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ABSTRACT 
 
 

Anthropogenic climate change is leading to dramatic fluctuations of essential climate dynamics 

and has become a major threat to modern ecosystem services and biodiversity because of its magnitude 

and rate of change. Climate is a well-known key constraint of species and ecosystem functions affecting 

distributions, extinction risk, altered disturbance regimes, biogeochemical cycling, and other ecological 

responses. Specifically, the ecological responses of forest and woodland vegetation to climate change are 

important to understand as they are important primary producers of many goods and services on which 

humans depend and provide supporting and regulating services for the environment. Tree species have 

already been found to have altered cover, biomass, density, carbon sink capabilities, fitness, extinction, 

invasion of non-native species, and diversity in response to modern climate change. Many conservation 

approaches aim to ameliorate the negative effects of environmental change within forest communities. 

However, conservation strategies assume the species composition of modern communities will exist with 

future climate change and rely on static protected area reserves. This may cause modern conservation 

practices to become obsolete with climate change because climate change is a dynamic process, unlike 

reserve practices, and species are known to respond to climate change independent of one another and 

their communities. 

Climate surface resolution has the potential to complicate predictions of the ecological impacts of 

climate change since climate varies from local to global scales and this spatial variation is reflected in 

climate data. In Chapter 1, I investigated this issue by downscaling Last Glacial Maximum (LGM) and 

modern (1975-2005) 30-year averaged climate data to 60m resolution for the entire state of Alaska for 10 

different climate variables, and then upsampled each variable to coarser resolutions (60m to 12km). 

Distributions of novel and disappeared climates were modeled to evaluate the locations and fractional 

area of novel and disappeared climates for each of my climate variables and resolutions. Novel and 

disappeared climates were primarily restricted to southern Alaska, although there were cases where some 

disappeared climates existed within coastal and interior Alaska. Novel and disappeared climates 
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increased, decreased, or had no clear relationship of fractional area with the coarse climate data, however, 

the use of coarser climate data increased the fractional area of novel and disappeared climates due to the 

removal of environmental variability and climate extremes. Results from Chapter 1 reinforce the 

importance of downscaling coarse climate data and suggests that studies analyzing the effects of climate 

change on ecosystems may overestimate the effects of climate change when using coarse climate data. 

Once I demonstrated the importance of scale in understanding climate change, I next investigated whether 

high-resolution climate metrics, specifically climate velocity, were suitable predictors of a species 

migration response to climate change.  

Species have and will continue to shift their distributions in response to climate change, as 

species survival depends on the persistence of the suitability of a climatic niche space and their ability to 

keep pace with climatic changes in their realized niche. Many species are shifting their ranges in response 

to climate change. Climate velocity has become a commonly used index of the speeds and directions 

required for a species to keep pace with climate change. However, it is a simple measure of the rate at 

which climate is changing that disregards species-specific thresholds to their environment. In Chapter 2, 

using modern and LGM 60 m downscaled climate data for Alaska, I estimated the climate velocity for 8 

different climate variables, as well as modeled LGM and modern distributions of white spruce using 

species distribution models. I then calculated the bioclimatic niche velocity of white spruce to estimate 

white spruce’s migration response and ability to keep pace with post-glacial climate change. Each climate 

velocity estimate was compared to all others, as well as to the bioclimatic niche velocity of white spruce 

to determine if climate velocity was a suitable predictor of a species’ migration response to climate 

change. I demonstrated that different climate variables yield different speeds and directions of climate, 

and that individual climate velocity estimates correlated poorly with the bioclimatic niche velocity as 

estimated for the Alaskan white spruce from the LGM to modern era. My results suggest that climate 

velocity alone does not provide suitable estimates of species migration responses to climate change due to 

climate velocity not accounting for species ecology and climatic tolerances that affect migration 

responses.  
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In the previous chapter, I found evidence that bioclimatic niche velocity was a suitable approach 

to understanding high-resolution species migration pressures due to climate change. I then used these 

concepts to test if multiple species will migrate in the same direction, or independent of each other in 

response to climate change. Modern conservation strategies use static protected-area techniques to protect 

biodiversity from environmental change. However, static and stable assumptions of community dynamics 

assume that species will migrate with each other in response to climate change and form similar 

community assemblages in the future, even though it is well accepted that species respond to climate 

change independent of one another due to species-specific niche constraints. In Chapter 3, I calculated the 

bioclimatic niche direction for 72 of California’s native tree species derived from habitat suitability maps 

built using high-resolution downscaled climate data for the modern (1985-2015) and future (2070-2100) 

eras, and identified the directions of migration for each species in response to end of century climate 

change. Using each species’ modern habitat suitability maps, I identified and classified the different forest 

community types that occur throughout California during the modern era, and identified whether all the 

species of a community at a location displayed uniform (anisotropic) migration directions, or random 

(isotropic) migration directions in response to climate change. While in general, individual tree species of 

California displayed mean northward migration directions, a number of species were estimated to have 

alternative migration directions in response to climate change. A vast majority of California forest 

community types displayed isotropic species migration directions, indicating species will migrate 

independently of each other. Although all community types exhibited small amounts of anisotropic 

species migrations, locations where species migrate together were not clustered together throughout the 

community’s distributional range. My results indicated that the species that comprise California forest 

communities will migrate independently of each other, with the potential to create novel, no-analogue 

communities by the end of the 21st century. Additionally, my results suggested that current community 

conservation strategies should be revised and updated to reflect ecologists’ better understanding of 

climate change and the impact it has on species.  
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INTRODUCTION 

 Earth’s climate has continuously changed throughout its history, and species have been 

challenged to adapt (Davis & Shaw, 2001), alter phenology (Cleland, Chuine, Menzel, Mooney, & 

Schwartz, 2007), shift ranges (Davis & Shaw, 2001), and/or seek climatic refuges (Ashcroft, 2010; 

Dobrowski, 2011) to track environmental change in space and time (Burrows et al., 2011). However, 

modern climate change has become a major threat to ecosystem services and biodiversity because of its 

magnitude, rate of change, and the potential to eliminate extant climates as well as create novel conditions 

globally (Williams & Jackson, 2007). If modern climate change exceeds organisms’ ability to respond, 

distributional shifts, community structures, and ecosystem functions may be greatly altered (Ackerly et 

al., 2010).  

 Many species have already responded by altering the timing of their life cycles or shifting their 

geographic distributions (Chen, Hill, Ohlemuller, Roy, & Thomas, 2011; Colwell, Brehm, Cardelus, 

Gilman, & Longino, 2008; Parmesan & Yohe, 2003), with many studies suggesting that species will shift 

towards higher latitudes or elevations in response to warming climates. For example, a meta-analysis 

conducted by Chen et al. (2011) found that the distribution of species in recent decades has shifted to 

higher elevations at a median rate of 11.0 m/decade, and to higher latitudes at a median rate of 16.9 

km/decade. However, more recent analyses emphasize the need to move away from the expectation that 

species will move to cooler temperatures (Crimmins, Dobrowski, Greenberg, Abatzoglou, & Mynsberge, 

2011; Dobrowski et al., 2013), as different species have individual responses to climate change. 

Therefore, it is important to understand how species have, are, or will migrate in response to climate 

change in order to plan effective conservation management strategies that preserve Earths biodiversity.   

 This dissertation focuses on addressing: 1) how does the spatial resolution of gridded climate data 

affect estimates of novel and disappeared climates, 2) is climate velocity a suitable predictor of species 

migration responses to climate change, and 3) do species of a forest community migrate in the same 

direction, or independently of on another in response to climate change? These questions are addressed by 
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developing fine resolution downscaled climate datasets for Alaska and California combined with species 

distribution models to produce spatially explicit estimates of the migration speeds and directions required 

for vegetative species to keep pace with climate change.  

 Chapter 1 examines the question of where novel and disappeared climates are found in Alaska 

from the Last Glacial Maximum (LGM) to modern era, and how choice in climate data resolution affects 

the fractional area of estimated novel and disappeared climates in Alaska. The analysis uses advanced 

statistical downscaling techniques to create the finest available gridded climate dataset in Alaska (60 m), 

and upsampled this dataset to coarser scales to estimate and compare the fractional area of novel and 

disappeared climates at different resolutions. Downscaled climate datasets incorporate many spatial 

features known to influence climate at finer scales (e.g. elevation gradients, coastal effects, temperature 

inversions, and rain shadows) that are undetectable in coarse resolution climate data. The downscaling 

models were developed with the specific goal of capturing these fine-scale spatial features known to 

influence climate across a wide variety of climate variables for both the Last Glacial Maximum (~21,000 

ya) and modern (1985-2005) eras. Once I demonstrated the importance of scale in understanding climate 

change, I next investigate whether high-resolution climate metrics, specifically climate velocity, is a 

suitable predictor of a species migration response to climate change.  

 Climate velocity has commonly been used to infer migration rates of biota, however, all climate 

velocity analyses acknowledge that the measure does not incorporate species information, nor is an 

estimate of biological migration rates (Burrows et al., 2011; Carroll, Parks, Dobrowski, & Roberts, 2018; 

Loarie et al., 2009). Chapter 2 examines whether climate velocity, a measure of the rate and direction of 

climate change, is a suitable measure of a species migration response to climate change, by developing a 

species calibrated measure of climate velocity using an Environmental Limiting Factor (ELF) model of 

Alaskan white spruce (Picea glauca), “bioclimatic niche velocity”, to compare to estimates of eight 

different climate velocity estimates. Climate velocity and ELFs are sensitive to the resolution of gridded 

climate data, therefore I reused my downscaled Alaska climate dataset from Chapter 1 to minimize 
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overestimating white spruce distributions and low velocities (Dobrowski et al., 2013; Franklin et al., 

2013).  

 Once I demonstrated that bioclimatic niche velocity was a suitable predictor of a species response 

to climate change I next investigate how multiple species of forest communities will respond to climate 

change. Community conservation strategies rely on species of communities migrating in the same 

direction, as well as maintaining the same species assemblages of the modern era (Hannah et al., 2002), 

even though species are known to have independent responses to climate change (Hutchinson, 1957; 

Jackson & Overpeck, 2000). In Chapter 3, I present a study which uses the bioclimatic niche velocity 

introduced in Chapter 2 to estimate the migration direction of 72 endemic California tree species to end-

of-century climate change. The goal of Chapter 3 is to determine if species of a community will migrate 

in the same direction, or independently of one another in response to climate change. use bioclimatic 

niche velocity to estimate the migration directions of 72 tree species endemic to California to examine 

whether species of a forest community type will migrate in similar directions, or independent direction in 

response to climate change.  
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CHAPTER 1: SPATIAL SCALE AFFECTS NOVEL AND DISAPPEARED CLIMATE CHANGE 

PROJECTIONS IN ALASKA 

1.1 ABSTRACT 

The formation of novel and disappeared climates between the Last Glacial Maximum (LGM) and 

the present is important to consider in order to understand the expansion and contraction of species niches 

and distributions, as well as the formation and loss of communities and ecological interactions over time. 

Our choice in climate data resolution has the potential to complicate predictions of the ecological impacts 

of climate change, since climate varies from local to global scales and this spatial variation is reflected in 

climate data. To address this issue, I downscaled LGM and modern (1975-2005) 30-year averaged climate 

data to 60m resolution for the entire state of Alaska for 10 different climate variables, and then upsampled 

each variable to coarser resolutions (60m to 12km). I modeled the distributions of novel and disappeared 

climates to evaluate the locations and fractional area of novel and disappeared climates for each of my 

climate variables and resolutions. Generally, novel and disappeared climates were located in southern 

Alaska, although there were cases where some disappeared climates existed within coastal and interior 

Alaska. Climate resolution affected the fractional area of novel and disappeared climates in three patterns: 

as the spatial resolution of climate became coarser, the fractional area of novel and disappeared climates 

1) increased, 2) decreased, or 3) had no explainable relationship. Generally, the use of coarser climate 

data increased the fractional area of novel and disappeared climates due to decreased environmental 

variability and removal of climate extremes. Coarse climate data did decrease the fractional area of 

disappeared Tmin climates, however this pattern was an artifact of computational aggregation error from 

upsampling my downscaled climate products. My results reinforce the importance of downscaling coarse 

climate data and suggest that studies analyzing the effects of climate change on ecosystems may 

overestimate or underestimate their conclusions when utilizing coarse climate data. 
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1.2 INTRODUCTION 

Post-glacial climate change provides a useful context and natural experimentation for assessing 

biotic responses to global climate change (Davis, 1990; Overpeck, Bartlein, & Webb, 1991; Webb III, 

1992). The late quaternary, which includes the LGM 21,000 years ago, matches the magnitude of 

predicted anthropogenic climate change and contains the largest manifestation of natural climate change 

preserved in the geologic record (Mix, Bard, & Schneider, 2001; Overpeck et al., 1991). Our awareness 

and understanding of past ecological responses to climate change is important as it enables ecologists to 

predict the potential responses of ecosystems to anthropogenic climate change now and in the future. 

Niche theory predicts that n-dimensional changes in the environment (e.g. precipitation, 

temperature, etc.) will cause shifts in species distributions and the formation of novel species 

assemblages, since every species responds individualistically to its abiotic and biotic environment 

(Hutchinson, 1957; Jackson & Overpeck, 2000). This assumption has been supported by large changes in 

species ranges where past climates lacked modern analogs, leading to the formation of novel LGM 

species associations and biomes with no modern equivalent (Williams & Jackson, 2007). Therefore, 

variations of climate in space and time (e.g. LGM vs. Modern n-dimensional environment) are thought to 

be an important factor in understanding the formation of novel and disappeared climates, as well as the 

expansion and contraction of a species’ niche and distribution (Ackerly et al., 2010; Jackson & Overpeck, 

2000; Williams & Jackson, 2007). Novel climates are climatic environments with no-analog conditions in 

the past, whereas disappeared climates are climatic environments with no-analog conditions today 

(Ackerly et al., 2010; Fitzpatrick & Hargrove, 2009; Glassberg, 2014; Hobbs et al., 2006; Ohlemuller, 

2011; Radeloff et al., 2015; Williams & Jackson, 2007). 

A key aspect of quantifying climate, including the identification of novel and disappeared 

climates, is the choice of spatial resolution. Spatial resolution has the potential to complicate the 

prediction of ecological impacts of climate change because climate varies dramatically at local scales and 

this variation is undetectable in coarse resolution climate data (Bellard, Bertelsmeier, Leadley, Thuiller, & 

Courchamp, 2012; Dobrowski, Abatzoglou, Greenberg, & Schladow, 2009; Franklin et al., 2013; Seo, 
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Thorne, Hannah, & Thuiller, 2009). Long term climate patterns observed across the globe are a result of a 

combination of many different processes that occur at varying spatial scales. Most modeled climate data 

(regional and general circulation models) is coarse scale (>50 km) and these datasets are unlikely to 

incorporate many spatial features known to influence climate at finer scales, (e.g. elevation gradients, 

coastal effects, temperature inversions, and rain shadows) (C. Daly, 2006; Dobrowski et al., 2009; Levin, 

1992).  

Spatial variability in climate can be nested into macroclimates (global), mesoclimates (regional), 

topoclimates (landscape), and microclimates (local) (Ackerly et al., 2010; Geiger, Aron, & Todhunter, 

2009). Macroclimates are the broad patterns of atmospheric circulation across >50 km scales, such as the 

North-South rainfall gradient along the state of Alaska. Mesoclimates are variations at 1-50 km reflecting 

marine air and mountain range properties, such as rain shadow effects. Topoclimates include landscape 

scale effects such as aspect, slope, elevation, and terrain that affect surface radiation, wind, and cold air 

drainage at the 10 m to1 km scale. Lastly, microclimates have the finest scale variability and are 

determined by vegetation cover and fine scale surface features (<10 m). Finer spatial scales (topo and 

micro) create unique combinations of climate variables within a very limited area (Ackerly et al., 2010), 

and can provide significant processes that buffer against larger regional and global climate trends (e.g. 

temperature inversions) (Randin et al., 2009; Willis & Bhagwat, 2009). For example, mesoscale PRISM 

mean global temperature variability is limited to 3°C, while a finer toposcale mean global temperature 

surface at 30 m found a global temperature variability as high as 8°C (Ackerly et al., 2010; C. Daly, 

2006).  

I selected climate surfaces commonly used in climate change and ecological analyses to identify 

and determine where novel, disappeared, and shared climates are distributed across the state of Alaska 

from the LGM to modern era. To help clarify the effect of climate grid resolution on estimations of novel 

and disappeared climates, I analyzed how the amount of fractional area of novel, disappeared, and shared 

climates vary with climate grid spatial resolution by statistically downscaling coarse-scale climate models 
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at scales ranging from 60 m to 12 km. I compared modeled distributions and fractional area of novel, 

disappeared, and shared climates across nine Alaskan ecoregions to ask the following specific questions: 

1. Where are novel, disappeared, and shared climates located in Alaska from the LGM to 

modern era? 

2. How does the fractional area of novel, disappeared, and shared climates differ depending on 

the resolution of modeled climate grid data used for analysis? 

 

1.3 METHODS 

1.3.1 Overview:  

The first step of my analysis was to perform a topographically-mediated downscaling of coarse-

scale modern and LGM climate surfaces to a resolution of 60 m for the modern and LGM periods. Next, I 

up-sampled these surfaces to coarser resolutions. Finally, I performed my analysis investigating the 

impacts of scale on the distribution of shared, novel, and disappeared climates throughout Alaska. 

Study Area: 

Alaska, USA, is an ideal location for understanding the potential impacts of scale on climate 

change as polar regions currently experience the highest rates of warming globally, and by the end of the 

21st century will be at least 40% higher than the global mean (Larsen et al., 2014). There is agreement 

between several coupled atmosphere-ice-ocean climate models that global warming should be enhanced 

in the Arctic (Raisanen, 2001). Additionally, Alaska has a diverse and complex physiography and 

presence of long-term meteorological stations.  

The total land area in Alaska is approximately 151,773.3 km2, with over 54,563 km of tidal 

shoreline, including islands, and stretches in latitude by nearly 20°. 17 of the 20 highest mountain peaks 

of North America are in Alaska, with the highest elevation at Mt. McKinley (6,150 m.a.s.l), and lowest at 

the Pacific Ocean coastline (0 m.a.s.l). Presently, there are approximately 100,000 glaciers covering 

75,109.9 km2 (5% of the total land area of Alaska), however, during the LGM, glaciers covered an 
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estimated 30% of the state. Present mean temperature is 16.8 °C during the summer, and -11.0 °C during 

the winter.  

 

1.3.2 Climate downscale: 

Input data:  

Weather station data: Spatially explicit monthly weather station data was collected from the National 

Oceanic and Atmospheric Administration’s (NOAA) Global Historical Climatology Network (GHCND) 

(Menne, Durre, Vose, Gleason, & Houston, 2012). I compiled records from 415 stations across the period 

of 1975-2005, although the period of record for each station varies. Missing data fields as well as extreme 

outliers were removed from the weather dataset by identifying observations > 3 standard deviations from 

the means of all observations across time for minimum temperature (Tmin ), maximum temperature (Tmax), 

mean temperature (Tave), and total monthly precipitation (P) (Aggarwal, 2015).  

