
The Career Pursuits of Engineering Students:

Inquiries into Options, Informedness, and Intentions
at the Education-Careers Interface

by

James N. Magarian

B.S. Mechanical Engineering, Tufts University (2004)
M.S. Mechanical Engineering, Tufts University (2007)

M.B.A., Boston College (2010)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the field of Engineering Workforce Dynamics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

James N. Magarian 2018. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publically paper and electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

Signature redacted
Author _

Department of Mechanical Engineering
August 10, 2018

Signature redacted
Certified by _ _

Warren Seering
WeberJShaughness Professor of Mechanical Engineering

Thesis Supervisor and Committee Chair

Accepted by Signature redacted
Rohan Abeyaratne

Chair, Committee on Graduate Students, Department of Mechanical Engineering

MASSACHUSETTS INSTITUTE
OF TECHNOWGY

OCT O2 2018

uBRARIES
AKUHIVES



2



The Career Pursuits of Engineering Students:
Inquiries into Options, Informedness, and Intentions

at the Education-Careers Interface

by

James N. Magarian

Submitted to the Department of Mechanical Engineering
on August 10, 2018 in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in the field of Engineering Workforce Dynamics

ABSTRACT

This thesis examines how the career plans of U.S. engineering students shape the composition of the
engineering workforce. The health of this workforce - including its demographic diversity and inflow
of candidates with key skills - attracts substantial attention from employers, policymakers, and
educators. Prior literature has identified patterns of systemic variation in career intentions among
students in the engineering educational pipeline, where certain student subsets have exhibited a lower
likelihood of pursuing traditionally categorized engineering occupations after engineering school
compared to others. Examining these patterns of occupational intentions remains critical, as some of
such patterns continue to hinder workforce development goals, including demographic diversification
and retention of those with certain skills profiles.

We began our investigation by constructing a multivariate occupational sorting model for engineering
students that incorporates factors shown in prior studies to be associated with students' occupational
outcomes. We empirically validated this model using survey data from a sample of 1,061 senior year
engineering students. We present results showing how different occupational outcomes are associated,
on average, with different student-specific characteristics. Next, we describe findings from a
randomized survey experiment conducted upon the same student sample. Here, we investigated how
experimental manipulation of engineering job attributes influences students' preferences for jobs. The
experiment allowed us to draw causal inferences about how jobs' attributes interact with students'
characteristics to explain variance in job preferences. We discuss the experiment's implications for
enhancing candidate-career matching and for mitigating undue attrition from the engineering pipeline.

We also present results from a systematic literature review examining the changing careers landscape
faced by engineering students. Here, we identified core elements of traditional engineering jobs that
endure in contemporary positions, and we characterize a set of increasingly prevalent engineering-
related jobs that has arisen. We present a typology of engineering work built upon the review. The
typology facilitates categorization of the engineering-relatedness of engineering graduates' diverse
careers. We conclude by discussing how increased job market complexity strains engineering schools'
ability to prepare students to make well-informed career decisions, and draw upon findings from the
survey experiment to suggest ways that educators can remove impediments to ideal student-career
matching.

Thesis Supervisor: Warren Seering
Title: Weber-Shaughness Professor of Mechanical Engineering
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Preface

Each chapter of this thesis examines phenomena related to the career pursuits of university

engineering students in the United States. Such phenomena include: the sorting of engineering

students into different career pathways, the influences upon students' attraction to various work roles,

the expansion and evolution of engineering jobs in industry, and students' development of

preparedness to make career decisions amidst an increasing variety of options. Each chapter addresses

a specific audience of stakeholders who are invested in engineering students' career pathways.

Though the analytical scope of the chapters is adjusted for particular audiences, the sequence of

chapters is intended to reflect the flow of a cohesive overall investigation. Since each chapter is

designed to be capable of standing alone, some information is repeated across the chapters, and

chapters include citations referencing information in other internal chapters.

Chapter 1 is intended for the engineering management audience, including those responsible

for recruitment and workforce development. This chapter presents statistical models that characterize

sorting patterns of engineering students into different types of expected career paths following

graduation, and discusses implications for improving candidate-career matching. Chapter 2, meanwhile,

is framed for the work and occupations research community. Here, findings from a conjoint

randomized survey experiment are presented that examine the role of job attribute informedness in

influencing key candidate subsets' attraction to jobs in their field of study. Chapter 3 addresses the

engineering educator and education researcher audiences. This chapter discusses a systematic

literature review that identifies enduring attributes of traditionally categorized engineering work,

while surveying the contemporary jobs landscape to characterize newer positions closely related to

engineering work. Based on the literature review, a typology of engineering work is presented that

allows educators to assess the engineering-relatedness of the occupations that graduates attain.
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Finally, Chapter 4 serves as an overall summary and discussion of this thesis' findings for the

engineering educator audience. This concluding chapter comprises a critical review of factors that

hinder and support students' preparedness to make well-informed career-related decisions as they

approach graduation from engineering degree programs. The thesis ends by highlighting educators'

opportunities to increase engineering students' preparedness to pursue well-fitting careers.
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1. Occupational intentions of engineering students:
An examination of candidate sorting at the college-careers interface

The health of the U.S. engineering workforce pipeline garners considerable attention from

policymakers, academic researchers, and employers. Federally funded education and outreach

programs aimed at drawing more students into science, technology, engineering, and mathematics

(STEM) career paths in the U.S. constitute a multi-billion dollar effort annually (Mervis, 2013;

American Institute of Physics, 2018) - and such programs, often lauded by industry leaders, have

historically received bipartisan support in congress (Teitelbaum, 2014; Brown, 2017). In parallel,

academic research on engineering workforce development has grown considerably since the turn of

the 2 1st century: publication trends indicate a lOx increase in the annual number of journal articles

related to the phrases "engineering workforce," "engineering talent," or "engineering careers" from

2000 to 2016 (Web of Science, 2018).

In this era of focus on the engineering workforce, rising numbers of candidates are indeed

entering the engineering pipeline. Annual increases in numbers of students pursuing engineering

degrees at U.S. universities have been recorded, both in absolute terms and as a proportion of all

degree types, since the year 2000 (National Center for Educational Statistics [NCES], 2018; National

Science Board [NSB], 2018). Recent reports, meanwhile, generally point to a sufficient and adaptive

supply of engineering graduates nationwide relative to available positions (Anft, 2013; Salzman,

2013; Xue & Larson, 2015; Lynn et al., 2018). Yet, despite these apparent recruitment successes, key

workforce development issues persist that are relevant to engineering managers and educators. The

issues pertain less to the overall quantities of engineering degrees being awarded, however, and more

to idiosyncrasies in the self-selection and career path sorting behaviors of candidates at various stages

in the pipeline.
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Such key sorting phenomena relate to engineering candidates' sense of fit and, in turn, to

their retention in both degree programs and at initial occupations. As a result, the cross-section of

candidates remaining in the pipeline - in terms of candidates' interests, abilities, and demographics -

changes as cohorts progress from education stages of the pipeline into careers (Stevens et al., 2008;

Lichtenstein et al., 2009; Atman et al., 2010; Cech et al., 2011; Frehill, 2012; President's Council of

Advisors on Science and Technology [PCAST], 2012; Glass et al., 2013; Hunt, 2016). Relatedly,

engineering students face a growing variety in employment opportunities available to them:

engineering employers increasingly compete with other types of employers for individuals in the

engineering pipeline, as engineering degrees have proven valuable to a variety of alternate career

paths (Carnevale et al., 2011; Langdon et al., 2011). Yet, the resulting career path dispersion among

engineering candidates does not consistently produce ideal candidate-career matches, either from

candidates' or from engineering employers' perspectives (Correll, 2001; Stevens et al., 2008; Atman

et al., 2010; Winters, 2012; Xu, 2013). This chapter begins by reviewing evidence of trends of

imperfect matching and of systemic attrition in certain areas of the workforce and pipeline. It then

examines factors associated with engineering graduates' sorting into various career trajectories at the

college-career interface, proceeds to discuss how some of these factors can relate to imperfect

matching, and concludes by discussing how employers and educators can take steps to improve

sorting and enhance candidate-career fit.

The chapter centers on the development and empirical validation of a sorting model that

unifies existing theory on engineering graduates' occupational outcomes. Employing a sample of

1,061 senior year engineering students surveyed at nine universities across the U.S., we first replicate

existing findings on the factors associated with engineering and non-engineering occupational

intentions (e.g., binary sorting) following graduation. We then extend this baseline model by

developing and testing a multinomial outcomes model that examines the factors uniquely associated

14



with specific categories of occupational intentions. This latter model enhances engineering employers'

and educators' understanding of candidates' departures from the engineering pipeline by highlighting

that differing sets of factors are associated with different types of occupational intentions.

1.1 Background

As in past eras, policymakers today continue to call for strengthening the science and

engineering pipelines in the U.S. through increased STEM degree production (Hira, 2010;

Teitelbaum, 2014; as examples, see: Augustine et al., 2005; PCAST, 2012). Contemporary policy

formulations have also included early-pipeline programs to promote STEM careers to underrepresented

groups (Stine, 2009; Furman, 2013). Yet, with "degrees awarded" as a primary metric for success in

much of the enacted STEM recruitment policy, other important downstream metrics are (perhaps

inadvertently) deemphasized or missing - such as measures of career placement and of employer or

employee satisfaction (Hira, 2010; Xu, 2013; Teitelbaum, 2014).

While the number of engineering bachelor's degrees awarded annually has increased by 68%

between the years 2000 and 2015, outpacing a 53% overall growth in all annual U.S. bachelor's

degree awards (NSB, 2018), evidence also suggests an accumulation of degreed engineers working

outside of engineering (Langdon et al., 2011; U.S. Census Bureau, 2014). Concurrent growth in

hybrid and engineering-related roles, such as in project management, may in part explain the latter

claim, as participation in such roles is difficult to consistently classify and count (see: Chapter 3; see

also: DiVincenzo, 2006; Lowell et al., 2009). Nonetheless, various reports suggest that engineering

graduates increasingly take on jobs at or soon after graduation that deviate from traditionally categorized

engineering roles (Carnevale et al., 2011; Langdon et al., 2011). In today's landscape of varied

opportunities, as one study states, "an engineering major does not (necessarily) an engineer make"

(Lichtenstein et al., 2009, p. 227).
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1.1.1 Opportunities to improve candidate sorting

Career path dispersion and attrition are natural and expected phenomena in all workforce

pipelines as candidates navigate the process of professional identify formation, build self-awareness,

and become more informed about jobs (Lent, et al., 1994; Ibarra, 1999; Stevens et al., 2008; Eliot

and Turns, 2011). Tolerating this dispersion is easier for employers when the potential labor supply

is large enough to cover losses from the pipeline, as is the case in many sub-disciplines of

engineering in our present time (Aft, 2013; Salzman, 2013; Xue & Larson, 2015); yet, the total

headcount in the pipeline does not tell the full story in engineering. Recent literature suggests

opportunities for mitigating systemic attrition from at least two key subsets of individuals among

successful engineering bachelor's degree earners: graduates with comparatively strong interpersonal

and leadership skills, and female graduates.

Engineering students with strong interpersonal and leadership skills, though highly sought for

by engineering employers (Salzman & Lynn, 2010; American Society for Engineering Education

[ASEE], 2013; Hartmann, et al., 2016), may perceive opportunity for greater return on these skills in

other fields (Carnevale et al., 2011; Deming, 2017), and may be more likely to leave engineering, on

average, compared to others (Atman et al., 2010). Though literature on engineering practice has long

documented the embeddedness of social interaction and leadership in engineering work (Bucciarelli

and Kuhn, 1997; Meier et al., 2000; Bucciarelli, 2002; Trevelyan, 2007; Trevelyan, 2010; Salzman

and Lynn, 2010; ASEE, 2013; Hartmann, et al., 2016), recent reports point to a "soft skills" gap in

the engineering workforce and to employers' perceived difficulty in recruiting technically capable

candidates who also posses high levels of these interpersonal and leadership skills (Salzman and

Lynn, 2010; Cappelli, 2015).

A second key opportunity involves addressing the various factors that hinder demographic

diversity in the engineering workforce (see: Correll, 2001; Good et al., 2008; Amelink & Creamer,

16



2010; Cech et al., 2011; McGee & Martin, 2011; Ellis et al., 2016; Seron et al., 2016).

Underrepresentation of women and certain minority groups in engineering is well documented (U.S.

Census Bureau, 2014; National Science Foundation [NSF], 2017; National Science Board [NSB],

2018). This disparity is greatest for women, who make up 14.5% of the U.S. engineering workforce,

despite composing 47.0% of the U.S. working population (NSB, 2018). Yet, attempts at boosting

women's and minorities' representation in the engineering workforce by increasing their enrollment

in engineering schools - which, itself, has been slow to occur (NSB, 2018) - are further thwarted by

the disproportionate attrition of underrepresented candidates, particularly women, at or soon after the

college-career interface (Frehill, 2012; Ayre, et al., 2013; Glass et al., 2013). Engineering employers,

meanwhile, frequently cite increasing the diversity of their workforces as a priority (Johnson, 2017;

Mohan, 2017; Olson, 2017).

The evidence in both of these areas suggests that certain types of candidates who have the

potential to thrive - and who are sought by engineering employers - are at greater risk of exiting the

engineering pipeline at the college-career interface compared to others. This study constructs and

validates statistical models of engineering students' expected occupational outcomes, through which

we examine these and other career path sorting tendencies among senior year engineering students.

1.1.2 Why focus on the college-careers interface?

Initial jobs after college or graduate school, while often transient and part of a series of early-

career iterations (Jepsen & Dickson, 2003; Arnett, 2007; Murphy et al., 2010), nonetheless set

critical foundations for the longer-term careers that candidates achieve later in life. Studies show that

career changes tend to become less frequent with age (Finegold et al., 2002; Jepsen & Dickson,

2003), and that, over time, it becomes increasingly unlikely that candidates who had "track switched"

out of a technical discipline will switch back (Biddle & Roberts, 1994). Research also shows that the
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thoroughness of candidates' informedness about available career options at the time of initial post-

collegiate job searches (Werbel, 2000) and candidates' attainment of jobs that are aligned with their

discipline of education (Xu, 2013) are associated with increased career satisfaction. Enhancing

employers' and educators' understanding of the factors at play as engineering students encounter this

critical college-career interface may afford opportunities to improve overall alignment between

students and their career outcomes, help to diversify the engineering workforce, and enable higher

retention of those with in-demand skills.

1.2 Theoretic basis

Extant studies offering explanations of engineering graduates' occupational outcomes tend to

fall within social, economic, or educational theoretic areas. We review literature in each of these

areas and distill the various factors that studies within each have associated with engineering and

non-engineering occupational outcomes (or outcome intentions) of graduates.

1.2.1 Social explanations

Literature centered on social explanations of engineering graduates' career path behavior

examines graduates' occupational outcomes (or intentions) in relation to the strength of their

professional identities and to their socially- and culturally-informed senses of fit in workplaces, in

roles, or in exercising key abilities. Such works posit that occupations carry with them sets of role

expectations and workplace cultural norms, both of which inform the development of candidates'

perceived compatibility with the occupation (Eliot & Turns, 2011; Cech et al., 2011; Ayre et al.,

2013; Seron et al., 2016).

The development of professional identity is a phenomenon often discussed in the broad

literature on careers (Ibarra, 1999; Cohen-Scali, 2003; Ibarra & Barbulescu, 2010; Slay & Smith,

2011). Numerous studies have examined strength of professional identity as a factor associated with
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engineering students' persistence in or departure from engineering career pathways (Stevens et al.,

2008; Matusovich, et al. 2010; Cech et al., 2011; Eliot & Turns, 2011; Ayre et al., 2013; Hatmaker,

2013; Cech, 2015). For example, Matusovich et al. (2010) find that candidates at highest risk of

leaving engineering are those with "limited connection between engineering and the personal sense

of self' (p. 300). Ayre et al. (2013) report an association between "sense of belonging" in a particular

engineering field and persistence in that field (p. 230). Eliot and Turns (2011), meanwhile, find that

those who had most strongly internalized a personal connection to engineering were those who had

"[made] sense of themselves as engineers while [building] a personal vision of the engineering

profession" (p. 649). This literature suggests that a strong professional identity is one marked by a

clear sense of fit within and deep personal connection to a particular profession. Yet, research suggests

that achievement of such a sense of fit or connection is far from inevitable among engineering students

by the end of undergraduate studies; rather, many engineering students continue to grapple with

professional identity as they prepare to graduate (Stevens et al., 2008; Lichtenstein et al., 2009). Based on

this literature, we hypothesize that those engineering students who have established a strong professional

identity by their senior year (e.g., as evidenced by identification with one specific profession) are more

likely, on average, to expect to work in engineering after graduation compared to others.

