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ABSTRACT

Communication scheduling and remote estimation scenarios arise in the con-

text of wireless sensor networks, which involve monitoring and controlling

the state of a dynamical system from remote locations. This entails joint

design of transmission and estimation policies, where a sensor (or a group

of sensors) observes the state of the system over a given horizon, but has

to be selective in what (and when) it transmits due to energy constraints.

The estimator, on the other hand, needs to generate real-time estimates of

the state regardless of whether there is a transmission from the sensor or

not. Hence, a communication scheduling strategy for the sensor and an es-

timation strategy for the estimator should be jointly designed to minimize

the estimation error subject to the energy constraints. Prior works on this

topic assumed that the communication channel between the sensor and the

estimator is noiseless, which may not be that realistic even though it was an

important first step. In this thesis, we study communication scheduling and

remote estimation problems with additive noise channels. In particular, we

consider a series of four problems as follows. In the first problem, the sensor

has two options, namely, not transmitting its observation, or transmitting

its observation over an additive noise channel subject to some communica-

tion cost. Because of the presence of channel noise, if the sensor decides

to transmit its observation over the noisy channel, it needs to encode the

message. Furthermore, the estimator needs to decode the noise-corrupted

message. Hence, a pair of encoding and decoding strategies should also be

jointly designed along with the communication scheduling strategy. In the

second problem, the sensor has three options, where two of the options are

the same as those in the first problem, and the third one is that the sensor

can transmit its observation via a noiseless but more costly channel. The

third problem is a variant of the first one, where the encoder has a constraint

on its average total power consumption over the time horizon, instead of a
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constraint on the stage-wise encoding power, which is assumed in the first

problem. In the fourth problem, the communication channel noise is gener-

ated by an adversary with the objective of maximizing the estimation error.

Hence, a game problem instead of an optimization problem is formulated and

studied. Under some technical assumptions, we obtain the optimal solutions

for the first three problems, and a feedback Stackelberg solution for the fourth

problem. We present numerical results illustrating the performances of the

proposed solutions. We also discuss possible directions for future research

based on the results presented in this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Background

Communication scheduling and remote state estimation problems arise in

applications involving wireless sensor networks, such as environmental mon-

itoring and networked control systems. As an example of environmental

monitoring, researchers at the National Aeronautics and Space Administra-

tion (NASA) Earth Science group are interested in monitoring the evolution

of the soil moisture, which is used in weather forecasts, ecosystem process

simulation and so on [1]. In order to achieve this goal, a sensor network is

built over an area of interest. The sensors collect data on the soil moisture

and send it to the decision unit at NASA via wireless communication. The

decision unit at NASA forms estimates on the evolution of the soil moisture

based on the messages received from the sensors. Similarly, in a networked

control system, where the objective is to control some remote plant, a sensor

network is built to measure the state of the remote plant. Sensors transmit

their measurements to the controller via a wireless communication network.

The controller estimates the state of the plant and then generates a control

signal based on that estimate [2]. In both scenarios, the quality of remote

state estimation strongly affects the quality of the decision making, that is,

weather prediction or control signal generation. The networked sensors are

usually constrained by limits on energy. They are not able to communicate

with the estimator at every time step and thus, the estimator has to produce

its best estimate based on the partial information received from the sensors.

Therefore, the communication between the sensors and the estimator should

be scheduled judiciously, and the estimator should be designed properly, so

that the state estimation error is minimized subject to the communication

constraints.
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1.2 Related Work and Motivation

Research on the general communication scheduling (sampling) and remote

estimation problem dates back to the 1970s, and many results have been de-

rived since then, related to this general topic [3–26]. In particular, the prob-

lems considered in [27–29] are closely related and motivate our work. The

work in [27] initialized this line of research, where the following problem was

studied. Consider the problem of observing in real-time a one-dimensional,

independent and identically distributed (i.i.d.) stochastic process (call it

source) over a finite time horizon. There is a sensor network with one sensor

and one estimator. At each time step, the sensor makes a perfect observa-

tion of the state of the source. Under an energy constraint, the sensor is

able to transmit its observation to the estimator only a limited number of

times, call it hard (communication) constraint. Hence, after receiving mea-

surement of the source, the sensor needs to decide whether to transmit its

observation or not. The communication channel between the sensor and the

estimator is perfect, and the estimator will get a notification if there is no

transmission. Based on the messages received from the sensor, the estima-

tor generates real-time estimates on the states of the source and is charged

for squared estimation error. The underlying optimization problem is to

jointly design communication scheduling and remote estimation strategies

that minimize the mean squared error over a given time horizon, subject to

the hard communication/transmission constraint. To approach the problem,

it was assumed that the sensor is restricted to apply a threshold-based strat-

egy, namely, the sensor computes the innovation of its actual observation

compared to the expected observation, and it decides to transmit the obser-

vation if the absolute value of the innovation exceeds some threshold. With

the above assumption, it was shown that the optimal threshold depends on

time and the remaining communication opportunities, which can be obtained

via dynamic programming. Furthermore, the optimal estimator is the con-

ditional mean. The results can be generalized to the case when the source is

the state of a linear time-invariant (LTI) system driven by an i.i.d. Gaussian

process.

The work in [28] considered a problem setting slightly different from that

in [27]. In [28], the sensor is not constrained by communication opportuni-

ties, but is charged a cost for each transmission, call it soft (communication)
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constraint. In addition, the work in [28] did not restrict the search of com-

munication scheduling strategy to the class of threshold type strategies. It

showed that a threshold-based strategy and the conditional mean are jointly

optimal if the source is a Gauss-Markov process. Moreover, the conditional

mean admits a closed-form expression, which is a Kalman filter-like estima-

tor. The work in [29] extended the results in [28] to a more general class of

problems, where the source can be the state of an LTI system driven by any

i.i.d. stochastic process with an even and unimodal distribution. The sensor

has both soft constraint and hard constraint, and it is also equipped with

an energy harvester. It was shown that a threshold-based communication

scheduling strategy and a Kalman-like filter are jointly optimal. The results

also hold for multidimensional systems under some technical assumptions.

In [27–29], it was assumed that the communication channel between the

sensor and the estimator is perfect (call it “noiseless-channel setting”), which

may not be realistic even though it is an important first step. The next step

would be to study settings with an imperfect channel. Problems with an

i.i.d. packet-dropping channel and a Gilbert-Elliott channel (Markov packet-

dropping channel) were formulated and studied separately in [30] and [31].

The setting with a random delay channel was considered in [32]. The set-

tings with an adversary who is able to block the communication channel or

manipulate the message transmitted by the sensor were studied in [33–36].

In this thesis, we will concentrate on the problems with additive noise chan-

nels [37–44].

1.3 Contributions

In this thesis, we consider a series of four problems. We first consider com-

munication scheduling and remote estimation over an additive noise channel

(call it “single-channel setting”). In this single-channel setting, the source is

a one-dimensional i.i.d. stochastic process with an even and log-concave dis-

tribution. At each time step, a sensor observes the source and then decides

whether or not to transmit its observation. Since the communication channel

has an additive channel noise, the sensor may need to encode its observation

before transmitting it. Hence, an encoder with power constraint is involved in

the problem. In this case, the estimator needs to decode the noise-corrupted
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message, and thus it can also be called decoder. It is assumed that there is

a side channel between the encoder and the decoder, which enables them to

apply different encoding/decoding strategies for different types of source ob-

servation, e.g., apply different encoding/decoding strategies for positive and

negative observations. We consider soft and hard constraints separately in

two sub-problems. In general, the problem is hard to analyze, since it involves

both a communication scheduling problem and a zero-delay source-channel

coding problem. Regarding the zero-delay source-channel coding problem, it

is well known that affine encoding/decoding strategies are jointly optimal if

the source and the communication channel noise have the jointly Gaussian

distribution. In our problem, however, even though the source has Gaus-

sian distribution, after “thresholding” on it, the input to the encoder will

not have Gaussian distribution any more, which makes the problem fairly

difficult to solve. To simplify the analysis, we restrict the encoder and the

decoder to apply affine encoding and decoding strategies. In addition, we

restrict our search of communication scheduling strategies to a class satisfy-

ing some symmetry property. We show that under the above assumptions,

the optimal communication scheduling strategy is threshold-based. Further-

more, we uncover a rather surprising property, that is, even in the asymptotic

case where there is no communication constraint, the sensor should still ap-

ply the threshold-based strategy instead of making a transmission at each

time step. Numerical results are generated, which show some phenomena

not encountered in the noiseless-channel setting.

Next, we consider communication scheduling and remote estimation over

multiple channels (call it “multi-channel setting”). In this multi-channel

setting, the sensor has three options after making an observation. One is

that it can choose not to transmit its observation. The second is that it

can transmit its observation via a noisy channel under some cost. And the

third is that it can transmit its observation via a noiseless but more costly

channel. Again, if the sensor decides to transmit its observation via the

noisy channel, it will send the observation to an encoder. Different from

the single-channel setting, at first we do not assume the existence of a side

channel. Instead, we show by constructing a counterexample that without

the side channel, the optimal communication scheduling strategy can be non-

symmetric, which makes the problem intractable. Hence, the assumption on

the existence of a side channel is critical in making the problem tractable.
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With this assumption, we show that the optimal communication scheduling

strategy is threshold-in-threshold based. We also present numerical results,

which show some properties inherited from both the single-channel setting

and the noiseless-channel setting.

Third, we consider the problem of communication scheduling and remote

estimation with power allocation (call it “power allocation setting”). This

power allocation setting is formulated based on the single-channel setting. In

the single-channel setting, it is assumed that the encoder has a stage-wise con-

straint on its encoding power. More specifically, when the sensor decides to

transmit its observation, the encoder can only utilize limited average power,

which is assumed to be the same for each stage, to encode and transmit the

observation. In the power allocation setting, however, we consider a more

general formulation where the encoder has a constraint on its average total

power consumption over the time horizon. Several technical challenges are

involved due to the nature of the new constraint. For instance, the aver-

age total power should be judiciously distributed across different stages. In

addition, at each stage, the communication scheduling policy, the encoding

policy, and the decoding policy should be jointly designed to best utilize

the average encoding power allocated to that stage. Under some technical

assumptions, we show that the optimal communication scheduling policy is

still threshold-based. Furthermore, for each stage we obtain a jointly optimal

pair of the threshold and the encoding power. Numerical results demonstrate

that with this additional flexibility of allocating the average total power, we

could achieve lower expected estimation error.

Last but not the least, we consider communication scheduling and remote

estimation in the presence of an adversary (call it “adversarial setting”). In

this adversarial setting, a remote sensing system consisting of a sensor, an

encoder, and a decoder is configured to observe, transmit, and recover a

one-dimensional, i.i.d. discrete time stochastic process. At each time step,

the sensor makes a measurement of the state variable of the stochastic pro-

cess, and then it makes a decision as to whether to make a transmission

or not. The sensor has both soft and hard communication constraints. If

the sensor decides to transmit its observation, it sends the observation to

the encoder, which then encodes it and sends a real-valued message to the

communication channel. If the sensor decides not to transmit its observa-

tion, it maintains silence and the encoder also maintains silence accordingly.
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Regardless of whether there is a transmission from the sensor or not, the

decoder needs to generate a real-time estimate on the state variable of the

stochastic process. The cost charged on the remote sensing system at each

time step consists of three terms: the sensor is charged a cost for each trans-

mission (no charge if there is no transmission), the encoder is charged for

the encoding power (no charge if there is no transmission from the sensor),

and the decoder is charged for the estimation error. All three components

of the remote sensing system has the common objective of minimizing the

total expected costs of the remote sensing system summed up over the time

horizon. In addition, the communication channel between the encoder and

the decoder is compromised, through injection of an additive channel noise

generated by an adversary, or jammer. Consequently, the encoded message

sent by the encoder will be distorted by this channel noise. At each time

step, the jammer is charged for the jamming power, and it is rewarded by

the estimation error charged on the decoder. The jammer has the objective

of minimizing its expected total costs accumulated over the time horizon. As

the solution concept between these opposing parties, we adopt the frame-

work of a feedback Stackelberg game, with the sensor, the encoder, and the

decoder as the composite leader, and the jammer as the follower. That is,

at each time step, the sensor, the encoder, and the decoder first announce

(in unison) their communication scheduling policy, the encoding policy, and

the decoding policy, respectively. Then, the jammer announces its jamming

policy. Under some technical assumptions, we obtain a feedback Stackelberg

solution consisting of a threshold-based communication scheduling policy for

the sensor, and a pair of piecewise affine encoding and decoding policies for

the encoder and the decoder. We also generate numerical results to develop

a further understanding of the performance of the remote sensing system

compromised by an adversary, under the feedback Stackelberg solution.

1.4 Organization

The rest of this thesis is organized as follows: in Chapter 2, we formulate

and consider the single-channel setting, which builds the framework for this

series of research. In Chapter 3, we consider the multi-channel setting, which

is a mixture between the single-channel setting and the noiseless-channel
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setting. In Chapter 4, we study the power allocation setting, which is an

enhancement of the single-channel setting. In Chapter 5, we formulate and

study the adversarial setting to address the recent and emergent issues on

cyber physical systems security. In Chapter 6, we discuss possible directions

for future research based on this thesis study. Finally in Chapter 7, we draw

concluding remarks.

7



CHAPTER 2

COMMUNICATION SCHEDULING AND
REMOTE ESTIMATION OVER AN

ADDITIVE NOISE CHANNEL

In this chapter, we consider the communication scheduling and remote es-

timation problem with an additive noise channel, namely the single-channel

setting. Due to the presence of channel noise, the sensor may need to encode

its observation before sending it to the communication channel. Hence, the

problem involves another decision maker, that is, the encoder. On the other

hand, the estimator needs to decode the message when there is a transmission

from the sensor, and thus we also call it decoder. Accordingly, the problem

can be viewed as a communication scheduling problem combined with a zero

delay source-channel coding problem. For the zero delay source-channel prob-

lem, it is well known that affine encoding and decoding policies are jointly

optimal when the source and the channel noise have Gaussian distribution.

However, in our case the sensor’s decision contains some hidden information

about the source, which will “reshape” the conditional belief. For example,

suppose the sensor applies threshold-based policy. Accordingly, the sensor

only transmits an observation falling outside the thresholding interval. Even

though the source has Gaussian distribution, after “thresholding” on it (con-

ditioning on the event that it falls outside the thresholding interval), the input

to the encoder will not have Gaussian distribution any more, which renders

the problem fairly difficult to solve. To overcome this major difficulty, we

restrict the encoder and the decoder to apply affine encoding and decoding

policies. Furthermore, we assume that the sensor will apply a communication

scheduling policy from the class of policies with some symmetry property. We

consider two scenarios, which correspond to soft and hard constraints. We

show that if the source has an even and log-concave distribution, then the

optimal communication scheduling policy is one of the threshold type with

a unique optimal threshold. We generate numerical results for the problem

with hard constraint, which show interesting phenomena not encountered in

the noiseless-channel setting.
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The major contributions of this chapter are as follows:

1. We formulate two optimization problems involving an additive noise

channel under two types of communication constraints.

2. We show that if the source and noise processes are i.i.d., then the opti-

mization problem with soft constraint can be simplified to a single-stage

problem. Furthermore, the optimization problem with hard constraint

can be converted to a single-stage problem with soft constraint.

3. Under some technical assumptions, we show that the optimal communi-

cation scheduling policy is a threshold-based one with a unique optimal

threshold.

4. We generate numerical results for the problem with hard constraint.

We uncover two surprising facts: first, the optimal estimation error

over the time horizon stays constant if the number of communication

opportunities exceeds some threshold. In other words, the commu-

nication opportunities above the threshold are redundant in terms of

reducing the estimation error. Second, the sensor may not use up all

the communication opportunities by the end of the time horizon. We

also analyze the reasons for these two interesting phenomena.

The rest of the chapter is organized as follows: in Section 2.1, we for-

mulate the two optimization problems under soft and hard communication

constraints. In Section 2.2, we consider the problem with soft constraint. In

Section 2.3, we consider the problem with hard constraint. In Section 2.4, we

generate and discuss numerical results for the problem with hard constraint.

2.1 Problem Formulation

2.1.1 System Model

Consider a discrete time communication scheduling and remote estimation

problem over a finite-time horizon, that is, t = 1, 2, . . . , T . There is one sen-

sor, one encoder and one remote estimator (which is also called “decoder”),

as shown in Fig. 2.1. A source process {Xt} is a one-dimensional, indepen-

dent, and identically distributed (i.i.d.) stochastic process, which has density

9



Figure 2.1: System model for single-channel setting

pX . At time t, the sensor observes Xt. Since the sensor is assumed to have

communication constraint (which will be introduced later), it needs to decide

whether or not to transmit its observation. Let Ut ∈ {0, 1} be the sensor’s

decision at time t, where Ut = 1 stands for transmission and Ut = 0 stands

for no transmission. The communication channel is assumed to be noisy.

Hence, if the sensor decides to transmit its observation, it sends Xt to the

encoder. If the sensor decides not to transmit, it does not send anything to

the encoder but a free symbol ε stands for its decision. Denote by X̃t the

message received by the encoder; then

X̃t =


Xt, if Ut = 1

ε, if Ut = 0

If the encoder receives Xt from the sensor, it sends an encoded message Yt to

the communication channel. The encoder operates under the average power

constraint:

E[Y 2
t |Ut = 1] ≤ PT

where the expectation is taken over Yt. Furthermore, PT is known and is

invariant of time. The encoded message Yt is corrupted by an additive chan-

nel noise Vt. The noise process {Vt} is a one-dimensional i.i.d. stochastic

process with density pV , which is independent of {Xt}. When sending Yt to

the communication channel, the encoder is able to transmit the sign of Xt

to the decoder via a side channel, which is assumed to be noise-free. If the

encoder receives ε from the sensor, it sends zero to both the communication

channel and the side channel. Consequently, the decoder can deduce the sen-

sor’s decision from the message conveyed via the side channel. We use Ỹt and

St to denote the messages received by the decoder from the communication

10



channel and the side channel, respectively, that is

Ỹt =

Yt + Vt, if Ut = 1

Vt, if Ut = 0
, St =

sgn(Xt), if Ut = 1

0, if Ut = 0

After receiving Ỹt and St, the decoder produces an estimate on Xt, denoted

by X̂t. The decoder is charged for distortion in estimation. We assume that

the distortion function ρ(Xt, X̂t) is the squared error, (Xt − X̂t)
2.

2.1.2 Communication Constraint

The sensor is said to have a soft constraint if there is a non-negative cost

function associated with Ut, denoted by C(Ut). Here, the cost function is

assumed to have the form of

C(Ut) = cUt =


0, if Ut = 0

c, if Ut = 1

where c is called the communication cost (c > 0), which is known and is

invariant of time. The sensor is said to have a hard constraint if it is restricted

to use the noisy channel for no more than N times (N < T ).

2.1.3 Decision Strategies

Assume that at time t, the sensor has memory on all its observations up to

t, denoted by X1:t, and all the decisions it has made up to t− 1, denoted by

U1:t−1. The sensor determines whether or not to transmit its observation at

time t, based on its current information (X1:t, U1:t−1), namely

Ut = ft(X1:t, U1:t−1)

where ft is the communication scheduling policy at time t, and f = {f1, f2,

. . . , fT} is the communication scheduling strategy.

Similarly, at time t, the encoder has memory on all the messages received

from the sensor up to t, denoted by X̃1:t, and all the messages it has sent

to the communication channel and the side channel up to t− 1, denoted by
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Y1:t−1 and S1:t−1, respectively. The encoder generates the encoded message

at time t, based on its current information (X̃1:t, Y1:t−1, S1:t−1), namely

Yt = gt(X̃1:t, Y1:t−1, S1:t−1)

where gt is the encoding policy at time t, and g = {g1, g2, . . . , gT} is the

encoding strategy.

Finally, we assume that at time t, the decoder has memory on all the

messages received from the communication channel up to t, denoted by Ỹ1:t,

and all the messages received from the side channel up to t, which are S1:t.

The decoder generates the estimate at time t, based on its current information

(Ỹ1:t, S1:t), namely

X̂t = ht(Ỹ1:t, S1:t)

where ht is the decoding policy at time t, and h = {h1, h2, . . . , hT} is the

decoding strategy.

Remark 2.1. Although we do not assume that the decoder has memory on

its previous estimates up to t, yet it can deduce them from (Ỹ1:t−1, S1:t−1) and

h1, h2, . . . , ht−1.

For simplicity, we call the sensor, the encoder, and the decoder as deci-

sion makers. Correspondingly, we call the communication scheduling policy

(strategy), the encoding policy (strategy), and the decoding policy (strategy)

as decision policies (strategies).

2.1.4 Optimization Problem

In Sections 2.2 and 2.3, we consider two sub-problems separately, namely the

optimization problems with soft and hard constraints. Let the time horizon

T , the probability density functions pX and pV , and the power constraint PT

be given.

Optimization problem with soft constraint: Given the communication cost

c, determine (f,g,h) minimizing the cost functional

J(f,g,h) = E

{
T∑
t=1

cUt + (Xt − X̂t)
2

}
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Optimization problem with hard constraint: Given the number of trans-

mission opportunities N , determine (f,g,h) minimizing, under the hard con-

straint, the cost functional

J(f,g,h) = E

{
T∑
t=1

(Xt − X̂t)
2

}

2.2 Optimization Problem with Soft Constraint

First, we show that the optimization problem with soft constraint can be

simplified to a single-stage problem, as described in Theorem 2.1.

Theorem 2.1. Consider the optimization problem formulated in Section

2.1.4 with the soft constraint.

1. Without loss of optimality, one can restrict all the decision makers to

apply the decision policies (ft, gt, ht) in the forms of:

Ut = ft(Xt), Yt = gt(X̃t), X̂t = ht(Ỹt, St) (2.1)

2. Without loss of optimality, one can restrict all the decision makers

to apply stationary decision strategies (f, g,h), i.e., f = {f, f, . . . , f},
g = {g, g, . . . , g}, h = {h, h, . . . , h}.

Proof. Since the source and noise processes are i.i.d., and the communi-

cation cost and the power constraint are invariant of time, the above results

are quite intuitive. A detailed proof can be found in Appendix A.1.

By Theorem 2.1, the optimization problem with soft constraint can be

reduced to a single-stage problem. Therefore, for simplicity we suppress

the subscript for time in all the expressions for the rest of this section. To

present our main results for the single-stage problem, we need the following

four assumptions.

Assumption 2.1. The source density pX is nonatomic, even, and log-concave

with support R. Furthermore, pX is continuously differentiable on (0,∞)

(and on (−∞, 0) by symmetry).
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Remark 2.2. There are several probability density functions satisfying As-

sumption 2.1, e.g., zero-mean Gaussian distribution, zero-mean Laplace dis-

tribution, and a few others. For simplicity, we assume here that pX has

support R. However, the results also hold for the source density with support

(−a, a), a > 0, e.g., uniform distribution. In that case, we require that pX is

continuously differentiable on (0, a).

Given any communication scheduling policy f , let T f0 , T f1+, and T f1− be the

non-transmission region, the positive transmission region and the negative

transmission region, corresponding to f , where

T f0 := {x ∈ R|f(x) = 0}, T f1+ := {x > 0|f(x) = 1}, T f1− := {x < 0|f(x) = 1}

Note that T f0 , T f1 , T f2 may not be connected regions. Then, we make the

following assumption on the communication scheduling policy.

Assumption 2.2. The sensor is restricted to apply the communication schedul-

ing policy f satisfying

E[X|X ∈ T f1−] < E[X|X ∈ T f0 ] < E[X|X ∈ T f1+] (2.2)

Remark 2.3. There is a wide class of communication scheduling policies sat-

isfying inequality (2.2). For example, given any even communication schedul-

ing policy f , i.e., f(x) = f(−x) ∈ {0, 1}, and any even source density func-

tion pX , we have

E[X|X ∈ T f1−] < 0, E[X|X ∈ T f0 ] = 0, E[X|X ∈ T f1+] > 0

Then, Assumption 2.2 is satisfied.

Assumption 2.3. The communication channel noise V has zero mean, and

finite variance, denoted by σ2
V .

