
c© 2018 by Vivek Madan. All rights reserved.

ON APPROXIMABILITY AND LP FORMULATIONS FOR MULTICUT AND FEEDBACK SET
PROBLEMS

BY

VIVEK MADAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Chandra Chekuri, Chair
Professor Sariel Har-Peled
Assistant Professor Ruta Mehta
Assistant Professor Karthekeyan Chandrasekaran
Professor Anupam Gupta

Abstract

Graph cut algorithms are an important tool for solving optimization problems in a variety of areas

in computer science. Of particular importance is the min s-t cut problem and an efficient (polynomial

time) algorithm for it. Unfortunately, efficient algorithms are not known for several other cut problems.

Furthermore, the theory of NP-completeness rules out the existence of efficient algorithms for these

problems if the P 6= N P conjecture is true. For this reason, much of the focus has shifted to the

design of approximation algorithms. Over the past 30 years significant progress has been made in

understanding the approximability of various graph cut problems. In this thesis we further advance our

understanding by closing some of the gaps in the known approximability results. Our results comprise

of new approximation algorithms as well as new hardness of approximation bounds. For both of these,

new linear programming (LP) formulations based on a labeling viewpoint play a crucial role.

One of the problems we consider is a generalization of the min s-t cut problem, known as the multicut

problem. In a multicut instance, we are given an undirected or directed weighted supply graph and a set

of pairs of vertices which can be encoded as a demand graph. The goal is to remove a minimum weight

set of edges from the supply graph such that all the demand pairs are disconnected. We study the effect

of the structure of the demand graph on the approximability of multicut. We prove several algorithmic

and hardness results which unify previous results and also yield new results. Our algorithmic result

generalizes the constant factor approximations known for the undirected and directed multiway cut

problems to a much larger class of demand graphs. Our hardness result proves the optimality of the

hitting-set LP for directed graphs. In addition to the results on multicut, we also prove results for multiway

cut and another special case of multicut, called linear-3-cut. Our results exhibit tight approximability

bounds in some cases and improve upon the existing bound in other cases. As a consequence, we also

obtain tight approximation results for related problems.

Another part of the thesis is focused on feedback set problems. In a subset feedback edge or vertex

set instance, we are given an undirected edge or vertex weighted graph, and a set of terminals. The goal

is to find a minimum weight set of edges or vertices which hit all of the cycles that contain some terminal

vertex. There is a natural hitting-set LP which has an Ω(log k) integrality gap for k terminals. Constant

factor approximation algorithms have been developed using combinatorial techniques. However, the

factors are not tight, and the algorithms are sometimes complicated. Since most of the related problems

admit optimal approximation algorithms using LP relaxations, lack of good LP relaxations was seen as

a fundamental roadblock towards resolving the approximability of these problems. In this thesis we

address this by developing new LP relaxations with constant integrality gaps for subset feedback edge

and vertex set problems.

ii

To my parents, for their love and support.

iii

Acknowledgments

First and foremost, I would like to express my deepest gratitude towards my advisor, Prof. Chandra

Chekuri. I could not have hoped for a better advisor. In addition to being an excellent researcher, you

are an amazing mentor. Your guidance and patience have helped me to navigate through some very

difficult times. Your advice, whether on research and otherwise has been incredibly useful. It has made

me grow as a researcher and as a person and I am sure it will continue to guide me in the future as well.

I have been very fortunate to have worked with many amazing people during my Ph.D.: Prof.

Karthekeyan Chandrasekaran, Prof. Alexandra Kolla, Prof. Tamas Király, Prof. Ionnis Koutis, Kristof

Bérczi, Shalmoli Gupta, Naman Agarwal, and Ali Kemal Sinop. I would like to thank my collaborators

for all the work that we did together. Those long meetings trying to find a path out of hundreds of dead

ends have been an incredible learning experience.

I would like to thank Prof. Ruta Mehta, Prof. Karthekeyan Chandrasekaran, Prof. Anupam Gupta,

Prof. Sariel-Har-Paled, and Prof. Jeff Erickson for serving on my thesis committee and providing several

helpful comments. I was honored to present my results to an excellent group of researchers.

I would like to thank the University of Illinois Urbana-Champaign and the Department of Computer

Science for hosting me for Ph.D. It gave me a chance to learn from an exciting group of people: Hsien-

Chih Chang, Chao Xu, Sahand Mozaffari, Xilin Yu, Alex Steiger, Shant Boodaghians, Charles Carlson,

Mitchell Jones, Konstantinos Koiliaris, and Nirman Kumar. I am fortunate to have worked besides so

many excellent colleagues. I would also like to thank the National Science Foundation for funding my

research through various grants.

I would like to thank many of the friends who have been part of my life and shaped it in different

ways. I am particularly thankful to Pritish Kamath for an exciting time in my undergraduate days. If it

were not for the days and nights spent discussing ideas with Pritish, I might not have even considered

pursuing a Ph.D. I am also espcially thankful to my amazing roommates and friends Ashish Khetan and

Prasanna Giridhar. Some of the best memories of my Ph.D. years have been hanging out with Ashish

and Prasanna playing games and arguing about stupid things.

Finally, I would like to thank my family for their unending love and support throughout my life.

Nothing in my life would have been possible without the continous support given by my parents, my

brother Ravi and my sister Bharti.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Background . 2
1.2 Motivating Questions . 6
1.3 Results and Organization . 11
1.4 Credits . 17

Chapter 2 Influence of the demand graph on the approximability of Multicut 19
2.1 Label LP . 23
2.2 Approximation algorithms for UNDIR-MULTICUT . 23
2.3 Approximation algorithms for DIR-MULTICUT . 25
2.4 UGC-hardness of DIR-MULTICUT . 31
2.5 Concluding Remarks . 53

Chapter 3 Resolving the approximability of Linear-3-Cut . 55
3.1 Techniques . 57
3.2

p
2-approximation algorithm . 57

3.3
p

2-Lower Bound . 69
3.4 Results for Related Cut Problems . 80
3.5 Concluding Remarks . 82

Chapter 4 Integrality gap results for Multiway Cut . 83
4.1 Improving the integrality gap bound for CKR-relaxation . 85
4.2 Flow-cut gap 2 for {s, t}-EDGE-BICUT . 111
4.3 Concluding Remarks . 113

Chapter 5 New LP relaxations for Subset Feedback Set problems 114
5.1 The idea for the new LP formulations . 116
5.2 LP-based constant factor approximation for SUBSET-FES . 118
5.3 LP-based constant factor approximation for SUBSET-FVS . 125
5.4 Further Remarks on the LP Relaxations . 129
5.5 Concluding Remarks . 131

References . 132

v

Chapter 1

Introduction

Combinatorial optimization refers to the study of maximizing or minimizing a function over a finite

domain subject to certain constraints. One mathematical structure which can model a large class of

combinatorial optimization problems is a graph. Many intricate real-life problems have been formulated

as optimization problems on graphs and several beautiful algorithms have been designed for solving

these problems. One of the most famous such problems is the min s-t Cut problem:

s-t CUT

Input: Graph G = (V, E) along with non-negative edge weights w(e), e ∈ E and two terminal nodes

s, t ∈ V .

Output: Minimum weight set of edges E′ ⊂ E such that there is no path from s to t in G − E′.

Here, G − E′ refers to the graph (V, E \ E′). Ford-Fulkerson [43] described an efficient algorithm for

the min s-t CUT problem. Ever since then, numerous generalizations of s-t CUT have been considered.

Unfortunately, many of these problems are difficult to solve. This is captured by the fact that these

problems are NP-hard, and assuming the P 6= N P conjecture, do not admit an efficient algorithm. We

investigate the complexity of these NP-hard problems through the lens of approximability. We deisgn

approximation algorithms as well as prove hardness of approximation results. Formal definitions of

approximation and hardness of approximation are given in the next section.

One generalization of s-t CUT which has attracted substantial attention over the past 30 years is the

Multicut problem.

MULTICUT

Input: Graph G = (V, E) along with non-negative edge weights w(e), e ∈ E and a set of terminal pairs

{(si , t i) | si , t i ∈ V, i ∈ {1, . . . , k}}.

Output: Minimum weight set of edges E′ ⊂ E such that there is no path from si to t i in G − E′ for

i ∈ {1, . . . , k}.

If G is an undirected graph, we refer to MULTICUT as the UNDIR-MULTICUT problem, and if G is

a directed graph, we refer to MULTICUT as the DIR-MULTICUT problem. MULTICUT has been useful in

solving several real-life problems. For example, it has been successfully used as a sub-routine in problems

such as communication cost minimization in parallel computations, efficient partitioning of files in a

network, and VLSI design [66,79]. Study of MULTICUT has also given rise to many new and interesting

concepts which have been useful in solving related problems [66,79].

1

Due to a variety of applications and interesting connections to other problems, MULTICUT has been

extensively studied. This study has produced a large collection of results for several variants and special

cases [1,2,3,15,16,27,29,37,46,47,48,49,52,56,62,66,70,74,79,80]. However, there are critical

gaps in our understanding of the approximability of the problem. In this thesis we close some of these

gaps and also unify several results by taking a new viewpoint.

Another class of problems we study in this thesis are feedback set problems. In the general feedback

set problem, we are given a directed or undirected graph and a collection C of cycles which may be

implicitly defined. Our goal is to find a minimum weight set of vertices or edges that meet all cycles in

C. This problem arises in a variety of areas such as deadlock prevention, testing of circuits, Bayesian

inference, genetics, and artificial intelligence [7, 76, 83]. In this thesis we focus on the feedback set

problem when the graph is undirected, and C consists of cycles passing through a given subset of vertices.

Subset Feedback Vertex Set

Input: Undirected graph G = (V, E) along with non-negative node weights w(v), v ∈ V , and a set

S = {s1, . . . , sk} ⊂ V of terminals.

Output: Minimum weight set of nodes V ′ ⊂ V such that there is no cycle containing any si in G − V ′.

Subset Feedback Edge Set

Input: Undirected graph G = (V, E) along with non-negative edge weights w(e), e ∈ E, and a set

S = {s1, . . . , sk} ⊂ V of terminals.

Output: Minimum weight set of edges E′ ⊂ E such that there is no cycle containing any si in G − E′.

These problems have been studied for over three decades [5,7,8,26,35,40,45,51,57]. However,

we still do not fully understand the approximability of these problems. In fact, not much progress had

been made in improving the approximability bounds for more than 20 years. In this thesis we present a

new approach which could be useful in obtaining improvements for both Subset Feedback Edge and

Vertex Set problem.

Our focus in this thesis is on the design of approximation algorithms, formulating new linear

programming relaxations, and proving hardness of approximation results for the problems mentioned

above. We start by formally defining some of these concepts. Readers familiar with these definitions can

skip the next section.

1.1 Background

In this thesis we focus on NP optimization problems (NPO).

Definition 1.1. An NPO problem P is a tuple (Λ,X, val, goal) such that

2

• Λ is a set of strings and denotes the set of input instances of problem P. The language defined by Λ is

recognizable in polynomial time.

• For every I ∈ Λ, XI is a set of strings and denotes the collection of feasible solutions for I . There exists

a polynomial time algorithm, which given I and x, decides if x is in XI or not in XI .

• For I ∈ Λ, x ∈ XI , val(I , x) is the value of solution x on instance I. There exists a polynomial time

algorithm to compute val(I , x) for any I ∈ Λ, x ∈ XI .

• goal ∈ {min,max} specifies whether we wish to find a feasible solution with minimum or maximum

value.

1.1.1 Approximation algorithms

An algorithm is practically useful if it is efficient. In this thesis we call an algorithm to be efficient if

its running time on instance I is p(|I |) for some fixed polynomial p where |I | is the size of the instance.

For example, s-t CUT admits an algorithm which runs in time polynomial in the size of the input graph

and hence, is efficient. However, such polynomial time algorithms are not known for MULTICUT even for

three terminal pairs (k = 3). In fact, efficient algorithms for many of the problems arising in practice

are not known. The theory of NP-completeness has shown that many problems are NP-hard, and hence

assuming the P 6= N P conjecture, do not admit a polynomial time algorithm.

Since polynomial time algorithms are unlikely to exist for these problems, several heuristics are

designed. One line of work is the area of approximation algorithms. It asks the following question: Can

we find solutions in polynomial time which are provably close to the optimum solution?

For instance I ∈ Λ of a minimization problem P, let OPT (I) =minx∈XI
val(x) denote the value of

an optimum solution.

Definition 1.2. An algorithm A is an α-approximation algorithm for a minimization problem P =

(Λ,X, val, min) if for all I ∈ Λ,

α≥
val(A(I))
OPT (I)

(1.1)

Here, α is referred to as the approximation ratio of A.

Note that α may or may not depend on I . Vertex Cover admits a 2-approximation algorithm and Set

Cover admits a (1+ ln n)-approximation algorithm where n is the size of the ground set.

1.1.2 Linear programming relaxations and rounding

A generic scheme for designing a large class of approximation algorithms is to map the original

problem to an optimization problem in real space. Let I ∈ Λ be an instance of a minimization problem P.

Often the nature of P ensures that the feasible solutions (XI) to I can be represented by a set S of integer

3

vectors in a high-dimensional (say m) real space. Moreover, the value function val can represented by a

linear function f over m variables. Consider the convex hull T of the point set S. Since the function

f is linear, minimum of f over T is realized at one of the vertices of T which is in S. Hence we can

solve the problem by minimizing the function f over T. However, we may not know how to obtain

a compact description of this convex hull T or minimize the function f efficiently if the problem P is

NP-hard. Instead, we find a larger polyhedron H which is a super set of T such that the set of integer

points in H are exactly the points in S and the minimum of f over H can be found efficiently. This

is done by formulating the problem as an integer linear program (ILP) and then relaxing the integer

constraints to get a linear programming (LP) relaxation whose solutions define H. It does not fully solve

the problem as the minimum of f over H may not be achieved at a point in S. Once we find the point x

which minimize f over H, we find a point y in S such that f (y) is not much larger than f (x).

An ILP is an optimization or feasibility program where the objective function and the constraints

are linear, and the variables are restricted to be integers. In a 0-1 ILP, variables may only take value 0

or 1. An LP relaxation R for a problem P is obtained as follows: given a problem instance I ∈ Λ, we

formulate it as a 0-1 ILP (say WI) minimizing a linear function (say f) of a certain number of variables

(x = x1, . . . , xm) subject to x ∈ {0, 1}m and a set of linear constraints (L1(x), . . . , Lk(x)). Let the LP with

the objective function f and constraint set L1(x), . . . , Lk(x) and 0 ≤ x i ≤ 1, i ∈ {1, . . . , m} be RI : LP

relaxation R for instance I .

Let the optimum of RI be achieved at x∗ and OPTR(I) = f (x∗). Once we solve the LP RI , we design

an algorithm to convert the fractional vector x∗ (values between 0 and 1) into an integer vector y (values

0 or 1) satisfying the linear constraints (L1(x), . . . , Lk(x)). This step is called the rounding phase of the

algorithm. It involves proving that the cost of the integer vector is at most a small factor (say α) times

the cost of the fractional vector. That is, f (y)≤ α f (x∗) = αOPTR(I). Since value of the linear program

RI is at most the value of integer linear program WI and the integer linear program exactly formulates

the problem, we get OPTR(I)≤ OPT (I). Hence, f (y)≤ αOPT (I) and the solution corresponding to y

is an α-approximate solution for I .

There is a canonical ILP for graph cut problems, called the hitting-set ILP. It consists of constraints of

the following form: For any forbidden structure H, a feasible solution must contains at least one vertex or

an edge from H. Figure 1.1 shows such an ILP and its LP relaxation for MULTICUT. It consists of a variable

xe for each edge e and an exponential (in size of the input graph) set of constraints; the constraints

specify that for any path p from si to t i , sum of xe along p is at least 1. Even though the LP contains an

exponential number of constraints, it can be solved in polynomial-time using the Ellipsoid method [58].

One can also write a compact polynomial-sized formulation using distance variables. We can also write

similar LP relaxations for SUBSET-FES and SUBSET-FVS as well.

This framework of writing LP relaxations and designing rounding schemes has been very useful

in the design of approximation algorithms. However, there is a bottleneck in this framework, namely

integrality gap. We cannot design an LP-based approximation algorithm with approximation ratio better

4

min
∑

e∈E

we xe

∑

e∈p

xe ≥ 1 p ∈ Psi t i
, i ∈ [1, k]

xe ∈ {0, 1} e ∈ E

min
∑

e∈E

we xe

∑

e∈p

xe ≥ 1 p ∈ Psi t i
, i ∈ [1, k]

0≤ xe ≤ 1 e ∈ E

Figure 1.1: Hitting set ILP on top and LP (DISTANCE-LP) at bottom for MULTICUT

than the worst-case gap between the value of the ILP and the LP.

Definition 1.3. For a minimization problem P = (Λ,X, val, goal), an LP relaxation R of P and an instance

I ∈ Λ, let OPTR(I) be the value of R for instance I.

Integrality gap(R) = sup
I∈Λ

OPT (I)
OPTR(I)

(1.2)

Novelty of an approximation algorithm lies in coming up with a good relaxation and designing a

rounding scheme proving tightest possible bound on integrality gap. Integrality gap of the DISTANCE-LP

is sometime referred to as the flow-cut gap since the dual of the LP is a maximum multicommodity flow

LP.

Search for good relaxations have led to the development of generic strengthening procedures such

as Lovász-Schrijver [67], Sherali-Adams [78], and Sum-of-Squares [64]. We start with a weak LP or SDP

relaxation and add more constraints in a systematic way which are valid for the integer solutions.

1.1.3 Hardness of approximation

For every approximation algorithm that we design, a natural question arises: Can we do better?

Can we design an algorithm with better approximation ratio? This has led to the study of the limits of

approximability.

Definition 1.4. A minimization problem P is α-hard if there is no polynomial time (α− ε)-approximation

algorithm for P for any constant ε > 0.

As in approximation ratio, α may be constant or a function of |I |. Since we cannot yet rule out all

problems in N PO being solvable in polynomial time, we cannot prove an unconditional hardness result

5

with α > 1 for any minimization problem P ∈ N PO. Hence, hardness results are often proved under

certain assumptions.

Definition 1.5. A minimization problem P is APX-hard if there exists c > 1 such that assuming P 6= N P, P

is c-hard.

The famous PCP theorem by Arora et al. [4] showed a breakthrough result in this direction: for some

constant c < 1, there is no c-approximation algorithm for MAX-3-SAT assuming P 6= N P. Subsequently,

building upon this work, hardness results have been shown for problems such as Set Cover, Independent

Set and Coloring [38,39,55]. In some cases, such as Set Cover, these results showed that a simple greedy

heuristic achieves the best possible approximation ratio.

Even though we get tight approximation results for problems such as Set Cover, there are several

fundamental problems such as Vertex Cover where the proven lower bounds do not match the known

approximation ratios. The best-known approximation algorithm for Vertex Cover achieves a factor

2 approximation while the best lower bound rules out a c-approximation for some c < 2. Unique

Games Conjecture (UGC) has come to the rescue for these problems [59]. It is an assumption on the

inapproximability of a combinatorial optimization problem. Here, we present an equivalent formulation

due to Khot, Kindler, Mossel and O’Donnell [60].

Γ -Max Lin (p): Input is a set of linear equations over integers of the form x i − x j ≡ ci j mod p. The

goal is to find an integer assignment to x i ’s such that maximum number of equations are satisfied.

Conjecture 1.1. (Unique Games Conjecture [60]) Assuming P 6= N P, for any ε,δ > 0 there exists

an integer p such that no polynomial time algorithm can distinguish between instances of Γ -Max Lin (p)

where at least (1− ε) fraction of the equations are satisfiable and instances where at most δ fraction of the

equations are satisfiable.

Assuming UGC, inapproximability results have been obtained for several important problems. For

example, assuming UGC, known approximation factors for Vertex Cover and Max-Cut are tight. Raghaven-

dra [71] proved this phenomenon for a larger class of problems known as Max-CSP.

Though there is no consensus on the truthfulness of the conjecture, studying the implications of

UGC has been very fruitful. It has exposed interesting new connections as well as the limits of linear and

semidefinite programming for several problems [72].

1.2 Motivating Questions

As we already mentioned, both multicut and feedback set problems have been studied extensively

over the last three decades [1,2,3,5,7,8,15,16,26,27,29,35,37,40,45,46,47,48,49,51,52,56,57,

62,66,70,74,79,80]. In this section, we describe our motivations to reconsider these problems. We

mention some concrete questions which addressed in this thesis.

6

Triangle Cast

Given G=(V,E) terminals s1, s2, …, sk and t1, t2, …, tk

communication pattern is si to tj for all j ≥ i

s1 t1

s2

s3

s4

t2

t3

t4

Figure 1.2: Demand graph for SKEW-MULTICUT

1.2.1 Role of demand graph in MULTICUT

UNDIR-MULTICUT admits an O(log k)-approximation algorithm [47]. DIR-MULTICUT on the other

hand admits min(k, Õ(n11/23))-approximation algorithm [2]; here n = |V |. Some special cases also admit

improved approximation algorithms. For example, UNDIR-MULTICUT admits an O(1)-approximation if G

is planar, O(log g)-approximation if G is of genus g, O(t)-approximation algorithm if G has treewidth

t [1, 37, 62]. UNDIR-MULTICUT is at least as hard as Vertex Cover even in trees. Hence, from known

hardness result for Vertex Cover there exists c > 1 such that assuming P 6= N P, there is no (c − ε)-
approximation algorithm (APX-hardness). Under UGC, UNDIR-MULTICUT does not have a c-approximation

for any fixed constant c [16]. DIR-MULTICUT is known to be a harder problem. Assuming N P 6= Z PP, it

is hard to approximate DIR-MULTICUT to within a factor of Ω(2log1−ε n) [27]; evidence is also presented

in [27] that it could be hard to approximate to within an Ω(nδ) factor for some fixed δ > 0.

These results describe the approximability of MULTICUT when the demand pairs are arbitrary, with

some improved results when G is restricted. In this thesis we are interested in the setting where the

demand pairs are restricted and G is arbitrary. To capture the structure of demand pairs, consider an

equivalent formulation of MULTICUT. The input now consists of an edge-weighted supply graph G = (V, E)

and a demand graph H = (V, F). The goal is to find a minimum weight set of edges E′ ⊆ E such that for

each edge f = (s, t) ∈ F, there is no path from s to t in G − E′. In other words the source-sink pairs are

encoded in the form of the demand graph H. Either both G and H are directed in which case we refer to

the problem as DIR-MULTICUT (directed MULTICUT) or both are undirected in which case we refer to the

problem as UNDIR-MULTICUT (undirected MULTICUT). The question we ask in the thesis is the following:

Question 1.1. What structural aspects of the demand graph determine the approximation ratio? Can we

get improved approximation algorithms for restricted demand graphs?

Before we describe a concrete application that motivated us to consider this question, we mention

the well-known MULTIWAY CUT problem in undirected graphs (EDGE-WT-MWC) and directed graphs (DIR-

MWC). In MULTIWAY CUT, H is the complete (or bi-directed complete) graph on a set of k terminals. This

problem has been extensively studied over the years. EDGE-WT-MWC admits a 1.29-approximation [77]

and DIR-MWC admits a 2-approximation [23,70]. In a recent work [19], motivated by connections to

the problem of understanding the information capacity of networks with delay constraints, a special case

of MULTICUT namely SKEW-MULTICUT was considered. The demand graph H is a bipartite graph with k

terminals s1, . . . , sk on one side and k terminals t1, . . . , tk on the other side: (si , t j) is an edge in H iff

7

i ≤ j. See Figure 1.2 for an example with k = 4. If the edges are directed from s’s to the t ’s we obtain

the directed version. It was shown in [19] that the integrality gap (flow-cut gap) of the hitting-set LP

(DISTANCE-LP 1.1) for DIR-SKEW-MULTICUT gives an upper bound on the capacity advantage of network

coding with delays. Further, it was established that the flow-cut gap for DIR-SKEW-MULTICUT is O(log k)

which is in contrast to the general setting where the gap can be as large as k. One can show APX-hardness

and a constant factor lower bound on the flow-cut gap for UNDIR-SKEW-MULTICUT (and hence also for

DIR-SKEW-MULTICUT) via a reduction from EDGE-WT-MWC problem. The following natural questions

arose from this application.

Question 1.2. What is the approximability of UNDIR-SKEW-MULTICUT and DIR-SKEW-MULTICUT? Is the

flow-cut gap O(1) for UNDIR-SKEW-MULTICUT and even DIR-SKEW-MULTICUT?

Some previous work has also examined the role that demand graph plays in MULTICUT. One example

is the original paper of Garg, Vazirani and Yannakakis [47] which showed that one can obtain an

O(log h)-approximation for UNDIR-MULTICUT where h is the vertex cover size of the demand graph. This

was generalized by Steurer and Vishnoi [80] who showed that h can be chosen to be minS maxT |S ∩ T |
where S is a vertex cover in H and T is an independent set in H. Both these results are based on bounding

the flow-cut gap. For UNDIR-SKEW-MULTICUT, h is equal to k. Hence, these results fail to improve upon

the logarithmic bound on the flow-cut gap or the approximation ratio for UNDIR-SKEW-MULTICUT. Other

than DIR-MWC, not much is known for DIR-MULTICUT exploiting the structure of demand graphs which

could help improve the flow-cut gap or the approximation ratio for DIR-SKEW-MULTICUT.

In this thesis we provide two results. First, we obtain a 2-approximation for UNDIR-SKEW-MULTICUT.

Second, we show that under UGC, for any fixed constant k, the hardness of approximation for DIR-SKEW-

MULTICUT coincides with its flow-cut gap. Our results for SKEW-MULTICUT are special cases of more

general results that examine the role of the demand graph H in the approximability of MULTICUT. Our al-

gorithmic results generalize the constant factor approximation algorithms known for undirected multiway

cut (EDGE-WT-MWC) and directed multiway cut (DIR-MWC) problem. In addition to a 2-approximation

for UNDIR-SKEW-MULTICUT, these results also improve the result of Steurer and Vishnoi [80] when h

is constant. We get a factor 2 approximation for UNDIR-MULTICUT if h=minS maxT |S ∩ T | is constant

where S is a vertex cover in the demand graph and T is an independent set in the demand graph.

Our hardness results significantly improve the inapproximability bounds for several important cases of

DIR-MULTICUT. Of particular importance is the case when the demand graph is a directed matching

of size k. Our hardness result implies that assuming UGC, DIR-MULTICUT with this demand graph is

NP-hard to approximate within a factor k− ε for any fixed ε > 0.

1.2.2 LP relaxations and improving approximation for subset feedback set problems

FVS, SUBSET-FVS and SUBSET-FES all admit constant factor approximation algorithms. In particular

there are 2-approximations for FVS [5,8] and SUBSET-FES [34], and an 8-approximation for SUBSET-

8

FVS [35]. However, hardness bounds known for SUBSET-FES and SUBSET-FVS do not match the known

approximation ratio. In fact, the best known lower bounds are for the case of |S|= 1. SUBSET-FES and

SUBSET-FVS with one terminal are equivalent to the edge-weighted multiway cut (EDGE-WT-MWC) and

node weighted multiway cut (NODE-WT-MWC) problem respectively. Assuming UGC, EDGE-WT-MWC is

hard to approximate within a factor c − ε for some c < 2 and NODE-WT-MWC is hard to approximate

within a factor of 2−ε for any ε > 0. Not much progress had been made in closing these gaps in the last

20 years.

We can write a hitting set LP relaxation for feedback set problems. For instance, consider FVS. The

relaxation has a variable z(v) ∈ [0, 1] for each v ∈ V , and for each cycle C , a constraint
∑

v∈C z(v)≥ 1.

This LP relaxation has an Ω(log n) integrality gap [34]. Constant factor approximation algorithms have

mainly relied on combinatorial techniques at the high-level. The non-trivial 2-approximation algorithm

for FVS from [5] has been later interpreted as a primal-dual algorithm by Chudak et al. [26], however,

the underlying LP is not known to be solvable in polynomial-time and does not generalize to SUBSET-FES

or SUBSET-FVS. The 2-approximation for SUBSET-FES [34] is simple and combinatorial but delicate to

analyze. The 8-approximation for SUBSET-FVS [35] is very complicated to describe and analyze; the

algorithm is combinatorial at the high-level but solves a sequence of relaxed multicommodity flow LPs

to optimality. Recall that SUBSET-FVS captures the node-weighted undirected multiway cut problem

(NODE-WT-MWC) as a special case and all the known constant factor approximations for NODE-WT-MWC

are via LP relaxations. To some extent this explains why one needs LP-type techniques for SUBSET-FVS.

Question 1.3. Does there exists polynomial time solvable LP relaxations for SUBSET-FES and SUBSET-FVS

with constant integrality gaps?

Even et al. [34] write that “finding a linear program for SUBSET-FES and SUBSET-FVS for which

the integrality gap is constant is very challenging”. One of the open problems in Vazirani’s book on

approximation [82] is also to find a simpler constant factor approximation algorithm for SUBSET-FVS

with the eventual goal of finding an improved approximation ratio.

In this thesis we describe such LP relaxations for SUBSET-FES and SUBSET-FVS and derive constant

factor approximations through them.

1.2.3 New Techniques

Most of the LP-based approximation algorithms known for the cut problems involve the hitting-set LP

relaxation. Recall the basic idea for a hitting-set LP: For any subgraph H ⊂ G such that it contains some

structure which should not be present in the graph after deleting a feasible solution, we must remove at

least one edge or vertex from H. In case of MULTICUT, we must remove at least one edge from a path

from s to t where (s, t) ∈ F . In case of SUBSET-FES or SUBSET-FVS, we must remove at least one edge or

vertex from a cycle passing through a terminal.

Better than hitting set LP: Hitting-set LP does not always yield optimal approximation algorithms.

9

For example, as discussed above, feedback set problems admit constant factor approximation but the

hitting-set LPs for feedback set problems have a logarithmic integrality gap [34]. Similarly, a related

problem known as the diamond hitting set has a constant factor approximation, but the hitting-set LP

has a logarithmic integrality gap [41]. In fact, the more general problem of planar-F -deletion admits

a constant factor approximation algorithm in the unweighted case but the hitting-set LP has large

integrality gap [42]. So, one may ask the question:

Question 1.4. Can we write LP relaxations for graph cut problems with integrality gap better than the

hitting set LP?

In this thesis we describe such LP relaxations for Multicut and Feedback Set problems. The basic

idea of these LP relaxations is the following:

Suppose we know the optimum solution X to the problem. We consider the graph G − X and define

a labeling for all the vertices of graph based on the structure of the graph G − X . Then, we define linear

constraints which must be satisfied by any such labeling and write a linear program comprising of all such

constraints.

Labeling-based LPs has constant integrality gaps for SUBSET-FES and SUBSET-FVS and yield the above-

mentioned result regarding constant factor approximations for SUBSET-FES and SUBSET-FVS through LP

relaxations. It also yields the algorithmic result about UNDIR-MULTICUT generalizing the constant factor

approximation algorithm for undirected multiway cut (EDGE-WT-MWC). For DIR-MULTICUT however, we

show that the labeling based LP relaxation is equivalent to the DISTANCE-LP and hence, the integrality gap

of labeling based LP relaxations is same as the flow-cut gap.

Integrality Gap vs Hardness of approximation: As we mentioned in the previous paragraph, labeling

based LP does not help improve the integrality gap over the flow-cut gap for DIR-MULTICUT. So, a natural

question to ask is if we can write another LP or other convex relaxation with better integrality gap? Or

can we prove that there does not exists LP relaxations with better integrality gap? Even more ambitiously,

can we prove that there does not exist algorithms with approximation ratio better than some function of

flow-cut gap?

Question 1.5. Is hardness of approximation a function of the flow-cut gap for DIR-MULTICUT?

Surprisingly, such mysterious connections between the integrality gap and the hardness of approxi-

mation is known for several problems. For example, Set Cover has a natural LP relaxation with integrality

gap at most 1+ ln n and is hard to approximate better than ln n assuming P 6= N P [38]. Max-cut has an

SDP relaxation with integrality gap at most 0.878 and is hard to approximate better than the same factor

assuming UGC [60]. Raghavendra generalized this result and showed that assuming UGC, hardness of

approximation matches the integrality gap of the canonical SDP for any Max-CSP problem [71]. Ene et

al. showed a similar result for Min-CSP and Basic LP which states that assuming UGC, for any Min-CSP

with a NAE2-predicate, hardness of approximation matches the integrality gap of the basic LP [31].

10

In this thesis we show a similar phenomenon for DIR-MULTICUT and DISTANCE-LP which proves that

assuming UGC, hardness of DIR-MULTICUT with a fixed bi-partite demand graph matches the flow-cut gap.

1.3 Results and Organization

In this section, we formally state the problems and the results proved for these problems in the

subsequent chapters.

1.3.1 Role of demand graph in MULTICUT

In Chapter 2, we investigate the role of the demand graph in the approximability of MULTICUT. It

consists of three meta results. First result (Theorem 1.1) is a 2-approximation algorithm for UNDIR-

MULTICUT for a class of demand graphs which captures both undirected multiway cut (EDGE-WT-MWC)

and UNDIR-SKEW-MULTICUT. Second result (Theorem 1.3) is an approximation algorithm for DIR-

MULTICUT which improves the approximation ratio over the worst-case bound for a large class of demand

graphs. Third result (Theorem 1.4) proves that the hardness of approximation is a function of flow-cut

gap for DIR-MULTICUT assuming UGC is true.

(i) 2-approximation for tK2-free demand graphs

We start with the UNDIR-MULTICUT problem in Chapter 2.

UNDIR-MULTICUT: The input is an undirected supply graph G = (VG , E) and an undirected demand

graph H = (VH , F), VH ⊆ VG, along with non-negative edge weights w(e), e ∈ E. The goal is to find

minimum weight set of edges E′ ⊆ E such that for each edge f = (s, t) ∈ F , there is no path from s to t

in G − E′.

Our first result is for UNDIR-MULTICUT with tK2-free demand graphs [15,77]. This class is inspired

by the observation that the UNDIR-SKEW-MULTICUT demand graph does not contain a matching with

two edges as an induced subgraph.1 A graph H is tK2-free for an integer t > 1 if it does not contain a

matching of size t as an induced subgraph.

Theorem 1.1. There is a 2-approximation algorithm with running time poly(n, kO(t)) on instances of

UNDIR-MULTICUT with supply graph G and tK2-free demand graph H. Here n= |VG| and k = |VH |.

It implies a 2-approximation for UNDIR-SKEW-MULTICUT.

UNDIR-SKEW-MULTICUT: The input is an undirected graph G = (V, E) and a set of vertices s1, . . . , sk, t1,

. . . , tk ∈ V along with non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of

edges E′ ⊂ E such that for every 1≤ i ≤ j ≤ k, there is no path from si to t j in G − E′.

1G′ is an induced subgraph of G = (V, E) if G′ = G[V ′] for some V ′ ⊂ V .

11

Since demand graph in UNDIR-SKEW-MULTICUT instances are 2K2-free, Theorem 1.1 implies a 2-

approximation for UNDIR-SKEW-MULTICUT which improves upon the previous O(log k)-approximation

achieved by bounding the flow-cut gap [19].

Corollary 1.1. UNDIR-SKEW-MULTICUT admits a polynomial-time 2-approximation algorithm.

Recall that if h = minS maxT |S ∩ T | where S is a vertex cover and T is an independent set in the

demand graph H, then UNDIR-MULTICUT admits an O(log h)-approximation algorithm achieved by

bounding flow-cut gap [47,80]. Our result implies a factor 2-approximation algorithm if h is constant

since such demand graphs are tK2-free for t = h+ 1.

Corollary 1.2. Consider UNDIR-MULTICUT with supply graph G and demand graph H such that n =

|VG|, k = |VH |. Let h =minS maxT |S ∩ T | where S is a vertex cover and T is an independent set in H. Then,

there exists a 2-approximation algorithm with running time poly(n, kO(h)).

Note that a graph containing t−1 parallel edges is tK2-free. Via known lower bounds [47], DISTANCE-

LP has integrality gap Ω(log(t − 1)) on tK2-free demand graphs. Thus, one cannot obtain a constant

approximation for tK2-free demand graphs for all fixed t using DISTANCE-LP. Our algorithm relies on a

different relaxation and a reduction to uniform metric labeling [63]. Also, as we noted earlier, assuming

UGC, UNDIR-MULTICUT is NP-hard to approximate within a constant factor [16]. Hence, assuming UGC,

it is unlikely that one can obtain a fixed constant factor approximation for UNDIR-MULTICUT with tK2-free

demand graphs in pol y(n, k, t) time. In other words, exponential dependence on t in the running time

poly(n, kO(t)) is necessary if UGC is true.

(ii) (k− 1)-approximation for k-matching extension free demand graphs

Next, we discuss the directed multiway cut (DIR-MWC) and directed multicut problem (DIR-

MULTICUT).

DIR-MWC: The input is a directed graph G = (V, E) and a set of vertices s1, . . . , sk ∈ V along with

non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of edges E′ ⊆ E such

that for any i 6= j ∈ [1, k], there is no path from si to s j in G − E′.

DIR-MULTICUT: The input is a directed supply graph G = (VG , E) and a directed demand graph

H = (VH , F), VH ⊆ VG along with non-negative edge weights w(e), e ∈ E. The goal is to find minimum

weight set of edges E′ ⊆ E such that for each edge f = (s, t) ∈ F , there is no path from s to t in G − E′.

Naor and Zosin obtained a 2-approximation for DIR-MWC in an elegant, surprising and somewhat

mysterious fashion [70]. They write an LP relaxation called the relaxed multiway flow relaxation which is

within a factor of 2 of the natural DISTANCE-LP, and show that an optimum solution to this new relaxation

can be rounded without any loss in the approximation. This gives an indirect proof that DISTANCE-LP

has an integrality gap (flow-cut gap) of at most 2 for DIR-MWC. The proof of correctness crucially relies

on the complementary slackness properties of the optimum solution and is partly inspired by the ideas

12

in [49]. Even though the result is beautiful in its own right, it is hard to generalize to DIR-MULTICUT.

The relaxed multiway flow LP is specific to DIR-MWC and does not generalize to DIR-MULTICUT.

We simplify this result and give an algorithm directly proving that the flow-cut gap for DIR-MWC is

at most 2.

Theorem 1.2. There is a randomized algorithm that given a feasible solution x to DISTANCE-LP for DIR-

MWC, returns a feasible integral solution of expected cost at most 2
∑

e we xe, and runs in O(m+ n log n)

time. The algorithm can be derandomized to yield a deterministic 2-approximation algorithm that runs in

O(m log n) time. Here, m= |E(G)|, n= |V (G)|.

This result implies that the flow-cut gap for DIR-MWC is at most 2 and there is a polynomial-time

rounding algorithm that achieves this upper bound. In Chapter 2, we prove a similar result for DIR-

MULTICUT with k-matching extension free demand graphs as well and bound the flow-cut gap by k− 1.

We say that a directed demand graph H = (VH , F) contains an induced k-matching-extension if there

are two subsets of VH , S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} satisfying the following properties:

(i) for 1 ≤ i ≤ k, (si , t i) ∈ F and (ii) for i > j, (si , t j) 6∈ F . Note that s1, s2, . . . , sk are distinct since S

is a set and similarly t1, . . . , tk are distinct but some si may be the same as a t j for i 6= j. Intuitively

speaking, k-matching extension is a graph which lies between a matching and DIR-SKEW-MULTICUT

demand pattern.

Theorem 1.3. Consider DIR-MULTICUT where the demand graph does not contain an induced k-matching-

extension. Then the flow-cut gap is at most k− 1 and there is a polynomial-time rounding algorithm that

achieves this upper bound. Thus, there exists a (k− 1)-approximation algorithm for DIR-MULTICUT where

the demand graph does not contain an induced k-matching extension.

Demand graph of DIR-MWC does not contain an induced 3-matching-extension. Hence, this result

can be seen as a generalization of 2-approximation algorithm for DIR-MWC to a larger class of demand

graphs.

(iii) Hardness vs Flow-Cut gap

Next, we investigate the complexity of DIR-MULTICUT with fixed demand graph. To be formal we

need to define H as a “pattern” since we need to specify the nodes of G to which the nodes of H are

mapped. However, we avoid further notation and assume that VH ⊂ VG . For a fixed demand graph H, we

define the problem DIR-MULTICUT-H as the special case of DIR-MULTICUT where G is arbitrary but the

demand graph is constrained to be H. We define αH to be the worst-case flow-cut gap over all instances

with demand graph H. We conjecture the following general hardness of approximation result:

Conjecture 1.2. For any fixed demand graph H and any fixed ε > 0, unless P = N P, there is no polynomial-

time (αH − ε)- approximation for DIR-MULTICUT-H.

13

In Chapter 2, we prove weaker forms of the conjecture, captured in the following two theorems:

Theorem 1.4. Assuming UGC, for any fixed directed bipartite graph H, and for any fixed ε > 0 there is no

polynomial-time (αH − ε)-approximation for DIR-MULTICUT-H.

Theorem 1.5. Assuming UGC, for any fixed directed graph H on k vertices and for any fixed ε > 0, there is

no polynomial-time (αH
2dlog ke − ε)-approximation for DIR-MULTICUT-H.

Recall the SKEW-MULTICUT problem discussed earlier with bi-partite demand graph.

DIR-SKEW-MULTICUT: The input is a directed graph G = (V, E) and a set of vertices s1, . . . , sk, t1, . . . , tk ∈
V along with non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of edges

E′ ⊂ E such that for every 1≤ i ≤ j ≤ k, there is no path from si to t j in G − E′.

Via known flow-cut gap results [74], we obtain the following corollary.

Corollary 1.3. Assuming UGC, for any fixed ε > 0 the following hold.

• For any fixed k, if H is a collection of k disjoint directed edges then DIR-MULTICUT with demand graph

H is hard to approximate within a factor of k− ε.

• For any fixed k, DIR-SKEW-MULTICUT’s approximability coincides with its flow-cut gap.

1.3.2 Linear-3-Cut

In Chapter 3, we consider a special case of DIR-MULTICUT, namely Linear-3-cut and design an

approximation algorithm which is optimal assuming UGC. It is also a special case of the DIR-SKEW-

MULTICUT problem discussed in Chapter 2.

(s, r, t)-EDGE-LIN-3-CUT: The input is a directed graph G = (V, E) with specified nodes s, r, t ∈ V along

with non-negative edge weights w(e), e ∈ E, and the goal is to find a minimum weight edge set E′ ⊆ E

such that G − E′ has no path from s to t, from s to r, and from r to t.

(s, r, t)-EDGE-LIN-3-CUT is equivalent to DIR-SKEW-MULTICUT with k = 2. To reduce (s, r, t)-EDGE-

LIN-3-CUT to DIR-SKEW-MULTICUT, set s1 = s, s2 = r, t1 = r, t2 = t. To reduce DIR-SKEW-MULTICUT to

(s, r, t)-EDGE-LIN-3-CUT, set s = s1, t = t2, add a node r and edges (t1, r), (r, s2).

Both the approximation algorithm and the hardness result for (s, r, t)-EDGE-LIN-3-CUT are proved by

showing tight bounds on the flow-cut gap.

Theorem 1.6. Flow-cut gap for (s, r, t)-EDGE-LIN-3-CUT is at most
p

2 and there is a polynomial-time

rounding algorithm that achieves this upper bound. For any constant δ > 0, there exists a (s, r, t)-EDGE-

LIN-3-CUT instance with flow-cut gap at least
p

2−δ.

Equivalence of (s, r, t)-EDGE-LIN-3-CUT and DIR-SKEW-MULTICUT with k = 2 and Theorem 1.4 implies

the following corollary:

14

Corollary 1.4. There is a polynomial-time
p

2-approximation for (s, r, t)-EDGE-LIN-3-CUT. Assuming UGC,

(s, r, t)-EDGE-LIN-3-CUT has no polynomial-time (
p

2− ε)-approximation algorithm for any constant ε > 0.

One of the motivations to consider (s, r, t)-EDGE-LIN-3-CUT arose from a closely related problem,

abbreviated r-INOUT-NODE-BLOCKER. An out-r-arborescence (similarly, an in-r-arborescence) in a directed

graph is a minimal subset of edges such that every node has a unique path from r (to r) in the subgraph

induced by the edges. The smallest number of edges/nodes whose removal ensures that the graph

has no arborescence holds the key to understanding reliability in networks. Computing this number is

also a special case of the interdiction problem of covering bases of two matroids [11]. We recall that

the problem of finding a minimum weight subset of edges or nodes whose deletion ensures that the

remaining graph has no out-r-arborescence for a specified node r can be solved efficiently (by reducing

to min u → v cut in directed graphs). We are interested in the case where remaining graph has no

out-r-arborescence and no in-r-arborescence.

r-INOUT-NODE-BLOCKER: The input is a directed graph G = (V, E) with a specified terminal node r ∈ V

along with non-negative node weights w(v), v ∈ V , and the goal is to find a minimum weight node set

V ′ ⊆ V such that G − V ′ has no out-r-arborescence and no in-r-arborescence.

We show an approximation-preserving equivalence between r-INOUT-NODE-BLOCKER and (s, r, t)-

EDGE-LIN-3-CUT which in turn, resolves the approximability of r-INOUT-NODE-BLOCKER.

Theorem 1.7. There is a polynomial-time
p

2-approximation for r-INOUT-NODE-BLOCKER. Assuming UGC,

r-INOUT-NODE-BLOCKER has no polynomial-time (
p

2− ε)-approximation for any constant ε > 0.

