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ABSTRACT

A central challenge in regulatory genomics today is to understand the precise relation-

ship between regulatory sequences, transcription factor (TF) binding and gene expression.

Many studies have discussed how TFs recognize their DNA binding sites. However, it is not

well understood how the various factors that influence TF-DNA binding alter the cascade

of gene expression. Moreover, mutations in regulatory sequences are a key driving force of

evolution and diseases. A number of studies have examined the sequence motif turnover

and divergence in TF binding across species. However, there is currently a lack of clarity on

what these changes mean to enhancer function. In this thesis, we used computational and

statistical methods to quantitatively and systematically examine the relationships among

regulatory sequences, TF binding, and gene expression, from both functional and evolution-

ary perspectives.

At the functional level, we extended thermodynamics-based statistical models of the ge-

netic sequence-to-function relationship to accurately predict gene expression. We incorpo-

rated chromatin accessibility and structural biological data into the models, described in

Chapter 2 and 3. In doing so, we aimed to better identify transcription factor binding sites

likely to influence gene expression, and thus, enhance the models’ capacity to predict gene

expression. We demonstrated these improvements to gene expression modeling in Drosophila

melanogaster by integrating DNaseI hypersensitivity assays and DNA shape. At the evo-

lutionary level, we focused on regulatory variations between two distant Drosophila species

to access inherent properties of enhancers, as described in Chapter 4. We used statistical

and computational approaches to quantitatively examine the extent to which sequence and

accessibility variations can predict TF occupancy divergence and enhancer activity change.

We also found combinatorial TF binding can buffer variations at individual TF level to avoid

drastic gene expression changes.
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CHAPTER 1: INTRODUCTION

1.1 BASICS OF GENE REGULATION

Gene regulation refers to the mechanisms that activate or repress the expression of a gene.

Different cells in a multicellular organism may express very different sets of genes, despite the

fact that almost all cells contain the same DNA. These different patterns of gene expression

cause various cell types to have different sets of functional mRNAs and proteins, giving

each cell type unique properties. How this orchestration of thousands of genes acts in a

precise way has been an open question. Answering this question can lead to advances in our

understanding of developmental programs [1], molecular basis of phenotypes [2], evolution

of morphological diversity [3, 4], and ability to prioritize variants in diseases [5].

Among the different levels at which genes may be regulated, the one that has received

most attention to date is transcriptional regulation [3, 6]. Transcriptional regulation controls

the conversion from DNA to mRNA. Several key players work in concert to finely tune the

amount of RNA transcripts being produced, as depicted in Figure 1.1. Instructions of

generating RNA transcripts are encoded in regulatory DNA sequences, called enhancers, or

cis-regulatory modules (CRMs) in some contexts. Enhancers are about 1 kbp long sequences

that harbor binding sites for one or more transcription factors. Transcription factors (TFs)

are proteins that bind to enhancers with sequence specificity. The binding preference of a TF

is known as a motif, and is often represented formally by a Position Weight Matrix (PWM).

Enhancers harbor transcription factor binding sites (TFBSs) that are strong matches to

the motif. A set of TFs bind to their corresponding TFBSs and act together to regulate a

gene’s expression pattern, by facilitating or inhibiting recruitment and assembly of the basal

transcription machinery (BTM), which is an essential complex to initiate transcription. The

availability of TFBSs on DNA is determined by the chromatin structure. More open or

relaxed chromatin makes TFBSs accessible to TFs, while TFBSs in condensed DNA regions

are inaccessible to TFs, and preclude the region from regulating gene transcription.

Recent technological breakthroughs such as genome-wide chromatin state profiling [7, 8]

and massively parallel reporter assays [9, 10] are leading the way in rapid and effective

discovery of enhancers. The next frontier [11] is to learn to interpret an enhancer’s sequence

and predict the expression level driven by the enhancer in a given trans-regulatory context,

e.g., a particular tissue or cell type [12, 13, 14]. Various studies have attempted to meet

this challenge, and a line of attack that has met with considerable initial success is that of

thermodynamics-based models [15, 16, 17, 18, 19, 20, 21, 22].
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Figure 1.1: Key players in transcriptional regulation. Enhancers harbor binding sites
for one or more transcription factors to act together to regulate a gene’s expression. TFs
recognize binding sites by motif specificities. Chromatin structure determines the accessibil-
ity of TF binding sites. Basal Transcription Machinery is recruited and assembled by TFs
and essential to transcribe a gene.

1.2 THERMODYNAMICS-BASED SEQUENCE-TO-EXPRESSION MODELS

Thermodynamics-based sequence-to-expression models have proven capable producing

highly accurate fits to complex gene expression patterns. The hallmark of these models

is that they are built around molecular interactions involving TF proteins, DNA and the

basal transcriptional machinery, and use the language of statistical thermodynamics to map

combinations of interactions, both strong and weak, to gene expression levels. Fits of these

models to sequence and expression data capture underlying mechanistic details of gene regu-

lation at a convenient level of abstraction. For instance, DNA-binding strengths of TFs and

the potency of activation or repression by a DNA-bound TF appear as free parameters of

these models, and their optimal values learned from data provide quantitative insights into

underlying regulatory mechanisms.
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Figure 1.2: Transcriptional regulation is modelled on major components: TF (or-
ange), BTM (purple), and DNA (brown tube). The interactions of TF-DNA, BTM-DNA,
TF-BTM are assumed to occur in thermodynamic equilibrium. Presumably, gene expression
level is proportional to the fractional BTM occupancy at the promoter.

1.2.1 GEMSTAT model

Here, we introduce a previously published sequence-to-expression model, GEMSTAT (Gene

Expression Modeling Based on Statistical Thermodynamics) [19], which is a statistical

thermodynamics-based model of enhancer sequence readout. As shown in Figure 1.2, tran-

scriptional regulation can be modelled as the interaction of three components: DNA se-

quence, TFs, and the basal transcriptional machinery (BTM). A TF can bind on any site

of the DNA sequence with a site-specific probability or affinity. The BTM can bind on

the core promoter and initiate transcription. The model assumes that, the interactions of

TF-DNA, BTM-DNA, and TF-BTM occur in thermodynamic equilibrium. Following Shea

and Ackers [23], GEMSTAT further assumes that the gene expression level is proportional

to the fractional BTM occupancy at the promoter.

GEMSTAT computes the fractional occupancy of the BTM by considering an ensemble of

molecular configurations, each of which is denoted by σ and specifies which sites are bound

and which are free. All configurations assume one of two states: one where the BTM is

bound or another where the BTM is unbound. The statistical weights of the two states

are W (σ)Q (σ) and W (σ) respectively. W (σ) represents the contribution of TF-DNA

interactions, calculated based on TF concentrations and binding affinities of bound sites.

Q (σ) represents the contribution of TF-BTM interactions, modelled as α, a vector of free

parameters with one scalar for each TF, as indicated in Figure 1.2. Given this, the relative

probability of bound BTM is the following, where the gene expression level is proportional

to E:

E =

∑
σW (σ)Q (σ)∑

σW (σ)Q (σ) +
∑

σW (σ)
(1.1)
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In this paragraph, we detail the derivation of the statistical weight W (σ), and descriptions

of parameters used in GEMSTAT are listed in Table 1.1. The sub components of the

statistical weight are the contributions of each binding site in a configuration σ. As shown

in Figure 1.2, q (S) represents the contribution of a binding site S to W (σ) and is given by

the following equation:

q (S) = K (Sopt) ν [TF ]rel exp [LLR (S)− LLR (Sopt)] (1.2)

In this formulation, [TF]rel represents the relative TF concentration, so that ν [TF]rel is the

absolute concentration, for some TF-specific constant of proportionality ν . LLR (s) for any

site S represents the log likelihood ratio score of the site S for the PWM motif of TF, Sopt

is the optimal binding site. For simplicity, we define E0 (S) = exp [LLR (S)− LLR (Sopt)]

as the TF-DNA binding energy at site S henceforth. K (Sopt) represents the association

constant of TF-DNA binding for the optimal site. Since both K (Sopt) and ν are unknown

constants, GEMSTAT treats the product of the two as a free parameter. The statistical

weight W (σ) is then given by the following equation:

W (σ) =
∏
i

q (Si)
σi (1.3)

1.2.2 Model training

Three different goodness-of-fit functions are used at various stages of optimization, to

compare between real and predicted expressions of enhancer sequences: average correlation

coefficient (Avg. CC), root mean square error (RMSE), and weighted Pattern Generating

Potential (wPGP, taken from [24] and described in the following subsection). To avoid

being trapped in local optima, parameter optimizations were done in multiple runs while

alternating between Avg. CC and RMSE as the objective functions. The optimization starts

with a set of default parameters and Avg. CC as the objective function. Upon convergence,

the resulting set of parameters is used to initiate optimization with RMSE as the objective

function, which is run to convergence. This procedure of optimizations alternating between

Avg. CC and RMSE as objective functions is repeated twice, and the resulting set of

parameters initiates the final optimization step that uses wPGP as the objective function.

Each optimization is done by alternating between the Nelder-Mead simplex method and the

quasi-Newton method, as in He et al. [19].
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Table 1.1: Parameters used in GEMSTAT.

Parameter Description Number
bindingWti ( q (Si) ) Represents the dissociation constant of the

equilibrium reaction between the i-th TF,
TFi and its optimal binding site when the
concentration of TFi is maximum

One per TF

qBTM A phenomenological parameter that captures
the combined effect of all molecular species
that act downstream of the TF recruitment
step and initiate transcription (such molecu-
lar species are collectively known as the basal
transcription machinery or BTM)

One global param-
eter

txpEffecti ( αi ) Represents the strength of TFi’s effect on the
BTM

One per TF

ωij Strength of interaction between molecules of
two TFs, TFi and TFj (i and j may be the
same), which are assumed to bind coopera-
tively to the DNA

One per pair of
TFs (TFi and
TFj) that are
assumed to have
cooperativity in
DNA binding

1.2.3 Evaluation of model predictions using wPGP (weighted pattern generating
potentials)

Given the predicted and real expression profiles, the wPGP score [24] is defined as follows:

wPGP = 0.5 + 0.5× (reward− penalty) , (1.4)

where reward =
∑

i ri× min(ri,pi)∑
i ri×ri

, and penality =
∑

i(maxr−ri)×(pi−ri)×I(pi>ri)∑
i(maxr−ri)×

∑
i(maxr−ri) . Here, pi and ri

are the predicted and the real expression in bin i, respectively, maxr is the maximum level

of real gene expression, and I(B) is a binary variable indicating the truth of condition “B” .

The wPGP score ranges from 0 to 1, with higher scores indicating better matches between

the predicted and the endogenous expression. The wPGP score was used as the objective

function during parameter training, as well as for assessing if one model fits the data better

than another.

1.3 CHROMATIN ACCESSIBILITY AND REGULATION OF GENE EXPRESSION

One key aspect missing from the mechanistic view adopted in today’s thermodynamics-

based models is that of chromatin state. A significant advance in recent years in the field
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of regulatory genomics has been the realization that chromatin state, e.g., specific histone

modifications and general accessibility patterns, of cis-regulatory regions strongly correlates

with expression and with regulatory events leading to expression [25, 26, 27]. Genome-wide

profiling of DNaseI hypersensitive sites (DHS), representing regions of relatively accessible

chromatin, or of specific histone modifications such as H3K27ac, has proven to be a pow-

erful strategy to map regulatory DNA and pinpoint active enhancers [28, 29, 30, 31]. For

instance, genome-wide, high-resolution, in vivo mapping of DHS sites has helped chart the

regulatory DNA landscape of Drosophila early embryo development [32], showing how chro-

matin accessibility may influence genome-wide, overlapping patterns of TF binding during

embryogenesis [33, 25, 26]. Additionally, we now know that chromatin state (e.g., accessi-

bility) of a genomic segment is an effective predictor of its regulatory activity [34, 29, 35]

and an important feature in predicting TF occupancy therein [36]. In particular, incorpo-

ration of accessibility data has significantly improved the accuracy of predicting in vivo TF

occupancy over baseline models that used sequence-specific motifs alone [37, 38]. These find-

ings naturally raise the question: does chromatin state information also improve our ability

to quantitatively predict expression levels driven by an enhancer? To our knowledge, this

question has not been systematically and empirically answered so far, and is the subject of

Chapter 2.

Based on our knowledge today, we might expect an affirmative answer to the above ques-

tion. If chromatin accessibility data improves our ability to predict TF-DNA binding, which

it does [33, 25, 38], and since it is generally accepted that better prediction of TF-DNA

binding should lead to better expression prediction, it follows that accessibility data ought

to improve sequence-to-expression prediction. However, testing this hypothesis requires cou-

pling the two computational aspects mentioned above, i.e., accessibility data → TF-DNA

binding prediction and binding prediction→ expression prediction, and evaluating the inte-

grated approach on an appropriate data set. This was the methodological challenge facing

us in Chapter 2.

Moreover, it was not clear to us going in to this study if the resolution of available data

and the expressivity of today’s sequence-to-expression models are adequate to demonstrate

the advantage of incorporating accessibility data, even if such an advantage exists. Note that

our goal was not to use accessibility data to identify enhancers and then predict expression

from their sequence; rather we wanted to test if variations of accessibility within known

enhancers, at about 20 – 25 bp resolution [26, 39], can inform sequence-to-expression models

in useful ways. This required that the models be sensitive enough to register quantitative

variations of DNA-accessibility at individual binding sites, and that the accessibility data

pertain to the same cell types for which we do have accurate sequence-to-expression models.
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In Chapter 2 we build and evaluate a quantitative model that maps regulatory DNA

sequence to the regulated gene’s expression while integrating DNA accessibility data. Sev-

eral studies [17, 18, 19, 40, 22, 41] have proposed quantitative models of the sequence-to-

expression relationship. One such quantitative model is “GEMSTAT”, a statistical thermo-

dynamics based model that we previously showed to successfully model dozens of enhancers

involved in specification of the anterior/posterior (A/P) axis in early Drosophila embryos

[19] (see Section 1.2 for details). GEMSTAT is the only available general purpose tool that

can be trained to model the regulatory activities of a set of enhancers with a common as-

signment of free parameters. Moreover, its thermodynamics-based formulation lends itself

to incorporation of accessibility data in an intuitive and semi-mechanistic manner, to an

extent that one may study how accessibility of individual binding sites may impact ex-

pression. These considerations, along with our extensive experience with GEMSTAT made

it a natural choice as the modeling framework adopted here. The regulatory system we

chose comprises the above-mentioned A/P patterning enhancers from Drosophila, in part

because this system has been the subject of several modeling studies by us [19, 24, 42] and

others [20, 43, 22, 44], and also because chromatin accessibility data are available for the

developmental stage represented by this data set.

1.4 THE ROLE OF DNA SHAPE IN TF-DNA BINDING AND GENE EXPRESSION

A key aspect of transcriptional regulation is the sequence-specific DNA-binding of tran-

scription factors, and in recent years there has been a strong push towards precise character-

ization of transcription factor (TF)-DNA binding and its underlying mechanisms [45]. The

extent to which a TF’s binding specificity at a site is dictated by the TF directly interpreting

the nucleotide sequence (“base readout”) or DNA shape at the site (“shape readout”) is a

topic of considerable debate [46, 47], as is the role played by secondary TFs [48, 33, 49] that

cooperatively or competitively influence in vivo DNA-binding.

A number of high throughput assays have been developed to generate data sets on which

our understanding of TF-DNA binding can be rigorously tested [50]. To support the study of

biochemical mechanisms underlying TF-DNA binding, various computational models have

emerged to describe these mechanisms and use them to fit experimental data [51]. The de

facto leader of this pack is the “position weight matrix” or PWM model, which prescribes

a multinomial distribution over four nucleotides for each position of the binding site, the

distributions at different positions being independent of each other [52, 53]. The PWM

model has been extensively used in regulatory sequence analysis and numerous algorithms

are available for inferring a PWM model from a TF’s binding sites [54, 55, 56, 57, 58].
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At the same time, several reports have pointed out deficiencies in the model and presented

alternative models that are claimed to be in greater agreement with binding data [59, 60, 61].

In short, the high intensity of on-going experimental and computational work in this field

has taken us much closer to a quantitative and predictive model of a TF’s DNA-binding

specificity.

The ultimate goal in modeling TF-DNA binding is to use this ability to understand gene

regulation. Achieving this goal will allow us to “read” and interpret non-coding sequences

and hence their relationship to organismal form and function [62], and their evolution [63].

It will enable major advances in the genomics of human health, by providing accurate pre-

dictions of the effects of single nucleotide polymorphisms at the cellular level. Precise models

of in vitro and in vivo binding take us only part of the way to this grand goal, and must be

incorporated into sequence-specific models of gene expression (sequence-to-expression mod-

els) for their value to be truly realized. Sequence-to-expression models are steadily gaining

popularity, and have been used, among other things, to predict precise levels of gene expres-

sion in different regions of the developing embryo [17, 18, 19, 20, 64, 22, 44] or to predict

tissue-specific gene expression in humans [65, 27, 66]. However, there is a disconnect today

between these models of gene expression and the burgeoning body of work on TF-DNA

binding specificity. Sequence-to-expression models exclusively rely on the PWM model of

DNA-binding, and it is unknown if alternative, emerging models of DNA-binding can sub-

stantially improve prediction of gene expression. This is the gap that we attempt to fill in

Chapter 3.

We considered a model of TF-DNA binding that incorporates local DNA shape at the

binding site and asked if it performs as well as a PWM model in predicting gene expression.

To answer this question, we considered one of the best-studied regulatory systems today –

the set of genes and respective enhancers responsible for anterior-posterior (A/P) patterning

of the blastoderm-stage Drosophila embryo [19, 22, 44]. We used the thermodynamics-based

GEMSTAT model [19] to predict gene expression levels from enhancer sequence and TF

concentrations, using the DNA-binding model to parse the enhancer sequence in terms of

the types, strengths and arrangements of binding sites within. We used rigorous methods

of comparing model fits [24], to find that a DNA-binding model based on “shape readout”

[67] performs at least as well as, and arguably better than, the PWM model. We performed

additional tests to examine if integrating shape readout and PWM into a single model

would achieve better predictions than using either binding model independently. To our

knowledge, this is the first successful attempt at quantitatively modeling the function of an

enhancer sequence using a description of TF-DNA binding specificity other than the PWM.

The shape-based model used here was trained on (binding site) data from the Bacterial
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1-hybrid system [68]. With the growing availability of data sets describing TF-DNA binding

affinities more comprehensively [45, 50], we expect that it will be possible to train such

models more accurately and to demonstrate their ability to predict gene expression better

than with PWM models alone.

1.5 CIS -REGULATORY EVOLUTION IN ASPECTS OF SEQUENCE,
ACCESSIBILITY, TF BINDING, AND ENHANCER ACTIVITY

Cis-regulatory evolution plays an important role in phenotypic diversity, including mor-

phological [69], physiological [70] and behavioral [71, 72] evolution. Given its importance,

many studies have examined cross-species changes in various aspects of gene regulation,

including expression [73], enhancer activity [74], transcription factor (TF)-DNA binding

[75, 76, 77, 78], TF binding motifs [75, 79, 80, 81, 82], DNA accessibility [83] and chromatin

states [84]. Changes have been observed to differing extents in these measurable aspects

of gene regulation, leading to some emerging principles underlying their conservation and

divergence [79]. At the same time, it is challenging to systematically integrate these diverse

qualitative observations about cis-regulatory evolution at different regulatory levels given

the different phyla, biological systems, and technologies.

A number of studies have examined the evolution of DNA cis-regulatory sequences [85, 86].

Some have noted surprisingly high levels of sequence change [87, 88, 89], but regulatory

function and gene expression are often conserved despite sequence-level changes [90, 91, 74,

92, 93], revealing considerable flexibility in sequence encoding the same function [94, 95].

Further investigations asked if the observed functional buffering against sequence divergence

happens at the level of TF-DNA binding, which is the principle molecular event mediating

sequence-expression relationships. ChIP-chip or ChIP-seq assays of the same TFs were

performed in multiple species [75, 76, 74, 77] and while genome-wide TF binding landscapes

were noted to be conserved overall, many large qualitative as well as quantitative differences

in binding were also reported [75]. The evolution of binding landscapes thus emerged as

an intriguing aspect of molecular evolution, and researchers sought to identify its main

determinants.