A general and frequently applied framework on the development of occupational intentions

draws on candidates' self-efficacy beliefs in the abilities requisite for achieving certain career

development goals and, relatedly, on their personal interests in pursuing such goals. Social Cognitive

Career Theory (SCCT), as presented by Lent et al. (1994), rests on a feedback-based model whereby

candidates' beliefs in their abilities evolve as they set goals for themselves and attempt to achieve

them. Contextual experiences, inclusive of social persuasions, encountered throughout this pursuit

influence how candidates process performance feedback, and in turn, how they revise their interests
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and self-efficacy beliefs. SCCT highlights that candidates' beliefs in their underlying abilities are not

entirely objective. Theorists, for example, point to gendered norms and cultures as "socially

constructed aspects of experience" that influence feedback processing related to occupationally

relevant abilities (Lent et al., 1994, p. 105). Empirical studies of engineering students' career

interests have frequently employed SCCT as an explanatory framework (see: Nauta et al., 1998;

Trenor et al., 2008; Byars-Winston et al., 2010; Jones et al., 2010; Atadero et al., 2015; Lent et al.,

2018). As expected, a commonality among these studies is their focus on candidates' ability beliefs

as factors correlating with interests in occupations perceived to require such abilities.

Ability beliefs in two areas stand out among the pertinent literature as frequently examined

for their association with engineering graduates' career outcomes: those beliefs related to

mathematics abilities and those related to interpersonal and leadership abilities. Students' beliefs in

these two areas may be salient factors in cases of poor occupational matching due to well-

documented trends of misperception about the ability demands of real-world engineering practice in

these areas. For example, scholars critique how mathematical problem solving in engineering school

- in terms of type, frequency of use, problem framing, and available resources - differs from

mathematical problem solving in engineering practice (Bucciarelli & Kuhn, 1997; Trevelyan, 2007;

Trevelyan, 2010). Studies suggest that, while some aspects of engineering work certainly rest on

mathematics, the way math is presented in the engineering curriculum (including its positioning as a

"gatekeeper" subject (Winkelman, 2009) creates a discrepancy between university and real-world

notions of a typical engineers' use of math on the job (Bucciarelli & Kuhn, 1997; Trevelyan, 2007;

Winkelman, 2009; Trevelyan, 2010). Given that research has shown students' mathematics

confidence to be associated with retention in engineering (O'Brien et al., 1999; Correll, 2001; Eris et

al., 2010; Litzler & Young, 2012), and that self-assessment biases have been shown to exist in
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students' perceptions of their mathematics abilities (Correll, 2001; Ellis et al., 2016), engineering

work's reputation pertaining to mathematical demands may needlessly be pushing potentially well-

fitting candidates away (see also Vest (2011) and Baranowski (2011) for a related discussion on

engineering's "brand" among aspiring students). Similarly, but to an opposite effect, students with

high self-assessment in interpersonal and leadership abilities may be drawn away from engineering

careers and toward alternatives perceived to better leverage and reward such abilities (Atman et al.,

2010; Litchfield and Javernick-Will, 2016; Deming, 2017). Again, occupational reputation may be a

culprit: scholars note how analyses of engineering practice show marked demands for communication,

coordination, and leadership abilities across various levels of engineering work (Bucciarelli & Kuhn,

1997; Salzman & Lynn, 2010; Trevelyan, 2010; ASEE, 2013; Hartmann, et al., 2016) - and how

engineering positions are a well-known gateway into managerial roles (Biddle & Roberts, 1994;

Perlow & Bailyn, 1997; Herkert, 2001; Anft, 2013) - yet, that the engineering curriculum has

historically done a poor job of illustrating the social-technical work blend of engineering practice and

of advancement opportunities to aspiring students (Bucciarelli & Kuhn, 1997; Trevelyan, 2007;

Trevelyan, 2010; ASEE, 2013).

Mathematics ability beliefs have been studied extensively in association with candidates'

retention in the engineering pipeline (Nauta et al., 1998; Correll, 2001; Eris et al., 2010; Litzler &

Young, 2012), and research has shown that these ability beliefs are at least in part socially

influenced, net of actual ability (O'Brien et al., 1999; Correll, 2001; Ellis et al, 2016). This literature

does not suggest that raw ability is a trivial factor in ability belief formation; rather, it finds that raw

ability is not alone in shaping ability beliefs (Nauta et al., 1998; Correll, 2001). We thus separately

consider academic performance and quality of learning experiences as educational factors tied to

occupational outcomes (see: Educational explanations). The influence of social and cultural factors
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in shaping women's and men's math ability beliefs appears, at least in part, to be systemic, with

women more likely to rate themselves lower in math ability than men who score the same on

performance measures (Correll, 2001) and with women more likely then men to exit the pipeline

based on the same performance feedback (Ellis et al, 2016). Meanwhile, existing studies find

consistent empirical support for an association between strong mathematics ability beliefs and

candidates' intention to pursue engineering careers. Correll (2001), for example, summarizes: "self-

assessments of [mathematics] task competence were found to influence career-relevant decisions,

even when controlling for commonly accepted measures of ability," noting an association between

higher math self-assessments and increased likelihood of career path persistence in engineering (p.

1724). Similarly, Eris et al. (2010) find that "non-persisters [in engineering] are less confident in

their math and science skills than persisters" (p. 379). Based on the existing research, we expect that

those engineering students with higher ability beliefs in mathematics are more likely, on average, to

persist into engineering careers following graduation. Further, prior research suggests a connection

between ability beliefs and enjoyment. Goetz et al. (2006) and Sitzman et al. (2010) find an

association between students' perception of their math performance or abilities and their anticipated

enjoyment in using mathematics in tasks, jobs, or activities. Accordingly, we hypothesize that

candidates in the engineering pipeline with higher expectations of mathematics enjoyment are more

likely, on average, to expect to work in engineering after graduation compared to others.

Candidates' satisfaction with perceived career growth prospects in engineering, inclusive of

opportunities to exercise leadership and to be promoted beyond individual contributor ranks, has long

been a focus of the literature on engineering as an organizationally-embedded profession (Goldner &

Ritti, 1967; Layton, 1971; Bailyn & Lynch, 1983; Shapira & Griffith, 1990; Watson & Meiksins,

1991; Biddle & Roberts, 1994; Allen & Katz, 1995; Perlow & Bailyn, 1997; Igbarria et al., 1999).
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More recently, research in this area has explored associations between candidates' interpersonal or

leadership ability beliefs and their likelihood of obtaining and persisting in early-stage engineering

jobs (Byrd et al., 1996; Atman et al., 2010; Litchfield & Javernick-Will, 2016). Literature suggests

enduring societal perceptions of a technical-managerial dialectic, whereby technical roles and

management roles belong to distinct career tracks from which candidates must choose early in their

careers (Allen & Katz, 1995; Perlow & Bailyn, 1997; Jemielniak, 2007; Joseph et al., 2012), and that

moving between these tracks requires a jump or "track switch" (Biddle and Roberts, 1994). Yet, a

substantial body of literature challenges this notion of a dialectic, highlighting the existence of hybrid

roles (Watson & Meiksins, 1991; Allen & Katz, 1995; Williams, 2002; Hodgson et al., 2011; Joseph

et al., 2012; Paton and Hodgson, 2016), the embeddedness of coordinative and leadership

responsibilities in typical engineering roles (Bucciarelli & Kuhn, 1997; Trevelyan, 2007; Trevelyan,

2010), and the prevalence of engineering roles as gateways into management positions (Biddle &

Roberts, 1994; Mael et al., 2001; Joseph et al., 2012). Despite evidence of blurred boundaries between

"tracks," research suggests that candidates' intentions of leaving engineering at (or soon after)

graduation are associated with higher self-assessed interpersonal or leadership abilities (Atman et al.,

2010; Litchfield & Javernick-Will, 2016). Based on this literature, we hypothesize that engineering

graduates possessing higher leadership ability beliefs are more likely, on average, to expect to work at

non-engineering occupations after graduation compared to others.

1.2.2 Economic explanations

Literature indicates that the academic and career interests of students in the engineering

pipeline are responsive to shifts in engineering job market conditions (Ryoo & Rosen, 2004; Salzman

& Lynn, 2010; Bardhan et al., 2013; Lynn et al., 2018). In terms of year-to-year trends, cohorts in the

engineering pipeline exhibit a willingness to alter their undergraduate degree pursuits (Salzman &
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Lynn, 2010, Lynn et al., 2018) or graduate school intentions (Austin, 2014) as engineering job

markets swing; meanwhile, candidates' career plans also reflect the availability and attractiveness of

jobs outside of their degree fields (Carnevale et al., 2011; Anft, 2013). In recent instances where a

sub-discipline's job market underwent a spike or drop in demand, students' career interests and

enrollments have been shown to shift responsively, following a brief lag - such was the case during

the recent spike-decline cycle in the petroleum engineering field in the U.S. (Lynn et al., 2018), and

in computer-related fields that underwent similar demand swings near the turn of the 21st century

(Salzman & Lynn, 2010). Observations of these types of cycles have prompted economists to posit

that labor supply models based upon assumptions of unrestricted candidate mobility may better fit

the engineering labor system than earlier models which assumed candidate lock-in and limited

awareness of alternatives during the credentialing process (Felderer & Drost, 2000). Meanwhile, data

indicate substantive differences across the various engineering degree fields in terms of labor

demand and government-forecast job growth (U.S. Bureau of Labor Statistics, 2018a). The literature

thus suggests that market factors should be controlled for in studies attempting to measure students'

interests in engineering careers - such as by controlling for individuals' specific field of study, salary

expectations, and the date(s) of survey data collection.

Beyond labor demand in specific fields, economics literature also calls attention to financial

risk and job security characteristics of particular careers as important differentiating factors. Candidates'

risk-seeking or risk-averse orientations have been shown to correlate with type of career attained

(Saks & Shore, 2005; Caner & Okten, 2009; Sapienza, et al., 2009). Studies find that different careers

carry different levels of inherent financial risk - and that engineering careers are relatively low-risk in

comparison to alternatives, such as careers in business or finance (Saks & Shore, 2005; Caner & Okten,

2009). Correspondingly, these works find that candidates with risk-averse orientations are more likely,
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on average, to pursue careers in engineering compared to other candidates (Saks & Shore, 2005; Caner

& Okten, 2009). We thus hypothesize, based on this literature, that students with a financially risk-

averse orientation will be more likely, on average, to expect to work at engineering jobs after graduation

compared to their risk-seeking peers. Literature also suggests that individuals' student loan debt status

should be controlled for in studies examining the occupational plans of college graduates, as studies

have found that risk orientations are linked, on average, to family wealth and socioeconomic

background, for which student loan status is a proxy (Houle, 2014; Hsu & Fisher, 2016).

1.2.3 Educational explanations

An array of recent studies has examined connections between engineering candidates'

educational experiences and their commitment to engineering. These works have explored

associations between engineering degree program retention or occupational intentions and factors

such as: type of university attended (Chubin et al., 2005; Moore, 2006; Lichtenstein et al., 2009;

Marra et al., 2009; Atman et al., 2010; Amelink & Creamer, 2010); academic performance (Mau,

2003; Moore, 2006; Stevens et al. 2008; Xu, 2013; Godwin et al., 2016); exposure to curricular or

pedagogical innovations (Dym et al., 2005; Amelink & Creamer, 2010; Eris et al., 2010; Freeman et al.,

2014; Atadero et al., 2015); and participation in internships and co-op experiences (Lichtenstein et al.,

2009, Atman, 2010; Malcom & Feder, 2016). The findings in this literature suggest that studies

examining engineering students' occupational plans should control for students' university, degree

program, and academic standing to account for potential differences among students in the above areas.

Variance in students' persistence intentions in the engineering pipeline has been associated

with characteristics of the institutions in which students undertake their degrees. Studies note that

university type - in particular, whether an institution grants a proportionally large number of

engineering degrees and is characterized as technically-focused - appears to be associated, on
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average, with student occupational intentions (Lichtenstein et al., 2009; Atman et al., 2010).

Lichtenstein et al. (2009), for example, report a substantive difference in the percentage of students

stating they are unlikely to pursue engineering after graduation at a non-technically focused

university (36%) compared to at a technically-focused university (14%). Various studies also report

that factors related to faculty-student ratio and faculty culture, such as students' face time with

faculty and the quality of faculty-student interactions, are associated with strengthened engineering

intentions in students (Chubin et al., 2005; Moore, 2006; Lichtenstein et al., 2009; Amelink &

Creamer, 2010). This literature underscores a need to control for students' host university and degree

program in research examining occupational intentions.

The role of students' academic performance in influencing their persistence in the engineering

pipeline has been examined extensively. Education research highlights an association between higher

academic performance and increased likelihood of persistence in (or lower risk of attrition from)

engineering (Mau, 2003; Moore, 2006; Xu, 2013; Stevens et al., 2008; Godwin et al., 2016). Mau

(2003), for example, finds a significant connection between test scores and engineering career

aspirations. Xu (2013) reports a significant association between STEM students' GPA within their

undergraduate major and likelihood of persisting into a career in the field of the major. As discussed

in the section on Social explanations, it is important to note that raw academic performance is

embedded in a social system - the encouragement or discouragement students receive along with

performance feedback can impact the way they process this feedback (Marra et al. 2009; Godwin et

al., 2016). Additionally, academic performance's relation to persistence or attrition choices among

those in the engineering pipeline is tied to the timing of the performance: studies discern particular

milestones or "passage points" (Stevens et al., 2008) prior to graduation, such as deadlines to declare

or change majors, where performance feedback's association with career path decisions is heightened
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(Stevens et al., 2008; Ellis et al., 2016). Literature thus suggests that studies examining the occupational

plans of engineering students should control for academic standing or graduation status in their major

field, as variance in occupational plans may exist between students with stronger and weaker

academic standing.

Beyond literature that examines general education-related factors, other studies examine the

effects of specific curricular or pedagogical innovations on students' commitment to engineering.

Here, educators have assessed educational approaches that increase opportunities for active learning

(Felder et al., 1998; Freeman et al., 2014) or employ open-ended project-based assignments (Dym et

al., 2005; Zhou et al., 2012; Atadero et al., 2015). Studies suggest that these types of teaching

innovations can increase students' motivation toward or interest in engineering (Felder et al., 1998;

Dym et al., 2005; Zhou et al, 2012), and increase students' persistence in degree programs (Felder et

al., 1998; Dym, 2005). Scholars also posit that these teaching approaches introduce students to

contexts that better emulate real-world engineering problem solving environments (Bucciarelli &

Kuhn, 1997). Though research in this area does not directly connect these educational innovations to

students' occupational plans, it nonetheless reinforces that studies on students' occupational plans

should control for students' universities and degree programs, as educational innovations may be

employed to differing extents within different universities and programs. Moreover, studies note that

differences between innovative and traditional educational approaches can positively influence

students' perceptions of the opportunities for creativity intrinsic to engineering work (Bucciarelli &

Kuhn, 1997; Bernold et al., 2007; Zhou et al, 2012), which, in turn, relate to increases in students'

commitment to engineering (Bernold et al., 2007; Atwood & Pretz, 2016). Based on this literature, we

hypothesize that students' satisfaction with perceived opportunities to exercise creativity in

engineering work is associated with an increased likelihood that students will expect to work in

engineering after graduation.
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Students' exposure to industry-realistic problem solving contexts can also be facilitated

through engineering internships and co-ops undertaken during students' university years. Several

studies associate students' internship experiences with an increased likelihood of career interest or

outcomes in engineering (Atman et al., 2010; Zhao & Linden, 2011; Malcom & Feder, 2016).

Similar to project-based education experiences in the core curriculum, internships can provide students

with key opportunities to experience open-ended problem solving (Malcom & Feder, 2016) and to build

a sense of engineering as a creative field (Zhao & Linden, 2011). Based on qualitative interview

research, Litchenstein et al. (2009), find that internships can either be persuasive or dissuasive

experiences for students, depending on the positivity of the experience (Lichtenstein et al., 2009).

Among a broad set of factors tested for their association with engineering students' likelihood of

pursuing an engineer job after graduation, Atman et al. (2010) found internship participation to be

the factor most strongly associated with students' engineering career pursuits. While an association

between internship participation and students' attainment of an engineering occupation after

graduation could reflect an already-higher propensity for working in engineering among internship

participants, the literature also suggests mechanisms within the internships themselves (e.g.,

exposure to open-ended problems, opportunities to work creatively) that could increase students'

attraction to working engineering. Based on the literature, we hypothesize that students who

experience a positive engineering internship are more likely to expect to work in engineering after

graduation compared to those students who have not experienced a positive engineering internship.

1.2.4 A missing dimension: Diversity of alternatives

The conception of "engineer" as a distinct and homogenous occupational category pervades

much of the literature on engineering students' career outcomes. Studies typically consider the

engineering pipeline as clearly bounded, with candidates' status denoted as either within or outside
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of it (Perlow & Bailyn, 1997; Stevens et al., 2008; Brunhaver et al., 2013). Such a binary conception

of engineering implicitly assumes that graduates with non-engineering occupational outcomes belong

to a single category as well. Yet, data shows that when graduates acquire jobs beyond those

traditionally categorized as "engineer," such jobs could be in any number of alternate areas,

including management, finance, and medicine, among many others (U.S. Census Bureau, 2014).