Another motivation to consider (s, r, t)-EDGE-LIN-3-CUT arose from its connection to a global bi-cut

problem, namely {s,∗}-EDGE-BICUT.

{s,∗}-EDGE-BICUT: The input is an edge-weighted directed graph with a specified node s, and the goal

is to find a smallest weight subset of edges whose deletion ensures that the resulting graph has a node t

such that s cannot reach t and t cannot reach s.

It is known that {s,∗}-EDGE-BICUT is NP-hard, admits an efficient 2-approximation algorithm, and

does not admit an efficient (4/3 − ε)-approximation for any constant ε > 0 assuming UGC [9]. In

Chapter 3, we show a reduction from (s, r, t)-EDGE-LIN-3-CUT to {s,∗}-EDGE-BICUT, thus improving the

hardness known for {s,∗}-EDGE-BICUT.

Theorem 1.8. Assuming UGC, {s,∗}-EDGE-BICUT has no polynomial-time (
p

2−ε)-approximation for any

constant ε > 0.

1.3.3 Multiway Cut

As we mentioned earlier, we consider the directed multiway cut problem in Chapter 2 and show a

polynomial time 2-approximation algorithm. In Chapter 4, we consider the undirected variant of the

15

problem and a special case of the directed problem and improve integrality gap bounds of various LPs

associated with these problems.

From the result of Zosin et al. [70] and Theorem 1.2, we know that the flow-cut gap for directed

multiway cut (DIR-MWC) is 2. Hence, DIR-MWC admits a 2-approximation algorithm and does not

admit a (2− ε)-approximation algorithm for any ε > 0 assuming UGC [61]. However, these results do

not provide tight approximation ratio for DIR-MWC with fixed k (number of terminals), in particular for

k = 2.

{s, t}-EDGE-BICUT: The input is a directed graph G = (V, E) and two vertices s, t ∈ V along with

non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of edges E′ ⊆ E such

that there is no path from s to t and no path from t to s in G − E′.

In Chapter 4, we show that the flow-cut gap is 2 even for {s, t}-EDGE-BICUT.

Theorem 1.9. Flow-cut gap for {s, t}-EDGE-BICUT is 2 even in directed planar graphs.

Corollary 1.5. Assuming UGC, {s, t}-EDGE-BICUT has no polynomial-time (2−ε)-approximation algorithm

for any constant ε > 0.

Next, we consider the undirected edge-weighted multiway cut (EDGE-WT-MWC).

EDGE-WT-MWC: The input is an undirected graph G = (V, E) and a set of terminals s1, . . . , sk ∈ V along

with non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of edges E′ ⊆ E

such that for i 6= j ∈ [1, k], there is no path from si to s j in G − E′.

Manokaran et al. [68] showed that the integrality gap of CKR relaxation gives a matching hardness

of approximation bound for EDGE-WT-MWC assuming UGC. Călinescu, Karloff and Rabani introduced the

relaxation and designed a rounding scheme which led to a (3/2− 1/k)-approximation [15]. For k=3,

Karger et al. [56] and Cunningham et al. [25] designed an alternative rounding scheme that led to a

12/11-approximation factor and also exhibited a matching integrality gap instance. After the results by

Karger et al. and Cunningham et al., a rich variety of rounding techniques were developed to improve

the approximation factor for k ≥ 4 [12,13,77]. The current best approximation factor for EDGE-WT-MWC

is 1.2965 due to Sharma and Vondrák [77].

From the result of Karger et al. and Cunningham et al., we know that the 12/11-factor integrality gap

is tight for EDGE-WT-MWC with k=3. Freund and Karloff [44] constructed a class of instances showing

a lower bound of 8/(7+ (1/(k − 1))) on the integrality gap. Last year, Angelidakis, Makarychev and

Manurangsi [3] gave a remarkably simple construction showing an integrality gap of 6/5. A technical

challenge in improving the gap has been the lack of geometric tools to understand higher-dimensional

simplices. In Chapter 4, we address this challenge by constructing a non-trivial 3-dimensional instance

and improving the gap.

Theorem 1.10. For every constant δ > 0, there exists an instance of EDGE-WT-MWC such that the integrality

gap of the CKR relaxation for that instance is at least 1.20016−δ.

16

We analyze the gap of the instance by viewing it as a convex combination of 2-dimensional instances

and a uniform 3-dimensional instance. We believe that this technique could be exploited further to

construct instances with larger integrality gap. One of the byproducts from our proof technique is a

generalization of a result on Sperner admissible labelings due to Mirzakhani and Vondrák [69] that might

be of independent combinatorial interest. The above result in conjunction with the result of Manokaran

et al. immediately implies the following corollary:

Corollary 1.6. Assuming UGC, EDGE-WT-MWC has no polynomial-time (1.20016 − ε)-approximation

algorithm for any constant ε > 0.

1.3.4 LP formulations for Subset Feedback Set

In Chapter 5, we consider the subset feedback set problems.

SUBSET-FVS : Input is an undirected graph G = (V, E) along with non-negative node weights w(v), v ∈ V ,

and a set S = {s1, . . . , sk} ⊂ V of terminals. A cycle is interesting if it contains a terminal. The goal is to

find a minimum weight set of nodes V ′ ⊂ V that intersect all interesting cycles.

SUBSET-FES : Input is an undirected graph G = (V, E) along with a non-negative edge weights w(e), e ∈ E,

and a set S = {s1, . . . , sk} ⊂ V of terminals. A cycle is interesting if it contains a terminal. The goal is to

find a minimum weight set of edges E′ ⊂ E that intersect all interesting cycles.

As we discussed earlier in Section 1.2.2, constant factor approximation algorithms known for SUBSET-

FES and SUBSET-FVS are largely combinatorial and the optimal algorithms known for related problems

are based on LP formulations. And, this explains why one needs LP-type techniques for SUBSET-FES and

SUBSET-FVS. In Chapter 5, we provide such LP relaxations for SUBSET-FES and SUBSET-FVS with constant

integrality gap.

Theorem 1.11. There are polynomial-sized integer programming formulations for SUBSET-FES and SUBSET-

FVS whose linear programming relaxations have an integrality gap of at most 13.

The approximation bound of 13 that we are able to establish is weaker than the existing approximation

ratios for the problems. However, we do not know of an integrality gap worse than the hardness bounds

1.20016 and 2 known for SUBSET-FES and SUBSET-FVS respectfully. We believe that related formulations

and ideas would lead to improved algorithms for SUBSET-FES and SUBSET-FVS.

1.4 Credits

Most of the results mentioned in this thesis have appeared in different published works.

• The 2-approximation algorithm for DIR-MWC in Section 2.3.1 and the flow-cut gap bound of 2 for

{s, t}-EDGE-BICUT in Section 4.2 are based on a joint work with Chandra Chekuri [23].

17

• The 2-approximation algorithm for UNDIR-MULTICUT with tK2-free demand graphs in Section 2.2,

(k−1)-approximation algorithm for DIR-MULTICUT with k-matching-extension free demand graphs

in Section 2.3.2, and the hardness results for DIR-MULTICUT in Section 2.4 are based on a joint

work with Chandra Chekuri [24].

• Optimal algorithms for (s, r, t)-EDGE-LIN-3-CUT and related problems in Chapter 3 are based on a

joint work with Kristóf Bérczi, Karthekeyan Chandrasekaran, and Tamás Király [10].

• Improvement in the integrality gap of CKR relaxation for EDGE-WT-MWC in Section 4.1 is based

on a joint work with Kristóf Bérczi, Karthekeyan Chandrasekaran, and Tamás Király and is under

submission.

• LP-based constant factor approximation algorithm for feedback set problems in Chapter 5 is based

on a joint work with Chandra Chekuri [22].

18

Chapter 2

Influence of the demand graph on the ap-

proximability of Multicut

The minimum MULTICUT problem is a generalization of the classical s-t cut problem to multiple

pairs. The input to the MULTICUT problem is an edge-weighted graph G = (V, E) and k source-sink pairs

(s1, t1), (s2, t2), . . . , (sk, tk). The goal is to find a minimum weight subset of edges E′ ⊆ E such that all

the given pairs are disconnected in G − E′; that is, for 1≤ i ≤ k, there is no path from si to t i in G − E′.

In this chapter we consider an equivalent formulation that exposes, more directly, the structure that the

source-sink pairs may have.

UNDIR-MULTICUT: The input is an undirected supply graph G = (VG , E) and an undirected demand

graph H = (VH , F), VH ⊆ VG along with non-negative edge weights w(e), e ∈ E. The goal is to find

minimum weight set of edges E′ ⊆ E such that for each edge f = (s, t) ∈ F , there is no path from s to t

in G − E′.

DIR-MULTICUT: The input is a directed supply graph G = (VG , E) and a directed demand graph

H = (VH , F), VH ⊆ VG along with non-negative edge weights w(e), e ∈ E. The goal is to find minimum

weight set of edges E′ ⊆ E such that for each edge f = (s, t) ∈ F , there is no path from s to t in G − E′.

UNDIR-MULTICUT and DIR-MULTICUT are NP-Hard even in very restricted settings. For instance,

UNDIR-MULTICUT is NP-Hard even when H has 3 edges and it generalizes VERTEX COVER even when G is

a tree. DIR-MULTICUT is NP-Hard and APX-Hard even in the special case when H is a cycle of length

2 which is better understood as removing a minimum weight set of edges to disconnect s from t and

t from s in a directed graph. We use k to denote the number of edges in the demand graph H. For

UNDIR-MULTICUT there is an O(log k)-approximation [47] which improves to an O(r)-approximation

if the supply graph G excludes Kr as a minor [1, 37, 62] (in particular this yields a constant factor

approximation in planar graphs). In terms of inapproximability, UNDIR-MULTICUT is at least as hard

as VERTEX COVER even in trees and hence APX-Hard. Under the Unique Game Conjecture (UGC) it is

known to be super-constant hard [16]. DIR-MULTICUT is known to be a harder problem. Assuming

N P 6= Z PP it is hard to approximate DIR-MULTICUT to within a factor of Ω(2log1−ε n) [27]; evidence is

also presented in [27] that it could be hard to approximate to within an Ω(nδ) factor for some fixed δ > 0.

The best-known approximation is min{k, Õ(n11/23)} [2]; here n= |V |. Note that a k-approximation is

trivial.

We note that all the preceding positive results for MULTICUT are based on bounding the integrality

gap of a natural LP relaxation shown in Figure 2.1. This is the standard cut formulation with a variable

19

min
∑

e∈E

we xe

∑

e∈p

xe ≥ 1 p ∈ Pst , st ∈ F

xe ≥ 0 e ∈ E

min
∑

e∈E

we xe

d(s, t) ≥ 1 st ∈ F
d(u, v) + d(v, w)− d(u, w) ≥ 0 u, v, w ∈ V
d(u, v)− xe = 0 e = uv ∈ E
d(u, v) ≥ 0 u, v ∈ V

Figure 2.1: DISTANCE-LP for Multicut written using exponential number of constraints (top) and in a
compact fashion using additional variables (bottom)

Triangle Cast

Given G=(V,E) terminals s1, s2, …, sk and t1, t2, …, tk

communication pattern is si to tj for all j ≥ i

s1 t1

s2

s3

s4

t2

t3

t4

Figure 2.2: Demand graph for SKEW-MULTICUT

xe for each edge e and an exponential set of constraints; the constraints specify that for each demand

edge st ∈ F the length of any path p from s to t is at least 1. One can solve this LP in polynomial-time

using the Ellipsoid method. One can also write a compact polynomial-sized formulation using distance

variables and it is shown in the same figure. The dual is a maximum multicommodity flow LP. We

henceforth refer to the integrality gap of this LP as the flow-cut gap and the LP as DISTANCE-LP. Most

multicut approximation algorithms are based on bounding the flow-cut gap.

Restricted demand graphs: Our preceding discussion has focused on the approximability of MULTICUT

when H is arbitrary, with some improved results when G is restricted. Next, we mention results in the

setting where H is restricted and G is arbitrary. A well-known such problem is the multiway cut problem

(MULTIWAY CUT). Undirected edge-weighted multiway cut (EDGE-WT-MWC) admits a 1.29 approximation

[77] and directed edge-weighted multiway cut (DIR-MWC) admits a 2-approximation [23, 70]. In a

recent work [19], motivated by connections to the problem of understanding the information capacity

of networks with delay constraints, the following special case of MULTICUT, called SKEW-MULTICUT was

considered. The demand graph H is a bipartite graph with k terminals s1, . . . , sk on one side and k

terminals t1, . . . , tk on the other side: (si , t j) is an edge in H iff i ≤ j. See Figure 2.2 for an example

20

with k = 4. If the edges are directed from s’s to the t ’s we obtain the directed version. It was established

that the flow-cut gap for DIR-SKEW-MULTICUT is O(log k) [19] which is in contrast to the general setting

where the gap can be as large as k. One can show APX-hardness and a constant factor lower bound on

the flow-cut gap for UNDIR-SKEW-MULTICUT (and hence also for DIR-SKEW-MULTICUT) via a reduction

from EDGE-WT-MWC problem.

Some other work has also examined the role that the demand graph plays in MULTICUT. Two examples

are the original paper of Garg, Vazirani and Yannakakis [47] who showed that one can obtain an O(log h)-

approximation for UNDIR-MULTICUT where h is the vertex cover size of the demand graph. This was

generalized by Steurer and Vishnoi [80] who showed that h can be chosen to be minS maxT |S∩T | where

S is a vertex cover in H and T is an independent set in H. Note that both these results are based on the

flow-cut gap and yield only an O(log k) upper bound for UNDIR-SKEW-MULTICUT.

Algorithmic results

UNDIR-MULTICUT: We obtain a 2-approximation for a class of demand graphs. A graph is said to be

tK2-free for an integer t > 1 if it does not contain a matching of size t as an induced subgraph.

Theorem 2.1. There is a 2-approximation algorithm with running time poly(n, kO(t)) on instances of

UNDIR-MULTICUT with supply graph G and tK2-free demand graph H. Here n= |VG| and k = |VH |.

Since demand graph in UNDIR-SKEW-MULTICUT instances are 2K2-free we obtain the following

corollary.

Corollary 2.1. UNDIR-SKEW-MULTICUT admits a polynomial-time 2-approximation.

Also, if h =minS maxT |S ∩ T | where S is a vertex cover and T is an independent set in H, then H is

tK2-free for t = h+ 1. So, we obtain the following corollary:

Corollary 2.2. Consider UNDIR-MULTICUT with supply graph G and demand graph H such that n =

|VG|, k = |VH |. Let h =minS maxT |S ∩ T | where S is a vertex cover and T is an independent set in H. Then,

there exists a 2-approximation algorithm with running time poly(n, kO(h)).

DIR-MULTICUT: Our first result simplifies the 2-approximation algorithm for DIR-MWC by Naor and

Zosin [70]

Theorem 2.2. There is a randomized algorithm that given a feasible solution x to DISTANCE-LP for DIR-

MWC, returns a feasible integral solution of expected cost at most 2
∑

e we xe, and runs in O(m+ n log n)

time. The algorithm can be derandomized to yield a deterministic 2-approximation algorithm that runs in

O(m log n) time. Here, m= |E(G)|, n= |V (G)|.

Our second result bounds the flow-cut gap of DIR-MULTICUT with k-matching extension free demand

graphs. We say that a directed demand graph H = (V, F) contains an induced k-matching-extension if

21

there are two subsets of V , S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} satisfying the following properties:

(i) for 1 ≤ i ≤ k, (si , t i) ∈ F and (ii) for i > j, (si , t j) 6∈ F . Note that s1, s2, . . . , sk are distinct since S

is a set and similarly t1, . . . , tk are distinct but some si may be the same as a t j for i 6= j. Intuitively

speaking, k-matching extension is a graph which lies between a matching and DIR-SKEW-MULTICUT

demand pattern.

Theorem 2.3. Consider DIR-MULTICUT where the demand graph does not contain an induced k-matching-

extension. Then the flow-cut gap is at most k− 1 and there is a polynomial-time rounding algorithm that

achieves this upper bound.

Demand graph of DIR-MWC (complete bi-directed graph) does not contain an induced 3-matching-

extension. Hence, 2-approximation for DIR-MWC can be seen as a special case of this result.

Hardness results

DIR-MULTICUT: In Section 2.4, we investigate the hardness for a fixed demand graph. To be formal we

need to define H as a “pattern” since we need to specify the nodes of G to which the nodes of H are

mapped. However, we avoid further notation and assume that VH ⊂ VG . For a fixed demand graph H, we

define the problem DIR-MULTICUT-H as the special case of DIR-MULTICUT where G is arbitrary but the

demand graph is constrained to be H. We define αH to be the worst-case flow-cut gap over all instances

with demand graph H. We conjecture the following general hardness of approximation result.

Conjecture 2.1. For any fixed demand graph H and any fixed ε > 0, unless P = N P, there is no polynomial-

time (αH − ε)- approximation for DIR-MULTICUT-H.

In this thesis we prove weaker forms of the conjecture, captured in the following two theorems:

Theorem 2.4. Assuming UGC, for any fixed directed bipartite graph H, and for any fixed ε > 0 there is no

polynomial-time (αH − ε) approximation for DIR-MULTICUT-H.

Theorem 2.5. Assuming UGC, for any fixed directed graph H on k vertices and for any fixed ε > 0, there is

no polynomial-time αH
2dlog ke − ε approximation for DIR-MULTICUT-H.

Via known flow-cut gap results [74] and some standard reductions we obtain the following corollary.

Corollary 2.3. Assuming UGC, for any fixed ε > 0 the following hold.

• For any fixed k, if H is a collection of k disjoint directed edges then DIR-MULTICUT-H is hard to

approximate within a factor of k− ε.

• For any fixed k, DIR-SKEW-MULTICUT’s approximability coincides with its flow-cut gap.

We will further see the use of Theorem 2.11 in Chapters 3 and 4 to derive other hardness results.

22

Organization: Section 2.2 describes the factor 2-approximation for UNDIR-MULTICUT with tK2-free

demand graph. Section 2.3 describes the 2-approximation for DIR-MWC and (k− 1) approximation for

DIR-MULTICUT-H when H does not contain an induced k-matching extension. Section 2.4 describes the

hardness of approximation results for DIR-MULTICUT-H.

2.1 Label LP

At a high-level, proof of Theorems 2.6, 2.11 and 2.5 are based on a labeling viewpoint for MULTICUT.

Consider the supply graph G = (VG , E), demand graph H = (VH , F) and the optimum solution X ⊂ E. Let

VH = {s1, . . . , s`}. We label the vertices of VG by a label in {0,1}` based on its reachability from si ’s in

G − X . For u ∈ VG ,σ ∈ {0,1}`, let x(u,σ) be a variable which is 1 if u is labeled σ and zero otherwise.

Using these variables, we write the following constraints in a linear fashion: (i) If (si , s j) ∈ F , then s j is

not reachable from si in G − X (ii) For (u, v) ∈ E, i ∈ [1, k], if u is reachable by si and v is not reachable

by si in G − X , then (u, v) ∈ X . Relaxing the variables to be real valued and adding some non-negativity

constraints gives us label-lp for MULTICUT.

For undirected graphs we show that this yields Theorem 2.6. Number of labels can be reduced to

pol y(kt) for tK2-free demand graphs where k = |VH |. This turns out to be very similar to the earthmover

LP for uniform metric labeling [21]. Hence, we present a 2-approximation via a simple reduction to

uniform metric labeling and using rounding scheme by Kleinberg and Tardos to round the solution of

the earthmover LP [63]. In directed graphs we show that a labeling based LP is no more powerful than

DISTANCE-LP which is stark contrast to the undirected graph setting. The labeling LP allows us to relate

the hardness of DIR-MULTICUT-H to the hardness of a min constraint satisfaction problems (Min CSPs)

via a standard labeling LP for CSPs called BASIC-LP. We crucially rely on a general hardness result for

MIN-β-CSP due to Ene, Vondrak and Wu [31] that generalized prior work of Manokaran et al. [68].

2.2 Approximation algorithms for UNDIR-MULTICUT

In this section we obtain a 2-approximation for tK2-free demand graphs and prove Theorem 2.6

which is restated below.

Theorem 2.6. There is a 2-approximation algorithm with running time poly(n, kO(t)) on instances of

UNDIR-MULTICUT with supply graph G and tK2-free demand graph H. Here n= |VG| and k = |VH |.

Before we prove the theorem, we consider the UNDIR-MULTICUT problem where the demand graph

has k vertices. Given supply graph G = (V, E) let S = {s1, . . . , sk} ⊂ V be the terminals participating in

the demand edges specified by H. A feasible solution E′ ⊂ EG of the UNDIR-MULTICUT instance will

induce a partition over S such that if sis j is an edge in the demand graph H, then si and s j belong to

different components in G − E′. Note that two terminals that are not connected by a demand edge may

23

be in the same connected component of G − E′. If k is a fixed constant we can “guess” the partition of

the terminals induced by an optimum solution. With the guess in place it is easy to see that the problem

reduces to an instance of EDGE-WT-MWC which admits a constant factor approximation. Thus, one

can obtain a constant factor approximation for UNDIR-MULTICUT in 2O(k log k)poly(n) time by trying all

possible partitions of the terminals.

To prove Theorem 2.6, we use this idea of enumerating feasible partitions. However, H is not

necessarily of fixed size, and enumerating all possible partitions of the terminals is not feasible. Instead,

we make use of the following theorem which bounds the number of maximal independent sets in a

tK2-free graph.

Theorem 2.7. (Balas and Yu [6]) Any s-vertex tK2-free graph has at most sO(t) maximal independent sets

and these can be found in sO(t) time.

We prove Theorem 2.6 by using the preceding theorem and reducing the UNDIR-MULTICUT problem

to the UNIFORM-METRICLABELING problem. We now describe the general METRICLABELING problem.

METRICLABELING: The input consists of an undirected edge-weighted graph G = (V, E), a set of labels

L = {1, . . . , h} and a metric d(i, j), i, j ∈ L defined over the labels. In addition, for each vertex u ∈ V

and label i ∈ L there is a non-negative assignment cost c(u, i). Given an assignment f : V → L of

vertices to labels we define its cost as
∑

u∈V c(u, f (u)) +
∑

uv∈E w(uv)d(f (u), f (v)). The goal is to find

an assignment of minimum cost. The special case when the metric is uniform, that is d(i, j) = 1 for i 6= j,

is referred to as UNIFORM-METRICLABELING.

Theorem 2.8. (Kleinberg and Tardos [63]) There is a 2-approximation algorithm for UNIFORM-METRIC-

LABELING.

The algorithm for UNIFORM-METRICLABELING in [63] is based on an interactive rounding scheme for

a solution to the earthmover LP relaxation of the problem.

Proof: [Theorem 2.6] Let the demand graph H of the UNDIR-MULTICUT instance be tK2-free. Using

Theorem 2.7, we can find all maximal independent sets in H. Let these independent sets be I1, . . . , Ir

where r ≤ |VH |O(t). Note that the independent sets are considered only in the demand graph. Note that

instance also need to specify the mapping of vertices of H to vertices of G. However, for ease of notation

we will simply assume that VH ⊂ VG .

Consider the following instance of UNIFORM-METRICLABELING: The supply graph G = (V, E) of the

UNDIR-MULTICUT instance is the input graph to the UNIFORM-METRICLABELING instance. The label set

L = {1,2, . . . , r}, one for each maximal independent set in H. For each u ∈ VH let c(u, i) = 0 if u ∈ Ii

and c(u, i) =∞ otherwise. And for each u ∈ V \ VH , c(u, i) = 0 for all i.

We claim that the preceding reduction is approximation preserving. Assuming the claim, we can

obtain the desired 2-approximation by solving the UNIFORM-METRICLABELING instance using Theorem 2.8.

24

The size of the UNIFORM-METRICLABELING instance that is generated from the given UNDIR-MULTICUT

instance is poly(n, |VH |O(t)) which explains the running time. We now prove the claim.

Let f : V → L be an assignment of labels to the nodes whose cost is finite (such an assignment

always exists since each terminal is in some independent set). Let E′ ⊂ E be the set of edges “cut” by

this assignment; that is, uv ∈ E′ iff f (u) 6= f (v). The cost of this assignment is equal to the weight

of E′ since the metric is uniform, and the labeling costs are 0 or ∞. We argue that E′ is a feasible

solution for the UNDIR-MULTICUT instance. Suppose not. Then there are terminals u, v such that uv is an

edge in the demand graph H and u, v belong to the same connected component of G − E′. The label

j = f (u) corresponds to a maximal independent set I j in H which means that v 6∈ I j. Thus f (v) 6= j

since c(v, j) =∞. Therefore, u and v are assigned different labels and cannot be in the same connected

component.

Conversely, let E′ ⊂ E be a feasible solution for UNDIR-MULTICUT instance and let V1, . . . , V` be vertex

sets of the connected components of G − E′. Let T j be the terminals in Vj . Since, all pairs of terminals

connected by an edge in H are separated in G − E′, T j must be an independent set in H. For each T j,

consider a maximal independent set in H containing all the vertices of T j; pick arbitrary one if more

than one exists. Let this independent set be Ii j
. We construct a labeling f by labeling all vertices of Vj by

label i j. It is easy to see that all terminals are assigned a label corresponding to an independent set in

H containing that terminal. Hence, labeling cost is equal to zero. Also, all vertices corresponding to

same connected component in G − E′ are assigned the same label. Hence, cost of the edges cut by the

assignment f is at most the cost of the edges in E′.

2.3 Approximation algorithms for DIR-MULTICUT

2.3.1 2-approximation for DIR-MWC

Consider the DISTANCE-LP for DIR-MWC as shown in figure 4.1 and denoted as DIR-MWC-REL. The

main result of the section is the following theorem.

Theorem 2.9. There is a randomized algorithm that given a feasible solution x to DIR-MWC-REL returns a

feasible integral solution of expected cost at most 2
∑

e we xe, and runs in O(m+n log n) time. The algorithm

can be derandomized to yield a deterministic 2-approximation algorithm that runs in O(m log n) time. Here,

m= |E(G)|, n= |V (G)|.

We describe the simple randomized ball-cutting algorithm that achieves the properties claimed by the

theorem. Let x be a feasible solution to DIR-MWC-REL. For any two nodes u, v ∈ V we define dx(u, v)

be the shortest path length from u to v using edge lengths given by x. For notational simplicity we omit

the subscript x since there is little chance of confusion. The algorithm adds new nodes t1, t2, . . . , tk and

adds the edge set {(t i , s j) | i 6= j} and sets the x value of each of these new edges to 0. Note that, this is

in effect a reduction of the DIR-MWC for the given instance to a DIR-MULTICUT instance which requires

25

DIR-MWC-REL

min
∑

e∈E

we xe

∑

e∈p

xe ≥ 1 p ∈ Pi j , i 6= j

xe ≥ 0 e ∈ E

Figure 2.3: LP Relaxation for DIR-MWC

us to separate the pairs (t i , si), 1 ≤ i ≤ k. The solution x augmented with the extra nodes and edges

leads to a feasible fractional solution for this DIR-MULTICUT instance. Our algorithm, formally described

below, is very simple. We pick a random θ ∈ (0,1) and take the union of the cuts defined by balls of

radius θ around each t i. More formally let B(v, r) be the set of all nodes at distance at most r from

v. Then the algorithm simply outputs
⋃k

i=1δ
+(B(t i ,θ)) where δ+(A) denote the set of outgoing edges

from A.

s1

s2 s3

t3 t2

t1

0 0

00

0 0

Figure 2.4: Addition of dummy vertices and edges

Algorithm 2.1 Rounding for DIR-MWC

1: Given a feasible solution x to DIR-MWC-REL

2: Add new vertices t1, . . . , tk, edges (t i , s j) for all i 6= j and set x(t i , s j) = 0
3: Pick θ ∈ (0,1) uniformly at random
4: C = ∪k

i=1δ
+(B(t i ,θ))

5: Return C

Note that C is a random set of edges that depends on the choice of θ . We denote by C(θ) the set of

edges output by the algorithm for a given θ .

Lemma 2.1. If x is a feasible fractional solution to DIR-MWC-REL, C(θ) is a feasible multiway cut for

{s1, . . . , sk} for any θ ∈ (0,1). Thus, Algorithm 2.1 always returns a feasible integral solution given a

feasible x.

Proof: Fix any i ∈ {1, . . . , k} and θ ∈ (0,1). Since d(t i , s j) = 0 for all j 6= i, we have that s j ∈ B(t i ,θ)

for all j 6= i. Moreover, by feasibility of x, we have d(t i , si) ≥ 1 for otherwise there will be a path of

26

length less than 1 from some s j to si where j 6= i. Therefore si 6∈ B(t i ,θ) because θ < 1. Therefore,

G − δ+(B(t i ,θ)) has no path from s j to si for any j 6= i. Since C(θ) =
⋃

i δ
+(B(t i ,θ)), it follows that

there is no path in G − C(θ) from s j to si for any j 6= i.

We now bound the probability that any fixed edge e is cut by the algorithm, that is, Pr[e ∈ C]. Note

that e may be simultaneously cut by several t i for the same value of θ but we are only interested in the

probability that it is included in C .

Lemma 2.2. For any edge e ∈ E, Pr[e ∈ C]≤ 2xe.

Proof: Let e = (u, v). Rename the terminals such that d(s1, u) ≤ d(s2, u) ≤ · · · ≤ d(sk, u). This implies

that

d(t1, u) = d(s2, u) (2.1)

and

d(t2, u) = d(t3, u) = . . .= d(tk, u) = d(s1, u). (2.2)

Edge e ∈ δ+(B(t i ,θ)) if and only if θ ∈ [d(t i , u), d(t i , v)); we have that d(t i , v) ≤ d(t i , u) + xe.

Defining the interval Ii as [d(t i , u), d(t i , u) + xe), we see that e ∈ δ+(B(t i ,θ)) only if θ ∈ Ii. However,

from the property that d(t2, u) = d(t3, u) . . .= d(tk, u), I2 = I3 = . . .= Ik. Thus, e ∈ C only if θ ∈ I1 or

θ ∈ I2 and since |I1| and |I2| are both at most xe long and θ is chosen uniformly at random from (0, 1),

Pr[e ∈ C]≤ Pr[θ ∈ I1] + Pr[θ ∈ I2]≤ 2xe. (2.3)

Corollary 2.4. E[C], the expected cost of C, is at most 2
∑

e we xe.

Running time analysis and derandomization: A natural implementation of Algorithm 2.1 would first

choose θ and then compute δ+(B(t i ,θ)) for each i. This can be easily accomplished via k executions of

Dijkstra’s single-source shortest path algorithm, one for each t i, leading to a running time of O(k(m+

n log n)) where m= |E| and n= |V |. However, by taking advantage of our analysis in Lemma 2.2, we

can obtain a run time that is equivalent to a single execution of Dijkstra’s algorithm.

Consider a slight variation of Algorithm 2.1. For each edge e = (u, v), define two intervals I1(e) =

[d(s1, u), d(s1, u)+ xe) and I2(e) = [d(s2, u), d(s2, u)+ xe), where s1, s2 are the two terminals from which

u is the closest in terms of distance. We pick θ ∈ (0,1) uniformly at random and include e in C iff

θ ∈ I1(e) or θ ∈ I2(e). The analysis in Lemmas 2.1 and 2.2 shows that even this modified algorithm

outputs a feasible cut whose expected cost is at most 2
∑

e we xe. Note that the edges cut by this modified

algorithm may be a strict superset of the edges cut by Algorithm 2.1. The advantage of the modified

27

algorithm is that we only need to calculate I1(e) and I2(e) for each edge e ∈ E. To do this, for each node

u, we need to find the two terminals from which u is the closest and their corresponding distances. More

formally, consider the following h-nearest-terminal problem.

Pr Given a directed graph G = (V, E) with non-negative edge-lengths, a set S ⊆ V (G) of k terminals,

and an integer h ≤ k, for each vertex v, find the h terminals from which v is the closest among the

terminals and their corresponding distances. In other words for each v find the h smallest values in

d(s1, v), d(s2, v), . . . , d(sk, v) where S = {s1, . . . , sk}.

The above problem can be solved via a randomized algorithm using hashing that runs in expected

time O(h(m+ n log n)), which corresponds to h executions of Dijkstra’s algorithm. It can also be solved

in O(hm log h+ hn log n) time via a deterministic algorithm. See [54] who refers to this as the h-nearest-

neighbors problem.

Using the algorithm for the h-nearest-terminal problem with h= 2, we can calculate I1(e) and I2(e)

for each e ∈ E in O(m+ n log n) time1. We then choose θ uniformly at random from (0, 1) and cut e if θ

lies in one of the range I1(e) or I2(e). This gives us a 2-approximate randomized algorithm with running

time O(m+ n log n).

We can derandomize the algorithm by computing the cheapest cut among all θ ∈ (0,1) as follows.

Once I1(e) and I2(e) are computed for each e we sort the 4m end points of these 2m intervals; let them

be θ1 ≤ θ2 ≤ . . .≤ θ4m. We observe that it suffices to evaluate the cut value at each of these values of θ .

A simple scan of these 4m points while updating the cut-value at each end point can be accomplished in

O(m) time. Sorting the end points takes O(m log n) time. This leads to a deterministic 2-approximation

algorithm with running time O(m log n).

Remark 2.1. We can also write an equivalent version of algorithm 2.1 which does not require the addition

of new vertices t1, . . . , tk. This viewpoint is also useful in generalizing the 2-approximation for DIR-MWC to

DIR-MULTICUT with k-matching extension free demand graphs.

Algorithm 2.2 Equivalent rounding scheme for DIR-MWC
1: Given a feasible solution x to DIR-MWC-REL.
2: For all u, v ∈ V , d(u, v)= shortest path length from u to v according to lengths xe
3: For all u ∈ V, i ∈ [1, k], d1(u, si) =max(0,1−min j∈[1,k]\{i} d(s j , u))
4: Pick θ ∈ (0,1) uniformly at random
5: Bsi

= {u ∈ V | d1(u, si)≤ θ}
6: E′ = ∪i∈[1,k]δ

−(Bsi
)

7: Return E′

1One can easily derive the h= 2 case from first principles also.

28

2.3.2 (k− 1)-approximation for k-matching extension free demand graphs

In this section, we prove Theorem 2.10 which improves the approximation ratio for DIR-MULTICUT

with restricted class of demand graphs. Recall that a directed demand graph H = (V, F) contains

an induced k-matching extension if there are two subsets of V , S = {s1, . . . , sk} and T = {t1, . . . , tk}
satisfying the following properties: (i) for 1≤ i ≤ k, (si , t i) ∈ F and (ii) for i > j, (si , t j) 6∈ F .

Theorem 2.10. Consider DIR-MULTICUT where the demand graph does not contain an induced k-matching-

extension. Then the flow-cut gap is at most k− 1 and there is a polynomial-time rounding algorithm that

achieves this upper bound.

Let G = (V, E) and H = (V, F) be the supply and demand graph for a DIR-MULTICUT instance. We

provide a generic randomized rounding algorithm that given a fractional solution x to LP 2.1 for an

instance (G, H) of DIR-MULTICUT returns a feasible solution; the rounding does not depend on H. We

can prove that the returned solution is a (k− 1)-approximation with respect to the fractional solution

x or show that H contains an induced k-matching extension. This algorithm is inspired by our recent

rounding scheme for DIR-MWC [23].

Let x be a feasible solution to LP 2.1. For u, v ∈ V , define d(u, v) to be the shortest path length in G

from vertex u to vertex v using lengths xe. We also define another parameter d1(u, v) for each pair of

vertices u, v ∈ V . d1(u, v) is the minimum non-negative number such that if we add an edge uv in G

with xuv = d1(u, v) then u is still separated from all the vertices it has to be separated from. Formally, for

u, v ∈ V , d1(u, v) :=max(0,1−minv′∈V,(u,v′)∈F d(v, v′)). If for some vertex u, there is no demand edge

leaving u in F then we define d1(u, v) = 0 for all v ∈ V . The following properties of d1 are easy to verify.

Lemma 2.3. d1(u, v) satisfies the following properties:

• ∀u ∈ V, d1(u, u) = 0

• ∀(u, v) ∈ F, v′ ∈ V , d1(u, v′) + d(v′, v)≥ 1. Hence, ∀(u, v) ∈ F, d1(u, v)≥ 1.

• If d1(u, v′) 6= 0, then there exists (u, v) ∈ F such that d1(u, v′) + d(v′, v) = 1

• ∀u ∈ V, (a, b) ∈ E, d1(u, b)− d1(u, a)≤ xab

Algorithm 2.3 Rounding for DIR-MULTICUT

1: Given a feasible solution x to LP 2.1
2: For all u, v ∈ V , compute d(u, v)= shortest path length from u to v according to lengths xe
3: For all u, v ∈ V , compute d1(u, v) =max(0,1−minv′∈V,uv′∈F d(v, v′))
4: Pick θ ∈ (0,1) uniformly at random
5: Bu = {v ∈ V | d1(u, v)≤ θ}
6: E′ = ∪u∈Vδ

+(Bu)
7: Return E′

29

Algorithm is a simple ball cut rounding around all the vertices as per d1(u, v). We pick a number

θ ∈ (0, 1) uniformly at random. For all u ∈ V , we consider θ radius ball around u for all u ∈ V ; Bu = {v ∈
V | d1(u, v)≤ θ}. And then cut all the edges leaving the set Bu; δ+(Bu) = {(v, v′) ∈ EG | v ∈ Bu, v′ 6∈ Bu}.
Note that it is crucial that the same θ is used for all u.

Proving that E′ is a feasible solution is easy. However, to bound the expected cost of the solution,

we need the following lemma which shows that for any vertex v, number of ui with different non-zero

values of d1(ui , v) is at most k− 1.

Lemma 2.4. If for some v ∈ V there exists u1, . . . , uk such that 0 6= d1(ui , v) 6= d1(u j , v) for all i 6= j, then

the demand graph H contains an induced k-matching extension.

Proof: Rename the vertices u1, . . . , uk such that d1(u1, v) > · · · > d1(uk, v) > 0. By Lemma 2.3, there

exists v′1, . . . , v′k such that ui v
′
i ∈ F and d1(ui , v) + d(v, v′i) = 1. Consider the subgraph of H induced by

the vertices s1, . . . , sk, t1, . . . , tk where si = ui , t i = v′i . Edge (si , t i) ∈ F as (ui , v′i) ∈ F . By construction

s1, . . . , sk are distinct. We also argue that t1, . . . , tk are distinct. Suppose t i = t j , that is v′j = v′i for i < j.

Then, d1(u j , v) + d(v, v′j)< d1(ui , v) + d(v, v′j) = d1(ui , v) + d(v, v′i) = 1. Since u j v
′
j ∈ F , by Lemma 2.3

d1(u j , v) + d(v, v′j)≥ 1 which contradicts the inequality above.

For i > j, d1(si , v)+ d(v, t j) = d1(ui , v)+1− d1(u j , v)< 1. By lemma 2.3, (si , t j) 6∈ F . Thus, we have

shown that (si , t i) ∈ F for i ∈ [1, k] and (si , t j) 6∈ F for i ≥ j. Thus H contains an induced k-matching

extension.

Proof: [Theorem 2.10] We start by solving LP 2.1 and then perform the rounding scheme as per

Algorithm 2.3. By Lemma 2.3, for all (u, v) ∈ F, d1(u, v)≥ 1 and since θ < 1, we have u ∈ Bu, v 6∈ Bu. We

remove all the edges going out of the set Bu and hence, cut all the paths from u to v. As argued above,

for all uv ∈ EH , u ∈ Bu, v 6∈ Bu and we cut the edges going out of Bu. Hence, there is no path from u to v

in G − E′ and E′ is a feasible DIR-MULTICUT solution.

We claim that Pr[e ∈ E′] ≤ (k − 1)xe for all e ∈ EG. Once we have this property, by linearity of

expectation, the expected cost of E′ can be bounded by (k − 1) times the LP cost: E[
∑

e∈E′ we] ≤
(k− 1)

∑

e∈EG
we xe.

Now we prove the preceding claim. Consider an edge e = (a, b) ∈ E. Edge e ∈ E′ only if for some

u ∈ V , e ∈ δ+(Bu) and this holds only if θ ∈ [d1(u, a), d1(u, b)). By Lemma 2.3, d1(u, b)≤ d1(u, a) + xe.

Hence, e ∈ δ+(Bu) , if θ ∈ [d1(u, b)− xab, d1(u, b)). Denote this interval by Iu(e).

By Lemma 2.4, there are at most k− 1 distinct elements in the set {d1(u, b) | u ∈ V}. This implies

that there are at most k− 1 distinct intervals Iu(e). In other words, there exists u1, . . . , ur , r ≤ k− 1 such

that ∪u∈V Iu(e) = ∪r
i=1 Iui

(e).

30

Pr[(a, b) ∈ E′]≤ Pr[θ ∈ ∪u∈V Iu(e)] (2.4)

= Pr[θ ∈ ∪r
i=1 Iui

(e)] (2.5)

≤
r
∑

i=1

Pr[θ ∈ Iui
(e)] (2.6)

≤ r · xe ≤ (k− 1)xe. (2.7)

Penultimate inequality follows from the fact that Iui
(e) has length xe and θ is chosen uniformly at

random from [0, 1).

2.4 UGC-hardness of DIR-MULTICUT

In this section we prove hardness of approximation for DIR-MULTICUT-H, in particular Theorem 2.11

relating the hardness of approximation to the flow-cut gap. Recall that αH is the worst-case flow-cut gap

(equivalently, the integrality gap of the DISTANCE-LP) for instances of DIR-MULTICUT-H.

Theorem 2.11. Assuming UGC, for any fixed directed bipartite graph H, and for any fixed ε > 0 there is

no polynomial-time (αH − ε) approximation for DIR-MULTICUT-H.

We prove the theorem via a reduction to MIN-β-CSP and the hardness result of Ene, Vondrák and

Wu [31]. We note that the result is technical and involves several steps. This is partly due to the fact that

the theorem is establishing a meta-result. The theorem of [31] is in a similar vein. In particular [31]

establishes that the hardness of MIN-β-CSP depends on the integrality gap of a specific LP formulation

BASIC-LP (defined later). Our proof is based on establishing a correspondence between DIR-MULTICUT-H

and a specific constraint satisfaction problem MIN-βH -CSP where βH is constructed from H (this is the

heart of the reduction) and proving the following properties:

(I) Establish approximation equivalence between DIR-MULTICUT-H and MIN-βH -CSP. That is, prove

that each of them reduces to the other in an approximation preserving fashion.

(I I) Prove that if the flow-cut gap for DIR-MULTICUT-H (equivalently the integrality gap of DISTANCE-LP)

is αH then the integrality gap of BASIC-LP for MIN-βH -CSP is also αH .

From (I), we obtain that the hardness of approximation factor for DIR-MULTICUT-H and MIN-βH -CSP

coincide. From (I I), we can apply the result in [31] which shows that, assuming UGC, the hardness of

approximation for MIN-βH -CSP is the same as the integrality gap of BASIC-LP. Putting together these

two claims give us our desired result.

It is not straightforward to directly relate DISTANCE-LP for DIR-MULTICUT-H and BASIC-LP for MIN-βH -

CSP. BASIC-LP appears to be stronger on first glance. In order to relate them we show that a seemingly

31

strong LP for DIR-MULTICUT that we call LABEL-LP is in fact no stronger than DISTANCE-LP. In fact this

can be seen as the key technical fact unerlying the entire proof and is independently interesting since it

is quite different from the undirected graph setting. It is much easier to relate LABEL-LP and BASIC-LP.

The rest of this section is organized as follows. In Section 2.4.1 we describe LABEL-LP and prove its

equivalence with DISTANCE-LP. In Section 2.4.2 we describe MIN-β -CSP and BASIC-LP and formally state

the theorem of [31] that we rely on. We then subsequently describe our reduction from DIR-MULTICUT-H

to MIN-βH -CSP and complete the proof.

2.4.1 LABEL-LP and equivalence with DISTANCE-LP for DIR-MULTICUT

In Section 2.2, we saw that if demand graph H has size k, then there is a labeling LP for MULTICUT

(the undirected problem) with size poly(2k, n) and integrality gap at most 2 which improves upon

the integrality gap of DISTANCE-LP which can be Ω(log k). Here we describe a natural labeling LP for

DIR-MULTICUT (LABEL-LP), but in contrast to the undirected case, we show that it is not stronger than

DISTANCE-LP. We show this equivalence on an instance by instance basis. That is, for any DIR-MULTICUT

instance I , given a solution to DISTANCE-LP, we can find a solution to LABEL-LP with same cost and vice

versa.

Let the demand graph be H with vertex set VH = {s1, . . . , sk}, and the supply graph be G = (VG , E)

with n vertices. We will assume here, for ease of notation, that VH ⊂ VG . Define a labeling set L = {0, 1}k

which corresponds to all subsets of VH . We interpret the labels in L as k-length bit-vectors; if σ ∈ L we

use σ[i] to denote the i’th bit of σ. For two labels σ1,σ2 ∈ L we say σ1 ≤ σ2 if ∀i,σ1[i]≤ σ2[i]. To

motivate the formulation consider any set of edges E′ ⊆ E that can be cut. In G′ = G − E′ we consider,

for each v ∈ V , the reachability information from each of the terminals s1, s2, . . . , sk. For each v this can

be encoded by assigning a label σv ∈ L where σv[i] = 1 iff v is reachable from si in G′. E′ is a feasible

solution if si cannot reach s j whenever (si , s j) is an edge of H. The goal of the formulation to assign

labels to vertices and to ensure that demand pairs are separated. An edge e = (u, v) is cut if there is

some si such that si can reach u but si cannot reach v. We add several constraints to ensure that the

label assignment is consistent. The basic variables are zv,σ for each v ∈ VG and σ ∈ L which indicate

whether v is assigned the label σ. We also a variable xe for each edge e = (u, v) ∈ EG that is derived

from the label assignment variables. We start with the basic constraints involving these variables and

then add additional variables that ensure consistency of the assignment.

