7c, we observe that the reconfiguration time

decreases as the number of Cassandra peers increases.The decrease occurs because as the

number of machines increases, there is higher parallelism involved in the Execute phase.

Observe that as the number of peers increases, the Commit phase and the Recovery phase

durations stay constant whereas the Execute phase duration decreases.

We conclude that Parqua scales very well with cluster size – the larger the cluster, the

faster is the reconfiguration time.

3.4.7 Effect of Compaction

Cassandra uses major compaction to periodically aggregate fragments of an entry (created

due to updates). One available option in Parqua is to run Cassandra’s major compaction

before the Execute phase begins. The rationale behind this is that by compacting the frag-

mented entries first, we might be able to save the disk I/O time caused by on-demand

aggregation of fragmented entries. In Fig. 3.6 we show the reconfiguration time for differ-

ent number of update operations under these two different implementations of Parqua. In

this experiment, we simulated fragmented entries by injecting update operations prior to

reconfiguration while disabling the automatic compaction. Also, for the purpose of our ex-

periment, we minimized the effect of disk cache by flushing it every minute. We used 1 GB

database size in order to observe the effect of increasing number of injected operations more

easily. In Fig. 3.6, we observe that reconfiguration time is shorter for the implementation

without compaction when no update operations are injected. However, as number of update

operations increase, the reconfiguration time for the implementation without compaction

increases rapidly and crosses over at 5 Mops (1 Mops = 106 ops) operations.

From this result, we conclude that the benefit of upfront major compaction heavily de-

pends on the kind of workload that the database receives prior to the reconfiguration. We

recommend executing major compaction for workloads that have frequent updates.

48

Figure 3.8: Reconfiguration time and read/write latency over number of migration
threads for reconfiguration.

3.4.8 Migration Throttling

In our initial implementation of Parqua, we observed the read/write latencies of normal

operations were affected by the reconfiguration. Profiling the query latency revealed that

the normal requests were queued for a long time because Parqua’s migration operations

were flooding the queue. This can be explained by Cassandra’s adoption of the staged

event-driven architecture (SEDA) [83]. SEDA maintains a set of thread pools and queues

each dedicated for specific tasks, which helps to achieve high overall throughput. In our

case, Parqua’s migration logic was sharing the same stage with normal requests, causing the

queues to be overly crowded. To address this, we created a new SEDA thread pool that

is dedicated exclusively for our Parqua operations. After this design change, we achieved

100-fold improvement in tail latency.

Fig. 3.8 depicts the change in reconfiguration time and read/write latency under different

number of threads in the Parqua migration thread pool. As the number of threads in

the thread pool increases, reconfiguration time decreases. Reconfiguration time improves

because of the increased parallelism under higher number of threads in the thread pool. The

reconfiguration time plateaus as number of threads increases, as more threads compete for

limited system resources.

However, this causes the Parqua to negatively affect the normal request latencies as Par-

qua’s entry transfer competes with normal requests for other system resources (such as disk

I/O and network). In Fig. 3.8, we observe the tail latency of reads and updates increases

quickly at first. As number of threads increase, the update latency keep increases (note

49

that the y-axis for the latency plots is in log scale), while read latency plateaus beyond 200

threads. The update latency grows much faster than the read latency, because most Par-

qua operations are “write” operations which share the same write path of normal requests

in Cassandra. Thus, higher number of Parqua threads implies more contention of system

resources for normal write requests.

3.5 SUMMARY

In this chapter, we introduced Parqua, a system which enables online reconfiguration in

a ring-based distributed key-value store. We introduced the general system assumptions

for Parqua, and proposed its detailed design. Next, we integrated Parqua in Cassandra,

and implemented a reconfiguration that changes the primary key of a column family. We

experimentally demonstrated Parqua achieves high nines of availability, and scales well with

database size, cluster size, and operation rate. In fact, Parqua becomes faster as the cluster

size increases.

50

Chapter 4: Popular is Cheaper: Curtailing Memory Costs in Interactive
Analytics Engines

In this chapter, we discuss the problem of dynamically changing replication of data based

on popularity of access in distributed interactive analytics engine like Druid. We motivate the

need for smarter replication strategy in distributed interactive analytics engine in Section 4.1.

In Section 4.2.2, we analyze workload traces from Yahoo! to characterize a typical production

workload. We present our algorithmic contributions in Section 4.3 and system design in

Section 4.4. We evaluate Getafix using workloads derived from Yahoo! production clusters

and present the results in Section 4.5.

4.1 INTRODUCTION

Real-time analytics is projected to grow annually at a rate of 31% [84]. Apart from

stream processing engines, which have received much attention [85, 86, 14], real time an-

alytics now also includes the burgeoning area of interactive data analytics engines such as

Druid [17], Redshift [87], Mesa [88], Presto [18] and Pinot [30]. These systems have seen

widespread adoption [89, 90] in companies which require applications to support sub-second

query response time. Applications span usage analytics, revenue reporting, spam analytics,

ad feedback, and others [91]. Typically large companies have their own on-premise deploy-

ments while smaller companies use a public cloud. The internal deployment of Druid at

Yahoo! (now called Oath) has more than 2000 hosts, stores petabytes of data and serves

millions of queries per day at sub-second latency scales [91].

In interactive data analytics engines, data is continuously ingested from multiple pipelines

including batch and streaming sources, and then indexed and stored in a data warehouse.

This data is immutable. The data warehouse resides in a backend tier, e.g., HDFS [8] or

Amazon S3 [25]. As data is being ingested, users (or programs) submit queries and navigate

the dataset in an interactive way.

The primary requirement of an interactive data analytics engine is fast response to queries.

Queries are run on multiple compute nodes that reside in a frontend tier (cluster). Compute

nodes are expected to serve 100% of queries directly from memory 1. Due to limited memory,

the compute nodes cannot store the entire warehouse data, and thus need to smartly fetch

and cache data locally. Therefore, interactive data analytics engines need to navigate the

tradeoff between memory usage and query latency.

1While SSDs could be used, they increase latency, thus production deployments today are almost always
in-memory.

51

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

C
D

F
(o

ve
r

Se
gm

en
ts

)

Segment Accesses

Figure 4.1: CDF of segment popularity collected from Yahoo! production trace.

Interactive analytics engines employ two forms of parallelism. First, data is organized into

data blocks, called segments–this is standard in all engines. For instance, in Druid, hourly

data from a given source constitutes a segment. Second, a query that accesses multiple

segments can be run in parallel on each of those segments, and then the results are collected

and aggregated. Query parallelization helps achieve low latency. Because a query (or part

thereof) running at a compute node needs to have its input segment(s) cached at that node’s

memory, segment placement is a problem that needs careful solutions. Full replication is

impossible due to the limited memory.

This chapter proposes new intelligent schemes for placement of data segments in interactive

analytics engines. The key idea is to exploit the strong evidence [31] that at any given point

of time, some data segments are more popular than others. When we analyzed traces from

Yahoo!’s Druid cluster, we found that the top 1% of data is an order of magnitude more

popular than the bottom 40%–in Figure 4.1, the bottom 40% popular segments account for

6% of the total accesses while the top 1% account for 43%. Today’s deployments either

uniformly replicate all data, or require system administrators to manually create storage

tiers with different replication factors in each tier. Only the latter approach can account for

popularity, but it is manual, laborious, and cannot adapt in real time to changes in query

patterns.

Figure 4.2 shows the query latency for two cluster sizes (15, 30 compute nodes) and

query rates (1500, 2500 qps). For each configuration (cluster size / query rate pair), as the

replication factor (applied uniformly across segments) is increased, we observe the curve hits

a “knee”, beyond which further replication yields marginal latency improvements. The knee

for 15 / 2500 is 9 replicas, and for the other two is 6 replicas. Our goal is to achieve the knee

of the curve for individual segments (which is a function of their respective query loads), in

an adaptive way.

Popularity is often confused with recency. Systems like Druid [17] approximate popularity

by over-replicating data that was ingested recently (few hours to days). While there is

52

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Replication Factor (RF)

15 / 2500
15 / 1500
30 / 2500

Figure 4.2: Average Query Latency observed with varying replication factors for dif-
ferent (cluster size / query injection rate) combinations.

correlation with recency, popularity needs to be treated as a first class citizen. Figure 4.3

shows our analysis of Yahoo!’s production Druid cluster. We find that some older data can

be popular (transiently or persistently). For instance, in Figure 4.3 recent segments (B1)

have a 50% chance of co-occurring with segments that are up to 5 months old (A1)–we

explain this plot in detail later (§4.2.2). Purely using recency may result in popular old

data becoming colocated with recent data at a compute node, overloading that node with

many queries and prolonging query completion times. Another approach to approximating

popularity is to use concurrent accesses, as in Scarlett [31]. We experimentally compare our

work against Scarlett.

We present a new system called Getafix 2 that adaptively decides replication level and

replica placement for segments. Getafix’s goal is to significantly reduce usage of the most

critical resource, namely memory 3, without affecting query latency. Getafix is built atop

intuition arising from our optimal solution to the static version of the replication problem.

Our static solution is provably optimal in both makespan (runtime of the query set) as well as

memory costs. In the dynamic scenario, Getafix makes replication decisions by continually

measuring query injection rate, segment popularity, and current cluster state.

We implemented Getafix and integrated it into Druid [17], one of the most popular open-

source interactive data analytics engines in use today. We present experimental results

using workloads from Yahoo! Inc.’s production Druid cluster. We compare Getafix to two

known baselines: 1) base Druid system with uniform replication, and 2) ideas adapted from

Scarlett [31], which solves replication in batch systems like Hadoop [3], Dryad [92], etc.

Compared to these, Getafix achieves comparable query latency (both average and tail),

while saving memory by 1.45-2.15× in a private cloud and cutting memory dollar costs in

a public cloud by as much as $1.15K per hour (for a 100 TB dataset, thus an annual cost

2In “Asterix” comics, Getafix is the name of the village druid who brews magic potions.
3In this work, we deal with memory used to store segments. We ignore working memory required for

executing queries as they are typically small for the queries Druid supports.

53

savings of $10 M).

The main contributions of this chapter are:

• We present workload characteristics of segment popularity in interactive data analytics

engines (§4.2.2).

• We formulate and optimally solve the static version of the segment replication problem,

for a given set of queries accessing a given set of segments (§4.3).

• We design the Getafix system to handle dynamic query and segment workloads (§4.4).

We implement Getafix into Druid, a modern interactive data analytics engine.

• We evaluate Getafix using workload derived from Yahoo! production clusters (§4.5).

4.2 BACKGROUND

4.2.1 System Model

We present a general architecture of an interactive data analytics engine. To be concrete,

we borrow some terminology from a popular system in this space, Druid [17].

An interactive data analytics engine receives data from both batch and streaming pipelines.

The incoming data from batch pipelines is directly stored into a backend storage tier, also

called deep storage. Data from streaming pipelines is collected by a realtime node for a

pre-defined time interval and/or till it reaches a size threshold. The collected events are

then indexed and pushed into deep storage. This chunk of events is identified by the time

interval it was collected in (e.g., hourly, or minute-ly), and is called a segment. A segment

is an immutable unit of data that can be queried, and also placed at and replicated across

compute nodes. (By default the realtime node can serve queries accessing a segment until it

is handed off to a dedicated compute node.)

Compute nodes residing in a frontend cluster are used to serve queries by loading ap-

propriate segments from the backend tier. These compute nodes are called historical nodes

(HNs), and we use these terms interchangeably.

The coordinator node handles data management. Upon seeing a segment being created,

it selects a suitable compute node (HN) to load the new segment. The coordinator can ask

multiple HNs to load the segment thereby creating segment replicas. Once loaded, the HNs

can start serving queries which access this segment.

Clients send queries to a frontend router, also called broker. A broker node maintains a

view of which nodes (historical/realtime) are currently storing which segments. A typical

query accesses multiple segments. The broker routes the query to the relevant HNs in

parallel, collates or aggregates the responses, and sends it back to the client.

54

 0

 20

 40

 60

 80

 100

A1A2A3A4A5B1 B2 B3 B4 B5C1C2C3C4C5

O
ve

rl
ap

 in
 S

eg
m

en
ts

(%
)

Workload/Hours

B1
A3

Figure 4.3: Measures overlap in segment accesses across different hours of Yahoo!
production trace. Each trace identified with an id (A/B/C: see Table 4.1) and the ith
hour.

Figure 4.4: Popularity of Segments collected from Yahoo! production trace. X axis
represents segments ordered in increasing order of creation time. Y-axis plots the
number of accesses each segment saw in a 5 hour trace from Yahoo!.

In Druid, all internal coordination like segment loading between coordinator and HN is

handled by a Zookeeper [93] cluster. Druid also uses MySQL [94] for storing metadata from

segments and failure recovery. As a result, the coordinator, broker, and historical nodes are

all stateless. This enables fast recovery by spinning up a new machine.

4.2.2 Workload Insights

Name Month Total Segments Total Accesses
A October 2016 0.6K 65K
B January 2017 9.3K 0.8M
C February 2017 1.3K 64K

Table 4.1: Druid traces from Yahoo! production clusters.

We analyze Yahoo!’s production Druid cluster workloads, spanning several hundreds of

machines, and many months of segments (segments are hourly). Each of the three workload

55

traces shown in Table 4.1 spans 5 hours, but at different times over 2 years. Total segments

reflect the working set size, and total accesses reflect workload size (query-segment pairs).

We draw two useful observations:

Segment Access is skewed, and recent segments are generally more popular:

Figure 4.1 plots the CDF of the access counts for trace B (other traces yielded similar trends

and are not shown). The popularity is skewed: the top 1% of segments are accessed an order

of magnitude more than the bottom 40% segments. While this skew has been shown in batch

processing systems [31], we are the first to confirm it for interactive analytics systems. The

skewed workload implies that some segments are more important and selective replication is

needed.

Figure 4.4 shows the number of times a segment was accessed in the trace B. That is, the

4000th data point shows the total access count for the segment created 4000 hours before this

trace was captured. We observe that segments are most popular 3 to 8 hours after creation,

and this popularity is about 2× more than that of segments that are a week old. However,

a few very old segments continue to stay popular (e.g., bumps at about a year ago) 4.

Some (older) segments continue to stay popular: Figure 4.3 shows the level of overlap

between segments accessed during an hour of the Yahoo! trace (shown on the horizontal axis),

vs. a reference hour (B1, A3). Here, “overlap” is defined as Jaccard Similarity Coefficient [95]

– the size of the intersection divided by the size of the union, across the two sets of segment

accesses.

First, we observe a 50% overlap of segments in A1 with B1 and 40% between A2 and

B1. This large overlap across traces collected 5 months apart confirms that some select old

segments may be popular (for a while) even in the future long after they are created.

Second, the high overlap among the segments in hours A3 through A5 and B1 through B5

indicates that segments generated nearby in time are highly likely to be queried together,

and the length of such a temporal locality is at least 3 hours. This gives any replication

policy ample time to adjust replication levels.

4.3 STATIC VERSION OF SEGMENT REPLICATION PROBLEM

We formally define the static problem (§4.3.1), and our solution (§4.3.2).

4This is sometimes due to interesting events such as Thanksgiving or holiday weeks.

56

4.3.1 Problem Formulation

Given m segments, n historical nodes (HNs), and k queries that access a subset of these

segments, our goal is to find a segment allocation (segment assignment to HNs) that both: 1)

minimizes total runtime (makespan), and 2) minimizes the total number of segment replicas.

For simplicity we assume: a) each query takes unit time to process each segment it accesses,

b) initially HNs have no segments loaded, and c) HNs are homogeneous in computation

power. Our implementation (§4.4) relaxes these assumptions.

Consider the query-segment pairs in the given static workload, i.e., all pairs (Qi, Sj) where

query Qi needs to access segment Sj. Spreading these query-segment pairs uniformly across

all HNs, in a load-balanced way, automatically gives a time-optimal schedule: no two HNs

finish more than 1 time unit apart from each other. A load balanced assignment is desirable

as it always achieves the minimum runtime (makespan) for the set of queries. However,

arbitrarily (or randomly) assigning query-segment pairs to HNs may not minimize the total

amount of replication across HNs.

Consider an example with 6 queries accessing 4 segments. The access characteristics C

for the 4 segments are: {S1:6, S2:3, S3:2, S4:1}. In other words, 6 queries access segment S1,

3 access S2 and so on. A possible time-optimal (balanced) assignment of the query-segment

pair could be: bin HN1 = {S1:3, S2:1}, HN2 = {S2:2, S3:1, S4:1}, HN3 = {S1:3, S3:1}.
However, this assignment is not optimal in replication factor (and thus storage). The total

number of replicas stored in the HNs in this assignment is 7. The minimum number of

replicas required for this example is 5. An allocation that achieves this minimum is: HN1

= {S1:4}, HN2 = {S2:3, S4:1}, HN3 = {S1:2, S3:2} (Figure 4.5).

Formally, the input to our problem is: 1) segment access counts C = {c1, . . . cm} for k

queries accessing m segments, and 2) n HNs each with capacity d
∑

i ci
n
e (in our chapter,

“capacity” always means “compute capacity”). We wish to find: Allocation X = {xij =

1, if segment i is replicated at HN j}, such that it minimizes
∑

i

∑
j xij.

We solve this problem as a colored variant of the traditional bin packing problem [96].

A query-segment pair is treated as a ball and a HN represents a bin. Each segment is

represented by a color, and there are as many balls of a color as there are queries accessing

it. The number of distinct colors assigned to a bin (HN) is the number of segment replicas

this HN needs to store. The problem is then to place the balls in the bins in a load-balanced

way that minimizes the number of “splits” for all colors, i.e., the number of bins each color

is present in, summed up across all colors. This number of splits is the same as the total

number of segment replicas. Unlike traditional bin packing which is NP-hard, this version

of the problem is solvable in polynomial time.

57

S1

S1

S1

S1 S4

S3

S3

S1

S2

S2

S2 S1

HN1 HN2 HN3

HN	Capacity	=	(6	+	3	+	2	+	1)/3	=		4
Total	replicas	=	1	+	2	+	2	=	5

Segment	
Name

S1 S2 S3 S4

Count 6 3 2 1

Segment	Access	Counts

Figure 4.5: Problem depicted with balls and bin. Query-segment pairs are balls and
historical nodes represent bins. All balls of same color access the same segment. HN
capacity refers to compute capacity. Optimal assignment shown.

4.3.2 Solution

Algorithm 4.1 depicts our solution to the problem. The algorithm maintains a priority

queue of segments, sorted in decreasing order of popularity (i.e., number of queries accessing

the segment). The algorithm works iteratively: in each iteration it extracts the next segment

Sj from the head of the queue, and allocates the query-segment pairs corresponding to

that segment to a HN, selected based on a heuristic called ChooseHistoricalNode. If

the selected HN’s current capacity is insufficient to accommodate all the pairs, then the

remaining available compute capacity in that HN is filled with a subset of it. Subsequently,

the segment’s count is updated to reflect remaining unallocated query-segment pairs, and

finally, the segment is re-inserted back into the priority queue at the appropriate position.

The total number of iterations in this algorithm equals the total number of replicas created

across the cluster. The algorithm takes time O((n+m) · log(m)), i.e., in each iteration either

you finish a color or you fill up a bin. This upper bound is loose and in practice it is

significantly faster.

The ChooseHistoricalNode problem bears similarities with segmentation in tradi-

tional operating systems [97]. We explored three strategies to solve ChooseHistoricalNode:

First Fit, Largest Fit, and Best Fit. Of the three, we only describe Best Fit here as it gives

an optimal allocation.

Best Fit for ChooseHistoricalNode: In each iteration, we choose the next HN that

would have the least compute capacity (space, or number of slots for balls) remaining after

accommodating all the queries for the picked segment (head of queue). Ties are broken by

58

input: C: Access counts for each segment
nodelist: List of HNs

1 Algorithm ModifiedFit(C, nodelist)
2 n← Length(nodelist)

3 capacity ← d
∑

Ci∈C
|Ci|

n
e

4 binCap← InitArray(n, capacity)
5 priorityQueue← BuildMaxHeap(C)
6 while !Empty(priorityQueue) do
7 (segment, count)← Extract(priorityQueue)
8 (left, bin)← ChooseHistoricalNode
9 (count, binCap)

10 LoadSegment(nodelist, bin, segment)
11 if left > 0 then
12 Insert(priorityQueue, (segment, left))
13 end

14 end

Algorithm 4.1: Generalized Allocation Algorithm.

picking the lower HN id. If none of the nodes have sufficient capacity to fit all the queries

for the picked segment, we default to Largest Fit for this iteration, i.e., we choose the HN

with the largest available capacity (ties broken by lower HN id), fill it as much as possible,

and re-insert unassigned queries for the segment back into the sorted queue.

We call this algorithm ModifiedBestFit. Consider our running example (Figure 4.5)

where C is {S1:6, S2:3, S3:2, S4:1}. The algorithm assigns S1 to HN1 and S2 to HN2. Next,

it picks segment S1 (again tie broken with S3) and assigns it to HN3 because it has sufficient

space to fit all the balls. The final assignment produced is optimal in both makespan and

replication factor.

4.3.3 Optimality Proof

We now formally prove that ModifiedBestFit minimizes the amount of replication among

all load balanced assignments.

Balls and Bin Problem: For ease of exposition, we restate the problem using the balls and

bins abstraction. We have m balls of p colors (p ≤ m) and n bins. The bins have capacity

dm
n
e. There are many load balanced assignments possible for the balls in the bins. The cost

of each bin (in a given assignment) is calculated by counting the number of unique color balls

in it. The sum of bin costs gives the cost of the assignment. This cost is equivalent to the

number of replicas created by our algorithm in §4.3.1. We claim that ModifiedBestFit

59

minimizes the cost for a load balanced assignment of balls in bins.

Lemma 4.1 Using ModifiedBestFit algorithm, no pair of HNs (bins) can have more

than 1 segment (color) in common.

Proof: Assume there is a pair of bins b1 and b2 that have 2 colors in common, c1 and c2.

Either of c1 or c2 must have been selected first to be placed. W.l.o.g. assume c1 was selected

first (in the ordering of colors during the assignment). Since c1 is split across b1 and b2, it

must have filled one of the bins. However, this means that c2 could not have been in bin b1

as it is selected only afterwards. This contradicts our assumption.

Next, we define an important operation called swap.

Swap Operation: A 2-way swap operation takes an equal number of balls from 2 bins and

swaps them. A k-way swap similarly creates a chain (closed loop) of k swaps across k bins.