Loss and gain of TF ChIP peaks are correlated with changes in the presence of the TF’s

DNA binding motif [75, 79, 80, 81, 82], but this relationship, though significant in its extent,

was far from a satisfactory explanation for TF binding differences. For instance, many peaks

are lost though the motif is conserved, and conversely, peaks are often conserved despite motif

loss. Some studies noted the influence of co-binding TFs at or near the peak [77], suggesting

roles for co-operative [91] and ‘TF collective’ modes of occupancy [74].
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On the other hand, Bradley et al. [75] interpreted an observed correlation between evolu-

tionary changes of occupancy among multiple TFs as evidence for TF-independent influences

such as differences in local chromatin accessibility. Indeed, DNA accessibility is known to

be a major correlate of TF-DNA binding [33, 26], and may therefore underlie evolution-

ary changes in TF binding. For instance, Paris et al. [73] noted that binding divergence

is correlated with changes in binding sites for the pioneer factor Zelda, which indirectly

implicates accessibility changes. Genome-wide accessibility landscapes are generally evolu-

tionarily conserved [96, 97], but accessibility changes between orthologous genomic elements

are also observed and raise the question: how often do they underlie evolutionary changes in

TF binding? Surprisingly, there is no direct analysis of this question. In related work, Con-

nelly et al. [96] reported evidence that much of accessibility divergence (between two yeast

species) may be inconsequential for gene expression. Alexandre et al. [83] made similar ob-

servations for different ecotypes of A. thaliana, but also noted that loci with high sequence

variation and accessibility changes were significantly linked to expression changes. How-

ever, the extent to which accessibility changes are predictive of TF binding changes between

species remains unknown. Is this relationship comparable in extent to the documented rela-

tionship between motif change and TF binding divergence? Do changes in accessibility and

motif presence carry complementary information related to observed changes in TF ChIP

peaks? How often is accessibility conserved, yet a TF’s occupancy diverged due to motif

turnover, and how commonly do changes in accessibility result in loss or gain of TF ChIP

peaks despite conservation of motif presence? These are not mutually exclusive possibilities

and teasing apart their relative contributions and potential causal influence requires a for-

mal, quantitative analysis. Insights emerging from such analyses may also fuel discussions

of cause-versus-effect in the relationship between TF binding and accessibility [98, 26]. In

addition to advancing our basic understanding of cis-regulatory evolution, answering these

questions may also allow us to predict changes in TF binding using computational models

that incorporate data on sequence and accessibility changes, bypassing the need for expensive

ChIP profiling of TFs across species and individuals.

Any investigation of these aspects of cis-regulatory evolution must also consider promiscu-

ous occupancy of TFs [99] and that a large number of ChIP peaks may not have a functional

impacts on gene expression [100], or be functionally redundant. Evolutionary comparisons

have strongly suggested that expression changes are poorly explained by TF binding changes

[73], underscoring the need to examine evolutionary questions about TF binding in a func-

tional context. It is difficult to generally predict whether a TF ChIP peak is functional,

but there are a few well-characterized regulatory systems where detailed prior knowledge

of the regulatory network permits such an exercise. One of these systems is the mesoderm
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specification network in D. melanogaster, where extensive prior work has established the role

of a small set of TFs in determining spatio-temporal expression patterns of a large number

of genes [101, 102, 103, 104, 74, 105, 106, 107, 108, 109, 110]. This has previously led to

the cataloging of thousands of putative enhancers responsible for such patterning [74, 110],

with hundreds of them being experimentally validated through reporter assays in transgenic

embryos. The mesoderm network with its richness of prior knowledge and cis-regulatory

data sets thus provides a uniquely suited system to investigate cross-species evolution of TF

binding and its determinants [74].

In Chapter 4, we studied the evolution of genome-wide binding landscapes of five essential

TFs in the mesoderm specification network, between two drosophilids D. melanogaster and

D. virilis, species separated by 40 million years [73] (1.4 substitutions per neutral site [111]).

We collected DNase I hypersensitive sites (DHS) data to measure chromatin accessibility at

three different temporal stages during early embryonic development in both D. melanogaster

and D. virilis, and recorded conservation and divergence patterns. We built predictive models

that use either motif change or accessibility change to predict stage-specific binding diver-

gence of all five TFs, using our previously reported inter-species ChIP data [74, 110]. Using

these models and focusing on a large set of previously characterized mesoderm enhancers

[74, 110] to increase functional relevance, we found that accessibility and TF binding mo-

tif changes have similar predictive relationship with changes in TF binding. We also noted

that they bear complementary information and showed that a model using both accessibility

and motif information can predict TF binding divergence with significantly greater accuracy

than models using either type of information alone. Finally, in a novel analysis, we used

machine learning models to examine changes in TF binding of multiple factors in terms of

their combinatorial effects on gene expression. We found that motif and accessibility based

predictors of TF binding change can substitute for experimentally measured binding change,

for the purpose of predicting divergence in gene expression.
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CHAPTER 2: INCORPORATING CHROMATIN ACCESSIBILITY INTO
SEQUENCE-TO-EXPRESSION MODELING

Prediction of gene expression levels from regulatory sequences is one of the major chal-

lenges of genomic biology today. A particularly promising approach to this problem is taken

by thermodynamics-based models that interpret an enhancer sequence in a given cellular

context specified by transcription factor concentration levels and predict precise expression

levels driven by that enhancer. Such models have so far not accounted for the effect of

chromatin accessibility on transcription factor – DNA interactions and consequently on gene

expression levels. This chapter describes a thermodynamics-based model of gene expression,

called GEMSTAT-A [64], which incorporates chromatin accessibility data and quantify its

effect on accuracy of expression prediction. The results demonstrate how DNA accessibility

may be useful for sequence-to-expression models.

2.1 A THERMODYNAMICS-BASED MODEL THAT INTEGRATES CHROMATIN
ACCESSIBILITY DATA

The new quantitative model for predicting gene expression, called GEMSTAT-A (GEM-

STAT with Accessibility), is an extension of GEMSTAT (see Section 1.2). GEMSTAT-A

integrates chromatin accessibility data to explore the interplay between accessibility, TF-

DNA binding strength and gene expression (Figure 2.1). We first assigned a local accessi-

bility score, Acc(S), on a scale of 0 to 1 (0 = inaccessible), to each TF binding site S. Next,

the TF-DNA binding energy at site S is modulated by this accessibility score and redefined

to be:

E(S) = E0(S) + kacc(1− Acc(S)) (2.1)

where E0(S) is the TF-DNA binding energy at site S as estimated by GEMSTAT using

the TF’s motif, and kacc > 0 is a free parameter optimized in course of fitting the data

and is a phenomenological parameter reflecting the effect of accessibility. Thus, instead of

setting a threshold to define accessible and inaccessible TF binding sites, GEMSTAT-A uses

quantitative accessibility scores in calculating the binding energy.

In GEMSTAT (i.e., the original model), every TF binding site is considered to be com-

pletely accessible, which is equivalent to setting local accessibility to 1. (Note that setting

Acc(S) = 1 implies E(S) = E0(S) in the above formula.) In reality, if the local accessibility

is low (Acc(S) < 1), GEMSTAT may overestimate the contribution of the site by ignoring

its accessibility score. GEMSTAT-A increases the binding energy (decreases the strength)
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Figure 2.1: GEMSTAT-A assumes the TF-DNA binding energy at a site S changes
according to the accessibility of S. Shown is an example with three identical binding
sites where GEMSTAT estimates the same TF-DNA binding energy E0(S). GEMSTAT-A
assigns a local accessibility score Acc(S) to each site S (bottom, y-axis), and models the
TF-DNA binding energy as E0(S) + kacc(1− Acc(S))

of less accessible sites while maintaining the original estimates for sites in highly accessible

regions. Other than this modification of how the binding energy is estimated, GEMSTAT-A

is identical to GEMSTAT in how enhancer sequence and trans context is mapped to the

expression level driven by the enhancer. Note that GEMSTAT-A has one additional free

parameter to be optimized, viz., the accessibility effect parameter kacc.

2.2 GEMSTAT-A MODELING ON EARLY STAGE DROSOPHILA EMBRYOS

We asked if GEMSTAT-A could fit expression profiles of real enhancers better than GEM-

STAT, by making use of experimentally measured accessibility variations within the en-

hancer. To test this, we resorted to a data set that was used in the original GEMSTAT

model [19]. The data set comprises: (1) 37 experimentally characterized enhancers involved

in the regulation of A/P patterning genes in stage 4-6 Drosophila embryos, (2) quantitative

profile of the gene expression pattern driven by each enhancer, (3) DNA-binding motifs (ex-

pressed as position weight matrices or “PWM”s) of six TFs, namely bicoid (BCD), caudal

(CAD), hunchback (HB), giant (GT ), knirps (KNI ), and Kruppel (KR), and (4) quantita-

tive profile of each TF’s concentration (Figure 2.2). He et al. [19] collected the sequences

from REDfly database [112], TF concentration profiles from FlyEx database [113, 114], gene

expression profiles from Segal et al. [22], the PWM of BCD from Bergman et al. [115] and

those of the other TFs from Noyes et al. [68]. Following the GEMSTAT study, we chose to

model gene expression within 20-80% of the A/P axis.

Additionally, GEMSTAT-A was made to utilize rank-normalized chromatin accessibility

data. We gathered chromatin accessibility data from DNase1 hypersensitivity (DHS) assays
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Figure 2.2: TF concentrations (y-axis) for BCD, CAD, GT, HB, KNI, KR along the A/P
axis (x-axis).

in embryonic stage 5 were gathered from Berkeley Drosophila Transcription Network Project

(BDTNP) Release 5 [26, 39]. We ranked the genome-wide DHS scores (at 20 bps resolution),

with rank 1 representing the smallest DHS score. The rank-ordered DHS scores were then

divided by the total number of windows in the genome. These normalized scores were on

the scale of 0 (least accessible) to 1 (most accessible). Rank-based normalized DHS scores

within the 37 enhancers were extracted and used to compute the accessibility score Acc(S)

of each annotated binding site S. Acc(S) was simply the rank normalized score of the 20

bps segment that includes the site S, or the average of multiple segments if the site overlaps

with multiple segments.

The GEMSTAT-A model was trained using the same strategy as was used for GEMSTAT

[19]. Details of model training are described in Section 1.2. We briefly review the main

ideas of GEMSTAT training here. For each TF, all PWM matches in an enhancer with

LLR score at least 0.4 times the LLR score of the optimal site were annotated as binding

sites. Additionally, in GEMSTAT-A each annotated site is assigned a local accessibility score

Acc(S) as described above, in estimating the TF-DNA binding energy at S. Both models

considered self-cooperative DNA binding of BCD as well as KNI and were used in the

“DIRECT INTERACTION” mode. The number of free parameters in GEMSTAT was 15

(one transcriptional effect and one binding strength parameters for each TF, one parameter

to model basal level of gene expression, and one parameter for each TF that we assumed

to have self-cooperative DNA binding. See Table 1.1 for details.), while GEMSTAT-A had

one additional free parameter (the “accessibility effect” parameter kacc ). Model parameters

were fit to maximize the average goodness-of-fit score between model predictions and real

expression profiles.

State of the art quantitative models of gene expression adopt two common approaches to
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evaluate their predictions, namely the average correlation coefficient and root mean square

error. However, these do not always capture the salient features of a one-dimensional ex-

pression pattern, as shown in [40]. To address these issues, a new scoring function, called

“weighted pattern generating potentials” (wPGP) was presented by Samee and Sinha [24].

This scoring function was designed to (1) be sensitive to both the shape and magnitude

of the predicted expression profiles, and (2) avoid biases towards or against overly broad

or overly narrow domains of expression. We therefore used wPGP scores to evaluate the

goodness-of-fits (See Section 1.1 for details).

2.3 CHROMATIN ACCESSIBILITY DATA IMPROVES EXPRESSION PREDICTIONS

Expression predictions from GEMSTAT and GEMSTAT-A for each enhancer were evalu-

ated using the wPGP score (Figure 2.3 and Table 2.1). Overall, GEMSTAT-A was evaluated

at a wPGP score of 0.773 (averaged over 37 enhancers) while GEMSTAT showed an average

wPGP of 0.745. Average cross-validation wPGP is 0.741 for GEMSTAT-A and 0.679 for

GEMSTAT. Among all 37 enhancers, GEMSTAT-A produced better fits (wPGP score im-

proved by ≥ 0.05) on 15 enhancers (Figure 2.4A), while its fits were worse than GEMSTAT

on 6 enhancers (Figure 2.4B). Within the former group of 15 better-predicted enhancers,

the average wPGP score improved by 0.18. These 21 cases included enhancers where one

of the models had a wPGP score ≤ 0.5, which in our experience (also see Figure 2.4C) is

a sign that the model failed completely on that enhancer; the differences in fits on these

enhancers are likely not due to consideration of accessibility data directly, but due to the

different parameter settings the two models utilize. Ignoring these cases, we may identify

11 cases where GEMSTAT-A fits the data better and 4 enhancers where it fits worse than

GEMSTAT (last column in Table 2.2). We interpret this as strong evidence that incorporat-

ing chromatin accessibility data improves gene expression predictions. To better appreciate

the nature of differences between the two models in their fits and to qualitatively assess the

improvement due to accessibility information, we plotted the model predictions along with

real expression patterns for a selection of enhancers (Figure 2.4 and Figure 2.5).

We noted that on some enhancers GEMSTAT-A fits showed refinements over GEMSTAT

predictions resulting in more accurately defined boundaries of expression domains (e.g.,

btd head, hb anterior actv, eve 37ext ru in Figure 2.5). On other enhancers there were

more qualitative improvements, e.g., GEMSTAT-A correctly models the posterior domain

of gt (-1), correctly removes a spurious anterior domain prediction made by GEMSTAT on

the enhancer pdm2 (+1), and dramatically improves upon the boundaries of the predicted

expression domain of enhancer nub (-2). Interestingly, the change in GEMSTAT-A’s pre-
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Figure 2.3: Evaluations of expression predictions from GEMSTAT and
GEMSTAT-A. The goodness of fit between predicted and real expression for each en-
hancer was assessed by wPGP score, shown here for all 37 enhancers. Dotted lines delineate
regions where the difference of w-PGP between the two models is ≥ 0.05. A selection of
enhancers where GEMSTAT-A improves fits are labeled and their expression patterns are
shown in Figure 2.5.

Table 2.1: 10-fold cross-validation assessment of GEMSTAT and GEMSTAT-A.
Each model was tested with 10-fold cross-validation, repeated five times with different (ran-
dom) definitions of the ten folds. For each model, shown are the number of free parameters
used is shown (“#Pars”), the wPGP score from parameter optimization over all 37 en-
hancers (“Training wPGP”), and the wPGP score from cross-validation (“CV wPGP”),
averaged (with standard deviation, SD, in parentheses) over the five repeats.

Model #Pars Training w-PGP CV wPGP (SD)
GEMSTAT-A 16 0.773 0.741 (0.005)
GEMSTAT 15 0.745 0.679 (0.008)
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Figure 2.4: Expression predictions from GEMSTAT and GEMSTAT-A. The pre-
dicted expression profiles of GEMSTAT-A (orange lines) and GEMSTAT (purple lines) are
compared to experimentally determined readouts (black lines), for 9 selected CRMs. Each
expression profile is on a relative scale of 0 to 1 (y-axis), and shown for the region between
20% egg length and 80% egg length along the A/P axis of the embryo. Title in each panel
is in the format of “enhancer, wPGP by GEMSTAT-A (G-A), wPGP by GEMSTAT (G).”
(A) 15 enhancers with wPGP score improved by ≥ 0.05. The order of enhancers is the same
as in Table 2.2.
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Figure 2.4 (cont’d): Expression predictions from GEMSTAT and GEMSTAT-A.
(B) 16 enhancers with no substantial change.
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Figure 2.4 (cont’d): Expression predictions from GEMSTAT and GEMSTAT-A.
(C) 6 enhancers with wPGP scores worsened by ≥ 0.05.
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Table 2.2: Evaluations of expression predictions from GEMSTAT and GEMSTAT-
A. The “goodness of fit” between predicted and real expression for each enhancer was
assessed by wPGP score. The wPGP scores from GEMSTAT and GEMSTAT-A over all 37
enhancers are shown, and wPGP scores greater than 0.75 are colored in red.

Enhancer GEMSTAT-A GEMSTAT Change
≥ 0.05

Change ≥ 0.05
and both ≥0.50

ftz +3 0.87 0.47 +
odd (-5) 0.75 0.45 +
nub (-2) 0.81 0.53 + +
pdm2 (+1) 0.90 0.64 + +
run stripe5 0.77 0.54 + +
eve 37ext ru 0.98 0.79 + +
h 15 ru 0.64 0.46 +
D (+4) 0.76 0.60 + +
eve stripe2 0.79 0.66 + +
kni 83 ru 0.82 0.71 + +
gt (-1) 0.71 0.60 + +
btd head 0.89 0.78 + +
hb anterior actv 0.92 0.84 + +
slp2 (-3) 0.95 0.88 + +
knrl (+8) 0.51 0.44 +
kni (+1) 0.82 0.79
run stripe3 0.84 0.83
eve stripe5 0.92 0.91
odd (-3) 0.84 0.83
hb centr & post 0.43 0.42
run stripe1 0.84 0.83
h stripe34 rev 0.70 0.69
eve 1 ru 0.86 0.86
eve stripe4 6 0.83 0.83
h 6 ru 0.97 0.97
gt (-10) 0.89 0.90
gt (-3) 0.91 0.93
Kr CD1 ru 0.76 0.79
Kr CD2 ru 0.66 0.70
prd +4 0.83 0.87
run -9 0.88 0.92
run -17 0.82 0.88 - -
kni (-5) 0.81 0.89 - -
oc (+7) 0.72 0.86 - -
oc otd early 0.56 0.95 -
cnc (+5) 0.34 0.77 -
Kr AD2 ru 0.31 0.74 - -
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Figure 2.5: Expression predictions from GEMSTAT and GEMSTAT-A. The pre-
dicted expression profiles of GEMSTAT-A (orange lines) and GEMSTAT (purple lines) are
compared to experimentally determined readouts (black lines), for 6 selected CRMs. Each
expression profile is on a relative scale of 0 to 1 (y-axis), and shown for the region between
20% and 80% of the A/P axis of the embryo. Title in each panel is in the format of “enhancer
name, wPGP by GEMSTAT-A (G-A), wPGP by GEMSTAT (G).”
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Table 2.3: 10-fold cross-validation assessment. GEMSTAT and GEMSTAT-A models
were tested with 10-fold cross-validation 5 times. For each 10-fold cross-validation run, the
wPGP scores of GEMSTAT and GEMSTAT-A (averaged over 37 enhancers, “Avg. wPGP”)
are shown.

Run # GEMSTAT Avg. wPGP GEMSTAT-A Avg. wPGP
1 0.676 0.748
2 0.666 0.745
3 0.685 0.736
4 0.684 0.742
5 0.685 0.737

diction for some cases is more accurate biologically, although the prediction does not match

the data. For example, the posterior expression in our predicted readout for eve 37ext ru

is indeed in those locations along the A/P axis where the seventh stripe of the eve gene is

formed. Detail comparison of relative successes and failures, as well as examples where one

model completely failed to capture the spatial pattern driven by an enhancer while the other

model was successful, are shown in Figure 2.4.

Thus, our initial observations on model fits over all enhancers indicated, both quanti-

tatively and qualitatively, a conspicuous improvement due to chromatin accessibility data.

Rigorously speaking, GEMSTAT-A fits are expected to be at least as good as GEMSTAT

since the former has one extra parameter, the accessibility effect kacc. A common way to

compare models of varying complexity is to evaluate their cross-validation accuracy. We

therefore performed 10-fold cross-validation with either model, where each “fold” uses 33-34

of the 37 enhancers as training data and the remaining 3-4 enhancers as the testing data.

Since partitioning of the 37 enhancers into ten folds is done at random, we repeated the

entire 10-fold cross validation exercise five times (with different random partitioning in each

repeat) for each model. The average cross-validation wPGP across all 5 runs of 10-fold cross-

validation was 0.679 and 0.741 for GEMSTAT and GEMSTAT-A, respectively (Table 2.1).

Detailed results from cross-validation are shown in Table 2.3. This analysis clearly shows the

improved ability of GEMSTAT-A to predict expression readouts, compared to GEMSTAT,

even after accounting for the additional free parameter.

To verify the above effect further, we next repeated the modeling exercise, by (1) using

accessibility data from embryonic stage 14, which is a later developmental stage compared

to embryonic stage 5 that the expression data corresponds to, (2) using a randomly shuffled

version of the normalized accessibility scores across the whole genome and extracting local

accessibility profiles in the 37 enhancers, and (3) shuffling the accessibility scores across the

37 enhancers. (The last exercise was motivated by the fact that enhancers are known to have
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Table 2.4: Effect of chromatin accessibility data used in GEMSTAT-A. Results from
GEMSTAT-A trained with different variations on input chromatin accessibility data: data
from embryonic developmental stage 5 (stage matching the modeled expression patterns),
embryonic stage 14 (mismatched stage), or two different randomly shuffled versions of the
stage 5 data (see text). Also shown, in the first row, is the result from GEMSTAT, which
does not use accessibility data. For each variation of input accessibility data, shown are the
w-PGP score (averaged over 37 enhancers) and optimized value of the accessibility effect
parameter (kacc ). Results in the last two rows (shuffled versions of stage 5 accessibility
data) are averaged over three different repeats of the assessment (using different random
shuffling).