Assumption 2.4. The encoder and the decoder are restricted to apply piece-
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wise affine policies:

g(X̃) =


Sα(S)

(
X − E [X|U = 1, S]

)
, if U = 1

0, if U = 0

h(Ỹ , S) =


S

1

α(S)

γ

γ + 1
Ỹ + E [X|U = 1, S] , if U = 1

E[X|U = 0], if U = 0

where γ = PT/σ
2
V is the signal-to-noise ration (SNR). α(S) is the ampli-

fying ratio, and α(S) =
√
PT/Var(X|U = 1, S). Var(X|U = 1, S) is the

conditional variance.

It can be checked that when applying the encoding policy described above,

the power consumption of the encoder meets the average power constraint

(more details can be found in [45]). Moreover, the events U = 0, (U = 1, S =

−1), and (U = 1, S = 1) are equivalent to the events X ∈ T f0 , X ∈ T f− , and

X ∈ T f1+, respectively. Therefore, the encoding and decoding policies (g, h)

are induced by the source density pX and the communication scheduling

policy f . For simplicity, we use J(f) instead of J(f, g, h) to denote the cost

functional in the rest of this section.

Remark 2.4. Note that the assumption of piece-wise affine encoding poli-

cies originates from a prior work [46], which analyzed a memoryless zero-sum

jamming game between a pair of transmitter and receiver and an adversary

that generates an additive channel noise subject to second order (power) sta-

tistical constraints. It was shown in [46] that the saddle-point equilibrium

associated with this zero-sum game is achieved by affine encoding/decoding

policies for the transmitter-receiver pair. Here, we utilize such piece-wise

affine policies, not only because they facilitate a tractable analysis but also

because they possess such mini-max robustness properties (see [46] for more

details).

Theorem 2.2. Consider the single-stage problem under Assumptions 1-4.

Then, the optimal communication scheduling policy is of the threshold type:

f(x) =


0, if |x| < β

1, otherwise
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where β > 0 is the threshold. Furthermore, there exists a unique value β∗

minimizing the cost functional J(f) among all such thresholds.

To prove Theorem 2.2, we need the following definitions and lemmas. We

first introduce a quantization problem.

Quantization Problem: The problem is one of quantizing the realiza-

tions (denoted by x) of a real-valued random variable (denoted by X) to N
codepoints (N is finite and is known) according to some quantization rule

(or quantizer) Q, i.e.,

Q(x) = qi, if x ∈ Si, i ∈ {1, 2, . . . ,N}

where S1, S2, . . . , SN are called quantization regions and q1, q2, . . . , qN are the

corresponding codepoints. Note that S1, S2, . . . , SN are mutually disjoint sets

and their union equals R. The distortion error between a realization x and

the its quantized value Q(x) is ρ(|x − Q(x)|), where ρ : [0,∞) → [0,∞)

is called the distortion function. The performance of the quantizer Q is

evaluated by its mean distortion error, denoted by D(Q), i.e.,

D(Q) := E
[
ρ
(
|X −Q(X)|

)]
Then, given the probability distribution of X, the optimization problem is to

design a quantizer Q = Q∗ (i.e., design {S1, S2, . . . , SN} and {q1, q2, . . . , qN})
that minimizes D(Q).

We recall here a result on the regularity of the optimal quantizer, which

we will use shortly.

Lemma 2.1 ([47], Theorem 1 and Corollary 1). Assume that the source

X has nonatomic distribution pX , and ρ : [0,∞) → [0,∞) is convex and

nondecreasing. Then, for any N -level quantizer Q with quantization regions

{S1, S2, . . . , SN} and the corresponding codepoints {q1, q2, . . . , qN}, there ex-

ists a quantizer Q̂ with quantization regions {Ŝ1, Ŝ2, . . . , ŜN} and the corre-

sponding codepoints {q̂1, q̂2, . . . , q̂N} such that

1. Ŝi is convex, and P(X ∈ Ŝi) = P(X ∈ Si), for all i = 1, . . . ,N .

2. If qi < qj, then Ŝi < Ŝj, i.e., x < y for any x ∈ Ŝi and y ∈ Ŝj.

3. D(Q̂) ≤ D(Q).
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Lemma 2.1 says that given any quantizer, we can build another quantizer

achieving non-greater mean distortion error, by rearranging the quantization

regions. Furthermore, the rearranged quantization regions are connected and

have the same probability measure with the original quantization regions.

Now returning to our problem, for any communication scheduling policy

f , we can construct a three-level quantizer, denoted by Qf , with quantizing

regions (T f0 , T f1+, T f1−) and the corresponding codepoints (E[X|X ∈ T f0 ],

E[X|X ∈ T f1+], E[X|X ∈ T f1−]). Let D(Qf ) be the mean squared distortion

of Qf , i.e.,

D(Qf ) = E
[ (
X −Qf (X)

)2
]

=
∑

i∈{0,1+,1−}

E
[(
X − E[X|X ∈ T fi ]

)2|X ∈ T fi
]
P(X ∈ T fi )

=
∑

i∈{0,1+,1−}

Var(X|X ∈ T fi ) P(X ∈ T fi )

By Lemma 2.1, we have the following result.

Lemma 2.2. Suppose the source density pX is nonatomic and even. Then,

for any communication scheduling policy f satisfying Assumption 2.2, we can

construct a threshold-based communication scheduling policy f (1) such that

1. T f
(1)

0 = (−β2, β1),T f
(1)

1+ = (β1,∞),T f
(1)

1− = (−∞,−β2), where β1 >

0, β2 > 0 are thresholds.

2. P(X ∈ T f
(1)

i ) = P(X ∈ T fi ), for all i ∈ {0, 1+, 1−}.

3. D(Qf (1)) ≤ D(Qf ).

PROOF. By Lemma 2.1, given a three-level quantizer Qf , there exists

a three-level quantizer Q̂ with quantization regions (Ŝ0, Ŝ1+, Ŝ1−) and corre-

sponding codepoints (q̂0, q̂1+, q̂1−) such that

1. Ŝi is convex, and P(X ∈ Ŝi) = P(X ∈ T fi ), for all i ∈ {0, 1+, 1−}.

2. Ŝ1− < Ŝ0 < Ŝ1+.

3. D(Q̂) ≤ D(Q).
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The second item holds since E[X|X ∈ T f1−] < E[X|X ∈ T f0 ] < E[X|X ∈ T f1+]

(Assumption 2.2). Note that since T f1+ ⊆ (0,∞), T f1− ⊆ (−∞, 0), and the

source density pX is even, we have

P(X ∈ Ŝ1+) = P(X ∈ T f1+) ≤ 1

2
, P(X ∈ Ŝ1−) = P(X ∈ T f1−) ≤ 1

2

Combining the above inequalities with the second item, we have Ŝ1+ =

(β1,∞), Ŝ1− = (−∞,−β2), and Ŝ0 = (−β2, β1) for some β1, β2 ≥ 0. We

now construct a threshold-based communication scheduling policy f (1) by

letting T f
(1)

i = Ŝi, i ∈ {0, 1+, 1−}. Since the distortion function is the

squared error, the optimal codepoints corresponding to quantization regions

(T f
(1)

0 , T f
(1)

1+ , T f
(1)

1− ) are (E[X|X ∈ T f
(1)

0 ], E[X|X ∈ T f
(1)

1+ ], E[X|X ∈ T f
(1)

1− ]).

Hence, we have D(Qf (1)) ≤ D(Q̂) ≤ D(Qf ).

Note that f (1) constructed in Lemma 2.2 may or may not be symmetric

around zero. We now propose the following proposition, which states that

based on f (1), we can further construct a threshold-based policy f (2), which

is symmetric around zero and has non-greater mean squared distortion. Fur-

thermore, the probability measure over the non-transmission region of f (2) is

the same as that of f (1).

Proposition 2.1. Suppose the source density pX satisfies Assumption 2.1.

Then, for any communication scheduling policy f satisfying Assumption 2.2,

we can construct a symmetric threshold-based communication scheduling pol-

icy f (2) such that

1. T f
(2)

0 = (−β, β),T f
(2)

1+ = (β,∞),T f
(2)

1− = (−∞,−β), where β > 0.

2. P(X ∈ T f
(2)

0 ) = P(X ∈ T f0 ).

3. D(Qf (2)) ≤ D(Qf ).

To prove Proposition 2.1, we need the following lemma.

Lemma 2.3. Let pX be an even and log-concave density. Let A = [−τ, τ ] be

any symmetric closed interval such that
∫
A
pX(x)dx > 0, and let B be any

subset of R such that
∫
B
pX(x)dx =

∫
A
pX(x)dx. Then,

Var(X|X ∈ A) ≤ Var(X|X ∈ B)
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PROOF. The proof of the lemma needs results from majorization theory,

which are introduced in Appendix A.2.

Furthermore, we also need to apply the property of log-concave distribu-

tion, which is introduced below.

Lemma 2.4 ([48], Theorem 6). Let pX be a continuously differentiable and

log-concave probability density function defined on (a, b). Let β be a variable

belonging to interval (a, b). Then, the function GX(β), defined below, is

monotone decreasing in β:

GX(β) := E[X|X > β]− β (2.3)

Note that a and b in Lemma 2.4 can be −∞ and ∞, respectively. In the

rest of the chapter we will frequently refer to this function GX(β).1 We next

provide an extension of Lemma 2.4 as follows.

Lemma 2.5. Let pX be an even and log-concave probability density function

defined on R. Furthermore, let pX be continuously differentiable on (0,∞)

and (−∞, 0), and let β take value in (0,∞). Then, GX(β) as defined by

(2.3) is monotone decreasing in β for β ∈ (0,∞).

PROOF. Let Y be a random variable such that Y = |X|. Denote by pY

be the probability function of Y . Since the probability density of X, pX is

even, we have

pY (y) =


2pX(y), if y > 0

0, otherwise

Since pX is continuously differentiable on (0,∞), so is pY . Furthermore, it

can be shown quite readily that for any β ∈ (0,∞), E[Y |Y > β] = E[X|X >

β]. Then, we have GY (β) = GX(β). By Lemma 2.4, GY (β) is monotone

decreasing in β. Hence, we conclude that GX(β) is also monotone decreasing

in β.

We are now in a position to prove Proposition 2.1.

PROOF of Proposition 2.1. By Lemma 2.2, given any communica-

tion scheduling policy f (0) satisfying Assumption 2.2, we can construct a

threshold-based policy f (1) such that

1GX(β) is also called the mean residual lifetime.
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1. T f
(1)

0 = (−β2, β1),T f
(1)

1+ = (β1,∞),T f
(1)

1− = (−∞,−β2).

2. P(X ∈ T f
(1)

i ) = P(X ∈ T f
(0)

i ), for all i ∈ {0, 1+, 1−}.

3. D(Qf (1)) ≤ D(Qf (0)).

Based on policy f (1), we now construct a symmetric threshold-based policy

f (2) such that

1. T f
(2)

0 = (−β, β),T f
(2)

1+ = (β,∞),T f
(2)

1− = (−∞,−β).

2. P(X ∈ T f
(2)

0 ) = P(X ∈ T f
(1)

0 ).

Then, we only need to show that D(Qf (2)) ≤ D(Qf (1)). Note that D(Qf (1))

and D(Qf (2)) can be expressed as

D(Qf (1)) =
∑

i∈{0,1+,1−}Var(X|X ∈ T f
(1)

i ) P(X ∈ T f
(1)

i )

D(Qf (2)) =
∑

i∈{0,1+,1−}Var(X|X ∈ T f
(2)

i ) P(X ∈ T f
(2)

i )

By Lemma 2.3, we obtain Var(X|X ∈ T f
(2)

0 ) ≤ Var(X|X ∈ T f
(1)

0 ). Since

P(X ∈ T f
(2)

0 ) = P(X ∈ T f
(1)

0 ), we have

Var(X|X ∈ T f
(2)

0 )P(X ∈ T f
(2)

0 ) ≤ Var(X|X ∈ T f
(1)

0 )P(X ∈ T f
(1)

0 )

Hence, we will be done if we show that∑
i∈{1+,1−}Var(X|X ∈ T f

(2)

i ) P(X ∈ T f
(2)

i )

≤
∑

i∈{1+,1−}Var(X|X ∈ T f
(1)

i ) P(X ∈ T f
(1)

i )

Consider the class of threshold-based communication scheduling policies, de-

noted by F , whose generic element f is in the form of

T f0 = (−η2, η1), T f1+ = (η1,∞), T f1− = (−∞,−η2), η1, η2 ≥ 0

and

P(X ∈ T f0 ) = P(X ∈ T f
(0)

0 ) = k

It is clear that f (1) and f (2) are elements of F . Let PD(Qf ) be the sum of
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the mean squared distortions of Qf over regions T f1+ and T f1−, i.e.,

PD(Qf ) :=
∑

i∈{1+,1−}Var(X|X ∈ T fi ) P(X ∈ T fi )

= Var
(
X|X < −η2

)
P
(
X < −η2

)
+ Var

(
X|X > η1

)
P
(
X > η1

)
= Var

(
X|X > η2

)
P
(
X > η2

)
+ Var

(
X|X > η1

)
P
(
X > η1

)
where the last equality holds since pX is even. We now show that f (2) is a

global minimizer of PD(Qf ) among all elements in F . Since P(X ∈ T f0 ) = k,

we have ∫ −η2
−∞

pX(x)dx+

∫ ∞
η1

pX(x)dx = 1− k

Taking the derivatives of both sides with respect to η1, we have

dη2

dη1

· ∂
∂η2

∫ −η2
−a

pX(x)dx+
∂

∂η1

∫ a

η1

pX(x)dx = 0

which implies that
dη2

dη1

= − pX(η1)

pX(−η2)
= −pX(η1)

pX(η2)
(2.4)

The equality above holds because pX is even. Now taking the derivative of

PD(Qf ) with respect to η1, we have

d

dη1

PD(Qf ) =
dη2

dη1

· ∂
∂η2

Var
(
X|X > η2

)
P
(
X > η2

)
+

∂

∂η1

Var
(
X|X > η1

)
P
(
X > η1

) (2.5)

The second term in (2.5) can be computed as (details of this derivation can

be found in [45]):

∂

∂η1

Var(X|X > η1) P(X > η1) = −pX(η1)
(
η1 − E[X|X > η1]

)2

(2.6)

Similarly, we can simplify the first term in (2.5) to:

∂

∂η2

Var
(
X|X > η2

)
P
(
X > η2

)
= −pX(η2)

(
η2 − E[X|X > η2]

)2
(2.7)
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Plugging (2.4), (2.6), and (2.7) into (2.5), we have

d

dη1

PD(Qf )

= −pX(η1)

pX(η2)
· −pX(η2)

(
η2 − E[X|X > η2]

)2 − pX(η1)
(
η1 − E[X|X > η1]

)2

= pX(η1)
[(
η2 − E[X|X > η2]

)2 −
(
η1 − E[X|X > η1]

)2]
= pX(η1)

(
G2
X(η2)−G2

X(η1)
)

By Lemma 2.5, GX(η) is a non-negative and monotone decreasing function.

Then, G2
X(η) is monotone decreasing, and

d

dη1

PD(Qf ) ≥ 0, if η1 > η2,

d

dη1

PD(Qf ) = 0, if η1 = η2,

d

dη1

PD(Qf ) ≤ 0, if η1 < η2

Hence, η1 = η2 is a global minimizer, which corresponds to f (2).

Now we are in a position to prove Theorem 2.2 by applying Proposition

2.1. The approach of the proof can be summarized as follows:

1. Given any communication scheduling policy f , it can be computed that

the cost functional J(f) consists of two parts: the first part is the mean

squared distortion of Qf , and the second part is a cost functional in

the noiseless-channel setting.

2. Based on f , we can construct a symmetric threshold-based communi-

cation scheduling policy f ′, which has the same probability measure on

the non-transmission region.

3. By Proposition 2.1, if f satisfies Assumption 2.2, then the first part in

the cost functional of f ′ is lower than that of f . By Lemma 2.3, if the

source density is even and log-concave (which is also unimodal), then

the second part in the cost functional of f ′ is also lower than that of f .

4. Without loss of optimality, we can consider only the class of symmetric

threshold-based policies. By Lemma 2.5, it can be shown that there

exists a unique optimal threshold minimizing the cost functional.
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PROOF of Theorem 2.2. Consider any communication scheduling pol-

icy f . The expected cost corresponding to f can be computed as follows:

J(f) = E
[
cU + (X − X̂)2

]
=

∑
i∈{0,1+,1−}

E
[
cU + (X − X̂)2|X ∈ T fi

]
P(X ∈ T fi )

When X ∈ T f0 , we have U = 0 and X̂ = E[X|X ∈ T f0 ]. Hence,

E
[
cU + (X − X̂)2|X ∈ T f0

]
= E

[(
X − E

[
X|X ∈ T f0

])2|X ∈ T f0
]

= Var(X|X ∈ T f0 )

When X ∈ T f1+, we have U = 1, and Y = α(1)
(
X −E

[
X|X ∈ T f1+

])
. Hence,

X̂ =
1

α(1)

γ

γ + 1
Ỹ + E

[
X|X ∈ T f1+

]
=

γ

γ + 1
X +

1

α(1)

γ

γ + 1
V +

1

γ + 1
E
[
X|X ∈ T f1+

]
where

α(1) =

√
PT

Var(X|X ∈ T f1+)
, γ =

PT
σ2
V

Hence, it can be shown that (for details of the derivation, see [45])

E
[
cU + (X − X̂)2|X ∈ T f1+

]
= c+

1

γ + 1
Var(X|X ∈ T f1+)

Similarly, one can compute that

E
[
cU + (X − X̂)2|X ∈ T f1−

]
= c+

1

γ + 1
Var(X|X ∈ T f1−)
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Hence, J(f) can be further expressed as

J(f)

= Var(X|X ∈ T f0 )P(X ∈ T f0 ) +
1

γ + 1
Var(X|X ∈ T f1+)P(X ∈ T f1+)

+
1

γ + 1
Var(X|X ∈ T f1−)P(X ∈ T f1−) + c P(X ∈ T f1−) + c P(X ∈ T f1+)

=
1

γ + 1
D(Qf ) +

γ

γ + 1
Var(X|X ∈ T f0 )P(X ∈ T f0 )

+c P(X ∈ T f1+) + c P(X ∈ T f1−)

(2.8)

Given any communication scheduling policy f , we can construct a symmetric

threshold-based communication scheduling policy f ′ such that

1. T f
′

0 = (−β, β),T f
′

1+ = (β,∞),T f
′

1− = (−∞,−β).

2. P(X ∈ T f
′

0 ) = P(X ∈ T f0 ), or equivalently,

P(X ∈ T f
′

1+) + P(X ∈ T f
′

1−) = P(X ∈ T f1+) + P(X ∈ T f1−)

By Proposition 2.1 and Lemma 2.3, we haveD(Qf ′) ≤ D(Qf ) and Var(X|X ∈
T f
′

0 ) ≤ Var(X|X ∈ T f0 ). Furthermore, we have P(X ∈ T f
′

0 ) = P(X ∈ T f0 )

and thus c P(X ∈ T f
′

1+) + c P(X ∈ T f
′

1−) = c P(X ∈ T f1+) + c P(X ∈ T f1−).

Hence, we conclude that J(f ′) ≤ J(f).

The result above implies that without loss of optimality, we can restrict

the search of the optimal communication scheduling policy to the class of

symmetric threshold type. Denote by J(β) the expected cost correspond-

ing to a symmetric threshold-based communication scheduling policy with

threshold β, where β ≥ 0. By (2.8), J(β) can be computed as

J(β)

=

∫ β

−β
x2pX(x)dx+

1

γ + 1
Var(X|X < −β)P(X < −β) + c

∫ −β
−∞

pX(x)dx

+
1

γ + 1
Var(X|X > β)P(X > β) + c

∫ ∞
β

pX(x)dx

= 2

∫ β

0

x2pX(x)dx+ 2
1

γ + 1
Var(X|X > β)P(X > β) + 2c

∫ ∞
β

pX(x)dx

where the second equality holds since pX is even. Taking the derivative of
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J(β) with respect to β, and by eq. (2.6), we have

d

dβ
J(β) = 2pX(β)

(
β2 − 1

γ + 1

(
E[X|X > β]− β

)2 − c
)

= 2pX(β)
(
β2 − 1

γ + 1
G2
X(β)− c

)
Since c > 0 and GX(β) is monotone decreasing, there exists a unique β∗ in

[0,∞) such that

β∗2 =
1

γ + 1
G2
X(β∗) + c

Furthermore, dJ(β)/dβ < 0 when β < β∗ and dJ(β)/dβ > 0 when β > β∗.

Hence, β∗ is the unique global minimizer among all β ≥ 0.

Remark 2.5. If the density function pX has support (−a, a) and 0 < a < β∗,

then dJ(β)/dβ is always negative, which implies that the minimizing β is

just a. This means the optimal communication scheduling policy is to always

choose no transmission regardless of sensor’s observation. Such a case can

occur when the communication cost is very high.

2.3 Optimization Problem with Hard Constraint

To present our main results for the problem with the hard constraint, we

introduce a number of terms as follows.

First, we let Et denote the number of remaining communication oppor-

tunities at the beginning of the t-th time interval, i.e., Et = N −
∑t−1

i=1 Ui.

Then, evolution of Et is described by

Et = Et−1 − Ut−1, t ≥ 2; E1 = N (2.9)

Furthermore, the communication constraint can be described as

Ut ≤ Et, ∀ t = 1, 2, . . . , T (2.10)

Recall that U1:t−1 is the common information shared by all the decision mak-

ers, and hence Et is also known by all the decision makers.

Second, we let J∗(t, Et) be the optimal cost-to-go if the system is initialized

at time t with Et number of communication opportunities. Specifically, we
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define J∗(T + 1, ·) = 0 for any number of communication opportunities.

Third, for any Et > 0, we let c(t, Et) denote the difference between two

optimal cost-to-go, i.e.,

c(t, Et) = J∗(t+ 1, Et − 1)− J∗(t+ 1, Et)

Remark 2.6. c(t, Et) can be interpreted as the opportunity cost for choosing

to communicate with the estimator rather than not to communicate.

The following theorem ensures that without loss of optimality, we can

restrict all the decision makers to consider only their current inputs and Et

when making decisions at time t. Furthermore, the optimal decision policies

can be obtained via solving a dynamic programming equation.

Theorem 2.3. Consider the optimization problem with hard constraint as

formulated in Section 2.1.4. Without loss of optimality, we can restrict

the communication scheduling, the encoding and the decoding policies to the

forms:

Ut = ft(Xt, Et), Yt = gt(X̃t, Et), X̂t = ht(Ỹt, St, Et)

Furthermore, the optimal cost-to-go J∗(t, Et) can be obtained by solving the

dynamic programming (DP) equation:

J∗(T + 1, ·) = 0

J∗(t, Et) = inf
ft,gt,ht

E
{

(Xt − X̂t)
2 + J∗(t+ 1, Et+1)

} (2.11)

The proof of Theorem 2.3 is similar to that of Theorem 2.1, and hence is

not included here; it can be found in [45].

Consider the DP equation (2.11), and we have the following discussion.

1. When Et = 0, by the communication constraint Ut = ft(Xt, Et) = 0

regardless of the realization of Xt. Consequently, we have Et+1 = 0.

Then, the DP equation can be easily expressed as follows:

J∗(t, 0) = inf
ft,gt,ht

E
{

(Xt − X̂t)
2
}

+ J∗(t+ 1, 0) = Var(Xt) + J∗(t+ 1, 0)

The last equality holds since without any information about Xt, the

optimal estimator is E[Xt] and the mean squared error is Var(Xt).
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2. When Et > 0, the DP equation can be written as

J∗(t, Et) = inf
ft,gt,ht

E
{

(Xt − X̂t)
2 + J∗(t+ 1, Et+1)

}
= J∗(t+ 1, Et) + inf

ft,gt,ht
E
{
c(t, Et)Ut + (Xt − X̂t)

2
}
(2.12)

Note that the minimization in the second line of (2.12) is just the single-

stage problem considered in Section 2.2 with communication cost c(t, Et).

This motivates us to make the following two assumptions.