Lemma 4.2 A k-way swap, involving k HNs, is equivalent to k 2-way swaps.

Proof: We prove this by induction.

Base Step: Trivially true when k = 2.

Induction Step: Assume a k-way swap is equivalent to k 2-way swaps. Let us add another

(k+ 1)th node HNk+1 to a k-way chain HN1, HN2, . . . , HNk to make a (k+ 1)−way swap

chain. However, this can be written as a series of 2-way swaps: i) a k-way swap, executed

as (k − 1) 2-way swaps among HN1, HN2, . . . , HNk (as in the induction step, but skipping

the last swap), followed by ii) a 2-way swap between HNk and HNk+1, and then iii) a 2-way

swap between node HNk+1 and HN1. This creates a chain of (k + 1) 2-way swaps.

Lemma 4.3 No sequence of 2-way swaps, applied to the ModifiedBestFit algorithm’s

output, can further reduce the number of segment replicas (color splits).

Proof:

Let’s define successful swap as a swap which reduces the assignment cost (sum of unique

colors across all bins). Note that for a successful 2-way swap, a prerequisite is the existence

of at least one common color across both bins in the successful swap.

We prove this by contradiction. Lets say a successful swap is possible. From Lemma 4.1,

we know that there is at most one common color between any pair of bins. (Note that by

definition, a swap must move back an equal number of balls from b2 to b1.) This means that

there exist 2 such bins whose common color ball can be moved completely to one of the bins

without causing additional color splits due to the balls moved back from b2 to b1.

60

Lets assume that bins b1 and b2 have common balls of green color in them. Bin b1 has n1

green color balls and bin b2 has n2 balls of the same color. W.l.o.g. assume all the green

color balls from bin b1 are moved to b2, in order to consolidate balls (and therefore lower the

number of color splits). An equal number of balls need to be moved back. Three cases arise:

� n1 > n2: In the original assignment order of balls into bins, consider the first instance

when green color balls were assigned to either bin b1 or bin b2. Since n1 > n2, then it

must be true that bin b1 must have filled with color green before color green hit b2 –

this can be proved by contradiction. If b2 had filled first instead, either: 1) all (n1 +n2)

balls would have fit in b2 (which did not occur), or 2) b2’s n2-sized hole must have been

larger than b1’s n1-sized hole (which is not true). Essentially bin b1 was selected first

because it had the largest hole (this is Best Fit, and since none of the holes are large

enough to accommodate all green color balls, we pick the largest hole).

Next, in the swapping operation, we swap n1 green color balls from b1 to b2. Thus

we need to find n1 balls from b2 to swap back. When n1 balls of green color were put

into b1, it is not possible that b2 had n1 or more empty slots available (otherwise b2

would have been picked for n1 instead of b1). This means that to find n1 balls to swap

back from b2, we have to pick from balls that arrived before color green did. But by

definition, any such color (say, red) would have had at least (n1 +n2) balls (due to the

priority order), and because b2 still has holes when green color arrives later, any such

previously red-colored balls would have been wholly put into b2. However, picking this

color for swapping would cause a further split (in color red) as we can only move back

n1(< n1 + n2) balls from b2 to b1. This means that the swap cannot be successful.

� n1 < n2: Analogous to Case 1, we can show that bin b2 filled first with color green

before bin b1 did. To find n1 balls to move back from bin b2 to b1, we have to choose

among balls that arrived before color green in bin b2, since green color was the last to

arrive at b2 (i.e., filled it out). But any such previous color red must have at least (n1 +

n2) balls in b2 (due to the priority order), and choosing red would create an additional

color split (in color red). This cannot be a successful swap.

� n1 = n2: W.l.o.g., assume b1 was filled first with n1 green color balls, then after

some intermediate bins were filled, n2 green color balls were put into b2. All such

intermediate bins must also have had exactly n1-sized holes (due to the priority order,

Best Fit strategy, and presence of n2 color green balls in the queue). Bin b2 cannot

get any of these intermediate balls as it cannot have more than n1 slots when b1 was

filled with green color (otherwise it would have been picked instead of b1). For our

61

swap operation, this means one can only choose to swap back a color red (from b2 to

b1) that was put into b2 before b1 was filled with green color. However, this means

color red must have had at least (n1 + n2) balls put into b2 (due to the priority order),

and moving back only some of these balls will cause an additional split (for red). This

cannot be a successful swap.

Since a k-way swap is equivalent to k 2-way swaps (Lemma 4.2), no swap strategy can

further reduce the number of segment replicas, computed by ModifiedBestFit.

Theorem 4.4 Given a set of queries, ModifiedBestFit minimizes both total number of

segment replicas and makespan.

Proof: By Lemma 4.3, ModifiedBestFit generates load balanced allocation that mini-

mizes the sum of unique color balls across all bins, which in turn minimizes replication. Load

balanced allocation of query-segment pairs implies the completion time is minimized.

4.4 GETAFIX: SYSTEM DESIGN

The Getafix system is intended to handle dynamically arriving segments as well as queries.

Figure 4.6 shows the general architecture. Most of Getafix’s logic resides in the Coordina-

tor. The coordinator manages the segment replicas, runs the ModifiedBestFit algorithm

(§4.4.1) to create a logical plan for segment allotment, and then translates the logical plan

into a physical one for replication. Additionally, it balances segment load among HNs (§4.4.3)

and handles heterogeneity in a deployed cluster (§4.4.4). We modified the broker code to

implement different query routing strategies (§4.4.2).

4.4.1 Segment Replication Algorithm

For the dynamic scenario, Getafix leverages the static solution from §4.3.2, by running

it in periodic rounds. At the end of each round, it collects query load statistics, then runs

the algorithm. The algorithm returns a segment placement plan, a one-to-many mapping

of segment to HNs where they should be placed for the current round. The placement

plan dictates whether a segment needs to be loaded to a HN or removed. In this way, the

placement plan implicitly controls the number of replicas for a segment in each round. While

it may appear that reducing replication factor reduces query parallelism, our scheme is in

fact auto-replicative, which means that popular segments will be replicated more.

62

Figure 4.6: Getafix Architecture.

Getafix tracks popularity by having HNs track the total access time for each segment it

hosts, during the round. Total access time is the amount of time queries spend computing

on a segment. When the round ends, HNs communicate their segment access times to

the coordinator and reset these counters. The coordinator calculates popularity via an

exponentially weighted moving average. Popularity for segment sj at round (K + 1) is

calculated as:

Popularity(sj, K + 1) =
1

2
×Popularity(sj, K)

+ AccessTime(sj, K + 1)
(4.1)

Next, the coordinator runs ModifiedBestFit using Popularity(.) values. Since the

static algorithm assumes logical nodes, these need to be mapped to physical HNs. We

describe two mapping approaches later (§4.4.5 and §4.4.4). The round duration cannot be

too long (or else the system will adapt slowly) or too short (or else the system may not have

time to collect statistics and may thrash). Our implementation sets the round duration to

5 s, which allows us to catch popularity changes early but not react too aggressively. This

duration can be chosen based on the segment creation frequency.

4.4.2 Query Routing

Query routing decides which HNs should run an incoming query (accessing multiple seg-

ments). We explore two types of routing schemes:

Allocation Based Query Routing (ABR): Apart from segment placement, ModifiedBestFit

also provides sufficient information to build a query routing table. Concretely, ModifiedBestFit

63

proportionally allocates the total CPU time among each replica of a segment. In our running

example (Figure 4.5), segment S1 requires 6 CPU time units of which 4 should get handled

by the replica in HN1 and 2 by the replica in HN3. This means that 67% of the total

CPU resource required by S1 should be allocated to HN1, and 33% to HN3. Hence Getafix

creates a routing table that captures exact query proportions. The full routing table for this

example is depicted in Table 4.2.

HN1 HN2 HN3

S1 67 0 33
S2 0 100 0
S3 0 0 100
S4 0 100 0

Table 4.2: Routing Table for Figure 4.5. Each entry represents percentage of queries
accessing segment Si to be routed to HNj.

Brokers receive queries from clients. After each round the coordinator sends the routing

table to the brokers. For a received query, the broker estimates its runtime (based on

historical runtime data) and routes it to a HN probabilistically according to the routing

table.

Load Based Query Routing (LBR): In ABR, routing table updates happen periodically.

Because queries complete much faster than a round duration, ABR lags in adapting to fast

changes in workload. With Load Based Routing (LBR), each broker keeps an estimate of

every HN’s current load. Load is calculated as the number of open connections between the

broker and HN. An incoming query (or part thereof), which needs to access a segment, is

routed to the HN that: a) has the segment already replicated at it, and b) is the least loaded

among all such HNs. Although brokers do not have a global view of the HN load and do not

use sophisticated queue estimation techniques [98], this scheme works well in our evaluations

(§4.5.5) because of its small overhead.

4.4.3 Balancing Segment Load

For skewed segment access distributions (Figure 4.1), the output of ModifiedBestFit

could produce imbalanced assignment of segments to HNs. We wish to minimize the max-

imum memory used by any HN in the system in order to achieve segment balancing. Ad-

ditionally, we observed that less-loaded HNs (e.g., those with fewer segments) could be idle

in some scenarios (e.g., if some segments became unpopular). In traditional systems, such

imbalances require continuous intervention by human operators. We describe an automated

segment balancing strategy that avoids this manual work, and both reduces the max memory

64

and increases overall CPU utilization across HNs.

Our algorithm is greedy in nature and run after every ModifiedBestFit round. We

define segment load of a HN as the number of segments assigned to that HN. Starting with

the output of ModifiedBestFit, the Coordinator first considers those HNs whose segment

load is higher than the system-wide average. For each such HN, it picks its k least-popular

replicas, where k is the difference between the HN’s segment load and the system-wide

average. These are added to a global re-assign list. Next, the coordinator sorts the replicas

in the re-assign list in order of increasing query load. Query load of a segment replica in a

HN is the value of the corresponding routing table entry. It picks one replica at a time from

this list and assigns it to the HN that satisfies all the following conditions: 1) it does not

already host a replica of that segment, 2) the query load imbalance after the re-assignment

will be ≤ parameter γ, and 3) it has the least segment load of all such HNs. We calculate:

query load imbalance = 1− min(QueryLoad(HNi))

max(QueryLoad(HNi))
(4.2)

In our evaluation (§4.5.3), we found that a default γ = 20% gives the best segment balance

with minimal impact on query load balance.

4.4.4 Handling Cluster Heterogeneity

ModifiedBestFit assumes a homogeneous cluster consisting of machines with equal

compute capacity (§4.3.1). We now relax that assumption and present modifications for

heterogeneous settings.

Capacity-Aware ModifiedBestFit: Instead of assuming equal capacity in Algorithm 4.1

(line 3), we distribute the total query load proportionally among HNs based on their esti-

mated compute capacities. To estimate the capacity of a HN, Getafix calculates the CPU

time (in microseconds) spent on processing queries at that HN (disk IO is ignored). This

data is collected by the coordinator. Finer-grained capacity estimation techniques could be

used instead [99].

Stragglers: Some nodes may become stragglers due to bad memory, slow disk, flaky NIC,

background tasks, etc. Capacity-Aware ModifiedBestFit approach handles stragglers

implicitly. Straggler nodes will report low query CPU times as they would be busy doing

I/O and/or waiting for available cores. Capacity-Aware ModifiedBestFit will assign

lesser capacity to these node. Lesser capacity will ensure popular segments are not assigned

to these HN.

65

Avoiding Manual Tiering: Today system administrators manually configure clusters into

tiers by grouping machines with similar hardware characteristics into a single tier. They use

hardcoded rules for placing segments within these tiers, with recent (popular) segments

assigned to the hot tier. Eschewing this manual approach, Getafix continuously tracks

changes in segment popularity and cluster configuration, to automatically move popular

replicas to powerful HNs, thereby creating its own tiers. Thus, Getafix can help avoid

laborious sysadmin activity and cut opex (operational expenses) of the cluster.

4.4.5 Minimizing Network Transfers

Figure 4.7: Physical HN Mapping problem from Figure 4.5 represented as a bipartite
graph.

Although Auto-Tiering can improve query performance in a heterogeneous setting, it is

unaware of underlying network bandwidth constraints. Network bandwidth between HNs

and deep storage in today’s public clouds is often subject to provider-enforced limits [100].

We next discuss approaches that make Getafix network aware.

Consider the example shown in Figure 4.7. In the configuration at time T1 (top part of

figure), HN1 has segments S2 and S3, HN2 has S4 only, and HN3 has segments S1 and S2.

At time T2, ModifiedBestFit expects the following configuration: E1 = {S1}, E2 = {S2,

S4}, E3 = {S1, S3}. If each HNi chooses to host the segments in Ei, then the algorithm needs

to fetch 3 segments in total. However the minimum required is 2, given by the following

assignment: E1 to HN3, E2 to HN2, E3 to HN1.

We model this problem as a bipartite graph shown in Figure 4.7 where vertices on the

bottom represent expected configurations (Ej) and vertices on the top represent HNs (HNi)

with the current set of replicas. An HNi−Ej edge represents the network cost to transfer all

of Ej’s segments to HNi (except those already at HNi). Network transfer is minimized by

66

finding the minimum cost matching in this bipartite graph. We use the classical Hungarian

Algorithm [101] to find the minimum matching. It has a complexity of O(n3) where n is the

number of HNs. This is acceptable because interactive data analytics engine clusters only

have a few hundred nodes. The coordinator uses the results to set up data transfers for the

segments to appropriate HNs.

4.4.6 Bootstrapping of Segment Loading

To be able to serve queries right away, we preload segments at creation time. Concretely

whenever a new segment is introduced from external datasources (created at a realtime

node), Getafix immediately and eagerly replicates once at a random HN, independent of

whether queries are requesting to access it. This cuts down segment loading time for the

first few queries to touch a new segment.

Later, our replication may create more replicas (depending on segment popularity). This

is preferable than letting the realtime nodes handle queries for fresh segments (the approach

used in today’s Druid system), which overloads the realtime node. This early bootstrapping

also allows segment count calculation to start early.

For cases where a query fails due to the segment not being present on any of the HNs,

Getafix re-runs the query. This could happen, for instance, if the segment was unpopular

for a long duration and was garbage collected from the HNs. Just like a fresh segment, this

segment is first loaded to a random HN. Unlike Druid which silently ignores the segment and

returns an incomplete result, we incur slightly elevated latency but always return a complete

and correct answer.

4.4.7 Deleting Unnecessary Segments

The replication count for a given segment (output by ModifiedBestFit) may go down

from one round to the next. This may occur because incoming queries are no longer

accessing this segment. For instance, in Figure 4.7, segment S1 is not needed in HN1 and

HN3 after configuration change. We delete such segments to reduce memory usage. This is

in line with Getafix’s goal of eagerly and aggressively reducing memory, without filling out

memory. This is unlike traditional cache replacement algorithms like LFU [97], etc. which

only kicks in when the memory is filled. When the workload is heavy and memory is filled,

Getafix garbage collection defaults to LFU.

However, we avoid deletion of all replicas of a given segment at once. In cases where

ModifiedBestFit cuts the number of replicas to zero, we still retain a single replica at

67

one (random) HN. This is in anticipation that the segment may become popular again in

the future and hence, avoid the additional network I/O.

4.4.8 Garbage Collection

When memory resources are running low but new segments need to be loaded to HNs,

Getafix runs a garbage collector. It uses LFU to remove unpopular segment replicas, but

instead of absolute access frequency, Getafix uses Popularity(.) values. Garbage collection

may completely remove a segment from all HNs, unlike deletion.

4.4.9 Fault-Tolerance

Brokers, HNs, and coordinator, are all stateless entities and after a failure can be spun up

within minutes. The only state that we maintain are the segment popularity estimates used

by ModifiedBestFit. We periodically checkpoint this state to a MySQL table every 1

minute. This data is not very large, and involves a few bytes per segment in the working set.

In MySQL we use batch updates instead of incremental updates, since MySQL is optimized

for bulk writes.

4.5 EVALUATION

We evaluate Getafix on both a private cloud (Emulab [60]) and a public cloud (AWS [102]).

We use workload traces from Yahoo!’s production Druid cluster. We summarize our results

here:

• Compared to the best existing strategy (Scarlett), Getafix uses 1.45 - 2.15× less memory,

while minimally affecting makespan and query latency.

• Compared to uniform replication (a common strategy used today in Druid) Getafix im-

proves average query latency by 44 - 55% while using 4 - 10× less memory.

• Capacity-Aware ModifiedBestFit improves tail query latency by 54% when 10% of

the nodes are slow and by 17 - 22% when there is a mix of nodes in the cluster. We also

save 17 - 27% in total memory used for the second case. In addition, it can automatically

tier a heterogeneous cluster with an accuracy of 75%.

4.5.1 Methodology

Experimental Setup. We run our experiments in two different clusters:

68

• Emulab: We deploy Druid on dedicated machines as well as on Docker [103] containers

(to constrain disk for GC experiment). We use d430 [104] machines each with two 2.4

GHz 64-bit 8-Core processor, 64 GB RAM, connected using a 10Gbps network. We use

NFS as the deep storage.

• AWS: We use m4.4xlarge [99] instances (16 cores, 64 GB memory), S3 [25] as the deep

storage, and Amazon EBS General Purpose SSD (gp2) volumes [105] as node local disks.

EBS volumes can elastically scale out when the allocation gets saturated.

Workloads. Data is streamed via Kafka into a Druid realtime node. Typically, Druid

queries summarize results collected in a time range. In other words, each query has a start

time and an interval. We pick start and interval times based on production workloads–

concretely we used a trace data set from Yahoo! (similar to Figure 4), and derive a repre-

sentative distribution. We then used this distribution to set start times and interval lengths.

We generate a query mixture of timeseries, top-K and groupby. Each query type has its

own execution profile. For example, groupby queries take longer to execute compared to top-

K and timeseries. There can be considerable deviation in runtime among groupby queries

themselves based on how many dimensions are queried. Other than the time interval, we do

not vary other parameters for these individual query types.

In our experiments, a workload generator client has its own broker to which it sends all its

queries. Each client randomly picks a query mix ratio, and query injection rate between 50

and 150 queries/s. Instead of increasing per-client query rate (which would cause congestion

due to throttling at both client and server), we scale query rates by linearly increasing

numbers of clients and brokers. Each experiment (ingestion and workload generator) are

run for 30 minutes.

Baselines. We compare Getafix against two baselines:

• Scarlett: Scarlett [31] is the closest existing system that handles skewed popularity of

data. While the original implementation of Scarlett is intended for Hadoop, its ideas are

general. Hence we re-implemented Scarlett’s techniques into Druid (around 2000 lines of

code).

In particular, we implemented Scarlett’s round-robin based algorithm 5. The round-

robin algorithm counts the number of concurrent accesses to a segment, as an indicator

of popularity. Scarlett gives more replicas to segments with more concurrent accesses. We

collect the concurrent segment access statistics from the historical nodes (HNs) and send

it to the coordinator to calculate and modify the number of replicas for each segment. The

algorithm uses a configurable network budget parameter. Since we did not cap network

5We avoid the priority-based algorithm since it is intended for variable file sizes, but segment sizes in
interactive analytics engines are in the same ballpark.

69

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

5 10 15 20

R
ed

uc
tio

n
Fa

ct
or

C
om

pa
re

d
T

o
Sc

ar
le

tt

Number of Clients

Total
Maximum
99th Percentile

(a) Scarlett memory divided by Getafix
total memory. Higher is better.

-10
-5
 0
 5

 10
 15
 20

5 10 15 20

Im
pr

ov
em

en
t

C
om

pa
re

d
to

 S
ca

rl
et

t(
%

)

Number of Clients

99th Percentile Latency
Average Latency
Makespan

(b) Reduction in Makespan, Average
and 99th Percentile Latency of Getafix
compared to Scarlett. Higher is better.

Figure 4.8: AWS Experiments: Getafix vs. Scarlett with increasing load (number of
client varying from 5 to 20).

budget usage in Getafix, we do not do it for Scarlett (for fairness in comparison).

• Uniform: We compare our system to the simple (but popular in Druid deployments

today) approach where all segments are uniformly replicated. We vary the replication

factor (RF) across experiments.

Metrics. Across the entire run, we measure: 1) total memory used across all HNs, 2) max-

imum memory used across all HNs, and 3) effective replication factor. Effective replication

factor is calculated as the total number of replicas created by a system, divided by the total

number of segments ingested by the system. This metric is useful to estimate the memory

requirements of an individual machine while provisioning a cluster (§4.6). We also measure:

1) average and 99th percentile (tail) query latency and 2) makespan.

To calculate memory dollar cost savings in a public cloud, we multiply the memory savings

with cost per GB of memory. We calculate the cost of 1 GB memory in a public cloud by

solving a set of linear equations (elided for brevity) derived from the published instance type

prices. For AWS, memory cost is $0.005 per GB per hour.

4.5.2 Comparison against Baselines

Comparison vs. Scarlett: We increase the query load (number of workload generator

clients varied from 5 to 20) while keeping the compute capacity (HNs) fixed (20). Fig-

ure 4.8a plots the savings in Getafix’s memory usage compared to Scarlett’s. Getafix uses

1.45 - 2.15× less total memory (across HNs), and 1.72 - 1.92× less maximum memory in a

single HN. Scarlett alleviates query hotspots by creating more replicas of popular segments,

while Getafix carefully balances replicas of popular and unpopular segments to keep overall

replication (and memory usage) low. Getafix’s memory savings also increases as more clients

70

 0

 20

 40

 60

 80

 100

5 10 15 20

Im
pr

ov
em

en
t

C
om

pa
re

d
to

 U
ni

fo
rm

(%
)

Number of Clients

99th Percentile Latency
Average Latency
Makespan

(a) Improvement in makespan, 99th per-
centile and average latency in Getafix
compared to Uniform.

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 4 6 8 10 12 14 16 18 20

99
th

 P
er

ce
nt

ile
Q

ue
ry

 L
at

en
cy

 (
m

s)

Number of Clients

Uniform
Getafix
Scarlett

(b) Input Load vs Tail Latency Tradeoff
Curve. Comparing Getafix with Scarlett
and Uniform. Lower is better.

Figure 4.9: AWS Experiments: Getafix vs. Baselines with increasing load (number
of client varying from 5 to 20). Uniform uses an order of magnitude more memory
compared to Getafix.

are added.