• Each vertex is labelled by exactly one label. For v ∈ VG ,
∑

σ∈L zv,σ = 1.

• Vertex si is reachable from si . For si ∈ VH and any σ ∈ L such that σ[i] = 0, zsi ,σ = 0

• Demand edges are separated. That is, if (si , s j) ∈ EH , then s j is not reachable from si. That is,

zs j ,σ = 0 for any σ where σ[i] = 1 and (si , s j) ∈ EH .

For each edge e = (u, v) we have variables of the form ze,σ1σ2
where the intention is that u is labeled σ1

32

LABEL-LP

min
∑

e∈E

we xe

∑

σ∈L

zv,σ = 1 v ∈ VG ,σ ∈ L

zsi ,σ = 0 si ∈ VH ,σ ∈ L,σ[i] = 0

zs j ,σ = 0 σ ∈ L,σ[i] = 1, (si , s j) ∈ EH
∑

σ2∈L

ze,σ1σ2
= zu,σ1

e = (u, v) ∈ EG ,σ1 ∈ L

∑

σ1∈L

ze,σ1σ2
= zv,σ2

e = (u, v) ∈ EG ,σ2 ∈ L

∑

σ1,σ2∈L:σ1 6≤σ2

ze,σ1σ2
= xe e ∈ EG

zv,σ, ze,σ1σ2
≤ 1 v ∈ VG , e ∈ EG ,σ,σ1,σ2 ∈ L

zv,σ, ze,σ1σ2
≥ 0 v ∈ VG , e ∈ EG ,σ,σ1,σ2 ∈ L

Figure 2.5: LABEL-LP for DIR-MULTICUT

and v is labeled σ2. To enforce consistency between edge assignment variables and vertex assignment

variables we add the following set of constraints.

• For e = (u, v) ∈ EG , zu,σ1
=
∑

σ2∈L ze,σ1σ2
and zv,σ2

=
∑

σ1∈L ze,σ1σ2
.

Finally, the auxiliary variable xe indicates whether e is cut.

• For e = (u, v) ∈ EG , xe = 1 if for some i, u is reachable from si and v is not reachable from si . Then,

xe = 1 if ze,σ1,σ2
= 1 for σ1 6≤ σ2. We thus set xe =

∑

σ1,σ2∈L:σ1 6≤σ2
ze,σ1σ2

.

It is not hard to show that if one constraints all the variables to be binary then the resulting integer

program is a valid formuation for DIR-MULTICUT. Note that the number of variables is exponential in

k = |VH |. Relaxing the integrality constraint on the variables, we get LABEL-LP as shown in Fig 2.5.

Theorem 2.12. For any instance G, H of DIR-MULTICUT-H, the optimum solution values for the formulations

LABEL-LP and DISTANCE-LP are the same both in the fractional and integral settings.

LABEL-LP has similarities to the earth-mover LP for metric labeling considered in [20, 63] except

that the “distance” between labels is not a metric. Define a cost function c : L × L→ {0,1} as follows:

c(σ,σ′) = 0 if σ ≤ σ′ and 1 otherwise. In fact, given the basic labeling variables zv,σ, other variables

are decided in a min-cost solution. We explain this formally.

Interpreting Variables ze,σ1σ2
and xe as flow: Let e = (u, v) be an edge in G. Consider a directed

complete bipartite digraph Buv with vertex set Γu = {uσ | σ ∈ L} and Γv = {vσ | σ ∈ L}. We assign

33

cost c(σ,σ′) on the edge (uσ, vσ′). We assign a supply of zu,σ on the vertex uσ and a demand of zv,σ

on the vertex vσ. The values ze,σ1σ2
can be thought of as flow from uσ1

to vσ2
satisfying the following

properties: (i) total flow out of uσ1
must be equal to the supply zu,σ1

(zu,σ1
=
∑

σ2∈L ze,σ1σ2
) (ii) total

flow into vσ2
must be equal to zv,σ2

(zv,σ2
=
∑

σ1∈L ze,σ1σ2
) (iii) flow is non-negative (ze,σ1σ2

≥ 0). The

cost of the flow according to c is precisely xe (=
∑

σ1 6≤σ2
ze,σ1σ2

). In particular, given the values of the

labeling variables zu,σ, σ ∈ L and zv,σ′ , σ
′ ∈ L which can be thought of as two distributions on the labels,

the smallest value of xe that can be achieved is basically the min-cost flow in Buv with supplies and

demands defined by the two distributions. In other words the other variables are completely determined

by the distributions if one wants a minimum cost solution.

In the sequel we use zu to denote the vector of assignment value zu,σ, σ ∈ L and refer to zu as the

distribution corresponding to u.

Proof: [Theorem 2.12] From LABEL-LP to DISTANCE-LP: Let (x,z) be a feasible solution to LABEL-LP

for the given instance of G, H. Consider a solution x′ to DISTANCE-LP where we set x ′e = xe. We claim

that x′ is a feasible solution to DISTANCE-LP for G, H. That is, for (si , s j) ∈ EH , and a path p from si to s j ,

we have
∑

e∈p x ′e ≥ 1.

Lemma 2.5. For any edge e = (u, v) ∈ EG and i ∈ {1, . . . , k}, xe ≥
∑

σ∈L,σ[i]=1 zu,σ −
∑

σ∈L,σ[i]=1 zv,σ.

Proof: Recall the interpretation of variables ze,σ1σ2
as flow from set Γu = {uσ | σ ∈ L} to Γv = {vσ | σ ∈ L}.

Consider the following partition of Γu into Γ 1
u = {uσ | σ ∈ L,σ[i] = 1} and Γ 2

u = {uσ | σ ∈ L,σ[i] = 0}.
Similarly, consider the partition of Γv into Γ 1

v and Γ 2
v . Amount of flow out of Γ 1

u is equal to
∑

σ∈L,σ[i]=1 zu,σ

and amount of flow coming into Γ 1
v is equal to

∑

σ∈L,σ[i]=1 zv,σ. Amount of flow from Γ 1
u to Γ 1

v is at

most
∑

σ∈L,σ[i]=1 zv,σ. Hence, flow from Γ 1
u to Γ 2

v is at least
∑

σ∈L,σ[i]=1 zu,σ −
∑

σ∈L,σ[i]=1 zv,σ. For

uσ1
∈ Γ 1

u , vσ2
∈ Γ 2

v , we have σ1 6≤ σ2 and hence,

x ′e = xe =
∑

σ1,σ2∈L:σ1 6≤σ2

ze,σ1σ2
(2.8)

≥
∑

σ∈L:σ[i]=1

zu,σ −
∑

σ∈L,:σ[i]=1

zv,σ. (2.9)

Let (si , s j) ∈ EH . We prove that for any path p from si to s j in G has
∑

e∈p x ′e ≥ 1. Let the path p be

si , a1, . . . , a`, s j . Then, by Lemma 2.5

x(si ,a1) +
`−1
∑

t=1

x(at ,at+1) + x(a`,s j) ≥
∑

σ∈L:σ[i]=1

�

(zsi ,σ − za1,σ) (2.10)

+
`−1
∑

t=1

(zat ,σ − zat+1,σ) + (za`,σ − zs j ,σ)

�

(2.11)

34

=
∑

σ∈L,σ[i]=1

(zsi ,σ − zs j ,σ) (2.12)

LABEL-LP ensures that zsi ,σ = 0 if σ[i] = 0 and zs j ,σ = 0 if σ[i] = 1. Hence,
∑

σ∈L:σ[i]=1 zsi ,σ = 1 and
∑

σ∈L:σ[i]=1 zs j ,σ = 0. Hence the right hand side in the preceding inequality is 1.

From DISTANCE-LP to LABEL-LP: Suppose x is a feasible solution to DISTANCE-LP for the given instance

G, H. We construct a solution (x′,z) for LABEL-LP such that x ′e ≤ xe for all e ∈ EG . The edge lengths given

by x induce shortest path distances in G and we use d(u, v) to denote this distance from u to v. By adding

dummy edges with zero cost as needed we can assume that d(u, v)≤ 1 for each vertex pair (u, v). With

this assumption in place we have that for any edge e = (u, v) and any terminal si , d(si , v)≤ d(si , u) + xe;

hence xe ≥max1≤i≤k(d(si , v)− d(si , u)). We will in fact prove that x ′e ≤max1≤i≤k(d(si , v)− d(si , u)).

We start by describing how to assign values to the variables zv,σ. Recall that these induce values

to the other variables if one is interested in a minimum cost solution. Let d(u, v) denote the shortest

distance from u to v in G as per lengths xe.

For a vertex u, consider the permutation πu : {1, . . . , k} → {1, . . . , k} such that d(sπu(1), u) ≤ · · · ≤
d(sπu(k), u). In other words πu is an ordering of the terminals based on distance to u (breaking ties

arbitrarily). Define σu
0, . . . ,σu

k as follows:

σu
i [j] =

1 j ∈ {πu(1), . . . ,πu(i)}

0 j 6∈ {πu(1), . . . ,πu(i)}
(2.13)

In the assignment above it is useful to interpret σu
i as a set of indices of the terminals. Hence σu

0

corresponds to ; and σu
i to {πu(1), . . . ,πu(i)}. Thus, these sets form a chain with.

The assignment of values to the variables zu,σ, σ ∈ L is done as follows:

zu,σ =

d(sπu(1), u) σ = σu
0

d(sπu(i+1), u)− d(sπu(i), u) σ = σu
i , i ∈ [1, k− 1]

1− d(sπu(k), u) σ = σu
k

0 otherwise

(2.14)

Lemma 2.6. zu,σ as defined above satisfy the following properties:

• ∀u ∈ VG ,σ ∈ L, zu,σ ≥ 0.

• ∀u ∈ VG ,
∑

σ∈L zu,σ = 1.

• For A⊆ {1, . . . , k}, define σA ∈ L as: σA[i] = 1 for i ∈ A and 0 otherwise. Then,

∑

σ≥σA

zu,σ = 1−max
i∈A

d(si , u) (2.15)

35

• Terminals are labelled correctly. That is, for each s j and σ ∈ L, zs j ,σ = 0 if σ[j] = 0.

• If (si , s j) ∈ EH , then zs j ,σ = 0 for σ ∈ L such that σ[i] = 1.

Proof: For u ∈ VG , consider σu
0,σu

1, . . . ,σu
k as defined above.

• zu,σ ≥ 0 is true by definition.

• By definition, zu,σ = 0 if σ 6∈ {σu
0, . . . ,σu

k}. Hence,

∑

σ∈L

zu,σ =
k
∑

i=0

zu,σu
i

(2.16)

= d(sπu(1), u) + 1− d(sπ(k), u) (2.17)

+
k−1
∑

i=1

d(sπu(i+1), u)− d(sπu(i), u) (2.18)

= 1 (2.19)

• Let j = arg maxi:πu(i)∈A d(sπu(i), u). Then, σu
j , . . . ,σu

k ≥ σA and σu
0, . . . ,σu

j−1 6≥ σA. Hence,

∑

σ≥σA

zu,σ =
k
∑

i= j

zu,σu
i

(2.20)

=
k−1
∑

i= j

d(sπu(i+1), u)− d(sπu(i), u) (2.21)

+1− d(sπu(k), u) (2.22)

= 1− d(sπu(j), u) (2.23)

= 1− max
i:πu(i)∈A

d(sπu(i), u) (2.24)

= 1−max
i∈A

d(si , u) (2.25)

• By definition of distance, d(s j , s j) = 0. Consider A= { j}. Applying the result from previous part,

we get
∑

σ≥σA
zs j ,σ = 1− 0 = 1. Hence, zs j ,σ = 0 if σ 6≥ σA. Equivalently speaking, zs j ,σ = 0 if

σ[j] = 0.

• Let (si , s j) ∈ EH . Then, for the solution x to be feasible, we must have d(si , s j) = 1. Consider

A= {i}. Then, using result from previous part, we get
∑

σ≥σA
zs j ,σ = 1− 1 = 0. Hence, zs j ,σ = 0 if

σ ≥ σA. Equivalently speaking, zs j ,σ = 0 if σ[i] = 1.

Consider an edge e = (u, v). Recall that once the distributions of zu and zv are fixed, x ′e is simply

the min-cost flow between these two distributions in the digraph Buv with costs given by c. Our goal

is to show that this cost is at most max{0, maxi(d(si , v)− d(si , u))}. Suppose we define a partial flow

36

between zu and zv on zero-cost edges such that the total amount of this flow is γ where γ ∈ [0, 1]. Then

it is easy to see that we can complete this flow to achieve a cost of (1− γ). This is because the graph is a

complete bipartite graph and costs are either 0 or 1 and zu and zv are distributions that have a total of

eactly one unit of mass on each side.

Next, we define a partial flow of zero cost between zu and zv by setting some variables ze,σ1σ2
in a

greedy fashion as follows. Initially all flow values are zero. We consider the vertex uσu
i

with supply zu,σu
i

in order from i = 0 to k. Our goal is to send as much flow as possible from this vertex on zero-cost edges

to demand vertices vσv
j

which requires that σu
i ≤ σ

v
j . We maintain the invariants that we do not exceed

supply or demand in this process. While trying to send flow out of uσu
i

we again use a greedy process;

if there are j < j′ such that σv
j and σv

j′ are both eligible to receive flow on zero-cost edges and have

capacity left, we use j first; recall that σv
j corresponds to a subset of σv

j′ . Let ze,σ1σ2
be the partial flow

created by the algorithm.

Lemma 2.7. The total flow sent by the greedy algorithm described is at least 1−max{0, maxh(d(sh, v)−
d(sh, u))}.

Assuming the lemma we are done because the zero-cost flow is at least 1− xe and hence total cost of

the flow is at most xe, thus proving x ′e ≤ xe as desired. We now prove the lemma.

Consider the greedy flow. Let ` be the maximum integer such that vσv
`

is not saturated by the flow.

If no such ` exists then the greedy algorithm has sent a total flow of one unit on zero-cost edges and

hence x ′e = 0. Thus, we can assume ` exists. Moreover, in this case we can also assume that ` < k

for if ` = k the greedy algorithm can send more flow since σu
i ≤ σ

v
k for all i. Let `′ be the maximum

integer such that σu
`′
≤ σv

`
. Such an `′ exists since `′ = 0 is a candidate (corresponding to the empty

set). Moreover, `′ < k since σu
k 6≤ σ

v
`

since ` < k. Let `′′ be the minimum integer such that σu
`′+1 ≤ σ

v
`′′

.

`′′ exists because k is a candidate for it.

Claim 2.1. πu
`′+1 = π

v
`′′

.

Proof: By choice of `,`′,`′′ we have σu
`′
≤ σv

`
and σu

`′+1 6≤ σ
v
`

while σu
`′+1 ≤ σ

v
`′′

. Thus `′′ ≥ `+ 1 and

σu
`′
≤ σv

`
≤ σv

`′′−1. Moreover, since `′′ is chosen to smallest, σu
`′+1 6≤ σ

v
`′′−1. These facts imply the desired

claim.

We now claim several properties of the partial flow and justify them.

• ∀i ∈ [0,`′], j ∈ [`+ 1, k], ze,σu
i σ

v
j
= 0. This follows from the fact that the greedy algorithm did not

saturate zv,σv
`
.

• ∀i ∈ [`′ + 1, k], j ∈ [0,`′′ − 1], ze,σu
i σ

v
j
= 0. From the definition of `′,`′′, this is not a zero cost

edge.

• ∀i ∈ [0,`′],
∑`

j=0 ze,σu
i σ

v
j
= zu,σu

i
. From definition of `′, for each i ≤ `′, there is a zero-cost edge

from uσu
i

to vσv
`
. Since the greedy algorithm did not saturate vσv

`
, it means that uσu

i
is saturated

and sends flow only to vσv
1
, . . . vσv

`
.

37

• ∀ j ∈ [`′′, k],
∑k

i=`′+1 ze,σu
i σ

v
j
= zv,σv

j
. By definition of `, for j ≥ `+ 1 we have the property that vσv

j

is saturated. As we argued above, for i ∈ [`′ + 1, k], j ∈ [0,`′′ − 1] we have ze,σu
i σ

v
j
= 0. Hence, for

j ≥ `′′ ≥ `+ 1, we have
∑k

i=`′+1 ze,σu
i σ

v
j
=
∑k

i=0 ze,σu
i σ

v
j
= zv,σv

j
.

From the preceding claim we see that the total value of the partial flow can be summed up as

∑

σ1,σ2∈L

ze,σ1σ2
=

`′
∑

i=0

zu,σu
i
+

k
∑

j=`′′+1

zv,σv
j
. (2.26)

Moreover, by construction of zu and zv ,

`′
∑

i=0

zu,σu
i
= d(sπu(`′+1), u) (2.27)

and
k
∑

j=`′′+1

zv,σv
j
= 1− d(sπv(`′′), v). (2.28)

Letting h= πu
`′+1 = π

v
`′′

we see that from the preceding equalities that the total flow routed on the

zero-cost edges is

d(sh, u) + 1− d(sh, v) = 1− (d(sh, v)− d(sh, u))≥ 1− xe. (2.29)

This finishes the proof.

2.4.2 Min-CSP and BASIC-LP

Min-CSP refers to a minimization version of constraint satisfaction problems. We set up the formalism

borrowed from [31]. Let L denote a finite set of labels. A real-valued function f : L i → R has arity i.

Let Γ = {ψ |ψ : L i → [0, 1]∪ {∞}, i ≤ k} be the set of functions defined on L with arity at most k and

range [0, 1]∪{∞}. Let β ⊂ Γ be a finite subset ofψ. These functions are also referred to as predicates. k

denotes the arity and L denotes the alphabet of β . Each β induces an optimization problem MIN-β -CSP.

Definition 2.1. An instance of Min-β-CSP consists of the following:

• A vertex set V and a set of tuples T ⊂ ∪k
i=1V i .

• A predicate ψt ∈ β for each tuple t ∈ T where cardinality of t matches the arity of ψt .

• A non-negative weight function over the set of tuples, w : T → R+.

38

BASIC-LP

min
∑

t∈T

wt ·
∑

α∈L|t|
zt,α ·ψt(α)

∑

σ∈L

zv,σ = 1 v ∈ V

∑

α∈L|t|:α[i]=σ

zt,α = zv,σ t ∈ T, v = t[i],σ ∈ L

zv,σ, zt,α ≥ 0 v ∈ V,σ ∈ L, t ∈ T,α ∈ L|t|

zv,σ, zt,α ≤ 1 v ∈ V,σ ∈ L, t ∈ T,α ∈ L|t|

Figure 2.6: Basic LP for Min-β-CSP

The goal is to find a label assignment ` : V → L to minimize
∑

t=(vi1 ,...,vi j
)∈T wt ·ψt(`(vi1), . . . ,`(vi j

)).

Consider an integer programming formulation with following variables: for each vertex v ∈ V

and label σ ∈ L, we have a variable zv,σ which is 1 if v is assigned label σ. Also, for each tuple

t = (vi1 , . . . , vi j
) ∈ T and α ∈ L|t|, we have a boolean variable zt,α which is 1 if vip is labelled α[p] for

p ∈ [1, j]. These variables satisfy following constraints:

• Each vertex receives unique label:
∑

σ∈L zv,σ = 1.

• Variables zv,σ and zt,α are consistent. That is, if v ∈ t is assigned label σ, then zt,α must be

zero if α does not assign label σ to v. For every tuple t ∈ T, v = t[i],σ ∈ L, we have: zv,σ =
∑

α∈L|t|:α[i]=σ zt,α.

The objective is to minimize
∑

t∈T wt ·
∑

α∈L|t| zt,α ·ψt(α).

BASIC-LP is the LP relaxation obtained by allowing the variables to take on values in [0,1] and is

described in Fig 2.6. For instance, I, LP(I) and OPT(I) refer to the fractional and integral optimum

values respectively.

A particular type of predicate termed NAE (for not all equal) is important in subsequent discussion.

Definition 2.2. For i ≥ 2, NAEi : L i → {0, 1} be a predicate such that NAEi(σ1, . . . ,σi) = 0 if σ1 = σ2 =

· · ·= σi and 1 otherwise.

The following theorem shows that the hardness of MIN-βH -CSP coincides with the integrality gap of

BASIC-LP if NAE2 is in β .

Theorem 2.13. (Ene, Vondrak, Wu [31]) Suppose we have a MIN-β-CSP instance I = (V, T,Ψ, w) with

fractional optimum (of Basic LP) LP(I) = c, integral optimum OPT (I) = s, and β contains the predicate

NAE2. Then, assuming UGC, for any ε, for some λ > 0, it is NP-hard to distinguish between instances of

MIN-β-CSP where the optimum value is at least (s − ε)λ and instances where the optimum value is less

than (c + ε)λ .

39

u

v

u

v

we we

∞ ∞

∞∞
e1e2

Figure 2.7: Gadget to convert undirected edge/NAE2 predicate to a directed graph

2.4.3 DIR-MULTICUT-H and an equivalent MIN-β-CSP Problem

In this section, we show that given a bipartite directed graph H = (S ∪ T, EH), we can construct a set

of predicates βH such that DIR-MULTICUT-H is equivalent to MIN-βH -CSP. The notion of equivalence is

as follows. We give a reduction from instances of DIR-MULTICUT-H to instances of MIN-βH -CSP which

preserves the cost of optimal integral solution and in addition, also preserves the cost of optimum

fractional solution to LABEL-LP and BASIC-LP. Similarly, we give a reduction from MIN-βH -CSP to

DIR-MULTICUT-H which preserves the cost of both the integral and fractional solutions.

The basic idea behind the construction of βH from H is to simulate the constraints of LABEL-LP

via the predicates of βH . In addition to setting up βH correctly, we also need to preprocess the supply

graph to prove the correctness of the reductions. Let the bipartite demand graph H be (S ∪ T, EH) with

S = {a1, . . . , ap} and T = {b1, . . . , bq} as the bipartition. For u ∈ S let N+H (u) = {v ∈ T | (u, v) ∈ EH} be

the neighbors of u in H. For i ∈ [1, p], let Yi = { j ∈ [1, p] | N+H (a j) ⊆ N+H (ai)}. That is, if a j ∈ Yi , the set

of terminals that a j needs to be separated from is a subset of the terminals that ai needs to be separated

from. For j ∈ [1, q] let Z j = {i ∈ [1, p] | ai b j 6∈ EH}. That is, Z j is the set of all terminals in S that do not

need to be separated from b j .

Assumptions on supply graph: We will assume that the supply graph G in the instances of DIR-

MULTICUT-H satisfy the following properties.

• Assumption I: G may contain undirected edges. The meaning of this is that a path may include

this edge in either direction. A simple and well-known gadget shown in Fig 2.7 shows that this is

without loss of generality.

• Assumption II: For 1 ≤ j ≤ q and i ∈ Z j, there is an infinite weight edge from ai to b j in G.

Moreover b j has no outgoing edge.

• Assumption III: For 1 ≤ i ≤ p, and i′ ∈ Yi, there is an infinite weight edge from ai′ to ai in G.

Moreover ai has no other incoming edges.

The preceding assumptions are to make the construction of βH and the subsequent proof of equiv-

alence with DIR-MULTICUT-H somewhat more transparent and technically easier. Undirected edges

allow us to use the NAE2 predicate in βH . Assumption II and III simplify the reachability information of

terminals that needs to be kept track of and this allows for a simpler label set definition and easier proof

of equivalence.

40

DISTANCE-LP easily generalizes to handle undirected edges; in examining paths from si to t i for a

demand pair we allow an undirected edge to be used in both directions. A more technical part is to

generalize LABEL-LP to handle undirected edges in the supply graph. For a directed edge e recall that

xe =
∑

σ1,σ2∈L:σ1 6≤σ2
ze,σ1σ2

. For an undirected edge e we set xe =
∑

σ1,σ2∈L:σ1 6=σ2
ze,σ1σ2

.

The following two lemmas help establish that we can safely assume that the supply graph satisfies

the assumptions I, II, and III. We omit the proof of the first lemma which involves tedious reworking of

some of the details on equivalence of LABEL-LP and DISTANCE-LP.

Lemma 2.8. For any instance G, H of DIR-MULTICUT-H where the supply graph has undirected edges, the

optimum solution values for the formulations LABEL-LP and DISTANCE-LP are the same both in the fractional

and integral settings.

Assuming the preceding lemma, following lemma is easy to prove:

Lemma 2.9. For bipartite H, DIR-MULTICUT-H with a general supply graph and DIR-MULTICUT-H restricted

to supply graphs satisfying Assumptions I, II and III are equivalent in terms of approximability and in terms

of the integrality gap of DISTANCE-LP (equal to integrality gap of LABEL-LP).

Proof: We sketch the proof. Undirected edges can be handled by the gadget shown in Fig 2.7. It is easy

to see that given any instance of DIR-MULTICUT-H with supply graph G and bipartite demand graph H

we can first add dummy terminals to G and assume that each terminal ai has only one outgoing infinite

weight edge (to the original terminal) and each b j has only one incoming infinite weight edge. With this

in place adding edges to satisfy Assumptions II and III can be seen to not affect the integral or fractional

solutions to DISTANCE-LP.

We will assume for simplicity that all weights (for edges and constraints) are either 1 or∞. Generic

weights can be easily simulated by copies and the proofs make no essential use of weights other than

that some are finite, and others are infinite.

Constructing βH from H: Next, we formally define βH for a bipartite graph H = (S ∪ T, EH) where

S = {a1, . . . , ap} and T = {b1, . . . , bq}. Recall the definitions of Yi for 1 ≤ i ≤ p and Z j for 1 ≤ j ≤ q

based on EH . Observe that no vertex other than b j is reachable from b j. And, since labels encode

the reachability from terminals, we can ignore the reachability from b j and define βH with respect to

terminal set S. For σ ∈ {0,1}p, let Jσ = {i ∈ [1, p] | σ[i] = 1}

• Alphabet (Label Set) L = {0,1}p. Labels encode the list of ai ’s from which a vertex is reachable.

• For i ∈ [1, p], a unary predicate ψai
encode the correct label for ai and is defined as follows:

ψai
(σ) = 0 if Jσ = Yi , otherwise ψai

(σ) =∞.

• For j ∈ [1, q], predicate ψb j
that encodes the correct label for b j . ψb j

(σ) = 0 if Jσ = Z j , otherwise

ψb j
(σ) =∞.

41

• A binary predicate C that encodes whether a directed edge is cut or not. If σ1 ≤ σ2 C(σ1,σ2) = 0,

otherwise C(σ1,σ2) = 1.

• A binary predicate NAE2 that encodes whether an undirected edge is cut or not. If σ1 = σ2

NAE2(σ1,σ2) = 0, otherwise NAE2(σ1,σ2) = 1.

Thus βH = {C,NAE2} ∪ {ψai
| i ∈ [1, p]} ∪ {ψb j

| j ∈ [1, q]}. MIN-βH -CSP has label set L, predicate

set βH and arity 2.

The main technical theorem we prove is the following. We remark that when we refer to DIR-

MULTICUT-H we are referring to the problem where the supply graph satisfies the assumptions I, II, III

that we outlined previously.

Theorem 2.14. Let H be a directed bipartite graph. There is a polynomial time reduction that given a

DIR-MULTICUT-H instance IM = (G = (VG , EG , wG : EG → R+), H = (S ∪ T, EH)), outputs a MIN-βH -CSP

instance IC = (VC , TC ,ψTC
: TC → βH , wTc

: TC → R+) such that the following holds: given a solution (x,z)

of the Label LP for IM , we can construct a solution z′ of Basic LP for IC with cost at most that of (x, z) and

vice versa. Moreover, if (x,z) is an integral solution, then z′ is also an integral solution and vice versa. A

similar reduction exists from MIN-βH -CSP to DIR-MULTICUT-H.

With the preceding theorem in place we can formally prove Theorem 2.11

Proof: [Theorem 2.11] Let IM be some fixed instance of DIR-MULTICUT-H with flow-cut gap αH . From

Theorem 2.12 the integrality gap of LABEL-LP on Im is also αH . Let IC be the MIN-βH -CSP instance

obtained via the reduction guaranteed by Theorem 2.14. IM and IC have the same integral cost. Fractional

cost of LABEL-LP for IM and BASIC-LP for IC are also the same. Therefore, the integrality gap of BASIC-LP

on IC is also αH . Via Theorem 2.13, assuming UGC, MIN-βH -CSP is hard to approximate within a factor

of αH − ε for any fixed ε > 0.

Theorem 2.14 (the second part) implies that MIN-βH -CSP reduces to DIR-MULTICUT-H in an approxi-

mation preserving fashion. Thus, DIR-MULTICUT-H is at least has hard to approximate as MIN-βH -CSP

which implies that assuming UGC, the hardness of DIR-MULTICUT-H is at least αH − ε.

Proof: [Theorem 2.14] BASIC-LP and LABEL-LP are almost identical except for the fact that LABEL-LP

is defined with label set {0,1}k where k = p+ q is the total number of terminals whereas BASIC-LP is

defined with label set {0, 1}p. However, since bi ’s do not have any outgoing edge, reachability from bi is

trivial.

1. Reduction from MIN-βH -CSP to DIR-MULTICUT-H Let the MIN-β-CSP instance be IC = (VC , TC ,ψTC
:

TC → βH , wTC
: TC → R+). We refer to tuple t = (u) with ψTC

(t) = ψai
as constraint ψai

(u),

t = (u),ψTC
(u) = ψb j

as constraint ψb j
(u), t = (u, v),ψTC

(t) = C as constraint C(u, v) and t =

(u, v),ψTC
(u) = NAE2 as constraint NAE2(u, v). We assume that for every i ∈ [1, p], there is a constraint

ψai
(ui) for some vertex ui ∈ VC , and similarly for every j ∈ [1, q] there is a constraint ψb j

(v j) for some

42

vertex v j ∈ VC ; moreover, we will assume that u1, . . . , up, v1, . . . , vq are distinct vertices. One can ensure

that this assumption holds by adding dummy vertices and dummy constraints with zero weight. We

create an instance IM = (G = (VG , EG , wG : EG → R+), (S ∪ T, EH)) of DIR-MULTICUT-H as follows.

• VG = VC , the vertex remains the same. Pick vertices u1, . . . , up and v1, . . . , vq that are all distinct

such that for 1 ≤ i ≤ p there is a constraint ψai
(ui) in IC and for 1 ≤ j ≤ q there is a constraint

ψb j
(v j) in IC . This holds by our assumption. For i ∈ [1, p] associate the terminal ai ∈ VH with ui

and for j ∈ [1, q] associate the terminal b j ∈ VH with v j .

• EG and wG are defined as follows:

– For each constraint ψai
(u) in IC where u 6= ai add an undirected edge et = aiu to EG with

wG(et) =∞.

– For each constraint ψb j
(v) in IC where v 6= b j add an undirected edge et = b j v to EG with

wG(et) =∞.

– For each constraint C(u, v) in IC add a directed edge et = (u, v) in G with wG(et) equal to

the weight of the constraint in IC .

– For each constraint NAE2(u, v), add an undirected edge et = uv with wG(et) equal to the

weight of the constraint in IC .

– For each i ∈ [1, p] and for each i′ ∈ Yi , add a directed edge e = (ai′ , ai) with wG(e) =∞.

– For each j ∈ [1, q] and each i ∈ Z j , add a directed edge e = (ai , b j) with wG(e) =∞.

We now prove the equivalence of IC and IM from the point of view solutions to BASIC-LP and LABEL-LP

respectively.

Given two labels σ and σ′ which can be interpreted as binary strings, we use the notation σ ·σ′ to

denote the label obtained by concatenating σ and σ′.

1.1. From LABEL-LP to BASIC-LP: Suppose (x,z) is a feasible solution to LABEL-LP for IM . We construct a

solution z′ to BASIC-LP for IC in the following way. z′ is simply a projection of z from label set {0, 1}p+q

onto label set {0, 1}p. Recall that in the instance IM the terminals b1, . . . , bq do not have any outgoing

edges. Hence, in the solution (x,z) with label space {0, 1}p+q, which encodes reachability from both the

aiï£¡s and the b j ’s the information on reachability from the b jï£¡s does not play any essential role. We

formalize this below.

• For v ∈ VC ,σ ∈ {0, 1}p, z′v,σ =
∑

σ′∈{0,1}q zv,σ·σ′ .

• For unary constraint t = (v) ∈ TC and σ ∈ {0,1}p, z′t,σ = z′v,σ.

• For binary constraint t = (u, v) ∈ TC , for σ1,σ2 ∈ {0,1}p,

z′t,σ1σ2
=

∑

σ′∈{0,1}q

∑

σ′′∈{0,1}q
zet ,σ1·σ′σ2·σ′′ (2.30)

43

Note that if (x,z) is an integral solution then z′ as defined above is also an integral solution.

Feasibility of z′ for BASIC-LP is an “easy” consequence of the projection operation but we prove it

formally.

Lemma 2.10. z′ as defined above is a feasible solution to BASIC-LP for instance IC .

Proof: From the definition of z′, for each vertex v,

∑

σ∈{0,1}p
z′v,σ =

∑

σ∈{0,1}p

∑

σ′∈{0,1}q
zv,σ·σ′ = 1 (2.31)

which proves that one set of constraints holds.

Next, we prove that for t ∈ TC , v = t[i],σ ∈ L = {0,1}p, the constraint z′v,σ −
∑

α∈L|t|:α[i]=σ z′t,α = 0

holds. We consider unary and binary predicates separately.

• For t = (v) such that v = t[i],σ ∈ L = {0,1}p,

z′v,σ −
∑

α∈L|t|:α[i]=σ

z′t,α = z′v,σ − z′t,σ = z′v,σ − z′v,σ = 0. (2.32)

• For t = (u, v) ∈ TC ,σ ∈ {0,1}p

z′v,σ −
∑

σ1∈{0,1}p
z′t,σ1σ

(2.33)

= z′v,σ −
∑

σ1∈{0,1}p

∑

σ′,σ′′∈{0,1}q
zet ,σ1·σ′′σ·σ′ (2.34)

= z′v,σ −
∑

σ′∈{0,1}q

∑

σ1∈{0,1}p ,σ′′∈{0,1}q
zet ,σ1·σ′′σ·σ′ (2.35)

= z′v,σ −
∑

σ′∈{0,1}p
zv,σ·σ′ = 0. (2.36)

Similar argument holds for u as well.

Lemma 2.11. The cost of z′ is at most
∑

e∈EG
we xe which is the cost of (x,z) to IM .

Before we prove Lemma 2.11 we establish some properties satisfied by (x,z).

Lemma 2.12. If the solution (x,z) to LABEL-LP has finite cost, then the following conditions hold:

• For directed edge e = (u, v), and for i ∈ [1, p] xe ≥
∑

σ∈{0,1}p+q:σ[i]=1 zu,σ −
∑

σ∈{0,1}p+q:σ[i]=1 zv,σ.

Hence, if edge e has infinite weight (wG(e) =∞), then
∑

σ∈{0,1}p+q:σ[i]=1 zu,σ ≤
∑

σ∈{0,1}p+q:σ[i]=1 zv,σ

44

• For i ∈ [1, p],σ ∈ {0,1}p,σ′ ∈ {0,1}q s.t. Jσ 6= Yi, we have zai ,σ·σ′ = 0. Hence, for σ ∈
{0,1}p, z′ai ,σ

= 1 if Jσ = Yi and 0 otherwise.

• For j ∈ [1, q],σ ∈ {0,1}p,σ′ ∈ {0,1}q s.t. Jσ 6= Z j we have zb j ,σ·σ′ = 0. Hence, for σ ∈
{0,1}p, z′b j ,σ

= 1 if Jσ = Z j and 0 otherwise.

• For an undirected edge e = uv ∈ EG with wG(e) = ∞, and σ1,σ2 ∈ {0,1}p+q, ze,σ1σ2
= 0 if

σ1 6= σ2. For σ ∈ {0,1}p+q, zu,σ = zv,σ and for σ1 ∈ {0,1}p, z′u,σ1
= z′v,σ1

. Hence, for t = (u) ∈ TC

s.t. ψTC
(t) =ψai

, z′u,σ = 1 if Jσ = Yi and 0 otherwise.

Proof: If (x,z) has finite cost, then for an edge e with infinite weight (wG(e) =∞), we must have

xe = 0.

• Let e = (u, v) be a directed edge, and i ∈ [1, p]

xe =
∑

σ1,σ2∈{0,1}p+q:σ1 6≤σ2

ze,σ1σ2
(2.37)

≥
∑

σ1,σ2∈{0,1}p+q:σ1[i]=1,σ2[i]=0

ze,σ1σ2
(2.38)

=
∑

σ1∈{0,1}p+q:σ1[i]=1

zu,σ1
(2.39)

−
∑

σ1,σ2∈{0,1}p+q:σ1[i]=1,σ2[i]=1

ze,σ1σ2
(2.40)

≥
∑

σ1∈{0,1}p+q:σ1[i]=1

zu,σ1
(2.41)

−
∑

σ2∈{0,1}p+q:σ2[i]=1

zv,σ2
(2.42)

=
∑

σ∈{0,1}p+q:σ[i]=1

zu,σ −
∑

σ∈{0,1}p+q:σ[i]=1

zv,σ (2.43)

If edge e has infinite weight, then xe = 0 and
∑

σ∈{0,1}p+q:σ[i]=1 zu,σ ≤
∑

σ∈{0,1}p+q:σ[i]=1 zv,σ

• We prove the following two statements which in turn imply that for σ ∈ {0,1}p,σ′ ∈ {0,1}q, if

Jσ 6= Yi , then zai ,σ·σ′ = 0.

∀ j ∈ Yi ,
∑

σ∈{0,1}pσ′∈{0,1}q:σ[j]=1

zai ,σ·σ′ = 1 (2.44)

∀ j ∈ [1, p] \ Yi ,
∑

σ∈{0,1}pσ′∈{0,1}q:σ[j]=1

zai ,σ·σ′ = 0 (2.45)

Let j ∈ Yi , then by construction of G, there exists an infinite weight edge from a j to ai . Using the

result from previous part we get
∑

σ∈{0,1}pσ′∈{0,1}q:σ[j]=1 zai ,σ·σ′ ≥
∑

σ∈{0,1}pσ′∈{0,1}q:σ[j]=1 za j ,σ·σ′ .

45

LABEL-LP enforces that term on the right side is lower bounded by 1 (a j reachable from itself).

Hence, term on the left side is lower bounded by 1. Since, it is also upper bounded by 1, it must

be equal to 1.

Let j ∈ [1, p] \ Yi. By definition of Yi, we have N+H (a j) 6⊆ N+H (ai). That is, there exists j′ ∈ [1, q]

such that a j b j′ ∈ EH and ai b j 6∈ EH . Since a j b j′ ∈ EH , LABEL-LP enforces that

∑

σ∈{0,1}pσ′∈{0,1}q:σ[j]=1

zb j′ ,σ·σ′ = 0 (2.46)

Also, we have ai b j′ 6∈ EH and hence, there is an infinite weight edge from ai to b j′ in G. Applying the

result from previous part, we get
∑

σ∈{0,1}pσ′∈{0,1}q:σ[j]=1 zai ,σ·σ′ ≤
∑

σ∈{0,1}pσ′∈{0,1}q:σ[j]=1 zb j′ ,σ·σ′ =

0

Next, to prove that z′ai ,σ
= 1 if Jσ = Yi and 0 otherwise, we argue as follows:

1 =
∑

σ∈{0,1}p ,σ′∈{0,1}q
zai ,σ·σ′ (2.47)

=
∑

σ∈{0,1}p:Jσ=Yi

∑

σ′∈{0,1}q
zai ,σ·σ′ (2.48)

+
∑

σ∈{0,1}p:Jσ 6=Yi

∑

σ′∈{0,1}q
zai ,σ·σ′ (2.49)

=
∑

σ∈{0,1}p:Jσ=Yi

z′ai ,σ
(2.50)

• Again, we prove the following two statements which in turn implies that forσ ∈ {0, 1}p,σ′ ∈ {0, 1}q

if Jσ 6= Z j , then zb j ,σ·σ′ = 0:

∀i ∈ Z j ,
∑

σ∈{0,1}pσ′∈{0,1}q:σ[i]=1

zb j ,σ·σ′ = 1 (2.51)

∀i ∈ [1, p] \ Z j ,
∑

σ∈{0,1}pσ′∈{0,1}q:σ[i]=1

zb j ,σ·σ′ = 0 (2.52)

Let i ∈ Z j . Hence, there is an infinite weight directed edge from ai to b j in G. Applying the result

from first part, we get
∑

σ∈{0,1}pσ′∈{0,1}q:σ[i]=1 zb j ,σ·σ′ ≥
∑

σ∈{0,1}pσ′∈{0,1}q:σ[i]=1 zai ,σ·σ′

LABEL-LP enforces that right side is lower bounded by 1 (ai reachable from itself). Hence, left side

is lower bounded by 1. It is also upper bounded by 1 and hence, it must be equal to 1.

Let i ∈ [1, p] \ Z j . Then, ai b j ∈ EH and hence, from the constraint in LABEL-LP

∑

σ∈{0,1}pσ′∈{0,1}q:σ[i]=1

zb j ,σ·σ′ = 0 (2.53)

46

Next, to prove that z′b j ,σ
= 1 if Jσ = Z j and 0 otherwise, we argue as follows:

1 =
∑

σ∈{0,1}p ,σ′∈{0,1}q
zb j ,σ·σ′ (2.54)

=
∑

σ∈{0,1}p:Jσ=Z j

∑

σ′∈{0,1}q
zb j ,σ·σ′ (2.55)

+
∑

σ∈{0,1}p:Jσ 6=Z j

∑

σ′∈{0,1}q
zb j ,σ·σ′ (2.56)

=
∑

σ∈{0,1}p:Jσ=Z j

z′b j ,σ
(2.57)

• For an undirected edge e = uv, xe =
∑

σ1,σ2∈{0,1}p+q:σ1 6=σ2
ze,σ1σ2

. Since, weight of e is infinite, xe

must be 0. Hence, ze,σ1σ2
= 0 if σ1 6= σ2. For σ1 ∈ {0,1}p+q

zu,σ1
=

∑

σ2∈{0,1}p+q

ze,σ1σ2
= ze,σ1σ1

(2.58)

=
∑

σ2∈{0,1}p+q

ze,σ2σ1
= zv,σ1

(2.59)

Let t = (u) ∈ TC s.t. ψTC
(t) =ψai

. If u= ai , then we have already proved that z′u,σ = 1 if Jσ = Yi

and 0 otherwise. If u 6= ai , then there is an infinite weight undirected edge between u and ai in G.

Hence, z′u,σ = z′ai ,σ
for all σ ∈ {0, 1}p and the result follows.

Proof: [Lemma 2.11] Next, we argue about the cost of the solution z′. We assume here that (x,z) has

finite cost. For a constraint t ∈ TC , the cost according to z′ is wTC
(t)
∑

α∈L|t| z
′
t,α ·ψt(α). We consider

four cases based on the type of t.

• t corresponds to constraint of the form ψai
(v). As argued in Lemma 2.12, then z′t,σ = zv,σ = 0

if Jσ 6= Yi and 1 if Jσ = Yi. On the other hand, ψai
(σ) = 0 if Jσ = Yi and∞ if Jσ 6= Yi. Hence,

z′t,σψai
(σ) = 0 for all σ. Therefore, this constraint contributes zero to the cost.

• t corresponds to constraint of the form ψb j
(v). From Lemma 2.12, z′t,σ = z′v,σ = 0 if Jσ 6= Z j

and 1 if Jσ = Z j. And ψb j
(σ) = 0 if Jσ = Z j and∞ if Jσ 6= Z j. Hence, z′t,σψb j

(σ) = 0 for all σ.

Therefore, the contribution of this constraint is zero.

• t corresponds to constraint C(u, v). This corresponds to a directed edge et = (u, v) in G and the

cost paid by (x,z) is xet
. The cost for t in z′ is given by:

47

∑

σ1,σ2∈{0,1}p
z′t,σ1σ2

·C(σ1,σ2) (2.60)

=
∑

σ1,σ2∈{0,1}p:σ1 6≤σ2

z′t,σ1σ2
(2.61)

=
∑

σ1,σ2∈{0,1}p:σ1 6≤σ2

∑

σ′,σ′′∈{0,1}q
zet ,σ1·σ′σ2·σ′′ (2.62)

≤
∑

σ1,σ2∈{0,1}p ,σ′,σ′′∈{0,1}q:σ1·σ′ 6≤σ2·σ′′
zet ,σ1·σ′σ2·σ′′ (2.63)

= xet
. (2.64)

First equality follows from the fact that C(σ1,σ2) = 0 if σ1 ≤ σ2 and 1 otherwise. Penultimate

inequality follows because if σ1 6≤ σ2, then σ1 ·σ′ 6≤ σ2 ·σ′′ for any σ′,σ′′ ∈ {0, 1}q.