Assumption 2.5. The sensor is restricted to apply the communication schedul-

ing policies ft such that for any 1 ≤ t ≤ T and any Et > 0,

E[Xt|Ut = 1, Et, Xt < 0] < E[Xt|Et, Ut = 0] < E[Xt|Ut = 1, Et, Xt > 0]

Assumption 2.6. The encoder and the decoder are restricted to apply piece-

wise affine policies:

gt(X̃t, Et) =


Stα(St) (Xt − E [Xt|Ut = 1, Et, St]) , if Ut = 1

0, if Ut = 0

ht(Ỹt, St, Et) =


St

1

α(St)

γ

γ + 1
Ỹt + E [Xt|Ut = 1, Et, St] , if Ut = 1

E[Xt|Ut = 0, Et], if Ut = 0

where γ = PT/σ
2
V , α(St) =

√
PT/Var(Xt|Ut = 1, Et, St), and Var(Xt|Ut =

1, Et, St).

Then, we have the following theorem on the optimality of symmetric

threshold-based communication scheduling strategy. Its proof involves sim-

ply an application of Theorem 2.2, and hence is not included here.

Theorem 2.4. Consider the problem with hard constraint under Assump-

tions 2.1, 2.3, 2.5 and 2.6, the optimal communication scheduling policy f ∗t

for the sensor is

f ∗t (Xt, Et) =


1, if Et > 0 and |Xt| > β∗t (Et)

0, if Et = 0 or |Xt| ≤ β∗t (Et)
(2.13)
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where β∗t (Et) is non-negative and is the unique solution to the fixed-point

equation:

β2 =
1

γ + 1
G2
X(β) + c(t, Et), β ≥ 0 (2.14)

where

GX

(
β
)

= E
[
Xt|Xt > β

]
− β

Remark 2.7. Consider the case where Et > T − t, that is, the sensor is

always allowed to communicate with the estimator for the remaining time

steps. First, we note that the opportunity cost c(t, Et) is zero. Furthermore,

since GX(0) = E[X|X > 0] > 0, the solution to (2.14) is non-zero. Then,

even though the sensor can always communicate with the estimator, the op-

timal communication policy is still the threshold-based policy with threshold

β∗t (Et) > 0, which might seem counter-intuitive: why would the sensor not

transmit its observation although it is allowed to do so? This surprising result

is due to the fact that threshold information, i.e., whether or not the state

sample belongs to a fixed, known interval, might be more informative than

a noisy observation of the state at the output of the noisy channel. Hence,

it might be better not to communicate explicitly over the noisy channel but

rely on the side channel which signals where the sample lies. For example,

at the extreme case of a very noisy channel (γ → 0) the output of the com-

munication channel, Ỹt, is effectively useless, irrespective of the realization

Xt. However, depending on the threshold and the realization Xt, thresholding

information could be significantly more informative.

2.4 Numerical Results

In this section, we present numerical results for the problem with hard con-

straint. We select the source density to be Laplace distribution with zero-

mean and parameter λ, i.e.,

pX(x) =


1
2
λe−λx, if x ≥ 0

1
2
λeλx, if x < 0
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Then, it is easy to see that

GX(β) = E[Xt|Xt > β]− β =
1

λ
, ∀ β ≥ 0

Hence, the solution to (2.14) is

β∗t (Et) =

√
1

γ + 1

1

λ2
+ c(t, Et) =

√
m+ c(t, Et)

where m := 1/((γ + 1)λ2). Then, the optimal communication scheduling

policy is described by (2.13). Furthermore, the optimal encoding/decoding

policies (g∗t , h
∗
t ) are as follows:

gt(X̃t, Et) =


α
(
|Xt| − β∗t (Et)− λ−1

)
, if Ut = 1

0, if Ut = 0

ht(Ỹt, St, Et) =


St

( 1

α

γ

γ + 1
Ỹt + β∗t (Et) + λ−1

)
, if Ut = 1

0, if Ut = 0

where γ = PT/σ
2
V , and α =

√
PT/λ−2. By plugging the optimal commu-

nication scheduling, the encoding, and the decoding policies (f ∗t , g
∗
t , h

∗
t ) into

the DP equation (2.11), we obtain the explicit update rule for the optimal

cost-to-go J∗(t, Et), as shown below

J∗(t, Et) = J∗(t+ 1, Et) + 2λ−2, if Et = 0

J∗(t, Et) = J∗(t+ 1, Et) + 2λ−2 − 2
(
β∗t (Et)λ

−1 + λ−2
)
e−λβ

∗
t (Et), if Et > 0

(2.15)

We choose the parameters as follows: T = 100, λ = 1, and the signal-to-

noise ratio (SNR) γ = 0.1, 1, 10. We solve the optimal cost-to-go J∗(t, Et)

by applying the update rule (2.15). We have plotted the optimal 100-stage

estimation error J∗(1, N) versus the number of communication opportunities

N under different SNRs, as shown in Fig. 2.2.

One can see that, for each fixed SNR, the optimal 100-stage estimation er-

ror is non-increasing in terms of the number of communication opportunities.

To be more specific, there exists a threshold on the number of communication

opportunities (call it opportunity threshold) such that the optimal 100-stage
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Figure 2.2: 100-stage estimation error vs. the number of communication
opportunities

estimation error decreases when the number of communication opportunities

is below the threshold, and it stays constant above the threshold. Figure 2.2

shows that when the SNR increases, the opportunity threshold increases.

The existence of an opportunity threshold was not observed in the noise-

less channel setting (see [27], Figure 5), where the optimal estimation error

strictly decreases to zero as the number of communication opportunities in-

creases to the length of time horizon. This surprising phenomenon can be

interpreted as follows: since the sensor applies the symmetric threshold-

based policy with threshold β∗t (Et) =
√
c(t, Et) +m ≥

√
m, the expecta-

tion of the consumed communication opportunities is upper bounded by

T · P(|Xt| ≥
√
m) = Te−λ

√
m. When the number of communication op-

portunities is greater than Te−λ
√
m, the additional communication opportu-

nities will not be consumed (in the expected sense), and thus the optimal

expected estimation error will not further decrease. It can also be checked

from Fig. 2.2 that the opportunity thresholds under different signal-to-noise

ratios are roughly Te−λ
√
m. Moreover, m = 1

γ+1
1
λ2

and Te−λ
√
m = Te−1/

√
γ+1,

which is an increasing function of the SNR γ. Hence, the opportunity thresh-

old increases with the SNR.

Figure 2.3 depicts a sample path of the number of remaining communica-
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tion opportunities versus time. When generating the plot, we have chosen

T = 100, λ = 1, γ = 0.1, and the number of communication opportunities

N = 50. One can see that the communication opportunities are not used up

by the end of the time horizon. The reason has been discussed in Remark

2.7.
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Figure 2.3: A sample path of the number of remaining communication
opportunities vs. time

When the number of communication opportunities is larger than the op-

portunity threshold, the optimal 100-stage estimation error does not change

with respect to the number of communication opportunities. We call it min-

imal error. Figure 2.2 shows that the minimal error decreases as the SNR

increases. Without loss of generality, we can assume that the sensor is al-

lowed to communicate at each step, that is, N = T . Then, the opportunity

cost is c(t, Et) = 0. Recall that β∗t (Et) =
√
c(t, Et) +m and m = 1

γ+1
1
λ2

.

Hence, the update rule for the cost function can be simplified as follows:

J∗(t, T ) = J∗(t+ 1, T ) +

(
2

λ2
−
(2
√
m

λ
+

2

λ2

)
· e−λ

√
m

)
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Figure 2.4: Opportunity threshold vs. minimal error under different signal
to noise ratios

with J∗(T + 1, T ) = 0, which implies that

J∗(1, T ) = T
(

2
λ2
−
(

2
√
m
λ

+ 2
λ2

)
· e−λ

√
m
)

= T 2λ−2
(

1−
(

1√
1+γ

+ 1
)
· e−

1√
1+γ

)
It is straightforward to check that J∗(1, T ) is a decreasing function of the

SNR γ. Hence, the minimal error decreases as the SNR increases.

Plotting the opportunity threshold Te−λm versus minimal error J∗(1, T )

under different SNRs (dash line) in Fig. 2.2, we arrive at Fig. 2.4. One can see

that the intersection between the dash line and each solid line is roughly the

turning point of the solid line. Therefore, the plot of opportunity threshold

versus minimal error under different SNRs is an important one. In fact, the

plot suggests the lowest capacity of the battery that one should choose when

building a physical system so that the expected estimation error is minimized.

In addition, the plot predicts the minimal estimation error.

Consider the asymptotic case where the SNR γ → ∞, and thus m =
1

γ+1
1
λ2
→ 0. Then the opportunity threshold Te−λm → T , and the minimal

error J∗(1, T ) → 0. Hence, the optimal 100-stage estimation error will be

strictly decreasing in terms of the number of communication opportunities
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in the asymptotic case, as also noted in the prior work (see [27], Figure 5).

Moreover, the estimation error will reach zero when the number of commu-

nication opportunities is equal to the length of the time horizon.
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CHAPTER 3

COMMUNICATION SCHEDULING AND
REMOTE ESTIMATION OVER MULTIPLE

CHANNELS

In this chapter, we consider the communication scheduling and remote es-

timation problem with two channels, that is, a noiseless channel and an

additive noise channel. After making an observation of the source, the sen-

sor can choose among the three options of non-transmission, transmission

over the noisy channel, and transmission over the noiseless channel. Similar

to the single-channel setting, if the sensor decides to transmit its observa-

tion via the noisy channel, it will encode its message and the estimator (or

decoder) will decode the noise-corrupted message. Furthermore, we restrict

the encoder and the decoder to apply affine encoding and decoding policies.

Different from the single-channel setting, we do not assume that there exists

a side channel between the encoder and the decoder when formulating the

problems. Next, we assume that the sensor will apply a symmetric com-

munication scheduling policy, and we show that the optimal one is of the

threshold-in-threshold type. However, we show by constructing a counterex-

ample that the symmetry assumption is in fact not valid in terms of globally

optimality. In other words, the globally optimal communication schedul-

ing policy can be non-symmetric, which renders the problem intractable.

Analysis on this counter intuitive case shows that symmetric communica-

tion scheduling policy cannot be optimal since it has disconnected the noisy

transmission region. Then, we argue that this issue can be resolved by as-

suming the existence of a side channel. Hence, the side-channel assumption

is critical to make the problem tractable. With this additional assumption,

we show that the optimal communication scheduling policy is of threshold-

in-threshold type. The optimal thresholds can be obtained for some specific

source distributions. Moreover, we generate numerical results for the problem

with hard constraint.

The main contributions of this chapter are given as follows:

1. We formulate two optimization problems under two types of commu-
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nication constraints, namely soft constraint and hard constraint.

2. We show by constructing a counterexample that without the side chan-

nel, the optimal communication scheduling policy can be non-symmetric

even if the source has symmetric and unimodal distribution. Therefore,

we justify the assumption of using the side channel.

3. Under some technical assumptions, we show that the optimal commu-

nication scheduling policy is of the symmetric threshold-in-threshold

type. When the source has Laplace distribution, the optimal thresh-

olds can be uniquely determined.

4. We generate numerical results for the problem with hard constraint,

which show some properties inherited from both the noiseless-channel

setting and the single-channel setting.

The rest of this chapter is organized as follows: in Section 3.1, we formulate

the optimization problems with soft and hard constraints. In Section 3.2.1,

we justify the importance of the side channel. In Section 3.2.2, we consider

the modified problem (with the side channel) under the soft constraint. In

Section 3.3, we consider the modified problem under the hard constraint.

In Section 3.4, we generate and analyze numerical results for the modified

problem with hard constraint.

3.1 Problem Formulation

3.1.1 System Model

Figure 3.1: System model for multi-channel setting
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Consider a discrete time communication scheduling and remote estimation

problem over a finite time horizon, i.e., t = 1, 2, . . . , T . A one-dimensional

source process {Xt} is an independent identically distributed (i.i.d.) stochas-

tic process with probability density function pX . At time t, the sensor, as

shown in Fig. 3.1, observes the state of the source Xt. Then, it decides

whether and how to transmit its observation to the remote estimator (which

is also called “decoder”). Let Ut ∈ {0, 1, 2} be the sensor’s decision at time t.

Ut = 0 means that the sensor chooses not to transmit its observation to the

decoder, and hence it sends a free symbol ε to the decoder representing that

nothing is transmitted. Ut = 1 means that the sensor chooses to transmit

its observation to the decoder over an additive noise channel. Therefore, the

sensor sends Xt to an encoder, which then sends an encoded message, call

it Yt, to the communication channel. Yt is corrupted by an additive channel

noise Vt. The noise process {Vt} is a one-dimensional i.i.d. stochastic pro-

cess with density pV , which is independent of {Xt}. The encoder has average

power constraint, that is,

E[Y 2
t |Ut = 1] ≤ PT

where PT is known and constant for all t. When Ut = 2, the sensor chooses

to transmit its observation over a noiseless channel. Hence, the decoder will

receive Xt. Let Ỹt be the message received by decoder at time t, we have

Ỹt =


ε, if Ut = 0

Yt + Vt, if Ut = 1

Xt, if Ut = 2

After receiving Ỹt, the decoder generates an estimate on Xt, denoted by X̂t.

The decoder is charged for squared distortion (Xt − X̂t)
2.

3.1.2 Communication Constraints

We consider the optimization problems under two kinds of communication

constraints, separately. In the first scenario, at each time t, the sensor is

charged for its decision, i.e., there is a cost function associated with Ut,
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denoted by c(Ut), such that

c(Ut) =


0, if Ut = 0

c1, if Ut = 1

c2, if Ut = 2

Here, we have c2 > c1 > 0, which means that usage of the noiseless channel

is more costly than that of the noisy channel. c1, c2 are called the communi-

cation costs for using the noisy channel and the perfect channel, respectively.

This kind of communication constraint is called soft constraint. In the second

scenario, the sensor is not charged for transmitting its observations. Instead,

the sensor is able to use the noisy channel and the perfect channel for no

more than N1 and N2 times, respectively, i.e.,

T∑
t=1

1{Ut=1} ≤ N1,
T∑
t=1

1{Ut=2} ≤ N2

where 1{·} is the indicator function, and N1, N2 are positive integers. Such

a kind of communication constraint is called hard constraint.

3.1.3 Decision Strategies

Assume that at time t, the sensor has memory of all its measurements by t,

denoted by X1:t, and all the decisions it has made by t−1, denoted by U1:t−1.

The sensor makes decision Ut based on its current information (X1:t, U1:t−1),

that is,

Ut = ft(X1:t, U1:t−1)

where ft is the communication scheduling policy at time t and f = {f1, f2,

. . . , fT} is the communication scheduling strategy.

Assume that at time t, no matter whether and how the sensor decides

to transmit the source output, it always transmits its decision Ut to the
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encoder.1 Let X̃t be the message received by the encoder at time t. Then,

X̃t =

(Xt, Ut), if Ut = 1

Ut, otherwise

Denote by X̃1:t the messages received by the encoder up to time t. Similar

to the above, we assume that the encoder has memory on X̃1:t, and all the

encoded messages it has sent to the communication channel by t−1, denoted

by Y1:t−1.2 The encoder generates the encoded message Yt based on its current

information (X̃1:t, Y1:t−1), that is,

Yt = gt(X̃1:t, Y1:t−1)

where gt is the encoding policy at time t and g = {g1, g2, . . . , gT} is the

encoding strategy.

Finally, assume that the decoder can deduce Ut from Ỹt. Furthermore,

it is assumed that at time t, the decoder has memory on all the messages

received by t, denoted by Ỹ1:t, and all the estimates it has generated by

t− 1, denoted by X̂1:t−1. The decoder produces the estimate X̂t based on its

current information (Ỹ1:t, X̂1:t−1), namely,

X̂t = ht(Ỹ1:t, X̂1:t−1)

where ht is the decoding policy at time t and h = {h1, h2, . . . , hT} is the

decoding strategy.

In particular, we call the sensor, the encoder, and the decoder the decision

makers. We call (ft, gt, ht) the decision making policies at time t, and (f,g,h)

the decision making strategies.

Remark 3.1. At time t, the sensor’s decisions by t−1, namely U1:t−1, is the

common information shared by all the decision makers. This is an important

property, which will be applied when solving the optimization problem with

hard constraint.

1Physically, the sensor and the encoder are built together.
2If the sensor decides not to transmit its observation over the noisy channel, the encoder

will send Yt = 0 to the communication channel.
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3.1.4 Optimization Problems

Consider the setting described above, with the time horizon T , probability

density functions pX and pV , and power constraint PT as given.

Optimization problem with soft constraint: Given the communication cost

function c(·), determine the decision-making strategies (f,g,h) minimizing

the cost functional

J(f,g,h) := E

{
T∑
t=1

c(Ut) + (Xt − X̂t)
2

}

Optimization problem with hard constraint: Given the numbers of com-

munication opportunities N1 and N2, determine the decision-making strate-

gies (f,g,h) minimizing the cost functional

J(f,g,h) := E

{
T∑
t=1

(Xt − X̂t)
2

}

under the hard constraint.

3.2 Optimization Problem with Soft Constraint

3.2.1 Counter Intuitive Property of the Optimal
Communication Scheduling Policy

Since the source and the noise processes are i.i.d., by an argument similar to

that in Theorem 2.1, the optimization decision strategies can be obtained by

solving a single-stage problem, as described in the following theorem.

Theorem 3.1. Consider the optimization problem with soft constraint for-

mulated in Section 3.1.4. Without loss of optimality, the decision makers can

apply decision-making policies in the form of

Ut = ft(Xt), Yt = gt(X̃t), X̂t = ht(Ỹt), t = 1, 2, . . . , T

where (ft, gt, ht) are designed to minimize the instantaneous cost

Jt(ft, gt, ht) := E[cUt + (Xt − X̂t)
2]
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Furthermore,

f1 = f2 = . . . = fT , g1 = g2 = . . . = gT , h1 = h2 = . . . = hT

For simplicity, we henceforth suppress the subscript for time in this sub-

section. We further make the following assumptions on the optimization

problem.

Assumption 3.1. The source density pX is symmetric and unimodal around

zero, i.e.,

pX(x) = pX(−x), ∀ x ∈ R

pX(x1) ≥ pX(x2), ∀ |x1| ≥ |x2|

Here, we make a weaker assumption on the source compared to Assumption

2.1 in Chapter 2, which assumes the source density is even and log-concave.

The reason is that the proof techniques in the two settings are different,

which require different conditions.

Assumption 3.2. The communication channel noise V is zero-mean and

has finite variance, denoted by σ2
V .

Assumption 3.3. When the sensor decides to transmit its observation via

the noisy channel, the encoder and decoder are restricted to apply affine poli-

cies in the form of

g(X) = α(X − E[X|U = 1])

h(Ỹ ) =
1

α

γ

γ + 1
Ỹ + E[X|U = 1]

where γ := PT/σ
2
V is the signal-to-noise ratio (SNR). α is the amplifying

ratio, and α =
√
PT/Var(X|U = 1). Var(X|U = 1) is the variance of X

conditioning on the event that the sensor transmits the source output over

the noisy channel.

Assumption 3.3 is inherited from Assumption 2.4 in Chapter 2. A detailed

explanation on why we make such an assumption can be found in Remark

2.4.

Note that the source density is symmetric around zero. Moreover, the

distortion metric is the squared error, which is also symmetric around zero. It
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is intuitive to have a guess that the optimal communication scheduling policy

is symmetric around zero. Also note that in an asymptotic case where the

communication channel is noiseless, the optimal communication scheduling

policy is symmetric around zero (as shown in [28]). Hence, we make the

following assumption.

Assumption 3.4. The sensor is restricted to apply the communication schedul-

ing policy in the form of:

f(x) = f(−x), ∀ x ∈ R

The following corollary is a consequence of Assumptions 3.1-3.4.

Corollary 3.1. Consider the single-stage problem with Assumptions 3.1-

3.4 hold, the optimal communication scheduling policy is of the symmetric

threshold-in-threshold type:

f(x) =


0, if |x| ≤ β1

1, if β1 < |x| ≤ β2

2, if |x| > β2

(3.1)

The parameters β1 and β2 are called “thresholds”, and 0 < β1 ≤ β2 <∞.

Before proving Corollary 3.1, we first introduce some notations. Let T f0 ,

T f1 , T f2 be the non-transmission region, the noisy transmission region, and

the perfect transmission region, respectively, according to communication

policy f , i.e.,

T fi := {x ∈ R|f(x) = i}, i ∈ {0, 1, 2}

Consider the cost functional J(f, g, h) associated with any group of decision

policies (f, g, h) satisfying Assumption 3.33 and any communication channel

noise satisfying Assumption 3.2, we have

J(f, g, h) = E
[
c(U) + (X − X̂)2

]
=

∑
i∈{0,1,2} E

[
c(U) + (X − X̂)2

∣∣X ∈ T fi ] · P(X ∈ T fi )

Then, we have the following discussions.

3Here we do not place any restriction on f , which may or may not be symmetric around
zero.
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1. When X ∈ T f0 , the sensor decides not to transmit its observation.

Then, the optimal estimator is the conditional mean E[X|X ∈ T f0 ].

Moreover, we have

E[(X − X̂)2|X ∈ T f0 ] = E
[(
X − E[X|X ∈ T f0 ]

)2|X ∈ T f0
]

= Var(X|X ∈ T f0 )

2. When X ∈ T f1 , the sensor decides to transmit its observation over the

noisy channel. By Assumptions 3.3, we have

X̂ =
1

α

γ

γ + 1
Ỹ + E[X|X ∈ T f1 ]

=
γ

γ + 1
X +

1

γ + 1
E[X|X ∈ T f1 ] +

1

α

γ

γ + 1
V

Furthermore, the mean squared error conditioned on X ∈ T f1 can be

computed as

E[(X − X̂)2|X ∈ T f1 ] =
1

γ + 1
Var(X|X ∈ T f1 ) (3.2)

3. When X ∈ T f2 , the sensor decides to transmit its observation over the

perfect channel, and thus the decoder simply reports X̂ = X.

Combining the three cases together, we have

J(f, g, h)

= Var(X|X ∈ T f0 )P(X ∈ T f0 ) + c1P(X ∈ T f1 )

+
1

γ + 1
Var(X|X ∈ T f1 )P(X ∈ T f1 ) + c2P(X ∈ T f2 )

(3.3)

With the notations and discussions above, we are able to prove Corollary

3.1 (see Appendix A.3).

Although Assumption 3.4 and Corollary 3.1 seem very intuitive at first

glance, the following counterexample renders them not valid from the point

of global optimality.

Counterexample: Consider the case where X has uniform distribution over
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[−L,L], namely,

pX(x) =
1

2L
, x ∈ [−L,L]

Assume the parameters satisfy

γ + 1

γ
c1 < c2;

√
(c2 − c1)(γ + 1) < L (3.4)

By Corollary 3.1, the single-stage problem admits a solution including a com-

munication scheduling policy f ∗ of symmetric threshold-in-threshold type

with thresholds β1, β2, and a pair of encoding/decoding policies (g∗, h∗) in-

duced by f ∗ according to Assumption 3.3. By (3.4), we have 0 < β1 < β2 <

L. Hence, the non-transmission region, the noisy transmission region, and

the perfect transmission region corresponding to f ∗ are as follows:

T f
∗

0 = [−β1, β1], T f
∗

1 = [−β2,−β1) ∪ (β1, β2], T f
∗

2 = [−L,−β2) ∪ (β2, L]

We now construct another communication scheduling policy f ′ by specifying

its non-transmission region, noisy transmission region, and perfect transmis-

sion region:

T f
′

0 = T f
∗

0 , T f
′

1 = (β1, 2β2 − β1], T f
′

2 = [−L,−β1) ∪ (2β2 − β1, L]

Since the source is uniformly distributed, we have

P(X ∈ T f
′

1 ) = P(X ∈ T f
∗

1 ) =
β2 − β1

L

Essentially, we rearrange the noisy transmission region, without changing

its probability measure, to make the region connected. This procedure is

illustrated in Fig. 3.2. Induced by f ′, we obtain the encoding and decoding

policies (g′, h′) satisfying Assumption 3.3. Furthermore, by (3.3), we have

J(f ′, g′, h′)−J(f ∗, g∗, h∗) =
P(X ∈ T f

′

1 )

γ + 1

(
Var(X|X ∈ T f

′

1 )−Var(X|X ∈ T f
∗

1 )
)

The regions T f
′

1 and T f
∗

1 have the same probability measure under uniform

distribution, while T f
′

1 is connected. Apparently, we have Var(X|X ∈ T f
′

1 )

< Var(X|X ∈ T f
∗

1 ), which implies J(f ′) < J(f ∗). Hence, the symmetric

communication scheduling policy f ∗ together with the encoding/decoding
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Figure 3.2: The counterexample

policies (g∗, h∗) are not globally optimal.