Memory Dollar Cost Savings in Public Cloud: We perform a back of the envelope

calculation, based on our experimental numbers. For the 20 HN + 20 client experiment,

Getafix has an effective replication factor of 1.9 compared to Scarlett’s 4.2. (The heavy-tailed

nature of segment popularity from Figure 4.1 implies the very popular segments influence

effective replication factor.) In a public cloud deployment, where popular data size is 100

TB 6, Getafix thus can reduce memory usage by approximately 230 TB (100 TB × (4.2 -

1.9)). This amounts to cost savings of 230 × 103 GB × $0.005/GB/hour = $1150 per hour.

Annually, this would amount to $10 million worth of savings.

To quantify the impact of this memory savings on performance, Figure 4.8b plots the

reduction in makespan, average and 99th percentile latency for Getafix compared to Scarlett.

Getafix completes all the queries within ±5% of Scarlett for all the experiments. Query

latency is also comparable.

We conclude that compared to Scarlett, Getafix significantly reduces memory usage in a

private cloud, dollar cost in a public cloud, with small impact on query performance.

Comparison vs. Uniform: We compare Getafix with the Uniform strategy configured to

use a replication factor of 4. We increase load (number of clients varied from 5 to 20).

Getafix uses 4 - 10× less memory than Uniform. For latency and makespan, see Fig-

ure 4.9a. Getafix improves average query latency by 44-55%. The reason is that popular

segments in the Uniform approach are replicated infrequently compared to Getafix, causing

6Most present day production clusters in Google, Yahoo handle petabytes of data [88] per day. Of this
only a fraction of the data is most popular and hosted in memory. We conservatively estimated 100 TB as
the ballpark of popular data size.

71

 150
 200
 250
 300
 350
 400
 450

 0 2 4 6 8 10 12 14A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Effective Replication Factor (RF)

Uniform
Getafix
Scarlett

Figure 4.10: AWS Experiments: Memory-Latency Tradeoff Curve. 20 HNs and 15
clients using: 1) Getafix, 2) Scarlett and 3) Uniform (RF: 4, 7, 10, 13). Lower is better
on both the axes.

 500

 550

 600

 650

 700

 300 350 400 450 500 550A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Maximum Memory Used (MB)

0

10
20

3050 100

Figure 4.11: Emulab Experiments: Getafix – Maximum memory vs. Query Latency
Tradeoff for different γ values. Lower is better on both axes.

hotspots at HNs hosting popular segments, increasing average query latency. We observe

improvements in makespan (53 - 59%) and 99th percentile query latency (27 - 31%) for high

query load (10 or more clients). The 5 client setting is marginally worse in Getafix because

unpopular segments have more replicas in Uniform than in Getafix. Queries accessing these

segments form the tail and they run faster in Uniform.

To evaluate Getafix’s impact on tail latency, we compare it with Uniform and Scarlett

as query load increases. Figure 4.9b plots the 99th percentile tail latency for all three

approaches as the number of clients increases. Getafix outperforms the baselines at tail,

even as the query load increases.

Memory-Latency Tradeoff: Figure 4.10 plots the memory-latency tradeoff (replication

factor vs. average query latency). Points closer to the origin are more preferable. Uniform’s

tradeoff curve plateaus at a query latency that is 2.15× higher than Getafix and Scarlett.

Getafix memory is 3.5× smaller than Uniform and 2.2× smaller than Scarlett.

72

 0

 20

 40

 60

 80

 100

99th Percentile
Latency

 Average
 Latency

Makespan Total Memory
 Used

Im
pr

ov
em

en
t

ov
er

G
et

af
ix

-B
(%

)

Auto-Tiering Only
Getafix-H

Figure 4.12: Emulab Experiments: Improvement in 99th Percentile, Average Query
latency, Makespan and Total Memory Used with Getafix-H compared to Getafix-B.
Experiment performed with 2 HNs straggling among 20.

4.5.3 Segment Balancer Tradeoff

In §4.4.3, we introduced a threshold parameter γ that determines the tradeoff space be-

tween maximum memory used and query performance. γ = 0% implies no balancing while

γ = 100% implies aggressive balancing.

Figure 4.11 quantifies γ’s impact in a cluster of 20 HNs and 15 clients (labels are γ values).

As we increase γ, maximum memory used decreases (at γ = 50% memory is reduced by

31.3%.). However, latency decreases until γ = 20% and then starts to rise. We observed

a similar trend in makespan and 99th percentile latency (elided for brevity). This occurs

because of higher CPU utilization at HNs hosting popular segments. At smaller γ, moving

a few unpopular segments to such HNs allows the CPU to remain busy while the popular

segment is falling in popularity. Too high γ values move popular segments too, hurting

performance.

While the above plot shows maximum memory, we also saw savings in total memory. The

largest reduction observed was 19.26% when γ = 20%. This occurs because better query

balance results in faster completion of the queries, which in turn keeps segments in memory

for lesser time.

4.5.4 Cluster Heterogeneity

We evaluate the performance of Capacity-Aware ModifiedBestFit (§4.4.4) (labeled

Getafix-H). We consider two types of heterogeneous environments: a) Homogeneous cluster

with stragglers and b) Heterogeneous cluster with mixed node types. We compare these

techniques against baseline Getafix (labeled Getafix-B).

Stragglers: We inject stragglers in a homogeneous Emulab cluster with 20 HNs and 15

clients. Two HNs are manually slowed down by running CPU intensive background tasks,

73

and creating memory intensive workloads on 32GB memory using the stress command.

Capacity-Aware ModifiedBestFit does two things - i) It makes replication decisions

based on individual node capacities, and ii) As a consequence of (i), it implicitly does Auto-

tiering. To understand the impact of (i) and (ii) separately, we implement a version of Auto-

tiering on top of Getafix-B. In that, the replication decisions are made assuming uniform

capacity, but the segments are mapped to HNs based on sorted HN capacity. Segments with

high CPU time get mapped to HNs with high capacity. We call this the “Auto-tiering Only”

scheme.

Figure 4.12 shows Auto-Tiering by itself improves 99th percentile query latency by 40%

and reduces average latency by 14% when compared with Getafix-B. With Getafix-H, the

overall gains increase to 55% and 28% respectively. Both Auto-Tiering Only and Getafix-H

show memory savings (16-20%). Memory improvement with Getafix-H is slightly less than

Auto-Tiering Only. We believe this is because Capacity-aware ModifiedBestFit detects

straggling HNs as low capacity nodes and allocates lesser segment CPU time on them. As

a result, it needs to assign the remaining query load of that segment on other HNs, which

results in creating extra replicas. This shows that given a trade-off between reducing memory

vs query latency, Capacity-aware ModifiedBestFit chooses the latter.

Tiered Clusters: Experiments are run in AWS on two cluster configurations consisting of

mixed EC2 instances as shown in Table 4.3. Cluster-1 has 15 HNs/5 clients and Cluster-2

has 25 HNs/10 clients.

Node type Node config
(core /

memory)

Cluster-1 Cluster-2

m4.4xlarge 16 / 64GB 3 nodes 4 nodes
m4.2xlarge 8 / 32GB 6 nodes 6 nodes
m4.xlarge 4 / 16GB 6 nodes 10 nodes

Table 4.3: AWS HN heterogeneous cluster configurations.

Figure 4.13 shows that for Cluster-1, with a core mix of 48:48:24 (hot:warm:cold), Getafix-

H improves the 99th percentile latency by 23% and reduces the total memory used by 18%,

compared to Getafix-B. Cluster-2 (64:48:40) has higher heterogeneity than Cluster-1. We

see that the 99th percentile latency improves by 18% and Total Memory Used reduces by

27%. This shows that even as the heterogeneity gets worse, Getafix-H continues to give

improvements in latency, makespan, and memory.

To evaluate how well Getafix-H can help reduce sysadmin load by performing automatic

tiering, we draw a heat map in Figure 4.14. HNs are sorted on the x axis with more powerful

HNs to the left. The three colors (hot, warm, cold) indicate the effective load capacity of

74

 0

 20

 40

 60

 80

 100

Cluster-1 Cluster-2

Im
pr

ov
em

en
t

C
om

pa
re

d
to

 G
et

af
ix

-B
(%

)

Cluster Configuration

99th Percentile Latency
Average Latency
Makespan
Total Memory Used

Figure 4.13: AWS Experiments: Improvement in 99th Percentile, Average Query
latency, Makespan and Total Memory Used with Getafix-H compared to Getafix-B.
Experiments performed with 2 different node mixtures and clients (refer Table 4.3).

16cores 8cores 4cores

Ti
m

e

16cores 8cores 4cores

Hot Warm Cold

Figure 4.14: AWS Experiments: Getafix-B on left, Getafix-H on right. Effectiveness
of Auto-Tiering shown using heat map. X-axis represents HNs sorted by the number
of cores they have. Y-axis plots a period of time in the duration of the experiments.
For each time, we classify HNs as hot, warm and cold (represented with 3 different
colors) based on the reported CPU time for processed queries.

HNs based on our run with Cluster 1. We expect to see three tiers based on Cluster-1 config

with 3 HNs assigned to Hot tier and 6 each to Warm and Cold tiers (Table 4.3). Getafix-B

(plot on left) fails to tier the cluster in a good way. Visually, Getafix-H achieves better

tiering with 3 distinct tiers. Quantitatively, Getafix-B has a tiering accuracy of 42% and

Getafix-H has 75% (net improvement of 80%). Accuracy is calculated as number of correct

tier assignments divided by overall tier assignments. These numbers can be boosted further

with sophisticated HN capacity estimation techniques (beyond our scope).

4.5.5 Comparing Query Routing Schemes

We evaluate three routing schemes, of which two are new: 1) ABR: Allocation Based Query

Routing from §4.4.2. 2) LBR-CC (LBR with Connection Count): In this scheme (Druid’s

default), broker routes queries to that HN with which it has the lowest number of open

HTTP connections (indicating low query count). 3) LBR-CC+ML (LBR with Connection

75

 0

 1

 2

 3

 4

 5

99th Percentile
Latency

 Average
 Latency

Makespan Total Memory
 Used

Im
pr

ov
em

en
t

no
rm

al
iz

ed
 t

o
A

BR LBR-CC
LBR-CC+ML
ABR

Figure 4.15: Emulab Experiments: Comparing 3 different query routing strategies on
Getafix-B – 1) LBR-CC, 2) LBR-CC+ML, 3) ABR. Higher is better.

 0

 20

 40

 60

 80

 100

50 100 150 200

Im
pr

ov
em

en
t

C
om

pa
re

d
T

o
w

/o
 G

C
(%

)

Disk Size (MB)

95th Percentile Latency
99th Percentile Latency

Figure 4.16: Emulab Experiment: Improvement in 99th and 95th percentile query
latency for Getafix with GC compared to without GC. Disk sizes are varied from 50
- 200 MB.

Count + Minimum Load): Augments LBR-CC by considering both open HTTP connections

and the number of waiting queries at the HN, using their sum as the metric to pick the least

loaded HN for the query.

Figure 4.15 compares these schemes on 15 HNs/10 clients homogeneous Emulab cluster.

The two LBR schemes are comparable, and are better than ABR, especially on total memory.

This difference is because of the following reason. While ABR knows the exact segment

allocation proportions, that information is only updated periodically (every round), making

ABR slow to react to dynamic cluster conditions and changing segment popularity trends.

Overall, Getafix works well with Druid’s existing LBR-CC scheme.

4.5.6 Benefit From Garbage Collection

When the data size of the working set (queried data) exceeds the total memory avail-

able across the HNs, queries are processed out-of-core (e.g., disk). In such scenarios the

Garbage Collector (GC) is crucial to performance–it allows freshly minted segments gaining

in popularity to be loaded and queried.

76

We emulated smaller disks and Figure 4.16 plots the improvement in tail latency (95th and

99th percentile) when the GC is used compared to when GC is disabled. The GC improves

tail latency by 25% to 55%. As disk sizes increase, the frontend tier can accommodate more

segments and the marginal gain from GC falls. We recommend the GC always be enabled,

but especially in circumstances such as a large differential between backend and frontend

storage sizes, or low query locality, or wimpy frontend tiers.

4.6 DISCUSSION

Saving Memory costs in practice: System administrators use various techniques to

estimate how much memory to provision in an interactive analytics cluster. Some of these

are based on workload profiling, which is beyond our scope. However, a rule of thumb to

calculate per-HN memory is to multiply the expected working set data size with the effective

replication factor and divide by the number of HNs. Since Getafix significantly reduces

replication factor (∼ 2× compared to Scarlett), it can reduce capital expenses (Capex) in a

private cloud and dollar expenses in a public cloud. In disaggregated datacenters, Getafix’s

dollar cost savings would be higher as memory cost is decoupled from CPU costs.

Getafix savings extend to Disk Storage: If one were to increase the working set of

(popular) segments without increasing cluster size or per-HN memory, a cutoff point will

be reached when cluster memory no longer suffices and HNs will need to use out-of-core

memory (e.g., disk). Compared to Druid (uniform) and Scarlett, Getafix reaches this cutoff

point much later (at higher dataset sizes). Beyond the cutoff point, Getafix is still preferable

to competing systems because it is able to fit more segments in memory, and thus it mini-

mizes disk usage. Extremely large datasets where disk dominates memory are not typical of

production scenarios today as high latencies will necessitate scaling out the cluster anyway.

Getafix vs. On-demand Replication: Consider the (alternative) pure on-demand

approach which keeps one replica per segment in the cluster, but creates an extra replica

on-demand per query. In comparison, Getafix is “sticky” and retains a recently-created

replica, expecting that this potentially-popular segment will be used by an impending query.

Thus, Getafix will have significantly less network usage and lower query latency than the

pure on-demand approach. This is also borne out by the observations from production that

query popularity persists for a while, and that segment transfer times are significant.

Overhead of Getafix’s Planning Algorithm: In a system with 20 HNs, 15 brokers, 30

segments, Getafix’s planning algorithm took a median time of 211.5 ms, much smaller than

the reconfiguration period of 5000 ms. This planning overhead is completely hidden from

77

the end user because queries are scheduled in parallel with this planning.

4.7 RELATED WORK

Allocation Problem: Our problem has similarities to the data allocation problem [106] in

databases which tries to optimize for performance [107, 108] and/or network bandwidth [109].

A generalized version of the problem has been shown to be NP-hard [106]. Typical heuristics

used are best fit and first fit [110, 111] or evolutionary algorithms [108]. This problem is

different from the one Getafix solves. In databases, each storage node also acts as a client

site generating its own characteristic access pattern. Thus, performance optimization often

involves intelligent data localization through placement and replication. On the contrary,

brokers in Druid receive client queries and are decoupled from the compute nodes in the

system. Getafix aggregates the access statistics from different brokers to make smart segment

placement decisions. Some of Getafix’s ideas may be applicable in traditional databases.

Workload-Aware Data Management: We are not the first to use popularity for data

management. Nectar [112] trades off storage for CPU by not storing unpopular data, instead,

recomputing it on the fly. In our setting neither queries generate intermediate data, nor can

our input data be regenerated, so Nectar’s techniques do not apply. Workload-aware data

partitioning and replication has been explored in Schism [113], whose techniques minimize

cross-partition transactions in graph databases. There are other works which look at adaptive

partitioning for OLTP systems [114] and NoSQL databases [115] respectively, however they

do not explore Druid-like interactive analytics engines. E-Store [116] proposes an elastic

partition solution for OLTP databases by partitioning data into two tiers. The idea is to

assign data with different levels of popularity into different sizes of data chunks so that the

system can smoothly handle load peaks and popularity skew. This approach is ad-hoc and

an adaptive strategy like Getafix is easier to manage.

Saving Memory and Storage: Facebook’s f4 [117] uses erasure codes for “warm” BLOB

data like photos, videos, etc., to reduce storage overhead while still ensuring fault tolerance.

These are optimizations at the deep storage tier and orthogonal to our work. Parallel work

like BlowFish [118], have looked at reducing storage by compressing data while still providing

guarantees on performance. It is complementary to our approach and can be combined with

Getafix.

Interactive data analytics engines: Current work in interactive data analytics en-

gines [119, 120, 121, 18] focus on query optimization and programming abstractions. They

are transparent to the underlying memory challenges of replication and thus, to performance.

78

In such scenarios, Getafix can be implemented inside the storage substrate [8]. Since Getafix

uses data access times and not query semantics, it can reduce memory usage generally.

Amazon Athena [122] and Presto [18] attempt to co-locate queries with the data in HDFS,

but these systems do not focus on data management. Details about these systems are

sketchy (Athena is closed-source, Presto has no paper), but we believe Getafix’s ideas can

be amended to work with these systems. Athena’s cost model is per TB processed and, we

believe, is largely driven by memory usage. Getafix’s cost model is finer-grained, and focuses

on memory, arguably the most constrained resource today. Nevertheless, these cost models

are not mutually exclusive and could be merged.

Systems like Druid [17], Pinot [30], Redshift [87], Mesa [88], couple data management with

rich query abstractions. Our implementation inside Druid shows that Getafix is effective in

reducing memory for this class of systems, with the exception that Mesa allows updates to

data blocks (Getafix, built in Druid, assumes segments are immutable).

Cluster Heterogeneity: Optimizing query performance in heterogeneous environments is

well-studied in batch processing systems like Hadoop [123, 124, 125, 126]. Typical approaches

involve estimating per job progress and then speculatively re-scheduling execution. Real time

system query latencies tend to be sub-second which makes the batch solutions inapplicable.

4.8 SUMMARY

We have presented replication techniques intended for interactive data analytics engines

applicable to systems like Druid, Pinot, etc. Our techniques use latest (running) popular-

ity of data segments to determine their placement and replication level at compute nodes.

Our solution to the static query/segment placement problem is provably optimal in both

makespan and total memory used. Our system, called Getafix, generalizes the solution to

the dynamic version of the problem, and effectively integrates adaptive and continuous seg-

ment placement/replication with query routing. We implemented Getafix into Druid, the

most popular open-source interactive analytics engine. Our experiments use workloads de-

rived from production traces in Yahoo!’s production Druid cluster. Compared to the best

existing technique (Scarlett), Getafix uses 1.45 - 2.15× less memory, while minimally affect-

ing makespan. In a public cloud, for a 100 TB hot dataset size, Getafix can cut memory

dollar costs by as much as 10 million dollars annually with negligible performance impact.

79

Chapter 5: Fast Compaction Algorithms for NoSQL Databases

In this chapter, we discuss the problem of compaction of SSTables in log structured

databases like Cassandra. We motivate the problem in Section 5.1. We formally define the

problem of compaction in Section 5.2. Our theoretical contributions in the form of heuristics

and analysis is listed in Section 5.3. Our simulation results using real world workload traces

have been presented in Section 5.4.

5.1 INTRODUCTION

Distributed NoSQL storage systems are being increasingly adopted for a wide variety of ap-

plications like online shopping, content management, education, finance etc. Fast read/write

performance makes them an attractive option for building efficient back-end systems.

Supporting fast reads and writes simultaneously on a large database can be quite chal-

lenging in practice [127, 128]. Since today’s workloads are write-heavy, many NoSQL

databases [52, 24, 129, 42] choose to optimize writes over reads. Figure 5.1 shows a typi-

cal write path at a server. A given server stores multiple keys. At that server, writes are

quickly logged (via appends) to an in-memory data structure called a memtable. When the

memtable becomes old or large, its contents are sorted by key and flushed to disk. This

resulting table, stored on disk, is called an sstable.

Figure 5.1: Schematic representation of a typical write operations. Dashed box rep-
resents a memtable. Solid box represents a sstable. Dashed arrow represents flushing
of memory to disk.

Over time, at a server, multiple sstables get generated. Thus, a typical read path may

contact multiple sstables, making disk I/O a bottleneck for reads. As a result, reads are

slower than writes in NoSQL databases. To make reads faster, each server in a NoSQL

system periodically runs a compaction protocol in the background. Compaction merges

multiple sstables into a single sstable by merge-sorting the keys. Figure 5.2 illustrates an

example.

In order to minimally affect normal database CRUD (create, read, update, delete) opera-

tions, sstables are merged in iterations. A compaction strategy identifies the best candidate

sstables to merge during each iteration. To improve read latency, an efficient compaction

80

Figure 5.2: A compaction operation merge sorts multiple sstables into one sstable.

strategy needs to minimize the compaction running time. Compaction is I/O-bound because

sstables need to be read from and written to disk. Thus, to reduce the compaction running

time, an optimal compaction strategy should minimize the amount of disk bound data. For

the rest of the chapter, we will use the term “disk I/O” to refer to this amount of data. We

consider the static version of the problem, i.e., the sstables do not change while compaction

is in progress.

In this chapter, we formulate this compaction strategy as an optimization problem. Given

a collection of n sstables, S1,. . .,Sn, which contain keys from a set, U , a compaction strategy

creates a merge schedule. A merge schedule defines a sequence of sstable merge operations

that reduces the initial n sstables into one final sstable containing all keys in U . Each merge

operation reads atmost k sstables from disk and writes the merged sstable back to disk (k

is fixed and given). The total disk I/O cost for a single merge operation is thus equal to the

sum of the size of the input sstables (that are read from disk) and the merged sstable (that

is written to disk). The total cost of a merge schedule is the sum of the cost over all the

merge operations in the schedule. An optimal merge schedule minimizes this cost.

Our Contribution: In this chapter, we study the compaction problem from a theoretical

perspective. We formalize the compaction problem as an optimization problem. We further

show a generalization of the problem, which can model a wide class of compaction cost

functions. Our contributions are as follows:

� Prove that the optimization problem is NP-hard [130].

� Propose a set of greedy algorithms with provable approximation guarantees (Sec-

tion 5.3).

� Quantitatively evaluate the greedy algorithms with real-life workloads using our im-

plementation (Section 5.4).

81

Related Work: A practical implementation of compaction was first proposed in Bigtable [6].

It merges sstables when their number reaches a pre-defined threshold. They do not optimize

for disk I/O. For read-heavy workloads, running compaction over multiple iterations is slow

in achieving the desired read throughput. To solve this, Level-based compaction [131, 132]

merges every insert, update and delete operations instead. They optimize for read perfor-

mance by sacrificing writes. NoSQL databases like Cassandra [10] and Riak [29] implement

both these strategies [133, 134]. Cassandra’s Size-Tiered compaction strategy [134], inspired

from Google’s Bigtable, merges sstables of equal size. This approach bears resemblance to

our SmallestInput heuristic defined in Section 5.3. For data which becomes immutable

over time, such as logs, recent data is prioritized for compaction [135, 136]. Again, the goal

here is to improve read throughput.