Digital Elevation Map and Transforms: An elevation surface was assembled for the entire state of Alaska 

using United States Geologic Surveys (USGS) 1 arc-second (~60 m) digital elevation maps (DEM) 

(USGS, 2016). The digital elevation map (DEM) was resampled and reprojected to Alaska Albers Equal 

Area Conic, ensuring grid cells of exactly 60 m. From this dataset, I calculated slope, aspect, and the 

topographic convergence index (TCI) for Alaska (Wolock & McCabe, 1995). TCI was calculated with 

TauDEM using a D-infinity flow accumulation algorithm (Tesfa et al., 2011). Regions where slope was 

0° were given a placeholder value of 0.001 when calculating TCI to avoid divide-by-zero issues. 

General circulation model climate data: Coarse-scale (1°) general circulation model (GCM) climate grids 

were collected from the National Center for Atmospheric Research’s (NCAR) Community Climate 

System Model version 4 (CCSM4) for near surface (2 m) Tmin, Tmax, Tave, precipitation, short wave 

radiation (Icloud) and wind (U, V) (Gent et al., 2011; Kluzek, 2011). All climate surfaces were pooled into 

two 30-year averages, ~18,000-18,030 ya (t1) for the LGM and 1975-2005 (t2) for modern climate. All 

GCM surfaces were reprojected to the Alaska Albers Equal Area Conic projection and resampled to 60 m 
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resolution using bilinear interpolation. The wind speed vector surfaces were converted to wind speed and 

direction. 

Downscaling models: 

Shortwave irradiance: Solar radiation can regulate temperature in complex terrains as topography 

produces varying solar angles and can reduce terrain winds that diminish boundary layer mixing during 

the winter months (C. Daly, 2006; Dobrowski et al., 2009; Urban, Miller, Halpin, & Stephenson, 2000). 

Therefore, solar radiation is an important physiographic parameter to consider when downscaling 

temperature to topo and microscales. Mean monthly daily clear sky irradiance at a location x,y (I(x,y,t), 

W/m2) was modeled using the r.sun algorithm (Suri & Hofierka, 2004) running under GRASS GIS 7.1. 

This algorithm uses topographic elevation, slope, aspect, and geographic latitude as inputs referenced 

against solar angles. GRASS GIS’s r.sun algorithm is a complex and flexible solar radiation model that 

has been found to outperform other similar products (SolarFlux, Solei, Solar Analyst, and SRAD) because 

it performs especially well for large areas at fine resolutions with complex terrain and can be used for 

long-term calculations at different scales (Jaroslav, 2013; Ruiz-Arias, Tovar-Pescador, Pozo-Vázquez, & 

Alsamamra, 2009). To create “true sky” clouded irradiance surfaces for both the LGM and today, I 

acquired coarse modeled surface downwelling shortwave radiation (100 km) that was calculated by the 

Coupled Model Intercomparison Project (CMIP5, Modern) the Paleoclimate Modeling Intercomparison 

Project (PMIP5, LGM) (Taylor, Stouffer, & Meehl, 2012). These groups calculate surface downwelling 

shortwave radiation using additional modeled climate surfaces produced from the same CCSM4 LGM 

and modern historical runs used in my temperature and precipitation downscale models. To transform my 

high resolution “clear-sky” irradiance to “true-sky” irradiance, I calculated the ratio of true-sky to clear-

sky irradiance for each month for both the LGM and today, and then applied each corresponding ratio to 

each monthly high resolution clear-sky irradiance surface to create twelve monthly LGM and Modern 

“true-sky” surface radiation surfaces that are capable of considering coarse atmospheric properties (e.g. 

cloud cover) of each era with my clear-sky radiation surfaces. I then summarized my monthly radiation 

surfaces into an annual average radiation surface to compute novel and disappeared radiation climates for 
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later analysis. Mean radiation was created by computing the yearly average of all monthly radiation 

surfaces for both the LGM and modern eras at 60 m resolution. 

Temperature and precipitation: For minimum, maximum and average temperature, as well as 

precipitation, I used an empirical downscaling approach as described in Dobrowski et al. (2009). This 

approach calibrates a downscaling model in which the high-resolution climate variable is a function of the 

coarse scale climate and various topographic predictors (EQ 1.1). I used the following general 

downscaling approach: 

	#$	%. %:		()*+,-+.	/01234+5,7,4
819:	;+* = =(//?@	/01234+5,7,4/A3,*+	;+* + C:7*1A9,3D:1E5,7

819:	;+*) 

where observed Climate at location (x,y) at time t represents my high resolution weather station data. 

CCSM Climate at the same (x,y) locations and time t represents my coarse GCM modeled climate. 

Physiographic Inputs at the same (x,y) locations, and when applicable time t, represents my high 

resolution modeled physiographic surfaces (e.g. elevation, cold-air pooling, radiation, etc.). I assume the 

topographic impacts on climate do not change in time, only in space, so the only varying predictors in my 

model are coarse scale climate and radiation inputs. My other topographic-based predictors remain 

constant (e.g. TCI).  

I calibrated these models using weather station data to represent the high-resolution climate 

linked with the GCM climate grids that corresponds to the date of the weather measurement. I initially 

used a random forest algorithm to determine variable importance of all model predictors, including my 

precipitation topographic surfaces at a variety of spatial scales (60 m, 500 m, 1 km, and 5 km) for variable 

selection (Breiman, 2001). Using the most important variables, I produced three models for temperature 

(Tmin, Tmax, Tave) calibrated using 80% of the available weather station data (43,768 observations) (Madsen 

& Thyregod, 2010). The remaining 20% of weather station data (10,943 observations) was used for model 

validation, in which I calculated the root mean square error (RMSE), Pearson’s correlation coefficient, 

and percent bias. I created a precipitation model employing similar methods previously used to create my 

temperature models, however, the precipitation model was trained using a stratified sampling procedure 
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(vs. 80% dataset) to ensure an equal proportion of measured weather station precipitation values were 

represented in the training dataset since the majority of weather observations recorded 0 mm/month 

precipitation. The training dataset was stratified in ~310 mm width bins from randomly sampling 80% of 

the original precipitation dataset. I then randomly sampled 5,000 precipitation values from each bin to 

create the final training dataset. My testing dataset was comprised from the remaining 20% of the original 

precipitation dataset.  

Generalized linear models (GLM) were chosen to generate all downscale models. GLMs are 

advantageous for downscaling because they can extrapolate beyond the range of the model’s training 

data, which is necessary when predicting LGM climates as the range of climates is likely different than 

the modern climate. Additionally, GLMs can handle more complicated situations; for example, they do 

not require a normal distribution of the response variable (Madsen & Thyregod, 2010). A variety of 

tests/exploratory models were created to check that all GLM assumptions were met. To ensure that all 

input predictors were independent of one another, all variables were plotted against one another to verify 

that there were no significant relationships between each variable. A correlation threshold of 0.95 was 

used as a cutoff value preventing too great a multicollinearity between any pair of predictors. 

Additionally, an exploratory generalized additive model (GAM) was created to produce partial plots for 

each independent variable to verify linear behavior of all model inputs, although this method was not 

chosen for the final models to avoid spline interpolations on my predictors (Venables & Ripley, 2002). 

Lastly, each model’s residuals were examined to ensure that the residuals were normally distributed. The 

residuals were plotted against the predicted fitted values to ensure a homogenous structure of each 

model’s variance.  

Temperature model: The model I used to downscale Tmin, Tmax, and Tave was found to be a function of 

elevation at x,y (Z(x,y)), mean monthly daily clear sky irradiance at a location x,y (I(x,y,t)), and topographic 

convergence (C(x,y)) which is a proxy for local convective forcings such as cold-air pooling (EQ 1.2) 

(Dobrowski, 2011; Dobrowski et al., 2009; Katurji & Zhong, 2012). The final model form was:  
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	#$	%. G:	H(5,7,4,4I) = H(5,7,4,4I)I + J(5,7) + /(5,7) + K(5,7,4) + L, 

where T(x,y,t, t’) represents observed high resolution temperature (min, max, average) at a given station (x,y) 

and month (t), and T’(x,y,t, t’) is coarse modeled surface temperature (min, max, average). The coldest Tmin 

month (December for LGM, and January for modern) was used to represent the coldest annual 

temperatures. Likewise, the hottest month for Tmax (July for both LGM and modern) was used to represent 

the hottest annual temperatures. 

Precipitation model: The model to downscale precipitation was found to require topographic predictors at 

a variety of scales, not just the high resolution 60 m predictors. Specifically, I used elevation at location 

x,y (Z(x,y)) at 60 m; topographic slope at location x,y at 1 km resolution (mx,y); wind speed (m/s, w(x,y,t,t’)) 

and wind direction at a given location (x,y) (degrees, q(x,y,t,t’)) and month (t) at 100 km, and the angular 

difference between geographic direction and topographic aspect to act as an orographic effect proxy (i.e. 

rain shadow) at 500 m resolution (Δx,y,t,t’). Elevation and slope exhibited slight nonlinear trends which 

were corrected by applying a log transformation to each of the two predictor variables. A cubic root 

transformation was applied to (Px,y,t,t’) and (P’x,y,t,t’) so the model could not predict values below 0 

mm/month (EQ 1.3). The final model form was: 

#$	%.M:	(C5,7,4,4I)%/M = (C′5,7,4,4I)%/M + PQRSJ5,7T + PQRS25,7T + U5,7,4,4I + V5,7,4,4I + ∆5,7,4,4I + L 

Potential evapotranspiration (PET): Plants must use energy and water to grow and reproduce, therefore 

the primary effects of climate on plants is regulated by the interactions of energy and water (Stephenson, 

1990). Through water balance equations, energy is represented by potential evapotranspiration (PET) and 

available water (Stephenson, 1998). PET was calculated at monthly time steps at 60 m for the LGM and 

modern era using the Penman-Monteith method which utilizes my downscaled temperature, elevation, 

wind speed, and cloud-corrected irradiance surfaces as inputs (Allen, Pereira, Raes, & Smith, 1998; 

Monteith, 1965; Penman, 1948). This method determines a reference evapotranspiration from climate 

data and represent climatic water balance rather than physiological evapotranspiration. PET was 

calculated by using a standard hypothetical reference crop of height 0.12 m with a fixed surface stomatal 
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resistance of 70 s m-1 and albedo of 0.23. Annual PET for the LGM and modern era was summarized by 

computing the summation of all monthly surfaces for each era. 

Actual evapotranspiration and water deficit: The interactions of PET and available water can be 

described with additional water balance parameters: Actual Evapotranspiration (AET) and Water Deficit 

(DEF). AET is defined as the evaporative water loss from a site covered by a standard crop, given the 

prevailing water availability, and represents biologically available usable energy and water at a site 

independent of actual vegetation. Water deficit refers to climatic water deficit, not soil water deficit, and 

represents the amount of evaporative demand that was not met by available water (Stephenson, 1998). 

AET and DEF were calculated at monthly time scales at 60 m for the LGM and modern era, by 

using a snow hydrology model that models additional water and energy parameters that influence 

available water at a site (Dobrowski et al., 2013). Downscaled precipitation, mean temperature, and 

radiation were used to estimate the fraction of precipitation arising as either rainfall, snowfall, snowpack, 

or snowmelt during a given month at 60 m resolution for both the LGM and modern eras (Dingman, 

2002; Dobrowski et al., 2013). These products were then used to calculate AET and DEF in combination 

with PET and a coarse soil water holding capacity surface (Dunne & Willmott, 1996) to determine the 

available plant extractable water from rainfall or snowmelt from the previous month (Dobrowski et al., 

2013). A spatially constant available soil water holding capacity (AWC) value of 5.0 cm (the mean AWC 

of Alaska) was used rather than a spatially varying AWC due to a lack of high-resolution AWC products 

in Alaska (Dunne & Willmott, 1996). The model first determines the amount of maximum potential 

available soil water at a site. If there is an excess of soil water, AET is the same as PET because 

evapotranspiration is not limited by water availability. However, if available water is less than the sites 

maximum potential available water, AET will be less than PET (AET = PET – DEF), because maximum 

water evaporative demand cannot be met by the available amount of water present at the site. I created 

annual summaries of each surface (AET, DEF, Snow, and Rain) by computing the summation all monthly 

surfaces, for each climate variable, for each individual era. 
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1.3.3 Climate aggregation and reclassification:  

To understand how climate grid resolution can potentially affect the distribution of novel and 

disappeared climates in Alaska, I aggregated each 60 m annual climate surface to coarser resolutions. 

Aggregation surfaces were created using a standard average pixel aggregation of each 60 m annual 

climate surface using the following resolutions:120 m, 240 m, 800 m (e.g. PRISM), 1 km (e.g. NASA 

Nex & WorldClim), 2 km, 3 km, 4 km, 5 km, 10 km, and 12 km (e.g. CMIP)(Christopher Daly, Gibson, 

Doggett, Smith, & Taylor, 2004; Fick & Hijmans, 2017; Thrasher et al., 2013). Table 1.1 lists the final 

annual surfaces and grid units for my novel and disappeared climate analysis.  

 
Table 1.1: Summary of annual downscaled (60 m) climates for the LGM and modern eras used in novel 
and disappeared climate analysis.  

Climate Variable Units Min Max Mean SD 
LGM 

Annual AET mm 0.0 651.7 184.9 88.1 
Annual Deficit mm 0.0 420.6 22.5 33.1 
Annual PET mm 0.3 667.4 207.4 93.9 
Annual Rain mm 0.0 3452.9 231.2 223.2 
Annual Snow mm 0.2 5494.4 782.2 439.2 

Mean Radiation w 0.0 261.0 131.0 23.4 
Tmax °C -21.0 30.5 16.9 8.1 
Tmin °C -36.1 4.3 -21.9 3.4 

Modern 
Annual AET mm 0.0 445.4 183.5 49.0 

Annual Deficit mm 0.0 314.4 11.5 15.0 
Annual PET mm 1.7 463.5 195.0 52.0 
Annual Rain mm 0.0 4424.7 505.6 330.0 
Annual Snow mm 0.0 3420.5 717.2 263.1 

Mean Radiation w 0.0 209.7 97.8 17.1 
Tmax °C -13.2 31.3 21.0 3.7 
Tmin °C -34.7 6.6 -18.1 5.4 

 
 

Annual climate variables at each of the 11 spatial resolutions were binned to simplify the ranges 

of possible climate values for analysis. I computed the 5th and 95th percentiles of each 60 m annual 

climate variable and removed these values as outliers in each surface. The range of each 60 m annual 
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climate variable was determined and used to create 25 equal sized bins for each variable to reassign pixel 

values. Bin widths were computed for each surface using the following equation: 

#$	%. X:	Y1Z	[1.4: =
(@35;3Z9+(\]@||@A.+,Z) − (@1Z;3Z9+(\]@||@A.+,Z)

@35	Y1Z	`30a+	  

Where MaxRange(LGM||Modern) is the maximum value of between the LGM or modern climate surface 

at 60 m, MinRange(LGM||Modern) is the minimum value between the LGM or modern climate surface at 

60 m, and Max Bin Value is the maximum bin class value (25). To reclassify each annual climate surface 

at all resolutions, the bin widths were applied to each LGM and modern climate surface using the 

following equation: 

#$	%.b:	Y1Z	/03** =
/+101Z9(cPdefgh	ifPjh5,7,4 − @1Z(/01234+	?a,=3E+4))

Y1Z	[1.4:  

Where Climate Valuex,y,t is the climate surfaces value at location x,y and at time t (LGM or modern), 

Min(Climate Surfacet) is the minimum value of the climate surface at time t. Pixels that fell within the 

removed 1st and 99th ranges were reclassified to either the lowest (0) or highest (25) bins for final 

reclassification. 

 

1.3.4 Novel and disappeared climate distributions: 

 Novel and disappeared climate distributions for each climate surface were computed at all 

resolutions and eras from the reclassified climate surfaces. Novel climates were defined as modern 

climate bins that did not exist during the LGM and disappeared climates as LGM climate bins that did not 

exist in the modern period (Figure1.1a). Using these definitions, I then determined which bins constituted 

novel, disappeared, or shared climates for each climate variable and era. Pixels for each climate surface, 

resolution, and era were reclassified to 1) novel, 2) disappeared, 3) shared, or 4) novel and disappeared 

climates based on each variable’s novel and disappeared bin definitions. If a specific climate existed only 

during the LGM, the climate range was considered “disappeared” (blue pixels) (Figure1.1c). If a specific 

climate exists only in the modern era, the climate range was considered “novel” (red pixels) (Figure1.1b). 

If a specific climate existed during both time periods, the climate was considered “shared” (black pixels), 
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as that specific range of climate could be found either during the LGM or modern era within the extent of 

Alaska (Figure 1.1 b&c). Lastly, it is possible for a specific climate range to be both novel and 

disappeared at the same location. For instance, during the LGM, minimum temperatures at some locations 

were so cold they are not observed in the modern era. However, in the exact same location during the 

modern era, minimum temperatures may have warmed so much due to anthropogenic climate change that 

they were not present during the LGM. If a specific climate was both novel and disappeared at the same 

location, the climate range was considered “both” (purple pixels) (Figure 1.1d).  

The locations of novel and disappeared climates were summarized by computing the fractional 

area of novel, disappeared, and shared climates for the entire state of Alaska, as well as the fractional area 

among nine “Level 2” Alaskan ecoregions defined by the U.S. Geologic Survey (Gallant, Binnian, 

Omernik, & Shasby, 1995).  

I quantified the amount of novel, disappeared, or shared climate at a given spatial resolution, and 

used a Spearman’s rank correlation coefficient to determine whether the relationship between novel, 

disappeared, or shared fractional climate and spatial resolution was positive, negative, or no apparent 

relationship.  
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Figure 1.1: Classification process for “novel”, “disappeared”, “shared”, and “both” climates. 2 km climate 
surfaces were used for visualization purposes for this figure, as “both” climates are almost nonexistent at 
60 m resolution. Novel climates are red, disappeared climates are blue, shared climates are black, and both 
novel and disappeared climates are purple. (a) Histogram of LGM and Modern radiation climate bin ranges 
to define novel, disappeared, and shared climate bins. (b) Novel/Shared climate locations at 10km. (c) 
Disappeared/Shared climate locations at 10km. (d) Union of maps B and C. Purple pixels are intersection 
locations where climate was both novel and disappeared at 10km. 
 
 

1.4 RESULTS 

1.4.1 Downscale model evaluations: 

All temperature model (Tmin, Tmax, Tave) assumptions of GLMs methods were met. Correlation 

coefficients (0.86, 0.86, 0.89), root mean square error (RMSE, 5.36, 5.96, 4.92 °C), and percent bias (-

0.041, -0.032, -0.37) for the final GLM for Tmin, Tmax, and Tave models suggests that all models were well 

calibrated (Figure 1.2 a-c). Independent variables (TCoarse, elevation, TCI, and radiation) for all three 

temperature models had significant p-values of <0.001, confirming the importance of all model 

predictors. In all three models, coarse modeled temperature, followed closely by radiation, were the most 

significant contributors to model performance. Elevation and TCI, while still important, were less 

significant as determined by exploratory random forest model variable importance plots (Figure 1.3 a-c).  

