

State of Illinois Department of Natural Resources

CONTRACT REPORT 2019-02 January 2019

# WATER DEMAND IN THE ROCK RIVER WATER SUPPLY PLANNING REGION, 2010-2060

Scott C. Meyer, P.G. • Benedykt Dziegielewski Zhenxing Zhang • Daniel Abrams • Walton R. Kelly





CHAMPAIGN, ILLINOIS



# Water Demand in the Rock River Water Supply Planning Region, 2010-2060

January 2019

Scott C. Meyer, P.G. Benedykt Dziegielewski Zhenxing Zhang Daniel Abrams Walton R. Kelly

Illinois State Water Survey Prairie Research Institute University of Illinois at Urbana-Champaign

|     |               |                                                       | Page |
|-----|---------------|-------------------------------------------------------|------|
| Exe | ecutive Summa | ary                                                   | 1    |
| 1   | Introduction  |                                                       |      |
|     | 1.1 E         | Background                                            |      |
|     | 1.2 P         | Purpose and Scope                                     |      |
|     | 1.3 E         | Data Sources                                          | 5    |
|     | 1.4 V         | Vithdrawals versus Consumptive Use                    | 5    |
|     | 1.5 I         | n-stream Uses and Aquatic Ecosystem Needs             | 6    |
|     | 1.6 A         | Analytical Methods                                    | 6    |
|     | 1.6.1         | Water Demand Models                                   | 7    |
|     | 1.6.2         | Model Estimation and Validation Procedures            |      |
|     | 1.6.3         | Uncertainty of Future Demands                         |      |
|     | 1.7 V         | Vater Demand Scenarios                                | 9    |
|     | 1.7.1         | Scenario 1 – Current Trends (CT) or Baseline Scenario | 9    |
|     | 1.7.2         | Scenario 2 – Less Resource Intensive (LRI) Scenario   | 10   |
|     | 1.7.3         | Scenario 3 – More Resource Intensive (MRI) Scenario   |      |
|     | 1.8 C         | Organization of the Report                            |      |
| 2   | Water Dema    | nd by Public Water Systems                            |      |
|     | 2.1 E         | Background                                            | 13   |
|     | 2.1.1         | Study Areas                                           | 13   |
|     | 2.1.2         | Historical Water Demand Data                          | 16   |
|     | 2.2 V         | Vater Demand Model                                    |      |
|     | 2.2.1         | Explanatory Variables                                 |      |
|     | 2.2.2         | Per-Capita Water Demand Equation                      |      |
|     | 2.2.3         | Estimated and Reported Water Demand in 2010           |      |
|     | 2.2.4         | Water Withdrawals by Source                           |      |
|     | 2.3 C         | Characterization of Future Water Demand Scenarios     |      |
|     | 2.3.1         | Future Change in Population Served                    |      |
|     | 2.3.2         | Future Changes in Explanatory Variables               |      |
|     | 2.3.3         | Scenarios of Water Demand                             | 39   |
|     | 2.4 S         | cenario Results                                       | 42   |
|     | 2.4.1         | Total Public Supply Demand                            |      |
|     | 2.4.2         | Implications for Sources of Public Water Supply       | 42   |
|     | 2.4.3         | Differences between Scenarios                         | 46   |
| 3   | Demand for    | Self-Supplied Domestic Water                          | 49   |
|     | 3.1 E         | Background                                            |      |
|     | 3.1.1         | Reported Domestic Withdrawals                         |      |
|     | 3.2 F         | Suture Demand                                         | 53   |
|     | 3.2.1         | Water Demand Relationship                             | 53   |
|     | 3.2.2         | Projected Self-Supplied Population                    |      |
|     | 3.2.3         | Scenarios of Water Demand                             |      |
|     | 3.2.4         | Scenario Results                                      |      |
| 4   | Demand for    | Self-Supplied Water for Power Generation              |      |
| -   | 4.1 F         | Background                                            |      |
|     | 411           | Water Demand for Thermoelectric Power Generation      | 58   |

## Contents

|   | 4.1.2                 | Water Demand for Hydroelectric Power Generation                | 58  |
|---|-----------------------|----------------------------------------------------------------|-----|
|   | 4.1.3                 | Reported Plant-Level Power Generation and Water Demand         | 59  |
|   | 4.2 V                 | Water-Demand Relationships for Thermoelectric Power Generation |     |
|   | 4.3 F                 | Future Demand for Electricity                                  | 64  |
|   | 4.4 S                 | Scenarios of Water Demand                                      | 67  |
|   | 4.4.1                 | Current Trends (Baseline) Scenario (CT)                        | 67  |
|   | 4.4.2                 | Less Resource Intensive Scenario (LRI)                         | 67  |
|   | 4.4.3                 | More Resource Intensive Scenario (MRI)                         | 68  |
|   | 4.5 S                 | Scenario Results                                               | 68  |
| 5 | <b>Demand</b> for     | Self-Supplied Water for Industrial and Commercial Uses         | 70  |
|   | 5.1 E                 | Background                                                     |     |
|   | 5.1.1                 | Historical Self-Supplied IC Demand                             |     |
|   | 5.1.2                 | Historical Public Supply Deliveries to IC Users                |     |
|   | 5.2 L                 | Data and Estimation Methods                                    |     |
|   | 5.2.1                 | Demand Rates                                                   |     |
|   | 5.2.2                 | Water Use Relationships                                        |     |
|   | 5.3 F                 | uture Water Demand                                             |     |
|   | 5.3.1                 | Future Employment and Productivity                             |     |
|   | 5.3.2                 | New Self-Supplied Industrial Plants                            |     |
|   | 5.3.3                 | Water Demand by Source                                         |     |
|   | 5.3.4                 | Scenarios of water Demand                                      |     |
| 6 | J.4 J<br>Demand for   | Solf Supplied Water for Invigation Livesteel, and Environments |     |
| 0 | Demand for            | Self-Supplied water for frigation, Livestock, and Environmenta |     |
|   | 611                   | Water Demand for Irrigation                                    | 00  |
|   | 6.1.2                 | Water Demand for Livestock                                     |     |
|   | 6.1.2                 | Water Demand for Environmental Uses                            |     |
|   | 0.1.3<br>6 1 <i>4</i> | Sources of Water                                               |     |
|   | 62 V                  | Vater Demand Modeling                                          | 98  |
|   | 621                   | Water Demand for Irrigation                                    | 98  |
|   | 622                   | Water Demand for Livestock                                     | 101 |
|   | 63 P                  | Parameters Affecting Future ILE Water Demand                   | 103 |
|   | 6.3.1                 | Irrigated Area                                                 |     |
|   | 6.3.2                 | Livestock Head Counts                                          |     |
|   | 6.4 S                 | Scenarios of Water Demand                                      | 108 |
|   | 6.4.1                 | Current Trends (Baseline) Scenario (CT)                        | 108 |
|   | 6.4.2                 | Less Resource Intensive Scenario (LRI).                        | 108 |
|   | 6.4.3                 | More Resource Intensive Scenario (MRI)                         | 108 |
|   | 6.5 S                 | Scenario Results                                               | 109 |
| 7 | Sensitivity of        | f Demand to Climate Change and Drought                         | 114 |
|   | 7.1 P                 | Possible Changes and Effects                                   | 114 |
|   | 7.1.1                 | Range of Climate Change Predictions                            | 114 |
|   | 7.1.2                 | Quantifying Climatic Impacts on Water Demand                   | 121 |
|   | 7.2 E                 | Estimated Effects of Climate Change                            | 122 |
|   | 7.2.1                 | Water Demand by Public Water Systems                           | 122 |
|   | 7.2.2                 | Demand for Self-Supplied Domestic Water                        | 125 |
|   |                       |                                                                |     |

|    | 7.2.3                | Demand for Self-Supplied Water for Irrigation of Cropland   | 127         |
|----|----------------------|-------------------------------------------------------------|-------------|
|    | 7.3 E                | stimated Effects of Drought                                 |             |
|    | 7.3.1                | Water Demand by Public Water Systems                        |             |
|    | 7.3.2                | Demand for Self-Supplied Domestic Water                     | 136         |
|    | 7.3.3                | Demand for Self-Supplied Water for Irrigation of Cropland   | 138         |
| 8  | Summary              | · · · · · · · · · · · · · · · · · · ·                       |             |
| 9  | <b>References</b> C  | 'ited                                                       |             |
| Ap | pendix A. Publ       | lic System Demand-Estimation Methodology                    | 167         |
| Ap | -<br>pendix B. Estir | nation of Future County Population                          | 198         |
| Ap | -<br>pendix C. Self- | Supplied Domestic Demand Supplmental Tables                 | 209         |
| Ap | pendix D. The        | pretical Cooling Water Requirements for Thermoelectric Powe | r           |
|    | Generation           |                                                             | 212         |
| Ap | pendix E. Pow        | er Generation Facilities                                    |             |
| Ap | pendix F. Self-      | Supplied Industrial and Commercial Demand Supplmental Ta    | bles 217    |
| Ap | pendix G. Self-      | Supplied Irrigation, Livestock, and Environmental Demand    |             |
|    | Supplementa          | l Tables                                                    |             |
| Ap | pendix H. Upd        | ated Tables                                                 |             |
| Ap | pendix I. Upda       | tes and Recommendations for Studies of Water Demand Proje   | ections for |
|    | Thermoelect          | ric Power Generation                                        |             |
| Ap | pendix J. Resp       | onses to RWSPC Comments on Draft Report                     |             |
|    |                      |                                                             |             |

# List of Figures

| Figure 1.1 Three study regions for water demand estimation                                       |
|--------------------------------------------------------------------------------------------------|
| Figure 2.1 Dominant public water systems                                                         |
| Figure 4.1 Gross electricity generation versus water demand for four thermoelectric power plants |
| in the three study regions that use once-through cooling (2010)                                  |
| Figure 4.2 National projections of electricity generation by fuel type (U.S. Energy Information  |
| Administration, 2015a)                                                                           |
| Figure 5.1 Self-supplied IC demand for non-mining uses, 2010 (Mgd), by county (U.S.              |
| Geological Survey, 2014)                                                                         |
| Figure 5.2 Self-supplied IC demand for mining uses, 2010 (Mgd), by county (U.S. Geological       |
| Survey, 2014)                                                                                    |
| Figure 6.1 Golf course construction in the Rock River region. None were constructed during the   |
| 1930-1939 and 1940-1949 periods                                                                  |
| Figure 7.1 Departures from Illinois 1971-2000 annual temperature normal discussed by             |
| Dziegielewski and Chowdhury (2008) 115                                                           |
| Figure 7.2 Departures from Illinois 1971-2000 annual precipitation normal discussed by           |
| Dziegielewski and Chowdhury (2008) 116                                                           |
| Figure 7.3 Precipitation deficit versus normal May-August precipitation for three study regions  |
| shown in Figure 1.1. The plot includes one data point for each county in the three regions 131   |
| Figure 7.4 Precipitation deficit versus normal May-August precipitation for three study regions  |
| shown in Figure 1.1. The plot includes one data point for each county in the three regions,      |
| excluding outliers (Boone and Putnam Counties)                                                   |

## List of Tables

| Pa                                                                                           | age      |
|----------------------------------------------------------------------------------------------|----------|
| Table 1.1 Factors Affecting Future Water Demands in the 21 Counties of Three Study Areas in  | 1        |
| Illinois                                                                                     | 11       |
| Table 2.1 Public Water Systems in the Rock River Region by County                            | 15       |
| Table 2.2 Estimated Population Served by Public Water Systems                                | 17       |
| Table 2.3 Historical Public Supply Water Demand (Mgd)                                        | 19       |
| Table 2.4 Stations Used for Weather Characterization in the Rock River Region                | 22       |
| Table 2.5 Estimated Log-Linear Model of Per-Capita Water Demand (gpcd)                       | 24       |
| Table 2.6 Estimated (Uncalibrated) and Reported Per-Capita Water Demand in 2010              | 26       |
| Table 2.7 Source of 2010 Reported Water Demand                                               | 29       |
| Table 2.8 Reported and Projected Resident Population (2010-2060)                             | 32       |
| Table 2.9 Reported and Projected Population Served by Dominant Public Water Supply System    | ns       |
|                                                                                              | 33       |
| Table 2.10 Average of Maximum Monthly Summer-Season (May-September) Temperature at           | 26       |
| Table 2.11 Surgeon Development Weather Stations in the Development Provider                  | 30       |
| Table 2.11 Summer Precipitation at weather Stations in the Rock River Region                 | 5/       |
| Table 2.12 Summary of Demand Scenario Assumptions                                            | 41       |
| Table 2.13 Public Supply water Demand Scenarios                                              | 44       |
| Table 2.14 Comparison of CT and MPI Scenarios                                                | 4/       |
| Table 3.1 Estimated Historical Self-Supplied Domestic Population, by County                  | 40<br>51 |
| Table 3.2 Historical Self-Supplied Domestic Water Demand, by County (Mgd) (USGS)             | 52       |
| Table 3.3 Self-Supplied Population by County                                                 | 54       |
| Table 3.4 Estimated Counts of Domestic Wells Self-Supplied Population and Person Per Well    | 1        |
| (2010)                                                                                       | 55       |
| Table 3.5 Self-Supplied Domestic Demand Scenarios                                            | 57       |
| Table 4.1 Existing Large Thermoelectric Power Plants in Three Water-Supply Planning Region   | ns       |
|                                                                                              | 61       |
| Table 4.2 Existing Hydroelectric Power Plants in Three Water-Supply Planning Regions         | 62       |
| Table 4.3 Diversion of Fox River for Hydroelectric Power Generation, North American Hydro    | -        |
| Dayton (LaSalle County) (1998-2012)                                                          | 63       |
| Table 4.4 Available Estimates of Per-Capita Electricity Demand                               | 65       |
| Table 4.5 Population-Based Estimates of Future Electricity Demand in Three Study Regions     | 66       |
| Table 4.6 Water Demand Scenarios for Power Generation                                        | 69       |
| Table 5.1 Historical Self-Supplied IC Water Demand (Mgd) (U.S. Geological Survey, 2014)      | 71       |
| Table 5.2 Deliveries from Public Water Systems to IC Facilities (Mgd) (U.S. Geological Surve | ;y,      |
| 2014)                                                                                        | 74       |
| Table 5.3 Self-Supplied IC Water Demand by SIC Code for Selected Facilities (2010)           | 76       |
| Table 5.4 Total Employment and Total IC Water Demand, By County (2010)                       | 78       |
| Table 5.5 County IC Water Demand, Self-Supplied and Purchased (2010) (U.S. Geological        |          |
| Survey, 2014)                                                                                | 79       |
| Table 5.6 Historical and Projected Employment in the Rock River Region                       | 81       |
| Table 5.7 Groundwater and Surface Water Demand by Self-Supplied IC Facilities, by County     | _        |
| (2010) (U.S. Geological Survey, 2014)                                                        | 83       |
| Table 5.8 Self-Supplied IC Water Demand Scenarios.                                           | 86       |

| Table 6.1 Irrigated Area in the Rock River Region, by County (acres) (U.S. Department of                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agriculture, 2015)                                                                                                                                       |
| Table 6.2 Irrigated Area and Irrigation Withdrawals, 2010 (U.S. Geological Survey, 2014) 90                                                              |
| Table 6.3 Estimated Numbers of Livestock in the Rock River Region, 2012 (U.S. Department of                                                              |
| Agriculture 2015) 91                                                                                                                                     |
| Table 6.4 Estimated Water Demand for Livestock 1990–2010 (U.S. Geological Survey 2014)92                                                                 |
| Table 6.5 Reported Self-Supplied Environmental Water Demand                                                                                              |
| Table 6.6 Self-Supplied Demand for Environmental Purposes By Facility (2010)                                                                             |
| Table 6.7 Self-Supplied Environmental Water Demand in Three Water-Supply Planning                                                                        |
| Pagions 1000 2010 (Mgd)                                                                                                                                  |
| Table 6.8 Dereant of Salf Supplied II E Domand Satisfied by Groundwater, By Subsector (2010)                                                             |
| Table 0.8 Percent of Sen-Supplied ILE Demand Satisfied by Groundwater, By Subsector (2010)                                                               |
| Table 6.9 Irrigation-Season (May-August) Weather Statistics and Precipitation Deficits                                                                   |
| Table 6 10 Estimated Unit Water Demand for Livestock, by Animal Type (Avery, 1999) 101                                                                   |
| Table 6 11 Water Requirements of Farm Animals (Blocksome and Powell 2006) 102                                                                            |
| Table 6.12 Irrigated Agricultural L and and Harvested Cropland (2012) (U.S. Department of                                                                |
| A griculture 2015)                                                                                                                                       |
| Table 6 13 Long Term Growth in Irrigated Agricultural Agreage in Illinois                                                                                |
| Table 6.14 New Colf Course Opening and Construction in the U.S.                                                                                          |
| Table 6.15 Estimated Livesteck Head Counts, 2012 2022 (U.S. Department of Agriculture)                                                                   |
| Factor and Service 2014)                                                                                                                                 |
| Table 6 16 H E Water Demand Sciences                                                                                                                     |
| Table 6.16 ILE water Demand Scenarios       110         Table 6.17 ILE Demand Les Scenarios       112                                                    |
| Table 0.17 ILE Demand by Source                                                                                                                          |
| Table 7.1 Change in Annual Average Temperature and Annual Precipitation Relative to 1971-                                                                |
| 2000 Climate Normals for Three Climate Scenarios (U.S. Environmental Protection Agency,                                                                  |
| 2015b)                                                                                                                                                   |
| Table 7.2 Normal (30-Year Average) Values of Maximum Daily Air Temperature (°F)                                                                          |
| Table 7.3 Normal (30-Year Average) Values of Total Precipitation (inches)                                                                                |
| Table 7.4 Regional Changes <sup>1</sup> in 1971-2000 Normal Values of Annual Average Temperature and                                                     |
| Annual Precipitation, 2035 and 2060 Averaging Periods                                                                                                    |
| Table 7.5 Estimated Public System Demand under Climate Change Scenarios Discussed in Text                                                                |
| (Mgd)                                                                                                                                                    |
| Table 7.6 Estimated Self-Supplied Domestic Demand under Climate Change Scenarios                                                                         |
| Discussed in Text (Mgd) 126                                                                                                                              |
| Table 7.7 Estimated May-August Normal Average Temperature, Total Precipitation, and                                                                      |
| Precipitation Deficit for Weather Stations Used in This Study 129                                                                                        |
| Table 7.8 Estimated May-August Normal Average Temperature, Total Precipitation, and                                                                      |
| Precipitation Deficit for Weather Stations Used in the Study (Other Study Regions as Shown in                                                            |
| Figure 1.1)                                                                                                                                              |
| Table 7.9 Estimated Self-Supplied Irrigation Demand under Climate Change Scenarios                                                                       |
| Discussed in Text (Mgd)133                                                                                                                               |
| Table 7.10 Estimated Public System Demand under Drought Scenario (Mgd)       135                                                                         |
| Table 7.11 Estimated Self-Supplied Domestic Demand under Drought Scenario (Mgd)137                                                                       |
|                                                                                                                                                          |
| Table 7.12 Estimated Irrigation Demand under Drought Scenario (Mgd)       139                                                                            |
| Table 7.12 Estimated Irrigation Demand under Drought Scenario (Mgd)       139         Table 8.1 Summary of Demand Estimates, CT Scenario (Mgd)       141 |

| Table 8.3 Summary | of Demand Estimates, N | MRI Scenario (Mgd)   | ••••••••••••••••••••••••••••••••••••••• | . 153 |
|-------------------|------------------------|----------------------|-----------------------------------------|-------|
| Table 8.4 Summary | of Estimated Demand T  | otals, All Scenarios | (Mgd)                                   | . 159 |

#### **Executive Summary**

Estimates of water demand in the Rock River Water Supply Planning Region (WSPR) were developed for the period 2010 to 2060. The estimates were developed separately for five major water demand sectors: (1) public supply; (2) self-supplied domestic; (3) self-supplied thermoelectric power generation; (4) self-supplied industrial and commercial; and (5) self-supplied irrigation, livestock, and environmental. Estimates were developed for all sectors on a county level and for public supply at a facility level for 42 dominant public systems, including the largest systems in each county.

The techniques used to develop estimates differed by sector and included unit demand methods and multiple regressions. These methods provided estimates of future demand as a function of demand drivers and explanatory variables for many sectors and subsectors. Explanatory variables are those that influence unit rates of water demand, such as summerseason temperature and precipitation, median household income, marginal price of water, employment-to-population ratio, labor productivity, and precipitation deficits during the irrigation season. For most sectors and subsectors, total demand was estimated by multiplying unit rates of water demand by demand drivers. Demand drivers included such measures as population served by public systems, population served by domestic wells, number of employees, gross thermoelectric power generation, irrigated cropland acreage, irrigated golf course acreage, and head counts of various livestock types.

For each sector, three scenarios were developed of future water demand that reflect different sets of plausible socioeconomic and weather conditions. These include a less resource intensive (LRI) scenario, a current trends (CT) (or baseline) scenario, and a more resource intensive (MRI) scenario. A "normal" climate, based on 1981-2010 climate "normals," was assumed in all scenarios. Although the estimates suggest a plausible range of future demands, they do not represent forecasts or predictions nor indicate upper and lower bounds of future water demand. Different assumptions or different future conditions could result in predicted or actual water demands that are outside of this range.

Total water demand in the Rock River WSPR was an estimated 1332 million gallons per day (Mgd) in 2010. Demand for self-supplied water for thermoelectric power generation dominates water demand in the region, making up 87 percent of the total water use, or about 1160 Mgd. Water for thermoelectric power generation is used almost entirely for cooling and generally returned to the source water body from which it was withdrawn, and thus is considered to be mainly *non-consumptive*. The consumptive loss, mainly in the form of evaporation, was estimated to be about 67 Mgd in 2010, or about 3.7 percent of the total. The CT and LRI scenarios assumed that regional gross thermoelectric power generation remains constant from 2010 to 2060, with no change in water demand. The MRI scenario assumed that one new thermoelectric plant having a gross capacity of 1200 MW with a closed-loop cooling system supplied with surface water would begin operations in Lee County in 2030. This would increase regional water demand for the thermoelectric power generation sector by 11 Mgd to 1171 Mgd.

The second most important demand sector in the Rock River WSPR was public water systems, at 79 Mgd in 2010. Two counties accounted for more than 60 percent of the public water system demand, Winnebago County accounting for about 39 percent and Rock Island County about 23 percent. The irrigation, livestock, and environmental (ILE) sector was the next most important sector, with a demand of 52 Mgd in 2010, and most of this demand was for irrigation of cropland. Two counties, Whiteside and Lee, accounted for about 61 percent of the

irrigation demand in the region. The self-supplied industrial-commercial sector had a demand of 28 Mgd in 2010, with Rock Island County accounting for about half of this demand. The self-supplied domestic sector had the smallest demands, with 11 Mgd in 2010. Domestic demand was spread fairly evenly across the region, ranging from 0.4 Mgd (Lee County) to 1.6 Mgd (Ogle County).

From 2010 to 2060, total demand in the region, not considering thermoelectric power generation, is estimated to decrease by 9 Mgd under the LRI scenario and increase 51 Mgd under the CT scenario and 141 Mgd under the MRI scenario. Most of the increase in total demand is accounted for by increases in self-supplied ILE demand, primarily for irrigated cropland. ILE demand is predicted to increase from between 7 Mgd (LRI) and 92 Mgd (MRI). The decrease in demand predicted by the LRI scenario is primarily due to decreasing demand (-16 Mgd) in the public supply sector. The sector totals for the thermoelectric power generation and industrial-commercial sectors are subject to revision, specifically, the simulation of new power plants and water-intensive industrial facilities as well as the retirement of existing facilities.

Three climate change scenarios, ranging from hot/dry to warm/wet, were analyzed to determine the impact that increasing temperature and changing precipitation patterns could have on water demands. Public water system demands were calculated to increase between 6.0 and 8.7 percent because of climate change, and increases in domestic demands were similar. Irrigation demands varied from a decrease of 3.2 percent in a wetter future environment to an increase of 10.1 percent in a drier environment. The impact of periodic droughts was also examined. For a severe drought, public water system demand was calculated to increase by 8.7 percent and cropland irrigation demand by 34.0 percent. Demands would return to normal once the drought ended.

#### 1 Introduction

#### 1.1 Background

Two important requirements in water supply planning and management are the knowledge of the amount of water that is currently used and that will be required in the future, and the availability of existing and potential sources of supply. Although Illinois is endowed with abundant water resources, the availability of water supplies is a concern in some regions of the state. In some areas, water demands have been increasing while water availability is limited because of court-ordered limits on water allocation, minimum flow requirements, or local hydrological conditions, especially during periods of drought.

In an effort to avert potential future water resources problems, state agencies and the Illinois State Water Survey (ISWS) prepared the *Illinois State Water Plan* reports that identified the need for long-term water supply and demand projections for the state (Illinois State Water Plan Task Force, 1984). Following these earlier efforts, a Strategic Plan for Implementation of Statewide Water Supply Planning (SWSP) was developed in 2008 in response to Illinois Executive Order 2006-01. The plan has been used to facilitate the development of three regional water supply plans to date. Recently, an updated Action Plan for Statewide Water Supply Planning was developed by the Illinois Department of Natural Resources (IDNR) in consultation with the ISWS to create a State of Illinois Water Supply Plan with all of the necessary components of regional and statewide plans. This report covers one of the regional components of the assessment of water demands.

#### 1.2 Purpose and Scope

The purpose of the project is to prepare future water demand scenarios for all major user sectors in the Rock River Water Supply Planning Region (WSPR), which includes 11 counties: Boone, Bureau, Carroll, Henry, Jo Daviess, Lee, Ogle, Rock Island, Stephenson, Whiteside, and Winnebago (Figure 1.1). Water management in this region is of significant importance, partly because of the conflicts in water use during the 2012 drought. A comprehensive regional water supply assessment process to identify future water needs and viable water supply sources is essential for the future sustainable economic development of the region. We have concurrently developed this report, covering the Rock River region, with reports discussing water demand in two other WSPRs, the Kankakee subregion and the Middle Illinois region (Figure 1.1).

Estimates of water demand in the Rock River WSPR from 2010 to 2060 were developed separately for each of the five major water demand sectors: (1) public supply; (2) self-supplied domestic; (3) self-supplied thermoelectric power generation; (4) self-supplied industrial and commercial; and (5) self-supplied irrigation, livestock, and environmental.

Estimates were developed for all sectors on a county level, but estimates of demand for public supply were also developed at a facility level for 42 dominant public systems, including the largest systems in each county. The future demand scenarios (defined later in this chapter) represent water withdrawals under current trends as well as under less and more resource intensive demand assumptions. The three scenarios focus only on off-stream uses of water in the region and do not include the future water needs for aquatic ecosystems or other in-stream uses.



Figure 1.1 Three study regions for water demand estimation

#### 1.3 Data Sources

Historical water withdrawal data for the benchmark years of 1990, 1995, 2000, 2005, and 2010, including the facility-level historical water withdrawal data, were obtained from the ISWS Illinois Water Inventory Program (IWIP) database. The data were compared with county-level compilations developed by the U.S. Geological Survey (USGS), which for many sectors are based on IWIP data. Counts of domestic wells were also obtained from a database maintained by the ISWS.

The data on water withdrawals in each sector were supplemented with corresponding data on demand drivers and explanatory variables for each demand area and sector. The explanatory variable data included (1) resident population and population served; (2) employment by place of work; (3) median household income; (4) marginal price of water; (5) gross and net thermoelectric generation; (6) irrigated acres of cropland and golf courses; (7) livestock counts; (8) air temperature during the growing season; and (9) growing-season precipitation.

Supplemental data on historical and future values of demand drivers and explanatory variables were obtained from a variety of state and federal agencies, including the Illinois Commerce Commission; Illinois Department of Employment Security; Illinois Department of Public Health; Illinois Environmental Protection Agency (IEPA); Midwestern Regional Climate Center, Center for Atmospheric Science, ISWS; U.S. Census Bureau; U.S. Department of Agriculture; U.S. Department of Labor Bureau of Labor Statistics; and the U.S. Energy Information Administration.

#### 1.4 Withdrawals versus Consumptive Use

This study is focused on future water needs as measured by off-stream water withdrawals. The scope of the study does not include determinations of consumptive and nonconsumptive uses for each category of water withdrawals. The term *water use* is often applied using its broad meaning that denotes "the interaction of humans, and their influence on the hydrologic cycle and may include both off-stream and in-stream uses such as water withdrawal, delivery, consumptive use, wastewater release, reclaimed wastewater, return flow, and in-stream use" (Hutson et al., 2004). The term *water withdrawal* is more precisely defined as a component of water use. It designates the amount of water that is taken out from natural water sources such as lakes, rivers, or groundwater aquifers.

The difference between the amount of water withdrawn and water returned to the source (or discharge) is usually taken to represent *consumptive use*. This is the "part of water withdrawn that is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment" (Hutson et al., 2004). The quantity of water "consumed" is used in calculating regional annual and monthly water budgets, and represents a measure of the volume of water that is not available for repeated use.

Although a major portion of water withdrawals for public water supply, power generation, and industrial purposes represent "non-consumptive" use, these withdrawals can have significant impacts on water resources and other uses of water. For example, water withdrawn from an aquifer and then returned into a surface water body may have a positive impact on streamflow or lake water levels but a negative impact on the groundwater source. Similarly, water withdrawn from a river for public water supply must be continuously available at the intake and is not available closely upstream or downstream from the intake for other uses, such as irrigation or industrial cooling facilities. This study is limited to the quantification of water demand in terms of the volumes of water withdrawals from surface and groundwater sources in the study area of the Rock River WSPR. It does not quantify the water volumes being recirculated or reused within industrial facilities, discharges of treated wastewater to surface water bodies, or the infiltration of treated effluents into groundwater aquifers.

At the time of this study, data on return flows, which could be matched to withdrawals, were not readily available; therefore, the partitioning of the volume of water withdrawn into consumptive and non-consumptive use could not be determined and validated. An inventory of actual return flows should be developed in the future, and an in-depth analysis of the "matched" data on withdrawals and return flows (as well as inflows unrelated to withdrawals) should produce relationships that would be adequate for estimating consumptive and non-consumptive use of water withdrawn for each major sector.

#### 1.5 In-stream Uses and Aquatic Ecosystem Needs

The broad definition of water use also includes environmental and in-stream uses, which are outside of the scope of this study. This study does not include water needs for aquatic ecosystems or other in-stream uses (only environmental needs of public parks and wildlife areas are considered). Some of the issues related to in-stream flow needs will be considered in other reports.

The USGS defines in-stream use as "water use that occurs within the stream channel for such purposes as hydroelectric-power generation, navigation, fish and wildlife preservation, water-quality improvement, and recreation" (Hutson et al., 2004). In-stream uses include ecosystem water needs for both in-channel and riparian uses where the streamflow supports a wide range of ecological functions of rivers and other surface water bodies.

Increasing societal recognition of ecosystem services implies that in addition to increases in future water demand to provide for new population and concomitant economic development, there will be an increasing need to manage streams to support aquatic habitat, provide for assimilative capacity to maintain water quality, and also for recreational values. During the past four decades there have been an increasing public interest and growing efforts to protect environmental resources and restore ecosystems. However, the effect of in-stream flow requirements and other ecosystem needs on the availability of water supply for off-stream uses is difficult to quantify. There are some rules of thumb, such as those developed by Tennant et al. (1975); however, they are not directly applicable to Illinois streams. The actual values must take into consideration a number of hydrological and ecological factors.

#### 1.6 Analytical Methods

Standard QA/QC procedures were used to identify, correct, and/or discard data with apparent errors caused by mistakes in collection or data input. The data checking procedures included (1) arranging data in spreadsheets and visually inspecting for apparent anomalies; (2) calculating and examining standard ratios (i.e., per capita water quantity, per employee, or per acre water quantity); (3) graphing time-series data to identify outliers and large shifts in values over time; and (4) comparing data values against other available data sources.

The overall accuracy of the data used in this project is not ideal, but the available data and their quality are considered to be adequate for developing future scenarios of water demand.

#### 1.6.1 Water Demand Models

The selection of analytical techniques for developing estimates of future water withdrawals (plus purchases for resale by public water systems) was dictated by the type of data on actual water quantities and the corresponding data on explanatory variables available for each sector of water demand. The two principal techniques used in this report were the unit-use coefficient method and multiple regression. The general approach to estimating future water demand can be described as a product of the number of users (i.e., demand driver) and unit quantity of water as:

$$Q_{cit} = N_{cit} \cdot q_{cit} \tag{1.1}$$

where:

 $Q_{cit}$  = water withdrawals (or demand) in user sector *c* of study area *i* in year *t*;  $N_{cit}$  = number of users (or demand driver) such as population, employment, acreage, or head of livestock; and

 $q_{cit}$  = average rate of water requirement (or water usage) in gallons per capita-day, gallons per employee-day, and so forth.

The unit-use coefficient method assumes that future water demand will be proportional to the number of users  $N_{cit}$ , while the future average rate of water use,  $q_{cit}$ , is usually assumed to remain constant or is changed based on some assumptions. Modeling of water demand usually concerns the future changes in average rate of water usage,  $q_{cit}$ , in response to changing future conditions.

Water-demand relationships which quantify historical changes in  $q_{cit}$  can be expressed in the form of equations, where the average rate of water usage is expressed as a function of one or more independent (also called explanatory) variables. A multivariate context best relates to actual water usage behaviors, and multiple regression analysis can be used to determine the relationship between water quantities and each explanatory variable. The functional form (e.g., linear, multiplicative, exponential) and the selection of the independent variables depend on the category of water demand. For example, public supply withdrawals can be estimated using the following linear model:

$$PS_{it} = a + \sum_{j} b_j X_{jit} + \varepsilon_{it}$$
(1.2)

where:

 $PS_{it}$  = per capita public supply water withdrawal within geographical area *i* during year *t*;  $X_j$  = a set of explanatory variables (e.g., air temperature, precipitation, price of water, median household income and others) that is expected to explain the variability in per capita use; and  $\varepsilon_{it}$  = a random error term.

The coefficients a and  $b_j$  can be estimated by fitting a multiple regression model to historical water-use data.

The actual models used in this study were specified as double-log (i.e., log-linear models) with additional variables that served to fit the model to the data and also isolate observations that were likely to be outliers:

$$\ln PS_{it} = \alpha_o + \sum_j \beta_j \ln X_{jit} + \sum_k \gamma_k \ln R_{kit} + \varepsilon_{it}$$
(1.3)

where:

 $PS_{it}$  = per capita public supply water withdrawals (plus purchases) within geographical area *i* during year *t* (in gallons per capita per day);

 $X_j$  = a set of explanatory variables;  $R_k$  = ratio (percentage) variables such as ratio of employment to population;  $\varepsilon_{it}$  = random error; and

 $\alpha_o$ ,  $\beta_j$ , and  $\gamma_j$  = parameters to be estimated.

Many econometric studies of water demand have been conducted during the past 50 years. A substantial body of work on model structure and estimation methods was also performed by the USGS (Helsel and Hirsch, 1992). The theoretical underpinnings of water demand modeling and a review of a number of determinants of water demand in major economic sectors are summarized by Hanemann (1998). Useful summaries of econometric studies of water demand can be found in Boland et al. (1984). Also, Dziegielewski et al. (2002) reviewed and summarized a number of studies of aggregated sectoral and regional demand.

#### 1.6.2 Model Estimation and Validation Procedures

Several procedures were used to specify and select the water demand models. The main criteria for model selection were (1) the model included variables that had been identified as important predictors by previous research, and their estimated regression coefficients had some statistical significance and were within a reasonable range of *a priori* values and with expected signs; (2) the explanatory power of the model was reasonable, as measured by the coefficient of multiple determination ( $\mathbb{R}^2$ ); and (3) the absolute percent error of model residuals was not excessive.

The modeling approach and estimation procedure were originally developed and tested in a study conducted by Dziegielewski et al. (2002). Additional information on the analytical methods, estimated model, and assumptions is included in the chapters that describe the analysis of water withdrawals and development of future water demand scenarios for each major sector of use.

#### 1.6.3 Uncertainty of Future Demands

It is important to recognize the uncertainty in determining future water demands in any study area and user sector. This uncertainty is always present and must be taken into consideration while making important water supply planning decisions. Generally, the error associated with the analytically derived future values of water demand can come from a combination of the following distinct sources:

- (1) Random error: The random nature of the additive error process in a linear (or log-linear) regression model that is estimated based on historical data guarantees that future estimates will deviate from true values, even if the model is specified correctly and its parameter values (i.e., regression coefficients) are known with certainty.
- (2) Error in model parameters: The process of estimating the regression coefficients introduces error because estimated parameter values are random variables that may deviate from the "true" values.
- (3) Specification error: Errors may be introduced because the model specification may not be an accurate representation of the "true" underlying relationship.
- (4) Scenario error: Future values for one or more model variables cannot be known with certainty. Errors may be introduced when projections are made for the water demand drivers (such as population, employment, or irrigated acreage) as well as the values of the determinants of water usage (such as income, price, precipitation, and other explanatory variables).

The approach used in this study is uniquely suited to deal with the scenario error. By defining three alternative scenarios, the range of uncertainty associated with future water demands in the study area can be examined and taken into consideration in planning decisions. A careful analysis of the data and model parameters was undertaken to minimize the remaining three sources of error.

#### 1.7 Water Demand Scenarios

Estimates of future water demand were prepared for three different scenarios. The scenarios include a current trends (CT) or baseline case scenario, a less resource intensive (LRI) outcome, and a more resource intensive (MRI) outcome. The scenarios were defined by different sets of assumed conditions regarding the future values of demand drivers and explanatory variables.

The purpose of the scenarios is to capture future water demand under three different sets of conditions. The three scenarios do not represent forecasts or predictions, nor do they necessarily set upper and lower bounds of future water use. Different assumptions or conditions could result in withdrawals that are within or outside of the range represented by the three scenarios.

In all three scenarios, total population growth in the 11-county study area is assumed to remain the same. Additional general assumptions used in defining each of the three scenarios are described below.

In this report, we provide for a revision of our estimates of future demand by the selfsupplied thermoelectric power generation and self-supplied industrial and commercial sectors pending receipt of information from local authorities regarding plans for addition or retirement of facilities within the study region.

#### 1.7.1 Scenario 1 – Current Trends (CT) or Baseline Scenario

The basic assumption of this scenario is that the recent trends (past 10 to 20 years) in population growth and economic development will continue. With respect to population growth, the "current trends" are supported by official forecasts of population and employment in the study area.

The CT scenario does not rely on a simple extrapolation of recent historical trends in total or per capita (or per employee) water use into the future. Instead, the future unit rates of water usage are determined by the water demand model as a function of the key explanatory variables. The "recent trends" assumption applies only to future changes in the explanatory variables. Accordingly, the CT scenario assumes that the explanatory variables such as income and price will follow recent historical trends or their official or available forecasts. This scenario also assumes that recent trends in the efficiency of water usage (mostly brought about by the effects of plumbing codes and fixture standards, as well as actions of water users) will continue, although at a rate that is slower than in the past. The conservation trend in the historical data on water use is estimated as a part of the regression model.

#### 1.7.2 Scenario 2 – Less Resource Intensive (LRI) Scenario

In this scenario, the efficiency assumptions include more water conservation (e.g., implementation of additional cost-effective water conservation measures by urban and industrial users), as well as higher water prices in the future.

#### 1.7.3 Scenario 3 – More Resource Intensive (MRI) Scenario

In this scenario, the efficiency assumptions include no additional water conservation beyond that indicated by recent trends in the CT scenario. The price of water is assumed to remain unchanged in real terms, which implies that future price increases will only offset the general inflation. A higher rate of growth of median household income is also assumed.

A detailed listing of assumptions for each of the three scenarios is given in Table 1.1. Additional discussion of sector-specific assumptions for each scenario is included in the chapters that describe estimates of water demand in each sector.

| Factor                                      | Scenario 1-<br>Current Trends (CT)<br>or Baseline       | Scenario 2-<br>Less Resource<br>Intensive (LRI)        | Scenario 3 –<br>More Resource<br>Intensive (MRI) |  |
|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|--|
| Total population                            | IDPH and trend-based projections                        | IDPH and trend-based projections                       | IDPH and trend-based projections                 |  |
| Median household income                     | Existing projections of 1.0 %/year growth               | Existing projections of 0.7 %/year growth              | Higher growth of 1.2 %/years                     |  |
| Water conservation                          | 50% lower rate than historical trend                    | Continuation of historical trend                       | No extension of historical trend                 |  |
| Future water prices                         | Recent increasing trend<br>(0.8%/year) will<br>continue | Higher future price<br>increases (1.6%/year)           | Prices held at 2010<br>level in real terms       |  |
| Irrigated land                              | Constant cropland,<br>increasing golf courses           | Decreasing cropland,<br>no increase in golf<br>courses | Constant cropland,<br>increasing golf courses    |  |
| Livestock                                   | Baseline USDA<br>growth rates                           | Baseline USDA<br>growth rates                          | Baseline USDA<br>growth rates                    |  |
| Weather (air temperature and precipitation) | 30-year normal<br>(1981-2010)                           | 30-year normal<br>(1981-2010)                          | 30-year normal<br>(1981-2010)                    |  |

Table 1.1 Factors Affecting Future Water Demands in the 21 Counties of Three Study Areas in Illinois

#### 1.8 Organization of the Report

This report is organized into an executive summary and eight chapters. The executive summary combines the results for all sectors and briefly discusses some of the implications of this study for further analysis of water demand in the Rock River WSPR.

Chapter 1 introduces the data and analytical models used to estimate future water demands. The five water use sectors are described in the five subsequent chapters (Chapters 2, 3, 4, 5, and 6). Each of these chapters begins with a brief review of the definition of the water demand sector, a summary of the historical changes in reported water withdrawals in the sector, and the procedure for deriving water demand relationships for the sector. This is followed by a description of the assumptions used to develop water demand scenarios for the sector and a summary of the scenario results. Most chapters are accompanied by one or more appendices containing detailed tables with primary data and other information used in deriving future water demand.

Chapter 7 describes the sensitivity analysis, which shows the impacts on water withdrawals under climate change scenarios, as well as the potential increase in water demands during a period of drought.

Chapter 8 provides a summary of the report. References for all chapters appear at the end of the report.

Appendices A-G give details on how various demand and population forecasts were made for different sectors and supplemental tables. Appendix H contains updates of several tables in the body of the report. This was done to provide more recent data that were not available when the initial draft of this report was completed in 2015. For the power generation sector, we recognize that because the baseline condition was from 2010, the data are not current and there are new trends and industry changes that may affect water demands in this sector. In Appendix I, we provide updates and recommendations for future studies in the power generation sector. Results of the draft water demand study were presented to the Rock River Regional Water Supply Planning Committee (RWSPC) on May 30, 2018, at Lake Carroll in Lanark. The RWSPC provided comments to the ISWS in October 2018. Responses to some of the RWSPC comments are found in Appendix J.

#### 2 Water Demand by Public Water Systems

### 2.1 Background

Public water supply is water that is withdrawn from the source, treated, and delivered to individual residential, commercial, industrial, institutional, and governmental users by public water supply systems. Some or all water can also be purchased from a nearby system and delivered to users. The U.S. Environmental Protection Agency (USEPA) defines a public water system as a public or privately-owned system that serves at least 25 people or 15 service connections for at least 60 days per year (U.S. Environmental Protection Agency, 2008).

Not all water users within the area served by a public water system rely on water delivered by the system. Some users have their own sources of supply and are therefore considered to be self-supplied. Self-supplied users include industrial and commercial establishments that rely on their own wells or surface water intakes (Chapter 5) as well as residential users who rely on private wells (Chapter 3).

#### 2.1.1 Study Areas

According to the data from the IEPA, there are 255 public water supply systems in the 11 counties of the study area (Table 2.1). In 2010, these systems served an estimated population of 678,746 people, as well as local businesses and institutions. A comparison of total resident population in each county with population served by public water systems shows that in 2010 an additional 137,112 people (or about 17 percent of total population in the 11-county area) were served by domestic wells and other sources in the self-supplied domestic sector.

To develop scenarios of future public water system use for the 11-county area, we selected larger "dominant" public water supply systems from within each county as study areas for detailed investigation of historical water use (Figure 2.1). The 42 dominant systems were treated independently, with input parameters for water demand estimation based, to the extent possible, on system-level data.

We aggregated the remaining smaller systems within each county into a countyremainder (or residual) study area. This allowed us to include all public water systems in developing water demand scenarios. Water demand in the county-residual study area is computed from aggregated county-level data. Several tables in this chapter (e.g., Table 2.2) list all study areas employed in this project, including dominant systems and county-residual areas.



Figure 2.1 Dominant public water systems

|                       | Estimated                                     | All Publ            | ic Systems                                  | Dominant Systems Used in<br>Detailed Investigation |                                             |
|-----------------------|-----------------------------------------------|---------------------|---------------------------------------------|----------------------------------------------------|---------------------------------------------|
| County                | Resident<br>Population<br>(2010) <sup>1</sup> | Number <sup>2</sup> | Population<br>Served<br>(2010) <sup>2</sup> | Number <sup>2</sup>                                | Population<br>Served<br>(2010) <sup>2</sup> |
| Boone                 | 54,144                                        | 10                  | 35,317                                      | 1                                                  | 25,720                                      |
| Bureau                | 34,905                                        | 26                  | 25,397                                      | 4                                                  | 16,454                                      |
| Carroll               | 15,364                                        | 10                  | 9,486                                       | 3                                                  | 6,462                                       |
| Henry                 | 50,432                                        | 41                  | 40,547                                      | 5                                                  | 28,110                                      |
| Jo Daviess            | 22,660                                        | 17                  | 17,669                                      | 3                                                  | 7,293                                       |
| Lee                   | 35,970                                        | 17                  | 31,193                                      | 3                                                  | 19,900                                      |
| Ogle                  | 53,448                                        | 24                  | 33,434                                      | 5                                                  | 23,385                                      |
| Rock Island           | 147,632                                       | 52                  | 135,945                                     | 5                                                  | 116,367                                     |
| Stephenson            | 47,680                                        | 14                  | 33,274                                      | 3                                                  | 29,319                                      |
| Whiteside             | 58,472                                        | 12                  | 40,211                                      | 5                                                  | 35,748                                      |
| Winnebago             | 295,151                                       | 32                  | 276,273                                     | 5                                                  | 236,973                                     |
| <b>REGIONAL TOTAL</b> | 815,858                                       | 255                 | 678,746                                     | 42                                                 | 545,731                                     |

Table 2.1 Public Water Systems in the Rock River Region by County

<sup>1</sup> U.S. Census Bureau (2014c)
<sup>2</sup> Illinois Environmental Protection Agency (2014)

#### 2.1.2 Historical Water Demand Data

Data on public-system water demand were obtained from IWIP, administered by the ISWS. Under this program, a questionnaire is sent to all of the nearly 1740 community water systems (i.e., public water systems that supply water to the same population year-round; these systems serve a population of 12,008,700) in the state (Illinois Environmental Protection Agency, 2015). The questionnaire includes questions about water sources, withdrawals, and water deliveries to residential, commercial, and industrial customers (Illinois State Water Survey, 2018). If system representatives do not complete the survey, IWIP staff estimate water withdrawals by extrapolation from data submitted in previous years. The water demand and population served data collected by the ISWS together constitute our database on historical water usage by the 42 dominant system and 11 county-residual study areas.

The IWIP database contains data on annual withdrawals and purchases of water by public water supply systems. Not all public water systems rely entirely on withdrawals from surfacewater and groundwater sources. Some systems rely entirely on water purchased from a neighboring system or combine self-supplied withdrawals with purchases. For the purpose of this study, the reported self-supplied withdrawals were adjusted by adding reported water purchases and subtracting water sales to compute water demand in each system's retail service area. This computation was necessary to develop forecasts of future water demand because the socioeconomic data correspond to water demand areas.

Table 2.2 shows the estimated historical (1990-2010) population served by the 42 dominant public water systems and by public water systems in the 11 county-residual study areas. The 42 dominant systems served a population of 545,731 people in 2010, and public water systems in the county-residual study areas served 133,015 people. Therefore, the total estimated population served by public water systems in the 11-county study area is 678,746.

Table 2.3 shows the historical water demand by the 42 dominant public water systems and by public water systems in the 11 county-residual study areas. Water demand by the dominant systems totaled 68.8 million gallons per day (Mgd) in 2010, with an additional 10.7 Mgd used by public water systems in county-residual study areas. The combined public-system demand in 2010 was 79.5 Mgd, and, dividing by the total population served of 678,746 people, this total demand is equivalent to a per-capita demand of approximately 117 gallons per-capita per day (gpcd). Between 1990 and 2010, total public system use decreased by 8.4 Mgd, or 9.5 percent. During the same period, the total population served increased by 15.2 percent. Percapita demand in the region reflects the opposing downward and upward trends of total public-system demand and population served, declining from 149 gpcd in 1990 to 117 gpcd in 2010, an average annual rate of decline of 1.2 percent.

| Boone County           Belvidere         15,500         17,700         20,820         23,500         25,720           Boone County Residual         3,298         5,119         6,146         9,597         9,597           Bureau County          1,725         1,775         1,773         1,773         1,905           Princeton         7,197         7,200         7,601         7,660           Spring Valley         5,264         5,271         5,398         5,398           Walnut         1,540         1,493         1,491         1,491           Bureau County Residual         11,188         10,206         10,367         10,691         8,943           Carroll County          1,453         1,620         1,598         Mount Carroll         1,961         1,751         1,851         1,742           Savanna         4,553         3,630         3,542         3,575         3,122         Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County          2,160         2,169         2,235         2,108         2,779           Garba Garda         3,035         2,737         2,600         2,4                                                                                                                                                                                        | Study Area                 | 1990         | 1995   | 2000   | 2005   | 2010   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------|--------|--------|--------|--|--|--|
| Belvidere         15,500         17,700         20,820         23,500         25,720           Borne County Residual         3,298         5,119         6,146         9,597         9,597           Burean County         1,725         1,775         1,773         1,773         1,905           Princeton         7,197         7,200         7,601         7,660         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         <                                                                                                              | Boone County               | Boone County |        |        |        |        |  |  |  |
| Boone County Residual         3,298         5,119         6,146         9,597         9,597           Bureau County         Depue         1,725         1,775         1,773         1,773         1,905           Princeton         7,197         7,200         7,601         7,606         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         5,398         Gavana         4,553         3,630         3,542         3,575         3,120         Garol County Residual         4,129         3,720         3,120         3,000         2,408 <td>Belvidere</td> <td>15,500</td> <td>17,700</td> <td>20,820</td> <td>23,500</td> <td>25,720</td> | Belvidere                  | 15,500       | 17,700 | 20,820 | 23,500 | 25,720 |  |  |  |
| Bureau County           Depue         1,725         1,775         1,773         1,773         1,905           Princeton         7,197         7,200         7,601         7,660           Spring Valley         5,264         5,271         5,398         5,398         5,398           Wahut         1,540         1,493         1,491         1,491         1,491           Bureau County Residual         11,188         10,206         10,367         10,691         8,943           Carroll County         Lanark         1,443         1,460         1,535         1,620         1,598           Mount Carroll         1,961         1,751         1,851         1,851         1,742           Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County         C         Cambridge         2,160         2,169         2,235         2,108         2,179           Galva         3,035         2,735         2,935         2,789         2,779           Galva         3,035         2,735         2,935         2,789         2,779 </td <td>Boone County Residual</td> <td>3,298</td> <td>5,119</td> <td>6,146</td> <td>9,597</td> <td>9,597</td>                                                                    | Boone County Residual      | 3,298        | 5,119  | 6,146  | 9,597  | 9,597  |  |  |  |
| Depue         1,725         1,775         1,773         1,773         1,975           Princeton         7,197         7,200         7,200         7,601         7,660           Spring Valley         5,264         5,271         5,398         5,398         5,398           Wahuut         1,540         1,493         1,491         1,491         1,491           Bureau County Residual         11,188         10,206         10,367         10,691         8,943           Carroll County         Eanark         1,443         1,460         1,535         1,620         1,598           Mount Carroll         1,961         1,751         1,851         1,851         1,742           Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County         Colona East         2,237         2,630         2,440         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Genesco         6,100         6,070         6,160         6,500         6,400           Kewance         14,3                                                                                                                                                                                 | Bureau County              |              |        |        |        |        |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depue                      | 1,725        | 1,775  | 1,773  | 1,773  | 1,905  |  |  |  |
| Spring Valley         5,264         5,271         5,398         5,398         5,398           Walnut         1,540         1,493         1,493         1,491         1,491           Bureau County Residual         11,188         10,206         10,367         10,691         8,943           Carroll County         1,443         1,460         1,535         1,620         1,598           Mount Carroll         1,961         1,751         1,851         1,851         1,742           Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County         Cambridge         2,160         2,169         2,235         2,108         2,108           Colona East         2,237         2,237         2,600         2,400         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Geneseo         6,100         6,070         6,160         6,500         6,400           Kewanee         14,300         14,404         13,240         12,437           Jo Daviess County         2,000                                                                                                                                                                               | Princeton                  | 7,197        | 7,200  | 7,200  | 7,601  | 7,660  |  |  |  |
| Walnut         1,540         1,493         1,491         1,491           Bureau County Residual         11,188         10,206         10,367         10,691         8,943           Carroll County         Image: County County         Image: County County         Image: County County County         Image: County County County County Residual         1,443         1,460         1,535         1,620         1,598           Mount Carroll         1,961         1,751         1,851         1,742         Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County         Colona East         2,237         2,600         2,400         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Geneseo         6,100         6,070         6,160         6,500         6,400           Kewanee         14,300         14,400         14,500         14,444         14,350           Henry County Residual         13,602         12,021         12,444         13,240         12,437           Jo Daviess County         2,000         1,926                                                                                                                         | Spring Valley              | 5,264        | 5,271  | 5,398  | 5,398  | 5,398  |  |  |  |
| Bureau County Residual         11,188         10,206         10,367         10,691         8,943           Carroll County           Lanark         1,443         1,460         1,535         1,620         1,598           Mount Carroll         1,961         1,751         1,851         1,851         1,742           Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County         Cambridge         2,160         2,169         2,235         2,108         2,108           Colona East         2,237         2,237         2,600         2,403         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Genesco         6,100         6,070         6,160         6,500         6,400           Kewanee         14,300         14,400         14,500         14,444         14,350           Henry County Residual         13,602         12,021         12,444         13,240         12,437           Jo Daviess County         2,000         1,926         2,000         2,000 <t< td=""><td>Walnut</td><td>1,540</td><td>1,493</td><td>1,493</td><td>1,491</td><td>1,491</td></t<>                                                                          | Walnut                     | 1,540        | 1,493  | 1,493  | 1,491  | 1,491  |  |  |  |
| Carroll County           Lanark         1,443         1,460         1,535         1,620         1,598           Mount Carroll         1,961         1,751         1,851         1,851         1,742           Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County         Cambridge         2,160         2,169         2,235         2,108         2,108           Colona East         2,237         2,237         2,600         2,400         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Geneseo         6,100         6,070         6,160         6,500         6,400           Kewanee         14,300         14,400         14,500         14,444         14,350           Henry County Residual         13,602         12,021         12,444         13,240         12,437           Jo Daviess County         East Dubuque         2,000         1,926         2,000         2,000         1,970           Galena         3,892         3,876         3,460         3,461                                                                                                                                                                              | Bureau County Residual     | 11,188       | 10,206 | 10,367 | 10,691 | 8,943  |  |  |  |
| Lanark         1,443         1,460         1,535         1,620         1,598           Mount Carroll         1,961         1,751         1,851         1,851         1,742           Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County          2         2,160         2,235         2,108         2,108           Cambridge         2,160         2,237         2,600         2,400         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Geneseo         6,100         6,070         6,160         6,500         6,400           Kewanee         14,300         14,400         14,404         14,320         12,437           Jo Daviess County         East Dubuque         2,000         1,926         2,000         2,000         1,970           Galena         3,892         3,876         3,460         3,461         3,461           Stockton         1,890         1,921         1,931         1,934         1,862           Jo Daviess County Residual <td>Carroll County</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                   | Carroll County             |              |        |        |        |        |  |  |  |
| Mount Carroll1,9611,7511,8511,8511,742Savanna4,5533,6303,5423,5753,122Carroll County Residual4,1293,7203,1203,0903,024Henry CountyCambridge2,1602,1692,2352,1082,108Colona East2,2372,2372,6002,4002,473Galva3,0352,7352,9352,7892,779Geneseo6,1006,0706,1606,5006,400Kewanee14,30014,40014,50014,44414,350Henry County Residual13,60212,02112,44413,24012,437Jo Daviess CountyEast Dubuque2,0001,9262,0002,0001,970Galena3,8923,8763,4603,461Stockton1,8901,9211,9311,9341,862Jo Daviess County Residual6,8347,82410,37710,64210,376Lee CountyAmboy2,4102,5002,6502,6002,600Ashton1,1001,1051,1401,1461,100Dixon15,20615,38916,24016,49016,200Lee County Residual10,19410,66110,97610,64211,293Ogle County3,1003,0253,0003,3003,100Oregon3,6403,8913,0814,1014,100Polo2,5172,5172,518 </td <td>Lanark</td> <td>1,443</td> <td>1,460</td> <td>1,535</td> <td>1,620</td> <td>1,598</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lanark                     | 1,443        | 1,460  | 1,535  | 1,620  | 1,598  |  |  |  |
| Savanna         4,553         3,630         3,542         3,575         3,122           Carroll County Residual         4,129         3,720         3,120         3,090         3,024           Henry County         Cambridge         2,160         2,169         2,235         2,108         2,108           Colona East         2,237         2,237         2,600         2,400         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Geneseo         6,100         6,070         6,160         6,500         6,400           Kewanee         14,300         14,400         14,500         14,444         14,350           Henry County Residual         13,602         12,021         12,444         13,240         12,437           Jo Daviess County         East Dubuque         2,000         1,926         2,000         2,000         1,970           Galena         3,892         3,876         3,460         3,461         3,462         10,376           Lee County         East Dubuque         2,000         1,921         1,931         1,934         1,862           Jo Daviess County Residual         6,834         7,824         10,377                                                                                                                                                               | Mount Carroll              | 1,961        | 1,751  | 1,851  | 1,851  | 1,742  |  |  |  |
| Carroll County Residual $4,129$ $3,720$ $3,120$ $3,090$ $3,024$ Henry County         Cambridge $2,160$ $2,169$ $2,235$ $2,108$ $2,108$ Colona East $2,237$ $2,237$ $2,600$ $2,400$ $2,473$ Galva $3,035$ $2,735$ $2,935$ $2,789$ $2,779$ Geneseo $6,100$ $6,070$ $6,160$ $6,500$ $6,400$ Kewanee $14,300$ $14,400$ $14,500$ $14,444$ $14,350$ Henry County Residual $13,602$ $12,021$ $12,444$ $13,240$ $12,437$ Jo Daviess County         East Dubuque $2,000$ $1,926$ $2,000$ $2,900$ $1,970$ Galena $3,892$ $3,876$ $3,460$ $3,461$ $3,460$ $3,461$ Stockton $1,890$ $1,921$ $1,931$ $1,934$ $1,862$ Jo Daviess County Residual $6,834$ $7,824$ $10,377$ $10,642$ $10,376$ Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Savanna                    | 4,553        | 3,630  | 3,542  | 3,575  | 3,122  |  |  |  |
| Henry County           Cambridge         2,160         2,169         2,235         2,108         2,108           Colona East         2,237         2,237         2,600         2,400         2,473           Galva         3,035         2,735         2,935         2,789         2,779           Geneseo         6,100         6,070         6,160         6,500         6,400           Kewanee         14,300         14,400         14,500         14,444         14,350           Henry County Residual         13,602         12,021         12,444         13,240         12,437           Jo Daviess County         East Dubuque         2,000         1,926         2,000         2,000         1,970           Galena         3,892         3,876         3,460         3,461         3,460         3,461           Stockton         1,890         1,921         1,931         1,934         1,862           Jo Daviess County Residual         6,834         7,824         10,377         10,642         10,376           Lee County         Amboy         2,410         2,500         2,650         2,600         2,600           Ashton         1,100         1,105         1,1                                                                                                                                                                                     | Carroll County Residual    | 4,129        | 3,720  | 3,120  | 3,090  | 3,024  |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Henry County               |              |        |        |        |        |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cambridge                  | 2,160        | 2,169  | 2,235  | 2,108  | 2,108  |  |  |  |
| Galva $3,035$ $2,735$ $2,935$ $2,789$ $2,779$ Geneseo $6,100$ $6,070$ $6,160$ $6,500$ $6,400$ Kewanee $14,300$ $14,400$ $14,500$ $14,444$ $14,350$ Henry County Residual $13,602$ $12,021$ $12,444$ $13,240$ $12,437$ Jo Daviess CountyEast Dubuque $2,000$ $1,926$ $2,000$ $2,000$ $1,970$ Galena $3,892$ $3,876$ $3,460$ $3,461$ Stockton $1,890$ $1,921$ $1,931$ $1,934$ $1,862$ Jo Daviess County Residual $6,834$ $7,824$ $10,377$ $10,642$ $10,376$ Lee CountyAmboy $2,410$ $2,500$ $2,650$ $2,600$ $2,600$ Ashton $1,100$ $1,105$ $1,140$ $1,146$ $1,100$ Dixon $15,206$ $15,389$ $16,240$ $16,490$ $16,200$ Lee County Residual $10,194$ $10,661$ $10,976$ $10,642$ $11,293$ Ogle CountyByron $3,100$ $3,025$ $3,000$ $3,300$ $3,100$ Oregon $3,640$ $3,891$ $3,081$ $4,101$ $4,100$ Polo $2,517$ $2,517$ $2,518$ $2,475$ $2,485$ Rochelle $8,820$ $9,200$ $9,700$ $9,600$ $9,700$ Ogle County Residual $6,963$ $7,273$ $8,077$ $8,696$ $10,049$                                                                                                                                                                                                                                                                                                                                                                                                                          | Colona East                | 2,237        | 2,237  | 2,600  | 2,400  | 2,473  |  |  |  |
| Geneseo $6,100$ $6,070$ $6,160$ $6,500$ $6,400$ Kewanee $14,300$ $14,400$ $14,500$ $14,444$ $14,350$ Henry County Residual $13,602$ $12,021$ $12,444$ $13,240$ $12,437$ <b>Jo Daviess County</b> East Dubuque $2,000$ $1,926$ $2,000$ $2,000$ $1,970$ Galena $3,892$ $3,876$ $3,460$ $3,460$ $3,461$ Stockton $1,890$ $1,921$ $1,931$ $1,934$ $1,862$ Jo Daviess County Residual $6,834$ $7,824$ $10,377$ $10,642$ $10,376$ <b>Lee County</b> Amboy $2,410$ $2,500$ $2,650$ $2,600$ $2,600$ Ashton $1,100$ $1,105$ $1,140$ $1,146$ $1,100$ Dixon $15,206$ $15,389$ $16,240$ $16,490$ $16,200$ Lee County Residual $10,194$ $10,661$ $10,976$ $10,642$ $11,293$ Ogle CountyByron $3,100$ $3,025$ $3,000$ $3,300$ $3,100$ Oregon $3,640$ $3,891$ $3,081$ $4,101$ $4,100$ Polo $2,517$ $2,517$ $2,518$ $2,475$ $2,485$ Rochelle $8,820$ $9,200$ $9,700$ $9,600$ $9,700$ Ogle County Residual $6,963$ $7,273$ $8,077$ $8,696$ $10,049$                                                                                                                                                                                                                                                                                                                                                                                                                                                | Galva                      | 3,035        | 2,735  | 2,935  | 2,789  | 2,779  |  |  |  |
| Kewanee14,30014,40014,50014,44414,350Henry County Residual13,60212,02112,44413,24012,437Jo Daviess CountyEast Dubuque2,0001,9262,0002,0001,970Galena3,8923,8763,4603,4613,461Stockton1,8901,9211,9311,9341,862Jo Daviess County Residual6,8347,82410,37710,64210,376Lee CountyAmboy2,4102,5002,6502,6002,600Ashton1,1001,1051,1401,1461,100Dixon15,20615,38916,24016,49016,200Lee County Residual10,19410,66110,97610,64211,293Ogle CountyByron3,1002,6214,1014,1014,000Mt Morris3,1003,0253,0003,3003,100Oregon3,6403,8913,0814,1014,100Polo2,5172,5172,5182,4752,485Rochelle8,8209,2009,7009,6009,700Ogle County Residual6,9637,2738,0778,69610,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Geneseo                    | 6,100        | 6,070  | 6,160  | 6,500  | 6,400  |  |  |  |
| Henry County Residual13,60212,02112,44413,24012,437Jo Daviess CountyEast Dubuque2,0001,9262,0002,0001,970Galena3,8923,8763,4603,4603,461Stockton1,8901,9211,9311,9341,862Jo Daviess County Residual6,8347,82410,37710,64210,376Lee CountyAmboy2,4102,5002,6502,6002,600Ashton1,1001,1051,1401,1461,100Dixon15,20615,38916,24016,49016,200Lee County Residual10,19410,66110,97610,64211,293Ogle CountyByron3,1002,6214,1014,1014,000Mt Morris3,1003,0253,0003,3003,100Oregon3,6403,8913,0814,1014,100Polo2,5172,5172,5182,4752,485Rochelle8,8209,2009,7009,6009,700Ogle County Residual6,9637,2738,0778,69610,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kewanee                    | 14,300       | 14,400 | 14,500 | 14,444 | 14,350 |  |  |  |
| Jo Daviess County           East Dubuque         2,000         1,926         2,000         2,000         1,970           Galena         3,892         3,876         3,460         3,460         3,461           Stockton         1,890         1,921         1,931         1,934         1,862           Jo Daviess County Residual         6,834         7,824         10,377         10,642         10,376           Lee County           Amboy         2,410         2,500         2,650         2,600         2,600           Ashton         1,100         1,105         1,140         1,146         1,100           Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County           Byron         3,100         2,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,                                                                                                                                                                                                                            | Henry County Residual      | 13,602       | 12,021 | 12,444 | 13,240 | 12,437 |  |  |  |
| East Dubuque $2,000$ $1,926$ $2,000$ $2,000$ $1,970$ Galena $3,892$ $3,876$ $3,460$ $3,460$ $3,461$ Stockton $1,890$ $1,921$ $1,931$ $1,934$ $1,862$ Jo Daviess County Residual $6,834$ $7,824$ $10,377$ $10,642$ $10,376$ Lee CountyAmboy $2,410$ $2,500$ $2,650$ $2,600$ $2,600$ Ashton $1,100$ $1,105$ $1,140$ $1,146$ $1,100$ Dixon $15,206$ $15,389$ $16,240$ $16,490$ $16,200$ Lee County Residual $10,194$ $10,661$ $10,976$ $10,642$ $11,293$ Ogle CountyByron $3,100$ $2,621$ $4,101$ $4,101$ $4,000$ Mt Morris $3,100$ $3,025$ $3,000$ $3,300$ $3,100$ Oregon $3,640$ $3,891$ $3,081$ $4,101$ $4,100$ Polo $2,517$ $2,517$ $2,518$ $2,475$ $2,485$ Rochelle $8,820$ $9,200$ $9,700$ $9,600$ $9,700$ Ogle County Residual $6,963$ $7,273$ $8,077$ $8,696$ $10,049$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jo Daviess County          |              |        |        |        |        |  |  |  |
| Galena         3,892         3,876         3,460         3,460         3,461           Stockton         1,890         1,921         1,931         1,934         1,862           Jo Daviess County Residual         6,834         7,824         10,377         10,642         10,376           Lee County         Amboy         2,410         2,500         2,650         2,600         2,600           Ashton         1,100         1,105         1,140         1,146         1,100           Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963 </td <td>East Dubuque</td> <td>2,000</td> <td>1,926</td> <td>2,000</td> <td>2,000</td> <td>1,970</td>                                                                             | East Dubuque               | 2,000        | 1,926  | 2,000  | 2,000  | 1,970  |  |  |  |
| Stockton         1,890         1,921         1,931         1,934         1,862           Jo Daviess County Residual         6,834         7,824         10,377         10,642         10,376           Lee County         Amboy         2,410         2,500         2,650         2,600         2,600           Ashton         1,100         1,105         1,140         1,146         1,100           Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         Byron         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                   | Galena                     | 3,892        | 3,876  | 3,460  | 3,460  | 3,461  |  |  |  |
| Jo Daviess County Residual         6,834         7,824         10,377         10,642         10,376           Lee County         Amboy         2,410         2,500         2,650         2,600         2,600           Ashton         1,100         1,105         1,140         1,146         1,100           Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         Byron         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                            | Stockton                   | 1,890        | 1,921  | 1,931  | 1,934  | 1,862  |  |  |  |
| Lee County           Amboy         2,410         2,500         2,650         2,600         2,600           Ashton         1,100         1,105         1,140         1,146         1,100           Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         Byron         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                        | Jo Daviess County Residual | 6,834        | 7,824  | 10,377 | 10,642 | 10,376 |  |  |  |
| Amboy         2,410         2,500         2,650         2,600         2,600           Ashton         1,100         1,105         1,140         1,146         1,100           Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         Byron         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                                             | Lee County                 |              |        |        |        |        |  |  |  |
| Ashton         1,100         1,105         1,140         1,146         1,100           Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         Byron         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amboy                      | 2,410        | 2,500  | 2,650  | 2,600  | 2,600  |  |  |  |
| Dixon         15,206         15,389         16,240         16,490         16,200           Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ashton                     | 1,100        | 1,105  | 1,140  | 1,146  | 1,100  |  |  |  |
| Lee County Residual         10,194         10,661         10,976         10,642         11,293           Ogle County         Byron         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dixon                      | 15,206       | 15,389 | 16,240 | 16,490 | 16,200 |  |  |  |
| Ogle County           Byron         3,100         2,621         4,101         4,101         4,000           Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lee County Residual        | 10,194       | 10,661 | 10,976 | 10,642 | 11,293 |  |  |  |
| Byron3,1002,6214,1014,1014,000Mt Morris3,1003,0253,0003,3003,100Oregon3,6403,8913,0814,1014,100Polo2,5172,5172,5182,4752,485Rochelle8,8209,2009,7009,6009,700Ogle County Residual6,9637,2738,0778,69610,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ogle County                |              |        |        |        |        |  |  |  |
| Mt Morris         3,100         3,025         3,000         3,300         3,100           Oregon         3,640         3,891         3,081         4,101         4,100           Polo         2,517         2,517         2,518         2,475         2,485           Rochelle         8,820         9,200         9,700         9,600         9,700           Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Byron                      | 3,100        | 2,621  | 4,101  | 4,101  | 4,000  |  |  |  |
| Oregon3,6403,8913,0814,1014,100Polo2,5172,5172,5182,4752,485Rochelle8,8209,2009,7009,6009,700Ogle County Residual6,9637,2738,0778,69610,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mt Morris                  | 3,100        | 3,025  | 3,000  | 3,300  | 3,100  |  |  |  |
| Polo2,5172,5172,5182,4752,485Rochelle8,8209,2009,7009,6009,700Ogle County Residual6,9637,2738,0778,69610,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oregon                     | 3,640        | 3,891  | 3,081  | 4,101  | 4,100  |  |  |  |
| Rochelle8,8209,2009,7009,6009,700Ogle County Residual6,9637,2738,0778,69610,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Polo                       | 2,517        | 2,517  | 2,518  | 2,475  | 2,485  |  |  |  |
| Ogle County Residual         6,963         7,273         8,077         8,696         10,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rochelle                   | 8,820        | 9,200  | 9,700  | 9,600  | 9,700  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ogle County Residual       | 6,963        | 7,273  | 8,077  | 8,696  | 10,049 |  |  |  |

### Table 2.2 Estimated Population Served by Public Water Systems

| Study Area                  | 1990    | 1995    | 2000    | 2005    | 2010    |  |
|-----------------------------|---------|---------|---------|---------|---------|--|
| Rock Island County          |         |         |         |         |         |  |
| East Moline                 | 20,950  | 20,600  | 20,457  | 20,610  | 21,531  |  |
| Milan                       | 6,500   | 5,800   | 6,000   | 5,000   | 5,000   |  |
| Moline                      | 43,500  | 45,550  | 45,300  | 44,000  | 44,483  |  |
| Rock Island                 | 47,500  | 40,630  | 39,864  | 38,702  | 38,084  |  |
| Silvis                      | 6,100   | 6,050   | 6,926   | 6,000   | 7,269   |  |
| Rock Island County Residual | 18,797  | 19,848  | 21,318  | 21,505  | 19,578  |  |
| Stephenson County           |         |         |         |         |         |  |
| Cedarville                  | 750     | 751     | 720     | 750     | 719     |  |
| Freeport                    | 26,126  | 25,910  | 27,500  | 26,443  | 25,800  |  |
| Lena                        | 2,500   | 2,850   | 2,900   | 2,600   | 2,800   |  |
| Stephenson County Residual  | 5,505   | 4,582   | 4,850   | 6,284   | 3,955   |  |
| Whiteside County            |         |         |         |         |         |  |
| Fulton                      | 3,910   | 3,782   | 4,010   | 4,000   | 4,000   |  |
| IL American - Sterling      | 15,000  | 16,100  | 15,000  | 16,400  | 15,451  |  |
| Morrison                    | 4,363   | 4,478   | 4,504   | 4,410   | 4,447   |  |
| Prophetstown                | 2,100   | 1,795   | 2,000   | 2,175   | 2,150   |  |
| Rock Falls                  | 9,652   | 9,000   | 9,700   | 9,669   | 9,700   |  |
| Whiteside County Residual   | 4,583   | 4,453   | 4,860   | 4,611   | 4,463   |  |
| Winnebago County            |         |         |         |         |         |  |
| IL American - South Beloit  | 4,100   | 4,200   | 6,000   | 4,700   | 7,800   |  |
| Loves Park                  | 15,653  | 17,452  | 20,040  | 22,767  | 24,700  |  |
| North Park PWD              | 22,229  | 24,000  | 26,000  | 30,000  | 34,737  |  |
| Rockford                    | 140,000 | 149,000 | 155,000 | 156,000 | 162,296 |  |
| Rockton                     | 2,928   | 4,300   | 4,900   | 7,875   | 7,440   |  |
| Winnebago County Residual   | 15,540  | 17,886  | 20,559  | 23,593  | 39,300  |  |
| REGIONAL TOTAL              | 589,184 | 601,703 | 631,778 | 650,949 | 678,746 |  |

| Study Area                 | 1990  | 1995  | 2000  | 2005  | 2010  |  |  |
|----------------------------|-------|-------|-------|-------|-------|--|--|
| Boone County               |       |       |       |       |       |  |  |
| Belvidere                  | 3.527 | 3.134 | 3.240 | 3.656 | 2.986 |  |  |
| Boone County Residual      | 0.254 | 0.442 | 0.585 | 0.656 | 0.739 |  |  |
| Bureau County              |       |       |       |       |       |  |  |
| Depue                      | 0.192 | 0.211 | 0.171 | 0.265 | 0.199 |  |  |
| Princeton                  | 1.170 | 1.260 | 1.260 | 1.065 | 0.951 |  |  |
| Spring Valley              | 0.611 | 0.658 | 0.647 | 0.692 | 0.852 |  |  |
| Walnut                     | 0.221 | 0.223 | 0.174 | 0.163 | 0.150 |  |  |
| Bureau County Residual     | 1.031 | 1.044 | 1.037 | 1.143 | 0.838 |  |  |
| Carroll County             |       |       |       |       |       |  |  |
| Lanark                     | 0.212 | 0.208 | 0.221 | 0.185 | 0.174 |  |  |
| Mount Carroll              | 0.173 | 0.198 | 0.212 | 0.177 | 0.138 |  |  |
| Savanna                    | 0.638 | 0.671 | 0.494 | 0.456 | 0.423 |  |  |
| Carroll County Residual    | 0.407 | 0.389 | 0.419 | 0.423 | 0.372 |  |  |
| Henry County               |       |       |       |       |       |  |  |
| Cambridge                  | 0.257 | 0.323 | 0.225 | 0.212 | 0.198 |  |  |
| Colona East                | 0.151 | 0.149 | 0.145 | 0.210 | 0.193 |  |  |
| Galva                      | 0.454 | 0.270 | 0.289 | 0.383 | 0.260 |  |  |
| Geneseo                    | 0.646 | 0.651 | 0.657 | 0.705 | 0.647 |  |  |
| Kewanee                    | 1.470 | 1.631 | 1.573 | 1.553 | 1.894 |  |  |
| Henry County Residual      | 1.024 | 1.106 | 1.081 | 1.086 | 0.924 |  |  |
| Jo Daviess County          |       |       |       |       |       |  |  |
| East Dubuque               | 0.245 | 0.240 | 0.218 | 0.201 | 0.196 |  |  |
| Galena                     | 0.811 | 0.641 | 0.831 | 0.671 | 0.431 |  |  |
| Stockton                   | 0.519 | 0.604 | 0.467 | 0.329 | 0.365 |  |  |
| Jo Daviess County Residual | 0.905 | 1.057 | 1.006 | 1.141 | 0.983 |  |  |
| Lee County                 |       |       |       |       |       |  |  |
| Amboy                      | 0.335 | 0.362 | 0.386 | 0.476 | 0.383 |  |  |
| Ashton                     | 0.245 | 0.266 | 0.285 | 0.138 | 0.158 |  |  |
| Dixon                      | 2.326 | 2.515 | 2.410 | 2.325 | 2.304 |  |  |
| Lee County Residual        | 0.952 | 1.183 | 1.233 | 1.411 | 1.240 |  |  |
| Ogle County                |       |       |       |       |       |  |  |
| Byron                      | 0.480 | 0.551 | 0.692 | 0.721 | 0.577 |  |  |
| Mt Morris                  | 0.303 | 0.318 | 0.325 | 0.346 | 0.295 |  |  |
| Oregon                     | 0.433 | 0.414 | 0.409 | 0.416 | 0.373 |  |  |
| Polo                       | 0.246 | 0.274 | 0.260 | 0.260 | 0.205 |  |  |
| Rochelle                   | 3.274 | 2.920 | 3.135 | 2.007 | 2.823 |  |  |
| Ogle County Residual       | 0.768 | 0.805 | 0.814 | 0.963 | 0.848 |  |  |
|                            |       |       |       |       |       |  |  |

## Table 2.3 Historical Public Supply Water Demand (Mgd)

| Study Area                  | 1990   | 1995   | 2000   | 2005   | 2010   |
|-----------------------------|--------|--------|--------|--------|--------|
| Rock Island County          |        |        |        |        |        |
| East Moline                 | 3.703  | 3.658  | 4.615  | 4.292  | 4.415  |
| Milan                       | 0.780  | 0.914  | 0.518  | 0.557  | 0.514  |
| Moline                      | 5.307  | 5.493  | 5.367  | 5.296  | 5.371  |
| Rock Island                 | 4.727  | 5.129  | 5.213  | 5.493  | 5.415  |
| Silvis                      | 0.632  | 0.644  | 0.412  | 0.553  | 0.596  |
| Rock Island County Residual | 2.588  | 2.269  | 1.762  | 2.142  | 1.748  |
| Stephenson County           |        |        |        |        |        |
| Cedarville                  | 0.066  | 0.045  | 0.060  | 0.060  | 0.082  |
| Freeport                    | 4.504  | 4.220  | 3.220  | 3.219  | 2.920  |
| Lena                        | 226    | 0.242  | 0.254  | 0.280  | 0.271  |
| Stephenson County Residual  | 0.428  | 0.467  | 0.465  | 0.480  | 0.366  |
| Whiteside County            |        |        |        |        |        |
| Fulton                      | 0.305  | 0.422  | 0.429  | 0.351  | 0.318  |
| IL American - Sterling      | 2.645  | 2.886  | 2.061  | 1.694  | 1.576  |
| Morrison                    | 0.849  | 0.739  | 0.575  | 0.543  | 0.498  |
| Prophetstown                | 0.219  | 0.217  | 0.225  | 0.269  | 0.188  |
| Rock Falls                  | 1.081  | 1.136  | 1.298  | 1.138  | 0.970  |
| Whiteside County Residual   | 0.345  | 377    | 0.372  | 0.395  | 0.308  |
| Winnebago County            |        |        |        |        |        |
| IL American - South Beloit  | 0.684  | 0.616  | 0.569  | 0.607  | 0.765  |
| Loves Park                  | 3.112  | 3.157  | 2.223  | 3.424  | 3.182  |
| North Park PWD              | 1.848  | 2.283  | 2.735  | 3.651  | 3.477  |
| Rockford                    | 27.190 | 26.323 | 24.575 | 25.639 | 20.221 |
| Rockton                     | 0.539  | 0.715  | 0.695  | 0.914  | 0.807  |
| Winnebago County Residual   | 1.772  | 3.544  | 2.211  | 2.693  | 2.348  |
| REGIONAL TOTAL              | 87.830 | 90.215 | 84.755 | 88.124 | 79.473 |

#### 2.2 Water Demand Model

#### 2.2.1 Explanatory Variables

Substantial data collection and processing were required to estimate explanatory variables to formulate a water demand model. We defined the dependent variable for the public supply sector as gross water demand per capita; in addition to including residential deliveries, this parameter includes deliveries to commercial, industrial, and institutional establishments within the service areas of public water systems (as well as water losses in the transmission, treatment, and distribution systems). Based on preliminary statistical analysis and previous water demand studies, we employed five independent variables to explain the variability of per-capita water demand across study sites and at different time periods: summer-season air temperature, summer-season precipitation, ratio of local employment to local population, marginal price of water, and median household income. Weather data were obtained from the Midwestern Regional Climate Center, Center for Atmospheric Science, ISWS. Data employed for characterizing weather included observations of monthly temperature and precipitation. To characterize weather conditions at each dominant public system and county-residual study area, we sought to employ observations only from within the county. In some cases, however, we were required to use data from outside the county to develop comprehensive datasets (Table 2.4).