Our work looks at a major compaction operation. Mathieu et. al. [137] have also theoreti-

cally looked at compaction, however they focused on minor compaction and their problem is

thus different from ours. The memtable and a subset of sstables are compacted at periodic

intervals, and the resultant number of sstables left after each interval is bounded from above.

An optimal merge schedule specifies the number of sstables to merge in an interval given

the cardinality of current sstables and the memtable. On the contrary, in our case of major

compaction, we merge all sstables at once by choosing a fixed number of sstables to merge

in an iteration. Our goal is to create a single sstable at the end of the compaction run.

5.2 PROBLEM DEFINITION

Consider the compaction problem on n sstables for the case where k = 2, i.e., in each

iteration, 2 sstables are merged into one. As we discussed in Section 4.1, an sstable consists

of multiple entries, where each entry has a key and associated values. When 2 sstables are

merged, the new sstable is created which contains only one entry per key present in either of

the two base sstables. To give a theoretical formulation for the problem, we assume that: 1)

all key-value pairs are of the same size, and 2) the value is comprehensive, i.e., contains all

columns associated with a key. This makes the size of an sstable proportional to the number

of keys it contains. Thus an sstable can be considered as a set of keys and a merge operation

on sstables performs simple union of sets (where each sstable is a set). With this intuition,

we can model the compaction problem for k = 2 as the following optimization problem.

Given a ground set U = {e1, . . . em} of m elements, and a collection of n sets (sstables),

A1, . . . , An where each Ai ⊆ U , the goal is to come up with an optimal merge schedule.

A merge schedule is an ordered sequence of set union operations that reduces the initial

collection of sets to a single set. Consider the collection of sets, initially A1, . . . , An. At

82

each step we merge two sets (input sets) in the collection, where a merge operation consists

of removing the two sets from the collection, and adding their union (output set) to the

collection. The cost of a single merge operation is equal to the sum of the sizes of the two

input sets plus the size of the output set in that step. With n initial sets there need to be

(n−1) merge operations in a merge schedule, and the total cost of the merge schedule is the

sum of the costs of its constituent merge operations.

Observe that any merge schedule with k = 2 creates a full1 binary tree T with n leaves.

Each leaf node in the tree corresponds to some initial set Ai, each internal node corresponds

to the union of the sets at the two children, and the root node corresponds to the final

set. We assume that the leaves of T are numbered 1, . . . , n in some canonical fashion, for

example using an in-order traversal. Thus a merge schedule can be viewed as a full binary

tree T with n leaves, and a permutation π : [n] → [n] that assigns set Ai (for 1 ≤ i ≤ n),

to the leaf numbered π(i). We call this the merge tree. Once the merge tree is fixed, the

sets corresponding to the internal nodes are also well defined. We label each node by the

set corresponding to that node. By doing a bottom-up traversal one can label each internal

node. Let ν be an internal node of such a tree and Aν be its label. For simplicity, we will

use the term size of node ν, to denote the cardinality of Aν .

In our cost function the size of a leaf node or the root node is counted only once. However,

for an internal node (non-leaf, non-root node) it is counted twice, once as input, and once

as output. Let V ′ be the set of internal nodes. Formally, we define the cost of the merge

schedule as:

costactual(T, π,A1, . . . , An) =
∑
ν∈V ′

2 |Aν |+
n∑
i=1

|Ai|+ |Aroot| (5.1)

Then, the problem of computing the optimal merge schedule is to create a full binary tree T

with n leaves, and an assignment π of sets to the leaf nodes such that costactual(T, π,A1, . . . , An)

is minimized. This cost function can be further simplified as follows:

cost(T, π,A1, . . . , An) =
∑
ν∈T

|Aν | (5.2)

The optimization problems over the two cost functions are equivalent because the size of the

leaf nodes, and the root node is constant for a given instance. Further, an α-approximation

for cost(T, π,A1, . . . , An) immediately gives a 2·α-approximation for costactual(T, π,A1, . . . , An).

For ease of exposition, we use the simplified cost function in equation (5.2) for all the

theoretical analysis presented in this chapter. We call this optimization problem as the

1A binary tree is full if every non-leaf node has two children

83

BinaryMerging problem. We denote the optimal cost by opts(A1, . . . , An).

A Reformulation of the Cost A useful way to reformulate the cost function

cost(T, π,A1, . . . , An) is to count the cost per element of U . Since the cost of each internal

node is just the size of the set that labels the node, we can say that the cost receives a

contribution of 1 from an element at a node if it appears in the set labeling that node. The

cost can now be reformulated in the following manner. For a given element x ∈ U , let T (x)

denote the minimal subtree of T that spans all the nodes ν in T whose label sets π(ν) contain

x and the root node. Let |T (x)| denote the number of edges in T (x). Then we have that:

cost(T, π,A1, . . . , An) =
∑
x∈U

(|T (x)|+ 1). (5.3)

Relation to the problem of Huffman Coding We can view the problem of Huffman

coding as a special case of the BinaryMerging problem. Suppose we have n disjoint

sets A1, . . . , An with sizes |Ai| = pi. We can see that, using the full binary tree view and

the reformulated cost in equation (5.3), the cost function is the same as the problem of an

optimal prefix free code on n characters with frequencies p1, . . . , pn.

Generalization of BinaryMerging As we saw, BinaryMerging models a special case of

the compaction problem where in each iteration 2 sstables are merged. However in the more

general case, one may merge atmost k sstables in each iteration. To model this, we intro-

duce a natural generalization of the BinaryMerging problem called the k-WayMerging

problem. Formally, given a collection of n sets, A1, . . . , An, covering a groundset U of m

elements, and a parameter k, the goal is to merge the sets into a single set, such that at each

step: 1) atmost k sets are merged and 2) the merge cost is minimized. The cost function is

defined similar to BinaryMerging.

5.3 GREEDY HEURISTICS FOR BINARYMERGING

In this section, we present and analyze four greedy heuristics that approximate an opti-

mal merge schedule. As pointed out in Section 5.2, the BinaryMerging problem can be

viewed as a generalization of the Huffman coding problem. The optimal greedy algorithm

for Huffman coding thus motivates the design of three out of our four heuristics, namely:

SmallestOutput, SmallestInput and LargestMatch. The BalanceTree heuris-

tic was conceived because it is easy to parallelize and is thus a natural candidate for a

fast implementation unlike others. We prove O(log n) approximation guarantees for all the

heuristics.

84

This section is organized as follows. We start by giving a lower bound on the cost of the

optimal merge schedule. Later, we will use this lower bound to prove the approximation

ratio for our greedy heuristics.

5.3.1 A Lower bound on Optimal Cost

We know that OPT = opts(A1, . . . , An) is the cost of the optimal merge schedule, see

Section 5.2. Let, Cost denote the cost of the merge schedule returned by our algorithm. To

give an α-approximate algorithm, we need to show that Cost ≤ α · OPT. Since OPT is not

known, we instead show that Cost ≤ β · LOPT, where LOPT is a lower bound on OPT. This

gives an approximation bound with respect to OPT itself. Observe that OPT ≥ ∑n
i=1 |Ai|.

This follows immediately from the cost function (equation (5.3)), since the cost function

size of each node in the merge tree is considered once and sum of the sizes of leaf nodes is∑n
i=1 |Ai|. Henceforth, we use

∑n
i=1 |Ai| as LOPT.

5.3.2 Generic Framework for Greedy Algorithm

1 Algorithm GreedyBinaryMerging(A1, . . . An)
2 C ← {A1, . . . , An};
3 for i = 1, . . . , n− 1 do
4 S1, S2 ← ChooseTwoSets(C);
5 C ← C \ {S1, S2};
6 C ← C ∪ {S1 ∪ S2};
7 end

Algorithm 5.1: Generic greedy algorithm.

The four greedy algorithms we present in this section are special cases of a general ap-

proach, which we call the GreedyBinaryMerging algorithm. The algorithm proceeds

as follows: at any time it maintains a collection of sets C, initialized to the n input

sets A1, . . . An. The algorithm runs iteratively. In each iteration, it calls the subroutine

ChooseTwoSets, to choose greedily two sets from the collection C to merge. This sub-

routine implements the specific greedy heuristic. The two chosen sets are removed from the

collection and replaced by their union i.e., the merged set. After (n − 1) iterations only 1

set remains in the collection and the algorithm terminates. Details are formally presented

in Algorithm 5.1.

85

5.3.3 Heuristics

We present 4 heuristics for the ChooseTwoSets subroutine in the GreedyBinaryMerging

algorithm. We show that three of these heuristics are O(log n)-approximations. To explain

the algorithms we will use the following working example:

Working Example 5.1 We are given as input 5 sets: A1 = {1, 2, 3, 5}, A2 = {1, 2, 3, 4}, A3 =

{3, 4, 5}, A4 = {6, 7, 8}, A5 = {7, 8, 9}. The goal is to merge them into a single set such

that the merge cost as defined in Section 5.2 is minimized.

BalanceTree (BT) Heuristic: Assume for simplicity that n is a power of 2. One natural

heuristic for the problem is to merge in a way such that the underlying merge tree is a

complete binary tree. This can be easily done as follows: the input sets form the leaf nodes

or level 1 nodes. The n leaf nodes are arbitrarily divided into n/2 pairs. The paired sets

are merged to get the level 2 nodes. In general, the level i nodes are arbitrarily divided into

n/2i pairs. Each pair is merged i.e., the corresponding sets are merged to get n/2i nodes in

the i+ 1th level. This builds a complete binary tree of height log n.

However, when n is not a power of 2, to create a merge tree of height dlog ne involves a

little more technicality. To do this, annotate each set with its level number l, and let minL

be the minimum level number across all sets at any point of time. Initially, all the sets are

marked with l = 1. In each iteration, we choose two sets whose level number is minL, merge

these sets, and assign the new merged set the level (minL+ 1). If only 1 set exists with level

number equal to minL, we increment its l by 1 and retry the process. Figure 5.3 shows the

merge schedule obtained using this heuristic on our working example.

1 2

3

4

{1,2,3,4,5} {3,4,5,6,7,8}

{1,2,3,4,5,6,7,8} {7,8,9}

{1,2,3,4,5,6,7,8,9}

A1 A2 A3 A4

A5

{1,2,3,5} {1,2,3,4} {3,4,5} {6,7,8}
Figure 5.3: Merge schedule using BalanceTree heuristic. The label inside the leaf nodes
denotes the corresponding set. The label inside internal nodes denote the iteration in
which the merge happened. The sets corresponding to each node is shown outside the
node. Cost of the merge = 45.

Lemma 5.2 Consider an instance A1, . . . , An of the BinaryMerging problem. BalanceTree

heuristic, gives a (dlog ne+ 1)-approximation.

86

Proof: Let T be the merge tree constructed. By our level-based construction, height(T) =

dlog ne. Let C l denote the collection of sets at level l. Now observe that each set in C l

is either the union of some initial sets, or is an initial set by itself. Also, each initial set

participates in the construction of atmost 1 set in C l. This implies that:

∑
S∈Cl

|S| ≤
n∑
i=1

|Ai| = LOPT ≤ OPT (5.4)

Therefore,

Cost =

dlogne+1∑
l=1

∑
S∈Cl

|S| ≤ (dlog ne+ 1) · OPT (5.5)

Lemma 5.3 The approximation bound proved for BalanceTree in Lemma 5.2 heuristic

is tight.

Proof: We show an example where the merge cost obtained by using BalanceTree

heuristic is Ω(log n) · OPT. Consider n initial sets where n is a power of 2. The sets

are A1 = {1}, A2 = {1}, . . . , An−1 = {1}, An = {1, 2, 3, . . . n}, i.e., we have (n−1) identical

sets which contain just the element 1, and one set which has n elements. An optimal merge

schedule is the left-to-right merge, i.e., it starts by merging A1 and A2 to get the set A1∪A2,

then merges A1∪A2 with A3 to get A1∪A2∪A3 and so on. The cost of this merge is (4n−3).

However the BalanceTree heuristic creates a complete binary tree of height log n, and the

large n size set {1, 2, . . . , n} appears in every level. Thus the cost will be atleast n·(log n+1).

This lower bounds the approximation ratio of BalanceTree heuristic to Ω(log n).

SmallestInput (SI) Heuristic: This heuristic selects in each iteration, those two sets in

the collection that have the smallest cardinality. The intuitive reason behind this approach

is to defer till later the larger sets and thus, reduce the recurring effect on cost. Figure 5.4

shows the merge tree we obtain when we run the greedy algorithm with SmallestInput

heuristic on our working example.

SmallestOutput (SO) Heuristic: In each iteration, this heuristic chooses those two sets

in the collection whose union has the least cardinality. The intuition behind this approach

is similar to SI. In particular, when the sets A1, . . . , An are all disjoint, these two heuristics

lead to the same algorithm. Figure 5.5 depicts the merge tree we obtain when executed on

our working example.

87

1 2

3

4

{3,4,5,6,7,8} {1,2,3,4,7,8,9}

{1,2,3,4,5,6,7,8}

{7,8,9}

{1,2,3,4,5,6,7,8,9}

A3 A4 A5 A2

A1

{3,4,5} {6,7,8} {1,2,3,4}

{1,2,3,5}

Figure 5.4: Merge schedule using SmallestInput heuristic. Initially the smallest sets
are A3, A4, A5. The algorithm arbitrarily choses A3 and A4 to merge, creating node
1 with corresponding set {3, 4, 5, 6, 7, 8}. Next the algorithm proceeds with merging A1

and A2 as they are the current smallest sets in collection, and so on. Cost of the merge
= 47.

1

2

3

4

{6,7,8,9}

{1,2,3,4,5}

{1,2,3,4,5}

{3,4,5}

{1,2,3,4,5,6,7,8,9}

A4 A5

A1 A2

A3

{6,7,8} {7,8,9}

{1,2,3,5} {1,2,3,4}
Figure 5.5: Merge schedule using SmallestOutput heuristic. Initially the smallest
output set is obtained by merging sets A4, A5. In first iteration A4, A5 is merged to
get the new set {6, 7, 8, 9}. Next the algorithm chooses A1, A2 to merge as they create
the smallest output of size 4, and so on. Cost of the merge = 40.

Lemma 5.4 Given n disjoint sets A1, . . . , An, the BinaryMerging problem can be solved

optimally using SmallestInput (or SmallestOutput) heuristics.

Proof: As we remarked in Section 5.2 that for this special case, the BinaryMerging

problem reduces to the Huffman coding problem, and as is well known, the above greedy

heuristic is indeed the optimal greedy algorithm for prefix free coding [138].

Lemma 5.5 Consider an instance A1, . . . , An of the BinaryMerging problem. Both the

SmallestInput and SmallestOutput heuristics, give O(log n) approximate solutions.

Proof:

Let Aj1, , . . . , A
j
n−j, be the sets left after the jth iteration of the algorithm. Now observe

that each Aji is either the union of some initial sets, or is an initial set itself. Further each

88

initial set contributes to exactly 1 of the Aji ’s. This implies that:

n−j∑
i=1

∣∣Aji ∣∣ ≤ n∑
i=1

|Ai| = LOPT ≤ OPT (5.6)

Without loss of generality, let us assume that after j iterations, Aj1 and Aj2 are the two

smallest cardinality sets left.

∣∣Aj1 ∪ Aj2∣∣ ≤ ∣∣Aj1∣∣+
∣∣Aj2∣∣ ≤ 2

n− j

n−j∑
i=1

∣∣Aji ∣∣ (5.7)

If the greedy algorithm uses the SmallestInput heuristic, then in the (j + 1)th iteration,

sets Aj1, A
j
2 will be chosen to be merged. In case of the SmallestOutput heuristic, we

choose the two sets that give the smallest output set. Let Cj+1 be the output set created in

the (j + 1)th iteration. Combining the above we can say that:

Cj+1 ≤
∣∣Aj1 ∪ Aj2∣∣ ≤ 2

n− j · OPT (5.8)

Thus, for either of the greedy strategies, SmallestInput and SmallestOutput, the total

cost is:

Cost ≤
n∑
i=1

|Ai|+
n−1∑
j=1

|Cj| ≤ OPT +
n−1∑
j=1

2

n− j + 1
· OPT

≤ (2Hn + 1) · OPT [Hn is the nth harmonic number]

(5.9)

Lemma 5.6 The greedy analysis is tight with respect to the lower bound for optimal (LOPT).

Proof: We show an example where the ratio of the cost of merge obtained by using

SmallestInput or SmallestOutput heuristic and LOPT is log n. Consider n initial sets

where n is a power of 2. The sets are A1 = {1}, . . . , Ai = {i}, . . . , An = {n}, i.e., each

set is of size 1 and they are disjoint. The lower bound we used for the greedy analysis is

LOPT =
∑n

i=1 |Ai| = n. Both the heuristics, SmallestInput and SmallestOutput, cre-

ates a complete binary tree of height log n. Since the initial sets are disjoint, the collection

of sets in each level is also disjoint and the total size of the sets in each level is n. Thus the

total merge cost is n · log n = log n · LOPT.

Remark: Lemma 5.6 gives a lower bound with respect to LOPT, and not OPT. It suggests

that the approximation ratio cannot be improved unless the lower bound (LOPT) is refined.

89

(a) (b)
Figure 5.6: Cost and time for compacting sstables generated by varying update per-
centage with latest distribution.

Finding a bad example with respect to OPT is an open problem.

LargestMatch Heuristic: In each iteration, this approach chooses those two sets that have

largest intersection [139]. However, the worst case performance bound for this heuristic can

be arbitrarily bad. It can be shown that the approximation bound for this algorithm is Ω(n).

Consider a collection of n sets, where set Ai = {1, 2, . . . , 2i−1}, for all i ∈ [n]. The optimal

way of merging is left-to-right merge. The cost of this merge is 1 + 2 · (2 + 4 + . . . 2n−1) =

2n+1− 3. However, the LargestMatch heuristic will always choose {1, 2, . . . , 2n−1} as one

of the sets in each iteration as it has largest intersection with any other set. Thus the cost will

be 2n−1 · (n− 1). This shows a gap of Ω(n) between the optimal cost and LargestMatch

heuristic.

5.4 SIMULATION RESULTS

In this section, we evaluate the greedy strategies from Section 5.3. Our experiments answer

the following questions:

� Which compaction strategy should be used in practice, given real-life workloads?

� How close is a given compaction strategy to optimal?

� How effective is the cost function in modeling running time for compaction?

5.4.1 Setup

Dataset: We generated the dataset from an industry benchmark called YCSB (Yahoo Cloud

Servicing Benchmark) [61]. YCSB generates CRUD (create, read, update, delete) operations

for benchmarking a key-value store emulating a real-life workload. YCSB parameters are

90

explained next. YCSB works in two distinct phases: 1) load: inserts keys to an empty

database. The recordcount parameter controls the number of inserted keys. 2) run: gener-

ates CRUD operations on the loaded database. The operationcount parameter controls the

number of operations.

We consider insert and update operations only to load memtables (and thus, sstables).

In practice, deletes are handled as updates. A tombstone flag is appended in the memtable

which signifies the key should be removed from sstables during compaction. Reads do not

modify sstables. Thus, we ignore both of them in our simulation.

In YCSB, update operations access keys using one of the three realistic distributions:

1) Uniform: All the inserted keys are uniformly accessed, 2) Zipfian: Some keys are more

popular than others (power-law), and 3) Latest: Recently inserted keys are more popular

(power-law).

Cluster: We ran our experiments in the Illinois Cloud Computing Testbed [140] which is

part of the Open Cirrus project [141]. We used a single machine with 2 quad core CPUs, 16

GB of physical memory and 2 TB of disk capacity. The operating system running is CentOS

5.9.

Simulator: Our simulator works in two distinct phases. In the first phase, we create

sstables. YCSB’s load and run phases generate operations which are first inserted into a

fixed size (number of keys) memtable. When the memtable is full, it is flushed as an sstable

and a new empty memtable is created for subsequent writes. As a memtable may contain

duplicate keys, sstables may be smaller and vary in size.

In the second phase, we merge the generated sstables using some of the compaction strate-

gies proposed in Section 5.3. By default, the number of sstables we merge in an iteration, k

is set to 2. We measure the cost and time at the end of compaction for comparison. The cost

represents costactual defined in Section 5.2. The running time measures both the strategy

overhead and the actual merge time.

We evaluate the following 5 compaction strategies:

1. SmallestInput (SI): We choose k smallest cardinality sstables in each iteration using

a priority queue. This implementation works in O(log n) time per iteration.

2. SmallestOutput (SO): We choose k sstables whose union has the smallest cardinality.

Calculating the cardinality of an output sstable without actually merging the input ssta-

bles is non-trivial. We estimate cardinality of the output sstable using Hyperloglog [142]

(HLL). We compute the HLL estimate for all
(
n
k

)
combinations of sstables in the first

iteration. At the end of the iteration, k sstables are removed and a new sstable is added.

In the next iteration, we have to compute the estimates for
(
n−k+1

k

)
combinations. We

91

can reduce this number by making the following two observations: 1) some of the esti-

mates from the last iteration (involving sstables not removed) can be reused and 2) new

estimate is required for only those combinations which involve the new sstable. Thus,

the total number of combinations for which we need to estimate cardinality is
(
n−k
k−1

)
. The

per-iteration overhead for this strategy is high.

3. BalanceTree with SmallestInput at each level (BT (I)): This strategy merges ssta-

bles in a single level together. Since all sstables at a single level can be simultaneously

merged, we use threads to parallelly initiate multiple merge operations. BalanceTree

does not specify a order for choosing sstables to merge in a single level. We use SmallestInput

strategy and pick sstables in the increasing order of their cardinality.

4. BalanceTree with SmallestOutput at each level (BT (O)): This is similar to BT (I)

strategy except we use SmallestOutput for finding sstables to merge together at each

level. Even though, the SO strategy has a large per-iteration strategy overhead, the

overhead for this strategy is amortized over multiple iterations that happen in a single

level.

5. Random: As a strawman to compare against, we implemented a random strategy that

picks random k sstables to merge (at each iteration). This represents the case when there

is no compaction strategy. It will thus provide a baseline to compare with.

5.4.2 Strategy Comparison

We compare the compaction heuristics from Section 5.3 using real-life (YCSB) workloads.

We fixed the operationcount at 100K, recordcount at 1000 and memtable size at 1000. We

varied the workload along a spectrum from insert heavy (insert proportion 100% and update

proportion 0%) to update heavy (update proportion 100% and insert proportion 0%). We

ran experiments with all 3 key access distributions in YCSB.