All model assumptions of the precipitation GLM were met. The Pearson’s correlation coefficient 

(0.59), RMSE (0.90 mm), and percent bias (0.91) for the precipitation model indicated that the basic 
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GLM model was well calibrated (Figure 1.2d). As expected, my precipitation model correlation was 

lower than my temperature downscale models because downscaling procedures modeling precipitation 

are less well understood than downscale temperature methods. However, the precipitation model’s 

correlation falls within the range of reported correlation values from other previously downscale 

precipitation products, indicating that my model is well calibrated to current precipitation model standards 

(Cannon, 2011; Maraun et al., 2010; Wetterhall, Bardossy, Chen, Halldin, & Xu, 2006; Widmann, 

Bretherton, & Salathé Jr, 2003). Independent precipitation variables (Pcoarse, log(elevation), log(slope), 

wind direction, and orographic effects) had significant p-values of <<0.001, again, validating my choice 

in predictors. Wind speed was the least significant predictor for my precipitation model with a p-value of 

0.0961, however, wind speed was still somewhat beneficial in predicting precipitation patterns across 

Alaska. Overall, elevation was the most significant predictor of precipitation, followed by slope, coarse 

modeled precipitation, orographic effects, wind speed, and lastly, wind direction as the weakest predictor 

as indicated by my random forest variable importance plots (Figure 1.3d). 
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Figure 1.2: Downscale model evaluations. All plots are observed weather station data vs. predicted 
downscaled climate values, with correlation, RMSE, % Bias, and a 1:1 red correlation line to represent at 
hypothetical perfect correlation between observed and predicted values. (a) Tmin Model, (b) Tmax Model, (c) 
Tave Model, (d) Precipitation Model performance. 
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Figure 1.3: Variable importance plots for downscaled climate models based on random forest model 
preliminary investigations. (a) Tmin Model, (b) Tmax Model, (c) TAve Model, (d) Precipitation model. Bold 
precipitation model variables indicate variables selected from random forest importance and spatial 
resolution.  
 
 
1.4.2 Downscaled novel and disappeared climate distributions: 

Disappeared climates were defined as LGM climates that did not exist during the modern era. 

Seven of the eight downscaled climate surfaces contained disappeared climates across Alaska, with rain 

being the exception. Overall, disappeared climates covered 55.9% of Alaska from the LGM to modern 

era. Tmax displayed the highest amount of disappeared climates in Alaska, covering 33.6% of the state 
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alone, while water deficit displayed the lowest amount of disappeared climates at 2.9% (Table 1.2). For 

most ecoregions, disappeared climates covered <30% of Alaska, although >30% of some coastal 

ecoregions were covered by disappeared climates, especially for Tmax (Figure 1.4). Ecoregions most 

affected by disappeared maximum temperature climates were the Coast Mountain Transition (85.0%) and 

Pacific Mountain Transition (82.5%). The Coastal Rainforest ecoregion displayed the largest amount of 

disappeared snow climates in the state, covering 40.0% of the region (Figure 1.4). Western Alaska also 

experienced disappeared climates in the Aleutian Meadows and Bering Taiga ecoregions due to 

disappeared PET climates, however, the fraction of disappeared climates were not as high as the southern 

portion of the state at 37.1 and 43.9% respectively (Figure 1.4). The Bering Tundra ecoregion contained 

the least amount of disappeared climates for all climate variables, containing <10% of disappeared 

climates for the entire region. All other ecoregions and climate variables contained varying amounts of 

disappeared climates across Alaska (Figure 1.4).  



   23 

 

Figure 1.4: Fractional area coverage of disappeared climates for the nine “Level 2” Alaskan ecoregions. 
[1] Alaska Range Transition, [2] Aleutian Meadows, [3] Arctic Tundra, [4] Bering Taiga, [5] Bering 
Tundra, [6] Coast Mountain Transition, [7], Coastal Rainforests, [8] Intermontane Boreal, [9] Pacific 
Mountain Transition.  

 

6 
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Novel climates were defined as modern climates that did not exist during the LGM. Of the eight 

downscaled climate surfaces, only radiation, rain, and Tmin contained novel climates in Alaska. Novel 

climates were less common than disappeared climates in Alaska, covering <10.0% across all of Alaska 

from the LGM to modern era. Tmin displayed the highest amounts of novel climates in Alaska, covering 

5.5% of the state, while radiation displayed the smallest amount of novel climates at 2.0% (Table 1.2). 

Most ecoregions were covered by <10% of novel climates for all three climate variables, except for the 

Aleutian Meadows and Coastal Rainforests ecoregions of Alaska from Tmin climates (Figure 1.5). Tmin 

contained the largest amounts of novel climates for both ecoregions, at 56.9% and 24.8%, respectively. 

While less than novel Tmin climates, novel rain also affected these ecoregions covering 29.7% and 17.6%, 

respectively (Figure 1.5). Radiation contained some novel climates in Alaska, however all ecoregions in 

Alaska had <4% novel radiation climates present in Alaska from the LGM to modern era (Figure 1.5).  
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Figure 1.5: Fractional area coverage of novel climates for the nine “Level 2” Alaskan ecoregions. [1] 
Alaska Range Transition, [2] Aleutian Meadows, [3] Arctic Tundra, [4] Bering Taiga, [5] Bering Tundra, 
[6] Coast Mountain Transition, [7], Coastal Rainforests, [8] Intermontane Boreal, [9] Pacific Mountain 
Transition.  
 
 

Shared climates were defined as climates that existed during both the LGM and modern eras. As 

expected, all eight climate surfaces contained shared climates throughout Alaska, since no climate surface 

was classified as 100% novel or disappeared. Overall, shared climates generally covered more of Alaska 

than novel or disappeared climates, with a minimum fractional area of 40.6%. Shared water deficit 

climates covered 97.1% of the state, indicating water deficit climates have changed least in Alaska (Table 

1.2). Additionally, shared Tmax climates covered 66.4% of Alaska, indicating that Tmax climates have 

changed the most in the state from the LGM to modern era (Table 1.2). This was expected as water deficit 

contained no novel climates and the lowest amount of disappeared climates, while Tmax contained no 

novel climates, but the largest amount of disappeared climates in Alaska. While all Alaskan ecoregions 
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contained various amounts of shared climates, there were isolated cases where ecoregions were <80% 

shared, although this was expected whenever high novel or disappeared climates covered the same 

ecoregion and climate variable (Figure 1.6). The Arctic Tundra, Bering Tundra, and Intermontane Boreal 

ecoregions contained the highest overall shared climate distributions in Alaska at 84.9%, 98.28%, and 

75.3%, indicating that these ecoregions are generally less affected by post-glacial climate change (Figure 

1.6). The Coast and Pacific Mountain Transition ecoregions experienced the lowest amounts of shared 

climates at 15.0% and 17.5%, indicating that these ecoregions are generally more affected by post-glacial 

climate change (Figure 1.6). 
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Figure 1.6: Fractional area coverage of shared climates for the nine “Level 2” Alaskan ecoregions. [1] 
Alaska Range Transition, [2] Aleutian Meadows, [3] Arctic Tundra, [4] Bering Taiga, [5] Bering Tundra, 
[6] Coast Mountain Transition, [7], Coastal Rainforests, [8] Intermontane Boreal, [9] Pacific Mountain 
Transition.  
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While it is possible for downscaled novel and disappeared climates to exist at the same location 

from the LGM to modern era, only a very small fraction of Tmin climates displayed this phenomenon in 

Alaska at 60 m resolution and was determined to be insignificant as it only covered <0.001% (39.6 km2) 

of Alaska. At coarser resolutions there was a noticeable increase in climates classified as “both” novel 

and disappeared for some climate surfaces at a location, however this portion of the results concentrates 

on my high resolution downscaled climate surfaces (“both” climates vs. spatial resolution is discussed in 

the next section). 

 
Table 1.2: Percent cover (based on fractional area) for novel, disappeared, and shared climates for each 
climate variable in Alaska from the LGM to modern era.  

Type AET Water 
Deficit PET Snow Tmax Rad Tmin Rain 

% Novel 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 5.5% 3.7% 
% Disappeared 15.6% 2.9% 15.6% 6.0% 33.6% 13.0% 6.3% 0.0% 
% Shared 84.4% 97.1% 84.4% 94.0% 66.4% 85.1% 88.2% 96.3% 
% Both 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 
 

1.4.3 No-analogue climates vs. spatial resolution: 

As spatial resolution becomes coarser, the fractional area of novel and disappeared climates generally 

increases, while the fractional area of shared climates generally decreases. All disappeared climate 

surfaces, except minimum temperature, had moderate (0.40 to 0.59) to very strong (0.80 to 1.00) 

Spearman’s rank correlations between spatial resolution and fractional area, indicating that as the spatial 

resolution of climate becomes coarse, the fractional area of disappeared climates increases (Figure 1.7). 

All novel climate surfaces had a strong (0.60 to 0.79) to very strong (0.80 to 1.00) Spearman’s rank 

correlation coefficient between spatial resolution and fractional area, indicating that as spatial resolution 

of climate becomes coarser, the fractional area of novel climates increases as well (Figure 1.8). All 

climate variables had a negative relationship between fractional area of shared climate and spatial 

resolution, as expected. The strengths of Spearman’s rank correlations varied from moderate (-0.40 to 

0.59) to very strong (-0.80 to -1.00) (Figure 1.9).
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Figure 1.7: Disappeared climate vs. spatial scale plots. Spatial scale (60 m -12 km) plotted against 
fractional area of disappeared climates for each climate variable. The Spearman’s Rank correlation 
coefficient is included on each plot. 
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Figure 1.8: Novel climate vs. spatial scale plots. Spatial scale (60 m -12 km) plotted against fractional 
area of novel climates for each climate variable. The Spearman’s Rank correlation coefficient is included 
on each plot.
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Figure 1.9: Shared climate vs. spatial scale plots. Spatial scale (60 m -12 km) plotted against fractional 
area of shared climates for each climate variable. The Spearman’s Rank correlation coefficient is included 
on each plot. 
 
 

An exception to the previous patterns, disappeared Tmin, produced a very strong (0.80 to 1.0) 

negative Spearman’s rank correlation of 0.81 (Figure 1.7). The negative relationship of this correlation 

coefficient suggests that as spatial resolution becomes coarser, the amount of fractional disappeared Tmin 

climates decreases. 
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The relationship between spatial resolution and fractional area of “both” novel and disappeared 

climates at the same locations was less clear than novel, disappeared, and shared climates (Figure 1.10). 

While “both” climates were virtually nonexistent at 60 m resolution for all climate surfaces except Tmin 

climates, the occurrence of “both” climates noticeably increased for rain and radiation climate surfaces at 

coarser resolutions. Tmin climate surfaces did not have any noticeable increase in both novel and 

disappeared Tmin climates occurring in the same location at any resolution. “Both” climates for radiation 

displayed a very strong Spearman’s rank correlation between spatial scale and fractional area, indicating 

that as radiation climate becomes coarser, the amount of both novel and disappeared climates at the same 

location will increase. However, rain and Tmin had extremely low correlations, indicating that an increased 

occurrence of both novel and disappeared climates at the same will not always occur as climate resolution 

becomes coarser (Figure 1.10). 

 

 

Figure 1.10: “Both” climate vs. spatial scale plots. Spatial scale (60 m -12 km) plotted against fractional 
area of “both” climates for each climate variable. The Spearman’s Rank correlation coefficient is included 
on each plot. 
 
 

1.5 DISCUSSION 

As climate changes, either from natural processes and/or human activity, novel and disappeared 

climates will arise (Jackson & Overpeck, 2000; Williams & Jackson, 2007). Long term climate patterns 

that affect observed novel and disappeared climates, whether in the past, present, or future, arise not only 
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from geographic and temporal changes in the environment, but also as a result of atmospheric and 

topographic processes that occur across many spatial scales (Ackerly et al., 2010).  

Determining how climate resolution affects climate change predictions is necessary to avoid 

under or overestimating the potential impacts of climate change for ecological analyses dependent on 

gridded climate data. I downscaled climate data at 11 spatial resolutions spanning three orders of 

magnitude to include climate data at resolutions used for previous climate-change impact projections to 

identify the distribution and abundance of novel, disappeared, and shared climates across Alaska, as well 

as how the spatial resolution of climate data used affects these estimates of climate (e.g. PRISM, 

BioClim, NASA Nex, CMIP) (Christopher Daly et al., 2004; Fick & Hijmans, 2017; Thrasher et al., 

2013). I found that novel and disappeared climates primarily affected Southern Alaska. Additionally, 

climate data generally increased the fractional area of novel and disappeared climates as the resolution 

became coarser, however, it was also possible, although rare, to decrease the fractional area or have no 

apparent relationship between the fractional area of novel and disappeared climates and climate data 

resolution.  

 

1.5.1 Novel, disappeared, and shared climate distributions: 

All my downscaled climate surfaces, except rain, contained disappeared climates across Alaska. 

Rain was the only surface that did not contain disappeared climate because 1) rain values cannot reach 

lower than 0 mm of precipitation (unlike temperature), and 2) environmentally, warm modern climates 

produce more rain and less snow, which can only extend the upper limit of possible modern rain values. 

Therefore, the combination of these two effects produced no unique rain values for my LGM climate 

surfaces. Overall, disappeared climates primarily affected the south-eastern Coast Mountain and Pacific 

Mountain Transition ecoregions, where modern climate has significantly warmed causing the extremely 

low maximum temperature climates of the LGM to disappear. Disappeared snow climates primarily 

affected the Southern Coastal Rainforest ecoregion, where more precipitation now falls as rain, as 

opposed to snow during the LGM, causing high levels of LGM snow climates to disappear for the modern 
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era. While the fractional area of disappeared climates in Western Alaska were not as high as Southern 

Alaska, the Aleutian Meadows and Bering Taiga ecoregions experienced some disappeared AET and PET 

climates, likely as a result of higher radiation climates during the LGM than the modern era. There is 

some evidence from paleoclimate simulations that suggests less atmospheric water vapor reduced the 

amount of low-level clouds and increased the amount of high-level clouds, which could result in 

increased surface radiation while still producing a cooling effect over arctic regions during the LGM 

(Webb, Rind, Lehman, Healy, & Sigman, 1997).  

Only three of my eight downscaled climate surfaces contained novel climate distributions in 

Alaska. These surfaces included radiation, rain, and minimum temperature, however, novel climates were 

a rarer occurrence than disappeared climates. Less novel climates, when compared to disappeared 

climates, is likely an artifact of possible climate ranges of Alaska, since I considered only Alaska as my 

reference area of interest for this study, which ignores all other possible climate ranges across Earth. 

Additionally, as with disappeared rain climates, novel rain, snow, radiation, AET, PET, and water deficit 

climates are environmentally restricted. Therefore, due to natural post-glacial and/or anthropogenic 

climate change, only the southernmost portion of Alaska could experience significant amounts of novel 

climates. Modern climate change has led to increasingly warmer minimum temperatures in the southern 

Aleutian Meadows and Coastal Rainforest ecoregions. Consequently, this has eliminated extremely cold 

minimum temperatures that were present during the LGM, while simultaneously increasing the amount of 

rainfall in the state due to more precipitation being converted to rain over snow. Additionally, these 

ecoregions are along the southern-most portions of the state, which are lowest in latitude and should 

therefore be warmer than any other region of Alaska.  

Since novel and disappeared climates identify areas most affected by climate change, shared 

climates fundamentally capture regions that have been least affected by post-glacial climate change. 

Novel and disappeared climates largely affected Southern Alaska, resulting in lower fractional areas of 

shared climates in the south, and higher fractional areas in the North. As expected, the most northern 

ecoregions of the state, the Arctic Tundra, Bering Tundra, and Intermontane Boreal ecoregions, contained 
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the largest amount of shared climates, while the southernmost ecoregions, the Coast and Pacific Mountain 

Transition ecoregions, contained the least amount of shared climates.  

The occurrence of both novel and disappeared climates existing at the same location on my 

downscaled climate surfaces was virtually non-existent. Tmin contained a few pixels (11) classified as both 

novel and disappeared, however, this phenomenon was deemed insignificant because it covered such a 

small fraction of Alaska’s area. At larger spatial resolutions, there are instances where some climate 

variables have a substantial increase in both novel and disappeared climates occurring at the same 

location. However, areas where both novel and disappeared climates occurred at the same location at 

resolutions >60 m were not considered for analysis on the distribution of novel and disappeared climates. 

Novel and disappeared climates are an important characterization of climate change that help 

identify the vulnerability of ecoregions, since they can push species beyond their ideal climate space and 

lead to ecologically risky scenarios such as migration, range shifts, and extinction. The Aleutian 

Meadows and Coastal Rainforests of Alaska stood out as the most vulnerable ecoregions to post-glacial 

climate change. These two regions generally experienced both large amounts of novel and disappeared 

climates across all climate variables when compared to all other ecoregions in Alaska. Ecoregions with 

large shared climate distributions may have important implications for identifying glacial refugia because 

they represent regions that have experienced the least climate change through time and contain the most 

stable climates in Alaska. The Bering Tundra was the least vulnerable Alaskan ecoregion to post-glacial 

climate change, as all variables in the region contained extremely low fractional areas of novel or 

disappeared climates.  

While I have identified the least and most climatically vulnerable ecoregions to post-glacial 

climate change, large variations in the abundance and distribution of novel and disappeared climates will 

also affect the significance of each climate variable on a refugia as specified by the optimal niche species. 

Situations arose where one to few climate variables contained substantial amounts of novel or disappeared 

climates, while many others contained low to no novel or disappeared climates. This is important for two 

reasons: First, if an ecoregion contained significant fractional areas of novel or disappeared climates, it 
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does not necessarily imply that all climate variables within the same ecoregion experienced high amounts 

of novel or disappeared climates. For instance, the Coast Mountain Transition ecoregion in Alaska 

contained the largest fractional area of disappeared TMax climates. Most other climate variables within the 

same ecoregion contained low amounts of disappeared climates (Figure 1.4).  

Second, large fractional areas of novel or disappeared climate does not necessarily equate to 

ecological significance for a species (e.g. niche theory). For example, a species may have a large 

temperature threshold (generalist) with a low snow threshold (specialist). Even with the significant 

warming of the LGM (85.0% disappeared Tmax), Tmax climates may still fall within the optimal range of 

the species. However, while changes to LGM snow climates were low (2.3% disappeared snow), this 

change may be ecologically risky for the species if the changes fall outside its optimal snow range. In this 

case, disappeared snow climates are significant to a species, not disappeared Tmax climates, even though 

there was a far greater fractional area of disappeared Tmax climates. This suggests that disappeared or 

novel climates may only be important if they are a limiting factor or extend beyond the optimal niche for 

a species (De Baar, 1994; Vandermeer, 1972). If the change in climate is a limiting factor, the risk of 

distribution shifts or extirpation may increase for a species. However, if the change in climate is not 

limiting, the existence of novel and disappeared climates may have minimal impacts on a species.  

 

1.5.2 Climate grid resolution and fractional area patterns: 

In my study, the amount of novel and disappeared climate distributions was affected by climate 

grid resolution in two primary ways. First, as climate data becomes coarser, there is a positive relationship 

between the fractional area of novel and disappeared climates and spatial resolution. This pattern occurs 

for two reasons: 1) coarser climate data reduced environmental variability, which in turn removes the 

extreme ranges of climate, and 2) there are fewer climates that fall within the shared climate bin 

definition, resulting in fewer climates classified as shared while simultaneously increasing the frequency 

of novel or disappeared climates simply due to the coarser scales (Figure 1.11). As expected, all shared 

climates displayed a negative relationship between climate resolution and fractional area (Figure 1.9). 
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Shared climates should display a negative relationship because as the fractional area of novel and 

disappeared climates increases with spatial resolution, the fractional area of shared climates must decrease 

because it accounts for areas not classified as either novel or disappeared. Previous studies by Franklin et 

al. (2013), Heikkinen, Luoto, Kuussaari, and Toivonen (2007), and Seo et al. (2009) found similar results 

modeling species distributions, finding that coarse climate data predicts larger suitable habitats compared 

to finer resolution climate data. My study confirms this trend, although my analysis is focused solely on 

the distribution of climate as opposed to the distribution of species.  