Some of engineering graduates' alternate careers, such as those in project management or technical

consulting, are likely to be more related to engineering compared to others (see: Chapter 3). In other

words, an exit from the engineering pipeline could carry markedly different meanings, depending on

the specifics of the alternate outcome. Scholars have criticized the existing conceptions of mutually

exclusive and internally homogenous engineering and non-engineering outcomes (Perlow & Bailyn,

1997; Stevens et al., 2008), suggesting that important career path sorting information is lost when

studies consider occupational outcomes in this way.

Yet, given that most of the existing theory on engineering students' careers conceptualizes

outcomes sorting in a binary manner, the study outlined hereafter in this chapter begins by examining

binary occupational expectations of students for purposes of replication and theoretical unification

(e.g., the development of a baseline occupational sorting model). Next, however, the study explores

the potentially important differences in factors associated with the variety of different career

outcomes of engineering graduates. This latter analysis employs a multinomial outcomes model,

allowing for an examination of whether factors associated with graduates' non-engineering outcomes

differ depending on specific career outcomes. The chapter concludes with a discussion on how

differences in factors associated with differing occupational outcomes carry implications for

engineering employers and educators who aspire to improve the candidate-career matching of

graduates.
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1.3 Methods

1.3.1 Overview of survey approach

This study employed a survey approach designed to query senior year engineering students

across the U.S. while maximizing response rate and minimizing sampling biases. In developing such

an approach, we first negotiated conditions and constraints of data collection with several partner

universities that would serve as survey sites (see: Sampling and data collection for details on partner

university selection). The resulting research design reconciled the requirements of these partner

institutions with the sampling goals. We obtained permission to administer the survey during

required class times at the universities, and, accordingly, agreed to design the survey instrument to

take 12 minutes or less to complete. We also agreed not to publish results in a manner that conveyed

university-to-university comparisons. The negotiated survey approach centered on utilizing a

compact, paper-based survey form, which allowed us to achieve a near-90% response rate and a

sample of over 1,000 observations.

The concise survey format, however, restricted our ability to pose questions in a multitude of

ways to assess respondents' comprehension of the questions. In light of this limitation, we employed

strategies to attain confidence in the validity and consistency of responses. We first pilot-tested the

survey in advance of the main study with a smaller sample of 99 participants to gauge the correctness

of respondents' question interpretations and to make consequent refinements to question construction

to enhance clarity. Additionally, we employed a criterion validation approach (Babbie, 2010) in the

main study to assess measurement validity. This validation approach involved testing for the

replication of expected relationships among independent variables, and necessitated including a small

number of additional variables for this purpose, as described in Section 1.3.2 (Conceptualization and

measurement of variables). Finally, measurement consistency was checked using a split-sample
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approach to compare results from the chronological first half of the sample to those from the second

half. These overall survey design and verification strategies align with the study's scope of

replicating and generalizing theoretic relationships from prior literature, and of testing a unified

model of engineering graduates' occupational outcomes using a maximally representative sample.

1.3.2 Conceptualization and measurement of variables

The study's dependent variable, expected occupational outcome, was measured categorically.

Here, respondents were asked: "which one of the following represents how you will most likely

begin your career journey after undergraduate graduation? Please check only one." Respondents were

able to select from among occupations, graduate school, and write-in blank options. Beyond the

option of "work as an engineer," other response options were informed by a recent study,

documented in Chapter 3, that identified a set of engineering-related roles that graduates have

increasingly pursued since the turn of the 21" century (e.g., roles in product or project management,

technical consulting, or quantitative analysis). Further, a set of roles that are less engineering-related

but for which engineering graduates are actively recruited was included (e.g., roles in management

consulting, finance, or venture capital) (see: Shu, 2016). Finally, respondents had the option to

indicate they planned to work in academia, "other," or to write in their response. The set of response

options as presented in the study's survey form is shown in Table 1-A l of the chapter's Appendix.

Though survey length restrictions precluded us from presenting respondents with a more exhaustive

list of options, the write-in response option allowed us to capture the range of alternative career

expectations among the sample.

The study's key independent variables are summarized in Table 1-1. The variables'

conceptualizations and their expected associations with the dependent variable, expressed as testable
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hypotheses in the right column of Table 1-1, are derived from the literature review. The survey

questions associated with these variables are presented in Table 1-Al in the chapter's Appendix.

Table 1-1. Key independent variables and associated hypotheses

independent Variable and Conceptualization Assoiciated Hypotheses

Compared to others among graduating engineering seniors,

Hypothesis 1
Subject has held at least one engineering internship or co-op position those who have had a positive engineering internship experience are more
that they consider as a positive overall experience. likely to list engineering as their expected initial occupation after university.

Averse to financial risk-taking
Subject seeks income stability and job security in an occupation, and
seeks to avoid occupations that have prospects for outsized financial
windfalls that come at the expense of income stability or job security.

Would enjoy working at a job involving advanced mathematics
Subject would enjoy a job that regularly required the use of advanced
mathematical concepts that they experienced as part of their
undergraduate engineering curriculum.

Identifies with a specific profession
Subject envisions their ideal career as one that is based upon a
specific profession.

Anticipates promotion into formal leadership role by age 25
Subject believes it to be likely that they will be appointed to a formal
leadership position by age 25.

Sastisfied with creative opportunities at engineering jobs
Subject is satisfied with the availability of job opportunities in
engineering that allow one to engage in creative design work.

Hypothesis 2
those who are averse to financial risk-taking are more likely to list
engineering as their expected initial occupation after university.

Hypothesis 3
those who would enjoy working at a job involving advanced mathematics
from their field of study are more likely to list engineering as their expected
initial occupation after university.

Hypothesis 4
those identifying with a specific profession are more likely to list engineering
as their expected initial occupation after university.

Hypothesis 5
those anticipating promotion into a formal leadership role by age 25 are less
likely to list engineering as their expected initial occupation after university.

Hypothesis 6
those who are satisfied with ceative opportunities at engineering jobs are more
likely to list engineering as their expected initial occupation after university.

Additional variables were measured for the purposes of empirical control and for criterion

validation checks. These included demographic variables (e.g., gender and race), and subjects'

student loan debt status, varsity athletics participation status, Greek Life participation status

(including attainment of elected leadership positions at fraternities or sororities), undergraduate

major, degree completion status (e.g., expected term of graduation: I = Spring 2017, 2 = Summer

2017, 3 = Fall 2017), and salary expectations at first full-time job after college or graduate school.

The survey questions for each of these variables are also presented in Table 1-Al in the Appendix.
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Meanwhile, identification variables for university and survey period (e.g., 1 = November-December

2016, 2 = January-February 2017, 3 = March-April 2017), and a unique subject identification number,

were assigned to each survey record by the researchers.

Criterion validation checks were performed for the key independent variables listed in Table

1-1. These checks involved testing for the replication of expected relationships among variables, and

are reported on in the Results section. We established the following relationships from prior literature

as validity criteria. First, we expect aversion to financial risk to be associated with socioeconomic

status (Saks & Shore, 2005; Caner & Okten, 2009), a proxy for which is student loan debt status

(Houle, 2014; Hsu & Fisher, 2016); thus, we test for an association between aversion to risk and

student loan debt status. We expect enjoyment of working at a job involving advanced mathematics to

be associated, on average, with mathematics test scores and academic performance in math (Tapia,

1996; Ma & Xu, 2004; Goetz et al., 2006). In turn, we expect values of the math enjoyment variable

to be clustered by subjects' universities due to differences in admissions selectivity (U.S. News and

World Report, 2018) and curricula across the schools; thus, we test for significance of differences, on

average, of the math enjoyment variable across the schools. We expect identification with a specific

profession to be associated, on average, with a greater likelihood of stating a categorized occupational

expectation (e.g., as opposed to "other" or "unsure") - a phenomenon that literature on professional

identity denotes as self-affiliation with an "external frame" (Eliot & Turns, 2011). We expect

anticipation of promotion into a leadership role by age 25 to be associated, on average, with election

to student leadership positions in Greek Life organizations (Posner, 2004; Dugan & Komives, 2007).

Finally, we expect satisfaction with creative opportunities at engineering jobs to be associated, on

average, with positive engineering internship experiences (Zhao & Linden, 2011). Given our concise
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survey instrument, these validity checks served as a means to gain confidence that our generalized

measures capture the characteristics intended.

1.3.4 Sampling and data collection

Beyond the criteria to sample engineering undergraduate seniors, several additional research

design considerations drove this study's sampling approach. Since prior literature showed university

type to be an important factor associated with career outcomes (Litchtenstein, et al., 2009; Atman et

al., 2010), we deemed the sample's attainment of a broad institutional mix to be critical, inclusive of

both public and private universities, large and small engineering schools, and geographical

dispersion. The acquired sample consisted of engineering seniors from nine universities from

locations across the U.S., including four public and five private universities (resulting in 59% of

survey respondents from public universities). This institutional breakdown, with a substantial public

engineering school component, provides sample coverage reflective of how at least 80% of U.S.

engineering bachelor's graduates earned their degrees (Cech et al., 2011). Table 1-2 provides a list of

the nine universities represented in the sample.

In addition to university types represented, we were concerned with controlling for transient

job market factors that could influence subjects' career preferences or expectations. Both the timing of

the study and survey subjects' degree fields, as noted in the literature review, could relate to exposure

to market effects. For this reason, we opted to draw the entire sample from a single academic major

currently exhibiting stable academic enrollments and job prospects: mechanical engineering.

According to the U.S. Bureau of Labor Statistics (2018a), demand growth for mechanical engineers is

classified as "average" relative to the broad range of U.S. occupations over the next decade;

meanwhile, we note sharp differences in anticipated job market demand in other areas, most notably

in certain computer software-related occupations where demand is comparatively surging (U.S.
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Bureau of Labor Statistics, 2018b). Our literature review suggests no theoretic reasons why the factors

examined in this study, once empirical controls are in place, should apply differently across the

engineering majors, though our research design does not allow us to empirically evaluate the expected

generalization. Meanwhile, we controlled for the timing of the study by establishing a limited survey

window for data collection at the nine participating universities - November 2016 through April 2017

- and by employing survey period dummy variables as controls in the statistical models.

Table 1-2. Universities represented in the study's sample

Percentage of university's
mechanical engineering

Location senior capstone class
University (U.S. State) Type represented in sample

Boston University MA private 88.2
Carnegie Mellon University PA private 90.4
Massachusetts Inst. of Tech. MA private 92.0
Penn State University PA public 81.9
Santa Clara University CA private 85.7
Texas A&M University TX public 85.8
Tufts University MA private 83.0
University of Connecticut CT public 92.0
University of Michigan Ml public 82.8

Finally, we took steps to maximize participation and to minimize self-selection biases in the

sample. Key attitudes about working in a career in one's degree field could be disproportionately

represented (or omitted) in the sample if candidates self-selected into this study. To mitigate this

concern, we collected data on-site at each of the nine universities at instances where full attendance of

the graduating class of mechanical engineers was obliged. A particular type of event provides this

opportunity: class sessions for senior year capstone design courses. The campaign to recruit

participating universities thus involved proposals to administer the survey within capstone courses.

Email solicitations were sent to mechanical engineering capstone instructors and to department chairs
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until we secured a sufficiently representative set of universities. The rightmost column of Table 1-2

lists the participation rates at each of the nine universities. In all cases, with the exception of Penn

State University, participation rates represent percentages of the universities' entire senior class of

mechanical engineers. At Penn State, engineering seniors have the option to complete interdisciplinary

capstone projects hosted in neighboring engineering departments, and approximately half choose to do

so; thus, the participation rate for Penn State reflects those mechanical engineering seniors completing

their capstone project in the mechanical engineering department.

Notably, this study's sampling approach produced a set of survey participants who were all near

the completion of their degree program and, based on self-reported graduation status information, were

capable of satisfactorily completing coursework requirements for an accredited engineering degree.

Participants' occupational expectations therefore reflect those of individuals able to complete academic

work in engineering, and, thus, do not reflect those of students who began a course of study in

engineering but voluntarily or involuntarily departed.

1.3.5 Analysis

Two individuals, an author of this study and a research assistant, independently carried out

data entry from the paper survey forms and reconciled results to ensure an accurate final dataset. The

data were then imported into Stata v.15 statistics software for analysis. Following tabulation of

summary and descriptive statistics, we conducted bivariate hypothesis tests for each of the hypotheses

listed in Table 1-1. The robustness of these results was assessed by carrying out the previously

described criterion validation checks and split-sample consistency checks.

Next, we constructed a unifying model of engineering students' expected occupational

outcomes that incorporated the combined set of theoretic independent variables. Here, we began with

a logistic regression (logit) model that employed a binary dependent variable (expectation to work in
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engineering: 0 = no; 1 = yes), and included the key theoretic independent variables from Table 1-1

along with demographic indicator independent variables. We estimated this model with and without

a set of survey control variables, which consisted of indicators for the different universities in the

sample, for subjects' graduation term, and for the period of survey deployment. We then estimated a

variant of the logit model that also included an independent variable for subject's student loan debt

status in order to assess the model's sensitivity to subjects' socioeconomic background. Finally, we

estimated a logit model that included subjects' salary expectations at their first full-time job as an

additional independent variable in order to assess the model's sensitivity to potential differences in

salary expectations associated with different occupational pursuits. For all model variants, we

estimated the models both with and without the set of survey control variables.

We next estimated a multinomial logistic regression (mlogit) model, employing the same

independent variables as in the logit models, in order to examine possible differences in key

independent variables' associations with different occupational outcome categories. The mlogit model

thus required the designation of a categorical dependent variable. Here, we employed a variable

consisting of five categories of expected occupational outcomes: 1) engineering; 2) project or product

management, technical consulting, or quantitative analysis; 3) management consulting, finance, or

venture capital; 4) non-engineering credentialed professions requiring a graduate degree (such as

medicine, law, and faculty roles); and, 5) all others. Survey responses corresponding with Outcomes 4

and 5 were categorized based on subjects' write-in responses about their expected first full-time

occupation: categorization in Outcome 4 was restricted to occupations with a formal entry criterion tied

to a specific advanced degree, while Outcome 5 consisted of all remaining survey responses that did

not fit the criteria of Outcomes 1 - 4 (e.g., "forest firefighter," "musician," "travel," "photographer,"

and "unsure," among many others).
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Underlying methodological requirements govern the validity of mlogit models based on the

specification of their dependent variables. Specifically, such models rest on an assumption of

independence of irrelevant alternatives (IIA), which requires that the outcome categories constituting

the categorical dependent variable be sufficiently independent from one another such that adding or

removing outcome options does not affect the outcome odds among the options that remain (Long &

Freese, 2006). Following construction and analysis of the mlogit models in this study, we conducted

Hausman tests in Stata v.15 to demonstrate that IIA assumption was upheld.

1.4 Results

1.4.1 Overview of dataset

Surveys conducted at the nine participating universities resulted in a sample of 1,061

students. Summary statistics for the occupational outcome variable and subject demographics

variables are presented in Table 1-3. A substantive majority of subjects expect to work as engineers

(70.5%); this percentage includes those who plan to attend graduate school before working but

expect their first full-time job to be in engineering. The next largest occupational outcome group, at

14.0%, consists of those expecting to work in project or product management, technical consulting,

or as quantitative analysts - a result congruent with recent literature suggesting a prevalence of these

occupations among engineering graduates in recent years (see: Chapter 3). The remaining occupation

categories each encompass substantively smaller percentages (5.2% or less).
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Table 1-3. Summary statistics

Percentage of
Variable Observations

Dependent variable: expected occupational outcome
Expects to work as an engineer 70.5

Expects to work in other field

Work in project or product management, 14.0
technical consulting, or quant. analysis

Work in management consulting, 3.9
finance, or venture capital

Work in a (non-engineering) credentialed 2.6
profession requiring a graduate degree

All other 5.2

Military service plans
Full-time military service directly after college2  1.8

Graduate school plans
Will attend graduate school directly after college3  21.7

Graduation term
Spring 2017 90.9
Summer 2017 2.0
Fall 2017 7.1

Gender
Female 23.1

Race
White 70.9
Asian 19.3
Hispanic or Latino/Latina 8.2
Black or African American 3.8
Other non-white 2.3

Student loan status
Will graduate with student loan debt4  38.9

Total observations (individuals in sample): 1,061

Notes:
1. Graduating seniors reported their expected first job after college or grad school.
2. Individuals serving full-time in the military immediately following college are not

counted among any of the other occupational outcomes above.
3. Individuals attending graduate school immediately following college are also

counted among the occupational outcomes above; these respondents were
asked to report their expected occupation immediately following graduate school

4. Individuals counted here report having $10,000 or more in student loan debt

1.4.2 Baseline theoretic relationships, validity, and consistency

Table 1-4 presents summary statistics for key independent variables, conditional upon

subjects' expectations to work in engineering or non-engineering occupations. The table also
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provides the results of bivariate hypothesis tests for each of the hypotheses listed in Table 1-1 and a

comparison of subjects' mean salary expectations between expected occupations.