• t corresponds to constraint NAE2(u, v). This corresponds to an undirected edge et = uv in G and

the cost paid by (x,z) is xet
. The cost for t in z′ is given by:

∑

σ1,σ2∈{0,1}p
z′t,σ1σ2

·NAE2(σ1,σ2) (2.65)

=
∑

σ1,σ2∈{0,1}p:σ1 6=σ2

z′t,σ1σ2
(2.66)

=
∑

σ1,σ2∈{0,1}p:σ1 6=σ2

∑

σ′,σ′′∈{0,1}q
zet ,σ1·σ′σ2·σ′′ (2.67)

≤
∑

σ1,σ2∈{0,1}p ,σ′,σ′′∈{0,1}q:σ1·σ′ 6=σ2·σ′′
zet ,σ1·σ′σ2·σ′′ (2.68)

= xet
. (2.69)

Combining the four cases, the total cost of the solution z′ is equal to the cost of the binary constraints

each of which corresponds to an edge in G with the same weight. From the above inequalities we see

that the cost is at most
∑

e∈EG
wG(e)xe which is the cost of (x,z).

1.2. From BASIC-LP to LABEL-LP: Let z be a BASIC-LP solution to IC . Let σ0 = 1q. We define a solution

(x′,z′) to LABEL-LP for IM as follows:

• For v ∈ VC ,∀σ1 ∈ {0, 1}p,σ2 ∈ {0,1}q,

z′v,σ1·σ2
=

zv,σ1
σ2 = σ0

0 otherwise
(2.70)

48

• For unary constraint t = (u) s.t. u 6∈ {a1, . . . , ap, b1, . . . , bq} and σ1,σ2 ∈ {0,1}p,σ3,σ4 ∈ {0,1}q,

z′et ,σ1·σ3σ2·σ4
=

zu,σ1
σ1 = σ2,σ3 = σ4 = σ0

0 otherwise
(2.71)

• For binary constraint t = (u, v) ∈ TC such that ψTC
(t) = C or NAE2, and σ1,σ2 ∈ {0, 1}p,σ3,σ4 ∈

{0,1}q

z′et ,σ1·σ3σ2·σ4
=

zt,σ1σ2
σ3 = σ4 = σ0

0 otherwise
(2.72)

• The edge variables x ′e are induced by the z′ variables. We explicitly write them down. For directed

edge e ∈ EG, x ′e =
∑

σ1,σ2∈{0,1}p ,σ3,σ4∈{0,1}q:σ1·σ3 6≤σ2·σ4
z′e,σ1·σ3σ2·σ4

. For undirected edge e ∈ EG,

x ′e =
∑

σ1,σ2∈{0,1}p ,σ3,σ4∈{0,1}q:σ1·σ3 6=σ2σ4
z′e,σ1·σ3σ2·σ4

It is easy to check that (x′,z′) is integral if z is integral.

Lemma 2.13. (x′, z′) is a feasible solution to LABEL-LP for IM .

Proof: It is easy to check that all the variables are non-negative and upper bounded by 1.

We show that the other constraints are satisfied one at a time. Recall that LABEL-LP considered here

has a constraint for undirected edges in addition to the constraints showed in Fig 2.5. The label set for

LABEL-LP is {0,1}p+q which we can write as {σ1 ·σ2|σ1 ∈ {0, 1}p,σ2 ∈ {0,1}q}.

Constraint 1: For each v,
∑

σ∈{0,1}p+q z′v,σ = 1

∑

σ1∈{0,1}pσ2∈{0,1}q
z′v,σ1·σ2

=
∑

σ1∈{0,1}p
z′v,σ1·σ0

(2.73)

=
∑

σ1∈{0,1}p
zv,σ1

= 1 (2.74)

Constraint 2: For σ1 ∈ {0,1}p,σ2 ∈ {0, 1}q, z′ai ,σ1σ2
= 0 if σ1[i] = 0. And z′b j ,σ1σ2

= 0 if σ2[j] = 0.

There is t = (ai) ∈ TC such that ψTC
(t) = ψai

. For z to be a finite valued solution, we must have

zt,σ1
= zai ,σ1

= 0 if Jσ1
6= Yi. Since, i ∈ Yi, we have that zai ,σ1

= 0 if σ1[i] = 0. And hence, z′ai ,σ1σ2
= 0

if σ1[i] = 0.

For v ∈ VC , z′v,σ1σ2
= 0 if σ2 6= σ0 = 1q. Hence, z′v,σ1σ2

= 0 if σ2[j] = 0. In particular, z′b j ,σ1σ2
= 0 if

σ2[j] = 0.

Constraint 3: For e = (u, v) ∈ EG ,σ1 ∈ {0, 1}p,σ3 ∈ {0, 1}q, z′u,σ1·σ3
=
∑

σ2∈{0,1}pσ4∈{0,1}q ze,σ1·σ3σ2·σ4
. If

σ3 6= σ0, then all the terms are zero and hence, the equality holds. Else, σ3 = σ0 and there are two

types of edges:

49

• For t = (u), e = et

∑

σ2∈{0,1}p ,σ4∈{0,1}q
z′e,σ1·σ0σ2·σ4

(2.75)

=
∑

σ2∈{0,1}p
z′e,σ1·σ0σ2·σ0

(2.76)

= zu,σ1
= z′u,σ1·σ0

= z′u,σ1·σ3
(2.77)

• For t = (u, v), e = et ,

∑

σ2∈{0,1}p ,σ4∈{0,1}q
z′e,σ1·σ0σ2·σ4

(2.78)

=
∑

σ2∈{0,1}q
z′e,σ1·σ0σ2·σ4

(2.79)

=
∑

σ2∈{0,1}q
ze,σ1σ2

(2.80)

= zu,σ1
= z′u,σ1·σ0

= z′u,σ1·σ3
(2.81)

Constraint 4: For e = (u, v) ∈ EG ,σ2 ∈ {0,1}p,σ4 ∈ {0,1}q, z′v,σ2·σ4
=
∑

σ1∈{0,1}pσ3∈{0,1}q ze,σ1·σ3σ2·σ4
.

Proof is similar to the previous part.

Constraint 5: For directed edge e, x ′e−
∑

σ1,σ3∈{0,1}p ,σ2σ4∈{0,1}q:σ1·σ3 6≤σ2·σ4
z′e,σ1·σ3σ2σ4

= 0. This is true

by definition of x ′e.

Constraint 6: For undirected edge e, x ′e−
∑

σ1,σ3∈{0,1}p ,σ2σ4∈{0,1}q:σ1·σ3 6=σ2·σ4
z′e,σ1·σ3σ2σ4

= 0. This is true

as well from the definition of x ′e.

Lemma 2.14. The cost (x′,z′) is upper bounded by the cost of z.

Proof: Recall that σ0 = 1q. We consider three cases based on the type of edge e

• e = et = (u, v) for constraint C(u, v). Then, x ′et
=

∑

σ1,σ2∈{0,1}p ,σ3,σ4∈{0,1}q:σ1·σ3 6≤σ2·σ4

z′et ,σ1·σ3σ2·σ4
(2.82)

=
∑

σ1,σ2∈{0,1}p:σ1·σ0 6≤σ2·σ0

z′et ,σ1·σ0σ2·σ0
(2.83)

=
∑

σ1,σ2∈{0,1}p:σ1 6≤σ2

zt,σ1σ2
(2.84)

50

• e = et = (u, v) for constraint NAE2(u, v). Then, x ′et
=

∑

σ1,σ2∈{0,1}pσ3,σ4∈{0,1}q:σ1·σ3 6=σ2·σ4

z′et ,σ1·σ3σ2·σ4
(2.85)

=
∑

σ1,σ2∈{0,1}p:σ1·σ0 6=σ2·σ0

z′et ,σ1·σ0σ2·σ0
(2.86)

=
∑

σ1,σ2∈{0,1}p:σ1 6=σ2

zt,σ1σ2
(2.87)

• e = et = (u, ai) or (u, b j) for constraint ψai
(u) or ψb j

(u). In such a case z′et ,σ1·σ3σ2·σ4
is non-zero

only if σ1 = σ2,σ3 = σ4 = σ0. Hence, x ′et
=

∑

σ1,σ2∈{0,1}p ,σ3,σ4∈{0,1}q:σ1·σ3 6=σ2σ4

z′et ,σ1·σ3σ2·σ4
= 0 (2.88)

Combining the above three facts we get the following. First, infinite any infinite weight edge e in G has

x ′e = 0. For any finite weight edge x ′e is the same as the fractional cost paid by the corresponding finite

weight binary constraint in IC . Hence, cost of (x′,z′) is upper bounded by cost of z.

2. Reduction from DIR-MULTICUT-H to MIN-β-CSP Let the DIR-MULTICUT-H instance be IM = (G =

(VG , EG , wG : EG → R+), (S ∪ T, EH)). Recall that the supply graph satisfies assumptions I, II, and III. We

reduce it an equivalent MIN-β-CSP instance IC = (VC , TC ,ψTC
: TC → βH , wTC

: TC → R+) as follows.

• Vertex Set VC = VG .

• TC ,ψTC
, wTC

are defined as follows:

– For every ai ∈ S, add a tuple t = (ai) in TC with ψTC
(t) =ψai

and wTC
(t) = 1.

– For every b j ∈ T , add a tuple t = (b j) in TC with ψTC
(t) =ψb j

and wTC
(t) = 1.

– For every directed edge e = (u, v) ∈ EG, add a tuple t = (u, v) in TC with ψTC
(t) = C and

wTC
(t) = wG(e).

– For every undirected edge e = uv ∈ EG , add a tuple t = (u, v) in TC with ψTC
(t) = NAE2 and

wTC
(t) = wG(e).

The proof of equivalence between LABEL-LP for IM and BASIC-LP for IC is essentially identical to the

proof for the reduction in the other direction and hence we omit it.

This finishes the proof of Theorem 2.14.

51

2.4.4 Hardness for Non-bipartite Demand graphs

Here we prove Theorem 2.5 on the hardness of approximation of DIR-MULTICUT-H when H is fixed

and may not be bipartite. Let γH denote the hardness of approximation for DIR-MULTICUT-H. Recall that

αH is the worst-case flow-cut gap for DIR-MULTICUT-H.

Let the demand graph be H with 2p vertices, VH = {sσ | σ ∈ {0, 1}p}. If number of vertices is not a

power of two, then we can add dummy isolated vertices without changing the problem. We find r = 2p

subgraphs H1, . . . , Hr such that H = H1 ∪ · · · ∪Hr and

• Each Hi is a directed bipartite graph.

• αH ≤
∑r

i=1αHi
.

• For 1 ≤ i ≤ r, there is an approximation preserving reduction from DIR-MULTICUT-Hi to DIR-

MULTICUT-H. Hence, γH ≥ γHi
.

Since, Hi is bipartite, Theorem 2.11 implies, under UGC, that γHi
≥ αHi

− ε. Since, γH ≥ γHi
for all

i ∈ [1, r], we have γH ≥
1
r

∑r
i=1 γHi

. Therefore,

γH ≥
1
r

r
∑

i=1

γHi
≥

1
r

r
∑

i=1

(αHi
− ε)≥

1
r
αH − ε. (2.89)

Since r = 2dlog ke where k = |VH |, we obtain the proof of Theorem 2.5.

Next, we show how to construct Hi which satisfy the properties above. For each number j ∈ [1, p],

define A j = {sσ | σ ∈ {0,1}p,σ(j) = 0}, B j = {sσ | σ ∈ {0,1}p,σ(j) = 1}. Let H2 j−1 be the subgraph

of H with vertex set VH and edge set containing edges of H with head in B j and tail in A j. H2 j be the

subgraph of H with vertex set VH and edge set containing edges of H with head in A j and tail in B j .

VH2 j−1
= VH2 j

= VH (2.90)

EH2 j−1
= {(sσ1

, sσ2
) ∈ EH | sσ1

∈ A j , sσ2
∈ B j} (2.91)

EH2 j
= {(sσ1

, sσ2
) ∈ EH | sσ1

∈ B j , sσ2
∈ A j} (2.92)

By construction, it is clear that H2 j−1, H2 j are bi-partite.

Lemma 2.15. Hi as defined above satisfy the following properties:

• EH = ∪r
i=1EHi

.

• αH ≤
∑r

i=1αHi
.

• For i ∈ [1, r],γH ≥ γHi
.

52

Proof:

• Let e = (sσ1
, sσ2
) ∈ EH . Since, there are no self-loops in H, there exists j ∈ [1, p] such that either

σ1[j] = 0,σ2[j] = 1 or σ1[j] = 1,σ2[j] = 0. In the first case, e ∈ EH2 j−1
and in the second case

e ∈ EH2 j
.

• Given a DIR-MULTICUT-H instance (G, H), idea is to solve (G, Hi) for i ∈ [1, p]. Let I = (G, H) be

a DIR-MULTICUT-H instance. Let x be the optimal solution to DISTANCE-LP on I . Let Ii = (G, Hi)

be the instance with the same supply graph G but demand graph Hi. It is easy to see that x is a

feasible fractional solution to Ii since Hi is a subgraph of H. Since the worst-case integrality gap for

DIR-MULTICUT-Hi is αHi
, there is a set E′i ⊆ EG such that w(E′i)≤ αHi

w(x) and G − E′i disconnects

all demand pairs in Hi . Clearly ∪i E
′
i is a feasible integral solution to (G, H) since H = ∪iHi . The

cost of ∪i E
′
i is at most (

∑

i αHi
)w(x). Since (G, H) was an arbitrary instance of DIR-MULTICUT-H,

this proves that αH ≤
∑

i αHi
.

• We prove that there is an approximation preserving reduction from DIR-MULTICUT-Hi to DIR-

MULTICUT-H which in turn proves that γH ≥ γHi
. Assume that i = 2 j − 1 (case when i = 2 j is

similar). Let (G, Hi) be a DIR-MULTICUT-Hi instance. G′ is defined as follows:

– VG′ = VG ∪ A′j ∪ B′j where A′j = {s
′
σ | sσ ∈ A j}, B′j = {s

′
σ | sσ ∈ B j}.

– G′ contains all the edges of G and an infinite edge from s′σ to sσ for every sσ ∈ A j and infinite

weight edge from sσ to s′σ for every sσ ∈ B j .

Let H ′ be a demand graph with vertex sσ of H renamed as s′σ. Then, (G′, H ′) is a DIR-MULTICUT-H

instance. Note that for sσ ∈ A j, s′σ in G′ has no incoming edge and for sσ ∈ B j, s′σ in G′ has no

outgoing edge. Hence, for DIR-MULTICUT instance (G′, H ′), we only need to separate (s′σ1
, s′σ2
) if

sσ1
∈ A j , sσ2

∈ B j . Hence, DIR-MULTICUT instances (G, Hi) and (G′, H ′) are equivalent.

2.5 Concluding Remarks

Our hardness result show that assuming UGC, hardness matches the flow-cut gap for a fixed bi-partite

demand graph. However, there is a logarithmic loss for non-bipartite demand graphs. Can we remove

this logarithmic factor?

Question 2.1. Assuming UGC, is DIR-MULTICUT-H hard to approximate better than the worst-case flow-cut

gap with demand graph H for non-bipartite H?

Question 1.2 asks for the approximability and flow cut gap for UNDIR-SKEW-MULTICUT and DIR-SKEW-

MULTICUT. In this chapter, we proved that UNDIR-SKEW-MULTICUT admits a constant factor approximation.

53

However, the question of determining the flow-cut gap is still open. Also, if this flow-cut gap turns out

to be constant, we could ask the question about tK2-free demand graphs as well.

Question 2.2. Does there exists a function f : N → N such that the flow-cut gap for UNDIR-MULTICUT

with tK2-free demand graph is at most f (t)? If yes, what is the tightest possible bound on f (t)?

For DIR-SKEW-MULTICUT, we proved that flow-cut gap is a lower bound on hardness of approximation.

However, determining the exact flow-cut gap for DIR-SKEW-MULTICUT is still an open question. If this

flow-cut gap turns out to be constant, we could also ask about flow-cut gap when demand graph does

not contain matching of size k as an induced subgraph.

Question 2.3. Let H be a fixed demand graph that does not contain a matching of size k as an induced

subgraph. Is there a k-approximation for DIR-MULTICUT-H?

Hardness results in this chapter rely on UGC. Can we prove these results assuming P 6= N P; specifically

when demand graph is a collection of k disjoint directed edges.

Question 2.4. Assuming P 6= N P, can we prove that DIR-MULTICUT-H does not admit k−ε approximation

algorithm if H is a collection of k disjoint edges?

54

Chapter 3

Resolving the approximability of Linear-3-

Cut

In this chapter, we investigate the approximability of a special case of DIR-MULTICUT, namely Linear-

3-cut. We formally distinguish the node weighted and edge weighted variants below:

(s, r, t)-NODE-LIN-3-CUT: The input is a directed graph D = (V, E) with specified nodes s, r, t ∈ V and

node weights w ∈ RV\{r,s,t}
+ , and the goal is to find a minimum weight node set U ⊆ V \ {r, s, t} such that

D[V − U] has no path from s to t, from s to r and from r to t.

(s, r, t)-EDGE-LIN-3-CUT: The input is a directed graph D = (V, E) with specified nodes s, r, t ∈ V and

edge weights w ∈ RE
+, and the goal is to find a minimum weight edge set F ⊆ E such that D− F has no

path from s to t, from s to r and from r to t.

We note that the unreachability requirements are determined by an ordering of the terminal nodes

s, r, and t, and this is the origin for the terminology linear 3-cut [32]. By standard transformations,

the edge weighted and the node weighted variants are equivalent. In this chapter, we focus on the

node-weighted version as the results are easier to present for the node-weighted problem. It is also

equivalent to DIR-SKEW-MULTICUT problem defined in Chapter 2 for k = 2. DIR-SKEW-MULTICUT is a

special case of DIR-MULTICUT where the demand graph H is a bipartite graph with k terminals s1, . . . , sk

on one side and k terminals t1, . . . , tk on the other side: (si , t j) is an edge in H iff i ≤ j. To reduce (s, r, t)-

EDGE-LIN-3-CUT to DIR-SKEW-MULTICUT, set s1 = s, s2 = r, t1 = r, t2 = t. To reduce DIR-SKEW-MULTICUT

to (s, r, t)-EDGE-LIN-3-CUT, set s = s1, t = t2, add a node r and edges (t1, r), (r, s2).

If G is undirected, the (s, r, t)-NODE-LIN-3-CUT and (s, r, t)-EDGE-LIN-3-CUT reduces to node and

edge weighted versions of multiway cut problem with three terminals. NODE-WT-MWC (node weighted,

undirected multiway cut) with three terminals admits a 4/3-approximation [49] and does not admit

a (4/3 − ε)-approximation for any constant ε > 0 assuming the Unique Games Conjecture (UGC)

[31]; EDGE-WT-MWC (edge weighted, undirected multiway cut) with three terminals admits a 12/11-

approximation [25,56] and does not admit a (12/11−ε)-approximation for any constant ε > 0 assuming

UGC [25,56,68]. In this chapter, we prove such tight approximability results for (s, r, t)-NODE-LIN-3-CUT.

On the hardness side, (s, r, t)-NODE-LIN-3-CUT is NP-hard and has no (4/3−ε)-approximation assum-

ing UGC by an approximation-preserving reduction from NODE-WT-MWC with three terminals. Bidirect

all edges and add new nodes s, r, t with edges s→ t1, t2→ r → t2, t3→ t. On the approximability side,

(s, r, t)-NODE-LIN-3-CUT admits a simple combinatorial 2-approximation: Return union of min {s}−{r, t}

55

cut and min {r} − {t} cut. Our next theorem closes this gap and prove that the optimal bound is
p

2.

Theorem 3.1. There is a polynomial-time
p

2-approximation for (s, r, t)-NODE-LIN-3-CUT. Assuming UGC,

(s, r, t)-NODE-LIN-3-CUT has no polynomial-time (
p

2− ε)-approximation for any constant ε > 0.

Connections to other problems

Recall that an out-r-arborescence (similarly, an in-r-arborescence) in a directed graph is a minimal

subset of edges such that every node has a unique path from r (to r) in the subgraph induced by the

edges.

r-INOUT-NODE-BLOCKER: The input is a node-weighted directed graph with a specified terminal node

r and the goal is to find a minimum weight set of non-terminal nodes whose removal ensures that the

resulting graph has no out-r-arborescence and no in-r-arborescence.

We show an approximation-preserving equivalence between r-INOUT-NODE-BLOCKER and (s, r, t)-

NODE-LIN-3-CUT which in turn, resolves the approximability of r-INOUT-NODE-BLOCKER.

Theorem 3.2. There is a polynomial-time
p

2-approximation for r-INOUT-NODE-BLOCKER. Assuming UGC,

r-INOUT-NODE-BLOCKER has no polynomial-time (
p

2− ε)-approximation for any constant ε > 0.

In the {s, t}-EDGE-BICUT problem the input is an edge-weighted directed graph and two specified

nodes s and t, and the goal is to find a smallest weight subset of edges whose deletion ensures that s

cannot reach t and t cannot reach s in the resulting graph.

In this chapter, we consider a global variant where the node t is not fixed.

{s,∗}-EDGE-BICUT: The input is an edge-weighted directed graph with a specified node s, and the goal

is to find a smallest weight subset of edges whose deletion ensures that the resulting graph has a node t

such that s cannot reach t and t cannot reach s.

It is known that {s,∗}-EDGE-BICUT is NP-hard, admits an efficient 2-approximation, and does not

admit an efficient (4/3 − ε)-approximation for any constant ε > 0 assuming UGC [9]. We show a

reduction from (s, r, t)-EDGE-LIN-3-CUT to {s,∗}-EDGE-BICUT, thus improving the hardness known for

{s,∗}-EDGE-BICUT.

Theorem 3.3. Assuming UGC, {s,∗}-EDGE-BICUT has no polynomial-time (
p

2−ε)-approximation for any

constant ε > 0.

Organization: Section 3.1 gives an overview of the techniques in this chapter. We present the upper

bound of Theorem 3.1 in Section 3.2 and the integrality gap instances leading to the lower bound of

Theorem 3.1 in Section 3.3. We obtain tight approximation results for r-INOUT-NODE-BLOCKER (Theorem

3.2) and improved inapproximability results for {s,∗}-EDGE-BICUT (Theorem 3.3) in Section 3.4.

56

3.1 Techniques

Both the algorithm and the hardness results are based on proving bounds on the integrality gap of

DISTANCE-LP. We briefly remark on some of the salient features of our results.

Approximation: Our main contribution for the upper bound is an analysis exhibiting the tight ap-

proximation factor for a natural rounding scheme. A natural rounding scheme is to take the best of

the following two alternatives: (i) first ensure that s and r cannot reach t by suitably rounding the

LP-solution to obtain a node set K1 to be removed, and then find a minimum s→ r directed cut K2 in

the graph obtained after deleting K1, and return K1 ∪ K2; (ii) first ensure that s cannot reach r and t

by suitably rounding the LP-solution to obtain a node set K1 to be removed, and then find a minimum

r → t directed cut K2 in the graph obtained after deleting K1, and return K1 ∪ K2. We note that in both

alternatives, the first step can be implemented by standard deterministic ball-cut rounding schemes1 while

the second step can be solved exactly in polynomial time. The main technical challenge lies in analyzing

the approximation factor of such a best of alternatives rounding scheme where the second step in each

alternative depends on the first. We overcome this challenge by showing that a single-step randomized

ball-cut rounding scheme already achieves the desired expected value. The distribution underlying our

single-step scheme turns out to be extremely non-trivial in nature (as it is not a simple distribution like

uniform or geometric). In the proofs, we derive the distribution with the goal of obtaining the best

approximation factor instead of stating the distribution upfront and bounding the approximation factor.

Inapproximability: It is known that the inapproximability factor under UGC for (s, r, t)-NODE-LIN-3-

CUT is identical to the integrality gap of a natural distance-based LP (Theorem 2.11). We construct a

sequence of instances such that the sequence of integrality gaps of the distance-based LP converges to
p

2.

Our gap instances are also non-trivial and can be viewed as a weighted graph sequence converging to a

kind of “graph limit structure” having irrational weights. While irrational gap instances for semi-definite

programming relaxations of natural combinatorial optimization problems are known to exist (e.g., the

max-cut problem [50, 60]), we are unaware of irrational gap instances for natural LP-relaxations of

natural combinatorial optimization problems besides the one studied in this work.

3.2
p

2-approximation algorithm

Let D = (V, E) be an input directed graph with specified nodes s, r, t ∈ V , and node weights w ∈
RV\{s,r,t}
+ . The (s, r, t)-NODE-LIN-3-CUT problem asks for a minimum weight node set U ⊆ V \ {s, r, t}

such that D[V − U] has no path from s to t, from s to r, and from r to t. The collection of feasible

solutions remains the same if we add the arcs t → r and r → s to the directed graph. In the rest of this

1Pick θ ∈ (0, 1) and set K1 to be the set of nodes which have incoming (outgoing) arcs to nodes which are within a distance
θ from the terminal(s) of interest. Since there are only polynomially many θ values of interest, the best solution can be
obtained in polynomial time.

57

section, we assume that these arcs are present in D.

For a subset U ⊆ V , let us denote w(U) :=
∑

u∈U wu. For nodes u, v ∈ V , let Puv denote the set

of all directed paths from u to v in D. For x ∈ RV
+ and a path P in D, we define x(P) :=

∑

v∈V (P) xv.

For u, v ∈ V , let distx(u, v) := min{x(P) : P ∈ Puv}. DISTANCE-LP for (s, r, t)-NODE-LIN-3-CUT is the

following:

min wT x (DISTANCE-LP)

x ∈ RV
+

distx(s, t), distx(s, r), distx(r, t)≥ 1

xs = xr = x t = 0.

This LP is solvable in polynomial time since separation amounts to finding shortest paths. If x is a

feasible solution to DISTANCE-LP, then there is a feasible solution x ′ to DISTANCE-LP such that x ′v ≤ xv

for every v ∈ V and moreover:

if x ′v > 0, then distx ′(r, v) + distx ′(v, r)≤ 1+ x ′v . (3.1)

To achieve this property, we observe that if xv > 0 and distx(r, v) + distx(v, r)> 1+ xv, then x(P)> 1

for all P ∈ Pst ∪Psr ∪Pr t that contains v. Indeed, for any such path P, there is a subset F of arcs from

the set of arcs {t → r, r → s} such that F ∪ P is the concatenation of P1 ∈ Prv and P2 ∈ Pvr ; therefore,

x(P) = x(P1) + x(P2)− xv > 1. This means that we can decrease xv until the property is satisfied.

Let x be a feasible solution to DISTANCE-LP that satisfies (3.1). We present an algorithm that, given

x as input, constructs in polynomial time a feasible solution U to (s, r, t)-NODE-LIN-3-CUT that satisfies

w(U)≤
p

2wT x . The algorithm itself is a simple and natural deterministic ball-cut scheme, described

below. The main novelty is the proof of the approximation ratio, which is obtained by considering a

weaker, randomized ball-cut algorithm.

For a node u ∈ V and 0< θ ≤ 1, let

Bout(u,θ) := {v ∈ V : distx(u, v)< θ}, (3.2)

Sout(u,θ) := {v ∈ V : θ ∈ (distx(u, v)− xv ,distx(u, v)]}, (3.3)

Bin(u,θ) := {v ∈ V : distx(v, u)< θ}, (3.4)

S in(u,θ) := {v ∈ V : θ ∈ (distx(v, u)− xv ,distx(v, u)]}. (3.5)

One can think of Bout(u,θ) as the open ball of radius θ around u with respect to the distances from

u, and Sout(u,θ) can be thought of as the boundary of Bout(u,θ). The sets Bin(u,θ) and S in(u,θ) are

analogous, but with respect to distances to u (as opposed to distances from u). We note that Sout(u,θ)

and S in(u,θ) cannot contain nodes v with xv = 0. Furthermore, the presence of edges r → s and t → r

58

implies that s ∈ Bout(r,θ) and t ∈ Bin(θ).

Claim 3.1. For any θ ∈ (0, 1], there exists θ ′ ∈ (0, 1] such that Sout(r,θ ′) = Sout(r,θ), and θ ′ = distx(r, v)

or θ ′ = distx(r, v)− xv for some v ∈ V . A similar statement holds for S in(r,θ).

Proof: Let θ ′ =min{γ : γ≥ θ , γ= distx(r, v) or γ= distx(r, v)− xv for some v ∈ V}. The minimum is

chosen from a non-empty set because distx(r, t) = 1. Now it is easy to verify that Sout(r,θ) = Sout(r,θ ′).

As a consequence, there are at most 2n distinct sets of the form Sout(r,θ) (where θ ∈ (0,1]). The

deterministic ball-cut scheme is based on enumerating these and is given in Figure 3.1.

Deterministic Ball-Cut Algorithm for (s, r, t)-NODE-LIN-3-CUT

Input: feasible solution x to DISTANCE-LP that satisfies (3.1)
Compute distances distx(r, v) and distx(v, r) for every v ∈ V
U := V \ {r, s, t}
for every v ∈ V do

for every θ ∈ (0,1]∩ {distx(r, v),distx(r, v)− xv} do
K1 := Sout(r,θ)
Find minimum weight s→ r cut K2 in D[V \ K1]
if w(K1 ∪ K2)< w(U) then U := K1 ∪ K2

for every θ ∈ (0,1]∩ {distx(v, r),distx(v, r)− xv} do
K1 := S in(r,θ)
Find minimum weight r → t cut in D[V \ K1]
if w(K1 ∪ K2)< w(U) then U := K1 ∪ K2

return U

Figure 3.1: Deterministic Ball-Cut Algorithm

The algorithm has the running time of O(|V |) max flow computations. The following claim implies

that the output is a feasible solution to (s, r, t)-NODE-LIN-3-CUT.

Claim 3.2. If θ ∈ (0, 1] and K is an s→ r cut in D[V \Sout(r,θ)], then Sout(r,θ)∪K is a feasible solution

to (s, r, t)-NODE-LIN-3-CUT. Similarly, if K is an r → t cut in D[V \ S in(r,θ)], then S in(r,θ) ∪ K is a

feasible solution.

Proof: We prove the first part of the claim, the second part being similar. We observe that for every

u, v ∈ V , every P ∈ Puv, and every two consecutive nodes w and w′ in the direction of P, we have

distx(u, w)≥ distx(u, w′)− xw′ and distx(w′, v)≥ distx(w, v)− xw.

We now show that every path P ∈ Pr t contains a node in Sout(r,θ). Let P ∈ Pr t with the nodes w0 :=

r, w1, w2, . . . , wk, wk+1 := t appearing in order. If distx(r, wi)< θ for every i ∈ [k], then distx(r, wk)<

θ ≤ 1 and hence, distx(r, t)< 1, a contradiction. Hence, there exists a node wi such that distx(r, wi)≥ θ .

59

Pick the node wi with the smallest index i such that distx(r, wi)≥ θ . By the observation from the previous

paragraph, we have distx(r, wi)− xwi
≤ distx(r, wi−1)< θ , where the second inequality is by the choice

of the index i. Thus, wi ∈ Sout(r,θ) and hence, the path P contains a node in Sout(r,θ).

Due to the presence of the edge r → s in the graph and the fact that s, r 6∈ Sout(r,θ), we also have

that every path P ∈ Pst contains a node in Sout(r,θ). Now, let us consider a path P ∈ Psr without any

nodes in Sout(r,θ). Since K is an s→ r cut in D[V \ Sout(r,θ)], P contains a node in K . This means that

Sout(r,θ)∪ K is a feasible solution to (s, r, t)-NODE-LIN-3-CUT.

The difficulty in analyzing the approximation factor of the algorithm presented in Figure 3.1 is due to

dependence of K2 on the choice of K1. We overcome this difficulty by abandoning the minimum weight

cuts K2 in favor of random ball cuts that are easier to analyze. To do this, we need to define two types of

feasible solutions to (s, r, t)-NODE-LIN-3-CUT.

For 0< θ1 ≤ 1 and 0< θ2 ≤ 1, the vertical T-shaped cut V (θ1,θ2) is defined as

V (θ1,θ2) := Sout(r,θ1)∪ (Bout(r,θ1)∩ S in(r,θ2)), (3.6)

while the horizontal T-shaped cut H(θ1,θ2) is defined as

H(θ1,θ2) := S in(r,θ2)∪ (Bin(r,θ2)∩ Sout(r,θ1)). (3.7)

The name “T-shaped cut” comes from the observation that if each node v is represented in the plane

by the square (distx(r, v)− xv ,distx(r, v)]× (distx(v, r)− xv ,distx(v, r)], then the cut consists of nodes

whose square is intersected by two segments forming a rotated “T” shape (see Figure 3.2). We call a

node set U to be T-shaped if U = V (θ1,θ2) or U = H(θ1,θ2) for some pair 0< θ1,θ2 ≤ 1.

Figure 3.2: Representation of T -shaped cuts. Left: the square corresponding to node v. Center: v is in
V (θ1,θ2) because one of the blue lines intersects the square. Right: v is not in H(θ1,θ2) because the
red lines do not intersect the square.

Lemma 3.1. The set Bout(r,θ1)∩S in(r,θ2) is an s→ r cut in D[V \Sout(r,θ1)], and Bin(r,θ2)∩Sout(r,θ1)

is an r → t cut in D[V \ S in(r,θ2)].

Proof: We prove only the first part of the claim, the proof of the second part being similar. Let us consider

a path P ∈ Psr without any nodes in Sout(r,θ1). Let the nodes in P be w0 := s, w1, w2, . . . , wk, wk+1 := r

60

appearing in order. We will show that wi ∈ Bout(r,θ1) for every i ∈ {1, . . . , k} by induction on i. For the

base case, owing to the presence of the edge r → s in the graph, we have that distx(r, w0)− xw0
= 0< θ1

and since w0 6∈ Sout(r,θ1), it follows that distx(r, w0) < θ1. For the induction step, we have that

distx(r, wi+1)− xwi+1
≤ distx(r, wi)< θ1, where the second inequality follows by induction hypothesis.

Now, since wi+1 6∈ Sout(r,θ1), it follows that distx(r, wi+1)< θ1. Hence, all nodes of P are in Bout(r,θ1).

We now show that at least one of the nodes in P should be in S in(r,θ2). If distx(wi , r)< θ2 for every

i ∈ [k], then distx(w1, r)< θ2 ≤ 1 and hence, distx(s, r)< 1, a contradiction. Hence, there exists a node

wi such that distx(wi , r)≥ θ2. Pick the node wi with the largest index i such that distx(wi , r)≥ θ2. We

have distx(wi , r)− xwi
≤ distx(wi+1, r)< θ2, where the second inequality is by the choice of the index i.

Thus, wi ∈ S in(r,θ2) and hence, the path P contains a node in S in(r,θ2). Consequently, P contains a

node in Bout(r,θ1)∩ S in(r,θ2).

Corollary 3.1. Every T-shaped cut is a feasible solution to (s, r, t)-NODE-LIN-3-CUT, and the weight of the

cut found by the Deterministic Ball-Cut Algorithm is at most the minimum weight of a T-shaped cut.

Proof: Feasibility follows directly from Lemma 3.1 and Claim 3.2. For the second statement, consider

V (θ1,θ2) and H(θ1,θ2) for some θ1,θ2 ∈ (0, 1]. By Claim 3.1, there exists θ ′ ∈ {distx(r, v′),distx(r, v′)−
xv′} for some v′ ∈ V such that Sout(r,θ ′) = Sout(r,θ1), and there exists θ ′′ ∈ {distx(v′′, r),distx(v′′, r)−
xv′′} for some v′′ ∈ V such that S in(r,θ ′′) = S in(r,θ2).

When the algorithm considers v′ and θ ′, it finds a minimum weight s→ r cut K2 in D[V \Sout(r,θ ′)].

As Bout(r,θ1)∩ S in(r,θ2) is also an s→ r cut in D[V \ Sout(r,θ ′)] by Lemma 3.1, w(Sout(r,θ ′)∪ K2)≤
w(Sout(r,θ1)∪ (Bout(r,θ1)∩ S in(r,θ2)).

When the algorithm considers v′′ and θ ′′, it finds a minimum weight r → t cut K1 in D[V \S in(r,θ ′′)].

As Bin(r,θ2)∩ Sout(r,θ1) is also an r → t cut in D[V \ S in(r,θ ′′)] by Lemma 3.1, w(S in(r,θ ′′)∪ K1) ≤
w(S in(r,θ2)∪ (Bin(r,θ2)∩ Sout(r,θ1)).

We can bound the approximation factor of Deterministic Ball-Cut Algorithm by estimating the

minimum weight of a T-shaped cut. We show that the latter differs from the cost of the DISTANCE-LP by

a factor of at most
p

2.

Theorem 3.4. There exists a T-shaped cut U such that w(U)≤
p

2wT x.

To prove Theorem 3.4, we will follow a probabilistic argument. We will exhibit a distribution

over T-shaped cuts for which the expected weight satisfies the bound mentioned in Theorem 3.4. This

distribution turns out to be non-trivial in nature (as it is not simply a uniform/geometric/exponential

distribution). Instead of stating this distribution upfront and analyzing its approximation factor, we

will derive the optimal distribution as a natural consequence of the following lemma, which provides a

sufficient condition for achieving a certain approximation factor.

61

Lemma 3.2. Let ξ : [0,1]2→ R+ be a function satisfying

∀a, b ∈ R+, a+ b ≤ 1,
∫ 1

0

(ξ(a, z) + ξ(b, z)) dz +

∫ 1

a
ξ(z, b)dz +

∫ 1

b
ξ(z, a)dz = 1. (3.8)

Let α := 2
∫ 1

0

∫ 1
0 ξ(z1, z2)dz1 dz2. Then, for any instance of (s, r, t)-NODE-LIN-3-CUT, there exists a T-shaped

cut U such that

w(U)≤
1
α

wT x . (3.9)

Proof: We define a probability distribution on the set of T-shaped cuts by giving a weighing function

f : {Ver, Hor}×[0, 1]2→ R+. For (θ1,θ2) ∈ [0, 1]2, let f (Ver,θ1,θ2) := ξ(θ1,θ2)/α and f (Hor,θ1,θ2) :=

ξ(θ2,θ1)/α. For a T-shaped cut U , let

Pr(U) :=

∫

(θ1,θ2):V (θ1,θ2)=U
f (Ver,θ1,θ2)dθ1 dθ2

+

∫

(θ1,θ2):H(θ1,θ2)=U
f (Hor,θ1,θ2)dθ1 dθ2. (3.10)

We mention that a node set U could be both a horizontal and a vertical T-shaped cut in which case, the

probability mass for U comes from both integrals in the above sum. Furthermore Pr(·) is a probability

distribution supported over the set of T-shaped cuts because of the definition of α. Let U be a T-shaped

cut chosen according to this distribution.

Claim 3.3. For v ∈ V \ {r, s, t}, probability that v is in the chosen T-shaped cut U is at most xv/α.

Proof: We may assume that xv 6= 0 since every vertex in a T-shaped cut necessarily has this property.

Let a := distx(r, v) and b := distx(v, r). We recall that a vertical T-shaped cut V (θ1,θ2) is defined

as Sout(r,θ1) ∪ (Bout(r,θ1) ∩ S in(r,θ2)). Thus, V (θ1,θ2) contains the node v if and only if either (1)

a − xv < θ1 ≤ a, or (2) a < θ1 and b − xv < θ2 ≤ b. Similarly, a horizontal T-shaped cut H(θ1,θ2)

contains the node v if and only if either (3) b − xv < θ2 ≤ b, or (4) b < θ2 and a − xv < θ1 ≤ a.

Therefore, the probability of v being in a random T-shaped cut is at most

P :=
1
α

�

∫ 1

z2=0

∫ a

z1=a−xv

ξ(z1, z2)dz1 dz2 +

∫ b

z2=b−xv

∫ 1

z1=a
ξ(z1, z2)dz1 dz2 (3.11)

+

∫ b

z2=b−xv

∫ 1

z1=0

ξ(z2, z1)dz1 dz2 +

∫ 1

z2=b

∫ a

z1=a−xv

ξ(z2, z1)dz1 dz2

�

(3.12)

62

By change of variables, we have that

P =
1
α

∫ xv

y=0

�

∫ 1

z=0

ξ(a− y, z)dz +

∫ 1

z=a
ξ(z, b− xv + y)dz (3.13)

+

∫ 1

z=0

ξ(b− xv + y, z)dz +

∫ 1

z=b
ξ(z, a− y)dz

�

dy. (3.14)

For 0≤ y ≤ xv , we have a− y ≤ a and b− xv + y ≤ b. By assumption, ξ(z1, z2) is non-negative in the

domain. Therefore, we have

∫ xv

y=0

∫ 1

z=a
ξ(z, b− xv + y)dz dy ≤

∫ xv

y=0

∫ 1

z=a−y
ξ(z, b− xv + y)dz dy (3.15)

and

∫ xv

y=0

∫ 1

z=b
ξ(z, a− y)dz dy ≤

∫ xv

y=0

∫ 1

z=b−xv+y
ξ(z, a− y)dz dy. (3.16)

Hence,

P ≤
1
α

∫ xv

y=0

�

∫ 1

z=0

ξ(a− y, z)dz +

∫ 1

z=a−y
ξ(z, b− xv + y)dz (3.17)

+

∫ 1

z=0

ξ(b− xv + y, z)dz +

∫ 1

z=b−xv+y
ξ(z, a− y)dz

�

dy (3.18)

=
1
α

∫ xv

y=0

1 dy =
xv

α
, (3.19)

where the equality at the beginning of the last row follows from (3.8), since for 0 ≤ y ≤ xv, we

have (a − y) + (b − xv + y) = a + b − xv = distx(r, v) + distx(v, r)− xv ≤ 1 by (3.1), and moreover

a− y ≥ a− xv = distx(r, v)− xv ≥ 0 and b− xv + y ≥ b− xv = distx(v, r)− xv ≥ 0 by the definition of

distx(·, ·).

Since every node v is in the random T-shaped cut with probability at most xv
α , expected weight of a

random T-shaped cut is at most wT x
α . Therefore, there is a T-shaped cut U with w(U)≤ wT x

α .

To prove the Theorem 3.4, it is enough by Lemma 3.2 to show the existence of a function ξ : [0, 1]2→
R+ satisfying (3.8) for which

∫ 1

0

∫ 1

0

ξ(z1, z2)dz1 dz2 =
1

2
p

2
. (3.20)

It turns out that such a function exists, but its structure is surprisingly complex. We define two regions

where the function ξ will have positive values (see Figure 3.3).

63

R1 :=
§

(z1, z2) :
1
p

2
< z1, z2 ≤ 1

ª

,

R2 :=

�

(z1, z2) :

p
2− 1
p

2
≤ z1 ≤

1
p

2
, z1 + z2 ≤ 1

�

.

Figure 3.3: The regions R1 and R2.

Remark. The reason for this restriction on the support of ξ will become apparent in Section 3.3, where

we present an infinite sequence of node-weighted graphs for which the integrality gap of DISTANCE-LP

converges to
p

2. It can be seen that R1 ∪R2 consists of the pairs (z1, z2) for which the weight of the

vertical T-shaped cut V (z1, z2) (based on the optimal LP solution x) converges to 1 in the graph sequence.

Informally, the region R1∪R2 is the region where the complementary slackness conditions allow positive

density, if we consider the “limit” of the weighted graph sequence defined in Section 3.3. However, this

is not the usual notion of graph limit, so we do not formalize this statement as it is not necessary for the

proof.

Proof:[Theorem 3.4] To prove the theorem, we define a function ξwith the above properties. The value of

ξ is defined to be 0 for (z1, z2) ∈ [0, 1]2\(R1∪R2). For every (z1, z2) ∈ R1, we set ξ(z1, z2) := (
p

2+1)/
p

2.

In the region R2, the value of ξ(z1, z2) will depend only on z1. In particular, we will define a function

ζ : [
p

2−1p
2

, 1p
2
]→ R+, and define ξ(z1, z2) in the region R2 as

ξ(z1, z2) := ζ(z1). (3.21)

Let us examine the properties that are sufficient to be satisfied by ζ in order for ξ to satisfy (3.8).

Claim 3.4. Condition (3.8) is satisfied by ξ if the following hold for ζ:

ζ

�p
2− 1
p

2

�

= 0, (3.22)

(1− y)ζ(y) +

∫ 1−y

y
ζ(z)dz =

1
2

if

p
2− 1
p

2
≤ y ≤

1
2

, (3.23)

(1− y)ζ(y)−
∫ y

1−y
ζ(z)dz =

1
2

if
1
2
≤ y ≤

1
p

2
. (3.24)

Proof: We consider several cases based on the values of a and b. Let Γ (a, b) denote the LHS of (3.8).

64

By taking y =
p

2−1p
2

in (3.23) and substituting ζ(
p

2−1p
2
) = 0, we obtain that

∫
1p
2

p
2−1p

2

ζ(z)dz =
1
2

. (3.25)

Case 1(i): Suppose a > 1p
2
. Then b ≤

p
2−1p

2
since a+ b ≤ 1. Now,

Γ (a, b) =

∫ 1

0

ξ(a, z)dz +

∫ 1

0

ξ(b, z)dz +

∫ 1

a
ξ(z, b)dz +

∫ 1

b
ξ(z, a)dz (3.26)

=
�

1+
1
p

2

��

1−
1
p

2

�

+ 0+ 0+
�

1+
1
p

2

��

1−
1
p

2

�

= 1. (3.27)

Case 1(ii): Suppose b > 1p
2
. Proceeding similar to Case 1(i), we obtain Γ (a, b) = 1.