Model DNA accessibility data w-PGP kacc
GEMSTAT no accessibility data 0.745 N/A
GEMSTAT-A Embryonic stage 5 0.773 17.6
GEMSTAT-A Embryonic stage 14 0.742 4.62
GEMSTAT-A Shuffling across whole genome 0.734 0.91
GEMSTAT-A Shuffling across all enhancers 0.735 0.97

Table 2.5: Effect of shuffling DNA accessibility data used in GEMSTAT-A.
GEMSTAT-A was applied with two different types of shuffled DNA accessibility data: shuf-
fled across whole genome and shuffled across all 37 enhancers. For each runs of shuffled DNA
accessibility data, the average wPGP (“Avg. wPG”) is shown.

Run # Shuffling across whole genome Shuffling across all enhancers
1 0.739 0.735
2 0.732 0.731
3 0.733 0.739

higher accessibility in general, and genome-wide permutation of accessibility scores is likely

to assign low accessibility values within enhancers, thus presenting an unrealistic random

control.)

GEMSTAT-A was trained on these three different “incorrect” settings of chromatin ac-

cessibility data and then evaluated by the wPGP score (Table 2.4 and Table 2.5). In all

three cases, the advantage of GEMSTAT-A over GEMSTAT was entirely lost, and the opti-

mal value of thekacc parameter reported was weak or close to 0, suggesting that the model

found no advantage to using the incorrect accessibility data. These negative controls thus

confirmed that the improved fits found by GEMSTAT-A are mainly due to use of chromatin

accessibility data from the appropriate developmental stage.
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2.4 GEMSTAT-A LEARNS MUCH STRONGER THERMODYNAMIC PARAMETERS

In the process of training sequence-to-expression models, information about inputs (en-

hancer sequences and trans-regulatory context) and output (expression pattern driven by

enhancers) of a regulatory function is used to automatically learn values for the free param-

eters of the model. Both GEMSTAT and GEMSTAT-A utilize two free parameters for each

TF. One of these TF-specific parameters is called the DNA binding weight parameter (“bind-

ingWt”); it helps estimate the occupancy of the TF at a binding site. The other is called the

transcription effect parameter (“txpEffect”), which represents the strength of activation or

repression due to a DNA-bound TF molecule. These parameters have intuitive semantics,

hence their optimal values reported by a trained model are of interest; for example, these

values indicate if TFs bind their respective consensus site strongly or weakly, if one activator

is more effective than another, etc. In other words, the trained model parameters paint a

quantitative picture of the underlying regulatory mechanisms. It is natural to ask if two

models trained on the same data, identical in all respects except that one is aware of acces-

sibility data and one is not, suggest similar quantitative views of the underlying mechanistic

reality. We examined the optimal values of the bindingWt and txpEffect parameters for each

of the six TFs used in the model, as learned by GEMSTAT and GEMSTAT-A separately. We

were surprised to see that the same parameters were often trained to very different values:

GEMSTAT-A was found to learn much stronger parameters (in some cases one to two or-

ders of magnitude stronger) than GEMSTAT. The bindingWt parameter of both activators

and repressors was assigned a greater value (stronger binding strengths) by GEMSTAT-A

compared to GEMSTAT (Figure 2.6 and Table 2.6). The bindingWt parameter of HB was

around 50-fold greater in GEMSTAT-A, while that of KNI was about 13-fold greater. The

txpEffect parameter describes the regulatory effect of a TF and takes values greater than 1

for activators and less than 1 for repressors. We observed that GEMSTAT-A assigned about

two-fold greater values to the activator TFs BCD and CAD, compared to values learned by

GEMSTAT. Likewise, for three of the four repressor TFs (GT, KNI, and KR), GEMSTAT-A

assigned lower txpEffect values reflecting stronger repression ability, especially in the case

of KR, whose txpEffect was 20-fold stronger in GEMSTAT-A.

2.5 GEMSTAT-A IMPROVES EXPRESSION PREDICTION BY REDUCING THE
CONTRIBUTION OF INACCESSIBLE BINDING SITES

We showed above that GEMSTAT-A is able to achieve better predictions of enhancer

readouts with a simple modification of the estimated binding energy of a TF at its sites.
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Figure 2.6: GEMSTAT-A learns stronger parameter values. The bindingWt (A) and
txpEffect (B) parameters of each TF learned from GEMSTAT (x-axis) and GEMSTAT-A (y-
axis). Both axes are on logarithmic scale, in either plot. Icons are in triangle for repressors
and circle for activators. The txpEffect parameter for an activator is greater than 1 and
higher values indicate stronger activation. It is less than 1 for repressors and lower values
indicate stronger repression.

Table 2.6: GEMSTAT-A learns stronger parameters than GEMSTAT on the same
data set. The bindingWt and txpEffect parameters of each TF learned from GEMSTAT-A
and GEMSTAT are shown.

TF GEMSTAT-A
bindingWt

GEMSTAT
bindingWt

GEMSTAT-A
txpEffect

GEMSTAT
txpEffect

BCD 27.38 23.70 3.18 1.61
CAD 161.62 45.51 2.47 1.06
GT 499.98 490.17 0.01 0.07
HB 211.45 3.89 0.40 0.01
KNI 117.55 8.58 0.01 0.03
KR 264.23 253.64 0.02 0.39
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This suggests the existence of TF binding sites in inaccessible segments within the enhancer,

which GEMSTAT was forced to incorporate in its predictions but which GEMSTAT-A could

ignore, by exploiting accessibility information. We investigated this potential explanation

of why GEMSTAT-A produces better fits. For each annotated binding site within the en-

hancer (recall that these are identical between the two models), we removed the accessi-

bility information for that site only, designating it as completely accessible (Acc(S) = 1),

and re-computed the expression profile predicted by GEMSTAT-A. The new goodness-of-fit

(wPGP) was calculated and compared to the original wPGP score of GEMSTAT-A for that

enhancer. The difference in wPGP values, for the same model with or without use of acces-

sibility information on that site, was plotted for each site (Figure 2.7A, ∆wPGP). We also

plotted the change in estimated binding energy of each site due to incorporation of local

accessibility values (Figure 2.7B, ∆∆E). (Parameters were not re-trained in this analysis.)

Figure 2.7 shows examples of the above-mentioned explanation of how GEMSTAT-A im-

proves fits by weakening the estimated binding energy of sites in less accessible regions. One

such example is that of the enhancer gt (-1), where both GEMSTAT and GEMSTAT-A

correctly predict the anterior domain, but the posterior domain ( ∼70% to ∼80% of A/P

axis) is not predicted by GEMSTAT and correctly predicted by GEMSTAT-A (Figure 2.7C,

left). A natural explanation for this difference is that binding sites capable of repressing

expression in the posterior domain are present in less accessible regions of the enhancer, and

while GEMSTAT-A ignores their potential contribution, GEMSTAT includes this contribu-

tion leading to the absence of a posterior domain in its prediction. Indeed, Figure 2.7A (left)

shows that a binding site of the repressor GT located at position ∼250 in the enhancer is

one such site: if GEMSTAT-A were to designate this site as accessible its goodness of fit

(wPGP) would diminish by ∼0.03. Figure 2.7B shows that the estimated binding energy of

this GT site was indeed lower due to local accessibility values. The same figure also shows a

KR site ( at position ∼300 ) that is inaccessible, but whose accessibility score is not relevant

to the fits of GEMSTAT-A for this enhancer.

A similar explanation applies to the enhancer pdm2 (+1), for which GEMSTAT incor-

rectly predicted an anterior domain of expression while GEMSTAT-A correctly predicted

lack of expression in the anterior (Figure 2.7C, middle). The natural explanation for this

difference is the existence of an activator site capable of driving anterior expression, whose

local inaccessibility leads GEMSTAT-A to ignore the site but whose inclusion leads GEM-

STAT to predict the spurious anterior expression. Figure 2.7B (middle) shows that there

are several BCD sites in the enhancer satisfying this property; BCD is expressed anteriorly

(Figure 2.2) and its sites are therefore capable of causing GEMSTAT to predict anterior

expression unless their effect is ignored based on local chromatin inaccessibility. Thus, these
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Figure 2.7: Accessibility of individual sites is utilized by GEMSTAT-A to im-
prove predictions. Details of GEMSTAT-A modeling on enhancers gt (-1), pdm2 (+1)
and cnc (+5) are shown in left, middle and right columns respectively. (A) Change in good-
ness of fit (∆wPGP) of GEMSTAT-A predictions when a binding site’s accessibility score is
forced to a value of 1 (maximum accessibility), shown for each site as a function of its location
in the enhancer. (B) Reduction in estimated binding energy (∆∆E) due to local accessibility
is shown for each annotated binding site, as a function of the site’s location in the enhancer
sequence. Only sites for a subset of TFs (all repressors in left panels, both activators in mid-
dle and right panels) are shown. (C) Predicted expression profiles of GEMSTAT-A (orange
lines) compared to GEMSTAT predictions (purple lines) and experimentally determined
readouts (black lines).
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two examples provide deeper insights into how GEMSTAT-A can use local accessibility to

suppress the activating or repressive effects of binding sites, leading to more accurate pre-

dictions of enhancer readout.

The above analysis also explains why GEMSTAT-A performed poorly on a few enhancers.

One such example is the enhancer cnc (+5) where GEMSTAT-A failed to predict the anterior

expression domain (Figure 2.7C, right). This enhancer has several BCD sites in relatively

inaccessible locations (Figure 2.7B, right), and by ignoring or diminishing their potential

activating influence GEMSTAT-A loses its ability to predict the anterior domain. Indeed, if

it were to ignore the accessibility scores of these sites (i.e., assume that they are accessible),

its wPGP value would improve, as revealed by Figure 2.7A (right). Such aberrant cases were

rare in our evaluations, and may be attributed to the spatial resolution of accessibility data

(see Discussion), among other possibilities.

2.6 DISCUSSION

Quantitative models such as GEMSTAT have been shown to have the expressive power to

capture the complex relationship between regulatory sequence and precise gene expression

patterns, i.e., the so-called cis-regulatory “code” [14, 116]. Their appeal lies in achieving

this expressiveness within a biophysically motivated framework (so that fit models can be

interpreted more easily), while making simplifications that hide mechanistic details on which

little data is available. One such simplification heretofore has been to model TF-DNA bind-

ing as entirely determined by the binding site and the position weight matrix, by adopting

Berg & von Hippel theory [52, 57]. The role of local chromatin structure and epigenetic

modifications has been ignored in these models, understandably so since appropriate data

for learning this role has been lacking. (Also, the few existing models for predicting nucleo-

some occupancy profiles [117, 118, 119] have not reached the level of accuracy necessary for

coupling them to enhancer models; data not shown.) However, the recent wave of studies

profiling the chromatin landscape, especially DNA accessibility, in specific cell types [120] or

developmental stages [25] has changed this situation. Our work responds to this exciting new

development in regulatory genomics by incorporating DNA accessibility data into sequence-

to-expression models and asking if this can at least partly address the limitations introduced

by the simplification mentioned above. We find the answer to be in the affirmative, at least

in the context of our modeling framework and the data set analyzed here.

We note that the role of chromatin accessibility in sequence-based models of gene expres-

sion has not been previously studied. There have been several interesting computational

analyses of accessibility data, that have shown the prodigious impact of accessibility on TF-
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DNA binding profiles [33, 25, 38], and the correlation between changing accessibility and

changing expression [121, 120, 39], but these studies do not quantify the impact of accessi-

bility data on sequence-based prediction of precise spatio-temporal expression patterns. We

also note that our answer to the above-mentioned question did not have to be affirmative.

Even though accessibility clearly shapes expression [27], its influence might have been sim-

ply in making the entire enhancer available for function; in this case a modeling study that

already begins the assumption of an “open” enhancer will not gain any significant advan-

tage from accessibility data. Our affirmative answer suggests a more nuanced role where

variation of accessibility within the enhancer carries information useful for the functional

interpretation of the binding sites present in the enhancer.

It is worth noting that GEMSTAT-A is a phenomenological extension that adds acces-

sibility information to GEMSTAT. In reality chromatin accessibility is likely the result of

complex processes involving the nucleosome, transcription factors, chromatin remodeling

factors and DNA (sequence) [122]. Future sequence-to-expression models may strive to in-

corporate these processes directly at suitable levels of parameterization, with accessibility

being an intermediate dependent variable predicted from sequence and the cellular context,

rather than an independent variable as is the case in GEMSTAT-A. One example of such

future work is to model the influence of pioneer factors [123], which exhibit sequence-specific

binding and seem to remodel the accessibility profile locally. The transcription factor ZELDA

is a strong candidate for this special treatment in the context of our data set, with recent

studies recording its widespread and significant regulatory influence [124, 125] on many of

the gene expression patterns we have modeled here. Computational [33] and experimental

[124] work has strongly suggested that this influence is mediated via accessibility, and the

ZELDA binding motif has been noted as highly enriched in “hot spots” of multi-TF binding

[126]. It is expected that a part of the advantage of using accessibility data will be observed

if GEMSTAT was modified to use ZELDA as a DNA-binding protein that makes local chro-

matin more accessible. In this work we chose not to use ZELDA as one of the regulatory

inputs, so as to get a more accurate view of the role of accessibility variations in shaping

expression readouts of enhancers.

In principle the data used as input to GEMSTAT-A should correspond to a cell type – in

our case, position along the anterior-posterior axis of the embryo. This is the case for the TF

concentration profiles used here, with GEMSTAT-A making separate predictions for each bin

along the A/P axis, using relative TF concentration values for that bin. However, this is not

the case for the accessibility data used, which correspond to whole embryo measurements. We

thus believe that the advantage observed by us is an underestimate of what cell type-specific

accessibility data, already available in other contexts [120, 27] can confer upon sequence-
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to-expression models. For instance, the coarseness of accessibility data might negatively

impact the accuracy of GEMSTAT-A on an enhancer that functions for a short period of

time (compared to the longer period over which the accessibility data is aggregated), or an

enhancer driving expression in relatively few cells of the embryo. This may explain some

failures of GEMSTAT-A modeling. For the enhancer oc (+7), for example, we found that

sites for HB (a repressor which presumably limits the gene’s expression in a narrow anterior

domain) are mostly in the inaccessible regions (data not shown). This might have caused

GEMSTAT-A to predict a broad ectopic expression pattern for this enhancer (Figure 2.4C).

It is also worthwhile to note that we used wPGP score to measure the goodness-of-fit. In

some cases, wPGP scores do not reflect our visually perceived quality of fit. The wPGP score

has been found to be a superior choice in comparison to the two commonly used goodness of

fit scores, namely sum of squared errors and correlation coefficient [40, 24]. Our experiences

from these published studies were convincing enough for us to choose wPGP as the goodness

of fit scores here. Future work will also have to continue to improve the goodness-of-fit score.

An interesting observation made during our model comparisons (with and without acces-

sibility data) was the stronger parameter values learned in GEMSAT-A fits compared to

GEMSTAT fits. Stronger parameter values for a TF imply regarding each binding site of

that TF to have greater contribution to the enhancer’s function. To see why this might be

the case, suppose an enhancer has two TF binding sites for the same TF, with the same

binding affinity and concentration, but one of the sites is accessible and the other is not.

In GEMSTAT, each TF binding site is supposed to be completely accessible, thus the two

sites make equal contributions to the gene expression. However, GEMSTAT-A, is aware that

one of the binding sites is inaccessible, and will therefore attribute greater contribution to

the accessible site in order to achieve the same level of gene expression. This will result in

GEMSTAT-A using stronger parameter values.

In conclusion, we have shown here for the first time how thermodynamic models of en-

hancer readouts may leverage accessibility information to explain the data with higher accu-

racy. We have commented above on the limits of the accessibility data used here, and expect

that the potential shortcomings of using embryo-wide data may be alleviated by refined, cell

type-specific data in the future. The current study also makes it more interesting to assess

additional mechanisms of accessibility and the role of histone modifications. Finally, while

we demonstrated the utility of our modeling for a model organism, the impact of this mod-

eling framework will be much higher if mammalian data on gene expression levels under a

large number of different conditions are available, along with experimentally derived knowl-

edge of the major regulators under those conditions. Extending the current framework to

mammalian systems will be a major direction for future research.
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CHAPTER 3: QUANTITATIVE MODELING OF GENE EXPRESSION
USING DNA SHAPE FEATURES OF BINDING SITES

An important problem in the study of transcriptional regulation is sequence-to-expression

modeling, which interprets the enhancer sequence based on transcription factor concentra-

tions and DNA binding specificities and predicts precise gene expression levels in varying

cellular contexts. Such models largely rely on the position weight matrix (PWM) model for

DNA binding, and the effect of alternative models based on DNA shape remains unexplored.

This chapter introduces a statistical thermodynamics model of gene expression using DNA

shape features of binding sites [127]. This work demonstrates that the increasingly popular

DNA-binding models based on local DNA shape can be useful in sequence-to-expression

modeling. It also provides a framework for future studies to predict gene expression better

than with PWM models alone.

3.1 TFBS DNA SHAPE SCORE PREDICTED BY RANDOM FOREST CLASSIFIER

The main purpose of this work was to test if a quantitative sequence-to- expression model

based on DNA shape at putative binding sites provides better fits to expression data than

the PWM-based model that has been tested successfully in multiple prior studies [17, 19,

64, 22]. For this, we first trained a classifier to predict binding scores by using DNA shape

information. TF binding sites obtained via bacterial one hybrid (B1H) experiments were

downloaded from the Fly Factor Survey database [68]. The DNA shape readouts for all

binding sites were obtained by DNAShape [67], which predicts values of minor groove width

(MGW) and propeller twist (ProT) at base pair (bp) resolution and values of roll (Roll)

and helix twist (HelT) at base pair step resolution; the values are calculated using a window

approach around each base pair, which will score all base pairs except for the one or two

base pairs at each end of the sequence for which we do not have sufficient flanking residues.

Given a TF, we trained a Random Forest classifier [128], using the R package ‘random-

Forest’ [129], to predict the shape scores of its binding sites. As shown in Figure 3.1, a TF

binding site is characterized by a set of four ‘shape vectors’ (MGW, ProT, Roll, and HelT);

each vector has d + 2 dimensions: d dimensions corresponding to a DNA shape readout at

each position except for the terminal one or two base pairs, and two corresponding to the

mean and standard deviation of DNA shape readouts over all positions in the binding site.

The final feature vector fed into the Random Forest classifier was the concatenation of all

four shape vectors, a representation we chose partly based on the work of Zhou et al. [67].

To train each Random Forest, we sampled a set of binding sites for a given TF as the
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Figure 3.1: DNA shape-based model of gene expression. A TF binding site is described
by four shape feature vectors: MGW, ProT, Roll, and HelT. Each vector includes the
corresponding shape feature at every position of the site, along with the mean and standard
deviation over all positions. For a given TF, a random forest classifier is trained on a sample
of binding sites from Fly Factor Survey database to predict shape scores for putative binding
sites.

positive data and a set of random non-coding genomic regions, each with the same length as

the TF’s sites, as the negative data. To capture the numerous ways that random sequences

can deviate from the TF’s preferred binding sequences, we trained each classifier on 10 times

as many negative examples as positive examples. We kept the multiplicative factor (10) low

as we wanted to prevent the Random Forest from being deluged by negative data to the

extent that it suffers from the class imbalance problem [130]. The output of the Random

Forest is a probability of the input sequence being ‘positive’, meaning a TF binding site

(TFBS). We denote this probability as the “DNA shape score” in this study.
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3.2 DNA SHAPE-BASED QUANTITATIVE SEQUENCE TO EXPRESSION MODEL

The DNA shape-based sequence to expression model was adapted from the statistical

thermodynamics model GEMSTAT [19]. We review the main ideas of GEMSTAT in Section

1.2 and formulate below the key modification to its architecture that allows it to utilize

DNA shape information. The contribution of each binding site to the enhancer’s regulatory

function is dictated by its ‘statistical weight’ q(S), given by the following equation:

q (S) = K (Sopt) ν [TF ]rel exp [LLR (S)− LLR (Sopt)] (3.1)

In this formulation, [TF ]relrepresents the relative TF concentration up to some constant

ν. LLR (S) − LLR (Sopt) represents the difference in the log likelihood ratio between the

site S and the optimal binding site Sopt, and K (Sopt) represents the association constant

of TF-DNA binding. Since both K (Sopt)) and ν are unknown constants, GEMSTAT treats

the product of the two as a free parameter.