Based on a Pearson chi-square test, we find support for Hypothesis 1: positive engineering

internship experiences are associated, on average, with expectation to work in engineering (p <0.001).

In support of Hypothesis 2, we find candidates' aversion to financial risk-taking to be significantly

associated with expectation to work in engineering (p < 0.001). In support of Hypothesis 3, we find

candidates' mathematics enjoyment to be significantly associated with expectation to work in

engineering (p < 0.001). In support of Hypothesis 4, we find that candidates expecting to work in

engineering are more likely to identify with one specific profession compared to those expecting

to work in non-engineering occupations (p < 0.001). In support of Hypothesis 5, we find candidates'

anticipation of promotion into leadership roles by age 25 to be associated with expectations to

work at non-engineering occupations (p < 0.001). In support of Hypothesis 6, we find satisfaction

with creative opportunities at engineering jobs to be associated with expectation to work in

engineering (p < 0.001). Finally, we conducted a t-test to assess the significance of the difference

in mean salary expectation between subjects in the two expected occupational outcome categories

and find a null result (two-tailed test): subjects expecting to work in engineering report

statistically similar salary expectations compared to those expecting to work in non-engineering

occupations.
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Table 1-4. Bivariate tests between key independent variables and expectation to work in engineering

Percentage by Expected Occupation Test
Independent Variable Engineering Non-Engineering Statistic'

Had positive engineering internship experience 75.9 63.8 13.50**

Averse to financial risk-taking 83.8 64.9 40.05***

Would enjoy working at a job involving advanced mathematics 61.0 44.2 21.50***

Identifies with a specific profession 59.5 39.6 30.19***

Anticipates promotion into formal leadership role by age 25 2 45.6 62.6 21.50***

Satisfied with creative opportunities at engineering jobs 2  54.3 40.3 14.57***

Mean and (SD) by Expected Occupation Test
Engineering Non-Engineering Statistic3

Salary expectation for first full-time job after college $69,664 $71,268 1.60
($12,192) ($16,041)

Notes:
1. Reported bivariate test statistics are Pearson chi-square statistics.
2. Dichotomized results are presented here for ease of comparison. Original data are from 7-pt scales: affirmative responses are taken as those above the scale

midpoint. The same statistical significance levels are achieved it raw scale results are tested using Mann-Whitney rank-sum tests for ordinal variables.
3. Test statistic is a t-statistic for significance of the difference in means (two-tailed test).

"-p < O.001; '*p < 0.01: * p < 0.05

Results of criterion validation checks are summarized in Table l-A2 in the chapter's

Appendix. Statistical tests indicate support for each of the posited validation criteria: aversion to

financial risk-taking is shown to be associated with student loan debt (p < 0.05); identification with a

specific profession is shown to be associated with categorized occupational expectations (p <0.05);

anticipation of promotion into a formal leadership role by age 25 is shown to be associated with

election to student fraternity/sorority leadership positions (p <0.01); satisfaction with creative

opportunities at engineering jobs is shown to be associated with positive engineering internship

experiences (p < 0.001); and, enjoyment in working at ajob involving advanced math is shown to be

associated with university of enrollment (p <0.001). These results provide confidence in the validity

of the survey's measures of the independent variables. Moreover, results from the chronological

split-sample consistency test, as reported in Table 1 -A3 in the Appendix, suggest robustness of the

survey measures across successive survey deployments. Here, each of the significant bivariate
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relationships reported in Table 1-4 is replicated in both the chronological first half of the sample and

in the second half; statistical significance is sustained at the p < 0.05 level or better for all

associations in both sample halves.

1.4.3 Binary outcomes model

Results from our estimation of logit models of students' expectations to work in engineering

are reported in Table 1-5. All models employ the same dichotomous dependent variable (expects to

work in engineering: 0 = no, 1= yes). The first of these models, Model 1, was estimated based upon the

six key independent variables listed Table 1-1, along with demographic indicator variables for gender

and race. Coefficients are reported as odds ratios: values greater than one indicate that an increase in

an independent variable's value corresponds with an increased likelihood of expected occupation

being engineering, while values less than one indicate that an that an increase in an independent

variable's value corresponds with a decrease in likelihood of expected occupation being engineering.

We observe the anticipated directionalities of odds for all key independent variables based on the

theoretic relationships replicated in Table 1-4. For instance, the odds ratio associated with enjoyment

in working at a job involving advanced math, 1.583, indicates that an increase in math enjoyment

from not enjoying to enjoying working at a job involving advanced math corresponds with a 58.3%

increase in the odds that a student will expect to work in engineering. As shown, statistical

significance at or better than p <0.01 is found for all six of the key independent variables.

Meanwhile, the odds ratio for the gender demographic variable, at 0.654, is also significant (p <

0.05), indicating that female gender corresponds with 34.6% lower odds of expecting to work in

engineering compared to male gender. The odds ratios for all other demographic variables were not

statistically significant.
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Next, in Model 2, we added control variables to the logit model for students' university, their

term of graduation, and the survey time period. In all cases, the odds ratios for these control variables

were statistically insignificant. Further, the odds ratios for the six key independent variables remain

similar and their significance levels are unchanged, suggesting adding these controls does not

appreciably change the associations between the key independent variables and the dependent

variable. However, adding the controls to the model resulted in loss of statistical significance for the

gender demographic variable's odds ratio, though its directionality and magnitude remain similar.

This loss of significance suggests that gender differences in occupational expectations, in our present

sample size, are not robust across the survey settings we controlled for, though the directionality of

odds remain consistent with prior studies. Meanwhile, increases in the likelihood ratio chi-square

statistic and pseudo R-square values from Model 1 to Model 2 suggests that inclusion of the control

variables improves overall model fit.

In Models 3 and 4, we added an indicator variable for student loan debt. First, in Model 3, we

exclude the university, graduation term, and survey period control variables; then, in Model 4 we add

these controls. In the cases of both Models 3 and 4, we observe that the odds ratio of the student loan

debt indicator is insignificant, and that there are no appreciable changes in the odds ratios or

significance levels of the key independent variables compared to Models 1 or 2. However, based on a

comparison between Model 2's and Model 4's likelihood ratio chi-square statistic and pseudo R-

square values, we conclude that adding the loan debt indicator modestly improves overall model fit.

While the relationships between the key independent variables and the dependent variable do not

appear to be sensitive to the inclusion of the student loan debt variable, we retain it due to its

theoretical relevance as proxy for socioeconomic status, which has been shown, in past studies, to

relate to career choice (see: Section 1.2.2).
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Table 1-5. Logit models for engineering graduates' occupational outcomes

Dependent variable: expects to work in engineering (binary) Odds Ratios

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Independent variables

Had positive engineering internship experience 2.180*** 2.076*** 2.210*** 2.102*** 2.252*** 2.123***
(0.410) (0.400) (0.419) (0.408) (0.448) (0.432)

Averse to financial risk-taking 2.524*** 2.511*** 2.257*" 2.515*** 2.507*** 2.511***
(0.489) (0.493) (0.492) (0.496) (0.508) (0.516)

Would enjoy working at a job involving advanced math 1.549*** 1.539*** 1.555'** 1.543*** 1.546*** 1.531***
(0.153) (0.155) (0.154) (0.156) (0.159) (0.161)

Identifies with a specific profession 1.483*** 1.473*** 1.458*** 1.447*** 1.438*** 1.432*"*
(0.136) (0.138) (0.136) (0.137) (0.139) (0.141)

Anticipates promotion into formal leadership role by age 25 0.745*** 0.742*** 0.743*** 0.740*** 0.745*** 0.736***
(0.050) (0.051) (0.050) (0.051) (0.053) (0.053)

Satisfied with creative opportunities at engineering jobs 1.211 ** 1.202** 1.225** 1.215** 1.230** 1.218**
(0.082) (0.083) (0.084) (0.084) (0.086) (0.087)

Female 0.654* 0.732 0.692 0.774 0.681 0.765
(0.130) (0.153) (0.139) (0.163) (0.142) (0.169)

Asian 0.954 1.054 0.987 1.088 0.966 1.063
(0.202) (0.234) (0.212) (0.245) (0.219) (0.253)

Black 1.228 1.429 1.158 1.360 1.210 1.425
(0.552) (0.658) (0.521) (0.626) (0.578) (0.702)

Hispanic 1.410 1.553 1.380 1.524 1.616 1.789
(0.455) (0.518) (0.447) (0.510) (0.554) (0.632)

Other non-white 2.372 2.257 2.321 2.234 2.965 2.653
(1.445) (1.391) (1.436) (1.410) (2.059) (1.860)

Will graduate with student loan debt 1.125 1.125 1.129 1.129
(0.102) (0.106) (0.105) (0.111)

Log salary expectation at first full-time job 0.717 0.880
(0.342) (0.437)

University dummies no yes no yes no yes

Graduation term dummies no yes no yes no yes

Survey period dummies no yes no yes no yes

Constant 0.263* 0.242* 0.207** 0.185** 8.412 0.840
(0.144) (0.143) (0.119) (0.115) (44.308) (4.589)

LR chi-square statistic 130.12*** 141.36*** 132.84*** 143.38*** 126.02*** 137.29***
pseudo RP 0.129 0.134 0.132 0.143 0.134 0.146
Total observations 913 913 909 909 860 860
Notes:

All models are logit models; standard errors are in parenthesis.
Observation counts listed for each model are less than the study's full sample due to some subjects' voluntary omission of some survey questions.
Control variables (university, graduation term, and survey period dummies) are included when indicated; in all cases they are insignificant.
*"p < 0.001; "p < 0.01; * p <0.05 (two-tailed tests).

Finally, in models 5 and 6, we add an independent variable for the log of students' salary

expectations at their first full time job. Again, we introduce this variable to model variants that both

exclude (Model 5) and include (Model 6) the control variables for university, graduation term, and

survey period. In the cases of both Models 5 and 6, the salary expectation variable's odds ratio is
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statistically significant, suggesting that students who expect to work in engineering and students who

expect to work outside of engineering anticipate earning similar salaries at their first full-time job.

Further, in both Models 5 and 6, the odds ratios and significance levels of the key independent

variables are not appreciably different than any of the earlier model variants, suggesting that the

relationships between these key variables and the dependent variable are not notably sensitive to the

inclusion of the salary expectation in the model. Meanwhile, Model 6's likelihood ratio chi-square

statistic and pseudo R-square values remain similar to Model 4's, though the likelihood ratio chi-

square statistics decreases slightly and the pseudo R-square value rises slightly upon the inclusion of

the salary expectation variable. We retain the salary expectation variable due to its theoretic relevance

in relation to engineering students' occupational pursuits (see: Section 1.2.2).

We establish Model 6 from Table 1-5 as our benchmark model of binary occupational

expectations (e.g., engineering or non-engineering) for engineering students. Factors found to be

significant in this multivariate logit model are the same as those that were significant in bivariate

tests: positive engineering internship experiences, aversion to financial risk-taking, enjoyment of

working at a job involving advanced math, identification with one specific profession, anticipating

promotion into a formal leadership role by age 25, and satisfaction with creative opportunities at

engineering jobs.

1.4.4 Multinomial outcomes model

We next constructed mlogit models based upon the independent variable sets employed in the

logit models. We tested two model configurations, as presented in Table 1-6: one without the salary

expectation variable included, and the other with it included (denoted as Models 1 and 2 in Table 1-6,

respectively) - both of which otherwise include identical independent variables sets as those in logit

Model 6 from Table 1-5. We estimated these models with and without the salary variable to assess
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whether salary expectation's association with occupational expectations might differ across

categorical sub-occupations in a manner that was not detectable in our binary (logit) models. The

dependent variable in the mlogit models is a 5-category expected occupational outcome variable, with

the base category set as "engineering," and the remaining categories as labeled in Table 1-6. Both

mlogit Models 1 and 2 comply with the central mlogit modeling assumption - independence of

irrelevant alternatives - as verified by Hausman tests in Stata v.15. In these tests, we found we could

not reject the Hausman null hypothesis that outcomes are independent of other alternatives (p < 0.9),

thus indicating support for the pertinent modeling assumption. Further, the odds ratios reported in Table

1-6 reflect odds relative to the base outcome. Ratios greater than one indicate that an increase in an

independent variable's value corresponds with an increased likelihood of the associated outcome relative

to engineering; the opposite is true for ratios less than one. For instance, in Model 1, the odds ratio for

"averse to financial risk taking" is 0.229 for Outcome 3, suggesting that a change from risk-seeking to

risk-averse corresponds with a 77.1% decrease in odds that a student will expect to work at Outcome 3

(e.g., management consulting, finance, or venture capital) relative to expecting to work in engineering.

The models summarized in Table 1-6 show differences in statistical significance and odds

ratios of independent variables depending on the outcome category of the dependent variable. These

results suggest that different factors are associated with different occupational outcomes among

engineering graduates. We also note that, unlike in any cases of the binary outcome models, salary

expectation is shown to be significant for three of the outcome categories in Model 2, and that the

addition of the salary expectation variable produces changes in the significance levels of other

variables. Moreover, Model 2 exhibits improved model fit compared to Model 1, based on increases

in likelihood ratio chi-square statistics and pseudo R-square values between Models 1 and 2,

suggesting appropriateness of including the salary expectation variable in the model. We thus deem

Model 2 the better fitting of the mlogit models.
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Dependent variable: multinomial expected occupational outcomes set Odds Ratios

Model 1 Model 2
Outcome 1 (Base Outcome): Engineering Outcome 2 Outcome 3 Outcome 4 Outcome 5 Outcome 2 Outcome 3 Outcome 4 Outcome 5

Project or product Mgmt. consultant; Other credentialed All other Project or product Mgmt. consultant; Other credentialed All other
mgmt.; technical finance; professions requiring mgmt.; technical finance; professions requiring

Independent variables consultant; analyst venture capital a graduate degree consultant; analyst venture capital a graduate degree

Had positive engineering Internship experience 0.663 0.221*** 0.528 0.318** 0.704 0.173*** 0.486 0.274**
(0.160) (0.089) (0.255) (0.111) (0.177) (0.077) (0.275) (0.105)

Averse to financial risk-taking 0.598* 0.229*** 0.471 0.215*** 0.601* 0.180*** 0.723 0.212***
(0.147) (0.096) (0.268) (0.073) (0.151) (0,084) (0.479) (0.080)

Would enjoy working at a job involving advanced mathematics 0.660** 0.642 0.922 0.692 0.667** 0.599* 0.839 0.700
(0.079) (0.147) (0.271) (0.132) (0.082) (0.151) (0.285) (0.145)

Identifies with a specific profession 0.687** 0.495** 1.981* 0.646* 0.715** 0.504 1.844 0.570**
(0.078) (0.108) (0.680) (0,114) (0.084) (0.118) (0.687) (0.109)

Anticipates promotion into formal leadership role by age 25 1.429*** 1.677** 0.499*** 1.288* 1.429*** 1.424* 0.433*** 1.423*
(0.120) (0.277) (0.084) (0.162) (0.125) (0.250) (0.089) (0.202)

Satisfaction with creative opportunities at engineering jobs 0.789** 0.876 1.007 0.852 0.785** 0.856 0.806 0.888
(0.065) (0.134) (0.186) (0.108) (0.066) (0.137) (0.166) (0.122)

Log of salary expectation for first full time job 0.831 27.990** 880.783*** 0.128*
(0.520) (34.708) (1381.623) (0.108)

Controls included Yes Yes Yes Yes Yes Yes Yes Yes

LR chi-square statistic 270.96*** 298.46***

pseudo R' 0.170 0.201
Total observations 925 874

Notes:
Models are multinomial logit models; standard errors are in parentheses.
Observation counts listed for each model are less than the study's full sample due to some subjects' voluntary omission of some survey questions.
Controls included consist of the survey control variables (university dummies, graduation term dummies, and survey period dummies), student loan debt indicator variable, and demographic variables employed in logit Model 6 from Table 1-5
***p < 0.001; **p < 0.01; * p < 0.05 (two-tailed tests).
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Table 1-7 presents a summary of the factors found to be significantly associated with each

occupational outcome category from mlogit Model 2. Results suggest that candidates expecting to

work in the most popular alternative outcome category (Outcome 2: those expecting to work as

project or product managers, technical consultants, or analysts) differ from candidates expecting to

work as engineers in several ways: the former are less likely to be averse to financial risks, less likely

to enjoy working at a job involving advanced mathematics, less likely to identify with a specific

profession, more likely to anticipate promotion into formal leadership roles by age 25, and less likely

to be satisfied with creative opportunities at engineering jobs. Results also imply that subjects in the

Outcome 2 category, on average, had similar internship experiences and expect to earn similar

salaries as those expecting to work as engineers.