We estimated historical employment-to-population ratios for public system service areas using 1990-2010 municipal population data available from the U.S. Census Bureau (U.S. Census Bureau, 1995, 2004, 2014c) and employment totals aggregated by zip code (U.S. Census Bureau, 2015b). Data on median household income were obtained from the U.S. Census Bureau (U.S. Census Bureau, 2014b) and from the U.S. Census Bureau's 2006-2010 American Community Surveys (U.S. Census Bureau, 2014a). Data on historical prices of water were obtained by contacting all individual public water systems and from a survey of Illinois water prices conducted in 2003 (Dziegielewski et al., 2004).

One additional variable was included to account for unspecified changes in water use that will likely influence water demand over time, and it represents general trends in water conservation behavior. This variable accounts for such influences as the increase in water use awareness programs, implementation of federal laws mandating adoption of conservation technologies, and a recent emphasis on adoption of full-cost water pricing. The conservation-trend variable was specified as zero for 1990, 5 for 1995, 10 for 2000, 15 for 2005, and 20 for the year 2010.

| County      | Station Used for Weather<br>Characterization |         |  |
|-------------|----------------------------------------------|---------|--|
| U           | Name                                         | Number* |  |
| Boone       | DeKalb                                       | 112223  |  |
| Bureau      | Princeton                                    | 116998  |  |
| Carroll     | Mt. Carroll                                  | 115901  |  |
| Henry       | Geneseo                                      | 113384  |  |
| Jo Daviess  | Elizabeth                                    | 112745  |  |
| Lee         | Paw Paw                                      | 116661  |  |
| Ogle        | Rochelle                                     | 117354  |  |
| Rock Island | Moline Airport                               | 115751  |  |
| Stephenson  | Elizabeth                                    | 112745  |  |
| Whiteside   | Morrison                                     | 115833  |  |
| Winnebago   | Rockford GTR                                 | 117382  |  |

Table 2.4 Stations Used for Weather Characterization in the Rock River Region

\* National Weather Service (NWS) Cooperative Observer Program (COOP) number (National Climatic Data Center, 2015)

#### 2.2.2 Per-Capita Water Demand Equation

A log-linear regression (see Equation 1.3 in Chapter 1) was applied to capture the relationship between per-capita demand and the explanatory variables. The statistical model explains per-capita water demand as a function of average maximum daily air temperature during the summer landscape irrigation season (May to September), total precipitation during the summer season, the ratio of employment to residential population, the marginal price of water, median household income, and the conservation trend variable.

The estimated coefficients and some statistics of the regression model are shown in Table 2.5. A more detailed description of the estimation procedure and regression results is included in Appendix A.

The estimated elasticities of the explanatory variables in the structural model have the expected signs and magnitudes, although the statistical significance of the coefficients for the two climatic variables is marginal. The variables with low significance are retained in the model because the signs and magnitudes of the regression coefficients are close to expected values, and low significance is caused primarily by high variance (i.e., noise) in the data. The constant elasticity of the summer-season average maximum air temperature variable indicates that, on average, a 1.00000 percent increase in temperature increases per-capita water demand by 1.13185 percent. The negative constant elasticity of the summer rainfall variable signifies that, on average, a 1.00000 percent increase in total summer precipitation decreases per-capita water demand by 0.05946 percent. Similarly, a 1.00000 percent increase in the marginal price of water is associated with a 0.19770 percent decrease in per-capita water demand, and a 1.00000 percent increase in median household income results in a 0.12183 percent increase in per-capita demand.

The coefficient of the variable representing the employment-to-population ratio (0.50331) indicates that in study areas with higher commercial/industrial employment relative to resident population, per-capita water demand is greater.

The estimated coefficient of the conservation trend variable is -0.00412. It indicates that historical data exhibit a significant declining trend in per-capita water demand, which we attribute to water conservation, of approximately 0.4 percent per year.

The regression model explains 35 percent of time-series and cross-sectional variance in log-transformed per-capita water demand. This level of explanation is consistent with results of similar regional studies of municipal water demand in Illinois and other regions in the U.S. The level of explanation is often found to be less than 50 percent when regression models are fitted to cross-sectional time series data. An additional measure of the performance of the regression model is the mean absolute percent error (MAPE) of the model's estimation of the data used to estimate the regression equation. The MAPE of the log model is 4 percent (19.2 percent when predictions are converted back to the linear scale).

| Variables*                   | Estimated<br>Coefficient | t Ratio | Probability<br>> t |
|------------------------------|--------------------------|---------|--------------------|
| Intercept                    | -0.42031                 | -0.10   | 0.9208             |
| Max. summer temperature (ln) | 1.13185                  | 1.21    | 0.2271             |
| Summer precipitation (ln)    | -0.05946                 | -1.05   | 0.2961             |
| Employment-population ratio  | 0.50331                  | 8.01    | < 0.0001           |
| Marginal price of water (ln) | -0.12183                 | 1.35    | 0.1793             |
| Median household income (ln) | 0.19770                  | -5.75   | < 0.0001           |
| Conservation trend           | -0.00412                 | -1.40   | 0.1616             |

Table 2.5 Estimated Log-Linear Model of Per-Capita Water Demand (gpcd)

\*Other model parameters are listed in Appendix A.

#### 2.2.3 Estimated and Reported Water Demand in 2010

We used the water-demand equation to estimate both historical and future per-capita water demand in each of the 53 study areas (including 42 dominant public water systems and 11 county-residual study areas). In order to assess the performance of the model (shown in Table 2.5), the reported and estimated (uncalibrated) per-capita water demand in 2010 in each dominant public water system and in combined public systems within county-residual study areas were compared (Table 2.6). In most cases, the differences between the model-estimated and reported values were relatively small.

In some cases, mostly for county-residual areas, the differences between the modelestimated and reported values were significant, contributing to the MAPE across all 53 study areas of 24.2 percent (when results are converted back to linear scale). Before using the model to generate predictions for all future years, the model was "calibrated" by adjusting its intercept to match exactly the estimated water usage in 2010 with the reported water demand in 2010. From a statistical perspective, the calibration involved adding back the model residuals for 2010 to the predicted values for 2010 and all future years.

| Study Area                 | Estimated Demand (gpcd)* | Reported Demand<br>(gpcd) |
|----------------------------|--------------------------|---------------------------|
|                            | Boone County             |                           |
| Belvidere                  | 118.6                    | 116.1                     |
| Boone County Residual      | 130.9                    | 77.0                      |
|                            | Bureau County            |                           |
| Depue                      | 88.4                     | 104.5                     |
| Princeton                  | 127.3                    | 124.2                     |
| Spring Valley              | 130.5                    | 157.8                     |
| Walnut                     | 116.3                    | 100.4                     |
| Bureau County Residual     | 90.6                     | 93.8                      |
|                            | Carroll County           |                           |
| Lanark                     | 105.0                    | 108.9                     |
| Mount Carroll              | 97.1                     | 79.3                      |
| Savanna                    | 122.1                    | 135.6                     |
| Carroll County Residual    | 93.5                     | 122.9                     |
|                            | Henry County             |                           |
| Cambridge                  | 108.3                    | 94.1                      |
| Colona East                | 121.8                    | 78.1                      |
| Galva                      | 120.6                    | 93.7                      |
| Geneseo                    | 151.4                    | 101.1                     |
| Kewanee                    | 91.7                     | 132.0                     |
| Henry County Residual      | 101.3                    | 74.3                      |
| Jo                         | Daviess County           |                           |
| East Dubuque               | 124.9                    | 99.3                      |
| Galena                     | 142.4                    | 124.6                     |
| Stockton                   | 112.5                    | 195.8                     |
| Jo Daviess County Residual | 87.6                     | 94.7                      |
|                            | Lee County               |                           |
| Amboy                      | 83.8                     | 147.1                     |
| Ashton                     | 135.7                    | 143.4                     |
| Dixon                      | 118.6                    | 142.2                     |
| Lee County Residual        | 95.5                     | 109.8                     |
|                            | Ogle County              |                           |
| Byron                      | 124.3                    | 144.2                     |
| Mt Morris                  | 110.1                    | 95.2                      |
| Oregon                     | 130.3                    | 90.9                      |
| Polo                       | 106.5                    | 82.3                      |
| Rochelle                   | 132.6                    | 291.1                     |
| Ogle County Residual       | 89.7                     | 84.4                      |

#### Table 2.6 Estimated (Uncalibrated) and Reported Per-Capita Water Demand in 2010

| Study Area                  | Estimated Demand<br>(gpcd)* | Reported Demand<br>(gpcd) |  |  |
|-----------------------------|-----------------------------|---------------------------|--|--|
| Rock Island County          |                             |                           |  |  |
| East Moline                 | 101.6                       | 205.0                     |  |  |
| Milan                       | 170.3                       | 102.9                     |  |  |
| Moline                      | 122.8                       | 120.7                     |  |  |
| Rock Island                 | 113.8                       | 142.2                     |  |  |
| Silvis                      | 104.8                       | 82.0                      |  |  |
| Rock Island County Residual | 106.3                       | 89.3                      |  |  |
| Stephenson County           |                             |                           |  |  |
| Cedarville                  | 107.9                       | 114.2                     |  |  |
| Freeport                    | 125.2                       | 113.2                     |  |  |
| Lena                        | 114.8                       | 96.7                      |  |  |
| Stephenson County Residual  | 88.7                        | 92.6                      |  |  |
| Whiteside County            |                             |                           |  |  |
| Fulton                      | 115.4                       | 79.5                      |  |  |
| IL American - Sterling      | 112.3                       | 102.0                     |  |  |
| Morrison                    | 107.3                       | 111.9                     |  |  |
| Prophetstown                | 123.2                       | 87.3                      |  |  |
| Rock Falls                  | 109.2                       | 100.0                     |  |  |
| Whiteside County Residual   | 91.4                        | 68.9                      |  |  |
| Winnebago County            |                             |                           |  |  |
| IL American - South Beloit  | 110.7                       | 98.1                      |  |  |
| Loves Park                  | 112.0                       | 128.8                     |  |  |
| North Park PWD              | 97.9                        | 100.1                     |  |  |
| Rockford                    | 157.7                       | 124.6                     |  |  |
| Rockton                     | 124.4                       | 108.4                     |  |  |
| Winnebago County Residual   | 114.4                       | 59.7                      |  |  |

\*For calculating forecast values, the model predictions for 2010 and all future years were calibrated to reproduce the 2010 values in the "Reported" column.
## 2.2.4 Water Withdrawals by Source

Table 2.7 shows the percentages of demand satisfied by groundwater and surface water in 2010 by the dominant public systems and by public systems in the county-residual areas. Although the comparatively large public water systems in Rock Island County rely partially or completely on surface water to satisfy public water demand, all of the reminaing public water systems in the Rock River region, including the large systems in Winnebago County, rely completely on groundwater. Overall, groundwater satisfied 80 percent of public system demand in the region in 2010.

| Nudy Area         Mgd         %         Mgd         %           Boone County Residual         0.739         100         0         0           Boone County Residual         0.739         100         0         0           Beone County Residual         0.739         100         0         0           Depue         0.199         100         0         0         0           Spring Valley         0.852         100         0         0         0           Walnut         0.150         100         0         0         0           Bureau County Residual         0.838         100         0         0         0           Muant         0.152         100         0         0         0         0           Muant         0.153         100         0         0         0         0         0           Muant         0.153         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                 | Study Anos                 | Ground       | dwater | Surface Water |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------|---------------|---|
| Boone County Residual         2.986         100         0           Boone County Residual         0.739         100         0         0           Bureau County Residual         0.199         100         0         0           Pepue         0.199         100         0         0         0           Spring Valley         0.852         100         0         0         0           Spring Valley         0.852         100         0         0         0           Bureau County Residual         0.838         100         0         0         0           Bureau County Residual         0.174         100         0         0         0           Mount Carroll         0.138         100         0         0         0           Savanna         0.423         100         0         0         0           Carroll County Residual         0.372         100         0         0         0           Galva         0.198         100         0         0         0         0         0           Galva         0.194         100         0         0         0         0         0         0         0         0 <td< th=""><th>Study Area</th><th>Mgd</th><th>%</th><th>Mgd</th><th>%</th></td<> | Study Area                 | Mgd          | %      | Mgd           | % |
| Belvidere         2.986         100         0         0           Boone County Residual         0.739         100         0         0           Bureau County         Depue         0.199         100         0         0           Princeton         0.951         100         0         0         0           Spring Valley         0.852         100         0         0         0           Bureau County Residual         0.838         100         0         0         0           Bureau County Residual         0.838         100         0         0         0           Lanark         0.174         100         0         0         0         0           Mount Carroll         0.138         100         0         0         0         0           Savanna         0.423         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                      |                            | Boone Co     | unty   |               |   |
| Boone County Residual         0.739         100         0         0           Bureau County           Depue         0.199         100         0         0           Princeton         0.951         100         0         0           Spring Valley         0.852         100         0         0           Bureau County Residual         0.150         100         0         0           Bureau County Residual         0.838         100         0         0           Mount Carroll         0.174         100         0         0           Mount Carroll         0.138         100         0         0           Carroll County Residual         0.372         100         0         0           Cambridge         0.198         100         0         0         0           Cambridge         0.193         100         0         0         0         0           Genesco         0.647         100         0         0         0         0         0           Genesco         0.647         100         0         0         0         0         0         0         0           Galena         0.431         <                                                                                      | Belvidere                  | 2.986        | 100    | 0             | 0 |
| Bureau County           Depue         0.199         100         0         0           Princeton         0.951         100         0         0           Spring Valley         0.852         100         0         0           Wahut         0.150         100         0         0         0           Bureau County Residual         0.838         100         0         0         0           Carroll County           Lanark         0.174         100         0         0         0           Mount Carroll         0.138         100         0         0         0           Savanna         0.423         100         0         0         0           Carroll County Residual         0.372         100         0         0           Caroll County Residual         0.372         100         0         0         0           Caroll County Residual         0.198         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Boone County Residual</td> <td>0.739</td> <td>100</td> <td>0</td> <td>0</td>                     | Boone County Residual      | 0.739        | 100    | 0             | 0 |
| Depue         0.199         100         0         0           Princeton         0.951         100         0         0           Spring Valley         0.852         100         0         0           Walnut         0.150         100         0         0           Bureau County Residual         0.838         100         0         0           Bureau County Residual         0.838         100         0         0           Mount Carroll         0.138         100         0         0           Mount Carroll         0.138         100         0         0           Savanna         0.423         100         0         0           Carroll County Residual         0.372         100         0         0           Carroll County Residual         0.372         100         0         0           Galva         0.260         100         0         0         0           Galva         0.260         100         0         0         0           Galena         0.431         100         0         0         0           Jo Daviess County         0.365         100         0         0         0                                                                                           |                            | Bureau Co    | ounty  |               |   |
| Princeton         0.951         100         0         0           Spring Valley         0.852         100         0         0           Walnut         0.150         100         0         0           Bureau County Residual         0.838         100         0         0           Carroll County         County         Carroll County         0         0           Lanark         0.174         100         0         0         0           Mount Carroll         0.138         100         0         0         0           Savanna         0.423         100         0         0         0           Carroll County Residual         0.372         100         0         0         0           Carroll County Residual         0.372         100         0         0         0           Carroll County Residual         0.198         100         0         0         0           Galva         0.260         100         0         0         0         0           Galva         0.260         100         0         0         0         0           Galva         0.365         100         0         0                                                                                           | Depue                      | 0.199        | 100    | 0             | 0 |
| Spring Valley         0.852         100         0         0           Walnut         0.150         100         0         0           Bureau County Residual         0.838         100         0         0           Carroll County           Lanark         0.174         100         0         0           Mount Carroll         0.138         100         0         0           Savanna         0.423         100         0         0           Carroll County Residual         0.372         100         0         0           Carroll County Residual         0.372         100         0         0           Cambridge         0.198         100         0         0         0           Colona East         0.193         100         0         0         0           Genesco         0.647         100         0         0         0           Kewanee         1.894         100         0         0         0           Galena         0.431         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0         0           J                                                                                                     | Princeton                  | 0.951        | 100    | 0             | 0 |
| Walnut         0.150         100         0         0           Bureau County Residual         0.838         100         0         0           Carroll County           Lanark         0.174         100         0         0           Mount Carroll         0.138         100         0         0           Savanna         0.423         100         0         0           Carroll County Residual         0.372         100         0         0           Carbridge         0.198         100         0         0         0           Colona East         0.193         100         0         0         0           Galva         0.260         100         0         0         0           Genesco         0.647         100         0         0         0           Kewanee         1.894         100         0         0         0           Henry County Residual         0.924         100         0         0         0           Jo Daviess County         0.365         100         0         0         0         0           Jo Daviess County Residual         0.983         100         0                                                                                                      | Spring Valley              | 0.852        | 100    | 0             | 0 |
| Bureau County Residual         0.838         100         0         0           Carroll County           Lanark         0.174         100         0         0         0           Mount Carroll         0.138         100         0         0         0           Savanna         0.423         100         0         0         0           Carroll County Residual         0.372         100         0         0         0           Cambridge         0.198         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Walnut</td> <td>0.150</td> <td>100</td> <td>0</td> <td>0</td>                                                                    | Walnut                     | 0.150        | 100    | 0             | 0 |
| Carroll Course           Lanark         0.174         100         0         0           Mount Carroll         0.138         100         0         0           Savanna         0.423         100         0         0         0           Carroll County Residual         0.372         100         0         0         0           Carroll County Residual         0.372         100         0         0         0           Cambridge         0.198         100         0         0         0         0           Colona East         0.193         100         0         0         0         0           Galva         0.260         100         0         0         0         0           Geneseo         0.647         100         0         0         0         0           Kewanee         1.894         100         0         0         0         0           Henry County Residual         0.924         100         0         0         0         0           Galena         0.431         100         0         0         0         0         0         0         0         0         0         0                                                                                                  | Bureau County Residual     | 0.838        | 100    | 0             | 0 |
| Lanark         0.174         100         0         0           Mount Carroll         0.138         100         0         0           Savanna         0.423         100         0         0           Carroll County Residual         0.372         100         0         0           Earry County         East         0.193         100         0         0           Galva         0.260         100         0         0         0           Ganeseo         0.647         100         0         0         0           Kewanee         1.894         100         0         0         0           Henry County Residual         0.924         100         0         0         0           Kewanee         1.894         100         0         0         0         0           Jo Daviess County         0.365         100         0         0         0         0           Galena         0.431         100         0         0         0         0         0           Jo Daviess County Residual         0.983         100         0         0         0         0         0         0         0         0                                                                                              |                            | Carroll Co   | ounty  |               |   |
| Mount Carroll         0.138         100         0         0           Savanna         0.423         100         0         0           Carroll County Residual         0.372         100         0         0           Cambridge         0.198         100         0         0         0           Cambridge         0.193         100         0         0         0           Galva         0.260         100         0         0         0           Geneseo         0.647         100         0         0         0           Kewanee         1.894         100         0         0         0           Henry County Residual         0.924         100         0         0         0           Kewanee         1.894         100         0         0         0         0           East Dubuque         0.196         100         0         0         0         0         0           Galena         0.431         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                         | Lanark                     | 0.174        | 100    | 0             | 0 |
| Savanna         0.423         100         0         0           Carroll County Residual         0.372         100         0         0         0           Henry County           Cambridge         0.198         100         0         0         0           Cambridge         0.193         100         0         0         0           Galva         0.260         100         0         0         0           Geneseo         0.647         100         0         0         0           Kewanee         1.894         100         0         0         0           Henry County Residual         0.924         100         0         0         0           Kewanee         1.894         100         0         0         0         0           Bast Dubuque         0.196         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                   | Mount Carroll              | 0.138        | 100    | 0             | 0 |
| Carroll County Residual         0.372         100         0         0           Henry County           Cambridge         0.198         100         0         0         0           Cambridge         0.198         100         0         0         0         0           Cambridge         0.193         100         0         0         0         0         0           Galva         0.260         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                      | Savanna                    | 0.423        | 100    | 0             | 0 |
| Henry County           Cambridge         0.198         100         0         0         0           Colona East         0.193         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                            | Carroll County Residual    | 0.372        | 100    | 0             | 0 |
| Cambridge         0.198         100         0         0           Colona East         0.193         100         0         0           Galva         0.260         100         0         0           Genesco         0.647         100         0         0           Kewanee         1.894         100         0         0           Henry County Residual         0.924         100         0         0           Daviess County         East Dubuque         0.196         100         0         0           Galena         0.431         100         0         0         0           Galena         0.431         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0           Jo Daviess County Residual         0.983         100         0         0           Amboy         0.383         100         0         0           Dixon         2.304         100         0         0           Dixon         2.304         100         0         0           Dixon         0.577         100         0         0           Oregon                                                                                                        |                            | Henry Co     | unty   |               |   |
| Colona East         0.193         100         0         0           Galva         0.260         100         0         0         0           Geneseo         0.647         100         0         0         0           Kewanee         1.894         100         0         0         0           Henry County Residual         0.924         100         0         0         0           Jo Daviess County           East Dubuque         0.196         100         0         0         0           Galena         0.431         100         0         0         0           Galena         0.431         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0           Jo Daviess County Residual         0.983         100         0         0           Jo Daviess County Residual         0.158         100         0         0           Joixon         2.304         100         0         0         0           Dixon         2.304         100         0         0         0           Byron         0.577         100         0                                                                                                    | Cambridge                  | 0.198        | 100    | 0             | 0 |
| Galva         0.260         100         0         0           Geneseo         0.647         100         0         0           Kewanee         1.894         100         0         0           Henry County Residual         0.924         100         0         0           Jo Daviess County         East Dubuque         0.196         100         0         0           Galena         0.431         100         0         0         0           Galena         0.431         100         0         0         0           Galena         0.431         100         0         0         0           Stockton         0.365         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0           Journe         Lee County         0         0         0         0           Amboy         0.383         100         0         0         0         0         0           Dixon         2.304         100         0         0         0         0         0           Byron         0.577         100         0         0         0 <td>Colona East</td> <td>0.193</td> <td>100</td> <td>0</td> <td>0</td>                                | Colona East                | 0.193        | 100    | 0             | 0 |
| Geneseo         0.647         100         0         0           Kewanee         1.894         100         0         0           Henry County Residual         0.924         100         0         0           Jo Daviess County         East Dubuque         0.196         100         0         0           Galena         0.431         100         0         0         0           Galena         0.431         100         0         0         0           Stockton         0.365         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0         0           Maboy         0.383         100         0         0         0         0           Dixon         2.304         100         0         0         0         0           Dixon         2.304         100         0         0         0         0           Dixon         0.577         100         0         0         0         0         0           Oregon         0.373                                                                                                  | Galva                      | 0.260        | 100    | 0             | 0 |
| Kewanee         1.894         100         0         0           Henry County Residual         0.924         100         0         0           Jo Daviess County         East Dubuque         0.196         100         0         0           Galena         0.431         100         0         0         0           Stockton         0.365         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0         0           Jo Daviess County Residual         0.983         100         0         0         0         0           Mboy         0.383         100         0         0         0         0         0           Ashton         0.158         100         0         0         0         0         0           Dixon         2.304         100         0         0         0         0         0           Byron         0.577         100         0         0         0         0         0           Oregon         0.373         100         0         0         0         0         0           Polo         0.205         100                                                                                            | Geneseo                    | 0.647        | 100    | 0             | 0 |
| Henry County Residual         0.924         100         0         0           Jo Daviess County         East Dubuque         0.196         100         0         0         0           Galena         0.431         100         0         0         0         0         0           Galena         0.431         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Kewanee</td> <td>1.894</td> <td>100</td> <td>0</td> <td>0</td>                   | Kewanee                    | 1.894        | 100    | 0             | 0 |
| Jo Daviess County           East Dubuque         0.196         100         0         0         0           Galena         0.431         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                         | Henry County Residual      | 0.924        | 100    | 0             | 0 |
| East Dubuque         0.196         100         0         0           Galena         0.431         100         0         0           Stockton         0.365         100         0         0           Jo Daviess County Residual         0.983         100         0         0           Lee County         Amboy         0.383         100         0         0           Ashton         0.158         100         0         0         0           Dixon         2.304         100         0         0         0           Dixon         0.577         100         0         0         0           Ogle County         0.373         100         0         0         0           Oregon         0.373         100         0         0         0         0         0           Old                                                                                                                            |                            | Jo Daviess ( | County |               |   |
| Galena         0.431         100         0         0           Stockton         0.365         100         0         0           Jo Daviess County Residual         0.983         100         0         0           Amboy         0.383         100         0         0           Amboy         0.383         100         0         0           Ashton         0.158         100         0         0           Dixon         2.304         100         0         0           Lee County Residual         1.240         100         0         0           Dixon         2.304         100         0         0         0           Byron         0.577         100         0         0         0           Mt Morris         0.295         100         0         0         0           Oregon         0.373         100         0         0         0           Polo         0.205         100         0         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                      | East Dubuque               | 0.196        | 100    | 0             | 0 |
| Stockton         0.365         100         0         0           Jo Daviess County Residual         0.983         100         0         0           Lee County         County         0.383         100         0         0           Amboy         0.383         100         0         0         0           Ashton         0.158         100         0         0           Dixon         2.304         100         0         0           Lee County Residual         1.240         100         0         0           Dixon         0.577         100         0         0           Byron         0.577         100         0         0           Oregon         0.373         100         0         0           Polo         0.205         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                           | Galena                     | 0.431        | 100    | 0             | 0 |
| Jo Daviess County Residual         0.983         100         0         0           Lee County         Amboy         0.383         100         0         0           Amboy         0.383         100         0         0         0           Ashton         0.158         100         0         0         0           Dixon         2.304         100         0         0         0           Lee County Residual         1.240         100         0         0         0           Dixon         2.304         100         0         0         0           Lee County Residual         1.240         100         0         0         0           Byron         0.577         100         0         0         0           Mt Morris         0.295         100         0         0         0           Oregon         0.373         100         0         0         0           Polo         0.205         100         0         0         0           Ogle County Residual         0.848         100         0         0         0                                                                                                                                                                           | Stockton                   | 0.365        | 100    | 0             | 0 |
| Lee CountyAmboy0.38310000Ashton0.15810000Dixon2.30410000Lee County Residual1.24010000Ogle CountyByron0.57710000Mt Morris0.29510000Oregon0.37310000Polo0.20510000Rochelle2.82310000Ogle County Residual0.84810000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jo Daviess County Residual | 0.983        | 100    | 0             | 0 |
| Amboy         0.383         100         0         0           Ashton         0.158         100         0         0           Dixon         2.304         100         0         0           Lee County Residual         1.240         100         0         0           Ogle County         Ogle County         0         0         0           Byron         0.577         100         0         0         0           Oregon         0.373         100         0         0         0           Polo         0.205         100         0         0         0           Rochelle         2.823         100         0         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Lee Cou      | nty    |               |   |
| Ashton         0.158         100         0         0           Dixon         2.304         100         0         0         0           Lee County Residual         1.240         100         0         0         0           Ogle County         Ogle County         0         0         0         0         0           Byron         0.577         100         0         0         0         0         0           Mt Morris         0.295         100         0         0         0         0         0           Oregon         0.373         100         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Amboy</td> <td>0.383</td> <td>100</td> <td>0</td> <td>0</td>                                    | Amboy                      | 0.383        | 100    | 0             | 0 |
| Dixon         2.304         100         0         0           Lee County Residual         1.240         100         0         0           Ogle County           Byron         0.577         100         0         0           Mt Morris         0.295         100         0         0           Oregon         0.373         100         0         0           Polo         0.205         100         0         0           Rochelle         2.823         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ashton                     | 0.158        | 100    | 0             | 0 |
| Lee County Residual         1.240         100         0         0           Ogle County           Byron         0.577         100         0         0           Mt Morris         0.295         100         0         0           Oregon         0.373         100         0         0           Polo         0.205         100         0         0           Rochelle         2.823         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dixon                      | 2.304        | 100    | 0             | 0 |
| Ogle County           Byron         0.577         100         0         0           Mt Morris         0.295         100         0         0           Oregon         0.373         100         0         0           Polo         0.205         100         0         0           Rochelle         2.823         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lee County Residual        | 1.240        | 100    | 0             | 0 |
| Byron0.57710000Mt Morris0.29510000Oregon0.37310000Polo0.20510000Rochelle2.82310000Ogle County Residual0.84810000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | Ogle Cou     | inty   |               |   |
| Mt Morris         0.295         100         0         0           Oregon         0.373         100         0         0           Polo         0.205         100         0         0           Rochelle         2.823         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Byron                      | 0.577        | 100    | 0             | 0 |
| Oregon         0.373         100         0         0           Polo         0.205         100         0         0           Rochelle         2.823         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mt Morris                  | 0.295        | 100    | 0             | 0 |
| Polo         0.205         100         0         0           Rochelle         2.823         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oregon                     | 0.373        | 100    | 0             | 0 |
| Rochelle         2.823         100         0         0           Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Polo                       | 0.205        | 100    | 0             | 0 |
| Ogle County Residual         0.848         100         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rochelle                   | 2.823        | 100    | 0             | 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ogle County Residual       | 0.848        | 100    | 0             | 0 |

# Table 2.7 Source of 2010 Reported Water Demand

| Stude Area                  | Groun       | dwater | Surface | e Water |  |  |  |  |  |
|-----------------------------|-------------|--------|---------|---------|--|--|--|--|--|
| Study Area                  | Mgd         | %      | Mgd     | %       |  |  |  |  |  |
|                             | Rock Island | County |         |         |  |  |  |  |  |
| East Moline                 | 0           | 0      | 4.415   | 100     |  |  |  |  |  |
| Milan                       | 0.508       | 99     | 0.006   | 1       |  |  |  |  |  |
| Moline                      | 0           | 0      | 5.371   | 100     |  |  |  |  |  |
| Rock Island                 | 0           | 0      | 5.415   | 100     |  |  |  |  |  |
| Silvis                      | 0.596       | 100    | 0       | 0       |  |  |  |  |  |
| Rock Island County Residual | 1.227       | 70     | 0.522   | 30      |  |  |  |  |  |
|                             | Stephenson  | County |         |         |  |  |  |  |  |
| Cedarville                  | 0.082       | 100    | 0       | 0       |  |  |  |  |  |
| Freeport                    | 2.920       | 100    | 0       | 0       |  |  |  |  |  |
| Lena                        | 0.271       | 100    | 0       | 0       |  |  |  |  |  |
| Stephenson County Residual  | 0.366       | 100    | 0       | 0       |  |  |  |  |  |
| Whiteside County            |             |        |         |         |  |  |  |  |  |
| Fulton                      | 0.318       | 100    | 0       | 0       |  |  |  |  |  |
| IL American - Sterling      | 1.576       | 100    | 0       | 0       |  |  |  |  |  |
| Morrison                    | 0.498       | 100    | 0       | 0       |  |  |  |  |  |
| Prophetstown                | 0.188       | 100    | 0       | 0       |  |  |  |  |  |
| Rock Falls                  | 0.970       | 100    | 0       | 0       |  |  |  |  |  |
| Whiteside County Residual   | 0.308       | 100    | 0       | 0       |  |  |  |  |  |
|                             | Winnebago   | County |         |         |  |  |  |  |  |
| IL American - South Beloit  | 0.765       | 100    | 0       | 0       |  |  |  |  |  |
| Loves Park                  | 3.182       | 100    | 0       | 0       |  |  |  |  |  |
| North Park PWD              | 3.477       | 100    | 0       | 0       |  |  |  |  |  |
| Rockford                    | 20.221      | 100    | 0       | 0       |  |  |  |  |  |
| Rockton                     | 0.807       | 100    | 0       | 0       |  |  |  |  |  |
| Winnebago County Residual   | 2.348       | 100    | 0       | 0       |  |  |  |  |  |
| REGIONAL TOTAL              | 63.745      | 80     | 15.728  | 20      |  |  |  |  |  |

## 2.3 Characterization of Future Water Demand Scenarios

#### 2.3.1 Future Change in Population Served

The main driver of future water demand in the public supply sector is population served. As discussed in Appendix B, we developed estimates of future county resident population from historical county-level population counts (1920-2000) (U.S. Census Bureau, 1995, 2004), estimates of 2010-2014 population on July 1 of each year (U.S. Census Bureau, 2015a), and available projections of 2015-2025 county population developed by the Illinois Department of Public Health (Data.Illinois.gov, 2018). Table 2.8 shows county resident population, both reported and projected, in the Rock River region between 2010 and 2060.

The results in Table 2.8 show that for the 11-county region, total resident population is expected to increase from 815,858 to 871,040 during the period 2010 to 2060, an increase of 55,182 persons, or 7 percent. The greatest absolute population increase is projected for Winnebago County, and the greatest decrease is projected for Whiteside County. In relative terms, the greatest percent increase is projected for Boone County, and the greatest percent decrease is for Carroll County. Changes in resident population will result in changes in population served by public water systems.

To estimate the future population served by public water systems, we employed an approach similar to the approach we used to estimate future county resident population. For each study area, including county-residual study areas, we plotted 1990-2005 counts and estimates (U.S. Census Bureau, 1995, 2004, 2015a) and 2010-2014 estimates (U.S. Census Bureau, 2015a) of municipal resident population, and we fit a linear trend line to these data. If this trend line displayed an upward trend that was statistically significant ( $R^2 \ge 0.2$ ), we employed the trend line equation to estimate a 2060 resident population. From this value, we estimated the 2060 population served using the proportionality of 2010 resident population to 2010 population served. We then used the 2010 and 2060 population-served estimates as input values to estimate the population served for intervening years, on a five-year basis, using the Home/Fill/Series .../Linear utility in Microsoft Excel 2013 (Microsoft Corporation, 2003), ensuring that the Trend box was checked. For public systems in which the historical counts and estimates displayed a downward trend or an upward trend with  $R^2 < 0.2$ , we maintained the population served at the 2010 level to 2060. We employed the difference between county sums of resident population and population served to estimate each county's population served by domestic wells (Chapter 3), validating this estimate by dividing it by an estimate of the total number of active domestic wells in the county to ensure that the computation yields a value of about 2 to 4 persons per domestic well. In a few cases, this validation procedure suggested that our computation of the selfsupplied domestic population was too low, so we used an alternative approach of computing the population served by individual systems in which we assumed that the population served from 2015 to 2060 was maintained at the 2010 proportion of county resident population.

Table 2.9 shows projected changes in future population served by the 42 dominant (community) public water supply systems included in the study. The values in Table 2.9 show that for the combined 42 systems, total population served is expected to increase between 2010 and 2060 from 545,731 to 682,360, an increase of 136,629 persons (approximately 25 percent). Estimates of population served by public water systems in county-residual areas are shown in Appendix A.

| County                | Reported<br>Population | Proje                    | ected Popula            | ation             | 2010-2060 | 2010-2060<br>Change |
|-----------------------|------------------------|--------------------------|-------------------------|-------------------|-----------|---------------------|
|                       | 2010 <sup>1</sup>      | <b>2020</b> <sup>2</sup> | <b>2040<sup>3</sup></b> | 2060 <sup>3</sup> | Change    | (%)                 |
| Boone                 | 54,144                 | 61,504                   | 69,084                  | 76,814            | 22,670    | 42                  |
| Bureau                | 34,905                 | 33,681                   | 33,681                  | 33,681            | -1,224    | -4                  |
| Carroll               | 15,364                 | 14,169                   | 14,169                  | 14,169            | -1,195    | -8                  |
| Henry                 | 50,432                 | 48,233                   | 48,233                  | 48,233            | -2,199    | -4                  |
| Jo Daviess            | 22,660                 | 22,137                   | 22,137                  | 22,137            | -523      | -2                  |
| Lee                   | 35,970                 | 36,066                   | 36,349                  | 36,645            | 675       | 2                   |
| Ogle                  | 53,448                 | 54,316                   | 56,417                  | 58,521            | 5,073     | 9                   |
| Rock Island           | 147,632                | 147,267                  | 152,651                 | 158,035           | 10,403    | 7                   |
| Stephenson            | 47,680                 | 46,242                   | 46,242                  | 46,242            | -1,438    | -3                  |
| Whiteside             | 58,472                 | 55,267                   | 55,267                  | 55,267            | -3,205    | -5                  |
| Winnebago             | 295,151                | 302,258                  | 311,687                 | 321,297           | 26,146    | 9                   |
| <b>REGIONAL TOTAL</b> | 815,858                | 821,140                  | 845,916                 | 871,040           | 55,182    | 7                   |

Table 2.8 Reported and Projected Resident Population (2010-2060)

<sup>1</sup>(U.S. Census Bureau, 2014c) <sup>2</sup>IDPH projection (Data.Illinois.gov, 2018) <sup>3</sup>See Appendix B

| Public Water System | Reported<br>Population<br>Served | Projected   | Populatior | 2010-2060<br>Change | 2010-2060<br>Change<br>(%) |       |  |  |  |  |  |
|---------------------|----------------------------------|-------------|------------|---------------------|----------------------------|-------|--|--|--|--|--|
|                     | 2010                             | 2020        | 2040       | 2060                |                            | (,,,) |  |  |  |  |  |
| Boone County        |                                  |             |            |                     |                            |       |  |  |  |  |  |
| Belvidere           | 25,720                           | 29,883      | 38,210     | 46,536              | 20,816                     | 81    |  |  |  |  |  |
|                     |                                  | Bureau (    | County     |                     |                            |       |  |  |  |  |  |
| Depue               | 1,905                            | 1,905       | 1,905      | 1,905               | 0                          | 0     |  |  |  |  |  |
| Princeton           | 7,660                            | 7,768       | 7,984      | 8,200               | 540                        | 7     |  |  |  |  |  |
| Spring Valley       | 5,398                            | 5,453       | 5,562      | 5,672               | 274                        | 5     |  |  |  |  |  |
| Walnut              | 1,491                            | 1,491       | 1,491      | 1,491               | 0                          | 0     |  |  |  |  |  |
|                     | ·                                | Carroll (   | County     |                     |                            |       |  |  |  |  |  |
| Lanark              | 1,598                            | 1,598       | 1,598      | 1,598               | 0                          | 0     |  |  |  |  |  |
| Mount Carroll       | 1,742                            | 1,742       | 1,742      | 1,742               | 0                          | 0     |  |  |  |  |  |
| Savanna             | 3,122                            | 3,122       | 3,122      | 3,122               | 0                          | 0     |  |  |  |  |  |
|                     |                                  | Henry C     | County     |                     |                            |       |  |  |  |  |  |
| Cambridge           | 2,108                            | 2,108       | 2,108      | 2,108               | 0                          | 0     |  |  |  |  |  |
| Colona East         | 2,473                            | 2,473       | 2,473      | 2,473               | 0                          | 0     |  |  |  |  |  |
| Galva               | 2,779                            | 2,779       | 2,779      | 2,779               | 0                          | 0     |  |  |  |  |  |
| Geneseo             | 6,400                            | 6,601       | 7,002      | 7,403               | 1,003                      | 16    |  |  |  |  |  |
| Kewanee             | 14,350                           | 14,350      | 14,350     | 14,350              | 0                          | 0     |  |  |  |  |  |
|                     |                                  | Jo Daviess  | County     |                     |                            |       |  |  |  |  |  |
| East Dubuque        | 1,970                            | 1,970       | 1,970      | 1,970               | 0                          | 0     |  |  |  |  |  |
| Galena              | 3,461                            | 3,461       | 3,461      | 3,461               | 0                          | 0     |  |  |  |  |  |
| Stockton            | 1,862                            | 1,862       | 1,862      | 1,862               | 0                          | 0     |  |  |  |  |  |
|                     |                                  | Lee Co      | ounty      |                     |                            |       |  |  |  |  |  |
| Amboy               | 2,600                            | 2,600       | 2,600      | 2,600               | 0                          | 0     |  |  |  |  |  |
| Ashton              | 1,100                            | 1,100       | 1,100      | 1,100               | 0                          | 0     |  |  |  |  |  |
| Dixon               | 16,200                           | 16,200      | 16,200     | 16,200              | 0                          | 0     |  |  |  |  |  |
|                     |                                  | Ogle Co     | ounty      |                     |                            |       |  |  |  |  |  |
| Byron               | 4,000                            | 4,586       | 5,757      | 6,928               | 2,928                      | 73    |  |  |  |  |  |
| Mt Morris           | 3,100                            | 3,100       | 3,100      | 3,100               | 0                          | 0     |  |  |  |  |  |
| Oregon              | 4,100                            | 4,100       | 4,100      | 4,100               | 0                          | 0     |  |  |  |  |  |
| Polo                | 2,485                            | 2,485       | 2,485      | 2,485               | 0                          | 0     |  |  |  |  |  |
| Rochelle            | 9,700                            | 9,910       | 10,331     | 10,752              | 1,052                      | 11    |  |  |  |  |  |
|                     |                                  | Rock Island | d County   |                     |                            |       |  |  |  |  |  |
| East Moline         | 21,531                           | 21,879      | 22,574     | 23,269              | 1,738                      | 8     |  |  |  |  |  |
| Milan               | 5,000                            | 5,000       | 5,000      | 5,000               | 0                          | 0     |  |  |  |  |  |
| Moline              | 44,483                           | 44,483      | 44,483     | 44,483              | 0                          | 0     |  |  |  |  |  |
| Rock Island         | 38 084                           | 38 084      | 38 084     | 38 084              | 0                          | 0     |  |  |  |  |  |

Table 2.9 Reported and Projected Population Served by Dominant Public Water Supply Systems

| Public Water System           | Reported<br>Population<br>Served | Projected | Population | 2010-2060<br>Change | 2010-2060<br>Change<br>(%) |        |  |  |  |  |
|-------------------------------|----------------------------------|-----------|------------|---------------------|----------------------------|--------|--|--|--|--|
|                               | 2010                             | 2020      | 2040       | 2060                |                            | (,,,,) |  |  |  |  |
| Silvis                        | 7,269                            | 7,269     | 7,269      | 7,269               | 0                          | 0      |  |  |  |  |
| Stephenson County             |                                  |           |            |                     |                            |        |  |  |  |  |
| Cedarville                    | 719                              | 719       | 719        | 719                 | 0                          | 0      |  |  |  |  |
| Freeport                      | 25,800                           | 25,800    | 25,800     | 25,800              | 0                          | 0      |  |  |  |  |
| Lena                          | 2,800                            | 2,800     | 2,800      | 2,800               | 0                          | 0      |  |  |  |  |
| Whiteside County              |                                  |           |            |                     |                            |        |  |  |  |  |
| Fulton                        | 4,000                            | 4,000     | 4,000      | 4,000               | 0                          | 0      |  |  |  |  |
| IL American - Sterling        | 15,451                           | 15,451    | 15,451     | 15,451              | 0                          | 0      |  |  |  |  |
| Morrison                      | 4,447                            | 4,447     | 4,447      | 4,447               | 0                          | 0      |  |  |  |  |
| Prophetstown                  | 2,150                            | 2,257     | 2,472      | 2,686               | 536                        | 25     |  |  |  |  |
| Rock Falls                    | 9,700                            | 9,700     | 9,700      | 9,700               | 0                          | 0      |  |  |  |  |
|                               |                                  | Winnebag  | o County   |                     |                            |        |  |  |  |  |
| IL American - South<br>Beloit | 7,800                            | 7,988     | 8,237      | 8,491               | 691                        | 9      |  |  |  |  |
| Loves Park                    | 24,700                           | 25,295    | 26,084     | 26,888              | 2,188                      | 9      |  |  |  |  |
| North Park PWD                | 34,737                           | 35,573    | 36,683     | 37,814              | 3,077                      | 9      |  |  |  |  |
| Rockford                      | 162,296                          | 166,204   | 171,389    | 176,673             | 14,377                     | 9      |  |  |  |  |
| Rockton                       | 7,440                            | 7,619     | 7,857      | 8,099               | 659                        | 9      |  |  |  |  |
| <b>REGIONAL TOTAL</b>         | 545,731                          | 557,215   | 576,339    | 595,611             | 49,880                     | 9      |  |  |  |  |

\*Projections for the systems are estimates based on historical trends and IDPH population projections (Data.Illinois.gov, 2018) as described in Section 2.3.1.

## 2.3.2 Future Changes in Explanatory Variables

We employed future values of six explanatory variables (temperature, precipitation, employment/population ratio, price, income, and conservation trend) to estimate future rates of per-capita water demand in the public supply sector in each study area. As a prerequisite for computing future water demand, we estimated the future values of these variables based on assumptions as specified below.

### 2.3.2.1 Summer-Season Temperature and Precipitation

Per-capita water use is affected by summer (May through September) weather conditions. A higher or lower average of monthly maximum daily summer temperatures results in higher or lower per-capita water use, respectively, as determined by an elasticity of +1.13. Similarly, higher or lower total summer precipitation results in a lower or higher per-capita water use, respectively, as determined by an elasticity of -0.06. We assumed future values of summer-season (May through September) maximum daily temperature and total precipitation that are averages from each of the weather stations listed in Table 2.4 for the 30-year period from 1981 to 2010. Thus, we assumed that "normal" 1981-2010 summer weather conditions will prevail in the future. The maximum monthly temperature values are shown in Table 2.10.

Summer precipitation totals are shown in Table 2.11. The data show that total summerseason precipitation in 2010 was generally greater than 1981-2010 normal conditions. On the other hand, total precipitation during summer 2005 was affected by drought and was much less than normal.

| Country     | Station Used for Weather<br>Characterization |        | Average of Monthly Maximum Summer<br>(May-September) T (°F) |       |                                 |  |
|-------------|----------------------------------------------|--------|-------------------------------------------------------------|-------|---------------------------------|--|
| County      | Name                                         | ID*    | 2005                                                        | 2010  | 1981-2010 Average<br>("Normal") |  |
| Boone       | DeKalb                                       | 112223 | 80.39                                                       | 79.20 | 77.88                           |  |
| Bureau      | Princeton                                    | 116998 | 82.70                                                       | 81.70 | 79.58                           |  |
| Carroll     | Mt. Carroll                                  | 115901 | 82.19                                                       | 80.97 | 79.22                           |  |
| Henry       | Geneseo                                      | 113384 | 82.81                                                       | 81.53 | 79.94                           |  |
| Jo Daviess  | Elizabeth                                    | 112745 | 80.11                                                       | 79.50 | 77.80                           |  |
| Lee         | Paw Paw                                      | 116661 | 80.19                                                       | 78.41 | 76.60                           |  |
| Ogle        | Rochelle                                     | 117354 | 80.47                                                       | 78.65 | 77.46                           |  |
| Rock Island | Moline Airport                               | 115751 | 83.39                                                       | 81.39 | 80.32                           |  |
| Stephenson  | Elizabeth                                    | 112745 | 80.11                                                       | 79.50 | 77.80                           |  |
| Whiteside   | Morrison                                     | 115833 | 83.22                                                       | 79.88 | 79.96                           |  |
| Winnebago   | Rockford GTR                                 | 117382 | 80.88                                                       | 79.62 | 79.04                           |  |

Table 2.10 Average of Maximum Monthly Summer-Season (May-September) Temperature at Weather Stations in the Rock River Region

\*NWS COOP ID number (National Climatic Data Center, 2015)

| County      | Station Used for V<br>Characteriza | Weather<br>tion | Total Summer (May-September)<br>Precipitation (inches) |       |                                 |  |
|-------------|------------------------------------|-----------------|--------------------------------------------------------|-------|---------------------------------|--|
| County      | Name                               | ID*             | 2005                                                   | 2010  | 1981-2010 Average<br>("Normal") |  |
| Boone       | DeKalb                             | 112223          | 12.39                                                  | 24.12 | 20.69                           |  |
| Bureau      | Princeton                          | 116998          | 10.89                                                  | 25.99 | 21.25                           |  |
| Carroll     | Mt. Carroll                        | 115901          | 12.41                                                  | 32.32 | 21.88                           |  |
| Henry       | Geneseo                            | 113384          | 10.94                                                  | 27.73 | 20.07                           |  |
| Jo Daviess  | Elizabeth                          | 112745          | 17.42                                                  | 32.83 | 20.44                           |  |
| Lee         | Paw Paw                            | 116661          | 10.69                                                  | 23.32 | 20.55                           |  |
| Ogle        | Rochelle                           | 117354          | 12.46                                                  | 20.21 | 18.93                           |  |
| Rock Island | Moline Airport                     | 115751          | 9.52                                                   | 29.56 | 20.71                           |  |
| Stephenson  | Elizabeth                          | 112745          | 17.42                                                  | 32.83 | 20.44                           |  |
| Whiteside   | Morrison                           | 115833          | 13.18                                                  | 24.61 | 20.63                           |  |
| Winnebago   | Rockford GTR                       | 117382          | 12.64                                                  | 25.20 | 20.56                           |  |

Table 2.11 Summer Precipitation at Weather Stations in the Rock River Region

\*NWS COOP ID number (National Climatic Data Center, 2015)

#### 2.3.2.2 Employment-to-Population Ratios

We assumed that employment-to-population ratios in 2010 are maintained through 2060.

#### 2.3.2.3 Marginal Price of Water

Future changes in retail water prices will result in changes in per-capita water usage as determined by the estimated price elasticity of -0.20. The marginal price of water in the historical data was calculated as the incremental price per 1000 gallons at the level of consumption between 5000 and 6000 gallons per month.

Future values of marginal prices will depend on the adoption of pricing strategies by retail water suppliers as well as the frequency of rate adjustments. Water rate structures often remain unchanged for several years, thus resulting in a decline of the real price with respect to inflation. An expectation in the water supply industry, however, is that several factors will cause future retail water prices to increase faster than the rate of inflation. These include an increased investment in treatment processes to address water quality concerns, increasing energy costs, and increasing infrastructure replacement costs.

Recent trends in water prices were determined from a survey of water rates in Illinois (Dziegielewski et al., 2004). Data for 219 water systems in Illinois show only a 3 percent increase in the median value of a total water bill at the consumption level of 5000 gallons per month between 1990 and 2003 (increasing from \$18.18 to \$18.70 in constant 2003 dollars). During the same period, the median value of the marginal price of water increased from \$2.59 to \$2.90, which represents an increase of 12 percent (in constant 2003 dollars), or 0.9 percent per year. This modest increase in median price reflects the fact that a number of systems kept their nominal price of water unchanged. Real water prices decreased in 112 systems (due to inflation) and increased in 107 systems. The average increase in the 107 systems in terms of the total bill was 25 percent, and the average marginal price increased by 39.6 percent (or 2.6 percent per year).

Other published sources have reported increases in the price of municipal water. NUS Consulting (2007) reported that the average price of water in 51 systems located throughout the United States increased by 6 percent during the period from July 1, 2006 to July 1, 2007. The Earth Policy Institute (2007) reported an increase of 27 percent in the United States during the past five years. Adjusting for inflation during the period (CPI 2000 = 172.2, CPI 2005 = 195.3), this increase is equivalent to an increase in real prices of approximately 12 percent (or 2.3 percent per year).

For this study, we assumed trends in marginal prices that range from (1) no trend; to (2) gradually increasing water rates following the recent trend in Illinois of an increase in marginal price of 0.8 percent per year; to (3) a more dramatic increase in marginal price by 1.6 percent per year.

#### 2.3.2.4 Median Household Income

Future changes in median household income will result in changes in per-capita water demand as determined by the estimated income elasticity of +0.12. Historical data from 1990, 1995, 2000, 2005, and 2010 suggest an average trend in median household income (expressed in constant 2010 dollars) of 0.15 percent per year. Although forecasted economic growth in the study area suggests that future income is likely to grow, official projections of future income growth at county and public water system levels are not available.

One relevant estimate of income growth for the State of Illinois is provided by the Illinois Regional Econometric Input/Output Model (IREIM) (Regional Economics Applications Laboratory, 2014), which indicates that personal income will increase at a rate of 1.5 percent per year between 1997 and 2022. Because the growth in median household income is generally less than the expected growth in total personal income, we have assumed rates of growth in median household income of 0.7, 1.0, and 1.2 percent, all values that are less than the 1.5 percent annual rate of growth in personal income suggested by the IREIM.

## 2.3.3 Scenarios of Water Demand

We have developed three scenarios of future public water system demand that reflect three different sets of plausible socioeconomic conditions (Table 2.12). These include a less resource intensive scenario, a current trends (or baseline) scenario, and a more resource intensive scenario. Although our estimates suggest a plausible range of future demand, they do not represent forecasts or predictions, and they do not indicate upper and lower bounds of future water demand. Different assumptions or different future conditions could result in predicted or actual water demand that is outside of this range.

Some assumptions of future socioeconomic and weather conditions do not differ between scenarios. In all scenarios, employment-to-population ratios for individual study areas are maintained at 2010 levels, and summer temperature and precipitation remain at "normal" values for the 30-year period from 1981 to 2010. The population served by public systems in each study area either increases at a rate reflecting historical trends or is maintained at the 2010 level, depending on our analysis of historical trends in population served (page 31); population served is not varied between scenarios.

### 2.3.3.1 Current Trends (Baseline) Scenario (CT)

This scenario characterizes conditions during the period from 2010 to 2060 as an extension of recent trends in the principal factors influencing water demand. The specific assumptions of the CT scenario are the following:

- 1. Employment-to-population ratios are maintained at 2010 levels.
- 2. Marginal price of water increases at an annual rate of 0.8 percent.
- 3. Median household income increases at an annual rate of 1.0 percent.
- 4. Per-capita water use is affected by a "conservation trend" of -0.206 percent per year, which is half the trend suggested by historical data.
- 5. Summer temperatures and precipitation remain at "normal" values for the 30-year period from 1981 to 2010.

#### 2.3.3.2 Less Resource Intensive Scenario (LRI)

This scenario assumes socioeconomic conditions during the period from 2010 to 2060 that would result in less water use by the public supply sector. Other conditions, not included in this analysis, could also lead to less water usage. The specific assumptions of the LRI scenario are the following:

- 1. Employment-to-population ratios are maintained at 2010 levels.
- 2. Marginal price of water increases at an annual rate of 1.6 percent.
- 3. Median household income increases at an annual rate of 0.7 percent.

- 4. Per-capita water usage is affected by a "conservation trend" of -0.412 percent per year, which is the trend suggested by historical data.
- 5. Summer temperatures and precipitation remain at "normal" values for the 30-year period from 1981 to 2010.

# 2.3.3.3 More Resource Intensive Scenario (MRI)

The intent of this scenario is to define future conditions that would lead to more water usage by the public water-supply sector. The specific assumptions for the More Resource Intensive (MRI) scenario are:

- 1. Employment-to-population ratios are maintained at 2010 levels.
- 2. Marginal price is maintained at 2010 levels (in real terms).
- 3. Median household income increases at an annual rate of 1.2 percent.
- 4. Per-capita water use is unaffected by a "conservation trend."
- 5. Summer temperatures and precipitation remain at "normal" values for the 30-year period from 1981 to 2010.

| Againstian                          |                                     | Water Demand Scenari                | 0                                   |
|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Assumption                          | СТ                                  | LRI                                 | MRI                                 |
| Population served (2015-2025)       | Assumed Illinois<br>DPH Projections | Assumed Illinois<br>DPH Projections | Assumed Illinois<br>DPH Projections |
| Population served (2030-2060)       | Trend Projections*                  | Trend Projections*                  | Trend Projections*                  |
| Employment-to-population ratio      | 2010 value                          | 2010 value                          | 2010 value                          |
| Marginal price of water growth rate | 0.8%/year                           | 1.6%/year                           | 2010-level constant                 |
| Median household income growth rate | 1.0%/year                           | 0.7% year                           | 1.2%/year                           |
| Water conservation trend            | 0.206%/year                         | 0.412%/year                         | No conservation<br>trend            |
| Weather conditions                  | 1981-2010 Normal                    | 1981-2010 Normal                    | 1981-2010 Normal                    |

# Table 2.12 Summary of Demand Scenario Assumptions

\*See Section 2.3.1

#### 2.4 Scenario Results

#### 2.4.1 Total Public Supply Demand

We estimated per-capita demand using the regression model, and we computed total demand by multiplying future populations served by the model-generated per-capita water demand estimates. Scenario results for the total study area are summarized in Table 2.13. Table A.4 to Table A.9 in Appendix A show future total and per-capita water demand at the system level for the scenarios. There are only small differences between the reported demand in 2010 and weather-normalized demand in 2010.

The overall changes in total future water demand are a direct result of the projected population and the combined effects of three assumptions: marginal price of water, growth in median household income, and the assumed trend in water conservation.

Under the CT scenario, weather-normalized demand for public water supply increases from 79.52 Mgd in 2010 to 80.63 Mgd in 2060, a 1.4 percent increase. This modest increase reflects a 10.2 percent increase in population served and is predicted despite an 8.0 percent decrease in per-capita water demand.

Under the LRI scenario, weather-normalized demand for public water supply decreases by 20.3 percent from 2010 to 2060, from the 2010 weather-normalized demand of 79.52 Mgd to 63.40 Mgd in 2060. This 16.12 Mgd decrease is predicted despite a 10.2 percent increase in population served between 2010 and 2060 and reflects a 27.7 percent decrease in per-capita water demand during the same period.

Finally, under the MRI scenario, weather-normalized demand for public water supply increases by 28.3 percent, from the 2010 weather-normalized demand of 79.52 Mgd to 102.00 Mgd in 2060. This 22.47 Mgd increase reflects both a 10.2 percent increase in population served between 2010 and 2060 and a 16.3 percent increase in per-capita water demand during the same period.

### 2.4.2 Implications for Sources of Public Water Supply

For this project we have estimated future demand from two broad categories of water sources based on the proportion of the 2010 demand that is satisfied by water from these sources. These include local sources which, for purposes of this project, include water that is withdrawn from a source that is within the county of the demand, and imported water, which for our purposes refers to water that is imported from another county. In the Rock River region, only a single public water system imports water. This is the Illinois-American South Beloit system, in Winnebago County, which purchases groundwater from the Beloit, Wisconsin public water system.

#### 2.4.2.1 Demand for Local Surface and Groundwater

Assuming that each public water system maintains its 2010 ratio of groundwater to surface water demand, the overall ratio of water supply sources will change from 2010 to 2060, owing to differential growth among water systems having differing ratios of supply sources in 2010. Under the CT scenario, we project that demand for locally sourced groundwater will increase, but demand for locally sourced surface water will decrease. We project that demand for both locally sourced groundwater and surface water will decrease under the LRI scenario, but both the magnitude and rate of the decrease is greater for surface water than groundwater. Under

the MRI scenario, demand for both locally sourced groundwater and surface water increases, but the magnitude and rate of increase are both much greater for groundwater.

Under the CT scenario, weather-normalized demand for locally sourced groundwater increases by 3.0 percent (1.88 Mgd) from 2010 to 2060. Under the LRI scenario, weather-normalized groundwater demand decreases by 19.0 percent (11.97 Mgd) during this time period, and under the MRI scenario it increases by 30.3 percent (19.05 Mgd). In contrast, weather-normalized demand for locally sourced surface water in the study area under the CT scenario decreases by 4.9 percent (0.77 Mgd) from 2010 to 2060. Weather-normalized demand for locally sourced surface water under the LRI scenario decreases by 25.2 percent (3.99 Mgd) during this time period and increases by 20.3 percent (3.21 Mgd) under the MRI scenario.

### 2.4.2.2 Demand for Imported Water

We have assumed that the Illinois American-South Beloit system will continue to import groundwater during the 2010-2060 period, and that the proportion of total demand by the Illinois American-South Beloit system satisfied by the imported water in 2010 (99.9 percent) is maintained during the 2010-2060 period. Thus, under the CT scenario, weather-normalized demand for imported water in the Rock River region, all attributable to the Illinois American-South Beloit purchases from Beloit, Wisconsin, increase by only about 0.5 percent, from about 0.767 to 0.772 Mgd, during the period 2010 to 2060. Under the LRI scenario, these imports decrease by about 21.0 percent, from about 0.767 to 0.606 Mgd. Weather-normalized demand for imported water under the MRI scenario increases about 27.1 percent during the period 2010 to 2060, from about 0.767 to about 0.975 Mgd.

| <b>X</b> 7                              | Population | Dem            | nand           | Locally S<br>(Mg | Sourced <sup>1</sup><br>gd) | Imported <sup>2</sup> |  |  |  |  |
|-----------------------------------------|------------|----------------|----------------|------------------|-----------------------------|-----------------------|--|--|--|--|
| Year                                    | Served     | gpcd           | Mgd            | Ground<br>Water  | Surface<br>Water            | (Mgd)                 |  |  |  |  |
| Current Trends (Baseline) Scenario (CT) |            |                |                |                  |                             |                       |  |  |  |  |
| 2010 (Reported) <sup>3</sup>            | 678,746    | 117.1          | 79.47          | 62.98            | 15.73                       | 0.76                  |  |  |  |  |
| 2010 (Normal) <sup>4</sup>              | 678,746    | 117.2          | 79.52          | 62.93            | 15.83                       | 0.77                  |  |  |  |  |
| 2015                                    | 688,454    | 120.5          | 82.98          | 65.84            | 16.34                       | 0.80                  |  |  |  |  |
| 2020                                    | 696,742    | 118.9          | 82.82          | 65.83            | 16.19                       | 0.80                  |  |  |  |  |
| 2025                                    | 704,514    | 117.4          | 82.72          | 65.87            | 16.05                       | 0.80                  |  |  |  |  |
| 2030                                    | 709,471    | 116.0          | 82.29          | 65.60            | 15.90                       | 0.79                  |  |  |  |  |
| 2035                                    | 715,935    | 114.6          | 82.03          | 65.48            | 15.76                       | 0.79                  |  |  |  |  |
| 2040                                    | 722,399    | 113.2          | 81.76          | 65.36            | 15.61                       | 0.79                  |  |  |  |  |
| 2045                                    | 728,862    | 111.8          | 81.48          | 65.23            | 15.47                       | 0.78                  |  |  |  |  |
| 2050                                    | 735,326    | 110.4          | 81.21          | 65.10            | 15.33                       | 0.78                  |  |  |  |  |
| 2055                                    | 741,789    | 109.1          | 80.92          | 64.96            | 15.19                       | 0.77                  |  |  |  |  |
| 2060                                    | 748,254    | 107.8          | 80.63          | 64.81            | 15.05                       | 0.77                  |  |  |  |  |
| 2010-2060 Change <sup>5</sup>           | 69,508     | -9.4           | 1.11           | 1.88             | -0.77                       | < 0.016               |  |  |  |  |
| 2010-2060 Change (%) <sup>5</sup>       | 10.2       | -8.0           | 1.4            | 3.0              | -4.9                        | 0.5                   |  |  |  |  |
|                                         | Less Res   | source Intensi | ive Scenario ( | LRI)             |                             |                       |  |  |  |  |
| 2010 (Reported)                         | 678,746    | 117.1          | 79.47          | 62.98            | 15.73                       | 0.76                  |  |  |  |  |
| 2010 (Normal)                           | 678,746    | 117.2          | 79.52          | 62.93            | 15.83                       | 0.77                  |  |  |  |  |
| 2015                                    | 688,454    | 113.4          | 78.07          | 61.94            | 15.37                       | 0.75                  |  |  |  |  |
| 2020                                    | 696,742    | 109.6          | 76.37          | 60.70            | 14.93                       | 0.74                  |  |  |  |  |
| 2025                                    | 704,514    | 106.1          | 74.77          | 59.54            | 14.51                       | 0.72                  |  |  |  |  |
| 2030                                    | 709,471    | 102.8          | 72.92          | 58.13            | 14.09                       | 0.70                  |  |  |  |  |
| 2035                                    | 715,935    | 99.5           | 71.25          | 56.88            | 13.69                       | 0.68                  |  |  |  |  |
| 2040                                    | 722,399    | 96.4           | 69.62          | 55.65            | 13.29                       | 0.67                  |  |  |  |  |
| 2045                                    | 728,862    | 93.3           | 68.02          | 54.45            | 12.91                       | 0.65                  |  |  |  |  |
| 2050                                    | 735,326    | 90.4           | 66.45          | 53.27            | 12.54                       | 0.64                  |  |  |  |  |
| 2055                                    | 741,789    | 87.5           | 64.91          | 52.10            | 12.18                       | 0.62                  |  |  |  |  |
| 2060                                    | 748,254    | 84.7           | 63.40          | 50.96            | 11.83                       | 0.61                  |  |  |  |  |
| 2010-2060 Change <sup>5</sup>           | 69,508     | -32.4          | -16.12         | -11.97           | -3.99                       | -0.16                 |  |  |  |  |
| 2010-2060 Change (%) <sup>5</sup>       | 10.2       | -27.7          | -20.3          | -19.0            | -25.2                       | -21.0                 |  |  |  |  |

# Table 2.13 Public Supply Water Demand Scenarios

# More Resource Intensive Scenario (MRI)

| 2010 (Reported) | 678,746 | 117.1 | 79.47 | 62.98 | 15.73 | 0.76 |
|-----------------|---------|-------|-------|-------|-------|------|
| 2010 (Normal)   | 678,746 | 117.2 | 79.52 | 62.93 | 15.83 | 0.77 |
| 2015            | 688,454 | 128.1 | 88.16 | 69.95 | 17.36 | 0.85 |
| 2020            | 696,742 | 128.8 | 89.71 | 71.30 | 17.54 | 0.87 |
| 2025            | 704,514 | 129.7 | 91.35 | 72.75 | 17.72 | 0.88 |
| 2030            | 709,471 | 130.6 | 92.66 | 73.87 | 17.91 | 0.89 |
| 2035            | 715,935 | 131.5 | 94.17 | 75.18 | 18.09 | 0.91 |
| 2040            | 722,399 | 132.5 | 95.70 | 76.51 | 18.28 | 0.92 |
| 2045            | 728,862 | 133.4 | 97.25 | 77.85 | 18.46 | 0.93 |

| Vacu                              | Population | Den      | nand   | Locally S<br>(M | Sourced <sup>1</sup><br>gd) | Imported <sup>2</sup> |
|-----------------------------------|------------|----------|--------|-----------------|-----------------------------|-----------------------|
| rear                              | Served     | gpcd Mgd | Mgd    | Ground<br>Water | Surface<br>Water            | (Mgd)                 |
| 2050                              | 735,326    | 134.4    | 98.81  | 79.21           | 18.65                       | 0.95                  |
| 2055                              | 741,789    | 135.3    | 100.40 | 80.59           | 18.85                       | 0.96                  |
| 2060                              | 748,254    | 136.3    | 102.00 | 81.98           | 19.04                       | 0.98                  |
| 2010-2060 Change <sup>5</sup>     | 69,508     | 19.2     | 22.47  | 19.05           | 3.21                        | 0.21                  |
| 2010-2060 Change (%) <sup>5</sup> | 10.2       | 16.3     | 28.3   | 30.3            | 20.3                        | 27.1                  |

<sup>1</sup>Locally Sourced: Water is supplied from within the county <sup>2</sup>Imported: Water is supplied from outside the county <sup>3</sup>2010 (Reported): reported demand in 2010 <sup>4</sup>2010 (Normal): weather-normalized demand in 2010 (obtained by substituting normal weather conditions in the regression model)

<sup>5</sup>Changes are computed relative to 2010 (Normal) values <sup>6</sup>Change is <0.01 and >0.00

#### 2.4.3 Differences between Scenarios

Table 2.14 and Table 2.15 compare estimated 2060 water demand under the CT scenario with those under LRI and MRI scenarios, respectively. The tables show that the differences between the CT scenario and the LRI and MRI scenarios are slightly asymmetric. Estimated 2060 demands under the LRI scenario are 21.4 percent less than under the CT scenario, total demand being 17.23 Mgd less under the LRI scenario. Under the MRI scenario, demands are 26.5 percent higher than under the CT scenario, the total demand being 21.36 Mgd greater under the MRI scenario. These differences, and their asymmetry, reflect different assumptions about the future values and their effect on demand of three explanatory variables: median household income, marginal price of water, and water conservation.

| Source                                      | 2010<br>Normal<br>(Mgd) | 2060 CT<br>(Mgd) | 2060 LRI<br>(Mgd) | 2060<br>LRI -CT<br>(Mgd) <sup>1</sup> | 2060<br>LRI/CT-1<br>(%) <sup>2</sup> |
|---------------------------------------------|-------------------------|------------------|-------------------|---------------------------------------|--------------------------------------|
| Groundwater (locally sourced <sup>3</sup> ) | 62.93                   | 64.81            | 50.96             | -14.02                                | -21.4                                |
| Surface Water (locally sourced)             | 15.83                   | 15.05            | 11.83             | -3.22                                 | -21.4                                |
| Groundwater (imported <sup>4</sup> )        | 0.77                    | 0.77             | 0.61              | -0.16                                 | -21.4                                |
| Surface Water (imported)                    | 0                       | 0                | 0                 | 0                                     | 0                                    |
| REGIONAL TOTAL                              | 79.52                   | 80.63            | 63.40             | -17.23                                | -21.4                                |

Table 2.14 Comparison of CT and LRI Scenarios

<sup>1</sup>2060 LRI-CT (Mgd): Demand in 2060 (LRI) minus demand in 2060 (CT) (Mgd) <sup>2</sup>2060 LRI/CT-1 (%): Demand in 2060 (LRI) divided by demand in 2060 (CT) minus 1, expressed as a percentage. This value indicates the difference between 2060 LRI and CT estimates.

<sup>3</sup>Locally sourced: water that is withdrawn from its source within the county of the demand

<sup>4</sup>Imported: water that is withdrawn from its source outside of the county of the demand

| Source                                      | 2010<br>Normal<br>(Mgd) | 2060 CT<br>(Mgd) | 2060 MRI<br>(Mgd) | 2060<br>MRI -CT<br>(Mgd) <sup>1</sup> | 2060<br>MRI/CT-1<br>(%) <sup>2</sup> |
|---------------------------------------------|-------------------------|------------------|-------------------|---------------------------------------|--------------------------------------|
| Groundwater (locally sourced <sup>3</sup> ) | 62.93                   | 64.81            | 81.98             | 17.37                                 | 26.5                                 |
| Surface Water (locally sourced)             | 15.83                   | 15.05            | 19.04             | 3.99                                  | 26.5                                 |
| Groundwater (imported <sup>4</sup> )        | 0.77                    | 0.77             | 0.98              | 0.20                                  | 26.5                                 |
| Surface Water (imported)                    | 0                       | 0                | 0                 | 0                                     | 0                                    |
| <b>REGIONAL TOTAL</b>                       | 79.52                   | 80.63            | 102.00            | 21.36                                 | 26.5                                 |

Table 2.15 Comparison of CT and MRI Scenarios

<sup>1</sup>2060 MRI-CT (Mgd): Demand in 2060 (MRI) minus demand in 2060 (CT) (Mgd) <sup>2</sup>2060 MRI/CT-1 (%): Demand in 2060 (MRI) divided by demand in 2060 (CT) minus 1, expressed as a percentage.

This value indicates the difference between 2060 MRI and CT estimates relative to the 2060 CT value.

<sup>3</sup>Locally sourced: water that is withdrawn from its source within the county of the demand

<sup>4</sup>Imported: water that is withdrawn from its source outside of the county of the demand

### 3 Demand for Self-Supplied Domestic Water

### 3.1 Background

Domestic water demand includes water for normal household purposes such as drinking, food preparation, bathing, washing clothes and dishes, flushing toilets, car washing, and watering lawns and gardens (Solley et al., 1998). In many areas, water for domestic purposes is provided by public water supply systems, but some is self-supplied. Nearly all of the self-supplied domestic water is obtained from groundwater sources. Domestic water demand that is satisfied by public water systems is accounted for in Chapter 2. Chapter 3 discusses domestic water demand by individuals who operate their own household water supply systems.

The USGS estimates county-level self-supplied domestic water demand by multiplying the estimated self-supplied county population by a per-capita water use coefficient. The self-supplied population is calculated as the difference between total county population and the estimated number of persons served by public water systems, data that, for Illinois, are obtained from IEPA and other sources. The self-supplied domestic water use coefficient in Illinois has been changed several times since the USGS first began reporting self-supplied domestic water use in 1960. The coefficient used in the most recent USGS report on U.S. water usage, which covers 2010, is 80 gallons per person per day (Maupin et al., 2014).

#### 3.1.1 Reported Domestic Withdrawals

County-level self-supplied domestic populations and demand have been reported by the USGS for every USGS data compilation year (Hutson et al., 2004, Kenny et al., 2009, Maupin et al., 2014, Solley et al., 1993, 1998).

Table 3.1 shows the USGS reported self-supplied domestic population for the years 1990, 1995, 2000, 2005, and 2010 for each county in the study region. Also included in Table 3.1 are estimates of the 2010 self-supplied domestic population that we derived from IWIP data. We computed these estimates as the difference between 2010 county population and the sum of populations served by the public water systems in the county as reported to IWIP. The estimates of self-supplied population fluctuate across the USGS data compilation years, and trends are not readily apparent. In general, however, the USGS estimates show that the greatest self-supplied populations in the Rock River region are in Winnebago, Ogle, and Whiteside Counties. Our estimates for 2010 likewise suggest that Winnebago and Ogle Counties are among the three counties in the region having the greatest self-supplied domestic populations. However, we found that Boone County had a slightly greater self-supplied domestic population than Whiteside County, although the difference between the two is negligible. Our estimates likely differ from those of the USGS because ours are based on differing estimates of populations served by public water systems. The USGS 2010 estimate of self-supplied population in Rock Island County appears to be an error, but this value appears in the most recent USGS publications (Maupin et al., 2014, U.S. Geological Survey, 2014). Across all three regions for which the ISWS is currently developing estimates of future water demand (Figure 1.1), the self-supplied population declined at a rate of 1.0 percent per year between 1990 and 2010. In the Rock River region, the self-supplied population increased

between 1990 and 2000 but declined at a rate of 3.5 percent per year between 2000 and 2010.

Table 3.2 shows USGS estimates of water demand by the self-supplied domestic sector from 1990 to 2010. In 2010, self-supplied domestic demand in the Rock River region totaled 12.03 Mgd, with Winnebago, Ogle, and Whiteside Counties having the greatest self-supplied domestic demand.

| County         |                          | This Study        |                   |                   |                         |         |
|----------------|--------------------------|-------------------|-------------------|-------------------|-------------------------|---------|
| County         | <b>1990</b> <sup>1</sup> | 1995 <sup>2</sup> | 2000 <sup>3</sup> | 2005 <sup>4</sup> | <b>2010<sup>5</sup></b> | 2010    |
| Boone          | 13,180                   | 13,010            | 14,820            | 11,160            | 13,370                  | 18,827  |
| Bureau         | 11,060                   | 15,180            | 18,310            | 8,470             | 8,630                   | 9,508   |
| Carroll        | 6,440                    | 6,760             | 6,620             | 6,450             | 5,930                   | 5,878   |
| Henry          | 14,510                   | 12,660            | 12,600            | 10,890            | 11,360                  | 9,885   |
| Jo Daviess     | 10,540                   | 14,230            | 10,130            | 8,900             | 9,180                   | 4,991   |
| Lee            | 11,050                   | 15,850            | 6,040             | 7,410             | 6,110                   | 4,777   |
| Ogle           | 20,560                   | 21,390            | 22,000            | 22,970            | 20,200                  | 20,014  |
| Rock Island    | 9,480                    | 13,720            | 15,000            | 11,170            | 1,070                   | 11,687  |
| Stephenson     | 10,800                   | 16,310            | 18,000            | 9,670             | 13,230                  | 14,406  |
| Whiteside      | 22,740                   | 37,110            | 42,220            | 19,620            | 19,470                  | 18,261  |
| Winnebago      | 63,350                   | 50,360            | 47,220            | 42,300            | 41,840                  | 18,878  |
| REGIONAL TOTAL | 193,710                  | 216,580           | 212,960           | 159,010           | 150,390                 | 137,112 |

Table 3.1 Estimated Historical Self-Supplied Domestic Population, by County

<sup>1</sup>Solley et al. (1993) <sup>2</sup>Solley et al. (1998) <sup>3</sup>Hutson et al. (2004) <sup>4</sup>Kenny et al. (2009) <sup>5</sup>Maupin et al. (2014)

| County                | <b>1990</b> <sup>1</sup> | 1995 <sup>2</sup> | 2000 <sup>3</sup> | 2005 <sup>4</sup> | <b>2010</b> <sup>5</sup> |
|-----------------------|--------------------------|-------------------|-------------------|-------------------|--------------------------|
| Boone                 | 1.21                     | 1.17              | 1.33              | 1.00              | 1.07                     |
| Bureau                | 1.10                     | 1.37              | 1.65              | 0.76              | 0.69                     |
| Carroll               | 0.64                     | 0.61              | 0.60              | 0.58              | 0.47                     |
| Henry                 | 1.45                     | 1.14              | 1.13              | 0.98              | 0.91                     |
| Jo Daviess            | 1.05                     | 1.28              | 0.91              | 0.80              | 0.73                     |
| Lee                   | 1.10                     | 1.43              | 0.54              | 0.67              | 0.49                     |
| Ogle                  | 2.05                     | 1.93              | 1.98              | 2.07              | 1.62                     |
| Rock Island           | 0.95                     | 1.23              | 1.35              | 1.00              | 0.08                     |
| Stephenson            | 1.08                     | 1.47              | 1.62              | 0.87              | 1.06                     |
| Whiteside             | 2.27                     | 3.34              | 3.80              | 1.77              | 1.56                     |
| Winnebago             | 6.32                     | 4.53              | 4.25              | 3.81              | 3.35                     |
| <b>REGIONAL TOTAL</b> | 19.22                    | 19.50             | 19.16             | 14.31             | 12.03                    |

Table 3.2 Historical Self-Supplied Domestic Water Demand, by County (Mgd) (USGS)

<sup>1</sup>Solley et al. (1993) <sup>2</sup>Solley et al. (1998) <sup>3</sup>Hutson et al. (2004) <sup>4</sup>Kenny et al. (2009) <sup>5</sup>Maupin et al. (2014)

### 3.2 Future Demand

#### 3.2.1 Water Demand Relationship

We were unable to develop a valid model to capture the relationship between per-capita water demand in the domestic sector and key explanatory variables. Therefore, the effects of future income and climatic conditions were estimated using an elasticity of +0.12183 for income and a conservation trend of -0.00412. These coefficients were taken from the estimated public supply model, which is discussed in Chapter 2 and Appendix A. The conservation trend was applied in the LRI scenario, reduced by half (to -0.00206) for the CT scenario, and assumed to be zero in the MRI scenario.

## 3.2.2 Projected Self-Supplied Population

We estimated the future self-supplied domestic population in each county of the study region using the self-supplied population in 2010 (as estimated by us using IWIP data [Table 3.1]), the projected 2010-2060 change in total county population (Table 2.8, Appendix B), and estimates of the population served by public systems from 2015 to 2060 (Table 2.9, Table A.4). These projections are shown for 2010, 2030, and 2060 in Table 3.3.

Since the majority of the self-supplied population is served by domestic wells, we employed 2010 counts of domestic wells in each county, determined from well completion reports on file at the ISWS, together with our estimates of self-supplied population, to compute the number of persons supplied per domestic well (Table 3.4). We computed these values as a metric to validate our estimates of self-supplied domestic populations; on a county level, reasonable estimates of persons supplied per well range from 1 to 4. The available data on population served by private domestic wells in Connecticut indicate that Connecticut contains 322,578 domestic wells supplying a population of 822,575, implying that each well supplies 2.55 individuals (Connecticut Department of Public Health, 2015). For the Rock River region, these computations suggest that, overall, our estimates are reasonable, since the regional totals suggest that 2.9 persons are supplied by each domestic well (Table 3.4), and the median of county values is 3.2 persons per well. Still, the computations for Boone County (4.1 persons/well), Stephenson County (4.4 persons/well), and Whiteside County (4.7 persons/well) fall slightly outside the reasonable range of 1 to 4 persons per well, suggesting that our estimates of both the selfsupplied population and number of domestic wells are uncertain. This is not surprising because both are determined from reported data that are not subjected to verification.

For the study region, we estimated that the total self-supplied population will decrease between 2010 and 2060 from 137,112 to 122,786 persons. This represents a decrease of 14,326 persons (Table 3.3).

| County                | 2010    | 2030    | 2060    | 2010-2060<br>Change |
|-----------------------|---------|---------|---------|---------------------|
| Boone                 | 18,827  | 19,613  | 16,663  | -2,164              |
| Bureau                | 9,508   | 7,958   | 7,470   | -2,038              |
| Carroll               | 5,878   | 4,683   | 4,683   | -1,195              |
| Henry                 | 9,885   | 7,285   | 6,683   | -3,202              |
| Jo Daviess            | 4,991   | 4,468   | 4,468   | -523                |
| Lee                   | 4,777   | 4,178   | 3,377   | -1,400              |
| Ogle                  | 20,014  | 19,978  | 20,153  | 139                 |
| Rock Island           | 11,687  | 11,522  | 15,858  | 4,171               |
| Stephenson            | 14,406  | 9,728   | 8,362   | -6,044              |
| Whiteside             | 18,261  | 14,842  | 14,520  | -3,741              |
| Winnebago             | 18,878  | 19,628  | 20,550  | 1,672               |
| <b>REGIONAL TOTAL</b> | 137,112 | 123,883 | 122,786 | -14,326             |

Table 3.3 Self-Supplied Population by County

| County                | Domestic Well<br>Count | Self-Supplied<br>Population | Persons<br>Per Well |
|-----------------------|------------------------|-----------------------------|---------------------|
| Boone                 | 4,597                  | 18,827                      | 4.1                 |
| Bureau                | 3,427                  | 9,508                       | 2.8                 |
| Carroll               | 2,161                  | 5,878                       | 2.7                 |
| Henry                 | 3,076                  | 9,885                       | 3.2                 |
| Jo Daviess            | 3,008                  | 4,991                       | 1.7                 |
| Lee                   | 3,014                  | 4,777                       | 1.6                 |
| Ogle                  | 5,606                  | 20,014                      | 3.6                 |
| Rock Island           | 3,575                  | 11,687                      | 3.3                 |
| Stephenson            | 3,303                  | 14,406                      | 4.4                 |
| Whiteside             | 3,921                  | 18,261                      | 4.7                 |
| Winnebago             | 12,395                 | 18,878                      | 1.5                 |
| <b>REGIONAL TOTAL</b> | 48,083                 | 137,112                     | 2.9                 |

Table 3.4 Estimated Counts of Domestic Wells, Self-Supplied Population, and Person Per Well (2010)

# 3.2.3 Scenarios of Water Demand

## 3.2.3.1 Current Trends (Baseline) Scenario (CT)

This scenario characterizes conditions during the period from 2010 to 2060 as an extension of recent trends in the principal factors influencing water demand. The assumptions of the CT scenario are the following:

- 1. Self-supplied domestic population follows county total population growth.
- 2. Annual growth of median household income during the 2005-2050 period is 1.0 percent.
- 3. The future conservation rate is -0.00206, which is half the trend suggested by the historical data.