In constructing an analogous measure based on DNA shape data and not PWM data,

only a single modification needs to be made to the binding site contribution formula, q(S).

In particular, the arguments of the exponent are changed to use DNA shape data. In the

following formulation, Shape(S), in the range 0-1, represents the DNA shape score predicted

by a Random Forest classifier and k represents a free scaling parameter.

q (S) = K (Sopt) ν [TF ]rel exp [−k(1− Shape(S))] (3.2)

Section 3.3 discusses how to derive this formula and an alternative method for incorporating

the shape score into GEMSTAT.

3.3 BIOPHYSICAL VIEW OF TF-DNA BINDING

Consider a bimolecular reversible reaction of the TF binding to a short piece of DNA to

be represented as

TF + DNA
K

TF•DNA (3.3)

where K is relative binding affinity based on DNA sequence S and can be calculated from

the concentration of TF and the concentration of bound complex TFbulletDNA

K =
[TF •DNA]

[TF][DNA]
(3.4)
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Note that the equilibrium probability of a site S being bound is

Pr(S bound) =
[TF •DNA]

[TF •DNA] + [DNA]
=

K[TF]

K[TF] + 1
(3.5)

Let Shape(S) be the score assigned by the Random Forest classifier to binding site S. Assume

that the score is normalized to be in the range 0 (minimum) to 1 (maximum). We have

tested the following two approaches in combining the shape score into sequence to expression

models.

Approach 3.1

Assume that Shape(S)
2

is the probability of site S being bound at conditions where [TF] =
1

K(Sopt)
, where Sopt is the consensus binding site. The relative binding affinity can be

represented S as

K = K(Sopt)e
−∆E(S) (3.6)

where ∆E(S) is E(S) − E(Sopt), with E(S) ≥ E(Sopt) and E(S) is the binding energy of

the TF to binding site. Therefore, the equilibrium probability of a site S being bound is

Pr(S bound) =
[TF]K(Sopt)e

−∆E(S)

TF]K(Sopt)e−∆E(S) + 1
(3.7)

Note that since [TF] = 1
K(Sopt)

at the condition assumed above, we have

Pr(S bound) =
e−∆E(S)

e−∆E(S) + 1
(3.8)

and therefore

Shape(S)

2
=

1

1 + e∆E(S)
(3.9)

Note that for S = Sopt we have ∆E(S) = 0. Therefore, Shape(Sopt)

2
=

1

1 + 1
=

1

2
, i.e.

Shape(Sopt) = 1, as it should be.

In general,

∆E(S) = ln(
2− Shape(S)

Shape(S)
) (3.10)

Use the above formula of ∆E(S) in calculating the statistical weight of a site as

q(S) = K(Sopt)[TF]e−∆E(S) = K(Sopt)[TF]
Shape(S)

2− Shape(S)
(3.11)
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Approach 2.

Following Pujato et al. [131], the relative binding affinity is defined as

K = e
− A

KBT
(1−Shape(S))

(3.12)

where A is a proportionality constant in units of Kcal/mol, KB is the Boltzman constant in

Kcal/(mol • K) and T is the temperature in Kelvin. In Pujato et al., the best results were

observed when A=4.74 Kcal/mol at 298 K, we therefore treated A/(KBT ) as one parameter

k and set k = 8.0 as the default starting value when training the sequence to expression

model.

The equilibrium probability of a site S being bound becomes

Pr(S bound) =
[TF]e−k(1−Shape(S))

[TF]e−k(1−Shape(S)) + 1
(3.13)

and the statistical weight of a site is

q(S) = [TF]e−k(1−Shape(S)) (3.14)

3.4 MODEL TRAINING AND EVALUATION

For a fair comparison, we focused on the same data set used in one of the original PWM-

based modeling studies [19], i.e. GEMSTAT, which includes the following: 37 experimentally

characterized enhancers, 37 quantitative profiles of gene expression driven by each enhancer,

and quantitative concentration profiles of six TFs - bicoid (BCD), caudal (CAD), giant

(GT ), hunchback (HB), knirps (KNI ), and Kruppel (KR). To supplement this data, we

added three additional TF concentration profiles: vielfaltig (VFL), Dstat, and sloppy-paired

(SLP), which were obtained from FlyEx database [132]. Similar to He et al. [19], we limited

the gene expression modelling to the 20% - 80% region of the A/P axis, resulting in 60 ‘bins’

of gene expression and TF concentration values. PWMs of all TFs were constructed with

MEME [54] applied to binding sites obtained via bacterial one hybrid (B1H) experiments,

downloaded from the Fly Factor Survey database [68]. To increase the quality of PWMs,

we trimmed MEME-predicted PWMs to have nearly the same length as PWMs in Factor

Survey database [68], by removing 0 to 3 degenerate (low information content) positions

on either ends (Table 3.1). The DNA shape score predictors were train on the same set of

binding sites.

In order to fairly compare DNA shape-based models with PWM-based models, we used the
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Table 3.1: Lengths of trimmed PWMs and positions being trimmed from MEME
predicted PWMs.

TF MEME PWM length Positions trimmed Trimmed PWM length
BCD 6 None 6
CAD 8 Last 1 position 7
VFL 11 First 3 positions 8
DSTAT 11 None 11
GT 14 First 3 positions 11
HB 10 First 3 positions 7
KNI 13 Last 2 positions 11
KR 10 Last 1 positions 9
SLP 11 None 11

same GEMSTAT interaction mode (direct) and only considered self-cooperativity of BCD

and CAD. Following He et al. [19], in the PWM-based model, we annotated a site S with

an LLR(S) ≥ 0.4 ∗ LLR(Sopt) as a binding site. To yield a similar number of binding sites

for the DNA shape-based model, a site with shape score greater than 0.6 was annotated as

a binding site.

To measure the goodness of fit between the real and predicted gene expression, we used

the scoring function called “weighted pattern generating potential” (wPGP) [24], which

essentially rewards the agreement between endogenous and predicted readouts and penalizes

the disagreement. The wPGP score ranges between 0 and 1, with higher values indicating

better fits. By choosing wPGP as the measurement, we were able to avoid the following

issues common to widely used methods such as correlation or root mean square error: biases

from overly narrow or overly board predicted expression and insensitivity to shift and scaling

of the expression profiles as previously reported in Kazemian et al. [40] (see Section 1.2 for

details).

3.5 DNA SHAPE-BASED MODEL PREDICTS GENE EXPRESSION AT LEAST AS
WELL AS PWM-BASED MODEL

On the whole, the DNA shape-based model performed as well as and arguably better than

the PWM-based model, as shown in Table 3.2 and Figure 3.2. The DNA shape-based model

achieved a wPGP score of 0.784, averaged over the 37 enhancers in the training data set while

PWM-based model averaged at 0.755. This difference, being taken over averages of scores, is

significant based on our prior experience [64] and direct statistical testing (Wilcoxon signed-

rank test p-value of 0.003). For 14 out of 37 enhancers we noted better fits using the shape-
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Table 3.2: 10-fold cross-validation assessment of various models. For each model,
shown are the number of free parameters used (“#Pars”), the average wPGP scores from
parameter optimization over all 37 enhancers (“Avg. wPGP (Training)”), and the wPGP
scores from cross-validation (“Avg. wPGP (CV)”), averaged over five repeats of cross vali-
dation with different (random) definitions of the ten folds. Standard deviations over the five
repeats are also shown.

Model #Pars Avg. wPGP (Training) Avg. wPGP (CV)
Shape-based model 22 0.784 0.727 ± 0.020
PWM-based model 21 0.755 0.677 ± 0.004
PWM-based model,
Perturbed LLR scores

21 0.643 0.603 ± 0.021

based model (wPGP score improved by greater than 0.05), whereas for 8 out of 37 enhancers

the shape-based model produced worse fits (Table 3.3). These results provided clear evidence

that DNA shape readout at putative binding sites can lead to accurate quantitative modeling

of gene expression, and suggest that it yields arguably better fits than nucleotide readout.

To better appreciate the differences between fits of enhancer readouts from the two models,

we plotted the predicted expression profiles of the two models along with real expression pat-

terns for a selection of six enhancers (Figure 3.3). It was evident that the DNA shape-based

model improved the expression prediction by predicting more accurately defined bound-

aries of spatial expression domains. For example, for the enhancers ‘eve stripe5’ as well as

‘run stripe1’, the shape-based model accurately predicts the posterior and anterior boundary

respectively. Qualitative refinements were observed on other enhancers. For instance, the

shape-based model reduced a spurious anterior domain predicted by the PWM-based model

for the enhancer ‘eve 37ext ru’, correctly modeled the anterior peak in ‘ftz +3’ which the

PWM-based model failed to predict, and correctly suppressed an ectopic posterior domain

of ‘slp (-3)’ expression predicted by the PWM-based model. More complete comparisons of

gene expression profiles where the DNA shape-based model produced better or worse fits

than the PWM-based model are shown in Figure 3.4.

The results above have indicated, both quantitatively and qualitatively, that a DNA shape-

based characterization of binding sites performed at least as well as the more conventional

PWM-based model in sequence-to-expression modeling. It should be noted that while both

models used the same set of parameters, the DNA shape-based model had one additional

parameter (‘k’, see Section 3.2) to map the site score computed by the Random Forest-based

classifier to a pseudo-energy term in GEMSTAT. (The PWM-based model has 21 parameters

while the shape-based model has 22 parameters.) A widely accepted method to compare

models with different complexities is to assess goodness of fit under cross validation. We
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Figure 3.2: Performance of DNA shape-based model compared to PWM-based
model on 37 Drosophila enhancers. The goodness of fit between predicted and real
expression for each enhancer was assessed by wPGP scores. Dotted lines delineate regions
where the difference in wPGP score between the two models is less than 0.05.
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Table 3.3: Evaluations of expression predictions from DNA shape-based model
and PWM-based model. The “goodness of fit” between predicted and real expression
for each enhancer was assessed by wPGP score. The wPGP scores from DNA shape-based
model and PWM-based model over all 37 enhancers are shown, and changes of wPGP scores
greater than 0.05 are identified.

Enhancer DNA shape-based
model

PWM-based model Change
>0.05

Kr CD1 ru 0.76 0.50 +
ftz +3 0.80 0.57 +
hb centr & post 0.56 0.38 +
run stripe1 0.93 0.76 +
eve 37ext ru 0.96 0.80 +
slp2 (-3) 0.88 0.76 +
kni 83 ru 0.88 0.78 +
eve 1 ru 0.85 0.75 +
nub (-2) 0.88 0.77 +
eve stripe2 0.60 0.50 +
kni (+1) 0.86 0.76 +
eve stripe5 0.91 0.82 +
gt (-10) 0.91 0.84 +
odd (-5) 0.60 0.53 +
h 15 ru 0.63 0.59
hb anterior actv 0.80 0.76
h stripe34 rev 0.70 0.68
prd +4 0.85 0.84
run stripe3 0.90 0.89
odd (-3) 0.69 0.69
eve stripe4 6 0.86 0.86
knrl (+8) 0.68 0.69
btd head 0.91 0.93
run -17 0.90 0.92
run -9 0.92 0.94
gt (-1) 0.77 0.80
pdm2 (+1) 0.76 0.80
h 6 ru 0.92 0.96
run stripe5 0.74 0.79
Kr CD2 ru 0.68 0.74 -
Kr AD2 ru 0.30 0.35 -
cnc (+5) 0.68 0.75 -
oc otd early 0.85 0.92 -
oc (+7) 0.87 0.95 -
kni (-5) 0.79 0.87 -
D (+4) 0.66 0.77 -
gt (-3) 0.77 0.89 -

39



Figure 3.3: Fits between model and data. Predicted expression profiles of DNA shape-
based model (orange lines) and PWM-based model (purple lines) are compared to experi-
mentally determined expression profiles (black lines), for six selected Drosophila enhancers.
Each expression profile is on a relative scale of 0 to 1 (y-axis), and shown for the regions
between 20% and 80% of the A/P axis of the embryo. Title in each panel is in the format
of “enhancer name, wPGP by DNA shape-based model (‘S’), wPGP by PWM-based model
(‘P’).” See more enhancers fits in Figure 3.4.
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Figure 3.4: Fits between model and data. Predicted expression profiles of DNA shape-
based model (orange lines) and PWM-based model (purple lines) are compared to experi-
mentally determined expression profiles (black lines), for all 37 Drosophila enhancers in this
study. Each expression profile is on a relative scale of 0 to 1 (y-axis), and shown for the
regions between 20% and 80% of the A/P axis of the embryo. Title in each panel is in the
format of “enhancer name, wPGP by DNA shape-based model (‘S’), wPGP by PWM-based
model (‘P’).” The order of enhancers is the same as in Table 3.3.
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Figure 3.4 (cont’d): Fits between model and data.
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Figure 3.4 (cont’d): Fits between model and data.

therefore performed 10-fold cross-validation on all 37 enhancers for each model. Since the

partition of the data set into training and test sets was decided randomly, we repeated the

exercise ten times with either model. The DNA shape-based model reported a wPGP score

(averaged over all 37 enhancers, and over the ten repeats) of 0.727 with standard deviation

0.020 and PWM-based model led to an average wPGP of 0.677 with standard deviation

0.004 (Table 3.4). Thus, we confirmed that the improved fits from the DNA shape-based

model are not due to its additional free parameter.

We considered the possibility that the improved fits with the shape-based model are

primarily due to a single TF (or a minority of TFs) for which the PWM is not an appropriate

model of binding specificity, while for other TFs the PWM model is more suited for use in

expression modeling. We tested this possibility and found it to be false. In particular, we

repeated the model fitting exercise with the shape-based scoring of binding sites for every

TF except one, for which PWM-based scoring was used. We compared the goodness of

fit (average wPGP across enhancers) of such hybrid models with that of the purely shape-

based model, and noted that for all TFs except CAD, the fits deteriorated upon substituting
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Table 3.4: 10-fold cross-validation assessment of various models. For each model,
shown are the number of free parameters used (“#Pars”), the average wPGP scores from
parameter optimization over all 37 enhancers (“Avg. wPGP (Training)”), and the wPGP
scores from cross-validation (“Avg. wPGP (CV)”), averaged over five repeats of cross vali-
dation with different (random) definitions of the ten folds. Standard deviations over the five
repeats are also shown.

Model #Pars Avg. wPGP (Training) Avg. wPGP (CV)
Shape-based model 22 0.784 0.727 ± 0.020
PWM-based model 21 0.755 0.677 ± 0.004
PWM-based model,
Perturbed LLR scores

21 0.643 0.603 ± 0.021

shape-based scores with PWM-based LLR scores for that TF’s sites. (Figure 3.5A) (The

goodness of fit was almost unchanged upon switching from the shape model to the PWM

model for CAD.) This suggests that for every TF in this analysis the shape-based score is

as good or better than the PWM-based score for the purpose of expression modeling.

We wondered if the difference between shape-based and sequence-based models arises from

the difference in how the binding site scoring method was trained – as a PWM trained on

sample sites versus a Random Forest classifier trained on samples of sites and non-sites.

To make the models more similar in this aspect, we trained a Random Forest classifier on

1-mer sequence features (the so-called ‘1-hot encoding’ [133]), using the same training data

sets as for shape model. We then incorporated scores predicted by Random Forest into

GEMSTAT in the same way as for the DNA shape model. The average wPGP score of this

alternative sequence-based model was 0.756 (Table 3.5 and Table 3.6), nearly the same as

the PWM-based model. We repeated 10-fold cross-validation ten times, and obtained an

average wPGP score of 0.673 with standard deviation 0.014, again very similar to that of

the PWM-based model, suggesting that the gap between shape-based and sequence-based

models is not merely due to a difference in how underlying binding site scoring methods

were trained.

3.6 DNA SHAPE-BASED MODEL OUTPERFORM PWM-BASED MODEL UNDER
THE SAME SEQUENCE LENGTH

In our direct comparisons between the shape-based and PWM-based models, all other

aspects of modeling were identical, including the set of putative sites considered by either

model. However, one point of difference was that the site length used to compute shape

readouts was in some cases different from the site length used to score for PWM matches.
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Figure 3.5: DNA shape is characterized differently from PWM (A) Change of good-
ness of fit (avg. wPGP) of DNA shape-based model predictions when binding sites of a
specific TF were forced to use LLR rather than shape scores. (B) Visualization of kni bind-
ing sites correlation between shape scores and LLR. (C) Pearson correlations of binding sites
for each of nine TF in this study and all TFs.

Table 3.5: Evaluations of various models in this study. For each model, shown are
the number of free parameters used (“#Pars”), the average wPGP scores from parameter
optimization over all 37 enhancers (“Avg. wPGP (Training)”), and the wPGP scores from
cross-validation (“Avg. wPGP (CV)”), averaged over ten repeats of cross validation with
different (random) definitions of the ten folds. Standard deviations over the ten repeats are
also shown.

Model #Pars Avg. wPGP
(Training)

Avg. wPGP
(CV)

Sequence Model
PWM-based 21 0.755 0.677 ± 0.004
RF-1-mer 22 0.756 0.673 ± 0.014
RF-1-mer+2-mer 22 0.770 0.696 ± 0.012
RF-1-mer+2-mer+3-mer 22 0.765 0.705 ± 0.017
Shape Model
Shape-based 22 0.784 0.727 ± 0.020
Sequence+Shape Model
Integrative PWM 22 0.752 0.676 ± 0.011
Integrative Shape 22 0.776 0.727 ± 0.005
RF-Shape+1-mer 22 0.777 0.724 ± 0.013
RF-Shape+1-mer+2-mer 22 0.762 0.696 ± 0.012
RF-Shape+1-mer+2-mer+3-mer 22 0.767 0.708 ± 0.016
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Table 3.6: Comparisons between models in this study. For each pair of models, shown
is the p-value of Wilcoxon signed-rank test over ten pairs of average wPGP scores from ten
repeats of 10-fold cross-validation. S: shape; m: mer; Inte: integrative.

1m 1+2m 1+2+3m Shape Inte
PWM

Inte
Shape

S+
1m

S+
1+2m

S+
1+2+3m

PWM 0.421 0.003 0.003 0.003 0.288 0.005 0.003 0.003 0.003
1m 0.003 0.006 0.003 0.341 0.003 0.003 0.003 0.003
1+2m 0.121 0.006 0.003 0.005 0.018 0.003 0.192
1+2+3m 0.008 0.003 0.003 0.006 0.018 0.192
Shape 0.323 0.084 0.003 0.005
Inte
PWM

0.003 0.003 0.003 0.003

Inte
Shape

0.192 0.003 0.006

S+
1m

0.003 0.006

S+
1+2m

0.003

This was motivated by our observation that the PWM-based model yielded better fits when

using shorter (‘trimmed’) PWMs than those constructed directly from the available sample

of binding sites. Trimming out less informative positions was ideally acceptable because

we resisted to deteriorate the performance of PWM-based model so that the DNA shape-

based model would look better. However, one may claim that DNA shape obtained more

information from positions where its PWM counterpart ignored and therefore fit enhancers

more accurately. Here, we applied a thorough analysis on the original untrimmed PWMs

whose lengths were identical to the DNA shape-based putative binding sites.

Our intension was first to see how the length of PWMs would affect the modeling. Gen-

erally speaking, trimmed PWMs were more suitable for modeling. Figure 3.6A plots the

wPGP scores for each enhancer in models using either trimmed or original long PWMs. The

average wPGP score was 0.755 for trimmed PWMs model, outperforming the regular PWMs

model whose score was 0.734. Detailed fitting of each enhancer can be seen in Table 3.7. At

this point, we were confident that trimmed PWMs played a better role in the PWM-based

model.

On the other direction, we tried to answer the question: given the same binding site length

as DNA shape did, would the PWM-based model be able to gather more information and

thus make better predictions? Figure 3.6B and Table 3.7 reports the comparison of the DNA

shape-based model and untrimmed PWM-based model over 37 enhancers. In the majority
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Figure 3.6: Performance of long PWM models compared to (A) trimmed PWM model
and (B) DNA shape model on 37 Drosophila enhancers assessed by wPGP scores.

of cases, DNA shape-based model had considerably better fits than untrimmed PWM-based

model. There were 15 out of 37 enhancers having measurable improvements in DNA shape-

based model while only three declined. The average wPGP score was 0.784 for the DNA

shape-based model compared to 0.734 for untrimmed PWMs model.

We systematically examined the effect of motif length on our claims and confirmed that

the comparisons and claims reported above involve a fair treatment of the PWM model.