Results from other outcome categories suggest other unique differences (relative to the

engineering) across various factors. For example, those expecting to work in Outcome 3 (management

consulting, finance, and venture capital) and Outcome 4 (other credentialed professions), on average,

expect to earn higher salaries than engineers at their first full-time job (mean salary expectations for

Outcomes 3 and 4 were $75,581 and $84,375, respectively), while those expecting to work in Outcome

5 ("all other") expect to earn lower salaries than engineers (mean salary expectation for Outcome 5 was

$65,870). Those expecting to work in Outcome 4 exhibit, on average, a similar strength of professional

identity as engineers - yet, in this case, such is presumably toward their alternate professional pursuit

(e.g., medicine, law, etc.). Further, those expecting to work in Outcomes 4 and 5 anticipate enjoying

working with advanced mathematics to a similar extent, on average, as engineers.

The mlogit model results highlight important areas of heterogeneity among those who leave

engineering, and call into question broad generalizations about engineering attrition - be they that

attrition is primarily driven by math aversion, or salary pursuits, or professional identities. Our
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results suggest that such generalizations may be true for certain sub-groups, but may be untrue, or

even opposite in effect, for others. The results suggest that a candidate-career matching perspective -

one that takes into account factors on both the candidate side and on the career side - is most

appropriate for understanding the occupational sorting of individuals in the engineering pipeline.

Table 1-7. Summary of multinomial analysis: factors associated with distinct occupational outcomes

Compared to engineering graduates expecting to work as engineers (Outcome 1): Percentage among
non-engineering

Those expecting to work in ... ... are outcomes

Outcome 2
Project or product management,
technical consulting or analysis

Outcome 3
Management consulting, finance,
venture capital

Outcome 4
Other credentialed professions requiring
a graduate degree (e.g., medicine, law)

Outcome 5
All other

- Less likely to be averse to financial risk-taking
- Less likely to enjoy working at a job involving advanced mathematics
- Less likely to identify with a specific profession
- More likely to anticipate promotion into formal leadership roles by age 25
- Less likely to be satisfied with creative opportunities at engineering jobs

- Less likely to have had a positive engineering internship experience
- Less likely to be averse to financial risk-taking
- Less likely to enjoy working at a job involving advanced mathematics
- Less likely to identify with a specific profession
- More likely to anticipate promotion into a formal leadership role by age 25
- On average, expecting a higher salary

- Less likely to anticipate promotion into a formal leadership role by age 25
- On average, expecting a higher salary

- Less likely to have had a positive engineering internship experience
- Less likely to be averse to financial risk-taking
- Less likely to identify with a specific profession
- More likely to anticipate promotion into a formal leadership role by age 25
- On average, expecting a lower salary

It is important to note the associational nature of these results: our data allows us to observe

characteristics of expected occupational sorting behavior, but it does not allow us to make causal

claims about the underlying sorting mechanisms. For example, we cannot claim whether candidates

specifically plan to work in Outcome 4 because it pays better, or whether they pursued these roles for

other reasons and then simply expressed their perception of market compensation rate on the survey.

The results do, however, shed light on candidate attributes and expectations, which could inform

employers on how to highlight job features in ways that counter existing perceptions among key

candidate groups.
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1.4.5 Limitations of results

In addition to limitations associated with the non-causal nature of the study's results, readers

should take other precautions when interpreting this study. First, we sampled from one specific

engineering degree field (mechanical engineering) in order to control for job market effects. We

caution that we cannot empirically verify that our results generalize to other fields in the engineering

pipeline, though we're aware of no theoretical reasons why results should not generalize across

fields. Future efforts to replicate these results in other degree fields would increase our confidence in

this generalizability.

We also made the tradeoff of using a highly constrained survey format in order to reach a

large sample and achieve a high participation rate. We took steps to establish validity and

consistency of our concise measures, both by piloting the study and by incorporating criterion

validity checks and split-sample consistency checks. We believe this tradeoff appropriate, despite our

inability to employ more formal robustness checks requiring additional survey questions and a longer

survey form, given this study's scope of replicating known variable relationships and its focus on

theoretical unification, rather than testing new theory formulations.

Finally we note that the multinomial occupational outcomes analysis in this study would

have benefited from an even larger sample. Some readers, no doubt, are curious about candidate

sorting patterns into a more granular set of occupational outcomes compared to the five broad

outcome categories we reported on - such as an outcomes set that includes specific categories

established for individual job types (e.g., "medical doctor," "project manager," etc.). Such an

analysis would have required a larger sample, as our present study was limited by sub-sample sizes

in each outcome category. Moreover, compliance with the IIA assumption suggests that, though the
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outcome categories we employed were somewhat broad, the categories are sufficiently independent

to allow for category-specific sorting trends to be discerned.

1.5 Discussion

This study highlights patterns of systemic occupational sorting among engineering graduates.

We find that senior year engineering students who plan to work at engineering jobs after college or

graduate school differ, on average, from their degree classmates who plan to work at other occupations

- yet, that this latter group comprises candidates with characteristics sought by engineering employers.

In a labor economy where various types of employers compete for talent from the engineering

pipeline (Carnevale et al., 2011; Langdon et al., 2011), and where engineering firms seek to diversify

their workforces (Johnson, 2017; Mohan, 2017; Olson, 2017), engineering recruiters have reason to

improve the present sorting system. Moreover, our results suggest that engineering educators inquire

more deeply about the education-careers transition: as students approach graduation, are they

sufficiently informed and best prepared to select initial occupations that will lead to satisfying, well-

fitting careers?

Though our results do not reveal the causal mechanisms underlying the observed sorting

behavior, existing theory links occupational preferences both to candidates' perceptions about

themselves and to their perceptions about occupational roles (Lent et al., 1994). Literature further

suggests that the extent to which candidates are accurately informed about roles relates to their

likelihood of achieving optimal occupational fit (Autor, 2001). As logically follows, those aiming to

improve candidate-career alignment in the engineering pipeline should work to enhance candidates'

informedness about roles and to rectify roles' incongruence with sought-for candidates' needs and

goals. Our results suggest several areas that employers and educators can strategically target in

efforts to improve this alignment.
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For example, in developing engineering position descriptions and recruitment approaches,

employers should expect that candidates' perceptions of a given job's mathematics demands, its

opportunities for early-career leadership, and its opportunities to exercise creativity will be salient in

shaping candidates' attraction to the job. We are not suggesting that a position description should

downplay mathematical demands if such demands truly exist; rather, we point to the danger of

exaggerating or laundry-listing mathematical obligations in ways that do not aptly reflect the role,

given known issues of candidate under-confidence in math (net of actual ability) (Correll, 2001). Our

findings, meanwhile, suggest employers should consider honing recruitment messaging to emphasize

leadership opportunities and growth trajectories accessible from entry-level engineering positions -

especially in cases where engineering employers desire candidates with leadership confidence and

abilities (Hartmann, et al., 2016). Under present conditions, results indicate that the engineering

graduates expecting to exercise leadership early in their careers are less likely to plan to work in

engineering. Further, our results suggest little downside to a strategy of enhancing and promoting

creative aspects of engineering roles to increase the roles' attractiveness. We find that those pursuing

certain non-engineering paths (e.g., project or product management, technical consulting, or analysis)

report, on average, significantly lower satisfaction with perceived opportunities for creativity in

engineering jobs compared to those with engineering occupational expectations, yet none of the

groups expecting to work outside of engineering reported significantly higher satisfaction with

creativity in engineering jobs compared to those with engineering occupational expectations. In other

words, results suggest that boosting students' perceptions of creative opportunities in engineering

should only increase the appeal of the field among students.

Our findings convey nuanced implications about compensation strategies for recruiting

engineering graduates. The multinomial outcomes analysis (e.g., Table 1-6) finds higher
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compensation expectations, on average, among those pursuing certain non-engineering roles (e.g.,

those pursuing management consulting, finance, venture capital, and other credentialed professions,

who constitute, in aggregate, 6.5% of the study's overall sample). Yet, our findings suggest that other

job characteristics, such as mathematics demands, leadership opportunities, and creative opportunities,

are more salient factors than salary among candidates in the largest of the non-engineering outcome

groups (e.g., those pursuing project or product management, technical consulting or quantitative

analysis, who constitute, in aggregate, 14.0% of the overall sample). Such candidates do not expect to

earn significantly different salaries, on average, than engineers. Results also indicate that candidates'

financial risk orientation is associated with expected occupational outcome. Commensurate with prior

literature, we find that candidates with a financial risk-seeking orientation are more likely to expect to

work at a non-engineering occupation (Saks & Shore, 2005; Caner & Okten, 2009) - and, among

candidates expecting to work in product management, technical consulting, analysis, management

consulting, finance, or venture capital (who constitute, in aggregate, 17.9% of the overall sample),

individuals also possess higher early-career leadership role expectations, on average. Results thus

suggest that employers aiming to recruit candidates possessing leadership confidence should consider

including financial incentives beyond base salary, such as bonuses tied to success measures, to boost

jobs' attractiveness to candidates with financial risk-seeking orientations.

Educators are also well positioned to influence engineering graduates' career paths. Given

the strong association we and others (Atman et al, 2010; Zhao & Linden, 2011; Malcom & Feder,

2016) find between internship experiences and engineering occupational outcomes, universities'

efforts to promote internship or co-op experiences to students - including programs that integrate

industry co-ops into degree tracks - could influence students' intentions to work in engineering. Our

results also reinforce past findings relating engineering students' strength of professional identity
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with intentions to work in engineering (Stevens et al., 2008; Matusovich, et al. 2010; Cech et al.,

2011; Eliot & Turns, 2011) - here, too, educators can make an impact, as literature highlights that

faculty interactions play a key role in helping students develop their professional identities

(Lichtenstein et al., 2009, Amelink & Creamer, 2010).

Our findings suggest that educational approaches aimed at boosting students' confidence in

mathematics could help avert the loss of high-potential but under-confident candidates from the

pipeline. Similar to past studies that report an association between female gender and math

confidence-related factors (Correll, 2001, Ellis et al., 2016), we also find that females in our sample

were less likely to expect to enjoy ajob involving advanced math compared to males (p <0.05, based

on a bivariate Pearson chi-square test). While we did not directly measure mathematics ability in this

study, we note past results demonstrating that differences, on average, in women's math self-

assessments compared to men's do not correspond significantly with actual mathematics performance

differences; rather, women appear to under-assess themselves, net of actual performance (Correll,

2001). Both past results and ours suggest that educators' continued efforts to close this math

confidence gap are well founded and can contribute to improving gender diversity in the engineering

workforce.

Finally, we call attention to the gradient of engineering-relatedness among the alternate

career pursuits of engineering graduates. Our findings expose a question of results interpretation that

academia and industry must reckon with: what constitutes a graduate's "departure" from engineering

in an era when substantive numbers of ostensible departures lead to roles closely related to (or

complimentary with) engineering roles? Here we refer to results indicating that 14% of subjects in

our sample expect their first full-time job to be in areas such as product or project management,

technical consulting, or quantitative analysis (e.g., Outcome 2) - roles that often involve frequent
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collaboration with engineers (see: Chapter 3). Those concerned with interpreting the health of the

engineering pipeline should acknowledge the increasing prevalence of these roles. For instance, the

leading professional society of Project Managers experienced a quadrupling of its membership

between 1999 and 2005 (DiVincenzo, 2006)); tech giant Google, meanwhile, recruits candidates for

its "associate product manager" positions directly out of college (Levy, 2011). It is beyond the scope

of this paper to determine whether trends of graduates' occupational outcomes in Option 2 should

disappoint or reassure engineering employers - we surmise that the answer likely depends upon the

employer, as some employers may recruit college seniors for both Outcome 1 and Outcome 2 roles in

parallel, while others may consider individual-contributor engineering roles (e.g., Outcome 1) as the

preferred entry point into their firms' technical career ladders. Regardless of particular firms' tactics,

this study's results shed light on the average characteristics and expectations of graduates in the two

outcome groups, assisting firms in their formulation of recruitment and marketing approaches to

shape candidates' expectations about roles. We also note that even such firms wishing to recruit for

both Outcome 1 and Outcome 2 positions, yet who seek to enhance diversity across all of their

positions, may still find it prudent to consider strategies for boosting the attractiveness of

traditionally categorized engineering positions in order to diversify cohorts at those positions.

1.6 Future Work and Conclusions

Beyond future research to further assess validity and generalizability of these findings (as

discussed in Limitations of results), this study's results can also be extended through research

designed to identify causal mechanisms underlying the occupational sorting of engineering

graduates. In the present study, supply-side and demand-side candidate-occupation matching effects

are likely comingled: subjects reported their expected occupational outcomes, which presumably

reflect the combined and interrelated effects of their own preferences, their sense of employers'
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likelihood of hiring them for certain roles, and their unverified perceptions of the characteristics of

particular types of jobs. Follow-on experimental work could be designed to isolate candidates'

preferences for specific job attributes, or employers' preferences for specific candidate

characteristics. These latter types of measurements could be achieved by research designs in which

experimental subjects rate randomized profiles (e.g., candidates rate profiles of jobs and employers

rate profiles of candidates) in order to isolate factors causally tied to preference effects. Further,

follow-on research employing controlled trials could be used to examine the efficacy of new

recruitment approaches tailored toward attracting candidates with sought-after characteristics.

Employers and researchers could partner together in order to test whether the typical candidate

sorting trends revealed in this study could be altered by specific changes in recruitment approaches

for actual open positions (e.g., a target candidate pool could be randomly split, and differing

recruitment materials or methods could be used upon "treatment" and "control" groups). Stated

broadly, this present study's utility could be bolstered by follow-on research that identifies

pragmatic, actionable means for improving candidate-career matching.

We conclude by recognizing that a more holistic examination of the college-careers interface

- one that not only accounts for differences among engineering graduates, but also considers the

variation in occupational opportunities they pursue - enhances our understanding of the factors

underlying engineering graduates' occupational intentions. Though all subjects in this study were

near completion of accredited engineering degree programs in the same field, different types of

candidates within our sample tended toward different types of occupations. At least five candidate

archetypes emerged from our empirical analysis. The majority-type encompassed those intending to

work in engineering (70.5% of the sample), and consisted of individuals who, all else equal, were

more likely to have had a positive engineering internship experience, more likely to be risk averse,
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more likely to enjoy working with math, more likely to have a strong professional identity, less likely

to expect to take on an early-career leadership role, and more likely to be satisfied with creative

opportunities in engineering work. The other four types (encompassing the remainder of the sample)

differed in marked ways from those intending to work as engineers - and some such differences are

likely desirable to certain engineering employers. The default candidate-career sorting pattern

revealed in this study can serve as a comparative baseline to which the outcomes of revised

recruitment, counseling, and job design initiatives - those aimed at better matching candidates with

careers - can be compared.
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Chapter Appendix

Table 1-Al. Survey questions

Question for Dependent Variable

Expected occupational outcome

Which one of the following represents how you will most likely
begin your career journey after undergraduate graduation?
(please check only one)

[Work as an engineer]
[Work in product management, project management, technical consulting, or quantitative analysis]
[Work in management consulting, finance, or venture capital]
[Work other: ]
[Grad school, then work as an engineer]
[Grad school, then work in product management, project management, technical consulting, or quantitative analysis]
[Grad school, then work in management consulting, finance,or venture capital]
[Grad school, then pursue a career in academia]
[Grad school, then other: _

[Other: ]

Questions for Independent Variables

Had positive or negative engineering internship experience(s)
Have you ever worked at an engineering internship or co-op?
(either at a company or at a government/non-profit organization; this question does not refer to university labs)

[Yes] [No]

If yes, please check one or both of the following:
[At least one internship/co-op was a positive experience]
[At least one internship/co-op was a negative experience]

Averse to financial risk-taking

If you had to choose between either of the following compensation schemes, which appeals more to you?
(please check only one)

[Guarantee of a consistent upper-middle class salary, but with no chance of additional large monetary payouts]
[A chance for large non-salary monetary payouts, but with high uncertainty in your annual salary and/or job security]

Would enjoy working at a job involving advanced mathematics

Which of the following better describes your relationship with mathematics?
(please check only one; assume "advanced mathematics" is within the bounds of your major's curriculum)

[A job that regularly requires use of advanced mathematics concepts would be enjoyable for me]
[A job that regularly requires use of advanced math would not be enjoyable for me]
[I'm unsure]

Identifies with a specific profession

When you envison your ideal career, is it based upon a specific profession?
(e.g., doctor, engineer, lawyer, consultant, artist, etc.)

[Yes] [No] [Unsure/can't envision ideal career]

Anticipates promotion into formal leadership role by age 25
How likely is it that you will be appointed to a formal leadership position early in your career? (e.g., by age 25)
Please circle the appropriate number on the scale:

[7-pt scale: very unlikely, unsure, very likely]

Satisfied with creative opportunities at engineering jobs
How satisfied are you with the availability of job opportunities that allow graduates to engage in creative design work
in engineering jobs after college? Please circle the appropriate number on the scale:

[7-pt scale: entirely unsatisfied, unsure, entirely satisfied]
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Table 1-Al. Survey questions [Continued]

Questions for Independent Variables [continued]

Gender
What is your gender?