Remark 3.2. The counterexample above uncovers a counter intuitive result,

namely, with the existence of a noisy channel, the common folklore that the

optimal communication scheduling policy is symmetric threshold-in-threshold

based does not hold. As illustrated in the example, the noisy transmission

region under symmetric communication policy is disconnected, which results

in large conditional variance. Therefore, symmetric communication policy

does not take full advantage of the noisy channel.

The non-symmetric property of the optimal communication scheduling pol-

icy makes the problem fairly difficult to solve. In order to fix this issue and

render the problem tractable, we further assume the existence of a side chan-

nel.

3.2.2 Modified Problem

We assume there exists a side channel between the encoder and the decoder.

Recall that at time t, if the sensor decides to transmit its observation Xt

via the noisy channel, it sends the observation to the encoder. Then, the

encoder sends an encoded message Yt to the noisy channel. We now assume

the encoder additionally sends the sign of Xt, denoted by St, to the decoder

over the side channel, which is illustrated in Fig. 3.3. Assume that the side
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Figure 3.3: Modified system

channel is noise-free.4 Let S1:t be the collections of the side information up

to t. Now, the information available to the encoder and the decoder at time t

is (X̃1:t, S1:t, Y1:t−1) and (Ỹ1:t, S1:t, X̂1:t−1), respectively. The encoder and the

decoder generate the encoded message Yt and the estimate X̂t, respectively,

according to

Yt = gt(X̃1:t, S1:t, Y1:t−1), X̂t = ht(Ỹ1:t, S1:t, X̂1:t−1)

Similar to Theorem 3.1, it can be shown that the encoder and the decoder can

consider only their current inputs (without loss of optimality) when making

decisions, namely,

Yt = gt(X̃t, St), X̂t = ht(Ỹt, St)

Furthermore, the optimal decision strategies (f,g,h) can be obtained by solv-

ing the single-stage problem, and hence we keep suppressing the subscript

representing time in this subsection. It is important to note that the side

channel enables the encoder/decoder to apply different encoding/decoding

policies for the positive and negative realizations of the source. Hence, we

need to modify Assumption 3 (but keep Assumptions 1 and 2).

Assumption 3.5. The encoder and the decoder are restricted to apply piece-

4When there is no transmission over the noisy channel, there is also no transmission
over the side channel. In this case, we write St = 0. The side information St is only a
one-bit message, which can be sent reliably.

45



wise affine encoding and decoding policies, respectively, i.e.,

g(X,S) = Sα(S) (X − E [X|U = 1, S])

h(Ỹ , S) =
1

α(S)

γ

γ + 1
SỸ + E [X|U = 1, S]

The parameter γ = PT/σ
2
V is the signal-to-noise ratio. α(S) is the amplifying

ratio, and α(S) =
√
PT/Var(X|U = 1, S). E[X|U = 1, S] and Var(X|U =

1, S) are the conditional mean and variance, respectively.

We now compute the cost functional J(f, g, h) associated with any com-

munication scheduling policy f and the encoding/decoding policies (g, h)

induced by f under Assumption 3.5. Let T f1+, T f1− be the positive noisy

transmission region and the negative noisy transmission region, respectively,

according to communication policy f , i.e.,

T f1+ := {x > 0|f(x) = 1}, T f1− := {x < 0|f(x) = 1}

Similar to (3.2) and (3.3), it can be computed that

E[(X − X̂)2|X ∈ T f1+] =
1

γ + 1
Var(X|X ∈ T f1+),

E[(X − X̂)2|X ∈ T f1−] =
1

γ + 1
Var(X|X ∈ T f1−)

Moreover,

J(f, g, h)

= Var(X|X ∈ T f0 )P(X ∈ T f0 ) + c2P(X ∈ T f2 )

+
1

γ + 1
Var(X|X ∈ T f1+)P(X ∈ T f1+) + c1P(X ∈ T f1−)

+
1

γ + 1
Var(X|X ∈ T f1−)P(X ∈ T f1−) + c1P(X ∈ T f1+)

(3.5)

Comparing (3.3) with (3.5), the conditional variance over the noisy trans-

mission region Var(X|X ∈ T f1 ) is replaced by two conditional variances over

the positive/negative noisy transmission regions, that is, Var(X|X ∈ T f1+)

and Var(X|X ∈ T f1−). As discussed in Remark 3.2, symmetric communi-

cation schedule policy results in disconnected noisy transmission region T f1 ,

which further leads to a large conditional variance Var(X|X ∈ T f1 ). How-
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ever, with the existence of the side channel, we may still have connected

positive/negative noisy transmission regions T f1+ and T f1−, which would re-

sult in small conditional variances Var(X|X ∈ T f1+) and Var(X|X ∈ T f1−).

Therefore, Assumption 3.4 is a reasonable assumption for the modified prob-

lem. We keep this assumption and we further establish the optimality of

threshold-in-threshold based policy, as stated in the following theorem.

Theorem 3.2. Consider the modified problem with Assumptions 3.1, 3.2,

3.4 and 3.5 hold. Without loss of optimality, the sensor can apply the com-

munication scheduling policy in the symmetric threshold-in-threshold form

described by (3.1).

To prove Theorem 3.2, we need the following proposition.

Proposition 3.1. Let pX be the probability density function of random vari-

able X. pX is symmetric and unimodal around zero. Consider two open

intervals (β1, β2) and (β′1, β
′
2) such that 0 ≤ β1 ≤ β′1 and P(X ∈ (β1, β2)) =

P(X ∈ (β′1, β
′
2)), then

Var(X|X ∈ (β1, β2)) ≤ Var(X|X ∈ (β′1, β
′
2))

PROOF. See Appendix A.4.

We are now in a position to prove Theorem 3.2. The idea of the proof

is as follows: given any symmetric communication scheduling policy f , we

can construct another symmetric communication scheduling policy f̃ achiev-

ing non-greater cost. Analysis on f̃ shows that it is either threshold-in-

threshold based or “threshold-in-threshold-in-threshold” based. For the sec-

ond case, we can further construct another communication scheduling policy

f ′ of threshold-in-threshold type, which achieves non-greater cost.

Proof of Theorem 3.2. We prove the theorem by showing that given any

group of decision policies (f, g, h) satisfying Assumptions 3.4 and 3.5, there

exist a symmetric threshold-in-threshold based communication scheduling

policy and a pair of induced encoding/decoding policies achieving no greater

cost.

Let (f, g, h) satisfying Assumptions 3.4 and 3.5 be given. Since f(x) and

pX(x) are symmetric around zero, we have

E
[
X|X ∈ T f0

]
= 0
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Furthermore, it can be checked that

E
[
X|X ∈ T f1+

]
= −E

[
X|X ∈ T f1−

]
=: b

P(X ∈ T f1+) = P(X ∈ T f1−)

Var(X|X ∈ T f1+) = Var(X|X ∈ T f1−)

Then, (3.5) can be further expressed as

J(f, g, h)

= 2

∫
x∈ T f0 ∩ [0,∞)

x2pX(x)dx+ 2

∫
x∈T f1+

(
c1 +

1

γ + 1
(x− b)2

)
pX(x)dx

+ 2

∫
x∈ T f2 ∩ [0,∞)

c2pX(x)dx

=: 2

∫
x∈(0,∞)

J̃(x, f(x))pX(x)dx

where J̃(x, u) is defined on x ∈ [0,∞) and

J̃(x, u) =


x2, if u = 0

c1 +
1

γ + 1
(x− b)2, if u = 1

c2, if u = 2

We now construct a communication scheduling policy f̃ such that

f̃(x) =


arg min
u∈{0,1,2}

J̃(x, u), if x ≥ 0

f(−x), if x < 0

Denote by b̃ := E[X|X ∈ T f̃1+] the conditional mean over T f̃1+. Moreover, let

(g̃, h̃) be the encoding/decoding policies induced by f̃ by Assumption 3.5.
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Then,

J(f, g, h)

≥ 2

∫
x∈[0,∞)

J̃(x, f̃(x))pX(x)dx

= 2

∫
x∈ T f̃0 ∩ [0,∞)

x2pX(x)dx+ 2

∫
x∈T f̃1+

(
c1 +

1

γ + 1
(x− b)2

)
pX(x)dx

+ 2

∫
x∈ T f̃2 ∩ [0,∞)

c2pX(x)dx

≥ 2

∫
x∈ T f̃0 ∩ [0,∞)

x2pX(x)dx+ 2

∫
x∈T f̃1+

(
c1 +

1

γ + 1
(x− b̃)2

)
pX(x)dx

+ 2

∫
x∈ T f̃2 ∩ [0,∞)

c2pX(x)dx

= J(f̃ , g̃, h̃)

The first inequality holds dues to the way that f̃ is constructed. The second

inequality holds since∫
x∈T f̃1+

(x− b)2pX(x)dx = E
[
(X − b)2|X ∈ T f̃1+

]
P(X ∈ T f̃1+)

≥ E
[
(X − b̃)2|X ∈ T f̃1+

]
P(X ∈ T f̃1+)

=

∫
x∈T f̃1+

(x− b̃)2pX(x)dx

where the inequality further dues to the fact that b̃ is the conditional mean

and thus the minimum mean squared error estimator.

We now analyze the structure of f̃ , and we only need to consider x ≥ 0.

It is easy to check that there exists β1 > 0 such that

J̃(x, 0) ≤ min{J̃(x, 1), J̃(x, 2)}, x ∈ [0, β1],

J̃(x, 0) > min{J̃(x, 1), J̃(x, 2)}, x ∈ (β1,∞)

Hence, f̃(x) = 0 when x ∈ [0, β1], and we only need to compare J̃(x, 1) with

J̃(x, 2) when x ∈ (β1,∞). Note that J̃(x, 1) is a porabolic opening upward,

and J̃(x, 2) is constant. Hence, either of the following three cases occurs

when x ∈ (β1,∞):
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Case I: J̃(x, 1) and J̃(x, 2) do not intersect, which implies

J̃(x, 1) > J̃(x, 2), x ∈ (β1,∞)

Therefore, f̃(x) = 2 when x ∈ (β1,∞), and f̃ is of threshold-in-threshold

type with β1 = β2.

Case II: J̃(x, 1) and J̃(x, 2) intersect only once at x = β2, and

J̃(x, 1) ≤ J̃(x, 2), x ∈ (β1, β2]; J̃(x, 1) > J̃(x, 2), x ∈ (β2,∞)

Then, f̃(x) = 1 when x ∈ (β1, β2] and f̃(x) = 2 when x ∈ (β2,∞). Hence, f̃

is of threshold-in-threshold type.

Case III: J̃(x, 1) and J̃(x, 2) intersect twice at βl and βr, which implies

J̃(x, 1) ≤ J̃(x, 2), x ∈ (βl, βr); J̃(x, 1) > J̃(x, 2), x ∈ (β1, βl] ∪ [βr,∞)

Hence, f̃(x) = 1 when x ∈ (βl, βr), and f̃(x) = 2 when x ∈ (β1, βl]∪ [βr,∞).

Although f̃ is not in threshold-in-threshold form, yet we can construct a

policy f ′ of threshold-in-threshold type based on f̃ , which achieves non-

greater cost. Let f ′ be as follows:

T f
′

0 = [−β1, β1], T f
′

1+ = (β1, β2], T f
′

1− = [−β2,−β1), T f
′

2 = (−∞,−β2)∪ (β2,∞)

where β2 is selected such that∫ β2

β1

pX(x)dx =

∫ βr

βl

pX(x)dx

As illustrated in Fig. 3.4, we shifted the positive and the negative trans-

mission regions without changing the probability measure over each region.

Let (g′, h′) be the encoding and the decoding policies induced by f ′ following
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Figure 3.4: Construction of f ′ based on f̃

Assumption 3.5. By (3.5), it can be computed that

J(f ′, g′, h′)− J(f̃ , g̃, h̃)

=
1

γ + 1

(
Var(X|X ∈ T f

′

1+)− Var(X|X ∈ T f̃1+)
)
P(X ∈ T f̃1+)

+
1

γ + 1

(
Var(X|X ∈ T f

′

1−)− Var(X|X ∈ T f̃1−)
)
P(X ∈ T f̃1−)

=
2

γ + 1

(
Var(X|X ∈ T f

′

1+)− Var(X|X ∈ T f̃1+)
)
P(X ∈ T f̃1+)

Moreover, by Proposition 3.1, we have Var(X|X ∈ T f
′

1+) ≤ Var(X|X ∈ T f̃1+).

Hence,

J(f ′, g′, h′) ≤ J(f̃ , g̃, h̃) ≤ J(f, g, h)

and f ′ is a threshold-in-threshold based policy.

With Theorem 3.2, we simply an optimization problem over a function

space to an optimization problem over a two-dimensional space. Hence, we

can compute the optimal thresholds β1 and β2 via a standard approach. Once

the communication scheduling policy f is of threshold-in-threshold type with

thresholds β1 and β2 (consider the interior point first, i.e., β1 < β2), the cost

function (3.5) can be expressed as

J(f, g, h) = 2

∫ β1

0

x2pX(x)dx+ 2c2

∫ ∞
β2

pX(x)dx+ 2c1

∫ β2

β1

pX(x)dx

+
2

γ + 1
Var
(
X|X ∈ (β1, β2)

) ∫ β2

β1

pX(x)dx
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Taking partial derivative of J(β1, β2) with respect to β1, we have

∂J(f, g, h)

∂β1

= 2β2
1pX(β1)− 2c1pX(β1) +

2

γ + 1

∂

∂β1

(
Var(X|X ∈ (β1, β2))

∫ β2

β1

pX(x)dx
)

Similar to (A.2), it can be checked that

∂

∂β1

(
Var(X|X ∈ (β1, β2))

∫ β2

β1

pX(x)dx
)

= −pX(β1)
(
β1−E[X|X ∈ (β1, β2)]

)2

We also compute the partial derivative of J(f, g, h) with respect to β2. By

the first-order optimality condition, the locally optimal thresholds (β1, β2)

should satisfy

β2
1 −

1

γ + 1

(
β1 − E[X|X ∈ (β1, β2)]

)2 − c1 = 0,

1

γ + 1

(
β2 − E[X|X ∈ (β1, β2)]

)2
+ c1 − c2 = 0

(3.6)

Once we obtain solution(s) of (3.6), which are extrema of J(f, g, h), we need

to compare J(f, g, h) evaluated at the inner extrema with that evaluated at

the boundary, i.e. β1 = β2. The one achieving the lowest cost is the global

optimal solution.

The existence and uniqueness of solution to (3.6) are difficult to analyze for

general symmetric and unimodal densities. The reason is E[X|X ∈ (β1, β2)]

depends on the source density pX , which might be complex. To deal with

this issue, we specify the source to have Laplace distribution with parameters

(0, λ−1), namely,

pX(x) =


1

2
λe−λx, x ≥ 0

1

2
λeλx, x < 0

Then, it can be computed that

E
[
X|X ∈ (β1, β2)

]
=

1

λ
+ β1 +

(β2 − β1)e−λ(β2−β1)

e−λ(β2−β1) − 1

=:
1

λ
+ β1 +

∆β

1− eλ∆β

(3.7)
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where ∆β = β2 − β1. Plugging (3.7) into (3.6), we have

β1 =

√
c1 +

1

γ + 1

(
1

λ
+

∆β

1− eλ∆β

)2

,

β2 − β1 −
∆β

1− eλ∆β
=

1

λ
+
√

(γ + 1)(c2 − c1)

which can be further simplified to

β1 =

√
c1 +

1

γ + 1

(
∆β −

√
(c2 − c1)(1 + γ)

)2

,

∆βeλ∆β

eλ∆β − 1
=

1

λ
+
√

(c2 − c1)(1 + γ)

(3.8)

Define a function ϕ(x) in terms of x as follows

ϕ(x) :=
xeλx

eλx − 1
=

x

1− e−λx
, x ∈ (0,∞)

Then,
dϕ(x)

dx
=

1− e−λx

(1− e−λx)2
=

1

1− e−λx
> 0, ∀ x ∈ (0,∞)

Furthermore, it can be verified that ϕ(x) ranges over (1/λ,∞) when x ∈
(0,∞). Hence, the second equation in (3.8) has a unique solution, which

determines β1 by the first equation in (3.8), and β2 = ∆β + β1.

As discussed earlier, we need to compare the performance of the inner

extremum obtained from (3.8) with that of the boundary. Consider any

β1 = β2, β1 > 0 on the boundary, we first fix β1 and minimize J(f, g, h)

over β∗2 ∈ [β1,∞). It can be shown (by analyzing ∂J(f, g, h)/∂β∗2) that the

minimizing β∗2 = β1 + ∆β, where ∆β satisfies the second equation in (3.8).

Then, we keep β∗2 = β1 + ∆β and minimize J(f, g, h) over β1 ∈ (0,∞).

Taking the derivative of J(f, g, h) with respect to β1, we have

dJ(f, g, h)

dβ1

=
∂J(f, g, h)

∂β1

+
∂J(f, g, h)

∂β∗2

dβ∗2
dβ1

=
∂J(f, g, h)

∂β1

where the second equality holds since ∂J(f, g, h)/∂β∗2 = 0 when β∗2 = β1+∆β.

By analyzing ∂J(f, g, h)/∂β1, it can be shown that the minimizing β∗1 is the

one satisfying the first equation in (3.8). Hence, the inner extremum (β∗1 , β
∗
2)

obtained from (3.8) outperforms any boundary point β1 = β2, which implies
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(β∗1 , β
∗
2) is the global minimum.

Remark 3.3. When formulating the problem in Section 3.1, we assume

that c1 < c2. If c1 ≥ c2, that is, the noisy channel is more costly than

the noiseless channel, the sensor should always use the noiseless channel

if it decides to transmit its observation. Therefore, the problem collapses

to noiseless-channel setting. By the results from [29], the optimal commu-

nication scheduling policy is still threshold-in-threshold based, with optimal

thresholds β1 = β2 =
√
c2.

3.3 Optimization Problem with Hard Constraint

In this section, we continue our focus on the modified problem, but this

time with hard constraint. We first introduce En
t and Ep

t as the remaining

communication opportunities at time t for the noisy channel and the perfect

channel, respectively. Then, En
t and Ep

t can be obtained from the sensor’s

decisions up to t− 1, namely,

En
t = N1 −

t−1∑
i=1

1{Ui=1}, Ep
t = N2 −

t−1∑
i=1

1{Ui=2}

As discussed in Remark 3.1, U1:t−1 is the common information shared by

all the decision makers. Hence, En
t and Ep

t are also known by the sensor,

the encoder, and the decoder. With a little abuse of notation, we introduce

J(t, En
t , E

p
t ) as the optimal cost-to-go when the system is initialized at time t

with En
t and Ep

t communication opportunities for noisy channel and perfect

channel, respectively. Then, we have the following theorem on the structure

of the optimal decision policies. Its proof is similar to that of Theorem 2.3

and hence is omitted here.

Theorem 3.3. Without loss of optimality, the sensor, the encoder, and the

decoder can apply the following types of decision policies:

Ut = ft(Xt, E
n
t , E

p
t ), Yt = gt(Xt, St, E

n
t , E

p
t ), X̂t = ht(Ỹt, St, E

n
t , E

p
t )

Furthermore, the optimal cost-to-go J(t, En
t , E

p
t ) can be obtained by solving
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the dynamic programming (DP) equation:

J∗(t, En
t , E

p
t ) = inf

ft,gt,ht

{
E
[
(Xt − X̂t)

2 + J∗(t+ 1, En
t+1, E

p
t+1)
]}

with boundary condition that J∗(T + 1, ·, ·) = 0.

Depending on the realization of Xt, E
n
t+1 may be En

t or En
t − 1, and Ep

t+1

may be Ep
t or Ep

t − 1. Hence, the DP equation can be written as

J∗(t, En
t , E

p
t )

= inf
ft,gt,ht

{
E
[
(Xt − X̂t)

2 + J∗(t+ 1, En
t+1, E

p
t+1)
]}

= J∗(t+ 1, En
t , E

p
t )

+ inf
ft,gt,ht

{
E
[
(Xt − X̂t)

2 + c1(t, En
t , E

p
t )1{Ut=1} + c2(t, En

t , E
p
t )1{Ut=2}

]}
= J∗(t+ 1, En

t , E
p
t ) + inf

ft,gt,ht

{
E
[
(Xt − X̂t)

2 + c(t, En
t , E

p
t , Ut)

]}
where

c1(t, En
t , E

p
t ) = J∗(t+ 1, En

t − 1, Ep
t )− J∗(t+ 1, En

t , E
p
t ),

c2(t, En
t , E

p
t ) = J∗(t+ 1, En

t , E
p
t − 1)− J∗(t+ 1, En

t , E
p
t )

and

c(t, En
t , E

p
t , Ut) =


0, if Ut = 0

c1(t, En
t , E

p
t ), if Ut = 1

c2(t, En
t , E

p
t ), if Ut = 2

Then the problem inside inf{·} is a single-stage problem with soft constraint.

Hence, we make the assumptions analogous to those we have made in Section

3.2.2.

Assumption 3.6. The source has Laplace distribution with parameters (0, λ−1).

The noise has zero mean and finite variance σ2
V .

Assumption 3.7. The sensor is restricted to apply the communication schedul-

ing policy in the form of

ft(x, ·, ·) = ft(−x, ·, ·), ∀ x ∈ R
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Assumption 3.8. The encoder and the decoder are restricted to apply piece-

wise affine encoding and decoding policies, respectively, i.e.,

gt(Xt, St, E
n
t , E

p
t ) = Stαt (Xt − E [Xt|Ut = 1, St, E

n
t , E

p
t ])

ht(Ỹt, St, E
n
t , E

p
t ) =

1

αt

γ

γ + 1
StỸt + E [Xt|Ut = 1, St, E

n
t , E

p
t ]

The parameters γ = PT/σ
2
V , and αt =

√
PT/Var(Xt|Ut = 1, St, En

t , E
p
t ).

Then, we have the following theorem by applying Theorem 3.2.

Theorem 3.4. Consider the modified problem with Assumptions 3.6-3.8

hold, the optimal communication scheduling policy is of the symmetric threshold-

in-threshold type as follows:

ft(Xt, E
n
t , E

p
t ) =


0, if |Xt| ≤ β1(t, En

t , E
p
t )

1, if β1(t, En
t , E

p
t ) < |Xt| < β2(t, En

t , E
p
t )

2, if |Xt| ≥ β2(t, En
t , E

p
t )

where the optimal thresholds β1(t, En
t , E

p
t ) and β2(t, En

t , E
p
t ) can be obtained

from (3.8) if c2(t, En
t , E

p
t ) > c1(t, En

t , E
p
t ). Otherwise, both β1(t, En

t , E
p
t ) and

β2(t, En
t , E

p
t ) are equal to

√
c2(t, En

t , E
p
t ).

3.4 Numerical Results

In this section, we present numerical results for the problem with hard con-

straint. Similar to what we have done in Section 2.4, we solve the DP equa-

tion numerically with λ = 1, γ = 1 and T = 100. We plot the optimal

100-stage estimation error versus the numbers of communication opportuni-

ties for the perfect channel and the noisy channel separately on two figures.

We also generate a sample path of the numbers of remaining communication

opportunities, En
t and Ep

t , versus time. The numerical results have proper-

ties inheriting from both the noiseless-channel setting and the single-channel

setting.