That is, the gap between shape-based and PWM-based models is even greater when the

same site lengths are used for both models and PWMs are not ‘trimmed’.

3.7 DNA SHAPE MODELS CAPTURE INFORMATION DIFFERENT FROM PWM

In light of our aforementioned conclusion that shape-based models perform at least as

well as PWM-based models in predicting enhancer readouts, we next asked if the PWM-

based score and DNA shape-based score are simply two ways to quantify exactly the same

information, differing only procedurally. They are closely related scores, since both are

computed from the primary sequence of a binding site. At the same time, each has its own

intuitive biophysical explanation: the PWM-based score is related directly to the binding

energy of a site [52, 57] assuming positional independence, while the shape-based score

reflects how similar a putative site’s local DNA shape is to that of the training set of binding

sites.
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Table 3.7: Evaluations of expression predictions from long PWM, trimmed PWM,
and DNA shape models. The “goodness of fit” between predicted and real expression
for each enhancer was assessed by wPGP score. The wPGP scores from PWM-based models
and DNA shape-based model over all 37 enhancers are shown.

Enhancer Long PWM model Trimmed
PWM model

DNA shape
model

btd head 0.83 0.93 0.91
cnc (+5) 0.31 0.75 0.68
D (+4) 0.57 0.77 0.66
eve 1 ru 0.76 0.75 0.85
eve 37ext ru 0.95 0.80 0.96
eve stripe2 0.67 0.50 0.60
eve stripe4 6 0.88 0.86 0.86
eve stripe5 0.84 0.82 0.91
ftz +3 0.72 0.57 0.80
gt (-10) 0.83 0.84 0.91
gt (-1) 0.72 0.80 0.77
gt (-3) 0.75 0.89 0.77
h 15 ru 0.60 0.59 0.63
h 6 ru 0.90 0.96 0.92
hb anterior actv 0.78 0.76 0.80
hb centr & post 0.42 0.38 0.56
h stripe34 rev 0.67 0.68 0.70
kni (+1) 0.67 0.76 0.86
kni (-5) 0.83 0.87 0.79
kni 83 ru 0.77 0.78 0.88
knrl (+8) 0.53 0.69 0.68
Kr AD2 ru 0.30 0.35 0.30
Kr CD1 ru 0.77 0.50 0.76
Kr CD2 ru 0.68 0.74 0.68
nub (-2) 0.83 0.77 0.88
oc (+7) 0.75 0.95 0.87
oc otd early 0.90 0.92 0.85
odd (-3) 0.75 0.69 0.69
odd (-5) 0.55 0.53 0.60
pdm2 (+1) 0.84 0.80 0.76
prd +4 0.80 0.84 0.85
run -17 0.91 0.92 0.90
run -9 0.92 0.94 0.92
run stripe1 0.82 0.76 0.93
run stripe3 0.91 0.89 0.90
run stripe5 0.78 0.79 0.74
slp2 (-3) 0.66 0.76 0.88
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To objectively characterize the relationship between the two scores, we examined their

mutual correlation over all putative binding sites for each TF. Figure 3.5B shows the scatter

plot of the two scores across all binding sites for the TF KNI, where we noted Pearson

correlation of 0.623. Figure 3.5C shows Pearson correlation for each of the nine TFs; these

correlations are typically around 0.5, ranging between 0.211 (GT ) to 0.677 (VFL), with

the correlation over putative binding sites of all TFs being 0.525 (Figure 3.5C, ‘All’). We

interpreted these observations to mean that the shape-based score, while being closely related

to the PWM-based score of a site, is not redundant with the latter and contains additional

information not captured by the direct sequence readout. Our tests above (Figure 3.5A)

further indicated that the additional information captured by the shape score is useful for

predicting gene expression profiles as well as and arguably better than with PWM scores.

However, we considered the possibility that this improvement (average wPGP of 0.784 for

the shape-based model compared to 0.755 for the PWM-based model) is an artifact of our

procedure. Specifically, it was possible that our modeling is fundamentally incapable of

discerning an accurate TF-DNA binding model from a noisy version thereof, either due

to noise in the data or over-parameterization, or for an unknown reason. To test this

possibility, we repeated the PWM-based model-fitting exercise after artificially perturbing

the LLR scores of binding sites. For each binding site in each enhancer, an artificial LLR

score was assigned at random, sampling from a normal distribution with mean equal to

the site’s true LLR score and a fixed variance. This added ‘noise’ was tuned to be such

that the Pearson correlation between true and perturbed LLR scores was 0.5, which we

noted above to be the overall correlation between shape scores and LLR scores (Figure 3.5C,

‘All’). As shown in (Table 3.4), this PWM-based model performed substantially worse than

with true LLR scores: the average wPGP score over 37 enhancers dramatically decreased to

0.643 (compared to 0.755) and the 10-fold cross-validation wPGP score (averaged over ten

repeats) dropped from 0.677 to 0.603. This exercise strongly suggested to us that the better

fits predicted by the DNA shape-based model compared to the PWM-based model cannot be

reproduced merely by a good approximation to LLR scores of sites, and that the shape scores

carry information that is complementary to LLR scores and useful for sequence-to-expression

modeling, ruling out the concern raised above.

Previous work has found sequence models that consider nucleotide inter-dependencies to

better fit binding affinity data than the PWM model [59, 61]. We therefore tested if a

Random Forest trained to classify sites based on their k-mer profile can lead to improved

expression predictions. A ‘1-mer+2-mer’ sequence-based model achieved a wPGP score of

0.770 on average, and a ‘1-mer+2-mer+3-mer‘ model yielded an average wPGP of 0.765.

(Table 3.5 and Table 3.6; the wPGP score of each enhancer, under either model, can be
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found in Table 3.8.) Thus, the fits achieved with higher order k-mer models were better than

those from a 1-hot encoding or the PWM model, but not better than fits of the shape-based

model. This is consistent with the view that DNA shape features provide an alternative and

more compact representation of positional interdependencies in binding sites [134].

3.8 COMBINING SHAPE AND SEQUENCE READOUT INTO A SINGLE MODEL
DOES NOT IMPROVE FITS

The literature suggests that models integrating DNA shape with PWM-based sequence

readout can improve prediction of TF-DNA binding over models that use either represen-

tation independently [130, 135, 134]. However, sequence-to-expression modeling requires

not just the prediction of TF binding strengths, but also quantifying how different config-

urations of DNA-bound TFs relate to gene expression levels. Given this, it is not entirely

clear whether integrating DNA shape and sequence would significantly improve expression

modeling. We tested this hypothesis by first comparing a model that integrates DNA shape

scores into PWM-based models

(referred to henceforth as ‘integrative PWM-based’ models) with PWM-based models. To

incorporate DNA shape information into the PWM-based model, we replaced the term for

binding energy of a site in GEMSTAT to be ∆E(S) = exp[LLR(S) − LLR(Sopt) − k(1 −
Shape(S))] where LLR(S) is the log likelihood ratio score of site S under the PWM model,

Shape(S is the score of site S computed by a Random Forest classifier using the site’s shape

readout, and k is a free parameter.

As shown in Figure 3.7, for most enhancers the integrative PWM-based model fits expres-

sion data nearly as well as the PWM-based model. The wPGP scores are nearly identical

with the average over all 37 enhancers being 0.752 and 0.755 respectively. The integrative

PWM-based model outperforms the PWM-based model (a wPGP score difference of 0.05

or more) for six of the enhancers, while the PWM-based model outperforms the integrative

PWM-based model for five of the enhancers. (The wPGP scores of each enhancer, under

either model, can be found in Table 3.9.) Since the integrative model did not perform

consistently better than the sequence-based model, we did not explore other formulas for

incorporating DNA shape scores into PWM-based models.

As integrating DNA shape information into PWM-based models did not significantly

improve average wPGP scores over PWM-based models, we examined the utility of the

converse methodology that adds sequence readout to a DNA shape-based model. In order

to accomplish this, we added an additional feature to the Random Forest underlying the

shape-based model: the LLR score of the binding site according to the TF’s PWM. That is,
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Table 3.8: Evaluations of expression predictions from higher order k-mer models.
The “goodness of fit” between predicted and real expression for each enhancer was assessed
by wPGP score. The wPGP scores from integrative PWM-based model and integrative DNA
shape-based model over all 37 enhancers are shown.

Enhancer RF-1-mer
RF-1-mer+
2-mer

RF-1-mer+
2-mer+3-mer

btd head 0.89 0.85 0.87
cnc (+5) 0.37 0.66 0.64
D (+4) 0.74 0.66 0.71
eve 1 ru 0.77 0.78 0.86
eve 37ext ru 0.83 0.90 0.94
eve stripe2 0.64 0.67 0.73
eve stripe4 6 0.86 0.83 0.80
eve stripe5 0.85 0.91 0.82
ftz +3 0.76 0.78 0.69
gt (-10) 0.80 0.85 0.82
gt (-1) 0.75 0.74 0.66
gt (-3) 0.65 0.79 0.76
h 15 ru 0.67 0.72 0.65
h 6 ru 0.93 0.94 0.85
hb anterior actv 0.65 0.72 0.75
hb centr & post 0.43 0.33 0.40
h stripe34 rev 0.66 0.69 0.65
kni (+1) 0.78 0.80 0.62
kni (-5) 0.84 0.85 0.95
kni 83 ru 0.72 0.78 0.81
knrl (+8) 0.65 0.57 0.59
Kr AD2 ru 0.34 0.34 0.35
Kr CD1 ru 0.82 0.74 0.75
Kr CD2 ru 0.88 0.75 0.77
nub (-2) 0.81 0.83 0.87
oc (+7) 0.82 0.84 0.87
oc otd early 0.91 0.85 0.90
odd (-3) 0.61 0.74 0.80
odd (-5) 0.81 0.73 0.71
pdm2 (+1) 0.66 0.68 0.77
prd +4 0.85 0.87 0.87
run -17 0.93 0.94 0.92
run -9 0.91 0.94 0.88
run stripe1 0.86 0.83 0.83
run stripe3 0.87 0.88 0.91
run stripe5 0.82 0.89 0.73
slp2 (-3) 0.84 0.85 0.83
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Figure 3.7: Performance of integrative models compared to (A) PWM-based model and
(B) DNA shape-based model on 37 Drosophila enhancers assessed by wPGP scores. Dotted
lines delineate regions where the difference in wPGP between the two models is greater than
0.05.

the binding energy term of a site S in GEMSTAT was computed as ∆E(S) = exp[−k(1 −
Shape(S))], where Shape(S) is now computed by a Random Forest classifier trained on pre-

determined binding sites, using their shape readouts as well as LLR scores. This alternative

integrative model (henceforth referred to as a ‘integrative shape-based’ model) performed

as well as the shape-based models (Figure 3.7B), with average wPGP scores over all 37

enhancers being 0.776 and 0.784 respectively. Either model outperformed the other on six

of the enhancers (Table 3.9).

In recognition of the fact that there are alternative ways to encode the sequence, we

repeated the above test by directly using k-mers of putative sites as features (in addition to

shape features) of the Random Forest classifier, and using the resulting score in computing

∆E(S) as in the previous paragraph. We evaluated three variants of integrative shape+k-mer

models, increasing the complexity of models one by one. As listed in Table 3.9, the integrative

‘shape+1-mer’, ‘shape+1-mer+2-mer’, and ‘shape+1-mer+2-mer+3-mer’ models achieved

average wPGP scores of 0.777, 0.767, and 0.762 respectively (Table 3.5 and Table 3.6). In

short, this section shows that the shape-based model is not improved upon by incorporating

sequence-readout into it, nor is the PWM-based model improved upon by including shape

readout.

3.9 DISCUSSION

Sequence-to-expression models have been effectively used to understand the precise re-

lationship between regulatory sequence and gene expression patterns [18, 19, 20, 22, 44].
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Table 3.9: Evaluations of expression predictions from integrative models. The
“goodness of fit” between predicted and real expression for each enhancer was assessed by
wPGP score. The wPGP scores from integrative PWM-based model and integrative DNA
shape-based model over all 37 enhancers are shown.

Enhancer Integrative PWM-based Integrative shape-based
btd head 0.91 0.90
cnc (+5) 0.29 0.71
D (+4) 0.66 0.73
eve 1 ru 0.83 0.83
eve 37ext ru 0.89 0.94
eve stripe2 0.59 0.82
eve stripe4 6 0.87 0.87
eve stripe5 0.86 0.71
ftz +3 0.60 0.46
gt (-10) 0.81 0.92
gt (-1) 0.74 0.79
gt (-3) 0.87 0.76
h 15 ru 0.68 0.67
h 6 ru 0.96 0.93
hb anterior actv 0.73 0.80
hb centr & post 0.41 0.38
h stripe34 rev 0.70 0.71
kni (+1) 0.69 0.79
kni (-5) 0.88 0.84
kni 83 ru 0.74 0.84
knrl (+8) 0.61 0.72
Kr AD2 ru 0.35 0.34
Kr CD1 ru 0.50 0.79
Kr CD2 ru 0.73 0.71
nub (-2) 0.79 0.83
oc (+7) 0.91 0.89
oc otd early 0.91 0.91
odd (-3) 0.65 0.74
odd (-5) 0.72 0.46
pdm2 (+1) 0.89 0.75
prd +4 0.85 0.79
run -17 0.92 0.95
run -9 0.95 0.90
run stripe1 0.81 0.91
run stripe3 0.91 0.93
run stripe5 0.80 0.87
slp2 (-3) 0.81 0.85
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Table 3.9 (cont’d): Evaluations of expression predictions from integrative models.

Enhancer
Integrative shape+
1-mer

Integrative
shape+1-mer+
2-mer

Integrative
shape+1-mer+
2-mer+3-mer

btd head 0.85 0.80 0.83
cnc (+5) 0.57 0.64 0.67
D (+4) 0.60 0.46 0.74
eve 1 ru 0.84 0.79 0.82
eve 37ext ru 0.95 0.96 0.93
eve stripe2 0.58 0.67 0.72
eve stripe4 6 0.85 0.82 0.84
eve stripe5 0.72 0.82 0.89
ftz +3 0.78 0.74 0.64
gt (-10) 0.85 0.89 0.85
gt (-1) 0.72 0.71 0.65
gt (-3) 0.80 0.76 0.75
h 15 ru 0.69 0.69 0.69
h 6 ru 0.95 0.90 0.89
hb anterior actv 0.80 0.72 0.80
hb centr & post 0.47 0.55 0.37
h stripe34 rev 0.69 0.75 0.66
kni (+1) 0.86 0.76 0.62
kni (-5) 0.83 0.82 0.89
kni 83 ru 0.86 0.79 0.80
knrl (+8) 0.78 0.53 0.58
Kr AD2 ru 0.31 0.66 0.34
Kr CD1 ru 0.78 0.80 0.74
Kr CD2 ru 0.73 0.77 0.72
nub (-2) 0.84 0.77 0.85
oc (+7) 0.86 0.85 0.87
oc otd early 0.92 0.91 0.89
odd (-3) 0.77 0.68 0.77
odd (-5) 0.67 0.61 0.72
pdm2 (+1) 0.70 0.54 0.77
prd +4 0.83 0.79 0.84
run -17 0.87 0.92 0.94
run -9 0.92 0.90 0.90
run stripe1 0.90 0.80 0.84
run stripe3 0.95 0.91 0.90
run stripe5 0.81 0.86 0.88
slp2 (-3) 0.80 0.86 0.80
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TF-DNA binding predictions in these quantitative models typically rely on the PWM rep-

resentation that assumes every nucleotide in TF binding sites contributes additively and

independently to the binding energy at thermodynamic equilibrium, an assumption that

does not always hold. A mounting body of work on TF-DNA binding specificity has gone

beyond the PWM model by considering the nucleotides dependencies [136, 61], flanking se-

quences of binding sites [137, 138], and DNA structural features [130, 139, 134] and shown

highly promising results in TF-DNA recognition. At the same time, it is not well under-

stood if alternative models of DNA binding can improve the prediction of gene expression.

Our work aims at filling this gap by incorporating local DNA shape at the binding site to

sequence-to-expression models and asking if it performs as well as a PWM-based model. We

found the answer to be affirmative: the DNA shape-based model is arguably better than the

PWM-based model in predicting expression. To our knowledge, this sequence-to-expression

model based on DNA shape features is the first of its kind.

Previous work has demonstrated that DNA shape-based models compare favorably to

sequence-based models for the simpler yet challenging task of modeling TF-DNA binding

strength, and that integrative ‘shape+sequence’ models perform considerably better than

sequence-only or shape-only models [130, 135, 134]. However, in this study, we did not see

further improvement in our integrative models utilizing both shape-readout and sequence-

readout, over models using DNA shape only. This may be in part due to limitations of how

our integrative models were constructed, or due to lack of comprehensive data for training

our shape models, but it is also a possible indication that better prediction of TF-DNA

binding may not always lead to better expression prediction.

Our model succeeds in quantifying the impact of DNA shape on prediction of precise

spatiotemporal expression patterns, and also indicates an intuitive and simple approach to

deal with DNA shape data. Prior work has suggested several approaches to aggregating

shape features as well as learning models, including Random Forest [135, 134] and support

vector machine (SVM) [139]. Our approach is in good agreement with the prior use of

Random Forest as the learning model, and demonstrates the feasibility of simply using first-

order local shape features. We also adopted SVM as an alternative learning model but

this appeared to have no further improvement, and we did not pursue deeper investigations

thereof.

It is also worth noting that we explored two choices of incorporating shape scores into the

original GEMSTAT model. We initially treated the shape score (normalized to a scale of 0

to 1) as being directly related to the probability of a site being bound at a specific TF con-

centration condition (Section 3.3, Approach 1). This preliminary attempt at incorporating

the shape score did not show promising results. The approach used in this study considered
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the binding affinity of a site, relative to that of the optimal site, as an exponentially decay-

ing function of the shape score (Section 3.3, Approach 2). We expect that future work will

continue to improve design of the shape score from the underlying features and integration

of shape scores into sequence-to-expression models.

The reader may ask if the thermodynamics-based sequence-to-expression model was neces-

sary for our study. In order to study the effects of particular aspects of data on a higher-level

prediction task, one has to make several choices: a modeling or prediction framework, seman-

tic features of the model, and the precise way to quantify those features. In an investigation

with so many moving parts, it is natural to first attempt to make reasonable choices about

some of those parts, and having fixed them, examine the effect of the one remaining moving

part. This is the rationale of our approach. We have extensive experience with the thermo-

dynamic modeling framework and the biological system we utilized here, so we chose to ask

questions about shape versus sequence readout in this context.

The DNA shape data used in this study was obtained from computational processing of

binding site sequences. This raises the concern that DNA shape scores differ only procedu-

rally from LLR scores (derived from the PWM), but are intrinsically the same information.

Our tests suggest that this is not the case and show that DNA shape score captures in-

formation different from LLR. It is worth noting that shape features at a single nucleotide

position are determined by a pentamer sequence centered at the targeted nucleotide. We

have limited information about the flanking sequences of the binding site, so that the shape

feature values were unavailable at the terminal positions of some of our TF binding sites.

Since it has been reported that DNA shape in the flanking regions of binding sites influences

binding specificity [138], we believe that the advantage observed here is an underestimate of

how well DNA shape-based models can be used in gene expression predictions. We expect

that our modeling approach will be more accurate if and when we have more comprehensive

TF binding affinity data sets available.
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CHAPTER 4: EVOLUTIONARY CHANGES IN DNA ACCESSIBILITY
AND SEQUENCE PREDICT DIVERGENCE OF TRANSCRIPTION

FACTOR BINDING AND ENHANCER ACTIVITY

Transcription factor (TF) binding is determined by sequence as well as chromatin acces-

sibility. While the role of accessibility in shaping TF-binding landscapes is well recorded,

its role in evolutionary divergence of TF binding, which in turn can alter cis-regulatory

activities, is not well understood. In this Chapter, we examine the evolution of genome-wide

binding landscapes of five major transcription factors (TFs) in the core network of meso-

derm specification, between D. melanogaster and D. virilis, and study its relationship to

accessibility and sequence-level changes. Our collaborators (Dr. Eileen Furlong’s labora-

tory) generated chromatin accessibility data from three important stages of embryogenesis

in both D. melanogaster and D. virilis, and recorded conservation and divergence patterns.

We then used multi-variable models to correlate accessibility and sequence changes to TF

binding divergence. We found that accessibility changes can in some cases, e.g., for the

master regulator Twist and for earlier developmental stages, more accurately predict bind-

ing change than is possible using TF binding motif changes between orthologous enhancers.