With 0% updates, the workload only comprises of new keys. With 100% updates, all the

keys inserted in the load phase will be repeatedly updated implying a larger intersection

among sstables. When keys are generated with a power-law distribution (zipfian or latest)

the intersections increase as there will be a few popular keys updated frequently. We present

result for latest distribution only. The observations are similar for zipfian and uniform and

thus, excluded.

Figures 5.6 plots the average and the standard deviation for cost and time for latest dis-

tribution from 3 independent runs of the experiment. We observe that SI and BT (I) have

a compaction cost that is marginally lower than BT (O) (for latest distribution) and SO.

92

Compaction using BT (I) finishes faster compared to SI because of its parallel implemen-

tation. Random is the worst strategy. Thus, BT (I) is the best choice to implement in

practice. As updates increase, the cost of compaction decreases for all strategies. With a

fixed operationcount, larger intersection among sstables implies fewer unique keys, which in

turn implies fewer disk writes.

Random is much worse than our heuristics at small update percentage. This can be

attributed to the balanced nature of the merge trees. Since sstables are flushed to disk

when the memtable reaches a size threshold, the sizes of the actual sstable have a small

deviation. Merging two sstables (S1 and S2) of similar size with small intersection (small

update percentage) creates another sstable (S3) of roughly double the size at the next level.

Both SI and SO choose S3 for merge only after all the sstables in the previous level have

been merged. Thus, their merged trees are balanced and their costs are similar. On the

contrary, Random might select S3 earlier and thus, have a higher cost.

As the intersections among sstables increase (with increasing update percentage), the size

of sstables in the next level (after a merge) is close to the previous level. At this point, it is

immaterial which sstables are chosen at each iteration. Irrespective of the merge tree, the

cost of a merge is constant 2. Thus, Random performs as well as the other strategies when

the update percentage is high.

The cost of SO and BT (O) is sensitive to the error in cardinality estimation. The gen-

erated merge schedule differs from the one generated by the naive sstable merging scheme

which accurately identifies the smallest union. This results in slightly higher overall cost. The

running time of SO increases linearly as updates increase because of cardinality estimation

overhead.

5.4.3 Comparison with Optimal

In this experiment, we wish to evaluate how close BT (I), our best strategy, is to opti-

mal. Extensively searching all permutations of merge schedules for finding the optimal cost

for large number and size of sstable is prohibitive and exponentially expensive. Instead,

we calculate the sum of sstable sizes, our known lower bound for optimal cost from Sec-

tion 5.3.1. We vary the memtable size from 10 to 10K and fix the number of sstables to 100.

The recordcount for load stage is 1000 and update insert ratio is set to 60:40. The num-

ber of operations (operationcount) for YCSB is calculated as: memtable size(10 to 10K) ×
number of sstables (100)− recordcount (1000). We ran experiments for all three key access

2If sstable size is s, number of sstables to merge in an iteration is 2 and the number of sstables is n, then
costactual would be 3 · (n− 1) · s.

93

Figure 5.7: Comparing cost of BT (I) to optimal which is lower bounded by sum of
sizes of all sstables. Both x and y-axis are in log scale.

(a) Increasing update percentage (b) Increasing operationcount
Figure 5.8: Effect of cost function on completion time for compaction. SI strategy
used. Update Percentage and datasize varied for the plots respectively.

distributions.

Figure 5.7 compares the cost of merge using BT (I) with the lower-bounded optimal cost,

averaged over 3 independent runs of the experiment. Both x and y-axis use log scale. As

the maximal memtable size (before flush) increases exponentially, both the curves show a

linear increase in log scale with similar slope. Thus, in real life workloads, the cost of our

strategy is within a constant factor of the lower bound of the optimal cost. This is a better

performance than the analyzed worst case O(log n) bound (Lemma 5.6).

5.4.4 Cost Function Effectiveness

In Section 5.2 we defined costactual to model amount of data to be read from and written

to disk. This cost also determines the running time for compaction. The goal of this

experiment is to validate how the defined cost function affects the compaction time. In this

experiment, we compare the cost and time for SI. We chose this strategy because of its

low overhead and single-threaded implementation. We ran our experiments with the same

94

settings as described in Section 5.4.2 and Section 5.4.3. Cost and time values are calculated

by averaging the observed values of 3 independent runs of the experiment.

Figure 5.8 plots the cost on x-axis and time on y-axis. As we increase update proportion

((Figure 5.8b) and operationcount (Figure 5.8a), we see an almost linear increase for time

as cost increases for all 3 distributions. This validates the cost function in our problem

formulation, as by minimizing it, we will reduce the running time as well.

5.5 CONCLUSION

In this work, we formulated compaction in key value stores as an optimization problem. We

proved it to be NP-hard. We proposed 3 heuristics and showed them to be O(log n) approx-

imations. We implemented and evaluated the proposed heuristics using real-life workloads.

We found that a balanced tree based approach BT (I) provides the best tradeoff in terms of

cost and time.

Many interesting theoretical questions still remain. The O(log n) approximation bound

shown for the SmallestInput and SmallestOutput heuristic seems quite pessimistic.

Under real-life workloads, the algorithms perform far better than O(log n). We do not know

of any bad example for these two heuristics showing that the O(log n) bound is tight. This

naturally motivates the question, if the right approximation bound is infact O(1). Finally, it

will be interesting to study the hardness of approximation for the BinaryMerging problem.

95

Chapter 6: Joint Network and Cache Management for Tiered Architectures

In this chapter, we introduce a tiered version of a popular distributed file system, HDFS.

It maintains symbolic links to actual data residing in a data lake like Amazon S3. On

demand, it loads data from the backend. In this work, we discuss techniques for prefetching

and caching data in this setting such that jobs accessing the data can meet their SLOs.

We motivate the need for such a scheme in Section 6.1. Using production traces, we draw

insights which helps us design NetCachier. We summarize our observations in Section 6.2.

We present NetCachier system architecture in Section 6.3. We list all the implementation

details in Section 6.4. Finally, we present our evaluation results in Section 6.5.

6.1 INTRODUCTION

With the explosive growth of data over the past decade [143], we are seeing an increasing

adoption of tiered architectures [144, 145, 146, 147]. Such architectures typically consist of

two tiers – a storage tier built to store exabytes of data, and a compute tier with terabytes

of fast, local storage. This architecture, popularized by public cloud infrastructures (e.g.,

Amazon EC2 [148] and Amazon S3 [25]), is also increasingly being adopted in enterprise

settings (e.g., InfoScale [144]).

In such architectures, data is regularly ingested to the storage tier and data analytics jobs

are run on the compute tier, resulting in data being transferred over the network connecting

the two tiers. To minimize cost, the inter-tier network is provisioned with limited capacity

and generally provides best-effort service. As a result, it often ends up being a contended

resource with significant variability in the bandwidth achieved by individual transfers. Re-

cent studies have measured “almost chaotic” I/O performance between compute instances

and cloud storage, observing relative standard deviation up to 94% on I/O bound bench-

marks [27] 1. In contrast, providers define storage SLOs for VMs by guaranteeing IOPS and

throughput [149, 150, 151].

This network induced variation might result in delayed data transfers, and consequently,

job execution times may become unpredictable. Missing job deadlines has a direct impact

on business productivity. It has been recently reported that up to 25% of users’ escalations

in Microsoft’s internal big-data clusters are due to unpredictable execution [152].

Existing systems [152, 153, 154] address intra-cluster variability by improving isolation

1Also called the coefficient of variation, relative standard deviation (RSD) is the standard deviation
divided by the mean. Small RSD values (roughly less than 5%) correlate with a predictable I/O rate in this
benchmark.

96

among tenants. However, applying these techniques in tiered settings would assume either

that jobs will not become contrained on bandwidth to the external store, or that application

deadlines can be met by prioritizing flows. By translating job specifications into network

requirements, we can explictly provision this critical resource.

Motivated by these observations, we improve upon the state of the art by building a

substrate for providing predictable data access to analytics workloads in tiered architectures.

In building this substrate, some practical considerations are (1) minimize over-provisioning

of resources, (2) minimize peak network utilization2, and (3) maximize the number of jobs

that can be run in the cluster. Collectively, these three factors allow cluster operators to

maximize ROI (return on investment) without compromising on user experience.

To realize this goal, we tackle the problem of jointly optimizing the allocation of network

bandwidth and local storage resources across multiple jobs. The system we build, NetCachier,

allows future reservations of these two resources, which enables meeting performance expec-

tations, or Service Level Objectives (SLOs) of job owners. As a concrete scenario for an

SLO, we focus here on meeting job deadlines. Deadline SLOs are particularly important, as

a large portion of cluster workload in enterprises comprises of production jobs with strict

completion time requirements [152, 155].

We motivate our approach by making two key observations about analytics workloads.

First, jobs with completion SLOs have sufficient slack between the time the data is available

to the time the job is submitted. We utilize this slack to efficiently schedule and complete

the data transfer before the job starts. By caching data in the compute tier and providing

it to jobs, the inter-tier network induced variability can be eliminated. Second, by suitably

allocating network bandwidth, the data can be transferred across tiers at the rate at which

it will be consumed. Notably, in either case, we need to plan and schedule the network

transfers.

The resource allocation problem tackled in this chapter can be cast as a combined network

and cache planning problem. As such, the algorithmic problem is a cross of a couple of

fundamental problems. The first one is scheduling transfers over a shared communication

channel. A special case of this problem is interval scheduling on multiple machines [156, 157],

in which “jobs” (files in our case) need to be scheduled in a pre-specified window. The

second problem is caching shared data in the local store. Data sharing is fairly common

with data analytics workloads since the output of one job is input to multiple other jobs

(see Figure 6.2a). Efficiently managing a shared cache is related to the densest-k-subgraph

2While other metrics related to network utilization may be considered, our main concern is peak utiliza-
tion. Peak utilization is a good indicator for network congestion in the short term, and guides provisioning
decisions in the longer term.

97

problem [158, 159], where k is the cache size, vertices correspond to files, and edges to jobs.

Each of the latter special cases has been studied in depth in the scheduling literature, and

is relatively hard to approximate. Nevertheless, we draw important insights from existing

solutions that help us design efficient heuristics for the problem as a whole.

To ground these ideas in a practical setting, we implement NetCachier by extending Apache

Hadoop/HDFS [8]. Conceptually, our implementation comprises of two key components

(§4.4.1). First, as noted above, the cluster workload consists of jobs whose submission time

as well as completion time requirements are known a-priori. This information is fed to a

planner which allocates network bandwidth and schedules network transfers appropriately.

Second, in a tiered architecture, there is storage available on the nodes of the compute tier.

We treat this storage as a shared cache, and use it to temporarily hold the data until jobs

consume them.

Co-located compute
and storage

…

…

…

(a) Big data clusters today.

Compute Storage

Network

(b) Tiered architecture.
Figure 6.1: Different architectures for data analytics clusters.

Building such a tiered storage substrate required substantial efforts. Though tiered ar-

chitectures are becoming popular and are gradually being deployed, the underlying storage

systems are all single-tier systems. Consequently, at job submission time, jobs need to spec-

ify the tier from which data should be accessed. This makes it extremely cumbersome for

users to run jobs predictably in a tiered setting. To address this limitation, NetCachier im-

plementation includes modifying HDFS to be tier-aware. A high-level system architecture

of NetCachier is shown in Figure 6.3. As shown in the figure, an HDFS instance runs in

the compute tier (and caches data using local storage) and extensions built for NetCachier

allow data to be seamlessly migrated between tiers. Additionally, for files stored in a remote

storage tier, our extensions allow HDFS to retrieve data on-demand in an application trans-

parent manner (see §6.4). For brevity, we omit many engineering details here, yet we intend

to contribute our modifications to the Apache Hadoop code base.

We deploy our implementation of NetCachier on a 280 node cluster and show that NetCachier

reduces the peak network utilization by up to 8X compared to techniques that perform

caching alone, or read all data directly from the storage cluster while meeting the deadlines

98

 0

 0.25

 0.5

 0.75

 1

 1 10 100 1000 10000

C
D

F
(o

ve
r

fil
es

)

Number of Jobs Per File

(a) Number of jobs reading a file
shown as a CDF.

 0

 5

 10

 15

 20

10 20 30 40 50 60 70 80 90 100

Fi
le

 P
ro

ce
ss

in
g
 R

a
te

(N
o
rm

a
liz

e
d
)

Number of jobs reading the file

(b) Average File processing rate
bucketed by
number of jobs that read a file.

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

(o
v
e
r
fi
le

s)

Prefetch Slackness

1Gbps
5Gbps

(c) CDF (over files) of prefetch
slackness: Time from creation to
first access of a file, divided by the
time to transfer the file

Figure 6.2: Workload characteristics.

of all jobs. This shows that using NetCachier allows us to run analytics workloads with

significantly lower network bandwidth between the storage and compute tiers. Further,

using trace-driven simulations, we show that we can improve the median runtime of ad hoc

jobs by up to 60% with NetCachier.

In summary, our main contributions are:

� We formulate the problem of jointly scheduling network and local storage resources to

meet job SLOs in tiered architectures. We design heuristics to solve the problem; the

heuristics are designed based on principles drawn from related algorithmic problems.

� We propose a new architecture to enforce a long-term plan for network and storage

resources. We fully implement this architecture on top of HDFS (§6.4).

� Using deployments on large-scale clusters and simulations based on production work-

loads, we show that NetCachier makes judicious use of network and storage resources

and improves the number of jobs meeting their SLOs with significant reductions in the

bandwidth required to do so (§6.5).

While the context of this chapter is enterprise tiered store architectures, both the algorith-

mic solutions and their infrastructure support can be extended to the public cloud setting,

where bandwidth between the compute and storage tiers can be significantly limited. Such

an extension would have to address various issues that arise in the cloud — for example,

per-VM and per storage account throttling.

6.2 MOTIVATION

Here we provide a brief background on tiered architectures, and describe results of our

analysis of production traces which motivate the design of NetCachier.

99

6.2.1 Tiered architectures

In the past decade, datacenter scale clusters built around commodity servers with colocated

storage and compute resources have become commonplace (see Figure 6.1a). One of the key

lessons learned with data analytics workloads is that there is a growing gap between the

volume of data collected (and stored/archived for regulatory purposes) versus the size of the

working set. For instance, it has been reported that the size of the working set as compared

to the total data stored in the cluster can be as low as 6% [160]. As the data volumes

continue to grow, the classic big data architectures [3] are a poor match for this workload,

as 100s or 1000s of commodity servers will be an expensive store for mostly cold data.

To address this problem, most enterprises and cloud providers are increasingly relying on

tiered architectures, to lower costs (Figure 6.1b). Data is ingested into clusters optimized for

storage (e.g., InfoScale [144]), and applications are run on a separate compute tier. Running

big data analytics on such architectures to meet SLOs is hard as the network bandwidth

between the two tiers is often limited and becomes a contended resource. However, our

analysis in §6.2.2 shows that typical big data workloads exhibit various characteristics which

make them amenable to tiered architectures.

6.2.2 Insights from production workloads

We analyze the characteristics of typical big data workloads, and provide insights into

how such workloads can be run in tiered architectures. This analysis motivates the design of

NetCachier. For this purpose, we use job execution and filesystem logs from a large production

cluster consisting of several thousands of machines running data analytics workloads. These

logs were collected over a week and comprise details from millions of jobs executed, and tens

of millions of files read. In addition, we report on relevant recent findings from enterprise

big-data clusters.

Job characteristics are becoming predictable: Recent studies of big-data analytics

clusters indicate that an operator can infer information about important job characteristics

(see [155, 152, 161] and references therein). In particular, by processing existing job execution

telemetry, an operator can deduce the submission time and deadlines of periodic production

jobs (even if those are not explicitly specified by the job owner), job durations, the identity

and size of files read by the job, etc. This facilitates resource planning for a large portion of

enterprise jobs [152].

Caching files in the compute tier can lead to substantial network bandwidth

savings: Figure 6.2a shows the number of jobs accessing a single file as a cumulative distri-

bution function (CDF). We see that nearly 15% of files are accessed by more than 10 jobs,

100

and nearly 5% files are accessed by more than 100 jobs. These shared files account for more

than 90% of the jobs’ input. Similar observations have been made earlier [28]. Since caching

input data in local storage requires transferring the data only once, the above statistics in-

dicate that caching shared files would lead to significant reduction in the amount of data

transferred across the network.

Standard caching algorithms might not suffice: As shown in Figure 6.2b, we see a

low correlation between the number of jobs that read a file and the rate at which it is read

– files that are accessed fewer times can still be read by jobs at a high rate. Caching or

prefetching files that are read at higher rates reduces the network bandwidth consumed

when jobs reading these files are run. On the other hand, files with low read rate can be

read remotely with low network overhead. Unfortunately, standard caching algorithms such

as LRU-k [162] account primarily for access count (or frequency) considerations, and are

oblivious to network bandwidth consequences.

Data can be prefetched before job execution: The time from when data is created or

uploaded to the cluster, to when it is processed can vary between a few minutes to several

hours. In Figure 6.2c, we show the “prefetch slackness” of files, which is defined as the

ratio between the time available for transferring the file (i.e., the time from its creation to

the first access to the file), and the time to transfer the file (for a given transfer rate). For

the time to transfer a file, we show lines corresponding to allocating 1Gbps and 5Gbps to

the file. Prefetch-slackness greater than one means that the file can be safely prefetched

before job execution. The figures show that the bulk of the files can indeed be prefetched on

time. Further, a sizeable portion of the files has substantial slack, which can be exploited by

intelligent resource management (e.g., schedule a prefetch of a large file at off-peak times).

6.2.3 Summary

The primary takeaways from our analysis are as follow:

� Job and file characteristics are accessible to operators, and can by used for network

and storage resource planning.

� File prefetching can be used for substantial reduction in bandwidth consumption.

� Resource management should reason jointly about network and cache. This requires

new algorithms which schedule prefetches, remote reads and cache operations, while

accounting for bandwidth and storage capacity limits.

101

Planner
Network
manager

Cache
manager

time

size

cache reservation for j

Job j
{submission time,

deadline, files}

Plan follower

time

rate

network reservation for j

Figure 6.3: NetCachier architecture

6.3 SYSTEM ARCHITECTURE

In this section, we provide an overview of the architecture of NetCachier. NetCachier consists

of two main components — a planner, and a plan follower (Figure 6.3). The planner considers

jobs that arrive in the next planning window, and computes an execution plan for the jobs

that need to meet their completion time deadlines. The plan follower is responsible for the

enforcement of the plan during runtime. The planner runs at the start of every planning

window, which can be a configurable parameter (e.g., every few hours) — this ensures that if

any new jobs with deadlines are submitted, they can be planned for. It can also be invoked

as required (e.g., changes in cluster conditions etc.). We next describe at a high level the

setting under which the planner operates, and how its plan is used to satisfy job SLOs.

A detailed description of the our solution thereof can be found in §6.3.1. Implementation

details are deferred to §6.4.

Planner: The planner considers various job characteristics to determine the execution plan

— these include job submission time, deadline, the set of files each job has to read, and the

maximum rate at which the job is expected to consume the input data. These characteristics

can be determined from previous executions of the job (see, e.g., [152] and references therein).

Given a set of jobs to be scheduled, the planner takes the current cache and network state into

account and schedules the job to complete by its deadline, while attempting to minimize the

network bandwidth used. If the deadline of a job cannot be satisfied given the current cluster

state, the job is rejected. Rejected job can be executed as best effort jobs, or submitted at

a later time.

Execution plan: The planner outputs an execution plan. The execution plan maintains

information how input files will be consumed by each accepted job. Specifically, each input

file of a job is classified as either (i) prefetched before the job starts execution, (ii) read from

the cache (i.e., resides in the cache before the job execution; for example, the input file was

prefetched for a different job that executes earlier), or (iii) read directly from the remote

store, in which case it is specified whether the file should be cached for future use. For the

102

files that are either prefetched or read from remote store, the plan also specifies the rate of

the transfer.

The execution plan is enforced using appropriate reservations on the cache and the net-

work. For example, consider a file of size s bytes that is prefetched at rate r bps from time

t1 to t2, and read by jobs with a latest deadline d. That file requires a cache reservation of

s bytes during the interval [t1, d] , and a network bandwidth reservation of r bps during the

interval [t1, t2]. As part of the cache reservation, NetCachier ensures that a file that needs to

be read from the cache is indeed pinned in the cache, i.e., it is not evicted until jobs finish

reading it.

Plan follower: The plan follower executes the plan that is determined by the planner.

This involves (a) scheduling prefetches for files at the appropriate time and rate, which also

requires reserving the required cache space, (b) enforce network reservations to ensure that

files are transferred at the required rate, (c) ensure that files are pinned in cache while they

are consumed. Accordingly, the plan follower uses a cache manager and a network manager

to enforce the reservations of the respective resources.

In building NetCachier, we make two assumptions. First, we assume that compute resources

can be scheduled using existing techniques and it is not a contended resource. We discuss

implications of this assumption in §6.6. Second, we only focus on scheduling network transfers

for the input data of jobs. The reverse direction, namely, writing back the output produced

by jobs to the external store for archival purposes is assumed to be accommodated on a

best-effort basis and hence, is not discussed further.

6.3.1 Planning algorithm

The planning algorithm (Algorithm 6.1) maintains the state of the local cache (C) and the

state of the network (N). The cache state consists of files that are expected to be present

in the cache at any point in time. The network state keeps track of files that are being

transferred over the network over time and the rate of the transfers. When the algorithm

terminates, these states are used to determine the execution plan to be enforced by the plan

follower (§4.4.1).

The algorithm works in two steps. First, it determines which files must be prefetched

(Line 2 in Algorithm 6.1). The goal of this step is to prefetch a subset of files before the jobs

requiring the files start execution.

Scheduling prefetches: Algorithm 6.2 shows the pseudocode for determining which files

can be prefetched. It determines the start time for each prefetch as well as the corresponding

rate of the transfer.

103

input: Cache state C, Network state N , jobs 1, . . . , N , files 1, . . . , L
1 (C,N ,P)← find files to prefetch(C,N , L)
2 → P : the prefetch plan includes files to be prefetched, prefetch start times and

the rates; updates cache and network state.
3 for j ∈ {1, . . . , N} do
4 if fit(j, C,N) then
5 Accept j, and update cache state by pinning required data in cache, and

network state by scheduling required transfers.
6 end

7 end

Algorithm 6.1: Algorithm used by the planner.