Case 2: Suppose a ≤
p

2−1p
2

and b ≤
p

2−1p
2

. In this case, we have

Γ (a, b) =

∫ 1

0

ξ(a, z)dz +

∫ 1

0

ξ(b, z)dz +

∫ 1

a
ξ(z, b)dz +

∫ 1

b
ξ(z, a)dz (3.28)

= 0+ 0+ 2

∫
1p
2

p
2−1p

2

ζ(z)dz = 1. (3.29)

Case 3(i): Suppose
p

2−1p
2
< a ≤ 1p

2
and b ≤

p
2−1p

2
. Then

Γ (a, b) =

∫ 1

0

ξ(a, z)dz +

∫ 1

0

ξ(b, z)dz +

∫ 1

a
ξ(z, b)dz +

∫ 1

b
ξ(z, a)dz (3.30)

=

∫ 1−a

0

ζ(a)dz + 0+

∫
1p
2

a
ζ(z)dz +

∫ 1−a

p
2−1p

2

ζ(z)dz (3.31)

= (1− a)ζ(a) +

∫
1p
2

a
ζ(z)dz +

∫ 1−a

p
2−1p

2

ζ(z)dz. (3.32)

If a ≤ 1
2 , then the RHS from (3.32) can be written as

Γ (a, b) = (1− a)ζ(a) +

∫ 1−a

a
ζ(z)dz +

∫
1p
2

p
2−1p

2

ζ(z)dz = 1 (3.33)

by (3.23) and (3.25). If a > 1
2 , then the RHS from (3.32) can be written as

Γ (a, b) = (1− a)ζ(a)−
∫ a

1−a
ζ(z)dz +

∫
1p
2

p
2−1p

2

ζ(z)dz = 1 (3.34)

65

by (3.24) and (3.25).

Case 3(ii): Suppose a ≤
p

2−1p
2

and
p

2−1p
2
< b ≤ 1p

2
. Proceeding similar to Case 3(a), we obtain that

Γ (a, b) = 1.

Case 4: Suppose
p

2−1p
2
< a ≤ 1p

2
and

p
2−1p

2
< b ≤ 1p

2
. Moreover, we have a+ b ≤ 1.

Γ (a, b) =

∫ 1

0

ξ(a, z)dz +

∫ 1

0

ξ(b, z)dz +

∫ 1

a
ξ(z, b)dz +

∫ 1

b
ξ(z, a)dz (3.35)

=

∫ 1−a

0

ζ(a)dz +

∫ 1−b

0

ζ(b)dz +

∫ 1−b

a
ζ(z)dz +

∫ 1−a

b
ζ(z)dz (3.36)

= (1− a)ζ(a) + (1− b)ζ(b) +

∫ 1−b

a
ζ(z)dz +

∫ 1−a

b
ζ(z)dz. (3.37)

We will assume that a ≤ b (the other case is similar). If b ≤ 1
2 , then

∫ 1−b

a
ζ(z)dz +

∫ 1−a

b
ζ(z)dz =

∫ 1−a

a
ζ(z)dz +

∫ 1−b

b
ζ(z)dz, (3.38)

and hence Γ (a, b) = 1 follows from (3.23). If b > 1
2 , then, a ≤ 1− b < 1

2 ≤ b and hence, we have

∫ 1−b

a
ζ(z)dz +

∫ 1−a

b
ζ(z)dz =

∫ 1−a

a
ζ(z)dz −

∫ b

1−b
ζ(z)dz. (3.39)

Therefore, Γ (a, b) = 1 follows from (3.23) and (3.24).

We note that conditions (3.22)-(3.24) on ζ are also necessary for (3.8) to hold. This fact is not

needed for the proof of Theorem 3.4, but we prove it to facilitate future investigations on our distribution.

Claim 3.5. Condition (3.8) is satisfied by ξ if and only if the following hold for ζ:

ζ

�p
2− 1
p

2

�

= 0, (3.40)

(1− y)ζ(y) +

∫ 1−y

y
ζ(z)dz =

1
2

if

p
2− 1
p

2
≤ y ≤

1
2

, (3.41)

(1− y)ζ(y)−
∫ y

1−y
ζ(z)dz =

1
2

if
1
2
≤ y ≤

1
p

2
. (3.42)

Proof: The direction showing that (3.40)-(3.42) imply (3.8) was already shown in Claim 3.4. We now

argue the necessity of (3.40), (3.41) and (3.42).

To see the necessity of (3.41), we consider a = b = y for
p

2−1p
2
≤ y ≤ 1

2 . For this choice of a and b,

66

condition (3.8) necessitates that

1= 2

∫ 1

0

ξ(y, z)dz + 2

∫ 1

y
ξ(z, y)dz (3.43)

= 2

∫ 1−y

0

ξ(y, z)dz + 2

∫ 1−y

y
ξ(z, y)dz (3.44)

= 2

∫ 1−y

0

ζ(y)dz + 2

∫ 1−y

y
ζ(z)dz (3.45)

= 2(1− y)ζ(y) + 2

∫ 1−y

y
ζ(z)dz, (3.46)

which shows the necessity of (3.41). The second equation above is because ξ(y, z) = ξ(z, y) = 0 for

z > 1− y since y ≤ 1/2.

To see the necessity of (3.42), we consider a = y, b = 1− y for some y such that 1
2 ≤ y ≤ 1p

2
. For

this choice of a and b, condition (3.8) necessitates that

1=

∫ 1

0

(ξ(y, z) + ξ(1− y, z)) dz +

∫ 1

y
ξ(z, 1− y)dz +

∫ 1

1−y
ξ(z, y)dz (3.47)

=

∫ 1

0

ξ(y, z)dz +

∫ 1

0

ξ(1− y, z)dz + 0+ 0 (3.48)

=

∫ 1−y

0

ξ(y, z)dz +

∫ y

0

ξ(1− y, z)dz (3.49)

=

∫ 1−y

0

ζ(y)dz +

∫ y

0

ζ(1− y)dz (3.50)

= (1− y)ζ(y) + yζ(1− y). (3.51)

We note that the bounds on y imply that
p

2−1p
2
≤ 1− y ≤ 1

2 . Hence, by (3.41) applied to y ′ := 1− y , we

obtain that

yζ(1− y) =
1
2
−
∫ y

1−y
ζ(z)dz. (3.52)

Substituting (3.52) in (3.51) and rewriting in the required form shows the necessity of (3.42).

To see the necessity of (3.40), we consider a = b <
p

2−1p
2

. For this choice of a and b, condition (3.8)

necessitates that

1= 2

∫ 1

0

ξ(a, z)dz + 2

∫ 1

a
ξ(z, a)dz = 0+ 2

∫ 1

a
ξ(z, a)dz = 2

∫
1p
2

p
2−1p

2

ζ(z)dz. (3.53)

67

Now, by (3.41) applied to y =
p

2−1p
2

, we obtain that

1
2
=

1
p

2
ζ

�p
2− 1
p

2

�

+

∫
1p
2

p
2−1p

2

ζ(z)dz =
1
p

2
ζ

�p
2− 1
p

2

�

+
1
2

(3.54)

where the second equation is obtained by substituting (3.53). Hence, ζ(
p

2−1p
2
) = 0, showing the necessity

of (3.40).

In order to complete the proof of the theorem, we have to find a function ζ : [
p

2−1p
2

, 1p
2
]→ R+ that

satisfies properties (3.22)-(3.24). By solving the differential equations corresponding to (3.22)-(3.24),

we get that the function satisfying these properties is

ζ(y) :=
2y(2− y)− 1

4y(1− y)2
. (3.55)

By substituting the function values, it can be verified that
∫ 1

0

∫ 1
0 ξ(z1, z2)dz1 dz2 =

1
2
p

2
. We present the

calculations needed for verification here. By substituting the function values, we get

∫ 1

0

∫ 1

0

ξ(z1, z2)dz1 dz2 =

∫

(z1,z2)∈R1

ξ(z1, z2)dz2 dz1 (3.56)

+

∫

(z1,z2)∈R2

ξ(z1, z2)dz2 dz1 (3.57)

=
�

1−
1
p

2

�2�

1+
1
p

2

�

(3.58)

+

∫
1p
2

z1=
p

2−1p
2

∫ 1−z1

z2=0

ξ(z1, z2)dz2 dz1 (3.59)

=
�

1−
1
p

2

�2�

1+
1
p

2

�

+

∫
1p
2

p
2−1p

2

(1− z1)ζ(z1)dz1 (3.60)

=
p

2− 1

2
p

2
+
p

2− 1
2

=
1

2
p

2
. (3.61)

For clarity, we conclude the section by describing the obtained distribution explicitly. The probability

68

of choosing a given T-shaped cut U is

Pr(U) :=
p

2

�

∫

(θ1,θ2):V (θ1,θ2)=U
ξ(θ1,θ2)dθ1 dθ2

+

∫

(θ1,θ2):H(θ1,θ2)=U
ξ(θ2,θ1)dθ1 dθ2

�

, (3.62)

where

ξ(θ1,θ2) :=

p
2+1p

2
if 1p

2
< θ1,θ2 ≤ 1,

2θ1(2−θ1)−1
4θ1(1−θ1)2

if
p

2−1p
2
≤ θ1 ≤

1p
2

and θ1 + θ2 ≤ 1,

0 otherwise.

(3.63)

3.3
p

2-Lower Bound

As mentioned earlier, (s, r, t)-NODE-LIN-3-CUT is equivalent to (s, r, t)-EDGE-LIN-3-CUT. To reduce

from (s, r, t)-NODE-LIN-3-CUT to (s, r, t)-EDGE-LIN-3-CUT, replace every vertex v of the graph by two

new vertices v− and v+ and add an edge from v− to v+ with weight that of v. For each edge (u, v) in

the original graph, add an edge from u+ to v− with infinite weight. To reduce from (s, r, t)-EDGE-LIN-

3-CUT to (s, r, t)-NODE-LIN-3-CUT, split each edge in the graph by inserting a new vertex with weight

equal to that of the edge. Also, as mentioned in introduction (s, r, t)-EDGE-LIN-3-CUT is equivalent to

DIR-SKEW-MULTICUT problem defined in Chapter 2 for k = 2. DIR-SKEW-MULTICUT is a special case of

DIR-MULTICUT where the demand graph H is a bipartite graph with k terminals s1, . . . , sk on one side

and k terminals t1, . . . , tk on the other side: (si , t j) is an edge in H iff i ≤ j. To reduce (s, r, t)-EDGE-

LIN-3-CUT to DIR-SKEW-MULTICUT, set s1 = s, s2 = r, t1 = r, t2 = t. To reduce DIR-SKEW-MULTICUT to

(s, r, t)-EDGE-LIN-3-CUT, set s = s1, t = t2, add a node r and edges (t1, r), (r, s2). By Theorem 2.11, we

know that approximability of DIR-SKEW-MULTICUT under UGC coincides with the integrality gap of the

DISTANCE-LP. Hence, in this section we present an integrality gap instance for (s, r, t)-NODE-LIN-3-CUT

which will in turn show the inapproximability result in Theorem 3.1.

Theorem 3.5. The integrality gap of the DISTANCE-LP is at least
p

2.

We will construct a sequence of node-weighted graphs for which the integrality gap converges to
p

2. In most previously known integrality gap instances for distance-based linear programs for directed

multicut-like problems, the node weights were uniformly set to be one. In contrast, our gap instance

assigns non-uniform weights to the nodes.

69

3.3.1 Gap Instance Construction

Let M be a positive integer. We will construct a graph G = (V, E) on (M +1)2+3 nodes with weights

on the nodes. For convenience, let us define V ′ := {(i, j) : i, j ∈ {0, 1, . . . , M}}. Thus, we may view V ′ as

the nodes of an (M +1)× (M +1)-grid whose columns and rows are indexed from 0 to M (we will follow

the convention that the first index denotes the column while the second index denotes the row). The

node set of G is given by V := {s, r, t} ∪ V ′. We now define the weights on the nodes. The construction

involves a parameter α ∈ (0, 1/2) that will be determined later. We denote the weight of node (i, j) to

be wi j and define2

wi j :=

0 if i + j > M ,
1−α
M if i + j < M ,

1
2 −

(1−α)i
M if i + j = M , i < M

�

1− 1
2(1−α)

�

,

α if i + j = M and

M
�

1− 1
2(1−α)

�

≤ i ≤ M
�

1
2(1−α)

�

,
1
2 −

(1−α) j
M if i + j = M , i > M

�

1
2(1−α)

�

.

(3.64)

The edge set E consists of undirected and directed edges where the undirected edges represent

directed edges in both directions. The undirected edges consist of the following: every node (i, j) is

adjacent to all nodes in V ′ ∩ {(i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i, j − 1), (i, j + 1), (i + 1, j − 1), (i +

1, j), (i + 1, j + 1)}. The directed edges consist of r → s, t → r, s → (i, M) and (i, 0) → r for every

i ∈ {0,1, . . . , M}, and (M , j)→ t and r → (0, j) for every j ∈ {0, 1 . . . , M} (see Figure 3.4).

We will refer to the subgraph of G induced by the vertex-set V ′ as a diagonalized-grid. We will let

leftmost column, rightmost column, bottommost row, topmost row, and diagonal to denote {(0, j) : j ∈
{0,1, . . . , M}}, {(M , j) : j ∈ {0,1, . . . , M}}, {(i, 0) : i ∈ {0,1, . . . , M}}, {(i, M) : i ∈ {0,1, . . . , M}}, and

{(i, j) : i, j ∈ {0, 1, . . . , M}, i + j = M} respectively.

3.3.2 Proof of Gap

The following lemma bounds the value of an optimal solution to the linear program.

Lemma 3.3. An optimal solution to the DISTANCE-LP for the node-weighted graph constructed above has

weight at most
�

1
M

� M
∑

i=0

M
∑

j=0

wi j . (3.65)

Proof: It is sufficient to exhibit a feasible solution to the linear program whose objective value is as

specified in the lemma. We will show that x(i, j) := 1/M for every i, j ∈ {0,1, . . . , M}, i + j ≤ M and

2The various boundary conditions in the definition of the node weights will have to use appropriately rounded down and
rounded up boundary values. We avoid this technicality in the interests of simplicity.

70

Figure 3.4: The graph corresponding to the integrality gap instance. The black edges are undirected
while the blue edges are directed. The node weights are not shown.

x(i, j) := 1 for every i, j ∈ {0, 1, . . . , M}, i + j > M , is a feasible solution to the linear program. We recall

that nodes (i, j) with i + j > M have weight wi j = 0. Let us consider the graph H obtained from G by

removing all nodes (i, j) with i+ j > M . To show feasibility of x , it suffices to show that every path from

s to r, from r to t and from s to t has at least M intermediate nodes in H.

A path in H from a node (i, j) ∈ V (H) to r has to cross j intermediate rows and hence has at least j

internal nodes. Hence, for every node (i, j) with i, j ∈ {0,1 . . . , M}, i + j ≤ M , the number of internal

nodes in every path from (i, j) to r in H is at least j. Now every path from s to r in H has to go through

(0, M) and hence has at least M internal nodes from V (H)∩ V ′. Similarly, every path from r to t in H

has at least M internal nodes from V (H)∩V ′. Finally, the distance from s to t in H is at least the distance

from r to t in H owing to the edge r → s and hence, the number of internal nodes from V (H)∩ V ′ in

any path from s to t in H is also at least M .

The next lemma shows a lower bound on the objective value of an integral optimum solution.

Lemma 3.4. An optimal solution to (s, r, t)-NODE-LIN-3-CUT in the node-weighted graph constructed above

has weight at least 1.

Proof: Let U∗ be an integral optimal solution. We will show the lower bound on the weight of U∗ in two

steps. We define the axis-parallel neighbors of a node (i, j) to be the nodes in {(i + 1, j), (i − 1, j), (i, j +

1), (i, j − 1)} and a path to be an axis-parallel path if all neighbors of a node (i, j) occurring in the path

are its axis-parallel neighbors. In the first step of the proof, we show that U∗ consists of an axis-parallel

path from a node in the topmost row to a node in the bottommost row and an axis-parallel path from a

71

node in the leftmost column to a node in rightmost column.

Lemma 3.5. The optimal solution U∗ contains a set of nodes which form an axis-parallel path P1 from a

node in the bottommost row to a node in the topmost row in G.

Lemma 3.6. The optimal solution U∗ contains a set of nodes which form an axis-parallel path P2 from a

node in the leftmost column to a node in the rightmost column in G.

We defer the proof of Lemmas 3.5 and 3.6 to complete the proof of Lemma 3.4. As a second step of

the proof, we now show a lower bound on the total weight of the union of the nodes in these two paths.

The next claim follows immediately from the definition of axis-parallel paths.

Claim 3.6. Every axis-parallel path from node (i1, j1) to (i2, j2) contains at least |i2 − i1|+ | j2 − j1| − 1

internal nodes.

We also have the following claim from the definition of the node weights.

Claim 3.7. For every node (i, j) for i, j ∈ {0, 1, . . . , M} with i + j = M, we have

wi j =max
§

1
2
−
(1−α)i

M
,α,

1
2
−
(1−α) j

M

ª

. (3.66)

Let P1 and P2 be the node sets guaranteed by Lemmas 3.5 and 3.6 respectively. Without loss of

generality, let P1 be the node set in U∗ that induces an axis-parallel path from a node (a, 0) to a node

(b, M). Similarly, let P2 be the node set in U∗ that induces an axis-parallel path from a node (0, c) to a

node (M , d) (see Figure 3.5).

Since P1 is an axis-parallel path from a node in the bottommost row to a node in the topmost row,

there exists a node in P1 from the diagonal. Let (x , M − x) be the first node along the axis-parallel path

P1 that is in the diagonal. Let P ′1 be the restriction of P1 from (a, 0) to (x , M − x). Let (x ′, y ′) be the first

node along the axis-parallel path P2 that is either in the diagonal or in P ′1. Let P ′2 be the restriction of P2

from (0, c) to (x ′, y ′). By construction, all nodes (p, q) of P ′1 ∪ P ′2 satisfy p+ q ≤ M . We will show that

the total weight of the nodes in P ′1 ∪ P ′2 is at least 1. This suffices since P ′1 ∪ P ′2 ⊆ U∗. We distinguish two

cases.

1. Suppose P ′2 is a path from (0, c) to a node (i, j) of P ′1, where i + j ≤ M . By Claim 3.6, the

axis-parallel path P ′2 has at least |i − 0| + | j − c| − 1 ≥ i − 1 internal nodes. Furthermore, the

path P ′1 is the concatenation of an axis-parallel path Q1 from (a, 0) to (i, j) and an axis-parallel

path Q2 from (i, j) to (x , M − x). Hence, by Claim 3.6, the axis-parallel path P ′1 has at least

|i− a|+ | j−0| −1+1+ |x − i|+ |M − x − j| −1≥ j+ |x − i|+ |M − x − j| −1≥ M − i−1 internal

nodes. We recall that all these nodes have weight (1−α)/M . Additionally, the nodes (a, 0) and

(0, c) have weight (1−α)/M each. The node (x , M − x) on the diagonal has weight at least α by

72

Figure 3.5: The red circled nodes denote the axis-parallel path P1 and the blue circled nodes denote the
axis-parallel path P2.

Claim 3.7. Combining these, we get that the total weight of the nodes in P ′1 ∪ P ′2 is at least

((i − 1) + (M − i − 1) + 2)
�

1−α
M

�

+α= 1. (3.67)

2. Suppose P ′2 is a path from (0, c) to a node (x ′, M − x ′) on the diagonal. In this case, we will show

that the total weight of the nodes in P ′1 and P ′2 are each lower bounded by 1/2. By Claim 3.6,

the axis-parallel path P ′1 has at least |x − a|+ |M − x − 0| − 1≥ M − x − 1 internal nodes each of

which has weight (1−α)/M . Additionally, the end-node (a, 0) also has weight (1−α)/M and the

end-node (x , M − x) has weight at least 1/2− (1−α)((M − x)/M) by Claim 3.7. Thus, the total

weight of the nodes in P ′1 is at least

((M − x − 1) + 1)
�

1−α
M

�

+
1
2
−
(1−α)(M − x)

M
=

1
2

. (3.68)

We proceed by a similar argument for the total weight of the nodes in P ′2. By Claim 3.6, the

axis-parallel path P ′2 has at least |x ′−0|+ |M − x ′− c|−1≥ x ′−1 internal nodes each of which has

weight (1−α)/M . Additionally, the end-node (0, c) also has weight (1−α)/M and the end-node

(x ′, M − x ′) has weight at least 1/2− (1−α)(x ′/M) by Claim 3.7. Thus, the total weight of the

nodes in P ′2 is at least

((x ′ − 1) + 1)
�

1−α
M

�

+
1
2
−
(1−α)x ′

M
=

1
2

. (3.69)

73

This completes the proof of Lemma 3.4.

We now prove Lemma 3.5. The proof of Lemma 3.6 is similar.

Proof:[Lemma 3.5] Let U∗t denote an inclusion wise-minimal subset of U∗ such that G − U∗t contains no

path from r to t. We will show that U∗t contains a path P1 as required. Showing this is equivalent to

showing the following combinatorial statement: every subset of nodes that intersects all paths from left

to right in a diagonalized-grid (since G contains a diagonalized-grid) has a subset of nodes that induce

an axis-parallel path from a node in the topmost row to a node in the bottommost row in G. We proceed

to show this now.

We will show the combinatorial statement using a coloring argument. Let R := U∗t ∪{(i,−1), (i, M+1) :

i ∈ {0,1, . . . , M}} and B := (V ′ \ U∗t)∪ {(−1, j), (M + 1, j) : j ∈ {0,1, . . . , M}}. Call the corresponding

nodes as red and blue nodes respectively (we observe that the sets R and B have extra nodes in addition

to the nodes in the diagonalized-grid of G, but this is only for the purposes of notational convenience in

this proof). We will construct an auxiliary graph for the purposes of the proof—for clarity, we will refer

to the vertices of G as nodes and the vertices of the auxiliary graph as vertices.

We construct an undirected graph H as follows. The vertex set of H is given by V (H) := {vi, j :

i, j ∈ {0,1, . . . , M + 1}} ∪ {a, b, c, d}. We call a vertex vi, j to be in column i and row j. We define

a′ := v0,0, b′ := vM+1,0, c′ := v0,M+1, d ′ := vM+1,M+1 and call them to be the corner vertices.

The edge set of H is denoted by E(H): a vertex vi, j is adjacent to all vertices in V (H)∩ {vi−1, j , vi+1, j ,

vi, j−1, vi, j+1} (i.e., the undirected grid edges) and vertices a, b, c, d are adjacent to a′, b′, c′, d ′ respectively.

We note that H is a plane graph that corresponds to a square grid with four pendant vertices

that are adjacent to the four corner vertices of the grid. In the following, it is helpful to consider

overlaying H on top of G as shown in Figure 3.6 with each internal face of H containing exactly one

node from V ′. For a vertex vi, j ∈ V (H) \ {a, a′, b, b′, c, c′, d, d ′}, we define Di, j
1 := {(i, j), (i − 1, j − 1)}

and Di, j
2 := {(i − 1, j), (i, j − 1)}. We emphasize that Di, j

1 and Di, j
2 consist of nodes from the original

graph G. They are the nodes in the two diagonally opposite faces adjacent to vi, j in the overlay (see

Figure 3.6).

We now modify H to obtain a directed subgraph G′ as follows: for an edge e ∈ E(H) with e =

{vi, j , vi+b1, j+b2
} where b1, b2 ∈ {0, 1} and b1 + b2 = 1, we say that e is bi-labeled if |{(i, j), (i + b1 − 1, j +

b2 − 1)} ∩ R| = 1 and |{(i, j), (i + b1 − 1, j + b2 − 1)} ∩ B| = 1 (i.e., the two faces of the edge contain

a node from R and B). In addition, we will call the edges {a, a′}, {b, b′}, {c, c′}, {d, d ′} to be trivially

bi-labeled. We delete all edges of H that are not bi-labeled. We orient the trivially bi-labeled edges as

a′→ a, b→ b′, c→ c′ and d ′→ d and orient the remaining bi-labeled edges by the following rule (see

Figure 3.7):

1. for an edge e = {vi, j , vi+1, j}, we will orient the edge as

(a) vi, j → vi+1, j if (i, j) ∈ R and (i, j − 1) ∈ B and declare (i, j) to be the left node and (i, j − 1) to

be the right node of the edge,

74

Figure 3.6: The diagonalized-grid of the graph G is shown in gray while the graph H is shown in black.
For visual simplicity, we have not included the diagonal edges of the diagonalized-grid. The extra red
and blue nodes are also shown. For node vi, j, the nodes of G in the two diagonally opposite faces Di, j

1

and Di, j
2 are also shown.

(b) vi+1, j → vi, j if (i, j) ∈ B and (i, j − 1) ∈ R and declare (i, j) to be the right node and (i, j − 1)

to be the left node of the edge,

2. for an edge e = {vi, j , vi, j+1}, we will orient the edge as

(a) vi, j+1→ vi, j if (i, j) ∈ R and (i − 1, j) ∈ B and declare (i, j) to be the left node and (i − 1, j)

to be the right node of the edge,

(b) vi, j → vi, j+1 if (i, j) ∈ B and (i − 1, j) ∈ R and declare (i, j) to be the right node and (i − 1, j)

to be the left node of the edge,

We observe that this orienting rule ensures that the left and right nodes of every oriented edge are red

and blue respectively (see Figure 3.7).

Figure 3.7: Orienting the bi-labeled edges of H.

We make one final modification to G′ to obtain G: for each vertex vi, j where i, j ∈ {1, . . . , M},

75

(I) if Di, j
1 ⊆ B and Di, j

2 ⊆ R, then (see Figure 3.8) we replace the vertex vi, j by v1
i, j , v2

i, j , declare them to

be the vertices in row i and column j, and replace the head of the incoming edge from the vertex

in column i − 1, row j by v1
i, j, replace the head of the incoming edge from the vertex in column

i+1, row j by v2
i, j , replace the tail of the outgoing edge to the vertex in column i, row j+1 by v1

i, j ,

and replace the tail of the outgoing edge to the vertex in column i, row j − 1 by v2
i, j , and

(II) if Di, j
1 ⊆ R and Di, j

2 ⊆ B, then (see Figure 3.9) we replace the vertex vi, j by v1
i, j , v2

i, j , declare them to

be the vertices in row i and column j, and replace the head of the incoming edge from the vertex

in column i, row j + 1 by v1
i, j , replace the head of the incoming edge from the vertex in column i,

row j − 1 by v2
i, j , replace the tail of the outgoing edge to the vertex in column i + 1, row j by v1

i, j ,

and replace the tail of the outgoing edge to the vertex in column i − 1, row j by v2
i, j .

We call the above operation to be a split operation. We emphasize that the operation separates the red

nodes in a consistent manner. The left and right nodes of all oriented edges still remain the same after

the split operation.

Figure 3.8: Splitting operation (I).

Figure 3.9: Splitting operation (II).

Claim 3.8. Let v ∈ V (G) \ {a, b, c, d}. Then, the incoming and outgoing degree of v are either both zero or

are both 1.

76

Proof: Vertices in G that were obtained by splitting a vertex in G′ clearly satisfy the property since they

have incoming and outgoing degree to be 1 after the split. So, we may assume that v is a vertex in G′ as

well as G. Suppose v has incoming degree to be one in G′ (the proof for outgoing degree being one is

identical).

Suppose v is not a corner vertex. Let v = vi, j. Without loss of generality, let the incoming edge be

from a vertex in column i − 1 and row j (see Figure 3.10). Then, (i − 1, j − 1) ∈ B, (i − 1, j) ∈ R. Based

on whether (i, j − 1) is in R or B and whether (i, j) is in R or B, we have four cases. One of the cases

cannot happen since vi, j is a vertex in both G and G′. The remaining three cases show that the outgoing

degree from vi, j is also one in G′.

Figure 3.10: Degree of internal vertices: Case (a) is impossible. Cases (b), (c) and (d) have a unique
outgoing edge as well.

Suppose v is a corner vertex. Without loss of generality, let v = v0,M = c′ (see Figure 3.11). Now,

depending on whether (0, M) is in R or B, we have two cases. In both cases, the outgoing degree from

v0,M is indeed one.

Figure 3.11: Degree of corner vertices.

Thus, the only vertices in G with outgoing degree 1 and incoming degree 0 are b and c while the

only vertices in G with incoming degree 1 and outgoing degree 0 are a and d. Hence, by Claim 3.8,

there exists a path from c to either a or d in G.

Claim 3.9. Suppose there exists a path from c to d in G. Then there exists a path in G − U∗t from s to r.

77

Proof: Suppose we have a path from c to d in G. Let P denote the nodes of G along the right of the

edges in this path. Thus, P induces a path from a node in the leftmost column to a node in the rightmost

column in G. We recall that the right nodes along the edges in the path are blue nodes and are indeed

not in U∗t . Thus, we have a path from a node in the leftmost column to a node in the rightmost column

in G − U∗t and hence a path from r to t in G − U∗t .

Claim 3.9 shows that a path from c to d in G contradicts the fact that U∗t is a r → t cut in G. Thus,

we must have a path from c to a in G. Claim 3.10 below completes the proof of the lemma.

Claim 3.10. Suppose there exists a path from c to a in G. Then there exists an axis parallel path from a

node in the topmost row to a node in the bottommost row in U∗t .

Proof: Suppose we have a path Q from c to a in G. Let P denote the nodes of G along the left of the

edges in this path. We recall that the left nodes along the edges in the path are red nodes and hence

are in U∗t . Thus, P is a path from a node in the topmost row to a node in the bottommost row in G. It

remains to show that P can be transformed into an axis-parallel path.

Suppose P uses a diagonal edge in G. Without loss of generality, let it be (i−1, j)→ (i, j−1). Let Q′ be

the path Q projected on G′—i.e., use the projected edges in G′. Then, Q′ traverses vi−1, j → vi, j → vi, j−1.

These edges imply that (i − 1, j), (i, j − 1) ∈ R and (i − 1, j − 1) ∈ B. If (i, j) ∈ B, then the split operation

to obtain G from G′ shows that the edges in Q do not exist in G, a contradiction (see Figure 3.12).

Figure 3.12: Diagonal path P. Path Q′ is impossible owing to the split operation.

Thus, we may assume that (i, j) ∈ R and is hence in U∗t . In this case, we can ensure that P makes

fewer axis-parallel turns by rerouting as (i − 1, j)→ (i, j)→ (i, j − 1)} (see Figure 3.13). By rerouting

this way for each diagonal edge of P, we obtain the required axis-parallel path.

With Lemmas 3.3 and 3.4, we prove the main theorem of the section. We restate it below for

convenience.

Theorem 3.6. The integrality gap of the DISTANCE-LP is at least
p

2.

78

Figure 3.13: Diagonal path P can be made axis-parallel.

Proof:We will use the sequence of instances constructed at the beginning of the section. By Lemmas 3.3

and 3.4, it only remains to fix a choice of α and bound the sum of the node weights. We will pick an α

that minimizes the sum of the node weights in order to get the largest possible integrality gap.

We now compute the sum of the node weights as a function of α. The following claim follows from

the definitions of the node weights.

Claim 3.11.

1.
∑

i, j∈{0,...,M}: i+ j 6=M

wi j =
(1−α)(M + 1)

2
,

2.
∑

i, j∈{0,...,M}: i+ j=M ,

i<
�

1− 1
2(1−α)

�

M or i>
�

1
2(1−α)

�

M

wi j =
�

(1− 2α)M
4(1−α)

��

1+ 2α
2

+
1−α

M

�

, and

3.
∑

i, j∈{0,...,M}: i+ j=M ,
�

1− 1
2(1−α)

�

M≤i≤
�

1
2(1−α)

�

M

wi j =
α2M
1−α

.

Using the above claim, we have that

M
∑

i=0

M
∑

j=0

wi j =

�

3− 4α+ 2α2

4(1−α)

�

M + 1−
3α
2

(3.70)

Now, the minimum value of the function f (α) := (3− 4α+ 2α2)/(4(1−α)) in the domain (0, 1/2)

occurs at α = 1− 1/
p

2 and thus the minimum value of the function is minα∈(0,1/2) f (α) = 1/
p

2. Using

this value of α shows that the objective value of an optimal solution to the linear program is at most

79

1/
p

2+Θ(1/M) while the objective value of an optimal integral solution is at least 1. Consequently,

the integrality gap of the sequence of instances constructed as above converges to
p

2 when M tends to

infinity.

3.4 Results for Related Cut Problems

We prove Theorems 3.2 and 3.3 in this section.

3.4.1 Blocking Arborescences

In this section, we show that the approximability of r-INOUT-NODE-BLOCKER and (s, r, t)-NODE-LIN-

3-CUT coincide. We recall the problem r-INOUT-NODE-BLOCKER: Given a node-weighted directed graph

with a specified terminal node r, find a minimum weight set of non-terminal nodes to remove so that

the resulting graph has no out-r-arborescence and no in-r-arborescence. Theorem 3.2 follows from the

following result in conjunction with Theorem 3.1.

Theorem 3.7. There exists an efficient α-approximation algorithm for r-INOUT-NODE-BLOCKER if and only

if there exists an efficient α-approximation for (s, r, t)-NODE-LIN-3-CUT.

Proof: We need the notion of the STRONG-NODE-CUT problem: the input is a directed graph with

node weights, and the goal is to find a minimum weight subset of nodes whose deletion results in at

least two disjoint weakly connected components. We observe that STRONG-NODE-CUT can be solved in

polynomial-time. We first show that r-INOUT-NODE-BLOCKER is a combination of (s, r, t)-NODE-LIN-3-CUT

and STRONG-NODE-CUT.

Claim 3.12. For every directed graph G = (V, E) with r ∈ V , the optimal solution to r-INOUT-NODE-

BLOCKER has value equal to

min
�

min
s,t∈V−r

{(s, r, t)-NODE-LIN-3-CUT in G} , STRONG-NODE-CUT in G
�

. (3.71)

Proof: Let U be an optimal solution of r-INOUT-NODE-BLOCKER in G = (V, E) with r ∈ V . The optimal

values of both (s, r, t)-NODE-LIN-3-CUT in G and STRONG-NODE-CUT in G are upper bounds for the weight

of U . If the weight of U is strictly smaller than STRONG-NODE-CUT, then G[V − U] is weakly connected.

By the definition of U , we have that G[V − U] does not contain an in-r-arborescence and hence it has

a strongly connected component C1 not containing r with δout
G[V−U](C1) = ;. Similarly, since G[V − U]

does not contain an out-r-arborescence, it has a strongly connected component C2 not containing r

with δin
G[V−U](C2) = ;. Since G[V − U] is weakly connected, we have C1 6= C2. Since C1 and C2 are

strongly connected components, they are disjoint. For arbitrary nodes s ∈ C1 and t ∈ C2, there are no

directed paths from s to r, from r to t and from s to t in G[V − U]. Thus U is a feasible solution to

(s, r, t)-NODE-LIN-3-CUT in G.

80

Now we turn to the proof of the theorem. The ‘if’ part follows from Claim 3.12 above. To see the

other direction, consider an instance G = (V, E) of (s, r, t)-NODE-LIN-3-CUT. Clearly, we may assume that

s, r and t have infinite weights. For each node v ∈ V , add an arc from t to v and an arc from v to s. This

step does not affect the values of the feasible solutions to (s, r, t)-NODE-LIN-3-CUT. Let G′ denote the

graph thus arising.

We claim that the feasible solutions with finite weight of (s, r, t)-NODE-LIN-3-CUT and those of r-IN-

OUT-NODE-BLOCKER coincide in G′. Indeed, assume first that U is a solution of (s, r, t)-NODE-LIN-3-CUT

in G′. As G′[V − U] does not contain a directed path from s to r or from r to t, there exists no in-r-

arborescence or out-r-arborescence in G′[V − U], hence U is also a solution of r-INOUT-NODE-BLOCKER

in G′. Now assume that U is a solution of r-INOUT-NODE-BLOCKER in G′ with finite weight, that is,

s, t /∈ U . If G′[V − U] contains a directed path from s to r or from r to t or from s to t, then the arcs

that were added to G can be used to obtain either an in-r-arborescence or an out-r-arborescence, a

contradiction. Hence no such path exists and so U is also a solution of (s, r, t)-NODE-LIN-3-CUT in G′.

By the above, an α-approximate solution to r-INOUT-NODE-BLOCKER in the extended graph is also

an α-approximate solution to (s, r, t)-NODE-LIN-3-CUT in G, thus concluding the proof of the theorem.

The above proof ideas also extend to show that there exists an efficient α-approximation algorithm

for r-INOUT-EDGE-BLOCKER if and only if there exists an efficient α-approximation for (s, r, t)-EDGE-LIN-

3-CUT, which is equivalent to (s, r, t)-NODE-LIN-3-CUT.

3.4.2 Hardness of approximation of {s,∗}-EDGE-BICUT

In this section, we improve on the hardness of approximation of {s,∗}-EDGE-BICUT. We recall the

problem {s,∗}-EDGE-BICUT: Given an edge-weighted directed graph G = (V, E) with a node s, find a

minimum weight subset of edges to remove so that the resulting graph has a node t such that s cannot

reach t and t cannot reach s. Theorem 3.3 follows from the following result in conjunction with Theorem

3.1.

Theorem 3.8. There exists an approximation preserving reduction from (s, r, t)-EDGE-LIN-3-CUT to {s,∗}-
EDGE-BICUT.

Proof: Given an instance of (s, r, t)-EDGE-LIN-3-CUT G = (V, E) with edge weights w ∈ RE
+ and nodes

s, r, t ∈ V , we construct an instance of {r,∗}-EDGE-BICUT as follows: add a new node u to G; add arcs

r → s, t → u, u→ s and arcs t → v, v→ s for every v ∈ V with infinite weight. Let G′ = (V ′, E′) denote

the resulting graph with edge-weights w′ ∈ RE′
+ . We now show that this reduction is an approximation-

preserving reduction.

Suppose F ⊆ E is a feasible solution for (s, r, t)-EDGE-LIN-3-CUT for the given instance G = (V, E)

with edge weights w ∈ RE
+. Then, the subset F ⊂ E′ is also a feasible solution to {r,∗}-EDGE-BICUT in G′

with the same weight: Since r cannot reach t in G − F and the only incoming arc into u in G′ is from t,

81

the node r cannot reach u in G′− F ; since s cannot reach r in G− F and the only outgoing arc from u in

G′ is to s, the node r cannot be reached by u in G′ − F .

Suppose F ⊆ E′ is a feasible solution for {r,∗}-EDGE-BICUT in G′ with finite cost. Then, F cannot

contain any of the newly added arcs and hence F ⊆ E. We show that the subset F is a feasible solution

to (s, r, t)-EDGE-LIN-3-CUT in G with the same weight. Let v be a node that cannot reach r and cannot

be reached by r in G′ − F . If r can reach t in G − F , then r can reach v in G′ − F owing to the infinite

weight arc t → v in G′, a contradiction. Thus, r cannot reach t in G − F . If s can reach t in G − F , then

owing to the infinite weight arc r → s in G′, it follows that r can reach t in G′− F , a contradiction. Thus,

s cannot reach t in G − F . If s can reach r in G − F , then owing to the infinite weight arc v→ s in G′, it

follows that v can reach r in G′ − F , a contradiction. Thus, s cannot reach r in G − F .

3.5 Concluding Remarks

In this chapter, we proved tight bounds on the approximability of Linear-3-cut. It opens up the

possibility of resolving the approximability of a more general problem, Linear-k-Cut. In Linear-k-cut

problem, where we are given a directed graph and a set of terminals s1, . . . , sk. The goal is to remove

minimum weight set of edges or nodes such that there is no path left from si to s j for i < j. Linear-

k-cut is equivalent to the DIR-SKEW-MULTICUT problem considered in Chapter 2. Thus, resolving the

approximability of Linear-k-cut will resolve the approximability of DIR-SKEW-MULTICUT as well.

Our proof for Linear-3-Cut consists of two parts. First part shows there exists a distribution over

T -shaped cuts which achieve a
p

2-approximation factor. Optimality of this factor is proved in the

second part by exhibiting instances with integrality gap limiting to
p

2. We can generalize the notion of

T -shaped cuts for Linear-k-cuts for k > 3. However, there are two issues in generalizing the result. First

issue is in finding the optimal distribution over the T -shaped cuts for Linear-k-Cut for k > 3. Optimal

distribution over T -cuts was very complicated even for k = 3 and has been extremely hard to find for

k > 3. Second issue is about the optimality of T -shaped cuts. Even if we could find the best distribution

for T -shaped cuts, it is not necessary that this gives the tight approximation ratio for Linear-k-cut for

k > 3. Best distribution over T -shaped Cuts achieving the tight approximation ratio may have been a

coincidence for k = 3.

82

Chapter 4

Integrality gap results for Multiway Cut

In this chapter, we improve the hardness results known for a special case of MULTICUT, known

as Multiway Cut. From the results in section 2.4 and that of Manokaran et al. [68], we know that

assuming UGC, hardness matches the integrality gap of certain LPs. Hence, our focus in this chapter is

on improving the integrality gap lower bounds.

EDGE-WT-MWC: The input is an undirected graph G = (V, E) and a set of terminals s1, . . . , sk ∈ V along

with non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of edges E′ ⊆ E

such that for i 6= j ∈ [1, k], there is no path from si to s j in G − E′.

DIR-MWC: The input is a directed graph G = (V, E) and a set of terminals s1, . . . , sk ∈ V along with

non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of edges E′ ⊆ E such

that for i 6= j ∈ [1, k], there is no path from si to s j in G − E′.

For EDGE-WT-MWC, Manokaran et al. [68] showed that the integrality gap of CKR relaxation gives

a matching hardness of approximation bound for EDGE-WT-MWC assuming UGC. The CKR relaxation

takes a geometric perspective of the problem. For a graph G = (V, E) with edge weights w : E→ R+ and

terminals t1, . . . , tk, the CKR relaxation is given by

min
∑

e={u,v}∈E

w(e)‖xu − x v‖1 (4.1)

xu ∈∆k ∀ u ∈ V, (4.2)

x t i = ei ∀ i ∈ [k], (4.3)

where ∆k := {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 x i = 1} is the (k− 1)-dimensional simplex and ei ∈ {0, 1}k is

the extreme point of the simplex along the i-th coordinate axis, i.e., ei
j = 1 if and only if j = i.

Current best upper bound on the integrality gap of CKR relaxation is 1.2965 due to Sharma and

Vondrák [77] and current best lower bound is 1.20 due to Angelidakis, Makarychev and Manurangsi [3].

In this work, we improve on the lower bound by constructing an instance with integrality gap 1.20016.

Theorem 4.1. For every constant ε > 0, there exists an instance of EDGE-WT-MWC such that the integrality

gap of the CKR relaxation for that instance is at least 1.20016− ε.

The above result in conjunction with the result of Manokaran et al. immediately implies the following

corollary:

Corollary 4.1. EDGE-WT-MWC is UGC-hard to approximate within a factor of 1.20016− ε for every ε > 0.

83

DIR-MWC-REL

min
∑

e∈E

we xe

∑

e∈p

xe ≥ 1 p ∈ Pi j , i 6= j

xe ≥ 0 e ∈ E

Figure 4.1: LP Relaxation for DIR-MWC

From the result of Zosin et al. [70] and the algorithm in section 2.3.1, we know that the integrality

gap of the DIR-MWC-REL (flow-cut gap) for DIR-MWC is at most 2. Hence, DIR-MWC admits a 2-

approximation algorithm and does not admit a 2− ε approximation algorithm for any ε > 0 assuming

UGC [61]. We show that the same bound is tight even for a more restrictive case of k = 2, referred to as

{s, t}-EDGE-BICUT.

{s, t}-EDGE-BICUT: The input is a directed graph G = (V, E) and two vertices s, t ∈ V along with

non-negative edge weights w(e), e ∈ E. The goal is to find minimum weight set of edges E′ ⊆ E such

that there is no path from s to t and no path from t to s in G − E′.

Theorem 4.2. Integrality gap of DIR-MWC-REL for {s, t}-EDGE-BICUT is 2 even in planar directed graphs.

s1 t1

s2t2

s t

Figure 4.2: Reduction from DIR-MULTICUT with two demand pairs (s1, t1), (s2, t2) to {s, t}-EDGE-BICUT

Subsequent to our construction, Julia Chuzhoy obtained an alternative non-recursive construction

with an integrality gap of 2 for {s, t}-EDGE-BICUT. This can be deduced from the fact that {s, t}-EDGE-

-BICUT is equivalent to DIR-MULTICUT with two demand pairs, and the fact that DIR-MULTICUT with

k demand pairs has integrality gap equal to k [74]. Figure 4.2 shows the reduction from an instance

of DIR-MULTICUT with two demand pairs to {s, t}-EDGE-BICUT. Reduction from {s, t}-EDGE-BICUT to

DIR-MULTICUT with two demand pairs is trivial.

Using theorem 2.11, we obtain the following corollary:

Corollary 4.2. {s, t}-EDGE-BICUT is UGC-hard to approximate within a factor of 2− ε for every ε > 0.

Organization: In Section 4.2, we show that the integrality gap of DIR-MWC-REL is 2 for {s, t}-EDGE-BI-

CUT. In Section 4.1, we show that the integrality gap of CKR relaxation is at least 1.20016

84

4.1 Improving the integrality gap bound for CKR-relaxation

4.1.1 Non-opposite Cuts

Before outlining our techniques, we briefly summarize the background literature that we build upon

to construct our instance. We rely on two significant results from the literature. In the context of the

k-way cut problem, a cut is a function P :∆k→ [k+ 1] such that P(ei) = i for all i ∈ [k], where we use

the notation [k] := {1, 2, . . . , k}. The approximation ratio τk(P) of a distribution P over cuts is given by

its maximum density:

τk(P) := sup
x ,y∈∆k ,x 6=y

PrP∼P(P(x) 6= P(y))
(1/2)‖x − y‖1

(4.4)

Moreover, for

τ∗k :=min
P
τk(P), (4.5)

Karger et al. [56] showed that for every ε > 0, there is an instance of multiway cut with k terminals for

which the integrality gap of the CKR relaxation is at least τ∗k − ε. Thus, Karger et al.’s result reduced the

problem of constructing an integrality gap instance for multiway cut to proving a lower bound on τ∗k.