Accessibility changes also explain a significant portion of the co-divergence of TF pairs. We

noted that accessibility and motif changes offer complementary views of the evolution of TF

binding, and developed a combined model that captures the evolutionary data much more

accurately than either view alone. Finally, we trained machine learning models to predict

enhancer activity from TF binding, and used these functional models to argue that motif

and accessibility-based predictors of TF binding change can substitute for experimentally

measured binding change, for the purpose of predicting evolutionary changes in enhancer

activity.

4.1 INTERSPECIES TF CHIP AND ACCESSIBILITY DATA ACROSS FIVE STAGES
OF EMBRYONIC DEVELOPMENT

To understand how evolutionary changes of sequence and accessibility affect TF binding

and enhancer activities, we focused our study on an extensively studied regulatory network

where prior knowledge of essential regulators and functional enhancers can effectively guide

us to functional TF-DNA binding events. We analyzed TF occupancy data for five TFs that

form the core of a regulatory network essential for mesoderm development in Drosophila

[140]: Twist (Twi), Myocyte enhancer factor-2 (Mef2), Tinman (Tin), Bagpipe (Bap) and

Biniou (Bin) (Figure 4.1A). We obtained genome-wide TF-DNA binding information on
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these five TFs across five stages of embryonic development (henceforth, ‘time points’ or

‘TP’s), in the form of ChIP-chip and ChIP-seq assays in D. melanogaster [110] and D.

virilis [74] respectively. A total of 14 TF-time point pairs (Figure 4.1B), henceforth called

‘TF:TP conditions’ or simply ‘conditions’, were represented in the data, originally reported

in Khoueiry et al. [74]. ChIP peaks in close proximity across all TF:TP conditions were

clustered to define 8,008 putative ChIP enhancers in D. melanogaster [110] and 10,532

putative ChIP enhancers in D. virilis [74]. A ChIP score was then assigned to each enhancer,

for each TF:TP condition, by extracting the mean ChIP signal (using library size normalized

bigwig files) over the enhancer boundaries (performed in Galaxy [141] using the “Compute

mean/min/max of intervals“ tool version 1.0.0). To make ChIP scores comparable across

stages and species, we applied the following normalization on ChIP scores for each TF:TP

condition: we set µ + 3σ as the maximum ChIP score, where µ and σ are the mean and

standard deviation across all putative enhancers, replaced all ChIP scores greater than this

maximum with µ+ 3σ, and finally applied min-max normalization to set all ChIP scores in

a range between 0 to 1.

Orthologous enhancer pairs were defined in Khoueiry et al. [74]. Briefly speaking, we

translated D. virilis enhancer coordinates into D. melanogaster coordinates, overlapped the

10,532 D. virilis enhancers with the 8,008 D. melanogaster enhancers, and finally obtained

a set of 2754 orthologous enhancer pairs. This set of orthologous enhancers served as the

targets of our computational analyses in this work. Each enhancer (in either species) was

assigned a ChIP score for each TF:TP combination, combining ChIP peaks located within

the same cis-regulatory element.

To supplement these data, we also collected stage-matched DNase-Seq libraries from both

D. virilis and D. melanogaster in three of the five time points, i.e. TP1, TP3, and TP5

(Figure 4.1B). Accessibility data in D. virilis and D. melanogaster were obtained using

DNase-seq from whole embryos at developmental stages 5-7, 10-11, and 13-15, referred to as

TP1, TP3, and TP5. The developmental stages of timed collections were determined exactly

as described in [74]. Raw paired-end reads were aligned using BWA [142] on Flybase-R1.2

assembly version for D. virilis and on Flybase Assembly 5 (dm3) for D. melanogaster. Reads

were filtered for optical and PCR replicates using samtools [143]. For peak calling, we used

MACS2 (–to-large with -g 1.2E8 for D. melanogaster and 1.9E-8 for D. virilis and -p 1E-3 as

requested for the Irreproducibility Discovery Rate analysis, or IDR [144]). We derived peaks

using 1% IDR threshold leading to a unique highly confident and consistent peak sets for

biological replicates. For visualization and generation of bigwig score files, reads from BAM

files were extended to the average length of the genomic fragments for the corresponding time

point, merged and scaled to Read Per Million (RPM) using deeptools [145]. Each enhancer
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(in either species) was assigned an ‘accessibility score’ by extracting the mean DNase signal

(abovementioned bigwig files) over the enhancer boundaries (performed in Galaxy [141] using

the “Compute mean/min/max of intervals“ tool version 1.0.0). To make accessibility scores

comparable across stages, for each time point, we performed the same normalization as we

did for ChIP scores, i.e. replacing accessibility scores greater than µ+3σ with µ+3σ, where

µ and σ are the mean and standard deviation, and then applying min-max normalization.

NGS raw sequence data has been deposited in ArrayExpress under accession numbers E-

MTAB-3797 (D. melanogaster and D. virilis DNAse developmental time courses)

4.2 EVOLUTIONARY CHANGES IN TF-DNA BINDING AND DNA ACCESSIBILITY
IN THE CONTEXT OF A WELL-CHARACTERIZED REGULATORY NETWORK

We calculated evolutionary changes in TF occupancy as the difference of normalized quan-

titative ChIP scores between orthologous enhancers, for each TF at each TP (‘∆ TF:TP’).

We noted extensive correlations among different ∆TF:TP measures (Figure 4.1C), i.e., evolu-

tionary changes of TF-DNA binding profiles are correlated. This is especially true of binding

profiles of the same TF at different time points, i.e., if a TF loses binding at a location, it

tends also to lose binding at the same location at a different developmental stage. For ex-

ample, Pearson correlation coefficient (PCC) of ∆Bin:TP3 (changes in Bin binding at TP3)

and ∆Bin:TP4 is 0.58 (p-value=2.30E-247), and that between ∆Mef2:TP4 and ∆Mef2:TP5

is 0.56 (p-value=3.66E-227). The natural explanation for this observation is that loss or

gain of the TF’s motif plays a significant role in evolutionary changes of TF binding. More

interestingly, changes in DNA binding of different TFs at the same time point also show

correlations (Figure 4.1D), e.g., ∆Tin:TP2 and ∆Twi:TP2 have a Pearson correlation of

0.50 (p-value=3.69E-174). Since the five TFs have different binding preferences (motifs, see

Figure 4.2), these correlations most likely arise due to co-binding of specific pairs of TFs –

a possibility that we examined in [74], or from changes in accessibility , which is a common

contributing factor to DNA binding profiles of different TFs [96, 97].

We also compared the normalized DHS accessibility scores of the same set of ∼2,500

orthologous enhancers mentioned above, at each of the three time-points (Figure 4.1E).

Most of the accessibility scores are conserved between species, while some enhancer pairs

exhibit substantial change. For instance, at TP1, of all the enhancer pairs whose accessibility

score is above 0.3 (median score, on a scale of 0 to 1) in at least one of the two species, 6.86%

have their orthologous accessibility score below 0.1. We also compared evolutionary changes

in accessibility between orthologous enhancers at different developmental stages and found,

as expected, that the temporally proximal time points, e.g., TP3 and TP5, or TP1 and TP3,
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Figure 4.1: Examining evolutionary changes in TF binding and accessibility across
developmental time points. (A) Regulatory network of five key TFs in mesoderm spec-
ification, source:[74]. (B) Data from D. melanogaster and D. virilis TF ChIP and DNase
I hypersensitivity assays were collected. Colored boxes indicate time points (TP1-5) for
which each type of genomic profile is available. Orthologous developmental stages between
species were mapped according to hours of development in each species, after egg laying
(AEL). (C,D) Pairwise Pearson correlations of interspecies ChIP changes, sorted by TF (C)
or by time points (D) (E) Normalized accessibility scores of orthologous enhancers for three
time points (TP1,3,5). Colors indicate point density, with warmer colors denoting greater
density. Pearson correlations between D. melanogaster TF ChIP and D. virilis TF ChIP
are also shown. (F) Pairwise Pearson correlations of interspecies accessibility changes. Data
and analysis shown in (C-E) pertain to over 2,500 pairs of putative orthologous enhancers
involved in mesoderm specification as defined in text.
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Figure 4.2: Position weight matrices (PWMs) are shown in the form of sequence
logos, source: [74].

have more correlated evolutionary changes than more separated time points, i.e., TP1 and

TP5 (Figure 4.1F). In short, we collated data on TF binding and DNA accessibility at the

same stages of embryogenesis in two species, and confirmed previous reports of evolutionary

flux in these important measures of the cis-regulatory landscape, setting the stage for a

closer examination of their mutual relationship.

4.3 RELATIONSHIP BETWEEN CHANGES IN CHROMATIN ACCESSIBILITY AND
TF BINDING AT ORTHOLOGOUS DEVELOPMENTAL ENHANCERS

We sought to systematically and quantitatively dissect how evolutionary changes in TF

binding are related to changes in accessibility. Given the observations above, that the occu-

pancy of different TFs from the same time point tend to change concordantly, it was natural

to ask: “how frequently do changes in TF binding between species coincide with changes in

DNA accessibility?” We collected orthologous enhancer pairs that are accessible in at least

one of the two species (normalized accessibility score > 0.3), and examined the relationship

between change of accessibility score (‘∆Acc’) and change of TF occupancy. As shown in

Figure 4.3A, for Twi binding at TP1, enhancers with conserved binding (points closer to di-

agonal) typically have conserved accessibility (warmer colors), while enhancers with changes

of TF binding (off-diagonal points) tend to exhibit changes in their accessibility score (cooler

colors) (Pearson correlation between ∆Acc and ∆ChIP is r=0.12, p-value 1.44E-5). Other

TF:TP combinations showed the same trend (Figure 4.4).

While the above observations were statistically significant, the strength of relationship

between accessibility and TF binding changes revealed by them seemed modest. In part,

this may be because the quantified change in TF binding depends not only on the change of

accessibility (∆Acc) but also on the actual accessibility in either species. Thus, to make the

above analysis more systematic, we trained a regressor to predict TF binding changes using

accessibility scores. For every TF:TP condition, we trained Support Vector Regression (SVR)
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models, using the R package ‘e1071’ [146], to predict the interspecies differences in ChIP

scores, defined as ∆ChIP = ChIPDmel−ChIPDvir for each enhancer. We used the set of 2,754

orthologous putative enhancer pairs to train and evaluate models. For each orthologous pair,

two kinds of input features were measured to predict ∆ChIP: 1) D. melanogaster accessibility

score and 2) interspecies accessibility score changes (∆Acc = AccDmel − AccDvir) for the

appropriate time point. Goodness of fit was measured by Pearson correlation coefficient

between measured and model-predicted ∆ChIP values, using 5-fold cross-validation.

We found that changes in accessibility are modestly predictive of changes in TF binding

between species, with correlation coefficients varying substantially across the 9 data sets,

averaging about 0.25 (Figure 4.3B). To provide an intuitive calibration of this value, we note

that it was computed over 2,754 samples and has a p-value of 1.64E-40. As an alternative

evaluation of the predictions, we asked how well the model-predicted ∆ChIP values classify

the enhancer pairs with the greatest increase in TF binding (measured ∆ChIP in top 10

percentile among all 2,754 orthologous pairs) versus those with the greatest decrease in

binding (∆ChIP in bottom 10 percentile). We noted an AUROC of 0.78 or greater on such

balanced data sets for four of the 9 TF:TP pairs (Figure 4.5). Among the best examples

was Twi:TP1, where correlation between measured and predicted ∆ChIP on the full set of

2,754 orthologous pairs is 0.44 (p-value 8.94E-131), i.e., about 20% of the variance (r2 =

0.19) of ∆ChIP is explained by accessibility changes for this condition (Figure 4.3C). What

mechanisms might underlie this relationship? An intriguing but untested possibility is that

Twi is the major factor dictating open chromatin i.e., perhaps having a pioneering role at

these sties, in keeping with its role as a ‘master regulator’ being sufficient to convert cells to

a mesodermal fate [102]. Alternatively, there may be unmeasured changes in an additional

factor required to open chromatin and facilitate Twi binding to these sites. Zelda is a very

good candidate, as it is required for Twi binding to some early developmental enhancers [147]

and is thought to play a pioneer role in early Drosophila embryogenesis [124, 148, 149]. Such

mechanistic speculations notwithstanding, the above results – that even in the best example

only 20% of variance is explained – emphasize the potential existence of influences other

than accessibility, and that operate without major effects on accessibility, on TF binding

change.

A natural comparison point for the above correlations is the extent to which accessibility

score in a single species can predict TF binding in that species in the same time point,

across the same set of enhancers as above. It was not a priori clear what the result of this

comparison might be. It is possible that accessibility changes are less prominently associated

with evolutionary changes of TF binding than the extent to which accessibility is informative

of TF occupancy in a single species [96, 97], for instance if most binding changes arise from
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Figure 4.3: Accessibility changes alone are modest predictors of TF occupancy
changes between species. (A) Scatter plot of D. melanogaster ChIP scores versus D.
virilis ChIP scores for Twi at TP1. Points represent orthologous enhancers that are ac-
cessible in at least one species. Colors indicate change of accessibility score. (B) Cor-
relation coefficient between measured ∆ChIP and ∆ChIP predicted based on ∆Acc, de-
noted as ‘p∆ChIP(∆Acc)’. P-values of Pearson correlation coefficient (r) with sample
size of 2754 are also shown. (C) Scatter plot of ∆ChIP versus p∆ChIP for Twi at TP1.
Warmer colors indicate greater point density. (D) Correlation between ChIP and accessibil-
ity in D. melanogaster (x-axis) is compared to correlation between interspecies ∆ChIP and
p∆ChIP(∆Acc).
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Figure 4.4: Scatter plots of D. melanogaster ChIP scores versus D. virilis ChIP
scores for each TF:TP combination. Points represent orthologous enhancers that are
accessible in at least one species. Colors indicate change of accessibility score.
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turnover of motif hits. On the other hand, the single species correlation values between

accessibility and TF binding might not be as high here as reported in some previous studies

[33, 26], since our analysis is restricted to putative enhancers, which as a class have high

accessibility levels. Our single-species correlation analysis will not reflect the strong genome-

wide trend of ChIP peaks coinciding with accessible regions. With these two considerations

in mind, it was thus instructive to find that correlations between ChIP score and accessibility

score in D. melanogaster (Figure 4.3D) were similar to those between evolutionary changes

in these scores, i.e., ∆ChIP and predicted ∆ChIP based on accessibility, for every TF:TP

condition.

We noted above (Figure 4.1D) that changes in binding for some TF pairs in the same time

point, are strongly correlated. We asked if these co-divergence patterns can be explained by

changes in accessibility, since accessibility can be simplistically thought of as setting up a

‘landscape’ for binding, on which different TFs act differently to set up their own binding

profiles. Evolutionary changes in accessibility can therefore be expected to impact binding of

multiple TFs in similar ways. To test this possibility, we computed a statistic similar to the

partial correlation of ∆ChIP between each pair of TFs, given accessibility data. For each pair

of TFs, we first computed the residuals of accessibility-based predictors of ∆ChIP for either

TF, and then calculated the correlation coefficient between these residuals. This approach

removes the effect of accessibility changes in assessing the correlation of ∆ChIP between

TF1 and TF2. We found that for the majority of data set pairs (10 out of 16) where ∆ChIP

scores of two TFs at the same time point are strongly correlated (PCC> 0.2), correlations are

lower (a difference of at least 0.04) after excluding the influence of accessibility (Table 4.1),

though the (partial) correlations remain strong even after accounting for ∆Acc. For Twi

and Tin at TP2, for example, the correlation of ∆ChIP scores drops from 0.5 to 0.45 upon

‘removing’ accessibility; a similar reduction is observed for the same pair of TFs at TP3,

where the correlation drops from 0.39 to 0.32. Another example is that of Mef2 and Tin

at TP2, where the correlation reduced from 0.45 to 0.37 upon accounting for accessibility

changes. Indeed, previous work reported the potential role of Tin-Twi and Tin-Mef2 co-

binding in the evolution of binding sites for these TFs [74]. Our results reveal that changes

in accessibility do explain part of the co-divergence of DNA binding exhibited by pairs of

TFs, but other causes of co-divergence [150, 74], e.g., cooperative occupancy, functional

change of an enhancer and the resulting shared changes of selective pressure, also exist.
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Figure 4.5: AUROC measure of classification accuracy. Predicted ∆ChIP based on
∆Acc (p∆ChIP(∆Acc)) is used to classify enhancer pairs with the greatest increase in TF
binding versus those with the greatest decrease in binding.

Table 4.1: Effect of accessibility on interspecies ChIP changes. Pairwise Pearson
correlation coefficients (CC) of ∆ChIP of TF1 and TF2 at the same time point ‘x’ are
shown, and partial correlation coefficients after excluding the effect of accessibility. Bold
fonts indicate cases where the difference between CC and partial CC is at least 0.04.

∆TF1 TPx ∆TF2 TPx CC Partial CC
∆Mef2 TP2 ∆Tin TP2 0.45 0.37
∆Bin TP3 ∆Mef2 TP3 0.32 0.25
∆Tin TP3 ∆Twi TP3 0.39 0.32
∆Bap TP3 ∆Mef2 TP3 0.38 0.32
∆Mef2 TP3 ∆Twi TP3 0.34 0.29
∆Tin TP2 ∆Twi TP2 0.50 0.45
∆Bap TP3 ∆Tin TP3 0.46 0.42
∆Bap TP3 ∆Bin TP3 0.42 0.38
∆Bap TP3 ∆Twi TP3 0.41 0.37
∆Bin TP3 ∆Twi TP3 0.30 0.26
∆Mef2 TP3 ∆Tin TP3 0.42 0.38
∆Bin TP3 ∆Tin TP3 0.37 0.34
∆Bin TP4 ∆Mef2 TP4 0.24 0.23
∆Bin TP5 ∆Mef2 TP5 0.19 0.19
∆Mef2 TP2 ∆Twi TP2 0.30 0.31
∆Mef2 TP1 ∆Twi TP1 0.21 0.27
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4.4 CHANGES IN ACCESSIBILITY AND SEQUENCE PREDICT TF BINDING
CHANGES TO SIMILAR EXTENTS

The results above quantified the extent to which change of accessibility (∆Acc) predicts

changes in TF-DNA binding (∆ChIP) between orthologous enhancers. We next determined

how strongly changes in sequence, in terms of binding motif presence, predict ∆ChIP, with

the ultimate goal of comparing the relative contributions of changes in accessibility and

in sequence to divergence of TF binding. To approach this goal, it is important to have

a means of quantifying a TF’s motif presence in a given sequence accurately enough to

allow quantitative assessment of motif change between orthologous enhancers. We used our

previously published STAP (Sequence To Affinity Prediction) model [37] for this purpose.

STAP is a thermodynamics-based model that integrates one or more strong as well as weak

binding sites, using a given motif, to predict net TF occupancy within a DNA segment. The

STAP score is a more realistic estimation of motif presence in a window, compared to using

the strength of the best motif match or counting the number of matches above a threshold.

Importantly, it is not a confidence score of a single binding site (e.g., CENTIPEDE [38])

and is thus better suited to assess net sequence change in developmental enhancers, which

often exhibit homotypic site clustering [151, 152] and suboptimal sites [153, 154].

For each TF:TP condition in each species, we trained a STAP model, following the proce-

dures used in Cheng et al. [33]. We chose the top 1,000 ChIP peaks as the positive training

set and 1,000 random windows of the same length as the negative training set, along with

their respective normalized ChIP scores. ChIP peaks overlapped with the orthologous en-

hancers were excluded in training set. The binding motif (position weight matrix, PWM)

for each TF was based on the best performing PWMs discovered from D. melanogaster and

D. virilis ChIP data [74] (Figure 4.2). A single free parameter of STAP was learned based

on this training set.

To assess the performance of STAP model on each of the 28 ChIP data sets in the given

TF, time point, and species combination, we applied four-fold cross-validation on the 2,000

DNA segments training set. Each fold used 1,500 DNA segments to train the single free

parameter in STAP, and 500 DNA segments to score. The resulting 2,000 STAP scores,

aggregated from each fold, were compared to respective ChIP scores, by Pearson correlation

coefficient (PCC). These 28 STAP models fit the ChIP data well, and showed an average

PCC of 0.51 (Table 4.2). We also checked the single parameter of STAP learned in each

fold, and observed similar values across four folds.

Once the STAP model was trained for every TF, time point, species combination, we

used the STAP model to score each enhancer for motif presence. STAP scores were further
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Table 4.2: Evaluation of trained STAP models on 28 TF-ChIP data sets. Pearson
correlation coefficient (PCC) between ChIP scores and STAP scores for each TF- and stage-
specific model reported.