 

 

Figure 1.11: Coarser resolutions can increase the amount of novel and disappeared climates in Alaska. 
Modern climate ranges are red bars, LGM climate ranges are blue bars, and the overlap of modern and 
LGM climates are dark blue bars. The red boxes are novel climate bins, blue boxes are disappeared climate 
bins, and purple boxes are shared climate bins.  
 
 

The positive relationship between spatial resolution and novel and disappeared climate 

distributions suggests that the use of coarse grid climate data may have led to the overestimation of novel 

and disappeared climate distributions in previous analyses, and thereby cause overestimates of potential 

impacts of climate change. This may lead to significant errors when trying to determine where post-
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glacial climate change has occurred. Additionally, this error can be propagated into other analyses that 

depend on climate grid data, such as species distribution models, which implies that these studies may 

also over or underestimate predicted species ranges, refugial locations, and other climate-species analyses 

(Franklin et al., 2013; Randin et al., 2009; Trivedi, Berry, Morecroft, & Dawson, 2008). 

Second, as climate data becomes coarser, there can be a negative relationship between spatial 

resolution and the amount of novel and disappeared climates, although this trend only occurred with my 

Tmin disappeared climate surfaces. This pattern can occur when novel or disappeared climates are 

extremely spatially heterogeneous (i.e. patchy) (Figure 1.12). At coarser resolutions, my Tmin climate 

aggregation scheme successively grouped similar temperatures together at each progressively coarser 

resolution (Wu, 1999). Because my 60 m disappeared Tmin surface was extremely patchy, successively 

aggregating the surface to coarser resolutions averaged out the few pixels classified as disappeared Tmin 

climates and progressively reclassified coarser Tmin disappeared climates to Tmin shared climates. Randin 

et al. (2009) reported a similar negative pattern when comparing the distribution of alpine species, 

however Randin’s study considered climate resolution with varying study extents. The combination of 

climate resolution and study extent was found to cause a negative relationship between the amount of 

suitable alpine species habitats and climate resolution/extent as their species distribution models were 

unable to capture the full environmental niche of alpine species at regional scale climate resolutions or 

limited study extents. Therefore, the negative pattern between alpine species distributions and climate 

data resolution from Randin et al. (2009) was not a product of heterogeneously complex climate surfaces.   
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Figure 1.12: Coarser resolutions can decrease the amount of novel and disappeared climates in Alaska. 
Disappeared Tmin at 120m displays regions with patchy, but random spatial distributions, while coarse 
disappeared Tmin climates display clustered distributions. Isolated patches of disappeared Tmin climates at 
high resolutions will be reclassified to shared Tmin climates when upsampling Tmin climates to coarser scales 
using standard pixel aggregation methods. 
 

 

Although a negative relationship between fractional area and spatial resolution occurred on only one 

climate surface, this phenomenon suggests it is possible to underestimate the amount of novel and 

disappeared climates when using coarse gridded climate products. Again, significant errors may arise 
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when estimating post-glacial climate change distributions leading to serious underestimations of novel 

and disappeared climate distributions, the potential impacts of climate change, and potentially 

propagating this error into other climate dependent analyses. However, this pattern is less likely to occur 

since it depends on the patchiness of novel and disappeared climates as opposed to gridded climate data’s 

ability to capture landscape scale processes influencing climate patterns. 

No significant relationship between fractional area of novel and disappeared climates and spatial 

resolution is possible and this pattern did not visibly arise within my study. There were some cases where 

the Spearman’s rank correlation was ‘moderate’, although this does not necessarily indicate a 

relationship. However, while all surfaces displayed moderate to strong correlations, there was a fair 

amount of variation in fractional area as spatial resolution became coarser. This suggests that there may 

be significant thresholds occurring at various spatial scales. The exact causes of this variation are still 

unclear, but I hypothesize that this variation may be a result of distortion caused by aliasing artifacts when 

up-sampling my 60 m downscaled climate surfaces to coarser scales (Haines-Young & Chopping, 1996; 

Kennie & McLaren, 1988), or may be caused by Moiré fringes (Gustafsson, 2000) producing overlooked 

oscillations across a landscape. While Moiré fringes are a well-known issue affecting raster image 

processing and visualization, to the best of my knowledge, no studies have investigated whether naturally 

occurring processes and phenomenon known to influence climate or other Earth systems, generate spatial 

Moiré distributions. 

 

1.5.3 Conclusions: 

It is important to understand how climate change through time affects the distribution and 

abundance of novel and disappeared climates, as well as how choice in gridded climate data resolution 

affects our estimations of climate change. If my 60 m downscaled climate surfaces accurately reflect 

physiographic processes affecting climate at multiple scales, my fine scale climate products should 

improve estimations of novel and disappeared climate distributions, compared to coarser climate 

products, especially in areas with high topographic complexity.
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CHAPTER 2: IS CLIMATE VELOCITY AN ADEQUATE MEASURE OF SPECIES 

MIGRATION RESPONSES TO CLIMATE CHANGE? 

2.1 ABSTRACT 

Many species are shifting their ranges in response to climate change. Species survival will not 

only depend on the persistence of suitable bioclimatic niche space, but their ability to keep pace with 

shifts in their niche space. Climate velocity has become a commonly used index of the speeds required for 

a species to keep pace with climate change. However, climate velocity is a simple measure of the rate at 

which climate is changing that disregards species-specific thresholds to their environment. I computed the 

climate velocity for eight climate variables using 60 m downscaled climate data in Alaska for the Last 

Glacial Maximum (LGM) and modern era. With the same climate variables, I then estimated LGM and 

modern distributions of white spruce (Picea glauca). I calculated the bioclimatic niche velocity of white 

spruce by using the model structure of climate velocity hybridized with white spruce distribution maps to 

estimate white spruce’s migration response to keep pace with post-glacial climate change. I then 

compared all climate velocity estimates to each other and to my white spruce migration velocity estimates 

to determine if climate velocity is a suitable predictor of a species’ migration response to climate change. 

I show that different climate variables yield different rates and direction of climate velocity, and that 

individual climate velocity estimates correlate poorly with the bioclimatic niche velocity as estimated for 

the Alaskan white spruce from the LGM to modern era. My results suggest that climate velocity alone 

does not provide suitable estimates of species migration responses to climate change due to climate 

velocity not accounting for species ecology and climatic tolerances that affect migration responses. My 

results may help explain unexpected or conflicting observational evidence of climate-driven species range 

shifts. 
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2.2 INTRODUCTION 

The influence of climate change on Earth’s biota partly depends on the rate at which climate is 

changing and its interactions with a species’ ability to migrate to favorable habitat (Sandel et al., 2011). 

Threats to global biodiversity from climate change make it important to identify the rates and directions 

species have, are, or will need to migrate in response to climate change (Chen, Hill, Ohlemuller, Roy, & 

Thomas, 2011). Shifts in species and biome ranges are expected to cause the rearrangement of ecosystems 

including the creation of novel communities across the globe (Pereira et al., 2010; Williams, Jackson, & 

Kutzbacht, 2007). Many species have already responded to climate change by altering the timing of their 

life cycles or shifting their geographic distributions towards higher latitudes or elevations (Chen et al., 

2011; Colwell, Brehm, Cardelus, Gilman, & Longino, 2008; Parmesan & Yohe, 2003). In recent years, 

climate velocity has become proposed as a practical approach to estimate the rate and direction with 

which an organism would need to migrate to maintain an isocline for a given climate variable (Dobrowski 

et al., 2013), with studies projecting large shifts in the distribution of terrestrial biomes, including some 

biome types requiring displacements of more than 1 km yr-1 to track anthropogenic climate change 

(Loarie et al., 2009).  

Climate velocity is a spatially explicit measure of the local rate of displacement of climatic 

conditions over the Earth’s surface and is derived from the ratio of temporal and spatial gradients of a 

climate variable (M. T. Burrows et al., 2011; Dobrowski et al., 2013; Loarie et al., 2009). Because climate 

velocity integrates shifts in climate with local spatial topo-climate gradients, it can capture important 

buffering effects of climatic heterogeneity as well as varying bioclimatic consequences, making it a more 

biologically relevant measure than traditional climate anomaly surfaces (Sandel et al., 2011). For 

example, locally homogeneous climate landscapes will experience higher climate velocities than 

heterogeneous ones, as a species may need to migrate a considerable distance to track a 1°C increase in 

temperature on flat terrain, yet only need to migrate a short distance to track a similar temperature change 

uphill in mountainous terrain. Therefore, species in homogeneous environments are not only likely to 
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experience higher climate velocities but may be required to have strong dispersal abilities to track 

temperature changes as opposed to species in heterogeneous environments (Sandel et al., 2011).  

While climate velocity has been asserted as an important index for proxying the rate at which 

species will need to migrate to track climate change, three major criticisms exist: 1) climate velocity lacks 

complex multi-climate interactions (Dobrowski et al., 2013; Loarie et al., 2009), 2) climate velocity lacks 

sensitivity to the resolution of gridded climate surfaces used to compute its spatial and temporal gradients 

(Loarie et al., 2009), and 3) climate velocity lacks species-specificity (Loarie et al., 2009), and are 

reviewed as follows: 

First, climate change involves complex interactions among multiple climate factors (Cubasch et 

al., 2013). However, many previous ecological analyses utilizing climate velocity focus on observed and 

predicted changes in temperature because there is less uncertainty in the direction and magnitude of 

temperature change than other climate variables (Loarie et al., 2009; Murphy et al., 2004). While our 

understanding of temperature change may be better than other climate variables, I must consider that 

climate is more than just temperature, and that species are limited by any number of climate and non-

climate variables (Vandermeer, 1972). Therefore, the rate and directions estimated by climate velocity 

will vary depending on variables resulting in counterintuitive movements and/or multiple or opposing 

influences on biota (Dobrowski et al., 2013).  

Second, estimates of climate velocity have been found to be sensitive to the spatial grain used in 

climate change analyses (Loarie et al., 2009). This can significantly affect conclusions drawn from 

climate velocity used to estimate potential extinction risk for species, because spatio-temporal patterns of 

climate in heterogeneous environments are complex, and the scale of climate used in analyses should 

reflect the scale at which vegetation (or other organismal types) actually experience their environment 

(Dobrowski, Abatzoglou, Greenberg, & Schladow, 2009; Urban, Miller, Halpin, & Stephenson, 2000). 

Therefore, the resolution of climate data used in analyses should match the scale in which organisms 

migrate and experience climate. For example, Loarie et al. (2009) chose to use climate surfaces at 1 km 

resolution because many species and large temperature changes occur at the kilometer scale. Similarly, 
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studies focusing on landscape scale or smaller scale (< 1 km) population migrations should use climate 

data at resolutions less than 1 km.  

Lastly, and perhaps most importantly, while climate velocity can be used to correlate patterns of 

species endemism and biotic specialization with climate change (Dobrowski et al., 2013), it simply 

estimates the rate and direction of climate change, and is therefore not a measure of a species migration 

rate (Loarie et al., 2009). Climate velocity can be used to understand range edge expansions and 

contractions, ecotones, and to estimate general distance responses all species may need to migrate to 

avoid extinction due to climate change. However, individual species are adapted to their environments 

leading to specialized tolerances, and therefore will respond to climate change with a wide diversity of 

responses driven by internal species trait differences and external drivers of change (Chen et al., 2011). 

Thus, different species should be expected to exhibit distinct, individualistic responses to climate velocity 

(Ackerly et al., 2010). For species with small climate tolerances, climate velocity estimates may 

approximate the rate of migration needed to avoid extinction, while climate velocity estimates for species 

with large tolerances will tend to underestimate migration speeds required to potentially avoid extinction 

(Loarie et al., 2009). Additionally, species do not all migrate at the same pace or direction of movement 

or experience the same expansion and contraction of their ranges. No assumptions should be made about 

the tolerances of individual species, as the implications of climate change will depend on individual 

critical thresholds, breadth of tolerance, and limiting factors of a species (Loarie et al., 2009).  

With the latter issue in mind, I used the concept of bioclimatic velocity (Serra-Diaz et al., 2014) 

to test the effectiveness of climate velocity when actual species information is used. Bioclimatic velocity 

uses the same model structure as climate velocity but integrates species-specificity and multivariate 

climate via a species distribution modeling (SDM) framework. As with climate velocity, I summarize the 

speed at which a species must migrate by deriving the ratio of temporal and spatial gradients of a species’ 

potential distribution; i.e. the rate and direction the species must migrate to keep the same probability of 

occurrence. SDMs correlate combinations of abiotic environmental variables (i.e. the fundamental niche) 

most closely associated with the known presence/absence information of a species, then use this 
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relationship to identify and project past, present, or future suitable environments on a landscape (Soberon 

& Peterson, 2005). Thus, the geographic distribution of a species estimated from SDMs is a spatial 

reflection of a species-specific climatic niche. In this analysis, I am interested in species responses to 

climate change, and focus on the bioclimatic niche of species (i.e. potential niche) rather than all 

environmental change (i.e. fundamental niche). Therefore, bioclimatic niche velocity is a measure of the 

rate and direction a species needs to move to keep pace with climate change and remain in a similar, 

suitable environment.  

Since previous studies claim that climate velocity is well suited to assess the effects of climate on 

biota and the dispersal capacity of organisms (M. T. Burrows et al., 2011; Dobrowski et al., 2013; 

Hamann, Roberts, Barber, Carroll, & Nielsen, 2015; Loarie et al., 2009; Ohlemuller, 2011; Sandel et al., 

2011), climate velocity should predict similar migration responses of a species as bioclimatic niche 

velocity. Therefore, in this study I ask:  

Is climate velocity a suitable predictor of a species’ response to climate change?  

To address this question, I used 60m resolution downscaled climate surfaces as my environmental 

predictors, modeled LGM and modern Alaskan climate velocities, and modeled the bioclimatic niche 

velocity of the white spruce (Picea glauca). I refer to bioclimatic velocity (Serra-Diaz et al., 2014) as 

bioclimatic niche velocity because it is more clear than Serra-Diaz et al. (2014) terminology since it 

differentiates that I am estimating white spruce migration from a potential distribution, not their realized 

niche. Rather than using traditional central tendency type models to derive a species’ distributions 

(Guisan & Thuiller, 2005), I utilized environmental limiting factor (ELF) methods (M. Austin, 2007; 

Cade & Noon, 2003; Greenberg, Santos, Dobrowski, Vanderbilt, & Ustin, 2015; Sankaran et al., 2005) to 

quantify the potential niche of a species and to avoid issues with unmeasured factors (Cade & Noon, 

2003; Huston, 2005; Thomson, Weiblen, Thomson, Alfaro, & Legendre, 1996). I chose white spruce 

because it is one of the most dominant and widespread tree species in boreal and sub-boreal Alaska and 

has survived in Alaska from the LGM to modern era despite drastic changes to the regions’ climate over 

geologic time (Abrahamson, 2014). I compared climate velocity to the calibrated bioclimatic niche 
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velocity to determine if climate velocity adequately predicts a species’ response to climate change. If 

climate velocity is a suitable predictor of species’ responses to climate change, then climate velocity 

should correlate with the magnitude and direction calculated from the white spruce distributions.  

 

2.3 METHODS 

2.3.1 White spruce sample data:  

I collected spatially explicit presence data for white spruce in Alaska from LANDFIRE’s 

Reference Database (LFRDB), which includes natural community occurrences and canopy cover for 

species across the state (LANDFIRE, 2016). LFDRB aggregates data from sources such as USFS Forest 

Inventory Analysis Vegetation Data (Smith, 2002), USGS national Gap Analysis Program (USGS-GAP, 

2018), and NPS Inventory and Monitoring (Marion, 1991). Species occurrences for this dataset have been 

collected at both plot and individual levels, depending on where the source samples were collected. Of the 

44,475 reported species occurrences in Alaska, 3,084 of the observations reported white spruce present. If 

the observation stated white spruce as present, but did not report a % tree cover estimate, the observation 

was dropped from my database. I considered the remaining 41,391 occurrences that did not report white 

spruce present as pseudoabsence observations and were assigned a percent cover of 0% (Figure 2.1). 
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Figure 2.1: Map of white spruce presence-absence sample locations. Blue points are locations where white 
spruce was recorded as present. Red points are pseudoabsence locations where no white spruce was 
recorded. 
 

2.3.2 Climate surfaces: 

 I used a set of 30-year average 60m downscaled climate surfaces that included the mean 

temperature of the warmest month (Tmax), the mean temperature of the coldest month (Tmin), annual rain, 

snow, actual and potential evapotranspiration (AET, PET), climatic water deficit (Def), and mean “true-

sky” surface radiation (Rad) for the LGM (~21,000 ya) and modern era (1975-2005). Further details on 

the dataset used, and the development of all products, are provided in Chapter 1 methods. Table 2.1 

summarizes the Alaska-wide values of this dataset. In addition to my climate surfaces, I compiled 60m 

resolution for surfaces of glacier presence based on the Alaska PaleoGlacier Atlas (Manley & Kaufman, 

2002), proximity to water bodies (Clearinghouse, 1990, 1998), and elevation using the United States 

Geologic Surveys (USGS) 1 arc-second digital elevation maps (DEM) (USGS, 2016).   
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Table 2.1: Statistical summary list of initial climate and physical environmental surfaces used for climate 
velocity and ELF model for the Alaskan LGM and modern eras. 

Environmental Variable Units Min Max Mean SD 
LGM 

Annual AET mm 0.0 651.7 184.9 88.1 
Annual Deficit mm 0.0 420.6 22.5 33.1 
Annual PET mm 0.3 667.4 207.4 93.9 
Annual Rain mm 0.0 3452.9 231.2 223.2 
Annual Snow mm 0.2 5494.4 782.2 439.2 
Mean Radiation w 0.0 261.0 131.0 23.4 
Tmax °C -21.0 30.5 16.9 8.1 
Tmin °C -36.1 4.3 -21.9 3.4 
Glacier Presence NA 0 1 0.08 0.27 
Proximity to Water km 0 81.6 0.75 0.66 
Elevation m.a.s.l. -25.5 6150.3 441.9 543.8 

Modern 
Annual AET mm 0.0 445.4 183.5 49.0 
Annual Deficit mm 0.0 314.4 11.5 15.0 
Annual PET mm 1.7 463.5 195.0 52.0 
Annual Rain mm 0.0 4424.7 505.6 330.0 
Annual Snow mm 0.0 3420.5 717.2 263.1 
Mean Radiation w 0.0 209.7 97.8 17.1 
Tmax °C -13.2 31.3 21.0 3.7 
Tmin °C -34.7 6.6 -18.1 5.4 
Glacier Presence NA 0 1 0.01 0.09 
Proximity to Water km 0 81.6 0.75 0.66 
Elevation m.a.s.l. -25.5 6150.3 441.9 543.8 

 
 

2.3.3 Environmental limiting factor model (ELF): 

Tree cover-bioclimate database: I fused my white spruce % tree cover database with the modern 

environmental predictor values extracted from the position of the vegetation plots. The final database 

contained 44,475 observations across Alaska describing white spruce’s environmental envelope. 