We handle files in a certain order which takes into account both their size and the extent

to which they are shared by multiple jobs. As a concrete metric for the latter, we use the

maximum aggregate bandwidth that will be needed by jobs if the file is read remotely (this

accounts for simultaneous reads of the same file). Specifically, we sort the files based on the

ratio between their maximum aggregate bandwidth and their size.

We handle files based on this sorted order. For each file we first determine whether it can

be fetched, and if so what is the best timing for fetching. In detail, scheduling a prefetch

for a file involves determining its (a) start time, (b) completion time, and (c) bandwidth

allocation. For simplicity, we set the completion time of the prefetch to be the start time of

the first job that requires the file, and ensure that the file is fetched at a constant rate. Thus,

determining the start time completely defines a prefetch. For each file, we consider a set of

candidate prefetch start times which are determined based on two key observations. First,

for a prefetch operation to succeed, sufficient cache space must be available to accommodate

the file. Second, when the cache is at high utilization, other files can be evicted from the

cache when the job that accesses them finishes its execution. Thus, we only need to check

the cache state at the times where jobs that read cached files complete, since these are the

only times where evictions can happen.

Finally, the algorithm explores whether a prefetch can be scheduled at each of the can-

didate times and computes the corresponding peak bandwidth. If the peak bandwidth

achieved with a prefetch operation is less than the one produced by a remote read (Line 14),

the prefetch operation is scheduled.

Scheduling jobs: Once the set of files to prefetch are determined, the planning algorithm

determines if each job j can be admitted into the cluster in order to meet its deadline (Lines

4–9 in Algorithm 6.1). For files that are read by j and are not prefetched before j starts, the

algorithm tries to schedule reads from the remote store (in fit()) during the job’s execution.

104

input: Cache state C, Network state N , files 1, . . . , L
1 Calculate r` ← the aggregate rate at which file ` is accessed
2 Sort files in descending order of r`/size(`)
3 Calculate s` ← time when file ` is required
4 prefetches P = ∅
5 for ` ∈ {1, . . . , L} do
6 remote← peak bandwidth when reading ` remotely
7 for t ∈ {candidate prefetch start times} do
8 if there is enough space from t to s` then
9 prefetcht ← peak bandwidth when

10 prefetching ` at [t, s`]

11 end

12 end
13 if mint(prefetcht) < remote then
14 P ← P ∪ f
15 update N and C with ` being prefetched at t.

16 end

17 end

Algorithm 6.2: Algorithm used to prefetch files.

If these reads do not violate the network constraints, the job is deemed admissible. If the

job is not admissible we free up network and cache capacity corresponding to prefetched files

that are not shared by other jobs. We repeat the algorithm a few times, to see if additional

jobs can be admitted as a consequence of freeing up capacity.

6.4 IMPLEMENTATION

Client

Remote

Local Storage

① read(file, cache=no)
HDFS

④ data

③ data ② read(file)

Figure 6.4: Remote read workflow with HDFS

We implemented NetCachier in Apache Hadoop/HDFS [3], a widely used data analytics

platform. When HDFS is used to manage the local store in tiered architectures, users must

manually schedule data copies between tiers [163, 164]. This is fragile for multiple reasons

such as, input data is unavailable until the copy completes, users need to explicitly coordinate

sharing of cached data, and concurrent transfers are uncoordinated.

105

Client

Remote

Local storage

① read(file, cache=yes)
HDFS

⑤ data

③ data ② read(file)

④ cache

Figure 6.5: DemandPaging workflow with HDFS

To solve this issue and enable the use of local storage as a cache for the remote store in

NetCachier, we modified HDFS (§ 6.4.2). to ensure that the plan generated by NetCachier

is followed during job execution. Our implementation also involves a standalone planner

component (§ 6.4.3).

6.4.1 HDFS overview

HDFS exports a hierarchical namespace through a central NameNode. Files are managed

as a sequence of blocks. Each block can have multiple replicas stored on a cluster of DataNode

servers. Clients read HDFS files by requesting block locations from the NameNode and

reading block data from DataNodes.

Each DataNode generates periodic reports to the NameNode, including a set of attached

storage devices with an associated type. The type identifies each storage as a disk, SSD, or

RAMdisk mount. For all files in the namespace, the NameNode records a replication factor

specifying the target number of replicas of that block, and a storage policy that defines the

media (i.e., storage type) in which each replica should be stored.

6.4.2 Modifications to HDFS

Implementing NetCachier in HDFS required two major extensions. First, we introduce a

new EXTERNAL storage type corresponding to the external store. Second, we add a throttling

parameter to replication requests, to set the rate at which the NameNode creates each new

block replica. Reconciling this abstraction with other invariants HDFS maintains for physical

storage required substantial code modifications. The following elides engineering details to

focus on conceptual implementation changes.

The contents of the external filesystem appear as a subtree mounted in the NameNode,

as shown in Figure 6.6. We create this mount by synthetically mirroring external files in the

HDFS namespace, with at least one replica in EXTERNAL storage. The NameNode considers

all EXTERNAL replicas reachable when at least one DataNode reports attached EXTERNAL

106

NameNode

...
blk_0051 -> ext://foo.txt+0-1024
blk_0052 -> ext://foo.txt+1024-2011
blk_0053 -> ext://bar.txt+0-232
blk_0054 -> ext://baz.txt+0-1024
...

ExternalFS

(3) READ_OP(blk_0051)

(6) { foo.txt }

DataNode

(6) blk_0051

Figure 6.6: NetCachier Implementation

storage.

All requests to the external store pass through HDFS. An example read sequence proceeds

as follows, and as illustrated in Figure 6.6.

1. Request block metadata from HDFS.

2. Receive list of blocks, including location and storage type metadata (not shown). When

a client requests locations for a replica stored in EXTERNAL storage, the NameNode

selects the closest DataNode3.

3. Request block data from target DataNode.

4. Request file data from external store. The mapping to the external namespace is

flexible, and need have no relationship to its location in the HDFS namespace.

5. Return file data to the Datanode.

6. Stream data back to the client, storing a cached copy in local storage.

When replication is increased in the NameNode, the request may include an optional throt-

tling parameter. Our implementation ensures that when blocks of that file are replicated,

concurrent transfers will not exceed this target rate.

In combination, the EXTERNAL storage type and metered transfers add throttled paging

between the external store and HDFS. By adjusting the storage policy and replication factor

of a file, the NetCachier plan follower can schedule metered transfers from the external store

into local media. Mediated by HDFS, external data read through EXTERNAL storage is

transferred at predictable rates and transparently shared between jobs.

3For most jobs, the client will be running on the same machine, so NetCachier adds no unnecessary,
intra-cluster transfers.

107

6.4.3 Planner

The planner admits jobs submitted to NetCachier. For jobs that are periodic with pre-

dictable I/O requirements, NetCachier determines an execution plan using the techniques

described in §6.3.1. It then runs these jobs based on the generated plan— this includes

prefetching the required files at the rate determined by the plan at the appropriate time,

and submitting the jobs to the resource manager (YARN) at the specified start time. Jobs

that are ad hoc are directly submitted to YARN, and run as they would run today.

The plan follower manipulates the contents of the cache by adjusting storage policies

and by scheduling metered replication of replicas, as discussed in §4.4.1 and illustrated in

Figure 6.3. We implement the NetworkManager by modifying the HDFS Mover [165]4 to

schedule metered replications, following the execution plan. The planner evicts replicas

from local media by lowering the replication of a file.

Ad hoc, unplanned workloads also benefit from caching in HDFS. The CacheManager

implements a readthrough policy governing when unscheduled reads from the external store

should be persisted in local media. If the replication target is scheduled but unmet, NetCachier

may embed instructions in the block access token5 for the DataNode to retain a copy of the

replica in a storage as it streams data to the client (Figure 6.5). If the ad hoc workload reads

the full block, then the prefetch can be cancelled, avoiding the transfer cost. If not selected

by the caching policy, NetCachier simply proxies data to the client (Figure 6.4).

6.5 EVALUATION

We evaluate NetCachier using deployments on a 280 node Hadoop cluster and using large-

scale simulations. Our experiments are based on workload traces from a data analytics

production cluster from a large enterprise6, running several 1000s of machines. We show

that compared to various baselines, that represent state-of-the-art in tiered architectures,

using NetCachier results in the following improvements.

� Reduces the peak utilization of the network between the storage and compute tier by

up to 8X.

� Increases the number of jobs that meet their deadlines by 10-30%, under resource

constrained scenarios.

� While current techniques can be more than 10X worse compared to a LP-based lower

bound, NetCachier is at most 2.5X worse (about 4X improvement).

4HDFS utility for re-balancing cluster storage to reflect updated policies.
5Access control mechanism in HDFS verifying that the NameNode authorized the client to read the block.
6Company name withheld for anonymity.

108

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

B1 B2 B3 B4

Pe
ak

 b
an

dw
id

th
re

la
tiv

e
to

 R
em

ot
eR

ea
d

Workload

DemandPaging NetCachier

(a) Peak network bandwidth
used by
NetCachier and DemandPaging.

 0

 20

 40

 60

 80

 100

B1 B2 B3 B4

R
ed

uc
tio

n
in

da
ta

 t
ra

ns
fe

rr
ed

(%
)

Workload

DemandPaging
NetCachier

(b) Reduction in the total
inter-tier data transferred
with NetCachier and
DemandPaging.

 0

 20

 40

 60

 80

 100

 120

 0 15 30 45 60 75 90N
et

w
or

k
ba

nd
w

id
th

(G
bp

s)

Time (minutes)

RemoteRead
NetCachier

(c) Variation in network
bandwidth used over time
Results for DemandPaging are
similar to that of RemoteRead

and hence, not shown.
Figure 6.7: Benefits of using NetCachier on SLO workloads. Improvements are shown
relative to RemoteRead.

� Reduces the runtime of ad hoc jobs by 20%-68%, when ad hoc jobs are admitted along

with deadline-constrained workloads.

6.5.1 Methodology

Experimental setup: We deployed our implementation of NetCachier on a 280 node cluster

where machines were organized into 7 racks with 40 machines each. To emulate a tiered

architecture, 6 racks were used for the compute tier and the remaining rack was used as the

storage tier. We throttle the bandwidth between the two tiers as required. The storage tier

runs stock HDFS and stores the input data for the workloads. The compute tier runs HDFS

with our modifications (as described in §6.4), along with YARN as the resource management

framework. The planner runs in the compute tier and accepts jobs submitted to NetCachier.

Workloads: Our workloads are based on traces from production clusters. We identify jobs

with SLOs based on techniques similar to what were used in Morpheus [152]. We consider

4 different production workloads (B1, B2, B3 and B4) and scale them appropriately, to fit

our 280 node cluster.

Metrics: We use two metrics to measure the benefits of using NetCachier under medium to

high load scenarios: (i) peak network bandwidth, and (ii) number of jobs with SLOs that

we can satisfy. For workloads with ad hoc jobs, we also use the runtime of the ad hoc jobs

as a proxy for the effectiveness of NetCachier at allocating network and storage resources.

Baselines: We compare NetCachier against two baselines which represent how typical data

analytics workloads process data in tiered architectures today [163, 164, 166].

(1) RemoteRead, in which all workloads process data by reading it remotely from the storage

tier (see Figure 6.4).

109

(2) DemandPaging, in which the local storage is used as a cache for data read from the storage

tier. Data is paged in on demand, and we use PACMan LIFE [28] as the policy to manage

the cache space (see Figure 6.5).

Further, we evaluate the efficacy of our heuristics in NetCachier by comparing it with a lower

bound obtained from a Linear Problem (LP) relaxation of the problem. The LP minimizes

the peak network bandwidth used while maximizing the number of jobs that meet their

deadlines. The formulation is a relaxation of the original problem, e.g., because it allows

files to be partially prefetched (which is not supported in practice). We skip a detailed

description for brevity.

6.5.2 Benefits from NetCachier

For each of the workloads described above, we generate a job trace lasting for one hour,

and run them using the Gridmix workload generator [167] on our 280 node cluster setup.

NetCachier generates a plan and runs them using our implementation on top of HDFS (§6.4).

DemandPaging uses the same implementation to perform caching. However, RemoteRead is

run by directly reading files from the storage rack.

We evaluate NetCachier in two different load regimes.

Medium load regime: Figure 6.7a shows the reduction in the peak bandwidth with

DemandPaging and NetCachier, relative to RemoteRead under medium load scenarios (all

jobs meet their deadlines).

Our observations are two-fold. First, while caching alone reduces the peak bandwidth, the

reduction is not significant – this is because the first access to a file causes the file to be read

remotely at the rate it is processed. This can result in high peak utilization. Second, we

see that as NetCachier prefetches the data at a low rate before jobs start, it can reduce the

peak bandwidth by upto 8X compared to RemoteRead (Figure 6.7a). This reduction is also

illustrated by Figure 6.7c, which shows a timeline of the network usage in Gbps for workload

B2 (solid blue line shows NetCachier, and dashed green line shows RemoteRead). NetCachier

uses the first 30 minutes to prefetch data, and the jobs start running after that.

NetCachier also reduces the amount of data transferred across the network to storage.

As shown in Figure 6.7b, compared to RemoteRead, NetCachier results in 70% less data

transferred. While caching helps DemandPaging (upto 50% less data transferred compared

to RemoteRead), it still reads more data than NetCachier. This is because when a file is read

in parallel by multiple jobs, and it is not in the local cache, DemandPaging fetches the data

independently for each of job. On the other hand, as NetCachier can potentially prefetch such

a file, a single transfer from the remote store brings the data into cache, and jobs read it

110

 0

 20

 40

 60

 80

 100

50Gbps 100Gbps 150Gbps

Im
pr

ov
em

en
t

in

Jo
bs

 A
dm

itt
ed

(%
)

Network Bandwidth

DemandPaging RemoteRead

(a) Offline scenario.

 0

 20

 40

 60

 80

 100

50Gbps 100Gbps 150Gbps

Im
pr

ov
em

en
t

in

Jo
bs

 A
dm

itt
ed

(%
)

Network Bandwidth

DemandPaging RemoteRead

(b) Online scenario.
Figure 6.8: Increase in percentage of jobs that meet their SLOs with NetCachier. All
jobs are planned for (a) offline, and (b) online, as the jobs arrive. Workloads are based
on B3.

 1

 10

 100

B1 B2 B3 B4

Pe
ak

 B
an

dw
id

th
R

el
at

iv
e

T
o

LP

Workload

DemandPaging
RemoteRead
NetCachier

Figure 6.9: Peak network bandwidth relative to lower bound.

from the cache.

High load regime: Under high load when it is not possible to meet deadlines of all SLO-

constrained jobs, NetCachier aims to maximize the number of jobs that meet their deadlines.

Figure 6.8 shows the increase in number of jobs that meet their completion time SLOs with

NetCachier compared to the different baselines. We consider two scenarios — (a) an offline

scenario, where we assume all jobs are known ahead of time, and (b) an online scenario,

where jobs are planned for as they are submitted. The same workload is run for different

network capacities between the storage and compute racks.

While NetCachier completes lesser jobs in the online scenario compared to the offline,

the differences are small. Overall, NetCachier accepts 10-30% more jobs compared to

DemandPaging, and upto 80% more jobs compared to RemoteRead. This increase is a conse-

quence of (a) the reduction in the peak network bandwidth with the use of prefetching, and

(b) efficient use of the cache and network resources by planning ahead of job submissions.

6.5.3 Performance of NetCachier compared to a LP-based lower bound

The planning algorithm in NetCachier (§6.3.1) makes design choices amenable for a practical

implementation. For example, when a file is prefetched, it is read at a fixed rate without

111

 0

 20

 40

 60

 80

 100

B1/A1 B1/A2 B2/A1 B2/A2

Im
pr

ov
em

en
t

C
om

pa
re

d
T

o
D

em
an

dP
ag

in
g(

%
)

Workload

50th 75th 95th

(a) Reduction in ad hoc job run-
times for different workload combi-
nations.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7

N
et

w
or

k
Ba

nd
w

id
th

U
se

d
(G

bp
s)

Time (hours)

DemandPaging NetCachier

(b) Variation in network band-
width (over time) for SLO jobs in
workload B1/A1.

Figure 6.10: Results for workloads with both SLO and ad hoc jobs.

 0

 20

 40

 60

 80

 100

25Gbps 50Gbps 100Gbps 200Gbps

Im
pr

ov
em

en
t

C
om

pa
re

d
T

o
D

em
an

dP
ag

in
g(

%
)

Network Bandwidth

50th 75th 95th

(a) Varying network band-
width.

 0

 20

 40

 60

 80

 100

0.33 0.5 1.0 2.0 10.0

Im
pr

ov
em

en
t

C
om

pa
re

d
T

o
D

em
an

dP
ag

in
g(

%
)

Load Factor

50th 75th 95th

(b) Increasing load of ad hoc
jobs.

 0

 20

 40

 60

 80

 100

50TB 75TB 100TB 125TB

Im
pr

ov
em

en
t

C
om

pa
re

d
T

o
D

em
an

dP
ag

in
g(

%
)

Cache Size

50th 75th 95th

(c) Varying available cache
size.

Figure 6.11: Reduction in ad hoc job runtime percentiles for workload B1/A1 using
NetCachier.

any variation over time. Only whole files are cached. While these choices make for a simpler

and more robust implementation, it can suffer from potential sub-optimality. For example,

when cache space is limited, fetching partial files might prove to be useful even though the

whole file may not fit in cache.

As described in §6.5.1, we formulated an LP that aims to minimize the peak bandwidth

used. It provides a lower bound for the planning algorithm in NetCachier. Here, we compare

NetCachier with this lower bound using trace-driven simulations.

Figure 6.9 shows the peak bandwidth achieved by NetCachier and the different baselines

relative to the LP. We consider workloads from the four different business groups. We see

that in all cases NetCachier performs less than 2.5X worse than the LP. On the other hand, the

RemoteRead and DemandPaging can be more than 10X worse. This shows that even though

the planning algorithm in NetCachier can lead to potential sub-optimality, it is significantly

better than existing baselines.

112

6.5.4 Benefits for ad hoc jobs

In practice, data analytics clusters run SLO jobs along with ad hoc jobs for data explo-

ration or research purposes. While no guarantees are provided to the ad hoc jobs, users

expect them to finish at the earliest. To this end, one of the goals of NetCachier is to effi-

ciently provision resources for SLO-constrained jobs in order to free up network and cache

resources for ad hoc jobs. In this section, we show that the techniques used in NetCachier

can lead to significant improvements in the runtimes of ad hoc jobs.

We derive the workloads for ad hoc jobs from (a) our internal production cluster traces,

and (b) traces from Facebook’s data analytics clusters [168]. We will label these workloads

A1 and A2, respectively. For the traces from Facebook, we randomly sample 40% of the

jobs to be ad hoc jobs (this has been shown to be typical percentage of ad hoc jobs in

clusters [169, 152]).

We use trace-driven simulations to run the ad hoc jobs alongside SLO jobs, which are

derived from the workloads of business groups B1 and B2. The simulations reserve resources

for the SLO jobs to avoid interference from the ad hoc jobs. Ad hoc jobs share the remaining

resources based on max-min fairness.

Varying workloads: Figure 6.10a shows the improvement in various runtime percentiles

for ad hoc jobs with NetCachier compared to using DemandPaging. We consider different

workload combinations (Bi/Aj denotes a workload with SLO jobs drawn from workload Bi

and ad hoc jobs from workload Aj). We observe upto 68% improvements in the 50th percentile

and upto 33% improvements in the 95th percentile. The benefits reduce at higher percentiles

because these jobs run longer. Thus, they are less affected by spikes in the network usage.

Jobs with lower runtimes can be significantly delayed due to network usage spikes – as shown

in Figure 6.10b, such network utilization peaks are significantly lower when using NetCachier

compared to DemandPaging.

Varying cluster configurations: The benefits of NetCachier hold over a variety of cache

sizes, network bandwidths and load conditions. Figures 6.11a– 6.11c show how NetCachier

compares to using DemandPaging for workload B1/A1 under various cluster configurations.

Our observations are three-fold. First, as network bandwidth increases, the benefits from

using NetCachier increase, and then decrease. At lower bandwidths, there is significant con-

tention between the ad hoc jobs which leads to an increase in their runtimes. At higher

bandwidth, there are ample resources available, and ad hoc jobs are not constrained. This

leaves little room for improvement when using NetCachier’s plan.

Second, based on the same intuition, we find that NetCachier results is significantly lower

runtimes at moderate load conditions. Finally, at larger cache sizes, NetCachier improves the

113

runtimes of ad hoc jobs more as there are more opportunities to prefetch and cache the input

data of SLO jobs. This in turn results in lower network utilization.

6.6 RELATED WORK

NetCachier uses various techniques that are related to the following areas of research.

Caching and prefetching: Caching and prefetching have been extensively studied in

various areas of computer science, such as operating systems [170], computer architec-

ture [171], database systems [162] and networking [172, 173, 174]. The different works

span theoretical analysis of algorithms [175, 176, 177, 178], and practical implementations

thereof [179, 180, 181, 162, 182, 183, 184]. Recently, caching has been considered in the

context of big data analytics systems (e.g., PACMan [28], FairRide [185], EC-Cache [186]).

In contrast to these works which mostly employ online reactive techniques, NetCachier plans

ahead which files should be cached in the local store; additionally, NetCachier also schedules

the associated data transfers while taking into account network bandwidth considerations.

Scheduling network flows: Scheduling network transfers has been widely explored in the

context of both shared multi-tenanted datacenter settings [154, 187, 188, 189, 190, 191], and

wide-area networks [192, 193, 194, 195, 196]. Some of these works target increasing network

utilization and finish flows faster [189, 190, 191, 192, 193, 194], while others aim at providing

guaranteed network bandwidth or meet deadlines for network transfers (e.g., [195, 196, 154,

187, 188]). Recent works, such as Corral [169] and a series of projects centered around the

coflow abstraction [197, 198, 199, 190], aim at reducing end-to-end application runtimes, for

example, by speeding up the entire shuffle phase in data analytics applications. However,

these projects do not explicitly consider utilizing local storage in tiered architectures for

caching input data.

Storage systems: Tiering is common in storage systems, particularly for serving web

requests [117, 200] and analytics [201, 8, 202]. Further, systems like Tachyon [203] and

Nectar [112] target analytic workloads and use job lineage to control tiering decisions. In

the context of public clouds, CAST [204] determines on which storage tiers should input

data be stored, to achieve the best job performance. These techniques are complementary

to NetCachier, which solves the problem of how to transfer data from remote stores to the

compute tier in order to meet job SLOs. Systems like IOFlow [153] provide guaranteed IO

bandwidth across datacenter storage. However, such systems mainly focus on the mechanics

of performing rate allocation once the desired transfer rates have been determined.