Data set PCC Data set PCC
Dmel Twi TP1 0.48 Dvir Twi TP1 0.36
Dmel Twi TP2 0.53 Dvir Twi TP2 0.53
Dmel Twi TP3 0.56 Dvir Twi TP3 0.39
Dmel Tin TP2 0.58 Dvir Tin TP2 0.56
Dmel Tin TP3 0.56 Dvir Tin TP3 0.62
Dmel Mef2 TP1 0.48 Dvir Mef2 TP1 0.11
Dmel Mef2 TP2 0.42 Dvir Mef2 TP2 0.32
Dmel Mef2 TP3 0.37 Dvir Mef2 TP3 0.43
Dmel Mef2 TP4 0.62 Dvir Mef2 TP4 0.6
Dmel Mef2 TP5 0.59 Dvir Mef2 TP5 0.6
Dmel Bap TP3 0.37 Dvir Bap TP3 0.53
Dmel Bin TP3 0.63 Dvir Bin TP3 0.59
Dmel Bin TP4 0.58 Dvir Bin TP4 0.59
Dmel Bin TP5 0.59 Dvir Bin TP5 0.56

normalized in the same way as ChIP scores, i.e. capping outliers at µ + 3σ, where µ and σ

are the mean and standard deviation, and then applying min-max normalization.

Once we trained the STAP models to predict TF occupancy based on motif presence,

we proceeded to quantify the extent to which change of motif presence predicts changes in

TF-DNA binding (∆ChIP) between orthologous enhancers. For each orthologous enhancer

pair, we calculated STAP scores of either ortholog using a TF’s motif, and thus obtained

a ‘∆STAP’ score quantifying the evolutionary change in motif presence for that TF. Next,

we used the D. melanogaster STAP score and the ∆STAP score (∆STAP = STAPDmel −
STAPDvir) together to predict ∆ChIP for each orthologous enhancer pair, using a Support

Vector Regression (SVR) algorithm, similar to what was done for accessibility scores in the

previous section. This was repeated for each TF:TP condition. We found that the predicted

and measured ∆ChIP are modestly correlated, with average correlation coefficients in the

14 TF:TP conditions being 0.3 (Figure 4.6A, each reported correlation is an average across

5-fold cross validation). It was notable that most conditions exhibited similar correlations,

with 9 of the 14 yielding values between 0.27 and 0.33, and the highest correlation (0.38)

seen for the Bin-TP3 and Bin-TP5 conditions. By way of calibration, we similarly computed

correlations between STAP and ChIP scores in each species separately, across the same set

of enhancers as above. We noted that correlation coefficients are 0.68 for D. melanogaster

and 0.61 for D. virilis (Figure 4.7), on average across the 14 conditions. This assured us
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that STAP provides an accurate estimate of motif content, which is strongly predictive of TF

occupancy, and does so in both species. However, it also highlights the poorer predictability

of evolutionary changes in binding from change in sequence compared to the ability to predict

binding from sequence in a single species.

We next sought to compare the accuracy of ∆STAP-based predictions of ∆ChIP to

that of ∆Acc-based predictions, with the intention of assessing the relative contributions

of sequence- and accessibility-level changes to TF binding change between species. For this,

we modified the accessibility-based predictor introduced above, which used the accessibility

scores for the time point matching the ChIP data set, to now use data from all three time

points with available data. This allowed us to predict ∆ChIP scores even for the two time

points – TP2 and TP4 – for which accessibility data were not available, by basing those

predictions on accessibility scores from TP1, TP3 and TP5 (See Figure 4.8 for clarification

about a potential methodological concern that this might raise). Correlation coefficients

between predicted and measured ∆ChIP scores (Figure 4.6B) had an average value of 0.29

across the 14 TF:TP conditions, which is comparable to the 0.30 average correlation seen

above with motif-based predictors (Figure 4.6A), though there is a greater variation across

TF:TP conditions when using accessibility-based predictors.

We then made direct comparisons between motif-based and accessibility-based predictors

of ∆ChIP scores for every TF:TP condition (Figure 4.6C). In some cases, e.g., Twi at TP1

and Tin at TP2, changes in accessibility shows better predictive power than changes in

motifs (PCC values of 0.45 vs. 0.3 for Twi:TP1 and 0.44 vs. 0.33 for Tin:TP2). This is

unlikely to be due to inferior strong correlations with ChIP (Figure 4.7). It may be in part

because DNA-binding of these two motifs used in the STAP models, as the single species

STAP models for both Twi and Tin show TFs is believed to depend not only on their own

motif but also on co-binding with each other [74].

In other cases, such as Bin (at all three time points), change in motif presence is a far

better predictor of binding change than are changes in accessibility. This is in concordance

with our previous studies in a single species – Bin motifs are very predictive of Bin binding

[155, 74]. For Mef2, the only TF expressed and with ChIP measurements at all five time

points, ∆ChIP values at later time points are predicted better using the motif-based predictor

and earlier ∆ChIP values are better predicted using accessibility changes, even though the

motif used is the same in all cases. Interestingly, we note that this is part of a general trend

for accessibility-based predictions to be better at earlier time points than later ones, such

as TP4 and TP5 (Figure 4.8B). This trend may be due increased embryo heterogeneity at

later developmental stages having a distortive effect on cell type specific accessibility seen in

bulk whole embryo DHS measurements or alternatively due to pioneering roles of early TFs
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Figure 4.6: Changes in motif presence and accessibility are both predictive of TF
occupancy change. (A) Correlation between measured ∆ChIP and ∆ChIP predicted by
models based on motif presence changes, denoted by ‘p∆ChIP(∆STAP)’. For each TF-TP
condition, average Pearson correlation coefficient from 5-fold cross-validation is reported. (B)
Similar to (A), except that the ∆ChIP predictions are now based on changes in accessibility,
denoted by ‘p∆ChIP(∆Acc)’. These values are similar to those reported in Figure 4.3, but
with slightly modified models (see text). (C) Comparison of motif-based models (x-axis)
and accessibility-based models (y-axis). P-values of Pearson correlation coefficient (r) with
sample size of 2754 are also shown. (D,E) Predictions of ∆ChIP based on both motif changes
and accessibility changes, denoted by p∆ChIP(∆STAP+∆Acc)’, are better than using only
motif changes (D) or only accessibility changes (E).
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Figure 4.7: STAP models accurately fit TF occupancy (ChIP) data in single
species, either D. melanogaster (x-axis) or D. virilis (y-axis). For each TF-time
point condition, average Pearson correlation coefficient from 5-fold cross-validation is shown.
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priming enhancers for activation at later stages of embryogenesis.

Having found that the contribution of ∆Acc to ∆ChIP is similar in extent to the contri-

bution of ∆STAP (change of motif presence) to ∆ChIP, we asked if combining these two

pieces of information would further improve our ability to predict binding changes. Gener-

ally, the answer is yes, for almost all TF:TP pairs the ∆ChIP scores are better predicted

with combined models (SVR using D. melanogaster STAP, ∆STAP, Acc and ∆Acc features),

achieving correlations in the range of 0.3 to 0.5, with an average of 0.4 across the 14 data sets,

compared to ∼0.3 when using accessibility or sequence alone (Figures 4.6D, 4.6E - as before,

the reported PCC for each TF:TP condition is an average from 5-fold cross validation).

Following the evaluations performed in accessibility-based predictor, we asked how well the

combined model-predicted ∆ChIP values classify the enhancer pairs with the greatest in-

crease in TF binding (measured ∆ChIP in top 10 percentile among all 2,754 orthologous

pairs) versus those with the greatest decrease in binding (∆ChIP in bottom 10 percentile).

We noted an AUROC of 0.84 or greater on such balanced data sets for four of the 9 TF:TP

pairs (Figure 4.9). The performance of this joint predictor is a quantitative summary of how

well we understand the determinants of TF-binding changes between orthologous enhancers

in a well-studied regulatory system.

Our results suggest that the two types of information (motif and accessibility) are com-

plementary in their contribution to predicting changes in binding (most points are above

the diagonal in Figure 4.6D, 4.6E). For instance, the strongest correlation observed with

the joint predictor is for TWI-TP1, with a PCC of 0.52, compared to 0.3 when using motif

change alone and 0.45 when using accessibility change alone. The only exceptions are data

sets for Bin, where predictions of occupancy change based on sequence changes are nearly

unaffected after adding accessibility information (Figure 4.6D), which implies that motif

change alone is a strong predictor of Bin occupancy divergence. We note that in order to

make such direct comparisons between determinants of binding change, we have used an

approach that goes beyond testing statistical enrichments of various events, such as motif

loss or gain, in regions of binding change.

4.5 A STRATEGY TO ASSESS PREDICTIONS OF BINDING CHANGE RELEVANT
TO ENHANCER ACTIVITY CHANGE

In the analysis above, we quantified the ability to predict changes in binding by directly

correlating experimentally measured ∆ChIP of a TF with computationally predicted ∆ChIP

from accessibility and sequence-level changes between orthologous enhancers. What does

this imply for one of the ultimate goals of comparative cis-regulatory profiling – to predict
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Figure 4.8: Performance of accessibility-based preditors. (A) Models using accessi-
bility data from ChIP-matched stage perform nearly as well as models aggregating acces-
sibility data from all available stages. We recognized that using data from multiple time
points may inflate the strength of relationship between accessibility and binding changes,
leading to unfair comparisons with motif-based predictions of ∆ChIP. We therefore com-
pared accessibility-based SVR models that use all three timepoints with models using only
the time point matching the ChIP data. We found that for six of nine TF-TP conditions
the two models yield equal correlations, while for three conditions the correlation is slightly
better when utilizing multiple time points. (B) Performance of accessibility-based predictors
is better at early time points. (Adapted from Figure 4.6B, sorted by time points.)

changes in enhancer-driven expression? Prior work has shown that one can predict spatio-

temporal activity of mesoderm enhancers based on ChIP data for the set of five TFs studied

here [110]. We asked therefore if our ∆ChIP predictions agree with the experimentally mea-

sured ∆ChIP values when examined through the lens of such an activity prediction model,

rather than through direct correlations. In other words, if we knew the ChIP values in an en-

hancer, and the sequence and accessibility changes between it and an orthologous enhancer,

can we predict ChIP values in the ortholog and use them to determine if the enhancer’s

spatio-temporal activity is conserved? If so, it would indicate that our understanding of

binding changes is accurate enough to be of predictive value. Note that such a comparison

must integrate the information from ∆ChIP scores for multiple TFs, rather than compare

each TF:TP separately as was done above. In this sense, we now aim to assess ∆ChIP

predictions in a more integrative manner.
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Figure 4.9: AUROC measure of classification accuracy. Predicted ∆ChIP based on
motif changes and accessibility changes (p∆ChIP(∆STAP+∆Acc)) is used to classify en-
hancer pairs with the greatest increase in TF binding versus those with the greatest decrease
in binding.

4.5.1 Outline of approach

A major obstacle in answering this question is the lack of data on changes in enhancer

activity. There is a large collection of D. melanogaster enhancers with annotated activities

[156, 157, 110], but only a small set of D. virilis enhancers whose activities were tested

experimentally (in transgenic D. melanogaster embryos) [74]. Moreover, this small set of

experimentally characterized D. virilis enhancers mostly exhibited conserved activity [74],

exacerbating the analysis of functional changes. We therefore devised a modeling-based

approach to the above question, that can be briefly described as follows (Figure 4.10): (1)

Train a model ‘A’ that predicts an enhancer’s activity from its ChIP profile (binding levels

for relevant TFs), similar to prior work [110]. (2) Use model ‘A’ to predict the activities of

orthologous D. melanogaster and D. virilis enhancers, using their respective ChIP profiles,

thus characterizing the change in (predicted) activity between the orthologs. (3) Separately,

use the ChIP profile of the D. melanogaster enhancer and motif and/or accessibility-based

predictions of ∆ChIP, to predict the ChIP profile of the D. virilis ortholog. Once again,

estimate the activity change between orthologs, but now relying on the predicted ChIP
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profile of the D. virilis ortholog. (4) Compare the activity changes computed in steps (2)

and (3), that utilize, respectively, direct ChIP measurements or predicted ChIP profiles in

D. virilis. The extent to which these changes agree with each other will reveal how well motif

and accessibility-based predictions of ∆ChIP agree with real ∆ChIP when seen through the

lens of enhancer function.

4.5.2 Predicting enhancer activity from ChIP data

To build a training set for the enhancer activity classifier, we collected known mesoderm

enhancers from our previously built CRM Activity Database (CAD) [110], activity informa-

tion of active tiles from Kvon et al. [157], and a set of new entries from RedFly database

[156]. Three activity classes were considered: mesoderm (Meso), visceral musculature (VM),

and somatic musculature (SM). Enhancers that drive expression in more than one classes

(e.g. Meso and SM or VM and SM) were excluded. We then overlapped the annotated

enhancers with our 2,754 orthologous putative ChIP enhancers in D. melanogaster. This led

to a final training set of 233 enhancers, with 102 expressed in Meso, 65 in VM, and 66 in

SM.

We then trained XGBoost [158] models to predict enhancer activity. XGBoost is a super-

vised machine learning method that uses training data with multiple features to predict a

target variable. For each activity class ‘C’, an XGBoost classifier Ac was trained by using the

R package ‘xgboost’ [158] to discriminate between members and non-member of the class.

Thus, for the Meso class, the positive set includes enhancers with Meso annotation, while

the negative set includes enhancers with VM or SM annotations. The input features for each

enhancer were a 14-dimensional vector of ChIP scores of that enhancer pertaining to the 14

TF:TP conditions. To adjust for the imbalanced distribution of training data set, we used

the Synthetic Minority Over-sampling Technique (SMOTE) [159], from R package ‘DMwR’

[160], to oversample the minority class. We trained the XGBoost classifiers in the mode of

‘logistic regression for binary classification (binary:logistic)’. Parameters were set as below:

‘eta’ = 0.2, ‘nrounds’ = 50, ‘max depth’ = 4, ‘subsample’ = 0.9, ‘colsample bytree’ = 0.8,

by following the guidelines from XGBoost documentation. For each class ‘C’, a separate

classifier AC was trained to predict the enhancer’s activity on a scale of 0 to 1, representing

the confidence of that classifier, and henceforth called the regulatory potential of that en-

hancer for the class C. (Below, the numeric prediction of AC will also be denoted by AC).

Leave-one-out cross-validation was applied to measure the classifier performance.

We trained AC on 223 experimentally characterized enhancers [156, 157, 110] associated

with the three expression classes, and noted balanced accuracy values around 0.8 in leave-
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Table 4.3: Classifiers trained from combinatorial transcription factor binding data
can accurately predict enhancer activities. Balanced accuracy from leave-one-out
cross-validation is shown for models built for each activity class: mesoderm (‘Meso’), vis-
ceral muscle (‘VM’), and somatic muscle (‘SM’). Models were trained (and tested) on 223
experimentally characterized enhancers in D. melanogaster ; for each activity class, enhancers
with that activity were positives while enhancers of the other two classes were negatives.
The numbers of correctly and incorrectly classified enhancers for each model are listed. TN:
true negative, FN: false negative, TP: true positive, FP: false positive.

Meso VM SM
TN 100 145 144
FN 13 21 16
TP 89 44 50
FP 31 23 23
Balanced Accuracy 0.82 0.77 0.81

one-out cross validation for each class (Table 4.3). When estimating accuracy for any class,

enhancers of that class were treated as positives, and enhancers of the other two classes were

considered as negatives. For each classifier, the specificity is ∼0.9 and sensitivity is ∼0.7. We

also assessed the accuracy of the trained functions on held-out transgenic reporter assays

of D. melanogaster and D. virilis enhancers [74, 110]. Among 35 experimentally tested

enhancers, the predictions of 23 were correct (drove expression in the predicted domain),

3 were partially correct (one of the active tissues was predicted), whereas 9 predictions

failed (did not drive any expression in the predicted domain) (Table 4.4). The experimental

assays comprised of enhancers in both species, and the accuracy noted in these evaluations

justified our assumption that classifiers trained in D. melanogaster can be used to predict

the activities of D. virilis enhancers as well (though in a D. melanogaster context).

We noted that similar enhancer activity predictors had been presented in Zinzen et al.

[110], where Support Vector Machines (SVMs) trained from ChIP scores were shown to

accurately predict enhancer activities in D. melanogaster. We rebuilt the classifiers here

mainly because our desired tradeoff between sensitivity and specificity was different; in

particular, we sought to achieve high values of balanced accuracy when evaluating classifiers

on imbalanced data sets (in our case, there are more negative samples than positive samples);

see Table 4.5. In addition, ChIP data for Tin at TP1, an input feature for D. melanogaster

activity classifiers reported in [110], was not available for D. virilis [74], further necessitating

rebuilding of classifiers.
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Figure 4.10: A strategy to assess predictions of binding change through the lens of
enhancer activity. (A) Change in regulatory activity between orthologous enhancers is es-
timated from difference between output scores of activity classifiers that use D. melanogaster
and D. virilis ChIP profiles respectively as input. (B) An alternative estimate of change in
regulatory activity between orthologous enhancers, similar to strategy in (A), except that
D. virilis activity classifier uses ‘imputed’ D. virilis ChIP profiles as input. Imputation of
D. virilis ChIP scores is based on D. melanogaster ChIP scores and ∆ChIP scores predicted
from motif- and/or accessibility-level interspecies changes.
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Table 4.4: Classifier predictions of enhancer activity agree with results of trans-
genic reporter assays reported in previous studies. Predicted activities are compared
with spatio-temporal expression in three classes: mesoderm (Meso), visceral muscle (VM),
and somatic muscle (SM). An enhancer activity class is assigned if the respective classifier
prediction value is greater than 0.9. Enhancers in D. melanogaster (Dmel) and D. virilis
(Dvir) were previously tested for in-vivo activity in D. melanogaster embryos.

Species CRM ID Experimental essay Predicted
activity

Prediction
correct/failed

Dmel CRM 404 Meso Meso correct
Dmel CRM 633 Meso - failed
Dmel CRM 2000 Meso Meso correct
Dmel CRM 2045 Meso Meso correct
Dmel CRM 3407 Meso Meso correct
Dmel CRM 4682 Meso - failed
Dmel CRM 5278 Meso Meso correct
Dmel CRM 6053 Meso Meso correct
Dmel CRM 6176 Meso SM failed
Dmel CRM 388 Meso weak - failed
Dmel CRM 965 SM SM correct
Dmel CRM 1195 SM - failed
Dmel CRM 3215 SM SM correct
Dmel CRM 4575 SM SM correct
Dmel CRM 4725 SM SM correct
Dmel CRM 3027 SM, VM weak SM partially correct
Dmel CRM 160 VM VM correct
Dmel CRM 1560 VM - failed
Dmel CRM 2347 VM VM correct
Dmel CRM 2819 VM VM correct
Dmel CRM 3418 VM VM correct
Dmel CRM 4726 VM VM correct
Dmel CRM 4906 VM VM correct
Dmel CRM 5570 VM VM correct
Dmel CRM 6028 VM VM correct
Dmel CRM 6087 VM VM correct
Dvir CRM 4357 Meso - failed
Dvir CRM 14133 Meso - failed
Dvir CRM 12291 Meso, SM, VM SM partially correct
Dvir CRM 10323 SM SM correct
Dvir CRM 12156 SM SM correct
Dvir CRM 11115 SM, VM SM partially correct
Dvir CRM 459 VM VM correct
Dvir CRM 2469 VM SM failed
Dvir CRM 13100 VM VM correct
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Table 4.5: Enhancer activity predictions from Support Vector Machine in Zinzen
et al. for the 233 experimentally characterized enhancers. Balanced accuracy is
shown for SVM models built for each activity class: mesoderm (‘Meso’), visceral muscle
(‘VM’), and somatic muscle (‘SM’). According to Zinzen et al., an enhancer is classified
to an activity class if the SVM specificity is greater than 95%. The numbers of correctly
and incorrectly classified enhancers for each model are listed. TN: true negative, FN: false
negative, TP: true positive, FP: false positive.

Meso VM SM
TN 130 157 163
FN 93 40 48
TP 9 25 18
FP 1 11 4
Balanced Accuracy 0.54 0.66 0.62

Figure 4.11: Change in enhancer activities. Relationship between change of TF binding
and model-based change of enhancer activity, examined through 223 experimentally charac-
terized enhancers. For each spatiotemporal expression domain, D. melanogaster enhancers
with experimentally validated activity in that domain are considered, along with their D.
virilis orthologs. Enhancer pairs are divided into “High” and “Low” TF binding change,
based on sum of ∆ChIP scores for all TFs. Change in predicted enhancer activity (∆AC ,
see text) is then compared between these two classes.
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4.6 RELATIONSHIP BETWEEN TOTAL CHANGE IN TF BINDING AND
PREDICTED ACTIVITY CHANGES

With an accurate computational model for predicting enhancer activity in hand, we ex-

amined TF binding changes between orthologous enhancers in a more contextually informed

manner. We began with D. melanogaster enhancers that have experimentally confirmed

activity in any of the three spatio-temporal expression classes (e.g. ‘C’) and calculated

the regulatory activity AC of each enhancer and of its D. virilis ortholog, based on their

respective ChIP score profiles. We regarded the difference between these two AC values

(∆AC = AC(D.mel) − AC(D.vir)) as an estimate of the change in regulatory activity (spe-

cific to class C) between the orthologous enhancers. We then calculated, for each orthologous

enhancer pair, the sum of (absolute values of) ∆ChIP scores across 14 TF:TP conditions,

and used these to categorize the enhancer pairs into two groups of “High” and “Low” change

in TF binding (top and bottom 25% respectively), and compared the ∆AC values between

these groups (Figure 4.11).