Environmental limiting factor analysis: I followed similar methods as described in Greenberg et al. (2015) 

to perform an environmental limiting factor (ELF) analysis to estimate the fundamental niche of white 

spruce tree cover. First, for each environmental variable, I modeled the maximum potential % tree cover 
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across the possible range of values for each specific environmental variable using quantile regression. I 

applied a log-odds transformation to the tree cover values in my database (Warnes, Bolker, & Lumley, 

2014), with a minimum of 0% tree cover. White spruce can have 100% cover in Alaska, however my 

database only reported a maximum of 90%, which was used as the maximum value cap in my log-odds 

transformation. Every hull model was created using the following general quantile regression formula: 

EQ 2.1: Log-Odds(Maximum Tree Coverx,y,t) = f(BSpline(Climatev,x,y,t),q = 0.99) 

Where Maximum Coverx,y,t represents estimated maximum potential tree cover at location (x,y) during 

either the LGM or modern era (t), Climatev,x,y,t represents the potential limiting bioenvironmental variable 

(v) at location (x,y) during the LGM or modern era (t) with a B-Spline function applied, and q represents 

the percentile limit for the quantile regression model requirement. I chose a percentile of 99% to capture 

only maximum tree cover values of white spruce for the entire range of possible environmental values. 

Once modeled, I inverse log-odds transformed Maximum Tree Coverx,y,t back to its original 0-90% value 

range. Unlike the rest of the environment variables, for glacier presence/absence I classified a location 

with a glacier present as 0% tree cover, and locations with no glaciers present as 90% tree cover.(Helm & 

Collins, 1997).  
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Figure 2.2: ELF scatterplots for the range of each climate variable vs. the range of white spruce tree cover 
used to create and model my ELF maximum tree cover hull models. Black scatterplot dots represent sample 
data from tree cover-bioclimate database. Red lines represent hull modeled tree cover for a given climate 
value from climate variable’s hull model. 
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Model validation: I validated my ELF models by binning each environmental variable into 100 equal 

sized bins across its possible range and extracting the maximum tree cover value within each 

environmental bin. This created a unique N=100 validation dataset for each environment variable with 

close to maximum tree cover values that could be validated using Pearson’s correlation, root mean 

squared error (RMSE), and percent bias statistics. All hull models had a Pearson’s correlation coefficient 

value > 0.70, indicating strong positive relationships between my modeled maximum tree cover and 

sampled maximum tree cover data (Table 2.2). RMSE values were variable among all my 

bioenvironmental variables for my ELF models with my water proximity surfaces having the lowest tree 

cover error of 6.29%, and radiation containing the largest error at 33.35% (Table 2.2). All models, except 

radiation, had negative % biases, which indicates my models underpredicted maximum potential % tree 

cover somewhat (Table 2.2). While the snow-tree cover hull model had a positive % bias of 1.72, this was 

extremely low and considered acceptable because one validation point was greater than the modeled 

maximum tree cover response at the top of the bell curve (Figure 2.2). 

 
Table 2.2: Summary statistic results for each ELF Hull quantile regression model for all climate variables 
used to estimate LGM and modern white spruce potential % tree cover. 
Environmental Variable Correlation RMSE % Bias 
AET 0.87 21.98  -12.74 
Deficit 0.82 26.89  -17.03 
PET 0.93 17.10  -10.36 
Radiation 0.74 33.35  -22.59 
Rain 0.83 25.10  -14.74 
Snow 0.97 8.49  1.72 
Tmax 0.89 20.96  -11.16 
Tmin 0.70 34.94  -25.42 
Elevation 0.92 17.14 -8.44 
Water Proximity 0.93 6.29 -1.26 

 
 

Potential tree cover and limiting factor surfaces: Once all hulls were modeled for each environmental 

variable and white spruce tree cover, I applied the models to each corresponding environmental variable 

for the LGM and modern era producing 11 modern maximum tree cover surfaces and 11 LGM maximum 
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potential tree cover surfaces. I stacked the 11 maximum potential tree cover surfaces for both eras and 1) 

determined the minimum potential tree cover value (limiting value) across all variables for each pixel and 

2) determined which environmental variable was responsible for limiting white spruce maximum tree 

cover at each pixel, producing two potential maximum tree cover surfaces (LGM and modern), and two 

limiting factor surfaces (LGM and modern). If one environmental variable was found to be the limiting 

factor, that pixel was reclassified as the limiting factor. If more than one variable was responsible for 

limiting tree cover, the pixel was reclassified as “multi”, indicating that more than one environmental 

factor corresponded with limiting tree cover.  

 

2.3.4 Climate and bioclimatic niche velocity calculations: 

I calculated climate velocity following the methods of Dobrowski et al. (2013) and M. T. 

Burrows et al. (2011) on climate surfaces between the LGM and modern eras for Tmin, Tmax, rain, snow, 

radiation, AET, PET, and water deficit. Climate velocity vectors were calculated as follows:  

EQ 2.2: Vc,x,y = k
.E
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.E

.4l
.E

.7m
n = o|@A.+,ZEp\]@E| %q,rrr	7+3,*⁄

343Z(*0AD+(@A.+,ZE))
t = 2+4+,*7+3,  

where Vc,xy represents the speed component of climate velocity, dc/dt is the change in climate variable over 

time (temporal gradient, unit/yr) and dc/dxy is the change in the same climate variable over distance 

(spatial gradient, unit/m ) (Michael T Burrows et al., 2014).  

Bioclimatic niche velocity vectors were derived using nearly identical methods as climate 

velocity vectors but using the modern and LGM ELF surfaces. The following formula was used to derive 

the speed component of bioclimatic niche velocity: 

EQ 2.3: Vp,x,y = uv@A.+,ZDp	\]@D %q,rrr	7+3,*⁄ v
343Z(*0AD+S@A.+,ZDT)

w = 2+4+,*7+3,  

where dp/dt is the change in tree cover or SDM probability over time (temporal gradient, % tree cover/yr) 

and dp/dxy is the change in tree cover or SDM probability over distance (spatial gradient, % tree cover/m). 

The final white spruce bioclimatic niche velocity surfaces (speed and direction) were computed where the 
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LGM ELF potential % tree cover was greater than 0, and the habitat suitability at a location decreased 

between the LGM and modern eras (i.e. potential % tree cover decreased in the modern era). Regions 

where white spruce could not persist during the LGM indicate areas where Alaska’s climate did not fall 

within white spruce’s climatic niche. While biologically relevant, the information ultimately cannot 

produce bioclimatic niche velocity estimates. Additionally, regions where white spruce’s habitat 

suitability increased from the LGM to modern era indicate areas where the climate has remained within 

white spruces climatic niche, and therefore places no pressure on white spruce to migrate due to post-

glacial climate change.  

 

2.3.5 Climate vs. bioclimatic niche velocity analysis: 

To quantify the strength of the relationship between both measures, I computed the Pearson’s 

correlation coefficient between my estimated bioclimatic niche velocity and every climate variable’s 

individual speed and direction for the entire state of Alaska. Additionally, I computed the standard 

deviation between all climate velocity surfaces for speed and direction to determine how individual 

climate velocity measurements correspond to one another. As the directional components of climate and 

bioclimatic velocity are circular, I used circular mean, standard deviation, and correlation functions to 

compute directional statistics in this analysis with the I “circular” R package (Agostinelli & Lund, 2013; 

Jammalamadaka & Sarma, 1988). 

  

2.4 RESULTS 

2.4.1 White spruce distributions: 

White spruce had greater distributions during the modern era than the LGM (Figure 2.3). My 

modern white spruce tree cover estimates suggest that a vast majority of Alaska’s terrestrial surface is 

climatically suitable for white spruce based on the environmental variables I chose, and as data shows 

94.1% of Alaska supports white spruce tree cover >0% (Figure 2.3). 69.2% of Alaska was also 

climatically suitable for white spruce to survive the LGM with tree cover >0% (Figure 2.3). Overall, 
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78.9% of the land area of Alaska became more suitable for white spruce, 18.9% became less suitable for 

white spruce, and 2.1% had no change in suitability for white spruce from the LGM to modern era (Figure 

2.3).  

 

 
Figure 2.3: Difference between LGM and modern white spruce potential % tree cover distributions for all 
of Alaska where LGM distributions were > 0 % tree cover. Red regions indicate areas where modern tree 
cover is greater than LGM tree cover, and similarly, blue regions indicate areas where LGM tree cover was 
greater than modern tree cover. Increased tree cover is assumed synonymous with increased habitat 
suitability. Black regions indicate areas where white spruce did not occur during the LGM and were not 
considered for this analysis. 
 
 

White spruce distributions were limited by all climate variables used as predictors in my ELF 

models, suggesting that all climate variables have influence on white spruce distributions in Alaska 

during both the LGM and modern eras (Figure 2.4).  
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Figure 2.4: Spatially explicit maps of climatic factors most limiting white spruce across Alaska during the 
LGM (left) and modern (right) eras.  
 
 

2.4.2 Climate velocity trends: 

Mean climate speeds ranged from 0.02 m/yr to 1.68 m/yr (Table 2.3). The mean speed between 

all climate speeds by pixel was 0.30 m yr-1 with a standard deviation of 1.1 m yr-1. The standard deviation 

of climate speeds ranged from 0.05 to 9.37 m yr-1
 (Table 2.3). The mean standard deviation between all 

climate speeds by pixel was 0.52 m yr-1, with a standard deviation of 2.29 m yr-1(Figure 2.5a).  
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Table 2.3: Climate and bioclimatic niche velocity mean and standard deviation summary statistics for speed 
and direction. 

 Speed (m yr-1) Direction (Degrees) 
Variable Mean  Stdev  Mean  Stdev  
AET 0.13 0.22 193.82° 2.75° 
Deficit 0.07 0.14 191.23° 2.85° 
PET 0.15 0.23 188.24° 2.56° 
Radiation 1.68 9.37 25.16° 2.66° 
Rain 0.15 0.41 7.54° 3.25° 
Snow 0.02 0.05 162.19° 3.33° 
Tmax 0.79 1.79 125.32° 2.74° 
Tmin 0.22 0.32 357.24° 2.93° 
Species 0.49 1.31 353.45° 2.86° 

 
 

Mean directions for AET, deficit, and PET were primarily south, radiation, rain, and Tmin were 

north, and snow and Tmax climate velocities were southeast (Table 2.3, Figure 2.6). The mean direction 

between all climate directions by pixels was 180.51° (south), with a standard deviation of 53.50°. The 

standard deviation of climate speeds ranged from 2.56 to 3.33° (Table 2.3). The mean standard deviation 

between all climate speeds by pixel was 87.87°, with a standard deviation of 18.48° (Figure 2.5b)   
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Figure 2.5: The standard deviation of climate velocity speed and directions. a) climate speed. b) climate 
direction. In both inset maps, each arrow represents the direction climate is changing for each climate 
variable.  
 
 

 

Figure 2.6: Climate direction histograms broken into 36 equal sized bins of 10°. Inner circles represent 
fraction of climate velocity pixels within bin from 0-5%.  
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2.4.3 Bioclimatic niche velocity trends: 

Of the 69.2% of Alaska’s land area that was potentially inhabited by white spruce during the 

LGM (Figure 2.3), 54.6% of this area experienced an increase in white spruce habitat suitability, and 

14.6% of this area experienced a decrease in white spruce habitat suitability from the LGM to modern era 

(Figure 2.7a). Within the 14.6% land area where white spruce experienced a decrease in habitat 

suitability, white spruce bioclimatic niche speed averaged 0.49 m yr-1, and standard deviation of 1.31 m 

yr-1 (Table 2.3, Figure 2.7a). On average, white spruce was required to move north (353.45°) to keep pace 

with climate change, with a standard deviation of 2.86° (Table 2.3, Figure 2.7b). 

 

 
Figure 2.7: The bioclimatic niche velocity of white spruce from the LGM to modern era in Alaska. a) The 
bioclimatic niche speed of white spruce. Black background indicates regions where white spruce existed in 
the modern era, but not the LGM. Grey regions indicate regions where potential % tree cover increased 
from the LGM to modern era. b) The bioclimatic niche direction of white spruce. Fraction of direction is 
summarized in 10° bins from 0°-360°. Inner circle lines represent the % of pixels in each 10° directional 
bin in 2% intervals. 
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2.4.4 Bioclimatic niche vs. climate velocity: 

Bioclimatic niche speed was higher than climate speed for all climate variables except Radiation 

and Tmax (Table 2.3). When correlated with bioclimatic niche speeds, climate speeds had a Pearson’s 

correlation coefficient ranging from 0.002 (snow) to 0.390 (PET) (Figure 2.8) with a mean correlation 

coefficient across all climate variables of 0.20.  

 

 
Figure 2.8: Density scatterplots of climate vs. bioclimatic niche speeds with correlation coefficient values 
for each climate-bioclimatic niche velocity pair. 
 
 
 

When bioclimatic niche velocity was correlated with direction, climate directions had a Pearson’s 

correlation coefficient ranging from -0.17 (PET) to 0.39 (Tmax) with a minimum absolute correlation of 

0.005 (snow) (Figure 2.9). The mean absolute correlation across all climate variables was 0.13.   
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Figure 2.9: Density scatterplots of climate vs. direction with correlation coefficient values for each climate-
bioclimatic niche velocity pair. 
 
 

2.5 DISCUSSION 

2.5.1 Validity of white spruce migration response to post-glacial climate change: 

Underlying this analysis is the assumption that the bioclimatic niche velocity is closer to true 

estimates of a species migration response to climate change than climate velocity, minimally assuming 

that my ELF models of white spruce are accurate. The quality of my ELF climate hull models used to 

estimate white spruce maximum potential % tree cover performed well (Figure 2.2, Table 2.3) and 

indicate that my final ELF white spruce surfaces for the LGM and modern era more than adequately 

estimate the potential maximum tree cover of white spruce at a location based on the most limiting 

climatic factor. ELF models can be limited by the number of samples used in an analysis (Littell, 

Peterson, & Tjoelker, 2008; Rehfeldt, Crookston, Warwell, & Evans, 2006), however, I used a large 

number of modern white spruce samples (n > 40,000), scaled to the extent of Alaska, and which captured 
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rare climatic thresholds of the climate variables used in this analysis. Additionally, my white spruce 

bioclimatic velocity estimates correspond with Alaskan white spruce LGM paleobotany analyses, 

suggesting that my bioclimatic niche velocity estimates may be capturing accurate rates and direction of 

white spruce migration following the LGM. For example, my bioclimatic niche velocity speeds are within 

a reasonable range to spruce migration estimates from the LGM to modern era using fossil evidence (300-

400 m/yr) (Fastie, 1995), and modeled wind dispersed rates for wind dispersed conifer species (30-80 

m/yr) from the LGM to modern era (Clark, Lewis, & Horvath, 2001). Additionally, the locations of low 

white spruce bioclimatic velocities correspond with phylogeographic analyses of LGM Alaskan white 

spruce refugial locations (Anderson, Hu, & Paige, 2011; Zazula, Telka, Harington, Schweger, & 

Mathewes, 2006). Since refugia are locations that preserve local habitat where species can persist during 

periods of regionally adverse climate (Gavin et al., 2014), low climate velocities indicate regions where 

climate changes slowly, producing less pressure for a species to migrate, and more likely to harbor 

refugia. Migration rates estimated from fossil data has been criticized as many of these studies have 

estimated migration rates that exceed the dispersal capabilities of many plants (Provan & Bennett, 2008). 

However, the rates reported by both Fastie (1995) and Clark et al. (2001) are within reason, providing 

migration rates that accommodate changes in climate and the possibility of climatic refugia.  

 

2.5.2 Climatic niche requirements complicate climate velocity interpretations: 

I demonstrated that climate velocity estimates did not predict similar rates and directions to one 

another throughout Alaska (Figure 2.5), suggesting that different climate variables used to derive climate 

velocity will not necessarily estimate similar rates or directions to one another, or a species migration 

response to climate change. This has two implications for studies relying on climate velocity to estimate 

species migration responses to climate change.  

First, many climate velocity studies focus on a single climate variable (e.g. temperature) to derive 

potential migration responses to climate change (Ackerly et al., 2010; M. T. Burrows et al., 2011; 

Dobrowski et al., 2013; Loarie et al., 2009; Pinsky, Worm, Fogarty, Sarmiento, & Levin, 2013; Sandel et 
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al., 2011) and do not necessarily consider how relevant that single climate variable is to a species 

migration response to climate change. If climate velocities derived from different climate variables 

produced similar rates and directions, using climate variables of no biological consequence to estimate 

climate velocity would have no impact on estimated migration responses, as they would be similar. 

However, I show that different climate variables produce different climate velocities, reiterating the 

importance of identifying the most critical climate variable(s) of a species to estimate accurate migration 

responses to climate change for that species (Figure 2.5, Table 2.3). Therefore, climate velocities derived 

from inconsequential climate variables will likely lead to inaccurate estimates of a species’ response to 

climate change. My results are consistent with previous studies highlighting the importance of using 

biologically relevant climate variables in climate change studies. For example, Crimmins, Dobrowski, 

Greenberg, Abatzoglou, and Mynsberge (2011) reported Sierra Nevada tree species are tracking changes 

in climatic water balance downhill, rather than cooler temperatures uphill, and Dobrowski et al. (2013) 

reported similar down-slope trends from evaporative demand climate velocities. Therefore, climate 

variables need to be species-relevant in climate velocity analyses as different climate variables estimate 

different migration responses to climate change. 

Second, even if a species-relevant climate variable is used to estimate climate velocity, many 

species climatic niche are comprised of several climate variables (Woodward, 1987), with many species 

climatic variables influencing their response to climate change through migration (Hutchinson, 1957; 

Jackson & Overpeck, 2000). Simple univariate climate velocities will inaccurately estimate species 

migrations responses for species that are spatially and temporally controlled by a complex array of 

climate variables. In my analysis, all climate variables used to derive ELF tree cover surfaces influenced 

the distribution and the migration response of Alaskan white spruce to post-glacial climate change (Figure 

2.4). Therefore, it would be inappropriate to assume that not including all of the eight climate velocity 

estimates in this analysis would adequately estimate the migration response of white spruce. Dobrowski et 

al. (2013) reiterates this concern using climatic water balance variables (e.g. AET and water deficit) that 

indirectly combine biologically relevant and physically based variables that characterize the concurrent 
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availability of both water and energy for biota, as well as temperature velocity that captures important life 

history on plants freezing. They found that while climatic water balance and temperature velocities 

displayed similar speeds, AET and water deficit typically moved in opposing directions to temperature 

velocity. 

 

2.5.3 Inconsequential estimates of climate velocity: 

In addition to the differences between climate velocity estimates, I also showed that all climate 

velocities in this analysis had poor correlations with bioclimatic niche velocity (Figures 2.8 & 2.9), 

suggesting that climate velocity and bioclimatic velocity do not estimate similar species migration 

responses to climate change. The difference between speed and direction estimates of climate velocity 

and bioclimatic niche velocity can be explained because climate velocity produces migration estimates at 

locations that are meaningless where a species does not need to migrate to suitable climates.  