[Female] [Male] [ ]

Race
How do you identify yourself by race and/or ethnic origin?

[American Indian or Alaska Native] [Asian (Incl. Indian subcontinent)] [Black or African American]
[Hispanic or Latino/Latina] [Native Hawaiian or Pacific Islander] [White] [ _

Student loan debt status
Please indicate true or false for the following statement:
Following undergraduate graduation, I will personally owe $10,000 or more in student loan debt that I'll need to repay.

[True] [False] [Unsure]

Varsity athletics participation status

Have you participated in a collegiate varsity athletics program?

[Yes] [No]
If "Yes," how many seasons wil you have participated in before graduating?

[ _ _

Greek life participation status
As an undergraduate, were you a member of a fraternity or sorority?

[Yes] [No]
If "Yes," did you hold an elected leadership position within the fraternity or sorority?

[Yes] [No]

Undergraduate major

Are you a Mechanical Engineering student? (either by degree major or by home department)

[Yes] [No]

If "No," then what is your home department?

[ _

Degree completion date/status
When do you expect to complete your bachelor's degree?
Please indicate the month and year you will earn your degree:

[ Month: ] [ Year: ]

Salary expectation at first full-time job after college or graduate school
At whatever point in life you take your first full-time job after college or graduate school,
what starting salary do you expect to earn? (in $/year in today's dollars)

[ _
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Table 1-A2. Results of criterion validation checks for key independent variables

Test
Independent Variable Percentage by Subgroup Statistic

Has student
loan debt Otherwise

Averse to financial risk-taking 82.6 77.0 4.60*

Provides categorized
occupational expectations

2  Otherwise

Identifies with a specific profession 55.7 38.2 6.45*

Has held elected
leadership position 3 Otherwise

Anticipates promotion into formal leadership role by age 254 61.6 48.7 7.9"

Had positive engineering
internship experience Otherwise

Satisfied with creative opportunities at engineering jobs 4  56.0 38.5 25.27"

Across the sample's 9 universities:
Mean and (SD) of university clusters

5

Would enjoy working at a job involving advanced mathematics 54.8 29.21"'

(9.8)

Notes:
1. Reported test statistics are Pearson chi-square statistics from tests of independence of variables across subgroups.
2 Uncategorized occupational plans are those associated with "unsure" and 'all other' oocupation responses.
3 Elected leadership positions are in fraternity/sorority student living groups.
4 Dichotomized results are presented here for ease of comparison. Original data are from 7-pt scales affirmative responses are taken as those above the scale

midpoint The same statistical signiticance levels are achieved if raw scale results are tested using Mann-Whitney rank-sum tests for ordinal variables.
5 Comparative results across universities are redacted per research partnering agreement

"p < 0.001; "p < 0.01;' p <0.05

Table 1-A3. Results of chronological split-sample consistency checks

Chronological First Half of Sample' Chronological Second Half of Sample'

% by Occupational Outcome Test % by Occupational Outcome Test
Independent Variable Engineering Non-Eng. Statistic2 Engineering Non-Eng. Statistic2

Had a least one internship or co-op that was a positive experience 79.0 64.8 10.03" 72.9 62.7 4.47*

Averse to financial risk-taking 83.8 69.0 13.00" 83.8 60.5 28.87***

Would enjoy working at a job involving advanced mathematics 60.7 43.4 11.58** 61.3 45.1 9.88"

Identifies with a specific profession 59.5 40.2 14.55" 59.5 39.0 15.67"

Anticipates promotion into formal leadership role by age 253 46.3 61.5 8.90" 36.4 55.0 12.77"*

Satisfied with creative opportunities at engineering jobs3  57.0 42.2 8.37" 61.7 48.3 6.53*

Notes,
1. Chronological sample halves consisting of n=531 and n=530 observations were formed based on the order of sample collection.
2. Reported test statistics are Pearson chi-square statistics.
3. Dichotomized results are presented here for ease of comparison. Original data are from 7-pt scales affirmative responses are taken as those above the scale midpoint. The same

statistical significance levels are achieved if raw scale results are tested using Mann-Wtatney rank-sun tests for ordinal variables.
'"p < 0.001, "p < 0.01: ' p < 0.05
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2. Celebrating differences: A conjoint analysis of job preferences
among engineering students

Numerous studies have examined how variance in career plans among diverse students shapes

the composition of the U.S. engineering workforce. Research activity in this area persists as the

engineering profession continues to confront factors hindering its demographic diversity (Correll,

2004; Amelink & Creamer, 2010; Cech et al., 2011; McGee & Martin, 2011; Hatmaker, 2013; Seron

et al., 2016) and as employers continue to call for improvement in the development and retention of

engineering candidates with strong interpersonal and leadership skills (Salzman & Lynn, 2010;

Cappelli, 2015; Hartmann et al., 2016). A subset of the relevant literature has analyzed students'

occupational plans in relation to generalized demand-side phenomena, such as systemic biases in

employers' candidate preferences (see, e.g., Reskin, 1993; Anker, 1997; Gray et al., 2007) and

differences in labor demand between engineering and alternative fields for certain skill profiles among

candidates (see, e.g., Shu, 2016; C616rier & Vallde, 2017; Deming, 2017). Meanwhile, other

contemporary studies have focused on supply-side processes - students' development of career-

related preferences, beliefs, and goals - in explaining differences in students' intentions to work in

engineering (see, e.g., Correll, 2004; Stevens et al., 2008; Lichtenstein et al., 2009; Cech et al., 2011;

Seron et al., 2016). The existing literature builds compelling cases that both generalized demand-side

phenomena and individual-level supply-side processes can explain variance in career plans of students

in the engineering pipeline.

Yet, engineering work, itself, varies considerably (Perlow & Bailyn, 1997; Ranson, 2003;

Goold, 2012; Brunhaver et al., 2013), and it is unlikely that most candidates are accurately and

comprehensively informed about differences in work attributes across possible roles (see: Manning,

2011, p. 976 - 978). Such differences may include proportions of time allocated to individualistic



technical work versus collaborative or coordinative work, the mix of skills employed, and the types of

career advancement trajectories available, among many others (Perlow & Bailyn, 1997; Ranson, 2003;

Brunhaver et al., 2013). Nonetheless, extant studies that have examined occupational intentions of

candidates in the engineering pipeline often make implicit assumptions about uniformity of

engineering work and about consistency of candidates' conceptions of engineering jobs (Brunhaver et

al., 2013). Herein, we introduce a research design that avoids such assumptions in order to examine

whether differences in students' awareness of specific engineering job attributes can explain a portion

of the variance in students' job preferences.

In this study, we analyze data from a conjoint survey experiment to assess the effects of job

attribute differences on undergraduate engineering seniors' attraction to jobs, and to test for

interaction effects between subject characteristics and job attributes upon job attraction. We sampled

senior year engineering students from a diverse set of U.S. engineering schools for the survey

experiment, first collecting "pre-treatment" data on key subject-specific variables shown in prior

studies to be associated with engineering students' career intentions; such data served for purposes of

experimental control and interaction analyses. We then engaged subjects in the conjoint survey

experiment itself, which involved subjects' assignment of preference ratings to a series of randomly

manipulated job profiles. The random control of this experimental design allows us to draw causal

inferences about the role that job attributes play in shaping candidates' preferences for jobs - here, the

estimands of interest are average marginal component effects (AMCEs) (Hainmueller et al., 2014):

specific job attribute manipulations' effects upon subjects' attraction to jobs. We test several such

manipulations corresponding with realistic differences in engineering work documented in literature

and reviewed in this chapter's Section 2.2 (Bringing the work in: Key dimensions of engineeringjobs).

Meanwhile, the pre-treatment data measured for each experimental subject corresponds with
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explanatory variables from a recently developed and empirically validated supply-side model of

engineering students' career intentions, as documented in Chapter 1. This unified model aggregates

sets of factors from previous works resting on supply-side explanations of variance in students'

occupational intentions. Thus, the pre-treatment data about experimental subjects, combined with our

experimental manipulation of job attributes, allows us to bring both subject-specific characteristics

and job attributes into an integrated analysis of job preference.

Recent advances in conjoint survey experimental methodology provided the framework for

this study's research design. Conjoint surveys have long been used in product development and

marketing research to assess subjects' preferences toward combinations of product attributes (for

reviews, see: Green et al., 2001; Rao, 2014). However, recent work by Hainmueller et al. (2014)

produced a set of proofs, assumptions, and verification procedures that allow conjoint methods to be

used for causal inference of factor effects shaping such preferences. This new approach has expanded

conjoint methods' applicability in social sciences research, beginning with multi-attribute preference

analyses in political science contexts (see, e.g., Hainmueller & Hopkins, 2015; Carnes & Lupu, 2016).

Herein, we describe our adoption of these methods to assess engineering students' job preferences

based on underlying job attributes.

As its central question, this study asks whether additional variance in engineering students'

job preferences is explained by the effects of interactions between subject-specific characteristics and

engineering job attributes - variance beyond that which is explained by the sum of such factors'

independent marginal effects. In short, we inquire whether certain subsets of engineering students tend

to react differently than others (in their expressions of job preference) when informed about particular

realistic attributes composing given engineering positions. We investigate this question using the job

preference data collected in the study's conjoint survey experiment fitted to statistical models with
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interaction terms. The subsets of engineering students whose job preferences we examine through

interaction analyses are those with distinct characteristics pertinent to existing supply-side

explanations of students' occupational interests - for instance, subsets with differences in strength of

professional identity, enjoyment in working with mathematics, leadership aspirations, and gender,

among others (see Section 2.1: Supply-side processes and occupational intentions of engineering

students). Beyond this study's primary inquiry into systemic differences in job preferences among key

student subsets, our research design also allows us to ascertain general trends in job attribute

preferences across the full sample. Knowledge of such trends can assist at a broad level in

strengthening engineering employers' recruitment and retention strategies.

This investigation advances the literature on processes shaping the composition of the

engineering workforce by examining how students' informedness of engineering job attributes

influences their career interests. Sufficiency of students' informedness about engineering work - and

homogeneity of students' conceptions of such work - have been taken as givens in much of the

existing literature on engineering students' career intentions (Brunhaver et al., 2013); this study,

meanwhile, examines the implications of such assumptions. If significant job preference interaction

effects exist between subject differences and realistic engineering job differences, then these

assumptions may mask important sources of variance in students' career intentions - especially in our

present era of expanding varieties of engineering work in industry (Chapter 3; see also: Williams,

2002). Meanwhile, despite substantive prior work, the quest to understand variance in engineering

students' occupational interests remains critical, as progress toward diversifying the engineering

workforce has been notably slow - for instance, the percentage of women among practicing engineers

in the U.S, across all disciplines of engineering, has yet to rise above 15%, (National Science Board

[NSB], 2018). Examinations of additional mechanisms underlying engineering students' occupational
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interests, such as that presented in this study, contribute to the knowledge base available to

policymakers, educators, and employers who work to design initiatives aimed at developing and

shaping the engineering workforce.

We begin the sections that follow with a review of prior literature informing our expectations

about engineering students' occupational intentions at the college-careers interface. We first review

the present state of supply-side explanations of students' occupational intentions, summarizing

subject-specific characteristics that we expect to be associated with increased likelihoods of

engineering career intentions among students. Next, we review key attributes of engineering work that

the literature describes as either varying within the profession, or toward which there are documented

trends of incongruence between societal perceptions and industry realities. Such attributes may

constitute key areas of inconsistency in students' conceptions of engineering work. For the various

attributes, we discuss our development of hypotheses reflecting how we expect subject-specific

characteristics will interact with subjects' informedness of job attributes to influence job preference

tendencies - hypotheses thus take the form of predictions about how certain subsets of students will

tend to exhibit different preferences for particular job attribute variants compared to other student

subsets. We then describe our research design and experimental results. We conclude by discussing

our results' implications for both future researchers examining the composition of the engineering

workforce, as well as for policymakers, educators, and employers aiming to influence career

intention-forming processes in the engineering pipeline, so as to enhance candidate-career fit and

increase diversity in the engineering workforce.

2.1 Supply-side processes and occupational intentions of engineering students

A recent wave of scholarship has examined processes underlying the formation of students'

professional interests in engineering, aiming to understand why certain subsets of students emerge as
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more likely than others to pursue engineering careers. Such supply-side-focused literature does not

claim that supply-side processes act alone or independent of demand-side processes in influencing

career outcomes; rather, this literature asserts that explanations limited to demand-side processes are

insufficient to fully explain the career path sorting phenomena observed among students (see: Correll,

2004, p. 94-96). Indeed, studies have established that labor demand conditions substantively influence

career intentions among students in the engineering pipeline (Ryoo & Rosen, 2004; Salzman & Lynn,

2010; Bardhan et al., 2013; Lynn et al., 2018), at times in systemically unequal ways across the

candidate pool (Anker, 1997; Gray et al., 2007; Shu, 2016; Cle6rier & Vallee, 2017). Scholars of

supply-side processes, however, are interested in how phenomena that act upon individuals - such as

social and educational experiences of students before they arrive at their first full-time job - can

explain a portion of the variance in students' career intentions, ceteris paribus.

Supply-side research has thus examined the role of social influences upon students' formation

of beliefs pertinent to their sense of career fit in engineering. In this area, literature has analyzed the

development of students' self-perception of their mathematics abilities, finding such ability beliefs to

be associated with career intentions in engineering (Nauta et al., 1998; Correll, 2001; Eris et al., 2010;

Litzler & Young, 2012), and finding that women are more likely to underestimate their math abilities

compared to men, even when scoring the same on math performance measures or receiving similar

grades in math classes (Correll, 2001; Ellis et al., 2016). Studies attribute this self-assessment bias to

gendered cultural beliefs about abilities (Hyde et al., 1990; Correll, 2001; Correll, 2004). Further,

research has found an association between perception of one's mathematics ability and anticipation of

enjoyment of jobs or tasks involving math (Goetz et al., 2008; Sitzmann et al., 2010). Prior research

thus leads us to expect that engineering students who anticipate enjoying an occupation involving the
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use of mathematics are more likely, on average, to intend to work in engineering after graduation

compared to their peers.

Additional literature has identified education-related social experiences tied to students'

development of professional identity as engineers, for instance: students' experiences being accepted,

respected, and engaged as participants in engineering project groups or class activities at school (Cech

et al., 2011; Seron et al., 2016, 2018), and students' receiving of guidance and encouragement toward

working in their field of study through interactions with mentors or faculty members (Lichtenstein et

al., 2009, Amelink & Creamer, 2010). Here, the literature finds systemic variance, such as in women

students' differing experiences with perceived fit and acceptance during engineering project or

activity participation compared to men's (Cech et al., 2011; Seron et al., 2016, 2018), and in

differences in engineering faculty-student interactions across university types (e.g., at technically-

focused compared to non-technically-focused universities) (Lichtenstein et al., 2009). Meanwhile, the

literature finds engineering students' likelihood of expecting to work in engineering after graduation

to be associated with their strength of professional identity (Stevens et al., 2008; Matusovich, et al.

2010; Cech et al., 2011; Eliot and Turns, 2011; Ayre et al., 2013; Hatmaker, 2013; Cech, 2015).

Scholars also find that engineering carries an occupational reputation at a societal level that

may influence students' conceptions of engineering careers, and in turn, their sense of career fit.

Researchers of engineering practice have long highlighted incongruence between engineering's

enduring reputation as an individualistic math- or science-centric occupation, and an industry reality

where engineering roles routinely involve coordinative, collaborative, and leadership elements

(Bucciarelli & Kuhn, 1997; Salzman & Lynn, 2010; Trevelyan, 2010; American Society for

Engineering Education [ASEE], 2013; Hartmann et al., 2016) - and where entry-level roles frequently

serve as pathways to managerial positions (Biddle & Roberts, 1994; Perlow & Bailyn, 1997; Herkert,
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2001; Anft, 2013). Former National Academy of Engineering (NAE) president Charles Vest (2011)

has described this incongruence as engineering's "image problem," whereby "engineers [are]

perceived to be narrowly focused on technical details, rather than engaged with the social and human

dimensions of projects" (p. 9). Baranowski (2011) suggests that an under-emphasis on social elements

of engineering in engineering school may in part be responsible for engineering's difficulty in

shedding its "'old' brand" of technical individualism (p. 14-15). Relatedly, several studies critique the

engineering curriculum as insufficient in its demonstration of the integral social-technical components

of engineering work to students (Bucciarelli & Kuhn, 1997; Trevelyan, 2007, 2010; Sheppard et al.,

2009; ASEE, 2013). Researchers, moreover, have found that engineering students with stronger self-

assessed interpersonal or leadership skills are more likely than their peers to intend to leave

engineering at or soon after college graduation (Atman et al., 2010; Litchfield & Javernick-Will,

2016). This sorting behavior may relate, in part, to demand-side phenomena, such as prospects for

comparatively higher returns on social skills in other fields of employment (see: Deming, 2017), but

we also call attention to it here due to the literature's discussion of social propagation of skewed

reputational beliefs about engineering work. Based on the literature, we expect that engineering

students with comparatively high self-confidence in their leadership abilities are more likely, on

average, to intend to work in non-engineering fields following graduation, while those with lower

leadership self-confidence are more likely to persist from engineering school into engineering careers.