Next, Angelidakis, Makarychev and Manurangsi [3] reduced the problem of lower bounding τ∗k
further by showing that it is sufficient to restrict our attention to non-opposite cuts as opposed to all cuts.

A cut P is a non-opposite cut if P(x) ∈ Support(x)∪{k+1} for every x ∈∆k. Let ∆k,n :=∆k∩ ((1/n)Z)k.

For a distribution P over cuts, let

τk,n(P) := max
x ,y∈∆k,n,x 6=y

PrP∼P(P(x) 6= P(y))
(1/2)‖x − y‖1

, and (4.6)

τ̃∗k,n :=min{τk,n(P) : P is a distribution over non-opposite cuts}. (4.7)

Angelidakis, Makarychev and Manurangsi showed that τ̃∗k,n −τ
∗
K = O(kn/(K − k)) for all K > k. Thus,

in order to lower bound τ∗K , it suffices to lower bound τ̃∗k,n. That is, it suffices to construct an instance

that has large integrality gap against non-opposite cuts.

As a central contribution, Angelidakis, Makarychev and Manurangsi constructed an instance showing

that τ̃∗3,n ≥ 1.2 − O(1/n). Now, by setting n = Θ(
p

K), we see that τ∗K is at least 1.2 − O(1/
p

K).

Furthermore, they also showed that their lower bound on τ̃∗3,n is almost tight, i.e., τ̃∗3,n ≤ 1.2. The salient

feature of this framework is that in order to improve the lower bound on τ∗K , it suffices to improve τ̃∗k,n

for some 4≤ k < K .

The main technical challenge towards improving τ̃∗4,n is that one has to deal with the 3-dimensional

simplex ∆4. Indeed, all known gap instances including that of Angelidakis, Makarychev and Manurangsi

are constructed using the 2-dimensional simplex. In the 2-dimensional simplex, the properties of non-

opposite cuts are easy to visualize, and their cut-values are convenient to characterize using simple

85

geometric observations. However, the values of non-opposite cuts in the 3-dimensional simplex become

difficult to characterize. Our main contribution is a simple argument based on properties of lower-

dimensional simplices that overcomes this technical challenge. We construct a 3-dimensional instance

that has gap larger than 1.2 against non-opposite cuts.

Theorem 4.3. τ̃∗4,n ≥ 1.20016−O(1/n).

One of the by-products of our technique is a generalization of a result on Sperner admissible labelings

due to Mirzakhani and Vondrák [69] that might be of independent combinatorial interest (see Theorem

4.6).

4.1.2 Outline of Ideas

In order to construct an instance that has gap strictly larger than 1.2 against non-opposite cuts, we

present four instances that have large gap against different types of cuts, and then compute the convex

combination of these instances that gives the best gap against all non-opposite cuts.

All of our four instances are defined as edge-weights on the graph G = (V, E) with node set ∆4,n

and edge set E4,n := {x y : x , y ∈∆4,n,‖x − y‖1 = 2/n}, where the terminals are the four unit vectors.

We identify ∆3,n with the facet of ∆4,n defined by x4 = 0. Our first three instances are 2-dimensional

instances, i.e. only edges induced by ∆3,n have positive weight. The fourth instance has uniform weight

on E4,n.

We first explain the motivation behind Instances 1,2, and 4, since these are easy to explain. Let

Li j := {x y ∈ E4,n : Support(x), Support(y) ⊆ {i, j}}. (4.8)

• Instance 1 is simply the instance of Angelidakis, Makarychev and Manurangsi [3] on ∆3,n. It has

gap 1.2− 1
n against all non-opposite cuts, since non-opposite cuts in ∆4,n induce non-opposite cuts

on ∆3,n. Additionally, we show in Lemma 4.5 that the gap is strictly larger than 1.2 by a constant

if the following two conditions hold:

– there exist i, j ∈ [3] such that Li j contains only one edge whose end-nodes have different

labels (a cut with this property is called a non-fragmenting cut), and

– ∆3,n has a lot of nodes with label 5.

• Instance 2 has uniform weight on L12, L13 and L23, and 0 on all other edges. Here, a cut in which

each Li j contains at least two edges whose end-nodes have different labels (a fragmenting cut) has

large weight. Consequently, this instance has gap at least 2 against such cuts.

• Instance 4 has uniform weight on all edges in E4,n. A beautiful result due to Mirzakhani and Vondrák

[69] implies that non-opposite cuts with no node of label 5 have large weight. Consequently, this

86

instance has gap at least 3/2 against such cuts. We extend their result in Lemma 4.1 to show that

the weight remains large if ∆3,n has few nodes with label 5.

At first glance, the arguments above seem to already imply that a convex combination of these

instances already gives a gap strictly larger than 1.2 for all non-opposite cuts. Unfortunately, this is not

the case: using only these three instances, we could not obtain a gap better than 1.2. The issue is that a

fragmenting cut may have near-minimum weight in Instance 1 and simultaneously very small weight

in Instance 4. Instance 3 is constructed specifically against these types of cuts. It has positive uniform

weight on 3 equilateral triangles, incident to e1, e2 and e3 on the face ∆3,n. We call the edges of these

triangles red edges. The side length of these triangles is a parameter, denoted by c, that is optimized at

the end of the proof. Essentially, we show that if a non-opposite cut has small weight both on Instance 1

and Instance 4, then it must contain red edges.

Our lower bound of 1.20016 is obtained by optimizing the coefficients of the convex combination

and the parameter c.

4.1.3 A 3-dimensional gap instance against non-opposite cuts

We will focus on the graph G = (V, E)with the node set V :=∆4,n being the discretized 3-dimensional

simplex and the edge set E4,n := {x y : x , y ∈∆4,n,‖x − y‖1 = 2/n}. The four terminals s1, . . . , s4 will be

the four nodes of the simplex, namely si = ei for i ∈ [4]. In this context, a cut is a function P : V → [5]
such that P(si) = i for all i ∈ [4]. The cut-set corresponding to P is defined as

δ(P) := {x y ∈ E4,n : P(x) 6= P(y)}. (4.9)

For a set S of nodes, we will also use δ(S) to denote the set of edges with exactly one end node in

S. Given a weight function w : E4,n→ R+, the cost of a cut P is
∑

e∈δ(P)w(e). Our goal is to come up

with weights on the edges so that the resulting 4-way cut instance has gap at least 1.20016 against

non-opposite cuts.

We will denote the boundary nodes and the boundary edges between terminals si and s j as Vi j and

Li j respectively, i.e.,

Vi j :=
�

x ∈∆4,n : Support(x) ⊆ {i, j}
	

, and (4.10)

Li j := {x y ∈ E4,n : Support(x), Support(y) ⊆ {i, j}}. (4.11)

Let c ∈ (0,1/2) be a constant to be fixed later, such that cn is integral. For each k ∈ [3] and {i, j} =

87

s1

s2 s3

L31L12

L23

(a) One face of the simplex with edge-sets L12, L23
and L31.

s1

s2 s3

cn

Closure(R1)

U1

(b) Definition of red nodes and edges near terminal
s1. Dashed part corresponds to (R1, Γ1).

Figure 4.3: Notation on Face(s1, s2, s3).

[3] \ {k}, we define the node sets

Uk := {x ∈∆4,n : x4 = 0, xk = 1− c, x i = λc, x j = (1−λ)c for some λ ∈ [0, 1]}, (4.12)

Rk := Uk ∪ {x ∈ Vik ∪ Vjk : xk ≥ 1− c}, and (4.13)

Closure(Rk) := {x ∈∆4,n : x4 = 0, xk ≥ 1− c, 0≤ x i , x j ≤ c}. (4.14)

Moreover, for each k ∈ [3] and {i, j}= [3] \ {k}, we define the edge set

Γk :=
§

x y ∈ E4,n : x ∈ Vik ∩ Rk, y = x +
1
n

ek −
1
n

ei

ª

(4.15)

∪
§

x y ∈ E4,n : x ∈ Vjk ∩ Rk, y = x +
1
n

ek −
1
n

e j

ª

(4.16)

∪
§

x y ∈ E4,n : x ∈ Uk, y = x +
1
n

ei −
1
n

e j

ª

. (4.17)

We will refer to the nodes in Rk as red1 nodes near terminal sk and the edges in Γk as the red edges near

terminal sk (see Figure 4.3b). Let Face(s1, s2, s3) denote the subgraph of G induced by the nodes whose

support is contained in {1,2,3}. We emphasize that the red edges and red nodes are present only in

Face(s1, s2, s3) and that the total number of red edges is exactly 9cn.

Gap instance as a convex combination: Our gap instance is a convex combination of the following

four instances.

1. Instance I1. Our first instance constitutes the 3-way cut instance constructed by Angelidakis,

Makarychev and Manurangsi [3] that has gap 1.2 against non-opposite cuts. To ensure that the

total weight of all the edges in their instance is exactly n, we will scale their instance by 6/5. Let

us denote the resulting instance as J . In I1, we simply use the instance J on Face(s1, s2, s3) and set

1We use the term “red” as a convenient way for the reader to remember these nodes and edges. The exact color is irrelevant.

88

the weights of the rest of the edges in E4,n to be zero.

2. Instance I2. In this instance, we set the weights of the edges in L12, L23, L13 to be 1/3 and the

weights of the rest of the edges in E4,n to be zero.

3. Instance I3. In this instance, we set the weights of the red edges to be 1/9c and the weights of

the rest of the edges in E4,n to be zero.

4. Instance I4. In this instance, we set the weight of every edge in E4,n to be 1/n2.

We note that the total weight of all edges in each of the above instances is n+O(1). For multipliers

λ1, . . . ,λ4 ≥ 0 to be chosen later that will satisfy
∑4

i=1λi = 1, let the instance I be the convex combination

of the above four instances, i.e., I = λ1 I1 +λ2 I2 +λ3 I3 +λ4 I4. By the properties of the four instances, it

immediately follows that the total weight of all edges in the instance I is also n+O(1).

Gap of the Convex Combination: The following theorem is the main result of this section.

Theorem 4.4. For every n≥ 10 and c ∈ (0,1/2) such that cn is integer, every non-opposite cut on I has

cost at least the minimum of the following two terms:

(i) λ2 + (1.2− 1
n)λ1 +minα∈[0, 1

2]
�

0.4αλ1 + 3
�1

2 −α
�

λ4

	

(ii) 2λ2 + (1.2− 2
n)λ1 + 3 min

§

2λ3
9c , min

α∈
�

0, c2
2

�

¦

0.4αλ1 + 3
�

c2

2 −α
�

λ4

©

ª

Before proving Theorem 4.4, we see its consequence.

Corollary 4.3. There exist constants c ∈ (0,1/2) and λ1,λ2,λ3,λ4 ≥ 0 with
∑4

i=1λi = 1 such that the

cost of every non-opposite cut in the resulting convex combination I is at least 1.20016−O(1/n).

Proof: Suppose that cn is integer. By Theorem 4.4, the cost of every non-opposite cut on I is at least

min{µ1,µ2} −O(1/n)λ1 where

µ1 := λ2 + 1.2λ1 + min
α∈[0, 1

2]

§

0.4αλ1 + 3
�

1
2
−α

�

λ4

ª

and (4.18)

µ2 := 2λ2 + 1.2λ1 + 3min

(

2λ3

9c
, min
α∈
�

0, c2
2

�

�

0.4αλ1 + 3

�

c2

2
−α

�

λ4

�

)

. (4.19)

In order to get the largest possible gap from this, we will identify constants c ∈ (0,1/2) and

λ1,λ2,λ3,λ4 ≥ 0 such that
∑4

i=1λi = 1 so that min{µ1,µ2} is maximized. We mention that the optimal

choice for λ4 is

λ4 =
0.4λ1

3
. (4.20)

89

We avoid going over the details behind this choice of λ4 as it is not insightful. After this choice, we can

simplify µ1 and µ2 as

µ1 = λ2 + 1.4λ1, and (4.21)

µ2 = 2λ2 + 1.2λ1 + 3min
§

2λ3

9c
, 0.2c2λ1

ª

. (4.22)

Our goal is to maximize min{µ1,µ2}. Again, we omit the details and mention that the optimal choice

for λ3 is to set
2λ3

9c
= 0.2c2λ1, i.e., λ3 = 0.9c3λ1. (4.23)

With this choice of λ3, we have that

µ1 = λ2 + 1.4λ1, and (4.24)

µ2 = 2λ2 + 1.2λ1 + 0.6c2λ1. (4.25)

Now, in order to maximize min{µ1,µ2}, the optimal choice is to ensure that µ1 = µ2, which gives

λ2 = (0.2− 0.6c2)λ1 (4.26)

and

min{µ1,µ2}= (1.6− 0.6c2)λ1. (4.27)

Thus, we now have λ2,λ3 and λ4 as a function of λ1 and c. We further note that
∑4

i=1λi = 1.

Substituting the values of λ2,λ3 and λ4 into this equation and solving for λ1, we obtain that

λ1 =
1

4
3 − 0.6c2 + 0.9c3

. (4.28)

With this choice of λ1, we have that

min{µ1,µ2}=
1.6− 0.6c2

4
3 − 0.6c2 + 0.9c3

. (4.29)

Maximizing the RHS function, which is a function of c, subject to the constraint that c ∈ (0,1/2), we

obtain that

min{µ1,µ2}= 1.20016 (4.30)

90

at c = 0.074125. Substituting back, we obtain the constants

λ1 = 0.751652, (4.31)

λ2 = 0.147852, (4.32)

λ3 = 0.000275, and (4.33)

λ4 = 0.100221. (4.34)

We note that the function in (4.29) is differentiable, so changing c to the nearest multiple of 1/n decreases

(4.29) by O(1/n). Hence, the cost of every non-opposite cut on the instance I given by the above values

of c and multipliers λ1, . . . ,λ4 is at least 1.20016−O(1/n).

Corollary 4.3 implies Theorem 4.3 in the following way.

Proof:[Theorem 4.3] Let w(e) denote the weight of edge e ∈ E4,n in the instance I defined above. Let P

be a distribution over non-opposite cuts. Then

τk,n(P) = max
x ,y∈∆k,n,x 6=y

PrP∼P(P(x) 6= P(y))
(1/2)‖x − y‖1

(4.35)

≥ max
x y∈E4,n

PrP∼P(P(x) 6= P(y))
(1/2)‖x − y‖1

(4.36)

= max
x y∈E4,n

PrP∼P(P(x) 6= P(y))
1/n

(4.37)

≥
∑

x y∈E4,n

w(x y)PrP∼P(P(x) 6= P(y))
(1/n)(

∑

e∈E4,n
w(e))

(4.38)

≥
1.20016−O(1/n)

1+O(1/n)
= 1.20016−O(1/n), (4.39)

where the last inequality follows from Corollary 4.3 and the fact that the total weight of all edges in the

instance I is n+O(1).

The rest of the section is devoted to proving Theorem 4.4. We rely on two main ingredients in

the proof. The first ingredient is a statement about non-opposite cuts in the 3-dimensional discretized

simplex. We prove this in Section 4.1.4, where we also give a generalization to higher dimensional

simplices, which might be of independent interest.

Lemma 4.1. Let P be a non-opposite cut on ∆4,n with α(n+ 1)(n+ 2) nodes from Face(s1, s2, s3) labeled

as 1, 2, or 3 for some α ∈ [0,1/2]. Then, |δ(P)| ≥ 3αn(n+ 1).

The next ingredient involves properties of the 3-way cut instance constructed by Angelidakis,

Makarychev and Manurangsi [3]. We need two properties that are summarized in Lemma 4.5 and

Corollary 4.5. We prove these properties in Section 4.1.5. We define a cut Q : ∆3,n → [4] to be a

fragmenting cut if |δ(Q)∩ Li j| ≥ 2 for every distinct i, j ∈ [3]; otherwise it is a non-fragmenting cut. We

recall that J denotes the instance obtained from the 3-way cut instance of Angelidakis, Makarychev and

91

Manurangsi by scaling it up by 6/5.

Lemma 4.2. Let Q :∆3,n→ [4] be a non-opposite cut with αn2 nodes labeled as 4. If Q is a non-fragmenting

cut and n≥ 10, then the cost of Q on J is at least 1.2− 1
n + 0.4α.

Corollary 4.4. Let Q :∆3,n→ [4] be a non-opposite cut and n≥ 10. For each i ∈ [3], let

Ai :=

{v ∈ Closure(Ri) : Q(v) = 4} if δ(Q)∩ Γi = ;,

; otherwise.
(4.40)

Then, the cost of Q on J is at least 1.2− 2
n + 0.4

∑3
i=1 |Ai|/n2.

We now have the ingredients to prove Theorem 4.4.

Proof:[Theorem 4.4] Let P : ∆4,n → [5] be a non-opposite cut. Let Q be the cut P restricted to

Face(s1, s2, s3), i.e., for every v ∈∆4,n with Support(v) ⊆ [3], let

Q(v) :=

P(v) if P(v) ∈ {1,2, 3},

4 if P(v) = 5.
(4.41)

We consider two cases.

Case 1: Q is a non-fragmenting cut. Let the number of nodes in Face(s1, s2, s3) that are labeled by Q as

4 (equivalently, labeled by P as 5) be α(n+ 1)(n+ 2) for some α ∈
�

0, 1
2

�

. Since |{x ∈ Face(s1, s2, s3) :

Q(x) = 4}| ≥ αn2, Lemma 4.5 implies that the cost of Q on J , and hence the cost of P on I1, is at least

1.2− 1
n + 0.4α. Moreover, the cost of P on I2 is at least 1 since at least one edge in Li j should be in δ(P)

for every pair of distinct i, j ∈ [3]. To estimate the cost on I4, we observe that the number of nodes

on Face(s1, s2, s3) labeled by P as 1, 2, or 3 is (1/2− α)(n+ 1)(n+ 2). By Lemma 4.1, we have that

|δ(P)| ≥ 3(1/2−α)n(n+ 1) and thus, the cost of P on I4 is at least 3(1/2−α). Therefore, the cost of P

on the convex combination instance I is at least

λ2 +
�

1.2−
1
n

�

λ1 + min
α∈[0, 1

2]

§

0.4αλ1 + 3
�

1
2
−α

�

λ4

ª

. (4.42)

Case 2: Q is a fragmenting cut. Then, the cost of P on I2 is at least 2 as a fragmenting cut contains at

least 2 edges from each Li j for distinct i, j ∈ [3].

We will now compute the cost of P on the other instances. Let r := |{i ∈ [3] : δ(P)∩ Γi 6= ;}|, i.e.,

r is the number of red triangles that are intersected by the cut P. We will derive lower bounds on the

cost of the cut in each of the three instances I1, I3 and I4 based on the value of r ∈ {0, 1, 2, 3}. For each

92

i ∈ [3], let

Ai :=

{v ∈ Closure(Ri) : P(v) = 5} if δ(P)∩ Γi = ;,

; otherwise,
(4.43)

and let α := |A1∪A2∪A3|/((n+1/c)(n+2/c)). Since c < 1/2, the sets Ai and A j are disjoint for distinct

i, j ∈ [3]. We note that α ∈ [0, (3− r)c2/2] since |Ai| ≤ (cn+ 1)(cn+ 2)/2 and Ai ∩ A j = ;.

In order to lower bound the cost of P on I1, we will use Corollary 4.5. Recall that Q is the cut P

restricted to Face(s1, s2, s3), so the cost of P on I1 is the same as the cost of Q on J . Moreover, by Corollary

4.5, the cost of Q on J is at least 1.2− 2
n + 0.4α, because α≤

∑3
i=1 |Ai|/n2. Hence, the cost of P on I1 is

at least 1.2− 2
n + 0.4α.

The cost of P on I3 is at least 2r/9c by the following claim.

Claim 4.1. Let i ∈ [3]. If δ(P)∩ Γi 6= ;, then |δ(P)∩ Γi| ≥ 2.

Proof: The subgraph (Ri , Γi) is a cycle. If P(x) 6= P(y) for some x y ∈ Γi , then the path Γi − x y must also

contain two consecutive nodes labeled differently by P.

Next, we compute the cost of P on the instance I4. If r = 3, then the cost of P on I4 is at least 0.

Suppose r ∈ {0, 1, 2}. For a red triangle i ∈ [3]with δ(P)∩Γi = ;, we have at least (cn+1)(cn+2)/2−|Ai|
nodes from Closure(Ri) that are labeled as 1, 2, or 3. Moreover, the nodes in Closure(Ri) and Closure(R j)

are disjoint for distinct i, j ∈ [3]. Hence, the number of nodes in Face(s1, s2, s3) that are labeled as 1, 2,

or 3 is at least (3− r)(cn+ 1)(cn+ 2)/2−α(n+ 1/c)(n+ 2/c) = ((3− r)c2/2−α)(n+ 1/c)(n+ 2/c),

which is at least ((3 − r)c2/2 − α)(n + 1)(n + 2), since c ≤ 1. Therefore, by Lemma 4.1, we have

|δ(P)| ≥ 3((3− r)c2/2−α)n2 and thus, the cost of P on I4 is at least 3((3− r)c2/2−α).

Thus, the cost of P on the convex combination instance I is at least 2λ2 + (1.2− 2
n)λ1 + γ(r,α) for

some α ∈ [0, (3− r)c2/2], where

γ(r,α) :=

6λ3
9c , if r = 3,

0.4αλ1 +
2r
9cλ3 + 3

�

(3−r)c2

2 −α
�

λ4, if r ∈ {0, 1,2}.
(4.44)

In particular, the cost of P on the convex combination instance I is at least 2λ2+(1.2− 2
n)λ1+γ∗, where

γ∗ := min
r∈{0,1,2,3}

min
α∈
h

0, (3−r)c2
2

i

γ(r,α). (4.45)

Now, Claim 4.2 completes the proof of the theorem.

Claim 4.2.

γ∗ ≥ 3min

(

2λ3

9c
, min
α∈
�

0, c2
2

�

�

0.4αλ1 + 3

�

c2

2
−α

�

λ4

�

)

. (4.46)

93

Proof: Let γ(r) := minα∈[0,(3−r)c2/2] γ(r,α). If r = 3, then the claim is clear. We consider the three

remaining cases.

(I) Say r = 0. Then,

γ(0) = min
α∈
�

0, 3c2
2

�

�

0.4αλ1 + 3

�

3c2

2
−α

�

λ4

�

= 3 min
α∈
�

0, c2
2

�

�

0.4αλ1 + 3

�

c2

2
−α

�

λ4

�

. (4.47)

(II) Say r = 1. Then,

γ(1) = min
α∈[0,c2]

§

0.4αλ1 +
2
9c
λ3 + 3

�

c2 −α
�

λ4

ª

(4.48)

=
2
9c
λ3 + min

α∈
�

0, c2
2

�

�

2 · 0.4αλ1 + 3
�

c2 − 2α
�

λ4

	

(4.49)

=
2
9c
λ3 + 2 min

α∈
�

0, c2
2

�

�

0.4αλ1 + 3

�

c2

2
−α

�

λ4

�

(4.50)

≥ 3min

(

2λ3

9c
, min
α∈
�

0, c2
2

�

�

0.4αλ1 + 3

�

c2

2
−α

�

λ4

�

)

, (4.51)

where the last inequality is from the identity x + 2y ≥ 3min{x , y} for all x , y ∈ R.

(III) Say r = 2. Then,

γ(2) = min
α∈
�

0, c2
2

�

�

0.4αλ1 +
4
9c
λ3 + 3

�

c2

2
−α

�

λ4

�

(4.52)

=
4
9c
λ3 + min

α∈
�

0, c2
2

�

�

0.4αλ1 + 3

�

c2

2
−α

�

λ4

�

(4.53)

≥ 3min

(

2λ3

9c
, min
α∈
�

0, c2
2

�

�

0.4αλ1 + 3

�

c2

2
−α

�

λ4

�

)

, (4.54)

where the last inequality is from the identity 2x + y ≥ 3min{x , y} for all x , y ∈ R.

4.1.4 Size of non-opposite cuts in ∆k,n

In this section, we prove Lemma 4.1. In fact, we prove a general result for ∆k,n, that may be useful

for obtaining improved bounds by considering higher dimensional simplices. Our result is an extension

of a theorem of Mirzakhani and Vondrák [69] on Sperner-admissible labelings.

A labeling ` :∆k,n→ [k] is Sperner-admissible if `(x) ∈ Support(x) for every x ∈∆k,n. We say that

x ∈∆k,n has an inadmissible label if `(x) /∈ Support(x). Let Hk,n denote the hypergraph whose node set

94

is ∆k,n and whose hyperedge set is

E :=
§§

n− 1
n

x +
1
n

e1,
n− 1

n
x +

1
n

e2, . . . ,
n− 1

n
x +

1
n

ek

ª

: x ∈∆k,n−1

ª

. (4.55)

Each hyperedge e ∈ E has k nodes, and if x , y ∈ e, then there exist distinct i, j ∈ [n] such that

x − y = 1
n ei −

1
n e j . We remark that Hk,n has

�n+k−1
k−1

�

nodes and
�n+k−2

k−1

�

hyperedges. Geometrically, the

hyperedges correspond to simplices that are translates of each other and share at most one node. Given

a labeling `, a hyperedge of Hk,n is monochromatic if all of its nodes have the same label. Mirzakhani

and Vondrák proved the following result.

Theorem 4.5 (Proposition 2.1 in [69]). Let ` be a Sperner-admissible labeling of ∆k,n. Then, the number

of monochromatic hyperedges in Hk,n is at most
�n+k−3

k−1

�

, and therefore the number of non-monochromatic

hyperedges is at least
�n+k−3

k−2

�

.

Our result is an extension to the case when there are some inadmissible labels on a single face of

∆k,n. We will denote the nodes x ∈∆k,n with Support(x) ⊆ [k− 1] as Face(s1, . . . , sk−1).

Theorem 4.6. Let ` be a labeling of ∆k,n such that all inadmissible labels are on Face(s1, . . . , sk−1) and the

number of nodes with inadmissible labels is β (n+k−2)!
n! for some β . Then, the number of non-monochromatic

hyperedges of Hk,n is at least

�

1
(k− 2)!

− β
�

(n+ k− 3)!
(n− 1)!

. (4.56)

Proof: Let Z := {x ∈ Face(s1, . . . , sk−1) : `(x) = k}, i.e. Z is the set of nodes in Face(s1, . . . , sk−1) having

an inadmissible label. Let us call a hyperedge of Hk,n inadmissible if the label of one of its nodes is

inadmissible.

Claim 4.3. There are at most β (n+k−3)!
(n−1)! inadmissible monochromatic hyperedges.

Proof: Let E′ be the set of inadmissible monochromatic hyperedges. Each hyperedge e ∈ E′ has exactly

k− 1 nodes from Face(s1, . . . , sk−1) and they all have the same label as e is monochromatic. Thus, each

e ∈ E′ contains k − 1 nodes from Z . We define an injective map ϕ : E′ → Z by letting ϕ(e) to be the

node x ∈ e ∩ Z with the largest 1st coordinate. Notice that if x = ϕ(e), then the other nodes of e are

x − (1/n)e1 + (1/n)ei (i = 2, . . . , k), and all but the last one are in Z . In particular, x1 is positive.

Let Z ′ ⊆ Z be the image of ϕ. For x ∈ Z and i ∈ {2, . . . , k− 1}, let

Z i
x := {y ∈ Z : y j = x j ∀ j ∈ [k− 1] \ {1, i}}. (4.57)

Since yk = 0 and ‖y‖1 = 1 for every y ∈ Z , the nodes of Z i
x are on a line containing x . It also follows

95

that Z i
x ∩ Z j

x = {x} if i 6= j. Let

Z ′′ := {x ∈ Z : ∃i ∈ {2, . . . , k− 1} such that x i ≥ yi ∀y ∈ Z i
x}. (4.58)

We observe that if x ∈ Z ′, then for each i ∈ {2, . . . , k − 1}, the node y = x − (1/n)e1 + (1/n)ei is in Z

and hence, y ∈ Z i
x with yi > x i . In particular, this implies that Z ′ ∩ Z ′′ = ;. We now compute an upper

bound on the size of Z \ Z ′′, which gives an upper bound on the size of Z ′ and hence also on the size of

E′, as |Z ′| = |E′|. For each node x ∈ Z \ Z ′′ and for every i ∈ {2, . . . , k− 1}, let z i
x be the node in Z ′′ ∩ Z i

x

with the largest ith coordinate. Clearly z i
x 6= z j

x if i 6= j, because Z i
x ∩ Z j

x = {x}.

For given y ∈ Z ′′ and i ∈ {2, . . . , k − 1}, we want to bound the size of S := {x ∈ Z \ Z ′′ : z i
x = y}.

Consider a ∈ S. Then, z i
a = y implies that the node in Z ′′ ∩ Z i

a with the largest i-th coordinate is y.

That is, y j = a j for all j ∈ [k − 1] \ {1, i} and moreover yi ≥ ai. If yi = ai, then y = a, so a is in Z ′′

which contradicts a ∈ S. Thus, yi > ai for any a ∈ S, i.e. the nodes in S are on the line Z i
y and their

i-th coordinate is strictly smaller than yi. This implies that |S| ≤ nyi. Consequently, the size of the set

{x ∈ Z \ Z ′′ : y = z i
x for some i ∈ {2, . . . , k− 1}} is at most n, since

∑k−2
i=2 yi ≤ ‖y‖1 = 1.

For each x ∈ Z \ Z ′′, we defined k− 2 distinct nodes z2
x , . . . , zk−1

x ∈ Z ′′. Moreover, for each y ∈ Z ′′,

we have at most n distinct nodes x in Z \ Z ′′ for which there exists i ∈ {2, . . . , k− 1} such that y = z i
x .

Hence, (k− 2)|Z \ Z ′′| ≤ n|Z ′′|, and therefore |Z \ Z ′′| ≤ (n/(n+ k− 2))|Z |. This gives

|E′|= |Z ′| ≤ |Z \ Z ′′| ≤
n

n+ k− 2
|Z | ≤ β

(n+ k− 2)!
n!

n
n+ k− 2

= β
(n+ k− 3)!
(n− 1)!

, (4.59)

as required.

Let `′ be a Sperner-admissible labeling obtained from ` by changing the label of each node in Z to an

arbitrary admissible label. By Theorem 4.5, the number of monochromatic hyperedges for `′ is at most
�n+k−3

k−1

�

. By combining this with the claim, we get that the number of monochromatic hyperedges for `

is at most
�n+k−3

k−1

�

+ β (n+k−3)!
(n−1)! . Since Hk,n has

�n+k−2
k−1

�

hyperedges, the number of non-monochromatic

hyperedges is at least

�

n+ k− 2
k− 1

�

−
�

n+ k− 3
k− 1

�

− β
(n+ k− 3)!
(n− 1)!

=
�

n+ k− 3
k− 2

�

− β
(n+ k− 3)!
(n− 1)!

(4.60)

=
�

1
(k− 2)!

− β
�

(n+ k− 3)!
(n− 1)!

. (4.61)

We now derive Lemma 4.1 from Theorem 4.6. We restate Lemma 4.1 for convenience.

Lemma 4.1. Let P be a non-opposite cut on ∆4,n with α(n+ 1)(n+ 2) nodes from Face(s1, s2, s3) labeled

as 1, 2, or 3 for some α ∈ [0,1/2]. Then, |δ(P)| ≥ 3αn(n+ 1).

Proof:[Lemma 4.1] Let ` be the labeling of ∆4,n obtained from P by setting `(x) = 4 if P(x) = 5, and

96

`(x) = P(x) otherwise. This is a labeling with (1
2 −α)(n+ 1)(n+ 2) nodes having an inadmissible label,

all on Face(s1, s2, s3). We apply Theorem 4.6 with parameters k = 4, β = 1
2 −α, and the labeling `. By

the theorem, the number of non-monochromatic hyperedges in H4,n = (∆4,n,E) under labeling ` is at

least αn(n+ 1).

We observe that for each hyperedge e = {u1, u2, u3, u4} ∈ E, the subgraph G[e] induced by the nodes

in e contains 6 edges. Also, for any two hyperedges e1 and e2, the edges in the induced subgraphs G[e1]

and G[e2] are disjoint as e1 and e2 can share at most one node. Moreover, for each non-monochromatic

hyperedge e ∈ E, at least 3 edges of G[e] are in δ(P). Thus, the number of edges of G that are in δ(P) is

at least 3αn(n+ 1).

4.1.5 Properties of the 3-way cut instance in [3]

In this section, we prove Lemma 4.5 and Corollary 4.5 which are properties of the gap instance

in [3].

The gap instance in [3]: We start by summarizing the relevant background about the gap instance

against non-opposite 3-way cuts designed by Angelidakis, Makarychev and Manurangsi [3]. For our

purposes, we scale the costs of their instance by a factor of 6/5 as it will be convenient to work with

them. We describe this scaled instance now.

Let G= (∆3,n, E3,n) where E3,n := {x y : x , y ∈∆3,n,‖x − y‖1 = 2/n}. Their instance is obtained by

dividing ∆3,n into a middle hexagon H := {x ∈ ∆3,n : x i ≤ 2/3 ∀ i ∈ [3]} and three corner triangles

T1, T2, T3, where Ti := {x ∈∆3,n : x i > 2/3}. To define the edge costs, we let ρ := 3/5n. The cost of the

edges in G[H] is ρ. The cost of the non-boundary edges in G[Ti] that are not parallel to the opposite

side of ei is also ρ. The cost of the non-boundary edges in G[Ti] that are parallel to the opposite side of

ei are zero. The cost of the boundary edges in Li j are as follows: the edge closest to ei has cost (n/3)ρ,

the second closest edge to ei has cost (n/3− 1)ρ, and so on. See Figure 4.4 for an example. We will

denote the resulting graph with edge-costs as J . The cost of a subset F of edges on the instance J is

CostJ (F) :=
∑

e∈F w(e).

For a subset of edges F ⊂ E3,n, let G− F denote the graph (∆3,n, E3,n \ F). We need the following

two results about their instance.

Lemma 4.3. [3] For every non-opposite cut Q :∆3,n→ [4], the cost of Q on instance J is at least 1.2− 1
n .

Lemma 4.4. For {i, j, k} = [3] and for every subset F of edges in E3,n such that si cannot reach Vjk in G− F,

the cost of F on J is at least 0.4− (1
n)/3.

Although Lemma 4.4 is not explicitly stated in [3], its proof appears under Case 1 in the Proof of

Lemma 3 of [3]. The factor 0.4 that we have here is because, we scaled their costs by a factor of 6/5.

97

s2 s3

s1

3̺3̺

3̺

3̺3̺

3̺

2̺

̺

2̺ ̺ ̺ ̺ ̺ ̺ 2̺

2̺

̺

̺

̺

̺

̺

2̺2̺

̺

̺

̺

̺

Figure 4.4: The instance in [3] for n= 9.

We next define non-oppositeness as a property of the cut-set as it will be convenient to work with

this property for cut-sets rather than for cuts.

Definition 4.1. A set F ⊆ E3,n of edges is a non-opposite cut-set if there is no path from s1 to V23 in G− F,

no path from s2 to V13 in G− F, and no path from s3 to V12 in G− F.

We summarize the connection between non-opposite cut-sets and non-opposite cuts.

Proposition 4.1. (i) If Q :∆3,n→ [4] is a non-opposite cut, then δ(Q) is a non-opposite cut-set.

(ii) For every non-opposite cut-set F ⊆ E3,n, the cost of F on instance J is at least 1.2− 1
n .

Proof:

(i) Suppose not. Without loss of generality, suppose there exists a path from s1 to V23 in G− δ(Q).
Then, by the definition of δ(Q), all nodes of the path have the same label, so there exists a node

u ∈ V23 that is labeled as 1, contradicting the fact that Q is a non-opposite cut.

(ii) Consider a labeling L :∆3,n→ [4] where L = i if the node v is reachable from terminal si in G− F

and L(v) = 4 if the node v is reachable from none of the three terminals in G− F . Since F is a

non-opposite cut-set, it follows that ` is a non-opposite cut. Moreover, δ(L) ⊆ F . Therefore, the

claim follows by Lemma 4.3.

Proof of Lemma 4.5: We now restate and prove Lemma 4.5.

Lemma 4.5. Let Q :∆3,n→ [4] be a non-opposite cut with αn2 nodes labeled as 4. If Q is a non-fragmenting

cut and n≥ 10, then the cost of Q on J is at least 1.2− 1
n + 0.4α.

Proof:We first show that the labeling Q may be assumed to indicate reachability in the graph G−δ(Q).

98

Claim 4.4. For every non-opposite non-fragmenting cut Q :∆3,n→ [4], there exists a labeling Q′ :∆3,n→
[4] such that

(i) a node v ∈∆3,n is reachable from si in G−δ(Q′) iff Q′(v) = i,

(ii) CostJ (δ(Q′))≤ CostJ (δ(Q)),

(iii) the number of nodes in ∆3,n that are labeled as 4 by Q is at most the number of nodes in ∆3,n that

are labeled as 4 by Q′, and

(iv) Q′ is a non-opposite non-fragmenting cut.

Proof:

s1

s2 s3 s3s2

s1

1

2

4

1

3

2

3

1

4

Figure 4.5: An example of a cut Q and the cut Q′ obtained in the proof of Claim 4.4.

For i ∈ [3], let Si be the set of nodes that can be reached from si in G−δ(Q). Consider a labeling Q′

defined by

Q′(v) :=

i if v ∈ Si , and

4 if v ∈∆3,n \ (S1 ∪ S2 ∪ S3).
(4.62)

See Figure 4.5 for an example of a cut Q and the cut Q′ obtained as above. We prove the required

properties for the labeling Q′ below.

(i) By definition, Q′(v) = i iff v is reachable from si in G \δ(Q′).

(ii) Since δ(Q′) = (δ(S1)∪δ(S2)∪δ(S3))∩δ(Q), we have that δ(Q′) ⊆ δ(Q). Hence, CostJ (δ(Q′))≤
CostJ (δ(Q)).

(iii) Let i ∈ [3]. Since all nodes of Si are labeled as i by Q, the nodes labeled as i by Q′ is a subset

of the set of nodes labeled as i by Q. This implies that Q′ is also a non-opposite cut and that the

99

number of nodes in ∆3,n that are labeled as 4 by Q is at most the number of nodes in ∆3,n that are

labeled as 4 by Q′.

(iv) Since Q is a non-fragmenting cut, there exist distinct i, j ∈ [3] such that |δ(Q)∩ Li j| = 1. Since

δ(Q′) ⊆ δ(Q), we have that |δ(Q′)∩ Li j| ≤ 1. On the other hand, Q′ labels si by i and s j by j and

hence, |δ(Q′) ∩ Li j| ≥ 1. Combining the two, we have that |δ(Q′) ∩ Li j| = 1 and hence Q′ is a

non-fragmenting cut.

Let G′ := G−δ(Q). By Claim 4.4, we may henceforth assume that

For every node v ∈ V , v is reachable from si in G′ iff Q(v) = i. (4.63)

In order to show a lower bound on the cost of Q, we will modify Q to obtain a non-opposite cut while

reducing its cost by 0.4α. [3] showed that the cost of every non-opposite cut on J is at least 1.2− 1
n .

Therefore, the cost of Q on J must be at least 1.2− 1
n + 0.4α.

Since Q is a non-fragmenting cut, there exist distinct i, j ∈ [3] such that |δ(Q)∩ Li j|= 1. Without

loss of generality, suppose that i = 1 and j = 3. For i ∈ [3], let Si := {v ∈∆3,n |Q(v) = i}, i.e. Si is the

set of nodes that can be reached from si in G′. Let B := {v ∈∆3,n |Q(v) = 4} be the set of nodes labeled

as 4 by Q. Then, |B| = αn2. We note that S1, S2, and S3 are components of G′, and the set B is the union

of the remaining components.

Let Vi j be the set of end nodes of edges in Li j. We say that a node v ∈ ∆3,n can reach Vi j in G′ if

there exists a path from v to some node w ∈ Vi j in G′. We observe that all nodes in V13 are reachable

from either s1 or s3 in G′. In particular, this means that no node of B can reach V13 in G′. We partition

the node set B based on reachability as follows (see Figure 4.6):

B1 := {v ∈ B | v cannot reach V12 and V23 in G′}, (4.64)

B2 := {v ∈ B | v can reach V12 but not V23 in G′}, (4.65)

B3 := {v ∈ B | v can reach V23 but not V12 in G′}, and (4.66)

B4 := {v ∈ B | v can reach V12 and V23 in G′}. (4.67)

For r ∈ [4], let βr := |Br |/n2. We next summarize the properties of the sets defined above.

Proposition 4.2. The sets B1, B2, B3, B4 defined above satisfy the following properties:

(i) For every distinct r, p ∈ [4], we have Br ∩ Bp = ;.

(ii) For every r ∈ [4], we have δ(Br) ⊆ δ(Q), i.e. Br is the union of some components of G′.

(iii) For every r ∈ [4] and every edge e ∈ δ(Br), one end node of e is in Br and the other one is in

S1 ∪ S2 ∪ S3.

100

s1

s2 s3

B4

B1

B2

B3

Figure 4.6: Partition of B into B1, B2, B3, B4.

(iv) For every distinct r, p ∈ [4], we have δ(Br)∩δ(Bp) = ;.

(v) B = ∪4
r=1Br ,

∑4
r=1 βr = α, and βr ≤ 0.66 for every r ∈ [4].

Proof:

(i) The disjointness property follows from the definition of the sets.

(ii) Suppose δ(Br) is not a subset of δ(Q) for some r ∈ [4]. Without loss of generality, let r = 1

(the proof for the other cases are similar). Then, there exists an edge uv ∈ E3,n \ δ(Q) with

u ∈ B1, v ∈ B \ B1. Since v is in B \ B1, it follows that the node v can reach either V12 or V13 in G′.

Moreover, since the edge uv is in G′, it follows that the node u can also reach either V12 or V13 in

G′, and hence u 6∈ B1. This contradicts the assumption that u ∈ B1.

(iii) Let uv ∈ δ(Br) with u ∈ Br and v 6∈ Br . Since Q(u) = 4, the node u is not reachable from any of

the terminals in G′. Suppose that the node v is also not reachable from any of the terminals in

G′. Then, by the reachability assumption, it follows that Q(v) = 4. Hence, the edge uv has both

end-nodes labeled as 4 by Q and therefore uv 6∈ δ(Q). Thus, we have an edge uv ∈ δ(Bi) \δ(Q)
contradicting part (ii).

(iv) Follows from parts (i) and (iii).

(v) By definition, we have that B = ∪4
r=1Br . Since the sets B1, B2, B3, B4 are pair-wise disjoint, they

induce a partition of B and hence |B| =
∑4

r=1 |Br |. Consequently,
∑4

r=1 βr n2 = αn2 and thus,
∑4

r=1 βr = α. Next, we note that |∆3,n| = (n+ 1)(n+ 2)/2. Since Br ⊆ B ⊆ ∆3,n, we have that

βr = |Br |/n2 ≤ |∆3,n|/n2 ≤ (1+ 1/n)(1+ 2/n)/2≤ 0.66 since n≥ 10.

By Proposition 4.1 (i), the cut-set δ(Q) is a non-opposite cut-set. The following claim shows a way

to modify δ(Q) to obtain a non-opposite cut-set with strictly smaller cost if βr > 0.

101

Claim 4.5. For every r ∈ [4], there exists Er ⊆ δ(Br), E′r ⊆ G[Br] such that

1. Er ⊆ δ(Si) for some i ∈ [3],

2. (δ(Q) \ Er)∪ E′r is a non-opposite cut-set and

3. CostJ (Er)− CostJ (E′r)≥ 0.4βr .

Proof: We consider the cases r = 1,2,4 individually as the proofs are different for each of them. The

case of r = 3 is similar to the case of r = 2. We begin with a few notations that will be used in the proof.

For distinct i, j ∈ [3], and for t ∈ {0, 1, . . . , 2n/3}, let V t
i j := {u ∈∆3,n : uk = 1− t/n for {k} = [3]\{i, j}}.

Thus, V t
i j denotes the set of nodes that are on the line parallel to Vi j and at distance t/n from it. We will

call the sets V t
i j as lines for convenience. Let L t

i j denote the edges of E3,n whose end-nodes are in V t
i j.

Thus, the edges in L t
i j are parallel to Li j (see Figure 4.7).

s3s2

s1

Lt
23

t

Figure 4.7: The set of edges L t
23.

1. Suppose r = 1. We partition the set δ(B1) of edges into three sets X i := δ(B1)∩ δ(Si) for i ∈ [3]
(see Figure 4.8).

By Proposition 4.2 (iii), we have that (X1, X2, X3) is a partition of B1. Let

E1 := arg max{CostJ (F) : F ∈ {X1, X2, X3}} and (4.68)

E′1 := ;. (4.69)

We now show the required properties for this choice of E1 and E′1.

(a) Since E′1 = ;, we need to show that δ(Q)\ E1 is a non-opposite cut-set. Let G′′ := G− (δ(Q)\ E1).