First, unlike bioclimatic niche velocity, climate velocity analyses do not remove regions where a 

species does not occur (M. T. Burrows et al., 2011; Dobrowski et al., 2013; Loarie et al., 2009). Climates 

that falls within the empty environmental space of a species niche is never suitable for the species at any 

point in time, and will not permit successful species migration (Jackson & Overpeck, 2000), making 

species migration responses derived from climate velocity at these locations misleading. For example, 

Alaskan white spruce did not occur at all pixels within the boundary of Alaska during either the LGM or 

modern era (Figure 2.3) and did not produce bioclimatic niche velocities in these regions. However, all 

climate variables produced climate velocities that predict migration response for white spruce in these 

unoccupied regions, suggesting that spruce will respond to climate change in these regions. Second, 

unlike bioclimatic niche velocity, climate velocity is incapable of identifying locations where climate 

becomes more or less suitable for a species, producing velocities in locations with no climatic pressure to 

migrate. For example, locations where the climatic suitability for a species decreases over time implies 

the species faces pressure to migrate to more climatically suitable habitat. Conversely, locations where 

habitat suitability increases for a species places no climatic pressure for a species to migrate, as it is 
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already suitable, again making velocities at these locations misleading (Figure 2.10) (Jackson & 

Overpeck, 2000). Both of these realizations reinforce Serra-Diaz et al. (2014) statement concerning the 

importance of transforming physical climate space to biotic climate space to help guide the location and 

timing of species migration responses to climate change to set conservation priorities and successful 

management actions (Hannah, Midgley, & Millar, 2002; Mawdsley, O’malley, & Ojima, 2009). 

 

 
Figure 2.10: Climate velocity does not identify locations where a species habitat suitability increases or 
decreases and will estimate rates and direction where a species has no need to migrate. The graph depicts 
the white spruce maximum tree cover across all possible values of LGM and modern AET climate values. 
T1 represent the end of the LGM, approximately 18,000 ya, while T2 represents the modern era, 0 ya. If the 
spatial gradient of AET from the LGM (T1) to modern (T2) is > 0, a 100 mm AET change from T1 to T2 
results in the temporal gradient of AET velocity to be 0.005 mm/yr. If the spatial gradient of white spruce 
tree cover from T1 to T2 is > 0, the same 100 mm change in AET produces a bioclimatic niche velocity of 
0 mm/yr. In this example, a 100 mm change in AET from T1 to T2 leads to no change in the habitat suitability 
of white spruce, indicating no climatic pressure to migrate to other “more suitable” AET climates. 
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2.5.4 Limitations and future directions of bioclimatic niche velocity: 

While bioclimatic niche velocity is an alternate method to estimate a species migration response 

to climate change, uncertainties and limitations exist. Similar errors and uncertainties inherent to climate 

velocity will be propagated into bioclimatic niche velocity estimates since bioclimatic niche velocity is 

derived using the same model structure as climate velocity. Previously recognized concerns of climate 

velocity, such as the uncertainty of the spatial and temporal gradient of climate velocity (Loarie et al., 

2009), sensitivity to the spatial grain of the analysis (Dobrowski et al., 2013; Loarie et al., 2009; Serra-

Diaz et al., 2014), and analyses at spatial scales relevant to dispersal capacity of a species (Loarie et al., 

2009; Wiens, 1989) will also occur in bioclimatic niche velocity. 

Similarly, since bioclimatic niche velocity depends on surfaces such as ELF models or SDMs, 

any assumptions, errors, or limitations of ELF/SDM models can propagate into bioclimatic niche velocity 

calculations, such as evolutionary capacity, measured and unmeasured biotic factors, dispersal 

ability/accessibility, as well as modeling techniques (Araujo & Guisan, 2006; Soberon & Peterson, 2005). 

Since the goal of this analysis was to develop a species informed measure of climate velocity, I did not 

work on improving SDM modeling techniques previously acknowledged, or address the accuracy of my 

white spruce distribution surfaces (Araujo & Guisan, 2006; M. Austin, 2007; M. P. Austin & Van Niel, 

2011; Buckley et al., 2010; Franklin et al., 2013; Soberon & Peterson, 2005; Wiens, Stralberg, 

Jongsomjit, Howell, & Snyder, 2009). However, the more accurate an SDM is to a species realized niche, 

the more likely bioclimatic velocity will accurately estimate species migration responses to climate 

change. Further research is needed to understand how the limitations of SDMs influence and affect 

conclusions drawn from bioclimatic niche velocity analyses. 

  

2.5.5 Conclusions: 

Climate velocity has been proposed as an important index to understand the rate species may be 

required to move to keep pace with climate change. However, climate velocity is a simple univariate 

measure of climate change which does not include any actual species specific information yet is still used 
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to infer species responses to climate change (M. T. Burrows et al., 2011; Carroll et al., 2017; Dobrowski 

et al., 2013; Hamann et al., 2015; Loarie et al., 2009; Ohlemuller, 2011; Sandel et al., 2011). If climate 

velocity were a suitable predictor of the rate and direction white spruce needed to move to keep pace with 

post-glacial climate change, I should have seen the climate velocity estimates 1) predict similar rates and 

directions to each other and 2) correlate well with bioclimatic velocity speed and directions, even though 

this measure incorporates multiple climate factors and white spruce specific responses to climate change.  

In this study I compared individual climate velocity metrics to “bioclimatic niche velocity” 

metrics which incorporate multivariate climate and species ecology to reveal species-specific responses to 

climate change not captured in climate velocity. Using bioclimatic niche velocity, I demonstrated that 

climate velocity is not well suited to assess species responses to climate change because it can use 

species-irrelevant climate variables, relying on simplistic univariate climate variables to derive complex 

migration responses, and estimating migration responses in areas where a species does not occur or has no 

climatic pressure to migrate. 
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CHAPTER 3: CALIFORNIA FOREST COMMUNITY MIGRATION RESPONSES TO 21ST 

CENTURY CLIMATE CHANGE 

3.1 ABSTRACT 

Conservation strategies aim to protect Earth’s biodiversity from environmental change, however, 

community-centric conservation efforts assume modern communities protected today will continue to 

persist in the future and commonly employ static protected-area techniques based on the assumption 

climate will remain stable in the future. Static and stable assumptions of community dynamics assume 

that species will migrate with each other in response to climate change and form similar community 

assemblages in the future. I calculated the bioclimatic niche direction for 72 of California’s native tree 

species derived from habitat suitability maps calibrated to high-resolution downscaled climate data for the 

modern (1985-2015) and future (2070-2100) eras and estimated the directions each species must migrate 

to keep pace with end-of-century climate change. Using each species’ modern habitat suitability maps, I 

identified and classified the different forest community types that occurred throughout California during 

the modern era, and identified whether the species of a community, at a location, displayed uniform 

(anisotropic) migration directions, or random (isotropic) migration directions in response to climate 

change. A vast majority of California forest community types displayed isotropic species migration 

directions. My results suggest that community conservation strategies should not assume modern 

communities will exist as they are today at the end of the century as different species will migrate in 

different directions in response to climate change which may lead to the destabilization of extent 

community assemblages at the end of the 21st century.  

 

3.2 INTRODUCTION 

Many modern species have persisted through previous long-term natural climate cycles by 

shifting their ranges in order to remain within suitable habitat (Davis & Shaw, 2001; Huntley & Webb III, 

1989; McGlone, 1996; Schoonmaker & Foster, 1991). As has occurred in the past, modern climate 
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change can be expected to lead to shifts in the geographic distribution of organisms (Chen, Hill, 

Ohlemuller, Roy, & Thomas, 2011; Hickling, Roy, Hill, Fox, & Thomas, 2006; Parmesan & Yohe, 2003; 

Thomas, 2010), however the rate and magnitude of modern climate change raises concerns as to whether 

species will be able to track climate change through migration and establishment with potentially serious 

implications for biological communities if they cannot (Davis, 1992; Walther et al., 2002). Assessing the 

vulnerability of individual species to climate change over the next 100 years is highly uncertain and 

complex (Serra-Diaz et al., 2014). Limited time and resources, as well as the ever increasing number of 

species affected by climate change, challenge our ability to preserve biodiversity, leading conservation 

strategies to focus on entire biological communities, rather than individual species (Olden, 2003).  

Community-level conservation strategies have been perceived as a suitable and practical 

approach to biodiversity conservation (Franklin, 1993; Urbanska, 2000; Young, 2000) since communities 

provide habitat for individual target species and can be used to gauge ecosystem function and diversity 

(Jewell, 2000). However, community conservation is characteristically concerned with protecting current 

communities under the notion that modern community types will continue to exist in the future (Hannah, 

Midgley, & Millar, 2002), as highly structured, repeatable, and identifiable associations of species 

controlled by climate in space and time (Clements, 1916; Collins, Glenn, & Roberts, 1993). This is 

surprising as it is well accepted that individual species have unique fundamental niches that cause 

independent responses to climate change (Gleason, 1926; Hutchinson, 1957; Jackson & Overpeck, 2000), 

making it possible for modern community assemblages to disappear and give rise to new communities 

(Hannah, Midgley, & Millar, 2002; Williams & Jackson, 2007). 

Conservation efforts seeking to protect communities from climate change as they currently exist 

may become obsolete if species moving independently of one another lead to the formation of novel 

communities with no modern analogs. This has two implications for the success of climate-oriented 

community conservation: first, most conservation strategies employ the static conservation paradigm, 

disregarding changing patterns of communities over time, with most reserves being established as static 

protected-areas (Hannah, Midgley, Lovejoy, et al., 2002). This makes dynamic conservation strategies, 
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that are necessary to protect biodiversity from climate change, impossible (Noss & Harris, 1986). Few 

reserve strategies have been set up with reference to climate change, under the unspoken assumption that 

climate, and therefore communities, will remain stable (Hannah, Midgley, Lovejoy, et al., 2002).  

Second, conservation strategies aimed at protecting representative examples of modern 

community types will fail if the protected community disappears through the arrival of novel community 

assemblages regardless of protected areas. Similarly, if the focus of conservation is on modern 

communities, many possible no-analogue communities will be excluded from future conservation efforts 

(Hannah, Midgley, & Millar, 2002). It is well accepted that individual species have their own unique 

multi-dimensional fundamental niche that controls their capacity to migrate and survive in an area 

(Hutchinson, 1957; Jackson & Overpeck, 2000), not all realized combinations of climate fall within the 

full fundamental niche of a species, resulting in different portions of the fundamental niche realized 

through time (Figure 3.1) (Jackson & Overpeck, 2000). As a result, species vary in their timing, 

magnitude, and direction of response to climate change, with communities migrating as continuous, 

independent units (Gleason, 1926; Jackson & Overpeck, 2000; Williams & Jackson, 2007). When climate 

change leads to new combinations of climate, new portions of a species’ fundamental niche become 

available, leading to potentially novel associations of species as well as the disappearance of modern 

community assemblages (Figure 3.1) (Williams & Jackson, 2007).
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Figure 3.1: Niche-based conceptual diagram explaining how novel communities can arise from climate 
change. The realized environment will change as climate change occurs (open black ellipses, present and 
time t). The fundamental niches of 3 different species are represented in the 2-dimensional climate space 
by the red, yellow, and blue ellipses. At each time period, the realized niche is represented by the overlap 
between the realized climate environment and a species niche. During the present time frame, each species 
dominants a forest community, with no possible overlap of the realized niche with the other two species. 
Therefore, at present, only communities dominated by species 1 (yellow), 2 (red), or 3 (blue) exist. 
However, if the right climate arises, the realized environment intersected each species fundamental niche 
where each species niche overlaps with portions of all other species fundamental niche. Therefore, at time 
t, available communities of species 1, 2, and 3 occur, as well as the arrival of 4 novel community 
assemblages (1&2 (orange), 1&3 (green), 2&3 (purple), and 1&2&3 (brown). Adapted from Figure 5 
Jackson and Overpeck (2000). 
 

 

California is an appropriate region to investigate how forest communities may respond to future 

climate change as land areas within the state are biodiversity hotspots, contain sensitive biomes to climate 

change (Sala et al., 2000; Underwood, Klausmeyer, Morrison, Bode, & Shaw, 2009), and California’s 

Natural Community Conservation Planning Act mandates the conservation of ecological communities 

(California Department of Fish and Game, 2003). Additionally, the United States Department of 
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Agriculture, Forest Service (USFS) has focused on California forest types to inform economic and forest 

management planning (Christensen, Waddell, Stanton, & Kuegler, 2016).  

In this analysis I identified whether the tree species comprised of California forest communities 

will migrate in response to 21st century climate change in similar directions or migrate independent of one 

another. Anisotropic migration responses suggests the species of a community migrate together in 

response to climate change together, thus the community shifts together, (Clements, 1916) and supports 

the benefits of community-level conservation efforts. Isotropic migration responses suggests the species 

of a community migrate indecently of each other in response to climate change, thus the community will 

not shift together (Gleason, 1926), and suggests community-based conservation efforts may be in vain. 

Therefore, in this analysis I ask: Are species in modern Californian forest communities moving in a 

singular direction with respect to climate change or are they moving independent of one another?  

To address these questions, I use similar methods to Serra-Diaz et al. (2014)’s bioclimatic niche 

velocity model, using species distribution models (SDMs) of 72 Californian tree species applied to 

modern (1985-2015) and future (2070-2100) climates to examine species-specific directional responses to 

climate change and identify the directions each species would need to migrate to keep pace with future 

climate change, summarized by their current community type.  

 

3.3 METHODS 

My goal was to first estimate species’ migration directions with response to 21st century climate 

change, and then to summarize these changes by community type to determine whether species in these 

communities are expected to move together or move independent of one another. I downscaled climate 

rasters to 30 m resolution and used this data with USFS Forest Inventory Analysis (FIA) sample plot data 

to derive fine-scale habitat suitability maps of 72 tree species that exist in California during the modern 

era (1985-2015) and projected their distributions for the end of the 21st century (2070-2100). Using my 

modern and future SDMs, I derived the bioclimatic niche velocity of each species to identify the direction 

each species would need to migrate at a location to keep pace with climate change. The modern habitat 



   79 

suitability maps were also used to classify and identify unique California forest community types 

throughout the state by the most dominant tree species present at a site. I then identified whether the 

species of California forest communities will migrate together (anisotropic) or independent of each other 

(isotropic) by determining if each species of a community, at a location, displayed random or uniform 

directional distributions.  

 

3.3.1. Bioclimatic niche direction: 

Input data: 

Climate data: I downscaled California climate to produce 30 m resolution modern (1985-2015) and future 

(2070-2100) monthly climate normals for minimum temperature (Tmin), maximum temperature (Tmax), 

average temperature (Tave), shortwave radiation, rain, snow, actual evapotranspiration, potential 

evapotranspiration, and water deficit using similar methods described in Chapter 1 and S. Z. Dobrowski et 

al. (2013). I collected spatially explicit monthly weather station data from N=1,919 weather stations 

across California from the National Oceanic and Atmospheric Administration’s (NOAA) Global 

Historical Climatology Network (GHCND) (Menne, Durre, Vose, Gleason, & Houston, 2012) for Tmin, 

Tmax, Tave, and total monthly precipitation. I acquired fine-scale topography of California from the United 

States Geologic Survey’s (USGS) 1 arc-second (~30 m) digital elevation maps (DEM) (USGS, 2016). To 

represent the coarse-scale, time-varying climate, I acquired 1° general circulation model (GCM) monthly 

climate grids from the National Center for Atmospheric Research’s (NCAR) Community Earth System 

Model (CESM, v. CCSM4), Coupled Atmospheric Model (CAM2), modern historical, and future RCP 

8.5 model runs for near-surface, monthly Tmin, Tmax, Tave, precipitation, short-wave downwelling surface 

radiation Icould, wind (U, V), and relative humidity (Gent et al., 2011; Kluzek, 2011). 

My temperature and precipitation downscale models follow the same general form as my downscaled 

models from Chapter 1, with additional variables added to my precipitation model, as the variables in 

Chapter 1 for Alaskan precipitation were not acceptable to predict high resolution California precipitation 

patterns (Table 3.1).
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Table 3.1: Input predictor surfaces for temperature and precipitation downscale models.  

Variable Unit Resolution 
Temperature Downscale Input Surfaces 
Temperature (Min, Max, or Average) °C 100 km 
Radiation W/m2 30 m 
TCI Unitless 30 m 
Elevation m.a.s.l. 30 m 
Precipitation Downscale Surfaces 
Precipitation mm 100 km 
Tave °C 30 m 
Relative Humidity mm 100 km 
Elevation m.a.s.l. 5 km 
Slope Degrees 500 m 
TCI Unitless 30 m 
Orographic Effect Proxy Degrees 500 m 
Distance to Ocean m 30 m 

 
 

My downscaled climatic evaporative demand products, actual and potential evapotranspiration 

(AET and PET), and water deficit, were computed using the Penman-Monteith equation (Allen, Pereira, 

Raes, & Smith, 1998) for PET. A snowmelt model (Dingman, 2002; Solomon Z Dobrowski, 2011) was 

used to compute rain and snow. AET and water deficit were computed using PET, rain, and snow to 

determine the previous months available water supply. If there is an excess of soil water, AET is the same 

as PET because evapotranspiration is not limited by water availability. However, if available water is less 

than the site’s maximum potential available water, AET will be less than PET (AET = PET – DEF), 

because maximum water evaporative demand cannot be met by the available amount of water present at 

the site (S. Z. Dobrowski et al., 2013; Stephenson, 1998). 

Forest Inventory Analysis Data: I used Forest Inventory and Analysis (FIA) plot locations of all available 

tree species in California provided by the United States Department of Agriculture, Forest Service 

(USFS) (Smith, 2002). The FIA dataset consists of a set of field sample locations distributed across the 

United States and contains, among other measurements, species presence for all species found in a plot. 

While 86 tree species were identified in the FIA database (Christensen et al., 2016), I removed 14 species 
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from the analysis that were either not native to California, ornamental, reported only by genus, or was a 

wide-ranged species with less than five observations that is commonly found in more than 10 counties in 

California (USDA NRCS National Plant Data Team) (Table 3.2). The remaining 72 species were the 

focus of my analysis. Absence locations for all species were considered any plot sites that did not report 

the species as present.  

I created a species-climate database for each species using the N=5,617 unique FIA presence-

absence sites and extracted the climate at each site from all nine downscaled climate surfaces. I built a 

validation dataset for each species-climate database by randomly selecting 20% of the original database 

for each species. The number of observed presences for each species varied from each other. To calibrate 

each SDM, I applied a stratified sampling technique to the remaining 80% of each original species-

climate database to insure equal representation of presence-to-absence points for modeling purposes.  

Step 1: Produce SDMs: 

I developed a unique empirical SDM model for each tree species in California using all nine of 

my downscaled climate surfaces for each species model and assumed my SDMs reflect the bioclimatic 

niche of each species. I used the general equation to model all tree species: 

EQ 3.1: Px,y,t = f(Tmin+Tmax+Tave+Rain+Snow+Radiation+AET+PET+Water Deficit)x,y,t 

where Px,y,t is the probability of occurrence at location (x,y) at time (t), and my nine climate predictors at 

location (x,y) at time (t). I used a random forest regression (Breiman, 2001; Cutler et al., 2007) to model 

the relationship between species occurrence and climate across California. To reduce computational 

complexity, I optimized the number of trees in each model by stopping the model at 100 trees beyond 

number of trees needed to achieve a minimum error. 

My validation species databases were used to quantify the model performance of each SDM. I 

computed the kappa value for each SDM model to transform predicted continuous probability of 

occurrence (0 to 1) from my validation dataset to predicted binary probability of occurrence (0 or 1) 

(Allouche, Tsoar, & Kadmon, 2006; Hijmans, Phillips, Leathwick, Elith, & Hijmans, 2017; Liu, Berry, 

Dawson, & Pearson, 2005). I then computed the correlation coefficient, root mean squared error (RMSE), 
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and percent bias for each model. I also recorded the percent increase in mean square error (%IncMSE) 

variable importance for each SDM to identify which climate variables were most important in estimating 

each SDM, and computed the mean %IncMSE for each climate variable to rank and identify which 

climate variables were generally the most important predictors across all species. Once an SDM model 

was created for each California tree species, I applied the models to my downscaled climate predictor 

surfaces, resulting in 144 SDM maps, 2 for each species, with one surface estimating modern 

distributions and the other estimating future distributions based on climatically suitable regions within 

California.  