In Fig. 3.5, we fix the number of communication opportunities for the

noiseless channel as N2 = 0, 10, 20, and we plot the optimal 100-stage es-

timation error versus the number of communication opportunities for the
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Figure 3.5: Optimal 100-stage estimation error vs. number of
communication opportunities for the noisy channel

noisy channel N1. When N2 = 0, there is no communication opportunity for

the noiseless channel, the problem collapses to the single-channel setting. As

discussed in Section 2.4, there exists an opportunity threshold such that the

optimal 100-stage estimation error decreases when the number of commu-

nication opportunities is below the threshold, and stays constant above the

threshold. One can see that the existence of opportunity threshold remains

in the case when there is an additional noiseless channel.
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Figure 3.6: Optimal 100-stage estimation error vs. number of
communication opportunities for the noiseless channel
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Figure 3.6 illustrates the performances of the decision strategies when N1

is fixed as N1 = 0, 10, 20, and N2 varies over {0, 1, . . . , 100}. When N1 =

0, there is no communication opportunity for the noisy channel, and the

problem collapses to that in the noiseless-setting. The plot recovers the result

in [27]. As shown in [27], the optimal 100-stage estimation error decreases to

zero as the number of communication opportunities for the noiseless channel

increases to the length of the time horizon. This trend remains for the case

when there is an additional noisy channel.
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Figure 3.7: A sample path

Figure 3.7 depicts a sample path illustrating the evolution of the remaining

communication opportunities for the noisy and the noiseless channels, i.e., En
t

and Ep
t . When generating the plot, we chose N1 = N2 = 40. One can observe

that by the end of time horizon, the sensor used up all the communication

opportunities for the noiseless channel (inheriting from [27], Figure 6), but

not all the communication opportunities for the noisy channel (inhereting

from Fig. 2.3 in Section 2.4).
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CHAPTER 4

REMOTE ESTIMATION WITH
COMMUNICATION SCHEDULING AND

POWER ALLOCATION

In this chapter, we consider a communication scheduling and remote esti-

mation problem over an additive noise channel. At each time, the sensor

makes an observation of the state of a one-dimensional stochastic process,

and then decides whether to transmit its observation to the remote estimator

or not. The sensor is restricted to transmit its observations for no more than

a fixed number of times. In addition, the sensor is charged a cost for each

transmission. If the sensor decides to transmit its observation, it sends it to

the encoder, who then sends an encoded message over the communication

channel. The encoded message is distorted by an additive communication

channel noise, and is received by the remote estimator. If the sensor decides

not to transmit its observation, the remote estimator will receive a notifica-

tion about the sensor’s decision. The remote estimator generates a real-time

estimate on the state variable, and it is charged for the estimation error. Dif-

ferent from the problems considered in the earlier chapters, which assumed

that the encoder has a stage-wise constraint on the average encoding power

when there is a transmission from the sensor, we consider in this chapter a

more general setting where the encoder has a constraint on its average total

power consumption over the time horizon. In this scenario, the encoding

power should be wisely allocated to each stage. In addition, the communica-

tion scheduling policy, the encoding policy, and the decoding policy should

be jointly designed to best utilize the encoding power. Under some techni-

cal assumptions, we show that the optimal communication scheduling policy

is still threshold-based, and we jointly optimize the threshold together with

the stage-wise average encoding power. We generate numerical results to

demonstrate that with the additional flexibility on choosing the state-wise

encoding power, the estimation error accumulated over the time horizon can

be further reduced.

The contributions of this chapter are listed as follows:
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1. We formulate a communication scheduling and remote estimation prob-

lem over an additive noise channel. Different from what was covered

by Chapters 2 and 3, the encoder has a constraint on its average total

power consumption over the time horizon.

2. Under some technical assumptions, we show that the optimal commu-

nication scheduling policy is threshold-based. In addition, we jointly

design the optimal threshold together with the stage-wise encoding

power when the sensor decides to transmit its observation.

3. We generate numerical results to demonstrate the performance of the

designed policies, and we compare it with the performance of the poli-

cies proposed in the prior work.

The rest of the chapter is organized as follows: in Section 4.1, we formulate

the optimization problem. In Section 4.2.1, we solve a single-stage problem,

whose results are applied in Section 4.2.2 to solve the multi-stage problem.

In Section 4.3, we present and illustrate the numerical results.

4.1 Problem Formulation

4.1.1 System Model

Figure 4.1: System model

We are interested in measuring a one-dimensional discrete time stochastic

process {Xt} over a finite time horizon, i.e., t = 1, 2, . . . , T . In order to

achieve this goal, a sensor is placed. At each time t, the sensor, as shown in

Fig. 4.1, perfectly observes Xt. The sensor is assumed to have limited energy

for communication such that it is able to transmit its observations only a
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limited number of times. Thus, after observing Xt, the sensor needs to decide

whether to transmit its observation or not. Let Ut ∈ {0, 1} be the sensor’s

decision at time t, where 1 means to transmit and 0 means not to transmit.

Moreover, suppose that the communication channel is noisy. Hence, if the

sensor decides to transmit its observation, it sends the observation Xt to an

encoder. Denote by X̃t be the message received by the encoder at time t.

Then,

X̃t =


Xt, if Ut = 1

ε, if Ut = 0

where ε is a free symbol representing that the encoder does not receive any

message from the sensor. Once the encoder receives Xt, it sends an encoded

message to the communication channel, denoted by Yt, Yt ∈ R. The encoded

message Yt is corrupted by an additive channel noise Vt, Vt ∈ R. The encoder

will not send any message to the communication channel if it does not receive

any message from the sensor, denoted by Yt = 0. Denote by Ỹt the message

received by the decoder. Then,

Ỹt =


Yt + Vt, if X̃t 6= ε

Vt, if X̃t = ε

When sending the encoded message Yt to the communication channel, the

encoder is able to send a two-bit message, denoted by St, to the decoder via a

side channel. St ∈ {0, 1,−1}, where {1,−1} is the sign of Xt and 0 means no

message is sent via the communication channel. Furthermore, it is assumed

that the side channel is noise-free. Based on the messages received from the

encoder, the decoder generates an estimate on Xt, denoted by X̂t.

4.1.2 Communication Constraints

There are two types of communication constraints: The sensor is able to

transmit its observations for no more than N times, where N < T , or equiv-

alently,
T∑
t=1

Ut ≤ N
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Furthermore, the encoder is assumed to have an average total power con-

straint, that is
T∑
t=1

E
[
Y 2
t

]
≤ Ptotal (4.1)

where Ptotal is the total power. Note that when there is no transmission,

Yt = 0 and thus there is no power consumption.

4.1.3 Decision Strategies

Assume that at time t, the information available to the sensor is all its

observations up to t, denoted by X1:t. The sensor makes decision Ut based

on its current information X1:t and the communication scheduling policy at

time t, denoted by ft, i.e.,

Ut = ft(X1:t)

Define f := {f1, f2, . . . , fT}; we call f the communication scheduling strategy.

Similarly, assume that at time t, the information available to the encoder

is the collection of all the messages received from the sensor up to t, denoted

by X̃1:t. The encoder generates the encoded message Yt based on its current

information X̃1:t and the encoding policy at time t, denoted by gt, i.e.,

Yt = gt(X̃1:t)

Define g := {g1, g2, . . . , gT}; we call g the encoding strategy.

Finally, assume that at time t, the information available to the decoder is

the collection of all the messages received from the encoder up to t, denoted

by Ỹ1:t, S1:t. The decoder generates the estimate X̂t based on its current

information (Ỹ1:t, S1:t) and the decoding policy at time t, denoted by ht, i.e.,

X̂t = ht(Ỹ1:t, S1:t)

Define h := {h1, h2, . . . , hT}. We call h the decoding strategy.

We denote by U1:t−1 the sensor’s decisions up to t−1. Although we do not

assume that the sensor, the encoder and the decoder have memory on U1:t−1,

yet the sensor can deduce this information from X1:t−1 and f . The encoder

and the decoder can deduce U1:t−1 from X̃1:t−1 and S1:t−1, respectively. Hence,

U1:t−1 is the common information among all the decision makers, and this
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property will be used later.

4.1.4 Optimization Problem

At time t, the sensor is charged a cost c if and only if it transmits its obser-

vation, call it communication cost. Furthermore, the decoder is charged for

squared estimation error, (Xt − X̂t)
2, call it estimation cost.

The cost functional associated with (f ,g,h), denoted by J(f ,g,h), is the

expected value of the sum of communication cost and estimation cost over

the time horizon, i.e.,

J(f ,g,h) := E
[ T∑
t=1

cUt + (Xt − X̂t)
2
]

Hence, the optimization problem is to design (f ,g,h) to minimize the above

cost functional subjected to the communication constraints.

We would like to clarify the difference between the problems studied in

this chapter and the one studied in Chapter 2. For the problem studied in

Chapter 2, it is assumed that the encoder has a stage-wise constraint on its

average encoding power when the sensor decides to transmit its observation,

i.e.,

E[Y 2
t |Ut = 1] ≤ P̄ ∀ t = 1, . . . , T

where P̄ is assumed to be a constant. Due to such a constraint, when there

is a transmission from the sensor, the encoder will use the same power,1

which is predefined, to encode and transmit the message. In this chapter,

however, the encoder is assumed to have a constraint on its average total

power consumption over the time horizon, as described by (4.1). Then,

several technical challenges are involved due to such a constraint. First, the

encoding power, E[Y 2
t ], should be wisely allocated to each stage. Second,

at each stage t, the communication scheduling policy, ft, and the encoding

policy, gt, should be jointly designed such that the encoding power allocated

to that stage is best utilized. To be more specific, the sensor may transmit

its observation with low probability yet the encoder may use high power to

encode and transmit the observation, or vice versa. Both challenges will be

1The encoder should utilized the maxmium allowable power so that the estimation
error can be minimized.
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addressed in this chapter.

4.2 Main Results

We first solve a single-stage problem. Then, we will apply the results for the

single-stage problem to solve the multi-stage problem.

4.2.1 The Single-stage Problem

Consider the optimization problem formulated in Section 4.1. We assume

that the length of the time horizon, T = 1, i.e., the problem is a single-

stage problem. For simplicity, we suppress the subscript for time in all the

expressions during this section. Furthermore, we assume that N = T , i.e.,

the sensor is always allowed to transmit its observation. However, the sensor

is still charged a cost if it makes a transmission. Let J(f, g, h) be the cost

functional associated with communication scheduling, encoding and decoding

policies (f, g, h), i.e.,

J(f, g, h) := E[cU + (X − X̂)2]

In this scenario, the encoder has the average total power constraint

E[Y 2] ≤ Ptotal

We attach this constraint to the cost functional, J(f, g, h), via the Lagrange

multiplier, λ, where λ > 0. We denote by Jλ(f, g, h) the augmented cost

functional, i.e.,

Jλ(f, g, h) = E[cU + (X − X̂)2] + λ E[Y 2]
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The augmented cost functional Jλ(f, g, h) can also be written as

Jλ(f, g, h)

= E[cU + (X − X̂)2] + λ E[Y 2]

= c E[U ] + E[(X − X̂)2] + λ E[Y 2|U = 1] P(U = 1)

= c E[U ] + E[(X − X̂)2] + λ E[Y 2|U = 1] E[U ]

=
(
c+ λE[Y 2|U = 1]

)
E[U ] + E[(X − X̂)2]

The second equality holds since Y 2 = 0 when U = 0, and the third equality

holds since U is a binary variable.

To minimize Jλ(f, g, h), we may first fix E[Y 2|U = 1] = P , and derive

the minimizing (f, g, h) subject to this constraint. Then, we choose the

minimizing P over [0,∞). We call E[Y 2|U = 1] = P the average encoding

power constraint and P is the encoding power. For any P ≥ 0, we define

Jλ,P (f, g, h) := E[(c+ λP )U + (X − X̂)2]

We are now deriving the optimal decision policies (f, g, h) minimizing Jλ,P (f,

g, h) subject to E[Y 2|U = 1] = P , call it Sub-problem, and we make the

following assumptions.

Assumption 4.1. The source variable X is a continuous random variable

with an even and unimodal density function pX(·). That is,

pX(x) = pX(−x), ∀ x ∈ R

pX(a) ≥ pX(b), ∀ |a| ≤ |b|

The communication channel noise V has zero mean and finite variance, de-

noted by σ2
V . In addition, the source variable X and the channel noise V are

independent.

Assumption 4.2. The encoder and the decoder are restricted to apply piece-
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wise affine encoding and decoding policies in the form of

g(X̃) =


S α(S)

(
X − E[X|U = 1, S]

)
, if U = 1

0, if U = 0

h(Ỹ , S) =


S

α(S)

γ

γ + 1
Ỹ + E[X|U = 1, S], if U = 1

E[X|U = 0], if U = 0

(4.2)

where

α(S) =

√
P

Var(X|U = 1, S)
, γ =

P

σ2
V

The expressions E[X|U = 1, S], E[X|U = 0] and Var(X|U = 1, S) are

the conditional means and variance, respectively, which depend on the dis-

tribution of X and the choice of f . Furthermore, it can be shown that the

constraint on the encoding power, i.e., E[Y 2|U = 1] = P , is satisfied if the

encoder applies the piecewise affine encoding policy described in (4.2).

Assumption 4.3. The sensor is restricted to apply the communication schedul-

ing policy in the form of

f(x) = f(−x) ∈ {0, 1}, ∀ x ∈ R

Remark 4.1. Assumption 4.3 is not only an assumption but also a conjec-

ture on the optimal communication scheduling policy. Since the source has

symmetric distribution, and we can encode/decode positive and negative re-

alizations of the source separately, it is natural to conjecture that the optimal

communication scheduling policy is symmetric about zero.

With the assumptions described above, we have the following theorem.

Theorem 4.1. Consider the Sub-problem with Assumptions 4.1-4.3 hold, the

optimal communication scheduling policy, f , is threshold-based. That is, f is

in the form of

f(x) =


0, if |x| ≤ β

1, if |x| > β
(4.3)

where β ≥ 0 is the threshold.
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Proof. The Sub-problem is just the communication scheduling and remote

estimation problem over an additive noise channel, which has been studied

in Chapter 2. Correspondingly, Theorem 4.1 is a restatement of Theorem

2.2. We include it here so that this chapter is self-contained.

With Theorem 4.1, minimizing Jλ,P (f, g, h) over (f, g, h, P ) is equivalent to

minimizing Jλ,P (f, g, h) over (β, P ).2 Correspondingly, an infinite-dimensional

optimization problem has been simplified to a finite-dimensional one. Once

the sensor applies the threshold-based policy f with threshold β, the encoder

and the decoder apply the piecewise affine encoding and decoding policies,

respectively, with the encoding power P , the cost functional Jλ,P (f, g, h) can

be expressed as follows:

Jλ,P (f, g, h) = 2
(
c+ λP

) ∫ ∞
β

pX(x)dx+ 2

∫ β

0

x2pX(x)dx

+
2σ2

V

P + σ2
V

Var(X|X > β)

∫ ∞
β

pX(x)dx

Taking the partial derivatives of Jλ,P (f, g, h) with respect to β and P , re-

spectively, we have

∂Jλ,P (f, g, h)

∂β
= 2pX(β)

(
β2 − σ2

V

P + σ2
V

(
β − E[X|X > β]

)2 − (c+ λP )

)
∂Jλ,P (f, g, h)

∂P
= 2

∫ ∞
β

pX(x)dx ·
(
λ− σ2

V

(P + σ2
V )2

Var(X|X > β)

)
By the first-order optimality condition, the optimal solution (β, P ) should

satisfy

β2 − σ2
V

P + σ2
V

(β − E[X|X > β])2 − (c+ λP ) = 0

λ− σ2
V

(P + σ2
V )2

Var(X|X > β) = 0

(4.4)

In general, E[X|X > β] and Var(X|X > β) depend on β and the distribu-

tion of X, which might be hard to compute. Hence, we make the following

assumption specifying the distribution of the source variable.

Assumption 4.4. The source variable X has the Laplace distribution with

2As discussed before, the encoding and the decoding policies, g and h, are induced by
the source density pX and the communication scheduling policy f .
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parameters (0, k−1), i.e.,

pX(x) =


1

2
ke−kx, if x ≥ 0

1

2
kekx, if x < 0

We note that pX(x) is even and unimodal, which satisfies Assumption 4.1.

In addition, condition on the event that X > β, X has a shifted exponential

distribution with parameter k, i.e.,

pX|X>β(x) = ke−k(x−β), x ≥ 0

which implies that

E[X|X > β] = β +
1

k
, Var(X|X > β) =

1

k2

Consequently, the first-order optimality condition, described by (4.4), can be

further expressed as

β2 − σ2
V

P + σ2
V

1

k2
− (c+ λP ) = 0

λ− σ2
V

(P + σ2
V )2

1

k2
= 0

(4.5)

Depending on the value of λ, we have the following discussion.

1. When 0 < λ < 1
σ2
V k

2 , (4.5) admits a unique solution

β∗ =

√
c+

σ2
V

P ∗ + σ2
V

1

k2

(
1 +

P ∗

P ∗ + σ2
V

)
P ∗ =

√
σ2
V

λk2
− σ2

V

(4.6)

It can be shown that when fixing β, Jλ,P (f, g, h) attains global mini-

mum over P ∈ [0,∞) at P ∗, which is independent of β. It can also

be shown that when plugging in P = P ∗, Jλ,P ∗(f, g, h) attains global

minimum over β ∈ [0,∞) at β∗. Hence, the pair (β∗, P ∗), described by

(4.6), is jointly optimal over [0,∞)× [0,∞).

2. When λ ≥ 1
σ2
V k

2 , (4.5) does not admit a solution, which implies that
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the jointly optimal solution may be on the boundary. By a similar

argument as above, it can be shown that Jλ,P (f, g, h) attains global

minimum at (β∗, 0).

We combine the above two cases and claim that Jλ,P (f, g, h) attains global

minimum at

β∗ =

√
c+

σ2
V

P ∗ + σ2
V

1

k2

(
1 +

P ∗

P ∗ + σ2
V

)
P ∗ = max

{√
σ2
V

λk2
− σ2

V , 0

} (4.7)

We have so far shown that with Assumptions 4.1-4.3, the optimal commu-

nication scheduling policy f is threshold-based with threshold β∗, and the

optimal encoding and decoding policies (g, h) are of the form described by

(4.2) with the encoding power P ∗. The pair (β∗, P ∗) is captured by (4.7).

We are now in a position to determine the Lagrange multiplier, λ, or equiva-

lently, determine P ∗. Recall that the encoder should satisfy the total power

constraint. Namely,

E[Y 2] = E[Y 2|U = 1] · P(U = 1)

= P ∗ · P(|X| > β∗)

= P ∗ · exp(−kβ∗)

= P ∗ · exp

(
−k

√
c+

σ2
V

P ∗ + σ2
V

1

k2

(
1 +

P ∗

P ∗ + σ2
V

))
=: F (P ∗)

= Ptotal

(4.8)

We take F (P ∗) = Ptotal (instead of F (P ∗) ≤ Ptotal) since the encoder should

take the maximum allowable total power to achieve the lowest estimation

error. It can be shown that F (P ) is a strictly increasing function of P

ranging over [0,∞). Hence, for any Ptotal ≥ 0, there exists a unique P ∗

satisfying (4.8).
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4.2.2 The Multi-stage Problem

We now consider the optimization problem over multiple time steps as formu-

lated in Section 4.1. Similar to the approach applied to solve the single-stage

problem, we attach the constraint on the average total power to the cost

functional via the Lagrange multiplier, λ, and we denote by Jλ(f ,g,h) the

argumented cost functional, i.e.,

Jλ(f ,g,h) :=
T∑
t=1

E
[
cUt + λY 2

t + (Xt − X̂t)
2
]

We make the following assumption on the source and the noise processes.

Assumption 4.5. The source and the noise processes {Xt} and {Vt} are

independent and identically distributed (i.i.d.). Furthermore, {Xt} is inde-

pendent of {Vt}.

Let Et be the number of remaining communication opportunities at time

step t, i.e.,

Et = N −
t−1∑
i=1

Ui

Recall that at time t, information about U1:t−1 is shared among the sensor, the

encoder, and the decoder. Hence, Et is also known by all the decision makers.

Let J∗(t, Et) be the optimal cost-to-go when the system is initialized at time

t with Et number of communication opportunities, and denote by (f ∗t , g
∗
t , h

∗
t )

the optimal decision policies at time t. By a similar argument with Theorem

2.3 in Chapter 2, we have the following proposition.

Proposition 4.1. (1) Without any loss of optimality, we can restrict the

sensor, the encoder, and the decoder to apply, respectively, the communication

scheduling policy, the encoding policy, and the decoding policy in the form of:

Ut = ft(Xt, Et), Yt = gt(X̃t, Et), X̂t = ht(Ỹt, St, Et)

(2) The optimal cost-to-go J∗(t, Et) and the optimal decision policies (f ∗t , g
∗
t , h

∗
t )

can be obtained by solving the dynamic programming (DP) equation

J∗(t, Et) = J∗(t+ 1, Et) + inf
ft,gt,ht

{
E
[(
c+ ct(Et)

)
Ut + λY 2

t + (Xt − X̂t)
2
]}
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with the boundary conditions J∗(T + 1, ·) = 0, where

ct(Et) = J(t+ 1, Et − 1)− J(t+ 1, Et)

is the opportunity cost.

The minimization problem in the braces is a single-stage problem with the

communication cost c+ ct(Et). Hence, we make the following assumptions.

Assumption 4.6. Xt has Laplace distribution with parameters (0, k−1). In

addition, Vt has zero mean and finite variance σ2
V .

Assumption 4.7. The encoder and the decoder are restricted to apply piece-

wise affine encoding and decoding policies in the form of

Yt =


St αt(St, Et) (Xt − E[Xt|Ut = 1, St, Et]), if Ut = 1

0, if Ut = 0

X̂t =


St

αt(St, Et)

γt
γt + 1

Ỹt + E[Xt|Ut = 1, St, Et], if Ut = 1

E[Xt|Ut = 0, Et], if Ut = 0

(4.9)

where

αt(St, Et) =

√
Pt(Et)

Var(Xt|Ut = 1, St)
, γt =

Pt(Et)

σ2
V

and Pt(Et) is the encoding power at time t.

Assumption 4.8. The sensor is restricted to apply the communication schedul-

ing policies in the form of

ft(x, et) = ft(−x, et) ∀ x ∈ R, et ∈ {1, 2, . . . , N}

In view of the above, the result of the single-stage problem leads to the

following.

Theorem 4.2. Consider the optimization problem formulated in Section 4.1

and assume that Assumptions 4.5-4.8 hold. Then, the optimal communica-
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tion scheduling policy is

f ∗t (Xt, Et) =


0, if Et = 0 or |Xt| ≤ β∗t (Et)

1, if Et > 0 and |Xt| > β∗t (Et)

The optimal encoding and decoding policies are in the form of (4.9) with

encoding power the P ∗t (Et). In addition, β∗t (Et) and P ∗t (Et) are as follows

β∗t (Et) =

√
c+ ct(Et) +

σ2
V

P ∗t (Et) + σ2
V

1

k2

(
1 +

P ∗t (Et)

P ∗t (Et) + σ2
V

)

P ∗t (Et) = max

{√
σ2
V

λk2
− σ2

V , 0

}

By Theorem 4.2, the encoding power, P ∗t (Et), depends only on λ and σ2
V ,

which is invariant of time t and the remaining communication opportunities

for the sensor, Et. This is a rather surprising result. An explanation for

this phenomena is as follows. Condition on the event that Ut = 1, St = 1

(or St = −1), Xt has shifted (and reflected) exponential distribution, whose

variance is 1/k2. Thus, if the sensor decides to transmit its observation,

the input signal to the encoder always has variance 1/k2. Furthermore, the

encoder and the decoder are restricted to apply affine encoding and decoding

policies, and thus the minimum mean squared error (MMSE) depends only

on the encoding power, the variance of the input signal, and the variance of

the noise. Therefore, given that σ2
V and the variance of the input signal are

independent of t and Et, it is natural for the encoder to allocate the same

encoding power, P ∗t (Et), regardless of t and Et. We denote by P ∗ := P ∗t (Et)

for the rest of the chapter.