## 3.2.3.2 Less Resource Intensive Scenario (LRI)

The Less Resource Intensive scenario captures future conditions that would lead to less water withdrawals by the self-supplied domestic sector. The assumptions of the LRI scenario are the following:

- 1. Self-supplied domestic population follows county total population growth.
- 2. Annual growth of median household income during the 2010-2060 period is 0.7 percent.
- 3. The future conservation rate is the same as the estimated historical trend, or -0.00412.

# 3.2.3.3 More Resource Intensive Scenario (MRI)

The more resource intensive scenario represents future conditions that would lead to greater water demand by the self-supplied domestic sector. The assumptions of the MRI scenario are the following:

- 1. Self-supplied domestic population follows county total population growth.
- 2. Annual growth of median household income during the 2010-2060 period is 1.2 percent.
- 3. The estimated historical conservation trend will not continue after 2010.

# 3.2.4 Scenario Results

Estimated self-supplied domestic water demand under the three scenarios is shown in Table 3.5 and Appendix C. Note that the 2010 estimates shown in Table 3.5 and Appendix C are based on our model of self-supplied domestic water demand and are not USGS estimates, which are shown in Table 3.2. Under all three scenarios, self-supplied domestic demand in the region is predicted to decrease. Under the CT scenario, self-supplied domestic demand is projected to decrease from 10.97 Mgd in 2010 to 9.41 Mgd in 2060, a decrease of 1.55 Mgd, or 14.2 percent. Under the LRI scenario, self-supplied domestic demand decreases to a total of 8.41 Mgd in 2060, a decrease of 2.56 Mgd, or 23.4 percent, from the 2010 total. Self-supplied domestic demand under the MRI scenario decreases by only 0.31 Mgd from 2010 to a total demand in 2060 of 10.65 Mgd; this represents a decrease of 2.9 percent.

| Veer                                    | Self-Supplied | Demand |       |  |  |
|-----------------------------------------|---------------|--------|-------|--|--|
| rear                                    | Population    | gpcd   | Mgd   |  |  |
| Current Trends (Baseline) Scenario (CT) |               |        |       |  |  |
| 2010                                    | 137,112       | 80.0   | 10.97 |  |  |
| 2015                                    | 127,416       | 79.7   | 10.15 |  |  |
| 2020                                    | 124,399       | 79.3   | 9.87  |  |  |
| 2025                                    | 119,745       | 79.0   | 9.46  |  |  |
| 2030                                    | 123,883       | 78.7   | 9.74  |  |  |
| 2035                                    | 123,701       | 78.3   | 9.69  |  |  |
| 2040                                    | 123,518       | 78.0   | 9.63  |  |  |
| 2045                                    | 123,335       | 77.7   | 9.58  |  |  |
| 2050                                    | 123,153       | 77.3   | 9.52  |  |  |
| 2055                                    | 122,970       | 77.0   | 9.47  |  |  |
| 2060                                    | 122,786       | 76.7   | 9.41  |  |  |
| 2010-2060 Change                        | -14,326       | -3.3   | -1.55 |  |  |
| 2010-2060 Change (%)                    | -10.4         | -4.2   | -14.2 |  |  |
| Less Resource Intensive Scenario (LRI)  |               |        |       |  |  |
| 2010                                    | 137,112       | 80.0   | 10.97 |  |  |
| 2015                                    | 127,416       | 78.7   | 10.11 |  |  |
| 2020                                    | 12/ 399       | 77 /   | 9.71  |  |  |

Table 3.5 Self-Supplied Domestic Demand Scenarios

| 2000 2000 00 00      |         | ()    |        |
|----------------------|---------|-------|--------|
| 2010                 | 137,112 | 80.0  | 10.97  |
| 2015                 | 127,416 | 78.7  | 10.11  |
| 2020                 | 124,399 | 77.4  | 9.71   |
| 2025                 | 119,745 | 76.2  | 9.20   |
| 2030                 | 123,883 | 74.9  | 9.36   |
| 2035                 | 123,701 | 73.7  | 9.19   |
| 2040                 | 123,518 | 72.5  | 9.03   |
| 2045                 | 123,335 | 71.3  | 8.87   |
| 2050                 | 123,153 | 70.2  | 8.71   |
| 2055                 | 122,970 | 69.0  | 8.56   |
| 2060                 | 122,786 | 67.9  | 8.41   |
| 2010-2060 Change     | -14,326 | -12.1 | -2.56  |
| 2010-2060 Change (%) | -10.4   | -15.1 | -23.37 |

# More Resource Intensive Scenario (MRI)

| 2010-2060 Change (%) | -10.4   | 7.5  | -2.91 |
|----------------------|---------|------|-------|
| 2010-2060 Change     | -14,326 | 6.0  | -0.32 |
| 2060                 | 122,786 | 86.0 | 10.65 |
| 2055                 | 122,970 | 85.4 | 10.59 |
| 2050                 | 123,153 | 84.8 | 10.53 |
| 2045                 | 123,335 | 84.2 | 10.47 |
| 2040                 | 123,518 | 83.6 | 10.41 |
| 2035                 | 123,701 | 83.0 | 10.35 |
| 2030                 | 123,883 | 82.4 | 10.29 |
| 2025                 | 119,745 | 81.8 | 9.87  |
| 2020                 | 124,399 | 81.2 | 10.18 |
| 2015                 | 127,416 | 80.6 | 10.35 |
| 2010                 | 137,112 | 80.0 | 10.97 |
|                      |         |      |       |

### 4 Demand for Self-Supplied Water for Power Generation

## 4.1 Background

Water needs for power generation include both off-stream (surface water) and groundwater for cooling of thermoelectric facilities as well as in-stream (or diverted) surface water flows for hydroelectric power generation. Power plants also need water for other purposes, such as ash sluicing, though in much smaller volumes. In this study, water demand for power generation focuses specifically on water withdrawals at self-supplied facilities.

Since there are comparatively few of either type of facility in the Rock River region, in this chapter we employ as our database the power-generating facilities in three separate, but adjacent, IDNR water supply planning regions for which the ISWS, in 2014 and 2015, is simultaneously estimating future water demand to 2060. In addition to the Rock River region, these include the Middle Illinois region and the Kankakee subregion (Figure 1.1).

The demand analysis for power generation was based on 2010 water demand data, which was the most recently available data when the study was performed in 2014. We acknowledge that much has changed in the power generation sector since 2010. Appendix I provides a brief summary of possible future trends and recommendations for more in-depth analysis.

### 4.1.1 Water Demand for Thermoelectric Power Generation

Water for thermoelectric power generation is used almost entirely for cooling. Because of the high demand for cooling water, most plants are sited adjacent to large rivers or other large surface water bodies. The cooling system design, as well as gross generation, strongly influence water demand. Two categories of wet cooling processes are employed: 1) once-through, and 2) closed-loop cooling. Once-through cooling water is typically withdrawn from a large river and virtually all of the water is immediately returned to its supply source, usually a short distance downstream of the withdrawal location, albeit at a higher temperature. Closed-loop cooling involves water recirculation, in which water is cooled, either through a large cooling pond, evaporative cooling towers, or heat exchangers at the power plant.

Water used by electric power plants for cooling purposes is classified by the USGS as thermoelectric generation water usage. It represents the water employed in the production of heat-generated electric power. Heat sources may include nuclear fission or fossil fuels such as coal, petroleum, and natural gas. Three major types of thermoelectric plants include conventional steam, nuclear steam, and internal combustion turbine plants. In the latter, the prime mover is an internal combustion diesel or gas-fired engine. Since no steam or condensation cooling is involved, almost no water is used in internal combustion power generation.

In conventional steam and nuclear steam power plants, the prime mover is a steam turbine, and water is used primarily for cooling and condensing steam after it leaves the turbine. The "waste" heat removed in the condenser is transferred to the surrounding environment through a combination of evaporation and heating of water. Appendix D discusses the theoretical requirements for cooling water at thermoelectric power plants.

#### 4.1.2 Water Demand for Hydroelectric Power Generation

Hydroelectric power plants use the gravitational force of falling or flowing water to generate electricity. The consequences of water use by hydroelectric power plants depend on the layout of the plant relative to the river channel and the balance between the streamflow diverted

for power generation (if streamflow is diverted at all) and the streamflow remaining in the source channel. The impacts on streamflow will likely be minimal for run-of-the-river plants (plants constructed directly on the stream) with low head (i.e., height of fall of water) and small storage behind a dam. Other plants employ diversion channels to temporarily convey a proportion of streamflow away from the stream channel to the power plant and then return the flow to the stream channel. On stream reaches where a diversion channel has diverted a proportion of flow, there may be concerns about reduced flow in the source stream below the diversion channel intake and above its downstream confluence with the source stream. Impacts may be more serious where diversion channels are long and if a large proportion of streamflow is diverted.

In this report, we do not estimate future water demand for hydroelectric power generation because such demand represents an in-stream use of water with no loss of water from the stream. We also acknowledge that diversion channels can have consequences for source streams. Moreover, although our convention is to use the word *demand* to represent the water employed for hydroelectric power generation and suggest that plant operators rely on this flow being available, this is not necessarily the case. For the most part, hydroelectric plants can and do generate electricity with whatever flow is available in the stream and are not reliant on a minimum flow. Thus, to estimate future water demand for hydroelectric power generation is misleading and misrepresents operating practices at these facilities.

#### 4.1.3 Reported Plant-Level Power Generation and Water Demand

According to the U.S. Energy Information Administration (2015c), 50 generation facilities exist within 15 of the 21 counties of the three study areas (Appendix E). Total nameplate capacity of the 50 plants is 11,735 megawatts (MW).

#### 4.1.3.1 Thermoelectric Power Plants

Power plants in the Rock River WSPR that use once-through cooling use the Mississippi River as their supply source. Water is returned at a higher temperature than the ambient temperature in the river, which results in additional (forced) evaporation from the river. Less than 3 percent of the water withdrawn at plants using once-through cooling is typically consumed, mainly through forced evaporation (Solley et al., 1998).

Most large, traditional power plants using closed-loop cooling have a large cooling lake through which water is recirculated (withdrawn and returned). The returned water is at a higher temperature, which causes evaporation from the lake, typically resulting in a loss of 2 to 3 percent of the total amount of circulated water. A separate source of make-up water is needed to replace that lost through evaporation. Also, some of the recirculated water is extracted from the system and discharged as effluent as a way to remove hardness and chemicals that build up during recirculation. This effluent, often called blow-down, is typically discharged downstream from the source of the make-up water. A more modern type of closed-loop cooling system, involving evaporative cooling towers, intakes less water but consumes most of the water used.

Water demand by plants using once-through cooling is typically greater per unit of generated electricity than by plants using closed-loop cooling. The proportion of the withdrawn water lost to evaporation or consumed is greater from plants using closed-loop systems, however. Closed-loop systems with cooling towers, for example, can lose from 30 percent in nuclear facilities to 70 percent in plants using fossil fuels (Dziegielewski and Bik, 2006).

The difference between the amount of water withdrawn and water returned to the source (or discharged) usually represents consumptive use. In once-through cooling systems in which water is returned to the source at a higher temperature, the consumptive use is also calculated to include the amount of additional (forced) evaporation above ambient conditions caused by the higher water temperature. The amount of water consumed by power plants can often be difficult to calculate. Torcellini et al. (2003) calculated the average consumptive loss (by evaporation) in Illinois to be 1.05 gallons per kilowatt-hour (gal/KWh) of generated energy. However, this estimate is noticeably greater than that for neighboring states. The six-state regional average consumptive loss (weighted by total production) for Illinois, Indiana, Iowa, Michigan, Missouri, and Wisconsin was calculated to be 0.6 gal/KWh. The amount varies considerably depending on the cooling process. The greater average consumptive rate calculated by Torcellini et al. (2003) for Illinois is assumed herein to be associated with the large number of high-capacity, once-through power plants located along Lake Michigan and the major rivers of Illinois (Illinois, Mississippi, Rock, Des Plaines, and Kankakee).

As mentioned before, the loss (forced evaporation) at once-through cooling plants is estimated to be 3 percent or less of the withdrawn amount, which corresponds to about 31.3 Mgd for the only once-through plant, Exelon-Quad Cities Station.

There are five power plants with the nameplate capacity of 100 MW or greater in the Rock River WSPR. Three power plants (Exelon-Byron Station, Exelon-Quad Cities Station, and Cordova Energy) currently report water withdrawals to IWIP. Exelon-Byron and Exelon-Quad Cities are nuclear power plants, and Cordova Energy is a natural gas fired plant. Exelon-Quad Cities uses once-through cooling, while Exelon-Byron and Cordova Energy employ close-looped cooling. Large power plants, such as the Byron and Quad Cities stations, usually require a large amount of water that can only be provided by large rivers. Within the Rock River region, only the Mississippi and Rock Rivers would be able to provide such a large source of water. Although Cordova Energy is classified as a large power plant based on its nameplate capacity, the plant has operated at around 1 percent capacity in the years reported to the IWIP and thus uses only a small amount of water. Two other power plants (Lee Energy and NRG Rockford) currently do not report power generation or water use data and thus are not considered here. These smaller power plants do not use a large amount of water and often obtain their water through public water supply systems.

In 2014, the Exelon-Quad Cities Station withdrew 1044.8 Mgd from the Mississippi River, and the Exelon-Byron Station withdrew 55.6 Mgd from the Rock River. The Cordova Energy Station uses groundwater, and pumped 0.17 Mgd in 2014. The unit water demands for the three stations were 31.3 (Exelon-Quad Cities), 1.0 (Exelon-Byron), and 1.1 (Cordova Energy) gal/KWh. The notable differences in the withdrawal amounts and unit water demands between the Byron and Quad Cities stations are associated with their respective cooling technologies (once-through cooling versus cooling towers), not with the production amount.

In contrast to their total water uses, the consumptive uses of the Byron and Quad Cities stations are roughly similar. As mentioned above, the loss (forced evaporation) at once-through cooling plants is estimated to be 3 percent or less of the withdrawn amount, and this was assumed for Exelon-Quad Cities, giving a consumptive use of about 31.3 Mgd. In comparison, Exelon-Byron reported a consumptive use of 35.4 Mgd. Cordova Energy reported a consumptive use of 0.02 Mgd; thus, the total consumption for all three power plants in the Rock River WSPR is about 66.7 Mgd.

Of the 50 plants in the three study regions, nine thermoelectric plants account for nearly 69 percent of total generation capacity. The generation capacities of these nine large thermoelecric power plants are listed in Table 4.1. Total generation capacity (measured as gross

capacity) of the nine plants is 8056 MW. The remaining thermoelectric generators in the study regions do not represent large users of water for power generation, and in this report, their water demand is accounted for in the public supply sector (Chapter 2) and self-supplied commercialindustrial sector (Chapter 5).

| Power Plant                                   | County      | Nameplate<br>Capacity<br>(MW) <sup>1</sup> | Gross<br>Generation<br>(2010)<br>(MWh) <sup>2</sup> | Water<br>Demand<br>(2010)<br>(Mgd) | Unit Use Water<br>Demand (2010)<br>(Gal/KWh) <sup>3</sup> |  |
|-----------------------------------------------|-------------|--------------------------------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------------|--|
| Kankakee Subregion                            |             |                                            |                                                     |                                    |                                                           |  |
| Gibson City (Natural Gas)                     | Ford        | 270                                        | 20,001                                              | No data                            | Not determined                                            |  |
|                                               | Μ           | liddle Illinois l                          | Region                                              |                                    |                                                           |  |
| Exelon – LaSalle Co<br>Station (Nuclear)      | LaSalle     | 2,340                                      | 20,089,000                                          | $70.90^{4}$                        | 29.865                                                    |  |
| Ameren Cilco - Edwards<br>Station (Coal)      | Peoria      | 780                                        | 4,394,000                                           | 386.74                             | 32.149                                                    |  |
| Dynegy Midwest Gen -<br>Hennepin Power (Coal) | Putnam      | 306                                        | 2,440,000                                           | 197.26                             | 29.531                                                    |  |
|                                               | ]           | Rock River Re                              | egion                                               |                                    |                                                           |  |
| Lee Energy (Natural Gas)                      | Lee         | 814                                        | No data                                             | No data                            | Not determined                                            |  |
| Exelon - Byron Station<br>(Nuclear)           | Ogle        | 2,450                                      | 20,848,000                                          | 55.52                              | 0.973                                                     |  |
| Cordova Energy (Natural Gas)                  | Rock Island | 611                                        | 161,500                                             | 0.26                               | 0.592                                                     |  |
| Exelon - Quad Cities<br>Station (Nuclear)     | Rock Island | 2,019                                      | 14,565,000                                          | 1,103.87                           | 27.682                                                    |  |
| NRG Rockford I & II                           | Winnebago   | 484                                        | No data                                             | No data                            | Not determined                                            |  |

Table 4.1 Existing Large Thermoelectric Power Plants in Three Water-Supply Planning Regions

<sup>1</sup>MW: megawatts

<sup>2</sup>MWh: megawatt-hours

(Natural Gas)

<sup>3</sup> gal/KWh: gallons per kilowatt-hours

<sup>4</sup>When recycled cooling pond water is included, total water withdrawals are 1642 Mgd. Consumptive water demand (difference between the make-up water and the blow-down return water) was approximately 26 Mgd.

#### 4.1.3.2 Hydroelectric Power Plants

Eight small-capacity hydroelectric power plants in the three study regions divert significant amounts of water from streams to generate electricity before returning the water to its source stream (Table 4.2). Although the existing hydroelectric plants in the study regions are small-capacity facilities, they require large flows of water through the turbines per KWh of electric energy generated.

Water demands shown in Table 4.2 are estimates of the flow of water through the electricity-generating turbines at the plants. These demands are included in this report because they represent the flows employed at typical hydroelectric power plants in the study regions. As discussed in Section 4.1.2, we do not estimate future water demand for hydroelectric power generation.

Table 4.3 illustrates diverted flows and power generation at the North American Hydro-Dayton hydroelectric power plant as an example of operating conditions at a hydroelectric plant in the region. From 1998 to 2012, the Dayton plant diverted an average of 17 percent of Fox River flow for power generation. In general, both the gross diversion and the diversion as a proportion of Fox River flow at the Dayton plant have increased during the period.

| Power Plant                                    | County      | Nameplate<br>Capacity<br>(MW) | Gross<br>Generation<br>(2010)<br>(MWh) | Water<br>Demand<br>(2010) (Mgd) | Unit Use Water<br>Demand (2010)<br>(Gal/KWh) |
|------------------------------------------------|-------------|-------------------------------|----------------------------------------|---------------------------------|----------------------------------------------|
| Kankakee Subregion                             |             |                               |                                        |                                 |                                              |
| Kankakee Hydro Facility                        | Kankakee    | 1.20                          | 2,587                                  | No data                         | Not determined                               |
| Middle Illinois Region                         |             |                               |                                        |                                 |                                              |
| Marseilles Hydro Power<br>Station (closed)     | LaSalle     | No data                       | Not applicable                         | Not applicable                  | Not applicable                               |
| National Hydro Corp.                           | LaSalle     | No data                       | No data                                | No data                         | Not determined                               |
| North American Hydro –<br>Dayton               | LaSalle     | 3.68                          | 16,125                                 | 735.81                          | 16,667                                       |
| Peru Hydroelectric Power<br>Station            | LaSalle     | 7.60                          | 30,569                                 | No data                         | Not determined                               |
| Rock River Region                              |             |                               |                                        |                                 |                                              |
| Dixon Hydroelectric Dam                        | Lee         | 3.00                          | 12,578                                 | No data                         | Not determined                               |
| Mid American Energy Co<br>- Moline Hydro Plant | Rock Island | 3.60                          | 6,966                                  | 723.33                          | 37,926                                       |
| Sears Hydroelectric Plant                      | Rock Island | 1.40                          | 2,590                                  | No data                         | Not determined                               |
| Upper Sterling Hydro<br>Power Plant            | Whiteside   | 2.20                          | 3,365                                  | 389.69                          | 42,298                                       |
| North American Hydro -<br>Rockton              | Winnebago   | 1.10                          | 7,529                                  | 1,037.61                        | 50,337                                       |

Table 4.2 Existing Hydroelectric Power Plants in Three Water-Supply Planning Regions

| Year    | Diversion<br>(cfs) <sup>1</sup> | Fox River<br>Flow (cfs) <sup>1</sup> | Diversion<br>(% of Fox<br>River Flow) | Power<br>Generation<br>(MWh) <sup>2</sup> | Normalized<br>Diversion<br>(Gal/KWh) <sup>3</sup> |
|---------|---------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------|---------------------------------------------------|
| 1998    | 5                               | 2,072                                | 0%                                    | 10,806                                    | 120                                               |
| 1999    | 102                             | 2,531                                | 4%                                    | 20,142                                    | 1,193                                             |
| 2000    | 106                             | 2,039                                | 5%                                    | 21,055                                    | 1,193                                             |
| 2001    | 112                             | 2,360                                | 5%                                    | 22,107                                    | 1,193                                             |
| 2002    | 78                              | 2,165                                | 4%                                    | 15,438                                    | 1,193                                             |
| 2003    | 60                              | 979                                  | 6%                                    | 11,908                                    | 1,193                                             |
| 2004    | 85                              | 2,133                                | 4%                                    | 16,716                                    | 1,193                                             |
| 2005    | 67                              | 1,466                                | 5%                                    | 13,178                                    | 1,193                                             |
| 2006    | 590                             | 1,367                                | 43%                                   | 21,323                                    | 6,528                                             |
| 2007    | 590                             | 3,239                                | 18%                                   | Not available                             | Not available                                     |
| 2008    | 500                             | 3,798                                | 13%                                   | 15,727                                    | 7,500                                             |
| 2009    | 670                             | 3,759                                | 18%                                   | 19,000                                    | 8,324                                             |
| 2010    | 1,139                           | 3,520                                | 32%                                   | 16,125                                    | 16,667                                            |
| 2011    | 1,326                           | 2,618                                | 51%                                   | 24,128                                    | 12,966                                            |
| 2012    | 720                             | 1,623                                | 44%                                   | 13,086                                    | 12,987                                            |
| AVERAGE | 410                             | 2,378                                | 17%                                   | 17,196                                    | 5,246                                             |

 Table 4.3 Diversion of Fox River for Hydroelectric Power Generation, North American Hydro - Dayton (LaSalle County) (1998-2012)

<sup>1</sup>cfs: cubic feet per second <sup>2</sup>MWh: megawatt-hours <sup>3</sup>gal/KWh: gallons per kilowatt-hours

#### 4.2 Water-Demand Relationships for Thermoelectric Power Generation

We employed a straightforward unit-coefficient method to estimate future water demand for thermoelectric power generation. This method represents water demand at a thermoelectric facility as the product of gross generation at the plant and the rate of water demand per unit of generated electricity. The specific coefficients and relationship for the two main types of cooling systems are discussed below.

Previous studies of water usage in plants with once-through cooling systems show that total water demand at a thermoelectric power plant depends primarily on the level of generation, but it is also a function of operational efficiency (i.e., the percent of capacity utilization), thermal efficiency, the design temperature rise in the condenser at 100 percent capacity, fuel type, and other system design and operational conditions (Dziegielewski and Bik, 2006, Yang and Dziegielewski, 2007). However, the usefulness of the published water-demand relationships is limited because the reported equations are estimated from data extracted from returns of the U.S. Energy Information Administration's Form EIA-767 (*Annual Steam-Electric Plant Operation and Design Report*) (U.S. Energy Information Administration, 2015d), which, discontinued in 2005, solicited only net (not gross) electricity generation. More precise estimation of cooling-water demand is possible using gross generation.

The data in Table 4.1 include water demand and gross generation in four thermoelectric plants in the study regions that use once-through cooling. Figure 4.1 is a plot of gross generation
versus water demand in 2010 at the four plants. The slope of the regression line in Figure 4.1 suggests that average water demand at thermoelectric power plants using once-through cooling in the three study regions is approximately 29 gallons/KWh of gross generation.

For closed-loop plants with cooling towers, water demand (referred to as *make-up water*) is generally less than 1.0 gallon per KWh of gross generation (Dziegielewski and Bik, 2006, Dziegielewski et al., 2002).

Our estimates of future water demand for thermoelectric power generation at hypothetical future power plants are based on the electric energy generation and water demands of existing large, self-supplied plants. However, new power plants are likely to have higher power generation efficiencies and possibly use different fuels than in the existing plants. As a result, the water demand rate per KWh will almost certainly be lower in the future than for the existing self-supplied facilities. In deriving estimates of future water demand at existing power plants, we employed the actual normalized water demand at each plant (last column of Table 4.1).



Figure 4.1 Gross electricity generation versus water demand for four thermoelectric power plants in the three study regions that use once-through cooling (2010)

## 4.3 Future Demand for Electricity

Future water demand by the power generation sector will depend on the level of future generation and also on the types of generators and cooling systems employed. Before characterizing future scenarios of water demand for thermoelectric power generation, we examined future trends in demand for electricity in the three study regions. With deregulation of the electric power industry, the demand for electricity in a geographical area cannot be linked directly to local generation. However, an understanding of future electricity demand is informative in characterizing future generation trends.

It is reasonable to expect that the future demand for electricity within the study regions will change because of population growth and the concomitant increase in economic activity. Current electricity demand within the study regions is challenging to determine precisely with available data, but per-capita electricity demand can be approximated by dividing the current

aggregate sales of electricity by population served. Table 4.4 compares available estimates of per-capita electricity demand computed in this way for different geographical areas.

Of the estimates in Table 4.4, the estimate of 10.14 MWh/capita-year, reported by the Illinois Commerce Commission for the year 2006, is to us the most justifiable approximation of 2010 electricity demand in the 21 counties of the three study regions. The demand is only slightly lower than the 2005 statewide rate reported by the U.S. Energy Information Administration (10.77 MWh/capita-year) and the 2010 national average (12.97 MWh/capita-year). As such, the estimate can be considered conservative for future per-capita electricity demand in the three study regions.

At the national level, total electricity sales to all sectors (i.e., residential, commercial, and industrial) are expected to increase from 3927 billion KWh in 2007 to 5021 billion KWh in 2035 (AEO2010 reference case, U.S. Energy Information Administration (2018)). During the same time period, the projected U.S. population is expected to increase from 302.4 million (2007) to 390.7 million (2035). This implies that, at the national level, per-capita electricity demand will remain relatively constant, decreasing only slightly from 12.97 MWh/capita-year (2007) to 12.85 MWh/capita-year (2035).

We estimated future county and regional electricity demand as the product of projected future county population and estimated per-capita electricity demand of 10.14 MWh/capita-year (Table 4.4). For all three study regions, we employed county-level projections of population obtained from the IDPH for the period 2015 to 2025, but, as discussed in Appendix B, these estimates do not extend to years beyond 2030. We therefore developed our own projections of county population for the period 2030 to 2060 for all three study regions using trends in historical and IDPH projections.

A comparison of the 2010 estimates of thermoelectric power generation (Table 4.1) with the estimates of 2010 electricity demand (Table 4.5) shows that total 2010 thermoelectric energy generation (62,497,871 MWh, but this is a minimum value since data are not available for a few facilities) greatly exceeds the estimated 2010 electricity demand within the three study regions of 13,945,349 MWh (1,594,038 MWh in the Kankakee subregion, 4,078,511 MWh in the Middle Illinois region, and 8,272,800 MWh in the Rock River region). This discrepancy attests to the fact that about 80 percent of the local thermoelectric generation in the study regions is exported.

Future electricity generation will follow demand, but the U.S. Energy Information Administration (2014) (AEO 2015 reference case) forecasts that new additions to generating capacity in the U.S. will mainly use natural gas and renewable sources of energy (Figure 4.2).

| Source                                               | Year | Electricity Demand<br>(MWh/capita-year) | Geographic<br>Area |
|------------------------------------------------------|------|-----------------------------------------|--------------------|
| Energy Information Administration (EIA) <sup>1</sup> | 2005 | 10.77                                   | Illinois           |
| Illinois Commerce Commission (ICC) <sup>2</sup>      | 2006 | 10.14                                   | Illinois           |
| California Energy Commission <sup>3</sup>            | 2009 | 10.59                                   | Illinois           |
| Energy Information Administration (EIA) <sup>1</sup> | 2010 | 12.97                                   | United States      |
| Illinois Commerce Commission (ICC) <sup>2</sup>      | 2013 | 10.36                                   | Illinois           |

Table 4.4 Available Estimates of Per-Capita Electricity Demand

<sup>1</sup> U.S. Energy Information Administration (2015b)

<sup>2</sup> Illinois Commerce Commission (2015)

<sup>3</sup> California Energy Commission (2016)

|                                                                                           |            | 2010                       | 2060       |                            |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|------------|----------------------------|------------|----------------------------|--|--|--|--|--|--|
| County                                                                                    | Population | Electricity<br>Demand, MWh | Population | Electricity<br>Demand, MWh |  |  |  |  |  |  |
| Kankakee Subregion (Annualized 2010-2060 Change in Electricity Demand = 0.20%)            |            |                            |            |                            |  |  |  |  |  |  |
| Ford County                                                                               | 14,078     | 142,751                    | 13,448     | 136,363                    |  |  |  |  |  |  |
| Iroquois County                                                                           | 29,663     | 300,783                    | 27,686     | 280,736                    |  |  |  |  |  |  |
| Kankakee County                                                                           | 113,462    | 1,150,505                  | 132,903    | 1,347,640                  |  |  |  |  |  |  |
| <b>REGIONAL TOTAL</b>                                                                     | 157,203    | 1,594,038                  | 174,037    | 1,764,739                  |  |  |  |  |  |  |
| <b>Middle Illinois Region</b> (Annualized 2010-2060 Change in Electricity Demand = 0.10%) |            |                            |            |                            |  |  |  |  |  |  |
| LaSalle County                                                                            | 113,866    | 1,154,601                  | 112,418    | 1,139,919                  |  |  |  |  |  |  |
| Livingston County                                                                         | 38,853     | 393,969                    | 41,520     | 421,016                    |  |  |  |  |  |  |
| Marshall County                                                                           | 12,630     | 128,068                    | 11,911     | 120,778                    |  |  |  |  |  |  |
| Peoria County                                                                             | 186,270    | 1,888,778                  | 197,596    | 2,003,627                  |  |  |  |  |  |  |
| Putnam County                                                                             | 5,994      | 60,779                     | 5,998      | 60,820                     |  |  |  |  |  |  |
| Stark County                                                                              | 5,967      | 60,505                     | 5,585      | 56,632                     |  |  |  |  |  |  |
| Woodford County                                                                           | 38,640     | 391,810                    | 48,165     | 488,390                    |  |  |  |  |  |  |
| <b>REGIONAL TOTAL</b>                                                                     | 402,220    | 4,078,511                  | 423,193    | 4,291,181                  |  |  |  |  |  |  |
| <b>Rock River Region</b> (Annualized 2010-2060 Change in Electricity Demand = 0.13%)      |            |                            |            |                            |  |  |  |  |  |  |
| Boone County                                                                              | 54,144     | 549,020                    | 76,814     | 778,894                    |  |  |  |  |  |  |
| Bureau County                                                                             | 34,905     | 353,937                    | 33,681     | 341,525                    |  |  |  |  |  |  |
| Carroll County                                                                            | 15,364     | 155,791                    | 14,169     | 143,674                    |  |  |  |  |  |  |
| Henry County                                                                              | 50,432     | 511,380                    | 48,233     | 489,083                    |  |  |  |  |  |  |
| Jo Daviess County                                                                         | 22,660     | 229 772                    | 22.137     | 224 469                    |  |  |  |  |  |  |

364,736

541,963

483,475

592,906

2,992,831

8,272,800

1,496,988

36,645

58,521

158,035

46,242

55,267

321,297

871,040

371,577

593,400

468,894

560,407

3,257,955

8,832,349

1,602,472

35,970

53,448

147,632

47,680

58,472

295,151

815,858

Lee County

Ogle County

Rock Island County

Stephenson County

Whiteside County

Winnebago County

**REGIONAL TOTAL** 

Table 4.5 Population-Based Estimates of Future Electricity Demand in Three Study Regions



Figure 4.2 National projections of electricity generation by fuel type (U.S. Energy Information Administration, 2015a)

# 4.4 Scenarios of Water Demand

We have developed three scenarios of future water demand for thermoelectric power generation that reflect plausible conditions of electric power generation in the study regions.

# 4.4.1 Current Trends (Baseline) Scenario (CT)

Under this scenario, future generation of electricity in the study regions continues in the existing thermoelectric power plants at current levels of gross generation, and no new plants are built. The specific assumptions underlying this scenario are the following:

- 1. Future generation in the existing thermoelectric power plants will continue at 2010 levels of gross generation.
- 2. No new thermoelectric power plants (with steam turbines that require water-based cooling) will be added through the end of the study period in 2060.

# 4.4.2 Less Resource Intensive Scenario (LRI)

This scenario assumes future conditions that would lead to reduced water demand for thermoelectric power generation. Such an outcome would result if some of the existing thermoelectric plants would retire and not replace older generating units. The specific assumption defining the less resource intensive (LRI) scenario is:

1. Future generation in the generating units that continue at 2010 levels of gross generation.

# 4.4.3 More Resource Intensive Scenario (MRI)

This scenario assumes future conditions that would lead to greater water demand for thermoelectric power generation. Greater demand would result if additional thermoelectric power plants were built within the study regions. We additionally assumed that new, conventional thermoelectric power plants would employ closed-loop cooling systems as required by the USEPA Phase I 316(b) rule.

Under the MRI scenario, we assumed that one additional gas-fired combined-cycle thermoelectric power plant with a gross capacity of 1200 MW begins operation in Lee County, effective 2030. Lee County was picked because it is geographically in between Rockford and Rock Island, the locations of current plants, and is near the Rock River and a high-capacity transmission corridor.We assumed that the new power plant would use surface water as make-up water for a closed-loop cooling system with cooling towers.

The MRI scenario is based on the following specific assumptions:

- 1. Future generation in the existing thermoelectric power plants will continue at 2010 levels of gross generation.
- 2. One new gas-fired combined-cycle thermoelectric plant having a gross capacity of 1200 MW begins operations in Lee County in 2030.
- 3. The new plant will be located near a high-capacity transmission corridor and will employ a closed-loop cooling system supplied with surface water.

# 4.5 Scenario Results

Scenario results are shown in Table 4.6. Under the CT scenario, demand for self-supplied water for power generation remains at the 2010 total of 1160.47 Mgd through 2060. The LRI scenario results are identical to the CT results because the provisional LRI scenario definition does not include retirement or closure of power plants or generators. We can develop alternative LRI results of lesser water demand with the addition of such retirements and/or closures, but we wish to consult local authorities to improve the plausibility of our LRI scenario definition. Under the MRI scenario, demand for self-supplied water for power generation increases from 1160.47 Mgd to 1171.43 Mgd; this increase of 10.96 Mgd (0.9 percent) begins in 2030 because we designed the MRI scenario to have the new Lee County power plant begin operation effective 2030.

| Year                 | Gross Electric<br>Generation<br>(MWh) | Total Demand<br>(Mgd) |
|----------------------|---------------------------------------|-----------------------|
| Current Trends       | (Baseline) Scenar                     | rio (CT)              |
| 2010                 | 35,575,009                            | 1,160.47              |
| 2015                 | 35,575,009                            | 1,160.47              |
| 2020                 | 35,575,009                            | 1,160.47              |
| 2025                 | 35,575,009                            | 1,160.47              |
| 2030                 | 35,575,009                            | 1,160.47              |
| 2035                 | 35,575,009                            | 1,160.47              |
| 2040                 | 35,575,009                            | 1,160.47              |
| 2045                 | 35,575,009                            | 1,160.47              |
| 2050                 | 35,575,009                            | 1,160.47              |
| 2055                 | 35,575,009                            | 1,160.47              |
| 2060                 | 35,575,009                            | 1,160.47              |
| 2010-2060 Change     | 0                                     | 0                     |
| 2010-2060 Change (%) | 0                                     | 0                     |
| Less Resource l      | Intensive Scenari                     | o (LRI)               |
| 2010                 | 35,575,009                            | 1,160.47              |
| 2015                 | 35,575,009                            | 1,160.47              |
| 2020                 | 35,575,009                            | 1,160.47              |
| 2025                 | 35,575,009                            | 1,160.47              |
| 2030                 | 35,575,009                            | 1,160.47              |
| 2035                 | 35,575,009                            | 1,160.47              |
| 2040                 | 35,575,009                            | 1,160.47              |
| 2045                 | 35,575,009                            | 1,160.47              |
| 2050                 | 35,575,009                            | 1,160.47              |
| 2055                 | 35,575,009                            | 1,160.47              |
| 2060                 | 35,575,009                            | 1,160.47              |
| 2010-2060 Change     | 0                                     | 0                     |
| 2010-2060 Change (%) | 0                                     | 0                     |
| More Resource        | Intensive Scenari                     | o (MRI)               |
| 2010                 | 35,575,009                            | 1,160.47              |
| 2015                 | 35,575,009                            | 1,160.47              |
| 2020                 | 35,575,009                            | 1,160.47              |
| 2025                 | 35,575,009                            | 1,160.47              |
| 2030                 | 43,575,009                            | 1,171.43              |
| 2035                 | 43,575,009                            | 1,171.43              |
| 2040                 | 43,575,009                            | 1,171.43              |
| 2045                 | 43,575,009                            | 1,171.43              |
| 2050                 | 43,575,009                            | 1,171.43              |
| 2055                 | 43,575,009                            | 1,171.43              |
| 2060                 | 43,575,009                            | 1,171.43              |
| 2010-2060 Change     | 8,000,000                             | 10.96                 |
| 2010-2060 Change (%) | 22.5                                  | 0.9                   |

Table 4.6 Water Demand Scenarios for Power Generation

# 5 Demand for Self-Supplied Water for Industrial and Commercial Uses

# 5.1 Background

The industrial and commercial (IC) sector includes water used for a range of institutional and nonresidential purposes. The industrial subsector includes water used for "industrial purposes such as fabrication, processing, washing, and cooling, and includes such industries as steel, chemical and allied products, paper and allied products, mining, and petroleum refining," and the commercial subsector includes water used for "motels, hotels, restaurants, office buildings, other commercial facilities, and institutions" (Avery, 1999). The industrial subsector encompasses water used for mining, including quarrying and extraction of naturally-occurring minerals, milling, and other operations at the mine site (Avery, 1999).

IC water demand is satisfied with self-supplied water or water purchased from public water systems, but this chapter is concerned principally with self-supplied IC water demand. IC demand for puchased water is summarized, but we included this component of IC demand in public system demand, which we discuss in Chapter 2.

# 5.1.1 Historical Self-Supplied IC Demand

County-level totals of self-supplied withdrawals have been estimated, compiled, and reported by the USGS since 1985 under the USGS National Water-Use Information Program (U.S. Geological Survey, 2014). Table 5.1 shows the 1990, 1995, 2000, 2005, and 2010 USGS estimates, with mining and non-mining IC demand separated for all data years except 2000, when mining IC demand was not estimated. Detailed explanations of the USGS methodologies for developing these estimates are available in summary reports (Hutson et al., 2004, Kenny et al., 2009, Maupin et al., 2014, Solley et al., 1993, 1998).

County totals in Table 5.1 display geographic variability in self-supplied IC demand across data years. For 2010, the USGS estimated very low rates of self-supplied IC non-mining demand in Lee and Whiteside Counties, whereas the Rock Island County total of 11.22 Mgd comprises 52 percent of total self-supplied IC non-mining demand in the region (Figure 5.1). Likewise, the total self-supplied mining demand in Rock Island County of 2.97 Mgd made up 59 percent of total self-supplied mining demand in the Rock River region (Figure 5.2). The variability of the estimated demand is partially attributable to the methods by which the self-supplied withdrawals are inventoried.

The estimates of self-supplied IC non-mining and mining demand in Table 4.1 do not display strong temporal trends. Self-supplied non-mining demand averaged about 21 Mgd during the first four data years (1995-2010), but the regional total decreased markedly between 1990 and 1995, when demand in Rock Island County decreased from 48.99 Mgd to 6.37 Mgd. Self-supplied mining demand ranged from 0.75 to 6.92 Mgd during the five data years shown in Table 4.1.

| County Non-Mining |       |       |       | Mining |       |      |      |        |      |            |
|-------------------|-------|-------|-------|--------|-------|------|------|--------|------|------------|
|                   | 1990  | 1995  | 2000  | 2005   | 2010  | 1990 | 1995 | 2000   | 2005 | 2010       |
| Boone             | 0.07  | 0.18  | 0.39  | 0.42   | 0.44  | 0    | 0    | $NE^1$ | 0.15 | 0.05       |
| Bureau            | 0.02  | 0.02  | 0.03  | 0.03   | 0.04  | 0    | 0.38 | NE     | 0.94 | $2.05^{2}$ |
| Carroll           | 1.96  | 2.24  | 1.97  | 2.29   | 2.19  | 0    | 0    | NE     | 0.07 | 0.01       |
| Henry             | 0.03  | 0.01  | 0.01  | 0.01   | 1.00  | 0    | 0    | NE     | 0.02 | 0.03       |
| Jo Daviess        | 1.72  | 2.62  | 2.56  | 2.17   | 1.78  | 0    | 0    | NE     | 0.21 | 0.13       |
| Lee               | 0.05  | 2.44  | 1.11  | 1.84   | 0.05  | 0    | 0    | NE     | 0.38 | 0.04       |
| Ogle              | 0.68  | 0.44  | 0.64  | 0.53   | 1.86  | 0.35 | 0.01 | NE     | 0.61 | 0.82       |
| Rock Island       | 48.99 | 6.37  | 3.57  | 11.78  | 11.22 | 0.34 | 0    | NE     | 0.18 | 2.97       |
| Stephenson        | 1.82  | 1.78  | 1.45  | 1.88   | 2.05  | 0    | 0    | NE     | 0.08 | 0.07       |
| Whiteside         | 7.65  | 4.52  | 4.15  | 0.06   | 0.02  | 0    | 0    | NE     | 0.18 | 0.15       |
| Winnebago         | 3.59  | 3.59  | 1.72  | 1.51   | 0.87  | 0.74 | 0.36 | NE     | 0.49 | 0.60       |
| REGIONAL<br>TOTAL | 66.58 | 24.21 | 17.60 | 22.52  | 21.52 | 1.43 | 0.75 | NE     | 3.31 | 6.92       |

Table 5.1 Historical Self-Supplied IC Water Demand (Mgd) (U.S. Geological Survey, 2014)

<sup>1</sup>NE: not estimated

<sup>2</sup>Based on review of data reported to the IWIP, we revised upward the 2010 USGS estimate of water demand for mining uses in Bureau County from 0.14 Mgd to 2.05 Mgd.



Figure 5.1 Self-supplied IC demand for non-mining uses, 2010 (Mgd), by county (U.S. Geological Survey, 2014)



Figure 5.2 Self-supplied IC demand for mining uses, 2010 (Mgd), by county (U.S. Geological Survey, 2014)

# 5.1.2 Historical Public Supply Deliveries to IC Users

In addition to using self-supplied water, IC facilities also use water purchased from public water systems. The demand for purchased IC water is included in the estimates of future public water system demand discussed in Chapter 2, but, for completeness, Table 5.2 shows estimated purchases of water from public water systems by IC customers in 2010. We computed the estimates in Table 5.2 from other values provided by the USGS. For 2005, we computed these values by subtracting the USGS estimate of public system deliveries for domestic use (DO-PSDel) from public system withdrawals (PS-Wtotl) (U.S. Geological Survey, 2014). We computed IC purchases for 2010 similarly, but the 1990 and 1995 values were computed by summing USGS estimates of public system deliveries to commercial and industrial customers. Public system deliveries to IC customers are not computable from USGS estimates for 2000.

| County                | 1990  | 1995  | 2000            | 2005  | 2010  |
|-----------------------|-------|-------|-----------------|-------|-------|
| Boone                 | 1.75  | 1.19  | NE <sup>1</sup> | 0.75  | 0.51  |
| Bureau                | 0.79  | 0.55  | NE              | 0.91  | 1.03  |
| Carroll               | 0.28  | 0.22  | NE              | 0.37  | 0.35  |
| Henry                 | 0.41  | 0.30  | NE              | 0.58  | 1.00  |
| Jo Daviess            | 0.85  | 0.19  | NE              | 1.11  | 0.89  |
| Lee                   | 1.05  | 1.17  | NE              | 1.77  | 1.67  |
| Ogle                  | 3.12  | 2.14  | NE              | 1.90  | 2.48  |
| Rock Island           | 2.79  | 4.55  | NE              | 5.97  | 6.38  |
| Stephenson            | 0.03  | 1.67  | NE              | 0.56  | 0.95  |
| Whiteside             | 1.32  | 1.73  | NE              | 0.77  | 0.76  |
| Winnebago             | 16.06 | 14.21 | NE              | 14.11 | 9.71  |
| <b>REGIONAL TOTAL</b> | 28.45 | 27.92 | NE              | 28.80 | 25.73 |

Table 5.2 Deliveries from Public Water Systems to IC Facilities (Mgd) (U.S. Geological Survey, 2014)

<sup>1</sup>NE: not estimated

# 5.2 Data and Estimation Methods

## 5.2.1 Demand Rates

The USGS estimates of county-level demand for self-supplied water by IC facilities that form the basis for our estimates of future self-supplied IC demand were supplemented with ISWS facility-level data on demand and employment to ascertain average rates of demand per employee at each facility. Although these data are not comprehensive in the sense that they do not include all self-supplied IC facilities in the region, they provide a sense of the wide range of per-employee demand that characterizes IC water demand.

Altogether, self-supplied demand totals and numbers of employees were reported by 37 different IC facilities in 2010. Based on data reported to IWIP, facility-level demand totals ranged from <0.1 to 3.5 Mgd, and employee-level demand ranged across six orders of magnitude, from 6.9 to 147,499.0 gallons per employee per day (gped). The large variation in employee-level demand reflects differences in water requirements among different types of commercial and industrial establishments. We examined self-supplied IC demand by Standard Industrial Classification (SIC) code, which are codes that identify and classify the activity or activities representing the primary line(s) of business of a firm (U.S. Department of Labor Occupational Safety and Health Administration, 2015) (Table 5.3). Analysis based on SIC codes show that, of the self-supplied IC establishments for which data are available, the greatest total water demand in the Rock River region, 3.5 Mgd, was for production of farm machinery and equipment (SIC code 3523), but per-employee demand for this business activity, at 1644.2 gped, was less than that for many other activities. In 2010, per-employee water demand for two mining-related activities-production of construction sand and gravel (SIC code 1422) and of brick, stone, and related material (code 5032)—was approximately 120,000 gped. Water demand for these activities totaled 3.0 and 1.9 Mgd, respectively, in 2010.

The variability of self-supplied IC water demand per employee for different SIC codes tends to be high, making the development of a statistical model to estimate aggregate self-supplied IC water demand challenging.

| SIC<br>Code | SIC Code Definition                 | Demand<br>(Mgd) | Number of<br>Employees | Per-Employee<br>Demand (gped <sup>1</sup> ) |
|-------------|-------------------------------------|-----------------|------------------------|---------------------------------------------|
| 1422        | Construction Sand and Gravel        | 3.0             | 25                     | 118,502.3                                   |
| 1446        | Industrial Sand                     | < 0.1           | 40                     | 35.7                                        |
| 2011        | Meat Packing Plants                 | 2.0             | 2,300                  | 882.8                                       |
| 2023        | Dry, Condensed, Evaporated Products | 0.2             | 120                    | 1,665.3                                     |
| 2024        | Ice Cream and Frozen Desserts       | 0.1             | 100                    | 797.1                                       |
| 2026        | Fluid Milk                          | 0.3             | 210                    | 1,580.2                                     |
| 2037        | Frozen Fruits and Vegetables        | 0.4             | 750                    | 488.9                                       |
| 2048        | Prepared Feeds, NEC <sup>2</sup>    | < 0.1           | 11                     | 56.0                                        |
| 2067        | Chewing Gum                         | 0.4             | 610                    | 587.1                                       |
| 2754        | Commercial Printing, Gravure        | 0.3             | 545                    | 558.4                                       |
| 2869        | Industrial Organic Chemicals, NEC   | 1.5             | 113                    | 13,000.6                                    |
| 2873        | Nitrogenous Fertilizers             | 1.8             | 148                    | 11,859.6                                    |
| 2899        | Chemical Preparations, NEC          | < 0.1           | 60                     | 63.9                                        |
| 3011        | Tires and Inner Tubes               | 1.5             | 575                    | 2,599.4                                     |
| 3081        | Unsupported Plastics Film and Sheet | < 0.1           | 28                     | 1,292.9                                     |
| 3259        | Structural Clay Products, NEC       | < 0.1           | 107                    | 15.9                                        |
| 3272        | Concrete Products, NEC              | < 0.1           | 50                     | 95.4                                        |
| 3273        | Ready-Mixed Concrete                | < 0.1           | 20                     | 397.0                                       |
| 3429        | Hardware, NEC                       | < 0.1           | 329                    | 137.3                                       |
| 3431        | Metal Sanitary Ware                 | < 0.1           | 71                     | 148.0                                       |
| 3452        | Bolts, Nuts, Rivets, and Washers    | 0.1             | 220                    | 257.1                                       |
| 3462        | Iron and Steel Forgings             | < 0.1           | 14                     | 47.7                                        |
| 3471        | Plating and Polishing               | 0.1             | 77                     | 1,367.1                                     |
| 3523        | Farm Machinery and Equipment        | 3.5             | 2,100                  | 1,644.2                                     |
| 3531        | Construction Machinery              | 1.5             | 413                    | 3,746.4                                     |
| 3562        | Ball and Roller Bearings            | < 0.1           | 30                     | 365.1                                       |
| 3564        | Blowers and Fans                    | < 0.1           | 160                    | 24.6                                        |
| 3567        | Industrial Furnaces and Ovens       | < 0.1           | 100                    | 56.1                                        |
| 3585        | Refrigeration and Heating Equipment | < 0.1           | 5                      | 60.1                                        |
| 3594        | Fluid Power Pumps and Motors        | < 0.1           | 300                    | 69.3                                        |
| 3724        | Aircraft Engines and Engine Parts   | 0.7             | 1,500                  | 483.8                                       |
| 3728        | Aircraft Parts and Equipment, NEC   | 0.1             | 2,200                  | 65.0                                        |
| 3731        | Shipbuilding and Repairing          | < 0.1           | 18                     | 1,090.2                                     |
| 4833        | Television Broadcasting Stations    | < 0.1           | 80                     | 6.9                                         |
| 5032        | Brick, Stone, and Related Material  | 1.9             | 15                     | 123,470.5                                   |
| 5191        | Farm Supplies                       | < 0.1           | 15                     | 873.9                                       |
| 7011        | Hotels and Motels                   | < 0.1           | 395                    | 56.5                                        |
| 7261        | Funeral Service and Crematories     | < 0.1           | 5                      | 32.9                                        |

Table 5.3 Self-Supplied IC Water Demand by SIC Code for Selected Facilities (2010)

<sup>1</sup>gped: gallons per employee-day <sup>2</sup>NEC: not elsewhere classified

## 5.2.2 Water Use Relationships

Water withdrawals and purchases for IC purposes are usually explained in economic terms, with water treated as a factor of production. For a study such as this, econometric models of water demand would ideally be developed based on a comparison of the outputs and the price of water and other inputs. Unfortunately, such data are rarely collected at the county level and are not publicly available because of their proprietary nature. An alternative and commonly used approach is to estimate water demand based on the size and type of products or services produced by the firm. This can be accomplished using unit-use coefficients. Because the size of businesses is frequently represented by the number of employees, and because demand varies considerably with the nature of the business enterprise, self-supplied IC water demand is frequently expressed as water demand per employee for a specified type of business.

To estimate future self-supplied IC water demand in the region, county-level employment data were obtained and compared to total county-level IC water demand, both self-supplied and purchased from public systems. The most detailed and relevant county-level employment data are the U.S. Census Bureau (2015b) County Business Patterns data series, which provide subnational economic data by industry, and the Illinois Department of Employment Security (2014) projections of future employment.

Table 5.4 shows aggregate and per-employee IC water demand at the county level in 2010. It shows that per-employee IC water demand, computed at the county level, is less variable, ranging from 57.6 to 751.3 gped, than per-employee IC demand in the subset of self-supplied firms summarized by SIC code in Table 5.3. The reduced variability of the county-level estimates of IC water demand reflects the fact that computation of these estimates averages out differences in water demand between different types of IC establishments. Table 5.5 shows county totals of self-supplied and delivered water used by IC facilities in the region in 2010.

The county-level estimates of per-employee demand shown in Table 5.4 were applied in estimating future IC water demand in each county of the region. The percentage fractions from Table 5.5 were applied to estimate self-supplied withdrawals.

| County                | Total<br>Employment <sup>1</sup> | Total IC<br>Demand<br>(Mgd) <sup>2</sup> | Per-Employee<br>IC Demand<br>(gped <sup>3</sup> ) |
|-----------------------|----------------------------------|------------------------------------------|---------------------------------------------------|
| Boone                 | 11,363                           | 1.00                                     | 88.0                                              |
| Bureau                | 9,699                            | 3.124                                    | 215.7                                             |
| Carroll               | 3,394                            | 2.55                                     | 751.3                                             |
| Henry                 | 13,074                           | 2.03                                     | 155.3                                             |
| Jo Daviess            | 6,992                            | 2.80                                     | 400.5                                             |
| Lee                   | 10,543                           | 1.76                                     | 166.9                                             |
| Ogle                  | 12,909                           | 5.16                                     | 399.7                                             |
| Rock Island           | 61,270                           | 20.57                                    | 335.7                                             |
| Stephenson            | 14,983                           | 3.07                                     | 204.9                                             |
| Whiteside             | 16,140                           | 0.93                                     | 57.6                                              |
| Winnebago             | 114,902                          | 11.18                                    | 97.3                                              |
| <b>REGIONAL TOTAL</b> | 275,269                          | 54.17                                    | 196.8                                             |

Table 5.4 Total Employment and Total IC Water Demand, By County (2010)

<sup>1</sup>U.S. Census Bureau (2015b) <sup>2</sup>U.S. Geological Survey (2014) <sup>3</sup>gped: gallons per employee-day <sup>4</sup>Based on review of data reported to the IWIP, we revised upward the 2010 USGS estimate of total IC water demand in Bureau County from 1.21 Mgd to 3.12 Mgd

| County                | Self-Supplied<br>(Mgd) | Purchased<br>(Mgd) | Percent Self-<br>Supplied |
|-----------------------|------------------------|--------------------|---------------------------|
| Boone                 | 0.49                   | 0.51               | 49.0                      |
| Bureau                | $2.09^{*}$             | 1.03               | 67.0                      |
| Carroll               | 2.20                   | 0.35               | 86.3                      |
| Henry                 | 1.03                   | 1.00               | 50.7                      |
| Jo Daviess            | 1.91                   | 0.89               | 68.2                      |
| Lee                   | 0.09                   | 1.67               | 5.1                       |
| Ogle                  | 2.68                   | 2.48               | 51.9                      |
| Rock Island           | 14.19                  | 6.38               | 69.0                      |
| Stephenson            | 2.12                   | 0.95               | 69.1                      |
| Whiteside             | 0.17                   | 0.76               | 18.3                      |
| Winnebago             | 1.47                   | 9.71               | 13.1                      |
| <b>REGIONAL TOTAL</b> | 28.44                  | 25.73              | 52.5                      |

Table 5.5 County IC Water Demand, Self-Supplied and Purchased (2010) (U.S. Geological Survey, 2014)

\*Based on review of data reported to the IWIP, we revised upward the 2010 USGS estimate of selfsupplied IC demand in Bureau County from 0.18 Mgd to 2.09 Mgd. This revision, in turn, resulted in revision of the percentage of Bureau County IC demand that is self-supplied, the regional total selfsupplied IC demand, and the percentage of the regional total IC demand that is self-supplied.

# 5.3 Future Water Demand

#### 5.3.1 Future Employment and Productivity

The main driver of future IC water demand is assumed to be the future output of goods and services, which is a function of total employment and labor productivity.

Table 5.6 shows 2010 and projected future employment for the counties of the Rock River region as estimated by the Illinois Department of Employment Security (2014). Between 2010 and 2020, total employment is projected to increase by 22,810 employees, or 8 percent. An additional increase in employment of 64,217 employees (or 22 percent) is projected for the 2020-2060 period.

Employment projections are available from the Illinois Department of Employment Security (2014) only for the period 2012 to 2022. These employment growth projections are based on labor force development projections and may exceed the estimates of actual countylevel employment. Also, these relatively high growth rates may not be sustained over a period of five decades. Therefore, for the period 2025-2060, we reduced the 2010-2020 annual growth rate by 30 percent and 50 percent for the periods 2021-2040 and 2041-2060, respectively.

Estimates of the long-term growth in labor productivity in the U.S. between 1973 and 2014 range from 1.2 to 2.6 percent per year; it is estimated at 1.4 percent for the period 2007 to 2014 (U.S. Department of Labor Bureau of Labor Statistics, 2015). Projections of future growth in labor productivity in Illinois are not available, however, so for this study we assumed long-term rates of labor productivity growth of 1.0 to 1.5 percent per year. These assumed growth rates make the estimates of future self-supplied IC demand based on them conservative. Higher future increases in productivity translate to greater physical output per employee and would yield higher estimates of self-supplied IC demand.

| County                                   | 2010<br>Employment <sup>1</sup> | 2020<br>Employment <sup>2</sup> | Annual Rate of<br>Change (2010-<br>2020) (%) | 2040<br>Employment <sup>3</sup> | 2060<br>Employment <sup>4</sup> |
|------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------|---------------------------------|---------------------------------|
| Boone                                    | 11,363                          | 12,564                          | 1.01                                         | 14,113                          | 15,692                          |
| Bureau                                   | 9,699                           | 10,225                          | 0.53                                         | 11,151                          | 12,076                          |
| Carroll                                  | 3,394                           | 3,578                           | 0.53                                         | 4,058                           | 4,538                           |
| Henry                                    | 13,074                          | 14,116                          | 0.77                                         | 15,270                          | 16,424                          |
| Jo Daviess                               | 6,992                           | 7,372                           | 0.53                                         | 8,204                           | 9,036                           |
| Lee                                      | 10,543                          | 11,115                          | 0.53                                         | 11,662                          | 12,220                          |
| Ogle                                     | 12,909                          | 13,610                          | 0.53                                         | 14,136                          | 14,663                          |
| Rock Island                              | 61,270                          | 66,155                          | 0.77                                         | 68,573                          | 70,992                          |
| Stephenson                               | 14,983                          | 16,567                          | 1.01                                         | 16,567                          | 16,567                          |
| Whiteside                                | 16,140                          | 17,016                          | 0.53                                         | 17,016                          | 17,016                          |
| Winnebago                                | 114,902                         | 127,049                         | 1.01                                         | 131,012                         | 135,052                         |
| REGIONAL TOTAL                           | 275,269                         | 299,368                         | NA <sup>5</sup>                              | 311,762                         | 324,277                         |
| ANNUAL<br>REGIONAL RATE<br>OF CHANGE (%) | ND <sup>6</sup>                 | 0.84                            | NA                                           | 0.20                            | 0.20                            |

Table 5.6 Historical and Projected Employment in the Rock River Region

<sup>1</sup>U.S. Census Bureau (2015b)

<sup>2</sup>Illinois Department of Employment Security (2014) <sup>3</sup>For 2021-2040, assumed annual rates of change are computed by reducing the 2010-2020 rate by 30 percent <sup>4</sup>For 2041-2060, assumed annual rates of change are computed by reducing the 2010-2020 rate by 50 percent <sup>5</sup>NA: Not applicable

<sup>6</sup>ND: Not determined

#### 5.3.2 New Self-Supplied Industrial Plants

Self-supplied IC demand will exceed our estimates if new water-intensive IC facilities locate within the region and their per-employee demands exceed the county average values shown in Table 5.4. Although we have not at this time accounted for the addition of new water-intensive self-supplied IC facilities, such facilities, and their associated demands, can be added. Their addition, however, will require that we make assumptions about the location and water demand characteristics of the added facilities.

One plausible approach to account for the addition of such demands is to employ hypothetical ethanol and biodiesel production plants and/or hydraulic-fracturing ("fracking") sand mining and production facilities to represent new self-supplied water-intensive industrial facilities. Although their future is not certain, ethanol and biodiesel production plants are expected by many analysts to be constructed and to increase water demand in the region (Renewable Fuels Association, 2015). We would base water demand estimates for each added facility on an assumption about its production capacity, which is often provided in proposals and permit applications, and on available data pertaining to the water demand characteristics of the type of facility. For example, demand estimates for self-supplied ethanol production plants could be based on the results of a 2006 survey summarized by Wu (2007), which showed that ethanol plants use 2.65 to 6.10 gallons of fresh water to produce 1 gallon of ethanol. Wu (2007) further distinguishes between dry- and wet-mill ethanol production facilities, which, as the survey shows, use an average of 3.45 and 3.92 gallons of water, respectively, per gallon of ethanol produced.

Biodiesel refining requires less water per unit of fuel produced than ethanol production. Pate et al. (2007) reported an approximate consumptive use of about 1 gallon of fresh water per gallon of biodiesel produced and an estimated overall water usage of up to 3 gallons of fresh water per gallon of biodiesel produced.

# 5.3.3 Water Demand by Source

Table 5.7 shows the percentages of self-supplied IC demand satisfied by self-supplied groundwater and surface water in 2010. We maintained the 2010 proportionalities shown in Table 5.7 to 2060, the end of the planning period covered by this study.

|                   | Non-Mining (Mgd) Mining (Mgd) |                  |       |                  |                  | Mining (Mgd) |                       |               | Uses                    |                         |
|-------------------|-------------------------------|------------------|-------|------------------|------------------|--------------|-----------------------|---------------|-------------------------|-------------------------|
| County            | Ground<br>-water              | Surface<br>Water | Total | Ground-<br>water | Surface<br>Water | Total        | Non-<br>Mining<br>(%) | Mining<br>(%) | Ground-<br>water<br>(%) | Surface<br>Water<br>(%) |
| Boone             | 0.44                          | 0.00             | 0.44  | 0.01             | 0.04             | 0.05         | 90                    | 10            | 92                      | 8                       |
| Bureau*           | 0.04                          | 0.00             | 0.04  | 0.00             | 2.05             | 2.05         | 2                     | 98            | 1                       | 99                      |
| Carroll           | 2.19                          | 0.00             | 2.19  | 0.00             | 0.01             | 0.01         | 100                   | 0             | 100                     | 0                       |
| Henry             | 1.00                          | 0.00             | 1.00  | 0.00             | 0.03             | 0.03         | 97                    | 3             | 97                      | 3                       |
| Jo Daviess        | 1.78                          | 0.00             | 1.78  | 0.03             | 0.10             | 0.13         | 93                    | 7             | 95                      | 5                       |
| Lee               | 0.05                          | 0.00             | 0.05  | 0.01             | 0.03             | 0.04         | 56                    | 44            | 67                      | 33                      |
| Ogle              | 1.86                          | 0.00             | 1.86  | 0.82             | 0.00             | 0.82         | 69                    | 31            | 100                     | 0                       |
| Rock Island       | 7.94                          | 3.28             | 11.22 | 0.00             | 2.97             | 2.97         | 79                    | 21            | 56                      | 44                      |
| Stephenson        | 2.05                          | 0.00             | 2.05  | 0.02             | 0.05             | 0.07         | 97                    | 3             | 98                      | 2                       |
| Whiteside         | 0.02                          | 0.00             | 0.02  | 0.03             | 0.12             | 0.15         | 12                    | 88            | 29                      | 71                      |
| Winnebago         | 0.87                          | 0.00             | 0.87  | 0.00             | 0.60             | 0.60         | 59                    | 41            | 59                      | 41                      |
| REGIONAL<br>TOTAL | 18.24                         | 3.28             | 21.52 | 0.92             | 6.00             | 6.92         | 75.7                  | 24.3          | 67.4                    | 32.6                    |

Table 5.7 Groundwater and Surface Water Demand by Self-Supplied IC Facilities, by County (2010) (U.S. Geological Survey, 2014)

\*Based on review of data reported to the IWIP, we revised upward the 2010 USGS estimate of water demand for mining uses in Bureau County from 0.14 Mgd to 2.05 Mgd and have concluded that this total was obtained entirely from surface water. These revisions, in turn, resulted in revision of the proportions of self-supplied IC demand for non-mining versus mining uses and of the proportions of self-supplied IC demand satisfied by groundwater and surface water, both in Bureau County and the Rock River region.

# 5.3.4 Scenarios of Water Demand

As for other water demand sectors, we have developed three scenarios of future selfsupplied IC demand that reflect three different sets of plausible socioeconomic and weather conditions. For all three scenarios, we assumed that (1) total county employment will follow projections developed for this study based on growth rates determined from U.S. Census Bureau (2015b) and Illinois Department of Employment Security (2014) data; (2) the self-supplied portion of IC demand for each county will remain at the percentage computed from 2010 county totals reported by the U.S. Geological Survey (2014), and (3) the proportions of groundwater and surface water in total self-supplied IC withdrawals will remain at percentages computed from 2010 county totals reported by the U.S. Geological Survey (2014).

As described in Section 5.3.2, we can simulate added water-intensive self-supplied industrial facilities under the scenarios outlined here, but we have not done so as we would prefer to consult local authorities in advance regarding plausible county locations, water requirements, and operation start dates of the added facilities.

The specific assumptions used in each scenario are described below.

#### 5.3.4.1 Current Trends (Baseline) Scenario (CT)

This scenario characterizes future conditions as extensions of recent trends in demand drivers and explanatory variables. The main demand driver is total county employment as projected for this study from data reported by the U.S. Census Bureau (2015b) and Illinois Department of Employment Security (2014). One or more additional water-intensive self-supplied industrial facilities could begin operation before 2060, with locations, water requirements, and operation start dates to be determined as described in Section 5.3.2. Additional assumptions are described below:

- 1. Future growth rate in labor productivity is 0.80 percent per year.
- 2. Adoption of water conservation measures achieves a demand reduction of 0.40 percent per year through 2060.

#### 5.3.4.2 Less Resource Intensive Scenario (LRI)

Although this scenario assumes levels of county employment that are identical to those assumed under the CT scenario, the LRI scenario assumes additional conditions, described below, which would result in lower self-supplied IC water demand. No additional water-intensive self-supplied industrial facilities are envisioned under this scenario.

- 1. No new water-intensive industry (e.g., biodiesel or ethanol plants) locates within the region.
- 2. Future growth rate in labor productivity is 0.60 percent per year.
- 3. Adoption of water conservation measures achieves a demand reduction of 0.80 percent per year through 2060.

#### 5.3.4.3 More Resource Intensive Scenario (MRI)

Like the LRI scenario, the MRI scenario assumes levels of county employment that are identical to those assumed under the CT scenario. Potentially, one or more additional water-intensive self-supplied industrial facilities could be added before 2060, with locations, water requirements, and operation start dates to be determined as described in Section 5.3.2. We also

assumed the following conditions and developments that would result in higher self-supplied IC demand than either the CT or LRI scenarios:

- 1. Future growth rate in labor productivity is 1.00 percent per year.
- 2. No additional water conservation measures will affect self-supplied IC demand before 2060.

# 5.4 Scenario Results

Estimated future self-supplied IC water demand in the Rock River region is summarized in Table 5.8 and shown in detail in Appendix F. Under the CT scenario, self-supplied IC demand is projected to increase from 28.44 Mgd in 2010 to 41.29 Mgd in 2060. This represents an increase of 12.86 Mgd, or 45.2 percent. We estimate total self-supplied IC demand in 2060 at 30.60 Mgd under the LRI scenario and 55.62 Mgd under the MRI scenario. Note that these provisional scenarios do not simulate the effects on water demand of added self-supplied water-intensive industrial facilities as described in Section 5.3.2. This column is a place holder that could be populated based on comments, feedback, or additional information on industry and commercial water demand.

|                                         | De                                        | Demand (Mgd)                           |       |  |  |  |  |  |
|-----------------------------------------|-------------------------------------------|----------------------------------------|-------|--|--|--|--|--|
| Year                                    | No added water-<br>intensive IC<br>demand | Added water-<br>intensive IC<br>demand | TOTAL |  |  |  |  |  |
| Current Trends (Baseline) Scenario (CT) |                                           |                                        |       |  |  |  |  |  |
| 2010 (Reported)*                        | 28.44                                     |                                        |       |  |  |  |  |  |
| 2015                                    | 30.08                                     |                                        |       |  |  |  |  |  |
| 2020                                    | 31.82                                     |                                        |       |  |  |  |  |  |
| 2025                                    | 32.66                                     |                                        |       |  |  |  |  |  |
| 2030                                    | 34.00                                     |                                        |       |  |  |  |  |  |
| 2035                                    | 35.13                                     |                                        |       |  |  |  |  |  |
| 2040                                    | 36.29                                     |                                        |       |  |  |  |  |  |
| 2045                                    | 37.49                                     |                                        |       |  |  |  |  |  |

#### Table 5.8 Self-Supplied IC Water Demand Scenarios

# 2010 (Reported)-2060 Change (%)45.2Less Resource Intensive Scenario (LRI)

38.72

39.99

41.29

12.86

2050

2055

2060

2010 (Reported)-2060 Change

| 20.44 |                                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 28.44 |                                                                                                                                                    |
| 29.19 |                                                                                                                                                    |
| 29.97 |                                                                                                                                                    |
| 29.86 |                                                                                                                                                    |
| 30.15 |                                                                                                                                                    |
| 30.24 |                                                                                                                                                    |
| 30.32 |                                                                                                                                                    |
| 30.40 |                                                                                                                                                    |
| 30.47 |                                                                                                                                                    |
| 30.54 |                                                                                                                                                    |
| 30.60 |                                                                                                                                                    |
| 2.16  |                                                                                                                                                    |
| 7.6   |                                                                                                                                                    |
|       | $ \begin{array}{r} 28.44 \\ 29.19 \\ 29.97 \\ 29.86 \\ 30.15 \\ 30.24 \\ 30.32 \\ 30.40 \\ 30.47 \\ 30.54 \\ 30.60 \\ 2.16 \\ 7.6 \\ \end{array} $ |

#### More Resource Intensive Scenario (MRI)

| 2010 (Reported) | 28.44 |  |
|-----------------|-------|--|
| 2015            | 30.99 |  |
| 2020            | 33.78 |  |
| 2025            | 35.72 |  |
| 2030            | 38.30 |  |
| 2035            | 40.77 |  |
| 2040            | 43.40 |  |
| 2045            | 46.19 |  |
| 2050            | 49.15 |  |

|                                 | Demand (Mgd)                              |                                        |       |  |  |
|---------------------------------|-------------------------------------------|----------------------------------------|-------|--|--|
| Year                            | No added water-<br>intensive IC<br>demand | Added water-<br>intensive IC<br>demand | TOTAL |  |  |
| 2055                            | 52.29                                     |                                        |       |  |  |
| 2060                            | 55.62                                     |                                        |       |  |  |
| 2010 (Reported)-2060 Change     | 27.19                                     |                                        |       |  |  |
| 2010 (Reported)-2060 Change (%) | 95.6                                      |                                        |       |  |  |

\*U.S. Geological Survey (2014), except for Bureau County, for which, on the basis of IWIP data, we revised upward the USGS estimate of self-supplied IC demand from 0.18 to 2.09 Mgd.

# 6 Demand for Self-Supplied Water for Irrigation, Livestock, and Environmental Uses

## 6.1 Background

The irrigation, livestock, and environmental (ILE) sector includes self-supplied water for irrigation of cropland and golf courses as well as water for livestock and environmental purposes.

In USGS inventories of water demand (U.S. Geological Survey, 2014), the designation *irrigation water withdrawals* includes "all water artificially applied to farm and horticultural crops as well as self-supplied water withdrawals to irrigate public and private golf courses" (Solley et al., 1998). In counties with significant proportions of land in irrigated agriculture, irrigation demand can represent a significant component of total water demand.

Livestock water demand encompasses water for individual animals, feedlots, dairies, fish farms, and other on-farm needs related to animal husbandry. The most common species supported by such water usage are cattle, sheep, goats, hogs, and poultry, but also included are horses, rabbits, bees, pets, fur-bearing animals in captivity, and fish in captivity (Avery, 1999). Livestock water demand as covered in this study includes five USDA categories: cattle and cows, hogs and pigs, sheep and lambs, all goats, and horses.

A relatively small quantity of self-supplied water is employed for environmental purposes such as wetlands, forest and prairie preserves, park districts, game farms, and other uses that support environmental amenities.

We employed a range of data sources and computations to quantify present and future ILE water demand. The IWIP tracks irrigation withdrawals only for large agricultural irrigation systems and irrigated urban landscapes such as parks and golf courses. Therefore, our estimates of water demand for irrigation are based on an inventory of the total acreage of irrigated area (both cropland and golf courses) within each county of the study region. The IWIP collects very few data on agricultural livestock demand, so we based our estimates of agricultural livestock water demand on reported numbers of livestock, by type, within each county of the study region. We employed IWIP data as our basis for quantifying environmental water demand. A review of the historical data on ILE water demand in the study region is presented in the following sections.

#### 6.1.1 Water Demand for Irrigation

Table 6.1 shows the irrigated area in the Rock River region, collected and reported through the U.S. Department of Agriculture (USDA) Census of Agriculture (U.S. Department of Agriculture, 2015), for the period 1987-2012. The totals in Table 6.1 include harvested cropland, pasture, and other irrigated land, but most is harvested cropland. Of the counties in the Rock River region, there are significant irrigated areas in Henry, Bureau, Carroll, Lee, and Whiteside Counties. Between 1987 and 2012, the irrigated acreage consistently grew in most counties, with a regional rate of growth of approximately 4.3 percent per year.

The U.S. Geological Survey (2014) reports irrigation demand for both cropland and, since 1995, golf courses. Table 6.2 illustrates these estimates for the year 2010 for counties of the study region. Estimates of irrigation water demand are prepared by USGS researchers using a variety of methods that differ between, and sometimes within, individual states (Maupin et al., 2014), but all of these approaches require estimates of irrigated areas. Greater accuracy is

afforded if the estimates of irrigated area are subdivided between cropland and golf courses, and, within the category of cropland, between differing crop types, because golf courses and crops of different types have differing water requirements. It is noteworthy and unfortunate that the estimates of irrigated area employed by the USGS differ from those reported by the U.S. Department of Agriculture (2015), as the comparison of irrigated area in Table 6.1 and Table 6.2 shows; this is because the methodologies for acquisition and estimation of irrigated areas differ between these agencies. In Illinois, the USGS estimates of irrigation demand in most counties are based on the precipitation deficit during the irrigation season (Pat Mills, USGS, personal communication).

The USGS (2014) estimated that cropland irrigation withdrawals (equivalent to selfsupplied cropland irrigation demand) in the Rock River region totaled 32.49 Mgd in 2010, with the greatest demand in Lee and Whiteside Counties (Table 6.2). Golf course irrigation withdrawals (equivalent to self-supplied golf course irrigation demand) in 2010 were much less, totaling only 2.61 Mgd, principally because the amount of irrigated golf course land was only 2770 acres, much less than the 104,480 acres of irrigated cropland.

| County                | 1987   | 1992   | 1997   | 2002   | 2007    | 2012    |
|-----------------------|--------|--------|--------|--------|---------|---------|
| Boone                 | 673    | 1,017  | 1,775  | 1,632  | 1,809   | 944     |
| Bureau                | 3,962  | 3,007  | 4,954  | 6,249  | 10,215  | 10,601  |
| Carroll               | 3,685  | 5,023  | 8,968  | 12,188 | 10,501  | 11,320  |
| Henry                 | 3,649  | 3,386  | 5,279  | 5,117  | 7,217   | 8,685   |
| Jo Daviess            | 121    | 96     | D*     | 66     | 118     | 107     |
| Lee                   | 5,906  | 12,003 | 18,531 | 13,198 | 21,662  | 25,398  |
| Ogle                  | 1,678  | 3,669  | 711    | 1,457  | 1,248   | 1,075   |
| Rock Island           | 2,929  | 3,678  | 3,239  | 3,837  | 3,199   | 4,038   |
| Stephenson            | D      | 432    | D      | 378    | 79      | 22      |
| Whiteside             | 14,167 | 29,231 | 41,631 | 34,657 | 57,004  | 57,389  |
| Winnebago             | 674    | 1,504  | 968    | 957    | 370     | 495     |
| <b>REGIONAL TOTAL</b> | 37,444 | 63,046 | 86,056 | 79,736 | 113,422 | 120,074 |

Table 6.1 Irrigated Area in the Rock River Region, by County (acres) (U.S. Department of Agriculture,2015)

\*D = Data withheld due to disclosure limitations

|                       | Irrigated                    | Cropland                           | Irrigated Golf Courses       |                                    | Annual                          |  |
|-----------------------|------------------------------|------------------------------------|------------------------------|------------------------------------|---------------------------------|--|
| County                | Irrigated<br>Area<br>(acres) | Irrigation<br>Withdrawals<br>(Mgd) | Irrigated<br>Area<br>(acres) | Irrigation<br>Withdrawals<br>(Mgd) | Application<br>Rate<br>(inches) |  |
| Boone                 | 1,930                        | 0.48                               | 120                          | 0.11                               | 3.9                             |  |
| Bureau                | 4,890                        | 1.28                               | 190                          | 0.19                               | 3.9                             |  |
| Carroll               | 6,650                        | 1.73                               | 110                          | 0.10                               | 3.6                             |  |
| Henry                 | 2,660                        | 0.40                               | 260                          | 0.20                               | 2.8                             |  |
| Jo Daviess            | 20                           | 0.01                               | 400                          | 0.36                               | 11.8                            |  |
| Lee                   | 23,510                       | 10.72                              | 140                          | 0.17                               | 6.2                             |  |
| Ogle                  | 80                           | 0.09                               | 230                          | 0.23                               | 13.9                            |  |
| Rock Island           | 2,980                        | 0.35                               | 380                          | 0.28                               | 2.5                             |  |
| Stephenson            | 0                            | 0                                  | 200                          | 0.21                               | 14.1                            |  |
| Whiteside             | 61,710                       | 17.41                              | 270                          | 0.26                               | 3.8                             |  |
| Winnebago             | 50                           | 0.02                               | 470                          | 0.50                               | 13.4                            |  |
| <b>REGIONAL TOTAL</b> | 104,480                      | 32.49                              | 2,770                        | 2.61                               | 4.4                             |  |

Table 6.2 Irrigated Area and Irrigation Withdrawals, 2010 (U.S. Geological Survey, 2014)

#### 6.1.2 Water Demand for Livestock

Table 6.3 shows estimated head counts of five categories of livestock that were obtained from the USDA Census of Agriculture (U.S. Department of Agriculture, 2015) for the data year 2012. The estimates show that in 2012 in the Rock River region there were 215,812 cattle and cows, 478,236 hogs and pigs, 6436 sheep and lambs, 4806 goats, and 7009 horses. The largest inventories of animals were in Henry, Ogle, Stephenson, and Whiteside Counties.

Table 6.4 shows historical water withdrawals for livestock (equivalent to self-supplied water demand for livestock) as estimated by the U.S. Geological Survey (2014). Withdrawals totaled 7.47 Mgd in 2010, and, although the regional totals have declined since 1990, total withdrawals have remained comparatively stable since 2000.

| County                | Cattle and<br>Cows | Hogs and<br>Pigs | Sheep and<br>Lambs | Goats | Horses |
|-----------------------|--------------------|------------------|--------------------|-------|--------|
| Boone                 | 5,603              | 7,431            | 443                | 1,026 | 735    |
| Bureau                | 9,429              | 59,377           | 659                | 303   | 521    |
| Carroll               | 34,755             | 43,044           | 341                | 296   | 189    |
| Henry                 | 26,904             | 124,187          | 4,268              | 544   | 631    |
| Jo Daviess            | 53,057             | 14,146           | 1,312              | 447   | 926    |
| Lee                   | 10,215             | 42,235           | 313                | 116   | 324    |
| Ogle                  | 30,219             | 95,639           | 932                | 852   | 871    |
| Rock Island           | 9,901              | 11,525           | 896                | 329   | 843    |
| Stephenson            | 53,505             | 71,436           | 1,802              | 684   | 965    |
| Whiteside             | 31,343             | 108,482          | 661                | 553   | 725    |
| Winnebago             | 11,556             | 4,807            | 512                | 318   | 1,241  |
| <b>REGIONAL TOTAL</b> | 276,487            | 582,309          | 12,139             | 5,468 | 7,971  |

Table 6.3 Estimated Numbers of Livestock in the Rock River Region, 2012 (U.S. Department of Agriculture, 2015)

| Country               | Demand (Mgd) |       |      |      |      |  |
|-----------------------|--------------|-------|------|------|------|--|
| County                | 1990         | 1995  | 2000 | 2005 | 2010 |  |
| Boone                 | 0.42         | 0.35  | 0.19 | 0.27 | 0.17 |  |
| Bureau                | 0.94         | 0.72  | 0.60 | 0.50 | 0.56 |  |
| Carroll               | 1.23         | 1.07  | 0.88 | 0.79 | 0.89 |  |
| Henry                 | 2.06         | 1.95  | 1.22 | 1.20 | 1.14 |  |
| Jo Daviess            | 1.65         | 1.57  | 1.12 | 1.05 | 0.93 |  |
| Lee                   | 0.63         | 0.44  | 0.36 | 0.40 | 0.29 |  |
| Ogle                  | 1.39         | 1.02  | 0.91 | 0.70 | 0.83 |  |
| Rock Island           | 0.52         | 0.45  | 0.29 | 0.28 | 0.25 |  |
| Stephenson            | 2.25         | 2.15  | 1.49 | 1.44 | 1.20 |  |
| Whiteside             | 1.21         | 0.95  | 0.74 | 0.72 | 0.98 |  |
| Winnebago             | 0.73         | 0.46  | 0.39 | 0.37 | 0.23 |  |
| <b>REGIONAL TOTAL</b> | 13.03        | 11.13 | 8.19 | 7.72 | 7.47 |  |

Table 6.4 Estimated Water Demand for Livestock, 1990–2010 (U.S. Geological Survey, 2014)

#### 6.1.3 Water Demand for Environmental Uses

We identified self-supplied water demands for environmental purposes from the IWIP database. Table 6.5 shows total 2010 self-supplied demand for environmental purposes, by county, as documented in the IWIP database. Table 6.6 lists self-supplied environmental water demands by facility name. The total reported self-supplied demand in 2010 in the Rock River region was 3.25 Mgd, of which 3.06 Mgd was withdrawn from surface waters. There are no records of purchases of water from public or other systems for environmental purposes.