For the ‘VM’ class, we noted that the enhancer pairs with greater divergence in TF binding

(‘High’ group) tend to exhibit greater change in predicted enhancer activity (P-value = 6.6E-

5, Student’s t-test). On the other hand, for ‘Meso’ and ‘SM’ classes, the two groups exhibit

similar distributions of ∆AC, suggesting that enhancer activities in these two expression

classes are relatively robust to TF occupancy changes. This latter finding is in agreement

with our previous study [74], where we assessed the impact of evolutionary changes in TF

binding on enhancer activity through in-vivo enhancer activity assays, and found five out

of seven orthologous enhancer pairs to have conserved activity despite high divergence in

TF binding events. The use of activity prediction models developed in the current study

allowed us to extend such assessment to 223 experimentally characterized enhancers from

D. melanogaster, and confirm the finding that observed changes in TF binding at these

enhancers may not have a functional impact.

4.7 COMPUTATIONALLY IMPUTED CHIP PROFILES AGREE WITH MEASURED
CHIP PROFILES IN TERMS OF THEIR PREDICTIONS OF ENHANCER
ACTIVITY CHANGES

We next used the strategy outlined in Figure 4.10 to assess if motif and accessibility-based

predictions of TF binding change agree with observed binding change when seen through

the lens of enhancer function. For each spatio-temporal class ‘C’ (‘Meso’, ‘VM’ and ‘SM’),

we considered all D. melanogaster enhancers with predicted activity AC (for that class) in

the top 20 percentile, i.e., enhancers with ChIP profiles that are most suggestive of activity
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in class ‘C’. We further restricted ourselves to the subset of these that exhibited the highest

and lowest ∆AC values (in top and bottom 10 percentile for classes ‘Meso’ and ‘VM’, and in

the top and bottom 5 percentile for class ‘SM’), i.e., enhancer pairs whose ∆ChIP scores are

most strongly indicative of activity change (high ∆AC) or conservation (low ∆AC). Next, we

asked how well these two subsets of orthologous enhancer pairs, with the greatest and least

predicted changes in enhancer activity, can be discriminated based on predicted changes of

TF binding. To this end, we obtained an ‘imputed’ ChIP profile of the D. virilis ortholog,

by using the D. melanogaster ChIP scores and ∆ChIP scores predicted from interspecies

changes in motif presence, accessibility, or both (Figure 4.10B), re-estimated the regulatory

activity AC of the D. virilis ortholog based on this imputed ChIP score profile, and computed

its difference from the regulatory activity of the D. melanogaster enhancer (∆̂AC) as an

alternative estimate of change in regulatory activity between the orthologs. Finally, we

computed the Pearson correlation coefficient between the two estimates ∆AC and ∆̂AC,

across all enhancer pairs considered (Table 4.6A), and also noted that AUROC values when

∆̂AC is used to classify enhancer pairs with high ∆AC versus low ∆AC (Table 4.6B and

Figure 4.12).

We noted that when D. virilis ChIP score profiles are imputed based on motif and ac-

cessibility changes together, the two estimates of activity change have a correlation of 0.47

(P-value 2.21E-7) for the ‘VM’ class, which is substantially greater than the correlation of

0.16 (P-value 0.09) seen in a random control. (In the control setting, D. virilis ChIP scores

were imputed based on a random permutation of ∆ChIP scores). The high level of agreement

between ∆AC and ∆̂AC is also reflected in the classification AUROC of 0.75, compared to

the random control AUROC of 0.59. Similarly, for the ‘SM’ class, a high agreement between

the two estimates is borne out by an AUROC of 0.78 (compared to 0.57 in random con-

trol), and a correlation coefficient of 0.37 (P-value 0.005), while the random control yields

a correlation of 0.09 (P-value 0.51) for this expression class. The correlation and AUROC

values are lower for the class ‘Meso’, although clearly statistically significant, e.g., correla-

tion of 0.33 (P-value 0.0004) compared to random correlation of 0.07 (P-value 0.47). Taken

together, these results suggest that the accuracy of ∆ChIP predictions demonstrated above

(Figures 4.6D, 4.6E), based on modeling interspecies changes in sequence and accessibility,

is sufficient for us to make similar predictions of enhancer activity changes as can be made

using experimental knowledge of binding changes. It also indicates that much of variation

in TF occupancy not predicted by accessibility or sequence may not be critical for fitness

related biological output. At the same time, this ability to predict activity changes differs

from one expression class to another and there is substantial room for improvement.

We also repeated the above analysis using imputed ChIP score profiles in D. virilis from
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Figure 4.12: ROC plots for delineating how well ∆̂AC values can classify high
versus low ∆AC enhancer pairs in each activity class. ∆̂AC values are based on D.
virilis ChIP score profiles imputed from D. melanogaster scores and predictions of binding
change.

∆ChIP predictions based only on sequence-level changes or only on accessibility changes

(Figures 4.6A, 4.6B), rather than both. Our main observation is that sequence-based pre-

dictions of binding change are often close to and in some cases even better than the joint

predictors that utilize sequence and accessibility changes (Table 4.6, rows ‘∆STAP’ com-

pared to rows ‘∆STAP and ∆Acc’). A noteworthy data point is that for the ‘SM’ class,

sequence-based predictions of ∆ChIP can accurately predict, with an AUROC of 0.82, the

enhancer pairs with greatest and least activity change, where activity is defined based on real

ChIP profiles in the two species. We also noted that ∆ChIP predictions based on accessibil-

ity changes alone are consistently worse in terms of the resulting agreement between ∆AC

and ∆̂AC. The is in contrast to the observations in Figure 4.6C, where we did not observe

a consistent difference between sequence-based and accessibility-based predictors of binding

change for individual TF:TP pairs. This is not surprising: accessibility changes are indeed an

important statistical determinant of binding changes, but predicting activity change likely

requires correctly predicting binding changes of multiple TFs, and the sequence-based pre-

dictors have an advantage in this respect as they use different motifs for each TF, while the

accessibility-based predictors utilize the same underlying information in predicting binding

change for every TF.

4.8 DISCUSSION

We examined the evolution of DNA accessibility in two distant species, and found it to be

an important determinant or correlate of inter-species changes in TF binding. It is possible

that changes in accessibility are not causal of binding change but rather a consequence; for
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Table 4.6: Changes in motif presence and accessibility can be used to predict
enhancer activity change. (A) Pearson correlation coefficients between two different
estimates of activity change: ∆AC, based on measured D. virilis ChIP score profiles and
∆̂AC based on D. virilis ChIP score profiles imputed from D. melanogaster scores and
predictions of binding change (∆ChIP), which in turn were made from changes in sequence
(‘∆STAP’), accessibility (‘∆Acc’) or both. As a random control baseline, we used D. virilis
ChIP scores imputed from D. melanogaster scores and a permuted version of the ∆ChIP
matrix. These analysis were performed for three expression domains: mesoderm (Meso),
visceral muscle (VM), and somatic muscle (SM). (B) AUROC values representing how well

∆̂AC values can classify high versus low ∆AC enhancer pairs.

(A)

D. virilis ChIP imputation based on: Meso VM SM
∆STAP 0.33 0.42 0.36
∆Acc 0.21 0.30 0.33
∆STAP and ∆Acc 0.30 0.47 0.37
Random control 0.07 0.16 0.09
#Samples 110 110 56

(B)

D. virilis ChIP imputation based on: Meso VM SM
∆STAP 0.65 0.70 0.82
∆Acc 0.57 0.68 0.70
∆STAP and ∆Acc 0.65 0.75 0.78
Random control 0.56 0.59 0.57
#Samples 110 110 56
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instance, the relaxation of selection pressure resulting from a functional loss of TF binding

may in turn lead to reduction in local accessibility, which may be the case for Twist. Interest-

ingly, we noted that our ability to predict TF binding changes simply based on accessibility

changes rivals our ability to make those predictions based on sequence divergence, i.e., change

of TF motif presence. At the same time, there is substantial complementarity between the

two, and a model that combines both motif and accessibility changes can predict changes

in TF binding more accurately than either alone. A noteworthy feature of our work is that

we have approached issues of cis-regulatory divergence in a quantitative manner, asking ‘to

what extent’ a relationship (e.g., between accessibility and binding changes) is supported by

data, in addition to asking if ‘there exists strong evidence’ for such a relationship, through

hypothesis testing approaches. Such a quantitative approach is also important for comparing

how well two different types of information – changes in accessibility and motif presence –

correlate with binding change.

It is worth emphasizing that our comparisons of sequence, accessibility and TF binding

between species have the advantage of being performed in the context of a system where

the examined TFs are all essential regulators that participate in a highly interconnected

regulatory network, participating in feed-back and feed-forward regulation of a large number

of genes. Thus, by focusing on putative enhancers defined by multiple ChIP peaks in close

proximity, we hope to have enriched for evolutionary events with potential consequences for

gene expression. Such an advantage is often not possible in other studies of binding evolution,

since few regulatory networks have been as well characterized (see [73] for another example).

We also examined how TF binding changes, either experimentally measured or computa-

tionally predicted, relate to changes in enhancer spatio-temporal activity within the meso-

derm specification network. Enhancers in this network have been previously shown [110]

to be amenable to computational models that predict their activity (tissue specificity) from

their TF binding profiles within one species (D. melanogaster). It was thus natural to ask

if evolutionary changes in TF binding can be interpreted in the light of such functional

models. However, we were unable to answer this question in the most direct way– whether

binding changes for multiple TFs can, via these models, predict changes in enhancer activity

– because the available data on regulatory activities of orthologous enhancers are sparse.

Instead, we used the ability to model enhancer activity from ChIP data to show that pre-

dicted changes in binding (based on accessibility and motif divergence) agree with measured

binding changes (ChIP data) in terms of what they imply about activity changes. It is worth

clarifying that we defined activity change between orthologous enhancers as the difference

in predicted activity in a spatio-temporal class, using a computational model that is meant

to predict enhancer activities in D. melanogaster. Thus, under this definition, the activity
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of a D. virilis enhancer is in fact the expression pattern we predict it to drive if it was tested

through a reporter assay in a D. melanogaster embryo. This was necessary since we do not

yet have sufficient training data (D. virilis enhancers with known expression readouts in D.

virilis) to learn a classifier for predicting activity in D. virilis. It was also a convenient choice

since we did not have to make assumptions about conservation of the trans context between

D. melanogaster and D. virilis. The only assumption required was that a “ChIP profile”

(14 TF-ChIP values at a enhancer) obtained from D. virilis is semantically comparable to

a ChIP profile obtained from D. melanogaster, which we previously showed is the case [74].

Also, the absolute values in the ChIP profile do not matter (only their relative values), since

we worked with normalized ChIP profiles, which have similar distributions in both species

(Figure 4.13).

There is precedence in the literature for examining activity changes between orthologous

enhancers in a common cellular context [90]. Expression is often conserved despite divergence

at sequence level, but that the data is sparse still. We expect that more experimental data

on heterologous activity, e.g., of D. virilis enhancers, will better address the functional

consequences of binding changes and improve our ability to predict functional cis-regulatory

change from accessibility and sequence data.

In ending, we note that even when using a combined model that integrates sequence and

accessibility data, we were able to predict TF binding change with a correlation coefficient

of ∼0.5 at best. What is missing in the data and models that might account for the missing

predictability? The answer is probably closely tied to the same issue in the context of

single-species TF binding prediction, a topic that has received far greater attention [161],

and where a number of additional factors, such as co-binding and competitive binding [33,

49], more precise motif characterizations [37, 162], higher resolution mapping of chromatin

context [33, 64, 38], etc. have been shown to improve predictive ability. Incorporation of

these additional dimensions of data and modeling in the future should further increase our

understanding of evolutionary changes in transcription factor binding.
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Figure 4.13: Normalized ChIP scores in D. melanogaster and D. virilis show
similar distributions for all 14 TF-time point conditions.
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CHAPTER 5: CONCLUSION

Unraveling gene regulation has been a main research focus in quantitative biology. Sequence-

to-expression models have been shown to have the expressive power to capture the complex

relationship between regulatory sequence, transcription factor binding, and precise gene ex-

pression patterns. Their appeal lies in achieving this interpretability within a biophysically

motivated framework, while making simplifications that hide mechanistic details on which

little data is available. In this thesis, we have shown how thermodynamic models may

leverage accessibility and DNA shape information to explain the data with higher accuracy.

Moreover, we quantify the evolutionary relationships between enhancer, TF binding, and

enhancer activity.

In Chapter 2, we extend a thermodynamics-based model of cis-regulatory function to as-

sess the impact of chromatin accessibility on gene expression levels. While recent work in

the field has reported a strong relationship between chromatin state (including accessibility)

and expression of nearby genes, we focus our attention to the quantitative aspect of this

relationship: do the quantitative variations in the accessibility levels within a cis-regulatory

sequence such as an enhancer have a quantitative impact on the expression level driven by

that sequence? We find the answer to be in the affirmative, and present multiple analyses

to support this claim. The literature provides ample evidence that whole-genome accessi-

bility profiles can effectively identify active enhancers, and emerging evidence that higher

resolution accessibility data can even identify precise footprints of the DNA-bound transcrip-

tion factors. We show, for the first time, that accessibility data can significantly improve

quantitative predictions of gene expression levels. In doing so, we pose a new challenge

for future research in biophysical modeling, which is to incorporate sequence-level determi-

nants of chromatin accessibility, such as pioneer factor binding sites and nucleosome-binding

preferences, into quantitative models of gene expression.

We anticipate that this work will nicely complement the intense community-wide activity

on measuring chromatin states and correlating the dynamics of these states with cell type-

specific gene expression. In particular, it should lead to chromatin states, e.g., accessibility,

being utilized in a rigorous mechanistic modeling framework, thereby highlighting their more

subtle effects on cellular biology.

In Chapter 3, we assess and demonstrate the impact of DNA shape features on gene expres-

sion levels by utilizing a thermodynamics-based model of cis-regulatory function. There has

been considerable interest over the last few years around the notion that DNA shape features

can noticeably improve the prediction of TF-DNA binding. This is part of a broader move-
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ment to go beyond the ‘position weight matrix’ (PWM) model of TF-DNA interaction that

has ruled for the last 25 years. High throughput data sets, such as from SELEX and PBM

technologies, have been generated, and several sophisticated models have been proposed to

show that the binding strength of a site can indeed be computationally predicted accurately.

DNA shape-based models have been one of the highlights of this on-going movement, whose

ultimate goal, of course, is to ‘crack the cis-regulatory code’, i.e., to ‘read’ non-coding se-

quences and predict gene expression. The current literature, despite its emphasis on models

of TF-DNA binding, does not provide any evidence at all that these advanced models really

help predict gene expression. Our work is the first to bridge this crucial gap.

We focus our attention on the relationship between gene expression and TF-DNA bind-

ing: can models using DNA shape perform as well as (or better than) PWM-based models

in predicting gene expression directly from sequence? (The ‘directly from sequence’ part is

crucial, because the alternative – predicting expression from ChIP (TF binding and epige-

nomic mark) profiles – is a qualitatively distinct problem, and less useful when interpreting

population-level and inter-species differences in regulatory sequences.) We find the answer

to be affirmative, and present multiple analyses to support this central claim. The litera-

ture provides evidence that models using DNA shape features are highly promising for the

goal of TF-DNA recognition, both in vitro (e.g., PBM data) and in vivo (e.g., ChIP-seq

data). We show, for the first time, that a DNA shape-based model is at least as good as

and arguably (statistically significantly) better than the PWM-based models in quantitative

predictions of gene expression levels. This need not have been the case, since (a) the extent

of improvement in prediction of TF-DNA binding may not have been large enough to lead

to benefits in predicting expression levels, and (b) the model and system used in testing

sequence-to-expression models might not have been sensitive enough to exploit the benefits

of a better TF-DNA binding model. Thus, we consider our finding to be an affirmative

conclusion to an investigation that could have gone either way.

Our positive conclusion is supported by (a) direct fits of the two models (shaped-based

and PWM-based) to the same data sets, (b) cross-validation tests that ensure that the

improvement is not due to the one additional parameter present in the shape-based model,

and (c) innovative and carefully constructed tests involving perturbations of model inputs, to

make sure that the improvement is not accidental. Our model uses a Random Forest classifier

to integrate multiple shape features into a single measure of binding site quality and converts

this into a pseudo-energy term to be used in established thermodyamics-based models of

enhancer function. We anticipate that our work will nicely complement the burgeoning

body of work on DNA shape predictions, further energizing that community. Since training

of DNA-shape models require high throughput data on TF-DNA binding (e.g., PBM or
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SELEX), our work should spur more widespread generation of such data, since it connects

those data to the ultimate goal of regulatory genomics, that of predicting gene expression. In

the long run, it should lead to DNA shape being utilized in a rigorous mechanistic modeling

framework, thereby highlighting their more subtle effects on cellular biology.

In both Chapter 2 and 3, we chose to substantiate our general claim on a specific data set

that represents one of the best understood regulatory networks in terms of cis-regulatory

mechanisms. This is a set of 37 enhancers involved in patterning of the anterior-posterior

(A/P) axis of the early Drosophila embryo; the data includes the enhancer sequences and

their quantitative expression readouts along the A/P axis. Previous work has shown remark-

able success in applying equilibrium thermodynamics based models of transcription factor

action to this data set, making it a strong baseline against which to examine the effect of

using chromatin accessibility and DNA shape features of binding sites. We consider this

an important aspect of our work since it avoids the pitfalls of observing a spurious effect

in a less-understood regulatory system. In particular, this system is much better suited

for studied of cis-regulatory code than, for instance, regulatory systems active in human

cell lines: the reason being that nearly two decades of rigorous, directed experimental work

has established all the relevant regulatory inputs for genes in this system, so that models

of gene expression can focus on elucidating detailed mechanisms rather than struggle with

identification of the relevant inputs (GRN construction).

We extend our focus from cis-regulation to cis-evolution in Chapter 4. Mutations in

enhancer elements are a key driving force of evolution and disease. A number of studies

have examined genome-wide divergence in TF binding across species, providing important

information linking sequence motif turnover and DNA accessibility change to TF occupancy.

However, there is currently a lack of information on what these changes mean to enhancer

function. In Chapter 4, we focus our attention to the quantitative aspect of this relationship:

do changes in accessibility and motif presence carry complementary information related to

observed changes in TF occupancy? Do quantitative variations in the accessibility and

motif presence levels pertain to enhancer-driven expression changes? Our work is the first

to examine multiple aspects of cis-regulatory divergence in a quantitative and systematic

manner.

We chose to substantiate our general claim on a highly connected mesoderm specification

network. Such an advantage is often not possible in other studies of binding evolution,

since few regulatory networks have been as well characterized. To initiate this study, we

generated a unique dataset - interspecies chromatin accessibility across developmental time

points in two distally related Drosophila species. We also collected interspecies ChIP-seq

on five essential tissue-specific TFs in this regulatory system. This actually represents the
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first interspecies developmental time-course of chromatin accessibility to date and reveals

cis-regulatory relationships at embryonic enhancers as development proceeds.

We used multi-variable models to integrate accessibility and motif information across thou-

sands of orthologous developmental enhancers and observed three functional properties of TF

activity at enhancers. First, using dynamic and combinatorial signatures of co-association

in TF occupancy, we demonstrated accessibility changes explain a significant portion of the

co-divergence of TF pairs. Second, our models clearly show that accessibility and motif

presence bear complementary information that is useful in predicting TF binding diver-

gence. Third, we found that motif and accessibility-based predictors of TF binding change

can substitute for experimentally measured binding change, for the purpose of predicting

divergence in gene expression.

This thesis demonstrates powerful new claims regarding already popular concepts and

techniques. Models and approaches proposed in this thesis pave the way to build a practical

tool to add contextual information to non-coding variant for prioritization and interpretation.

It will also enable major advances in the genomics of human health, by providing accurate

predictions of the effects of single nucleotide polymorphisms at the cellular level.
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