Step 2: Calculation of bioclimatic niche directions: 

I calculated bioclimatic niche using identical methods reported in Chapter 2 for each California 

tree species between the modern and future eras using the following equation: 

EQ 3.2: Vp,x,y = x
.D
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where dp/dt is the change in a species’ probability of occurrence over time (temporal gradient, p/yr) and 

dp/dx,y is the change in a species’ probability of occurrence over a distance (spatial gradient, p/m). The 

spatial gradient of each bioclimatic niche variable was derived using each species modern distributions, 

therefore bioclimatic niche represents the rate and direction a species would need to migrate to keep pace 

with climate change and remain within a similar, suitable habitat among its modern range. I masked all 

bioclimatic niche velocities using a shapefile of California lakes, with a buffer of 100 m along lake, river, 

and ocean boundaries to remove velocity artifacts over water. I then removed pixels greater than the 95th 

percentile from each tree bioclimatic niche velocity to remove outliers and artifacts (e.g. water bodies) 

that produce impossibly high speeds (<108 m yr-1) where the spatial gradient was essentially flat (i.e. 

slope=0), but not zero. Additionally, I masked all pixels where the habitat suitability increased for each 

species by 2100, as these are regions where the climate has become more suitable, placing no pressure on 

species at that location to emigrate. 
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I computed the mean and standard deviation of each species’ bioclimatic niche direction and 

direction between each species to quantify the similarities and differences between species’ responses to 

climate change in California. Similarly, I computed the standard deviation of each species direction by 

pixel to identify the mean difference in migration direction at the same location. 

 

3.3.2. Defining potential forest communities: 

 To summarize species migrations by community types, I classified each pixel from my modern 

SDM output habitat suitability maps by forest type/alliance using formalized definitions of forest 

dominance types described by Greenberg, Dobrowski, Ramirez, Tuil, and Ustin (2006), which was based 

on the USFS forest community type definition (Christensen et al., 2016). If the top ranked species (by 

relative habitat suitability) had > 0.10 suitability than the second ranked species, the pixel was classified 

as single-species dominant. If the top two ranked species had < 0.10 difference in habitat suitability, but 

the second species had > 0.10 habitat suitability than the third ranked species, the pixel was classified as 

dual-species dominant. If the top 3 ranked species had < 0.10 habitat suitability from each other, the pixel 

was classified as multi-species dominant. Multi-species dominant pixels were further classified as multi-

species montane if the elevation of the pixel was £2,133.6 m, and multi-species subalpine if the elevation 

was >2,133.6 m. If no tree species were present at a location, the pixel was assigned NA (Greenberg et 

al., 2006). 

 

3.3.3. Analysis of anisotropy: 

 Tests of directional uniformity (also known as anisotropy) is a measure that can be used to detect 

whether data has a significant concentration in a single direction (Fisher, 1995). For all locations with at 

least 3 species present, I tested whether species at a location (i.e. pixel) move together in a uniform, 

anisotropic direction with climate change, or migrate in a random, isotropic direction from one another in 
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response to climate change using the kuiper.uniform.test function using the “uniftest” R package (Melnik 

& Pusev, 2015) with a circular transformation (Fisher, 1995; Kuiper, 1960). 

Anisotropy was summarized by forest community type by computing the mean Kuiper p-value by 

community and the fraction of significantly anisotropic pixels throughout the community’s distribution. A 

community is considered moving together in response to climate change if the mean Kuiper p-value of a 

forest community type is £0.15 (anisotropic), and conversely, species of a community are considered 

moving independently of each other if the mean Kuiper p-value is >0.15 (isotropic) (Fisher, 1995).  

 

3.4 RESULTS 

3.4.1 California climate change: 

 Future California climate estimates were warmer than the modern era for Tave, Tmax, and Tmin, and 

drier for rain and snow (Table 3.3). Modern and future radiation climates differed from each other, 

however negligible at 7.40E-06 w/m2 (Table 3.3). Future climatic water balance estimates showed greater 

potential evapotranspiration (PET) and water deficit from increased energy (e.g. temperature) and reduced 

available water (i.e. rain, snow), resulting in lower future climatic AET (Table 3.2). 

 
Table 3.2: Summary of mean differences between all California climate variables from the modern era 
(1985-2015) to future RCP 8.5 era (2070-2100). 

Variable Unit Mean Difference Status 
AET mm -51.4 Reduced Water Balance  
Water deficit mm +102.4 Greater Water Demand 
PET mm +50.9 Greater Evaporative Demand 
Radiation W m-2 0.0 Negligible Change 
Rain mm -532.7 Drier 
Snow mm -141.5 Drier 
Tave °C +2.2 Hotter 
Tmax °C +2.6 Hotter 
Tmin °C +2.1 Hotter 
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3.4.2 Species distribution models: 

The SDMs for each of the 72 California tree species performed well. Correlation coefficients for 

all models had strong positive correlations that ranged from 0.76 to 1.00 (Appendix A), with a mean 

correlation of 0.96 and standard deviation of 0.06. RMSE values ranged from 0.00 to 28.13 (Appendix 

A), with a mean RMSE of 3.89 and standard deviation of 6.50, indicating relatively low error in the 

probability of occurrence across all SDMs. Some SDMs had a slight positive bias and ranged from 0.00 to 

0.37 (Appendix A), with a mean bias of 0.10 and standard deviation of 0.09.  

Each SDM varied in what climate variables were estimated to be the most important (Appendix B). Mean 

%IncMSE across all climate variables ranged from 0.11 to 0.18, with snow generally playing the least 

important role in a species’ distribution, and temperature (Tave, Tmax, Tmin) playing the most important 

roles in a species’ distributions (Figure 3.2, Appendix B). Tave was the most important primary variable 

for 17 species, followed by Tmax for 13 species, Tmin, rain, and PET for 8 species, and AET for 7 species 

(Appendix B, Figure 3.2).
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Figure 3.2: Ranked %IncMSE variable importance summary statistics for each climate variable across all 
species. Higher %IncMSE indicate greater model importance. 
 
 

3.4.3 Forest community type migration trends: 

Species migration directions: The direction of bioclimatic niche velocity varied considerably among the 

72 species considered. The mean direction of movement for each individual species varied in direction, 

with models predicting 47 species moving northward (0-45°, 315-360°), 13 species eastward (45-135°), 4 

species southward (135-225°), and 8 species westward (225-315°) (Table 3.3). The bioclimatic niche 

direction for pixels within an individual species varied little, with a mean standard deviation of 2.8° 

(Table 3.3).  
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Table 3.3: Summary mean and standard deviation statistics for each species bioclimatic niche velocity direction. 

Common Name Scientific Name Mean Direction 
(°) 

Stdev Direction 
(°) 

Increased Suitability 
by 2100  

Arizona Cypress Cupressus arizonica 7.5 3.3 14.0% 
Baker or Modoc Cypress Cupressus bakeri 327.3 3.4 22.6% 

Bigcone Douglas Fir Pseudotsuga macrocarpa 341.1 2.9 37.3% 
Bigleaf Maple Acer macrophyllum 343.3 3.1 41.2% 

Bishop Pine Pinus muricata 323.5 3.5 21.3% 
Bitter Cherry Prunus emarginata 63.8 3.6 29.6% 

Black Cottonwood Populus balsamifera 169.8 4.1 31.3% 
Blue Oak Quercus douglasii 46.2 3.4 51.5% 
Boxelder Acer negundo 350.7 3.2 17.7% 

Brewer Spruce Picea breweriana 354.2 3.3 17.8% 
California Black Oak Quercus kelloggii 9.9 3.1 52.1% 

California Buckeye Aesculus californica 78.1 3.2 34.9% 
California Juniper Juniperus californica 224.7 3.7 42.2% 
California Laurel Umbellularia californica 350.7 3.2 47.2% 

California Live Oak Quercus agrifolia 2.9 3.8 35.4% 
California Red Fir Abies magnifica 307.5 3.5 35.8% 

California Sycamore Platanus racemosa 53.1 3.2 27.8% 
California Torreya (Nutmeg) Torreya californica 24.3 3.3 41.6% 

California White Oak Quercus lobata 170.0 3.6 39.6% 
Canyon Live Oak Quercus chrysolepis 50.6 3.6 51.8% 

Chokecherry Prunus virginiana 331.6 2.8 35.3% 
Coulter Pine Pinus coulteri 356.8 2.9 24.1% 

Curlleaf Mountain Mahogany Cercocarpus ledifolius 351.1 3.0 40.2% 
Desert Ironwood Olneya tesota 355.4 2.7 14.9% 

Douglas Fir Pseudotsuga menziesii 328.7 2.9 50.1% 
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Table 3.3 Continued (2) 

Common Name Scientific Name Mean Direction 
(°) 

Stdev Direction 
(°) 

Increased Suitability 
by 2100  

Engelmann Oak Quercus engelmannii 16.5 2.8 16.3% 
Engelmann Spruce Picea engelmannii 33.0 2.1 29.6% 

Foxtail Pine Pinus balfouriana 352.3 2.5 25.6% 
Fremont Cottonwood Populus fremontii 326.4 3.4 14.7% 

Giant Chinkapin, Golden Chinkapin Chrysolepis chrysophylla 349.9 2.9 46.4% 
Giant Sequoia Sequoiadendron giganteum 350.6 2.9 29.3% 

Grand Fir Abies grandis 200.3 3.4 30.8% 
Gray or California Foothill Pine Pinus sabiniana 352.2 3.1 40.8% 

Great Basin Bristlecone Pine Pinus longaeva 283.5 3.4 26.9% 
Honey Mesquite Prosopis glandulosa 85.7 3.4 16.2% 

Incense Cedar Calocedrus decurrens 356.0 3.1 46.7% 
Interior Live Oak Quercus wislizeni 7.3 3.1 54.0% 

Jeffrey Pine Pinus jeffreyi 356.4 3.2 48.3% 
Knobcone Pine Pinus attenuata 349.3 3.0 36.1% 

Limber Pine Pinus flexilis 347.9 3.0 28.3% 
Lodgepole Pine Pinus contorta 9.3 3.1 30.8% 

Monterey Cypress Cupressus macrocarpa 16.1 2.2 20.2% 
Monterey Pine Pinus radiata 312.8 2.6 36.4% 

Mountain Hemlock Tsuga mertensiana 63.1 2.7 27.8% 
Noble Fir Abies procera 0.0 3.1 20.0% 

Oregon Ash Fraxinus latifolia 91.2 3.7 27.3% 
Oregon White Oak Quercus garryana 56.5 3.4 33.7% 

Pacific Dogwood Cornus nuttallii 337.6 2.9 41.6% 
Pacific Madrone Arbutus menziesii 8.7 3.0 31.6% 
Pacific Silver Fir Abies amabilis 26.0 2.6 43.4% 
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Table 3.3 Continued (3) 

Common Name Scientific Name Mean Direction 
(°) 

Stdev Direction 
(°) 

Increased Suitability 
by 2100  

Pacific Yew Taxus brevifolia 352.1 2.5 47.2% 
Ponderosa Pine Pinus ponderosa 6.0 3.1 23.3% 

Port Orford Cedar Chamaecyparis lawsoniana 7.5 2.9 27.8% 
Quaking Aspen Populus tremuloides 284.1 3.1 29.0% 

Red Alder Alnus rubra 310.7 3.2 32.1% 
Redwood Sequoia sempervirens 17.9 3.0 20.7% 

Sargent's Cypress Cupressus sargentii 65.2 2.6 33.6% 
Shasta Red Fir Abies shastensis 119.6 3.2 37.2% 

Singleleaf Pinyon Pinus monophylla 354.6 2.8 11.7% 
Sitka Spruce Picea sitchensis 244.6 3.0 35.7% 

Subalpine Fir Abies lasiocarpa 63.5 2.0 19.2% 
Sugar Pine Pinus lambertiana 44.7 3.3 55.8% 
Sweetgum Liquidambar styraciflua 349.1 2.7 15.7% 

Tanoak Lithocarpus densiflorus 333.8 3.2 32.5% 
Utah Juniper Juniperus osteosperma 330.5 3.1 29.1% 
Washoe Pine Pinus washoensis 91.1 3.0 25.4% 

Western Hemlock Tsuga heterophylla 346.1 2.6 26.6% 
Western Juniper Juniperus occidentalis 343.7 3.1 37.5% 

Western White Pine Pinus monticola 31.4 3.4 42.7% 
White Alder Alnus rhombifolia 255.4 3.4 21.7% 

Whitebark Pine Abies concolor 43.6 3.1 36.6% 
White Fir Pinus albicaulis 313.1 3.2 69.1% 
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California anisotropy analysis: Different species at the same location displayed different migration 

directions with response to climate change, with a mean standard deviation in direction of 99.2°, and 

mean Kuiper p-value of 0.504 across all locations, indicating that while the directions of migration within 

a species is similar, the direction of migration among different species diverge (Figure 3.3). Only 14.6% 

(by area) of forest communities of California exhibited anisotropic migration.  

 
Figure 3.3: The standard deviation of bioclimatic niche velocity species direction by pixel. The upper right 
inset map demonstrations a location where 39 different species survive and a standard deviation of 156.1°. 
The lower right inset map demonstrates a location where 9 different species survive and a standard deviation 
of 2.5°. Grey land areas in the map indicate locations where none of the 72 species were predicted to occur 
during the modern era or always exhibited increased habitat suitability for all species present. 
 
 

Forest community anisotropy summary: I identified 881 potential forest community types across 

California from the modern to future era, with 875 of communities displaying independent species 

migration within a forest community type (isotropic), covering 99.9% of California’s forested land area. 
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Of all possible California forest community types, 8.7% California’s forested land area contained pixels 

where <3 species occurred at the same location and had no Kuiper p-value to report (Table 3.4). 

Generally, the mean Kuiper p-value across all forest community types was 0.51, covering on average 

14.0% of each forest types’ distribution with dependent species migration directions (anisotropic), and 

86.0% displaying independent species migration directions (isotropic) (Table 3.4).  
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Table 3.4: Summary of Kuiper and Clark-Evans statistics for all of California and the top 25 Californian 
forest community types, forest community types with significant mean Kuiper V values, and forest 
community types where significantly isotropic pixels are clustered. % cover is the fractional area of a 
forest community type over all of California’s forest/woodland land areas. V p-value is the mean p-value 
from the Kuiper V test for each forest community type. % Isotropic is the fraction of pixels for a forest 
community type that had a significant Kuiper p-value (<=0.15), indicating the species within the forest 
classification are moving together.  

Forest Type % Cover Mean V 
p-value 

% 
Anisotropic 

% 
Removed 

California Summary 
Total California 100% 0.504 14.60% 8.70% 

Top 25 CA Forest Types 
Multi-Montane 30.20% 0.503 14.70% 2.40% 
Blue Oak 10.40% 0.501 15.00% 0.10% 
California Live Oak 7.20% 0.499 15.50% 1.70% 
Honey Mesquite 5.60% 0.504 14.50% 52.70% 
California Juniper 3.30% 0.497 15.20% 2.00% 
Singleleaf Pinyon 3.00% 0.502 14.60% 0.70% 
Western Juniper 2.60% 0.523 13.40% 0.40% 
Utah Juniper 2.50% 0.505 14.40% 2.60% 
Jeffrey Pine 1.80% 0.51 13.60% 0.50% 
Ponderosa Pine 1.70% 0.512 14.10% 0.70% 
White Fir 1.70% 0.502 14.20% 0.70% 
Coulter Pine 1.60% 0.509 13.90% 3.10% 
Multi-Subalpine 1.60% 0.508 13.70% 1.30% 
California White Oak 1.50% 0.519 12.70% 0.90% 
Boxelder 1.40% 0.501 14.60% 0.00% 
Desert Ironwood 1.10% 0.513 14.60% 51.70% 
Interior Live Oak 1.00% 0.497 15.80% 0.60% 
Canyon Live Oak 1.00% 0.496 15.50% 0.60% 
Lodgepole Pine 0.90% 0.51 13.20% 1.10% 
Douglas Fir 0.80% 0.503 15.10% 0.50% 
California Black Oak 0.80% 0.493 15.60% 0.80% 
Whitebark Pine 0.70% 0.511 14.00% 10.20% 
Jeffrey Pine/White Fir 0.70% 0.505 14.00% 0.70% 
Tanoak 0.60% 0.496 15.30% 9.60% 
Singleleaf Pinyon/Utah Juniper 0.60% 0.507 14.20% 0.70% 

Anisotropic Forest Types 
California Laurel/Monterey Pine 0.00% 0.144 50.00% 0.00% 
California Buckeye/Chokecherry 0.00% 0.028 100.00% 0.00% 
Giant Chinkapin/Pacific Dogwood 0.00% 0.136 100.00% 0.00% 
Singleleaf Pinyon/Sweetgum 0.00% 0.123 100.00% 0.00% 
California White Oak/White Alder 0.00% 0.022 100.00% 0.00% 
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3.5 DISCUSSION 

3.5.1 Migration pressures: complex dynamics in space and time.  

 In this study, I showed that bioclimatic niche velocity direction vectors over the 21st century for 

72 California tree species were estimated to have complex and individualized directional responses to 

climate change through time (Figure 3.3, Table 3.3). My directional estimates of potential species 

migration between the modern (1985-2015) and future (2070-2100) eras suggest that 65% of Californian 

tree species will generally respond to end-of-century climate change by moving in northern directions to 

cooler climates (0-45°, 315-360°) (Table 3.2, Figure 3.2) and is consistent with previous studies expecting 

plants will respond to warming climates by shifting to cooler, higher latitudes or elevations (Chen et al., 

2011; Hughes, 2000; McCarty, 2001; Parmesan & Yohe, 2003).  

However, I also demonstrated that species will not always respond to climate change by 

migrating to cooler environments at higher latitudes or elevations. My results support previous studies 

that have stressed the importance of not assuming species will move uphill or to higher latitudes in 

response to warming temperatures (Table 3.3, Figure 3.3). For example, Crimmins, Dobrowski, 

Greenberg, Abatzoglou, and Mynsberge (2011) found 64 Sierra Nevada tree species have shifted their 

optimal elevation downhill into warmer climates in response to increased regional water deficit. Zhu, 

Woodall, and Clark (2012) found of 94 eastern United States tree species, 58.7% of species underwent 

range contraction at their southern and northern ranges, with only 20.7% of species shifting north, and 

16.3% of species shifting south. Similarly, while not a direct estimate of species migration, S. Z. 

Dobrowski et al. (2013) demonstrated how different climate variables can shift in different directions as 

climate changes, with climatic water balance velocities commonly pointing in opposing directions to 

temperature velocity, and that these differences in climate variables will have varying or opposing 

influences on biota from temperature. My results and these studies are reminders that species will respond 

according to their most limiting climate factors.  
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Individual species at a location commonly migrated independent of each other (Figure 3.3, Table 

3.4). This suggests that as species move in response to end-of-century climate change, they may not 

migrate with each other, leading to shifts in the distributions of current forest communities, and 

consequently promoting the formation of novel forest communities in the future (community assemblages 

not seen during the modern era). Distributional and compositional changes in California forest 

communities have already occurred during modern climate change in the 20th century (1900-2009), where 

forest composition shifted towards more oak dominated communities, rather than pines, as a result of 

warming and increased water stress (McIntyre et al., 2015). Novel species’ associations have been well 

documented in the paleorecord as well. For example, a carbon dating analysis identified unique 

communities of late Pleistocene micromammals (i.e. no-analogue communities) (Stafford et al., 1999) or 

early time periods (Wing et al., 2005). Similarly, high latitude terrestrial plant communities have shown 

changes in community composition during the Last Glacial Maximum (Jackson & Overpeck, 2000). 