Trends in self-supplied environmental water demand are challenging to quantify owing to a scarcity of data. We have therefore aggregated 1990-2010 data from three separate, but adjacent, IDNR water supply planning regions for which the ISWS, in 2014 and 2015, simultaneously estimated future water demand to 2060 (Table 6.7). In addition to the Rock River region, these include the Middle Illinois region and Kankakee subregion (Figure 1.1). Although total demand is small relative to other sectors, the aggregated data, which represent demand at 34 facilities, suggest that self-supplied environmental water demand has increased markedly in recent decades, at annual rates of about 6.1 percent from 1990 to 2010 and about 5 percent from 2000 to 2010. Conclusions about the magnitude and direction of trends in self-supplied environmental water demand must be tempered with the understanding that the same two facilities, both in Bureau County, account for 42 to 83 percent of annual water demand in the data years of 1990, 1995, 2000, 2005, and 2010.

| Country               | Self-Supplied Demand (Mgd) |             |               |  |  |
|-----------------------|----------------------------|-------------|---------------|--|--|
| County                | Total                      | Groundwater | Surface Water |  |  |
| Boone                 | 0                          | 0           | 0             |  |  |
| Bureau                | 2.46                       | 0           | 2.46          |  |  |
| Carroll               | 0.69                       | 0.09        | 0.60          |  |  |
| Henry                 | < 0.01                     | < 0.01      | 0             |  |  |
| Jo Daviess            | 0                          | 0           | 0             |  |  |
| Lee                   | < 0.01                     | < 0.01      | 0             |  |  |
| Ogle                  | 0.09                       | 0.09        | 0             |  |  |
| Rock Island           | 0                          | 0           | 0             |  |  |
| Stephenson            | < 0.01                     | < 0.01      | 0             |  |  |
| Whiteside             | < 0.01                     | < 0.01      | 0             |  |  |
| Winnebago             | < 0.01                     | < 0.01      | 0             |  |  |
| <b>REGIONAL TOTAL</b> | 3.25                       | 0.18        | 3.06          |  |  |

Table 6.5 Reported Self-Supplied Environmental Water Demand

| Facility Nome                             | Self-<br>Supplied | Demand b<br>(Mg  | y Source<br>gd)  |  |  |  |  |
|-------------------------------------------|-------------------|------------------|------------------|--|--|--|--|
| Facility Name                             | Demand<br>(Mgd)   | Ground-<br>water | Surface<br>Water |  |  |  |  |
| Bureau Co                                 | ounty             |                  |                  |  |  |  |  |
| Donnelly Wildlife Mgmt Area               | 1.127             | 0                | 1.127            |  |  |  |  |
| Hennepin Canal Parkway State Park         | < 0.001           | < 0.001          | 0                |  |  |  |  |
| Lake Depue Fish and Wildlife Area         | 1.278             | 0                | 1.278            |  |  |  |  |
| Princeton Game & Fish Club                | 0.055             | < 0.001          | 0.055            |  |  |  |  |
| Carroll Co                                | ounty             |                  |                  |  |  |  |  |
| Mississippi Palisades State Park          | 0.003             | 0.003            | 0                |  |  |  |  |
| US Fish and Wildlife Service–Savanna Dist | 0.685             | 0.082            | 0.603            |  |  |  |  |
| Henry Co                                  | unty              |                  |                  |  |  |  |  |
| Johnson Sauk Trail State Park             | 0.002             | 0.002            | 0                |  |  |  |  |
| Jo Daviess County                         |                   |                  |                  |  |  |  |  |
| Apple River Canyon State Park             | 0                 | 0                | 0                |  |  |  |  |
| Lee Cou                                   | nty               | <u>.</u>         |                  |  |  |  |  |
| Franklin Creek State Park                 | < 0.001           | < 0.001          | 0                |  |  |  |  |
| Green River Conservation Area             | < 0.001           | < 0.001          | 0                |  |  |  |  |
| Ogle Cou                                  | inty              |                  |                  |  |  |  |  |
| Byron Forest Preserve District            | 0.085             | 0.085            | 0                |  |  |  |  |
| Castle Rock State Park                    | < 0.001           | < 0.001          | 0                |  |  |  |  |
| Lowden Memorial State Park                | 0.001             | 0.001            | 0                |  |  |  |  |
| White Pines Forest State Park             | 0.006             | 0.006            | 0                |  |  |  |  |
| Stephenson                                | County            |                  |                  |  |  |  |  |
| Lake LeAqua-Na State Park                 | 0.001             | 0.001            | 0                |  |  |  |  |
| Whiteside (                               | County            |                  |                  |  |  |  |  |
| Big Bend State Fish and Wildlife Area     | 0                 | 0                | 0                |  |  |  |  |
| Morrison Rockwood State Park              | 0.001             | 0.001            | 0                |  |  |  |  |
| Prophetstown State Park                   | 0                 | 0                | 0                |  |  |  |  |
| Sterling Park District                    | 0.002             | 0.002            | 0                |  |  |  |  |
| Winnebago County                          |                   |                  |                  |  |  |  |  |
| Rock Cut State Park                       | 0.002             | 0.002            | 0                |  |  |  |  |
| REGIONAL TOTAL                            | 3.247             | 0.185            | 3.063            |  |  |  |  |

Table 6.6 Self-Supplied Demand for Environmental Purposes, By Facility (2010)

# Table 6.7 Self-Supplied Environmental Water Demand in Three Water-Supply Planning Regions, 1990-2010 (Mgd)

| Geography          | 1990   | 1995             | 2000   | 2005   | 2010   |  |  |
|--------------------|--------|------------------|--------|--------|--------|--|--|
| Kankakee Subregion |        |                  |        |        |        |  |  |
| Iroquois County    | < 0.01 | 0                | 0      | 0      | 0      |  |  |
| Kankakee County    | 0.05   | < 0.01           | 0.01   | < 0.01 | < 0.01 |  |  |
| REGIONAL TOTAL     | 0.05   | <0.01            | 0.01   | <0.01  | <0.01  |  |  |
|                    | Middle | e Illinois Regio | n      |        |        |  |  |
| LaSalle County     | 0.04   | 0.06             | 0.17   | 0.13   | 0.17   |  |  |
| Marshall County    | < 0.01 | < 0.01           | < 0.01 | < 0.01 | 0      |  |  |
| Peoria County      | < 0.01 | < 0.01           | < 0.01 | < 0.01 | 0      |  |  |
| Putnam County      | 0.03   | 0.03             | 0.01   | 0.10   | 0.25   |  |  |
| Woodford County    | < 0.01 | < 0.01           | < 0.01 | 0.43   | 0.60   |  |  |
| REGIONAL TOTAL     | 0.08   | 0.10             | 0.18   | 0.67   | 1.02   |  |  |
|                    | Rock   | River Region     |        |        |        |  |  |
| Bureau County      | 0.80   | 2.23             | 2.81   | 3.28   | 2.46   |  |  |
| Carroll County     | 0.34   | 0.11             | 0.06   | 0.51   | 0.69   |  |  |
| Henry County       | 0.01   | 0.01             | 0.01   | < 0.01 | < 0.01 |  |  |
| Jo Daviess County  | 0.01   | 0                | 0      | 0      | 0      |  |  |
| Lee County         | < 0.01 | < 0.01           | < 0.01 | < 0.01 | < 0.01 |  |  |
| Ogle County        | 0.01   | 0.06             | 0.07   | 0.07   | 0.09   |  |  |
| Stephenson County  | < 0.01 | < 0.01           | < 0.01 | < 0.01 | < 0.01 |  |  |
| Whiteside County   | < 0.01 | < 0.01           | < 0.01 | < 0.01 | < 0.01 |  |  |
| Winnebago County   | < 0.01 | < 0.01           | < 0.01 | < 0.01 | < 0.01 |  |  |
| REGIONAL TOTAL     | 1.17   | 2.41             | 2.95   | 3.87   | 3.25   |  |  |
| TOTAL, ALL REGIONS | 1.30   | 2.52             | 3.14   | 4.54   | 4.27   |  |  |

# 6.1.4 Sources of Water

We employed county-level estimates of irrigation and livestock demand by source (U.S. Geological Survey, 2014) and point-level data from IWIP on environmental demand to compute proportions of demand for each subsector satisfied by groundwater and surface water. Table 6.8 shows the percentage of water obtained from groundwater sources for each subsector.

| Country     | Irr   | Irrigation <sup>1</sup> |           | Environmentel <sup>2</sup> |  |
|-------------|-------|-------------------------|-----------|----------------------------|--|
| County      | Crops | <b>Golf Courses</b>     | LIVESLOCK | Environmentai              |  |
| Boone       | 100   | 55                      | 100       | 0                          |  |
| Bureau      | 98    | 47                      | 100       | 0                          |  |
| Carroll     | 100   | 50                      | 100       | 12                         |  |
| Henry       | 100   | 50                      | 100       | 100                        |  |
| Jo Daviess  | 100   | 75                      | 100       | 0                          |  |
| Lee         | 87    | 76                      | 100       | 100                        |  |
| Ogle        | 100   | 74                      | 100       | 100                        |  |
| Rock Island | 100   | 50                      | 100       | 0                          |  |
| Stephenson  | 0     | 76                      | 100       | 100                        |  |
| Whiteside   | 99    | 77                      | 100       | 100                        |  |
| Winnebago   | 100   | 50                      | 100       | 100                        |  |

Table 6.8 Percent of Self-Supplied ILE Demand Satisfied by Groundwater, By Subsector (2010)

<sup>1</sup>U.S. Geological Survey (2014) <sup>2</sup>IWIP database

# 6.2 Water Demand Modeling

#### 6.2.1 Water Demand for Irrigation

We estimated future water demand for both cropland and golf course irrigation using the following formula:

$$Q_t = \frac{325,851}{12 \cdot 365} A_t \cdot d_t \tag{6.1}$$

where:

 $Q_t$  = annual (seasonal) volume of irrigation water withdrawals in million gallons per day (Mgd) in year *t*;

 $A_t$  = irrigated land area in acres in year t;

 $d_t$  = depth of water application in inches in year t;

and the conversion factors represent 325,851 gallons/acre-foot, 12 inches/foot, and 365 days/year.

The total seasonal application depth is estimated using the ISWS/USGS precipitationdeficit method, which quanitifies the irrigation rate required to compensate for weekly deficits in precipitation during the irrigation season in a study area. The method requires consultation of weekly precipitation records for the irrigation season, which we assumed would extend from May 1 to August 31. The irrigation season, which ends August 31, is shorter than the summer season used in estimating public-system demand (Chapter 2), which ends September 30, because irrigation requirements in September are minimal (and can be omitted in the calculations of precipitation deficit).

Precipitation deficit is calculated by accumulating weekly deficits (or surpluses) over the 18 consecutive weeks of the irrigation season as follows:

- 1. If more than 1.25 inches of rain falls during the first week of the irrigation season, one-half the amount of rain exceeding 1.25 inches is added to the rain amount during the following week.
- 2. If less than 1.25 inches of rain falls during the first week, the difference between the actual precipitation and 1.25 inches is the precipitation deficit that is assumed to be the quantity of water, in inches, applied by irrigation that week.
- 3. For each subsequent week during the irrigation season, one-half of the cumulative precipitation during the previous week in excess of 1.25 inches is added to the precipitation amount for the week.
- 4. If the cumulative precipitation amount for a week is less than 1.25 inches, then the difference between the actual precipitation and 1.25 inches is the precipitation deficit that is assumed to be the quantity of water, in inches, applied by irrigation that week.
- 5. The precipitation deficits for each week are then added to determine the total irrigation water use during the irrigation season.

This procedure can be expressed as follows:

If the total precipitation in the first week  $r_1$  is less than 1.25 inches, then

$$d_1 = r_1 - 1.25 \tag{6.2}$$

If the total precipitation in the first week  $r_1$  is greater than 1.25 inches, then

$$d_{1} = 0$$

$$r_{2}^{e} = r_{2} + (r_{1} - 1.25) / 2$$

$$d_{2} = r_{2}^{e} - 1.25$$
(6.3)

where:

 $r_2^e$  = effective precipitation in week 2.

In week 2, again, the precipitation deficit will be zero if  $r_2^e$  is greater than 1.25 inches, and one-half of the precipitation surplus will carry to the next week.

The total seasonal precipitation deficit for the 18 weeks (i.e., 4 months) which make up the irrigation season is calculated as:

$$d_{t} = \sum_{i=1}^{18} d_{i} \tag{6.4}$$

#### 6.2.1.1 Precipitation Deficits in the Study Region

Future water demand for irrigation will reflect precipitation deficits during the irrigation season, defined for purposes of this report as extending from May 1 to August 31. Our estimates of future irrigation demand are based on the "normal" 1981-2010 precipitation deficit, which we have computed from records of weekly precipitation at local weather stations (Table 6.9). Thus, we assumed that weather conditions for the period ending 2060 were comparable to those from 1981 to 2010. The precipitation deficit is an estimate of the total depth of water application, in inches, over the irrigated area of the region for which the precipitation deficit applies during the irrigation season. Comparison of the 1981-2010 precipitation deficits with those computed for 2010 (Table 6.9) suggest that irrigation water demand was significantly greater in the study region in 2010 than during a "normal" year.
|                  | Station Used for Weather<br>Characterization |        | Irriga<br>(1                                      | 2010<br>Irrigation-<br>Season (May-                                 |                                                           |                                                              |
|------------------|----------------------------------------------|--------|---------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| County           | Name                                         | $ID^1$ | Mean of<br>Monthly<br>Mean T<br>(°F) <sup>2</sup> | Sum of<br>Monthly<br>Mean<br>Precipitation<br>(inches) <sup>2</sup> | Mean<br>Precipitation<br>Deficit<br>(inches) <sup>3</sup> | August)<br>Precipitation<br>Deficit<br>(inches) <sup>3</sup> |
| Boone            | DeKalb                                       | 112223 | 68.30                                             | 17.44                                                               | -2.73                                                     | -7.84                                                        |
| Bureau           | Princeton                                    | 116998 | 70.30                                             | 17.72                                                               | -4.13                                                     | -8.39                                                        |
| Carroll          | Mt. Carroll                                  | 115901 | 67.90                                             | 18.42                                                               | -2.84                                                     | -8.25                                                        |
| Henry            | Geneseo                                      | 113384 | 70.60                                             | 16.72                                                               | -4.14                                                     | -9.19                                                        |
| Jo Daviess       | Elizabeth                                    | 112745 | 66.80                                             | 17.15                                                               | -2.63                                                     | -8.78                                                        |
| Lee              | Paw Paw                                      | 116661 | 66.70                                             | 17.10                                                               | -5.84                                                     | -9.22                                                        |
| Ogle             | Rochelle                                     | 117354 | 67.45                                             | 15.76                                                               | -7.32                                                     | -9.68                                                        |
| Rock Island      | Moline Airport                               | 115751 | 70.55                                             | 17.62                                                               | -2.53                                                     | -8.67                                                        |
| Stephenson       | Elizabeth                                    | 112745 | 66.80                                             | 17.15                                                               | -4.47                                                     | -9.17                                                        |
| Whiteside        | Morrison                                     | 115833 | 69.23                                             | 17.67                                                               | -4.66                                                     | -9.07                                                        |
| Winnebago        | Rockford GTR                                 | 117382 | 68.90                                             | 17.21                                                               | -5.67                                                     | -9.39                                                        |
| REGIONAL<br>MEAN |                                              |        |                                                   |                                                                     | -4.27                                                     | -8.88                                                        |

Table 6.9 Irrigation-Season (May-August) Weather Statistics and Precipitation Deficits

<sup>1</sup>NWS COOP ID number (National Climatic Data Center, 2015)

<sup>2</sup>Monthly weather data for 1981-2010 were obtained from the Midwestern Regional Climate Center, Center for Atmospheric Science, ISWS

<sup>3</sup>Daily weather data employed for computation of precipitation deficits were obtained from National Oceanic and Atmospheric Adminstration National Centers for Environmental Information (2015)

## 6.2.2 Water Demand for Livestock

To estimate county-level livestock water demand in the study region, we multiplied unit water demand by animal type, derived from published values (Table 6.10 and Table 6.11), by estimated county populations of five major animal types. The animal types and the assumed water demand per head are cattle and cows (15 gal/d), hogs and pigs (7 gal/d), sheep and lambs (2 gal/d), all goats (3 gal/d), and horses (12 gal/d).

| Animal Type      | Estimated Water<br>Demand<br>(Gallons per day<br>per animal) |
|------------------|--------------------------------------------------------------|
| Dairy cows       | 35.0                                                         |
| Beef cattle      | 12.0                                                         |
| Horses and mules | 12.0                                                         |
| Hogs             | 4.0                                                          |
| Goats            | 3.0                                                          |
| Sheep            | 2.0                                                          |
| Turkeys          | 0.12                                                         |
| Chickens         | 0.06                                                         |
| Rabbits          | 0.05                                                         |
| Mink             | 0.03                                                         |

Table 6.10 Estimated Unit Water Demand for Livestock, by Animal Type (Avery, 1999)

| Livestock Type              | Average Demand<br>per Animal | Average Demand per<br>Animal (Gal/day) |      |       |  |
|-----------------------------|------------------------------|----------------------------------------|------|-------|--|
|                             | (Gal/day)                    | 40°F                                   | 60°F | 80°F  |  |
| Cows                        |                              |                                        |      |       |  |
| dry and bred                | 6-15                         | n.a.*                                  | n.a. | n.a.  |  |
| wintering pregnant          | n.a.                         | 6.0                                    | 7.4  | n.a.  |  |
| nursing                     | 11-18                        | 11.4                                   | 14.5 | 17.9  |  |
| dairy                       | 15-30                        | n.a.                                   | n.a. | 30-40 |  |
| Feeders                     | 4-15                         | n.a.                                   | n.a. | n.a.  |  |
| calves                      | 4-5                          | n.a.                                   | n.a. | 9-10  |  |
| growing cattle (600 lbs.)   | n.a.                         | 3-8                                    | n.a. | 8-13  |  |
| growing cattle (800 lbs.)   | n.a.                         | 6.3                                    | 7.4  | 10.6  |  |
| finishing cattle (800 lbs.) | n.a.                         | 7.3                                    | 9.1  | 12.3  |  |
| feedlot cattle (1,000 lbs.) | n.a.                         | 8-13                                   | n.a. | 14-21 |  |
| beef                        | 8-12                         | n.a.                                   | n.a. | 20-25 |  |
| Bulls                       | 7-19                         | 8.7                                    | 10.8 | 14.5  |  |
| Sheep and Goats             | 2-3                          | n.a.                                   | n.a. | n.a.  |  |
| Llamas                      | 5                            | n.a.                                   | n.a. | n.a.  |  |
| Horses                      | 10-15                        | n.a.                                   | n.a. | 20-25 |  |
| Swine                       | 6-8                          | n.a.                                   | n.a. | 8-12  |  |

Table 6.11 Water Requirements of Farm Animals (Blocksome and Powell, 2006)

Note: \* n.a = not available

## 6.3 Parameters Affecting Future ILE Water Demand

As discussed, we estimated future water demand for irrigation to be a function of irrigated area and summer precipitation deficit. We developed separate estimates of future irrigated areas for cropland and golf courses, as described below. Livestock water demand was estimated by multiplying the estimated unit water demand for five types of livestock by the estimated population of each animal type. Growth in environmental demand was based on recent historical trends.

## 6.3.1 Irrigated Area

## 6.3.1.1 Cropland

Based on the USDA Census of Agricuture (U.S. Department of Agriculture, 2015), irrigated agricultural acreage in 2012 (which includes irrigated cropland and a small proportion of irrigated pasture and other land) represented only 4.19 percent of total harvested cropland in the Rock River region (Table 6.12). This small proportion suggests that irrigated cropland is not presently limited by the availability of cropland, an important consideration in projecting future irrigated cropland area. Between 1987 and 2012, irrigated cropland acreage in the region grew at an average annual rate of 4.3 percent. For comparison, the statewide rate of growth in irrigated acreage during the same 25-year period was 3.31 percent (Table 6.13).

Official estimates of future irrigated cropland acreage in the study region were not available. In their absence, we employed historical growth rates as a basis for projecting future irrigated acreage in the region.

| County                | Irrigated<br>Agricultural<br>Land (acres) | Harvested<br>Cropland<br>(acres) | Percent<br>Irrigated |
|-----------------------|-------------------------------------------|----------------------------------|----------------------|
| Boone                 | 944                                       | 124,628                          | 0.76                 |
| Bureau                | 10,601                                    | 390,019                          | 2.72                 |
| Carroll               | 11,320                                    | 204,440                          | 5.54                 |
| Henry                 | 8,685                                     | 410,538                          | 2.12                 |
| Jo Daviess            | 107                                       | 172,673                          | 0.06                 |
| Lee                   | 25,398                                    | 339,611                          | 7.48                 |
| Ogle                  | 1,075                                     | 323,168                          | 0.33                 |
| Rock Island           | 4,038                                     | 108,517                          | 3.72                 |
| Stephenson            | 22                                        | 298,615                          | 0.01                 |
| Whiteside             | 57,389                                    | 351,578                          | 16.32                |
| Winnebago             | 495                                       | 144,694                          | 0.34                 |
| <b>REGIONAL TOTAL</b> | 120,074                                   | 2,868,481                        | 4.19                 |

Table 6.12 Irrigated Agricultural Land and Harvested Cropland (2012) (U.S. Department of Agriculture, 2015)

| Year | Irrigated<br>Agricultural<br>Land <sup>1</sup> (acres) | 5-Year Average Growth<br>Rate, Annualized<br>(percent/year) | Long-Term Growth Rate<br>Since Year in Left Column,<br>Annualized (percent/year) <sup>2</sup> |
|------|--------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1982 | 166,012                                                |                                                             | 3.83                                                                                          |
| 1987 | 208,105                                                | 4.62                                                        | 3.31                                                                                          |
| 1992 | 328,316                                                | 9.55                                                        | 2.56                                                                                          |
| 1997 | 351,676                                                | 1.38                                                        | 2.82                                                                                          |
| 2002 | 390,843                                                | 2.13                                                        | 2.91                                                                                          |
| 2007 | 474,454                                                | 3.95                                                        | 1.95                                                                                          |
| 2012 | 522,479                                                | 1.95                                                        |                                                                                               |

Table 6.13 Long-Term Growth in Irrigated Agricultural Acreage in Illinois

<sup>1</sup>U.S. Department of Agriculture (2015)

<sup>2</sup>Annualized growth rates for periods ending in 2012 and starting with the year shown in the *Year* column. For example, the estimate of 3.83 percent/year in the top row of the table covers the period from 1982 to 2012, and the estimate of 3.31 percent/year, in the second row of the table, covers the period from 1987 to 2012.

#### 6.3.1.2 Golf Courses

On the basis of drilling records on file at the ISWS and an electronic directory of U.S. golf courses (WorldGolf.com, 2015), we estimated that there are 81 golf courses in the Rock River region. By contrast, there are 777 golf courses in Illinois (Golf Link, 2015). In general, golf course construction in the region occurred in two pulses separated by a period of reduced construction activity extending from the 1930s through the 1950s (Figure 6.1). From 1893 to 2000, when the first and last golf courses in the region were constructed, golf courses were constructed at an average rate of 1 course every 1.3 years (0.8 golf courses per year). The expansion of golf course numbers in the region from 1893 to 2000 reflects an annual growth rate of 4.2 percent, but the annual growth rate during the 1990-2009 period was only 0.8 percent. Twelve golf courses were constructed during the 1990-2009 period, or one new course built every 1.7 years (0.6 golf courses per year).

Recent national inventories of golf courses prepared by the National Golf Foundation (2015) showed that there has been negative net growth in U.S. golf facilities since 2006, as the number of golf facilities closed is greater than the number of new openings (Table 6.14). A golf facility contains at least one golf course.

Future water demand for golf course irrigation is a function of the estimates of future irrigated golf course area and summer precipitation deficit. The average irrigated area per 18-hole golf course is 40 acres (Black, 1983). The USGS water use inventories (U.S. Geological Survey, 2014) also use an average irrigated area of 40 acres per 18-hole golf course as a basis for computing irrigation totals. In addition, a study conducted by the Golf Course Superintendents Association of America (2015) and the USEPA (2015a) confirmed the average irrigated area per 18-hole golf course to be approximately 40 acres. Therefore, assuming an average irrigated area of 40 acres per 18-hole golf course and the rate of future golf course construction, future irrigated golf course areas can be estimated.



Figure 6.1 Golf course construction in the Rock River region. None were constructed during the 1930-1939 and 1940-1949 periods.

| Year | Net Additions<br>Since 1990 | Year | Net Additions<br>Since 1990 |
|------|-----------------------------|------|-----------------------------|
| 1990 |                             | 2003 | 72                          |
| 1991 | 158                         | 2004 | 56                          |
| 1992 | 206                         | 2005 | -5                          |
| 1993 | 229                         | 2006 | -62                         |
| 1994 | 244                         | 2007 | -9                          |
| 1995 | 391                         | 2008 | -34                         |
| 1996 | 267                         | 2009 | -90                         |
| 1997 | 261                         | 2010 | -61                         |
| 1998 | 298                         | 2011 | -138                        |
| 1999 | 295                         | 2012 | -141                        |
| 2000 | 292                         | 2013 | -133                        |
| 2001 | 202                         | 2014 | -144                        |
| 2002 | 138                         |      |                             |

Table 6.14 New Golf Course Opening and Construction in the U.S.

## 6.3.2 Livestock Head Counts

To develop estimates of future livestock water demand, we employed estimates of future U.S. livestock head counts developed in February 2014 by the USDA (U.S. Department of Agriculture Economic Research Service, 2014). These estimates are prepared annually. Table 6.15 shows projected head counts in the U.S. between 2012 and 2023. Annual rates of growth in head counts for this period range from -0.05 percent for dairy cows to 1.25 percent for hogs. As discussed in Section 1.1, we employed these growth rates, with an adjustment, as a basis for estimating future livestock head counts in the study region.

| Animal Type     | Head Count, 2012<br>(1000s) | Head Count, 2023<br>(1000s) | Change, 2012-<br>2023 (1000s) | Annual Rate of<br>Growth, percent |
|-----------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------------|
| Cattle          | 90,538                      | 96,088                      | 5,550                         | 0.54                              |
| Beef cows       | 30,158                      | 33,668                      | 3,510                         | 1.01                              |
| Dairy cows      | 9,233                       | 9,185                       | -48                           | -0.05                             |
| Total cows      | 39,387                      | 42,681                      | 3,294                         | 0.73                              |
| Cattle and cows | 129,925                     | 138,769                     | 8,844                         | 0.60                              |
| Hogs            | 66,361                      | 76,094                      | 9,733                         | 1.25                              |

Table 6.15 Estimated Livestock Head Counts, 2012-2023 (U.S. Department of Agriculture Economic Research Service, 2014)

# 6.4 Scenarios of Water Demand

Future ILE water demand will respond to changes in demand drivers (e.g., irrigated acres) as well as gains in water-use efficiency.

# 6.4.1 Current Trends (Baseline) Scenario (CT)

This scenario characterizes conditions during the period from 2010 to 2060 as an extension of recent trends in the principal factors influencing water demand. The specific assumptions of the CT scenario are the following:

- 1. For the period 2010-2025, we assumed the lowest historical rate of growth in total irrigated cropland acreage in the study region during the period 1987-2012. For the period 2030-2060, we assumed growth in irrigated cropland acreage at 50 percent of the growth rate during the period 2002-2012.
- 2. We assumed that irrigated golf course area expands at a rate of 0.6 new 18-hole golf courses per decade. Compared to historical growth rates of golf course area, this assumed rate of increase represents only a slight expansion of irrigated golf course area.
- 3. For the period 2010-2030, we assumed the 2012-2023 rates of growth in livestock head counts developed by the U.S. Department of Agriculture Economic Research Service (2014). For the period 2030-2060, we assumed growth in livestock head counts at 50 percent of the 2012-2023 growth rates specified by the U.S. Department of Agriculture Economic Research Service (2014). Our assumptions are identical for the MRI scenario (Section 6.4.3).
- 4. We assumed that environmental demand increases at the rate of 1.0 percent per year.

# 6.4.2 Less Resource Intensive Scenario (LRI)

- 1. For the entire forecast period ending 2060, we assumed the maximum irrigated cropland acreage reported for the historical period 1987-2012. In other words, we assumed there would be no increase in irrigated acreage.
- 2. We assumed no expansion of irrigated golf course area.
- 3. Growth in livestock head counts was based on the average head counts during 1997-2012 as the 2060 estimate (or constant 2010 estimates if the 1997-2012 estimate is lower than the 2010 value).
- 4. We assumed that environmental demand remained constant at the current (2010) level.

# 6.4.3 More Resource Intensive Scenario (MRI)

- 1. For the entire forecast period ending 2060, we assumed a 2.0 percent annual rate of growth in irrigated cropland acreage, which is among the higher annual rates implied by data for the historical period 1987-2012.
- 2. We assumed that new 18-hole golf courses are added at an annual rate of 1.0 percent per year, approximately the rate of growth prevailing during the period 1990-2009.
- 3. For the period 2010-2030, we assumed the 2012-2023 rates of growth in livestock head counts developed by the U.S. Department of Agriculture Economic Research Service

(2014). For the period 2030-2060, we assumed growth in livestock head counts at 50 percent of the 2012-2023 growth rates specified by the U.S. Department of Agriculture Economic Research Service (2014). Our assumptions are identical for the CT scenario (Section 6.4.1).

4. Environmental demand was assumed to increase at a rate of 2.5 percent per year.

### 6.5 Scenario Results

Estimated demand under the three scenarios is shown in Appendix G and summarized in Table 6.16. Under the CT scenario, total demand increases by 48.3 percent during the period 2010 to 2060, from 91.20 Mgd in 2010 (adjusted to normal 1981-2010 weather conditions) to 135.22 Mgd in 2060, an increase of 44.02 Mgd. Under the LRI scenario, total demand increases by 7.12 Mgd (7.8 percent) from 2010 to 2060, and under the MRI scenario, total demand approximately doubles from 2010 to 2060, increasing by 92.04 Mgd, or 100.9 percent.

Table 6.17 shows estimates of the sources of water for ILE demand assuming the 2010 proportionality of sources is maintained to 2060. Under the CT scenario, groundwater demand increases by 48.4 percent, from 88.07 to 130.69 Mgd, from 2010 to 2060. Surface water demand is far less, increasing from 3.14 to 4.53 Mgd (44.4 percent) during the period. Under the LRI scenario, surface water increases by only about 0.18 Mgd, a 5.8 percent increase, from 2010 to 2060, while groundwater demand increases by 6.93 Mgd (7.9 percent), from 88.07 to 16.53 Mgd. Under the MRI scenario, groundwater demand increases by 101.1 percent, from 88.07 to 177.10 Mgd, from 2010 to 2060. Surface water demand under the MRI scenario increases by 95.7 percent, but magnitudes remain low in comparison to groundwater demand, with the total surface water demand increasing only to 6.14 Mgd in 2060.

|                                        | Irrig             | ation                | I ivestock | Fnvironmental | Total        |  |
|----------------------------------------|-------------------|----------------------|------------|---------------|--------------|--|
| Year                                   | Cropland<br>(Mgd) | Golf Course<br>(Mgd) | (Mgd)      | (Mgd)         | ILE<br>(Mgd) |  |
| (                                      | Current Trends    | (Baseline) Scena     | rio (CT)   |               |              |  |
| 2010 (Reported) <sup>1</sup>           | 39.82             | 0.88                 | 8.36       | 3.25          | 52.31        |  |
| 2010 (Normal) <sup>2</sup>             | 77.75             | 1.85                 | 8.36       | 3.25          | 91.20        |  |
| 2015                                   | 82.12             | 1.90                 | 8.75       | 3.42          | 96.18        |  |
| 2020                                   | 86.73             | 1.96                 | 9.15       | 3.59          | 101.44       |  |
| 2025                                   | 91.61             | 2.02                 | 9.58       | 3.77          | 106.99       |  |
| 2030                                   | 96.76             | 2.08                 | 10.04      | 3.97          | 112.85       |  |
| 2035                                   | 99.45             | 2.15                 | 10.51      | 4.17          | 116.28       |  |
| 2040                                   | 102.22            | 2.21                 | 11.02      | 4.38          | 119.83       |  |
| 2045                                   | 105.06            | 2.28                 | 11.54      | 4.60          | 123.49       |  |
| 2050                                   | 107.98            | 2.35                 | 12.10      | 4.84          | 127.27       |  |
| 2055                                   | 110.98            | 2.42                 | 12.69      | 5.09          | 131.18       |  |
| 2060                                   | 114.07            | 2.49                 | 13.31      | 5.35          | 135.22       |  |
| 2010 (Normal)-2060 Change <sup>3</sup> | 36.32             | 0.64                 | 4.96       | 2.10          | 44.02        |  |
| 2010 (Normal)-2060 Change (%)          | 46.7              | 34.9                 | 59.3       | 64.5          | 48.3         |  |
|                                        | Less Resource l   | Intensive Scenari    | o (LRI)    |               |              |  |
| 2010 (Reported) <sup>1</sup>           | 39.82             | 0.88                 | 8.36       | 3.25          | 52.31        |  |
| 2010 (Normal) <sup>2</sup>             | 77.75             | 1.85                 | 8.36       | 3.25          | 91.20        |  |
| 2015                                   | 78.36             | 1.85                 | 8.45       | 3.25          | 91.92        |  |
| 2020                                   | 78.98             | 1.85                 | 8.55       | 3.25          | 92.63        |  |
| 2025                                   | 79.59             | 1.85                 | 8.65       | 3.25          | 93.34        |  |
| 2030                                   | 80.21             | 1.85                 | 8.74       | 3.25          | 94.05        |  |
| 2035                                   | 80.83             | 1.85                 | 8.84       | 3.25          | 94.76        |  |
| 2040                                   | 81.44             | 1.85                 | 8.93       | 3.25          | 95.47        |  |
| 2045                                   | 82.06             | 1.85                 | 9.03       | 3.25          | 96.18        |  |
| 2050                                   | 82.67             | 1.85                 | 9.12       | 3.25          | 96.90        |  |
| 2055                                   | 83.29             | 1.85                 | 9.22       | 3.25          | 97.61        |  |
| 2060                                   | 83.91             | 1.85                 | 9.31       | 3.25          | 98.32        |  |
| 2010 (Normal)-2060 Change <sup>3</sup> | 6.16              | 0.00                 | 0.95       | 0.00          | 7.12         |  |
| 2010 (Normal)-2060 Change (%)          | 7.9               | 0.0                  | 11.4       | 0.0           | 7.8          |  |

#### Table 6.16 ILE Water Demand Scenarios

#### More Resource Intensive Scenario (MRI)

| 2010 (Reported) <sup>1</sup> | 39.82  | 0.88 | 8.36  | 3.25 | 52.31  |
|------------------------------|--------|------|-------|------|--------|
| 2010 (Normal) <sup>2</sup>   | 77.75  | 1.85 | 8.36  | 3.25 | 91.20  |
| 2015                         | 85.84  | 1.94 | 8.75  | 3.68 | 100.20 |
| 2020                         | 94.77  | 2.04 | 9.15  | 4.16 | 110.13 |
| 2025                         | 104.64 | 2.15 | 9.58  | 4.71 | 121.07 |
| 2030                         | 115.53 | 2.26 | 10.04 | 5.33 | 133.14 |
| 2035                         | 121.42 | 2.37 | 10.51 | 6.03 | 140.33 |
| 2040                         | 127.61 | 2.49 | 11.02 | 6.82 | 147.94 |
| 2045                         | 134.12 | 2.62 | 11.54 | 7.71 | 156.00 |
| 2050                         | 140.96 | 2.75 | 12.10 | 8.73 | 164.55 |

|                                        | Irrig             | ation                | Livestock | Environmental | Total        |  |
|----------------------------------------|-------------------|----------------------|-----------|---------------|--------------|--|
| Year                                   | Cropland<br>(Mgd) | Golf Course<br>(Mgd) | (Mgd)     | (Mgd)         | ILE<br>(Mgd) |  |
| 2055                                   | 148.16            | 2.89                 | 12.69     | 9.87          | 173.62       |  |
| 2060                                   | 155.71            | 3.04                 | 13.31     | 11.17         | 183.24       |  |
| 2010 (Normal)-2060 Change <sup>3</sup> | 77.97             | 1.19                 | 4.96      | 7.92          | 92.04        |  |
| 2010 (Normal)-2060 Change (%)          | 100.3             | 64.5                 | 59.3      | 243.7         | 100.9        |  |

<sup>1</sup>2010 (Reported): reported irrigation and livestock demand in 2010 (U.S. Geological Survey, 2014); environmental demand computed by the authors from IWIP data

<sup>2</sup>2010 (Normal): weather-normalized irrigation demand in 2010 (obtained by substituting normal weather conditions in the estimation model); reported and weather-normalized livestock and environmental demand are equal <sup>3</sup>Changes are computed relative to 2010 (Normal) values

| •                                      | Demand (Mgd)        |               |        |  |  |
|----------------------------------------|---------------------|---------------|--------|--|--|
| Year                                   | Groundwater         | Surface Water | Total  |  |  |
| Current                                | Trends (Baseline)   | Scenario (CT) |        |  |  |
| 2010 (Reported) <sup>1</sup>           | 50.42               | 1.88          | 52.31  |  |  |
| 2010 (Normal) <sup>2</sup>             | 88.07               | 3.14          | 91.20  |  |  |
| 2015                                   | 92.89               | 3.29          | 96.18  |  |  |
| 2020                                   | 97.98               | 3.46          | 101.44 |  |  |
| 2025                                   | 103.36              | 3.63          | 106.99 |  |  |
| 2030                                   | 109.03              | 3.82          | 112.85 |  |  |
| 2035                                   | 112.35              | 3.93          | 116.28 |  |  |
| 2040                                   | 115.79              | 4.04          | 119.83 |  |  |
| 2045                                   | 119.33              | 4.16          | 123.49 |  |  |
| 2050                                   | 122.99              | 4.28          | 127.27 |  |  |
| 2055                                   | 126.78              | 4.40          | 131.18 |  |  |
| 2060                                   | 130.69              | 4.53          | 135.22 |  |  |
| 2010 (Normal)-2060 Change <sup>3</sup> | 42.62               | 1.39          | 44.02  |  |  |
| 2010 (Normal)-2060 Change (%)          | 48.4                | 44.4          | 48.3   |  |  |
| Less Re                                | esource Intensive S | cenario (LRI) |        |  |  |
| 2010 (Reported) <sup>1</sup>           | 50.42               | 1.88          | 52.31  |  |  |
| 2010 (Normal) <sup>2</sup>             | 88.07               | 3.14          | 91.20  |  |  |
| 2015                                   | 88.76               | 3.16          | 91.92  |  |  |
| 2020                                   | 89.45               | 3.17          | 92.63  |  |  |
| 2025                                   | 90.15               | 3.19          | 93.34  |  |  |
| 2030                                   | 90.84               | 3.21          | 94.05  |  |  |
| 2035                                   | 91.53               | 3.23          | 94.76  |  |  |
| 2040                                   | 92.23               | 3.25          | 95.47  |  |  |
| 2045                                   | 92.92               | 3.27          | 96.18  |  |  |
| 2050                                   | 93.61               | 3.28          | 96.90  |  |  |
| 2055                                   | 94.31               | 3.30          | 97.61  |  |  |
| 2060                                   | 95.00               | 3.32          | 98.32  |  |  |
| 2010 (Normal)-2060 Change <sup>3</sup> | 6.93                | 0.18          | 7.12   |  |  |
| 2010 (Normal)-2060 Change (%)          | 7.9                 | 5.8           | 7.8    |  |  |
| More Re                                | esource Intensive S | cenario (MRI) |        |  |  |
| 2010 (Reported) <sup>1</sup>           | 50.42               | 1.88          | 52.31  |  |  |
| 2010 (Normal) <sup>2</sup>             | 88.07               | 3.14          | 91.20  |  |  |
| 2015                                   | 96.78               | 3.43          | 100.20 |  |  |
| 2020                                   | 106.38              | 3.74          | 110.13 |  |  |
| 2025                                   | 116.98              | 4.09          | 121.07 |  |  |
| 2030                                   | 128.67              | 4.48          | 133.14 |  |  |

# Table 6.17 ILE Demand by Source

# 167.79 112

135.61

142.97

150.76

159.03

2035

2040

2045

2050

2055

4.48 4.72

4.97

5.24

5.52

5.82

140.33

147.94

156.00

164.55

173.62

| Voor                                   | Demand (Mgd) |               |        |  |  |  |
|----------------------------------------|--------------|---------------|--------|--|--|--|
| i cai                                  | Groundwater  | Surface Water | Total  |  |  |  |
| 2060                                   | 177.10       | 6.14          | 183.24 |  |  |  |
| 2010 (Normal)-2060 Change <sup>3</sup> | 89.03        | 3.00          | 92.04  |  |  |  |
| 2010 (Normal)-2060 Change (%)          | 101.1        | 95.7          | 100.9  |  |  |  |

<sup>1</sup>2010 (Reported): reported irrigation and livestock demand in 2010 (U.S. Geological Survey, 2014); environmental demand computed by the authors from IWIP data

<sup>2</sup>2010 (Normal): weather-normalized irrigation demand in 2010 (obtained by substituting normal weather conditions in the estimation model); reported and weather-normalized livestock and environmental demand are equal <sup>3</sup>Changes are computed relative to 2010 (Normal) values

## 7 Sensitivity of Demand to Climate Change and Drought

## 7.1 Possible Changes and Effects

This chapter discusses plausible effects of regional and global climate change on water demand in the region during the timeframe of our analysis, which ends in 2060. We also discuss likely effects of periodic drought on water demand.

The estimates of future water demand discussed in the previous chapters assume normal weather conditions based on historical data. Specifically, the values of air temperature and precipitation used as explanatory variables in the water demand model for public water supply represent long-term averages based on the 30-year record from 1981 to 2010. We used historical precipitation data to compute precipitation deficits for estimates of future irrigation demand. These "climate normals" are expected to change (or shift) under climate change scenarios.

## 7.1.1 Range of Climate Change Predictions

## 7.1.1.1 Characterization of Climate Changes by Dziegielewski and Chowdhury (2008)

Climate models discussed by Dziegielewski and Chowdhury (2008) show that, by 2050, average annual temperatures in Illinois may depart by up to  $+6^{\circ}$ F from the 1971-2000 long-term normal. These climate models also indicate that normal annual precipitation in Illinois could depart from 1971-2000 normals by -5 inches to +5 inches per year by 2050. Figure 7.1 and Figure 7.2 illustrate the predictions of the multiple global climate models discussed by Dziegielewski and Chowdhury (2008), with the results grouped into three families (A1, A2, and B1) based on the scenario.

In Figure 7.1 and Figure 7.2, scenario A1 assumes very rapid economic growth, a global population peak in mid-century, and rapid introduction of new and more efficient technologies. Scenario A2 describes a very heterogeneous world with high population growth, slow economic development, and slow technological change. Scenario B1 describes a convergent world, with the same global population as A1, but with more rapid changes in economic structure toward a service and information economy. The 5 percent and 95 percent confidence limits shown in Figure 7.1 and Figure 7.2 enclose 90 percent of model results, excluding the lower and upper 5 percent of results (Intergovernmental Panel on Climate Change, 2007).

Dziegielewski and Chowdhury (2008) assumed, for purposes of water demand estimation in northeastern Illinois, that the changes in annual temperature and precipitation indicated by Figure 7.1 and Figure 7.2, respectively, implied similar changes during the growing season. In modeling water demand to 2050, they therefore assumed, for the summer growing season, a temperature increase of  $6^{\circ}$ F and precipitation changes ranging from +2.5 inches to -3.5 inches.



Figure 7.1 Departures from Illinois 1971-2000 annual temperature normal discussed by Dziegielewski and Chowdhury (2008)



Figure 7.2 Departures from Illinois 1971-2000 annual precipitation normal discussed by Dziegielewski and Chowdhury (2008)

#### 7.1.1.2 Most Recent Climate Models Predictions

More recent modeling of climate change provides greater spatial resolution than the statewide models referenced by Dziegielewski and Chowdhury (2008). Climate change data are currently provided by the (U.S. Environmental Protection Agency, 2015b) for model grid cells having an area of one-half degree of longitude by one-half degree of latitude. For the contiguous United States, these grid cells have dimensions of approximately 32 by 32 miles.

Table 7.1 shows model results from the U.S. Environmental Protection Agency (2015b) for three scenarios of climate change, for model grid cells representative of study area counties based on the degree of intersection between the grid cells and counties. The data characterize climate change as positive or negative departures from 1971-2000 climate normals. Modeled changes in temperature and precipitation are averaged over two 30-year time periods, which we identified using the midpoint of each period, i.e., a *2035 period*, which extends from 2021-2050, and a *2060 period*, which extends from 2046-2075. The three scenarios represent a range of model results for each 32 by 32 mile grid cell. We designated these as (1) the *Hot/Dry* scenario, which represents a hotter and drier future climate; (2) the *Warm/Wet* scenario, which represents a future climate with less warming but increased precipitation relative to other model results; and (3) the *Central* scenario, which falls in the middle of the distribution of model results.

Table 7.2 and Table 7.3 show normals of maximum daily temperature and total precipitation, respectively, for all calendar months, as well as seasonal averages, at weather stations located in the individual counties of the Rock River region. Normals based on both 1971-2000 and 1981-2010 accounting periods are included in these tables.

For our analysis of the impacts of climate change on water demand, we had to assume monthly changes in temperature and precipitation on the basis of the annual data available from the U.S. Environmental Protection Agency (2015b). The implied USEPA scenario predictions (i.e., new climate normals) for 2035 and 2060 were compared with the normals for 1981-2010 when estimating the potential impacts on water demands in 2035 and 2060.

Although the future changes in climate during different seasons of the year are challenging to ascertain, we briefly examined the historical changes in climate normals between the 1971-2000 and 1981-2010 periods. Shifts in climate normals for an average monthly maximum daily temperature and average monthly precipitation show that recent climate change effects, as represented by the normals, are not evenly distributed across the calendar months. Temperature increases were greater from October to April than during the growing season (May to September). The average percentage increase (across the weather stations) in the maximum temperature was 0.25 percent during the five months from May to September but 2.07 percent during the remaining seven months. Precipitation is affected oppositely; the increase in precipitation was greater during the growing season than during the remaining months. The average effect across the stations suggests that a 2 percent increase in precipitation occurred during the five months of growing season and a 1.2 percent increase occurred during the remaining seven months. Given the asymmetrical distribution of monthly changes in the 1971-2000 and 1981-2010 climate normals, we have assumed that 65 percent of annual precipitation change occurs during the growing season and that 35 percent occurs during the October to April period. We have assumed, however, that temperature increases are equivalent across all months.

|                     |                                  | Cha<br>Ter | nge in Anr<br>nperature ( | nual<br>(°F) | Change in Annual<br>Precipitation (%) |         |          |  |  |
|---------------------|----------------------------------|------------|---------------------------|--------------|---------------------------------------|---------|----------|--|--|
| County <sup>1</sup> | Averaging<br>period <sup>2</sup> | Hot/Dry    | Central                   | Warm/Wet     | Hot/Dry                               | Central | Warm/Wet |  |  |
| Deene               | 2035 Period                      | 3.38       | 2.79                      | 2.48         | -0.15                                 | 3.05    | 5.92     |  |  |
| Boone               | 2060 Period                      | 6.61       | 5.45                      | 4.86         | -0.29                                 | 5.95    | 11.55    |  |  |
| Dumoou              | 2035 Period                      | 3.33       | 2.74                      | 2.43         | -0.7                                  | 2.99    | 5.36     |  |  |
| Bureau              | 2060 Period                      | 6.48       | 5.35                      | 4.73         | -1.37                                 | 5.83    | 10.47    |  |  |
| Comoli              | 2035 Period                      | 3.42       | 2.81                      | 2.45         | -0.007                                | 0.03    | 5.77     |  |  |
| Carroll             | 2060 Period                      | 6.66       | 5.49                      | 4.79         | -0.14                                 | 5.9     | 11.26    |  |  |
| Honry               | 2035 Period                      | 3.33       | 2.74                      | 2.43         | -0.77                                 | 2.95    | 5.25     |  |  |
| пешу                | 2060 Period                      | 6.5        | 5.35                      | 4.73         | -1.51                                 | 5.77    | 10.25    |  |  |
| In Daviasa          | 2035 Period                      | 3.37       | 2.75                      | 2.41         | -0.36                                 | 3.12    | 5.71     |  |  |
| JO Daviess          | 2060 Period                      | 6.55       | 5.38                      | 7.72         | -0.7                                  | 6.09    | 11.14    |  |  |
| Las                 | 2035 Period                      | 3.42       | 2.75                      | 2.45         | -0.17                                 | 3.2     | 5.66     |  |  |
| Lee                 | 2060 Period                      | 6.68       | 5.36                      | 4.77         | -0.33                                 | 6.24    | 11.05    |  |  |
| Oala                | 2035 Period                      | 3.4        | 2.81                      | 2.48         | -0.12                                 | 3.04    | 5.93     |  |  |
| Ogle                | 2060 Period                      | 6.64       | 5.47                      | 4.84         | -0.23                                 | 5.93    | 11.56    |  |  |
| Dook Jaland         | 2035 Period                      | 3.33       | 2.86                      | 2.38         | -0.75                                 | 2.67    | 5.22     |  |  |
| KOCK Island         | 2060 Period                      | 6.52       | 5.58                      | 4.64         | -1.46                                 | 5.22    | 10.18    |  |  |
| Stanhanson          | 2035 Period                      | 3.42       | 2.81                      | 2.45         | -0.07                                 | 3.03    | 5.77     |  |  |
| Stephenson          | 2060 Period                      | 6.66       | 5.49                      | 4.79         | -0.14                                 | 5.9     | 11.26    |  |  |
| Whiteside           | 2035 Period                      | 3.37       | 2.77                      | 2.45         | -0.44                                 | 3.04    | 5.7      |  |  |
| winteside           | 2060 Period                      | 6.57       | 5.42                      | 4.79         | -0.86                                 | 5.94    | 11.13    |  |  |
| Winnshoss           | 2035 Period                      | 3.4        | 2.81                      | 2.48         | -0.12                                 | 3.04    | 5.93     |  |  |
| wmebago             | 2060 Period                      | 6.64       | 5.47                      | 4.84         | -0.23                                 | 5.93    | 11.56    |  |  |
| <b>ROCK RIVER</b>   | 2035 Period                      | 3.38       | 2.79                      | 2.44         | -0.33                                 | 2.74    | 5.66     |  |  |
| REGION              | 2060 Period                      | 6.59       | 5.44                      | 5.05         | -0.66                                 | 5.88    | 11.04    |  |  |

Table 7.1 Change in Annual Average Temperature and Annual Precipitation Relative to 1971-2000Climate Normals for Three Climate Scenarios (U.S. Environmental Protection Agency, 2015b)

<sup>1</sup>Temperature and precipitation data are approximatations for county locations that are based on model output data gridded to <sup>1</sup>/<sub>2</sub>- by <sup>1</sup>/<sub>2</sub>-degree cells. <sup>2</sup>The 2035 Period includes the years 2021-2050, and the 2060 Period includes the years 2046-2075.

| County        | Time      | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | ANNUAL | May-  | Oct-  |
|---------------|-----------|------|------|------|------|------|------|------|------|------|------|------|------|--------|-------|-------|
| (Station)     | period    |      |      |      | -    | -    |      |      | 0    | -    |      |      |      |        | Sep   | Apr   |
| Boone         | 1971-2000 | 26.7 | 32.3 | 44.5 | 58.1 | 70.4 | 80.3 | 83.6 | 81.3 | 74.3 | 62.5 | 45.4 | 32.3 | 57.6   | 77.98 | 43.11 |
| (DeKalb)      | 1981-2010 | 27.9 | 32.8 | 44.9 | 59.0 | 70.3 | 80.0 | 83.3 | 81.3 | 74.5 | 61.9 | 46.4 | 31.9 | 58.0   | 77.88 | 43.54 |
| Bureau        | 1971-2000 | 29.4 | 34.8 | 47.5 | 61.2 | 73.3 | 82.3 | 85.1 | 82.3 | 74.9 | 63.0 | 46.5 | 33.4 | 59.5   | 79.58 | 45.11 |
| (Princeton)   | 1981-2010 | 30.3 | 34.9 | 47.7 | 61.8 | 72.7 | 81.9 | 85.2 | 82.5 | 75.6 | 62.8 | 47.9 | 33.5 | 59.9   | 79.58 | 45.56 |
| Carroll       | 1971-2000 | 28.9 | 34.6 | 46.7 | 60.2 | 72.1 | 81.6 | 85.1 | 83.1 | 75.8 | 63.8 | 47.3 | 33.9 | 59.4   | 79.54 | 45.06 |
| (Mt. Carroll) | 1981-2010 | 30.2 | 35.3 | 47.1 | 60.7 | 71.7 | 81.2 | 84.5 | 82.9 | 75.8 | 63.3 | 48.2 | 33.8 | 59.7   | 79.22 | 45.51 |
| Henry         | 1971-2000 | 28.7 | 34.4 | 47.2 | 61.1 | 73.1 | 82.4 | 85.7 | 83.2 | 75.7 | 63.3 | 46.9 | 33.4 | 59.6   | 80.02 | 45.00 |
| (Geneseo)     | 1981-2010 | 30.5 | 35.3 | 48.2 | 62.1 | 73.0 | 82.3 | 85.4 | 83.0 | 76.0 | 63.3 | 48.4 | 33.9 | 60.2   | 79.94 | 45.96 |
| Jo Daviess    | 1971-2000 | 27.0 | 33.4 | 45.4 | 58.6 | 70.6 | 80.0 | 83.8 | 81.4 | 73.9 | 62.1 | 45.7 | 32.5 | 57.9   | 77.94 | 43.53 |
| (Elizabeth)   | 1981-2010 | 28.2 | 33.4 | 45.5 | 59.5 | 70.2 | 79.8 | 83.4 | 81.5 | 74.1 | 61.9 | 47.2 | 32.6 | 58.2   | 77.80 | 44.04 |
| Lee           | 1971-2000 | 25.3 | 30.9 | 43.2 | 57.4 | 69.7 | 79.2 | 82.1 | 79.8 | 73.3 | 61.3 | 44.7 | 30.8 | 56.5   | 76.82 | 41.94 |
| (Paw Paw)     | 1981-2010 | 27.2 | 31.6 | 44.2 | 58.8 | 69.3 | 79.0 | 81.5 | 79.6 | 73.6 | 61.6 | 45.9 | 31.2 | 57.1   | 76.60 | 42.93 |
| Ogle          | 1971-2000 | 26.7 | 32.1 | 44.6 | 58.1 | 70.4 | 79.4 | 83.1 | 81.1 | 74.1 | 62.4 | 45.6 | 32.0 | 57.5   | 77.62 | 43.07 |
| (Rochelle)    | 1981-2010 | 27.9 | 32.4 | 45.1 | 59.0 | 70.2 | 79.3 | 82.6 | 80.9 | 74.3 | 62.0 | 46.7 | 31.9 | 57.8   | 77.46 | 43.57 |
| Rock Island   | 1971-2000 | 29.8 | 35.6 | 48.3 | 61.7 | 73.3 | 82.7 | 86.1 | 83.9 | 76.5 | 64.4 | 48.0 | 34.5 | 60.4   | 80.50 | 46.04 |
| (Moline AP)   | 1981-2010 | 31.0 | 35.7 | 48.8 | 62.3 | 72.9 | 82.3 | 85.8 | 83.8 | 76.8 | 64.1 | 49.2 | 34.6 | 60.7   | 80.32 | 46.53 |
| Stephenson    | 1971-2000 | 25.4 | 31.2 | 43.2 | 56.8 | 69.1 | 78.4 | 82.0 | 79.7 | 72.6 | 60.8 | 44.4 | 30.5 | 56.2   | 76.36 | 41.76 |
| (Freeport WP) | 1981-2010 | 28.5 | 33.6 | 45.6 | 59.5 | 70.7 | 80.2 | 83.4 | 81.5 | 74.4 | 62.0 | 46.8 | 32.3 | 58.3   | 78.04 | 44.04 |
| Whiteside     | 1971-2000 | 28.8 | 34.3 | 46.6 | 60.1 | 72.1 | 81.6 | 85.0 | 82.9 | 75.8 | 64.0 | 47.4 | 33.8 | 59.4   | 79.48 | 45.00 |
| (Morrison)    | 1981-2010 | 30.9 | 35.9 | 48.2 | 61.8 | 72.7 | 82.0 | 85.4 | 83.3 | 76.4 | 63.9 | 49.2 | 35.0 | 60.5   | 79.96 | 46.41 |
| Winnebago     | 1971-2000 | 27.2 | 33.0 | 45.5 | 59.1 | 71.2 | 79.9 | 83.1 | 80.9 | 73.9 | 61.8 | 45.5 | 32.0 | 57.8   | 77.80 | 43.44 |
| (Rockford AP) | 1981-2010 | 29.5 | 34.2 | 46.9 | 60.7 | 71.8 | 81.1 | 84.5 | 82.4 | 75.4 | 62.7 | 47.6 | 33.2 | 59.3   | 79.04 | 44.97 |

Table 7.2 Normal (30-Year Average) Values of Maximum Daily Air Temperature (°F)

| County<br>(Station)       | Time      | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep   | Oct  | Nov  | Dec  | ANNUAL | May-<br>Sen | Oct-  |
|---------------------------|-----------|------|------|------|------|------|------|------|------|-------|------|------|------|--------|-------------|-------|
| Boone                     | 1971-2000 | 1.54 | 1.40 | 2.46 | 3 52 | 4 21 | 1 19 | 1 22 | 1 18 | 3 5 1 | 2.60 | 2.82 | 2.13 | 37 38  | 20.91       | 16 A7 |
| (DeKalb)                  | 1981-2010 | 1.54 | 1.40 | 2.40 | 3.52 | 4.57 | 4.14 | 1 37 | 4.40 | 3.25  | 2.00 | 2.02 | 2.15 | 36.98  | 20.51       | 16.29 |
| Bureau                    | 1971-2000 | 1.40 | 1.54 | 2.27 | 3.76 | 4.09 | 1 36 | 3 3/ | 4.30 | 3.65  | 2.00 | 2.70 | 2.15 | 37.87  | 20.07       | 17.67 |
| (Princeton)               | 1981-2010 | 1.05 | 1.40 | 2.40 | 3.67 | 4.02 | 4.30 | 4.02 | 4.70 | 3.53  | 2.94 | 3.05 | 2.40 | 39.56  | 20.20       | 18.31 |
| Carroll                   | 1971-2000 | 1.77 | 1.04 | 2.01 | 3.67 | 1 3/ | 4.77 | 3.83 | 4.40 | 3.33  | 2.77 | 2.84 | 2.40 | 37.80  | 21.25       | 16.51 |
| (Mt Carroll)              | 1971-2000 | 1.43 | 1.52 | 2.03 | 3.07 | 4.34 | 4.77 | 1.52 | 4.54 | 3.46  | 2.75 | 2.04 | 2.02 | 39.64  | 20.90       | 17.76 |
| Uonry                     | 1931-2010 | 1.40 | 1.09 | 2.01 | 3.70 | 4.42 | 4.90 | 3.00 | 4.30 | 3.40  | 3.01 | 2.90 | 2.24 | 37.04  | 10.02       | 17.70 |
| (Geneseo)                 | 1971-2000 | 1.52 | 1.50 | 2.09 | 3.66 | 4.21 | 4.20 | 1.05 | 4.32 | 3.29  | 2 28 | 2.82 | 2.13 | 37.43  | 20.07       | 17.51 |
|                           | 1981-2010 | 1.42 | 1.02 | 2.09 | 3.00 | 4.20 | 4.00 | 4.05 | 4.41 | 3.33  | 2.36 | 2.80 | 2.17 | 36.76  | 20.07       | 16.38 |
| JU Daviess<br>(Elizaboth) | 1971-2000 | 1.39 | 1.20 | 2.34 | 2.11 | 4.23 | 4.40 | 3.77 | 4.17 | 2.45  | 2.70 | 2.00 | 2.10 | 36.70  | 20.58       | 10.38 |
|                           | 1981-2010 | 1.55 | 1.33 | 2.17 | 2.20 | 4.40 | 4.30 | 4.15 | 4.13 | 3.43  | 2.79 | 2.98 | 2.02 | 30.32  | 20.55       | 15.97 |
| Lee                       | 1971-2000 | 1.12 | 1.24 | 2.58 | 3.38 | 3.57 | 5.07 | 2.90 | 4.45 | 3.03  | 2.51 | 2.71 | 1.// | 34.93  | 19.62       | 15.51 |
| (Paw Paw)                 | 1981-2010 | 1.13 | 1.51 | 2.23 | 3.55 | 3.94 | 5.00 | 3.72 | 4.49 | 3.29  | 2.95 | 2.85 | 2.04 | 30.68  | 20.44       | 16.24 |
| Ogle                      | 1971-2000 | 1.25 | 1.25 | 1.87 | 3.48 | 3.58 | 4.12 | 3.42 | 4.35 | 3.23  | 2.73 | 2.54 | 1.82 | 33.64  | 18.70       | 14.94 |
| (Rochelle)                | 1981-2010 | 1.55 | 1.44 | 1.89 | 3.21 | 3.98 | 4.16 | 3.56 | 4.06 | 3.17  | 2.87 | 2.53 | 1.94 | 34.36  | 18.93       | 15.43 |
| Rock Island               | 1971-2000 | 1.58 | 1.51 | 2.92 | 3.82 | 4.25 | 4.63 | 4.03 | 4.41 | 3.16  | 2.80 | 2.73 | 2.20 | 38.04  | 20.48       | 17.56 |
| (Moline AP)               | 1981-2010 | 1.49 | 1.60 | 2.86 | 3.59 | 4.32 | 4.49 | 4.29 | 4.52 | 3.09  | 2.97 | 2.56 | 2.18 | 37.96  | 20.71       | 17.25 |
| Stephenson                | 1971-2000 | 1.33 | 1.33 | 2.14 | 3.23 | 3.96 | 4.46 | 3.57 | 4.11 | 3.67  | 2.58 | 2.69 | 1.72 | 34.79  | 19.77       | 15.02 |
| (Freeport WP)             | 1981-2010 | 1.37 | 1.52 | 2.08 | 3.30 | 3.99 | 4.61 | 3.94 | 4.29 | 3.66  | 2.88 | 2.66 | 1.76 | 36.06  | 20.49       | 15.57 |
| Whiteside                 | 1971-2000 | 1.52 | 1.51 | 2.79 | 3.72 | 4.41 | 4.58 | 3.70 | 4.69 | 2.87  | 2.82 | 2.90 | 2.14 | 37.65  | 20.25       | 17.40 |
| (Morrison)                | 1981-2010 | 1.48 | 1.69 | 2.68 | 3.48 | 4.20 | 4.83 | 3.94 | 4.70 | 2.96  | 2.97 | 2.74 | 2.09 | 37.76  | 20.63       | 17.13 |
| Winnebago                 | 1971-2000 | 1.41 | 1.34 | 2.39 | 3.62 | 4.03 | 4.80 | 4.10 | 4.21 | 3.47  | 2.57 | 2.63 | 2.06 | 36.63  | 20.61       | 16.02 |
| (Rockford AP)             | 1981-2010 | 1.37 | 1.41 | 2.32 | 3.35 | 4.02 | 4.65 | 3.95 | 4.59 | 3.35  | 2.67 | 2.58 | 1.98 | 36.24  | 20.56       | 15.68 |

Table 7.3 Normal (30-Year Average) Values of Total Precipitation (inches)

## 7.1.2 Quantifying Climatic Impacts on Water Demand

The estimated effects of climate change on water demand vary by sector and reflect the sensitivity of water demand by the sector to air temperature and precipitation. This section discusses specific assumptions about the changes in weather variables assumed in our analysis of climate change effects on water demand by each sector.

## 7.1.2.1 Demand by Public Water Systems

The sensitivity of public water system demand to weather conditions is captured by two variables: (1) average maximum-daily temperatures during the five-month growing season from May to September and (2) total precipitation during the growing season. The estimated constant elasticity of the temperature variable is +1.13185, meaning that per-capita water demand is expected to increase by 1.13185 percent in response to a 1.0 percent increase in the average maximum daily temperature during the growing season. The estimated constant elasticity of growing-season precipitation is -0.05946, indicating that average annual per-capita water demand is expected to decrease by 0.05946 percent in response to a 1.0 percent increase in total precipitation.

## 7.1.2.2 Demand for Self-Supplied Domestic Water

The sensitivity of self-supplied domestic withdrawals to weather conditions is captured by two variables: (1) average of maximum-daily temperatures during the five-month growing season from May to September and (2) total precipitation during the growing season. We assumed that the constant elasticity of the temperature and precipitation variables is the same as estimated for the public water systems.

#### 7.1.2.3 Demand for Self-Supplied Water for Power Generation

Higher air temperatures will impact water demand for cooling of thermoelectric power plants. For plants having once-through cooling systems, warmer intake water may lead to increased demand in order to meet the limitations on thermal pollution. For plants with closedloop cooling systems, higher air temperatures will affect the performance of cooling towers and cooling lakes. However, the actual impacts on water demand are challenging to quantify and are not included in our sensitivity analysis.

#### 7.1.2.4 Demand for Self-Supplied Water for Industrial and Commercial Uses

The sensitivity of industrial and commercial (IC) water demand to weather conditions is affected by total cooling degree-days, and to some degree, total precipitation during the fivemonth summer season from May to September. We have not estimated these effects, however, because no statistical models with quantified weather effects (such as elasticity of cooling degree-days) were developed for the IC sector. The scenario demands were calculated using unit use coefficients, which remained unchanged during the forecast horizon.

#### 7.1.2.5 Demand for Self-Supplied Water for Irrigation, Livestock, and Environmental Uses

For the purpose of sensitivity analysis with respect to climate change, water demand for irrigation is affected by decreased or increased irrigation-season precipitation and by increased temperature, which increases evapotranspiration. Changes in precipitation rates will result in changes in the precipitation deficit, which we employed to estimate demand for irrigation. We

estimated the effects of future climate scenarios only on cropland irrigation. The relative (percentage) effects of climate on golf course irrigation would be the same. No climate effects on water demand for livestock and environmental uses were estimated because of the lack of information on the sensitivity of water demand to climatic conditions in these sectors.

## 7.2 Estimated Effects of Climate Change

## 7.2.1 Water Demand by Public Water Systems

We assumed that summer growing-season temperatures will increase by the same magnitudes as the annual average temperatures for the 2035 and 2060 Periods (Table 7.1), but we allocated 65 percent of annual change in normal precipitation to the summer irrigation season (May-September) and 35 percent to the remaining seven months. We employed regional averages of model grid cell output, obtained from the U.S. Environmental Protection Agency (2015b), as the basis for computing climate change effects on public water system demand. These regional averages are shown in Table 7.4.

The effects on CT scenario public system demand of the temperature and precipitation changes shown in Table 7.4 are shown in Table 7.5. Note that Table 7.5 compares 2035 and 2060 demands under the CT scenario-results computed for 1981-2010 normal climate for a single year—with, respectively, 2035 Period and 2060 Period results under the condition of climate change. For clarity, the results shown for 1981-2010 normal climate are identified with the designators 2035N and 2060N. The 2035 Period and 2060 Period estimates for conditions of climate change are based on CT scenario assumptions, except for the assumptions of temperature and precipitation. Note that temperature and precipitation during the 2035 Period and 2060 Period are 30-year averages based on modeled temperature and precipitation for the periods 2021 to 2050 and 2046 to 2075, respectively. Thus, the percentage difference shown between the 2035N and 2035 Period results, and between the 2060N and 2060 Period results, should be regarded as an average difference that applies, in each case, to a 30-year period. The results shown in Table 7.5, then, show that the Hot/Dry scenario of climate change would increase public system demand to the greatest degree, followed by the Central scenario, and, finally, the Warm/Wet scenario. We estimated public-system demand under the Hot/Dry climate scenario during the 2060 Period to be 7.1 Mgd greater than in 2060 under normal weather conditions, an 8.7 percent increase. On the other hand, under the Warm/Wet scenario of climate change, publicsystem demand during the 2060 Period is 4.9 Mgd greater than in 2060 under normal weather conditions, a 6.0 percent increase.

| Table 7.4 Regional Changes <sup>1</sup> in 1971-2000 Normal Values of Annual Average Temperature and Annual |
|-------------------------------------------------------------------------------------------------------------|
| Precipitation, 2035 and 2060 Averaging Periods                                                              |

| Climata Daramatar                                         |         | 2035 Perio | od <sup>2</sup> | 2060 Period <sup>2</sup> |         |          |  |  |
|-----------------------------------------------------------|---------|------------|-----------------|--------------------------|---------|----------|--|--|
|                                                           | Hot/Dry | Central    | Warm/Wet        | Hot/Dry                  | Central | Warm/Wet |  |  |
| Change in Annual Average<br>Temperature (°F) <sup>3</sup> | 3.38    | 2.79       | 2.44            | 6.59                     | 5.44    | 5.05     |  |  |
| Change in Annual<br>Precipitation (%) <sup>3</sup>        | -0.33   | 2.74       | 5.66            | -0.66                    | 5.88    | 11.04    |  |  |

 $^{1}$ Changes are averages, for an area approximating the Rock River region, of model output gridded to  $\frac{1}{2}$ - by  $\frac{1}{2}$ -degree cells.

<sup>2</sup>The 2035 Period includes the years 2021-2050, and the 2060 Period includes the years 2046-2075.

<sup>3</sup>Although the shifts in °F and % changes are in relation to the 1971-2000 climate normals, the estimated effects on water use are obtained by comparing the calculated future (2035 and 2060) normal values with the 1981-2010 normal values used in the scenario forecasts.

| Country                            | 2010N* | 2035N* | 2035    | Period (20 | 21-2050) | 2060N* | 2060 Period (2046-2075) |         |          |  |
|------------------------------------|--------|--------|---------|------------|----------|--------|-------------------------|---------|----------|--|
| County                             | 2010IN | (CT)   | Hot/Dry | Central    | Warm/Wet | (CT)   | Hot/Dry                 | Central | Warm/Wet |  |
| Boone                              | 2.94   | 2.94   | 3.01    | 2.98       | 2.96     | 2.81   | 3.01                    | 2.96    | 2.94     |  |
| Bureau                             | 1.11   | 1.08   | 1.15    | 1.14       | 1.13     | 1.02   | 1.13                    | 1.11    | 1.10     |  |
| Carroll                            | 4.10   | 4.08   | 4.28    | 4.24       | 4.21     | 3.88   | 4.25                    | 4.18    | 4.15     |  |
| Henry                              | 1.98   | 1.94   | 2.04    | 2.02       | 2.01     | 1.83   | 2.01                    | 1.97    | 1.96     |  |
| Jo Daviess Cunty                   | 4.01   | 4.04   | 4.26    | 4.22       | 4.19     | 3.91   | 4.30                    | 4.23    | 4.20     |  |
| Lee                                | 5.05   | 5.26   | 5.54    | 5.49       | 5.46     | 5.32   | 5.86                    | 5.75    | 5.71     |  |
| Ogle                               | 18.17  | 18.20  | 19.13   | 18.95      | 18.84    | 17.48  | 19.17                   | 18.84   | 18.71    |  |
| Rock Island                        | 3.65   | 3.90   | 4.00    | 3.97       | 3.94     | 3.77   | 4.05                    | 3.97    | 3.94     |  |
| Stephenson                         | 3.90   | 3.85   | 4.01    | 3.98       | 3.95     | 3.65   | 3.97                    | 3.90    | 3.87     |  |
| Whiteside                          | 30.92  | 31.78  | 32.75   | 32.45      | 32.25    | 31.07  | 33.47                   | 32.87   | 32.63    |  |
| Winnebago                          | 3.69   | 4.97   | 5.21    | 5.16       | 5.13     | 5.90   | 6.47                    | 6.35    | 6.31     |  |
| REGIONAL TOTAL                     | 79.52  | 82.03  | 85.38   | 84.58      | 84.08    | 80.63  | 87.68                   | 86.13   | 85.51    |  |
| DIFFERENCE FROM 2035N (REGION) (%) |        |        | 4.1     | 3.1        | 2.5      |        |                         |         |          |  |
| DIFFERENCE FROM 2060N (REGION) (%) |        |        |         |            |          |        | 8.7                     | 6.8     | 6.0      |  |

Table 7.5 Estimated Public System Demand under Climate Change Scenarios Discussed in Text (Mgd)

\*N: demand under normal weather conditions based on the 1981-2010 climate normal

## 7.2.2 Demand for Self-Supplied Domestic Water

We have adjusted future estimates of CT-scenario self-supplied domestic demand using the estimates of temperature and precipitation changes detailed in Table 7.4. Adjustments are based on the estimated constant elasticities of public water system demand with respect to maximum air temperature (i.e., +1.13185) and total precipitation (i.e., -0.05946) during the five-month (May to September) landscape irrigation season.

The effect of changes in temperature and precipitation on self-supplied domestic demand is shown in Table 7.6. As discussed in reference to public-system demand estimates under scenarios of climate change, Table 7.6 compares 2035N and 2060N demands under the CT scenario—results computed for 1981-2010 normal climate for a single year—with, respectively, 2035 Period and 2060 Period results under the condition of climate change. The 2035 Period and 2060 Period estimates for conditions of climate change are based on CT scenario assumptions, except for the assumptions of temperature and precipitation. Assumed temperature and precipitation during the 2035 Period and 2060 Period are 30-year averages based on modeled temperature and precipitation for the periods 2021 to 2050 and 2046 to 2075, respectively. Thus, the percentage difference shown between the 2035N and 2035 Period results and between the 2060N and 2060 Period results should be regarded as an average difference that applies, in each case, to a 30-year period. Under the Hot/Dry climate scenario, CT scenario self-supplied domestic demand during the 2060 Period is 0.83 Mgd (8.8 percent) greater than 2060 CT demand under 1981-2010 normal weather conditions (Table 7.6). Under the Warm/Wet climate scenario, the 2060 Period demand is 0.58 Mgd (6.1 percent) greater than 2060 CT demand under 1981-2010 normal weather conditions.

| Country                            | 2010N* | 2035N* | 2035    | Period (20 | 21-2050) | 2060N* | 2060 Period (2046-2075) |         |          |  |
|------------------------------------|--------|--------|---------|------------|----------|--------|-------------------------|---------|----------|--|
| County                             | 2010IN | (CT)   | Hot/Dry | Central    | Warm/Wet | (CT)   | Hot/Dry                 | Central | Warm/Wet |  |
| Boone                              | 1.51   | 1.50   | 1.54    | 1.52       | 1.51     | 1.28   | 1.37                    | 1.34    | 1.34     |  |
| Bureau                             | 0.76   | 0.62   | 0.65    | 0.65       | 0.64     | 0.57   | 0.63                    | 0.62    | 0.62     |  |
| Carroll                            | 0.47   | 0.37   | 0.39    | 0.38       | 0.38     | 0.36   | 0.39                    | 0.39    | 0.38     |  |
| Henry                              | 0.79   | 0.56   | 0.59    | 0.59       | 0.58     | 0.51   | 0.56                    | 0.55    | 0.55     |  |
| Jo Daviess                         | 0.40   | 0.35   | 0.37    | 0.37       | 0.36     | 0.34   | 0.38                    | 0.37    | 0.37     |  |
| Lee                                | 0.38   | 0.32   | 0.33    | 0.33       | 0.33     | 0.26   | 0.28                    | 0.28    | 0.28     |  |
| Ogle                               | 1.60   | 1.57   | 1.65    | 1.63       | 1.62     | 1.55   | 1.69                    | 1.67    | 1.65     |  |
| Rock Island                        | 0.93   | 0.96   | 0.98    | 0.98       | 0.97     | 1.22   | 1.31                    | 1.28    | 1.27     |  |
| Stephenson                         | 1.15   | 0.74   | 0.78    | 0.77       | 0.76     | 0.64   | 0.70                    | 0.69    | 0.68     |  |
| Whiteside                          | 1.46   | 1.16   | 1.19    | 1.18       | 1.18     | 1.11   | 1.20                    | 1.18    | 1.17     |  |
| Winnebago                          | 1.51   | 1.55   | 1.63    | 1.61       | 1.60     | 1.58   | 1.73                    | 1.70    | 1.68     |  |
| REGIONAL TOTAL                     | 10.97  | 9.69   | 10.09   | 10.00      | 9.94     | 9.41   | 10.24                   | 10.06   | 9.99     |  |
| DIFFERENCE FROM 2035N (REGION) (%) |        |        | 4.2%    | 3.2%       | 2.6%     |        |                         |         |          |  |
| DIFFERENCE FROM 2060N (REGION) (%) |        |        |         |            |          |        | 8.8%                    | 6.9%    | 6.1%     |  |

Table 7.6 Estimated Self-Supplied Domestic Demand under Climate Change Scenarios Discussed in Text (Mgd)

\*N: demand under normal weather conditions based on the 1981-2010 climate normal

## 7.2.3 Demand for Self-Supplied Water for Irrigation of Cropland

We estimated cropland irrigation demand based on the estimated precipitation deficit during the irrigation season, which is, in turn, computed from daily and weekly weather data. We also accounted for the effects of increasing air temperature under future climate scenarios. Table 7.7 shows the normal values of average temperature and total precipitation during the four-month irrigation season for counties in the study area; these are shown for both the 1971-2000 and 1981-2010 30-year periods used to compute climate normals. Table 7.7 also shows precipitation deficits computed for the 1981-2010 period using the 1981-2010 precipitation normals.

Because the climate models that are the basis for our estimates of future temperature and precipitation change cannot reliably forecast daily weather conditions, in order for us to estimate irrigation demand under conditions of climate change, it was first necessary to indirectly estimate the precipitation deficit under climate change scenarios using the methodology described in the following two paragraphs.

The 1981-2010 precipitation deficits and 1981-2010 precipitation normals from Table 7.7, together with analogous data for the two other study regions for which the ISWS is presently estimating future water demand (Table 7.8, Figure 1.1), are plotted (Figure 7.3, Figure 7.4), and a line is interpolated through the plotted data. The plots of these data differ in that Figure 7.3 displays all of the data points detailed in Table 7.7 and Table 7.8, and Figure 7.4 omits data points representing two outliers (Boone and Putnam Counties). The lines interpolated through these data represent a relationship useful for estimating the precipitation deficit during the fourmonth irrigation season on the basis of the four-month total precipitation.

Of the alternative linear relationships shown in Figure 7.3 and Figure 7.4, we used the one shown in Figure 7.4 on the basis that this relationship is more representative of conditions in Illinois since it omits the Boone and Putnam County outliers. The equation is:

$$d_t = 17.954 - 0.52 \cdot P_n \tag{7.1}$$

where:

 $d_t$  = precipitation deficit during the four-month irrigation season; and  $P_n$  = normal precipitation during the irrigation season, increased or decreased according to the climate scenarios.

In order to estimate future water demand for irrigation in addition to developing and employing a methodology for assuming future precipitation deficits under a changed climate, we had to correct for the departure of future temperature normals from the 1981-2010 normals. The effect of air temperature on historical water demands in 2010 was omitted in Chapter 6 because they were assumed to be small and were not accounted for by the check-book method. For changes in the future normal values of temperature, our correction was based on the analysis of potential evapotranspiration and monthly temperature by Dr. Ken Kunkel and his staff at ISWS. Dr. Kunkel is presently affiliated with the Cooperative Institute for Climate and Satellites, Asheville, North Carolina. Kunkel approximated the correct total irrigation application depth using an adjustment of 0.1 inches/°F such that:

$$d_t^c = d_t + 0.1 \cdot (T_a - T_n) \tag{7.2}$$

where:

 $d_t^c$  = the corrected total application depth during the four-month irrigation season;  $T_a$  = average monthly air temperature during the May through August growing season; and  $T_n$  = average of normal monthly temperatures during the May through August growing season.

To develop this relationship, Kunkel analyzed soil moisture model data to examine yearto-year variability in the ratio of the actual to potential evapotranspiration (ET/PET) for each month of the growing season. *Potential evapotranspiration* is the amount of evapotranspiration that would occur if a sufficient water source were available. *Actual evapotranspiration* is the amount of water that is actually removed from a surface through evapotranspiration. In July and August, there are years when the model-estimated ratio was 1.0, indicating that the use of PET as the actual ET is appropriate. In June, the highest ET/PET values are in the range of 0.90 to 0.95, and in May, the highest ET/PET values are near or slightly above 0.70. The average value ET/PET in May is 0.50. Assuming that a period of dry weather in May would concern a farmer enough to irrigate, irrigation would ideally be conducted to achieve a maximum ET/PET of 0.70.

Because using a weighted coefficient for the ET/PET ratio would require monthly data, and seasonally aggregated data are used in this study, no downward adjustment of actual ET is introduced. Thus we assumed an ET/PET value of 1.0 for all months of the irrigation season. This assumption contributes to a slight overestimation of the effects of increased temperature on irrigation water demand.