Economics literature, meanwhile, has examined family socioeconomic status as a factor

associated with students' financial risk-taking orientation, which, consequently, has been shown to

relate to the types of occupations students tend to pursue. Studies have found an association between

low family wealth and financial risk-aversion in students - and have identified engineering as a field

with comparatively low financial risk that risk-averse students are more likely to pursue compared to
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their peers (Saks & Shore, 2005; Caner & Okten, 2009). Thus, all else equal, the literature suggests

that financial risk-aversion constitutes a supply-side factor explaining variance in engineering

occupational intentions.

Studies also call attention to learning mechanisms and educational content that students may

experience during engineering school as factors associated with engineering career interests and

intentions. Here, literature has examined educational innovations employed in undergraduate courses

- such as active learning methods (Felder et al., 1998; Bernhold et al., 2007; Freeman et al., 2014) and

project-based learning approaches (Dym et al., 2005; Zhou et al., 2012; Atadero et al., 2015) - as well

as undergraduate interim work experiences such as co-ops or internships (Atman et al., 2010; Zhao &

Linden, 2011; Malcom & Feder, 2016). Researchers have found active and project-based learning

approaches to be associated with students' perception of opportunities to exercise creativity in

engineering work (Bernold et al., 2007; Zhou et al., 2012); and, in turn, studies have found an

association between perception of engineering's creative opportunities and students' persistence in

engineering degree programs (Bernold et al., 2007; Atwood & Pretz, 2016). Meanwhile, the literature

finds an association between engineering co-op or internship participation and an increase in students'

likelihood of pursuing engineering careers (Atman et al., 2010; Zhao & Linden, 2011; Malcom &

Feder, 2016). Much of the literature that examines educational experiences in relation to professional

intentions in engineering is associational, and thus does not identify the specific causal mechanisms

connecting these educational experiences to students' career intentions. Such experiences are

sometimes voluntary, meaning that students who were already interested in engineering careers could

have self-selected into the experiences. Nonetheless, we anticipate certain educational experience-

related factors to correlate with students' career intentions in engineering based on this prior work -

specifically, we expect students' perception of creative opportunities in engineering and students'
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participation in engineering co-ops or internships to be positively associated with students'

engineering career intentions. Since undergraduates' experiences can vary substantively across

engineering schools (Chubin et al., 2005; Litchtenstein et al., 2009; Amelink & Creamer, 2010), the

literature suggests the importance of measuring and controlling for such education-related factors, as

well as controlling for students' universities of enrollment, in studies examining variance in career

intentions among students.

Based on the literature examining supply-side influences on engineering students' career

intentions, we conducted an analysis precursory to this chapter's investigation on conjoint job

preferences; therein, we constructed and validated a unifying supply-side model of engineering

students' occupational intentions (see: Chapter 1). Our model centers upon six factors from the prior

literature whose expected relationships to students' career intentions were found to replicate in a

survey of U.S. senior year engineering students. The model's dependent variable is students' intention

to work in engineering as a first full-time occupation after college or graduate school. After

controlling for demographics and students' universities, we found the following six subject-specific

factors to be statistically significant and positively associated with the dependent variable in a

multivariate logistic regression: enjoyment of work involving advanced mathematics, identification

with a specific profession, anticipation of remaining an individual contributor through age 25 (e.g.,

anticipation of not taking on a formal leadership role by that age), aversion to financial risk-taking,

satisfaction with creative opportunities at engineering jobs, and having had a positive engineering

internship experience. We thus carry forward these six factors, as well as gender, into this study's

central investigation of interactions between subject characteristics and job attributes.
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2.2 Bringing the work in: Key dimensions of variance in engineering jobs

With origins dating to the mid-20th century, U.S. policy designed to strengthen the nation's

science and engineering pipelines has primarily taken a generalized approach - one aimed at

increasing student interest broadly across science and engineering fields (Hira, 2010; Teitelbaum,

2014). This generalized recruitment mindset continues in the 2 1st century, as is evident in key policy

guidance and enacted legislation, for instance: the National Science Board's Rising Above the

Gathering Storm report (Augustine, 2005), the America COMPETES Acts of 2007 and 2010 (Stine,

2009; Furman, 2012), and Engage to Excel, an executive branch report urging an overall increase in

the nation's production of science, technology, engineering, and math (STEM) degrees (President's

Council of Advisors on Science and Technology [PCAST], 2012). Policy in this area has provided

substantive funding for programs aiming to increase diversity in the STEM pipelines (Stine, 2009;

Furman, 2012). Among students in their pre-college years, interventions associated with this

generalized "STEM push" have been effective at boosting students' confidence in relevant academic

areas and at increasing their interest in pursuing degrees in STEM fields (Valla & Williams, 2012).

But the broad campaign to increase STEM interest has been criticized for conveying overly vague

career concepts to aspiring students (Cannady et al., 2014; Oleson et al., 2014), and STEM policy has

often lacked strategies to promote and assess the effectiveness of candidate-career matching or

candidates' career satisfaction at later stages in the pipeline (Hira, 2010; Xu, 2013; Teitelbaum, 2014).

Such policy programs' success measures have often rested on counts of STEM degrees awarded and

on measures of demographic diversification of degree cohorts, rather than on assessments of post-

college career-related outcomes (Xu, 2013). The engineering profession, moreover, has struggled to

convert underrepresented candidates' adolescent-age interests in the broad field of engineering into

engineering career outcomes at the end of college. For instance, among engineering degree-earners,
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women continue to be less likely than their male peers to work in engineering at or soon after

graduation (Frehill, 2012; Ayre, et al., 2013; Glass et al., 2013). Further, engineering students

possessing comparatively strong interpersonal skills - a group highly sought and found to be in short

supply by engineering employers (Salzman & Lynn, 2010; Cappelli, 2015) - are less likely to take an

engineering job at graduation compared to peers (Atman et al., 2010). While all workforce pipelines

should generally expect candidate attrition as individuals learn more about themselves and about their

fields (see: Lent et al., 1994; Ibarra, 1999), attrition at the college-career interface among engineering

students remains systemic, with certain candidate groups exhibiting a higher propensity to depart

engineering career paths than others. Given that engineering work can encompass a variety of job

formulations (Perlow & Bailyn, 1997; Ranson, 2003; Goold, 2012; Brunhaver et al., 2013), it is

challenging to understand which elements of engineering work constitute the most salient influences

upon candidate subsets' propensities to remain in or depart from the field; such an analysis becomes

especially difficult if one employs a broad and homogenized view of engineering work.

A growing literature has critiqued the generalized lens through which policymakers,

educators, and researchers have often viewed engineering occupations. In a foundational study in this

area, Perlow and Bailyn (1997) caution that ignoring the variety among engineering work amounts to

a "senseless submergence of difference" (p. 230). Based on observations of practicing engineers over

a three-year research program, these authors found that engineers "perform a wide range of

occupational activities" (p. 231). Moreover, these authors state, "the acceptance of monolithic

definitions of [engineering] work and career... serve to submerge existing and potentially valuable

differences among individuals and their roles and activities" (p. 231). Perlow's and Bailyn's (1997)

work documents how an engineering workforce that is markedly heterogeneous in its aggregate skills

and interests serves to cover a variety of industry roles - yet, how traditional engineering job titles and
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popularized role stereotypes hide this variety. Other more recent studies corroborate these

observations. Based on an examination of the occupations of engineering graduates from four

universities, Brunhaver et al. (2013) conclude: "many studies fail to address.. .the varying experiences

of early career engineering graduates employed in different engineering sub-occupations," and, "[our]

results showed several differences, specifically in graduates' perceptions of their work, current

positions, and identities" (p. 1). Goold (2012), similarly, found that "engineers' work is diverse,"

noting that engineers in her research sample occupy an array of roles composed of elements from

among: "process engineering; sales; engineering management; project management; people

management; design; risk analysis; pricing; lecturing; research; consultancy; and quality engineering"

(p.322). Other scholars more generally critique the literature's limited discussion on engineering

work's varied components and substantially interdisciplinary nature (Bucciarelli & Kuhn, 1997;

Bucciarelli, 2002; Trevelyan & Tilli, 2007; Trevelyan, 2010; Stevens et al., 2015); while, others, still,

call attention to the varieties of career progressions among engineers (Allen & Katz, 1995; Igbaria et

al., 1999; Tremblay et al., 2002; Ranson, 2003; Pons, 2015).

The literature on the variety of engineering work raises questions on whether engineering

students are informed of this variety. Labor economists have observed that imperfect information flow

in labor markets is prevalent, suggesting that candidates often lack pertinent knowledge about job

possibilities (Autor, 2001; Manning, 2011). According to Autor (200 1), "the labor market is replete

with imperfect and asymmetric information.. .workers searching for ajob are unlikely to be fully

informed about job characteristics" (p. 25) - a phenomenon he posited might be ameliorated by an

increase in job-related information conveyed via the internet; later studies, however, suggest that,

despite growth in information quantity located online, candidates likely remain under-informed due to

limitations in quality and comprehensiveness of such information (Manning, 2011). Further, research
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has shown that the comprehensiveness of job-related information obtained by candidates is a factor

associated with candidates' subsequent sense of fit toward their work outcomes (Saks & Ashforth,

1997; Saks, 2005). In a jobs landscape as complex and varied as that faced by engineering students,

we suspect that students differ from one another in their informedness about engineering jobs and in

their internalized conceptions of engineering work. We proceed by reviewing the literature on four

dimensions of engineering work found to vary across jobs or to be commonly misunderstood,

including: the use of mathematics in engineering roles, engineers' opportunities for growth into

leadership roles, mobility restrictions and commitment durations at engineering positions, and the

social components of engineers' work. This literature informs our construction of experimental job

attribute manipulations for the purposes of testing for the effects of job attribute variation upon

engineering students' attraction to jobs.

2.2.1 The use of mathematics in engineering roles

Engineering carries a reputation as a math-intensive profession (National Academy of

Engineering [NAE], 2008) - a public impression likely tied, in part, to the math-heavy curricula of

engineering schools (see: Winkelman, 2009). While engineering work certainly rests on principles of

mathematics and science, analyses of engineering practice show that individuals' engagement with

math - in terms of frequency and type of math employed - varies substantively across different

engineering roles (Kent & Noss, 2002; Alpers, 2010; Goold, 2012). The literature identifies a broad

distinction between specialist roles, requiring advanced expertise and frequent use of math, and

generalist roles, requiring a more conceptual-level mathematics aptitude, and in which practitioners'

math engagement is often limited to working with pre-established analysis software programs or

leveraging consultation from specialists (Kent & Noss, 2002; Alpers, 2010; van der Wal et al., 2017).

Research, meanwhile, reveals a sentiment among practitioners that mathematics experiences in
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engineering school do not accurately reflect how mathematics is often used in industry, with industry

contexts typically involving more support, tools, and collaboration compared to the way students are

required to solve math problems in classes (Alpers, 2010; van der Wal et al., 2017).

Engineering specialists whose work centers upon computation and analysis play a distinct role

in engineering projects (Kent and Noss, 2002; Alpers, 2010). Literature suggests such individuals

often constitute dedicated expertise groups within larger organizations or are employed in specialty

firms that provide an expert service (Kent & Noss, 2002; Alpers, 2010), for example, in areas such as

structural engineering (Gainsburg, 2006). Researchers describe a "designer-specialist interface" (Kent

& Noss, 2002, p. 3) in engineering project environments in reference to the interaction between

generalist design engineers and specialty analysts. While the two roles routinely collaborate, the

specialists have typically shown to be more individualistically involved in projects' advanced analysis

work. Kent and Noss (2002) suggest that the generalist and specialist role distinction is a pragmatic

aspect of engineering practice, where certain individuals necessarily focus on the bigger-picture

aspects of projects, while others are needed to dive into the more rigorous computational details of

particular supporting analyses.

Compared to the case of computational specialists, studies of other engineering practitioners

reveal that many use mathematics comparatively less frequently (Goold, 2012) or engage in analyses

as collaborators, rather than as dedicated experts (Alpers, 2010; Anderson et al., 2010). These types of

engineers report using less intense math in their jobs compared to in their time in engineering school

(Alpers, 2010; van der Wal et al., 2017).

Given the marked differences in mathematics usage across role types, engineering students'

informedness about whether or not a particular engineering job encompasses that of a computational

specialist could be a key factor influencing their attraction to the role. Yet, if uninformed of a particular
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role's specialist or generalist characterization, we suspect that students' perceptions about the role will

tend to skew toward beliefs of math-intensiveness, given engineering's general reputation. We suspect,

however, that becoming more informed of a given job's actual mathematics intensiveness will impact

different students' attraction to the job in different ways, depending on the students' internalized beliefs

about working with mathematics. The prospect of having to work with math has been shown to elicit

emotional responses in individuals (e.g., ranging from anticipated enjoyment to anxiety) contingent

upon such factors as prior academic performance and the development of math self-confidence (Goetz et

al., 2008; Sitzman et al., 2010; Goold, 2012). Based on the literature, we hypothesize that engineering

students' beliefs about their enjoyment of working with mathematics interacts with their informedness

about a given engineering job's mathematics intensity to influence their attraction to the job.

2.2.2 Engineers' opportunities for growth into leadership roles

The engineering profession has historically struggled to articulate the advancement and

growth opportunities that compose engineering careers. A substantial literature traces this struggle to

the challenge of codifying career paths that align with both the diverse goals of engineering

professionals and the organizational goals of host corporations (Goldner & Ritti, 1967; Layton, 1971;

Bailyn & Lynch, 1983; Shapira & Griffith, 1990; Watson & Meiksins, 1991; Biddle & Roberts, 1994;

Allen & Katz, 1995; Perlow & Bailyn, 1997; Igbarria et al., 1999). Conceptualizing how individuals'

professional identities as engineers endure or adapt during career advancement constitutes a central

element of this challenge. Literature suggests that notions of engineering and management as distinct

identities developed over the past century - inclusive of perceptions that one must depart engineering

in order to enter management, or that one must choose between engineering or management (Biddle &

Roberts, 1994; Perlow & Bailyn, 1997; Jemielniak, 2007; Trevelyan, 2007; Joseph et al., 2012). This

dialectic view of engineering and management dissociates these two realms of work from each other
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in a way that critics call misleading, given engineers' often-integral leadership or managerial job

duties (Trevelyan, 2007, 2010; Trevelyan & Tilli, 2007) and engineers' common advancement

trajectories from individual-contributor technical roles into technical management positions (Biddle

and Roberts, 1994; Badawy, 1995; Mael et al., 2001; Hodgson et al., 2011; Joseph et al., 2012).

Analyses suggest that such a binary view of the engineering-management distinction masks the

existence of myriad role variations, hybridizations, and differences in advancement paths among

engineers (Watson & Meiksins, 1991; Allen & Katz, 1995; Bailyn & Lynch, 1997; Treveylan, 2007;

Paton & Hodgson, 2016).

The literature identifies at least three means by which leadership or managerial job

components tend to manifest in engineering careers. First, studies describe common role transitions

whereby engineers make a distinct jump from individual-contributor engineering roles into

management positions - such transitions have been shown to lead to both people management

positions as well as to project or product management positions (see, e.g., Biddle & Roberts, 1994;

Badawy, 1995; Mael et al., 2001; Carbone & Gholston, 2004; Ebert, 2007; Hogdson et al., 2011;

Joseph et al., 2012). Secondly, a related area of scholarship discusses evidence of career progressions

marked by engineers' roles evolving into technical-managerial hybrid roles centered on project

coordination in individuals' technical areas of expertise (see, e.g., Leonard-Barton, 1992; Allen &

Katz, 1995; Causer & Jones, 1996; Petroni, 2000; Paton & Hodgson, 2016). In these cases, as Paton

and Hodgson (2016) explain, "[practitioners see] project management as fundamentally an extension

of a technical (engineering) role, which prioritises extensive knowledge of the product and

technology" (p. 36). Lastly, a growing literature calls attention to leadership elements intrinsic to

engineering practice itself, including during early-career roles. Such studies note that non-manager

engineers must frequently coordinate the work of others, lead small groups, and leverage social skills

86



in order to contribute effectively on engineering projects (see, e.g., Kumar & Hsiao, 2007; Trevelyan,

2007, 2010; Farr & Brazil, 2009; Cox et al., 2012; Rottman et al., 2015; Hartmann et al., 2016). A

general critique in the literature suggests that leadership, coordinative, and managerial aspects of

engineering work and careers have historically been under-examined relative to their prevalence in

practice (see: Trevelyan, 2007, 2010).