Similar to the single-stage problem, we may need to determine the La-

grange multiplier, λ, or equivalently, the encoding power, P ∗. Since the

encoder must satisfy the average total power constraint, we have∑T
t=1 E[Y 2

t ] =
∑T

t=1 P(Ut = 1) · E[Y 2
t |Ut = 1]

=
∑T

t=1 P(|Xt| > β∗t (Et)) · P ∗

=: G(P ∗)P ∗

= Ptotal

(4.10)
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Figure 4.2: Average number of expended communication opportunities vs.
encoding power

Apparently, G(P ∗)P ∗ is a continuous function of P ∗. In addition, numeri-

cal results show that G(P ∗) is non-decreasing in P ∗, which will be discussed

in Section 4.3. Then, G(P ∗)P ∗ is a strictly increasing function of P ∗ ranging

over [0,∞). Therefore, the solution to (4.10) is unique.

4.3 Numerical Results

We first show by simulation result that G(P ∗) is a non-decreasing function of

P ∗. Then, we are able to claim that G(P ∗)P ∗ is a strictly increasing function

of P ∗ ranging over [0,∞). Note that

G(P ∗) =
T∑
t=1

P(Ut = 1) =
T∑
t=1

E[Ut]

which is the average number of expended communication opportunities over

the time horizon. Hence, G(P ∗) can be computed by the Monte Carlo

method. We choose N = 40, T = 100, c = 0, k = 1, and σ2
V = 1, and we

plot G(P ∗) versus P ∗. As illustrated in Fig. 4.2, G(P ∗) is a non-decreasing

function of P ∗.

The optimal decision policies described in Theorem 4.2, call it new algo-
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Figure 4.3: Comparison between new algorithm vs. old algorithm

rithm, are in the same form with the ones described in Theorem 2.4 in Chap-

ter 2, call it previous algorithm. However, the encoding power, E[Y 2
t |Ut = 1],

and the threshold, βt(Et), are different for the two groups of policies. To

compare the performance of the two algorithms, we need to make sure that

the two algorithms are tested under the same average total power consump-

tion over the time horizon, and under the same number of communication

opportunities. We choose T = 100, c = 0, k = 1, and σ2
V = 1. Furthermore,

we choose the encoding power, Pprev = 2, for the previous algorithm. Then,

for each N ∈ {0, . . . , T}, we compute the 100-stage estimation error and the

average number of expended communication opportunities under the previ-

ous algorithm, denoted by Jprev(1, N) and Eprev[
∑T

t=1 Ut], respectively. Next,

we compute the total power consumed by the previous algorithm, denoted

by Ptotal, where

Ptotal = Pprev · Eprev

[
T∑
t=1

Ut

]
Next, we solve (4.10) numerically with the Ptotal obtained in the last step,

to get the encoding power, Pnew, for the new algorithm. By doing this, it

is guaranteed that the average total power consumed by the new algorithm

is the same with the old algorithm. Finally, we compute the 100-stage esti-

mation error achieved by the new algorithm with the encoding power Pnew,

denoted by Jnew(1, N). We plot Jprev(1, N) and Jnew(1, N) vs. N on the same
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figure, as illustrated in Fig. 4.3. One can see that, with the same number

of communication opportunities and the same average total power consump-

tion, the new algorithm achieves lower estimation error. The reason is that

in the problem considered in Chapter 2, the encoding power is fixed and the

threshold is designed under this fixed power, while in the problem studied in

this chapter, the encoding power and the threshold are jointly designed.
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CHAPTER 5

COMMUNICATION SCHEDULING AND
REMOTE ESTIMATION IN THE
PRESENCE OF AN ADVERSARY

In this chapter, we study a communication scheduling and remote estimation

problem via the worst-case approach. Specifically, a remote sensing system

consisting of a sensor, an encoder and a decoder is configured to observe,

transmit, and recover a discrete time stochastic process. At each time step,

the sensor makes an observation on the state variable of the stochastic pro-

cess. The sensor is constrained by the number of transmissions over the time

horizon, and thus it needs to decide whether to transmit its observation or

not after making each measurement. If the sensor decides to transmit, it

sends the observation to the encoder, which then encodes and transmits the

observation to the decoder. Otherwise, the sensor and the encoder maintain

silence. The decoder is required to generate a real-time estimate on the state

variable. The sensor, the encoder, and the decoder collaborate to minimize

the sum of the communication cost for the sensor, the encoding cost for the

encoder, and the estimation error for the decoder. There is also a jammer

interfering with the communication between the encoder and the decoder,

by injecting an additive channel noise to the communication channel. The

jammer is charged for the jamming power and is rewarded for the estimation

error generated by the decoder, and it aims to minimize its net cost. We

consider a feedback Stackelberg game with the sensor, the encoder, and the

decoder as the composite leader, and the jammer as the follower. Under some

technical assumptions, we obtain a feedback Stackelberg solution consisting

of a threshold-based communication scheduling policy for the sensor, and a

pair of piecewise affine encoding and decoding policies for the encoder and

the decoder, respectively. We also generate numerical results to demonstrate

the performance of the remote sensing system under the feedback Stackelberg

solution. The contributions of this chapter are listed as follows:

1. We formulate a dynamic game problem capturing the scenario of com-

munication scheduling and remote estimation in the presence of an
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adversary.

2. We show that the feedback Stackelberg solution to the dynamic game

can be computed iteratively, by solving a single-stage Stackelberg game

at each time step.

3. Under some technical assumptions, we obtain the Stackelberg solution

to the single-stage Stackelberg game.

4. We generate and present numerical results to illustrate the performance

of the remote sensing system under the feedback Stackelberg solution,

e.g., how much the encoding power is allocated to each time step.

The rest of this chapter is organized as follows. In Section 5.1, we present

the mathematical formulation of the problem. In Section 5.2, we present the

technical assumptions, the main results, and the proofs. In Section 5.3, we

provide numerical results.

5.1 Problem Formulation

5.1.1 Remote Sensing System with an Adversary

Figure 5.1: Remote sensing system with adversary

Consider a system, as described in Fig. 5.1, which involves observing the

state of a remote plant over a finite time horizon t = 1, . . . , T , and recovering

that information at the other end. The states of the plant over the time

horizon are characterized by a one-dimensional, independent and identically

distributed (i.i.d.) stochastic process, denoted by {Xt}, which we call the
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source process. Assume that Xt, for each t, is a continuous random variable,

and denote by pXt its probability density function. The system consists of

three components: a sensor, an encoder, and a decoder. In addition, there

is an adversary, call it “jammer”, that injects a disturbing input into the

communication channel with the objective of maximizing the distortion of

the recovered state. The functionalities of the system components and the

jammer are described as follows.

Sensor: At each time t, the sensor makes a perfect measurement of Xt,

which is assumed to be noiseless. Then, the sensor makes a binary decision,

denoted by Ut, on whether the measured quantity should be transmitted or

not. Here, Ut = 1 (respectively, Ut = 0) means to transmit (respectively, not

to transmit). The sensor is charged a cost, c, for each transmission and there

is no charge for non-transmission. In addition, the sensor is able to make no

more than N(N < T ) times of transmission over the time horizon, that is,

T∑
t=1

Ut ≤ N (5.1)

If the sensor decides to transmit its measurement, it sends the observation,

Xt, to the encoder. Otherwise, it sends a free symbol ε representing that

there is no transmission. Let X̃t be the message received by the encoder;

then

X̃t =


Xt, if Ut = 1

ε, if Ut = 0

Encoder: After receiving the message, X̃t, from the sensor, the encoder com-

municates with the decoder via two communication channels. One channel,

call it the additive noise channel, allows the encoder to transmit a real-valued

message, Yt, yet it corrupts the message by adding a channel noise Vt, and

Vt is generated by the jammer. The other communication channel, call it

the side channel, is noiseless, yet it allows the encoder to send only a 2-bit

message, St ∈ {0, 1,−1}, to the decoder. The encoder is charged for the en-

coding power, λY 2
t (λ > 0). Due to this charge, the messages (Yt, St) sent by

the encoder depend on the sensor’s decision, Ut. To be more specific, if the

sensor decides to transmit its observation (i.e., Ut = 1), the encoder sends

Yt ∈ R to the additive noise channel, and it sends the sign of the source,
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i.e., St = sgn(Xt), to the side channel. If the sensor decides not to transmit

its observation (i.e., Ut = 0), the encoder sends Yt = 0 to the additive noise

channel to save its encoding power, and it sends St = 0 to the side channel

to inform the decoder that there is no transmission from the sensor.

Jammer: As mentioned above, the communication channel noise, Vt, which

is a real-valued and continuous random variable, is generated by the jammer.

Specifically, at each time t, the jammer has access to the sensor’s decision,

Ut. Then, the jammer decides on a probability density function, denoted by

pVt , and generates Vt correspondingly. Similar to the encoder, the jammer

is charged for the jamming power, ηV 2
t (η > 0). Due to this charge, when

there is no transmission from the sensor (i.e., Ut = 0), the jammer generates

Vt = 0 with probability one to save its jamming power.

Decoder: After receiving the noise-corrupted message from the additive

noise channel, denoted by Ỹt, and the message from the side channel, St, the

encoder generates an estimate on the state of the plant, denoted by X̂t. As

described above, the dependency of Ỹt and St on the sensor’s decision, Ut, is

as follows:

Ỹt =


Yt + Vt, if Ut = 1

0, if Ut = 0
St =


sgn(Xt), if Ut = 1

0, if Ut = 0

The decoder is charged for the squared estimation error, (Xt−X̂t)
2. Further-

more, the jammer is rewarded (Xt−X̂t)
2 as it has the objective of maximizing

the estimation error.

5.1.2 Information Structure and Decision Strategy

We call the sensor, the encoder, the decoder, and the jammer the decision

makers. We introduce Et as the remaining communication opportunities for

the sensor at time t, that is,

Et := N −
t−1∑
i=1

Ui
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The evolution of Et can be described by

E1 = N,

Et+1 = Et − Ut

Furthermore, the constraint that the sensor can make no more than N trans-

missions, described in (5.1), can also be expressed as

Ut ≤ Et ∀ t = 1, . . . , T

where Et = 0 renders Ut = 0.

Since the sensor’s decision at each time is common information shared

among all the decision makers, Et can also be computed by all the decision

makers. We assume that at each time t, all the decision makers take only

their current inputs and Et into account when making decisions. Specifically,

at time t, the sensor, the encoder, and the decoder make decisions according

to

Ut = ft(Xt, Et), Yt = gt(X̃t, Et), X̂t = ht(Ỹt, St, Et)

and the jammer picks the probability density function of Vt according to

pVt = dt(Ut, Et)

Here, ft, gt, ht, and dt are, respectively, the communication scheduling policy,

the encoding policy, the decoding policy, and the jamming policy, at time t.

Remark 5.1. The intuition supporting the assumption above is as follows:

since the source process is i.i.d., the cost functional is stage-additive, and the

communication constraint on the sensor at time t, i.e., Ut ≤ Et, depends only

on Et, it would be sufficient for a decision maker to consider only its current

input(s) and Et when making a decision. Note that for the setting with i.i.d.

noise process instead of adversary generated noise process, studied in Chapter

2, it has already been proved that all the decision makers can consider only

their current inputs ant Et without any loss of optimality.

We denote by

f := {f1, . . . , fT}, g := {g1, . . . , gT},

h := {h1, . . . , hT}, d := {d1, . . . , dT}
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the communication scheduling strategy, the encoding strategy, the decoding

strategy, and the jamming strategy, over the decision horizon. In addition,

we use
f a:b := {fa, . . . , fb}, ga:b := {ga, . . . , gb},

ha:b := {ha, . . . , hb}, da:b := {da, . . . , db}

to denote the subsets of f , g , h , and d , respectively, where a, b ∈ {1, . . . , T}
and a ≤ b. In the special case when a equals b, we write

f a := {fa}, ga := {ga}, ha := {ha}, da := {da}

Given two disjoint sets of policies, e.g., f a:b and f ∗c:d, b < c, we denote by

f a:b + f ∗c:d := {f a, . . . , f b, f ∗c , . . . , f ∗d}

the union of the sets.

5.1.3 Cost Functional

Recall that at each time t, the sensor is charged cUt for the transmission, the

encoder is charged λY 2
t for the encoding power, and the decoder is charged

(Xt−X̂t)
2 for the estimation error. The sensor, the encoder, and the decoder

have the common objective of minimizing the expected value of the sum of

their costs accumulated over the time horizon, namely, minimizing

JS(f , g ,h ,d) :=
T∑
t=1

E
{
cUt + λY 2

t + (Xt − X̂t)
2
}

JS(f , g ,h ,d) is the cost functional of the remote sensing system. The ex-

pectation in JS(f , g ,h ,d) is taken over the probability density functions

pX1 , . . . , pXT and pV1 , . . . , pVT .

Similarly, at each time t, the jammer is charged ηV 2
t for the jamming power

and rewarded (Xt−X̂t)
2 for the estimation error. Hence, the jammer has the

objective of minimizing the cost functional, denoted by JA(f , g ,h ,d), given

as follows:

JA(f , g ,h ,d) :=
T∑
t=1

E
{
ηV 2

t − (Xt − X̂t)
2
}
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5.1.4 Problem Definition

Given the time horizon, T , the probability density functions of the source

process, pX1 , . . . , pXT , the communication cost for one transmission, c, the

number of transmission opportunities, N , the unit price of the encoding

power, λ, and the unit price of the jamming power, η, our goal is to find

a feedback Stackelberg solution1 [49, Definition 3.29] for the dynamic game

with the team of the sensor, the encoder and the decoder as the composite

leader, and the jammer as the follower. Namely, we want to find (f ∗, g∗,h∗)

and d ∗ such that the following equations hold for all t = 1, . . . , T . First,

JS(f 1:t−1 + f ∗t:T , g1:t−1 + g∗t:T ,h1:t−1 + h∗t:T ,d 1:t−1 + d ∗t:T )

= min
f t,gt,ht

max
d t∈Rt(f 1:t+f ∗t+1:T ,g1:t+g∗t+1:T ,h1:t+h∗t+1:T ,d1:t−1+d∗t+1:T )

JS(f 1:t−1 + f t + f ∗t+1:T , g1:t−1 + g t + g∗t+1:T ,h1:t−1 + h t + h∗t+1:T ,

d 1:t−1 + d t + d ∗t+1:T )

where

Rt(f 1:t + f ∗t+1:T , g1:t + g∗t+1:T ,h1:t + h∗t+1:T ,d 1:t−1 + d ∗t+1:T )

:=
{
d̃ t
∣∣JA(f 1:t + f ∗t+1:T , g1:t + g∗t+1:T ,h1:t + h∗t+1:T ,d 1:t−1 + d̃ t + d ∗t+1:T )

= min
d t

JA(f 1:t + f ∗t+1:T , g1:t + g∗t+1:T ,h1:t + h∗t+1:T ,d 1:t−1 + d t + d ∗t+1:T )
}

Second, Rt(f 1:t−1 + f ∗t:T , g1:t−1 + g∗t:T ,h1:t−1 + h∗t:T ,d 1:t−1 + d ∗t+1:T ) is a sin-

gleton, and

Rt(f 1:t−1 + f ∗t:T , g1:t−1 + g∗t:T ,h1:t−1 + h∗t:T ,d 1:t−1 + d ∗t+1:T ) = {d ∗t}
1Feedback Stackelberg solution, also called stage-wise Stackelberg solution, means that

the leader is not able to enforce the decision policies at all stages of the game on the
follower before the start of the game. Instead, the leader is able to enforce the decision
policy on the follower at each stage of the game. In the definition and the formulation
given below, we assume at the outset that the stage-wise reaction function of the follower
is a singleton, which will subsequently be shown to be the case for the problem at hand.
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5.2 Main Results

The feedback Stackelberg solution has an important property that it can be

computed iteratively, as described by the following lemma.

Lemma 5.1 ([49, Theorem 7.2]). For the dynamic game formulated in Sec-

tion 5.1.4, the set of communication scheduling, encoding, and decoding strate-

gies (f∗, g∗,h∗) together with the jamming strategy d∗ provides a feedback

Stackelberg solution, if there exist real-valued functions VS(·, ·) and VA(·, ·)
defined over {1, . . . , T + 1} × {0, . . . , N}, such that for all t = 1, . . . , T and

Et = 0, . . . , N ,

VS(T + 1, ·) = VA(T + 1, ·) = 0

VS(t, Et) = min
ft,gt,ht, dt∈Rt(ft,gt,ht)

CS(t, Et, ft, gt, ht, dt) = CS(t, Et, f
∗
t , g

∗
t , h

∗
t , d
∗
t )

(5.2)

where Rt(ft, gt, ht) is a singleton set defined by

Rt(ft, gt, ht) :=
{
d̃t
∣∣ CA(t, Et, ft, gt, ht, d̃t)

= min
dt
CA(t, Et, ft, gt, ht, dt) ∀ Et = 0, . . . , N

}
In addition, CS(t, Et, ft, gt, ht, dt) and CA(t, Et, ft, gt, ht, dt) are defined by

CS(t, Et, ft, gt, ht, dt) := E
[
cUt + λY 2

t + (Xt − X̂t)
2 + VS(t+ 1, Et+1)

]
,

CA(t, Et, ft, gt, ht, dt) := E
[
ηV 2

t − (Xt − X̂t)
2 + VA(t+ 1, Et+1)

]
(5.3)

with the expectation taken over Xt and Vt, and

Ut = ft(Xt, Et), Yt = gt(X̃t, Et), X̂t = ht(Ỹt, St, Et), pVt = dt(Ut, Et),

Et+1 = Et − Ut

We now show that (f ∗t , g
∗
t , h

∗
t , d
∗
t ) satisfying (5.2) for stage t can be obtained

by solving a single-stage Stackelberg game.

Theorem 5.1. The communication scheduling policy, encoding policy, de-

coding policy, and jamming policy (f ∗t , g
∗
t , h

∗
t , d
∗
t ) satisfy (5.2) in Lemma 5.1

if and only if for all t = 1, . . . , T and Et = 0, . . . , N ,

min
ft,gt,ht, dt∈R̄t(ft,gt,ht)

C̄S(t, Et, ft, gt, ht, dt) = C̄S(t, Et, f
∗
t , g

∗
t , h

∗
t , d
∗
t ) (5.4)
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where R̄t(ft, gt, ht) is a singleton set defined by

R̄t(ft, gt, ht) :=
{
d̃t
∣∣ C̄A(t, Et, ft, gt, ht, d̃t)

= min
dt
C̄A(t, Et, ft, gt, ht, dt) ∀ Et = 0, . . . , N

}
In addition, C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt) are defined by

C̄S(t, Et, ft, gt, ht, dt) := E
[(
c+ ct(Et)

)
Ut + λY 2

t + (Xt − X̂t)
2
]
,

C̄A(t, Et, ft, gt, ht, dt) := E
[
ηV 2

t − (Xt − X̂t)
2
]

(5.5)

with

ct(Et) =


VS(t+ 1, Et − 1)− VS(t+ 1, Et), if Et > 0

0, if Et = 0
(5.6)

Proof. We first show that for any (ft, gt, ht),

Rt(ft, gt, ht) = R̄t(ft, gt, ht) (5.7)

By the definitions of CA(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt) described

in (5.3) and (5.5), we have

CA(t, Et, ft, gt, ht, dt)

= C̄A(t, Et, ft, gt, ht, dt) + E
[
VA(t+ 1, Et+1)

]
= C̄A(t, Et, ft, gt, ht, dt) + E

[
VA(t+ 1, Et − Ut)

]
= C̄A(t, Et, ft, gt, ht, dt) + E

[
VA
(
t+ 1, Et − ft(Xt, Et)

)]
The second term, E

[
VA
(
t+ 1, Et− ft(Xt, Et)

)]
, is independent of dt. There-

fore, with (ft, gt, ht) given, the jamming policy minimizing CA(t, Et, ft, gt, ht, dt)

also minimizes C̄A(t, Et, ft, gt, ht, dt), and vice versa. Then, we have that (5.7)

holds.

We next show that for any (ft, gt, ht),

CS(t, Et, ft, gt, ht, dt) = C̄S(t, Et, ft, gt, ht, dt) + VS(t+ 1, Et) ∀ Et = 0, . . . , N

(5.8)
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Case I: When Et > 0, we have

CS(t, Et, ft, gt, ht, dt)

= E
[
cUt + λY 2

t + (Xt − X̂t)
2 + VS(t+ 1, Et+1)

]
= E

[
cUt + λY 2

t + (Xt − X̂t)
2 + VS(t+ 1, Et − Ut)

]
= E

[
cUt + λY 2

t + (Xt − X̂t)
2 + VS(t+ 1, Et)

+
(
VS(t+ 1, Et − 1)− VS(t+ 1, Et)

)
Ut

]
= E

[
cUt + λY 2

t + (Xt − X̂t)
2 + ct(Et)Ut

]
+ VS(t+ 1, Et)

= C̄S(t, Et, ft, gt, ht, dt) + VS(t+ 1, Et)

The first and the last equalities hold due to the definitions of CS(t, Et, ft, gt, ht,

dt) and C̄S(t, Et, ft, gt, ht, dt) described in (5.3) and (5.5). The second equality

holds due to the evolution of Et. The third equality holds since

VS(t+ 1, Et − Ut)

=


VS(t+ 1, Et) if Ut = 0

VS(t+ 1, Et − 1) if Ut = 1

= VS(t+ 1, Et) +
(
VS(t+ 1, Et − 1)− VS(t+ 1, Et)

)
Ut

The fourth equality holds since VS(t+ 1, Et) is a constant.

Case II: When Et = 0, we have

CS(t, Et, ft, gt, ht, dt)

= E
[
cUt + λY 2

t + (Xt − X̂t)
2 + VS(t+ 1, 0)

]
= E

[
cUt + λY 2

t + (Xt − X̂t)
2 + ct(Et)Ut

]
+ VS(t+ 1, 0)

= C̄S(t, Et, ft, gt, ht, dt) + VS(t+ 1, 0)

The above equalities hold since Et = 0 renders Ut = 0, and then Et+1 = 0.

Combining cases I and II, we have that (5.8) holds.

Finally, we are in a position to prove the theorem. Given that the 4-tuple
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(f ∗t , g
∗
t , h

∗
t , d
∗
t ) satisfies (5.2) in Lemma 5.1, we have

min
ft,gt,ht, dt∈R̄t(ft,gt,ht)

CS(t, Et, ft, gt, ht, dt) = CS(t, Et, f
∗
t , g

∗
t , h

∗
t , d
∗
t )

since Rt(ft, gt, ht) = R̄t(ft, gt, ht). Then, we have

−VS(t+ 1, Et) + min
ft,gt,ht, dt∈R̄t(ft,gt,ht)

CS(t, Et, ft, gt, ht, dt)

= −VS(t+ 1, Et) + CS(t, Et, f
∗
t , g

∗
t , h

∗
t , d
∗
t )

= C̄S(t, Et, f
∗
t , g

∗
t , h

∗
t , d
∗
t )

(5.9)

where the second equality holds because of (5.8). Furthermore, we have

−VS(t+ 1, Et) + min
ft,gt,ht, dt∈R̄t(ft,gt,ht)

CS(t, Et, ft, gt, ht, dt)

= min
ft,gt,ht, dt∈R̄t(ft,gt,ht)

{
CS(t, Et, ft, gt, ht, dt)− VS(t+ 1, Et)

}
= min

ft,gt,ht, dt∈R̄t(ft,gt,ht)
C̄S(t, Et, ft, gt, ht, dt)

(5.10)

where the first equality holds since VS(t + 1, Et) is a constant that is in-

dependent of (ft, gt, ht, dt), and the second equality holds because of (5.8).

Combining (5.9) and (5.10), we have (f ∗t , g
∗
t , h

∗
t , d
∗
t ) satisfy (5.4).

The above argument still holds if we reverse the direction. That is, given

that the 4-tuple (f ∗t , g
∗
t , h

∗
t , d
∗
t ) satisfies (5.4), we have (f ∗t , g

∗
t , h

∗
t , d
∗
t ) satisfying

(5.2) in Lemma 5.1, which completes the proof of the theorem.