Our estimates of the effects of climate change on water demand for cropland irrigation of the temperature and precipitation changes shown in Table 7.4 are shown in Table 7.9. Table 7.9 compares 2035N and 2060N demands under the CT scenario—results computed for 1981-2010 normal climate for a single year—with, respectively, 2035 Period and 2060 Period results under the condition of climate change. The 2035 Period and 2060 Period estimates for conditions of climate change are based on CT scenario assumptions, except for the assumptions of temperature and precipitation. Note that the assumed temperature and precipitation during the 2035 Period and 2060 Period are 30-year averages based on modeled temperature and precipitation for the periods 2021 to 2050 and 2046 to 2075, respectively. Thus, the percentage difference shown between the 2035N and 2035 Period results, and between the 2060N and 2060 Period results, should be regarded as an average difference that applies, in each case, to a 30-year period. During the 2060 Period, under the Hot/Dry climate scenario, an average temperature increase of 6.59°F and a decrease in precipitation of 0.7 percent, would together result in a 11.47 Mgd increase in irrigation demand (a 10.1 percent increase) relative to 2060 demand under the CT scenario under normal 1981-2010 climate. Under the Warm/Wet climate scenario, the estimated 2060 Period irrigation demand is 3.64 Mgd less than the 2060 CT demand under 1981-2010 normal climate, a 3.2 percent decrease. Under the Central climate scenario, an estimated 2060 Period irrigation demand is 2.65 Mgd more than 2060 CT demand under 1981-2010 normal climate, a 2.3 percent increase.

| County           | Mean Monthly<br>(May-Aug | Temperature<br>ust) (°F) | Total Prec<br>(May-Augus | Precipitation<br>Deficit<br>(inches) |           |
|------------------|--------------------------|--------------------------|--------------------------|--------------------------------------|-----------|
|                  | 1971-2000                | 1981-2010                | 1971-2000                | 1981-2010                            | 1981-2010 |
| Boone            | 70.78                    | 69.73                    | 17.40                    | 17.44                                | -7.84     |
| Bureau           | 70.30                    | 69.73                    | 16.55                    | 17.72                                | -8.39     |
| Carroll          | 67.90                    | 71.70                    | 17.48                    | 18.42                                | -8.25     |
| Henry            | 70.60                    | 69.70                    | 16.63                    | 16.72                                | -9.19     |
| Jo Daviess       | 66.80                    | 69.93                    | 16.57                    | 17.10                                | -8.78     |
| Lee              | 66.70                    | 69.70                    | 15.99                    | 17.15                                | -9.22     |
| Ogle             | 67.45                    | 69.85                    | 15.47                    | 15.76                                | -9.68     |
| Rock Island      | 70.55                    | 69.73                    | 17.32                    | 17.62                                | -8.67     |
| Stephenson       | 66.80                    | 69.73                    | 16.10                    | 16.83                                | -9.17     |
| Whiteside        | 69.23                    | 71.70                    | 17.38                    | 17.67                                | -9.07     |
| Winnebago        | 68.90                    | 69.70                    | 17.14                    | 17.21                                | -9.39     |
| REGIONAL AVERAGE | 68.73                    | 70.11                    | 16.73                    | 17.24                                | -8.88     |

Table 7.7 Estimated May-August Normal Average Temperature, Total Precipitation, and Precipitation Deficit for Weather Stations Used in This Study

| County             | Mean Monthly<br>(May-Aug | r Temperature<br>gust) (°F) | Total Pre<br>(May-Augu | Precipitation<br>Deficit<br>(inches) |           |  |  |  |  |  |  |  |
|--------------------|--------------------------|-----------------------------|------------------------|--------------------------------------|-----------|--|--|--|--|--|--|--|
|                    | 1971-2000                | 1981-2010                   | 1971-2000              | 1981-2010                            | 1981-2010 |  |  |  |  |  |  |  |
| Kankakee Subregion |                          |                             |                        |                                      |           |  |  |  |  |  |  |  |
| Ford               | 69.18                    | 68.90                       | 14.86                  | 16.00                                | -9.72     |  |  |  |  |  |  |  |
| Iroquois           | 69.28                    | 69.10                       | 16.53                  | 16.35                                | -9.03     |  |  |  |  |  |  |  |
| Kankakee           | 69.50                    | 69.93                       | 16.47                  | 16.91                                | -9.10     |  |  |  |  |  |  |  |
|                    | Mi                       | ddle Illinois Reg           | gion                   |                                      |           |  |  |  |  |  |  |  |
| LaSalle            | 69.65                    | 69.73                       | 15.55                  | 15.83                                | -9.91     |  |  |  |  |  |  |  |
| Livingston         | 69.70                    | 69.73                       | 15.57                  | 15.32                                | -10.05    |  |  |  |  |  |  |  |
| Marshall           | 71.20                    | 71.70                       | 15.55                  | 15.55                                | -9.88     |  |  |  |  |  |  |  |
| Peoria             | 68.35                    | 69.70                       | 16.13                  | 16.79                                | -9.48     |  |  |  |  |  |  |  |
| Putnam             | 70.15                    | 69.93                       | 15.92                  | 16.00                                | -8.39     |  |  |  |  |  |  |  |
| Stark              | 68.35                    | 69.70                       | 16.13                  | 16.79                                | -9.48     |  |  |  |  |  |  |  |
| Woodford           | 69.55                    | 69.85                       | 15.08                  | 15.25                                | -9.82     |  |  |  |  |  |  |  |

Table 7.8 Estimated May-August Normal Average Temperature, Total Precipitation, and Precipitation Deficit for Weather Stations Used in the Study (Other Study Regions as Shown in Figure 1.1)



Figure 7.3 Precipitation deficit versus normal May-August precipitation for three study regions shown in Figure 1.1. The plot includes one data point for each county in the three regions.



Figure 7.4 Precipitation deficit versus normal May-August precipitation for three study regions shown in Figure 1.1. The plot includes one data point for each county in the three regions, excluding outliers (Boone and Putnam Counties).

| Country                            | 2010NI* | 2035N* | 2035    | Period (20 | 21-2050) | 2060N* | 2060    | Period (204 | 46-2075) |
|------------------------------------|---------|--------|---------|------------|----------|--------|---------|-------------|----------|
| County                             | 2010IN  | (CT)   | Hot/Dry | Central    | Warm/Wet | (CT)   | Hot/Dry | Central     | Warm/Wet |
| Boone                              | 0.80    | 1.03   | 1.22    | 1.17       | 1.13     | 1.18   | 1.45    | 1.34        | 1.26     |
| Bureau                             | 6.50    | 8.31   | 9.62    | 9.30       | 9.02     | 9.53   | 11.43   | 10.66       | 10.11    |
| Carroll                            | 6.70    | 8.57   | 9.59    | 9.24       | 8.92     | 9.83   | 11.41   | 10.57       | 9.96     |
| Henry                              | 5.44    | 6.95   | 7.32    | 7.07       | 6.86     | 7.98   | 8.70    | 8.11        | 7.69     |
| Jo Daviess                         | 0.07    | 0.09   | 0.10    | 0.10       | 0.10     | 0.11   | 0.12    | 0.12        | 0.11     |
| Lee                                | 16.14   | 20.65  | 22.40   | 21.70      | 21.08    | 23.68  | 26.59   | 24.90       | 23.70    |
| Ogle                               | 0.84    | 1.07   | 1.14    | 1.10       | 1.07     | 1.23   | 1.35    | 1.27        | 1.21     |
| Rock Island                        | 2.33    | 2.99   | 3.21    | 3.09       | 2.99     | 3.42   | 3.82    | 3.54        | 3.34     |
| Stephenson                         | 0.03    | 0.04   | 0.05    | 0.05       | 0.05     | 0.05   | 0.06    | 0.05        | 0.05     |
| Whiteside                          | 38.59   | 49.37  | 50.54   | 48.70      | 47.08    | 56.63  | 60.15   | 55.75       | 52.59    |
| Winnebago                          | 0.30    | 0.39   | 0.39    | 0.37       | 0.36     | 0.44   | 0.46    | 0.43        | 0.40     |
| REGIONAL TOTAL                     | 77.74   | 99.45  | 105.56  | 101.90     | 98.65    | 114.07 | 125.54  | 116.72      | 110.43   |
| DIFFERENCE FROM 2035N (REGION) (%) |         |        | 6.1     | 2.5        | -0.8     |        |         |             |          |
| DIFFERENCE FROM 2060N (REGION) (%) |         |        |         |            |          |        | 10.1    | 2.3         | -3.2     |

Table 7.9 Estimated Self-Supplied Irrigation Demand under Climate Change Scenarios Discussed in Text (Mgd)

\*N: demand under normal weather conditions based on 1981-2010 climate normal

## 7.3 Estimated Effects of Drought

In addition to the long-term, hypothetical phenomenon of climate change, water demand will, with certainty, be affected by periodic droughts. Although the severity and duration of future droughts is not known, their impact on water demand can be estimated from historical climate records. The most severe historical droughts in Illinois took place in the 1930s and 1950s. These were multiyear droughts associated with growing-season precipitation deficits during the driest year of approximately 40 percent below normal. For this analysis, we assumed that during future droughts, the 1981-2010 growing-season precipitation would be reduced by 40 percent to be consistent with a worst-case historical drought.

## 7.3.1 Water Demand by Public Water Systems

Table 7.10 shows the effect of severe drought on average-day public system water demand. These results were computed using the same assumptions as for the CT scenario, but precipitation has been reduced to reflect a summer-season precipitation deficit that is 40 percent of 1981-2010 normal precipitation; this reduction is consistent with summer season precipitation deficits during most severe recorded droughts in Illinois. The results in Table 7.10 indicate that during a drought year consistent with a worst-case historical drought, public system demand increases by 7.2 percent in 2035 and 8.7 percent in 2060 relative to the CT scenario under constant 1981-2010 average climate for those years. This percentage increase is equivalent to an additional 5.9 Mgd in 2035 and an additional 7.1 Mgd in 2060.

| County                             | 2010N* | 2035N*<br>(CT) | 2035<br>Drought | 2060N*<br>(CT) | 2060<br>Drought |
|------------------------------------|--------|----------------|-----------------|----------------|-----------------|
| Boone                              | 3.69   | 4.97           | 5.37            | 5.90           | 6.47            |
| Bureau                             | 2.94   | 2.94           | 3.10            | 2.81           | 3.01            |
| Carroll                            | 1.11   | 1.08           | 1.18            | 1.02           | 1.13            |
| Henry                              | 4.10   | 4.08           | 4.41            | 3.88           | 4.25            |
| Jo Daviess                         | 1.98   | 1.94           | 2.10            | 1.83           | 2.01            |
| Lee                                | 4.01   | 4.04           | 4.39            | 3.91           | 4.30            |
| Ogle                               | 5.05   | 5.26           | 5.71            | 5.32           | 5.86            |
| Rock Island                        | 18.17  | 18.20          | 19.70           | 17.48          | 19.17           |
| Stephenson                         | 3.65   | 3.90           | 4.12            | 3.77           | 4.05            |
| Whiteside                          | 3.90   | 3.85           | 4.13            | 3.65           | 3.97            |
| Winnebago                          | 30.92  | 31.78          | 33.76           | 31.07          | 33.47           |
| DIFFERENCE FROM 2035N (REGION) (%) |        |                | 7.2             |                |                 |
| DIFFERENCE FROM 2060N (REGION) (%) |        |                |                 |                | 8.7             |

Table 7.10 Estimated Public System Demand under Drought Scenario (Mgd)

\*N: demand under normal weather conditions based on 1981-2010 climate normal
#### 7.3.2 Demand for Self-Supplied Domestic Water

Water demand for self-supplied domestic uses is also affected by periodic droughts. For this analysis, we assumed that total summer-season precipitation during future droughts will be reduced by 40 percent from the 1981-2010 normal. This reduction is consistent with a worst-case historical drought in Illinois.

Based on our analysis, under drought conditions, self-supplied domestic demand in each county increases by a percentage that is comparable to the increase in public system demand under drought conditions (Table 7.11). Regionally, self-supplied domestic demand in 2035 is about 7.5 percent greater under drought conditions than in 2035 under CT-scenario assumptions with normal 1981-2010 conditions. Self-supplied domestic demand in 2060 is 9.0 percent greater in 2060 than in 2060 under CT-scenario assumptions with normal 1981-2010 conditions. This percentage increase is equivalent to an additional 0.72 Mgd in 2035 and an additional 0.85 Mgd in 2060.

| County                             | 2010N* | 2035N*<br>(CT) | 2035<br>Drought | 2060N*<br>(CT) | 2060<br>Drought |
|------------------------------------|--------|----------------|-----------------|----------------|-----------------|
| Boone                              | 1.51   | 1.50           | 1.62            | 1.28           | 1.40            |
| Bureau                             | 0.76   | 0.62           | 0.65            | 0.57           | 0.61            |
| Carroll                            | 0.47   | 0.37           | 0.40            | 0.36           | 0.40            |
| Henry                              | 0.79   | 0.56           | 0.61            | 0.51           | 0.56            |
| Jo Daviess                         | 0.40   | 0.35           | 0.38            | 0.34           | 0.38            |
| Lee                                | 0.38   | 0.32           | 0.34            | 0.26           | 0.29            |
| Ogle                               | 1.60   | 1.57           | 1.70            | 1.55           | 1.70            |
| Rock Island                        | 0.93   | 0.96           | 1.04            | 1.22           | 1.33            |
| Stephenson                         | 1.15   | 0.74           | 0.79            | 0.64           | 0.69            |
| Whiteside                          | 1.46   | 1.16           | 1.24            | 1.11           | 1.21            |
| Winnebago                          | 1.51   | 1.55           | 1.65            | 1.58           | 1.70            |
| REGIONAL TOTAL                     | 10.97  | 9.69           | 10.41           | 9.41           | 10.26           |
| DIFFERENCE FROM 2035N (REGION) (%) |        |                | 7.5             |                |                 |
| DIFFERENCE FROM 2060N (REGION) (%) |        |                |                 |                | 9.0             |

Table 7.11 Estimated Self-Supplied Domestic Demand under Drought Scenario (Mgd)

\*N: demand under normal weather conditions based on 1981-2010 climate normal

### 7.3.3 Demand for Self-Supplied Water for Irrigation of Cropland

Irrigation demands are very sensitive to drought. Our analysis assumed a future drought comparable to a worst-case historical drought in which growing-season precipitation is reduced by 40 percent. Such conditions would substantially increase the amount of water applied for crop and turf irrigation. Table 7.12 shows the consequences for average-day water demand for cropland irrigation during such a drought. Self-supplied cropland irrigation demand increases by approximately 31.1 percent in 2035 above the 2035 demand estimated for CT-scenario conditions, which include 1981-2010 normal precipitation. Demand in 2060 under drought conditions is about 34.0 percent greater than in 2060 under CT-scenario assumptions. These percentage increases are equivalent to an additional 35.8 Mgd in 2035 and an addiitonal 50.2 Mgd in 2060.

| County                             | 2010N* | 2035N*<br>(CT) | 2035<br>Drought | 2060N*<br>(CT) | 2060<br>Drought |
|------------------------------------|--------|----------------|-----------------|----------------|-----------------|
| Boone                              | 0.80   | 1.19           | 1.78            | 1.52           | 2.34            |
| Bureau                             | 6.50   | 9.63           | 13.21           | 12.33          | 17.29           |
| Carroll                            | 6.70   | 9.93           | 14.00           | 12.71          | 18.32           |
| Henry                              | 5.44   | 8.06           | 10.48           | 10.32          | 13.71           |
| Jo Daviess                         | 0.07   | 0.11           | 0.14            | 0.14           | 0.19            |
| Lee                                | 16.14  | 23.93          | 31.32           | 30.63          | 40.97           |
| Ogle                               | 0.84   | 1.24           | 1.48            | 1.59           | 1.94            |
| Rock Island                        | 2.33   | 3.46           | 4.77            | 4.43           | 6.25            |
| Stephenson                         | 0.03   | 0.05           | 0.06            | 0.07           | 0.08            |
| Whiteside                          | 38.59  | 57.22          | 73.25           | 73.25          | 95.90           |
| Winnebago                          | 0.30   | 0.45           | 0.56            | 0.57           | 0.73            |
| DIFFERENCE FROM 2035N (REGION) (%) |        |                | 31.1            |                |                 |
| DIFFERENCE FROM 2060N (REGION) (%) |        |                |                 |                | 34.0            |

Table 7.12 Estimated Irrigation Demand under Drought Scenario (Mgd)

\*N: demand under normal weather conditions based on 1981-2010 climate normal

#### 8 Summary

In this section we briefly summarize the demand estimates in four tables. Table 8.1, Table 8.2, and Table 8.3 show estimates by sector for each county and for the Rock River region, estimates for the CT, LRI, and MRI scenarios. Table 8.4 shows total demand, by county and region, for each scenario.

Note that we include both reported and normalized 2010 demand in Table 8.1, Table 8.2, and Table 8.3. Climate-normalized totals are estimated only for the public supply and self-supplied ILE sectors; however, for all other demand sectors, the reported and normalized totals for 2010 are equivalent. The scenario totals in Table 8.4 reflect the same mix of reported and climate-normalized sector totals included in Table 8.1, Table 8.2, and Table 8.3.

As discussed in Section 4.5 and Section 5.3.2, the sector totals for the self-supplied thermoelectric power generation and self-supplied IC sectors are subject to revision. Namely, we provided for the simulation of new power plants and water-intensive industrial facilities and retirement of existing facilities at the discretion of reviewers of this report.

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025      | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|
|                                                                 |                                 |                               |       |       | Boone Co  | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 3.73                            | 3.69                          | 4.09  | 4.34  | 4.55      | 4.77  | 4.96  | 5.17  | 5.35  | 5.54  | 5.73  | 5.90  |
| Self-Supplied<br>Domestic                                       | 1.51                            | 1.51                          | 1.57  | 1.64  | 1.59      | 1.54  | 1.50  | 1.45  | 1.41  | 1.36  | 1.32  | 1.28  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.49                            | 0.49                          | 0.54  | 0.57  | 0.59      | 0.61  | 0.64  | 0.66  | 0.68  | 0.70  | 0.72  | 0.74  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.45                            | 1.02                          | 1.07  | 1.13  | 1.19      | 1.25  | 1.29  | 1.33  | 1.37  | 1.41  | 1.45  | 1.49  |
| Boone County<br>Total                                           | 6.17                            | 6.71                          | 7.27  | 7.68  | 7.92      | 8.17  | 8.39  | 8.61  | 8.81  | 9.01  | 9.22  | 9.41  |
|                                                                 |                                 |                               |       |       | Bureau Co | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 2.99                            | 2.94                          | 3.04  | 3.01  | 2.99      | 2.96  | 2.93  | 2.91  | 2.89  | 2.86  | 2.84  | 2.81  |
| Self-Supplied<br>Domestic                                       | 0.76                            | 0.76                          | 0.70  | 0.64  | 0.59      | 0.63  | 0.62  | 0.61  | 0.60  | 0.59  | 0.58  | 0.57  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.09                            | 2.09                          | 2.14  | 2.19  | 2.22      | 2.25  | 2.29  | 2.32  | 2.35  | 2.38  | 2.40  | 2.43  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 6.29                            | 9.65                          | 10.17 | 10.72 | 11.30     | 11.92 | 12.34 | 12.78 | 13.22 | 13.70 | 14.20 | 14.71 |
| Bureau County<br>Total                                          | 12.13                           | 15.44                         | 16.05 | 16.56 | 17.10     | 17.76 | 18.18 | 18.62 | 19.06 | 19.53 | 20.02 | 20.52 |

# Table 8.1 Summary of Demand Estimates, CT Scenario (Mgd)

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025       | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|------------|-------|-------|-------|-------|-------|-------|-------|
|                                                                 |                                 |                               |       |       | Carroll Co | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 1.11                            | 1.11                          | 1.14  | 1.13  | 1.10       | 1.10  | 1.08  | 1.07  | 1.06  | 1.04  | 1.03  | 1.02  |
| Self-Supplied<br>Domestic                                       | 0.47                            | 0.47                          | 0.42  | 0.37  | 0.32       | 0.37  | 0.37  | 0.37  | 0.36  | 0.36  | 0.36  | 0.36  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0          | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.20                            | 2.20                          | 2.34  | 2.39  | 2.42       | 2.46  | 2.50  | 2.54  | 2.57  | 2.59  | 2.62  | 2.65  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 3.85                            | 8.28                          | 8.72  | 9.20  | 9.70       | 10.23 | 10.54 | 10.88 | 11.22 | 11.58 | 11.94 | 12.32 |
| Carroll County<br>Total                                         | 7.63                            | 12.06                         | 12.62 | 13.09 | 13.54      | 14.16 | 14.49 | 14.86 | 15.21 | 15.57 | 15.95 | 16.35 |
|                                                                 |                                 |                               |       |       | Henry Co   | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 4.12                            | 4.10                          | 4.25  | 4.20  | 4.16       | 4.11  | 4.06  | 4.03  | 4.00  | 3.97  | 3.91  | 3.88  |
| Self-Supplied<br>Domestic                                       | 0.79                            | 0.79                          | 0.68  | 0.59  | 0.51       | 0.57  | 0.56  | 0.55  | 0.54  | 0.53  | 0.52  | 0.51  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0          | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.03                            | 1.03                          | 1.10  | 1.13  | 1.15       | 1.17  | 1.19  | 1.21  | 1.23  | 1.24  | 1.26  | 1.27  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 3.82                            | 6.90                          | 7.28  | 7.68  | 8.11       | 8.56  | 8.83  | 9.12  | 9.42  | 9.74  | 10.06 | 10.40 |
| Henry County<br>Total                                           | 9.76                            | 12.82                         | 13.31 | 13.60 | 13.93      | 14.41 | 14.64 | 14.91 | 15.19 | 15.48 | 15.75 | 16.06 |
|                                                                 | Jo Daviess County               |                               |       |       |            |       |       |       |       |       |       |       |
| Public Supply                                                   | 1.98                            | 1.98                          | 2.05  | 2.01  | 1.99       | 1.96  | 1.94  | 1.92  | 1.89  | 1.88  | 1.84  | 1.83  |
| Self-Supplied<br>Domestic                                       | 0.40                            | 0.40                          | 0.38  | 0.35  | 0.33       | 0.35  | 0.35  | 0.35  | 0.35  | 0.35  | 0.34  | 0.34  |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025    | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.91                            | 1.91                          | 2.03  | 2.07  | 2.10    | 2.14  | 2.17  | 2.20  | 2.23  | 2.25  | 2.28  | 2.30  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.01                            | 1.24                          | 1.29  | 1.33  | 1.37    | 1.43  | 1.47  | 1.52  | 1.57  | 1.62  | 1.68  | 1.73  |
| Jo Daviess County<br>Total                                      | 5.29                            | 5.53                          | 5.75  | 5.76  | 5.79    | 5.88  | 5.93  | 5.99  | 6.04  | 6.10  | 6.14  | 6.20  |
|                                                                 |                                 |                               |       |       | Lee Cou | inty  |       |       |       |       |       |       |
| Public Supply                                                   | 4.09                            | 4.01                          | 4.16  | 4.12  | 4.10    | 4.06  | 4.04  | 4.01  | 3.99  | 3.97  | 3.93  | 3.91  |
| Self-Supplied<br>Domestic                                       | 0.38                            | 0.38                          | 0.36  | 0.35  | 0.34    | 0.33  | 0.32  | 0.30  | 0.29  | 0.28  | 0.27  | 0.26  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.09                            | 0.09                          | 0.10  | 0.10  | 0.10    | 0.10  | 0.10  | 0.10  | 0.10  | 0.11  | 0.11  | 0.11  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 10.73                           | 16.69                         | 17.63 | 18.61 | 19.65   | 20.76 | 21.35 | 21.95 | 22.58 | 23.23 | 23.89 | 24.57 |
| Lee County Total                                                | 15.29                           | 21.17                         | 22.25 | 23.18 | 24.19   | 25.25 | 25.81 | 26.36 | 26.96 | 27.59 | 28.20 | 28.85 |
|                                                                 |                                 |                               |       |       | Ogle Co | unty  |       |       |       |       |       |       |
| Public Supply                                                   | 5.12                            | 5.05                          | 5.29  | 5.23  | 5.22    | 5.25  | 5.27  | 5.28  | 5.28  | 5.30  | 5.31  | 5.33  |
| Self-Supplied<br>Domestic                                       | 1.60                            | 1.60                          | 1.58  | 1.58  | 1.58    | 1.57  | 1.57  | 1.56  | 1.56  | 1.55  | 1.55  | 1.55  |
| Thermoelectric<br>Power Generation                              | 55.58                           | 55.58                         | 55.58 | 55.58 | 55.58   | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.68                            | 2.68                          | 2.84  | 2.90  | 2.95    | 3.00  | 3.04  | 3.09  | 3.12  | 3.16  | 3.19  | 3.23  |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015     | 2020     | 2025        | 2030     | 2035     | 2040     | 2045     | 2050     | 2055     | 2060     |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.99                            | 2.23                          | 2.34     | 2.46     | 2.60        | 2.72     | 2.83     | 2.95     | 3.07     | 3.20     | 3.33     | 3.47     |
| Ogle County Total                                               | 66.97                           | 67.14                         | 67.63    | 67.75    | 67.92       | 68.12    | 68.28    | 68.46    | 68.61    | 68.79    | 68.96    | 69.15    |
|                                                                 |                                 |                               |          | F        | Rock Island | County   |          |          |          |          |          |          |
| Public Supply                                                   | 18.06                           | 18.17                         | 18.78    | 18.64    | 18.49       | 18.34    | 18.19    | 18.05    | 17.90    | 17.76    | 17.61    | 17.48    |
| Self-Supplied<br>Domestic                                       | 0.93                            | 0.93                          | 0.75     | 0.80     | 0.85        | 0.91     | 0.96     | 1.01     | 1.06     | 1.11     | 1.17     | 1.22     |
| Thermoelectric<br>Power Generation                              | 1,104.89                        | 1,104.89                      | 1,104.89 | 1,104.89 | 1,104.89    | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 14.19                           | 14.19                         | 15.12    | 15.52    | 15.80       | 16.09    | 16.39    | 16.69    | 16.90    | 17.13    | 17.35    | 17.58    |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.99                            | 2.82                          | 2.97     | 3.12     | 3.29        | 3.46     | 3.57     | 3.67     | 3.78     | 3.88     | 4.00     | 4.11     |
| Rock Island<br>County Total                                     | 1,139.07                        | 1,141.01                      | 1,142.51 | 1,142.97 | 1,143.32    | 1,143.69 | 1,144.00 | 1,144.31 | 1,144.54 | 1,144.78 | 1,145.02 | 1,145.28 |
|                                                                 |                                 |                               |          | 5        | Stephenson  | County   |          |          |          |          |          |          |
| Public Supply                                                   | 3.64                            | 3.65                          | 4.00     | 3.98     | 3.94        | 3.92     | 3.90     | 3.87     | 3.85     | 3.82     | 3.79     | 3.77     |
| Self-Supplied<br>Domestic                                       | 1.15                            | 1.15                          | 0.88     | 0.81     | 0.73        | 0.77     | 0.74     | 0.72     | 0.70     | 0.68     | 0.66     | 0.64     |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0        | 0        | 0           | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.12                            | 2.12                          | 2.32     | 2.45     | 2.55        | 2.65     | 2.75     | 2.86     | 2.94     | 3.02     | 3.10     | 3.19     |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.40                            | 1.49                          | 1.56     | 1.62     | 1.69        | 1.76     | 1.83     | 1.91     | 1.99     | 2.08     | 2.17     | 2.26     |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025        | 2030   | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|-------------|--------|-------|-------|-------|-------|-------|-------|
| Stephenson County<br>Total                                      | 8.31                            | 8.41                          | 8.76  | 8.86  | 8.91        | 9.10   | 9.22  | 9.36  | 9.48  | 9.60  | 9.72  | 9.86  |
|                                                                 |                                 |                               |       |       | Whiteside ( | County |       |       |       |       |       |       |
| Public Supply                                                   | 3.86                            | 3.90                          | 4.02  | 3.98  | 3.94        | 3.89   | 3.85  | 3.80  | 3.77  | 3.73  | 3.69  | 3.65  |
| Self-Supplied<br>Domestic                                       | 1.46                            | 1.46                          | 1.31  | 1.19  | 1.07        | 1.17   | 1.16  | 1.15  | 1.14  | 1.13  | 1.12  | 1.11  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0           | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.17                            | 0.17                          | 0.18  | 0.18  | 0.19        | 0.19   | 0.19  | 0.20  | 0.20  | 0.20  | 0.20  | 0.21  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 21.16                           | 40.02                         | 42.25 | 44.62 | 47.12       | 49.76  | 51.17 | 52.64 | 54.14 | 55.69 | 57.29 | 58.93 |
| Whiteside County<br>Total                                       | 26.65                           | 45.55                         | 47.76 | 49.97 | 52.32       | 55.01  | 56.37 | 57.79 | 59.25 | 60.75 | 62.30 | 63.90 |
|                                                                 |                                 |                               |       | v     | Winnebago   | County |       |       |       |       |       |       |
| Public Supply                                                   | 30.80                           | 30.92                         | 32.16 | 32.21 | 32.23       | 31.92  | 31.78 | 31.64 | 31.49 | 31.36 | 31.22 | 31.07 |
| Self-Supplied<br>Domestic                                       | 1.51                            | 1.51                          | 1.52  | 1.53  | 1.55        | 1.54   | 1.55  | 1.55  | 1.56  | 1.57  | 1.57  | 1.58  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0           | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.47                            | 1.47                          | 1.61  | 1.69  | 1.76        | 1.83   | 1.90  | 1.97  | 2.03  | 2.08  | 2.14  | 2.20  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.60                            | 0.85                          | 0.89  | 0.93  | 0.97        | 1.00   | 1.03  | 1.06  | 1.09  | 1.13  | 1.16  | 1.20  |
| Winnebago County<br>Total                                       | 34.38                           | 34.75                         | 36.18 | 36.36 | 36.51       | 36.29  | 36.26 | 36.22 | 36.17 | 36.14 | 36.09 | 36.05 |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015     | 2020     | 2025       | 2030     | 2035     | 2040     | 2045     | 2050     | 2055     | 2060     |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|
|                                                                 |                                 |                               |          | J        | Rock River | Region   |          |          |          |          |          |          |
| Public Supply                                                   | 79.48                           | 79.52                         | 82.98    | 82.85    | 82.71      | 82.28    | 82.00    | 81.75    | 81.47    | 81.23    | 80.90    | 80.65    |
| Self-Supplied<br>Domestic                                       | 10.97                           | 10.97                         | 10.15    | 9.87     | 9.46       | 9.74     | 9.69     | 9.63     | 9.58     | 9.52     | 9.47     | 9.41     |
| Thermoelectric<br>Power Generation                              | 1,160.47                        | 1,160.47                      | 1,160.47 | 1,160.47 | 1,160.47   | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 28.44                           | 28.44                         | 30.32    | 31.19    | 31.83      | 32.49    | 33.16    | 33.84    | 34.35    | 34.86    | 35.37    | 35.91    |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 52.29                           | 91.19                         | 96.17    | 101.42   | 106.99     | 112.85   | 116.25   | 119.81   | 123.45   | 127.26   | 131.17   | 135.19   |
| REGIONAL<br>TOTAL                                               | 1,331.64                        | 1,370.59                      | 1,380.09 | 1,385.80 | 1,391.46   | 1,397.83 | 1,401.57 | 1,405.50 | 1,409.32 | 1,413.34 | 1,417.38 | 1,421.63 |

<sup>1</sup>2010 (Reported): reported demand in 2010 <sup>2</sup>2010 (Normal): incudes weather normalized demand for public supply and self-supplied irrigation, livestock, and environmental (ILE) sectors in 2010

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025     | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|
|                                                                 |                                 |                               |       |       | Boone Co | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 3.73                            | 3.69                          | 3.86  | 4.00  | 4.12     | 4.22  | 4.31  | 4.39  | 4.47  | 4.53  | 4.59  | 4.63  |
| Self-Supplied<br>Domestic                                       | 1.51                            | 1.51                          | 1.55  | 1.60  | 1.53     | 1.47  | 1.41  | 1.35  | 1.29  | 1.24  | 1.18  | 1.13  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.49                            | 0.49                          | 0.51  | 0.53  | 0.54     | 0.55  | 0.56  | 0.57  | 0.58  | 0.59  | 0.60  | 0.61  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.45                            | 1.02                          | 1.05  | 1.08  | 1.11     | 1.13  | 1.17  | 1.19  | 1.22  | 1.25  | 1.28  | 1.32  |
| Boone County<br>Total                                           | 6.17                            | 6.71                          | 6.97  | 7.21  | 7.30     | 7.37  | 7.45  | 7.50  | 7.56  | 7.61  | 7.65  | 7.69  |
|                                                                 |                                 |                               |       |       | Bureau C | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 2.99                            | 2.94                          | 2.85  | 2.77  | 2.70     | 2.62  | 2.55  | 2.47  | 2.41  | 2.33  | 2.28  | 2.22  |
| Self-Supplied<br>Domestic                                       | 0.76                            | 0.76                          | 0.69  | 0.63  | 0.57     | 0.60  | 0.58  | 0.57  | 0.55  | 0.54  | 0.52  | 0.51  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.09                            | 2.09                          | 2.13  | 2.16  | 2.15     | 2.21  | 2.24  | 2.26  | 2.29  | 2.31  | 2.33  | 2.36  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 6.29                            | 9.65                          | 9.67  | 9.70  | 9.72     | 9.75  | 9.79  | 9.81  | 9.84  | 9.86  | 9.89  | 9.93  |
| Bureau County<br>Total                                          | 12.13                           | 15.44                         | 15.34 | 15.26 | 15.14    | 15.18 | 15.16 | 15.11 | 15.09 | 15.04 | 15.02 | 15.02 |

# Table 8.2 Summary of Demand Estimates, LRI Scenario (Mgd)

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025      | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|
|                                                                 |                                 |                               |       |       | Carroll C | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 1.11                            | 1.11                          | 1.07  | 1.04  | 1.01      | 0.97  | 0.95  | 0.91  | 0.89  | 0.86  | 0.83  | 0.81  |
| Self-Supplied<br>Domestic                                       | 0.47                            | 0.47                          | 0.41  | 0.36  | 0.31      | 0.35  | 0.35  | 0.34  | 0.33  | 0.33  | 0.32  | 0.32  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.20                            | 2.20                          | 2.24  | 2.27  | 2.23      | 2.38  | 2.43  | 2.48  | 2.53  | 2.57  | 2.62  | 2.66  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 3.85                            | 8.28                          | 8.37  | 8.46  | 8.56      | 8.65  | 8.75  | 8.83  | 8.93  | 9.02  | 9.11  | 9.21  |
| Carroll County<br>Total                                         | 7.63                            | 12.06                         | 12.09 | 12.13 | 12.11     | 12.35 | 12.48 | 12.56 | 12.68 | 12.78 | 12.88 | 13.00 |
|                                                                 |                                 |                               |       |       | Henry Co  | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 4.12                            | 4.10                          | 4.01  | 3.86  | 3.75      | 3.64  | 3.53  | 3.43  | 3.34  | 3.23  | 3.14  | 3.05  |
| Self-Supplied<br>Domestic                                       | 0.79                            | 0.79                          | 0.68  | 0.58  | 0.49      | 0.55  | 0.53  | 0.51  | 0.50  | 0.48  | 0.47  | 0.45  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.03                            | 1.03                          | 1.06  | 1.09  | 1.08      | 1.11  | 1.12  | 1.13  | 1.14  | 1.15  | 1.16  | 1.17  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 3.82                            | 6.90                          | 6.98  | 7.06  | 7.14      | 7.23  | 7.31  | 7.39  | 7.48  | 7.56  | 7.64  | 7.72  |
| Henry County<br>Total                                           | 9.76                            | 12.82                         | 12.73 | 12.59 | 12.46     | 12.53 | 12.49 | 12.46 | 12.46 | 12.42 | 12.41 | 12.39 |
|                                                                 | Jo Daviess County               |                               |       |       |           |       |       |       |       |       |       |       |
| Public Supply                                                   | 1.98                            | 1.98                          | 1.91  | 1.85  | 1.80      | 1.74  | 1.69  | 1.63  | 1.59  | 1.52  | 1.48  | 1.44  |
| Self-Supplied<br>Domestic                                       | 0.40                            | 0.40                          | 0.37  | 0.35  | 0.32      | 0.33  | 0.33  | 0.32  | 0.32  | 0.31  | 0.31  | 0.30  |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025    | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.91                            | 1.91                          | 1.94  | 1.97  | 1.98    | 2.04  | 2.08  | 2.11  | 2.14  | 2.17  | 2.20  | 2.23  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.01                            | 1.24                          | 1.26  | 1.26  | 1.27    | 1.28  | 1.28  | 1.29  | 1.30  | 1.30  | 1.31  | 1.31  |
| Jo Daviess County<br>Total                                      | 5.29                            | 5.53                          | 5.48  | 5.43  | 5.37    | 5.39  | 5.38  | 5.35  | 5.35  | 5.30  | 5.30  | 5.28  |
|                                                                 |                                 |                               |       |       | Lee Cou | inty  |       |       |       |       |       |       |
| Public Supply                                                   | 4.09                            | 4.01                          | 3.90  | 3.80  | 3.70    | 3.61  | 3.51  | 3.43  | 3.33  | 3.24  | 3.15  | 3.07  |
| Self-Supplied<br>Domestic                                       | 0.38                            | 0.38                          | 0.36  | 0.35  | 0.33    | 0.31  | 0.30  | 0.28  | 0.27  | 0.26  | 0.24  | 0.23  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.09                            | 0.09                          | 0.09  | 0.09  | 0.09    | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 10.73                           | 16.69                         | 16.82 | 16.95 | 17.09   | 17.22 | 17.36 | 17.48 | 17.61 | 17.75 | 17.88 | 18.02 |
| Lee County Total                                                | 15.29                           | 21.17                         | 21.17 | 21.19 | 21.21   | 21.23 | 21.26 | 21.28 | 21.30 | 21.34 | 21.36 | 21.41 |
|                                                                 |                                 |                               |       |       | Ogle Co | unty  |       |       |       |       |       |       |
| Public Supply                                                   | 5.12                            | 5.05                          | 4.98  | 4.81  | 4.72    | 4.66  | 4.57  | 4.50  | 4.42  | 4.35  | 4.26  | 4.20  |
| Self-Supplied<br>Domestic                                       | 1.60                            | 1.60                          | 1.57  | 1.54  | 1.52    | 1.50  | 1.47  | 1.45  | 1.43  | 1.41  | 1.39  | 1.37  |
| Thermoelectric<br>Power Generation                              | 55.58                           | 55.58                         | 55.58 | 55.58 | 55.58   | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.68                            | 2.68                          | 2.72  | 2.77  | 2.77    | 2.76  | 2.76  | 2.76  | 2.76  | 2.76  | 2.75  | 2.75  |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015     | 2020     | 2025        | 2030     | 2035     | 2040     | 2045     | 2050     | 2055     | 2060     |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.99                            | 2.23                          | 2.42     | 2.60     | 2.79        | 2.98     | 3.16     | 3.36     | 3.55     | 3.74     | 3.92     | 4.11     |
| Ogle County Total                                               | 66.97                           | 67.14                         | 67.26    | 67.30    | 67.38       | 67.47    | 67.54    | 67.65    | 67.74    | 67.84    | 67.90    | 68.01    |
|                                                                 |                                 |                               |          | I        | Rock Island | County   |          |          |          |          |          |          |
| Public Supply                                                   | 18.06                           | 18.17                         | 17.67    | 17.18    | 16.71       | 16.25    | 15.80    | 15.37    | 14.94    | 14.53    | 14.13    | 13.75    |
| Self-Supplied<br>Domestic                                       | 0.93                            | 0.93                          | 0.74     | 0.78     | 0.82        | 0.86     | 0.90     | 0.94     | 0.98     | 1.01     | 1.04     | 1.08     |
| Thermoelectric<br>Power Generation                              | 1,104.89                        | 1,104.89                      | 1,104.89 | 1,104.89 | 1,104.89    | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 14.19                           | 14.19                         | 14.60    | 15.02    | 15.01       | 14.99    | 14.98    | 14.96    | 14.94    | 14.92    | 14.90    | 14.88    |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.99                            | 2.82                          | 2.85     | 2.87     | 2.90        | 2.93     | 2.95     | 2.98     | 3.01     | 3.04     | 3.06     | 3.09     |
| Rock Island<br>County Total                                     | 1,139.07                        | 1,141.01                      | 1,140.75 | 1,140.74 | 1,140.33    | 1,139.93 | 1,139.52 | 1,139.14 | 1,138.76 | 1,138.39 | 1,138.03 | 1,137.69 |
|                                                                 |                                 |                               |          |          | Stephenson  | County   |          |          |          |          |          |          |
| Public Supply                                                   | 3.64                            | 3.65                          | 3.77     | 3.67     | 3.57        | 3.48     | 3.39     | 3.30     | 3.22     | 3.12     | 3.04     | 2.97     |
| Self-Supplied<br>Domestic                                       | 1.15                            | 1.15                          | 0.87     | 0.79     | 0.71        | 0.73     | 0.70     | 0.67     | 0.65     | 0.62     | 0.59     | 0.57     |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0        | 0        | 0           | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.12                            | 2.12                          | 2.21     | 2.30     | 2.24        | 2.25     | 2.23     | 2.21     | 2.19     | 2.17     | 2.14     | 2.12     |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.40                            | 1.49                          | 1.52     | 1.54     | 1.57        | 1.59     | 1.62     | 1.65     | 1.68     | 1.71     | 1.74     | 1.76     |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025      | 2030   | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|-----------|--------|-------|-------|-------|-------|-------|-------|
| Stephenson<br>County Total                                      | 8.31                            | 8.41                          | 8.37  | 8.30  | 8.09      | 8.05   | 7.94  | 7.83  | 7.74  | 7.62  | 7.51  | 7.42  |
|                                                                 |                                 |                               |       |       | Whiteside | County |       |       |       |       |       |       |
| Public Supply                                                   | 3.86                            | 3.90                          | 3.78  | 3.67  | 3.56      | 3.43   | 3.35  | 3.26  | 3.14  | 3.05  | 2.95  | 2.87  |
| Self-Supplied<br>Domestic                                       | 1.46                            | 1.46                          | 1.29  | 1.16  | 1.03      | 1.11   | 1.09  | 1.07  | 1.05  | 1.03  | 1.01  | 0.99  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.17                            | 0.17                          | 0.17  | 0.18  | 0.17      | 0.17   | 0.17  | 0.17  | 0.17  | 0.17  | 0.16  | 0.16  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 21.16                           | 40.02                         | 40.04 | 40.05 | 40.08     | 40.09  | 40.11 | 40.12 | 40.15 | 40.16 | 40.18 | 40.20 |
| Whiteside County<br>Total                                       | 26.65                           | 45.55                         | 45.28 | 45.06 | 44.84     | 44.80  | 44.72 | 44.62 | 44.51 | 44.41 | 44.30 | 44.22 |
|                                                                 |                                 |                               |       |       | Winnebago | County |       |       |       |       |       |       |
| Public Supply                                                   | 30.80                           | 30.92                         | 30.27 | 29.70 | 29.12     | 28.28  | 27.60 | 26.94 | 26.29 | 25.67 | 25.05 | 24.43 |
| Self-Supplied<br>Domestic                                       | 1.51                            | 1.51                          | 1.50  | 1.50  | 1.49      | 1.47   | 1.46  | 1.45  | 1.43  | 1.42  | 1.41  | 1.40  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.47                            | 1.47                          | 1.52  | 1.59  | 1.59      | 1.58   | 1.58  | 1.57  | 1.57  | 1.57  | 1.56  | 1.56  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.60                            | 0.85                          | 0.94  | 1.01  | 1.10      | 1.18   | 1.25  | 1.34  | 1.41  | 1.50  | 1.57  | 1.66  |
| Winnebago<br>County Total                                       | 34.38                           | 34.75                         | 34.23 | 33.80 | 33.30     | 32.51  | 31.89 | 31.30 | 30.70 | 30.16 | 29.59 | 29.05 |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015     | 2020     | 2025       | 2030     | 2035     | 2040     | 2045     | 2050     | 2055     | 2060     |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|
|                                                                 |                                 |                               |          |          | Rock River | Region   |          |          |          |          |          |          |
| Public Supply                                                   | 79.48                           | 79.52                         | 78.07    | 76.35    | 74.76      | 72.90    | 71.25    | 69.63    | 68.04    | 66.43    | 64.90    | 63.44    |
| Self-Supplied<br>Domestic                                       | 10.97                           | 10.97                         | 10.03    | 9.63     | 9.12       | 9.28     | 9.12     | 8.96     | 8.80     | 8.64     | 8.49     | 8.34     |
| Thermoelectric<br>Power Generation                              | 1,160.47                        | 1,160.47                      | 1,160.47 | 1,160.47 | 1,160.47   | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 | 1,160.47 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 28.44                           | 28.44                         | 29.19    | 29.97    | 29.85      | 30.13    | 30.24    | 30.31    | 30.40    | 30.47    | 30.51    | 30.59    |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 52.29                           | 91.19                         | 91.92    | 92.58    | 93.33      | 94.03    | 94.75    | 95.44    | 96.18    | 96.89    | 97.58    | 98.33    |
| REGIONAL<br>TOTAL                                               | 1,331.64                        | 1,370.59                      | 1,369.68 | 1,369.00 | 1,367.53   | 1,366.81 | 1,365.83 | 1,364.80 | 1,363.89 | 1,362.90 | 1,361.95 | 1,361.17 |

<sup>1</sup>2010 (Reported): reported demand in 2010 <sup>2</sup>2010 (Normal): incudes weather normalized demand for public supply and self-supplied irrigation, livestock, and environmental (ILE) sectors in 2010

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025      | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|
|                                                                 |                                 |                               |       |       | Boone Co  | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 3.73                            | 3.69                          | 4.35  | 4.71  | 5.03      | 5.37  | 5.70  | 6.04  | 6.39  | 6.75  | 7.10  | 7.46  |
| Self-Supplied<br>Domestic                                       | 1.51                            | 1.51                          | 1.59  | 1.68  | 1.64      | 1.62  | 1.59  | 1.56  | 1.53  | 1.50  | 1.47  | 1.43  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.49                            | 0.49                          | 0.54  | 0.60  | 0.65      | 0.70  | 0.76  | 0.82  | 0.89  | 0.96  | 1.03  | 1.11  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.45                            | 1.02                          | 1.11  | 1.22  | 1.33      | 1.45  | 1.52  | 1.60  | 1.68  | 1.77  | 1.85  | 1.94  |
| Boone County<br>Total                                           | 6.17                            | 6.71                          | 7.59  | 8.21  | 8.65      | 9.14  | 9.57  | 10.02 | 10.49 | 10.98 | 11.45 | 11.94 |
|                                                                 |                                 |                               |       |       | Bureau Co | ounty |       |       |       |       |       |       |
| Public Supply                                                   | 2.99                            | 2.94                          | 3.22  | 3.26  | 3.29      | 3.32  | 3.38  | 3.41  | 3.44  | 3.49  | 3.51  | 3.56  |
| Self-Supplied<br>Domestic                                       | 0.76                            | 0.76                          | 0.71  | 0.66  | 0.61      | 0.66  | 0.65  | 0.65  | 0.65  | 0.65  | 0.64  | 0.64  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.09                            | 2.09                          | 2.26  | 2.44  | 2.58      | 2.81  | 3.02  | 3.24  | 3.48  | 3.73  | 4.00  | 4.28  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 6.29                            | 9.65                          | 10.68 | 11.83 | 13.10     | 14.53 | 15.60 | 16.76 | 18.04 | 19.44 | 20.96 | 22.64 |
| Bureau County<br>Total                                          | 12.13                           | 15.44                         | 16.87 | 18.19 | 19.58     | 21.32 | 22.65 | 24.06 | 25.61 | 27.31 | 29.11 | 31.12 |

# Table 8.3 Summary of Demand Estimates, MRI Scenario (Mgd)

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025         | 2030   | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|--------------|--------|-------|-------|-------|-------|-------|-------|
|                                                                 |                                 |                               |       |       | Carroll C    | ounty  |       |       |       |       |       |       |
| Public Supply                                                   | 1.11                            | 1.11                          | 1.21  | 1.22  | 1.22         | 1.22   | 1.26  | 1.26  | 1.26  | 1.28  | 1.28  | 1.28  |
| Self-Supplied<br>Domestic                                       | 0.47                            | 0.47                          | 0.42  | 0.38  | 0.34         | 0.39   | 0.39  | 0.39  | 0.39  | 0.40  | 0.40  | 0.40  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0            | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.20                            | 2.20                          | 2.37  | 2.56  | 2.67         | 3.02   | 3.27  | 3.55  | 3.84  | 4.15  | 4.48  | 4.84  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 3.85                            | 8.28                          | 9.10  | 10.02 | 11.03        | 12.14  | 12.84 | 13.60 | 14.40 | 15.25 | 16.17 | 17.16 |
| Carroll County<br>Total                                         | 7.63                            | 12.06                         | 13.10 | 14.18 | 15.26        | 16.77  | 17.76 | 18.80 | 19.89 | 21.08 | 22.33 | 23.68 |
|                                                                 |                                 |                               |       |       | Henry Co     | ounty  |       |       |       |       |       |       |
| Public Supply                                                   | 4.12                            | 4.10                          | 4.54  | 4.54  | 4.59         | 4.64   | 4.68  | 4.71  | 4.78  | 4.82  | 4.86  | 4.90  |
| Self-Supplied<br>Domestic                                       | 0.79                            | 0.79                          | 0.69  | 0.61  | 0.52         | 0.60   | 0.60  | 0.59  | 0.59  | 0.58  | 0.58  | 0.57  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0            | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.03                            | 1.03                          | 1.12  | 1.23  | 1.29         | 1.41   | 1.51  | 1.62  | 1.74  | 1.86  | 1.99  | 2.13  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 3.82                            | 6.90                          | 7.55  | 8.25  | 9.03         | 9.88   | 10.39 | 10.92 | 11.49 | 12.09 | 12.72 | 13.37 |
| Henry County<br>Total                                           | 9.76                            | 12.82                         | 13.90 | 14.63 | 15.43        | 16.53  | 17.18 | 17.84 | 18.60 | 19.35 | 20.15 | 20.97 |
|                                                                 |                                 |                               |       |       | Jo Daviess ( | County |       |       |       |       |       |       |
| Public Supply                                                   | 1.98                            | 1.98                          | 2.16  | 2.19  | 2.20         | 2.21   | 2.23  | 2.25  | 2.26  | 2.28  | 2.29  | 2.32  |
| Self-Supplied<br>Domestic                                       | 0.40                            | 0.40                          | 0.38  | 0.36  | 0.34         | 0.37   | 0.37  | 0.37  | 0.38  | 0.38  | 0.38  | 0.38  |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025    | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.91                            | 1.91                          | 2.06  | 2.22  | 2.37    | 2.60  | 2.80  | 3.02  | 3.25  | 3.51  | 3.77  | 4.06  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.01                            | 1.24                          | 1.30  | 1.35  | 1.40    | 1.47  | 1.52  | 1.58  | 1.65  | 1.71  | 1.78  | 1.85  |
| Jo Daviess County<br>Total                                      | 5.29                            | 5.53                          | 5.90  | 6.12  | 6.31    | 6.65  | 6.92  | 7.22  | 7.54  | 7.88  | 8.22  | 8.61  |
|                                                                 |                                 |                               |       |       | Lee Cou | inty  |       |       |       |       |       |       |
| Public Supply                                                   | 4.09                            | 4.01                          | 4.41  | 4.46  | 4.53    | 4.58  | 4.64  | 4.70  | 4.76  | 4.82  | 4.88  | 4.94  |
| Self-Supplied<br>Domestic                                       | 0.38                            | 0.38                          | 0.37  | 0.36  | 0.35    | 0.34  | 0.34  | 0.33  | 0.32  | 0.31  | 0.30  | 0.29  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 10.96 | 10.96 | 10.96   | 10.96 | 10.96 | 10.96 | 10.96 | 10.96 | 10.96 | 10.96 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.09                            | 0.09                          | 0.10  | 0.10  | 0.11    | 0.12  | 0.13  | 0.13  | 0.14  | 0.15  | 0.16  | 0.17  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 10.73                           | 16.69                         | 18.40 | 20.28 | 22.36   | 24.66 | 25.92 | 27.24 | 28.63 | 30.10 | 31.63 | 33.24 |
| Lee County Total                                                | 15.29                           | 21.17                         | 34.24 | 36.16 | 38.31   | 40.66 | 41.98 | 43.36 | 44.81 | 46.34 | 47.93 | 49.60 |
|                                                                 |                                 |                               |       |       | Ogle Co | unty  |       |       |       |       |       |       |
| Public Supply                                                   | 5.12                            | 5.05                          | 5.61  | 5.65  | 5.76    | 5.92  | 6.06  | 6.18  | 6.30  | 6.46  | 6.59  | 6.74  |
| Self-Supplied<br>Domestic                                       | 1.60                            | 1.60                          | 1.60  | 1.62  | 1.63    | 1.65  | 1.66  | 1.67  | 1.69  | 1.70  | 1.72  | 1.73  |
| Thermoelectric<br>Power Generation                              | 55.58                           | 55.58                         | 55.58 | 55.58 | 55.58   | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 | 55.58 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.68                            | 2.68                          | 2.89  | 3.12  | 3.31    | 3.51  | 3.73  | 3.95  | 4.19  | 4.45  | 4.72  | 5.00  |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015     | 2020     | 2025        | 2030     | 2035     | 2040     | 2045     | 2050     | 2055     | 2060     |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.99                            | 2.23                          | 2.39     | 2.57     | 2.77        | 2.98     | 3.14     | 3.32     | 3.51     | 3.70     | 3.91     | 4.14     |
| Ogle County Total                                               | 66.97                           | 67.14                         | 68.07    | 68.53    | 69.05       | 69.63    | 70.17    | 70.70    | 71.27    | 71.89    | 72.52    | 73.19    |
|                                                                 |                                 |                               |          | F        | Rock Island | County   |          |          |          |          |          |          |
| Public Supply                                                   | 18.06                           | 18.17                         | 19.97    | 20.18    | 20.43       | 20.66    | 20.89    | 21.13    | 21.37    | 21.61    | 21.86    | 22.10    |
| Self-Supplied<br>Domestic                                       | 0.93                            | 0.93                          | 0.75     | 0.82     | 0.88        | 0.95     | 1.02     | 1.08     | 1.15     | 1.22     | 1.29     | 1.36     |
| Thermoelectric<br>Power Generation                              | 1,104.89                        | 1,104.89                      | 1,104.89 | 1,104.89 | 1,104.89    | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 | 1,104.89 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 14.19                           | 14.19                         | 15.50    | 16.93    | 17.95       | 19.04    | 20.19    | 21.41    | 22.70    | 24.07    | 25.51    | 27.04    |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.99                            | 2.82                          | 3.08     | 3.38     | 3.70        | 4.05     | 4.26     | 4.47     | 4.69     | 4.93     | 5.18     | 5.44     |
| Rock Island<br>County Total                                     | 1,139.07                        | 1,141.01                      | 1,144.20 | 1,146.20 | 1,147.85    | 1,149.59 | 1,151.25 | 1,152.99 | 1,154.80 | 1,156.72 | 1,158.73 | 1,160.84 |
|                                                                 |                                 |                               |          | S        | Stephenson  | County   |          |          |          |          |          |          |
| Public Supply                                                   | 3.64                            | 3.65                          | 4.26     | 4.31     | 4.36        | 4.42     | 4.48     | 4.53     | 4.59     | 4.64     | 4.72     | 4.77     |
| Self-Supplied<br>Domestic                                       | 1.15                            | 1.15                          | 0.89     | 0.83     | 0.76        | 0.80     | 0.79     | 0.77     | 0.76     | 0.75     | 0.73     | 0.72     |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0        | 0        | 0           | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Self-Supplied<br>Industrial and<br>Commercial                   | 2.12                            | 2.12                          | 2.34     | 2.59     | 2.68        | 2.86     | 3.01     | 3.16     | 3.32     | 3.49     | 3.67     | 3.86     |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 1.40                            | 1.49                          | 1.56     | 1.63     | 1.70        | 1.78     | 1.86     | 1.94     | 2.03     | 2.13     | 2.22     | 2.32     |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025        | 2030   | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|-------|-------|-------------|--------|-------|-------|-------|-------|-------|-------|
| Stephenson County<br>Total                                      | 8.31                            | 8.41                          | 9.05  | 9.36  | 9.50        | 9.86   | 10.14 | 10.40 | 10.70 | 11.01 | 11.34 | 11.67 |
|                                                                 |                                 |                               |       |       | Whiteside ( | County |       |       |       |       |       |       |
| Public Supply                                                   | 3.86                            | 3.90                          | 4.26  | 4.30  | 4.36        | 4.38   | 4.43  | 4.45  | 4.50  | 4.53  | 4.57  | 4.62  |
| Self-Supplied<br>Domestic                                       | 1.46                            | 1.46                          | 1.32  | 1.21  | 1.11        | 1.22   | 1.23  | 1.23  | 1.24  | 1.24  | 1.24  | 1.25  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0           | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 0.17                            | 0.17                          | 0.18  | 0.20  | 0.20        | 0.22   | 0.23  | 0.24  | 0.25  | 0.27  | 0.28  | 0.29  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 21.16                           | 40.02                         | 44.10 | 48.62 | 53.59       | 59.09  | 62.11 | 65.28 | 68.61 | 72.12 | 75.80 | 79.67 |
| Whiteside County<br>Total                                       | 26.65                           | 45.55                         | 49.86 | 54.33 | 59.26       | 64.91  | 68.00 | 71.20 | 74.60 | 78.16 | 81.89 | 85.83 |
|                                                                 |                                 |                               |       | ۲     | Vinnebago   | County |       |       |       |       |       |       |
| Public Supply                                                   | 30.80                           | 30.92                         | 34.18 | 34.89 | 35.59       | 35.94  | 36.50 | 37.04 | 37.58 | 38.16 | 38.72 | 39.32 |
| Self-Supplied<br>Domestic                                       | 1.51                            | 1.51                          | 1.54  | 1.57  | 1.60        | 1.62   | 1.64  | 1.67  | 1.69  | 1.72  | 1.74  | 1.77  |
| Thermoelectric<br>Power Generation                              | 0                               | 0                             | 0     | 0     | 0           | 0      | 0     | 0     | 0     | 0     | 0     | 0     |
| Self-Supplied<br>Industrial and<br>Commercial                   | 1.47                            | 1.47                          | 1.62  | 1.79  | 1.90        | 2.01   | 2.13  | 2.25  | 2.38  | 2.52  | 2.67  | 2.83  |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 0.60                            | 0.85                          | 0.91  | 0.97  | 1.04        | 1.10   | 1.15  | 1.21  | 1.27  | 1.34  | 1.40  | 1.47  |
| Winnebago County<br>Total                                       | 34.38                           | 34.75                         | 38.25 | 39.22 | 40.13       | 40.67  | 41.42 | 42.17 | 42.92 | 43.74 | 44.53 | 45.39 |

| Geography and<br>Sector                                         | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015     | 2020     | 2025       | 2030     | 2035     | 2040     | 2045     | 2050     | 2055     | 2060     |
|-----------------------------------------------------------------|---------------------------------|-------------------------------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|
|                                                                 |                                 |                               |          | ]        | Rock River | Region   |          |          |          |          |          |          |
| Public Supply                                                   | 79.48                           | 79.52                         | 88.17    | 89.71    | 91.36      | 92.66    | 94.25    | 95.70    | 97.23    | 98.84    | 100.38   | 102.01   |
| Self-Supplied<br>Domestic                                       | 10.97                           | 10.97                         | 10.27    | 10.10    | 9.79       | 10.20    | 10.26    | 10.32    | 10.38    | 10.44    | 10.50    | 10.56    |
| Thermoelectric<br>Power Generation                              | 1,160.47                        | 1,160.47                      | 1,171.43 | 1,171.43 | 1,171.43   | 1,171.43 | 1,171.43 | 1,171.43 | 1,171.43 | 1,171.43 | 1,171.43 | 1,171.43 |
| Self-Supplied<br>Industrial and<br>Commercial                   | 28.44                           | 28.44                         | 30.98    | 33.78    | 35.71      | 38.30    | 40.78    | 43.39    | 46.18    | 49.16    | 52.28    | 55.61    |
| Self-Supplied<br>Irrigation,<br>Livestock, and<br>Environmental | 52.29                           | 91.19                         | 100.18   | 110.12   | 121.05     | 133.13   | 140.31   | 147.92   | 156.00   | 164.58   | 173.62   | 183.24   |
| REGIONAL<br>TOTAL                                               | 1,331.64                        | 1,370.59                      | 1,401.03 | 1,415.14 | 1,429.34   | 1,445.72 | 1,457.03 | 1,468.76 | 1,481.22 | 1,494.45 | 1,508.21 | 1,522.85 |

<sup>1</sup>2010 (Reported): reported demand in 2010 <sup>2</sup>2010 (Normal): incudes weather normalized demand for public supply and self-supplied irrigation, livestock, and environmental (ILE) sectors in 2010

| Geography and<br>Sector | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015  | 2020  | 2025         | 2030   | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-------------------------|---------------------------------|-------------------------------|-------|-------|--------------|--------|-------|-------|-------|-------|-------|-------|
|                         |                                 |                               |       |       | Boone Co     | ounty  |       |       |       |       |       |       |
| LRI                     | 6.17                            | 6.71                          | 6.97  | 7.21  | 7.30         | 7.37   | 7.45  | 7.50  | 7.56  | 7.61  | 7.65  | 7.69  |
| СТ                      | 6.17                            | 6.71                          | 7.27  | 7.68  | 7.92         | 8.17   | 8.39  | 8.61  | 8.81  | 9.01  | 9.22  | 9.41  |
| MRI                     | 6.17                            | 6.71                          | 7.59  | 8.21  | 8.65         | 9.14   | 9.57  | 10.02 | 10.49 | 10.98 | 11.45 | 11.94 |
| Bureau County           |                                 |                               |       |       |              |        |       |       |       |       |       |       |
| LRI                     | 12.13                           | 15.44                         | 15.34 | 15.26 | 15.14        | 15.18  | 15.16 | 15.11 | 15.09 | 15.04 | 15.02 | 15.02 |
| СТ                      | 12.13                           | 15.44                         | 16.05 | 16.56 | 17.10        | 17.76  | 18.18 | 18.62 | 19.06 | 19.53 | 20.02 | 20.52 |
| MRI                     | 12.13                           | 15.44                         | 16.87 | 18.19 | 19.58        | 21.32  | 22.65 | 24.06 | 25.61 | 27.31 | 29.11 | 31.12 |
|                         |                                 |                               |       |       | Carroll C    | ounty  |       |       |       |       |       |       |
| LRI                     | 7.63                            | 12.06                         | 12.09 | 12.13 | 12.11        | 12.35  | 12.48 | 12.56 | 12.68 | 12.78 | 12.88 | 13.00 |
| СТ                      | 7.63                            | 12.06                         | 12.62 | 13.09 | 13.54        | 14.16  | 14.49 | 14.86 | 15.21 | 15.57 | 15.95 | 16.35 |
| MRI                     | 7.63                            | 12.06                         | 13.10 | 14.18 | 15.26        | 16.77  | 17.76 | 18.80 | 19.89 | 21.08 | 22.33 | 23.68 |
|                         |                                 |                               |       |       | Henry Co     | ounty  |       |       |       |       |       |       |
| LRI                     | 9.76                            | 12.82                         | 12.73 | 12.59 | 12.46        | 12.53  | 12.49 | 12.46 | 12.46 | 12.42 | 12.41 | 12.39 |
| СТ                      | 9.76                            | 12.82                         | 13.31 | 13.60 | 13.93        | 14.41  | 14.64 | 14.91 | 15.19 | 15.48 | 15.75 | 16.06 |
| MRI                     | 9.76                            | 12.82                         | 13.90 | 14.63 | 15.43        | 16.53  | 17.18 | 17.84 | 18.60 | 19.35 | 20.15 | 20.97 |
|                         |                                 |                               |       |       | Jo Daviess ( | County |       |       |       |       |       |       |
| LRI                     | 5.29                            | 5.53                          | 5.48  | 5.43  | 5.37         | 5.39   | 5.38  | 5.35  | 5.35  | 5.30  | 5.30  | 5.28  |
| СТ                      | 5.29                            | 5.53                          | 5.75  | 5.76  | 5.79         | 5.88   | 5.93  | 5.99  | 6.04  | 6.10  | 6.14  | 6.20  |
| MRI                     | 5.29                            | 5.53                          | 5.90  | 6.12  | 6.31         | 6.65   | 6.92  | 7.22  | 7.54  | 7.88  | 8.22  | 8.61  |
|                         |                                 |                               |       |       | Lee Cou      | inty   |       |       |       |       |       |       |
| LRI                     | 15.29                           | 21.17                         | 21.17 | 21.19 | 21.21        | 21.23  | 21.26 | 21.28 | 21.30 | 21.34 | 21.36 | 21.41 |
| СТ                      | 15.29                           | 21.17                         | 22.25 | 23.18 | 24.19        | 25.25  | 25.81 | 26.36 | 26.96 | 27.59 | 28.20 | 28.85 |
| MRI                     | 15.29                           | 21.17                         | 34.24 | 36.16 | 38.31        | 40.66  | 41.98 | 43.36 | 44.81 | 46.34 | 47.93 | 49.60 |
|                         |                                 |                               |       |       | Ogle Co      | unty   |       |       |       |       |       |       |
| LRI                     | 66.97                           | 67.14                         | 67.26 | 67.30 | 67.38        | 67.47  | 67.54 | 67.65 | 67.74 | 67.84 | 67.90 | 68.01 |
|                         |                                 |                               |       |       |              |        |       |       |       |       |       |       |

### Table 8.4 Summary of Estimated Demand Totals, All Scenarios (Mgd)

| Geography and<br>Sector | 2010<br>(Reported) <sup>1</sup> | 2010<br>(Normal) <sup>2</sup> | 2015     | 2020     | 2025        | 2030     | 2035     | 2040     | 2045     | 2050     | 2055     | 2060     |
|-------------------------|---------------------------------|-------------------------------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|
| СТ                      | 66.97                           | 67.14                         | 67.63    | 67.75    | 67.92       | 68.12    | 68.28    | 68.46    | 68.61    | 68.79    | 68.96    | 69.15    |
| MRI                     | 66.97                           | 67.14                         | 68.07    | 68.53    | 69.05       | 69.63    | 70.17    | 70.70    | 71.27    | 71.89    | 72.52    | 73.19    |
|                         |                                 |                               |          | J        | Rock Island | County   |          |          |          |          |          |          |
| LRI                     | 1,139.07                        | 1,141.01                      | 1,140.75 | 1,140.74 | 1,140.33    | 1,139.93 | 1,139.52 | 1,139.14 | 1,138.76 | 1,138.39 | 1,138.03 | 1,137.69 |
| СТ                      | 1,139.07                        | 1,141.01                      | 1,142.51 | 1,142.97 | 1,143.32    | 1,143.69 | 1,144.00 | 1,144.31 | 1,144.54 | 1,144.78 | 1,145.02 | 1,145.28 |
| MRI                     | 1,139.07                        | 1,141.01                      | 1,144.20 | 1,146.20 | 1,147.85    | 1,149.59 | 1,151.25 | 1,152.99 | 1,154.80 | 1,156.72 | 1,158.73 | 1,160.84 |
|                         |                                 |                               |          | ļ        | Stephenson  | County   |          |          |          |          |          |          |
| LRI                     | 8.31                            | 8.41                          | 8.37     | 8.30     | 8.09        | 8.05     | 7.94     | 7.83     | 7.74     | 7.62     | 7.51     | 7.42     |
| СТ                      | 8.31                            | 8.41                          | 8.76     | 8.86     | 8.91        | 9.10     | 9.22     | 9.36     | 9.48     | 9.60     | 9.72     | 9.86     |
| MRI                     | 8.31                            | 8.41                          | 9.05     | 9.36     | 9.50        | 9.86     | 10.14    | 10.40    | 10.70    | 11.01    | 11.34    | 11.67    |
|                         |                                 |                               |          |          | Whiteside   | County   |          |          |          |          |          |          |
| LRI                     | 26.65                           | 45.55                         | 45.28    | 45.06    | 44.84       | 44.80    | 44.72    | 44.62    | 44.51    | 44.41    | 44.30    | 44.22    |
| СТ                      | 26.65                           | 45.55                         | 47.76    | 49.97    | 52.32       | 55.01    | 56.37    | 57.79    | 59.25    | 60.75    | 62.30    | 63.90    |
| MRI                     | 26.65                           | 45.55                         | 49.86    | 54.33    | 59.26       | 64.91    | 68.00    | 71.20    | 74.60    | 78.16    | 81.89    | 85.83    |
|                         |                                 |                               |          | ,        | Winnebago   | County   |          |          |          |          |          |          |
| LRI                     | 34.38                           | 34.75                         | 34.23    | 33.80    | 33.30       | 32.51    | 31.89    | 31.30    | 30.70    | 30.16    | 29.59    | 29.05    |
| СТ                      | 34.38                           | 34.75                         | 36.18    | 36.36    | 36.51       | 36.29    | 36.26    | 36.22    | 36.17    | 36.14    | 36.09    | 36.05    |
| MRI                     | 34.38                           | 34.75                         | 38.25    | 39.22    | 40.13       | 40.67    | 41.42    | 42.17    | 42.92    | 43.74    | 44.53    | 45.39    |
| Rock River Region       |                                 |                               |          |          |             |          |          |          |          |          |          |          |
| LRI                     | 1,331.64                        | 1,370.59                      | 1,369.68 | 1,369.00 | 1,367.53    | 1,366.81 | 1,365.83 | 1,364.80 | 1,363.89 | 1,362.90 | 1,361.95 | 1,361.17 |
| СТ                      | 1,331.64                        | 1,370.59                      | 1,380.09 | 1,385.80 | 1,391.46    | 1,397.83 | 1,401.57 | 1,405.50 | 1,409.32 | 1,413.34 | 1,417.38 | 1,421.63 |
| MRI                     | 1,331.64                        | 1,370.59                      | 1,401.03 | 1,415.14 | 1,429.34    | 1,445.72 | 1,457.03 | 1,468.76 | 1,481.22 | 1,494.45 | 1,508.21 | 1,522.85 |

<sup>1</sup>2010 (Reported): reported demand in 2010 <sup>2</sup>2010 (Normal): incudes weather normalized demand for public supply and self-supplied irrigation, livestock, and environmental (ILE) sectors in 2010

# 9 References Cited

Avery, C.F. 1999. *Estimated Water Withdrawals and Use in Illinois, 1992.* United States Geological Survey Open-File Report 99-97, Urbana, IL.

Black, L.P. 1983. *Golf Course Irrigation in Ohio*. Ohio Department of Natural Resources Inventory Report 27, Columbus, OH.

Blocksome, C.E., and G.M. Powell. 2006. *Waterers and Watering Systems: A Handbook for Livestock Owners and Landowners*. Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan, KS.

Boland, J.J., B. Dziegielewski, D.D. Baumann, and E.M. Optiz. 1984. *Influence of Price and Rate Structures on Municipal and Industrial Water Use*. U.S. Army Corps of Engineers, Institute for Water Resources Report 84-C-2, Ft. Belvoir, VA.

California Energy Commission. 2016. U.S. Per Capita Electricity Use by State in 2016. California Energy Commission, <u>https://www.energy.ca.gov/almanac/electricity\_data/us\_per\_capita\_electricity.html</u> (accessed October 10, 2018).

Connecticut Department of Public Health. 2015. Connecticut Department of Public Health. <u>http://www.ct.gov/dph/privatewells</u> (accessed December 10, 2015).

Data.Illinois.gov. 2018. *State of Illinois Data Portal, DCEO County Population Projections*. Illinois Department of Commerce and Economic Opportunity, <u>https://data.illinois.gov/dataset/131dceo\_county\_population\_projections</u> (accessed October 10, 2018).

Dziegielewski, B., and T. Bik. 2006. *Water Use Benchmarks for Thermoelectric Power Generation*. Department of Geography, Southern Illinois University, Carbondale, IL.

Dziegielewski, B., and F.J. Chowdhury. 2008. *Regional Water Demand Scenarios for Northeastern Illinois: 2005-2050.* Project completion report prepared for the Chicago Metropolitan Agency for Planning. Department of Geography and Environmental Resources, Southern Illinois University,

http://www.cmap.illinois.gov/documents/10180/14452/NE+IL+Regional+Water+Demand+Scen arios+to+2050+project+completion+report.pdf/c67c0773-5986-4fae-b5a8-324bf23e84b4 (accessed August 20, 2009).

Dziegielewski, B., J. Kiefer, and T. Bik. 2004. *Water Rates and Ratemaking Practices in Community Water Systems in Illinois*. Department of Geography, Southern Illinois University, Carbondale, IL.

Dziegielewski, B., S. Sharma, T. Bik, X. Yang, H. Margono, and R. Sa. 2002. *Predictive Models of Water Use: An Analytical Bibliography*. Department of Geography and Department of Economics, Southern Illinois University, Carbondale, IL.

Earth Policy Institute. 2007. *Water Prices Rising Worldwide*. Earth Policy Institute, <u>http://www.earth-policy.org/plan\_b\_updates/2007/update64#</u> (accessed December 8, 2014).

Golf Course Superintendents Association of America. 2015. Golf Course Environmental Profile. Phase II, Volume I. *2014 Water Use and Conservation Practices on U.S. Golf Courses*. Golf Course Superintendents Association of America, <u>http://www.gcsaa.org/docs/default-</u> <u>source/Environment/phase-2-water-use-survey-full-report.pdf</u> (accessed December 11, 2015).

Golf Link. 2015. *Illinois Golf Courses*. Golf.com Network, <u>http://www.golflink.com/golf-courses/state.aspx?state=IL</u> (accessed May 19, 2015).

Hanemann, W.M. 1998. *Determinants of urban water use*. Edited by D.D. Baumann, J. Boland and W.M. Hanemann. McGraw-Hill, New York, NY.

Helsel, D.R., and R.M. Hirsch. 1992. *Statistical methods in water resources*. Elsevier, Amsterdam, The Netherlands.

Hutson, S.S., N.L. Barber, J.F. Kenny, K.S. Linsey, D.S. Lumia, and M.A. Maupin. 2004. *Estimated Use of Water in the United States in 2000*. United States Geological Survey Circular 1268, Reston, VA.

Illinois Commerce Commission. 2015. *Comparison of Sales Statistics*. Illinois Commerce Commission, <u>https://www.icc.illinois.gov/publicutility/salesstatistics.aspx</u> (accessed December 10, 2015).

Illinois Department of Employment Security. 2014. *Employment Projections*. Illinois Department of Employment Security, <u>http://www.ides.illinois.gov/LMI/Pages/Employment\_Projections.aspx</u> (accessed December 8, 2014).

Illinois Environmental Protection Agency. 2014. *Drinking Water Watch*. Illinois Environmental Protection Agency, <u>http://water.epa.state.il.us/dww/index.jsp</u> (accessed November 14, 2014).

Illinois Environmental Protection Agency. 2015. *Safe Drinking Water Search for the State of Illinois*. Illinois Environmental Protection Agency, <u>http://oaspub.epa.gov/enviro/sdw\_form\_v3.create\_page?state\_abbr=IL</u> (accessed November 15, 2015).

Illinois State Water Plan Task Force. 1984. *Illinois State Water Plan*. Springfield, IL. <u>https://www.dnr.illinois.gov/WaterResources/Documents/SWPTF\_CrossCuttingTopicsOperating</u> <u>Issues.pdf</u>. Illinois State Water Survey. 2018. Illinois Water Inventory Program. Illinois State Water Survey, <u>https://www.isws.illinois.edu/groundwater-science/illinois-water-inventory-program</u> (accessed September 24, 2018).

Intergovernmental Panel on Climate Change. 2007. *Climate Change 2007: Synthesis Report*. <u>https://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4\_syr\_full\_report.pdf</u>.

Kenny, J.F., N.L. Barber, S.S. Hutson, K.S. Linsey, J.K. Lovelace, and M.A. Maupin. 2009. *Estimated Use of Water in the United States in 2005*. United States Geological Survey Circular 1344, Reston, VA.

Maupin, M.A., J.F. Kenny, S.S. Hutson, J.K. Lovelace, N.L. Barber, and K.S. Linsey. 2014. *Estimated Use of Water in the United States in 2010*. United States Geological Survey Circular 1405, Reston, VA.

Microsoft Corporation. 2003. Microsoft Office Excel 2003.

National Climatic Data Center. 2015. Cooperative Observer Network (COOP). National Oceanic and Atmospheric Administration National Climatic Data Center, <u>http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop</u> (accessed March 30, 2015).

National Oceanic and Atmospheric Administration National Centers for Environmental Information. 2015. Climate Data Online. National Oceanic and Atmospheric Administration, <u>http://www.ncdc.noaa.gov/cdo-web/</u> (accessed May 12, 2015).

NUS Consulting. 2007. *NUS Consulting Group Survey Says U.S. Water Costs Are On The Rise (Again!)*. PR Newswire, <u>https://www.energyvortex.com/files/NUS\_quick\_click.pdf</u> (accessed October 10, 2018).

Pate, R., M. Hightower, C. Cameron, and W. Einfeld. 2007. *Overview of Energy-Water Interdependencies and the Emerging Energy Demands on Water Resources*. Sandia National Laboratories Report SAND 2007-1349C.

Regional Economics Applications Laboratory. 2014. *Summary of 1999 IREIM's Projections*. University of Illinois at Urbana-Champaign, <u>http://www.real.illinois.edu/products/models/il\_for\_summary99.pdf</u> (accessed December 11, 2014).

Renewable Fuels Association. 2015. *Going Global: 2015 Ethanol Industry Outlook*. Renewable Fuels Association, <u>http://ethanolrfa.3cdn.net/c5088b8e8e6b427bb3\_cwm626ws2.pdf</u> (accessed April 20, 2015).

Solley, W.B., R.R. Pierce, and H.A. Perlman. 1993. *Estimated Use of Water in the United States in 1990*. United States Geological Survey Circular 1081, Denver, CO.

Solley, W.B., R.R. Pierce, and H.A. Perlman. 1998. *Estimated Use of Water in the United States in 1995*. United States Geological Survey Circular 1200, Denver, CO.

Tennant, D.L. 1975. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. U.S. Fish and Wildlife Service.

Torcellini, P.N., N. Long, and R. Judkoff. 2003. *Consumptive Water Use for U.S. Power Production*. National Renewable Energy Laboratory Technical Report NREL/TP-550-33905, Golden, CO. <u>https://www.nrel.gov/docs/fy04osti/33905.pdf</u>.

U.S. Census Bureau. 1995. *Population of Counties by Decennial Census: 1900 to 1990*. United States Census Bureau, <u>http://www.census.gov/population/cencounts/il190090.txt</u> (accessed September 29, 2009).

U.S. Census Bureau. 2004. *Census 2000 Data for the State of Illinois*. United States Census Bureau, <u>http://www.census.gov/census2000/states/il.html</u> (accessed August 24, 2006).

U.S. Census Bureau. 2014a. *American Community Survey*. United States Census Bureau, <u>http://www.census.gov/acs/www/</u> (accessed November 21, 2014).

U.S. Census Bureau. 2014b. State & County QuickFacts. United States Census Bureau, <u>https://www.census.gov/quickfacts/fact/table/US/PST045217</u> (accessed September 24, 2018).

U.S. Census Bureau. 2014c. *United States Census 2010*. United States Census Bureau, <u>https://www.census.gov/programs-surveys/decennial-census/data/datasets.2010.html</u> (accessed September 24, 2018).

U.S. Census Bureau. 2015a. American FactFinder Advanced Search. United States Census Bureau, <u>http://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t</u> (accessed June 9, 2015).

U.S. Census Bureau. 2015b. *County Business Patterns*. United States Census Bureau, <u>https://www.census.gov/programs-surveys/cbp.html</u> (accessed September 24, 2018).

U.S. Department of Agriculture. 2015. USDA Census of Agriculture. http://www.agcensus.usda.gov/ (accessed April 23, 2015).

U.S. Department of Agriculture Economic Research Service. 2014. USDA Long-term Projections, February 2014, U.S. Livestock. United States Department of Agriculture Economic Research Service,

https://www.usda.gov/oce/commodity/projections/USDA\_Agricultural\_Projections\_to\_2023.pdf (accessed September 24, 2018).

U.S. Department of Labor Bureau of Labor Statistics. 2015. *Productivity Change in the Nonfarm Business Sector*, *1947-2014*. United States Department of Labor Bureau of Labor Statistics, <u>http://www.bls.gov/lpc/prodybar.htm</u> (accessed April 17, 2015).

U.S. Department of Labor Occupational Safety and Health Administration. 2015. *SIC Manual*. United States Department of Labor Occupational Safety and Health Administration, <u>https://www.osha.gov/pls/imis/sic\_manual.html</u> (accessed February 5, 2015).

U.S. Energy Information Administration. 2014. *Annual Energy Outlook 2014*. United States Energy Information Administration,

http://www.eia.gov/forecasts/archive/aeo14/executive\_summary.cfm (accessed November 30, 2015).

U.S. Energy Information Administration. 2015a. *Annual Energy Outlook 2015*. United States Energy Information Administration,

http://www.eia.gov/forecasts/aeo/section\_elecgeneration.cfm (accessed December 11, 2015).

U.S. Energy Information Administration. 2015b. *Electric Sales, Revenue, and Average Price*. United States Energy Information Administration, <u>http://www.eia.gov/electricity/sales\_revenue\_price/</u> (accessed December 11, 2015).

U.S. Energy Information Administration. 2015c. Electricity Data. United States Energy Information Administration, <u>http://www.eia.gov/electricity/data.cfm</u> (accessed December 10, 2015).