For each edge e ∈ E1, the end node of e in ∆3,n \ B1 is reachable from a terminal si in G′ iff it is

reachable from si in G′′. Therefore, for each node v ∈∆3,n \ B1 and a terminal si for i ∈ [3], we

have that v is reachable from si in G′ iff v is reachable from si in G′′. Since δ(Q) is a non-opposite

102

s1

s2 s3

X3

X1

X2

b
b b
b

b
b

b

b

b
b

b
b

b
b

b
b

Figure 4.8: Partition of δ(B1) into X i ’s.

cut-set, it follows that si cannot reach Vjk in G′ for {i, j, k} = [3]. Since B1∩ (V12∪V23∪V13) = ;,
the terminal si cannot reach Vjk in G′′ for {i, j, k} = [3]. Hence, δ(Q) \ E1 is a non-opposite

cut-set.

(b) We note that none of the nodes in B1 can reach V12, V23 and V13 in G′. Therefore, if there exists

a node from B1 in V t
i j for some t ∈ {1, . . . , n}, then at least two edges in L t

i j should be in δ(B1)

(see Figure 4.9). Therefore, if V t
i j ∩ B1 6= ;, then |δ(B1)∩ L t

i j| ≥ 2.

s3s2

s1

Lt
23

t

b b b b

B1

Figure 4.9: B1 ∩ V t
23 6= ; implies that |δ(B1)∩ L t

23| ≥ 2.

Every node v ∈ B1 is in at least two lines among V t
i j for distinct i, j ∈ [3] and t ∈ {1, . . . , 2n/3}.

Each line V t
i j for t ∈ {1, . . . , 2n/3} has at most n nodes. Hence, the number of lines with non-

empty intersection with B1 is at least 2|B1|/n. For each line that has a non-empty intersection

with B1, we have at least two edges in δ(B1). Hence,

�

�

�δ(B1)∩
�

∪i, j∈[3],t∈{1,...,2n/3}L
t
i j

�

�

�

�≥ 4 ·
|B1|
n

. (4.70)

103

The cost of each edge in ∪i, j∈[3],t∈{1,...,2n/3}L
t
i j is 3/5n. So,

CostJ (δ(B1))≥ CostJ

�

δ(B1)∩
�

∪i, j∈[3],t∈{1,...,2n/3}L
t
i j

��

≥
12
5
|B1|
n2
=

12
5
β1. (4.71)

Since we set E1 to be the X i with maximum cost, we get that CostJ (E1)≥ (4/5)β1. Moreover,

CostJ (E′1) = 0 as E1 = ;. Hence, CostJ (E1)− CostJ (E′1)≥ (4/5)β1 ≥ 0.4β1.

2. Suppose r = 2. We assume that B2 6= ; as otherwise, the claim is trivial. Similar to the previous case,

we partition the set δ(B2) into three sets X i := δ(B2)∩δ(Si) for i ∈ [3] (see Figure 4.10).

s1

s2 s3

X3

X1

X2

B2 b b

b
b

b
b

b

b

b

b

b
b

b
b

Figure 4.10: Partition of δ(B2) into X i ’s.

We also define

Z := X3 ∩δ(B2 ∩ V12) (4.72)

and let

E2 := X1 and E′2 := ; if CostJ (X1)≥ 0.4β2, (4.73)

E2 := X2 and E′2 := ; if CostJ (X2)≥ 0.4β2, (4.74)

E2 := X3 \ Z and E′2 := δG(B2 \ V12, B2 ∩ V12) if CostJ (X1), CostJ (X2)< 0.4β2. (4.75)

We emphasize that the last case is the only situation where we use a non-empty set for E′2. We now

show the required properties for this choice of E2 and E′2.

(a) Let G′′ := G− ((δ(Q)\ E2)∪ E′2). For each edge e ∈ E2, the end node of e in∆3,n \B2 is reachable

from a terminal si in G′ iff it is reachable from si in G′′. Therefore, for each node v ∈∆3,n \ B2

and a terminal si for i ∈ [3], we have that v is reachable from si in G′ iff v is reachable from

si in G′′. Since B2 ∩ V13 = ; and s2 cannot reach V13 in G′, we have that s2 cannot reach V13 in

G′′. Similarly, s1 cannot reach V23 in G′′. It remains to argue that s3 cannot reach V12 in G′′. We

104

s3s2

s1 s1

s2 s3 s3s2

s1

b

b

b

b

b

b

Y1

b

b

b

b

b

b

b

b

b

b

b

b

bb

bb

bb

bb
Y2 Y3

Figure 4.11: Partition of δ(B2) into Yi ’s. The shaded region is B2.

have two cases.

i. Suppose E2 = X1 or E2 = X2. We note that X1 and X2 are the set of edges in δ(B2) whose

end nodes outside B2 are reachable from s1 (and s2 respectively) in G′. So, if E2 = X1 or

if E2 = X2, then the set of nodes reachable by s3 in G′ and G′′ remains the same. Since s3

cannot reach V12 in G′, we have that s3 cannot reach V12 in G′′.

ii. Suppose E2 = X3. We will show that δ(B2 ∩ V12) ⊆ (δ(Q) \ E2) ∪ E′2. Consequently, the

nodes of B2 ∩ V12 are not reachable from s3 in G′′. Since nodes of V12 \ B2 are not reachable

from s3 in G′, we have that s3 cannot reach V12.

We now show that δ(B2 ∩ V12) ⊆ (δ(Q) \ E2)∪ E′2. Let uv ∈ δ(B2 ∩ V12) with u ∈ B2 ∩ V12

and v 6∈ B2 ∩ V12. If v ∈ S1 ∪ S2, then uv ∈ δ(B2) ⊆ δ(Q) and uv 6∈ X3 ⊇ E2. Hence, uv ∈
(δ(Q) \ E2)∪ E′2. If v ∈ S3, then uv ∈ Z and hence uv 6∈ E2. Moreover, uv ∈ δ(B2) ⊆ δ(Q),
hence uv ∈ (δ(Q) \ E2) ∪ E′2. If v ∈ B, then v ∈ B2 by Proposition 4.2 (iv) and hence

e ∈ E′2 ⊆ (δ(Q) \ E2)∪ E′2.

(b) If CostJ (X1) or CostJ (X2) is at least 0.4β2, then we are done. So, let us assume that CostJ (X1),

CostJ(X2) ≤ 0.4β2. Let Y1, Y2 and Y3 be the set of edges in δ(B2) that are parallel to L12, L13

and L23 respectively (see Figure 4.11). Formally,

Y1 := δ(B2)∩
�

∪t∈{0,1,...,n}L
t
12

�

(4.76)

Y2 := δ(B2)∩
�

∪t∈{0,1,...,n}L
t
13

�

(4.77)

Y3 := δ(B2)∩
�

∪t∈{0,1,...,n}L
t
23

�

(4.78)

Claims 4.6 and 4.7 will help us derive the required inequality on the cost.

Claim 4.6.

CostJ (E
′
2)≤ CostJ (Y2) + CostJ (Y3)− CostJ (Z). (4.79)

Proof: We proceed in two steps: (1) we will show a one-to-one mapping f from edges in E′2
to edges in (Y2 ∪ Y3) \ Z such that the cost of every edge e ∈ E′2 is the same as the cost of the

105

mapped edge f (e) in the instance J , i.e., w(e) = w(f (e)) for every e ∈ E′2 and (2) we will

show that that Z ⊆ Y2 ∪ Y3. Now, by observing that the sets Y2 and Y3 are disjoint, we get that

CostJ (E′2)≤ CostJ (Y2) + CostJ (Y3)− CostJ (Z).

We now define the one-to-one mapping f : E′2 → (Y2 ∪ Y3) \ Z . Let e = uv ∈ E′2 such that

u ∈ B2∩V12, v ∈ B2 \V12. Since E′2 only contains edges between B2∩V12 and B2 \V12, it does not

contain an edge parallel to L12. Therefore, e ∈ L t
13 or e ∈ L t

23 for some t ∈ {1, . . . , n}. Suppose

e ∈ L t
13 for some t ∈ {1, . . . , n}. Since the nodes of B2 cannot reach V23 in G′, there exists an

edge in δ(B2)∩ L t
13. We map e to an arbitrary edge in δ(B2)∩ L t

13 ⊆ Y2 (see Figure 4.12). We

note that the set Z contains the set of edges incident to B2 ∩ V12 whose other end node is in

S3. Since both u and v are in B2, it follows that L t
13 ∩ Z = ;. So, our mapping of e is indeed to

an edge in Y2 \ Z . Similarly, if e ∈ L t
23 for some t ∈ {1, . . . , n}, then we map e to an arbitrary

edge in δ(B2)∩ L t
23 ⊆ Y3 \ Z . This mapping is a one-to-one mapping as E′2 contains at most one

edge from L t
13 for each t ∈ {1, 2, . . . , n} and at most one edge from L t

23 for each t ∈ {1, 2, . . . , n}.
Moreover, for each t ∈ {1,2, . . . , n}, the cost of all edges in L t

13 are identical and the cost of all

edges in L t
23 are identical.

s1

s2 s3

b

b

b

b

e

f(e)

t

Lt
13

Figure 4.12: Mapping from E′2 to (Y2 ∪ Y3) \ Z . The shaded region is B2.

We now show that Z ⊆ Y2 ∪ Y3. The set Z contains all edges whose one end node is in B2 ∩ V12

and another end node is in S3. Since V12 ∩ S3 = ;, the set Z does not contain any edge between

B2∩V12 and V12\B2. Hence, Y1∩Z = ;. Since Z is a subset of X3 which is a subset of Y1∪Y2∪Y3,

it follows that Z ⊆ Y2 ∪ Y3.

Claim 4.7.

CostJ (Y1)≥
6
5
β2. (4.80)

Proof: We first show a lower bound on the size of the set W := {t ∈ {0, 1, . . . , 2n/3} : V t
12∩B2 6=

;}. If B2 ∩ V t
12 6= ; for some t ∈ {2n/3+ 1, . . . , n}, then B2 ∩ V t

12 6= ; for all t ∈ {0,1, . . . , 2n/3}
and hence, |W | ≥ 2n/3. Otherwise, B2 ∩ V t

12 = ; for all t ∈ {2n/3 + 1, . . . , n}. In this case,

106

B2 ⊆ ∪
2n/3
t=0 V t

12. For t ≥ 1, each line V t
12 has at most n nodes. For t = 0, the set B2 can contain at

most n− 1 nodes from V 0
12 which are not s1 or s2. Hence, |W | ≥ |B2|/n= β2n. Thus, we have

that |W | ≥min{2n/3,β2n}= β2n as β2 ≤ 0.66.

Since the nodes of B2 cannot reach V23 and V13 in G′, we have that |δ(B2)∩L t
12| ≥ 2 if B2∩V t

12 6= ;.
Hence,

�

�

�δ(B2)∩
�

∪2n/3
t=0 L t

12

�

�

�

�≥ 2|W | ≥ 2β2n. (4.81)

Each edge in ∪2n/3
t=0 L t

12 has cost at least 3/5n. Hence,

CostJ

�

δ(B2)∩
�

∪2n/3
t=0 L t

12

��

≥
6
5
β2. (4.82)

Since Y1 = δ(B2)∩
�

∪n
t=0 L t

12

�

⊇ δ(B2)∩
�

∪2n/3
t=0 L t

12

�

, we get that CostJ (Y1)≥ (6/5)β2.

We now derive the required inequality on the cost as follows:

CostJ (E2)− CostJ (E
′
2) = CostJ (X3 \ Z)− Cost(E′2) (4.83)

≥ CostJ (X3)− CostJ (Z)− CostJ (Y2)− CostJ (Y3) + CostJ (Z) (By Claim 4.6) (4.84)

≥ CostJ (X3 ∩ Y1) + CostJ (X3 ∩ Y2) + CostJ (X3 ∩ Y3)− CostJ (Y2)− CostJ (Y3) (4.85)

= CostJ (X3 ∩ Y1)− CostJ ((X1 ∪ X2)∩ Y2)− CostJ ((X1 ∪ X2)∩ Y3) (4.86)

= CostJ (Y1)− CostJ ((X1 ∪ X2)∩ Y1)− CostJ ((X1 ∪ X2)∩ Y2)− CostJ ((X1 ∪ X2)∩ Y3)

(4.87)

= CostJ (Y1)− CostJ (X1 ∪ X2) (4.88)

≥
6
5
β2 − 0.4β2 − 0.4β2 (By Claim 4.7 and CostJ (X1), CostJ (X2)≤ 0.4β2) (4.89)

= 0.4β2. (4.90)

3. Suppose r = 4. We assume that B4 6= ;, as otherwise the claim is trivial. We partition δ(B4) into

X1 := δ(B4)∩δ(S2) and X2 := δ(B4) \ X1 (see Figure 4.13), and let E4 := X1 and E′4 := ;.

We now show the required properties for this choice of E4 and E′4. Let us fix a node v ∈ B4 and a

path v, u1, . . . , ut from v to L12 in G[B4], and a path v, w1, . . . , wt ′ from v to L23 in G[B4] (see Figure

4.13). Let S := {v, u1, . . . , ut , w1, . . . , wt ′}. We note that S ⊆ B4.

(a) Since E′4 = ;, we need to show that δ(Q)\ E4 is a non-opposite cut-set. Let G′′ := G− (δ(Q)\ E4).

We first observe that there are no paths between S and V13 in G− X2. Hence, there is no path

from s1 or s3 to an end node of E4 = X1 in G′. Moreover, there is no path from s1 to V23 or

from s3 to V12 in G′. So, there is no path from s1 to V23 or from s3 to V12 in G′′. Also, since

X2 ⊆ δ(Q) \ X1 and there is no path from s2 to V13 in G− X2, it follows that there is no path

from s2 to V13 in G′′. Hence, δ(Q) \ E4 is a non-opposite cut-set.

107

s1

s2 s3

X2

X1

b
b b
b b
b b
b

b
b b
b b
b

b
b b
b b
b b
b

b
b

v b

b
b

b

b

b

b

wt′

w1
w2

u1

ut

b

Figure 4.13: Partition of δ(B4) into X1 and X2. The shaded region is B4.

(b) We note that there are no paths between s2 and S in G− E4. Moreover, all paths in G between s2

and V13 go through S. Hence, there are no paths between s2 and V13 in G− E4. The cost of any

such subset of nodes can be lower bounded by the Lemma 4.4. Thus, CostJ (E4)− CostJ (E′4)≥
0.4− (1

n)/3≥ 0.4β4. The last inequality is because β4 ≤ 0.66 by Proposition 4.2 and n≥ 10.

For r ∈ [4], let Er and E′r be the sets given by Claim 4.5. We will show that

F :=
�

δ(Q) \
�

∪4
r=1Er

��

∪
�

∪4
r=1E′r

�

(4.91)

is a non-opposite cut-set and that CostJ (δ(Q))≥ CostJ (F) + 0.4α. Then, we use Proposition 4.1 (ii) to

conclude that CostJ (δ(Q))≥ 1.2− 1
n + 0.4α.

Claim 4.8. F is a non-opposite cut-set.

Proof: Let G′′ = G− F , and for i ∈ [3], let S′i be the set of nodes reachable from si in G′′. Since E′r ⊆ G[B]

for every r, S′i is a superset of Si, and G′′[Si] = G′[Si], which is connected. By the first property of

Claim 4.5, for every r ∈ [4] there exists i ∈ [3] such that Er ⊆ δ(Br)∩δ(Si). This implies, together with

Proposition 4.2 (ii), that the sets S′i are disjoint. It also implies the following property:

(?) For every r ∈ [4], there exists i ∈ [3] such that δG′′(Br) ⊆ δ(Si).

Suppose for contradiction that for some distinct i, j, k ∈ [3], there exists a path P in G′′ from si to

some v ∈ Vjk. Since δ(Q) is a non-opposite cut, the node v is not in Si. Also, since v ∈ S′i and we have

seen above that S′i is disjoint from S′j and S′k, it follows that v 6∈ S′j ∪S′k ⊇ S j ∪Sk. Hence, v 6∈ S1∪S2∪S3,

and therefore v ∈ Br for some r ∈ [4].

Let u be the last node of Si on the path P. By property (?), the end segment of P starting at the node

after u is entirely in G[Br] \ E′r . Since G′′[Si] is connected, we can replace the si − u part of P by a path

108

in G′′[Si], and obtain an si − v path in G′′ that uses only edges in G′[Si]∪ (G′[Br] \ E′r) and a single edge

in Er ⊆ δ(Si)∩δ(Br). Hence, this is also a path in E \ ((δ(Q) \ Er)∪ E′r). But we have already seen in

Claim 4.5 that (δ(Q) \ Er)∪ E′r is a non-opposite cut-set, so v /∈ Vjk, a contradiction.

To show that CostJ(δ(Q)) ≥ CostJ(F) + 0.4α, we first observe that Ei ⊂ δ(Bi) ⊂ δ(Q) for i ∈ [4]
and Ei ’s are mutually disjoint since δ(Bi)’s are mutually disjoint by Proposition 4.2 (iv). Therefore,

CostJ (F)≤ CostJ (δ(Q) \ (∪4
i=1Ei)) + CostJ (∪4

i=1E′i) (4.92)

= CostJ (δ(Q))−
4
∑

i=1

(CostJ (Ei)− CostJ (E
′
i)) (4.93)

≤ CostJ (δ(Q))−
4
∑

i=1

0.4βi (By Claim 4.5) (4.94)

≤ CostJ (δ(Q))− 0.4α (By Proposition 4.2 (v)). (4.95)

Proof of Corollary 4.5: We restate and prove Corollary 4.5 now.

Corollary 4.5. Let Q :∆3,n→ [4] be a non-opposite cut and n≥ 10. For each i ∈ [3], let

Ai :=

{v ∈ Closure(Ri) : Q(v) = 4} if δ(Q)∩ Γi = ;,

; otherwise.
(4.96)

Then, the cost of Q on J is at least 1.2− 2
n + 0.4

∑3
i=1 |Ai|/n2.

Proof:[Corollary 4.5] Let A := A1∪A2∪A3. We will show that CostJ (δ(A)) is at least 0.4
∑3

i=1 |Ai|/n2−1/n

and that there exists a non-opposite non-corner cut Q′ satisfying δ(Q′) = δ(Q) \δ(S). By Lemma 4.5,

CostJ (δ(Q′))≥ 1.2− 1/n and hence the corollary follows.

We first show a lower bound on the total cost of the edges in δ(A).

Claim 4.9. CostJ (δ(A))≥ 0.4
∑3

i=1 |Ai|/n2 − 1
n .

Proof: We will consider a specific non-opposite non-corner cut to give a lower bound on the cost of δ(A)

on J . Let Q0 be defined as follows (see Figure 4.14):

Q0(x) :=

1 if x1 ≥ 1/2,

2 if x1 < 1/2, x2 ≥ 1/2,

3 otherwise.

(4.97)

Then Q0 is ‘tight’ in J , i.e., CostJ (δ(Q0))≤ 1.2. Indeed, CostJ (δ(Q0))≤ 2(n/2)(1.2/(2n)) = 1.2 as

needed. Moreover, Q0 is a non-opposite non-corner cut. We now combine δ(A) and δ(Q0) into a single

109

s2 s3

s1

3̺3̺

3̺

3̺3̺

3̺

2̺

̺

2̺ ̺ ̺ ̺ ̺ ̺ 2̺

2̺

̺

̺

̺

̺

̺

2̺2̺

̺

̺

̺

̺

Figure 4.14: The labeling Q0.

cut by defining

Q′0(x) :=

Q0(x) if x 6∈ A,

4 otherwise.
(4.98)

We observe that Q′0 is a non-opposite cut as it is obtained from a non-opposite cut by relabeling a

subset of nodes that lie in the strict interior of Closure(Ri) as 4. As Ai 6= ; implies δ(Ai)∩ Γi = ;, we have

that δ(Q′0) intersects each side of the triangle the same number of times as δ(Q0). That is, Q′0 is also a

non-corner cut. Therefore, we can apply Lemma 4.5 for Q′0. The number of nodes labeled by Q′0 as 4 is

exactly equal to |A|. Hence,

CostJ (δ(Q
′
0))≥ 1.2−

1
n
+ 0.4

|A|
n2

. (4.99)

Since Q0(v) = i for each v ∈ Closure(Ri) and by δ(Ai)∩ Γi = ; for i ∈ [3], we have δ(Q′0) = δ(A)∪δ(Q0)

and hence,

CostJ (δ(A)) + CostJ (δ(Q0))≥ CostJ (δ(A)∪δ(Q0)) = CostJ (δ(Q
′
0))≥ 1.2−

1
n
+ 0.4

|A|
n2

. (4.100)

Recall that CostJ (δ(Q0))≤ 1.2, implying CostJ (δ(A))≥ 0.4|A|/n2 − 1/n.

Let K ⊆ [3] denote the set of indices i for which δ(Q)∩ Γi = ; and let Q′ be a labeling obtained from

Q by setting

Q′(v) :=

i if v ∈ Closure(Ri) for some i ∈ K ,

Q(v) otherwise.
(4.101)

Claim 4.10. Q′ is a non-opposite cut with CostJ (δ(Q′))≤ CostJ (δ(Q))− CostJ (δ(A)).

Proof: The cut Q is a non-opposite cut and Q′(v) ∈ Support(v) for each relabeled node v, hence Q′ is

110

also a non-opposite cut. For any index i ∈ K, δ(Q)∩ Γi = ; implies Q(v) = i for v ∈ Ri. Thus we have

δ(Q′) ⊆ δ(Q) \δ(A) and the claim follows.

As Q′ is a non-opposite cut, Lemma 4.3 implies CostJ (δ(Q′))≥ 1.2−1/n. By Claim 4.9, CostJ (δ(A))≥
0.4

∑3
i=1 |Ai|/n2−1/n. These together with Claim 4.10 imply that CostJ (δ(Q))≥ 1.2−2/n+0.4

∑3
i=1 |Ai|/n2,

finishing the proof of the corollary.

4.2 Flow-cut gap 2 for {s, t}-EDGE-BICUT

Proof: [Theorem 4.2] The proof is based on recursively defined sequence of graphs G0, G1, . . . , Gh with

increasing integrality gap; we will use αi to denote the integrality gap (we also refer to this as the

flow-cut gap) in Gi. The two terminals will be denoted by s, t. The symmetry in the construction will

ensure that in Gi the s-t cut value will be equal to the t-s cut value; we refer to these common values

as the one-way cut value and the optimum value of a cut that separates s from t and t from s as the

two-way cut value. The graph G0 is shown in Fig 4.15 and it is easy to see that α0 = 1.

s t

v1

v2

1

∞ ∞ ∞ ∞

∞∞ ∞ ∞

Gi Gis t

v1

v

v2

1

1

Figure 4.15: G0 on the left and constructing Gi+1 from Gi shown on the right.

The iterative construction of Gi+1 from Gi is shown at a high-level in figure 4.15. A formal description

is as follows. To obtain Gi+1 with terminals s, t we start with two copies of Gi with terminals s1, t1 and

s2, t2 (denoted by H, H ′) and two new vertices v1, v2. We set s = s1, t = t2 and identify t1 and s1 as the

center vertex v shown in the figure. We add edges (v1, v) and (v, v2) with weight 1 and four other edges

{(s, v1), (t, v1), (v2, s), (v2, t)} each with weight infinity. Finally, we scale the weights of the edges of H

and H ′ such that the two-way cut value in each of them is αi
2−αi

. It is easy to observe inductively that

each graph in the sequence is planar and moreover the graph can be embedded such that s and t are on

the outer face.

The following proposition is easy to establish based on the symmetry in the construction of the

graphs.

Proposition 4.3. The s-t cut value and the t-s cut value in Gi+1 are the same.

Now, we calculate αi+1 in terms of αi. We refer to the copy of Gi containing s and v with scaled

capacities as H, and the one containing v and t as H ′.

111

Lemma 4.6. For i ≥ 0, αi+1 =
4−αi
3−αi

. For i ≥ 0, the ratio of the one-way cut value to the two-way cut value

in Gi is 1
αi

.

Proof: Proof by induction on i. For the base case we see that α0 = 1 and in G0 the one-way cut value

and two-way cut value are both 1 and hence the ratio is equal to 1= 1
α0

.

We now prove the induction step. For this purpose, we estimate the one-way cut value and the

two-way cut value in Gi+1.

Minimum two-way cut: Any finite value cut that separates s from t has to cut at least one of the two

edges (v1, v), (v, v2). We consider two cases.

Case 1: Both (v1, v), (v, v2) are cut. To separate s and t it is best to pick a two-way cut between s and v

in H (or symmetrically between v and t in H ′). Thus, the total cost is 2+ αi
2−αi

= 4−αi
2−αi

.

Case 2: Only one of the edges (v1, v), (v, v2) is cut. Without loss of generality this edge is (v, v2). Since

(v1, v) is not cut s and t can reach v via v1. Thus, any two-way cut in G needs to use a one-way cut in H

to separate v from s and a one-way cut in H ′ to separate v from t. The cost of each of these one-way

cuts is, by induction, 1
αi
· αi

2−αi
= 1

2−αi
. Thus, the total cost is 1+ 2

2−αi
= 4−αi

2−αi
.

In both cases the cost is the same and hence the optimal two-way cut in Gi+1 is 4−αi
2−αi

.

Minimum one-way cut: We now calculate one-way cut from s to t. At least one of the edges (v1, v), (v, v2)

has to be cut. Also, either there is no path from s to v or no path from v to t. Thus, the cost of the

one-way cut from s to t is at least 1+ 1
2−αi

= 3−αi
2−αi

. Moreover it is easy to see that this is achievable by

removing (v1, v) and one-way cut from s to v in H.

Optimum fractional solution value: We now calculate the optimum for DIR-MWC-REL on Gi+1. We

consider the following feasible solution x . Assign 0 to the infinite weight edges and 1/2 to each of edges

(v1, v) and (v, v2). For the edges in the graphs H and H ′ we take an optimum solution y to DIR-MWC-REL

on Gi and scale it down by 1/2 and assign these values to the edges of H and H ′. Feasibility of y for Gi

implies that distance from s to v and v to s in H according to x is 1/2 (since we scaled down by 1/2).

It is easy to verify that distance of s to t and from t to s is 1 in the fractional solution x in Gi+1. Now

we analyze the cost of this solution
∑

e∈E(Gi+1)
we xe. We have a total contribution of 1 from the two

edges (v1, v) and (v, v2). We claim that
∑

e∈E(H)we xe =
1
2 ·

1
αi
· αi

2−αi
since the cost of the two-way cut in

H is chosen to be αi
2−αi

, the integrality gap is αi and we scaled down y by 1/2 to obtain x in H. Same

holds for H ′. Thus, the total fractional cost of this solution is 1+ 1
2−αi

= 3−αi
2−αi

. We can see that this is an

optimum solution by exhibiting a multicommodity flow of the same value for the pairs (s, t) and (t, s)

in Gi+1. Route one unit of flow from s to t along the path s→ v1 → v → v2 → t. In H there exists a

feasible flow of total value 1
αi
· αi

2−αi
= 1

2−αi
. Let f (s, v) and f (v, s) be the amount of flow from s to v and

v to s respectively. By duplicating this flow in H ′ we see that a flow of value 1
2−αi

exists between s and t

in Gi+1 via H and H ′. Thus there is a total flow of value at least 1+ 1
2−αi

in Gi+1 and this is optimal.

We can now put together the preceding bounds to prove the lemma. The flow-cut gap in Gi+1 is seen

to be the ration of the two-way cut value 4−αi
2−αi

and the maximum flow value 3−αi
2−αi

. Hence αi+1 =
4−αi
3−αi

as

112

desired. The ratio of one-way cut value 3−αi
2−αi

and the two-way cut value 4−αi
2−αi

in Gi+1 is 3−αi
4−αi

which is

equal to 1
αi+1

. This completes the inductive proof.

We have a sequence of numbers αi where α0 = 1 and αi+1 =
4−αi
3−αi

. It is easy to argue that this

sequence converges to 2. This proves that the integrality gap of DIR-MWC-REL is in the limit equal to 2.

4.3 Concluding Remarks

Our work opens the possibility of closing the gap between the upper and lower bound known for the

integrality gap of CKR-relaxation. We overcame the obstacle in analyzing 3-dimensional instances by

considering a convex combination of three 2-dimensional instances and a simple 3-dimensional instance.

We proved a lower bound of 1.20016 on the integrality gap which can be further improved by minor

modifications in the construction. For example, we put the 2-dimensional instance on a single face of

our final isntance. Instead, we can put the 2-dimensional instance on all the faces and improve the gap.

However, such modifcations are not sufficient to push the lower bound close the known upper bound of

1.2965. Proving a lower bound close this upper bound would require some new ideas.

113

Chapter 5

New LP relaxations for Subset Feedback Set

problems

In the classical Feedback Vertex Set problem (FVS) the input is a node-weighted graph G = (V, E)

and the goal is to find a minimum weight set of nodes whose removal makes the graph acyclic. FVS is

interesting for its applications as well as connections to graph theory and combinatorial optimization. In

this chapter we restrict our attention to undirected graphs. FVS is easily seen to generalize the VERTEX

COVER problem and inherits NP-Hardness as well as the hardness of approximation bounds for VERTEX

COVER. We could also consider the Feedback Edge Set problem (FES) where the goal is remove a

minimum weight set of edges to make it acyclic. FES is polynomial-time solvable; the complement of the

edge-set of a maximum weight spanning tree in G can be easily seen to be an optimum solution. FVS

and FES can also be viewed as hitting set problems where the goal is to find edges or nodes to intersect

all cycles. In this chapter we consider the more general subset feedback problems.

SUBSET FEEDBACK VERTEX SET (SUBSET-FVS): Input is an undirected graph G = (V, E) along with non-

negative node weights w(v), v ∈ V , and a set S = {s1, . . . , sk} ⊂ V of terminals. A cycle is interesting

if it contains a terminal. The goal is to find a minimum weight set of nodes V ′ ⊂ V that intersect all

interesting cycles.

SUBSET FEEDBACK EDGE SET (SUBSET-FES): Input is an undirected graph G = (V, E) along with a non-

negative edge weights w(e), e ∈ E, and a set S = {s1, . . . , sk} ⊂ V of terminals. A cycle is interesting

if it contains a terminal. The goal is to find a minimum weight set of edges E′ ⊂ E that intersect all

interesting cycles.

SUBSET-FVS generalizes two well-known NP-complete problems. When S = V , we obtain FVS. When

|S|= 1 it can be shown to be equivalent to the node-weighted Multiway Cut Problem (NODE-WT-MWC).

Recall that in NODE-WT-MWC the input consists of a node-weighted graph G and a set of terminals T ;

the goal is to remove a minimum weight set of nodes such that there is no path left between any two

terminals. NODE-WT-MWC can be reduced to SUBSET-FVS by adding a new node s of infinite weight

and making it adjacent to each terminal in T . In a similar vein SUBSET-FES generalizes edge-weighted

Multiway Cut Problem (EDGE-WT-MWC).

FVS, SUBSET-FVS and SUBSET-FES all admit constant factor approximation algorithms. In particular

there is a 2-approximation for FVS [5, 8] and SUBSET-FES [34], and a 8-approximation for SUBSET-

FVS [35]. There is a natural LP relaxation for these problems when viewed as a hitting set problem.

For instance, consider FVS. The relaxation has a variable z(v) ∈ [0,1] for each v ∈ V , and for each

114

cycle C , a constraint
∑

v∈C z(v)≥ 1. This LP relaxation has an Ω(log n) integrality gap [34]. Algorithms

for feedback problems in undirected graphs have mainly relied on combinatorial techniques at the

high-level. The non-trivial 2-approximation algorithm for FVS from [5] has been later interpreted as a

primal-dual algorithm by Chudak et al. [26], however, the underlying LP is not known to be solvable

in polynomial-time and does not generalize to SUBSET-FES or SUBSET-FVS. The 2-approximation for

SUBSET-FES [34] is simple and combinatorial but delicate to analyze. The 8-approximation for SUBSET-

FVS [35] is very complicated to describe and analyze; the algorithm is combinatorial at the high-level

but solves a sequence of relaxed multicommodity flow LPs to optimality.

In our work, we describe new LP relaxations for SUBSET-FES and SUBSET-FVS and derive constant

factor approximations through them. Our results are captured by the following theorem.

Theorem 5.1. There are polynomial-sized integer programming formulations for SUBSET-FES and SUBSET-

FVS whose linear programming relaxations have an integrality gap of at most 13.

The approximation bound of 13 that we are able to establish is weaker than the existing approximation

ratios for the problems. However, we do not know of an integrality gap worse than 2 for the LP relaxations

we propose. We believe that related formulations and ideas would lead to improved algorithms for

SUBSET-FES and SUBSET-FVS.

Our formulation and algorithms are simple and are based on a new perspective on the problem. Our

analysis uses only elementary arguments but is not as straight forward.

Other Related Work: Figure 5.1 taken from Vazirani’s book on approximation [82] shows the rela-

tionship of SUBSET-FES and SUBSET-FVS to several well-known problems, some of which we already

discussed. A natural open problem here is whether SUBSET-FVS has a 2-approximation.

Vertex Cover Multiway Cut

Node Multiway Cut Subset Feedback Edge Set

Directed Multiway Cut

Feedback Vertex Set

Subset Feedback Vertex Set

Multicut in Trees

Figure 5.1: Approximation preserving reductions related to feedback problems. Figure is reproduced
from [82]. All problems except SUBSET-FVS have a 2-approximation with Multiway Cut admitting an
approximation better than 2.

Unweighted FVS is related to the well-known Erdos-Pósa theorem [33] which states that if k is the

size of the smallest cardinality feedback vertex set in a graph G then there are Ω(k/ log k) node disjoint

cycles in G. This immediately shows, via duality, that the integrality gap of the standard LP that we

115

discussed in the introduction is O(log n) for unweighted FVS. The first constant factor approximation

for the unweighted FVS problem is due to Bar-Yehuda et al. who obtained a 4-approximation [7]; the

same paper also obtained a 2∆2 approximation for weighted FVS where ∆ is the maximum degree.

SUBSET-FVS also admits a ∆-approximation [34] which can be better than the 8-approximation [35] in

some instances. Goemans and Williamson [51] considered FVS, SUBSET-FVS and other related problems

in planar graphs and obtained a 9/4 approximation via a primal-dual algorithm with respect to the

standard hitting set LP; recall that this LP has an Ω(log n) integrality gap in general graphs.

Feedback problems are of much interest in directed graphs as well. FVS and FES are equivalent

in directed graphs, and similarly SUBSET-FVS and SUBSET-FES. Leighton and Rao [65] obtained an

O(log2 n)-approximation for FVS in directed graphs using their separator algorithms. Building on

Seymour’s work [75] that related the fractional packing of cycles to the minimum feedback vertex

set1, Even et al. [36] obtained a O(log k log log k)} approximation for SUBSET-FVS. It is also known

that, assuming the Unique Game Conjecture, FVS in directed graphs does not admit a constant factor

approximation [53,81].

Recall the multiway cut problem discussed in Chapter 4. SUBSET-FES and SUBSET-FVS generalize

the edge-weighted multiway cut (EDGE-WT-MWC) and node-weighted multiway cut problem (NODE-WT-

MWC) respectfully. Labeling based CKR relaxation for EDGE-WT-MWC has been extensively studied (see

Chapter 4). Although it is slightly less natural, NODE-WT-MWC can also be viewed as a partition problem

indirectly via the hypergraph-cut problem (see [17,18] and references). Despite this indirect connection,

a labeling based LP and rounding for NODE-WT-MWC has not explicitly been written in the literature.

Our work here gives such an LP in the more general context of SUBSET-FVS. Labeling problems such as

metric labeling [63], zero-extension [14] and submodular-cost labeling [18] have provided powerful

tools to address a variety of problems and our work here gives yet another application to an interesting

class of problems.

We refer the reader to a survey on feedback set problems for additional information [40]. There has

also been extensive work on fixed-parameter algorithms for feedback problems — see [28].

Organization: The rest of the chapter is organized as follows. In Section 5.1, we discuss the basic

idea of new LP formulations. In Section 5.2, we describe the LP formulation for SUBSET-FES, and then

discuss our two-step rounding scheme. Building upon these ideas, in Section 5.3 we describe a similar

LP formulation and rounding scheme for SUBSET-FVS.

5.1 The idea for the new LP formulations

We outline the key idea that allows us to develop new LP relaxations for SUBSET-FES and SUBSET-FVS.

It is easier to explain it for SUBSET-FES. First, it is convenient to simplify the instance via well-known

1Erdos-Pósa theorem relates integer packing of cycles to feedback vertex sets in undirected graphs. The relationship between
integer packing of cycles and feedback vertex sets in directed graphs is much more difficult and is addressed by Reed et al. [73].

116

s1

b1
a3 b4

r

a1 a2 s2

s3

b3 a4

b2

s3

a3

s4 b3

Figure 5.2: Block-cut-vertex tree of H = G − F . Dotted edges are edges in F that are cut

reductions; in the simplified instance each terminal si has degree 2 and is connected by infinite-weight

edges to its neighbors ai , bi that are not adjacent to any other terminals. Thus, in any feasible solution of

finite weight, the edges siai and si bi are not cut; we think of these edges as special edges. Now, consider

any minimal feasible solution F ⊂ E such that the graph H = G − F has no cycle containing a terminal.

We can assume without loss of generality that G is connected, and hence the graph H is also connected

by minimality of F . Consider the block-cut-vertex tree T of H 2. No non-trivial block of H contains a

terminal (otherwise there would be a cycle containing it). Thus, in H, each terminal is a cut-vertex and

each special edge is a cut-edge. We can root T at a block r that does not contain any terminals; for

simplicity assume that r is a single node. See Fig 5.2. Consider k+ 1 labels where terminal si has label

i for 1 ≤ i ≤ k and the root has label k + 1. By rooting T at r we obtain a natural label assignment

for each node u of G as follows: label u by the index of the first terminal (or r) on a path in T from

the block containing u to the root r. This labeling has the following property. The end points of each

non-special edge in H have the same labels, and by minimality of F , the end points of edges in F receive

different labels. It is important to note that the end points of some of the special edges receive different

labels but they can never be cut. Thus, the problem can be viewed as finding a labeling of the nodes to

minimize the cost of non-special edges whose end points receive different labels.

However, a labeling by itself does not suffice to obtain a good lower bound. One can assign the

label k+ 1 to all non-terminal nodes and no non-special edges are cut. An additional property of the

labeling obtained from reasoning via the block-cut-vertex tree is the following: for each terminal si,

exactly one of the two neighbors ai , bi should be assigned the label i (the label of si). We can thus add

this “spreading” constraint. The resulting labeling LP gets us most of the way; using just this LP, we

2A block in a graph G is a maximal 2-node-connected component of G. The block-cut-vertex tree is a standard decomposition
of a graph into its blocks and we refer the reader to books on graph theory such as [30,84] for more information.

117

can reduce the original instance to one in which each connected component “essentially” has only one

interesting cycle which can be solved easily. To obtain a single LP we add constraints that ensure that

the length of each cycle is at least one. To round the LP with assignment variables we borrow ideas from

algorithms for multiway cut [15] and metric labeling [63] but we note that the rounding we have is

subtly different because of the special edges and the spreading constraints; unlike those other problems

we are not disconnecting the terminals.

For SUBSET-FVS we use a similar labeling procedure but need additional variables to take into account

node weights. It is easier to understand the formulation and analysis for SUBSET-FES before seeing the

description and analysis for SUBSET-FVS. In fact, some parts of the analysis for SUBSET-FVS rely on the

analysis for SUBSET-FES. For this reason, we first discuss SUBSET-FES in detail.

5.2 LP-based constant factor approximation for SUBSET-FES

In this section we describe our LP-relaxation based algorithm and analysis for SUBSET-FES. First, we

will assume without loss of generality that the input instance has a certain restricted structure; similar

assumptions have been used previously [34] and are easy to justify. The assumptions are: (i) The input

graph G is connected. (ii) Each terminal si has degree 2 and is connected by infinite weight edges to its

neighbors ai , bi . (iii) No two terminals are connected by an edge or share a neighbor. (iv) There exists a

special non-terminal vertex r with a single infinite weight edge incident to it.

We briefly justify these assumptions: If G is not connected, the problem can be solved separately in

each connected component. If a terminal s is not degree two, we can sub-divide each edge incident to s

by adding a new node; then, remove s from the set of terminals and add the new nodes to the set of

terminals. If e = uv is an edge of weight w(e), sub-dividing e by adding a node q and setting w(uq) =∞
and w(qv) = w(e) does not change the problem. This can be used to justify the other assumptions as

well.

For technical reasons, we also assume that every interesting cycle contains at two terminals. This can

also be justified by subdividing the edges incident on a terminal and adding the new nodes as terminals.

We perform one more reduction step to ensure that no two terminals are connected by an edge or share

a neighbor. Note that in the new instance that satisfies these assumption, the number of terminals could

be much larger than in the original instance.

Remark 5.1. We refer readers who may wonder about the need or the utility of the simplifying reductions,

to Section 5.4. There we provide some additional details and examples.

5.2.1 LP formulation

Recall the structure of a minimal feasible solution discussed in Section 5.1. If F ⊂ E is a minimal

feasible solution then H = (V, E \ F) is connected and each terminal is a cut vertex in H. Let T be the

118

SUBSET-FES-REL

min
∑

e∈E\Es

w(e)z(e)

s.t
k+1
∑

i=1

x(u, i) = 1 u ∈ V

x(si , i) = 1 1≤ i ≤ k
x(r, k+ 1) = 1
x(ai , i) + x(bi , i) = 1 1≤ i ≤ k

z(e)−
1
2

k+1
∑

i=1

|x(u, i)− x(v, i)| ≥ 0 e = uv ∈ E \ Es

z(e) = 0 e ∈ Es
∑

e∈C

z(e) ≥ 1 C ∈ C

x(u, i) ≥ 0 u ∈ V, 1≤ i ≤ k+ 1
z(e) ≥ 0 e ∈ E

Figure 5.3: LP Relaxation for SUBSET-FES

block-cut-vertex tree of H rooted at r. Each vertex u is labeled by the index of the first terminal on a path

in T from the block containing u to r, or by k+1 if there is no such terminal. We will use Es to denote the

set of special edges ∪k
i=1{(si , ai), (si , bi)} that are incident to the terminals and have infinite weight. Any

non-special edge with different labels on the end points is cut. Special edges are never cut and for each

terminal, one of the incident special edge always has different labels on the end points. We formulate an

integer program based on this structure which can then be relaxed to obtain a linear program. We have

two types of binary variables, the labeling variables x(u, i) for each u ∈ V and i ∈ {1, . . . , k+ 1}, and the

edge variables z(e) for each e ∈ E. x(u, i) is an indicator variable for whether u is assigned label i. z(e)

is an indicator variable for whether e is cut or not. The following constraints explain our reasoning:

• Each node u is labeled by exactly one label:
∑k+1

i=1 x(u, i) = 1 for all u ∈ V .

• Terminals are labeled by their own index, x(si , i) = 1 for each i. Root r is labeled k+1, x(r, k+1) =

1.

• For each si , exactly one of ai , bi is labeled i: x(ai , i) + x(bi , i) = 1 for 1≤ i ≤ k.

• Non-special edge e = uv is cut (that is z(e) = 1) if u, v receive different labels and is not cut

(z(e) = 0) if u, v receive same labels. Hence, z(e)≥ 1
2

∑k+1
i=1 |x(u, i)− x(v, i)|. This can be written

as a linear constraint with additional variables that we suppress for ease of notation.

119

• Special edges are not cut: z(e) = 0 for e ∈ Es.

We also have an additional constraint. Let C be the set of interesting cycles. For any C ∈ C, at least

one of the edge is cut: hence
∑

e∈C z(e)≥ 1. There are an exponential number of such constraints but

we can express them compactly via triangle inequalities and it is also easy to see that we can separate

over them efficiently in polynomial-time. This constraint is essential for LP to have a bounded integrality

gap. See Section 5.4 for an example illustrating this fact. Objective is to minimize
∑

e∈E\Es
w(e)z(e). We

can drop the constraints that upper bound the variables by 1. The full description of the LP relaxation is

given in Figure 5.3.

5.2.2 Rounding scheme and analysis

Theorem 5.2. There is a polynomial-time algorithm that given a feasible solution x,z to SUBSET-FES-REL

outputs a feasible integral solution of weight at most 13
∑

e∈E\Es
w(e)z(e).

Given a feasible solution x,z to SUBSET-FES-REL, we round it in two steps. In the first step, we round

the fractional solution using the labeling variables x(u, i) to find a subset E′ ⊂ E of edges such that

removing E′ yields a graph G′ = G − E′ that has very restricted structure. In particular each connected

component of G′ has essentially only one interesting cycle; more formally all interesting cycles in each

component have the same signature which is defined formally below. Solving an instance in which all

cycles have the same signature is easy; we can find an optimal solution. Letting E′′ denote the edge set

removed in the second step (we take the union of the solutions from each component), the final output

of the algorithm is E′ ∪ E′′.

Definition 5.1. Let C = si1 , ci1 , A1, c′i2 , si2 , ci2 , A2, . . . , c′it
, sit

, cit
, At , c′i1 , si1 be an interesting cycle where

si1 , . . . , sit
are terminals, and for 1≤ j ≤ t, ci j

, c′i j
∈ {ai j

, bi j
} and ci j

, A j , c′i j+1
is a path with no terminals;

here A j can be empty. Signature of C denoted by si g(C) is defined as si1 , ci1 , c′i2 , si2 , ci2 , . . . , c′it
, sit

, cit
, c′i1 , si1 .

Given two cycles C1 and C2 we say that their signatures are the same if the cycles si g(C1) and si g(C2)

are isomorphic as labeled graphs.

The heart of the rounding and analysis is the first step which is formalized in the lemma below.

Lemma 5.1. Given a feasible solution x,z to SUBSET-FES-REL, there is an efficient algorithm to find a

subset of edges E′ ⊂ E with cost at most 12
∑

e∈E\Es
w(e)z(e) such that any two interesting cycles in the

same connected component of G′ = G − E′ have the same signature.