By Theorem 5.1, we are able to obtain (f ∗t , g
∗
t , h

∗
t , d
∗
t ) satisfying (5.2) in

Lemma 5.1, by solving a single-stage Stackelberg game with the sensor, the

encoder, and the decoder as the composite leader, and the jammer as the fol-

lower. The cost functionals for the leader and the follower are, respectively,

C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt) described in (5.5). However,

this single-stage Stackelberg game is generally difficult to solve, as minimizing

C̄S(t, Et, ft, gt, ht, dt) or C̄A(t, Et, ft, gt, ht, dt) is an infinite-dimensional opti-

mization problem. Hence, we need to make some (mild) assumptions. To

introduce these assumptions, we need some additional notation. Denote by

Pe(t, Et) and Pj(t, Et) the encoding power and jamming power, respectively,
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given that there is a transmission from the sensor. To be more specific,

Pe(t, Et) := E[Y 2
t |Ut = 1, Et],

Pj(t, Et) := E[V 2
t |Ut = 1, Et]

where the event (Ut = 1, Et) is equivalent to ft(Xt, Et) = 1.

Assumption 5.1. The source density, pX(·), is even and unimodal,2 i.e.,

pX(x) = pX(−x) ∀ x ∈ R,

pX(a) ≥ pX(b) ∀ |a| ≤ |b|

Furthermore, pX(·) is log-concave and continuously differentiable on (−∞, 0)∪
(0,∞).3

Assumption 5.2. At each time t, the sensor applies a symmetric commu-

nication scheduling policy, ft, satisfying

ft(x, e) = ft(−x, e) ∀ x ∈ R, e ∈ {0, . . . , N}

Assumption 5.3. At each time t, if there is a transmission from the sensor

(i.e., Ut = 1), the encoder and the decoder apply piecewise affine encoding

and decoding policies, respectively, in the form of

gt(Xt, Et) = St · α(t, St, Et) ·
(
Xt − E[Xt|Ut = 1, St, Et]

)
ht(Ỹt, St, Et) =

St
α(t, St, Et)

Pe(t, Et)

Pe(t, Et) + Pj(t, Et)
Ỹt + E[Xt|Ut = 1, St, Et]

where

α(t, St, Et) =

√
Pe(t, Et)

Var(Xt|Ut = 1, St, Et)
(5.11)

Assumption 5.4. At each time t, if there is a transmission from the sensor

(i.e., Ut = 1), the jammer generates a zero-mean jamming noise, Vt.

We have several remarks on the above assumptions, which are listed below.

2We write pX instead of pXt
as the source process is an i.i.d. stochastic process.

3If pX has support [−a, a] instead of R, then it is required that pX be continuously
differentiable on (−a, 0) ∪ (0, a).
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1. There are many source densities satisfying Assumption 5.1, e.g., den-

sity functions of zero-mean Gaussian distribution, zero-mean Laplace

distribution, zero-mean uniform distribution, and so on.

2. Since the source density is symmetric around zero, it is intuitive that

the sensor should apply a symmetric communication scheduling policy,

i.e., the one described in Assumption 5.2.

3. The piecewise affine assumption on the encoding and decoding policies,

i.e., Assumption 5.3, is not conservative in the setting with an adver-

sary. It is well known (see [50,51]) that for a zero-delay source-channel

coding problem with a jammer, if the source density is Gaussian, then

under the saddle-point solution the encoder and the decoder should

apply affine encoding and decoding policies, and the jammer should

generate a Gaussian jamming noise. This result has been generalized

in [46] to non-Gaussian source densities such that the encoder and the

decoder should still apply affine policies at the saddle point. Here, we

make the “piecewise affine” assumption instead of the “affine” assump-

tion due to the existence of the side channel, which enables the encoder

and the decoder to apply different encoding and decoding policies for

the positive and the negative realizations of the source.

4. For Assumption 5.4, since the jammer is charged for jamming power,

it should generate a zero-mean jamming noise to save its power (with

the same variance, the zero-mean noise has the lowest power).

With Assumptions 5.1-5.4 holding, we are able to obtain neat expressions for

C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt), as described in the following

lemma.

Lemma 5.2. Under Assumptions 5.1-5.4, the cost functionals

C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt) defined in (5.5) admit the fol-
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lowing expressions:

C̄S(t, Et, ft, gt, ht, dt)

= 2 P(Ut = 1, St = 1, Et)
[
c+ ct(Et) + λPe(t, Et)

+
Pj(t, Et)

Pe(t, Et) + Pj(t, Et)
Var(Xt|Ut = 1, St = 1, Et)

]
+ P(Ut = 0, St = 0, Et)Var(Xt|Ut = 0, St = 0, Et)

C̄A(t, Et, ft, gt, ht, dt)

= 2 P(Ut = 1, St = 1, Et)
[
ηPj(t, Et)

− Pj(t, Et)

Pe(t, Et) + Pj(t, Et)
Var(Xt|Ut = 1, St = 1, Et)

]
− P(Ut = 0, St = 0, Et)Var(Xt|Ut = 0, St = 0, Et)

(5.12)

Proof. We compute C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt) term

by term under Assumptions 5.1-5.4. First, we have

E
[(
c+ ct(Et)

)
Ut

]
= 0 · P(Ut = 0, St = 0, Et) +

(
c+ ct(Et)

)
P(Ut = 1, St = 1, Et)

+
(
c+ ct(Et)

)
P(Ut = 1, St = −1, Et)

= 2
(
c+ ct(Et)

)
P(Ut = 1, St = 1, Et)

(5.13)

where the events (Ut = 0, St = 0, Et), (Ut = 1, St = 1, Et), and (Ut =

1, St = −1, Et) are equivalent to ft(Xt, Et) = 0, (ft(Xt, Et) = 1, Xt > 0),

and (ft(Xt, Et) = 1, Xt < 0), respectively. Then, the first equality holds

due to the law of total expectation,4 and the second equality holds since the

source density, pX(·), and the communication scheduling policy, ft(·, Et), are

symmetric around zero.

4There is actually another event, (Ut = 1, St = 0, Et), or equivalently, (ft(Xt, Et) =
1, Xt = 0). However, this event occurs with zero probability as Xt is a continuous random
variable. Hence, we do not consider this event in our analysis.
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Then, we have

E[Y 2
t ]

= E[Y 2
t |Ut = 0, Et] P(Ut = 0, Et) + E[Y 2

t |Ut = 1, Et] P(Ut = 1, Et)

= E[Y 2
t |Ut = 1, Et]

(
P(Ut = 1, St = 1, Et) + P(Ut = 1, St = −1, Et)

)
= 2 Pe(t, Et) P(Ut = 1, St = 1, Et)

(5.14)

where the first equality holds due to the law of total expectation. The second

equality holds since the encoder sends Yt = 0 when Ut = 0 to save its encoding

power.

Similarly, we have

E[V 2
t ]

= E[V 2
t |Ut = 0, Et] P(Ut = 0, Et) + E[V 2

t |Ut = 1, Et] P(Ut = 1, Et)

= E[V 2
t |Ut = 1, Et]

(
P(Ut = 1, St = 1, Et) + P(Ut = 1, St = −1, Et)

)
= 2 Pj(t, Et) P(Ut = 1, St = 1, Et)

(5.15)

Again, the second equality holds since the jammer generates Vt = 0 with

probability one when Ut = 0 to save its jamming power.

Finally, we compute E[(Xt − X̂t)
2]. By the law of total expectation, we

have

E
[
(Xt − X̂t)

2
]

= E
[
(Xt − X̂t)

2|Ut = 0, St = 0, Et
]
P(Ut = 0, St = 0, Et)

+ E
[
(Xt − X̂t)

2|Ut = 1, St = 1, Et
]
P(Ut = 1, St = 1, Et)

+ E
[
(Xt − X̂t)

2|Ut = 1, St = −1, Et
]
P(Ut = 1, St = −1, Et)

We compute the three conditional expectations as follows:

1. When Ut = 0, there is no transmission from the sensor. Hence, the

minimum mean squared error estimator, X̂t, is the conditional mean,

i.e.,

X̂t = E
[
Xt|Ut = 0, St = 0, Et

]
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Then,

E
[
(Xt − X̂t)

2|Ut = 0, St = 0, Et
]

= Var
(
Xt|Ut = 0, St = 0, Et

)
2. When Ut = 1, by Assumption 5.3, we have

X̂t =
St

α(t, St, Et)

Pe(t, Et)

Pe(t, Et) + Pj(t, Et)
Ỹt + E

[
Xt|Ut = 1, St, Et

]
=

St
α(t, St, Et)

Pe(t, Et)

Pe(t, Et) + Pj(t, Et)

·
(
St · α(t, St, Et) ·

(
Xt − E[Xt|Ut = 1, St, Et]

)
+ Vt

)
+ E

[
Xt|Ut = 1, St, Et

]
=

Pe(t, Et)

Pe(t, Et) + Pj(t, Et)
Xt

+
Pj(t, Et)

Pe(t, Et) + Pj(t, Et)
E[Xt|Ut = 1, St, Et]

+
St

α(t, St, Et)

Pe(t, Et)

Pe(t, Et) + Pj(t, Et)
Vt

Then above expression holds for both St = 1 and St = −1. Corre-

spondingly,

E
[
(Xt − X̂t)

2|Ut = 1, St, Et
]

= E
[( Pj(t, Et)

Pe(t, Et) + Pj(t, Et)

(
Xt − E[Xt|Ut = 1, St, Et]

)
− St
α(t, St, Et)

Pe(t, Et)

Pe(t, Et) + Pj(t, Et)
Vt

)2∣∣∣Ut = 1, St, Et

]
=

P 2
j (t, Et)(

Pe(t, Et) + Pj(t, Et)
)2 Var(Xt|Ut = 1, St, Et)

+
1

α2(t, St, Et)

P 2
e (t, Et)(

Pe(t, Et) + Pj(t, Et)
)2E[V 2

t |Ut = 1, St, Et]

− 2St
α(t, St, Et)

Pe(t, Et)Pj(t, Et)(
Pe(t, Et) + Pj(t, Et)

)2
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· E
[(
Xt − E[Xt|Ut = 1, St, Et]

)
Vt|Ut = 1, St, Et

]
(5.16)

Note that the only information the jammer has about Xt and St is the

hidden information contained in Ut. Therefore, conditioned on Ut = 1,

the jamming noise, Vt, is independent of St. Then, we have

E[V 2
t |Ut = 1, St, Et] = E[V 2

t |Ut = 1, Et] = Pj(t, Et) (5.17)

In addition, conditioned on (Ut = 1, St), Vt is independent ofXt. Hence,

we have

E
[(
Xt − E[Xt|Ut = 1, St, Et]

)
Vt|Ut = 1, St, Et

]
= E

[(
Xt − E[Xt|Ut = 1, St, Et]

)
|Ut = 1, St, Et

]
E
[
Vt|Ut = 1, St, Et

]
= 0

(5.18)

Plugging in (5.17), (5.18), and the expression for α(t, St, Et), described

by (5.11), into (5.16), we have

E
[
(Xt − X̂t)

2|Ut = 1, St, Et
]

=
Pj(t, Et)

Pe(t, Et) + Pj(t, Et)
Var(Xt|Ut = 1, St, Et)

which holds for both St = 1 and St = −1.

Combining the results for the above two cases, i.e., Ut = 0 and Ut = 1, we

have

E
[
(Xt − X̂t)

2
]

= Var
(
Xt|Ut = 0, St = 0, Et

)
P(Ut = 0, St = 0, Et)

+
Pj(t, Et)

Pe(t, Et) + Pj(t, Et)
Var(Xt|Ut = 1, St = 1, Et) P(Ut = 1, St = 1, Et)

+
Pj(t, Et)

Pe(t, Et) + Pj(t, Et)
Var(Xt|Ut = 1, St = −1, Et) P(Ut = 1, St = −1, Et)

= Var
(
Xt|Ut = 0, St = 0, Et

)
P(Ut = 0, St = 0, Et)

+ 2
Pj(t, Et)

Pe(t, Et) + Pj(t, Et)
Var(Xt|Ut = 1, St = 1, Et) P(Ut = 1, St = 1, Et)

(5.19)
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where the last equality holds since the source density, pX(·), and the com-

munication scheduling policy, ft(·, Et), are symmetric around zero.

Combining (5.13), (5.14), (5.15) and (5.19), we reach the expressions for

C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt), as described by (5.12).

We would like to clarify how the choices of the communication schedul-

ing policy, ft, the encoding policy, gt, the decoding policy, ht, and the

jamming policy, dt, affect C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt).

In the expressions for C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt), de-

scribed by (5.12), the terms P(Ut = 1, St = 1, Et), P(Ut = 0, St = 0, Et),

Var(Xt|Ut = 1, St = 1, Et), and Var(Xt|Ut = 0, St = 0, Et) depend on the

communication scheduling policy, ft. The encoding power, Pe(t, Et), depends

on the encoding policy, gt. The jamming power, Pj(t, Et), depends on the

jamming policy dt. Note that the decoding policy, ht, is induced by ft, gt,

and dt by Assumption 5.3.

We also note that C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt) depend

on the density of the jamming noise, pVt , only through the jamming power,

Pj(t, Et), but not the type of density (e.g., Gaussian, Laplace, uniform, etc.).

This is due to the fact that the encoder and the decoder apply piecewise

affine encoding and decoding policies (Assumption 5.3). Therefore, without

loss of generality, we assume that the jammer generates the jamming noise,

Vt, with zero-mean Gaussian distribution, denoted by N
(
0, Pj(t, Et)

)
. More

specifically, we assume that

dt(Ut, Et) = N
(
0, Pj(t, Et)

)
(5.20)

Under Assumptions 5.1-5.4, we are able to solve the single-stage Stack-

elberg game and obtain (f ∗t , g
∗
t , h

∗
t , d
∗
t ) satisfying (5.4) in Theorem 5.1, as

described in the following theorem.

Theorem 5.2. Consider the single-stage Stackelberg game with the sensor,

the encoder, and the decoder as the composite leader, and the jammer as the

follower. The cost functionals for the leader and the follower are, respec-

tively, C̄S(t, Et, ft, gt, ht, dt) and C̄A(t, Et, ft, gt, ht, dt) defined in (5.5). With

Assumptions 5.1-5.4 holding, the 4-tuple of policies (f ∗t , g
∗
t , h

∗
t , d
∗
t ) listed be-

low provides a Stackelberg equilibrium solution and satisfies (5.4) in Theorem

5.1.
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1. The communication scheduling policy f ∗t is threshold-based, i.e.,

f ∗t (Xt, Et) =


1, if |Xt| > β∗t (Et) and Et > 0

0, if |Xt| ≤ β∗t (Et) or Et = 0

where β∗t (Et) is called “threshold”. Furthermore, β∗t (Et) is the unique

solution to the fixed-point equation:

β2 = ξ ·G2
X(β) + c+ ct(Et), β ≥ 0 (5.21)

where GX(β), usually called “mean residual lifetime”, is defined by

GX(β) := E[Xt|Xt > β]− β

ct(Et) is defined in (5.6), and

ξ =


1− η

4λ
, if

λ

η
≥ 1

2

λ

η
, if

λ

η
<

1

2

2. The encoding and the decoding policies g∗t and h∗t are the piecewise affine

ones described in Assumption 5.3, with the encoding power, P ∗e (t, Et),

being as follows:

P ∗e (t, Et) =


η

4λ2
Var(Xt|Ut = 1, St, Et), if

λ

η
≥ 1

2

1

η
Var(Xt|Ut = 1, St, Et), if

λ

η
<

1

2

3. The jamming policy, d∗t , is the one described by (5.20) with the jamming

power, P ∗j (t, Et), being as follows:5

P ∗j (t, Et) =


(2λ

η
− 1
)
P ∗e (t, Et), if

λ

η
≥ 1

2

0, if
λ

η
<

1

2
5When P ∗

j (t, Et) = 0, the jamming noise density, N (0, 0), is a Dirac delta function,
which means that the jammer generates Vt = 0 with probability one.
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Remark 5.2. For simplicity, we do not provide the expressions for the en-

coding policy, the decoding policy, and the jamming policy for the case when

there is no transmission from the sensor. For that case, we have already

specified in the problem formulation that the encoder will send Yt = 0, and

the jammer will send Vt = 0 with probability one. Correspondingly, the min-

imum mean squared error estimate that the decoder should generate is the

conditional mean, E[Xt|Ut = 0, Et], which is zero since the source density

and the communication scheduling policy are symmetric around zero.

Proof. Recall that with Assumptions 5.1-5.4 holding, there are three

things needed to be determined, i.e., the communication scheduling policy,

ft, the encoding power, Pe(t, Et), and the jamming power, Pj(t, Et). Corre-

spondingly, the proof consists of the three following steps:

Step 1. We show that there is a unique best response policy for the

follower (i.e., the jammer) in reaction to the policies for the leader (i.e., the

group of the sensor, the encoder, and the decoder). Equivalently, we show

that there is a unique jamming power, Pj(t, Et), minimizing C̄A(t, Et, ft, gt, ht,

dt) over [0,∞) corresponding to the communication scheduling policy, ft, and

the encoding power, Pe(t, Et). Taking the partial derivative of C̄A(t, Et, ft, gt,

ht, dt), expressed by (5.12), with respect to Pj(t, Et), we have

∂C̄A(t, Et, ft, gt, ht, dt)

∂Pj(t, Et)

= 2 P(Ut = 1, St = 1, Et)
[
η

− Pe(t, Et)(
Pe(t, Et) + Pj(t, Et)

)2 Var(Xt|Ut = 1, St = 1, Et)
]

Note that Pe(t, Et) ≥ 0 and Pj(t, Et) ≥ 0 as the encoding power and the

jamming power cannot be negative. Then, we have the following lines of

reasoning.

1. When

Pe(t, Et) ≤
Var(Xt|Ut = 1, St = 1, Et)

η
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it can be checked that

∂C̄A(t, Et, ft, gt, ht, dt)

∂Pj(t, Et)


< 0, if Pj(t, Et) ∈

(
0, P̄

)
,

= 0, if Pj(t, Et) = P̄ ,

> 0, if Pj(t, Et) ∈
(
P̄ ,∞

)
where

P̄ =

√
Pe(t, Et)

η
Var(Xt|Ut = 1, St = 1, Et)− Pe(t, Et)

Therefore, Pj(t, Et) = P̄ is the unique one that minimizes

CA(t, Et, ft, gt, ht, dt) over [0,∞).

2. When

Pe(t, Et) >
Var(Xt|Ut = 1, St = 1, Et)

η

we have that

Pe(t, Et)(
Pe(t, Et) + Pj(t, Et)

)2 <
1

Pe(t, Et)
<

η

Var(Xt|Ut = 1, St = 1, Et)

hold for all Pj(t, Et) ∈ (0,∞), and then

∂C̄A(t, Et, ft, gt, ht, dt)

∂Pj(t, Et)
> 0 ∀ Pj(t, Et) ∈ (0,∞)

Therefore, Pj(t, Et) = 0 is the unique one that minimizes

C̄A(t, Et, ft, gt, ht, dt) over [0,∞).

We combine the above two cases, and obtain the unique jamming power

Pj(t, Et) minimizing C̄A(t, Et, ft, gt, ht, dt) as follows:

Pj(t, Et) =



√
Pe(t, Et)

η
Var(Xt|Ut = 1, St = 1, Et)− Pe(t, Et),

if Pe(t, Et) ≤
Var(Xt|Ut = 1, St = 1, Et)

η

0, if Pe(t, Et) >
Var(Xt|Ut = 1, St = 1, Et)

η
(5.22)
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Step 2. We assume that the jammer always applies the best response

policy derived in Step 1, and we would like to jointly design ft and Pe(t, Et)

to minimize C̄S(t, Et, ft, gt, ht, dt). To solve the joint optimization problem,

we first fix the communication scheduling policy, ft, and design Pe(t, Et)

correspondingly, which is done at this step. In the next step (Step 3), we

find the minimizing ft.

We plug (5.22) into C̄S(t, Et, ft, gt, ht, dt), captured by (5.12), and have

C̄S(t, Et, ft, gt, ht, dt)

=


C̄1
S

(
ft, Pe(t, Et)

)
, if Pe(t, Et) ≤

Var(Xt|Ut = 1, St = 1, Et)

η
,

C̄2
S

(
ft, Pe(t, Et)

)
, if Pe(t, Et) >

Var(Xt|Ut = 1, St = 1, Et)

η
(5.23)

where

C̄1
S

(
ft, Pe(t, Et)

)
= 2 P(Ut = 1, St = 1, Et)

[
c+ ct(Et) + λPe(t, Et)

−
√
ηPe(t, Et)Var(Xt|Ut = 1, St = 1, Et) + Var(Xt|Ut = 1, St = 1, Et)

]
+ P(Ut = 0, St = 0, Et)Var(Xt|Ut = 0, St = 0, Et),

C̄2
S

(
ft, Pe(t, Et)

)
= 2 P(Ut = 1, St = 1, Et)

[
c+ ct(Et) + λPe(t, Et)

]
+ P(Ut = 0, St = 0, Et)Var(Xt|Ut = 0, St = 0, Et)

We note that C̄1
S

(
ft, Pe(t, Et)

)
= C̄2

S

(
ft, Pe(t, Et)

)
when Pe(t, Et) = Var(Xt|Ut =

1, St = 1, Et)/η. In addition, C̄2
S

(
ft, Pe(t, Et)

)
is increasing in Pe(t, Et).

Therefore, minimizing C̄S(t, Et, ft, gt, ht, dt) over Pe(t, Et) ∈ [0,∞) is equiv-

alent to minimizing C̄1
S

(
ft, Pe(t, Et)

)
over Pe(t, Et) ∈ [0,Var(Xt|Ut = 1, St =

1, Et)/η]. Taking derivative of C̄1
S

(
ft, Pe(t, Et)

)
with respect to Pe(t, Et), we
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have

∂C̄1
S

(
ft, Pe(t, Et)

)
∂Pe(t, Et)

= 2 P(Ut = 1, St = 1, Et)

[
λ− 1

2

√
ηVar(Xt|Ut = 1, St = 1, Et)

Pe(t, Et)

]
This leads to

∂C̄1
S

(
ft, Pe(t, Et)

)
∂Pe(t, Et)


< 0, if Pe(t, Et) ∈ (0, P̃ ),

= 0, if Pe(t, Et) = P̃ ,

> 0, if Pe(t, Et) ∈ (P̃ ,∞)

where

P̃ =
ηVar(Xt|Ut = 1, St = 1, Et)

4λ2

It can be seen that C̄1
S

(
ft, Pe(t, Et)

)
attains global minimum over Pe(t, Et) ∈

[0,∞) at Pe(t, Et) = P̃ . However, our goal is to minimize C̄1
S

(
ft, Pe(t, Et)

)
over Pe(t, Et) ∈ [0,Var(Xt|Ut = 1, St = 1, Et)/η]. Toward that end, we have

the following two cases:

1. When

P̃ =
ηVar(Xt|Ut = 1, St = 1, Et)

4λ2
≤ Var(Xt|Ut = 1, St = 1, Et)

η

or equivalently,

η ≤ 2λ

the encoding power Pe(t, Et) that minimizes C̄1
S

(
ft, Pe(t, Et)

)
over

[0,Var(Xt|Ut = 1, St = 1, Et)/η] is P̃ .

2. When

P̃ =
ηVar(Xt|Ut = 1, St = 1, Et)

4λ2
>

Var(Xt|Ut = 1, St = 1, Et)

η

or equivalently,

η > 2λ

the encoding power Pe(t, Et) that minimizes C̄1
S

(
ft, Pe(t, Et)

)
over
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[0,Var(Xt|Ut = 1, St = 1, Et)/η] is Var(Xt|Ut = 1, St = 1, Et)/η.

Combining the above two cases, we obtain the encoding power Pe(t, Et) that

minimizes C̄S(t, Et, ft, gt, ht, dt) with the communication scheduling policy ft

being fixed, which is as follows:

Pe(t, Et) =


η

4λ2
Var(Xt|Ut = 1, St, Et), if

λ

η
≥ 1

2

1

η
Var(Xt|Ut = 1, St, Et), if

λ

η
<

1

2

(5.24)

In addition, we can further compute the jamming power Pj(t, Et) under the

best response policy, by plugging (5.24) into (5.22):

Pj(t, Et) =


(2λ

η
− 1
)
Pe(t, Et), if

λ

η
≥ 1

2

0, if
λ

η
<

1

2

(5.25)

Note that (5.24) and (5.25) match the expressions for the encoding power

and the jamming power, respectively, in items 2 and 3 of the theorem.