114

6.7 CONCLUSION

In this chapter, we design and implement NetCachier, a substrate for providing predictable

data access to analytics workloads in tiered architectures. NetCachier jointly plans the alloca-

tion of network and storage resources in order to meet job SLOs, while minimizing network

bandwidth consumption. The planning algorithms relies on the ability to (i) extract job

characteristics before their execution, (ii) utilize local storage in the compute tier to cache

data accessed by jobs, and (iii) control the timing of data transfers for both remote access

and prefetching.

We implement NetCachier in Apache Hadoop. We intend to release the code as open source

by contributing back to Apache Hadoop/HDFS code base. Using deployments on a 280 node

cluster, we show that NetCachier can reduce the network capacity requirement of production

workloads by up to 86%, and meet the deadlines of 20-30% more jobs compared to using

network-oblivious caching techniques.

While our focus in this chapter has been on enterprise clusters, we envision using the

mechanisms and techniques of NetCachier in public cloud deployments, where tiered store

architectures can lead to substantial cost reductions. Adapting NetCachier to the public

cloud setting introduces new challenges, such as accounting for per-VM bandwidth limits

and per storage account limits.

115

Chapter 7: Conclusion and Future Work

In this thesis, we have discussed projects to support the central thesis that data recon-

figuration mechanisms can be done in the background by using new optimal or near-optimal

algorithms coupled with performant system designs. In all the 5 projects presented in this

thesis, we built practical systems to solve real-world data reconfiguration problems. In Chap-

ter 2 and Chapter 3, we solved table level configuration change in NoSQL databases with

Morphus and Parqua respectively. In Chapter 4, we showed how Getafix can reduce memory

usage in distributed interactive analytics engine. We formally analyzed the problem of com-

paction in Chapter 5. Finally, in NetCachier, we presented novel prefetching and caching

techniques for batch systems working on top of a tiered architecture.

In all our solutions, we have used well-known theoretical abstraction to design algorithms

which have been shown to be optimal or near-optimal under simplifying assumptions. In all

the solutions, we have built techniques to handle reconfiguration in the background without

affecting the fast path. In Getafix and NetCachier, we automatically trigger reconfiguration

as workload changes, thereby significantly reducing the load on sys-admins and often reducing

capital expense. Reconfiguration operations also involve significant data movement. We

showed in Morphus, Getafix and NetCachier that through sophisticated network planning

and bandwidth allocation, one can significantly improve the reconfiguration runtime.

Our evaluation with real-life production traces further show how effective our systems

are in handling the respective problems. Even though we used real-life datasets to eval-

uate our systems, our systems generalize to other datasets as well. Morphus and Parqua

dealt with the problem of changing table-level configuration parameters in a distributed

NoSQL database. Using bipartite matching, we were able to minimize the data transfer

required during reconfiguration. Both the systems perform reconfiguration with several 9s

of availability. Getafix reduces total replication in frontend compute nodes for distributed

interactive analytics engines. Using best fit based algorithm, Getafix can reduce memory

by upto 2.15× compared to state-of-the-art Scarlett and save deployment costs to the tune

10s of millions of dollars annually. Our compaction work proposed a theoretical framework

to analyze the efficacy of different compaction algorithms. Our evaluation showed that the

algorithms perform constant factor of optimal in practice. In NetCachier work, we devised

novel heuristics to allocate network and cache such that the number of job meeting their

SLOs can be maximized. We were able to improve by job acceptance by 80% while reducing

peak network utilization by 8×.

Our thesis opens up several directions for further research:

116

� Changing shard keys in multi-index data stores: Future work would involve han-

dling reconfiguration in a database which allows shard keys to have multiple columns.

In Morphus and Parqua, we assumed that only a single column from the schema is

selected as a shard key. There can be use-cases like geo-spatial data where one might

use more than one dimension (latitude and longitude) for partitioning data. Changing

shard keys could involve: – adding a new index column, removing an existing column,

changing the order of columns. An example system in this space is Replex [205]. Re-

plex creates as many replicas as columns in the shard set. Each replica is partitioned

by one of the keys in the set. Each Replex shard serves queries corresponding to the

partitioning key as well as helps provide fault tolerance in presence of machine failures.

Additionally they use chain replication for providing strong consistency. Since the sys-

tem model is significantly different, matching based algorithm or the system designs

for Morphus or Parqua cannot be applied here. We need better algorithms which can

reduce network transfer without hurting some of the failure recovery guarantees of the

system.

� Selective Replication in Multi-Tenant Interactive Analytics Engine: Getafix

can be extended to handle multi-tenancy in distributed interactive analytics engines.

In this problem, we assume multiple tenants are sharing a single deployment of the

analytics engine. Each have their own SLOs for average or tail query latencies. Each

tenant uses multiple namespaces to store their data at the backend. A single front

end cluster is shared by all the tenants with much smaller total memory compared to

the total disk space at the backend. We assume that each tenant’s workload is known

upfront and we can use that to find out the smallest number of cores required. In

this multi-tenant extension, one would want to minimize the replication required while

minimizing the makespan across all the tenants.

� Dynamic Replication in Batch Processing Systems: Getafix can also be ex-

tended to handle replication in batch processing systems. Scarlett [31] is the known

system in this space. The solution is an intuitive heuristic but it tries to optimize

solely for performance and not care about memory costs incurred by high replication.

A key difference from interactive analytics engine is large variance in job running times.

This can make it harder to differentiate between popular data vs unpopular data that

are part of long running jobs. One would require more sophisticated data popularity

prediction techniques.

� Other Extensions to Getafix: Currently, Druid does not support join operations.

117

Join represent a class of query semantics which require network transfer during query

execution. In such scenarios, working memory can potentially dominate front end

cluster memory consumption. Getafix does not reduce working set memory and can

be an interesting problem to consider in future. Lastly, in this work, we have only dealt

with DRAM. With the advent and rising popularity of newer memory technologies like

NVRAM, PCM, etc, it will be interesting to explore how Getafix works with them.

� Using NetCachier to improve job scheduling: Future work would involve creating

a unified resource scheduler for compute, network and storage. There are several

solutions [206, 152] for assigning CPU resources to jobs with deadlines. They try to

optimize for job running times, cluster utilization, etc. NetCachier can in principle be

combined with these works for settings in which network, compute and storage are all

scarce resources. Consider the case when two jobs J1 and J2 arrive at time 2 and 4

time units. Their expected runtime is 3 units. They have a deadline to finish the jobs

by 7 time units. Lets assume they require two files which cannot be fetched at the

same time because of network bandwidth limits. If the scheduler unknowing of this

fact schedules them to start at the time unit 4, NetCachier will not be able to meet

the deadline for one of the jobs. On the contrary, if the scheduler can start job J1 at 2

time units and assuming the input file has already been created before the job arrived,

then NetCachier can prefetch the file and complete job J1 and subsequently J2. One

of the key challenges is the complexity of the problem grows as we try to solve this

multi-resource scheduling problem.

118

References

[1] L. Columbus, “53% of companies are adopting big data analytics,” 2017.
[Online]. Available: https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-
companies-are-adopting-big-data-analytics/#466ab02139a1

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Communication ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327492

[3] T. A. S. Foundation, “Hadoop,” 2014. [Online]. Available: https://hadoop.apache.org

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, ser. HotCloud’10.
Berkeley, CA, USA: USENIX Association, 2010. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1863103.1863113 pp. 10–10.

[5] iDatalabs, “Apache hadoop market share and competitors in big data,” 2017. [Online].
Available: https://idatalabs.com/tech/products/apache-hadoop

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” in Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7, ser. OSDI
’06. Berkeley, CA, USA: USENIX Association, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267308.1267323 pp. 15–15.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
ser. SOSP ’03. New York, NY, USA: ACM, 2003. [Online]. Available:
http://doi.acm.org/10.1145/945445.945450 pp. 29–43.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file
system,” in Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), ser. MSST ’10. Washington, DC, USA: IEEE Computer
Society, 2010. [Online]. Available: http://dx.doi.org/10.1109/MSST.2010.5496972 pp.
1–10.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” in Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, ser. SOSP ’07. New York, NY, USA: ACM, 2007.
[Online]. Available: http://doi.acm.org/10.1145/1294261.1294281 pp. 205–220.

[10] “Cassandra,” http://cassandra.apache.org/, visited on 2014-04-29.

[11] “MongoDB,” http://www.mongodb.org, visited on 2015-1-5.

119

[12] L. Columbus, “10 ways real-time business analytics are driving revenue,”
2017. [Online]. Available: https://selecthub.com/business-analytics/10-ways-real-
time-business-analytics-driving-revenue/

[13] T. A. S. Foundation, “Samza,” 2015. [Online]. Available: https://samza.apache.org

[14] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.
Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream processing at scale,”
in Proceedings of the 2015 ACM International Conference on Management of
Data, ser. SIGMOD ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2742788 pp. 239–250.

[15] A. S. Foundation, “Apache kylin,” 2015. [Online]. Available: http://kylin.apache.org/

[16] Microsoft, “Sql server,” 2018. [Online]. Available: https://www.microsoft.com/en-
us/sql-server/default.aspx

[17] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli, “Druid:
A real-time analytical data store,” in Proceedings of the 2014 ACM International
Conference on Management of Data, ser. SIGMOD ’14. New York, NY, USA: ACM,
2014. [Online]. Available: http://doi.acm.org/10.1145/2588555.2595631 pp. 157–168.

[18] Facebook, “PrestoDB,” 2013. [Online]. Available: https://prestodb.io/

[19] Markets and Markets, “Streaming analytics market - worldwide market forecast and
analysis (2015 - 2020),” 2016. [Online]. Available: https://www.marketsandmarkets.
com/Market-Reports/streaming-analytics-market-64196229.html

[20] Seagate, “Data age 2025,” 2017. [Online]. Available: https://www.seagate.com/our-
story/data-age-2025/

[21] Cisco, “The zettabyte era: Trends and analysis,” 2017. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/vni-hyperconnectivity-wp.html

[22] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine learning,” in Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’16. Berkeley, CA, USA: USENIX Association, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026899 pp. 265–283.

[23] L. Hester, “Maximizing data value with a data lake,” 2016. [Online]. Avail-
able: https://www.datasciencecentral.com/profiles/blogs/maximizing-data-value-
with-a-data-lake

[24] “HBase,” https://hbase.apache.org, visited on 2015-1-5.

120

[25] A. W. S. (AWS), “S3,” 2018. [Online]. Available: https://aws.amazon.com/s3/

[26] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th Annual Symposium on Cloud
Computing, ser. SOCC ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633 pp. 5:1–5:16.

[27] P. Leitner and J. Cito, “Patterns in the chaos–a study of performance variation and pre-
dictability in public iaas clouds,” ACM Transactions on Internet Technology (TOIT),
vol. 16, no. 3, p. 15, 2016.

[28] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker,
and I. Stoica, “Pacman: Coordinated memory caching for parallel jobs,” in
Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228326

[29] “Riak,” http://basho.com/riak/, visited on 2015-1-5.

[30] LinkedIn, “Pinot,” 2015. [Online]. Available: https://github.com/linkedin/pinot/wiki

[31] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris, “Scarlett: Coping with skewed content popularity
in Mapreduce clusters,” in Proceedings of the Sixth Conference on Computer
Systems, ser. EuroSys ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966472 pp. 287–300.

[32] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: Supporting
online reconfigurations in sharded nosql systems,” in Proceedings of the 2015
IEEE International Conference on Autonomic Computing, ser. ICAC ’15.
Washington, DC, USA: IEEE Computer Society, 2015. [Online]. Available:
http://dx.doi.org/10.1109/ICAC.2015.42 pp. 1–10.

[33] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: Supporting online reconfig-
urations in sharded nosql systems,” IEEE Transactions on Emerging Topics in Com-
puting, vol. 5, no. 4, pp. 466–479, Oct 2017.

[34] Y. Shin, M. Ghosh, and I. Gupta, “Parqua: Online reconfigurations in virtual ring-
based nosql systems,” in 2015 International Conference on Cloud and Autonomic Com-
puting, Sept 2015, pp. 220–223.

[35] M. Ghosh, A. Raina, L. Xu, X. Qian, I. Gupta, and H. Gupta, “Popular is cheaper:
Curtailing memory costs in interactive analytics engines,” in Proceedings of the
Thirteenth EuroSys Conference, ser. EuroSys ’18. New York, NY, USA: ACM, 2018.
[Online]. Available: http://doi.acm.org/10.1145/3190508.3190542 pp. 40:1–40:14.

121

[36] M. Ghosh, I. Gupta, S. Gupta, and N. Kumar, “Fast compaction algorithms for nosql
databases,” in 2015 IEEE 35th International Conference on Distributed Computing
Systems, June 2015, pp. 452–461.

[37] “NoSQL market forecast 2015-2020, Market Research Media,” http://www.
marketresearchmedia.com/?p=568, 2012, visited on 2015-1-5.

[38] “Command to change shard key of a collection,” https://jira.mongodb.org/browse/
SERVER-4000, visited on 2015-1-5.

[39] “How to change the Shard Key,” http://stackoverflow.com/questions/6622635/how-
to-change-the-shard-key, visited on 2015-1-5.

[40] “SMG Research Reveals DBA Tools Not Effective for Managing Database
Change,” http://www.datical.com/news/research-reveals-dba-tools-not-effective-for-
database-change/, visited on 2015-04-11.

[41] D. Sjøberg, “Quantifying schema evolution,” Information and Software Technology,
vol. 35, no. 1, pp. 35–44, 1993.

[42] A. Lakshman and P. Malik, “Cassandra: A decentralized structured storage system,”
ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, Apr. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1773912.1773922

[43] “Change shard key mongodb faq,” http://docs.mongodb.org/manual/faq/sharding/
#can-i-change-the-shard-key-after-sharding-a-collection, visited on 2015-1-5.

[44] S. K. Barker, Y. Chi, H. Hacigümüs, P. J. Shenoy, and E. Cecchet, “Shuttledb:
Database-aware elasticity in the cloud,” in 11th International Conference on
Autonomic Computing, ICAC ’14, Philadelphia, PA, USA, June 18-20, 2014.,
2014. [Online]. Available: https://www.usenix.org/conference/icac14/technical-
sessions/presentation/barker pp. 33–43.

[45] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross: lightweight elasticity
in shared storage databases for the cloud using live data migration,” in Proceedings of
the Very Large Database Endowment, vol. 4, no. 8. VLDB Endowment, May 2011.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2002974.2002977 pp. 494–505.

[46] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr: Live migration
in shared nothing databases for elastic cloud platforms,” in Proceedings of the
2011 ACM International Conference on Special Interest Group on Management of
Data, ser. SIGMOD ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1989323.1989356 pp. 301–312.

[47] “Troubles With Sharding - What Can We Learn From The Foursquare In-
cident?” http://highscalability.com/blog/2010/10/15/troubles-with-sharding-what-
can-we-learn-from-the-foursquare.html, visited on 2015-04-11.

122

[48] “Altering Cassandra column family primary key,” http://stackoverflow.com/
questions/18421668/alter-cassandra-column-family-primary-key-using-cassandra-cli-
or-cql, visited on 2015-1-5.

[49] “The great primary key debate,” http://www.techrepublic.com/article/the-great-
primary-key-debate/, visited on 2015-1-5.

[50] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s
globally distributed database,” ACM Trans. Comput. Syst., vol. 31, no. 3, pp.
8:1–8:22, Aug. 2013. [Online]. Available: http://doi.acm.org/10.1145/2491245

[51] “RethinkDB,” http://rethinkdb.com/, visited on 2015-1-5.

[52] “CouchDB,” http://couchdb.apache.org, visited on 2015-1-5.

[53] “Hungarian algorithm,” http://en.wikipedia.org/wiki/Hungarian algorithm, visited
on 2015-1-5.

[54] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center
network architecture,” in Proceedings of 2008 the ACM Conference on Special Interest
Group on Data Communication, ser. SIGCOMM ’08. New York, NY, USA: ACM,
2008. [Online]. Available: http://doi.acm.org/10.1145/1402958.1402967 pp. 63–74.

[55] J. Kim, W. J. Dally, and D. Abts, “Efficient topologies for large-scale cluster networks,”
in Proceedings of the 2010 Conference on Optical Fiber Communication (OFC), col-
located National Fiber Optic Engineers Conference(OFC/NFOEC). IEEE, 2010, pp.
1–3.

[56] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-efficient topology for
high-radix networks,” in Proceedings of the 34th Annual International Symposium on
Computer Architecture, ser. ISCA ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1250662.1250679 pp. 126–137.

[57] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing
data transfers in computer clusters with Orchestra,” in Proceedings of the
ACM Special Interest Group on Data Communication 2011 Conference, ser.
SIGCOMM ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018448 pp. 98–109.

[58] “Mongodb manual for geo-distributed deployment (2.4.9),” http://docs.mongodb.org/
manual/tutorial/deploy-geographically-distributed-replica-set/, visited on 2015-1-5.

[59] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: Understanding
rating dimensions with review text,” in Proceedings of the 7th ACM Conference on
Recommender Systems, ser. RecSys ’13. New York, NY, USA: ACM, 2013. [Online].
Available: http://doi.acm.org/10.1145/2507157.2507163 pp. 165–172.

123

[60] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar, “An integrated experimental environment for distributed
systems and networks,” in Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, ser. OSDI ’02. Boston, MA: USENIX Association, Dec.
2002, pp. 255–270.

[61] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with YCSB,” in Proceedings of the 1st ACM Symposium on
Cloud Computing, ser. SoCC ’10. New York, NY, USA: ACM, 2010. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807152 pp. 143–154.

[62] G. Pang, “Latencies gone wild!, AMPLab - UC Berkeley,” https://amplab.cs.berkeley.
edu/2011/10/20/latencies-gone-wild/, visited on 2015-1-5.

[63] “Google Cloud,” https://cloud.google.com/, visited on 2015-1-5.

[64] M. J. Carey and H. Lu, “Load balancing in a locally distributed DB system,” in
Proceedings of the 1986 ACM International Conference on Special Interest Group on
Management of Data, ser. SIGMOD ’86. New York, NY, USA: ACM, 1986. [Online].
Available: http://doi.acm.org/10.1145/16894.16865 pp. 108–119.

[65] B. Kemme, A. Bartoli, and O. Babaoglu, “Online reconfiguration in replicated
databases based on group communication,” in Proceedings of the 2001 International
Conference on Dependable Systems and Networks (Formerly: FTCS), ser. DSN
’01. Washington, DC, USA: IEEE Computer Society, 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647882.738226 pp. 117–130.

[66] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vingralek, “Online, asynchronous
schema change in F1,” in Proceedings of the Very Large Database Endowment,
vol. 6, no. 11. VLDB Endowment, Aug. 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2536222.2536230 pp. 1045–1056.

[67] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. El Abbadi,
“Squall: Fine-grained live reconfiguration for partitioned main memory databases,”
in Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2723726 pp. 299–313.

[68] G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data placement in Bubba,”
in Proceedings of the 1988 ACM International Conference on Special Interest Group
on Management, ser. SIGMOD ’88. New York, NY, USA: ACM, 1988. [Online].
Available: http://doi.acm.org/10.1145/50202.50213 pp. 99–108.

[69] M. Mehta and D. J. DeWitt, “Data placement in shared-nothing parallel database
systems,” The Very Large Database Journal, vol. 6, no. 1, pp. 53–72, Feb. 1997.
[Online]. Available: http://dx.doi.org/10.1007/s007780050033

124

[70] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich, “Relational cloud: a database service for the
cloud.” in Proceedings of 5th Biennial Conference on Innovative Data Systems
Research, 2011. [Online]. Available: http://dblp.uni-trier.de/db/conf/cidr/cidr2011.
html#CurinoJPMWMBZ11 pp. 235–240.

[71] M. S. Ardekani and D. B. Terry, “A self-configurable geo-replicated cloud storage
system,” in Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’14. Berkeley, CA, USA: USENIX Association, 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2685048.2685077 pp. 367–381.

[72] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings of the 2nd
Conference on Symposium on Networked Systems Design & Implementation - Volume
2, ser. NSDI’05. Berkeley, CA, USA: USENIX Association, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251223 pp. 273–286.

[73] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-area
migration of virtual machines including local persistent state,” in Proceedings
of the 3rd International Conference on Virtual Execution Environments, ser.
VEE ’07. New York, NY, USA: ACM, 2007. [Online]. Available: http:
//doi.acm.org/10.1145/1254810.1254834 pp. 169–179.

[74] S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş, and P. Shenoy, ““Cut me some slack”:
Latency-aware live migration for databases,” in Proceedings of the 15th International
Conference on Extending Database Technology, ser. EDBT ’12. New York, NY,
USA: ACM, 2012. [Online]. Available: http://doi.acm.org/10.1145/2247596.2247647
pp. 432–443.

[75] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic flow scheduling for data center networks,” in Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation, ser.
NSDI ’10. Berkeley, CA, USA: USENIX Association, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855711.1855730 pp. 19–19.

[76] “DynamoDB,” http://aws.amazon.com/dynamodb/, visited on 2015-5-5.

[77] “Voldemort,” http://www.project-voldemort.com/voldemort/, visited on 2014-05-12.

[78] W. G. Yee, “Orbitz: Technical challenges and opportunities in a leading on-
line travel business,” https://sites.google.com/site/gcasrworkshop/2015/program/
wai-gen-yee, 2015.

[79] M. Ghosh, W. Wang, G. Holla, and I. Gupta, “Morphus: Supporting online reconfig-
urations in sharded nosql systems,” in 12th IEEE International Conference on Auto-
nomic Computing (ICAC 15). Grenoble, France: IEEE, 2015.

125

[80] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup protocol for internet
applications,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17–32, Feb.
2003. [Online]. Available: http://dx.doi.org/10.1109/TNET.2002.808407

[81] “An Introduction to using Custom Timestamps in CQL3,” http://planetcassandra.
org/blog/an-introduction-to-using-custom-timestamps-in-cql3/, visited on 2015-04-
25.

[82] “When to use an index in Cassandra,” http://docs.datastax.com/en/cql/3.1/cql/ddl/
ddl when use index c.html, visited on 2015-04-25.