It is useful to see Figure 5.4 to understand what it means for all interesting cycles to have the same

signature. In particular, in each connected component H of G′ that has an interesting cycle C , removing

any terminal from C suffices to kill all interesting cycles in H.

120

a1

s1

b1

b2
s2 a2

b3

s3

a3

b4s4
a4

a5 s5

b5

Figure 5.4: Structure of connected component in G′ = G − E′

Algorithm 5.1 Initial Cut for SUBSET-FES

1: Given: Feasible solution x,z to SUBSET-FES-REL

2: Pick θ ∈ (1/3,1/2) uniformly at random

3: For 1≤ i ≤ k, Bi := {u | x(u, i)> θ}
4: E′ :=

�

∪k
i=1δ(Bi)

�

\ Es

5: Return E′

Algorithm 5.1 is a simple randomized algorithm that achieves the properties claimed by the preceding

lemma. Here, δ(S) denote the edge boundary of set S, formally defined as {uv ∈ E | |{u, v} ∩ S| = 1}.
We note that although the algorithm is related to “ball-cutting” type schemes for cut problems such as

multiway cut, there are subtle differences. It is important for our analysis that θ < 1/2 which is counter

intuitive from a cut perspective. Since θ ∈ (1/3, 1/2), Bi and B j may intersect for i 6= j. Another subtlety

is the fact that a special edge e may be in δ(Bi) for some i but is not allowed to be cut. These issues

make the analysis tricky.

We define the label set for v, L(v) = {i | v ∈ Bi}; note that some nodes may not receive a label. We

make some simple observations before proceeding with the proof of Lemma 5.1. In the analysis below,

all statements hold for each choice of θ ∈ (1/3, 1/2), and randomness plays a role only in analyzing the

expected cost of E′.

Lemma 5.2. A node can have at most two labels that is, for each vertex v ∈ V, |L(v)| ≤ 2.

Proof: A label i ∈ L(v) implies x(v, i)> θ > 1/3. Since
∑k+1

i=1 x(v, i) = 1, |L(v)| ≤ 2.

The spreading constraint and the choice of θ ensures some useful properties about the labels of ai

and bi .

Lemma 5.3. For each i ∈ {1, . . . , k}, ai or bi is labeled i, that is, i ∈ L(ai)∪ L(bi). Moreover if i 6∈ L(ai),

then L(bi) = {i}. Similarly, if i 6∈ L(bi), then L(ai) = {i}.

Proof: The constraint x(ai , i) + x(bi , i) = 1 implies that x(ai , i) ≥ 1/2 > θ or x(bi , i) ≥ 1/2 > θ .

Hence, ai ∈ Bi or bi ∈ Bi which is equivalent to i ∈ L(ai)∪ L(bi). If i 6∈ L(ai), x(ai , i) ≤ θ < 1/2 and

121

therefore x(bi , i) = 1− x(ai , i) ≥ 1− θ > 1/2. Therefore i ∈ L(bi). Also, since
∑k+1

j=1 x(bi , j) = 1, and

x(bi , i)≥ 1− θ , for all ` 6= i, x(bi ,`)≤ θ . Hence, L(bi) = {i}.

Lemma 5.4. For any non-special edge uv ∈ E \ E′, L(u) = L(v). Hence, for any two nodes u, v connected

in G′ by a path with only non-special edges, L(u) = L(v).

Proof: Let uv ∈ E \ E′ be a non-special edge with L(u) 6= L(v). Then, there exists i in L(u) \ L(v) or

L(v) \ L(u). In both cases, edge uv is in δ(Bi) and thus in E′. This leads to contradiction as uv ∈ E \ E′.

Now comes an important lemma on the label set of nodes in any interesting cycle remaining in G′.

Lemma 5.5. Let C be an interesting cycle in G′ with sig(C) = si0 , ci0 , c′i1 , si1 , ci1 , . . . , c′it−1
, sit−1

, cit−1
, c′i0 , si0

where si0 , . . . , sit−1
are terminals, and ci j

, c′i j
∈ {ai j

, bi j
}. If t ≥ 2, then exactly one of the following three

conditions hold. Addition and subtraction of the indices here is modulo t.

• For 0≤ j ≤ t − 1, L(ci j
) = {i j , i j+1}, L(c′i j

) = {i j , i j−1}

• For 0≤ j ≤ t − 1, L(ci j
) = {i j}, L(c′i j

) = {i j−1}

• For 0≤ j ≤ t − 1, L(ci j
) = {i j+1}, L(c′i j

) = {i j}

Proof: For ease of notation, we rename the terminals and their neighbors such that si g(C) = s1, a1, b2, s2,

a2, . . . , bt , st , at , b1, s1 and identify t + 1 with 1, 0 with t when adding and subtracting indices.

Case 1: ∀ j ∈ {1, . . . , t}, j ∈ L(a j)∩ L(b j). Since a j is connected by a path containing non-special edges

to b j+1 in C (and hence G′), by Lemma 5.4, L(a j) = L(b j+1). From assumption t ≥ 2, we know that

b j+1 6= b j and label j+1 is not same as label j. And, since j ∈ L(a j) and j+1 ∈ L(b j+1), we get j, j+1 ∈
L(a j), L(b j+1). Lemma 5.2 states that |L(v)| ≤ 2 for all v which implies L(a j) = L(b j+1) = { j, j + 1}.
The labels in this case satisfies the first condition in the lemma.

Case 2: ∃ j ∈ {1, . . . , t}, j 6∈ L(b j). Since, j 6∈ L(b j), by Lemma 5.3, we have L(a j) = { j}. Since a j

is connected to b j+1 via non-special edges, by Lemma 5.4, L(a j) = L(b j+1) = { j}. This implies that

j + 1 6∈ b j+1. Arguing inductively along the cycle we can see that L(ai) = L(bi+1) = {i} for 1 ≤ i ≤ t.

The labels in this case satisfy the second condition in the lemma.

Case 3: ∃ j ∈ {1, . . . , t}, j 6∈ L(a j). Similar to Case 2 and labels satisfy third condition in the lemma.

Remark 5.2. There may be nodes which are not labeled but are connected to terminals in G′. For example,

if v = ai with x(v, j)≤ θ for all j, then L(v) = ; but v is still connected to si in G′ since special edges are

not cut. Lemma 5.5 implies that such a vertex is not part of any interesting cycle in G′.

Next, we prove bound on expected cost3 of the edges cut by Algorithm 5.1.

3It is easy to derandomize the algorithm by trying “all possible” values of θ in (1/3, 1/2); we only need to try all values of
x(u, i).

122

Lemma 5.6. Pr[e ∈ E′]≤ 12z(e), and hence the expected cost of E′ is at most 12
∑

e∈E\Es
w(e)z(e).

Proof: We focus on non-special edges as no special edge is cut by the algorithm. Let e = uv be any

such edge. Edge e is cut if and only if e ∈ δ(Bi) for some i. Pr[e ∈ δ(Bi)] = Pr[θ ∈ [min(x(u, i), x(v, i)),

max(x(u, i), x(v, i)))] which is at most 6|x(u, i)− x(v, i)| since θ is chosen uniformly from (1/3,1/2).

By union bound, Pr[e ∈ E′]≤
∑k

i=1 Pr[e ∈ δ(Bi)]≤ 6
∑k

i=1 |x(u, i)− x(v, i)| ≤ 12z(e).

We now prove the main structural observation, namely Lemma 5.1, that in each connected component

of G′ all interesting cycles have the same signature.

Proof: [Lemma 5.1] We prove the lemma for the edge set E′ returned by Algorithm 5.1. The expected

cost of E′ is upper bounded by Lemma 5.6.

In the graph G′ = (V, E \ E′), consider any two interesting cycles C1, C2. We will first prove that if C1

and C2 share a terminal, then their signature must be same. Second, we will prove that if C1, C2 do not

share a terminal then then they must be in different connected components.

First, consider the case when C1 and C2 share a terminal vertex. By renaming terminal nodes and

their neighbors, let the cycle C1 be such that si g(C1) = s1, a1, b2, s2, a2, . . . , bt , st , at , b1, s1 and the shared

terminal be s1. Since each terminal has degree 2, any cycle through s1 has to contain a1, b1. We can

assume without loss of generality that si g(C2) = si1 , c′i1 , ci2 , si2 , c′i2 , . . . , cih , sih , c′ih , ci1 , si1 , where si1 = s1

and c′i1 = a1, ci1 = b1. Since si g(C1) 6= si g(C2) there is a smallest integer r ≥ 2 such that cir 6= br and

the prefix of si g(C2) till cir agrees with si g(C1). From Lemma 5.4 we have L(ar−1) = L(br) (via C1) and

L(ar−1) = L(cir) (via C2) and hence L(br) = L(cir). Given a SUBSET-FES instance, we assumed that each

interesting cycle contains at least two terminals. Hence, t, h≥ 2. We will consider Lemma 5.5 applied to

C1 and C2 and the resulting consistency requirements on the labels, in particular for ar−1, br , cir . Note

that these nodes all receive two distinct labels, or all receive exactly one label. We consider three cases

based on the guarantee of Lemma 5.5 applied to C1, and in each case derive a contradiction.

• For all j, L(a j) = { j, j + 1}, L(b j) = { j, j − 1}. Thus L(ar−1) = L(br) = {r − 1, r} and L(ar) =

{r, r + 1}. Lemma 5.5 applied to C2 implies that L(ar−1) = L(cir) = {r − 1, ir}. This in particular

implies that ir = r, and hence sir = sr . Since we have cir 6= br we must have that cir = ar . However,

L(ar) = {r, r + 1} via C1 which means that L(ar−1) 6= L(cir), a contradiction.

• For all j, L(a j) = { j + 1}, L(b j) = { j}. Thus L(ar−1) = {r} and L(br) = {r} and L(ar) = {r + 1}.
Lemma 5.5 applied to C2 implies that L(ar−1) = L(cir) = {r − 1} or L(ar−1) = L(cir) = {ir}. Since,

L(ar−1) = {r}, L(ar−1) = L(cir) = {ir} = {r}. Thus ir = r; since cir 6= br we have cir = ar but then

L(cir) = L(ar) = {r}, a contradiction.

• For all j, L(a j) = { j}, L(b j) = { j − 1}. Similar to preceding case.

Next, consider the case when C1 and C2 do not share a terminal. By contradiction, assume that they

are connected in G′. For an interesting cycle C let S(C) denote the indices of the set of terminals in

123

V (C). From Lemma 5.5 and Lemma 5.4, for each v ∈ V (C), ; 6= L(v) ⊆ S(C). Since, S(C1)∩ S(C2) = ;,
we conclude that V (C1)∩ V (C2) = ;.

Let u ∈ C1, v ∈ C2 be two nodes in G′ connected by a path not intersecting C1 or C2. Since,

each terminal is a degree two node, neighbors of all terminals in S(C1) and S(C2) are part of cy-

cle C1 and C2, we have that u and v are not terminals. Let the path between u and v in G′ be

u, A1, ci1 , si1 , c′i1 , A2, . . . , Ar , cir , sir , c′ir , Ar+1, v where si1 , . . . , sir are terminals, ci j
, c′i j
∈ {ai j

, bi j
} and A j is

a path with no terminals. First, we observe that if r = 0 then there is a path connecting u to v with-

out terminals and hence L(u) = L(v); this is not possible since L(u) ⊂ S(C1) and L(v) ⊂ S(C2) and

S(C1)∩ S(C2) = ;. Assume r ≥ 1. We have L(u) = L(ci1) and since L(u) ⊂ S(C1) and si1 6∈ V (C1), we

obtain that i1 6∈ L(ci1). This implies, via Lemma 5.3 that L(c′i1) = {i1}.

Claim 5.1. For 1≤ j ≤ r, L(c′i j
) = {i j}.

Proof: We have already established the base case that L(c′i1) = {i1}. Assume by induction that L(c′i j
) =

{i j} for j = `− 1. By Lemma 5.4, L(ci`) = L(c′i`−1
) = {i`−1}. By Lemma 5.3, L(ci`) = {i`}.

Using the above claim, L(c′ir) = {ir} which by Lemma 5.4 implies that L(v) = {ir}. However,

L(v) ⊂ S(C2) and sir 6∈ V (C2) which is a contradiction.

Remark 5.3. The assumption that each interesting cycle contains at least two terminals was used in the proof

of Lemma 5.5. Without this assumption, we may not get the property of Lemma 5.1 that each interesting

cycle in G′ has same signature. For examples and more discussion on this, see Section 5.4.

A part of the analysis of Algorithm 5.1 will be useful for us when analyzing the algorithm for

SUBSET-FVS. The following remark captures the necessary aspects.

Remark 5.4. Constraints involving variables z(e) are used only while bounding the expected cost of the

edge set E′ returned by Algorithm 5.1. Hence, given any vector x satisfying constraints involving labeling

variables(first four and x(u, i)≥ 0), Algorithm 5.1 returns an edge set E′ such that all interesting cycles in

a connected components in G − E′ have same signature.

5.2.3 Second Step of Rounding

Next, we will describe the second step of rounding for SUBSET-FES-REL and finish the proof of

Theorem 5.2. After the first step of the rounding we are left with a graph G′. In each connected

component of G′ all interesting cycles have the same signature. Consider one such component H which

has an interesting cycle C and without loss of generality let si g(C) = s1, a1, b2, s2, a2, . . . , st , at , b1, s1.

Note that t could be 1. Since the signatures of all interesting cycles are the same, any such cycle C

contains the edges s1a1 and s1 b1. Thus, to remove all interesting cycles in H it is necessary and sufficient

to disconnect a1 from b1 in H ′ = H−{s1a1, s1 b1}. This can be easily solved by finding a min-cut between

a1 and b1 in H ′. The following claim charges the cost of this min-cut to the LP solution.

124

Claim 5.2. The cost of the min-cut between a1 and b1 in H ′ is at most
∑

e∈E(H)w(e)z(e).

Proof: Consider the feasible solution x,z to SUBSET-FES-REL to the original instance and the lengths

of the edges z(e) induces on E(H). The constraints of the relaxation imply that
∑

e∈C z(e)≥ 1 for each

C ∈ C. Since H is a subgraph of G these constrains hold for all interesting cycles in H as well. Since

z(s1a1) and z(s1 b1) are both 0, we have that dz(a1, b1)≥ 1 in H ′ = H − {s1a1, s1 b1} where dz(a1, b1) is

the shortest path distance from a1 to b1 according to edge lengths given by z. Thus z restricted to H ′ is

a feasible fractional solution to the standard distance based LP relaxation for the a1-b1 minimum cut

problem in H ′; this LP relaxation is the same as the dual of the maximum flow LP. Via the maxflow-mincut

theorem, the integrality gap of the LP is one and in particular there is an a1-b1 mincut in H ′ of cost at

most
∑

e∈E(H)w(e)z(e).

Let E′′ be the union of all the minimum cuts found in different connected components in G′. It is

easy to see that E′ ∪ E′′ is a feasible solution. From the preceding claim and the fact that the connected

components of G′ are edge disjoint we have that w(E′′)≤
∑

e∈E\Es
w(e)z(e).

We now finish the proof of Theorem 5.2 that establishes a constant factor upper bound on integrality

gap for SUBSET-FES-REL.

Proof: [Theorem 5.2] Let α =
∑

e∈E\Es
w(e)z(e) be the objective function value of a feasible solution x,z

to SUBSET-FES-REL. From Lemma 5.1 we obtain a set of edges E′ such that w(E′)≤ 12α and G′ = G− E′

satisfies the property needed for the second step of the algorithm. The set of edges E′′ found in the

second step satisfy the property that w(E′′)≤ α. Thus w(E′∪ E′′)≤ 13α and E′∪ E′′ is a feasible integral

solution to the given instance. This finishes the proof.

5.3 LP-based constant factor approximation for SUBSET-FVS

In this section we extend the ideas from Section 5.2 to handle SUBSET-FVS. Several of the ideas

behind the rounding and the analysis are quite similar, however, there are some non-obvious technical

differences that we point out as we go along. We will again assume that the input instance satisfies

some restricted structure: (i) The input graph G is connected. (ii) Each terminal has infinite weight, is a

degree two vertex with both the neighbors having infinite weight. (iii) No two terminals are connected

by an edge or share a neighbor. (iv) There exists a special non-terminal degree one vertex r with infinite

weight. (v) Each interesting cycle contains at least two terminals. Justification of these assumptions is

very similar to the case of SUBSET-FES.

5.3.1 LP formulation

Let A⊂ V be a minimal feasible solution. Since, terminals and their neighbors have infinite weight,

none of these nodes are in A. Each terminal is a cut vertex in H = G − A. But, unlike the setting of

125

SUBSET-FVS-REL

min
∑

u∈V

w(u)z(u)

s.t

z(u) +
k+1
∑

i=1

x(u, i) = 1 u ∈ V

x(si , i) = 1 1≤ i ≤ k
x(r, k+ 1) = 1
x(ai , i) + x(bi , i) = 1 1≤ i ≤ k
z(u) + x(u, i)− x(v, i) ≥ 0 1≤ i ≤ k+ 1, uv ∈ E \ Es

z(u) = 0 u ∈ ∪k
i=1{si , ai , bi}

∑

u∈C

z(u) ≥ 1 C ∈ C

x(u, i) ≥ 0 u ∈ V, 1≤ i ≤ k+ 1
z(u) ≥ 0 u ∈ V

Figure 5.5: LP Relaxation for SUBSET-FVS

SUBSET-FES, H might not be connected even if A is a minimal feasible solution. For simplicity we will first

assume that H is connected. As before we can now obtain a labeling by considering a block-cut-vertex

tree T of H rooted at r, the block containing the special non-terminal r. This leads to a labeling of nodes

in V \ A with labels 1 to k+ 1 where a node u is labeled i if si is the first terminal on the path from the

block containing u to r in T . Note that only nodes in V \ A receive a label. As before the property of

this labeling is that for any non-special edge uv in E(H), u and v receive same labels. Now we briefly

address the case when H may not be connected. For each connected component we pick an arbitrary

non-terminal vertex, add a dummy edge connecting it to r and consider the labeling corresponding to

block-cut vertex tree of the modified graph. Note that the addition of these dummy edges is a thought

experiment to justify the validity of the existence of the labeling.

As in case of SUBSET-FES, we formulate an integer program based on this structure with a few changes.

We have two types of binary variables, the labeling variables x(u, i) for each u ∈ V and 1≤ i ≤ k and

node variables z(u) for each node u ∈ V . x(u, i) indicates whether or note u is assigned label i and z(u)

indicates whether or not u is cut. Here are some of the constraints, a minimal feasible solution satisfies,

based on the reasoning via the structure of block-cut-vertex tree T .

• Either a node u is cut or is labeled by exactly one label: z(u) +
∑k+1

i=1 x(u, i) = 1 for u ∈ V .

• No terminal si or its neighbors ai , bi are cut: z(u) = 0 for u ∈ ∪k
i=1{si , ai , bi}.

• Terminal is labeled by its own index, x(si , i) = 1 for 1≤ i ≤ k. Root r is labeled k+1, x(r, k+1) = 1.

126

• For each terminal si , exactly one of its neighbors is labeled i: x(ai , i) + x(bi , i) = 1 for 1≤ i ≤ k.

• For each non-special edge e = uv, either one of u, v is cut or they have the same label. This is

captured by constraints: x(u, i) + z(u) ≥ x(v, i) and x(v, i) + z(v) ≥ x(u, i) for all 1 ≤ i ≤ k+ 1.

It is important to note that this constraint holds even for the non-special edges incident on

u ∈ ∪k
j=1{a j , b j}.

• If C is the set of interesting cycles, then for every C ∈ C,
∑

u∈C z(u)≥ 1.

The objective is to minimize
∑

u∈V w(u)z(u). The full description of the LP relaxation is given in Fig 5.5.

5.3.2 Rounding scheme and analysis

Theorem 5.3. There is a polynomial-time algorithm that given a feasible solution x,z to SUBSET-FVS-REL

outputs a feasible integral solution of weight at most 13
∑

u∈V w(u)z(u).

The rounding scheme is similar to the case of SUBSET-FES but we remove nodes instead. As before,

given a solution x,z, we round the solution in two steps. In first step, we find a subset V ′ ⊂ V of

nodes such that removing V ′ yields a graph G′ = G − V ′ such that interesting cycles in each connected

component of G′ have same signature. Each component behaves like an instance with single cycle and

can be solved optimally. Final output of the algorithm is V ′ ∪ V ′′ where V ′′ is union of the optimal

solution over connected components of G′. Following lemma formalizes the first step of the algorithm:

Lemma 5.7. Given a feasible solution x, z to SUBSET-FVS-REL, there is an efficient algorithm to find a

subset of nodes V ′ ⊂ V with cost at most 12
∑

u∈V w(u)z(u) such that any two interesting cycles in the same

connected component in G′ = G[V \ V ′] have same signature.

Algorithm 5.2 shows a simple randomized procedure to find V ′ which achieves the properties claimed

by the preceding lemma. Here, N(Bi) denotes the node boundary of set Bi formally defined as {v | v 6∈
Bi ,∃u ∈ Bi , uv ∈ E}. And, δ(Bi) denote the edge boundary formally defined as {(u, v) | |{u, v} ∩ Bi| = 1}.

Algorithm 5.2 Initial Cut for SUBSET-FVS

1: Given a feasible solution x,z to SUBSET-FVS-REL

2: Pick θ ∈ (1/3,1/2) uniformly at random.
3: For 1≤ i ≤ k, Bi := {u | x(u, i)> θ}
4: V ′ := ∪k

i=1(N(Bi) \ {ai , bi}) \ ∪k
i=1{si}

5: Return V ′

Note that we cannot remove the terminals and their neighbors since they have infinite weight. It is

not obvious that V ′, as defined by the algorithm, does not contain a neighbor of a terminal.

Lemma 5.8. For 1 ≤ i, j ≤ k, N(Bi)∩ {a j , b j} = ; if j 6= i. Thus V ′ does not contain a neighbor of any

terminal.

127

Proof: If u ∈ {s j , a j , b j} for some j, then z(u) = 0 and we prove that u 6∈ V ′. Easy to note from Algorithm

5.2 that s j 6∈ V ′. And u ∈ {a j , b j} is in V ′ iff u ∈ N(Bi) for some i 6= j. We prove that this is not possible.

Consider uv ∈ E where v 6= s j. From LP constraint z(u) + x(u, i)≥ x(v, i), and since z(u) = 0 we have

x(u, i) ≥ x(v, i). Also, x(s j , i) = 0 for i 6= j. Thus, if for some v ∈ N(u), v ∈ Bi for i 6= j then, u ∈ Bi.

Equivalently, u 6∈ N(Bi) for i 6= j.

Proof of Lemma 5.7 consists of two parts. The first is to bound the expected cost of the nodes that

are cut which is provided in the lemma below. The proof of this lemma is not as straight forward as the

one for the case of edges in SUBSET-FES-REL.

Lemma 5.9. Pr[u ∈ V ′]≤ 12z(u), and hence the expected cost of V ′ is at most 12
∑

u w(u)z(u).

Proof: From Lemma 5.8 no terminals or neighbors of terminals are in V ′. Consider some other node

u. Then u is in V ′ iff u ∈ N(Bi) for some 1 ≤ i ≤ k. And u ∈ N(Bi) iff x(u, i) ≤ θ and there exists

v ∈ N(u) such that x(v, i)> θ . Equivalently, u ∈ N(Bi) iff θ ∈ [x(u, i),maxv∈N(u) x(v, i)). We will denote

the interval (1/3,1/2) ∩ [x(u, i), maxv∈N(u) x(v, i)) as Ii(u). Thus, Pr[u ∈ V ′] = Pr[θ ∈ ∪k
i=1 Ii(u)]. If

∪k
i=1 Ii(u) has length at most 2z(u) then, since θ is chosen uniformly at random from the range (1/3, 1/2)

of length 1/6, Pr[u ∈ V ′]≤ 12z(u). Next, we prove this fact. From LP constraint z(u)+x(u, i)−x(v, i)≥ 0,

we conclude that maxv∈N(u) x(v, i)≤ z(u) + x(u, i).

If there is only one index i1 such that x(u, i1)> 1/3, then for j 6= i1, I j(u) ⊂ (1/3,1/3+ z(u)). This

implies that ∪k
i=1 Ii(u) ⊂ [x(u, i1), x(u, i1) + z(u))∪ (1/3,1/3+ z(u)). This has length at most 2z(u). If

on the other hand there are two indices i1, i2 such that x(u, i1), x(u, i2) > 1/3 then, by LP constraint

z(u)+
∑k+1

i=1 x(u, i) = 1, we get x(u, j)< 1/3− z(u) for j 6= i1, i2. This implies that I j(u) = ; for j 6= i1, i2
and ∪k

i=1 Ii(u) ⊂ (x(u, i1), x(u, i1) + z(u))∪ (x(u, i2), x(u, i2) + z(u)). This range also has length at most

2z(u). Thus, if u ∈ V \ ∪k
i=1{si , ai , bi}, Pr[u ∈ V ′]≤ 12z(u).

The second part of the proof is to show the property of the signatures in the graph G′ = G − V ′. To

prove this, we rely on the analysis that we did in the setting of SUBSET-FES. Let E′ = (∪k
i=1δ(Bi)) \ Es.

We will prove that E′ ⊆ ∪u∈V ′δ(u) . Next, we will prove via the analysis from Section 5.2, that in G − E′

each connected component has interesting cycles with the same signature; Remark 5.4 is relevant here.

This will prove that G − V ′ has the desired property.

Proof: [Lemma 5.7] Given feasible solution x,z to SUBSET-FVS-REL we define a new set of assignment

values x̃(u, i) as follows: x̃(u, i) = x(u, i) for u ∈ V and 1≤ i ≤ k and x̃(u, k+1) = z(u)+ x(u, k+1). We

have for each u ∈ V , z(u) +
∑k+1

i=1 x(u, i) = 1 and hence
∑k+1

i=1 x̃(u, i) = 1. Now consider Algorithm 5.1

for SUBSET-FES with input x̃. Let the edges set returned be E′. We observe that the algorithm only

uses labels 1 to k and since x and x̃ are identical on these labels, for each i and θ , Algorithm 5.1 and

Algorithm 5.2 produce the same sets B1, . . . , Bk. For this reason, we can use the analysis of Algorithm 5.1

about the structure of the graph G − E′ (Lemma 5.1). In particular we have the property that in every

connected component of G − E′ all interesting cycles have the same signature. We also observe that this

property remains true for G − Ẽ if Ẽ is a superset of E′. To finish the proof of Lemma 5.7 we now prove

128

that E′ ⊆ ∪u∈V ′δ(u), that is, removing V ′ removes every edge in E′ and perhaps more.

Claim 5.3. E′ ⊆ ∪u∈V ′δ(u).

Proof: Recall that E′ = (∪k
i=1δ(Bi)) \ Es. Consider an edge uv ∈ E′. Implies that there is an i such that

v ∈ Bi and u 6∈ Bi, and also that uv is non-special edge. Note that if u is not a terminal or neighbor

of a terminal then u ∈ N(Bi) and therefore u ∈ V ′ and hence uv ∈ δ(u). We can assume that u is not

a terminal for then uv is a special edge. Thus, the only case left to consider is that u is a neighbor of

terminal, say u = a j for some j, and v is not a terminal, otherwise uv is again a special edge. Since

z(u) = 0 and uv is not a special edge, from the LP constraint z(u) + x(u, i) ≥ x(v, i), we have that

x(u, i)≥ x(v, i) which implies that u ∈ Bi if v ∈ Bi contradicting the fact that u ∈ N(Bi). Thus uv ∈ E′

implies that uv ∈ ∪u∈V ′δ(u).

This finishes the proof of the lemma.

5.3.3 Second step of rounding

Here, we will describe the second step of rounding for SUBSET-FVS-REL and finish the proof of

Theorem 5.3. The second step of the algorithm is to process the graph G′ = G − V ′ which has very

restricted structure. Consider a connected component H of G′ which has an interesting cycle C; without

loss of generality s1 is a terminal on C . Since all signatures are identical in H, disconnecting a1 from b1

in the graph H ′ = H − s1 is necessary and sufficient to remove all interesting cycles in H. Since we are in

the node-weighted setting we need to find a minimum weight node cut between a1 and b1 in H ′. In

analogy with Claim 5.2 we have the following.

Claim 5.4. The cost of the minimum node-weighted cut between a1 and b1 in H ′ is at most
∑

u∈V (H)w(u)z(u).

Let V ′′ be the union of all the minimum node cuts found in each connected component of G′. It is

easy to see that V ′ ∪ V ′′ is a feasible solution. From the preceding claim and the fact that the connected

components of G′ are node disjoint we have that w(V ′′)≤
∑

u∈V w(u)z(u). We now finish the proof of

Theorem 5.3.

Proof: [Theorem 5.3] Let α =
∑

u∈V w(u)z(u) be the objective function value of a feasible solution x,z to

SUBSET-FVS-REL. From Lemma 5.7 we obtain a set of nodes V ′ such that w(V ′)≤ 12α and G′ = G − V ′

satisfies the property needed for the second step of the algorithm. The set of nodes V ′′ found in the

second step satisfy the property that w(V ′′) ≤ α. Thus w(V ′ ∪ V ′′) ≤ 13α and V ′ ∪ V ′′ is a feasible

integral solution to the given instance. This finishes the proof.

5.4 Further Remarks on the LP Relaxations

Cycle length constraint: SUBSET-FES-REL with only labeling constraints does not have a bounded

integrality gap. It is essential to add the constraint that each interesting cycle has length at least 1: for each

129

interesting cycle C ∈ C,
∑

e∈C z(e)≥ 1. Consider the third graph in Figure 5.6. Without this constraint,

SUBSET-FES-REL has cost 0 with x(ai , i) = x(bi−1, i) = 1 for i ∈ {1,2,3}, x(u, 1) = 1, x(w, 3) = 1, and

z(e) = 0 for all e ∈ E, whereas the optimal solution for SUBSET-FES has cost 1.

However, we note that the cycle length constraint is only useful in the second step which can be solved

via simple min-cut computations. Alternatively, we can think of the labeling approach as strengthening

the naive cycle constraint-based LP which has Ω(log n) integrality gap.

a1

s1

b1

u v

w

r

a2

b2

b2 s1

a1

b1 v

u

w

r

a2

b2

s2 s1

a1

b1

u

w

r

b3 s3

a3

b2s2a2

Figure 5.6: Edges incident on u, v have weight 1 except wu which has weight 0. Other edges have
infinite weight.

Simplifying Reductions: Given a SUBSET-FES instance we first simplified it via reductions so that we

can assume that each terminal is a degree 2 node with incident edges having infinite weight. Also, that

no two terminals are connected by an edge or share a neighbor. A natural question here is whether these

reductions are for convenience or whether they are essential in enabling the formulation.

Assuming that all edges incident on terminals are of infinite weight, if a terminal has degree more

than 2 then we change the spreading constraint to the following constraint:
∑

u∈N(si)
x(u, i) = |N(si)|−1.

If two terminals si , s j are adjacent, then we can replace the above constraint for si , s j to the following

constraint:
∑

u∈N(si)\{s j} x(u, i) +
∑

u∈N(s j)\{si} x(u, j) = |N(si)|+ |N(s j)| − 3. If an edge incident on a

terminal does not have infinite weight, we can conceptually split the edge and then write constraints

based on the virtual node inserted. Doing these reductions does not change the integrality gap of the

LP but simplifies the analysis considerably. Thus, for the most part the simplifying reductions are for

convenience.

However, we point out the reduction that allows us to assume that each interesting cycle has at

least two terminals, has a more direct impact in terms of our analysis. First, without this assumption,

Lemma 5.1 does not hold and Lemma 5.5 does not hold true for cycle with one terminal. There

may be two distinct interesting cycles in G′, each containing one terminal and connected by a path.

We may also have a connected component in G′ containing two terminals with an interesting cycle

containing both the terminals while another cycle containing just one terminal. Consider the first two

graphs in Figure 5.6 with the following feasible solution: x(a1, 1) = 1/2, x(a1, 2) = 1/2, x(w, 3) = 1

and b1, u, v, a2, b2 have the same assignment x as a1. For any choice of θ ∈ (1/3,1/2) we will get

L(a1) = L(b1) = L(u) = L(v) = L(a2) = L(b2) = {1, 2}, L(w) = {3} and E′ = {wu}.

We can modify the algorithm to incorporate these special cases. However, the analysis becomes

130

complicated. Also, for the case when cycles in a connected component have different signatures as in

the case of second graph of Figure 5.6, the second step of the rounding will lose a factor of 2 giving us

an upper bound of 14 on integrality gap of SUBSET-FES-REL. One can write additional constraints to

avoid this but it is simpler for our analysis to make the assumption.

5.5 Concluding Remarks

Our work opens up the possibility of obtaining improved approximations for SUBSET-FES and SUBSET-

FVS. For both problems the worst-case integrality gap we know comes from corresponding gaps for

EDGE-WT-MWC and NODE-WT-MWC respectively. For EDGE-WT-MWC, it lies between 1.20016 and 1.2965

and for NODE-WT-MWC, it is 2.

Another direction that we have briefly explored is to consider SUBSET-FES and SUBSET-FVS when the

number of terminals k is small. We believe that we can obtain the following results:

• An algorithm for SUBSET-FVS that runs in time exp(k, 1/ε)·poly(n) and yields a (4+ε)-approximation.

An algorithm for SUBSET-FVS that runs in time poly(nk) and yields a 2-approximation.

• An algorithm for SUBSET-FVS that runs in time exp(k, 1/ε) · poly(n) and yields a (2.5930+ ε)-

approximation. An algorithm for SUBSET-FVS that runs in time poly(nk) and yields a 1.2965-

approximation.

Note that even when k = 1 the problem is APX-Hard.

131

References

[1] Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops, robbers, and
threatening skeletons: Padded decomposition for minor-free graphs. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, pages 79–88. ACM, 2014.

[2] Amit Agarwal, Noga Alon, and Moses S Charikar. Improved approximation for directed cut problems.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 671–680.
ACM, 2007.

[3] Haris Angelidakis, Yury Makarychev, and Pasin Manurangsi. An improved integrality gap for
the călinescu-karloff-rabani relaxation for multiway cut. In International Conference on Integer
Programming and Combinatorial Optimization, pages 39–50. Springer, 2017.

[4] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM (JACM), 45(3):501–555, 1998.

[5] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–297, 1999.

[6] Egon Balas and Chang Sung Yu. On graphs with polynomially solvable maximum-weight clique
problem. Networks, 19(2):247–253, 1989.

[7] Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M Roth. Approximation algorithms for the
feedback vertex set problem with applications to constraint satisfaction and bayesian inference.
SIAM journal on computing, 27(4):942–959, 1998.

[8] Ann Becker and Dan Geiger. Optimization of pearl’s method of conditioning and greedy-like
approximation algorithms for the vertex feedback set problem. Artificial Intelligence, 83(1):167–
188, 1996.

[9] Kristof Bérczi, Karthekeyan Chandrasekaran, Tamas Király, Euiwoong Lee, and Chao Xu. Global and
fixed-terminal cuts in digraphs. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), volume 81 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 2:1–2:20, 2017.

[10] Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, and Vivek Madan. A tight-approximation
for linear 3-cut. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1393–1406. SIAM, 2018.

[11] Attila Bernáth and Tamás Király. Blocking optimal arborescences. Mathematical Programming,
161(1):583–601, 2017.

[12] Niv Buchbinder, Joseph Seffi Naor, and Roy Schwartz. Simplex partitioning via exponential clocks
and the multiway cut problem. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory
of Computing (STOC), pages 535–544, 2013.

[13] Niv Buchbinder, Roy Schwartz, and Baruch Weizman. Simplex transformations and the multiway cut
problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2400–2410, 2017.

132

[14] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the 0-extension
problem. SIAM Journal on Computing, 34(2):358–372, 2005.

[15] Gruia Calinescu, Howard J. Karloff, and Yuval Rabani. An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences, 60(3):564–574, 2000. Preliminary version
in STOC 1998.

[16] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D Sivakumar. On the hardness
of approximating multicut and sparsest-cut. computational complexity, 15(2):94–114, 2006.

[17] Chandra Chekuri and Alina Ene. Approximation algorithms for submodular multiway partition. In
52nd Annual Symposium on Foundations of Computer Science (FOCS), pages 807–816. IEEE, 2011.

[18] Chandra Chekuri and Alina Ene. Submodular cost allocation problem and applications. In
International Colloquium on Automata, Languages and Programming (ICALP (1)), pages 354–366,
2011. A longer version is available on the arXiv, abs/1105.2040.

[19] Chandra Chekuri, Sudeep Kamath, Sreeram Kannan, and Pramod Viswanath. Delay-constrained
unicast and the triangle-cast problem. In Information Theory (ISIT), 2015 IEEE International
Symposium on, pages 804–808. IEEE, 2015.

[20] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and Leonid Zosin. A linear programming formu-
lation and approximation algorithms for the metric labeling problem. SIAM Journal on Discrete
Mathematics, 18(3):608–625, 2004.

[21] Chandra Chekuri, Sanjeev Khanna, Joseph Seffi Naor, and Leonid Zosin. Approximation algorithms
for the metric labeling problem via a new linear programming formulation. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 109–118. Society for Industrial
and Applied Mathematics, 2001.

[22] Chandra Chekuri and Vivek Madan. Constant factor approximation for subset feedback set problems
via a new LP relaxation. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 797–807, 2016.

[23] Chandra Chekuri and Vivek Madan. Simple and fast rounding algorithms for directed and node-
weighted multiway cut. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 797–807, 2016.

[24] Chandra Chekuri and Vivek Madan. Approximation multicut and the demand graph. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2017.

[25] Kevin KH Cheung, William H Cunningham, and Lawrence Tang. Optimal 3-terminal cuts and linear
programming. Mathematical Programming, 106(1):1–23, Mar 2006.

[26] Fabián Chudak, Michel X Goemans, Dorit S Hochbaum, and David P Williamson. A primal–dual
interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected
graphs. Operations Research Letters, 22(4):111–118, 1998.

[27] Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed cut problems.
Journal of the ACM (JACM), 56(2):6, 2009.

[28] Marek Cygan, Fedor Fomin, Łukasz Kowalik, Daniel Loksthanov, Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2014. In print.

133

[29] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894,
1994. Preliminary version in STOC 1992.

[30] Reinhard Diestel. Graph Theory: Springer Graduate Text GTM, volume 173. Springer New York,
2012.

[31] Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symmetry gap: Approximability of
multiway partitioning problems. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 306–325. SIAM, 2013.

[32] Robert F. Erbacher, Trent Jaeger, Nirupama Talele, and Jason Teutsch. Directed multicut with
linearly ordered terminals. Preprint: https://arxiv.org/abs/1407.7498, 2014.

[33] Paul Erdös and Lajos Pósa. On independent circuits contained in a graph. Canadian Journal of
Mathematics. Journal Canadien de Mathématiques, 17:347–352, 1965.

[34] Guy Even, Joseph Naor, Baruch Schieber, and Leonid Zosin. Approximating minimum subset
feedback sets in undirected graphs with applications. SIAM Journal on Discrete Mathematics,
13(2):255–267, 2000.

[35] Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the subset feedback
vertex set problem. SIAM Journal on Computing, 30(4):1231–1252, 2000. Preliminary version in
Proc. of IEEE FOCS, 1996.

[36] Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation
algorithms via spreading metrics. Journal of ACM(JACM), 47:585–616, 2000.

[37] Jittat Fakcharoenphol and Kunal Talwar. An improved decomposition theorem for graphs excluding
a fixed minor. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 36–46. Springer, 2003.

[38] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634–
652, 1998.

[39] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. In ccc, page 278. IEEE,
1996.

[40] Paola Festa, Panos M Pardalos, and Mauricio GC Resende. Feedback set problems. In Handbook of
combinatorial optimization, pages 209–258. Springer, 1999.

[41] Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. Hitting diamonds and growing cacti. In
International Conference on Integer Programming and Combinatorial Optimization, pages 191–204.
Springer, 2010.

[42] Fedor V Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:
Approximation, kernelization and optimal fpt algorithms. In Foundations of Computer Science
(FOCS), 2012 IEEE 53rd Annual Symposium on, pages 470–479. IEEE, 2012.

[43] LR Ford and DR Fulkerson. Maximal flow through a network. 1954.

134

[44] Ari Freund and Howard J. Karloff. A lower bound of 8/(7+1/(k-1)) on the integrality ratio of the
Călinescu-Karloff-Rabani relaxation for multiway cut. Information Processing Letters, 75(1):43 –
50, 2000.

[45] Michael R Garey and David S Johnson. Computers and intractability, volume 29. W. H. Freeman
New York, 2002.

[46] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in directed and node
weighted graphs. In ICALP, pages 487–498, 1994.

[47] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi) cut
theorems and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.

[48] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

[49] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node weighted graphs.
Journal of Algorithms, 50(1):49–61, 2004. Preliminary version in Proc. of ICALP, 1994.

[50] Michel Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145,
November 1995.

[51] Michel X Goemans and David P Williamson. Primal-dual approximation algorithms for feedback
problems in planar graphs. Combinatorica, 18(1):37–59, 1998.

[52] Daniel Golovin, Viswanath Nagarajan, and Mohit Singh. Approximating the k-multicut problem. In
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 621–630.
Society for Industrial and Applied Mathematics, 2006.

[53] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random
ordering is hard: Inapproximability of maximum acyclic subgraph. In 49th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 573–582. IEEE, 2008.

[54] Sariel Har-Paled. Computing the k-nearest-neighbors for all vertices via Dijkstra. April 2015.
sarielhp.org/p/14/k_nn/k_nn.pdf.

[55] Johan Håstad. Clique is hard to approximate withinn 1- ε. Acta Mathematica, 182(1):105–142,
1999.

[56] David R. Karger, Philip N. Klein, Clifford Stein, Mikkel Thorup, and Neal E. Young. Rounding
algorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research, 29(3):436–461, 2004. Preliminary version in STOC 1999.

[57] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computa-
tions, pages 85–103. Springer, 1972.

[58] Leonid G Khachiyan. Polynomial algorithms in linear programming. Zhurnal Vychislitel’noi Matem-
atiki i Matematicheskoi Fiziki, 20(1):51–68, 1980.

[59] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th annual
ACM Symposium on Theory of Computing, STOC, pages 767–775, 2002.

135

[60] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357, 2007.

[61] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-/spl epsiv.
In Computational Complexity, 2003. Proceedings. 18th IEEE Annual Conference on, pages 379–386.
IEEE, 2003.

[62] Philip Klein, Serge A Plotkin, and Satish Rao. Excluded minors, network decomposition, and
multicommodity flow. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, pages 682–690. ACM, 1993.

[63] Jon M. Kleinberg and Éva Tardos. Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and Markov random fields. Journal of the ACM (JACM),
49(5):616–639, 2002. Preliminary version in FOCS 1999.

[64] Jean B Lasserre. An explicit exact sdp relaxation for nonlinear 0-1 programs. In International
Conference on Integer Programming and Combinatorial Optimization, pages 293–303. Springer,
2001.

[65] Tom Leighton and Satish Rao. An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with applications to approximation algorithms. pages 422–431, 1988.

[66] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.

[67] László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0–1 optimization.
SIAM journal on optimization, 1(2):166–190, 1991.

[68] Rajsekar Manokaran, Joseph Seffi Naor, Prasad Raghavendra, and Roy Schwartz. SDP gaps and
UGC hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages 11–20. ACM, 2008.

[69] Maryam Mirzakhani and Jan Vondrák. Sperner’s colorings, hypergraph labeling problems and fair
division. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’15, pages 873–886, 2015.

[70] Joseph Naor and Leonid Zosin. A 2-approximation algorithm for the directed multiway cut problem.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 548–548. IEEE
Computer Society, 1997.

[71] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 245–254. ACM, 2008.

[72] Prasad Raghavendra and Venkatesan Guruswami. Approximating np-hard problems efficient algo-
rithms and their limits. University of Washington, 2009.

[73] Bruce Reed, Neil Robertson, Paul Seymour, and Robin Thomas. Packing directed circuits. Combina-
torica, 16(4):535–554, 1996.

[74] Michael Saks, Alex Samorodnitsky, and Leonid Zosin. A lower bound on the integrality gap for
minimum multicut in directed networks. Combinatorica, 24(3):525–530, 2004.

[75] Paul D. Seymour. Packing directed circuits fractionally. Combinatorica, 15(2):281–288, 1995.

136

[76] Adi Shamir. A linear time algorithm for finding minimum cutsets in reducible graphs. SIAM Journal
on Computing, 8(4):645–655, 1979.

[77] Ankit Sharma and Jan Vondrák. Multiway cut, pairwise realizable distributions, and descending
thresholds. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages
724–733. ACM, 2014.

[78] Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the continuous and convex
hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics,
3(3):411–430, 1990.

[79] David B Shmoys. Cut problems and their application to divide-and-conquer. Approximation
algorithms for NP-hard problems, pages 192–235, 1997.

[80] David Steurer and Nisheeth Vishnoi. Connections between multi-cut and unique games. Technical
Report TR09-125, 2009.

[81] Ola Svensson. Hardness of vertex deletion and project scheduling. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 301–312. Springer, 2012.

[82] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

[83] Ching-Chy Wang, Errol L Lloyd, and Mary Lou Soffa. Feedback vertex sets and cyclically reducible
graphs. Journal of the ACM (JACM), 32(2):296–313, 1985.

[84] Douglas West. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River, 2001.

137