Step 3. Finally, we find the communication scheduling policy ft that

minimizes C̄S(t, Et, ft, gt, ht, dt), with the encoding power Pe(t, Et) and the

jamming power Pj(t, Et) being captured by (5.24) and (5.25), respectively.

Plugging (5.24) and (5.25) into C̄S(t, Et, ft, gt, ht, dt), we have

C̄S(t, Et, ft, gt, ht, dt)

= 2 P(Ut = 1, St = 1, Et)
[
c+ ct(Et) + ξ · Var(Xt|Ut = 1, St = 1, Et)

]
+ P(Ut = 0, St = 0, Et)Var(Xt|Ut = 0, St = 0, Et)

(5.26)

where

ξ =


1− η

4λ
, if

λ

η
≥ 1

2

λ

η
, if

λ

η
<

1

2

It can be checked that ξ ∈ (0, 1) for both cases. Then, the cost functional,

C̄S(t, Et, ft, gt, ht, dt), captured by (5.26), has the same form with (2.8) in

Chapter 2 (page 24). Minimizing such a cost functional is eventually a com-

munication scheduling and remote estimation problem with an additive noise
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channel, and this problem has been studied in Chapter 2. By Theorem 2.2

in Chapter 2, we have that the communication scheduling policy minimizing

C̄S(t, Et, ft, gt, ht, dt) is the threshold-based one described in item 1 of the

theorem.

We now highlight some salient aspects of the main results. First, we see

that when η ≥ 2λ, the jamming power under the Stackelberg solution is

zero. This is due to the fact that when the unit price for the jamming power

(i.e., η) is high, the rewards that the jammer gains from the estimation error

cannot compensate the cost of generating the jamming noise. Therefore, the

jammer would rather generate zero. Second, when η < 2λ, the signal-to-noise

ratio (SNR) under the Stackelberg solution is a constant that is independent

of time, t, and remaining communication opportunities, Et. This indicates

that the most efficient way for the jammer to allocate its power is to select

the jamming power proportional to the encoding power.

5.3 Numerical Results

In this section, we conduct numerical analysis to develop further understand-

ing into the performance of the remote sensing system under the feedback

Stackelberg solution. Let the source have Laplace distribution with parame-

ters (0, 1), i.e.,

pX(x) =
1

2
e−|x|

In addition, let the length of the time horizon be T = 50, the communication

cost be c = 0, and the unit price of the encoding power be λ = 1. We compute

VS(t, Et) iteratively via (5.2) and (5.3) for all t = 1, . . . , T and Et = 0, . . . , N .

Note that VS(1, N) equals the cost functional of the remote sensing system

evaluated at the feedback Stackelberg solution, i.e., JS(f ∗, g∗,h∗,d ∗). We

plot VS(1, N) versus N under different ratios of λ to η (by choosing different

η), as shown in Fig. 5.2. We note that the cost of the remote sensing system

decreases as the ratio of λ to η decreases. This is in line with the intuition that

as the jamming power gets more expensive (relative to the encoding power),

the jammer would utilize less power when generating the jamming noise,

which results in lower mean squared error and/or lower consumption on the

encoding power. We also note that for each fixed λ/η, there exists a threshold
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Figure 5.2: Cost of remote sensing system vs. number of transmission
opportunities

on N such that VS(1, N) is a decreasing function in N when N is below the

threshold, and VS(1, N) is held at a constant when N is above the threshold.

This phenomenon has also been observed in Chapter 2, Fig. 2.2. Although the

problem studied in Chapter 2 is different from the one here,6 the explanation

for the phenomenon is similar. Recall that the sensor applies a threshold-

based policy, described in Theorem 5.2 item 1, when making the decision, Ut,

on whether to transmit or not. In addition, it can be shown that there exists a

lower bound on the threshold. Hence, the expected number of transmissions

over the time horizon,
∑T

t=1 E[Ut], is upper bounded. Once the number

of transmission opportunities, N , exceeds this upper bound, the additional

transmission opportunities will not be utilized (in the average sense), as

shown in Fig. 5.3. Hence, these additional transmission opportunities will not

contribute toward reducing the expected cost of the remote sensing system.

We are also interested in how the encoding power, E[Y 2
t ], is allocated over

the time horizon. Toward that end, we choose λ/η = 1, and we compute

E[Y 2
t ] numerically (via the Monte Carlo method) for all t = 1, . . . , T . We

6In Chapter 2, a communication scheduling and remote estimation problem with an
i.i.d. noise process was studied, which does not involve a jammer.
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Figure 5.3: Expected number of transmissions vs. number of transmission
opportunities

plot E[Y 2
t ] versus t in Fig. 5.4,7 which reveals several interesting phenomena.
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Figure 5.4: Encoding power vs. time

7N = T/32 is not an integer, and thus we round it to the nearest integer. Same for the
other Ns.
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First, the encoding power, E[Y 2
t ], increases as t increases. On the other hand,

when the number of transmission opportunities is N = T (i.e., the sensor is

always allowed to transmit), the encoding power E[Y 2
t ] is the same for all

t. Second, the larger the transmission opportunities, N , the larger is the

encoding power, E[Y 2
t ]. To illustrate the phenomena, we need to expand

E[Y 2
t ] as follows:

E[Y 2
t ] = P(Ut = 1)·E[Y 2

t |Ut = 1] = P(Et > 0)·P(Ut = 1|Et > 0)·E[Y 2
t |Ut = 1]

The above expansion implies that the encoding power at time t, E[Y 2
t ], de-

pends on three terms: the probability that the sensor has opportunity(s) for

communication, the probability that the sensor decides to transmit its ob-

servation, and the power the encoder will use to transmit the message. We

first consider the third term, E[Y 2
t |Ut = 1]. By Theorem 5.2, the encoder

will use the power P ∗(t, Et) = η/4λ2 · Var(Xt|Ut = 1, St, Et) to transmit the

message. Note that conditioned on the event (Ut = 1, St, Et), Xt is a shifted

exponential distribution with unit variance, which is due to the memoryless

property. Therefore, P ∗(t, Et) is a constant that is independent of t and

Et. Then, we have that E[Y 2
t |Ut = 1] is a constant. Next, we consider the

second term, P(Ut = 1|Et > 0). The probability that the sensor makes a

transmission depends on the threshold, β∗t (Et), which is the solution to the

fixed point equation (5.21). The larger the threshold, the smaller the trans-

mission probability. Furthermore, it can be seen that in (5.21), the larger the

opportunity cost, ct(Et), the larger is the solution β∗t (Et) that the equation

admits. The opportunity cost ct(Et), defined in (5.6), describes the cost the

sensor incurs in the future by choosing to transmit its observation rather

than reserve the opportunity for future use. The closer the time step t to the

end of the time horizon, the smaller is the opportunity cost. Therefore, as

t increases, the opportunity cost ct(Et) and the threshold β∗t (Et) decrease,

and the transmission probability P(Ut = 1|Et > 0) increases. In particular,

when N = T , i.e., the sensor is always allowed to transmit, the opportunity

cost equals zero. Therefore, the transmission probability is the same for all

t. This partially8 explains the first phenomenon. Finally, we consider the

first term, i.e., the probability that the sensor has opportunity(s) for com-

8The first term is non-increasing in t, yet we assume that the increase in the second
term dominates the decrease in the first term as t increases.
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munication, P(Et > 0). Intuitively, the more opportunities the sensor has at

the beginning of the time horizon, the more probable the sensor is able to

make a transmission at time t. Therefore, for each fixed t, P(Et > 0) should

be increasing in N . This partially9 explains the second phenomenon.

9It is difficult to analyze the dependency of the second term in N , yet we assume that
the first term dominates in this case.

104



CHAPTER 6

FUTURE WORK

In this chapter, we discuss possible directions for future research based on

the framework of this thesis, which are listed as follows:

1. In the problems considered in this thesis, the source processes were

assumed to be i.i.d.. We may generalize the results to Markov source

processes. For example, the source variable can be the state of an LTI

system driven by an i.i.d. stochastic process. In this case, we may need

to assume that the decoder sends a feedback signal to the sensor, which

carries information on the noise-corrupted message the decoder receives

from the communication channel. Similar to the affineness assumption

we made on the encoding and decoding policies, we may restrict the

encoder to apply an affine encoding policy, and restrict the decoder to

apply a Kalman filter-like estimation policy.

2. In the problems considered in this thesis, the source variable is one-

dimensional. We may consider the setting(s) with a multidimensional

source. In order to measure different components of the source, multiple

sensors would be placed. Each sensor may measure the source only in

one dimension (one component), and different components of the source

would be correlated. The sensors may send their measurements to one

estimator or multiple estimators, which will produce estimate(s) on the

source. Related works on this direction can be found in [52] and the

references therein.

3. In the thesis we assumed that the sensor always makes perfect measure-

ments on the source variables. We may consider a more general case

where there is an observation noise. Related works on this direction

can be found in [17–19].

4. As an extension to the multi-channel setting, we may consider the set-
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ting with two additive noise channels, where one channel is cheap but

noisy, and the other one is costly but less noisy, and in addition, the

sensor still has the option of not transmitting its observation. Here, if

the sensor decides to transmit its observation, it always sends the obser-

vation to the encoder. The encoder generates an encoded message, but

may send it to the noisy channel or the less noisy channel, depending

on the sensor’s decision. We expect that under suitable assumptions

(similar to the ones made in Theorem 3.2), the optimal communication

scheduling policy is still threshold-in-threshold based.

5. We may also consider the setting(s) where the sensor is equipped with

an energy harvester (as in [25,29]) such that it could obtain additional

transmission opportunities over the time horizon. We may assume

that numbers of transmission opportunities obtained at different stages

are captured an i.i.d. stochastic process (call it “harvesting process”),

which is independent of the source process and the noise process. We

expect that the optimal communication scheduling policy is threshold-

based (or threshold-in-threshold based), and the optimal threshold(s)

would depend on the distribution of the harvesting process.
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CHAPTER 7

CONCLUSION

In this thesis, we have presented results to date on communication scheduling

and remote estimation with additive noise channels. The research was mo-

tivated by the prior work in [27–29], where several settings with a noiseless

communication channel were studied. In particular, we considered a series

of four settings in this thesis, namely the single-channel setting, the multi-

channel setting, the power allocation setting, and the adversarial setting. In

the single-channel setting, the communication channel between the sensor

and the estimator was an additive noise channel. Therefore, if the sensor

decides to transmit its observation, it needs to send the observation to the

encoder, who then encodes and transmits the message. In the multi-channel

setting, the sensor had an additional option (compared with its options in

the single-channel setting) of transmitting its observation over a noiseless yet

more costly channel. In the power allocation setting, the encoder had a con-

straint on its average total power consumption over the time horizon, instead

of a constraint on the stage-wise encoding power, which was assumed in the

single-channel setting. In the adversarial setting, the communication channel

noise was generated by an adversary with the objective maximizing the es-

timation error. Under some technical assumptions, we obtained the optimal

solutions for the first three settings, and a feedback Stackelberg solution for

the adversarial setting. We also presented numerical results illustrating the

performance of the proposed solutions, and we discussed possible directions

for future research.
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APPENDIX A

SOME PROOFS

A.1 Proof of Theorem 2.1

Before proving Theorem 2.1, we first introduce the following notations. For

any 1 ≤ a ≤ b ≤ T , let fa:b,ga:b,ha:b denote the subsets of f,g,h such that

fa:b = {fa, fa+1, . . . , fb},

ga:b = {ga, ga+1, . . . , gb},

ha:b = {ha, ha+1, . . . , hb}

Furthermore, let Ist, Iet, Idt denote the information about the past system

states available to the sensor, the encoder, and the decoder, respectively, at

time t (t > 1), i.e.,

Ist = {X1:t−1, U1:t−1}, Iet = {X̃1:t−1, Y1:t−1, S1:t−1}, Idt = {Ỹ1:t−1, S1:t−1}

Let It be union of Ist, Iet, and Idt, i.e.,

It = {X1:t−1, U1:t−1, X̃1:t−1, Y1:t−1, S1:t−1, Ỹ1:t−1}
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PROOF of Theorem 2.1. It is easy to see the validity of the following

sequence of equalities:

inf
f,g,h

J(f,g,h)

= inf
f,g,h

E
{∑T

t=1 cUt + (Xt − X̂t)
2
}

= inf
f1,g1,h1

E
{
cU1 + (X1 − X̂1)2 + inf

f2:T ,g2:T ,h2:T

E
{∑T

t=2 cUt + (Xt − X̂t)
2
}}

= inf
f1,g1,h1

E
{
cU1 + (X1 − X̂1)2 + inf

f2,g2,h2
E
{
cU2 + (X2 − X̂2)2 + . . .

+ inf
fT ,gT ,hT

E
{
cUT + (XT − X̂T )2

}
. . .
}}

Then, at time t = T , the optimization problem is to design (fT , gT , hT )

minimizing

J1(fT , gT , hT ) := E
{
cUT + (XT − X̂T )

2
}

call it Problem 1. Recall that the decisions at time T are generated by

UT = fT (XT , IsT ), YT = gT (X̃T , IeT ), X̂T = hT (ỸT , ST , IdT ). We will show

that using information about the past (IsT , IeT , IdT ) when making decisions

cannot help improve the performance (that is, reduce the expected cost).

Consider another problem, call it Problem 2, where IT is available to all the

decision makers, and one needs to design (f ′T , g
′
T , h

′
T ) minimizing

J2(f ′T , g
′
T , h

′
T ) := E

{
cUT + (XT − X̂T )

2
}

where UT = f ′T (XT , IT ), YT = g′T (X̃T , IT ), X̂T = h′T (ỸT , ST , IT ). Since

the sensor, the encoder, and the decoder can always ignore the redundant

information and behave as if they only know IsT , IeT , IdT , respectively, the

optimal cost in Problem 2 is upper bounded by that in Problem 1, i.e.,

inf
(f ′T ,g

′
T ,h
′
T )
J2(f ′T , g

′
T , h

′
T ) ≤ inf

(fT ,gT ,hT )
J1(fT , gT , hT )

Similarly, consider a third problem, call it Problem 3, where IsT , IeT , IdT are

not available to the sensor, the encoder, and the decoder, respectively. One

needs to design (f ′′T , g
′′
T , h

′′
T ) to minimize

J3(f ′′T , g
′′
T , h

′′
T ) = E

{
cUT + (XT − X̂T )2

}
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where UT = f ′′T (XT ), YT = g′′T (X̃T ), X̂T = h′′T (ỸT , ST ). By a similar argument

as above, the optimal cost in Problem 1 cannot be greater than that in

Problem 3. Hence,

inf
(fT ,gT ,hT )

J1(fT , gT , hT ) ≤ inf
(f ′′T ,g

′′
T ,h
′′
T )
J3(f ′′T , g

′′
T , h

′′
T )

Let us come back to Problem 2. One can observe that the communication

cost c, the distortion function ρ(·, ·), and the power constraint of the encoder

do not depend on IT . Furthermore, since {Xt} and {Vt} are i.i.d. stochastic

processes, XT and VT are also independent of IT . Therefore, there is no loss

of optimality in restricting UT = f ′T (XT ), YT = g′T (X̃T ), X̂T = h′T (ỸT , ST ),

and thus

inf
(f ′T ,g

′
T ,h
′
T )
J2(f ′T , g

′
T , h

′
T ) = inf

(f ′′T ,g
′′
T ,h
′′
T )
J3(f ′′T , g

′′
T , h

′′
T )

The equality above indicates that in Problem 1, the sensor, the encoder, and

the decoder can safely ignore their information about the past, namely IsT ,

IeT , and IdT , when making decisions.

Since (fT , gT , hT ) do not take IT as a parameter, the design of (fT , gT , hT )

is independent of the design of (f1:T−1, g1:T−1, h1:T−1). Consequently, the

problem can be viewed as a (T−1)-stage problem and a single-stage problem.

By induction, we can show that (f1, g1, h1), (f2, g2, h2), . . . , (fT , gT , hT ) can

be designed independently, and (ft, gt, ht) is designed to minimize the stage-

wise cost E{cUt+(Xt−X̂t)
2}. Hence, the optimal decision policies (ft, gt, ht)

are in the form of (2.1). Furthermore, since {Xt} and {Vt} are i.i.d. stochastic

processes, the optimal decision policies (ft, gt, ht) should be the same for all

t = 1, 2, . . . , T .

A.2 Proof of Lemma 2.3

To prove Lemma 2.3, we first introduce results from majorization theory.

Given a Borel measurable set A, we use Aσ to denote its symmetric rear-

rangement, i.e., Aσ = [−a, a], and L(Aσ) = L(A) (same Lebesgue measure).

Given a non-negative integrable function p : R→ R, we use pσ to denote its
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symmetric rearrangement, which is described as follows,

pσ(x) :=

∫ ∞
0

1{z∈R|p(z)≥ρ}σ(x)dρ, x ∈ R

1{z∈R|p(z)≥ρ}σ(x) is the indicator function on whether or not x is an element

of {z ∈ R|p(z) ≥ ρ}σ, i.e.,

1{z∈R|p(z)≥ρ}σ(x) =


1, if x ∈ {z ∈ R|p(z) ≥ ρ}σ

0, otherwise

Definition A.1. Given two probability densities p and q defined on R, we

say p majorizes q, denoted by p � q, if∫
|x|<t

qσ(x)dx ≤
∫
|x|<t

pσ(x)dx, for all t ≥ 0

Lemma A.1 ([28], Lemma 4). Let pX and pX′ be probability density functions

defined on R. Assume that pX is even and log-concave, and pX � pX′. Then,∫ ∞
−∞

x2pX(x)dx ≤
∫ ∞
−∞

(x− y)2pX′(x)dx, for all y ∈ R

or equivalently, Var(X) ≤ Var(X ′).

Lemma A.2 ([28], Lemma 2). Let pX and pX′ be probability density functions

defined on R. Assume that pX is even and log-concave, and pX � pX′. Let

A = [−τ, τ ] be any symmetric closed interval such that
∫
A
pX(x)dx > 0 and

let h : R → [0, 1] be any function such that
∫
R h(x)pX′(x)dx =

∫
A
pX(x)dx.

Then,

pX|X∈A �
h · pX′∫

R h(x)pX′(x)dx

We are now in the position to prove Lemma 2.3.

PROOF of Lemma 2.3. One can see that pX majorizes itself. Fur-

thermore, we choose h(x) to be the indicator function on whether x belongs

to B or not, i.e., h(x) = 1{x∈B}. Then,
∫
R h(x)pX(x)dx =

∫
B
pX(x)dx =∫

A
pX(x)dx. By Lemma A.2, the conditional density pX|X∈A majorizes the

conditional density pX|X∈B. Since A is symmetric about zero, and pX is even

and log-concave, we have pX|X∈A is also even and log-concave. By Lemma

A.1, we conclude that Var(X|X ∈ A) ≤ Var(X|X ∈ B).
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A.3 Proof of Corollary 3.1

PROOF of Corollary 3.1. Assumption 3.4 states that T f0 , T f1 , T f2 are

symmetric around zero.1 Combining Assumptions 3.1 and 3.4, it is easy to

see that

E[X|X ∈ T f0 ] = E[X|X ∈ T f1 ] = E[X|X ∈ T f2 ] = 0

Then, the expected cost J(f, g, h) in eq. (3.3) can be further expressed as

J(f, g, h) =

∫
x∈T f0

x2pX(x)dx+

∫
x∈T f1

(c1 +
1

γ + 1
x2)pX(x)dx

+

∫
x∈T f2

c2pX(x)dx

=:

∫
x∈R

J̃(x, f(x))pX(x)dx

where

J̃(x, f(x)) =


x2, if f(x) = 0

c1 +
1

γ + 1
x2, if f(x) = 1

c2, if f(x) = 2

Hence, J(f, g, h) can be minimized by f ∗ satisfying

f ∗(x) = arg min
u∈{0,1,2}

J̃(x, u)

and (g∗, h∗) induced by f ∗ according to Assumption 3.3. Since J̃(x, 0),

J̃(x, 1), and J̃(x, 2) are symmetric around zero, we only need to consider

the case when x ≥ 0. Let β01 =
√

(γ + 1)c1/γ and β02 =
√
c2. Since

1/(γ + 1) < 1, it is easy to check that

J̃(x, 0) ≤ J̃(x, 1), x ∈ [0, β01]; J̃(x, 0) > J̃(x, 1), x ∈ (β01,∞)

J̃(x, 0) ≤ J̃(x, 2), x ∈ [0, β02]; J̃(x, 0) > J̃(x, 2), x ∈ (β02,∞)

1However, T f
0 , T f

1 , T f
2 may or may not be connected.
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Let β1 = min{β01, β02}, and we have

J̃(x, 0) ≤ min{J̃(x, 1), J̃(x, 2)}, x ∈ [0, β1];

J̃(x, 0) > min{J̃(x, 1), J̃(x, 2)}, x ∈ (β1,∞)

Hence, f ∗(x) = 0 when x ∈ [0, β1]. Furthermore, when x ∈ (β1,∞), we only

need to compare J̃(x, 1) with J̃(x, 2), and either of the following cases occurs:

Case I: c1 +
1

γ + 1
β2

1 > c2, and then

J̃(x, 1) > J̃(x, 2), ∀ x ∈ (β1,∞)

which implies that f ∗(x) = 2 when x ∈ (β1,∞). Hence, f ∗ is of the threshold-

in-threshold type described by (3.1), with thresholds β1 = β2.

Case II: c1 +
1

γ + 1
β2

1 ≤ c2. Let β2 =
√

(c2 − c1)(γ + 1). It can be checked

that

J̃(x, 1) ≤ J̃(x, 2), x ∈ (β1, β2]; J̃(x, 1) > J̃(x, 2), x ∈ (β2,∞)

Hence, f ∗(x) = 1 when x ∈ (β1, β2], and f ∗(x) = 2 when x ∈ (β2,∞). f ∗ is

of the threshold-in-threshold type.

A.4 Proof of Proposition 3.1

PROOF of Proposition 3.1. Let k := P(X ∈ (β1, β2)). Consider any

open interval (η1, η2), η1 ≥ 0 such that P(X ∈ (η1, η2)) = k. Since

P(X ∈ (η1, η2)) =

∫ η2

η1

pX(x)dx = k

taking derivative with respect to η1, we have

−pX(η1) +
dη2

dη1

pX(η2) = 0 (A.1)

Now consider the partial derivative of Var(X|X ∈ (η1, η2))P(X ∈ (η1, η2))
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with respect to η1. It can be computed that

∂

∂η1

Var
(
X|X ∈ (η1, η2)

) ∫ η2

η1

pX(x)dx = −pX(η1)
(
η1 − E[X|X ∈ (η1, η2)]

)2

(A.2)

Similarly, we have

∂

∂η2

Var
(
X|X ∈ (η1, η2)

) ∫ η2

η1

pX(x)dx = pX(η2)
(
η2 − E[X|X ∈ (η1, η2)]

)2

(A.3)

Combining (A.1)-(A.3), we obtain

d

dη1

Var(X|X ∈ (η1, η2))P(X ∈ (η1, η2))

=
∂

∂η1

Var(X|X ∈ (η1, η2))P(X ∈ (η1, η2))

+
dη2

dη1

∂

∂η2

Var(X|X ∈ (η1, η2))P(X ∈ (η1, η2))

= pX(η1)
(
(η2 − E[X|X ∈ (η1, η2)])2 − (η1 − E[X|X ∈ (η1, η2)])2

)
Since pX(x) is monotone decreasing when x ≥ 0, it is easy to see that

η2 − E[X|X ∈ (η1, η2)] > E[X|X ∈ (η1, η2)]− η1

Hence,

d

dη1

Var(X|X ∈ (η1, η2))P(X ∈ (η1, η2)) =
d

dη1

kVar(X|X ∈ (η1, η2)) > 0

The inequality above implies that when preserving the probability measure

over (η1, η2),
d

dη1

Var(X|X ∈ (η1, η2)) > 0

Integrating both sides from β1 to β′1 and by comparison principle, we establish

the desired inequality.
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[41] X. Gao, E. Akyol, and T. Başar, “Joint optimization of communication
scheduling and online power allocation in remote estimation,” in 2016
Asilomar Conference on Signals, Systems, and Computers, 2016, pp.
714–718.
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