U.S. Energy Information Administration. 2015d. Form EIA-767 Historical Data Files. United States Energy Information Administration, <u>http://www.eia.gov/electricity/data/eia767/</u> (accessed April 7, 2015).

U.S. Energy Information Administration. 2018. *Annual Energy Outlook 2018*. United States Energy Information Administration, <u>https://www.eia.gov/outlooks/aeo/data/browser/#/?id=8-AEO2018&cases=ref2018&sourcekey=0</u> (accessed October 10, 2018).

U.S. Environmental Protection Agency. 2008. *Public Drinking Water Systems: Facts and Figures*. United States Environmental Protection Agency, <u>http://water.epa.gov/infrastructure/drinkingwater/pws/factoids.cfm</u> (accessed November 14, 2014).

U.S. Environmental Protection Agency. 2015a. *Golf Course Adjustment Factors for Modifying Estimated Drinking Water Concentrations and Estimated Environmental Concentrations Generated by Tier I (FIRST) and Tier II (PRZM/EXAMS) Models*. United States Environmental Protection Agency, <u>https://archive.epa.gov/epa/pesticide-science-and-assessing-pesticide-</u> <u>risks/golf-course-adjustment-factors-modifying-estimated.html</u> (accessed September 24, 2018).

U.S. Environmental Protection Agency. 2015b. View Your Water Utility's Climate Projection with the Scenario-Based Projected Changes Map. United States Environmental Protection Agency, <u>http://www2.epa.gov/crwu/view-your-water-utilitys-climate-projection-scenario-based-projected-changes-map</u> (accessed September 10, 2015).

U.S. Geological Survey. 2014. Water Use in the United States: Water-Use Data Available from USGS. <u>http://water.usgs.gov/watuse/data/</u> (accessed January 12, 2015).

WorldGolf.com. 2015. *America's Golf Course Guide*. Golf Channel - New Media Ventures, <u>http://www.golfguideweb.com/</u> (accessed May 19, 2015).

Wu, M. 2007. *Analysis of the Efficiency of the U.S. Ethanol Industry* 2007. Argonne National Laboratory, delivered to Renewable Fuels Association on March 27, 2008.

Yang, X., and B. Dziegielewski. 2007. Water use by thermoelectric power plants in the United States. *Journal of the American Water Resources Association* 43(1):160-169.

## Appendix A. Public System Demand-Estimation Methodology and Supplemental Tables

#### Public System Demand-Estimation Methodology

A regression equation was fitted to historical data on per-capita public system demand and the corresponding six explanatory variables (average of maximum daily temperatures during the five-month May-September summer season, total precipitation during the summer season, ratio of local employment to resident population, median household income in 2010 dollars, marginal price of water in 2010 dollars, and an annual time [conservation] trend variable).

The data include 470 observations (5 data years times 94 water service areas) from three Illinois Department of Natural Resources-defined water-supply planning regions for which the Illinois State Water Survey simultaneously estimated water demand during 2014 and 2015, the 11-county Rock River region (this report), the 7-county Middle Illinois region (Meyer et al., In press-b), and the 3-county Kankakee Watershed region (Meyer et al., In press-a). However, data on the marginal price of water could be obtained for only 296 data points, and this smaller subset of observations was used to estimate the parameters of the regression model.

The estimation methodology initially employed a procedure known as *robust regression* (Yohai and Zamar, 1997), which allows for the reduction of the undue influence of specific "problematic" observations on estimated model parameters. Potentially problematic observations include outliers, whose values lie at the extremes, as well as leverage points, which have a strong influence on the overall fit and estimated parameters of a model. Note that an observation can be designated as a leverage point, but not a "bad" leverage point; it can confirm the underlying relationship, as opposed to changing it.

The robust regression procedures identified 18 problematic observations (out of 296), of which 4 were designated as potential outliers and 14 as potential leverage points (with one observation–the 2005 Putnam County residual–as both an outlier and a leverage point).

The final regression model of per-capita water use was estimated after excluding four outlier points (LaSalle 2000, 2005, 2010; Putnam Co. residual 2005) and six "undue/unjustifiable" leverage points (Colona East 2000, Peru 2010, Toluca 2010, Wyoming 2010, Stockton 2010, and East Moline 2010).

The regression equation was estimated as a log-linear model in which the dependent variable (per-capita water use) and four independent variables were converted to their natural logarithms. The ratio of employment to population and the time trend variable were left in their linear form. The resultant ordinary least squares (OLS) regression model is shown in Table A.1. The regression equation explains about 35 percent of the variance in log-transformed per-capita water use. Two variables, employment-to-population ratio and marginal price, have highly significant regression coefficients (p<0.0001). The significance of the remaining four independent variables is marginal, but all four have t-statistics greater than 1. Despite the low statistical significance of the two weather variables (as well as the income and time trend variables), the sizes and signs of the estimated regression coefficients are near their expected values (in comparison to the literature and the coefficients obtained in three other regional water demand studies in Illinois).

| Description                     | Parameter | Parameter         | Parameter      | Parameter  | Parameter    |
|---------------------------------|-----------|-------------------|----------------|------------|--------------|
| R Square                        | 0.348869  |                   |                |            |              |
| R Square Adj.                   | 0.334866  |                   |                |            |              |
| Root Mean Square Error          | 0.251919  |                   |                |            |              |
| Mean of Response                | 4.781111  |                   |                |            |              |
| Observations (or Sum Weights)   | 286       |                   |                |            |              |
|                                 | DF        | Sum of<br>Squares | Mean<br>Square | F<br>Ratio | Prob.<br>> F |
| Model                           | 6         | 9.48679           | 1.58113        | 24.9142    | <.0001       |
| Error                           | 279       | 17.706218         | 0.06346        |            |              |
| C. Total                        | 285       | 27.193008         |                | 0.03173    |              |
|                                 |           |                   |                |            |              |
| Term                            | Fstimate  | Std               | t              | Prob.      |              |
| ICIM                            | Estimate  | Error             | Ratio          | > t        |              |
| Intercept                       | -0.42031  | 4.22315           | -0.10          | 0.9208     |              |
| Ln (Max. Summer Temperature)    | 1.13185   | 0.93504           | 1.21           | 0.2271     |              |
| Ln (Total Summer Precipitation) | -0.05946  | 0.05681           | -1.05          | 0.2961     |              |
| Employment/Population Ratio     | 0.50331   | 0.06283           | 8.01           | <.0001     |              |
| Ln (Median Household Income)    | 0.12183   | 0.09050           | 1.35           | 0.1793     |              |
| Ln (Marginal Price of Water)    | -0.19770  | 0.03438           | -5.75          | <.0001     |              |
| Time Trend                      | -0.00412  | 0.00293           | -1.40          | 0.1616     |              |

Table A.1 Estimated Log-Linear Equation of Per-Capita Water Demand – Regression Output

| <b>Boone County</b><br>Aqua Illinois - Candlewick Div.<br>Belvidere<br>Capron                                                                                                                                                                          | Capron MHP<br>Maple Crest Care Center LLC<br>Oak Lawn MHP                                                                                                                                                                                                              | Park Meadowland West MHP<br>Poplar Grove                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bureau County<br>Arlington<br>Buda<br>Bureau Junction<br>Dalzell<br>Depue<br>Dover<br>Hollowayville<br>La Moille                                                                                                                                       | Ladd<br>Malden<br>Manlius<br>Ohio<br>Orchard View Rehab & Health<br>Care Center<br>Princeton<br>Seatonville<br>Sheffield                                                                                                                                               | Spring Valley<br>The Grove MHP<br>Tiskilwa<br>Van Orin Water Co<br>Walnut<br>Wyanet                                                                                                                                                                               |
| Carroll County<br>Century Pines Apartments<br>Chadwick<br>Lanark                                                                                                                                                                                       | Milledgeville<br>Mount Carroll<br>Savanna                                                                                                                                                                                                                              | Shannon<br>Thomson                                                                                                                                                                                                                                                |
| Henry County<br>Alpha<br>Andover<br>Annawan<br>Atkinson<br>Bishop Hill<br>Black Hawk College - East<br>Campus<br>Buysse Subd<br>Cambridge<br>Colona East<br>Colona Park LLC<br>Colona West System<br>Country Club Estates Subd<br>Country Estates Subd | Galva<br>Geneseo<br>Geneseo Hills Subd<br>Hazelwood 4th Addn<br>Hazelwood Heights Subd<br>Hazelwood West Subd<br>Hillcrest Home<br>Kewanee<br>Lake Lynwood Water Assn<br>Lynn Water Association, Inc<br>North Hazelwood Subd<br>Oak View Estates<br>Oakwood Place Subd | Ophiem Water Systems, Inc<br>Orion<br>Osco Mutual Wtr Supply Co Inc<br>Riverview MHP - Geneseo<br>Rustic Homeowners & Wtr Assn<br>Sunny Hill Estates Subd<br>Timber Brook Estates Subd<br>Timber Ridge Subd<br>Windcrest Subd<br>Wolf Ridge Well Corp<br>Woodhull |
| Jo Daviess County<br>Apple River<br>Bahl Water Corporation<br>East Dubuque<br>Elizabeth<br>Frentress Lake                                                                                                                                              | Galena<br>Hanover<br>Mt Vernon Homeowners Assn<br>Scales Mound<br>Stockton                                                                                                                                                                                             | Utilities Inc - Apple Canyon<br>Utilities Co<br>Utilities Inc - Galena Territory<br>Warren<br>Wienen Estates                                                                                                                                                      |
| Lee County<br>Amboy<br>Ashton<br>Compton<br>Dixon<br>Dixon Correctional Center<br>Franklin Grove                                                                                                                                                       | Green Acres MHP<br>Harmon<br>Lee<br>Paw Paw<br>Rock River Estates MHP<br>Sauk Valley Student Housing                                                                                                                                                                   | Steward<br>Sublette<br>West Brooklyn<br>White Oak Estates<br>Woodhaven Utilities                                                                                                                                                                                  |

# Table A.2 Active Public Water Systems in the Rock River Region (2010)

| Ogle County<br>Byron<br>Creston<br>Davis Junction<br>Forreston<br>Hillcrest<br>Knolls Edge Subd<br>Leaf River                                                                                                                                                                                                                       | Lost Lake Utility District<br>Mt Morris<br>Mt Morris Estates MHP<br>Nordic Woods Subd<br>Oregon<br>Polo<br>Rochelle                                                                                                                                  | Rockvale Corporation<br>Rolling Green Estates MHP<br>Rolling Meadows MHP<br>Stillman Valley<br>Woodlawn Utility Corp                                                                                                                                                    |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rock Island County<br>Air View MHP<br>Andalusia<br>Arrow Head Ranch<br>Candle Light Community MHP<br>Carbon Cliff<br>Cedar Brook Estates Subd<br>Cherry Dale Subd<br>Chigakwa Park Estates Subd<br>Clover Leaf Village MHP<br>Coal Valley<br>Cordova<br>Coyne Center Coop<br>Croppers 1st, 4th, & 5th Addns<br>East Lawn Water Assn | East Moline<br>Eberts 3rd Addition<br>Edgington Water District<br>Evergreen Village Subd<br>Fairacres Assn<br>Falcon Farms MHP<br>Hampton<br>Hidden Meadows<br>Hillsdale MHP<br>Milan<br>Moline<br>Paradise Manor MHP<br>Port Byron<br>Rainbow Ridge | Rapids City<br>Reynolds<br>Ridgewood Ledges Water Assn<br>River Oaks MHP<br>Rock Island<br>Rock Island Arsenal<br>Silvis<br>Silvis Heights Water Corp<br>Suburban Heights Subd<br>Tower Ridge Subd<br>Whispering Hills MHP<br>Winding Creek Estates<br>Woodland A&B MHP |  |  |
| Cedarville<br>Dakota<br>Davis<br>Freeport                                                                                                                                                                                                                                                                                           | German Valley<br>Lena<br>Orangeville<br>Rock City                                                                                                                                                                                                    | Stephenson Mobile Est. MHP<br>Timber Ridge MHP<br>Utilities Inc - Northern Hills<br>Utilities Co<br>Winslow                                                                                                                                                             |  |  |
| Whiteside County<br>Albany<br>Country Acres MHP<br>Erie<br>Fulton                                                                                                                                                                                                                                                                   | Illinois American - Sterling<br>Lyndon<br>Morrison<br>Prophetstown                                                                                                                                                                                   | Rock Falls<br>Tampico                                                                                                                                                                                                                                                   |  |  |
| Winnebago County<br>Anns MHP<br>Bill Mar Heights MHP<br>Bradley Heights Subd<br>Cherry Valley<br>Clarks MHP<br>Durand<br>Family Manufactured Home<br>Community, LLC<br>Forest View MHP<br>Great Oaks & Beacon Hills Apts                                                                                                            | Larchmont Subd<br>Legend Lakes Water Assn<br>Loves Park<br>Mancuso Village Park MHP<br>Maryville Farm Campus<br>North Park PWD<br>Otter Creek Lake Utility Dist<br>Pecatonica<br>Phil-Aire Estates MHP                                               | Riverview MHP<br>Rockford<br>Rockton<br>Sheridan Grove Water System<br>Six Oaks MHP<br>Timber Creek MHP<br>Utilities Inc - Coventry Creek<br>Subd<br>Utilities Inc - Coventry Hills<br>Utilities Inc<br>Utilities Inc - Westlake Utilities<br>Inc.                      |  |  |
| Green Meadow Estates Of<br>Rockford<br>Illinois American - South Beloit                                                                                                                                                                                                                                                             | Prairie Road Pump Company<br>Rainbow Lane MHP                                                                                                                                                                                                        | Wildwood Utility Co<br>Winnebago                                                                                                                                                                                                                                        |  |  |

| Table A.3 Historical | Values of Dependent a | nd Independent Va | ariables for Domina | ant Systems |
|----------------------|-----------------------|-------------------|---------------------|-------------|
|                      |                       |                   |                     | ~           |

| Public Water<br>System | Year | Demand<br>(Mgd) | Demand<br>(gpcd) | Max.<br>Summer T<br>(°F) <sup>1</sup> | Summer<br>Precip.<br>(inches) <sup>2</sup> | Employment-<br>to-Population<br>Ratio | Marginal<br>Price (2010\$) | Median<br>Household<br>Income<br>(2010\$) |
|------------------------|------|-----------------|------------------|---------------------------------------|--------------------------------------------|---------------------------------------|----------------------------|-------------------------------------------|
| <b>Boone County</b>    |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Belvidere              | 1990 | 3.53            | 227.6            | 76.1                                  | 22.8                                       | 0.513                                 | 1.01                       | 49,619                                    |
| Belvidere              | 1995 | 3.13            | 177.1            | 79.6                                  | 18.2                                       | 0.521                                 | 1.19                       | 50,877                                    |
| Belvidere              | 2000 | 3.24            | 155.6            | 76.7                                  | 22.9                                       | 0.524                                 | 1.42                       | 53,965                                    |
| Belvidere              | 2005 | 3.66            | 155.6            | 80.4                                  | 12.4                                       | 0.415                                 | 1.42                       | 50,048                                    |
| Belvidere              | 2010 | 2.99            | 116.1            | 79.2                                  | 24.1                                       | 0.415                                 | 2.10                       | 42,529                                    |
| Bureau County          |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Depue                  | 1990 | 0.19            | 111.4            | 77.4                                  | 30.5                                       | 0.021                                 |                            |                                           |
| Depue                  | 1995 | 0.21            | 119.0            | 79.6                                  | 19.6                                       | 0.020                                 |                            |                                           |
| Depue                  | 2000 | 0.17            | 96.5             | 79.5                                  | 20.9                                       | 0.028                                 |                            | 42,778                                    |
| Depue                  | 2005 | 0.27            | 149.6            | 82.7                                  | 10.9                                       | 0.020                                 | 4.33                       | 39,480                                    |
| Depue                  | 2010 | 0.20            | 104.5            | 81.7                                  | 26.0                                       | 0.014                                 | 4.25                       | 37,865                                    |
| Princeton              | 1990 | 1.17            | 162.6            | 77.4                                  | 30.5                                       | 0.848                                 | 4.12                       | 46,097                                    |
| Princeton              | 1995 | 1.26            | 175.0            | 79.6                                  | 19.6                                       | 0.848                                 | 3.62                       | 49,258                                    |
| Princeton              | 2000 | 1.26            | 175.0            | 79.5                                  | 20.9                                       | 0.813                                 | 4.22                       | 52,242                                    |
| Princeton              | 2005 | 1.07            | 140.1            | 82.7                                  | 10.9                                       | 0.741                                 | 3.00                       | 47,146                                    |
| Princeton              | 2010 | 0.95            | 124.2            | 81.7                                  | 26.0                                       | 0.677                                 | 4.01                       | 44,339                                    |
| Spring Valley          | 1990 | 0.61            | 116.2            | 77.4                                  | 30.5                                       | 0.239                                 |                            | 40,778                                    |
| Spring Valley          | 1995 | 0.66            | 124.9            | 79.6                                  | 19.6                                       | 0.326                                 |                            | 46,255                                    |
| SpringValley           | 2000 | 0.65            | 119.8            | 79.5                                  | 20.9                                       | 0.362                                 |                            | 51,038                                    |
| Spring Valley          | 2005 | 0.69            | 128.1            | 82.7                                  | 10.9                                       | 0.576                                 | 1.62                       | 47,625                                    |
| Spring Valley          | 2010 | 0.85            | 157.8            | 81.7                                  | 26.0                                       | 0.522                                 | 2.45                       | 46,107                                    |
| Walnut                 | 1990 | 0.22            | 143.4            | 77.4                                  | 30.5                                       | 0.414                                 |                            |                                           |
| Walnut                 | 1995 | 0.22            | 149.3            | 79.6                                  | 19.6                                       | 0.414                                 |                            |                                           |
| Walnut                 | 2000 | 0.17            | 116.2            | 79.5                                  | 20.9                                       | 0.349                                 |                            | 52,949                                    |
| Walnut                 | 2005 | 0.16            | 109.1            | 82.7                                  | 10.9                                       | 0.365                                 | 2.45                       | 51,644                                    |
| Walnut                 | 2010 | 0.15            | 100.4            | 81.7                                  | 26.0                                       | 0.300                                 | 2.67                       | 51,818                                    |
| <b>Carroll County</b>  |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Lanark                 | 1990 | 0.21            | 146.8            | 77.7                                  | 26.8                                       | 0.524                                 |                            |                                           |
| Lanark                 | 1995 | 0.21            | 142.2            | 80.4                                  | 20.7                                       | 0.499                                 |                            |                                           |
| Lanark                 | 2000 | 0.22            | 144.2            | 78.8                                  | 30.1                                       | 0.438                                 |                            | 46,727                                    |
| Lanark                 | 2005 | 0.19            | 114.3            | 82.2                                  | 12.4                                       | 0.401                                 |                            | 44,760                                    |
| Lanark                 | 2010 | 0.17            | 108.9            | 81.0                                  | 32.3                                       | 0.498                                 | 6.00                       | 44,276                                    |
| Mount Carroll          | 1990 | 0.17            | 88.1             | 77.7                                  | 26.8                                       | 0.292                                 |                            |                                           |
| Mount Carroll          | 1995 | 0.20            | 112.9            | 80.4                                  | 20.7                                       | 0.288                                 |                            |                                           |
| Mount Carroll          | 2000 | 0.21            | 114.7            | 78.8                                  | 30.1                                       | 0.350                                 | 3.36                       | 45,886                                    |
| Mount Carroll          | 2005 | 0.18            | 95.4             | 82.2                                  | 12.4                                       | 0.279                                 | 2.86                       | 43,694                                    |
| Mount Carroll          | 2010 | 0.14            | 79.3             | 81.0                                  | 32.3                                       | 0.262                                 | 4.80                       | 43,015                                    |
| Savanna                | 1990 | 0.64            | 140.0            | 77.7                                  | 26.8                                       | 0.306                                 |                            | 31,392                                    |
| Savanna                | 1995 | 0.67            | 184.8            | 80.4                                  | 20.7                                       | 0.318                                 |                            | 33,655                                    |
| Savanna                | 2000 | 0.49            | 139.5            | 78.8                                  | 30.1                                       | 0.370                                 |                            | 35,776                                    |
| Savanna                | 2005 | 0.46            | 127.5            | 82.2                                  | 12.4                                       | 0.471                                 |                            | 35,528                                    |
| Savanna                | 2010 | 0.42            | 135.6            | 81.0                                  | 32.3                                       | 0.429                                 | 2.07                       | 36,141                                    |
| Public Water<br>System | Year | Demand<br>(Mgd) | Demand<br>(gpcd) | Max.<br>Summer T<br>(°F) <sup>1</sup> | Summer<br>Precip.<br>(inches) <sup>2</sup> | Employment-<br>to-Population<br>Ratio | Marginal<br>Price (2010\$) | Median<br>Household<br>Income<br>(2010\$) |
|------------------------|------|-----------------|------------------|---------------------------------------|--------------------------------------------|---------------------------------------|----------------------------|-------------------------------------------|
| Henry County           |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Cambridge              | 1990 | 0.26            | 118.9            | 78.3                                  | 29.8                                       | 0.171                                 |                            |                                           |
| Cambridge              | 1995 | 0.32            | 149.0            | 80.1                                  | 21.7                                       | 0.169                                 | 2.91                       |                                           |
| Cambridge              | 2000 | 0.23            | 100.9            | 79.5                                  | 20.2                                       | 0.183                                 | 2.62                       | 50,855                                    |
| Cambridge              | 2005 | 0.21            | 100.5            | 82.8                                  | 10.9                                       | 0.190                                 | 2.87                       | 50,862                                    |
| Cambridge              | 2010 | 0.20            | 94.1             | 81.5                                  | 27.7                                       | 0.152                                 | 2.56                       | 52,016                                    |
| Colona East            | 1990 | 0.15            | 67.4             | 78.3                                  | 29.8                                       | 0.063                                 | 2.08                       |                                           |
| Colona East            | 1995 | 0.15            | 66.7             | 80.1                                  | 21.7                                       | 0.076                                 | 1.83                       |                                           |
| Colona East            | 2000 | 0.14            | 55.8             | 79.5                                  | 20.2                                       | 0.092                                 | 1.65                       | 54,593                                    |
| Colona East            | 2005 | 0.21            | 87.3             | 82.8                                  | 10.9                                       | 0.096                                 | 1.40                       | 50,398                                    |
| Colona East            | 2010 | 0.19            | 78.1             | 81.5                                  | 27.7                                       | 0.122                                 | 1.25                       | 48,348                                    |
| Galva                  | 1990 | 0.45            | 149.6            | 78.3                                  | 29.8                                       | 0.274                                 |                            | 34,590                                    |
| Galva                  | 1995 | 0.27            | 98.7             | 80.1                                  | 21.7                                       | 0.255                                 |                            | 40,830                                    |
| Galva                  | 2000 | 0.29            | 98.6             | 79.5                                  | 20.2                                       | 0.292                                 |                            | 46,162                                    |
| Galva                  | 2005 | 0.38            | 137.3            | 82.8                                  | 10.9                                       | 0.261                                 | 2.02                       | 43,102                                    |
| Galva                  | 2010 | 0.26            | 93.7             | 81.5                                  | 27.7                                       | 0.281                                 | 1.80                       | 41,750                                    |
| Geneseo                | 1990 | 0.65            | 105.8            | 78.3                                  | 29.8                                       | 0.847                                 | 3.93                       | 46,950                                    |
| Geneseo                | 1995 | 0.65            | 107.3            | 80.1                                  | 21.7                                       | 0.815                                 | 3.45                       | 50,415                                    |
| Geneseo                | 2000 | 0.66            | 106.7            | 79.5                                  | 20.2                                       | 0.886                                 | 3.11                       | 53,650                                    |
| Geneseo                | 2005 | 0.71            | 108.5            | 82.8                                  | 10.9                                       | 0.944                                 | 2.84                       | 53,494                                    |
| Geneseo                | 2010 | 0.65            | 101.1            | 81.5                                  | 27.7                                       | 0.893                                 | 3.19                       | 54,583                                    |
| Kewanee                | 1990 | 1.47            | 102.8            | 78.3                                  | 29.8                                       | 0.399                                 | 2.67                       | 31,973                                    |
| Kewanee                | 1995 | 1.63            | 113.3            | 80.1                                  | 21.7                                       | 0.399                                 | 3.13                       | 35,896                                    |
| Kewanee                | 2000 | 1.57            | 108.5            | 79.5                                  | 20.2                                       | 0.444                                 | 2.82                       | 39,349                                    |
| Kewanee                | 2005 | 1.55            | 107.5            | 82.8                                  | 10.9                                       | 0.345                                 | 4.88                       | 37,989                                    |
| Kewanee                | 2010 | 1.89            | 132.0            | 81.5                                  | 27.7                                       | 0.267                                 | 6.55                       | 37,813                                    |
| Jo Daviess County      |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| East Dubuque           | 1990 | 0.25            | 122.7            | 76.4                                  | 20.0                                       | 0.724                                 | 2.83                       |                                           |
| East Dubuque           | 1995 | 0.24            | 124.7            | 79.1                                  | 17.7                                       | 0.771                                 | 2.49                       |                                           |
| East Dubuque           | 2000 | 0.22            | 109.1            | 77.0                                  | 21.1                                       | 0.809                                 | 3.86                       | 46,199                                    |
| East Dubuque           | 2005 | 0.20            | 100.4            | 80.1                                  | 17.4                                       | 0.600                                 | 3.62                       | 42,737                                    |
| East Dubuque           | 2010 | 0.20            | 99.3             | 79.5                                  | 32.8                                       | 0.718                                 | 3.74                       | 41,071                                    |
| Galena                 | 1990 | 0.81            | 208.4            | 76.4                                  | 20.0                                       | 0.821                                 |                            | 37,405                                    |
| Galena                 | 1995 | 0.64            | 165.3            | 79.1                                  | 17.7                                       | 0.836                                 |                            | 42,820                                    |
| Galena                 | 2000 | 0.83            | 240.1            | 77.0                                  | 21.1                                       | 1.033                                 |                            | 47,521                                    |
| Galena                 | 2005 | 0.67            | 194.0            | 80.1                                  | 17.4                                       | 1.136                                 | 4.04                       | 47,173                                    |
| Galena                 | 2010 | 0.43            | 124.6            | 79.5                                  | 32.8                                       | 1.033                                 | 4.72                       | 47,974                                    |
| Stockton               | 1990 | 0.52            | 274.4            | 76.4                                  | 20.0                                       | 0.790                                 | 0.75                       |                                           |
| Stockton               | 1995 | 0.60            | 314.4            | 79.1                                  | 17.7                                       | 0.754                                 | 0.66                       |                                           |
| Stockton               | 2000 | 0.47            | 242.0            | 77.0                                  | 21.1                                       | 0.592                                 | 1.90                       | 47,281                                    |
| Stockton               | 2005 | 0.33            | 169.9            | 80.1                                  | 17.4                                       | 0.563                                 | 2.47                       | 40,977                                    |
| Stockton               | 2010 | 0.36            | 195.8            | 79.5                                  | 32.8                                       | 0.562                                 | 4.00                       | 37,113                                    |
| Lee County             |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Amboy                  | 1990 | 0.33            | 138.9            | 75.6                                  | 24.7                                       | 0.200                                 |                            |                                           |
| Amboy                  | 1995 | 0.36            | 144.6            | 77.5                                  | 19.4                                       | 0.202                                 |                            |                                           |

| Public Water<br>System    | Year | Demand<br>(Mgd) | Demand<br>(gpcd) | Max.<br>Summer T<br>(°F) <sup>1</sup> | Summer<br>Precip.<br>(inches) <sup>2</sup> | Employment-<br>to-Population<br>Ratio | Marginal<br>Price (2010\$) | Median<br>Household<br>Income<br>(2010\$) |
|---------------------------|------|-----------------|------------------|---------------------------------------|--------------------------------------------|---------------------------------------|----------------------------|-------------------------------------------|
| Amboy                     | 2000 | 0.39            | 145.8            | 75.2                                  | 25.7                                       | 0.241                                 |                            | 47,714                                    |
| Amboy                     | 2005 | 0.48            | 183.2            | 80.2                                  | 10.7                                       | 0.220                                 | 7.20                       | 44,677                                    |
| Amboy                     | 2010 | 0.38            | 147.1            | 78.4                                  | 23.3                                       | 0.222                                 | 8.45                       | 43,378                                    |
| Ashton                    | 1990 | 0.24            | 222.4            | 75.6                                  | 24.7                                       | 0.442                                 | 2.42                       |                                           |
| Ashton                    | 1995 | 0.27            | 240.9            | 77.5                                  | 19.4                                       | 0.473                                 | 2.12                       |                                           |
| Ashton                    | 2000 | 0.28            | 249.7            | 75.2                                  | 25.7                                       | 0.541                                 | 1.91                       | 52,513                                    |
| Ashton                    | 2005 | 0.14            | 120.2            | 80.2                                  | 10.7                                       | 0.550                                 | 2.03                       | 47,741                                    |
| Ashton                    | 2010 | 0.16            | 143.4            | 78.4                                  | 23.3                                       | 0.669                                 | 2.35                       | 45,192                                    |
| Dixon                     | 1990 | 2.33            | 153.0            | 75.6                                  | 24.7                                       | 0.550                                 |                            | 42,040                                    |
| Dixon                     | 1995 | 2.52            | 163.5            | 77.5                                  | 19.4                                       | 0.551                                 |                            | 44,620                                    |
| Dixon                     | 2000 | 2.41            | 148.4            | 75.2                                  | 25.7                                       | 0.561                                 |                            | 47,099                                    |
| Dixon                     | 2005 | 2.33            | 141.0            | 80.2                                  | 10.7                                       | 0.602                                 |                            | 42,477                                    |
| Dixon                     | 2010 | 2.30            | 142.2            | 78.4                                  | 23.3                                       | 0.518                                 | 2.94                       | 39,924                                    |
| Ogle County               |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Byron                     | 1990 | 0.48            | 154.9            | 76.7                                  | 21.2                                       | 0.922                                 |                            |                                           |
| Byron                     | 1995 | 0.55            | 210.1            | 78.6                                  | 20.2                                       | 0.922                                 |                            |                                           |
| Byron                     | 2000 | 0.69            | 168.8            | 77.5                                  | 24.0                                       | 0.879                                 | 1.38                       | 48,737                                    |
| Byron                     | 2005 | 0.72            | 175.8            | 80.5                                  | 12.5                                       | 0.730                                 | 4.49                       | 50,711                                    |
| Byron                     | 2010 | 0.58            | 144.2            | 78.6                                  | 20.2                                       | 0.726                                 | 5.00                       | 53,355                                    |
| Mt Morris                 | 1990 | 0.30            | 97.9             | 76.7                                  | 21.2                                       | 0.761                                 |                            | 43,852                                    |
| Mt Morris                 | 1995 | 0.32            | 105.0            | 78.6                                  | 20.2                                       | 0.761                                 | 2.66                       | 49,474                                    |
| Mt Morris                 | 2000 | 0.32            | 108.2            | 77.5                                  | 24.0                                       | 0.706                                 | 3.07                       | 54,405                                    |
| Mt Morris                 | 2005 | 0.35            | 104.9            | 80.5                                  | 12.5                                       | 0.735                                 | 2.64                       | 50,456                                    |
| Mt Morris                 | 2010 | 0.30            | 95.2             | 78.6                                  | 20.2                                       | 0.397                                 | 3.77                       | 48,594                                    |
| Oregon                    | 1990 | 0.43            | 119.0            | 76.7                                  | 21.2                                       | 0.590                                 |                            | 43,215                                    |
| Oregon                    | 1995 | 0.41            | 106.3            | 78.6                                  | 20.2                                       | 0.592                                 |                            | 44,447                                    |
| Oregon                    | 2000 | 0.41            | 132.8            | 77.5                                  | 24.0                                       | 0.725                                 | 2.50                       | 45,861                                    |
| Oregon                    | 2005 | 0.42            | 101.4            | 80.5                                  | 12.5                                       | 0.652                                 | 2.13                       | 46,373                                    |
| Oregon                    | 2010 | 0.37            | 90.9             | 78.6                                  | 20.2                                       | 0.576                                 | 2.51                       | 47,808                                    |
| Polo                      | 1990 | 0.25            | 97.6             | 76.7                                  | 21.2                                       | 0.370                                 | 1.32                       | 41,940                                    |
| Polo                      | 1995 | 0.27            | 108.8            | 78.6                                  | 20.2                                       | 0.374                                 | 1.15                       | 46,807                                    |
| Polo                      | 2000 | 0.26            | 103.2            | 77.5                                  | 24.0                                       | 0.327                                 | 1.04                       | 51,114                                    |
| Polo                      | 2005 | 0.26            | 105.2            | 80.5                                  | 12.5                                       | 0.290                                 | 2.63                       | 49,572                                    |
| Polo                      | 2010 | 0.20            | 82.3             | 78.6                                  | 20.2                                       | 0.280                                 | 3.34                       | 49,519                                    |
| Rochelle                  | 1990 | 3.27            | 371.2            | 76.7                                  | 21.2                                       | 0.580                                 |                            | 45,775                                    |
| Rochelle                  | 1995 | 2.92            | 317.4            | 78.6                                  | 20.2                                       | 0.581                                 |                            | 47,849                                    |
| Rochelle                  | 2000 | 3.14            | 323.2            | 77.5                                  | 24.0                                       | 0.579                                 |                            | 49,961                                    |
| Rochelle                  | 2005 | 2.01            | 209.0            | 80.5                                  | 12.5                                       | 0.553                                 |                            | 47,246                                    |
| Rochelle                  | 2010 | 2.82            | 291.1            | 78.6                                  | 20.2                                       | 0.514                                 | 1.93                       | 46,250                                    |
| <b>Rock Island County</b> | Ŷ    |                 |                  |                                       |                                            |                                       |                            |                                           |

| East Moline | 1990 | 3.70 | 176.8 | 78.9 | 28.3 | 0.468 |      | 41,243 |
|-------------|------|------|-------|------|------|-------|------|--------|
| East Moline | 1995 | 3.66 | 177.6 | 80.7 | 17.4 | 0.468 |      | 44,309 |
| East Moline | 2000 | 4.61 | 225.6 | 80.0 | 22.8 | 0.454 |      | 47,169 |
| East Moline | 2005 | 4.29 | 208.3 | 83.4 | 9.5  | 0.412 |      | 44,253 |
| East Moline | 2010 | 4.41 | 205.0 | 81.4 | 29.6 | 0.336 | 4.89 | 43,037 |
| Milan       | 1990 | 0.78 | 120.0 | 78.9 | 28.3 | 0.884 | 2.25 | 41,707 |

| Public Water<br>System | Year | Demand<br>(Mgd) | Demand<br>(gpcd) | Max.<br>Summer T<br>(°F) <sup>1</sup> | Summer<br>Precip.<br>(inches) <sup>2</sup> | Employment-<br>to-Population<br>Ratio | Marginal<br>Price (2010\$) | Median<br>Household<br>Income<br>(2010\$) |
|------------------------|------|-----------------|------------------|---------------------------------------|--------------------------------------------|---------------------------------------|----------------------------|-------------------------------------------|
| Milan                  | 1995 | 0.91            | 157.7            | 80.7                                  | 17.4                                       | 0.884                                 | 2.14                       | 43,525                                    |
| Milan                  | 2000 | 0.52            | 86.3             | 80.0                                  | 22.8                                       | 0.838                                 | 2.09                       | 45,392                                    |
| Milan                  | 2005 | 0.56            | 111.3            | 83.4                                  | 9.5                                        | 0.946                                 | 1.99                       | 41,720                                    |
| Milan                  | 2010 | 0.51            | 102.9            | 81.4                                  | 29.6                                       | 1.054                                 | 2.12                       | 39,872                                    |
| Moline                 | 1990 | 5.31            | 122.0            | 78.9                                  | 28.3                                       | 0.556                                 | 3.08                       | 45,853                                    |
| Moline                 | 1995 | 5.49            | 120.6            | 80.7                                  | 17.4                                       | 0.556                                 | 4.05                       | 46,935                                    |
| Moline                 | 2000 | 5.37            | 118.5            | 80.0                                  | 22.8                                       | 0.596                                 | 3.55                       | 48,254                                    |
| Moline                 | 2005 | 5.30            | 120.4            | 83.4                                  | 9.5                                        | 0.573                                 | 4.26                       | 48,319                                    |
| Moline                 | 2010 | 5.37            | 120.7            | 81.4                                  | 29.6                                       | 0.580                                 | 3.80                       | 49,459                                    |
| Rock Island            | 1990 | 4.73            | 99.5             | 78.9                                  | 28.3                                       | 0.419                                 | 3.03                       | 40,218                                    |
| Rock Island            | 1995 | 5.13            | 126.2            | 80.7                                  | 17.4                                       | 0.422                                 | 3.17                       | 37,387                                    |
| Rock Island            | 2000 | 5.21            | 130.8            | 80.0                                  | 22.8                                       | 0.409                                 | 3.17                       | 35,520                                    |
| Rock Island            | 2005 | 5.49            | 141.9            | 83.4                                  | 9.5                                        | 0.492                                 | 2.90                       | 39,050                                    |
| Rock Island            | 2010 | 5.41            | 142.2            | 81.4                                  | 29.6                                       | 0.462                                 | 3.77                       | 42,613                                    |
| Silvis                 | 1990 | 0.63            | 103.7            | 78.9                                  | 28.3                                       | 0.275                                 |                            | 37,257                                    |
| Silvis                 | 1995 | 0.64            | 106.4            | 80.7                                  | 17.4                                       | 0.271                                 |                            | 41,983                                    |
| Silvis                 | 2000 | 0.41            | 59.5             | 80.0                                  | 22.8                                       | 0.264                                 |                            | 46,131                                    |
| Silvis                 | 2005 | 0.55            | 92.1             | 83.4                                  | 9.5                                        | 0.283                                 | 2.30                       | 42,400                                    |
| Silvis                 | 2010 | 0.60            | 82.0             | 81.4                                  | 29.6                                       | 0.336                                 | 4.02                       | 40,522                                    |
| Stephenson County      |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Cedarville             | 1990 | 0.07            | 88.2             | 76.4                                  | 20.0                                       | 0.099                                 |                            |                                           |
| Cedarville             | 1995 | 0.04            | 59.4             | 79.1                                  | 17.7                                       | 0.101                                 |                            |                                           |
| Cedarville             | 2000 | 0.06            | 83.1             | 77.0                                  | 21.1                                       | 0.102                                 | 2.50                       | 58,717                                    |
| Cedarville             | 2005 | 0.06            | 80.4             | 80.1                                  | 17.4                                       | 0.088                                 | 2.13                       | 58,027                                    |
| Cedarville             | 2010 | 0.08            | 114.2            | 79.5                                  | 32.8                                       | 0.104                                 | 2.05                       | 58,813                                    |
| Freeport               | 1990 | 4.50            | 172.4            | 76.4                                  | 20.0                                       | 0.655                                 |                            | 41,263                                    |
| Freeport               | 1995 | 4.22            | 162.9            | 79.1                                  | 17.7                                       | 0.708                                 | 1.94                       | 43,998                                    |
| Freeport               | 2000 | 3.22            | 117.1            | 77.0                                  | 21.1                                       | 0.655                                 | 2.08                       | 46,594                                    |
| Freeport               | 2005 | 3.22            | 121.7            | 80.1                                  | 17.4                                       | 0.597                                 | 1.96                       | 40,891                                    |
| Freeport               | 2010 | 2.92            | 113.2            | 79.5                                  | 32.8                                       | 0.500                                 | 2.01                       | 37,481                                    |
| Lena                   | 1990 | 0.23            | 90.2             | 76.4                                  | 20.0                                       | 0.295                                 | 2.67                       | 47,327                                    |
| Lena                   | 1995 | 0.24            | 84.8             | 79.1                                  | 17.7                                       | 0.295                                 | 2.34                       | 50,469                                    |
| Lena                   | 2000 | 0.25            | 87.7             | 77.0                                  | 21.1                                       | 0.345                                 | 2.24                       | 53,450                                    |
| Lena                   | 2005 | 0.28            | 107.8            | 80.1                                  | 17.4                                       | 0.346                                 | 2.02                       | 49,378                                    |
| Lena                   | 2010 | 0.27            | 96.7             | 79.5                                  | 32.8                                       | 0.373                                 | 2.60                       | 47,399                                    |
| Whiteside County       |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| Fulton                 | 1990 | 0.30            | 77.9             | 77.9                                  | 15.4                                       | 0.354                                 |                            | 42,977                                    |
| Fulton                 | 1995 | 0.42            | 111.5            | 80.3                                  | 21.3                                       | 0.354                                 |                            | 45,971                                    |
| Fulton                 | 2000 | 0.43            | 106.9            | 79.8                                  | 24.4                                       | 0.390                                 |                            | 48,791                                    |
| Fulton                 | 2005 | 0.35            | 87.7             | 83.2                                  | 13.2                                       | 0.385                                 | 3.93                       | 49,589                                    |
| Fulton                 | 2010 | 0.32            | 79.5             | 79.9                                  | 24.6                                       | 0.418                                 | 3.34                       | 51,314                                    |
| IL Amer - Sterling     | 1990 | 2.64            | 176.3            | 77.9                                  | 15.4                                       | 0.665                                 |                            | 42,727                                    |
| IL Amer - Sterling     | 1995 | 2.89            | 179.3            | 80.3                                  | 21.3                                       | 0.766                                 |                            | 46,282                                    |
| IL Amer - Sterling     | 2000 | 2.06            | 137.4            | 79.8                                  | 24.4                                       | 0.771                                 | 2.87                       | 49,549                                    |
| IL Amer - Sterling     | 2005 | 1.69            | 103.3            | 83.2                                  | 13.2                                       | 0.665                                 | 3.83                       | 43,423                                    |
| IL Amer - Sterling     | 2010 | 1.58            | 102.0            | 79.9                                  | 24.6                                       | 0.570                                 | 4.82                       | 39,749                                    |
| 0                      |      |                 |                  |                                       |                                            |                                       |                            |                                           |

| Public Water<br>System | Year | Demand<br>(Mgd) | Demand<br>(gpcd) | Max.<br>Summer T<br>(°F) <sup>1</sup> | Summer<br>Precip.<br>(inches) <sup>2</sup> | Employment-<br>to-Population<br>Ratio | Marginal<br>Price (2010\$) | Median<br>Household<br>Income<br>(2010\$) |
|------------------------|------|-----------------|------------------|---------------------------------------|--------------------------------------------|---------------------------------------|----------------------------|-------------------------------------------|
| Morrison               | 1990 | 0.85            | 194.6            | 77.9                                  | 15.4                                       | 0.570                                 |                            | 46,175                                    |
| Morrison               | 1995 | 0.74            | 165.1            | 80.3                                  | 21.3                                       | 0.570                                 |                            | 49,633                                    |
| Morrison               | 2000 | 0.57            | 127.7            | 79.8                                  | 24.4                                       | 0.551                                 |                            | 52,855                                    |
| Morrison               | 2005 | 0.54            | 123.1            | 83.2                                  | 13.2                                       | 0.480                                 |                            | 48,496                                    |
| Morrison               | 2010 | 0.50            | 111.9            | 79.9                                  | 24.6                                       | 0.397                                 | 4.29                       | 46,279                                    |
| Prophetstown           | 1990 | 0.22            | 104.4            | 77.9                                  | 15.4                                       | 0.515                                 |                            |                                           |
| Prophetstown           | 1995 | 0.22            | 120.9            | 80.3                                  | 21.3                                       | 0.515                                 |                            |                                           |
| Prophetstown           | 2000 | 0.22            | 112.4            | 79.8                                  | 24.4                                       | 0.571                                 |                            | 49,296                                    |
| Prophetstown           | 2005 | 0.27            | 123.9            | 83.2                                  | 13.2                                       | 0.495                                 | 1.68                       | 46,636                                    |
| Prophetstown           | 2010 | 0.19            | 87.3             | 79.9                                  | 24.6                                       | 0.374                                 | 2.00                       | 45,667                                    |
| Rock Falls             | 1990 | 1.08            | 112.0            | 77.9                                  | 15.4                                       | 0.353                                 |                            | 36,012                                    |
| Rock Falls             | 1995 | 1.14            | 126.2            | 80.3                                  | 21.3                                       | 0.353                                 |                            | 40,994                                    |
| Rock Falls             | 2000 | 1.30            | 133.8            | 79.8                                  | 24.4                                       | 0.419                                 |                            | 45,334                                    |
| Rock Falls             | 2005 | 1.14            | 117.7            | 83.2                                  | 13.2                                       | 0.411                                 | 2.08                       | 39,204                                    |
| Rock Falls             | 2010 | 0.97            | 100.0            | 79.9                                  | 24.6                                       | 0.336                                 | 2.85                       | 35,432                                    |
| Winnebago County       |      |                 |                  |                                       |                                            |                                       |                            |                                           |
| IL Amer - S Beloit     | 1990 | 0.68            | 166.7            | 77.0                                  | 26.9                                       | 0.747                                 |                            | 43.885                                    |
| IL Amer - S Beloit     | 1995 | 0.62            | 146.7            | 79.2                                  | 18.1                                       | 0.747                                 |                            | 49.657                                    |
| IL Amer - S Beloit     | 2000 | 0.57            | 94.8             | 77.2                                  | 30.8                                       | 0.699                                 | 3.34                       | 54.707                                    |
| IL Amer - S Beloit     | 2005 | 0.61            | 129.2            | 80.9                                  | 12.6                                       | 0.706                                 |                            | 51.077                                    |
| IL Amer - S Beloit     | 2010 | 0.77            | 98.1             | 79.6                                  | 25.2                                       | 0.364                                 | 3.43                       | 49.472                                    |
| Loves Park             | 1990 | 3.11            | 198.8            | 77.0                                  | 26.9                                       | 0.762                                 | 1.38                       | 51,912                                    |
| Loves Park             | 1995 | 3.16            | 180.9            | 79.2                                  | 18.1                                       | 0.762                                 | 1.61                       | 55,867                                    |
| Loves Park             | 2000 | 2.22            | 110.9            | 77.2                                  | 30.8                                       | 0.793                                 | 1.65                       | 59,544                                    |
| Loves Park             | 2005 | 3.42            | 150.4            | 80.9                                  | 12.6                                       | 0.515                                 | 2.08                       | 53,941                                    |
| Loves Park             | 2010 | 3.18            | 128.8            | 79.6                                  | 25.2                                       | 0.429                                 | 3.88                       | 50,901                                    |
| North Park PWD         | 1990 | 1.85            | 83.1             | 77.0                                  | 26.9                                       | 0.636                                 |                            |                                           |
| North Park PWD         | 1995 | 2.28            | 95.1             | 79.2                                  | 18.1                                       | 0.482                                 |                            |                                           |
| North Park PWD         | 2000 | 2.74            | 105.2            | 77.2                                  | 30.8                                       | 0.410                                 |                            |                                           |
| North Park PWD         | 2005 | 3.65            | 121.7            | 80.9                                  | 12.6                                       | 0.321                                 |                            |                                           |
| North Park PWD         | 2010 | 3.48            | 100.1            | 79.6                                  | 25.2                                       | 0.204                                 | 3.59                       | 37,886                                    |
| Rockford               | 1990 | 27.19           | 194.2            | 77.0                                  | 26.9                                       | 1.000                                 | 1.45                       | 47,137                                    |
| Rockford               | 1995 | 26.32           | 176.7            | 79.2                                  | 18.1                                       | 1.000                                 | 1.60                       | 47,956                                    |
| Rockford               | 2000 | 24.57           | 158.5            | 77.2                                  | 30.8                                       | 1.169                                 | 1.67                       | 49,078                                    |
| Rockford               | 2005 | 25.64           | 164.4            | 80.9                                  | 12.6                                       | 1.008                                 | 1.80                       | 42,329                                    |
| Rockford               | 2010 | 20.22           | 124.6            | 79.6                                  | 25.2                                       | 0.939                                 | 2.11                       | 38,157                                    |
| Rockton                | 1990 | 0.54            | 184.2            | 77.0                                  | 26.9                                       | 0.636                                 | 2.40                       | 58,463                                    |
| Rockton                | 1995 | 0.71            | 166.2            | 79.2                                  | 18.1                                       | 0.482                                 | 2.11                       | 67,559                                    |
| Rockton                | 2000 | 0.69            | 141.8            | 77.2                                  | 30.8                                       | 0.410                                 | 1.90                       | 75,411                                    |
| Rockton                | 2005 | 0.91            | 116.1            | 80.9                                  | 12.6                                       | 0.321                                 | 1.62                       | 75,922                                    |
| Rockton                | 2010 | 0.81            | 108.4            | 79.6                                  | 25.2                                       | 0.204                                 | 1.67                       | 78,023                                    |

 $^1Average$  of monthly maximum summer (May-September) T (°F)  $^2Total$  summer (May-September) precipitation (inches)

| Public Water System        | 2010   | 2015   | 2020   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   | 2055   | 2060   |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| <b>Boone County</b>        |        |        |        |        |        |        |        |        |        |        |        |
| Belvidere                  | 25,720 | 27,802 | 29,883 | 31,965 | 34,046 | 36,128 | 38,210 | 40,291 | 42,373 | 44,454 | 46,536 |
| Boone County Residual      | 9,597  | 10,230 | 10,902 | 11,218 | 11,560 | 11,903 | 12,245 | 12,588 | 12,930 | 13,273 | 13,615 |
| Boone County Total         | 35,317 | 38,031 | 40,785 | 43,182 | 45,607 | 48,031 | 50,455 | 52,879 | 55,303 | 57,727 | 60,151 |
| Bureau County              |        |        |        |        |        |        |        |        |        |        |        |
| Depue                      | 1,905  | 1,905  | 1,905  | 1,905  | 1,905  | 1,905  | 1,905  | 1,905  | 1,905  | 1,905  | 1,905  |
| Princeton                  | 7,660  | 7,714  | 7,768  | 7,822  | 7,876  | 7,930  | 7,984  | 8,038  | 8,092  | 8,146  | 8,200  |
| Spring Valley              | 5,398  | 5,425  | 5,453  | 5,480  | 5,508  | 5,535  | 5,562  | 5,590  | 5,617  | 5,645  | 5,672  |
| Walnut                     | 1,491  | 1,491  | 1,491  | 1,491  | 1,491  | 1,491  | 1,491  | 1,491  | 1,491  | 1,491  | 1,491  |
| Bureau County Residual     | 8,943  | 8,943  | 8,943  | 8,943  | 8,943  | 8,943  | 8,943  | 8,943  | 8,943  | 8,943  | 8,943  |
| Bureau County Total        | 25,397 | 25,478 | 25,560 | 25,641 | 25,723 | 25,804 | 25,885 | 25,967 | 26,048 | 26,130 | 26,211 |
| Carroll County             |        |        |        |        |        |        |        |        |        |        |        |
| Lanark                     | 1,598  | 1,598  | 1,598  | 1,598  | 1,598  | 1,598  | 1,598  | 1,598  | 1,598  | 1,598  | 1,598  |
| Mount Carroll              | 1,742  | 1,742  | 1,742  | 1,742  | 1,742  | 1,742  | 1,742  | 1,742  | 1,742  | 1,742  | 1,742  |
| Savanna                    | 3,122  | 3,122  | 3,122  | 3,122  | 3,122  | 3,122  | 3,122  | 3,122  | 3,122  | 3,122  | 3,122  |
| Carroll County Residual    | 3,024  | 3,024  | 3,024  | 3,024  | 3,024  | 3,024  | 3,024  | 3,024  | 3,024  | 3,024  | 3,024  |
| Carroll County Total       | 9,486  | 9,486  | 9,486  | 9,486  | 9,486  | 9,486  | 9,486  | 9,486  | 9,486  | 9,486  | 9,486  |
| Henry County               |        |        |        |        |        |        |        |        |        |        |        |
| Cambridge                  | 2,108  | 2,108  | 2,108  | 2,108  | 2,108  | 2,108  | 2,108  | 2,108  | 2,108  | 2,108  | 2,108  |
| Colona East                | 2,473  | 2,473  | 2,473  | 2,473  | 2,473  | 2,473  | 2,473  | 2,473  | 2,473  | 2,473  | 2,473  |
| Galva                      | 2,779  | 2,779  | 2,779  | 2,779  | 2,779  | 2,779  | 2,779  | 2,779  | 2,779  | 2,779  | 2,779  |
| Geneseo                    | 6,400  | 6,500  | 6,601  | 6,701  | 6,801  | 6,902  | 7,002  | 7,102  | 7,202  | 7,303  | 7,403  |
| Kewanee                    | 14,350 | 14,350 | 14,350 | 14,350 | 14,350 | 14,350 | 14,350 | 14,350 | 14,350 | 14,350 | 14,350 |
| Henry County Residual      | 12,437 | 12,437 | 12,437 | 12,437 | 12,437 | 12,437 | 12,437 | 12,437 | 12,437 | 12,437 | 12,437 |
| Henry County Total         | 40,547 | 40,647 | 40,748 | 40,848 | 40,948 | 41,049 | 41,149 | 41,249 | 41,349 | 41,450 | 41,550 |
| Jo Daviess County          |        |        |        |        |        |        |        |        |        |        |        |
| East Dubuque               | 1,970  | 1,970  | 1,970  | 1,970  | 1,970  | 1,970  | 1,970  | 1,970  | 1,970  | 1,970  | 1,970  |
| Galena                     | 3,461  | 3,461  | 3,461  | 3,461  | 3,461  | 3,461  | 3,461  | 3,461  | 3,461  | 3,461  | 3,461  |
| Stockton                   | 1,862  | 1,862  | 1,862  | 1,862  | 1,862  | 1,862  | 1,862  | 1,862  | 1,862  | 1,862  | 1,862  |
| Jo Daviess County Residual | 10,376 | 10,376 | 10,376 | 10,376 | 10,376 | 10,376 | 10,376 | 10,376 | 10,376 | 10,376 | 10,376 |

# Table A.4 Allocation of Future Population Served to Water Supply Systems (CT, LRI, and MRI Scenarios)

| Public Water System         | 2010    | 2015    | 2020    | 2025    | 2030    | 2035    | 2040    | 2045    | 2050    | 2055    | 2060    |
|-----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Jo Daviess County Total     | 17,669  | 17,669  | 17,669  | 17,669  | 17,669  | 17,669  | 17,669  | 17,669  | 17,669  | 17,669  | 17,669  |
| Lee County                  |         |         |         |         |         |         |         |         |         |         |         |
| Amboy                       | 2,600   | 2,600   | 2,600   | 2,600   | 2,600   | 2,600   | 2,600   | 2,600   | 2,600   | 2,600   | 2,600   |
| Ashton                      | 1,100   | 1,100   | 1,100   | 1,100   | 1,100   | 1,100   | 1,100   | 1,100   | 1,100   | 1,100   | 1,100   |
| Dixon                       | 16,200  | 16,200  | 16,200  | 16,200  | 16,200  | 16,200  | 16,200  | 16,200  | 16,200  | 16,200  | 16,200  |
| Lee County Residual         | 11,293  | 11,501  | 11,708  | 11,916  | 12,123  | 12,331  | 12,538  | 12,746  | 12,953  | 13,161  | 13,368  |
| Lee County Total            | 31,193  | 31,401  | 31,608  | 31,816  | 32,023  | 32,231  | 32,438  | 32,646  | 32,853  | 33,061  | 33,268  |
| Ogle County                 |         |         |         |         |         |         |         |         |         |         |         |
| Byron                       | 4,000   | 4,293   | 4,586   | 4,878   | 5,171   | 5,464   | 5,757   | 6,050   | 6,342   | 6,635   | 6,928   |
| Mt Morris                   | 3,100   | 3,100   | 3,100   | 3,100   | 3,100   | 3,100   | 3,100   | 3,100   | 3,100   | 3,100   | 3,100   |
| Oregon                      | 4,100   | 4,100   | 4,100   | 4,100   | 4,100   | 4,100   | 4,100   | 4,100   | 4,100   | 4,100   | 4,100   |
| Polo                        | 2,485   | 2,485   | 2,485   | 2,485   | 2,485   | 2,485   | 2,485   | 2,485   | 2,485   | 2,485   | 2,485   |
| Rochelle                    | 9,700   | 9,805   | 9,910   | 10,016  | 10,121  | 10,226  | 10,331  | 10,436  | 10,542  | 10,647  | 10,752  |
| Ogle County Residual        | 10,049  | 10,112  | 10,212  | 10,310  | 10,409  | 10,508  | 10,607  | 10,706  | 10,805  | 10,904  | 11,003  |
| Ogle County Total           | 33,434  | 33,895  | 34,393  | 34,889  | 35,386  | 35,883  | 36,380  | 36,877  | 37,374  | 37,871  | 38,368  |
| <b>Rock Island County</b>   |         |         |         |         |         |         |         |         |         |         |         |
| East Moline                 | 21,531  | 21,705  | 21,879  | 22,052  | 22,226  | 22,400  | 22,574  | 22,748  | 22,921  | 23,095  | 23,269  |
| Milan                       | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   |
| Moline                      | 44,483  | 44,483  | 44,483  | 44,483  | 44,483  | 44,483  | 44,483  | 44,483  | 44,483  | 44,483  | 44,483  |
| Rock Island                 | 38,084  | 38,084  | 38,084  | 38,084  | 38,084  | 38,084  | 38,084  | 38,084  | 38,084  | 38,084  | 38,084  |
| Silvis                      | 7,269   | 7,269   | 7,269   | 7,269   | 7,269   | 7,269   | 7,269   | 7,269   | 7,269   | 7,269   | 7,269   |
| Rock Island County Residual | 19,578  | 20,027  | 20,477  | 20,926  | 21,375  | 21,825  | 22,274  | 22,723  | 23,172  | 23,622  | 24,072  |
| Rock Island County Total    | 135,945 | 136,568 | 137,191 | 137,814 | 138,437 | 139,061 | 139,684 | 140,307 | 140,930 | 141,553 | 142,177 |
| Stephenson County           |         |         |         |         |         |         |         |         |         |         |         |
| Cedarville                  | 719     | 719     | 719     | 719     | 719     | 719     | 719     | 719     | 719     | 719     | 719     |
| Freeport                    | 25,800  | 25,800  | 25,800  | 25,800  | 25,800  | 25,800  | 25,800  | 25,800  | 25,800  | 25,800  | 25,800  |
| Lena                        | 2,800   | 2,800   | 2,800   | 2,800   | 2,800   | 2,800   | 2,800   | 2,800   | 2,800   | 2,800   | 2,800   |
| Stephenson County Residual  | 3,955   | 6,512   | 6,739   | 6,967   | 7,195   | 7,423   | 7,650   | 7,878   | 8,106   | 8,333   | 8,561   |
| Stephenson County Total     | 33,274  | 35,831  | 36,058  | 36,286  | 36,514  | 36,742  | 36,969  | 37,197  | 37,425  | 37,652  | 37,880  |
| Whiteside County            |         |         |         |         |         |         |         |         |         |         |         |
| Fulton                      | 4,000   | 4,000   | 4,000   | 4,000   | 4,000   | 4,000   | 4,000   | 4,000   | 4,000   | 4,000   | 4,000   |

| Fulton             | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| IL Amer - Sterling | 15,451 | 15,451 | 15,451 | 15,451 | 15,451 | 15,451 | 15,451 | 15,451 | 15,451 | 15,451 | 15,451 |
|                    |        |        |        |        |        |        |        |        |        |        |        |

| Public Water System       | 2010    | 2015    | 2020    | 2025    | 2030    | 2035    | 2040    | 2045    | 2050    | 2055    | 2060    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Morrison                  | 4,447   | 4,447   | 4,447   | 4,447   | 4,447   | 4,447   | 4,447   | 4,447   | 4,447   | 4,447   | 4,447   |
| Prophetstown              | 2,150   | 2,204   | 2,257   | 2,311   | 2,364   | 2,418   | 2,472   | 2,525   | 2,579   | 2,632   | 2,686   |
| Rock Falls                | 9,700   | 9,700   | 9,700   | 9,700   | 9,700   | 9,700   | 9,700   | 9,700   | 9,700   | 9,700   | 9,700   |
| Whiteside County Residual | 4,463   | 4,463   | 4,463   | 4,463   | 4,463   | 4,463   | 4,463   | 4,463   | 4,463   | 4,463   | 4,463   |
| Whiteside County Total    | 40,211  | 40,265  | 40,318  | 40,372  | 40,425  | 40,479  | 40,533  | 40,586  | 40,640  | 40,693  | 40,747  |
| Winnebago County          |         |         |         |         |         |         |         |         |         |         |         |
| IL Amer - South Beloit    | 7,800   | 7,882   | 7,988   | 8,089   | 8,110   | 8,173   | 8,237   | 8,300   | 8,364   | 8,427   | 8,491   |
| Loves Park                | 24,700  | 24,960  | 25,295  | 25,615  | 25,682  | 25,883  | 26,084  | 26,285  | 26,486  | 26,687  | 26,888  |
| North Park PWD            | 34,737  | 35,103  | 35,573  | 36,024  | 36,118  | 36,400  | 36,683  | 36,966  | 37,249  | 37,531  | 37,814  |
| Rockford                  | 162,296 | 164,006 | 166,204 | 168,310 | 168,746 | 170,067 | 171,389 | 172,710 | 174,031 | 175,352 | 176,673 |
| Rockton                   | 7,440   | 7,518   | 7,619   | 7,716   | 7,736   | 7,796   | 7,857   | 7,917   | 7,978   | 8,039   | 8,099   |
| Winnebago County Residual | 39,300  | 39,714  | 40,246  | 40,756  | 40,862  | 41,182  | 41,502  | 41,822  | 42,142  | 42,462  | 42,781  |
| Winnebago County Total    | 276,273 | 279,183 | 282,925 | 286,510 | 287,253 | 289,502 | 291,751 | 294,000 | 296,249 | 298,498 | 300,747 |
| <b>REGIONAL TOTAL</b>     | 678,746 | 688,454 | 696,742 | 704,514 | 709,471 | 715,935 | 722,399 | 728,862 | 735,326 | 741,789 | 748,254 |

| Public Water System        | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
|----------------------------|-------------------------------|-----------------------------|------|------|------|------|------|------|------|------|------|------|
| Boone County               |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Belvidere                  | 2.986                         | 2.957                       | 3.29 | 3.49 | 3.69 | 3.89 | 4.07 | 4.26 | 4.43 | 4.61 | 4.78 | 4.94 |
| Boone County Residual      | 0.739                         | 0.732                       | 0.80 | 0.85 | 0.86 | 0.88 | 0.89 | 0.91 | 0.92 | 0.93 | 0.95 | 0.96 |
| Boone County Total         | 3.725                         | 3.689                       | 4.09 | 4.34 | 4.55 | 4.76 | 4.96 | 5.16 | 5.35 | 5.54 | 5.72 | 5.90 |
| Bureau County              |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Depue                      | 0.199                         | 0.196                       | 0.20 | 0.20 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 |
| Princeton                  | 0.951                         | 0.935                       | 0.97 | 0.96 | 0.96 | 0.95 | 0.95 | 0.94 | 0.94 | 0.93 | 0.93 | 0.92 |
| Spring Valley              | 0.852                         | 0.837                       | 0.87 | 0.86 | 0.85 | 0.85 | 0.84 | 0.84 | 0.83 | 0.82 | 0.82 | 0.81 |
| Walnut                     | 0.150                         | 0.147                       | 0.15 | 0.15 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| Bureau County Residual     | 0.838                         | 0.824                       | 0.85 | 0.84 | 0.83 | 0.82 | 0.81 | 0.80 | 0.79 | 0.78 | 0.77 | 0.76 |
| Bureau County Total        | 2.990                         | 2.938                       | 3.04 | 3.01 | 2.98 | 2.96 | 2.93 | 2.91 | 2.89 | 2.86 | 2.84 | 2.81 |
| Carroll County             |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Lanark                     | 0.174                         | 0.174                       | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.16 | 0.16 | 0.16 |
| Mount Carroll              | 0.138                         | 0.138                       | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
| Savanna                    | 0.423                         | 0.423                       | 0.44 | 0.43 | 0.42 | 0.42 | 0.41 | 0.41 | 0.40 | 0.40 | 0.39 | 0.39 |
| Carroll County Residual    | 0.372                         | 0.371                       | 0.38 | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.36 | 0.35 | 0.35 | 0.34 |
| Carroll County Total       | 1.107                         | 1.105                       | 1.14 | 1.12 | 1.11 | 1.10 | 1.08 | 1.07 | 1.06 | 1.05 | 1.03 | 1.02 |
| Henry County               |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Cambridge                  | 0.198                         | 0.198                       | 0.20 | 0.20 | 0.20 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 |
| Colona East                | 0.193                         | 0.192                       | 0.20 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 | 0.18 | 0.18 |
| Galva                      | 0.260                         | 0.259                       | 0.29 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.25 | 0.25 | 0.24 | 0.24 |
| Geneseo                    | 0.647                         | 0.645                       | 0.67 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.69 | 0.69 | 0.69 | 0.69 |
| Kewanee                    | 1.894                         | 1.888                       | 1.94 | 1.92 | 1.90 | 1.87 | 1.85 | 1.83 | 1.81 | 1.79 | 1.76 | 1.74 |
| Henry County Residual      | 0.924                         | 0.921                       | 0.95 | 0.94 | 0.93 | 0.91 | 0.90 | 0.89 | 0.88 | 0.87 | 0.86 | 0.85 |
| Henry County Total         | 4.116                         | 4.104                       | 4.27 | 4.19 | 4.15 | 4.11 | 4.07 | 4.04 | 4.00 | 3.96 | 3.92 | 3.88 |
| Jo Daviess County          |                               |                             |      |      |      |      |      |      |      |      |      |      |
| East Dubuque               | 0.196                         | 0.196                       | 0.20 | 0.20 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 |
| Galena                     | 0.431                         | 0.433                       | 0.45 | 0.44 | 0.43 | 0.43 | 0.42 | 0.42 | 0.41 | 0.41 | 0.40 | 0.40 |
| Stockton                   | 0.365                         | 0.366                       | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.35 | 0.35 | 0.35 | 0.34 | 0.34 |
| Jo Daviess County Residual | 0.983                         | 0.986                       | 1.02 | 1.00 | 0.99 | 0.98 | 0.97 | 0.96 | 0.94 | 0.93 | 0.92 | 0.91 |

# Table A.5 Total Public System Demand by Study Area and County, Current Trends (CT) Scenario (Mgd)

| Public Water System         | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Jo Daviess County Total     | 1.974                         | 1.981                       | 2.04  | 2.01  | 1.99  | 1.97  | 1.94  | 1.92  | 1.90  | 1.87  | 1.85  | 1.83  |
| Lee County                  |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Amboy                       | 0.383                         | 0.375                       | 0.39  | 0.38  | 0.38  | 0.37  | 0.37  | 0.36  | 0.36  | 0.36  | 0.35  | 0.35  |
| Ashton                      | 0.158                         | 0.155                       | 0.16  | 0.16  | 0.16  | 0.15  | 0.15  | 0.15  | 0.15  | 0.15  | 0.14  | 0.14  |
| Dixon                       | 2.304                         | 2.261                       | 2.33  | 2.30  | 2.27  | 2.24  | 2.22  | 2.19  | 2.16  | 2.14  | 2.11  | 2.09  |
| Lee County Residual         | 1.240                         | 1.217                       | 1.28  | 1.28  | 1.29  | 1.30  | 1.30  | 1.31  | 1.32  | 1.32  | 1.33  | 1.33  |
| Lee County Total            | 4.084                         | 4.009                       | 4.15  | 4.12  | 4.10  | 4.07  | 4.04  | 4.01  | 3.99  | 3.96  | 3.93  | 3.91  |
| Ogle County                 |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Byron                       | 0.577                         | 0.569                       | 0.63  | 0.66  | 0.70  | 0.73  | 0.76  | 0.79  | 0.82  | 0.85  | 0.88  | 0.91  |
| Mt Morris                   | 0.295                         | 0.291                       | 0.30  | 0.30  | 0.29  | 0.29  | 0.29  | 0.28  | 0.28  | 0.28  | 0.27  | 0.27  |
| Oregon                      | 0.373                         | 0.368                       | 0.38  | 0.29  | 0.28  | 0.28  | 0.28  | 0.27  | 0.27  | 0.27  | 0.26  | 0.26  |
| Polo                        | 0.205                         | 0.202                       | 0.21  | 0.21  | 0.20  | 0.20  | 0.20  | 0.20  | 0.19  | 0.19  | 0.19  | 0.19  |
| Rochelle                    | 2.823                         | 2.786                       | 2.90  | 2.90  | 2.89  | 2.89  | 2.88  | 2.88  | 2.87  | 2.86  | 2.86  | 2.85  |
| Ogle County Residual        | 0.848                         | 0.837                       | 0.87  | 0.87  | 0.86  | 0.86  | 0.86  | 0.86  | 0.85  | 0.85  | 0.85  | 0.85  |
| Ogle County Total           | 5.120                         | 5.053                       | 5.28  | 5.21  | 5.23  | 5.25  | 5.26  | 5.28  | 5.29  | 5.30  | 5.31  | 5.32  |
| <b>Rock Island County</b>   |                               |                             |       |       |       |       |       |       |       |       |       |       |
| East Moline                 | 4.415                         | 4.442                       | 4.61  | 4.59  | 4.57  | 4.55  | 4.53  | 4.51  | 4.49  | 4.47  | 4.45  | 4.43  |
| Milan                       | 0.514                         | 0.518                       | 0.53  | 0.53  | 0.52  | 0.51  | 0.51  | 0.50  | 0.50  | 0.49  | 0.48  | 0.48  |
| Moline                      | 5.371                         | 5.404                       | 5.56  | 5.50  | 5.43  | 5.36  | 5.30  | 5.24  | 5.17  | 5.11  | 5.05  | 4.99  |
| Rock Island                 | 5.415                         | 5.449                       | 5.61  | 5.54  | 5.48  | 5.41  | 5.34  | 5.28  | 5.22  | 5.15  | 5.09  | 5.03  |
| Silvis                      | 0.596                         | 0.600                       | 0.62  | 0.61  | 0.60  | 0.60  | 0.59  | 0.58  | 0.57  | 0.57  | 0.56  | 0.55  |
| Rock Island County Residual | 1.748                         | 1.758                       | 1.85  | 1.87  | 1.89  | 1.91  | 1.92  | 1.94  | 1.95  | 1.97  | 1.98  | 2.00  |
| Rock Island County Total    | 18.059                        | 18.170                      | 18.78 | 18.64 | 18.49 | 18.34 | 18.20 | 18.05 | 17.91 | 17.76 | 17.62 | 17.48 |
| Stephenson County           |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Cedarville                  | 0.082                         | 0.082                       | 0.08  | 0.08  | 0.08  | 0.08  | 0.08  | 0.08  | 0.08  | 0.08  | 0.08  | 0.08  |
| Freeport                    | 2.920                         | 2.930                       | 3.02  | 2.98  | 2.94  | 2.91  | 2.87  | 2.84  | 2.81  | 2.77  | 2.74  | 2.71  |
| Lena                        | 0.271                         | 0.272                       | 0.28  | 0.28  | 0.27  | 0.27  | 0.27  | 0.26  | 0.26  | 0.26  | 0.25  | 0.25  |
| Stephenson County Residual  | 0.366                         | 0.368                       | 0.62  | 0.64  | 0.65  | 0.66  | 0.68  | 0.69  | 0.70  | 0.71  | 0.72  | 0.73  |
| Stephenson County Total     | 3.639                         | 3.652                       | 4.00  | 3.98  | 3.95  | 3.92  | 3.90  | 3.87  | 3.85  | 3.82  | 3.79  | 3.77  |
| Whiteside County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Fulton                      | 0.318                         | 0.322                       | 0.33  | 0.33  | 0.32  | 0.32  | 0.32  | 0.31  | 0.31  | 0.30  | 0.30  | 0.30  |
| IL Amer - Sterling          | 1.576                         | 1.594                       | 1.64  | 1.62  | 1.60  | 1.58  | 1.56  | 1.54  | 1.53  | 1.51  | 1.49  | 1.47  |

| Public Water System       | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035          | 2040  | 2045  | 2050  | 2055  | 2060  |
|---------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|
| Morrison                  | 0.498                         | 0.504                       | 0.52  | 0.51  | 0.51  | 0.50  | 0.49          | 0.49  | 0.48  | 0.48  | 0.47  | 0.46  |
| Prophetstown              | 0.188                         | 0.190                       | 0.20  | 0.20  | 0.21  | 0.21  | 0.21          | 0.21  | 0.21  | 0.22  | 0.22  | 0.22  |
| Rock Falls                | 0.970                         | 0.982                       | 1.01  | 1.00  | 0.99  | 0.97  | 0.96          | 0.95  | 0.94  | 0.93  | 0.92  | 0.91  |
| Whiteside County Residual | 0.308                         | 0.311                       | 0.32  | 0.32  | 0.31  | 0.31  | 0.31          | 0.30  | 0.30  | 0.29  | 0.29  | 0.29  |
| Whiteside County Total    | 3.857                         | 3.902                       | 4.02  | 3.98  | 3.94  | 3.89  | 3.85          | 3.81  | 3.77  | 3.73  | 3.69  | 3.65  |
| Winnebago County          |                               |                             |       |       |       |       |               |       |       |       |       |       |
| IL Amer - South Beloit    | 0.765                         | 0.768                       | 0.80  | 0.80  | 0.80  | 0.79  | 0.79          | 0.79  | 0.78  | 0.78  | 0.78  | 0.77  |
| Loves Park                | 3.182                         | 3.193                       | 3.32  | 3.33  | 3.33  | 3.30  | 3.28          | 3.27  | 3.25  | 3.24  | 3.22  | 3.21  |
| North Park PWD            | 3.477                         | 3.490                       | 3.63  | 3.64  | 3.64  | 3.60  | 3.59          | 3.57  | 3.56  | 3.54  | 3.52  | 3.51  |
| Rockford                  | 20.221                        | 20.301                      | 21.12 | 21.15 | 21.16 | 20.96 | 20.87         | 20.77 | 20.68 | 20.59 | 20.50 | 20.40 |
| Rockton                   | 0.807                         | 0.810                       | 0.84  | 0.84  | 0.84  | 0.84  | 0.83          | 0.83  | 0.82  | 0.82  | 0.82  | 0.81  |
| Winnebago County Residual | 2.348                         | 2.357                       | 2.45  | 2.45  | 2.46  | 2.43  | 2.42          | 2.41  | 2.40  | 2.39  | 2.38  | 2.37  |
| Winnebago County Total    | 30.800                        | 30.920                      | 32.17 | 32.21 | 32.22 | 31.92 | <i>31.</i> 78 | 31.64 | 31.50 | 31.36 | 31.22 | 31.07 |
| REGIONAL TOTAL            | 79.473                        | 79.522                      | 82.98 | 82.82 | 82.72 | 82.29 | 82.03         | 81.76 | 81.48 | 81.21 | 80.92 | 80.63 |

| Public Water System        | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
|----------------------------|-------------------------------|-----------------------------|------|------|------|------|------|------|------|------|------|------|
| Boone County               |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Belvidere                  | 2.986                         | 2.957                       | 3.10 | 3.22 | 3.34 | 3.44 | 3.54 | 3.62 | 3.70 | 3.77 | 3.83 | 3.88 |
| Boone County Residual      | 0.739                         | 0.732                       | 0.76 | 0.78 | 0.78 | 0.78 | 0.77 | 0.77 | 0.77 | 0.76 | 0.76 | 0.75 |
| Boone County Total         | 3.725                         | 3.689                       | 3.85 | 4.00 | 4.12 | 4.22 | 4.31 | 4.40 | 4.47 | 4.53 | 4.59 | 4.64 |
| Bureau County              |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Depue                      | 0.199                         | 0.196                       | 0.19 | 0.18 | 0.18 | 0.17 | 0.17 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 |
| Princeton                  | 0.951                         | 0.935                       | 0.91 | 0.89 | 0.87 | 0.85 | 0.82 | 0.80 | 0.78 | 0.76 | 0.74 | 0.73 |
| Spring Valley              | 0.852                         | 0.837                       | 0.81 | 0.79 | 0.77 | 0.75 | 0.73 | 0.71 | 0.69 | 0.67 | 0.66 | 0.64 |
| Walnut                     | 0.150                         | 0.147                       | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 |
| Bureau County Residual     | 0.838                         | 0.824                       | 0.80 | 0.77 | 0.75 | 0.72 | 0.70 | 0.68 | 0.66 | 0.64 | 0.62 | 0.60 |
| Bureau County Total        | 2.990                         | 2.938                       | 2.86 | 2.78 | 2.70 | 2.62 | 2.55 | 2.48 | 2.41 | 2.34 | 2.27 | 2.21 |
| Carroll County             |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Lanark                     | 0.174                         | 0.174                       | 0.17 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 |
| Mount Carroll              | 0.138                         | 0.138                       | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.10 | 0.10 |
| Savanna                    | 0.423                         | 0.423                       | 0.41 | 0.40 | 0.38 | 0.37 | 0.36 | 0.35 | 0.34 | 0.33 | 0.32 | 0.31 |
| Carroll County Residual    | 0.372                         | 0.371                       | 0.36 | 0.35 | 0.34 | 0.33 | 0.32 | 0.31 | 0.30 | 0.29 | 0.28 | 0.27 |
| Carroll County Total       | 1.107                         | 1.105                       | 1.07 | 1.04 | 1.00 | 0.97 | 0.94 | 0.91 | 0.88 | 0.86 | 0.83 | 0.80 |
| Henry County               |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Cambridge                  | 0.198                         | 0.198                       | 0.19 | 0.19 | 0.18 | 0.17 | 0.17 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 |
| Colona East                | 0.193                         | 0.192                       | 0.19 | 0.18 | 0.17 | 0.17 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 | 0.14 |
| Galva                      | 0.260                         | 0.259                       | 0.28 | 0.24 | 0.24 | 0.23 | 0.22 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 |
| Geneseo                    | 0.647                         | 0.645                       | 0.63 | 0.62 | 0.61 | 0.60 | 0.59 | 0.58 | 0.57 | 0.56 | 0.55 | 0.54 |
| Kewanee                    | 1.894                         | 1.888                       | 1.83 | 1.77 | 1.71 | 1.66 | 1.61 | 1.56 | 1.51 | 1.46 | 1.42 | 1.37 |
| Henry County Residual      | 0.924                         | 0.921                       | 0.89 | 0.86 | 0.84 | 0.81 | 0.78 | 0.76 | 0.74 | 0.71 | 0.69 | 0.67 |
| Henry County Total         | 4.116                         | 4.104                       | 4.02 | 3.87 | 3.76 | 3.65 | 3.54 | 3.44 | 3.34 | 3.24 | 3.14 | 3.05 |
| Jo Daviess County          |                               |                             |      |      |      |      |      |      |      |      |      |      |
| East Dubuque               | 0.196                         | 0.196                       | 0.19 | 0.18 | 0.18 | 0.17 | 0.17 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 |
| Galena                     | 0.431                         | 0.433                       | 0.42 | 0.41 | 0.39 | 0.38 | 0.37 | 0.36 | 0.35 | 0.33 | 0.32 | 0.31 |
| Stockton                   | 0.365                         | 0.366                       | 0.35 | 0.34 | 0.33 | 0.32 | 0.31 | 0.30 | 0.29 | 0.28 | 0.27 | 0.27 |
| Jo Daviess County Residual | 0.983                         | 0.986                       | 0.95 | 0.92 | 0.90 | 0.87 | 0.84 | 0.81 | 0.79 | 0.76 | 0.74 | 0.72 |