[83] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for well-conditioned,
scalable internet services,” in ACM SIGOPS Operating Systems Review, vol. 35, no. 5.
ACM, 2001, pp. 230–243.

[84] Research and Markets, “Streaming analytics market by verticals - worldwide
market forecast & analysis (2015 - 2020),” Report, June 2015. [Online]. Available:
https://www.researchandmarkets.com/research/mpltnp/streaming

[85] T. A. S. Foundation, “Storm,” 2015. [Online]. Available: https://storm.apache.org

[86] Y. Ahmad, B. Berg, U. Cetintemel, M. Humphrey, J.-H. Hwang, A. Jhingran,
A. Maskey, O. Papaemmanouil, A. Rasin, N. Tatbul, W. Xing, Y. Xing, and
S. Zdonik, “Distributed operation in the Borealis stream processing engine,”
in Proceedings of the 2005 ACM International Conference on Management of
Data, ser. SIGMOD ’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1066157.1066274 pp. 882–884.

[87] Amazon, “Redshift,” 2012. [Online]. Available: https://aws.amazon.com/redshift/

[88] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. Dhoot,
A. R. Kumar, A. Agiwal, S. Bhansali, M. Hong, J. Cameron, M. Siddiqi,
D. Jones, J. Shute, A. Gubarev, S. Venkataraman, and D. Agrawal, “Mesa: A geo-
replicated online data warehouse for google’s advertising system,” Communications
of the ACM, vol. 59, no. 7, pp. 117–125, June 2016. [Online]. Available:
http://doi.acm.org/10.1145/2936722

[89] A. Redshift, “Customer success,” 2018. [Online]. Available: https://aws.amazon.com/
redshift/customer-success/

[90] Metamarkets, “Powered by druid,” 2018. [Online]. Available: http://druid.io/druid-
powered.html

[91] H. Gupta, “Beyond hadoop at yahoo!: Interactive analytics with druid,” Talk,
September 2016. [Online]. Available: https://conferences.oreilly.com/strata/strata-
ny-2016/public/schedule/detail/51640

126

[92] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed
data-parallel programs from sequential building blocks,” in Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,
ser. EuroSys ’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1272996.1273005 pp. 59–72.

[93] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination
for internet-scale systems,” in Proceedings of the 2010 USENIX Conference on
Annual Technical Conference, ser. USENIXATC’10. Berkeley, CA, USA: USENIX
Association, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855840.
1855851 pp. 11–11.

[94] Oracle, “Mysql,” 2018. [Online]. Available: https://www.mysql.com

[95] Wikipedia, “Jaccard index,” 2018. [Online]. Available: https://en.wikipedia.org/wiki/
Jaccard index

[96] Wikipedia, “Bin packing problem,” 2018. [Online]. Available: https://en.wikipedia.
org/wiki/Bin packing problem

[97] W. Stallings, Operating Systems: Internals and Design Principles Edition: 5. Pearson,
2005.

[98] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and S. Rao,
“Efficient queue management for cluster scheduling,” in Proceedings of the Eleventh
European Conference on Computer Systems, ser. EuroSys ’16. New York, NY, USA:
ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2901318.2901354 pp.
36:1–36:15.

[99] A. W. S. (AWS), “Instance types,” 2018. [Online]. Available: http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/instance-types.html

[100] Microsoft, “Blob storage,” 2018. [Online]. Available: https://azure.microsoft.com/en-
us/services/storage/blobs/

[101] Wikipedia, “Hungarian algorithm,” 2018. [Online]. Available: http://en.wikipedia.
org/wiki/Hungarian algorithm

[102] Amazon, “Aws,” 2018. [Online]. Available: https://aws.amazon.com/

[103] D. Inc., “Docker,” 2018. [Online]. Available: https://www.docker.com/

[104] Emulab, “d430,” 2018. [Online]. Available: https://wiki.emulab.net/wiki/d430

[105] Amazon, “Ebs,” 2018. [Online]. Available: https://aws.amazon.com/ebs/pricing/

[106] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1991.

127

[107] O. Wolfson, S. Jajodia, and Y. Huang, “An adaptive data replication algorithm,”
ACM Transactions on Database Systems, vol. 22, no. 2, pp. 255–314, June 1997.
[Online]. Available: http://doi.acm.org/10.1145/249978.249982

[108] T. Rabl and H.-A. Jacobsen, “Query centric partitioning and allocation for
partially replicated database systems,” in Proceedings of the 2017 ACM International
Conference on Management of Data, ser. SIGMOD ’17. New York, NY, USA: ACM,
2017. [Online]. Available: http://doi.acm.org/10.1145/3035918.3064052 pp. 315–330.

[109] P. M. G. Apers, “Data allocation in distributed database systems,” ACM Transactions
on Database Systems, vol. 13, no. 3, pp. 263–304, Sep. 1988. [Online]. Available:
http://doi.acm.org/10.1145/44498.45063

[110] Y.-J. Hong and M. Thottethodi, “Understanding and mitigating the impact of load
imbalance in the memory caching tier,” in Proceedings of the 4th Annual Symposium
on Cloud Computing, ser. SOCC ’13. New York, NY, USA: ACM, 2013. [Online].
Available: http://doi.acm.org/10.1145/2523616.2525970 pp. 13:1–13:17.

[111] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-conscious data placement,”
in Proceedings of the Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS VIII. New York, NY,
USA: ACM, 1998. [Online]. Available: http://doi.acm.org/10.1145/291069.291036 pp.
139–149.

[112] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang, “Nectar:
Automatic management of data and computation in datacenters,” in Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI ’10. Berkeley, CA, USA: USENIX Association, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924949 pp. 75–88.

[113] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-
driven approach to database replication and partitioning,” Proceedings of the
VLDB Endowment, vol. 3, no. 1-2, pp. 48–57, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.14778/1920841.1920853

[114] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database partitioning
in shared-nothing, parallel OLTP systems,” in Proceedings of the 2012 ACM
International Conference on Management of Data, ser. SIGMOD ’12. New York, NY,
USA: ACM, 2012. [Online]. Available: http://doi.acm.org/10.1145/2213836.2213844
pp. 61–72.

[115] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. a. Paulo, J. Pereira, and R. Vilaça, “Met:
Workload aware elasticity for NoSQL,” in Proceedings of the 8th ACM European
Conference on Computer Systems, ser. EuroSys ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2465351.2465370 pp. 183–196.

128

[116] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga, A. Pavlo,
and M. Stonebraker, “E-store: Fine-grained elastic partitioning for distributed
transaction processing systems,” Proceedings of the VLDB Endowment, vol. 8, no. 3, pp.
245–256, Nov. 2014. [Online]. Available: http://dx.doi.org/10.14778/2735508.2735514

[117] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang, and S. Kumar, “f4: Facebook’s warm blob storage system,”
in Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI ’14. Berkeley, CA, USA: USENIX Association, 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2685048.2685078 pp. 383–398.

[118] A. Khandelwal, R. Agarwal, and I. Stoica, “Blowfish: Dynamic storage-
performance tradeoff in data stores,” in Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation, ser. NSDI’16.
Berkeley, CA, USA: USENIX Association, 2016. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2930611.2930643 pp. 485–500.

[119] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle, “The
dataflow model: A practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing,” Proceedings of the
VLDB Endowment, vol. 8, no. 12, pp. 1792–1803, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2824032.2824076

[120] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F.
Terwilliger, and J. Wernsing, “Trill: A high-performance incremental query processor
for diverse analytics,” Proceedings of the VLDB Endowment, vol. 8, no. 4, pp.
401–412, Dec. 2014. [Online]. Available: http://dx.doi.org/10.14778/2735496.2735503

[121] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis, “Dremel: Interactive analysis of web-scale datasets,” Proceedings of
the VLDB Endowment, vol. 3, no. 1-2, pp. 330–339, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.14778/1920841.1920886

[122] Amazon, “Athena,” 2018. [Online]. Available: https://aws.amazon.com/athena/

[123] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris, “Reining in the outliers in map-reduce clusters using mantri,”
in Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI ’10. Berkeley, CA, USA: USENIX Association, 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.1924962 pp. 265–278.

[124] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar, “Tarazu:
Optimizing mapreduce on heterogeneous clusters,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVII. New York, NY, USA: ACM, 2012. [Online].
Available: http://doi.acm.org/10.1145/2150976.2150984 pp. 61–74.

129

[125] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving
mapreduce performance in heterogeneous environments,” in Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, ser.
OSDI ’08. Berkeley, CA, USA: USENIX Association, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855744 pp. 29–42.

[126] Z. Fadika, E. Dede, J. Hartog, and M. Govindaraju, “Marla: Mapreduce
for heterogeneous clusters,” in Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, ser. CCGRID
’12. Washington, DC, USA: IEEE Computer Society, 2012. [Online]. Available:
https://doi.org/10.1109/CCGrid.2012.135 pp. 49–56.

[127] G. S. Brodal and R. Fagerberg, “Lower bounds for external memory dictionaries,” in
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’03. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=644108.
644201 pp. 546–554.

[128] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” ACM Transactions on Algorithms (TALG), vol. 8, no. 1, pp. 4:1–4:22,
Jan. 2012. [Online]. Available: http://doi.acm.org/10.1145/2071379.2071383

[129] “RocksDB,” http://rocksdb.org/, visited on 2014-11-20.

[130] M. Ghosh, I. Gupta, S. Gupta, and N. Kumar, “Fast compaction algorithms for nosql
databases,” in 2015 IEEE 35th International Conference on Distributed Computing
Systems, June 2015, pp. 452–461.

[131] “LevelDB,” http://google-opensource.blogspot.com/2011/07/leveldb-fast-persistent-
key-value-store.html, visited on 2014-11-24.

[132] “Leveled Compaction in Cassandra,” http://www.datastax.com/dev/blog/leveled-
compaction-in-apache-cassandra, visited on 2014-11-24.

[133] “LevelDB in Riak,” http://docs.basho.com/riak/latest/ops/advanced/backends/
leveldb/, visited on 2014-11-24.

[134] “Size Tiered Compaction,” http://shrikantbang.wordpress.com/2014/04/22/size-
tiered-compaction-strategy-in-apache-cassandra/, visited on 2014-11-20.

[135] “Date Tiered Compaction,” https://issues.apache.org/jira/browse/CASSANDRA-
6602, visited on 2014-11-20.

[136] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “Logbase: A
scalable log-structured database system in the cloud,” Proceedings of the VLDB
Endowment, vol. 5, no. 10, pp. 1004–1015, June 2012. [Online]. Available:
http://dx.doi.org/10.14778/2336664.2336673

130

[137] C. Mathieu, C. Staelin, and N. E. Young, “K-slot sstable stack compaction,” CoRR,
vol. abs/1407.3008, 2014. [Online]. Available: http://arxiv.org/abs/1407.3008

[138] D. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, Sept 1952.

[139] “Improving compaction in Cassandra with cardinality estimation,” http://www.
datastax.com/dev/blog/improving-compaction-in-cassandra-with-cardinality-
estimation, visited on 2014-12-09.

[140] “Illinois Cloud Computing Testbed,” http://cloud.cs.illinois.edu/, visited on 2014-11-
20.

[141] R. Campbell, I. Gupta, M. Heath, S. Y. Ko, M. Kozuch, M. Kunze, T. Kwan, K. Lai,
H. Y. Lee, M. Lyons, D. Milojicic, D. O’Hallaron, and Y. C. Soh, “Open Cirrus
Cloud Computing Testbed: Federated Data Centers for Open Source Systems and
Services Research,” in Proceedings of the 2009 Conference on Hot Topics in Cloud
Computing, ser. HotCloud’09. Berkeley, CA, USA: USENIX Association, 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855533.1855534

[142] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The analysis of a
near-optimal cardinality estimation algorithm,” in IN AOFA 07: Proceedings of the
2007 International Conference on Analysis of Algorithms, 2007.

[143] “Dell EMC Digital Universe Survey: The Digital Universe of Opportunities: Rich
Data and the Increasing Value of the Internet of Things, 2014,” https://www.emc.
com/leadership/digital-universe/index.htm.

[144] “InfoScale Enterprise,” https://www.veritas.com/product/software-defined-storage/
infoscale-enterprise.

[145] “Managing Hot and Cold Data Using a Unified Storage System,” https://content.
pivotal.io/blog/managing-hot-and-cold-data-using-a-unified-storage-system.

[146] “Shared Infrastructure for Big Data: Separating Hadoop Compute and Storage,” http:
//www.bluedata.com/blog/2015/12/separating-hadoop-compute-and-storage/.

[147] “The Big Data Challenge: Intelligent Tiered Storage at Scale,” http://www.cray.com/
Assets/PDF/Integrated Tiered Storage Whitepaper.pdf.

[148] “Amazon EC2,” https://aws.amazon.com/ec2/.

[149] “D-Series Performance Expectations,” https://azure.microsoft.com/en-us/blog/d-
series-performance-expectations.

[150] “Amazon EBS Product Details,” https://aws.amazon.com/ebs/details.

[151] “[GCE] Optimizing Persistent Disk and Local Storage Performance,” https://cloud.
google.com/compute/docs/disks/performance.

131

[152] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov,
J. Yaniv, R. Mavlyutov, I. n. Goiri, S. Krishnan, J. Kulkarni, and S. Rao,
“Morpheus: Towards automated slos for enterprise clusters,” in Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, ser.
OSDI’16. Berkeley, CA, USA: USENIX Association, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026887

[153] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron, T. Talpey,
R. Black, and T. Zhu, “Ioflow: A software-defined storage architecture,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522723

[154] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable
datacenter networks,” in Proceedings of the ACM SIGCOMM 2011 Conference.
New York, NY, USA: ACM, 2011. [Online]. Available: http://doi.acm.org/10.1145/
2018436.2018465

[155] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca, “Jockey:
Guaranteed job latency in data parallel clusters,” in Proceedings of the 7th ACM
European Conference on Computer Systems, ser. EuroSys ’12. New York, NY, USA:
ACM, 2012. [Online]. Available: http://doi.acm.org/10.1145/2168836.2168847

[156] J. Chuzhoy, S. Guha, S. Khanna, and J. Naor, “Machine minimization for schedul-
ing jobs with interval constraints,” in 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, 2004, pp. 81–90.

[157] J. Chuzhoy and J. Naor, “New hardness results for congestion minimization and ma-
chine scheduling,” J. ACM, vol. 53, no. 5, pp. 707–721, 2006.

[158] U. Feige, G. Kortsarz, and D. Peleg, “The dense k -subgraph problem,” Algorithmica,
vol. 29, no. 3, pp. 410–421, 2001.

[159] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan, “Detecting

high log-densities: an O(n1/4) approximation for densest k -subgraph,” in Proceed-
ings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, 2010, pp. 201–210.

[160] P. Bailis, E. Gan, K. Rong, and S. Suri, “Prioritizing attention in fast data: Principles
and promise,” CIDR’17.

[161] R. Mavlyutov, C. Curino, B. Asipov, and P. Cudre-Mauroux, “Dependency-driven
analytics: A compass for uncharted data oceans,” ser. CIDR, 2017.

[162] E. J. O’neil, P. E. O’neil, and G. Weikum, “The LRU-K page replacement algorithm
for database disk buffering,” ACM SIGMOD Record, vol. 22, no. 2, pp. 297–306, 1993.

132

[163] “Cloudera Enterprise Reference Architecture for Azure Deployments,”
http://www.cloudera.com/documentation/other/reference-architecture/PDF/
cloudera ref arch azure.pdf.

[164] “Moving Data into HDFS from Amazon S3,” http://documentation.altiscale.com/
moving-data-from-s3-to-hdfs.

[165] “Hadoop HDFS Mover,” https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/ArchivalStorage.html#Mover - A New Data Migration Tool.

[166] “Use HDFS-compatible Azure Blob storage with Hadoop in HDInsight,” https://docs.
microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage.

[167] “Apache Gridmix,” https://hadoop.apache.org/docs/r1.2.1/gridmix.html.

[168] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in
big data systems: A cross-industry study of mapreduce workloads,” Proc.
VLDB Endow., vol. 5, no. 12, pp. 1802–1813, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.14778/2367502.2367519

[169] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Caesar,
“Network-aware scheduling for data-parallel jobs: Plan when you can,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2787488

[170] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2014.

[171] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Architecture: A Hard-
ware/Software Approach, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1997.

[172] A. Bestavros, “Using speculation to reduce server load and service time on the www,”
Boston, MA, USA, Tech. Rep., 1995.

[173] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to improve world
wide web latency,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 3, pp. 22–36,
July 1996. [Online]. Available: http://doi.acm.org/10.1145/235160.235164

[174] J. Wang, “A survey of web caching schemes for the internet,” SIGCOMM
Comput. Commun. Rev., vol. 29, no. 5, Oct. 1999. [Online]. Available:
http://doi.acm.org/10.1145/505696.505701

[175] S. Albers, S. Arora, and S. Khanna, “Page replacement for general caching problems,”
in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA ’99. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=314500.314528

133

[176] M. Brehob, S. Wagner, E. Torng, and R. Enbody, “Optimal replacement is np-hardfor
nonstandard caches,” IEEE Trans. Comput., vol. 53, no. 1, pp. 73–76, Jan. 2004.
[Online]. Available: http://dx.doi.org/10.1109/TC.2004.1255792

[177] S. Irani, “Page replacement with multi-size pages and applications to web
caching,” in Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing, ser. STOC ’97. New York, NY, USA: ACM, 1997. [Online]. Available:
http://doi.acm.org/10.1145/258533.258666

[178] N. Bansal, N. Buchbinder, and J. S. Naor, “A primal-dual randomized algorithm for
weighted paging,” Journal of the ACM (JACM), vol. 59, no. 4, p. 19, 2012.

[179] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer management strategies for
relational database systems,” in Proceedings of the 11th International Conference on
Very Large Data Bases - Volume 11, ser. VLDB ’85. VLDB Endowment, 1985.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1286760.1286772

[180] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan,
“Semantic data caching and replacement,” in Proceedings of the 22th International
Conference on Very Large Data Bases, ser. VLDB ’96. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1996. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645922.673462 pp. 330–341.

[181] T. Johnson and D. Shasha, “2q: A low overhead high performance buffer
management replacement algorithm,” in Proceedings of the 20th International
Conference on Very Large Data Bases, ser. VLDB ’94. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1994. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=645920.672996 pp. 439–450.

[182] S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference recency set replacement
policy to improve buffer cache performance,” in Proceedings of the 2002 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’02. New York, NY, USA: ACM, 2002. [Online].
Available: http://doi.acm.org/10.1145/511334.511340

[183] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead replacement cache,”
in Proceedings of the 2Nd USENIX Conference on File and Storage Technologies,
ser. FAST ’03. Berkeley, CA, USA: USENIX Association, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1090694.1090708

[184] V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala, and S. Chaudhuri, “Sharing
buffer pool memory in multi-tenant relational database-as-a-service,” Proceedings of
the VLDB Endowment, vol. 8, no. 7, pp. 726–737, 2015.

[185] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica, “Fairride: Near-optimal, fair cache
sharing,” in Proceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation, ser. NSDI’16. Berkeley, CA, USA: USENIX Association, 2016.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2930611.2930637

134

[186] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran, “EC-
cache: Load-balanced, Low-latency Cluster Caching with Online Erasure Coding,” in
Proceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, ser. OSDI’16, 2016.

[187] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never than late:
Meeting deadlines in datacenter networks,” in ACM SIGCOMM 2011.

[188] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and G. O’Shea,
“Chatty tenants and the cloud network sharing problem,” in Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation, ser.
nsdi’13. Berkeley, CA, USA: USENIX Association, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482644 pp. 171–184.

[189] C. Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with preemptive
scheduling,” in SIGCOMM, 2012.

[190] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with varys,” in
ACM SIGCOMM 2014.

[191] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized task-aware
scheduling for data center networks,” in ACM SIGCOMM 2014.

[192] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486012

[193] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4:
Experience with a globally-deployed software defined wan,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New York, NY,
USA: ACM, 2013. [Online]. Available: http://doi.acm.org/10.1145/2486001.2486019

[194] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and M. Zhang,
“Guaranteeing deadlines for inter-datacenter transfers,” in Proceedings of the Tenth
European Conference on Computer Systems, ser. EuroSys ’15. New York, NY, USA:
ACM, 2015. [Online]. Available: http://doi.acm.org/10.1145/2741948.2741957

[195] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring for
wide area networks,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626336

[196] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache, “Dynamic pricing and
traffic engineering for timely inter-datacenter transfers,” in Proceedings of the 2016
Conference on ACM SIGCOMM 2016 Conference, ser. SIGCOMM ’16. New York, NY,
USA: ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2934872.2934893

135

[197] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for cluster
applications,” in Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XI. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2390231.2390237

[198] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior knowledge,”
in Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2785956.2787480

[199] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“Coda: Toward automatically identifying and scheduling coflows in the dark,”
in Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference,
ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934880

[200] S. A. Noghabi, S. Subramanian, P. Narayanan, S. Narayanan, G. Holla, M. Zadeh,
T. Li, I. Gupta, and R. H. Campbell, “Ambry: Linkedin’s scalable geo-distributed
object store,” in Proceedings of the 2016 International Conference on Management of
Data. ACM, 2016, pp. 253–265.

[201] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph: A scalable,
high-performance distributed file system,” in Proceedings of the 7th symposium on
Operating systems design and implementation. USENIX Association, 2006, pp. 307–
320.

[202] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly, “The quantcast
file system,” Proc. VLDB Endow.

[203] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon: Reliable, memory
speed storage for cluster computing frameworks,” in Proceedings of the ACM Sympo-
sium on Cloud Computing. ACM, 2014, pp. 1–15.

[204] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt, “Cast: Tiering storage for data
analytics in the cloud,” in Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’15. New York, NY,
USA: ACM, 2015. [Online]. Available: http://doi.acm.org/10.1145/2749246.2749252

[205] A. Tai, M. Wei, M. J. Freedman, I. Abraham, and D. Malkhi, “Replex: A
scalable, highly available multi-index data store,” in Proceedings of the 2016
USENIX Conference on Usenix Annual Technical Conference, ser. USENIX
ATC ’16. Berkeley, CA, USA: USENIX Association, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026959.3026991 pp. 337–350.

[206] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao,
“Reservation-based scheduling: If you’re late don’t blame us!” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SOCC ’14. New York, NY, USA: ACM,
2014. [Online]. Available: http://doi.acm.org/10.1145/2670979.2670981

136