 

3.5.2: Implications of independent migration for community conservation: 

Community conservation needs to incorporate updated climate change information, such as the 

results of this analysis, into existing and future conservation strategies and activities (Hannah, Midgley, 

Lovejoy, et al., 2002; Mawdsley, O’malley, & Ojima, 2009). As demonstrated by my analysis, the species 

of Californian forest communities will likely not remain stable relative to their modern distributions and 

species composition (Figure 3.3, Table 3.3, 3.4). Reserves developed under the assumption that modern 

communities will remain stable will ultimately fail if species within the reserve migrate outside of the 

static, protected-area (Hannah, Midgley, Lovejoy, et al., 2002; Noss & Harris, 1986). Similarly, 

conservation strategies based on the assumption that modern communities will continue to exist in the 

future will ultimately fail to protect biodiversity at risk from climate change, as current communities may 

not be capable of existing in future climates, and future no-analogue communities may not be recognized 

and included in future conservation efforts (Figure 3.1) (Hannah, Midgley, & Millar, 2002).  



   95 

Recent adaptation strategies for conservation efforts have been proposed to help reduce the 

effects of climate change on biodiversity. These new methods tend to focus on managing and restoring 

ecosystem function over specific components (e.g. species, community, etc.) or revising and updating 

current conservation strategies by incorporating climate change information (Mawdsley et al., 2009). 

Likewise, the development of dynamic landscape conservation plans has been proposed as a possible new 

approach to conserve biodiversity by specifically including desired future habitat conditions based on 

anticipated shifts in the distribution of species or ecosystems, while intermediate conditions species may 

need to transition between current and future conditions and climate change (Hannah, Midgley, & Millar, 

2002). Over recent decades, ecologists’ investigations into climate change, and its influence on Earth’s 

biota, have greatly increased my understanding of biodiversity-climate change interactions through 

advancements such as statistical downscaling (Easterling, 1999), climate velocity (Ackerly et al., 2010; S. 

Z. Dobrowski et al., 2013; Loarie et al., 2009; Sandel et al., 2011), species distribution models (Elith & 

Leathwick, 2009; Guisan et al., 2013; Thuiller et al., 2008), and much more. Therefore, current 

conservation strategies should be revised and updated, and/or new and dynamic conservation plans that 

reflect ecologists’ current understanding of biodiversity-climate change interactions should be created and 

employed to ensure conservation management, strategies, and activities are as effective as possible. 

 
3.5.3 Conclusions: 

In this study I show how California forest communities, and the species that comprise those 

communities, migrate in directions independent of one another in response to climate change. While a 

majority of tree species are estimated to migrate in a northward direction as the climate warms over the 

coming century, a large number of tree species are expected to migrate in non-northern directions, 

highlighting that species will not always respond to temperature change alone, and it should not be 

assumed species will migrate northwards or up in elevation. Similarly, species occurring in the same 

locations do not necessarily migrate in the same direction as one another, indicating that each species 
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migrates independently of one another, and will likely form novel community assemblages by the end of 

the 21st century.  
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CONCLUSIONS 

 In my dissertation, I addressed the following major topics: 1) the effects of spatial resolution on 

climate change estimates, 2) the suitability of climate velocity as a species migration estimate, and 3) the 

direction species will migrate in response to climate change relative to community dynamics. The three 

studies presented in this dissertation contain important findings towards understanding how species may 

have, or will, respond to climate change. The models, particularly bioclimatic niche velocity, are 

applicable to many ecological analyses, from local to global. As with all research, further developments 

are necessary to reduce uncertainties, better validate the approaches, and understand biological responses 

to climate change.  

Chapter 1, “Spatial scale affects novel and disappeared climate change projections in Alaska” 

produced eight novel and disappeared climate maps for 10 different climate variables ranging in spatial 

resolutions from 60 m to 12 km in Alaska from the LGM to modern era. Results suggest that as the spatial 

resolution of gridded climate data becomes coarser, the fraction of novel and disappeared climate 

estimated increases, although it is possible for the fractional area of novel and disappeared climates to 

decrease or have no apparent relationship with spatial resolution. Disappeared climates occurred through 

Alaska, although generally appeared more within interior and northern Alaska, resulting from extremely 

cold LGM temperatures warming into the modern era, and reduced modern evaporative demand. Novel 

climates were primarily restricted to the southern, coastal regions of Alaska where modern climate has 

warmed significantly, resulting in more precipitation falling as rain, rather than snow. My investigation 

into how the spatial resolution of gridded climate affects the amount of novel and disappeared climates 

reinforces the importance of downscaling coarse climate data and suggest that studies analyzing the 

effects of climate change on ecosystems may overestimate or underestimate their conclusions when 

utilizing coarse climate data.  

Chapter 2, “Is climate velocity an adequate measure of species migration responses to climate 

change?” produced climate velocities surfaces for eight climate variables as well as the bioclimatic niche 
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velocity of white spruce from the LGM to modern era in Alaska using my downscaled climate data 

presented in Chapter 1. My results demonstrate that climate velocity alone does not provide suitable 

estimates of species migration responses to climate change due to climate velocity not accounting for 

species ecology and climatic tolerances that affect migration responses. These results may help explain 

unexpected or conflicting observational evidence of climate-driven species range shifts presented in 

previous climate velocity analyses and other migration studies, as well as provide an efficient and less 

time-consuming approach to estimate, predict, and manage future species migration in light of climate 

change. 

Finally, Chapter 3, “California forest community migration responses to 21st century climate 

change” produced estimates of the direction 72 native California tree species will migrate in response to 

end-of-century climate change. My results suggest that many California tree species will migrate in 

Northern directions, however, multiple species will migrate in non-northern or uphill directions in 

response to climate change, re-emphasizing the importance that many species may not responds to future 

temperature change. Similarly, my results demonstrated that species of a California forest community 

type, at the same location, migrate independent of one another, in different directions, suggesting that 

modern forest communities are not stable and may form novel community assemblages with future 

climate change. I hope these results encourage community conservation managers to revise and update 

their current methods to include more dynamic reserve strategies that support independent species 

migration and unstable community assemblages through time as the climate continues to shift into the 

future.



   102 

APPENDIX A: SDM VALIDATION STATISTICS TABLE 

 

Appendix A: SDM validation statistics for all California tree species. 
Common Name Correlation % Bias RMSE # Present 

Arizona Cypress 1.00 0.00 0.00 1 
Baker or Modoc Cypress 1.00 0.00 0.00ß 2 

Bigcone Douglas Fir 1.00 0.43 0.04 26 
Bigleaf Maple 0.96 4.52 0.15 276 

Bishop Pine 1.00 0.20 0.03 11 
Bitter Cherry 1.00 0.50 0.05 28 

Black Cottonwood 1.00 0.29 0.04 16 
Blue Oak 0.94 6.29 0.17 554 
Boxelder 1.00 0.09 0.02 6 

Brewer Spruce 1.00 0.18 0.03 10 
California Black Oak 0.83 19.56 0.31 1136 

California Buckeye 0.98 2.66 0.11 145 
California Juniper 0.99 1.34 0.08 129 
California Laurel 0.95 5.88 0.17 349 

California Live Oak 0.96 4.74 0.15 336 
California Red Fir 0.93 8.08 0.19 463 

California Sycamore 1.00 0.38 0.04 23 
California Torreya (Nutmeg) 0.99 0.58 0.05 30 

California White Oak 0.98 1.84 0.09 123 
Canyon Live Oak 0.84 17.69 0.29 1053 

Chokecherry 1.00 0.09 0.02 5 
Coulter Pine 1.00 0.44 0.05 38 

Curlleaf Mountain Mahogany 0.96 4.33 0.14 247 
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Appendix A Continued (2) 
Common Name Correlation % Bias RMSE # Present 

Desert Ironwood 1.00 0.00 0.00 8 
Douglas Fir 0.76 29.13 0.37 1790 

Engelmann Oak 1.00 0.16 0.03 10 
Engelmann Spruce 1.00 0.02 0.01 2 

Foxtail Pine 1.00 0.29 0.04 24 
Fremont Cottonwood 1.00 0.18 0.03 11 

Giant Chinkapin, Golden Chinkapin 0.99 1.47 0.08 88 
Giant Sequoia 1.00 0.13 0.03 7 

Grand Fir 0.99 0.94 0.07 47 
Gray or California Foothill Pine 0.94 6.08 0.17 372 

Great Basin Bristlecone Pine 1.00 0.00 0.00 6 
Honey Mesquite 1.00 0.00 0.00 8 

Incense Cedar 0.83 19.87 0.30 1068 
Interior Live Oak 0.93 7.23 0.18 416 

Jeffrey Pine 0.88 13.11 0.25 782 
Knobcone Pine 0.99 1.58 0.09 99 

Limber Pine 1.00 0.34 0.04 20 
Lodgepole Pine 0.94 6.30 0.17 403 

Monterey Cypress 1.00 0.02 0.01 7 
Monterey Pine 1.00 0.16 0.03 7 

Mountain Hemlock 0.98 1.63 0.09 86 
Noble Fir 1.00 0.04 0.02 5 

Oregon Ash 0.99 0.56 0.05 33 
Oregon White Oak 0.96 3.96 0.14 245 

Pacific Dogwood 0.98 2.19 0.10 119 
Pacific Madrone 0.91 10.05 0.22 613 
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\ 
Appendix A Continued (3) 

Common Name Correlation % Bias RMSE # Present 

Pacific Silver Fir 1.00 0.09 0.02 1 
Pacific Yew 0.99 0.63 0.05 33 

Ponderosa Pine 0.80 22.65 0.33 1441 
Port Orford Cedar 1.00 0.31 0.04 19 

Quaking Aspen 0.99 0.72 0.06 40 
Red Alder 0.98 1.77 0.09 113 
Redwood 0.95 5.40 0.16 297 

Sargent's Cypress 1.00 0.13 0.03 7 
Shasta Red Fir 0.99 0.90 0.06 57 

Singleleaf Pinyon 0.97 3.49 0.13 288 
Sitka Spruce 1.00 0.27 0.04 21 

Subalpine Fir 1.00 0.09 0.02 2 
Sugar Pine 0.86 16.55 0.28 972 
Sweetgum 1.00 0.00 0.00 1 

Tanoak 0.91 9.45 0.21 603 
Utah Juniper 0.99 0.98 0.07 57 
Washoe Pine 1.00 0.00 0.00 6 

Western Hemlock 0.99 0.76 0.06 44 
Western Juniper 0.95 5.53 0.16 467 

Western White Pine 0.95 5.07 0.15 279 
White Alder 0.99 1.39 0.08 76 

Whitebark Pine 0.99 1.08 0.07 82 
White Fir 0.79 24.01 0.34 1492 
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APPENDIX B: SDM Variable Importance of CA Trees 

 

Appendix B: Random forest model variable importance for all species and each climate variable. Importance are reported as % increase 
in MSE. 

Common Name AET DEF PET RAD Rain Snow Tave Tmax Tmin  

Arizona Cypress 0.060 0.110 0.060 0.000 0.030 0.030 0.050 0.150 0.040 
Baker or Modoc Cypress 0.050 0.220 0.050 0.120 0.050 0.090 0.160 0.210 0.070 

Bigcone Douglas Fir 0.160 0.170 0.300 0.070 0.140 0.140 0.180 0.140 0.200 
Bigleaf Maple 0.190 0.180 0.150 0.220 0.170 0.120 0.210 0.170 0.170 

Bishop Pine 0.120 0.080 0.100 0.110 0.150 0.050 0.250 0.200 0.260 
Bitter Cherry 0.180 0.200 0.290 0.220 0.140 0.150 0.190 0.220 0.210 

Black Cottonwood 0.160 0.190 0.230 0.210 0.140 0.120 0.160 0.180 0.240 
Blue Oak 0.110 0.130 0.110 0.050 0.130 0.120 0.200 0.200 0.130 
Boxelder 0.140 0.110 0.200 0.220 0.100 0.020 0.220 0.240 0.210 

Brewer Spruce 0.090 0.170 0.080 0.220 0.140 0.090 0.130 0.240 0.140 
California Black Oak 0.060 0.060 0.070 0.040 0.080 0.070 0.120 0.090 0.090 

California Buckeye 0.180 0.190 0.200 0.240 0.180 0.130 0.220 0.240 0.170 
California Juniper 0.170 0.150 0.180 0.100 0.170 0.130 0.210 0.190 0.160 
California Laurel 0.170 0.260 0.300 0.090 0.180 0.130 0.250 0.240 0.200 

California Live Oak 0.170 0.140 0.150 0.160 0.150 0.090 0.250 0.150 0.210 
California Red Fir 0.150 0.120 0.180 0.090 0.140 0.050 0.270 0.110 0.210 

California Sycamore 0.110 0.140 0.130 0.060 0.100 0.170 0.210 0.240 0.170 
California Torreya (Nutmeg) 0.170 0.190 0.210 0.110 0.220 0.030 0.280 0.180 0.230 

California White Oak 0.140 0.140 0.230 0.300 0.150 0.110 0.190 0.210 0.200 
Canyon Live Oak 0.190 0.200 0.190 0.140 0.210 0.080 0.240 0.280 0.220 

Chokecherry 0.060 0.060 0.070 0.050 0.070 0.080 0.130 0.080 0.110 
Coulter Pine 0.090 0.150 0.110 0.200 0.070 0.070 0.140 0.230 0.100 
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Appendix B Continued (2) 
Common Name AET DEF PET RAD Rain Snow Tave Tmax Tmin  

Curlleaf Mountain Mahogany 0.180 0.270 0.300 0.090 0.150 0.090 0.230 0.190 0.180 
Desert Ironwood 0.180 0.200 0.200 0.110 0.180 0.230 0.180 0.190 0.260 

Douglas Fir 0.020 0.180 0.040 0.010 0.040 0.000 0.120 0.110 0.010 
Engelmann Oak 0.030 0.040 0.020 0.000 0.050 0.020 0.020 0.030 0.020 

Engelmann Spruce 0.080 0.210 0.260 0.100 0.180 0.010 0.170 0.230 0.160 
Foxtail Pine 0.090 0.210 0.060 0.210 0.150 0.020 0.050 0.140 0.060 

Fremont Cottonwood 0.100 0.220 0.100 0.040 0.220 0.180 0.160 0.210 0.040 

Giant Chinkapin, Golden Chinkapin 0.160 0.200 0.190 0.190 0.110 0.030 0.230 0.260 0.230 

Giant Sequoia 0.230 0.190 0.160 0.130 0.270 0.150 0.200 0.250 0.170 
Grand Fir 0.230 0.200 0.180 0.090 0.200 0.190 0.170 0.110 0.150 

Gray or California Foothill Pine 0.270 0.220 0.180 0.120 0.190 0.030 0.240 0.240 0.260 
Great Basin Bristlecone Pine 0.210 0.050 0.210 0.060 0.180 0.210 0.140 0.110 0.150 

Honey Mesquite 0.150 0.110 0.050 0.060 0.140 0.010 0.080 0.220 0.050 
Incense Cedar 0.050 0.060 0.060 0.040 0.070 0.090 0.120 0.050 0.120 

Interior Live Oak 0.130 0.140 0.160 0.080 0.140 0.100 0.210 0.200 0.190 
Jeffrey Pine 0.090 0.110 0.100 0.070 0.110 0.160 0.140 0.120 0.110 

Knobcone Pine 0.230 0.250 0.210 0.140 0.270 0.120 0.180 0.240 0.210 
Limber Pine 0.170 0.130 0.260 0.070 0.230 0.270 0.170 0.150 0.130 

Lodgepole Pine 0.160 0.130 0.150 0.080 0.160 0.170 0.230 0.230 0.170 
Monterey Cypress 0.110 0.040 0.010 0.100 0.070 0.000 0.090 0.020 0.120 

Monterey Pine 0.070 0.110 0.150 0.120 0.110 0.020 0.240 0.130 0.220 
Mountain Hemlock 0.110 0.160 0.120 0.100 0.140 0.160 0.270 0.270 0.200 

Noble Fir 0.190 0.070 0.210 0.080 0.160 0.200 0.120 0.070 0.140 
Oregon Ash 0.190 0.190 0.200 0.200 0.160 0.100 0.280 0.260 0.240 

Oregon White Oak 0.210 0.230 0.180 0.110 0.210 0.130 0.190 0.190 0.170 
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Appendix B Continued (3) 
Common Name AET DEF PET RAD Rain Snow Tave Tmax Tmin  

Pacific Dogwood 0.190 0.190 0.180 0.220 0.250 0.160 0.220 0.200 0.220 
Pacific Madrone 0.170 0.160 0.120 0.070 0.190 0.120 0.130 0.100 0.130 
Pacific Silver Fir 0.040 0.020 0.040 0.010 0.030 0.110 0.080 0.050 0.140 

Pacific Yew 0.180 0.150 0.200 0.230 0.160 0.190 0.250 0.200 0.220 
Ponderosa Pine 0.050 0.050 0.070 0.020 0.030 0.060 0.080 0.050 0.060 

Port Orford Cedar 0.240 0.140 0.160 0.150 0.180 0.080 0.150 0.240 0.130 
Quaking Aspen 0.130 0.170 0.180 0.120 0.250 0.190 0.230 0.250 0.290 

Red Alder 0.270 0.100 0.220 0.140 0.220 0.090 0.230 0.190 0.160 
Redwood 0.190 0.120 0.150 0.070 0.150 0.040 0.200 0.150 0.230 

Sargent's Cypress 0.130 0.200 0.210 0.120 0.220 0.030 0.200 0.120 0.210 
Shasta Red Fir 0.150 0.250 0.200 0.060 0.130 0.180 0.250 0.250 0.150 

Singleleaf Pinyon 0.230 0.270 0.200 0.050 0.140 0.160 0.130 0.150 0.130 
Sitka Spruce 0.230 0.080 0.230 0.090 0.160 0.010 0.190 0.130 0.210 

Subalpine Fir 0.020 0.020 0.120 0.050 0.010 0.050 0.080 0.290 0.020 
Sugar Pine 0.070 0.090 0.090 0.050 0.090 0.090 0.150 0.100 0.130 
Sweetgum 0.020 0.020 0.050 0.120 0.020 0.000 0.040 0.140 0.100 

Tanoak 0.180 0.130 0.100 0.060 0.150 0.120 0.130 0.130 0.120 
Utah Juniper 0.300 0.240 0.120 0.080 0.210 0.160 0.100 0.120 0.140 
Washoe Pine 0.200 0.130 0.150 0.060 0.200 0.170 0.120 0.160 0.170 

Western Hemlock 0.240 0.130 0.180 0.140 0.250 0.040 0.220 0.210 0.190 
Western Juniper 0.130 0.200 0.150 0.070 0.150 0.180 0.140 0.150 0.200 

Western White Pine 0.120 0.140 0.150 0.060 0.110 0.160 0.240 0.290 0.180 
White Alder 0.190 0.190 0.220 0.250 0.170 0.160 0.220 0.180 0.210 

Whitebark Pine 0.030 0.030 0.030 0.010 0.030 0.060 0.100 0.060 0.080 
White Fir 0.120 0.090 0.190 0.040 0.150 0.220 0.290 0.200 0.100 

 