Table A.6 Total Public System Demand by Study Area and County, Less Resource Intensive (LRI) Scenario (Mgd)

| Public Water System         | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Jo Daviess County Total     | 1.974                         | 1.981                       | 1.92  | 1.86  | 1.80  | 1.74  | 1.69  | 1.63  | 1.58  | 1.53  | 1.48  | 1.44  |
| Lee County                  |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Amboy                       | 0.383                         | 0.375                       | 0.36  | 0.35  | 0.34  | 0.33  | 0.32  | 0.31  | 0.30  | 0.29  | 0.28  | 0.27  |
| Ashton                      | 0.158                         | 0.155                       | 0.15  | 0.15  | 0.14  | 0.14  | 0.13  | 0.13  | 0.12  | 0.12  | 0.12  | 0.11  |
| Dixon                       | 2.304                         | 2.261                       | 2.19  | 2.12  | 2.05  | 1.99  | 1.93  | 1.87  | 1.81  | 1.75  | 1.69  | 1.64  |
| Lee County Residual         | 1.240                         | 1.217                       | 1.20  | 1.18  | 1.17  | 1.15  | 1.13  | 1.12  | 1.10  | 1.08  | 1.06  | 1.05  |
| Lee County Total            | 4.084                         | 4.009                       | 3.90  | 3.80  | 3.70  | 3.61  | 3.51  | 3.42  | 3.33  | 3.24  | 3.16  | 3.07  |
| Ogle County                 |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Byron                       | 0.577                         | 0.569                       | 0.59  | 0.61  | 0.63  | 0.65  | 0.66  | 0.68  | 0.69  | 0.70  | 0.71  | 0.72  |
| Mt Morris                   | 0.295                         | 0.291                       | 0.28  | 0.27  | 0.26  | 0.26  | 0.25  | 0.24  | 0.23  | 0.23  | 0.22  | 0.21  |
| Oregon                      | 0.373                         | 0.368                       | 0.36  | 0.27  | 0.26  | 0.25  | 0.24  | 0.23  | 0.23  | 0.22  | 0.21  | 0.21  |
| Polo                        | 0.205                         | 0.202                       | 0.20  | 0.19  | 0.18  | 0.18  | 0.17  | 0.17  | 0.16  | 0.16  | 0.15  | 0.15  |
| Rochelle                    | 2.823                         | 2.786                       | 2.73  | 2.67  | 2.61  | 2.56  | 2.50  | 2.45  | 2.40  | 2.34  | 2.29  | 2.24  |
| Ogle County Residual        | 0.848                         | 0.837                       | 0.82  | 0.80  | 0.78  | 0.76  | 0.75  | 0.73  | 0.71  | 0.70  | 0.68  | 0.67  |
| Ogle County Total           | 5.120                         | 5.053                       | 4.97  | 4.81  | 4.73  | 4.65  | 4.57  | 4.49  | 4.42  | 4.34  | 4.26  | 4.19  |
| <b>Rock Island County</b>   |                               |                             |       |       |       |       |       |       |       |       |       |       |
| East Moline                 | 4.415                         | 4.442                       | 4.34  | 4.23  | 4.13  | 4.03  | 3.94  | 3.84  | 3.75  | 3.66  | 3.57  | 3.48  |
| Milan                       | 0.514                         | 0.518                       | 0.50  | 0.49  | 0.47  | 0.46  | 0.44  | 0.43  | 0.41  | 0.40  | 0.39  | 0.38  |
| Moline                      | 5.371                         | 5.404                       | 5.23  | 5.07  | 4.91  | 4.75  | 4.60  | 4.46  | 4.32  | 4.18  | 4.05  | 3.92  |
| Rock Island                 | 5.415                         | 5.449                       | 5.28  | 5.11  | 4.95  | 4.79  | 4.64  | 4.50  | 4.35  | 4.22  | 4.08  | 3.96  |
| Silvis                      | 0.596                         | 0.600                       | 0.58  | 0.56  | 0.54  | 0.53  | 0.51  | 0.49  | 0.48  | 0.46  | 0.45  | 0.44  |
| Rock Island County Residual | 1.748                         | 1.758                       | 1.74  | 1.72  | 1.71  | 1.69  | 1.67  | 1.65  | 1.63  | 1.61  | 1.59  | 1.57  |
| Rock Island County Total    | 18.059                        | 18.170                      | 17.67 | 17.19 | 16.71 | 16.25 | 15.80 | 15.37 | 14.95 | 14.53 | 14.13 | 13.74 |
| Stephenson County           |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Cedarville                  | 0.082                         | 0.082                       | 0.08  | 0.08  | 0.07  | 0.07  | 0.07  | 0.07  | 0.07  | 0.06  | 0.06  | 0.06  |
| Freeport                    | 2.920                         | 2.930                       | 2.84  | 2.75  | 2.66  | 2.58  | 2.50  | 2.42  | 2.34  | 2.27  | 2.20  | 2.13  |
| Lena                        | 0.271                         | 0.272                       | 0.26  | 0.25  | 0.25  | 0.24  | 0.23  | 0.22  | 0.22  | 0.21  | 0.20  | 0.20  |
| Stephenson County Residual  | 0.366                         | 0.368                       | 0.59  | 0.59  | 0.59  | 0.59  | 0.59  | 0.59  | 0.59  | 0.58  | 0.58  | 0.58  |
| Stephenson County Total     | 3.639                         | 3.652                       | 3.77  | 3.67  | 3.57  | 3.48  | 3.39  | 3.30  | 3.21  | 3.12  | 3.04  | 2.96  |
| Whiteside County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Fulton                      | 0.318                         | 0.322                       | 0.31  | 0.30  | 0.29  | 0.28  | 0.27  | 0.27  | 0.26  | 0.25  | 0.24  | 0.23  |
| IL Amer - Sterling          | 1.576                         | 1.594                       | 1.54  | 1.50  | 1.45  | 1.40  | 1.36  | 1.32  | 1.27  | 1.23  | 1.19  | 1.16  |

| Public Water System       | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015         | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|---------------------------|-------------------------------|-----------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Morrison                  | 0.498                         | 0.504                       | 0.49         | 0.47  | 0.46  | 0.44  | 0.43  | 0.42  | 0.40  | 0.39  | 0.38  | 0.37  |
| Prophetstown              | 0.188                         | 0.190                       | 0.19         | 0.19  | 0.19  | 0.18  | 0.18  | 0.18  | 0.18  | 0.18  | 0.17  | 0.17  |
| Rock Falls                | 0.970                         | 0.982                       | 0.95         | 0.92  | 0.89  | 0.86  | 0.84  | 0.81  | 0.78  | 0.76  | 0.74  | 0.71  |
| Whiteside County Residual | 0.308                         | 0.311                       | 0.30         | 0.29  | 0.28  | 0.27  | 0.27  | 0.26  | 0.25  | 0.24  | 0.23  | 0.23  |
| Whiteside County Total    | 3.857                         | 3.902                       | <i>3.</i> 78 | 3.67  | 3.56  | 3.45  | 3.34  | 3.24  | 3.14  | 3.05  | 2.96  | 2.87  |
| Winnebago County          |                               |                             |              |       |       |       |       |       |       |       |       |       |
| IL Amer - South Beloit    | 0.765                         | 0.768                       | 0.75         | 0.74  | 0.72  | 0.70  | 0.69  | 0.67  | 0.65  | 0.64  | 0.62  | 0.61  |
| Loves Park                | 3.182                         | 3.193                       | 3.13         | 3.07  | 3.01  | 2.92  | 2.85  | 2.78  | 2.72  | 2.65  | 2.59  | 2.52  |
| North Park PWD            | 3.477                         | 3.490                       | 3.42         | 3.35  | 3.29  | 3.19  | 3.12  | 3.04  | 2.97  | 2.90  | 2.83  | 2.76  |
| Rockford                  | 20.221                        | 20.301                      | 19.87        | 19.50 | 19.12 | 18.57 | 18.12 | 17.69 | 17.26 | 16.85 | 16.44 | 16.04 |
| Rockton                   | 0.807                         | 0.810                       | 0.79         | 0.78  | 0.76  | 0.74  | 0.72  | 0.71  | 0.69  | 0.67  | 0.66  | 0.64  |
| Winnebago County Residual | 2.348                         | 2.357                       | 2.31         | 2.26  | 2.22  | 2.16  | 2.10  | 2.05  | 2.00  | 1.96  | 1.91  | 1.86  |
| Winnebago County Total    | 30.800                        | 30.920                      | 30.26        | 29.70 | 29.13 | 28.28 | 27.60 | 26.94 | 26.29 | 25.66 | 25.04 | 24.43 |
| REGIONAL TOTAL            | 79.473                        | 79.522                      | 78.07        | 76.37 | 74.77 | 72.92 | 71.25 | 69.62 | 68.02 | 66.45 | 64.91 | 63.40 |

| Public Water System        | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2055 | 2060 |
|----------------------------|-------------------------------|-----------------------------|------|------|------|------|------|------|------|------|------|------|
| Boone County               |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Belvidere                  | 2.986                         | 2.957                       | 3.50 | 3.79 | 4.08 | 4.38 | 4.68 | 4.98 | 5.29 | 5.61 | 5.93 | 6.25 |
| Boone County Residual      | 0.739                         | 0.732                       | 0.85 | 0.92 | 0.95 | 0.99 | 1.02 | 1.06 | 1.10 | 1.14 | 1.17 | 1.21 |
| Boone County Total         | 3.725                         | 3.689                       | 4.35 | 4.70 | 5.03 | 5.36 | 5.70 | 6.04 | 6.39 | 6.74 | 7.10 | 7.46 |
| Bureau County              |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Depue                      | 0.199                         | 0.196                       | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.23 | 0.23 | 0.23 |
| Princeton                  | 0.951                         | 0.935                       | 1.03 | 1.04 | 1.06 | 1.07 | 1.09 | 1.11 | 1.12 | 1.14 | 1.15 | 1.17 |
| Spring Valley              | 0.852                         | 0.837                       | 0.92 | 0.93 | 0.94 | 0.95 | 0.97 | 0.98 | 0.99 | 1.00 | 1.01 | 1.03 |
| Walnut                     | 0.150                         | 0.147                       | 0.16 | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
| Bureau County Residual     | 0.838                         | 0.824                       | 0.90 | 0.91 | 0.91 | 0.92 | 0.93 | 0.93 | 0.94 | 0.95 | 0.95 | 0.96 |
| Bureau County Total        | 2.990                         | 2.938                       | 3.23 | 3.26 | 3.30 | 3.33 | 3.37 | 3.41 | 3.44 | 3.48 | 3.52 | 3.56 |
| Carroll County             |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Lanark                     | 0.174                         | 0.174                       | 0.19 | 0.19 | 0.19 | 0.19 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
| Mount Carroll              | 0.138                         | 0.138                       | 0.15 | 0.15 | 0.15 | 0.15 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
| Savanna                    | 0.423                         | 0.423                       | 0.46 | 0.47 | 0.47 | 0.47 | 0.48 | 0.48 | 0.48 | 0.49 | 0.49 | 0.49 |
| Carroll County Residual    | 0.372                         | 0.371                       | 0.41 | 0.41 | 0.41 | 0.41 | 0.42 | 0.42 | 0.42 | 0.43 | 0.43 | 0.43 |
| Carroll County Total       | 1.107                         | 1.105                       | 1.21 | 1.22 | 1.23 | 1.24 | 1.24 | 1.25 | 1.26 | 1.27 | 1.28 | 1.29 |
| Henry County               |                               |                             |      |      |      |      |      |      |      |      |      |      |
| Cambridge                  | 0.198                         | 0.198                       | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.23 | 0.23 | 0.23 | 0.23 |
| Colona East                | 0.193                         | 0.192                       | 0.21 | 0.21 | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
| Galva                      | 0.260                         | 0.259                       | 0.31 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.30 | 0.30 | 0.30 | 0.30 |
| Geneseo                    | 0.647                         | 0.645                       | 0.72 | 0.73 | 0.75 | 0.77 | 0.78 | 0.80 | 0.82 | 0.84 | 0.85 | 0.87 |
| Kewanee                    | 1.894                         | 1.888                       | 2.07 | 2.08 | 2.10 | 2.11 | 2.13 | 2.14 | 2.16 | 2.17 | 2.19 | 2.20 |
| Henry County Residual      | 0.924                         | 0.921                       | 1.01 | 1.01 | 1.02 | 1.03 | 1.04 | 1.04 | 1.05 | 1.06 | 1.07 | 1.08 |
| Henry County Total         | 4.116                         | 4.104                       | 4.53 | 4.54 | 4.59 | 4.63 | 4.68 | 4.72 | 4.77 | 4.82 | 4.86 | 4.91 |
| Jo Daviess County          |                               |                             |      |      |      |      |      |      |      |      |      |      |
| East Dubuque               | 0.196                         | 0.196                       | 0.21 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.23 | 0.23 | 0.23 |
| Galena                     | 0.431                         | 0.433                       | 0.47 | 0.48 | 0.48 | 0.48 | 0.49 | 0.49 | 0.49 | 0.50 | 0.50 | 0.51 |
| Stockton                   | 0.365                         | 0.366                       | 0.40 | 0.40 | 0.41 | 0.41 | 0.41 | 0.42 | 0.42 | 0.42 | 0.42 | 0.43 |
| Jo Daviess County Residual | 0.983                         | 0.986                       | 1.08 | 1.09 | 1.09 | 1.10 | 1.11 | 1.12 | 1.13 | 1.13 | 1.14 | 1.15 |

Table A.7 Total Public System Demand by Study Area and County, More Resource Intensive (MRI) Scenario (Mgd)

| Public Water System         | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Jo Daviess County Total     | 1.974                         | 1.981                       | 2.17  | 2.18  | 2.20  | 2.21  | 2.23  | 2.25  | 2.26  | 2.28  | 2.30  | 2.31  |
| Lee County                  |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Amboy                       | 0.383                         | 0.375                       | 0.41  | 0.41  | 0.42  | 0.42  | 0.42  | 0.43  | 0.43  | 0.43  | 0.44  | 0.44  |
| Ashton                      | 0.158                         | 0.155                       | 0.17  | 0.17  | 0.17  | 0.17  | 0.17  | 0.18  | 0.18  | 0.18  | 0.18  | 0.18  |
| Dixon                       | 2.304                         | 2.261                       | 2.47  | 2.49  | 2.51  | 2.53  | 2.55  | 2.56  | 2.58  | 2.60  | 2.62  | 2.64  |
| Lee County Residual         | 1.240                         | 1.217                       | 1.36  | 1.39  | 1.43  | 1.46  | 1.50  | 1.53  | 1.57  | 1.61  | 1.64  | 1.68  |
| Lee County Total            | 4.084                         | 4.009                       | 4.41  | 4.47  | 4.52  | 4.58  | 4.64  | 4.70  | 4.76  | 4.82  | 4.88  | 4.94  |
| Ogle County                 |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Byron                       | 0.577                         | 0.569                       | 0.67  | 0.72  | 0.77  | 0.82  | 0.88  | 0.93  | 0.98  | 1.04  | 1.09  | 1.15  |
| Mt Morris                   | 0.295                         | 0.291                       | 0.32  | 0.32  | 0.32  | 0.33  | 0.33  | 0.33  | 0.33  | 0.34  | 0.34  | 0.34  |
| Oregon                      | 0.373                         | 0.368                       | 0.40  | 0.31  | 0.31  | 0.32  | 0.32  | 0.32  | 0.32  | 0.33  | 0.33  | 0.33  |
| Polo                        | 0.205                         | 0.202                       | 0.22  | 0.22  | 0.22  | 0.23  | 0.23  | 0.23  | 0.23  | 0.23  | 0.23  | 0.24  |
| Rochelle                    | 2.823                         | 2.786                       | 3.08  | 3.14  | 3.19  | 3.25  | 3.31  | 3.37  | 3.42  | 3.48  | 3.55  | 3.61  |
| Ogle County Residual        | 0.848                         | 0.837                       | 0.92  | 0.94  | 0.95  | 0.97  | 0.99  | 1.00  | 1.02  | 1.04  | 1.05  | 1.07  |
| Ogle County Total           | 5.120                         | 5.053                       | 5.61  | 5.65  | 5.78  | 5.91  | 6.04  | 6.18  | 6.31  | 6.45  | 6.59  | 6.73  |
| <b>Rock Island County</b>   |                               |                             |       |       |       |       |       |       |       |       |       |       |
| East Moline                 | 4.415                         | 4.442                       | 4.90  | 4.97  | 5.05  | 5.13  | 5.20  | 5.28  | 5.36  | 5.44  | 5.52  | 5.61  |
| Milan                       | 0.514                         | 0.518                       | 0.57  | 0.57  | 0.57  | 0.58  | 0.58  | 0.59  | 0.59  | 0.60  | 0.60  | 0.60  |
| Moline                      | 5.371                         | 5.404                       | 5.91  | 5.95  | 6.00  | 6.04  | 6.08  | 6.13  | 6.17  | 6.22  | 6.26  | 6.31  |
| Rock Island                 | 5.415                         | 5.449                       | 5.96  | 6.00  | 6.05  | 6.09  | 6.14  | 6.18  | 6.23  | 6.27  | 6.32  | 6.36  |
| Silvis                      | 0.596                         | 0.600                       | 0.66  | 0.66  | 0.67  | 0.67  | 0.68  | 0.68  | 0.69  | 0.69  | 0.70  | 0.70  |
| Rock Island County Residual | 1.748                         | 1.758                       | 1.97  | 2.03  | 2.09  | 2.15  | 2.21  | 2.27  | 2.33  | 2.39  | 2.46  | 2.52  |
| Rock Island County Total    | 18.059                        | 18.170                      | 19.96 | 20.19 | 20.42 | 20.65 | 20.89 | 21.13 | 21.37 | 21.61 | 21.86 | 22.11 |
| Stephenson County           |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Cedarville                  | 0.082                         | 0.082                       | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.10  | 0.10  |
| Freeport                    | 2.920                         | 2.930                       | 3.21  | 3.23  | 3.25  | 3.28  | 3.30  | 3.32  | 3.35  | 3.37  | 3.40  | 3.42  |
| Lena                        | 0.271                         | 0.272                       | 0.30  | 0.30  | 0.30  | 0.30  | 0.31  | 0.31  | 0.31  | 0.31  | 0.32  | 0.32  |
| Stephenson County Residual  | 0.366                         | 0.368                       | 0.66  | 0.69  | 0.72  | 0.75  | 0.78  | 0.81  | 0.84  | 0.87  | 0.90  | 0.93  |
| Stephenson County Total     | 3.639                         | 3.652                       | 4.25  | 4.31  | 4.36  | 4.42  | 4.48  | 4.53  | 4.59  | 4.65  | 4.71  | 4.76  |
| Whiteside County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Fulton                      | 0.318                         | 0.322                       | 0.35  | 0.35  | 0.36  | 0.36  | 0.36  | 0.36  | 0.37  | 0.37  | 0.37  | 0.38  |
| IL Amer - Sterling          | 1.576                         | 1.594                       | 1.74  | 1.76  | 1.77  | 1.78  | 1.80  | 1.81  | 1.82  | 1.83  | 1.85  | 1.86  |

| Public Water System       | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055   | 2060   |
|---------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| Morrison                  | 0.498                         | 0.504                       | 0.55  | 0.55  | 0.56  | 0.56  | 0.57  | 0.57  | 0.58  | 0.58  | 0.58   | 0.59   |
| Prophetstown              | 0.188                         | 0.190                       | 0.21  | 0.22  | 0.23  | 0.23  | 0.24  | 0.25  | 0.25  | 0.26  | 0.27   | 0.28   |
| Rock Falls                | 0.970                         | 0.982                       | 1.07  | 1.08  | 1.09  | 1.10  | 1.11  | 1.11  | 1.12  | 1.13  | 1.14   | 1.15   |
| Whiteside County Residual | 0.308                         | 0.311                       | 0.34  | 0.34  | 0.35  | 0.35  | 0.35  | 0.35  | 0.36  | 0.36  | 0.36   | 0.36   |
| Whiteside County Total    | 3.857                         | 3.902                       | 4.27  | 4.31  | 4.35  | 4.38  | 4.42  | 4.46  | 4.50  | 4.53  | 4.57   | 4.61   |
| Winnebago County          |                               |                             |       |       |       |       |       |       |       |       |        |        |
| IL Amer - South Beloit    | 0.765                         | 0.768                       | 0.85  | 0.87  | 0.88  | 0.89  | 0.91  | 0.92  | 0.93  | 0.95  | 0.96   | 0.98   |
| Loves Park                | 3.182                         | 3.193                       | 3.53  | 3.60  | 3.68  | 3.71  | 3.77  | 3.83  | 3.88  | 3.94  | 4.00   | 4.06   |
| North Park PWD            | 3.477                         | 3.490                       | 3.86  | 3.94  | 4.02  | 4.06  | 4.12  | 4.18  | 4.24  | 4.31  | 4.37   | 4.44   |
| Rockford                  | 20.221                        | 20.301                      | 22.44 | 22.91 | 23.37 | 23.60 | 23.96 | 24.32 | 24.68 | 25.05 | 25.43  | 25.81  |
| Rockton                   | 0.807                         | 0.810                       | 0.90  | 0.91  | 0.93  | 0.94  | 0.96  | 0.97  | 0.98  | 1.00  | 1.01   | 1.03   |
| Winnebago County Residual | 2.348                         | 2.357                       | 2.60  | 2.66  | 2.71  | 2.74  | 2.78  | 2.82  | 2.87  | 2.91  | 2.95   | 3.00   |
| Winnebago County Total    | 30.800                        | 30.920                      | 34.18 | 34.89 | 35.59 | 35.94 | 36.48 | 37.04 | 37.59 | 38.16 | 38.73  | 39.30  |
| REGIONAL TOTAL            | 79.473                        | 79.522                      | 88.16 | 89.71 | 91.35 | 92.66 | 94.17 | 95.70 | 97.25 | 98.81 | 100.40 | 102.00 |

| Public Water System        | 2010<br>Reported <sup>1</sup>         | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|----------------------------|---------------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone County               |                                       |                             |       |       |       |       |       |       |       |       |       |       |
| Belvidere                  | 116.1                                 | 115.0                       | 118.4 | 116.9 | 115.5 | 114.1 | 112.8 | 111.4 | 110.1 | 108.7 | 107.4 | 106.1 |
| Boone County Residual      | 77.0                                  | 76.3                        | 78.5  | 77.6  | 76.6  | 75.7  | 74.8  | 73.9  | 73.0  | 72.1  | 71.3  | 70.4  |
| Boone County Total         | 105.5                                 | 104.5                       | 107.7 | 106.4 | 105.4 | 104.4 | 103.4 | 102.3 | 101.3 | 100.2 | 99.1  | 98.1  |
| Bureau County              | · · · · · · · · · · · · · · · · · · · |                             |       |       |       |       |       |       |       |       |       |       |
| Depue                      | 104.5                                 | 102.7                       | 105.7 | 104.5 | 103.2 | 102.0 | 100.7 | 99.5  | 98.3  | 97.1  | 96.0  | 94.8  |
| Princeton                  | 124.2                                 | 122.0                       | 125.6 | 124.1 | 122.6 | 121.1 | 119.7 | 118.2 | 116.8 | 115.4 | 114.0 | 112.6 |
| Spring Valley              | 157.8                                 | 155.0                       | 159.6 | 157.7 | 155.8 | 153.9 | 152.0 | 150.2 | 148.4 | 146.6 | 144.8 | 143.1 |
| Walnut                     | 100.4                                 | 98.7                        | 101.6 | 100.3 | 99.1  | 97.9  | 96.8  | 95.6  | 94.4  | 93.3  | 92.2  | 91.1  |
| Bureau County Residual     | 93.8                                  | 92.1                        | 94.8  | 93.7  | 92.6  | 91.4  | 90.3  | 89.2  | 88.2  | 87.1  | 86.1  | 85.0  |
| Bureau County Total        | 117.7                                 | 115.7                       | 119.1 | 117.8 | 116.4 | 115.1 | 113.7 | 112.4 | 111.1 | 109.8 | 108.5 | 107.3 |
| Carroll County             |                                       |                             |       |       |       |       |       |       |       |       |       |       |
| Lanark                     | 108.9                                 | 108.8                       | 112.0 | 110.7 | 109.3 | 108.0 | 106.7 | 105.4 | 104.2 | 102.9 | 101.7 | 100.4 |
| Mount Carroll              | 79.3                                  | 79.2                        | 81.6  | 80.6  | 79.6  | 78.7  | 77.7  | 76.8  | 75.8  | 74.9  | 74.0  | 73.1  |
| Savanna                    | 135.6                                 | 135.4                       | 139.3 | 137.7 | 136.0 | 134.4 | 132.8 | 131.2 | 129.6 | 128.0 | 126.5 | 125.0 |
| Carroll County Residual    | 122.9                                 | 122.7                       | 126.3 | 124.8 | 123.3 | 121.8 | 120.3 | 118.9 | 117.4 | 116.0 | 114.6 | 113.3 |
| Carroll County Total       | 116.7                                 | 116.5                       | 120.0 | 118.5 | 117.1 | 115.7 | 114.3 | 112.9 | 111.6 | 110.2 | 108.9 | 107.6 |
| Henry County               |                                       |                             |       |       |       |       |       |       |       |       |       |       |
| Cambridge                  | 94.1                                  | 93.9                        | 96.6  | 95.5  | 94.3  | 93.2  | 92.1  | 90.9  | 89.8  | 88.8  | 87.7  | 86.6  |
| Colona East                | 78.1                                  | 77.8                        | 81.8  | 79.2  | 78.2  | 77.3  | 76.3  | 75.4  | 74.5  | 73.6  | 72.7  | 71.8  |
| Galva                      | 93.7                                  | 93.4                        | 105.5 | 95.0  | 93.8  | 92.7  | 91.6  | 90.5  | 89.4  | 88.3  | 87.2  | 86.2  |
| Geneseo                    | 101.1                                 | 100.8                       | 103.8 | 102.5 | 101.3 | 100.1 | 98.9  | 97.7  | 96.5  | 95.3  | 94.2  | 93.0  |
| Kewanee                    | 132.0                                 | 131.6                       | 135.4 | 133.8 | 132.2 | 130.6 | 129.0 | 127.5 | 126.0 | 124.4 | 122.9 | 121.5 |
| Henry County Residual      | 74.3                                  | 74.1                        | 76.2  | 75.3  | 74.4  | 73.5  | 72.6  | 71.8  | 70.9  | 70.0  | 69.2  | 68.4  |
| Henry County Total         | 101.5                                 | 101.2                       | 104.9 | 102.9 | 101.7 | 100.5 | 99.3  | 98.1  | 96.9  | 95.7  | 94.6  | 93.4  |
| Jo Daviess County          |                                       |                             |       |       |       |       |       |       |       |       |       |       |
| East Dubuque               | 99.3                                  | 99.7                        | 102.6 | 101.4 | 100.2 | 99.0  | 97.8  | 96.6  | 95.4  | 94.3  | 93.2  | 92.0  |
| Galena                     | 124.6                                 | 125.0                       | 128.7 | 127.2 | 125.6 | 124.1 | 122.6 | 121.2 | 119.7 | 118.3 | 116.8 | 115.4 |
| Stockton                   | 195.8                                 | 196.6                       | 202.4 | 199.9 | 197.5 | 195.1 | 192.8 | 190.5 | 188.2 | 185.9 | 183.7 | 181.4 |
| Jo Daviess County Residual | 94.7                                  | 95.0                        | 97.8  | 96.6  | 95.5  | 94.3  | 93.2  | 92.1  | 91.0  | 89.9  | 88.8  | 87.7  |

# Table A.8 Per-Capita Public System Demand by Study Area and County, Current Trends (CT) Scenario (gpcd)

| Public Water System         | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Jo Daviess County Total     | 111.7                         | 112.1                       | 115.4 | 114.0 | 112.7 | 111.3 | 110.0 | 108.6 | 107.3 | 106.0 | 104.8 | 103.5 |
| Lee County                  |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Amboy                       | 147.1                         | 144.4                       | 148.7 | 146.9 | 145.1 | 143.3 | 141.6 | 139.9 | 138.2 | 136.6 | 134.9 | 133.3 |
| Ashton                      | 143.4                         | 140.8                       | 144.9 | 143.2 | 141.4 | 139.7 | 138.1 | 136.4 | 134.7 | 133.1 | 131.5 | 129.9 |
| Dixon                       | 142.2                         | 139.6                       | 143.7 | 142.0 | 140.2 | 138.6 | 136.9 | 135.2 | 133.6 | 132.0 | 130.4 | 128.8 |
| Lee County Residual         | 109.8                         | 107.8                       | 111.0 | 109.6 | 108.3 | 107.0 | 105.7 | 104.4 | 103.2 | 101.9 | 100.7 | 99.5  |
| Lee County Total            | 130.9                         | 128.5                       | 132.2 | 130.4 | 128.7 | 127.0 | 125.4 | 123.8 | 122.1 | 120.6 | 119.0 | 117.4 |
| Ogle County                 |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Byron                       | 144.2                         | 142.3                       | 146.5 | 144.7 | 143.0 | 141.2 | 139.5 | 137.9 | 136.2 | 134.6 | 132.9 | 131.3 |
| Mt Morris                   | 95.2                          | 93.9                        | 96.7  | 95.5  | 94.4  | 93.2  | 92.1  | 91.0  | 89.9  | 88.8  | 87.7  | 86.7  |
| Oregon                      | 90.9                          | 89.7                        | 92.4  | 70.1  | 69.3  | 68.4  | 67.6  | 66.8  | 66.0  | 65.2  | 64.4  | 63.6  |
| Polo                        | 82.3                          | 81.2                        | 83.6  | 82.6  | 81.6  | 80.6  | 79.7  | 78.7  | 77.8  | 76.8  | 75.9  | 75.0  |
| Rochelle                    | 291.1                         | 287.2                       | 295.7 | 292.1 | 288.6 | 285.1 | 281.7 | 278.3 | 275.0 | 271.7 | 268.4 | 265.2 |
| Ogle County Residual        | 84.4                          | 83.3                        | 85.7  | 84.7  | 83.7  | 82.7  | 81.7  | 80.7  | 79.7  | 78.8  | 77.8  | 76.9  |
| Ogle County Total           | 153.1                         | 151.1                       | 155.8 | 151.6 | 149.9 | 148.3 | 146.7 | 145.0 | 143.4 | 141.9 | 140.3 | 138.7 |
| <b>Rock Island County</b>   |                               |                             |       |       |       |       |       |       |       |       |       |       |
| East Moline                 | 205.0                         | 206.3                       | 212.4 | 209.8 | 207.3 | 204.8 | 202.4 | 199.9 | 197.5 | 195.1 | 192.8 | 190.5 |
| Milan                       | 102.9                         | 103.5                       | 106.6 | 105.3 | 104.0 | 102.8 | 101.5 | 100.3 | 99.1  | 97.9  | 96.7  | 95.5  |
| Moline                      | 120.7                         | 121.5                       | 125.1 | 123.6 | 122.1 | 120.6 | 119.1 | 117.7 | 116.3 | 114.9 | 113.5 | 112.1 |
| Rock Island                 | 142.2                         | 143.1                       | 147.3 | 145.5 | 143.8 | 142.0 | 140.3 | 138.6 | 137.0 | 135.3 | 133.7 | 132.1 |
| Silvis                      | 82.0                          | 82.5                        | 84.9  | 83.9  | 82.9  | 81.9  | 80.9  | 79.9  | 79.0  | 78.0  | 77.1  | 76.1  |
| Rock Island County Residual | 89.3                          | 89.8                        | 92.5  | 91.3  | 90.2  | 89.2  | 88.1  | 87.0  | 86.0  | 84.9  | 83.9  | 82.9  |
| Rock Island County Total    | 132.8                         | 133.7                       | 137.5 | 135.8 | 134.2 | 132.5 | 130.8 | 129.2 | 127.6 | 126.0 | 124.5 | 122.9 |
| Stephenson County           |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Cedarville                  | 114.2                         | 114.6                       | 118.0 | 116.6 | 115.2 | 113.8 | 112.4 | 111.0 | 109.7 | 108.4 | 107.1 | 105.8 |
| Freeport                    | 113.2                         | 113.6                       | 116.9 | 115.5 | 114.1 | 112.8 | 111.4 | 110.1 | 108.7 | 107.4 | 106.1 | 104.8 |
| Lena                        | 96.7                          | 97.1                        | 99.9  | 98.7  | 97.5  | 96.4  | 95.2  | 94.0  | 92.9  | 91.8  | 90.7  | 89.6  |
| Stephenson County Residual  | 92.6                          | 92.9                        | 95.7  | 94.5  | 93.4  | 92.3  | 91.2  | 90.1  | 89.0  | 87.9  | 86.8  | 85.8  |
| Stephenson County Total     | 109.4                         | 109.8                       | 111.8 | 110.3 | 108.9 | 107.5 | 106.1 | 104.7 | 103.4 | 102.0 | 100.7 | 99.4  |
| Whiteside County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Fulton                      | 79.5                          | 80.4                        | 82.8  | 81.8  | 80.8  | 79.8  | 78.9  | 77.9  | 77.0  | 76.0  | 75.1  | 74.2  |
| IL Amer - Sterling          | 102.0                         | 103.2                       | 106.2 | 104.9 | 103.7 | 102.4 | 101.2 | 100.0 | 98.8  | 97.6  | 96.4  | 95.2  |

| Public Water System       | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|---------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Morrison                  | 111.9                         | 113.2                       | 116.6 | 115.2 | 113.8 | 112.4 | 111.1 | 109.7 | 108.4 | 107.1 | 105.8 | 104.5 |
| Prophetstown              | 87.3                          | 88.3                        | 90.9  | 89.8  | 88.8  | 87.7  | 86.6  | 85.6  | 84.6  | 83.5  | 82.5  | 81.5  |
| Rock Falls                | 100.0                         | 101.2                       | 104.2 | 102.9 | 101.7 | 100.5 | 99.2  | 98.1  | 96.9  | 95.7  | 94.6  | 93.4  |
| Whiteside County Residual | 68.9                          | 69.7                        | 71.8  | 70.9  | 70.1  | 69.2  | 68.4  | 67.6  | 66.8  | 66.0  | 65.2  | 64.4  |
| Whiteside County Total    | 95.9                          | 97.0                        | 99.9  | 98.7  | 97.5  | 96.3  | 95.1  | 94.0  | 92.8  | 91.7  | 90.6  | 89.5  |
| Winnebago County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| IL Amer - South Beloit    | 98.1                          | 98.5                        | 101.4 | 100.2 | 99.0  | 97.8  | 96.6  | 95.4  | 94.3  | 93.1  | 92.0  | 90.9  |
| Loves Park                | 128.8                         | 129.3                       | 133.1 | 131.5 | 129.9 | 128.4 | 126.8 | 125.3 | 123.8 | 122.3 | 120.8 | 119.4 |
| North Park PWD            | 100.1                         | 100.5                       | 103.4 | 102.2 | 101.0 | 99.8  | 98.6  | 97.4  | 96.2  | 95.0  | 93.9  | 92.8  |
| Rockford                  | 124.6                         | 125.1                       | 128.8 | 127.2 | 125.7 | 124.2 | 122.7 | 121.2 | 119.8 | 118.3 | 116.9 | 115.5 |
| Rockton                   | 108.4                         | 108.8                       | 112.1 | 110.7 | 109.4 | 108.1 | 106.8 | 105.5 | 104.2 | 102.9 | 101.7 | 100.5 |
| Winnebago County Residual | 59.7                          | 60.0                        | 61.7  | 61.0  | 60.3  | 59.5  | 58.8  | 58.1  | 57.4  | 56.7  | 56.0  | 55.4  |
| Winnebago County Total    | 111.5                         | 111.9                       | 115.2 | 113.8 | 112.5 | 111.1 | 109.8 | 108.4 | 107.1 | 105.9 | 104.6 | 103.3 |
| REGIONAL TOTAL            | 117.1                         | 117.2                       | 120.5 | 118.9 | 117.4 | 116.0 | 114.6 | 113.2 | 111.8 | 110.4 | 109.1 | 107.8 |

| Public Water System        | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone County               |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Belvidere                  | 116.1                         | 115.0                       | 111.4 | 107.8 | 104.4 | 101.1 | 98.0  | 94.9  | 91.9  | 89.0  | 86.2  | 83.5  |
| Boone County Residual      | 77.0                          | 76.3                        | 73.9  | 71.5  | 69.3  | 67.1  | 65.0  | 62.9  | 60.9  | 59.0  | 57.2  | 55.4  |
| Boone County Total         | 105.5                         | 104.5                       | 101.3 | 98.1  | 95.3  | 92.5  | 89.8  | 87.1  | 84.5  | 82.0  | 79.5  | 77.1  |
| Bureau County              |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Depue                      | 104.5                         | 102.7                       | 99.5  | 96.3  | 93.3  | 90.3  | 87.5  | 84.7  | 82.1  | 79.5  | 77.0  | 74.5  |
| Princeton                  | 124.2                         | 122.0                       | 118.2 | 114.5 | 110.8 | 107.3 | 104.0 | 100.7 | 97.5  | 94.4  | 91.5  | 88.6  |
| Spring Valley              | 157.8                         | 155.0                       | 150.1 | 145.4 | 140.8 | 136.4 | 132.1 | 127.9 | 123.9 | 120.0 | 116.2 | 112.5 |
| Walnut                     | 100.4                         | 98.7                        | 95.5  | 92.5  | 89.6  | 86.8  | 84.1  | 81.4  | 78.8  | 76.3  | 73.9  | 71.6  |
| Bureau County Residual     | 93.8                          | 92.1                        | 89.2  | 86.4  | 83.7  | 81.0  | 78.5  | 76.0  | 73.6  | 71.3  | 69.0  | 66.9  |
| Bureau County Total        | 117.7                         | 115.7                       | 112.1 | 108.6 | 105.2 | 102.0 | 98.8  | 95.7  | 92.7  | 89.9  | 87.1  | 84.4  |
| Carroll County             |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Lanark                     | 108.9                         | 108.8                       | 105.4 | 102.0 | 98.8  | 95.7  | 92.7  | 89.8  | 86.9  | 84.2  | 81.5  | 79.0  |
| Mount Carroll              | 79.3                          | 79.2                        | 76.7  | 74.3  | 72.0  | 69.7  | 67.5  | 65.4  | 63.3  | 61.3  | 59.4  | 57.5  |
| Savanna                    | 135.6                         | 135.4                       | 131.1 | 127.0 | 122.9 | 119.1 | 115.3 | 111.7 | 108.2 | 104.7 | 101.4 | 98.2  |
| Carroll County Residual    | 122.9                         | 122.7                       | 118.8 | 115.1 | 111.4 | 107.9 | 104.5 | 101.2 | 98.0  | 94.9  | 91.9  | 89.0  |
| Carroll County Total       | 116.7                         | 116.5                       | 112.9 | 109.3 | 105.9 | 102.5 | 99.3  | 96.2  | 93.1  | 90.2  | 87.3  | 84.6  |
| Henry County               |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Cambridge                  | 94.1                          | 93.9                        | 90.9  | 88.0  | 85.3  | 82.6  | 80.0  | 77.4  | 75.0  | 72.6  | 70.3  | 68.1  |
| Colona East                | 78.1                          | 77.8                        | 77.6  | 73.0  | 70.7  | 68.5  | 66.3  | 64.2  | 62.2  | 60.2  | 58.3  | 56.5  |
| Galva                      | 93.7                          | 93.4                        | 100.0 | 87.6  | 84.8  | 82.1  | 79.5  | 77.0  | 74.6  | 72.3  | 70.0  | 67.8  |
| Geneseo                    | 101.1                         | 100.8                       | 97.6  | 94.5  | 91.6  | 88.7  | 85.9  | 83.2  | 80.5  | 78.0  | 75.5  | 73.2  |
| Kewanee                    | 132.0                         | 131.6                       | 127.4 | 123.4 | 119.5 | 115.7 | 112.1 | 108.6 | 105.1 | 101.8 | 98.6  | 95.5  |
| Henry County Residual      | 74.3                          | 74.1                        | 71.7  | 69.5  | 67.3  | 65.2  | 63.1  | 61.1  | 59.2  | 57.3  | 55.5  | 53.8  |
| Henry County Total         | 101.5                         | 101.2                       | 98.8  | 94.9  | 91.9  | 89.0  | 86.2  | 83.5  | 80.9  | 78.3  | 75.9  | 73.5  |
| Jo Daviess County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| East Dubuque               | 99.3                          | <u>99</u> .7                | 96.5  | 93.5  | 90.6  | 87.7  | 84.9  | 82.3  | 79.7  | 77.1  | 74.7  | 72.4  |
| Galena                     | 124.6                         | 125.0                       | 121.1 | 117.3 | 113.6 | 110.0 | 106.5 | 103.2 | 99.9  | 96.8  | 93.7  | 90.8  |
| Stockton                   | 195.8                         | 196.6                       | 190.4 | 184.3 | 178.5 | 172.9 | 167.5 | 162.2 | 157.1 | 152.1 | 147.3 | 142.7 |
| Jo Daviess County Residual | 94.7                          | 95.0                        | 92.0  | 89.1  | 86.3  | 83.6  | 81.0  | 78.4  | 75.9  | 73.5  | 71.2  | 69.0  |

# Table A.9 Per-Capita Public System Demand by Study Area and County, Less Resource Intensive (LRI) Scenario (gpcd)

| Public Water System         | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060        |
|-----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|
| Jo Daviess County Total     | 111.7                         | 112.1                       | 108.6 | 105.2 | 101.8 | 98.6  | 95.5  | 92.5  | 89.6  | 86.8  | 84.0  | 81.4        |
| Lee County                  |                               |                             |       |       |       |       |       |       |       |       |       |             |
| Amboy                       | 147.1                         | 144.4                       | 139.8 | 135.4 | 131.2 | 127.0 | 123.0 | 119.1 | 115.4 | 111.7 | 108.2 | 104.8       |
| Ashton                      | 143.4                         | 140.8                       | 136.3 | 132.0 | 127.9 | 123.8 | 119.9 | 116.1 | 112.5 | 108.9 | 105.5 | 102.2       |
| Dixon                       | 142.2                         | 139.6                       | 135.2 | 130.9 | 126.8 | 122.8 | 118.9 | 115.2 | 111.5 | 108.0 | 104.6 | 101.3       |
| Lee County Residual         | 109.8                         | 107.8                       | 104.4 | 101.1 | 97.9  | 94.8  | 91.8  | 88.9  | 86.1  | 83.4  | 80.8  | 78.2        |
| Lee County Total            | 130.9                         | 128.5                       | 124.3 | 120.3 | 116.4 | 112.6 | 108.9 | 105.4 | 102.0 | 98.6  | 95.4  | <i>92.3</i> |
| Ogle County                 |                               |                             |       |       |       |       |       |       |       |       |       |             |
| Byron                       | 144.2                         | 142.3                       | 137.8 | 133.4 | 129.2 | 125.1 | 121.2 | 117.4 | 113.7 | 110.1 | 106.6 | 103.3       |
| Mt Morris                   | 95.2                          | 93.9                        | 90.9  | 88.1  | 85.3  | 82.6  | 80.0  | 77.5  | 75.0  | 72.7  | 70.4  | 68.2        |
| Oregon                      | 90.9                          | 89.7                        | 86.9  | 64.7  | 62.6  | 60.7  | 58.7  | 56.9  | 55.1  | 53.4  | 51.7  | 50.0        |
| Polo                        | 82.3                          | 81.2                        | 78.7  | 76.2  | 73.8  | 71.5  | 69.2  | 67.0  | 64.9  | 62.9  | 60.9  | 59.0        |
| Rochelle                    | 291.1                         | 287.2                       | 278.2 | 269.4 | 260.9 | 252.7 | 244.7 | 237.0 | 229.5 | 222.3 | 215.3 | 208.5       |
| Ogle County Residual        | 84.4                          | 83.3                        | 80.7  | 78.1  | 75.7  | 73.3  | 71.0  | 68.7  | 66.6  | 64.5  | 62.4  | 60.5        |
| Ogle County Total           | 153.1                         | 151.1                       | 146.6 | 139.8 | 135.5 | 131.4 | 127.4 | 123.5 | 119.7 | 116.1 | 112.5 | 109.1       |
| <b>Rock Island County</b>   |                               |                             |       |       |       |       |       |       |       |       |       |             |
| East Moline                 | 205.0                         | 206.3                       | 199.8 | 193.5 | 187.4 | 181.5 | 175.8 | 170.2 | 164.9 | 159.7 | 154.6 | 149.8       |
| Milan                       | 102.9                         | 103.5                       | 100.2 | 97.1  | 94.0  | 91.1  | 88.2  | 85.4  | 82.7  | 80.1  | 77.6  | 75.1        |
| Moline                      | 120.7                         | 121.5                       | 117.6 | 113.9 | 110.3 | 106.9 | 103.5 | 100.2 | 97.1  | 94.0  | 91.0  | 88.2        |
| Rock Island                 | 142.2                         | 143.1                       | 138.6 | 134.2 | 130.0 | 125.9 | 121.9 | 118.1 | 114.3 | 110.7 | 107.2 | 103.9       |
| Silvis                      | 82.0                          | 82.5                        | 79.9  | 77.4  | 74.9  | 72.6  | 70.3  | 68.1  | 65.9  | 63.8  | 61.8  | 59.9        |
| Rock Island County Residual | 89.3                          | 89.8                        | 87.0  | 84.2  | 81.6  | 79.0  | 76.5  | 74.1  | 71.8  | 69.5  | 67.3  | 65.2        |
| Rock Island County Total    | 132.8                         | 133.7                       | 129.4 | 125.3 | 121.3 | 117.4 | 113.7 | 110.0 | 106.5 | 103.1 | 99.8  | 96.7        |
| Stephenson County           |                               |                             |       |       |       |       |       |       |       |       |       |             |
| Cedarville                  | 114.2                         | 114.6                       | 111.0 | 107.5 | 104.1 | 100.8 | 97.6  | 94.6  | 91.6  | 88.7  | 85.9  | 83.2        |
| Freeport                    | 113.2                         | 113.6                       | 110.0 | 106.5 | 103.2 | 99.9  | 96.8  | 93.7  | 90.8  | 87.9  | 85.1  | 82.4        |
| Lena                        | 96.7                          | 97.1                        | 94.0  | 91.0  | 88.2  | 85.4  | 82.7  | 80.1  | 77.6  | 75.1  | 72.7  | 70.4        |
| Stephenson County Residual  | 92.6                          | 92.9                        | 90.0  | 87.2  | 84.4  | 81.8  | 79.2  | 76.7  | 74.3  | 71.9  | 69.7  | 67.5        |
| Stephenson County Total     | 109.4                         | 109.8                       | 105.1 | 101.7 | 98.4  | 95.2  | 92.2  | 89.2  | 86.3  | 83.5  | 80.8  | 78.2        |
| Whiteside County            |                               |                             |       |       |       |       |       |       |       |       |       |             |
| Fulton                      | 79.5                          | 80.4                        | 77.9  | 75.4  | 73.0  | 70.7  | 68.5  | 66.3  | 64.2  | 62.2  | 60.3  | 58.4        |
| IL Amer - Sterling          | 102.0                         | 103.2                       | 99.9  | 96.8  | 93.7  | 90.8  | 87.9  | 85.1  | 82.4  | 79.8  | 77.3  | 74.9        |

| Public Water System       | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035        | 2040  | 2045  | 2050  | 2055 | 2060 |
|---------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------------|-------|-------|-------|------|------|
| Morrison                  | 111.9                         | 113.2                       | 109.7 | 106.2 | 102.8 | 99.6  | 96.5        | 93.4  | 90.5  | 87.6  | 84.9 | 82.2 |
| Prophetstown              | 87.3                          | 88.3                        | 85.5  | 82.8  | 80.2  | 77.7  | 75.3        | 72.9  | 70.6  | 68.4  | 66.2 | 64.1 |
| Rock Falls                | 100.0                         | 101.2                       | 98.0  | 94.9  | 91.9  | 89.0  | 86.2        | 83.5  | 80.9  | 78.3  | 75.8 | 73.4 |
| Whiteside County Residual | 68.9                          | 69.7                        | 67.5  | 65.4  | 63.3  | 61.3  | 59.4        | 57.5  | 55.7  | 54.0  | 52.3 | 50.6 |
| Whiteside County Total    | 95.9                          | 97.0                        | 94.0  | 91.0  | 88.1  | 85.3  | 82.6        | 80.0  | 77.5  | 75.0  | 72.6 | 70.3 |
| Winnebago County          |                               |                             |       |       |       |       |             |       |       |       |      |      |
| IL Amer - South Beloit    | 98.1                          | 98.5                        | 95.4  | 92.4  | 89.5  | 86.6  | 83.9        | 81.3  | 78.7  | 76.2  | 73.8 | 71.5 |
| Loves Park                | 128.8                         | 129.3                       | 125.2 | 121.3 | 117.4 | 113.7 | 110.1       | 106.7 | 103.3 | 100.1 | 96.9 | 93.8 |
| North Park PWD            | 100.1                         | 100.5                       | 97.3  | 94.2  | 91.3  | 88.4  | 85.6        | 82.9  | 80.3  | 77.8  | 75.3 | 72.9 |
| Rockford                  | 124.6                         | 125.1                       | 121.1 | 117.3 | 113.6 | 110.0 | 106.6       | 103.2 | 100.0 | 96.8  | 93.8 | 90.8 |
| Rockton                   | 108.4                         | 108.8                       | 105.4 | 102.1 | 98.9  | 95.7  | 92.7        | 89.8  | 87.0  | 84.2  | 81.6 | 79.0 |
| Winnebago County Residual | 59.7                          | 60.0                        | 58.1  | 56.2  | 54.5  | 52.8  | 51.1        | 49.5  | 47.9  | 46.4  | 44.9 | 43.5 |
| Winnebago County Total    | 111.5                         | 111.9                       | 108.4 | 105.0 | 101.7 | 98.5  | <i>95.3</i> | 92.3  | 89.4  | 86.6  | 83.9 | 81.2 |
| REGIONAL TOTAL            | 117.1                         | 117.2                       | 113.4 | 109.6 | 106.1 | 102.8 | 99.5        | 96.4  | 93.3  | 90.4  | 87.5 | 84.7 |

| Public Water System        | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone County               |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Belvidere                  | 227.6                         | 115.0                       | 155.6 | 155.6 | 116.1 | 124.9 | 125.8 | 126.7 | 127.6 | 128.5 | 129.5 | 130.4 |
| Boone County Residual      | 77.2                          | 76.3                        | 95.1  | 68.4  | 77.0  | 82.8  | 83.4  | 84.0  | 84.7  | 85.3  | 85.9  | 86.5  |
| Boone County Total         | 201.2                         | 104.5                       | 141.8 | 130.3 | 105.5 | 113.4 | 114.4 | 115.3 | 116.4 | 117.6 | 118.7 | 119.8 |
| Bureau County              |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Depue                      | 104.5                         | 102.7                       | 112.3 | 113.2 | 114.0 | 114.8 | 115.7 | 116.5 | 117.3 | 118.2 | 119.1 | 119.9 |
| Princeton                  | 124.2                         | 122.0                       | 133.5 | 134.4 | 135.4 | 136.4 | 137.4 | 138.4 | 139.4 | 140.4 | 141.5 | 142.5 |
| Spring Valley              | 157.8                         | 155.0                       | 169.5 | 170.8 | 172.0 | 173.3 | 174.5 | 175.8 | 177.1 | 178.4 | 179.7 | 181.0 |
| Walnut                     | 100.4                         | 98.7                        | 107.9 | 108.7 | 109.5 | 110.3 | 111.1 | 111.9 | 112.7 | 113.5 | 114.4 | 115.2 |
| Bureau County Residual     | 93.8                          | 92.1                        | 100.7 | 101.5 | 102.2 | 103.0 | 103.7 | 104.5 | 105.2 | 106.0 | 106.8 | 107.6 |
| Bureau County Total        | 117.7                         | 115.7                       | 126.6 | 127.6 | 128.6 | 129.6 | 130.6 | 131.6 | 132.6 | 133.6 | 134.7 | 135.7 |
| Carroll County             |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Lanark                     | 108.9                         | 108.8                       | 119.0 | 119.9 | 120.7 | 121.6 | 122.5 | 123.4 | 124.3 | 125.2 | 126.1 | 127.0 |
| Mount Carroll              | 79.3                          | 79.2                        | 86.7  | 87.3  | 87.9  | 88.6  | 89.2  | 89.9  | 90.5  | 91.2  | 91.8  | 92.5  |
| Savanna                    | 135.6                         | 135.4                       | 148.1 | 149.1 | 150.2 | 151.3 | 152.4 | 153.5 | 154.7 | 155.8 | 156.9 | 158.1 |
| Carroll County Residual    | 122.9                         | 122.7                       | 134.2 | 135.2 | 136.2 | 137.1 | 138.1 | 139.2 | 140.2 | 141.2 | 142.2 | 143.3 |
| Carroll County Total       | 116.7                         | 116.5                       | 127.5 | 128.4 | 129.3 | 130.3 | 131.2 | 132.2 | 133.1 | 134.1 | 135.1 | 136.1 |
| Henry County               |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Cambridge                  | 94.1                          | 93.9                        | 102.7 | 103.4 | 104.2 | 104.9 | 105.7 | 106.5 | 107.2 | 108.0 | 108.8 | 109.6 |
| Colona East                | 78.1                          | 77.8                        | 86.2  | 85.7  | 86.4  | 87.0  | 87.6  | 88.3  | 88.9  | 89.6  | 90.2  | 90.9  |
| Galva                      | 93.7                          | 93.4                        | 111.2 | 102.9 | 103.6 | 104.4 | 105.1 | 105.9 | 106.7 | 107.5 | 108.2 | 109.0 |
| Geneseo                    | 101.1                         | 100.8                       | 110.2 | 111.0 | 111.9 | 112.7 | 113.5 | 114.3 | 115.2 | 116.0 | 116.8 | 117.7 |
| Kewanee                    | 132.0                         | 131.6                       | 143.9 | 145.0 | 146.0 | 147.1 | 148.2 | 149.2 | 150.3 | 151.4 | 152.5 | 153.6 |
| Henry County Residual      | 74.3                          | 74.1                        | 81.0  | 81.6  | 82.2  | 82.8  | 83.4  | 84.0  | 84.6  | 85.2  | 85.9  | 86.5  |
| Henry County Total         | 101.5                         | 101.2                       | 111.4 | 111.5 | 112.3 | 113.1 | 114.0 | 114.8 | 115.6 | 116.5 | 117.3 | 118.2 |
| Jo Daviess County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| East Dubuque               | 99.3                          | 99.7                        | 109.0 | 109.8 | 110.6 | 111.4 | 112.3 | 113.1 | 113.9 | 114.7 | 115.6 | 116.4 |
| Galena                     | 124.6                         | 125.0                       | 136.8 | 137.8 | 138.8 | 139.8 | 140.8 | 141.8 | 142.8 | 143.9 | 144.9 | 146.0 |
| Stockton                   | 195.8                         | 196.6                       | 215.0 | 216.6 | 218.1 | 219.7 | 221.3 | 222.9 | 224.6 | 226.2 | 227.9 | 229.5 |
| Jo Daviess County Residual | 94.7                          | 95.0                        | 103.9 | 104.7 | 105.5 | 106.2 | 107.0 | 107.8 | 108.6 | 109.4 | 110.2 | 111.0 |

## Table A.10 Per-Capita Public System Demand by Study Area and County, More Resource Intensive (MRI) Scenario (gpcd)

| Public Water System         | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Jo Daviess County Total     | 111.7                         | 112.1                       | 122.6 | 123.5 | 124.4 | 125.3 | 126.3 | 127.2 | 128.1 | 129.0 | 130.0 | 130.9 |
| Lee County                  |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Amboy                       | 147.1                         | 144.4                       | 157.9 | 159.1 | 160.2 | 161.4 | 162.6 | 163.8 | 165.0 | 166.2 | 167.4 | 168.6 |
| Ashton                      | 143.4                         | 140.8                       | 154.0 | 155.1 | 156.2 | 157.4 | 158.5 | 159.7 | 160.8 | 162.0 | 163.2 | 164.4 |
| Dixon                       | 142.2                         | 139.6                       | 152.7 | 153.8 | 154.9 | 156.0 | 157.2 | 158.3 | 159.5 | 160.6 | 161.8 | 163.0 |
| Lee County Residual         | 109.8                         | 107.8                       | 117.9 | 118.8 | 119.6 | 120.5 | 121.4 | 122.3 | 123.2 | 124.1 | 125.0 | 125.9 |
| Lee County Total            | 130.9                         | 128.5                       | 140.4 | 141.3 | 142.2 | 143.1 | 144.0 | 144.9 | 145.8 | 146.7 | 147.6 | 148.6 |
| Ogle County                 |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Byron                       | 144.2                         | 142.3                       | 155.6 | 156.7 | 157.9 | 159.0 | 160.2 | 161.4 | 162.5 | 163.7 | 164.9 | 166.1 |
| Mt Morris                   | 95.2                          | 93.9                        | 102.7 | 103.5 | 104.2 | 105.0 | 105.7 | 106.5 | 107.3 | 108.1 | 108.9 | 109.7 |
| Oregon                      | 90.9                          | 89.7                        | 98.1  | 76.0  | 76.5  | 77.1  | 77.6  | 78.2  | 78.8  | 79.3  | 79.9  | 80.5  |
| Polo                        | 82.3                          | 81.2                        | 88.8  | 89.5  | 90.1  | 90.8  | 91.5  | 92.1  | 92.8  | 93.5  | 94.2  | 94.9  |
| Rochelle                    | 291.1                         | 287.2                       | 314.2 | 316.5 | 318.8 | 321.1 | 323.4 | 325.8 | 328.2 | 330.6 | 333.0 | 335.4 |
| Ogle County Residual        | 84.4                          | 83.3                        | 91.1  | 91.8  | 92.4  | 93.1  | 93.8  | 94.5  | 95.2  | 95.9  | 96.6  | 97.3  |
| Ogle County Total           | 153.1                         | 151.1                       | 165.5 | 164.2 | 165.6 | 167.0 | 168.4 | 169.8 | 171.2 | 172.6 | 174.0 | 175.5 |
| <b>Rock Island County</b>   |                               |                             |       |       |       |       |       |       |       |       |       |       |
| East Moline                 | 205.0                         | 206.3                       | 225.7 | 227.3 | 229.0 | 230.6 | 232.3 | 234.0 | 235.7 | 237.4 | 239.2 | 240.9 |
| Milan                       | 102.9                         | 103.5                       | 113.2 | 114.0 | 114.9 | 115.7 | 116.6 | 117.4 | 118.3 | 119.1 | 120.0 | 120.9 |
| Moline                      | 120.7                         | 121.5                       | 132.9 | 133.8 | 134.8 | 135.8 | 136.8 | 137.8 | 138.8 | 139.8 | 140.8 | 141.9 |
| Rock Island                 | 142.2                         | 143.1                       | 156.5 | 157.6 | 158.8 | 160.0 | 161.1 | 162.3 | 163.5 | 164.7 | 165.9 | 167.1 |
| Silvis                      | 82.0                          | 82.5                        | 90.2  | 90.9  | 91.5  | 92.2  | 92.9  | 93.6  | 94.2  | 94.9  | 95.6  | 96.3  |
| Rock Island County Residual | 89.3                          | 89.8                        | 98.2  | 98.9  | 99.7  | 100.4 | 101.1 | 101.9 | 102.6 | 103.4 | 104.1 | 104.9 |
| Rock Island County Total    | 132.8                         | 133.7                       | 146.1 | 147.1 | 148.2 | 149.2 | 150.2 | 151.3 | 152.3 | 153.4 | 154.4 | 155.5 |
| Stephenson County           |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Cedarville                  | 114.2                         | 114.6                       | 125.4 | 126.3 | 127.2 | 128.1 | 129.0 | 130.0 | 130.9 | 131.9 | 132.9 | 133.8 |
| Freeport                    | 113.2                         | 113.6                       | 124.2 | 125.1 | 126.0 | 127.0 | 127.9 | 128.8 | 129.8 | 130.7 | 131.7 | 132.6 |
| Lena                        | 96.7                          | 97.1                        | 106.2 | 106.9 | 107.7 | 108.5 | 109.3 | 110.1 | 110.9 | 111.7 | 112.5 | 113.3 |
| Stephenson County Residual  | 92.6                          | 92.9                        | 101.7 | 102.4 | 103.1 | 103.9 | 104.7 | 105.4 | 106.2 | 107.0 | 107.7 | 108.5 |
| Stephenson County Total     | 109.4                         | 109.8                       | 118.7 | 119.5 | 120.3 | 121.0 | 121.8 | 122.6 | 123.4 | 124.2 | 125.0 | 125.8 |
| Whiteside County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Fulton                      | 79.5                          | 80.4                        | 87.9  | 88.6  | 89.2  | 89.9  | 90.5  | 91.2  | 91.9  | 92.5  | 93.2  | 93.9  |
| IL Amer - Sterling          | 102.0                         | 103.2                       | 112.8 | 113.7 | 114.5 | 115.3 | 116.2 | 117.0 | 117.9 | 118.7 | 119.6 | 120.5 |

| Public Water System       | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|---------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Morrison                  | 111.9                         | 113.2                       | 123.8 | 124.7 | 125.7 | 126.6 | 127.5 | 128.4 | 129.4 | 130.3 | 131.3 | 132.2 |
| Prophetstown              | 87.3                          | 88.3                        | 96.6  | 97.3  | 98.0  | 98.7  | 99.5  | 100.2 | 100.9 | 101.7 | 102.4 | 103.1 |
| Rock Falls                | 100.0                         | 101.2                       | 110.7 | 111.5 | 112.3 | 113.1 | 113.9 | 114.8 | 115.6 | 116.5 | 117.3 | 118.2 |
| Whiteside County Residual | 68.9                          | 69.7                        | 76.3  | 76.8  | 77.4  | 78.0  | 78.5  | 79.1  | 79.7  | 80.3  | 80.8  | 81.4  |
| Whiteside County Total    | 95.9                          | 97.0                        | 106.1 | 106.9 | 107.7 | 108.4 | 109.2 | 110.0 | 110.8 | 111.6 | 112.4 | 113.2 |
| Winnebago County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| IL Amer - South Beloit    | 98.1                          | 98.5                        | 107.7 | 108.5 | 109.3 | 110.1 | 110.9 | 111.7 | 112.5 | 113.3 | 114.2 | 115.0 |
| Loves Park                | 128.8                         | 129.3                       | 141.4 | 142.4 | 143.5 | 144.5 | 145.6 | 146.6 | 147.7 | 148.8 | 149.9 | 151.0 |
| North Park PWD            | 100.1                         | 100.5                       | 109.9 | 110.7 | 111.5 | 112.3 | 113.1 | 114.0 | 114.8 | 115.6 | 116.5 | 117.3 |
| Rockford                  | 124.6                         | 125.1                       | 136.8 | 137.8 | 138.8 | 139.8 | 140.9 | 141.9 | 142.9 | 144.0 | 145.0 | 146.1 |
| Rockton                   | 108.4                         | 108.8                       | 119.0 | 119.9 | 120.8 | 121.7 | 122.6 | 123.5 | 124.4 | 125.3 | 126.2 | 127.1 |
| Winnebago County Residual | 59.7                          | 60.0                        | 65.6  | 66.1  | 66.6  | 67.0  | 67.5  | 68.0  | 68.5  | 69.0  | 69.5  | 70.0  |
| Winnebago County Total    | 111.5                         | 111.9                       | 122.4 | 123.3 | 124.2 | 125.1 | 126.0 | 126.9 | 127.9 | 128.8 | 129.7 | 130.7 |
| REGIONAL TOTAL            | 117.1                         | 117.2                       | 128.1 | 128.8 | 129.7 | 130.6 | 131.5 | 132.5 | 133.4 | 134.4 | 135.3 | 136.3 |

References

Meyer, S.C., B. Dziegielewski, and Z. Zhang. In preparation-a. *Water Demand in the Kankakee Watershed Region*, 2010-2060. Illinois State Water Survey Contract Report, Champaign, IL.

Meyer, S.C., B. Dziegielewski, and Z. Zhang. In preparation-b. *Water Demand in the Middle Illinois Water-Supply Planning Region*, 2010-2060. Illinois State Water Survey Contract Report, Champaign, IL.

Yohai, V.J., and R.H. Zamar. 1997. Optimal locally robust M-estimates of regression. *Journal of Statistical Planning and Inference* 64:309-323.

### Appendix B. Estimation of Future Population

#### Methodology

In the absence of existing estimates, we have estimated the resident population from 2030 to 2060 for each county in the study region (Figure B.1 to Figure B.12, Table B.1). To develop these estimates, we used historical county-level population counts (1920-2000) and estimates of the 2010-2014 population on July 1 of each year (Table B.2), as well as available projections of the future county population.

Historical population counts for the years 1920 to 1990 were obtained from the United States Census Bureau (1995), as was the count for 2000 (United States Census Bureau, 2004). Estimates of 2010-2014 population were obtained using the Advanced Search feature provided within the United States Census Bureau's *American FactFinder* (United States Census Bureau, 2015). Projections of county-level population–covering the years 2015, 2020, and 2025–were developed by the Illinois Department of Public Health (IDPH) and were obtained from the State of Illinois Data Portal (Data.Illinois.gov State of Illinois Data Portal, 2015). For this study, the IDPH projections were extended for an additional 35 years (2030-2060) using straightforward trend extension techniques that were fitted to historical population data and IDPH projections.

We employed estimates of the 2010 population on July 1, rather than census counts on April 1 (United States Census Bureau, 2014) because, as will be discussed, we frequently used the 2010 data in conjunction with the 2014 estimates, also estimated for July 1, and with the IDPH estimates, which are based on the July 1, 2010 Census Bureau estimates (Data.Illinois.gov State of Illinois Data Portal, 2015). The April 1 counts and July 1 estimates for the counties of the Rock River region differ by small amounts ranging from 0.04 percent (Boone, Whiteside, and Winnebago Counties) to 0.21 percent (Bureau County), with a median difference of 0.08 percent.

For each of the study region counties, we plotted census population counts for the years 1920 to 2000, estimates for 2010 and 2014, and the IDPH population projections from 2015 to 2025. We used the resulting plots to explore the population data for long-term trends, employing the Census Bureau's 2014 population estimate to validate the IDPH 2015 projection.

Among the 11 counties of the study region, the IDPH projections for 7 counties show a decreasing population during the 2015-2025 period. IDPH projects slight or moderate increases in county population for only 4 counties during this period (Boone, Lee, Ogle, and Winnebago). When comparing the IDPH projections with the historical trends (including the Census Bureau's 2014 estimate), we decided to use the following methods and assumptions to extend the IDPH population projections to the 2030-2060 period:

- For Bureau (Figure B.3), Carroll (Figure B.4), Henry (Figure B.5), Jo Daviess (Figure B.6), Stephenson (Figure B.10), and Whiteside Counties (Figure B.11), IDPH projections suggest a declining population from 2015 to 2025, a trend that is plausible based on historical data. In projecting the population in these counties from 2030 to 2060, however, we assumed that population in these counties will stabilize at the IDPH estimate for 2020.
- For Lee (Figure B.7) and Ogle Counties (Figure B.8), we assumed that the population during the 2030-2060 period follows a linear trend that is based on the upward-trending IDPH 2015-2025 projections. We generated our 2030-2060 population estimates using

interpolation results generated with the *Fill/Series* ... utility of Microsoft Excel 2013 (Microsoft Corporation, 2013), accessed via Excel's *Home* ribbon, selecting the *Linear* option under the *Type* menu, checking the *Trend* box. We adapted this approach for Boone, Rock Island, and Winnebago Counties, as discussed below.

- 3. For Boone County (Figure B.2), the equation describing a long-term linear trend based on 1920-2000 census counts, 2010 estimate, and the 2015-2025 IDPH projections forecasts a 2060 population of 76,347. This is a plausible approximation based on inspection of the plotted data, but strict adherence to the equation would require a sharp decline in population from 2025 to 2030. We therefore generated 2030-2060 population estimates using interpolation results generated with the *Fill/Series* ... utility of Microsoft Excel 2013 (Microsoft Corporation, 2013), accessed via the *Home* ribbon, selecting the *Linear* option under the *Type* menu, checking the *Trend* box, and using as input the IDPH estimates for the years 2015, 2020, and 2025, together with a preliminary value of 76,347 for 2060. From this computation we employed the 2030-2060 values as estimates of future county population (note that, for 2060, we substituted the value of 76,814, derived through the second interpolation, for the preliminary value of 76,347). Additionally, we used as our population estimate for 2025 the Excel-computed value of 63,242, rather than the IDPH estimate of 65,314, in order to avoid a decline in the projected population from 2025 to 2030.
- 4. For Rock Island County (Figure B.9), the IDPH estimates for 2015 to 2025 trend downward, faithfully honoring a slight post-2000 population decline documented by the 2000 census count and 2010 estimate (United States Census Bureau, 2014, 2015), as well as a more abrupt post-1970 decline documented by the 1970, 1980, and 1990 censuses (United States Census Bureau, 1995). Still, the downward trend predicted by the IDPH estimates conflicts with a long-term upward population trend documented by the 1920-2010 census counts and estimate, so we have substituted our own 2015-2025 estimates for those of the IDPH and have employed these estimates in generating the 2030-2060 population estimates we used in this report for predicting water demand. We first explored the long-term census data as a basis for justifying a plausible long-term trend in population change from 2010 to 2060. We found that the equation describing a line interpolated to the 1950-2010 census data suggests a slight upward trend, with the population in 2060 approximately 158,035. This trend is to the authors a more plausible reflection of long-term county population change than is the downward trend suggested by the IDPH estimates for 2015-2025. Thus we have assumed a population in 2060 of 158,035. We then employed a shorter-term record of county population to estimate the 2015 population. As input to this computation, we used the Census Bureau estimates of 2010, 2011, 2012, 2013, and 2014 population obtained using the Advanced Search feature provided within the United States Census Bureau's American FactFinder (United States Census Bureau, 2015). We developed our 2015 estimate using the Fill/Series ... utility of Microsoft Excel 2013 (Microsoft Corporation, 2013), accessed via Excel's *Home* ribbon, selecting the *Linear* option under the *Type* menu and checking the *Trend* box. We then employed our 2015 population estimate of 145,921, together with our estimated 2060 population of 158,034, to develop estimates for 2020-2055. This was also accomplished using the Fill/Series ... utility of Microsoft Excel 2013 (Microsoft Corporation, 2013), selecting the *Linear* option under the *Type* menu and checking the Trend box.



# **Northwestern Illinois Region**

Historical Count (US Census Bureau) × Estimated (US Census Bureau) + Estimated (IDPH and This Study) A Estimated (This Study)





**Boone County** 

Figure B.2 Historical and projected population, Boone County



Figure B.3 Historical and projected population, Bureau County



**Carroll County** 

Figure B.4 Historical and projected population, Carroll County



Figure B.5 Historical and projected population, Henry County



Figure B.6 Historical and projected population, Jo Daviess County



Figure B.7 Historical and projected population, Lee County



**Ogle County** 

Figure B.8 Historical and projected population, Ogle County



Figure B.9 Historical and projected population, Rock Island County



**Stephenson County** 

Figure B.10 Historical and projected population, Stephenson County



Figure B.11 Historical and projected population, Whiteside County



Winnebago County

Figure B.12 Historical and projected population, Winnebago County

| County                | 2015 <sup>1</sup> | 2020 <sup>1</sup> | 2025 <sup>1</sup> | 2030 <sup>2</sup> | 2035 <sup>2</sup> | <b>2040</b> <sup>2</sup> | 2045 <sup>2</sup> | 2050 <sup>2</sup> | 2055 <sup>2</sup> | 2060 <sup>2</sup> |
|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|
| Boone                 | 57,714            | 61,504            | 63,287*           | 65,220            | 67,152            | 69,084                   | 71,017            | 72,949            | 74,882            | 76,814            |
| Bureau                | 34,252            | 33,681            | 33,145            | 33,681            | 33,681            | 33,681                   | 33,681            | 33,681            | 33,681            | 33,681            |
| Carroll               | 14,737            | 14,169            | 13,600            | 14,169            | 14,169            | 14,169                   | 14,169            | 14,169            | 14,169            | 14,169            |
| Henry                 | 49,243            | 48,233            | 47,249            | 48,233            | 48,233            | 48,233                   | 48,233            | 48,233            | 48,233            | 48,233            |
| Jo Daviess            | 22,409            | 22,137            | 21,807            | 22,137            | 22,137            | 22,137                   | 22,137            | 22,137            | 22,137            | 22,137            |
| Lee                   | 35,972            | 36,066            | 36,120            | 36,201            | 36,275            | 36,349                   | 36,423            | 36,497            | 36,571            | 36,645            |
| Ogle                  | 53,785            | 54,316            | 54,837            | 55,365            | 55,891            | 56,417                   | 56,943            | 57,469            | 57,995            | 58,521            |
| Rock Island           | 145,921*          | 147,267*          | 148,613*          | 149,959           | 151,305           | 152,651                  | 153,997           | 155,343           | 156,689           | 158,035           |
| Stephenson            | 46,887            | 46,242            | 45,590            | 46,242            | 46,242            | 46,242                   | 46,242            | 46,242            | 46,242            | 46,242            |
| Whiteside             | 56,690            | 55,267            | 53,922            | 55,267            | 55,267            | 55,267                   | 55,267            | 55,267            | 55,267            | 55,267            |
| Winnebago             | 298,260           | 302,258           | 306,088           | 306,881           | 309,284           | 311,687                  | 314,089           | 316,492           | 318,895           | 321,297           |
| <b>REGIONAL TOTAL</b> | 815,870           | 821,140           | 824,259           | 833,355           | 839,636           | 845,916                  | 852,197           | 858,478           | 864,759           | 871,040           |

Table B.1 Projected County and Regional Population, 2015-2060

<sup>1</sup>Estimated by Illinois Department of Public Health and available from Data.Illinois.gov State of Illinois Data Portal (2015) unless noted with asterisk, which are estimated for this study as described in the text.

<sup>2</sup>This study

| County                | <b>1920</b> <sup>1</sup> | <b>1930</b> <sup>1</sup> | <b>1940</b> <sup>1</sup> | <b>1950</b> <sup>1</sup> | <b>1960</b> <sup>1</sup> | <b>1970</b> <sup>1</sup> | <b>1980</b> <sup>1</sup> | <b>1990</b> <sup>1</sup> | <b>2000</b> <sup>2</sup> | <b>2010<sup>3</sup></b> | <b>2014<sup>3</sup></b> |
|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
| Boone                 | 15,322                   | 15,078                   | 15,202                   | 17,070                   | 20,326                   | 25,440                   | 28,630                   | 30,806                   | 41,852                   | 54,144                  | 53,869                  |
| Bureau                | 42,648                   | 38,845                   | 37,600                   | 37,711                   | 37,594                   | 38,541                   | 39,114                   | 35,688                   | 35,561                   | 34,905                  | 33,840                  |
| Carroll               | 19,345                   | 18,433                   | 17,987                   | 18,976                   | 19,507                   | 19,276                   | 18,779                   | 16,805                   | 16,705                   | 15,364                  | 14,715                  |
| Henry                 | 45,162                   | 43,851                   | 43,798                   | 46,492                   | 49,317                   | 53,217                   | 57,968                   | 51,159                   | 51,107                   | 50,432                  | 49,635                  |
| Jo Daviess            | 21,917                   | 20,235                   | 19,989                   | 21,459                   | 21,821                   | 21,766                   | 23,520                   | 21,821                   | 22,324                   | 22,660                  | 22,254                  |
| Lee                   | 28,004                   | 32,329                   | 34,604                   | 36,451                   | 38,749                   | 37,947                   | 36,328                   | 34,392                   | 36,118                   | 35,970                  | 34,735                  |
| Ogle                  | 26,830                   | 28,118                   | 29,869                   | 33,429                   | 38,106                   | 42,867                   | 46,338                   | 45,957                   | 51,119                   | 53,448                  | 52,085                  |
| Rock Island           | 92,297                   | 98,191                   | 113,323                  | 133,558                  | 150,991                  | 166,734                  | 165,968                  | 148,723                  | 149,637                  | 147,632                 | 146,063                 |
| Stephenson            | 37,743                   | 40,064                   | 40,646                   | 41,595                   | 46,207                   | 48,861                   | 49,536                   | 48,052                   | 49,058                   | 47,680                  | 46,435                  |
| Whiteside             | 36,174                   | 39,019                   | 43,338                   | 49,336                   | 59,887                   | 62,877                   | 65,970                   | 60,186                   | 60,755                   | 58,472                  | 56,876                  |
| Winnebago             | 90,929                   | 117,373                  | 121,178                  | 152,385                  | 209,765                  | 246,623                  | 250,884                  | 252,913                  | 278,902                  | 295,151                 | 288,542                 |
| <b>REGIONAL TOTAL</b> | 456,371                  | 491,536                  | 517,534                  | 588,462                  | 692,270                  | 764,149                  | 783,035                  | 746,502                  | 793,138                  | 815,858                 | 799,049                 |

Table B.2 Historical County and Regional Population, 1920-2014

<sup>1</sup>United States Census Bureau (1995)

<sup>2</sup>United States Census Bureau (2004)

<sup>3</sup>Estimated by United States Census Bureau, available from United States Census Bureau American FactFinder Advanced Search (United States Census Bureau, 2015)
#### References

Data.Illinois.gov State of Illinois Data Portal. 2015. Population Projections 2014 Edition. Illinois Department of Commerce and Economic Opportunity, <u>https://data.illinois.gov/dataset/Population-Projections-2014-Edition/6u8g-w2b6</u> (accessed June 9, 2015).

Microsoft Corporation. 2013. Microsoft Excel 2013.

United States Census Bureau. 1995. *Population of Counties by Decennial Census: 1900 to 1990*. United States Census Bureau, <u>http://www.census.gov/population/cencounts/il190090.txt</u> (accessed September 29, 2009).

United States Census Bureau. 2004. *Census 2000 Data for the State of Illinois*. United States Census Bureau, <u>http://www.census.gov/census2000/states/il.html</u> (accessed August 24, 2006).

United States Census Bureau. 2014. *United States Census 2010*. United States Census Bureau, <u>http://www.census.gov/2010census/</u> (accessed November 14, 2014).

United States Census Bureau. 2015. American FactFinder Advanced Search. United States Census Bureau, <u>http://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t</u> (accessed June 9, 2015).

#### Appendix C. Self-Supplied Domestic Demand – Supplemental Tables

| County            | 2010   | 2015   | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone             | 1.506  | 1.568  | 1.644 | 1.588 | 1.543 | 1.498 | 1.453 | 1.409 | 1.365 | 1.321 | 1.278 |
| Bureau            | 0.761  | 0.699  | 0.644 | 0.593 | 0.626 | 0.617 | 0.608 | 0.599 | 0.590 | 0.581 | 0.573 |
| Carroll           | 0.470  | 0.418  | 0.371 | 0.325 | 0.368 | 0.367 | 0.365 | 0.364 | 0.362 | 0.361 | 0.359 |
| Henry             | 0.791  | 0.685  | 0.594 | 0.506 | 0.573 | 0.563 | 0.552 | 0.542 | 0.532 | 0.522 | 0.512 |
| Jo Daviess        | 0.399  | 0.378  | 0.354 | 0.327 | 0.351 | 0.350 | 0.348 | 0.347 | 0.345 | 0.344 | 0.343 |
| Lee               | 0.382  | 0.364  | 0.354 | 0.340 | 0.329 | 0.317 | 0.305 | 0.293 | 0.282 | 0.270 | 0.259 |
| Ogle              | 1.601  | 1.584  | 1.580 | 1.576 | 1.571 | 1.567 | 1.563 | 1.558 | 1.554 | 1.550 | 1.545 |
| Rock Island       | 0.935  | 0.745  | 0.799 | 0.853 | 0.906 | 0.959 | 1.011 | 1.063 | 1.115 | 1.165 | 1.216 |
| Stephenson        | 1.152  | 0.881  | 0.808 | 0.735 | 0.765 | 0.744 | 0.723 | 0.702 | 0.682 | 0.661 | 0.641 |
| Whiteside         | 1.461  | 1.308  | 1.186 | 1.070 | 1.167 | 1.158 | 1.149 | 1.140 | 1.131 | 1.122 | 1.113 |
| Winnebago         | 1.510  | 1.520  | 1.534 | 1.546 | 1.544 | 1.549 | 1.555 | 1.560 | 1.565 | 1.571 | 1.576 |
| REGIONAL<br>TOTAL | 10.969 | 10.150 | 9.868 | 9.458 | 9.744 | 9.688 | 9.633 | 9.578 | 9.523 | 9.468 | 9.414 |

Table C.1 Total Self-Supplied Domestic Demand by County, Current Trends (CT) Scenario (Mgd)

<sup>1</sup>United States Geological Survey (2014)

| County            | 2010   | 2015   | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone             | 1.506  | 1.549  | 1.604 | 1.531 | 1.469 | 1.409 | 1.351 | 1.294 | 1.238 | 1.184 | 1.131 |
| Bureau            | 0.761  | 0.690  | 0.629 | 0.571 | 0.596 | 0.581 | 0.565 | 0.550 | 0.536 | 0.521 | 0.507 |
| Carroll           | 0.470  | 0.413  | 0.363 | 0.313 | 0.351 | 0.345 | 0.340 | 0.334 | 0.329 | 0.323 | 0.318 |
| Henry             | 0.791  | 0.676  | 0.580 | 0.488 | 0.546 | 0.530 | 0.514 | 0.498 | 0.483 | 0.468 | 0.454 |
| Jo Daviess        | 0.399  | 0.373  | 0.346 | 0.315 | 0.335 | 0.329 | 0.324 | 0.319 | 0.314 | 0.308 | 0.303 |
| Lee               | 0.382  | 0.360  | 0.345 | 0.328 | 0.313 | 0.298 | 0.284 | 0.269 | 0.256 | 0.242 | 0.229 |
| Ogle              | 1.601  | 1.565  | 1.542 | 1.519 | 1.497 | 1.475 | 1.453 | 1.431 | 1.410 | 1.389 | 1.368 |
| Rock Island       | 0.935  | 0.736  | 0.780 | 0.822 | 0.863 | 0.902 | 0.940 | 0.976 | 1.011 | 1.045 | 1.077 |
| Stephenson        | 1.152  | 0.870  | 0.788 | 0.709 | 0.729 | 0.700 | 0.672 | 0.645 | 0.619 | 0.593 | 0.568 |
| Whiteside         | 1.461  | 1.293  | 1.157 | 1.032 | 1.112 | 1.090 | 1.068 | 1.047 | 1.026 | 1.006 | 0.986 |
| Winnebago         | 1.510  | 1.501  | 1.497 | 1.491 | 1.471 | 1.458 | 1.445 | 1.433 | 1.420 | 1.408 | 1.395 |
| REGIONAL<br>TOTAL | 10.969 | 10.106 | 9.708 | 9.196 | 9.357 | 9.191 | 9.028 | 8.868 | 8.711 | 8.557 | 8.406 |

Table C.2 Total Self-Supplied Domestic Demand by County, Less Resource Intensive (LRI) Scenario (Mgd)

| County            | 2010   | 2015   | 2020   | 2025  | 2030   | 2035   | 2040   | 2045   | 2050   | 2055   | 2060   |
|-------------------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
| Boone             | 1.506  | 1.586  | 1.682  | 1.644 | 1.615  | 1.586  | 1.557  | 1.527  | 1.496  | 1.465  | 1.433  |
| Bureau            | 0.761  | 0.707  | 0.659  | 0.614 | 0.655  | 0.653  | 0.651  | 0.649  | 0.647  | 0.645  | 0.643  |
| Carroll           | 0.470  | 0.423  | 0.380  | 0.336 | 0.386  | 0.389  | 0.391  | 0.394  | 0.397  | 0.400  | 0.403  |
| Henry             | 0.791  | 0.693  | 0.608  | 0.523 | 0.600  | 0.596  | 0.592  | 0.588  | 0.584  | 0.579  | 0.575  |
| Jo Daviess        | 0.399  | 0.382  | 0.363  | 0.338 | 0.368  | 0.371  | 0.373  | 0.376  | 0.379  | 0.382  | 0.384  |
| Lee               | 0.382  | 0.368  | 0.362  | 0.352 | 0.344  | 0.336  | 0.327  | 0.318  | 0.309  | 0.300  | 0.290  |
| Ogle              | 1.601  | 1.603  | 1.617  | 1.631 | 1.645  | 1.660  | 1.674  | 1.689  | 1.704  | 1.719  | 1.734  |
| Rock Island       | 0.935  | 0.754  | 0.818  | 0.883 | 0.949  | 1.016  | 1.084  | 1.152  | 1.222  | 1.293  | 1.364  |
| Stephenson        | 1.152  | 0.891  | 0.827  | 0.761 | 0.801  | 0.788  | 0.775  | 0.761  | 0.748  | 0.734  | 0.719  |
| Whiteside         | 1.461  | 1.324  | 1.213  | 1.108 | 1.222  | 1.227  | 1.231  | 1.236  | 1.240  | 1.245  | 1.249  |
| Winnebago         | 1.510  | 1.537  | 1.569  | 1.601 | 1.617  | 1.641  | 1.666  | 1.691  | 1.716  | 1.742  | 1.768  |
| REGIONAL<br>TOTAL | 10.969 | 10.348 | 10.179 | 9.872 | 10.285 | 10.345 | 10.405 | 10.466 | 10.527 | 10.588 | 10.649 |

Table C.3 Total Self-Supplied Domestic Demand by County, More Resource Intensive (MRI) Scenario (Mgd)

#### Appendix D. Theoretical Cooling Water Requirements for Thermoelectric Power Generation

In once-through cooling systems, theoretical water requirements are a function of the amount of "waste" heat that has to be removed in the process of condensing steam. According to Backus and Brown (1975), the amount of water for one megawatt (MW) of electric generation capacity can be calculated as:

$$L = \frac{6823(1-e)}{Te}$$
(D.1)

where:

L = amount of water flow in gallons per minute per MW of generating capacity; T = temperature rise of the cooling water in °F; and e = thermodynamic efficiency of the power plant, expressed as decimal fraction.

For example, in a coal-fired plant with thermal efficiency of 40 percent and the condenser temperature rise of 20°F, the water flow rate obtained from Equation 5.1 would be 512 gallons per minute (gpm) per MW. For a typical 650 MW plant, operating at 90 percent of capacity, the theoretical flow rate would be nearly 300,000 gpm, or 431.3 million gallons per day. The daily volume of cooling water is equivalent to approximately 31 gallons per 1 kWh of generation.

According to Croley et al. (1975), in recirculating systems with cooling towers, theoretical make-up water requirements are determined using the following relationship:

$$W = E \cdot \frac{1}{\frac{c}{c_o} - 1} \tag{D.2}$$

where:

 $c/c_0$  is the concentration ratio; and

E = evaporative water loss, which for a typical mean water temperature of 80°F can be calculated as:

$$E = (1.91145 \cdot 10^{-6}) \cdot aQ \tag{D.3}$$

where:

a = the fraction of heat dissipated as latent heat of evaporation (for evaporative towers a = 75% to 85%); and

Q = rate of heat rejection by the plant in Btu/hr, which can be calculated as:

$$Q = 3414426 \cdot P \cdot \frac{1-e}{e} \tag{D.4}$$

where:

P = the rated capacity of the plant in MW; and e is thermodynamic efficiency of a plant expressed as a fraction.

Again, for a typical 650 MW coal-fired plant with 40 percent efficiency, the heat rejection would be 3329 million Btu/hour and the evaporative water loss would be 5091 gpm. At the concentration ratio  $c/c_0$  of 0.25 the make-up water flow would be 6788 gpm or 0.63 gallons per 1 kWh of generation.

While the theoretical (or minimum) water requirements for energy generation are similar for plants of the same type, the actual unit amounts of water withdrawn per kilowatt-hour of gross generation vary from plant to plant, even when the same type of cooling is used and at the same level of thermal efficiency of the plant. Significant differences in unit water use per kilowatt-hour of electricity generation among different types of cooling systems were reported in previous studies (Baum et al., 2003, Gleick, 1993, Harte and El-Gasseir, 1978).

#### References

Backus, C.E., and M.L. Brown. 1975. Water Requirements for Solar Energy. In *Water Management for the Electric Power Industry*, 270-279. Edited by E.F. Gloyna, H.H. Woodson and H.R. Drew. Water Resources Symposium 8. Center for Research in Water Resources, The University of Texas at Austin, Austin, TX.

Baum, E., J. Chaisson, B. Miller, J. Nielsen, M. Decker, D. Berry, and C. Putnam. 2003. *The Last Straw: Water Use by Power Plants in the Arid West*. The Land and Water Fund of the Rockies and Clean Air Task Force, San Francisco, CA.

Croley, T.E., II, V.C. Patel, and M.S. Cheng. 1975. *The Water and Total Optimization of Wet and DryWet Cooling Towers for Electric Power Plants*. Iowa Institute of Hydraulic Research Report 163, Iowa City, IA.

Gleick, P.H. 1993. *Water in crisis: A guide to the world's fresh water resources*. Oxford University Press, New York, NY.

Harte, J., and M. El-Gasseir. 1978. Energy and water. Science 199(4329):623-624.

#### Appendix E. Power Generation Facilities in the Kankakee Watershed, Middle Illinois, and Rock River Study Regions (U.S. Department of Energy, Energy Information Administration (EIA) 2010 EIA-906/920 Monthly Time Series File and EIA-860)

| Plant Name                       | Prime<br>Mover <sup>1</sup> | Energy<br>Source <sup>2</sup> | Number of<br>Units | Nameplate<br>Capacity<br>(MW <sup>3</sup> ) | Source of Water        |
|----------------------------------|-----------------------------|-------------------------------|--------------------|---------------------------------------------|------------------------|
| KANKAKEE WATERSHED RE            | GION                        | 1                             |                    |                                             |                        |
| Ford County                      |                             |                               |                    |                                             |                        |
| Gibson City                      | GT                          | NG                            | 2                  | 270.0                                       |                        |
| Kankakee County                  |                             |                               |                    |                                             |                        |
| Bunge Oil                        | GT                          | NG                            | 1                  | 3.5                                         |                        |
| CSL Behring LLC                  | GT                          | NG                            | 1                  | 4.2                                         | Municipality           |
| Kankakee Gas Recovery            | IC                          | LFG                           | 2                  | 1.6                                         |                        |
| Kankakee Hydro Facility          | HY                          | WAT                           | 3                  | 1.2                                         | Kankakee R             |
| MIDDLE ILLINOIS REGION           |                             |                               |                    |                                             |                        |
| LaSalle County                   |                             |                               |                    |                                             |                        |
| Blackstone Wind Farm II LLC      | WT                          | WND                           | 1                  | 200.0                                       | na <sup>4</sup>        |
| Blackstone Wind Farm LLC         | WT                          | WND                           | 1                  | 102.0                                       | na                     |
| North American Hydro - Dayton    | HY                          | WAT                           | 3                  | 3.6                                         | Fox R                  |
| Grand Ridge Wind Energy Center   | WT                          | WND                           | 4                  | 261.0                                       |                        |
| LaSalle Generating Station       | ST                          | NUC                           | 2                  | 2,340.0                                     | Illinois R./Cooling L. |
| Oglesby                          | GT                          | NG                            | 4                  | 70.0                                        |                        |
| Peru                             | GT                          | JF                            | 1                  | 10.0                                        | Illinois R             |
| Peru Hydroelectric Power Station | HY                          | WAT                           | 4                  | 7.6                                         | Illinois R             |
| Peru                             | IC                          | DFO                           | 8                  | 19.5                                        | Illinois R             |
| Streator Energy Partners LLC     | IC                          | LFG                           | 1                  | 1.1                                         |                        |
| Livingston County                |                             |                               |                    |                                             |                        |
| Biodyne Pontiac                  | GT                          | LFG                           | 3                  | 15.0                                        |                        |
| Streator Cayuga Ridge South      | WT                          | WND                           | 1                  | 150.0                                       |                        |
| Peoria County                    |                             |                               |                    |                                             |                        |
| Archer Daniels Midland Peoria    | GT                          | NG                            | 3                  | 49.0                                        | Illinois R             |
| Archer Daniels Midland Peoria    | ST                          | BIT                           | 5                  | 15.0                                        | Illinois R             |
| Biodyne Peoria                   | IC                          | LFG                           | 5                  | 4.0                                         |                        |
| E D Edwards                      | ST                          | SUB                           | 3                  | 780.3                                       | Illinois R             |
| Putnam County                    |                             |                               |                    |                                             |                        |
| Hennepin Power Station           | ST                          | SUB                           | 2                  | 306.3                                       | Illinois R             |
| Stark County                     | 1                           | I                             | 1                  | 1                                           |                        |
| Camp Grove Wind Farm             | WT                          | WND                           | 1                  | 150.0                                       | na                     |

| Plant Name                                     | Prime<br>Mover <sup>1</sup> | Energy<br>Source <sup>2</sup> | Number of<br>Units | Nameplate<br>Capacity<br>(MW <sup>3</sup> ) | Source of Water |
|------------------------------------------------|-----------------------------|-------------------------------|--------------------|---------------------------------------------|-----------------|
| ROCK RIVER REGION                              |                             |                               |                    |                                             |                 |
| Bureau County                                  |                             |                               |                    |                                             |                 |
| Agriwind LLC                                   | WT                          | WND                           | 1                  | 8.4                                         |                 |
| Crescent Ridge                                 | WT                          | WND                           | 1                  | 53.0                                        |                 |
| Princeton                                      | IC                          | NG                            | 8                  | 37.9                                        | Municipality    |
| Providence Heights Wind LLC                    | WT                          | WND                           | 1                  | 72.0                                        |                 |
| Henry County                                   |                             |                               |                    |                                             |                 |
| Geneseo                                        | IC                          | DFO                           | 1                  | 4.8                                         | Municipality    |
| Geneseo                                        |                             | NG                            | 7                  | 24.6                                        | Municipality    |
| Geneseo                                        | WT                          | WND                           | 2                  | 3.0                                         | Municipality    |
| Lee County                                     | •                           | •                             |                    |                                             |                 |
| Dixon Hydroelectric Dam                        | HY                          | WAT                           | 5                  | 3.0                                         | Rock R          |
| Dixon/Lee Energy Partners LLC                  | IC                          | LFG                           | 4                  | 4.4                                         |                 |
| GSG LLC                                        | WT                          | WND                           | 1                  | 80.0                                        | na              |
| Lee Energy Facility                            | GT                          | NG                            | 8                  | 814.4                                       | Wells           |
| Mendota Hills, LLC                             | WT                          | WND                           | 1                  | 50.4                                        | na              |
| Ogle County                                    |                             |                               |                    |                                             |                 |
| 1515 S Caron Road                              | GT                          | NG                            | 1                  | 4.2                                         | Municipality    |
| Byron Generating Station                       | ST                          | NUC                           | 2                  | 2,449.8                                     | Rock R/Cool. T  |
| North Ninth Street                             | IC                          | DFO                           | 3                  | 2.9                                         | Municipality    |
| North Ninth Street                             |                             | NG                            | 5                  | 14.8                                        | Municipality    |
| South Main Street                              | IC                          | NG                            | 2                  | 5.0                                         | Municipality    |
| <b>Rock Island County</b>                      |                             |                               |                    |                                             |                 |
| Cordova Energy                                 | CA                          | NG                            | 1                  | 191.2                                       | Wells           |
| Cordova Energy                                 | СТ                          | NG                            | 2                  | 420.0                                       | Wells           |
| John Deere Harvester Works                     | ST                          | BIT                           | 4                  | 10.0                                        | Mississippi R   |
| Moline                                         | GT                          | NG                            | 4                  | 72.0                                        | Mississippi R   |
| Mid American Energy Co -<br>Moline Hydro Plant | HY                          | WAT                           | 4                  | 3.6                                         | Mississippi R   |
| Ouad Cities Generating Station                 | ST                          | NUC                           | 2                  | 2.018.6                                     | Mississippi R   |
| Sears Hydroelectric Plant                      | HY                          | WAT                           | 4                  | 1.4                                         | Rock R          |
| Upper Rock Energy Partners LLC                 | IC                          | LFG                           | 4                  | 4.4                                         |                 |
| Stephenson County                              |                             |                               |                    |                                             |                 |
| EcoGrove Wind LLC                              | WT                          | WND                           | 1                  | 100.5                                       | na              |
| Whiteside County                               |                             |                               |                    |                                             |                 |
| Avenue A Generator Sets                        | GT                          | DFO                           | 2                  | 3.6                                         |                 |
| Industrial Park                                | GT                          | DFO                           | 5                  | 9.0                                         |                 |
| Upper Sterling Hydro Power<br>Plant            | HY                          | WAT                           | 2                  | 2.2                                         | Municipal Wells |

| Plant Name                     | Prime<br>Mover <sup>1</sup> | Energy<br>Source <sup>2</sup> | Number of<br>Units | Nameplate<br>Capacity<br>(MW <sup>3</sup> ) | Source of Water |
|--------------------------------|-----------------------------|-------------------------------|--------------------|---------------------------------------------|-----------------|
| Winnebago County               |                             |                               |                    |                                             |                 |
| Cadbury Adams - Rockford       | GT                          | NG                            | 1                  | 4.7                                         | Municipality    |
| Ingersoll Milling Machine      | GT                          | NG                            | 7                  | 4.6                                         | Municipality    |
| NRG Rockford I                 | GT                          | NG                            | 2                  | 316.0                                       |                 |
| NRG Rockford II Energy Center  | GT                          | NG                            | 1                  | 168.0                                       |                 |
| North American Hydro - Rockton | HY                          | WAT                           | 2                  | 1.1                                         | Rock R          |
| Winnebago Energy Center LLC    | IC                          | LFG                           | 4                  | 6.4                                         |                 |
| ALL REGIONS                    |                             |                               |                    |                                             |                 |
| TOTAL                          |                             |                               | 166                | 11,734.8                                    |                 |

<sup>1</sup>Prime Mover: GT=gas turbine, HY= hydropower, IC=internal combustion, ST=steam turbine WT=wind turbine <sup>2</sup>Energy Source: BIT=bituminous coal, DFO= distillate fuel oil, JF=jet fuel, LFG=landfill gas, NG=natural gas, NUC=nuclear, SUB=subbituminous coal, WAT=water, WND=wind

<sup>3</sup>MW: megawatts

<sup>4</sup>na: not applicable

# Appendix F. Self-Supplied Industrial and Commercial Demand – Supplemental Tables

| Facility Nama                              | D             | emand (gallons | )           | Employees  | gned            |
|--------------------------------------------|---------------|----------------|-------------|------------|-----------------|
| Facility Maine                             | Self-Supplied | Purchased      | Total       | Linployees | gpeu            |
| Boone County                               |               |                |             | ·          |                 |
| Dean Foods Company -<br>Belvidere          | 27,616,800    | 1,497,000      | 29,113,800  | 100        | 797.1           |
| General Mills Green                        | 130,247,000   | 3,683,644      | 133,930,644 | 750        | 488.9           |
| Ipsen International Inc                    | 2,050,000     | 0              | 2,050,000   | 100        | 56.1            |
| US Chrome of Illinois                      | 172,825       | 0              | 172,825     | 5          | 94.6            |
| <b>Bureau County</b>                       |               |                |             |            |                 |
| Crop Production Services<br>- Walnut Plant | 1,377,555     | 0              | 1,377,555   | $nr^1$     | nd <sup>2</sup> |
| Tee Group Films                            | 13,140,000    | 82,300         | 13,222,300  | 28         | 1,292.9         |
| Tri-Con Materials                          | 748,836,000   | 0              | 748,836,000 | nr         | nd              |
| <b>Carroll County</b>                      |               |                |             |            |                 |
| Danisco Sweeteners                         | 773,204,000   | 0              | 773,204,000 | nr         | nd              |
| Metform Corporation                        | 20,656,500    | 0              | 20,656,500  | 220        | 257.1           |
| Metform Corporation -                      | 4,664,496     | 0              | 4,664,496   | nr         | nd              |
| Extrusion                                  |               |                |             |            |                 |
| Henry County                               |               |                |             |            |                 |
| Big River Resources                        | 272,057,000   | 1,024,760      | 273,081,760 | 58         | 12,890.6        |
| Edwards Ready Mix                          | 2,900,000     | 0              | 2,900,000   | 20         | 397.0           |
| Patriot Renewable Fuels                    | 263,496,864   | 0              | 263,496,864 | 55         | 13,116.6        |
| Jo Daviess County                          |               |                |             |            |                 |
| IEI Barge Services                         | 7,167,400     | 0              | 7,167,400   | 18         | 1,090.2         |
| Rentech Energy Midwest<br>Corporation      | 641,096,648   | 0              | 641,096,648 | 148        | 11,859.6        |
| Lee County                                 |               |                |             |            |                 |
| Agview FS                                  | 453.000       | 65             | 453.065     | 9          | 137.8           |
| Green River Industrial<br>Park             | 13,088,027    | 0              | 13,088,027  | nr         | nd              |
| Henkel Seeds                               | 5,000         | 0              | 5,000       | nr         | nd              |
| Tate and Lyle Custom<br>Ingredients        | 3,000         | 0              | 3,000       | nr         | nd              |
| Ogle County                                |               |                |             |            |                 |
| ED Etnyre & Co                             | 2,140,400     | 0              | 2,140,400   | 313        | 18.7            |
| HA International                           | 1,400,000     | 0              | 1,400,000   | 60         | 63.9            |
| Ogle County Hospice<br>Association         | 26,600        | 0              | 26,600      | nr         | nd              |
| Quad/Graphics                              | 111,147,800   | 0              | 111,147,800 | 545        | 558.4           |

Table F.1 Self-Supplied IC Facilities in the Rock River Region (2010)

| Facility Name                                | D             | emand (gallon | s)            | Employees  | gned      |
|----------------------------------------------|---------------|---------------|---------------|------------|-----------|
| i ucility i fullic                           | Self-Supplied | Purchased     | Total         | Limpiogees | spea      |
| Supermix                                     | 472,198       | 0             | 472,198       | nr         | nd        |
| Swenson Spreader & Mfg<br>Co                 | 563,000,000   | 0             | 563,000,000   | 100        | 15,414.1  |
| Unimin Corp - Oregon                         | 521,000       | 0             | 521,000       | 40         | 35.7      |
| Rock Island County                           |               |               |               |            |           |
| 3M Company Cordova<br>Plant                  | 2,640,379,700 | 0             | 2,640,379,700 | nr         | nd        |
| Allied Stone                                 | 676,464,000   | 0             | 676,464,000   | 15         | 123,470.5 |
| CF Industries Sales LLC<br>- Albany Terminal | 4,334,576     | 0             | 4,334,576     | 6          | 1,977.9   |
| Cleveland Quarry Inc                         | 543,334,000   | 0             | 543,334,000   | 15         | 99,171.2  |
| Collinson Stone Co                           | 996,000       | 0             | 996,000       | nr         | nd        |
| John Deere Harvester<br>Works                | 1,195,442,200 | 65,717,036    | 1,261,159,236 | 2100       | 1,644.2   |
| Midway Stone Co Inc                          | 538,740,000   | 0             | 538,740,000   | 10         | 147,499.0 |
| Modern Woodmen of<br>America                 | 554,400       | 0             | 554,400       | nr         | nd        |
| QC Pickling Company                          | 4,160,000     | 0             | 4,160,000     | 15         | 759.3     |
| Tyson Fresh Meats                            | 255,050,923   | 486,566,000   | 741,616,923   | 2300       | 882.8     |
| Stephenson County                            |               |               |               |            |           |
| Adkins Energy LLC                            | 119,100,000   | 0             | 119,100,000   | nr         | nd        |
| Berner Cheese                                | 35,100,000    | 0             | 35,100,000    | nr         | nd        |
| Corporation                                  |               |               |               |            |           |
| Kolb-Lena Cheese Co Inc                      | 18,250,000    | 0             | 18,250,000    | nr         | nd        |
| Modern Plating Corp                          | 28,293,000    | 5,821,658     | 34,114,658    | 57         | 1,638.6   |
| Sauer-Danfoss                                | 2,250,000     | 5,341,420     | 7,591,420     | 300        | 69.3      |
| Tate & Lyle Custom<br>Ingredients, LLC       | 2,524,173     | 0             | 2,524,173     | 10         | 691.1     |
| Titan Tire Corporation of<br>Freeport        | 545,931,000   | 0             | 545,931,000   | 575        | 2,599.4   |
| Whiteside County                             |               |               |               |            |           |
| Illinois Forge Company                       | 244,000       | 0             | 244,000       | 14         | 47.7      |
| National Manufacturing<br>Co                 | 16,498,090    | 0             | 16,498,090    | 329        | 137.3     |
| Rock River Lumber &<br>Grain                 | 3,000,000     | 0             | 3,000,000     | nr         | nd        |
| Sterling Steel Ball Co                       | 4,000,000     | 450           | 4,000,450     | 30         | 365.1     |
| Tyco Valves & Controls<br>LP                 | 3,681,000     | 156,137       | 3,837,137     | 71         | 148.0     |
| Winnebago County                             |               |               |               |            |           |
| ABC Television WTVO                          | 200,250       | 280           | 200,530       | 80         | 6.9       |
| Aqua Aerobic Systems                         | 695,000       | 745,000       | 1,440,000     | 160        | 24.6      |
| Inc                                          |               |               |               |            |           |
| Arlington Memorial Park<br>Assoc             | 60,000        | 0             | 60,000        | 5          | 32.9      |
| Bay Valley Foods -<br>Pecatonica             | 63,212,512    | 7,253,700     | 70,466,212    | 110        | 1,753.9   |

| Facility Name                                | D             | emand (gallon | s)          | Employees | gned    |
|----------------------------------------------|---------------|---------------|-------------|-----------|---------|
| 2 401109 2 41110                             | Self-Supplied | Purchased     | Total       | proj 005  | SPea    |
| Cinetic Landis Grinding<br>Corp              | 354,227       | 482,525       | 836,752     | nr        | nd      |
| Dean Foods Company                           | 89,064,000    | 0             | 89,064,000  | 85        | 2,868.8 |
| Diocese of Rockford -<br>offices             | 1,947,927     | 0             | 1,947,927   | nr        | nd      |
| Hamilton Sundstrand<br>Corporation           | 23,945,782    | 28,267,668    | 52,213,450  | 2200      | 65.0    |
| Hanson Pressure Pipe Inc                     | 622,000       | 0             | 622,000     | 107       | 15.9    |
| Kent Nutrition Group Inc<br>- Rockford Plant | 225,170       | 0             | 225,170     | 11        | 56.0    |
| Marathon Petroleum Co<br>Lp                  | 465,000       | 0             | 465,000     | nr        | nd      |
| Mid-States Concrete Prod<br>Co               | 130,000       | 1,611,750     | 1,741,750   | 50        | 95.4    |
| Mondelez Global LLC                          | 72,657,800    | 58,140,000    | 130,797,800 | 610       | 587.1   |
| Muller Pinehurst Dairy<br>Inc                | 32,143,780    | 0             | 32,143,780  | 125       | 704.0   |
| Rowald Refrigeration<br>Systems              | 53,000        | 56,848        | 109,848     | 5         | 60.1    |
| Woodward Inc                                 | 175,878,000   | 89,162,650    | 265,040,650 | 1500      | 483.8   |

<sup>1</sup>nr: not reported <sup>2</sup>nd: not determined

| County             | 2010<br>Reported <sup>1</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|--------------------|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone County       | 0.49                          | 0.54  | 0.57  | 0.59  | 0.61  | 0.64  | 0.66  | 0.68  | 0.70  | 0.72  | 0.74  |
| Bureau County      | 2.09 <sup>2</sup>             | 2.14  | 2.19  | 2.22  | 2.25  | 2.29  | 2.32  | 2.35  | 2.38  | 2.40  | 2.43  |
| Carroll County     | 2.20                          | 2.34  | 2.39  | 2.42  | 2.46  | 2.50  | 2.54  | 2.57  | 2.59  | 2.62  | 2.65  |
| Henry County       | 1.03                          | 1.10  | 1.13  | 1.15  | 1.17  | 1.19  | 1.21  | 1.23  | 1.24  | 1.26  | 1.27  |
| Jo Daviess County  | 1.91                          | 2.03  | 2.07  | 2.10  | 2.14  | 2.17  | 2.20  | 2.23  | 2.25  | 2.28  | 2.30  |
| Lee County         | 0.09                          | 0.10  | 0.10  | 0.10  | 0.10  | 0.10  | 0.10  | 0.10  | 0.11  | 0.11  | 0.11  |
| Ogle County        | 2.68                          | 2.84  | 2.90  | 2.95  | 3.00  | 3.04  | 3.09  | 3.12  | 3.16  | 3.19  | 3.23  |
| Rock Island County | 14.19                         | 15.12 | 15.52 | 15.80 | 16.09 | 16.39 | 16.69 | 16.90 | 17.13 | 17.35 | 17.58 |
| Stephenson County  | 2.12                          | 2.32  | 2.45  | 2.55  | 2.65  | 2.75  | 2.86  | 2.94  | 3.02  | 3.10  | 3.19  |
| Whiteside County   | 0.17                          | 0.18  | 0.18  | 0.19  | 0.19  | 0.19  | 0.20  | 0.20  | 0.20  | 0.20  | 0.21  |
| Winnebago County   | 1.47                          | 1.61  | 1.69  | 1.76  | 1.83  | 1.90  | 1.97  | 2.03  | 2.08  | 2.14  | 2.20  |
| REGIONAL TOTAL     | 28.44                         | 30.30 | 31.19 | 31.83 | 32.48 | 33.15 | 33.84 | 34.34 | 34.85 | 35.37 | 35.89 |

Table F.2 Total Self-Supplied IC Demand by County, Current Trends (CT) Scenario (Mgd)

<sup>1</sup>United States Geological Survey (2014), except for Bureau County. <sup>2</sup>Based on review of data reported to the IWIP, we revised upward the 2010 USGS estimate of self-supplied IC demand in Bureau County from 0.18 to 2.09 Mgd.

| County             | 2010<br>Reported <sup>1</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|--------------------|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone County       | 0.49                          | 0.51  | 0.53  | 0.54  | 0.55  | 0.56  | 0.57  | 0.58  | 0.59  | 0.60  | 0.61  |
| Bureau County      | 2.09 <sup>2</sup>             | 2.13  | 2.16  | 2.15  | 2.21  | 2.24  | 2.26  | 2.29  | 2.31  | 2.33  | 2.36  |
| Carroll County     | 2.20                          | 2.24  | 2.27  | 2.23  | 2.38  | 2.43  | 2.48  | 2.53  | 2.57  | 2.62  | 2.66  |
| Henry County       | 1.03                          | 1.06  | 1.09  | 1.08  | 1.11  | 1.12  | 1.13  | 1.14  | 1.15  | 1.16  | 1.17  |
| Jo Daviess County  | 1.91                          | 1.94  | 1.97  | 1.98  | 2.04  | 2.08  | 2.11  | 2.14  | 2.17  | 2.20  | 2.23  |
| Lee County         | 0.09                          | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  |
| Ogle County        | 2.68                          | 2.72  | 2.77  | 2.77  | 2.76  | 2.76  | 2.76  | 2.76  | 2.76  | 2.75  | 2.75  |
| Rock Island County | 14.19                         | 14.60 | 15.02 | 15.01 | 14.99 | 14.98 | 14.96 | 14.94 | 14.92 | 14.90 | 14.88 |
| Stephenson County  | 2.12                          | 2.21  | 2.30  | 2.24  | 2.25  | 2.23  | 2.21  | 2.19  | 2.17  | 2.14  | 2.12  |
| Whiteside County   | 0.17                          | 0.17  | 0.18  | 0.17  | 0.17  | 0.17  | 0.17  | 0.17  | 0.17  | 0.16  | 0.16  |
| Winnebago County   | 1.47                          | 1.52  | 1.59  | 1.59  | 1.58  | 1.58  | 1.57  | 1.57  | 1.57  | 1.56  | 1.56  |
| REGIONAL TOTAL     | 28.44                         | 29.19 | 29.97 | 29.86 | 30.15 | 30.24 | 30.32 | 30.40 | 30.47 | 30.54 | 30.60 |

Table F.3 Total Self-Supplied IC Demand by County, Less Resource Intensive (LRI) Scenario (Mgd)

<sup>1</sup>United States Geological Survey (2014) <sup>2</sup>Based on review of data reported to the IWIP, we revised upward the 2010 USGS estimate of self-supplied IC demand in Bureau County from 0.18 to 2.09 Mgd.

| County             | 2010<br>Reported <sup>1</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|--------------------|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Boone County       | 0.49                          | 0.54  | 0.60  | 0.65  | 0.70  | 0.76  | 0.82  | 0.89  | 0.96  | 1.03  | 1.11  |
| Bureau County      | 2.09 <sup>2</sup>             | 2.26  | 2.44  | 2.58  | 2.81  | 3.02  | 3.24  | 3.48  | 3.73  | 4.00  | 4.28  |
| Carroll County     | 2.20                          | 2.37  | 2.56  | 2.67  | 3.02  | 3.27  | 3.55  | 3.84  | 4.15  | 4.48  | 4.84  |
| Henry County       | 1.03                          | 1.12  | 1.23  | 1.29  | 1.41  | 1.51  | 1.62  | 1.74  | 1.86  | 1.99  | 2.13  |
| Jo Daviess County  | 1.91                          | 2.06  | 2.22  | 2.37  | 2.60  | 2.80  | 3.02  | 3.25  | 3.51  | 3.77  | 4.06  |
| Lee County         | 0.09                          | 0.10  | 0.10  | 0.11  | 0.12  | 0.13  | 0.13  | 0.14  | 0.15  | 0.16  | 0.17  |
| Ogle County        | 2.68                          | 2.89  | 3.12  | 3.31  | 3.51  | 3.73  | 3.95  | 4.19  | 4.45  | 4.72  | 5.00  |
| Rock Island County | 14.19                         | 15.50 | 16.93 | 17.95 | 19.04 | 20.19 | 21.41 | 22.70 | 24.07 | 25.51 | 27.04 |
| Stephenson County  | 2.12                          | 2.34  | 2.59  | 2.68  | 2.86  | 3.01  | 3.16  | 3.32  | 3.49  | 3.67  | 3.86  |
| Whiteside County   | 0.17                          | 0.18  | 0.20  | 0.20  | 0.22  | 0.23  | 0.24  | 0.25  | 0.27  | 0.28  | 0.29  |
| Winnebago County   | 1.47                          | 1.62  | 1.79  | 1.90  | 2.01  | 2.13  | 2.25  | 2.38  | 2.52  | 2.67  | 2.83  |
| REGIONAL TOTAL     | 28.44                         | 30.99 | 33.78 | 35.72 | 38.30 | 40.77 | 43.40 | 46.19 | 49.15 | 52.29 | 55.62 |

Table F.4 Total Self-Supplied IC Demand by County, More Resource Intensive (MRI) Scenario (Mgd)

<sup>1</sup>United States Geological Survey (2014) <sup>2</sup>Based on review of data reported to the IWIP, we revised upward the 2010 USGS estimate of self-supplied IC demand in Bureau County from 0.18 to 2.09 Mgd.

#### Reference

United States Geological Survey. 2014. Water Use in the United States: Water-Use Data Available from USGS. <u>http://water.usgs.gov/watuse/data/</u> (accessed January 12, 2015).

## Appendix G.Self-Supplied Irrigation, Livestock, and Environmental Demand – Supplemental Tables

| County                  | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| <b>Boone County</b>     |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 0.30                          | 0.87                        | 0.92  | 0.97  | 1.02  | 1.08  | 1.11  | 1.14  | 1.17  | 1.20  | 1.24  | 1.27  |
| Livestock               | 0.15                          | 0.15                        | 0.15  | 0.16  | 0.17  | 0.17  | 0.18  | 0.19  | 0.20  | 0.21  | 0.21  | 0.22  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Boone County Total      | 0.45                          | 1.02                        | 1.07  | 1.13  | 1.19  | 1.25  | 1.29  | 1.33  | 1.37  | 1.41  | 1.45  | 1.50  |
| <b>Bureau County</b>    |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 3.26                          | 6.62                        | 6.98  | 7.37  | 7.78  | 8.22  | 8.45  | 8.68  | 8.92  | 9.17  | 9.43  | 9.69  |
| Livestock               | 0.57                          | 0.57                        | 0.60  | 0.63  | 0.66  | 0.70  | 0.74  | 0.78  | 0.82  | 0.87  | 0.92  | 0.97  |
| Environmental           | 2.46                          | 2.46                        | 2.59  | 2.72  | 2.86  | 3.00  | 3.15  | 3.32  | 3.48  | 3.66  | 3.85  | 4.05  |
| Bureau County Total     | 6.28                          | 9.64                        | 10.17 | 10.72 | 11.30 | 11.92 | 12.34 | 12.78 | 13.23 | 13.71 | 14.20 | 14.71 |
| Carroll County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 2.33                          | 6.76                        | 7.14  | 7.54  | 7.96  | 8.41  | 8.64  | 8.88  | 9.13  | 9.39  | 9.65  | 9.92  |
| Livestock               | 0.83                          | 0.83                        | 0.86  | 0.90  | 0.94  | 0.98  | 1.02  | 1.07  | 1.11  | 1.16  | 1.21  | 1.27  |
| Environmental           | 0.69                          | 0.69                        | 0.72  | 0.76  | 0.80  | 0.84  | 0.88  | 0.93  | 0.98  | 1.03  | 1.08  | 1.13  |
| Carroll County Total    | 3.84                          | 8.28                        | 8.73  | 9.20  | 9.70  | 10.23 | 10.55 | 10.88 | 11.22 | 11.57 | 11.94 | 12.32 |
| Henry County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 2.53                          | 5.61                        | 5.92  | 6.25  | 6.60  | 6.97  | 7.16  | 7.36  | 7.56  | 7.78  | 7.99  | 8.22  |
| Livestock               | 1.29                          | 1.29                        | 1.36  | 1.43  | 1.51  | 1.59  | 1.67  | 1.76  | 1.86  | 1.96  | 2.07  | 2.18  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Henry County Total      | 3.82                          | 6.91                        | 7.29  | 7.69  | 8.11  | 8.56  | 8.84  | 9.12  | 9.43  | 9.74  | 10.06 | 10.40 |
| Jo Daviess County       |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 0.10                          | 0.33                        | 0.35  | 0.36  | 0.37  | 0.39  | 0.40  | 0.41  | 0.42  | 0.43  | 0.45  | 0.46  |
| Livestock               | 0.91                          | 0.91                        | 0.94  | 0.97  | 1.00  | 1.04  | 1.07  | 1.11  | 1.15  | 1.19  | 1.23  | 1.27  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Jo Daviess County Total | 1.01                          | 1.24                        | 1.29  | 1.33  | 1.38  | 1.42  | 1.47  | 1.52  | 1.57  | 1.62  | 1.68  | 1.73  |
| Lee County              |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 10.28                         | 16.24                       | 17.15 | 18.11 | 19.12 | 20.20 | 20.76 | 21.33 | 21.93 | 22.54 | 23.17 | 23.81 |

### Table G.1 ILE Demand by County, Current Trends (CT) Scenario (Mgd)

| County                      | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-----------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Livestock                   | 0.45                          | 0.45                        | 0.48  | 0.50  | 0.53  | 0.56  | 0.59  | 0.62  | 0.65  | 0.69  | 0.72  | 0.76  |
| Environmental               | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Lee County Total            | 10.74                         | 16.69                       | 17.62 | 18.61 | 19.65 | 20.75 | 21.34 | 21.95 | 22.58 | 23.23 | 23.89 | 24.57 |
| Ogle County                 |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                  | 0.76                          | 1.00                        | 1.05  | 1.11  | 1.17  | 1.23  | 1.26  | 1.30  | 1.33  | 1.37  | 1.41  | 1.45  |
| Livestock                   | 1.14                          | 1.14                        | 1.19  | 1.25  | 1.32  | 1.38  | 1.45  | 1.53  | 1.61  | 1.69  | 1.78  | 1.87  |
| Environmental               | 0.09                          | 0.09                        | 0.10  | 0.10  | 0.11  | 0.11  | 0.12  | 0.12  | 0.13  | 0.14  | 0.14  | 0.15  |
| Ogle County Total           | 1.99                          | 2.23                        | 2.35  | 2.46  | 2.59  | 2.72  | 2.83  | 2.95  | 3.07  | 3.20  | 3.33  | 3.47  |
| Rock Island County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                  | 0.75                          | 2.58                        | 2.72  | 2.86  | 3.02  | 3.18  | 3.27  | 3.36  | 3.46  | 3.55  | 3.65  | 3.75  |
| Livestock                   | 0.24                          | 0.24                        | 0.25  | 0.26  | 0.27  | 0.28  | 0.30  | 0.31  | 0.32  | 0.33  | 0.35  | 0.36  |
| Environmental               | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Rock Island County<br>Total | 1.00                          | 2.82                        | 2.97  | 3.13  | 3.29  | 3.47  | 3.57  | 3.67  | 3.78  | 3.89  | 4.00  | 4.12  |
| Stephenson County           |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                  | 0.08                          | 0.17                        | 0.18  | 0.18  | 0.19  | 0.20  | 0.20  | 0.21  | 0.21  | 0.22  | 0.23  | 0.23  |
| Livestock                   | 1.32                          | 1.32                        | 1.38  | 1.44  | 1.50  | 1.56  | 1.63  | 1.70  | 1.78  | 1.86  | 1.94  | 2.03  |
| Environmental               | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Stephenson County Total     | 1.40                          | 1.49                        | 1.55  | 1.62  | 1.69  | 1.76  | 1.84  | 1.91  | 2.00  | 2.08  | 2.17  | 2.27  |
| Whiteside County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                  | 19.92                         | 38.78                       | 40.95 | 43.25 | 45.68 | 48.24 | 49.58 | 50.96 | 52.38 | 53.83 | 55.33 | 56.87 |
| Livestock                   | 1.24                          | 1.24                        | 1.30  | 1.37  | 1.44  | 1.52  | 1.59  | 1.68  | 1.76  | 1.86  | 1.96  | 2.06  |
| Environmental               | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Whiteside County Total      | 21.17                         | 40.02                       | 42.26 | 44.62 | 47.12 | 49.76 | 51.18 | 52.64 | 54.15 | 55.70 | 57.29 | 58.93 |
| Winnebago County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                  | 0.38                          | 0.63                        | 0.66  | 0.69  | 0.72  | 0.75  | 0.77  | 0.79  | 0.81  | 0.84  | 0.86  | 0.89  |
| Livestock                   | 0.22                          | 0.22                        | 0.23  | 0.24  | 0.25  | 0.25  | 0.26  | 0.27  | 0.28  | 0.29  | 0.30  | 0.31  |
| Environmental               | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Winnebago County Total      | 0.61                          | 0.86                        | 0.89  | 0.93  | 0.96  | 1.00  | 1.03  | 1.07  | 1.10  | 1.13  | 1.17  | 1.20  |

| County                | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   | 2055   | 2060   |
|-----------------------|-------------------------------|-----------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| <b>REGIONAL TOTAL</b> | 52.31                         | 91.20                       | 96.18 | 101.44 | 106.99 | 112.85 | 116.28 | 119.83 | 123.49 | 127.27 | 131.18 | 135.22 |

<sup>1</sup> Reported values of irrigation and livestock demand are from the United States Geological Survey (2014). Reported values of environmental demand are county-level sums of values reported by facilities to the IWIP. <sup>2</sup> Irrigation demand computed for 1981-2010 normal weather conditions.

| County                  | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045         | 2050  | 2055  | 2060  |
|-------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|
| <b>Boone County</b>     |                               |                             |       |       |       |       |       |       |              |       |       |       |
| Irrigation              | 0.30                          | 0.87                        | 0.90  | 0.92  | 0.95  | 0.97  | 1.00  | 1.02  | 1.05         | 1.07  | 1.10  | 1.13  |
| Livestock               | 0.15                          | 0.15                        | 0.15  | 0.16  | 0.16  | 0.16  | 0.17  | 0.17  | 0.17         | 0.18  | 0.18  | 0.19  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00         | 0.00  | 0.00  | 0.00  |
| Boone County Total      | 0.45                          | 1.02                        | 1.05  | 1.08  | 1.11  | 1.14  | 1.17  | 1.20  | 1.22         | 1.25  | 1.28  | 1.31  |
| Bureau County           |                               |                             |       |       |       |       |       |       |              |       |       |       |
| Irrigation              | 3.26                          | 6.62                        | 6.63  | 6.64  | 6.65  | 6.66  | 6.68  | 6.69  | 6.70         | 6.71  | 6.72  | 6.74  |
| Livestock               | 0.57                          | 0.57                        | 0.58  | 0.60  | 0.61  | 0.63  | 0.65  | 0.66  | 0.68         | 0.69  | 0.71  | 0.73  |
| Environmental           | 2.46                          | 2.46                        | 2.46  | 2.46  | 2.46  | 2.46  | 2.46  | 2.46  | 2.46         | 2.46  | 2.46  | 2.46  |
| Bureau County Total     | 6.28                          | 9.64                        | 9.67  | 9.70  | 9.73  | 9.75  | 9.78  | 9.81  | 9.84         | 9.87  | 9.89  | 9.92  |
| <b>Carroll County</b>   |                               |                             |       |       |       |       |       |       |              |       |       |       |
| Irrigation              | 2.33                          | 6.76                        | 6.84  | 6.92  | 7.00  | 7.08  | 7.16  | 7.23  | 7.31         | 7.39  | 7.47  | 7.55  |
| Livestock               | 0.83                          | 0.83                        | 0.84  | 0.85  | 0.87  | 0.88  | 0.90  | 0.91  | 0.93         | 0.94  | 0.95  | 0.97  |
| Environmental           | 0.69                          | 0.69                        | 0.69  | 0.69  | 0.69  | 0.69  | 0.69  | 0.69  | 0.69         | 0.69  | 0.69  | 0.69  |
| Carroll County Total    | 3.84                          | 8.28                        | 8.37  | 8.46  | 8.56  | 8.65  | 8.74  | 8.84  | 8. <i>93</i> | 9.02  | 9.11  | 9.21  |
| Henry County            |                               |                             |       |       |       |       |       |       |              |       |       |       |
| Irrigation              | 2.53                          | 5.61                        | 5.66  | 5.71  | 5.76  | 5.81  | 5.86  | 5.91  | 5.97         | 6.02  | 6.07  | 6.12  |
| Livestock               | 1.29                          | 1.29                        | 1.32  | 1.35  | 1.38  | 1.42  | 1.45  | 1.48  | 1.51         | 1.54  | 1.57  | 1.60  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00         | 0.00  | 0.00  | 0.00  |
| Henry County Total      | 3.82                          | 6.91                        | 6.99  | 7.07  | 7.15  | 7.23  | 7.31  | 7.40  | 7.48         | 7.56  | 7.64  | 7.72  |
| Jo Daviess County       |                               |                             |       |       |       |       |       |       |              |       |       |       |
| Irrigation              | 0.10                          | 0.33                        | 0.34  | 0.34  | 0.34  | 0.34  | 0.34  | 0.34  | 0.34         | 0.34  | 0.34  | 0.34  |
| Livestock               | 0.91                          | 0.91                        | 0.92  | 0.92  | 0.93  | 0.94  | 0.94  | 0.95  | 0.96         | 0.96  | 0.97  | 0.97  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00         | 0.00  | 0.00  | 0.00  |
| Jo Daviess County Total | 1.01                          | 1.24                        | 1.25  | 1.26  | 1.27  | 1.27  | 1.28  | 1.29  | 1.29         | 1.30  | 1.31  | 1.31  |
| Lee County              |                               |                             |       |       |       |       |       |       |              |       |       |       |
| Irrigation              | 10.28                         | 16.24                       | 16.36 | 16.49 | 16.62 | 16.75 | 16.88 | 17.00 | 17.13        | 17.26 | 17.39 | 17.52 |
| Livestock               | 0.45                          | 0.45                        | 0.46  | 0.46  | 0.47  | 0.47  | 0.48  | 0.48  | 0.48         | 0.49  | 0.49  | 0.50  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00         | 0.00  | 0.00  | 0.00  |

Table G.2 ILE Demand by County, Less Resource Intensive (LRI) Scenario (Mgd)

| County                    | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|---------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Lee County Total          | 10.74                         | 16.69                       | 16.82 | 16.96 | 17.09 | 17.22 | 17.35 | 17.49 | 17.62 | 17.75 | 17.88 | 18.02 |
| Ogle County               |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                | 0.76                          | 1.00                        | 1.18  | 1.36  | 1.54  | 1.72  | 1.90  | 2.09  | 2.27  | 2.45  | 2.63  | 2.81  |
| Livestock                 | 1.14                          | 1.14                        | 1.15  | 1.15  | 1.16  | 1.17  | 1.17  | 1.18  | 1.19  | 1.20  | 1.20  | 1.21  |
| Environmental             | 0.09                          | 0.09                        | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  | 0.09  |
| Ogle County Total         | 1.99                          | 2.23                        | 2.42  | 2.61  | 2.80  | 2.98  | 3.17  | 3.36  | 3.55  | 3.74  | 3.92  | 4.11  |
| <b>Rock Island County</b> |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                | 0.75                          | 2.58                        | 2.61  | 2.63  | 2.66  | 2.69  | 2.71  | 2.74  | 2.77  | 2.80  | 2.82  | 2.85  |
| Livestock                 | 0.24                          | 0.24                        | 0.24  | 0.24  | 0.24  | 0.24  | 0.24  | 0.24  | 0.24  | 0.24  | 0.24  | 0.24  |
| Environmental             | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Rock Island Co. Total     | 1.00                          | 2.82                        | 2.85  | 2.88  | 2.90  | 2.93  | 2.96  | 2.98  | 3.01  | 3.04  | 3.07  | 3.09  |
| Stephenson County         |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                | 0.08                          | 0.17                        | 0.20  | 0.22  | 0.25  | 0.27  | 0.30  | 0.33  | 0.35  | 0.38  | 0.41  | 0.43  |
| Livestock                 | 1.32                          | 1.32                        | 1.32  | 1.32  | 1.32  | 1.32  | 1.32  | 1.32  | 1.33  | 1.33  | 1.33  | 1.33  |
| Environmental             | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Stephenson County Total   | 1.40                          | 1.49                        | 1.52  | 1.55  | 1.57  | 1.60  | 1.63  | 1.65  | 1.68  | 1.71  | 1.73  | 1.76  |
| Whiteside County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                | 19.92                         | 38.78                       | 38.79 | 38.80 | 38.82 | 38.83 | 38.84 | 38.85 | 38.87 | 38.88 | 38.89 | 38.91 |
| Livestock                 | 1.24                          | 1.24                        | 1.25  | 1.25  | 1.26  | 1.26  | 1.27  | 1.27  | 1.28  | 1.28  | 1.29  | 1.29  |
| Environmental             | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Whiteside County Total    | 21.17                         | 40.02                       | 40.04 | 40.06 | 40.08 | 40.09 | 40.11 | 40.13 | 40.15 | 40.17 | 40.19 | 40.20 |
| Winnebago County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation                | 0.38                          | 0.63                        | 0.71  | 0.78  | 0.86  | 0.93  | 1.00  | 1.08  | 1.15  | 1.23  | 1.30  | 1.38  |
| Livestock                 | 0.22                          | 0.22                        | 0.23  | 0.23  | 0.24  | 0.25  | 0.25  | 0.26  | 0.26  | 0.27  | 0.27  | 0.28  |
| Environmental             | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Winnebago County Total    | 0.61                          | 0.86                        | 0.94  | 1.02  | 1.10  | 1.18  | 1.26  | 1.34  | 1.42  | 1.50  | 1.58  | 1.66  |
| <b>REGIONAL TOTAL</b>     | 52.31                         | 91.20                       | 91.92 | 92.63 | 93.34 | 94.05 | 94.76 | 95.47 | 96.18 | 96.90 | 97.61 | 98.32 |

<sup>1</sup> Reported values of irrigation and livestock demand are from the United States Geological Survey (2014). Reported values of environmental demand are countylevel sums of values reported by facilities to the IWIP. <sup>2</sup> Irrigation demand computed for 1981-2010 normal weather conditions.

| County                  | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015  | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  | 2055  | 2060  |
|-------------------------|-------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| <b>Boone County</b>     |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 0.30                          | 0.87                        | 0.96  | 1.06  | 1.16  | 1.28  | 1.34  | 1.41  | 1.48  | 1.56  | 1.64  | 1.72  |
| Livestock               | 0.15                          | 0.15                        | 0.15  | 0.16  | 0.17  | 0.17  | 0.18  | 0.19  | 0.20  | 0.21  | 0.21  | 0.22  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Boone County Total      | 0.45                          | 1.02                        | 1.11  | 1.22  | 1.33  | 1.45  | 1.52  | 1.60  | 1.68  | 1.76  | 1.85  | 1.95  |
| Bureau County           |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 3.26                          | 6.62                        | 7.30  | 8.05  | 8.88  | 9.80  | 10.30 | 10.82 | 11.38 | 11.96 | 12.57 | 13.21 |
| Livestock               | 0.57                          | 0.57                        | 0.60  | 0.63  | 0.66  | 0.70  | 0.74  | 0.78  | 0.82  | 0.87  | 0.92  | 0.97  |
| Environmental           | 2.46                          | 2.46                        | 2.78  | 3.15  | 3.56  | 4.03  | 4.56  | 5.16  | 5.84  | 6.61  | 7.47  | 8.46  |
| Bureau County Total     | 6.28                          | 9.64                        | 10.68 | 11.83 | 13.11 | 14.53 | 15.60 | 16.76 | 18.04 | 19.43 | 20.96 | 22.63 |
| Carroll County          |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 2.33                          | 6.76                        | 7.46  | 8.24  | 9.09  | 10.03 | 10.54 | 11.08 | 11.65 | 12.24 | 12.87 | 13.52 |
| Livestock               | 0.83                          | 0.83                        | 0.86  | 0.90  | 0.94  | 0.98  | 1.02  | 1.07  | 1.11  | 1.16  | 1.21  | 1.27  |
| Environmental           | 0.69                          | 0.69                        | 0.78  | 0.88  | 1.00  | 1.13  | 1.28  | 1.45  | 1.64  | 1.85  | 2.09  | 2.37  |
| Carroll County Total    | 3.84                          | 8.28                        | 9.11  | 10.02 | 11.03 | 12.14 | 12.84 | 13.59 | 14.40 | 15.25 | 16.17 | 17.16 |
| Henry County            |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 2.53                          | 5.61                        | 6.19  | 6.82  | 7.52  | 8.29  | 8.72  | 9.16  | 9.63  | 10.12 | 10.64 | 11.18 |
| Livestock               | 1.29                          | 1.29                        | 1.36  | 1.43  | 1.51  | 1.59  | 1.67  | 1.76  | 1.86  | 1.96  | 2.07  | 2.18  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.01  | 0.01  | 0.01  |
| Henry County Total      | 3.82                          | 6.91                        | 7.55  | 8.26  | 9.03  | 9.88  | 10.39 | 10.93 | 11.49 | 12.09 | 12.71 | 13.37 |
| Jo Daviess County       |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 0.10                          | 0.33                        | 0.36  | 0.38  | 0.40  | 0.43  | 0.45  | 0.47  | 0.50  | 0.52  | 0.55  | 0.58  |
| Livestock               | 0.91                          | 0.91                        | 0.94  | 0.97  | 1.00  | 1.04  | 1.07  | 1.11  | 1.15  | 1.19  | 1.23  | 1.27  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Jo Daviess County Total | 1.01                          | 1.24                        | 1.30  | 1.35  | 1.41  | 1.47  | 1.52  | 1.58  | 1.65  | 1.71  | 1.78  | 1.85  |
| Lee County              |                               |                             |       |       |       |       |       |       |       |       |       |       |
| Irrigation              | 10.28                         | 16.24                       | 17.92 | 19.78 | 21.83 | 24.10 | 25.33 | 26.62 | 27.98 | 29.41 | 30.91 | 32.48 |
| Livestock               | 0.45                          | 0.45                        | 0.48  | 0.50  | 0.53  | 0.56  | 0.59  | 0.62  | 0.65  | 0.69  | 0.72  | 0.76  |
| Environmental           | 0.00                          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |

Table G.3 ILE Demand by County, More Resource Intensive (MRI) Scenario (Mgd)

| County                    | 2010<br>Reported <sup>1</sup> | 2010<br>Normal <sup>2</sup> | 2015   | 2020   | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   | 2055   | 2060   |
|---------------------------|-------------------------------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Lee County Total          | 10.74                         | 16.69                       | 18.40  | 20.28  | 22.36  | 24.66  | 25.92  | 27.24  | 28.63  | 30.09  | 31.63  | 33.25  |
| Ogle County               |                               |                             |        |        |        |        |        |        |        |        |        |        |
| Irrigation                | 0.76                          | 1.00                        | 1.10   | 1.20   | 1.32   | 1.45   | 1.52   | 1.60   | 1.68   | 1.76   | 1.85   | 1.95   |
| Livestock                 | 1.14                          | 1.14                        | 1.19   | 1.25   | 1.32   | 1.38   | 1.45   | 1.53   | 1.61   | 1.69   | 1.78   | 1.87   |
| Environmental             | 0.09                          | 0.09                        | 0.10   | 0.12   | 0.13   | 0.15   | 0.17   | 0.19   | 0.22   | 0.25   | 0.28   | 0.32   |
| Ogle County Total         | 1.99                          | 2.23                        | 2.40   | 2.57   | 2.77   | 2.98   | 3.14   | 3.32   | 3.50   | 3.70   | 3.91   | 4.14   |
| <b>Rock Island County</b> |                               |                             |        |        |        |        |        |        |        |        |        |        |
| Irrigation                | 0.75                          | 2.58                        | 2.83   | 3.12   | 3.43   | 3.77   | 3.96   | 4.16   | 4.37   | 4.60   | 4.83   | 5.08   |
| Livestock                 | 0.24                          | 0.24                        | 0.25   | 0.26   | 0.27   | 0.28   | 0.30   | 0.31   | 0.32   | 0.33   | 0.35   | 0.36   |
| Environmental             | 0.00                          | 0.00                        | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   |
| Rock Island Co. Total     | 1.00                          | 2.82                        | 3.09   | 3.38   | 3.70   | 4.05   | 4.26   | 4.47   | 4.70   | 4.93   | 5.18   | 5.44   |
| Stephenson County         |                               |                             |        |        |        |        |        |        |        |        |        |        |
| Irrigation                | 0.08                          | 0.17                        | 0.18   | 0.19   | 0.20   | 0.22   | 0.23   | 0.24   | 0.25   | 0.27   | 0.28   | 0.29   |
| Livestock                 | 1.32                          | 1.32                        | 1.38   | 1.44   | 1.50   | 1.56   | 1.63   | 1.70   | 1.78   | 1.86   | 1.94   | 2.03   |
| Environmental             | 0.00                          | 0.00                        | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   |
| Stephenson County Total   | 1.40                          | 1.49                        | 1.56   | 1.63   | 1.70   | 1.78   | 1.86   | 1.95   | 2.03   | 2.13   | 2.22   | 2.33   |
| Whiteside County          |                               |                             |        |        |        |        |        |        |        |        |        |        |
| Irrigation                | 19.92                         | 38.78                       | 42.80  | 47.25  | 52.15  | 57.57  | 60.51  | 63.59  | 66.84  | 70.25  | 73.83  | 77.60  |
| Livestock                 | 1.24                          | 1.24                        | 1.30   | 1.37   | 1.44   | 1.52   | 1.59   | 1.68   | 1.76   | 1.86   | 1.96   | 2.06   |
| Environmental             | 0.00                          | 0.00                        | 0.00   | 0.00   | 0.00   | 0.00   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   |
| Whiteside County Total    | 21.17                         | 40.02                       | 44.11  | 48.62  | 53.60  | 59.09  | 62.11  | 65.28  | 68.61  | 72.11  | 75.80  | 79.67  |
| Winnebago County          |                               |                             |        |        |        |        |        |        |        |        |        |        |
| Irrigation                | 0.38                          | 0.63                        | 0.68   | 0.73   | 0.79   | 0.85   | 0.89   | 0.94   | 0.99   | 1.04   | 1.09   | 1.15   |
| Livestock                 | 0.22                          | 0.22                        | 0.23   | 0.24   | 0.25   | 0.25   | 0.26   | 0.27   | 0.28   | 0.29   | 0.30   | 0.31   |
| Environmental             | 0.00                          | 0.00                        | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.01   | 0.01   | 0.01   |
| Winnebago County Total    | 0.61                          | 0.86                        | 0.91   | 0.97   | 1.04   | 1.11   | 1.16   | 1.21   | 1.27   | 1.33   | 1.40   | 1.46   |
| <b>REGIONAL TOTAL</b>     | 52.31                         | 91.20                       | 100.20 | 110.13 | 121.07 | 133.14 | 140.33 | 147.94 | 156.00 | 164.55 | 173.62 | 183.24 |

<sup>1</sup> Reported values of irrigation and livestock demand are from the United States Geological Survey (2014). Reported values of environmental demand are county-level sums of values reported by facilities to the IWIP.
<sup>2</sup> Irrigation demand computed for 1981-2010 normal weather conditions

#### **Appendix H. Updated Tables**

The initial draft of the "Water Demand in the Rock River Water Supply Planning Region, 2010-2060" was completed in 2015. We now have more recent data that can be used to help with estimates of future demand in the region. In this document, we updated select tables from the public water systems, self-supplied power generation, and self-supplied water for industrial and commercial uses with the most recent data available as of December 2018. We have not modified any of the demand projections.

Updated Table 2.3 Historical Public-Supply Water Demand (Millions of Gallons per Day, Mgd)

| Study Area                 | 1990  | 1995  | 2000  | 2005  | 2010  | 2013  |
|----------------------------|-------|-------|-------|-------|-------|-------|
| Boone County               |       |       |       |       |       |       |
| Belvidere                  | 3.527 | 3.134 | 3.240 | 3.656 | 2.986 | 3.152 |
| Boone County Residual      | 0.254 | 0.442 | 0.585 | 0.656 | 0.739 | 0.696 |
| Bureau County              |       |       |       |       |       |       |
| Depue                      | 0.192 | 0.211 | 0.171 | 0.265 | 0.199 | 0.208 |
| Princeton                  | 1.170 | 1.260 | 1.260 | 1.065 | 0.951 | 0.634 |
| Spring Valley              | 0.611 | 0.658 | 0.647 | 0.692 | 0.852 | 0.806 |
| Walnut                     | 0.221 | 0.223 | 0.174 | 0.163 | 0.150 | 0.194 |
| Bureau County Residual     | 1.031 | 1.044 | 1.037 | 1.143 | 0.838 | 0.906 |
| Carroll County             |       |       |       |       |       |       |
| Lanark                     | 0.212 | 0.208 | 0.221 | 0.185 | 0.174 |       |
| Mount Carroll              | 0.173 | 0.198 | 0.212 | 0.177 | 0.138 |       |
| Savanna                    | 0.638 | 0.671 | 0.494 | 0.456 | 0.423 |       |
| Carroll County Residual    | 0.407 | 0.389 | 0.419 | 0.423 | 0.372 | 0.285 |
| Henry County               |       | ·     |       |       |       |       |
| Cambridge                  | 0.257 | 0.323 | 0.225 | 0.212 | 0.198 | 0.109 |
| Colona East                | 0.151 | 0.149 | 0.145 | 0.210 | 0.193 | 0.220 |
| Galva                      | 0.454 | 0.270 | 0.289 | 0.383 | 0.260 | 0.253 |
| Geneseo                    | 0.646 | 0.651 | 0.657 | 0.705 | 0.647 | 0.633 |
| Kewanee                    | 1.470 | 1.631 | 1.573 | 1.553 | 1.894 | 1.877 |
| Henry County Residual      | 1.024 | 1.106 | 1.081 | 1.086 | 0.924 | 0.809 |
| Jo Daviess County          |       |       |       |       |       |       |
| East Dubuque               | 0.245 | 0.240 | 0.218 | 0.201 | 0.196 | 0.177 |
| Galena                     | 0.811 | 0.641 | 0.831 | 0.671 | 0.431 | 0.403 |
| Stockton                   | 0.519 | 0.604 | 0.467 | 0.329 | 0.365 | 0.380 |
| Jo Daviess County Residual | 0.905 | 1.057 | 1.006 | 1.141 | 0.983 | 0.981 |
| Lee County                 |       | ·     |       |       |       |       |
| Amboy                      | 0.335 | 0.362 | 0.386 | 0.476 | 0.383 | 0.392 |
| Ashton                     | 0.245 | 0.266 | 0.285 | 0.138 | 0.158 | 0.115 |
| Dixon                      | 2.326 | 2.515 | 2.410 | 2.325 | 2.304 | 3.843 |
| Lee County Residual        | 0.952 | 1.183 | 1.233 | 1.411 | 1.240 | 1.323 |
| Ogle County                |       | ·     |       |       |       |       |
| Byron                      | 0.480 | 0.551 | 0.692 | 0.721 | 0.577 | 0.576 |
| Mt Morris                  | 0.303 | 0.318 | 0.325 | 0.346 | 0.295 | 0.295 |
| Oregon                     | 0.433 | 0.414 | 0.409 | 0.416 | 0.373 | 0.442 |
| Polo                       | 0.246 | 0.274 | 0.260 | 0.260 | 0.205 | 0.195 |
| Rochelle                   | 3.274 | 2.920 | 3.135 | 2.007 | 2.823 | 2.712 |
| Ogle County Residual       | 0.768 | 0.805 | 0.814 | 0.963 | 0.848 | 0.908 |
|                            |       |       |       |       |       |       |

| Study Area                  | 1990   | 1995   | 2000   | 2005   | 2010   | 2013   |
|-----------------------------|--------|--------|--------|--------|--------|--------|
| Rock Island County          |        |        |        |        |        |        |
| East Moline                 | 3.703  | 3.658  | 4.615  | 4.292  | 4.415  | 4.423  |
| Milan                       | 0.780  | 0.914  | 0.518  | 0.557  | 0.514  | 0.560  |
| Moline                      | 5.307  | 5.493  | 5.367  | 5.296  | 5.371  | 5.219  |
| Rock Island                 | 4.727  | 5.129  | 5.213  | 5.493  | 5.415  | 5.158  |
| Silvis                      | 0.632  | 0.644  | 0.412  | 0.553  | 0.596  | 0.600  |
| Rock Island County Residual | 2.588  | 2.269  | 1.762  | 2.142  | 1.748  | 1.182  |
| Stephenson County           |        |        |        |        |        |        |
| Cedarville                  | 0.066  | 0.045  | 0.060  | 0.060  | 0.082  | 0.069  |
| Freeport                    | 4.504  | 4.220  | 3.220  | 3.219  | 2.920  | 3.142  |
| Lena                        | 226    | 0.242  | 0.254  | 0.280  | 0.271  | 0.253  |
| Stephenson County Residual  | 0.428  | 0.467  | 0.465  | 0.480  | 0.366  | 0.312  |
| Whiteside County            |        |        |        |        |        |        |
| Fulton                      | 0.305  | 0.422  | 0.429  | 0.351  | 0.318  | 0.568  |
| IL American - Sterling      | 2.645  | 2.886  | 2.061  | 1.694  | 1.576  | 1.385  |
| Morrison                    | 0.849  | 0.739  | 0.575  | 0.543  | 0.498  | 0.482  |
| Prophetstown                | 0.219  | 0.217  | 0.225  | 0.269  | 0.188  | 0.188  |
| Rock Falls                  | 1.081  | 1.136  | 1.298  | 1.138  | 0.970  | 1.046  |
| Whiteside County Residual   | 0.345  | 377    | 0.372  | 0.395  | 0.308  | 0.223  |
| Winnebago County            |        |        |        |        |        |        |
| IL American - South Beloit  | 0.684  | 0.616  | 0.569  | 0.607  | 0.765  | 0.612  |
| Loves Park                  | 3.112  | 3.157  | 2.223  | 3.424  | 3.182  | 3.708  |
| North Park PWD              | 1.848  | 2.283  | 2.735  | 3.651  | 3.477  | 3.654  |
| Rockford                    | 27.190 | 26.323 | 24.575 | 25.639 | 20.221 | 23.116 |
| Rockton                     | 0.539  | 0.715  | 0.695  | 0.914  | 0.807  | 0.983  |
| Winnebago County Residual   | 1.772  | 3.544  | 2.211  | 2.693  | 2.348  | 2.132  |
| REGIONAL TOTAL              | 87.830 | 90.215 | 84.755 | 88.124 | 79.473 | 82.539 |

Updated Table 4.1 Existing Large Thermoelectric Power Plants, Rock River Region Only

| Power Plant                               | County      | Nameplate<br>Capacity<br>(MW) <sup>1</sup> | Gross<br>Generation<br>(2013)<br>(MWh) <sup>2</sup> | Water<br>Demand<br>(2013)<br>(Mgd) | Unit Use Water<br>Demand (2013)<br>(Gal/kWh) <sup>3</sup> |
|-------------------------------------------|-------------|--------------------------------------------|-----------------------------------------------------|------------------------------------|-----------------------------------------------------------|
| Lee Energy (Natural Gas)                  | Lee         | 814                                        | 65,000                                              | No data                            | Not determined                                            |
| Nelson Energy Center <sup>4</sup>         | Lee         | 627                                        | 2,277,000                                           | 1.54                               | 0.247                                                     |
| Exelon - Byron Station<br>(Nuclear)       | Ogle        | 2,450                                      | 20,524,000                                          | 55.69                              | 0.990                                                     |
| Cordova Energy (Natural Gas)              | Rock Island | 611                                        | 55,000                                              | 0.17                               | 1.128                                                     |
| Exelon - Quad Cities<br>Station (Nuclear) | Rock Island | 2,019                                      | 15,315,000                                          | 1085.43                            | 25.869                                                    |
| NRG Rockford I & II<br>(Natural Gas)      | Winnebago   | 484                                        | No data                                             | No data                            | Not determined                                            |

<sup>1</sup>MW: megawatts

<sup>2</sup>MWh: megawatt-hours

<sup>3</sup>gal/kWh: gallons per kilowatt-hours <sup>4</sup>Data are for year 2017 as the power plant was commissioned after 2013.

Updated Table 4.2 Existing Hydroelectric Power Plants, Rock River Region Only

| Power Plant                                    | County      | Nameplate<br>Capacity<br>(MW) | Gross<br>Generation<br>(2013)<br>(MWh) | Water<br>Demand<br>(2013) (Mgd) | Unit Use Water<br>Demand (2013)<br>(Gal/kWh) |
|------------------------------------------------|-------------|-------------------------------|----------------------------------------|---------------------------------|----------------------------------------------|
| Dixon Hydroelectric Dam                        | Lee         | 3.00                          | 13, 300                                | No data                         | Not determined                               |
| Mid American Energy Co<br>- Moline Hydro Plant | Rock Island | 3.60                          | No data                                | No date                         | Not determined                               |
| Sears Hydroelectric Plant                      | Rock Island | 1.40                          | 2,710                                  | No data                         | Not determined                               |
| Upper Sterling Hydro<br>Power Plant            | Whiteside   | 2.20                          | No data                                | No data                         | Not determined                               |
| North American Hydro -<br>Rockton              | Winnebago   | 1.10                          | 5,960                                  | 570.63                          | 34,900                                       |

| County                | 1990  | 1995  | 2000  | 2005  | 2010              | 2013  |
|-----------------------|-------|-------|-------|-------|-------------------|-------|
| Boone                 | 0.07  | 0.18  | 0.39  | 0.42  | 0.44              | 0.43  |
| Bureau                | 0.02  | 0.02  | 0.03  | 0.03  | 0.04              | 0.04  |
| Carroll               | 1.96  | 2.24  | 1.97  | 2.29  | 2.19              | 2.76  |
| Henry                 | 0.03  | 0.01  | 0.01  | 0.01  | 1.00              | 2.85  |
| Jo Daviess            | 1.72  | 2.62  | 2.56  | 2.17  | 1.78              | 2.38  |
| Lee                   | 0.05  | 2.44  | 1.11  | 1.84  | 1.60 <sup>1</sup> | 0.96  |
| Ogle                  | 0.68  | 0.44  | 0.64  | 0.53  | 1.86              | 0.22  |
| Rock Island           | 48.99 | 6.37  | 3.57  | 11.78 | 11.22             | 13.59 |
| Stephenson            | 1.82  | 1.78  | 1.45  | 1.88  | 2.05              | 2.38  |
| Whiteside             | 7.65  | 4.52  | 4.15  | 0.06  | 1.83 <sup>1</sup> | 1.13  |
| Winnebago             | 3.59  | 3.59  | 1.72  | 1.51  | 2.10 <sup>1</sup> | 1.54  |
| <b>REGIONAL TOTAL</b> | 66.58 | 24.21 | 17.60 | 22.52 | 21.52             | 28.28 |

Updated Table 5.1(a) Historical Self-Supplied IC Water Demand (Mgd) (United States Geological Survey, 2014). Non-mining only.

<sup>1</sup>New IWIP data available, value updated from Table 5.3 in the report

Updated Table 5.1(b) Historical Self-Supplied IC Water Demand (Mgd) (United States Geological Survey, 2014). Mining only. 2013 data is from the IWIP database only.

| County                | 1990 | 1995 | 2000            | 2005 | 2010 | 2013   |
|-----------------------|------|------|-----------------|------|------|--------|
| Boone                 | 0    | 0    | NE <sup>1</sup> | 0.15 | 0.05 | 0.05   |
| Bureau                | 0    | 0.38 | NE              | 0.94 | 2.05 | < 0.01 |
| Carroll               | 0    | 0    | NE              | 0.07 | 0.01 | NE     |
| Henry                 | 0    | 0    | NE              | 0.02 | 0.03 | NE     |
| Jo Daviess            | 0    | 0    | NE              | 0.21 | 0.13 | NE     |
| Lee                   | 0    | 0    | NE              | 0.38 | 0.04 | NE     |
| Ogle                  | 0.35 | 0.01 | NE              | 0.61 | 0.82 | 1.02   |
| Rock Island           | 0.34 | 0    | NE              | 0.18 | 2.97 | 2.90   |
| Stephenson            | 0    | 0    | NE              | 0.08 | 0.07 | NE     |
| Whiteside             | 0    | 0    | NE              | 0.18 | 0.15 | < 0.01 |
| Winnebago             | 0.74 | 0.36 | NE              | 0.49 | 0.60 | 0.32   |
| <b>REGIONAL TOTAL</b> | 1.43 | 0.75 | NE              | 3.31 | 6.92 | 4.29   |

<sup>1</sup>Not estimated

| SIC  |                                       | 2010             | 2013   |
|------|---------------------------------------|------------------|--------|
| Code | SIC Code Definition                   | Demand           | Demand |
| 1400 | Construction from Long 1 Construction | ( <b>Mgd</b> )   | (Mgd)  |
| 1422 | Construction Sand and Gravel          | 3.0              | 2.9    |
| 1446 | Industrial Sand                       | <0.1             | <0.1   |
| 2011 | Meat Packing Plants                   | 2.0              | 0.5    |
| 2023 | Dry, Condensed, Evaporated Products   | 0.2              | 0.2    |
| 2024 | Ice Cream and Frozen Desserts         | 0.1              | < 0.1  |
| 2026 | Fluid Milk                            | 0.3              | 0.4    |
| 2037 | Frozen Fruits and Vegetables          | 0.4              | 0.4    |
| 2048 | Prepared Feeds, NEC <sup>2</sup>      | <0.1             | < 0.1  |
| 2067 | Chewing Gum                           | 0.4              | < 0.1  |
| 2754 | Commercial Printing, Gravure          | 0.3              | 0.1    |
| 2869 | Industrial Organic Chemicals, NEC     | 4.3 <sup>1</sup> | 5.9    |
| 2873 | Nitrogenous Fertilizers               | 1.8              | 2.3    |
| 2899 | Chemical Preparations, NEC            | < 0.1            | 2.3    |
| 3011 | Tires and Inner Tubes                 | 1.5              | 1.4    |
| 3081 | Unsupported Plastics Film and Sheet   | < 0.1            | < 0.1  |
| 3259 | Structural Clay Products, NEC         | < 0.1            | < 0.1  |
| 3272 | Concrete Products, NEC                | < 0.1            | < 0.1  |
| 3273 | Ready-Mixed Concrete                  | < 0.1            | < 0.1  |
| 3429 | Hardware, NEC                         | < 0.1            | 0.1    |
| 3431 | Metal Sanitary Ware                   | < 0.1            | < 0.1  |
| 3452 | Bolts, Nuts, Rivets, and Washers      | 0.1              | 0.1    |
| 3462 | Iron and Steel Forgings               | < 0.1            | < 0.1  |
| 3471 | Plating and Polishing                 | 0.1              | 0.1    |
| 3523 | Farm Machinery and Equipment          | 3.5              | 3.6    |
| 3531 | Construction Machinery                | 1.5              | < 0.1  |
| 3562 | Ball and Roller Bearings              | < 0.1            | < 0.1  |
| 3564 | Blowers and Fans                      | < 0.1            | < 0.1  |
| 3567 | Industrial Furnaces and Ovens         | < 0.1            | < 0.1  |
| 3585 | Refrigeration and Heating Equipment   | < 0.1            | < 0.1  |
| 3594 | Fluid Power Pumps and Motors          | < 0.1            | < 0.1  |
| 3724 | Aircraft Engines and Engine Parts     | 0.7              | 0.6    |
| 3728 | Aircraft Parts and Equipment, NEC     | 0.1              | < 0.1  |
| 3731 | Shipbuilding and Repairing            | < 0.1            | < 0.1  |
| 4833 | Television Broadcasting Stations      | < 0.1            | <0.1   |
| 5032 | Brick, Stone, and Related Material    | 1.9              | 1.0    |
| 5191 | Farm Supplies                         | < 0.1            | <0.1   |
| 7011 | Hotels and Motels                     | 0.31             | 0.2    |
| 7261 | Funeral Service and Crematories       | < 0.1            | <0.1   |

Updated Table 5.3 Self-Supplied IC Water Demand by SIC Code for Selected Facilities (2010)

<sup>1</sup>New IWIP data available, value updated from Table 5.3 in the report

#### Appendix I. Updates and Recommendations for Studies of Water Demand Projections for Thermoelectric Power Generation

The current study used power generation data in 2010 as the baseline condition, and thus the data are not current. Limitations in our approach include the following:

- The analysis was based on total power-plant-level water use data and did not distinguish generating-unit-level and cooling-system-level data separately.
- The analysis needs to consider power plant lifespans for scenario development.
- Power generation technology and cooling technology advancements in the next 50 years need to be considered.
- The Energy Information Agency (EIA) databases, especially the EIA-923 and EIA-860 datasets, were not fully utilized for the study since they did not include water use beyond that utilized by generating units or cooling systems.
- The three water demand scenarios are oversimplified and similar because they do not consider many socioeconomic and technological factors.
- The regional water supply planning committee had no members from the power generation industry when this report was prepared, thus the concerns of the power generation industry in the region were not fully addressed.
- Thermoelectric power generation accounts for a high percentage of water demand. Recent changes in the power generation portfolio within Illinois have NOT been accounted for in the original report. Recent trends (since 2016) will significantly alter the future demand projections listed in this report.
- Regional climate models have improved significantly, especially since 2016. These models should be incorporated into future demand projections.

Since this study was done, we have become aware of trends and changes anticipated for the power generation industry that may affect water demands in the power generation sector. These include:

- Natural gas is the fuel source that is expected to grow the most on an absolute basis.
- Non-hydroelectric renewable energy is expected to grow the most on a percentage basis.
- Generators will be more efficient.
- Cooling technology efficiency is expected to increase and some power plants may reach the goal of zero liquid discharge (ZLD).
- On the other hand, carbon capture, utilization, and storage applications to power plants may increase water demands for the power generation sector.
- The Future Energy Jobs Act (FEJA) legislation was enacted in the state of Illinois in 2016. This legislation has targets for the deployment of "renewable energy resources" throughout the state (approximately 28 GW of new solar development, and 13 GW of new wind development by 2025). Since solar and wind farms require almost no

water, the projected requirements for deployment of these technologies will significantly reduce water needs for thermoelectric power generation.

- Much of the nuclear fleet will reach a 50-year lifetime in the early 2020s. This has been the typical lifetime for nuclear plants within the U.S. Decisions will need to be made as to whether to deploy new plants or replace these nuclear plants that require large volumes of water with renewable sources that require less water.
- Many of the coal-fired power plant fleet in Illinois faced a similar challenge as was listed above for the nuclear fleet. There are some newer plants (circa 2010) that will have a longer lifetime and are approaching ZLD.

Recommendations for future work:

- To better understand cooling and other water demands for power generation, generating-unit-level data are needed.
- Generating unit lifespans determine when units will be retired or replaced and thus should be considered for long-range projections.
- Long-term trends of power generation, cooling, and environmental abatement technologies, as well as fuel prices, federal and state regulations, etc., are critical for projecting future power generation. It is thus also critical to consider these trends for water demand projections for power generations.
- The EIA databases such as EIA-923 and EIA-860 and EIA annual energy outlooks should be used and cross-checked with locally available data such as IWIP data.
- Input and feedback from the power generation industry to the regional water supply planning committee is critical, and thus efforts should be made to increase the engagement and participation of the industry to water supply planning.
- Combine climate models to understand the future variations in climate that might impact the power generation portfolio, especially the deployment of renewables. Climate models could assist in maximizing the performance of renewables, which are expected to become more critical in Illinois' future power generation portfolio.
- FEJA targets should be included in future energy and related water demand projections for the state of Illinois.
- The U.S. Department of Energy has a number of efforts to explore how to reuse waste water within power plants. These efforts would significantly decrease water usage at the power plants. The potential deployment of these technologies within Illinois should be explored.
- The deployment of carbon capture, utilization, and storage (CCUS) needs to be considered in the thermoelectric demand projections. Various tax credits at the federal level (e.g., 45Q) could lead to deployment of CCUS within the state of Illinois. In addition, carbon tax/carbon trading would stimulate CCUS and hence impact future water demands for thermoelectric generation within Illinois.
- Specifically include Zero Liquid Discharge (ZLD) and its impact on future water demands for the thermoelectric power generation application.

• Outline how efforts within federal R&D programs (e.g., U.S. DOE, USDA, DoD) could be deployed within Illinois and their expected impact on future water demands for energy generation.

# Appendix J. Responses to Regional Water Supply Planning Committee's (RWSPC) Comments on Draft Report

**Comment 1:** Question about IDPH's population projections, used in the ISWS Water Demand Report, that predict population increases in portions of northwest Illinois. The most recent American Community Survey statistics (2016) show a stagnant or decreasing population for most of the planning area (Table 2.2).

**Response:** In the forecast, we added only about 55,000 to the total population between 2015 and 2060 across the entire 11-county region, mostly in Boone, Rock Island, and Winnebago Counties. The projected increase in population for the entire region is only 6.8 percent for the period of 2015 to 2060. We assumed a stagnant population in seven counties. We were cautious to avoid "depopulating" the counties over the long term based on recent small declines in resident populations. We examined long-term trends in county populations; our assumptions are illustrated on graphs in Appendix B.

**Comment 2:** Concern about an assumed increase in employment, especially in light of presentday workforce shortages.

**Response:** We used the 2014 employment projections by the Illinois Department of Employment Security (IDES). The IDES long-term employment projections appeared reasonable. Relative to total resident population in the region, in 2010 the employment/population ratio was 34 percent. In the forecast, this ratio is increased by 2060 to only 37 percent.

**Comment 3:** Desire to see error bars in the statistical illustrations presented (and questions about the statistical methods used).

**Response:** Error bars would be helpful, but they require significant effort to generate and could be misleading in the context of forecasting. We approached the forecast uncertainty by using forecast scenarios. The statistical methods used in the report have been widely used for projecting water demand in the United States and beyond. Our study was application-oriented, and we did not test new or unused statistical methods.

**Comment 4:** Query about peaking power plants (both in Lee County) that seemed to be excluded from the demand report.

**Response:** The two power plants in Lee County are Lee Energy Facility and Nelson Energy Center. The Lee Energy Facility in Dixon, IL is a natural gas-fired peaking facility with a nameplate capacity of 814 MW. This power plant was commissioned in 2001. The Lee Energy Facility uses eight GE combustion gas turbines. However, we did not have water use data for the facility. The facility does not use surface water, and the likely reason is that it uses very little water (if no steam and no condensation cooling). The Nelson Energy Center uses both gas and steam turbines and has a nameplate capacity of 627 MW. This power plant started operation in 2015, and thus we had no water use data for the facility. In 2017, the Nelson Energy Center withdrew about 1.54 Mgd of water from the Rock River. We determined that the additional

water demand is minor, and thus the three scenarios of water demand for power generation were not changed.

**Comment 5:** Curiosity about whether or not the hydroelectric plants in Rockton, Dixon, Rock Falls, and Rock Island should be considered.

**Response:** We acknowledge the existence of the hydroplants and showed the non-consumptive flows/diversions where such were available. However, we did not attempt to estimate future water demand for hydropower generation because such demand represents an in-stream use of water with no consumption of water.

**Comment 6:** Suggestion that the report writers consider trends in industry, such as automation and energy efficiency features, as well as growing vs. shrinking sectors.

**Response:** This could possibly be done, but our previous experience in east-central Illinois (where we used industrial sectors) showed a lack of data for projecting future trends at the subsector level. The three scenarios with a wide range of assumptions implicitly consider trends in industry and technology advancement.

**Comment 7:** Question of whether or not to include the decommissioning of the two nuclear generating stations in Cordova and Byron in demand projections (likely after the expiration of the incentives included in the Illinois Future Energy Jobs Act); these locations are substantial users of water.

**Response:** This could be done if we have enough information on the future dates/years when these two plants would likely be retired. To acknowledge the insufficient information and caveats of power generation water demand, a separate appendix, "Recommendations for Studies of Water Demand Projections for Thermoelectric Power Generation" (Appendix J), is included in this report.

**Comment 8:** Discussion about water systems and price elasticity.

**Response:** We did use price elasticity and future price projections in Chapter 2 (Public Water Supply). Two errors were found in Table 2.5 and have been corrected. The correct coefficient value for price elasticity is -0.12183, and for income elasticity is +0.19770.