Among the literature examining those engineering careers marked by distinct transitions into

management, a prominent subset describes the appointment of engineers to project management or

product management roles (see, e.g., Carbone & Gholston, 2004; Ebert, 2007; Hodgson et al., 2011;

Bredin & Soderlund, 2013; Nicholas & Steyn, 2017). Project management roles involve developing

and managing project schedules and budgets, assessing and mitigating risks, and allocating resources

based on priorities (DiVincenzo, 2006; Heagney, 2016); product management roles, meanwhile,

center on discerning customer needs, defining product requirements, and creating product

development plans and strategies (Ebert, 2007; Gorchels, 2012). Both project and product manager

roles involve elements of leadership, such as establishing shared goals and visions, and inspiring

teams and individuals to perform toward such aims (see: DiVincenzo, 2006; Gorchels, 2012).

Gnanasambandam et al. (2017) estimate that engineering teams in industry typically operate with

ratios of one project manager per every 4 to 5 contributing engineers or one product manager per 8 to

12 engineers - and, research indicates that the majorities of these project and product manager roles at

engineering firms are filled by individuals with technical backgrounds (Carbone & Gholston, 2004;

Ebert, 2007). Further, literature finds that some firms sponsor employee development programs to

facilitate engineers' transition into these roles (Carbone & Gholston, 2004; Hodgson et al., 2011,

Nicholas & Steyn, 2017). While the literature makes clear that career paths from engineering into

project or product management are common in industry - and that many such roles maintain a distinct
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association with engineering work - existing studies do not reveal how consistently aware engineering

students are of these types of career trajectories, nor whether students consider such trajectories to fall

within or outside of their concept of an engineering career.

More generally, we question the extent to which engineering students are informed about the

variety of leadership and management opportunities that stem from careers in engineering, and

question the extent of students' awareness that they may be called upon to exercise leadership in early-

career engineering positions. If students are uninformed about such aspects of engineering work, we

suspect, based on engineering's broad reputation described in the literature, that they will tend to

under-estimate the opportunities to progress into leadership or management roles from entry-level

engineering positions. Yet, we suspect that becoming informed of such opportunities will have

different effects upon different subsets of engineering students: specifically, we expect that those with

a higher self-appraised leadership ability will express greater attraction to a given job upon learning of

its leadership opportunities, compared to their peers who assess themselves lower in leadership ability.

We thus hypothesize that students' self-appraisal of their ability to fulfill leadership roles interacts with

their informedness about a given engineering job's leadership growth opportunities to influence their

attraction to the job.

2.2.3 Mobility restrictions and commitment durations at engineering positions

The restriction of engineers' career mobility, as influenced by employer policies, has received

considerable attention in both scholarly literature and in the popular press in recent years (for overviews,

see: Lobel, 2013; Hyde, 2015). This attention has centered upon employers' efforts to protect intellectual

property and to preserve investments in employee training and development through various forms of

restrictive covenants and terms of employment. These employment agreements have included both

non-compete covenants restricting near-term employment at competing firms (Lester, 2001; Somaya
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& Williamson, 2008; Marx, 2011; Marx & Flemming, 2012; Cappelli & Keller, 2014) and training

repayment agreements that establish job commitment duration expectations (Lester, 2001; Long,

2005; VonBergen & Mawer, 2007; Cappelli & Keller, 2014; Hoffman & Burks, 2017). Marx (2011)

finds that nearly half of U.S. "technical professionals" are asked to sign a restrictive covenant of some

form. Meanwhile, some individuals have successfully challenged the legality of restrictive covenants

in courts (Lester, 2001; Long, 2005), and some U.S. states have enacted prohibitive legislation against

them (Marx et al., 2015). Legality notwithstanding, employer-designed restrictive policies have

occupied a sizable place in the discourse on engineering work during the past several decades.

While non-compete covenants' effectiveness at building and retaining skilled engineering

workforces has come under significant scrutiny in recent years (Samila & Sorenson, 2011; Amir &

Lobel, 2013; Marx et al., 2015), their historic presence and attention in the popular press may have

contributed toward shaping public conceptions of immobility or constraint associated with

engineering careers (see: Lobel, 2013). Moreover, comparably less severe restrictions, such as training

agreements tied to commitment expectations, generally endure as tolerated practices (Long, 2005;

VonBergen & Mawer, 2007). When in place, training agreements specify a term of employment,

usually between 1 and 3 years, during which an employee agrees to remain with an employer, lest

they owe the employer repayment of a portion of funds contributed to their job training or employee

development (Lester, 2001; Long, 2005; VonBergen & Mawer, 2007; Cappelli & Keller, 2014;

Hoffman & Burks, 2017). From a legal standpoint, courts have upheld such agreements in cases where

training was shown to have developed proprietary skills linked to companies' unique competitive

competencies; cases have a greater precedent of being overturned, however, when training was shown

to have primarily contributed to employees' development of general skills (Lester, 2001).
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We posit that engineering students' awareness of expected commitment durations at

engineering jobs (whether legally enforceable or not) is a factor potentially salient in shaping their

attraction to such jobs - and, we generally question the consistency and accuracy of engineering

students' informedness about commitment duration expectations across engineering jobs. Literature

has shown that many engineering students' professional identities are still nascent at the time they

prepare to graduate (Stevens et al., 2008). Thus, informedness of a given job's commitment duration

expectation may shape job attraction differently for different subsets of students, depending on the state

of development of the students' professional identities and whether such identities align with the job.

For instance, we expect that engineering students who posses a strong professional identity in a given

field will be less deterred by commitment duration expectations at jobs in that field, especially if such

expectations are coupled with firms' investment in skills development in the area of individuals'

professional interest. Benson et al. (2004), for example, find that firms' investment in skill

development in employees' field of specialty can be motivating for employees and can encourage

retention. Conversely, we expect that a job's imposition of a commitment duration expectation could

reduce job attraction among individuals who are uncertain about their professional identity and

developmental interests. We thus hypothesize that engineering students' strength of professional

identity interacts with their informedness about a given engineering job's commitment expectations to

influence their attraction to the job.

The literature on employers' mobility-restrictive policies has also examined the role of creative

work in shaping individuals' reactions to such restrictive policies. Amir and Lobel (2013), for example,

describe results of an experiment demonstrating that individuals' aversion to mobility-restrictive policies

is reduced in cases where they perceive jobs' inherent work as creative, rather than rote. Studies also

find students' attraction to the engineering profession is higher when they perceive engineering to
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involve creativity (Bernold et al., 2007; Atwood & Pretz, 2016). This literature prompts us, again, to

expect that different student subsets' attraction to a given job will be affected differently by knowledge

of commitment expectations tied to the job. Here, we expect that students who are satisfied with

creative opportunities perceived to be inherent in engineering work will react more positively to

knowledge of a given job's commitment expectation compared to students who perceive engineering

work as lacking in opportunities for creativity. We thus hypothesize that engineering students'

perceived satisfaction with creative opportunities at engineering jobs interacts with their informedness

about a given engineering job's commitment expectations to influence their attraction to the job.

2.2.4 Social components of engineering work

Substantive recent literature has examined the social characteristics of engineering roles in

industry. Beginning in the late 2 0 th century, studies began to contest engineering work's historic

reputation as predominately rooted in individualistic problem solving, demonstrating, instead, that

engineering work is often highly interactive and collaborative (see, e.g., Bucciarelli & Kuhn, 1997;

Perlow & Bailyn, 1997; Bucciarelli, 2002; Trevelyan, 2007, 2010; Robinson, 2012; Stevens et al.,

2015). Bucciarrelli (2002), for instance, has argued that the practice of engineering design "is not

faithfully represented as simply the art of applied science pursued by an individual at a work station"

(p. 220). Trevelyan (2010), moreover, observed that engineers typically spend more than half of their

time interacting with others, concluding that "human performance and social interactions lie at the core

[of engineering practice]" (p. 190). Yet, while contemporary literature generally makes clear that social

interaction composes a central element of engineering work, studies also point out differences in the

social components of engineering work across different types of roles. We find that studies discuss at

least three general types of individual-contributor engineering roles among which social interaction

manifests differently: individualistic technical specialist roles, marked by comparably large portions
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of time spent on solitary work amidst periodic interaction; team-based collaborative roles, characterized

by frequent or continuous interaction; and, inter-organizational coordinative roles, marked by

substantial time spent coordinating technical work across functional or organizational boundaries.

A subset of the literature examines technical specialist roles that are comparatively

individualistic relative to most other engineering roles (Kent & Noss, 2002, 2003; Anderson et al.,

2010; Alpers, 2010). Anderson et al. (2010), for example, describes several circumstances of

"individual level" work embedded within engineering practice, such as engineers working alone to

design components using CAD programs, or to run computer simulations, or to review designs to

ensure they meet standards, among other activities (p. 161). Meanwhile, certain computational

specialty roles, as described in this chapter's Section 2.2.1, have also been shown to be substantially

individualistic (Kent & Noss, 2002; Alpers, 2010), but, as Anderson et al. make clear, individualistic

roles in engineering workplaces are not limited to math-heavy roles (2010).

A broad literature, meanwhile, emphasizes the prevalence of team-based collaborative roles in

engineering (Bucciarelli & Kuhn, 1997; Bucciarelli, 2002; Trevelyan, 2010; Robinson, 2012; Stevens

et al., 2015). Robinson (2012), for instance, finds peer collaboration to be integral to many engineers'

routines, and Bucciarelli (2002), similarly, has observed: "engineering design is the business of a

collective or team" (p. 219). Trevelyan (2007), however, draws a distinction between general forms of

"teamwork" frequently referred to in descriptions of engineering practice, and a third common context

of engineering work that centers on technical coordination across roles, functions, or organizational

boundaries. As Trevelyan explains, "working in teams is a different experience [than extra-team

coordination]. Most of the coordination reported in [this study] occurred outside the context of a

particular team" (p. 198). Trevelyan characterizes this type of coordination as entailing elements such

as: influencing members of other functions to perform needed tasks, monitoring and supervising the
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work of contractors, engaging with external agencies, and interfacing with clients (see p. 197). Other

studies provide similar examples of coordinative roles in engineering practice (see, e.g., Sheard, 1996;

Twigg, 1998; Lakemond et al., 2006; Herbsleb, 2007; Stevens et al., 2015). Twigg (1998), for

instance, discusses engineers' oversight and coordination of design activities among vendors in an

automotive company's supply chain, and Herbsleb (2007) describes efforts required to coordinate

technical work in globally distributed software projects.

In addition to describing variety in the social components across different engineering roles,

literature has also documented trends of gendered sorting of individuals into such roles. Specifically,

studies have observed that female engineers have exhibited a greater tendency than males to take on

roles with comparably prevalent social and coordinative components, while males have been more

likely than females to take on individualistic technical roles (Cech, 2013; Seron et al., 2016, 2018).

Literature has described this phenomenon as "intra-professional gender segregation" (Cech, 2013),

and has explored how such sorting trends are reproduced over time through supply-side processes of

professional socialization experienced by students in engineering educational and pre-professional

settings (Seron et al., 2016, 2018). Researchers find that these socialization processes can shape

students' gendered notions of role fit and confidence - such as through initiation routines on student

project teams involving competitive establishment of technical "pecking orders" among teammates,

through interchanges that can undermine the formation of females' technical confidence (Seron et al.,

2016). Researchers suggest that such socialization processes can influence women's tendencies toward

social, coordinative, and administrative roles on engineering teams (Seron et al., 2016). While recent

work has made strides in decomposing these socialization processes, opening them up to critique and

reform (see, e.g., Seron et al., 2018), we expect that many of today's engineering students have

nonetheless experienced elements of gendered professional socialization, and, correspondingly, we
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expect that gendered trends in role preferences toward individualistically-centered or socially-centered

roles will replicate in contemporary samples of engineering students.

Yet, given the nuanced variation in social components of different types of engineering roles,

as described in the literature, we again question the comprehensiveness of engineering students'

awareness of such variation. We expect, given the engineering profession's enduring reputation as

centered upon individualistic technical work (Seron et al., 2018), that engineering students who are

uninformed of the details of a particular engineering role's social aspects will tend to perceive the role

as more individualistic than it actually is. We also expect that when students become informed of the

details of a given engineering role's social components, that female and male students' attraction to the

role will be impacted differently, with females reacting more positively than males to information about

a role's social or coordinative components. We thus hypothesize that gender interacts with informedness

about a given engineering job's social components to influence students' attraction to the job.

2.2.5 Summary

We proceed under the assumption that engineering students likely hold inconsistent and

incomplete internalized conceptions of engineering work, given the variation in the work itself, the

known gaps between the engineering educational experience and certain aspects of industry practice

(Sheppard et al., 2009; ASEE, 2013), and the imperfections of information flow in labor markets

(Autor, 2001; Manning, 2011). We next outline our experimental methods, which test the effects of

job attribute informedness upon students' attraction to jobs. The job attribute differences tested are

those corresponding with the variations in engineering work reviewed from the literature - differences

in mathematics content, leadership growth opportunities, commitment duration expectations, and

social characteristics of engineering jobs. We do not imply such variations in engineering work are the

only ones present across industry; rather, we focus on these variations due to their notable presence in
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the literature, and assumingly, their corresponding prevalence in industry. We outline our

conceptualization and operationalization of these job attribute manipulations in Section 2.3.3 within

the Methods section that follows.

2.3 Methods

2.3.1 Research setting

This chapter's empirical analysis centers on a conjoint survey experiment conducted at nine

U.S. universities between November 2016 and April 2017. The experiment asked participants -

engineering students in their senior year - to provide information about themselves and their career

plans, and to rate the attractiveness of six different engineering job description profiles. Each job

profile's content was randomized across four job attributes. Randomized profiles were presented to

respondents in side-by-side pairs in accordance with a conjoint experimental method presented by

Hainmueller et al. (2014). This scheme asked respondents to indicate a job choice preference toward

one of the two from each pair, as well as to assign a job appeal scale rating to both job profiles in the

pair. Such an approach is designed to simplify participants' decision tasks (Hainmueller & Hopkins,

2015, citing Krosnick, 1999), while acquiring redundant forms of preference information to enable

robustness checks of experimental results (Hainmueller et al., 2014). The survey experiment took

place in classroom settings and employed a paper-based survey form in order to maximize access to

target participants and to integrate the survey task into participants' routines with minimal disruption.

We elected to sample all participants from a single academic major at a time in close

proximity to when participants would face the engineering job market (or would face consideration of

alternate plans, such as whether to continue directly on to graduate school). This sampling approach

provided a means of experimental control for participants' exposure to transient job market factors

that might influence their interest in working at an engineering job. For instance, students enrolled in
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different academic majors might face differing job market prospects in their fields, and students

within the same field could face different job market demand at different times due to market

variations. Research has shown engineering students' career interests to be significantly associated

with market conditions (Ryoo & Rosen, 2004; Bardhan et al., 2013; Lynn et al., 2018). We opted to

sample exclusively mechanical engineering majors in light of that field's recent job market stability -

the U.S. Bureau of Labor Statistics assesses mechanical engineering jobs growth as "average" relative

to growth rates across all U.S. occupations (U.S. Bureau of Labor Statistics [BLS], 2018a). By

contrast, some engineering job markets in computer software-related areas are experiencing sharp

growth (BLS, 2018b). We know of no theoretic reasons why this experiment's examination of job

preferences based on jobs' mathematics demands, leadership opportunities, commitment duration

expectations, and social characteristics would not generalize across the broader population of

engineering students. However, follow-on work is required to verify such generalization, as discussed

in this chapter's Section 2.4.7 (Limitations of results).

We took steps to minimize participant self-selection biases in the sample, as engineering

students' voluntary choice to participate in a study on job preferences could result in

disproportionate representation (or exclusion) of those with certain attitudes toward the notion of

working in their field of study. The mechanical engineering curriculum provides a unique

opportunity to reach universities' entire senior year cohorts of mechanical engineering students at

occasions of required attendance: senior capstone design course sessions. This study thus involved

designing a survey experiment to be administered within these types of course sessions. Based on

partnering negotiations with department chairs and capstone course instructors across the nine

participating engineering schools, we reconciled the schools' unique constraints to arrive at a paper-

based survey instrument designed to take respondents 12 minutes to complete, either at the
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beginning or end of a scheduled senior capstone class session. At each class session in which the

survey was conducted, instructors announced to students that a voluntary survey related to

engineering careers would be part of the day's class. On-site research personnel then distributed and

collected the paper survey forms in these class sessions. This short-duration, paper-based, in-class

survey approach resulted in a near-90% participation rate among targeted respondents and garnered

over 1,000 survey responses. The approach, however, necessitated use of a highly concise survey

instrument, the development of which we discuss in Section 2.3.2 that follows.

In addition to establishing sampling requirements related to participants' academic major

and proximity to the job market, we also targeted diversity in the types universities from which we

drew participants. We attained participants from large and small engineering schools, public and

private universities, and from across a broad geographical dispersion. We recruited the partner

universities through an email campaign, distributed to achieve such institutional diversity, to

department chairs and capstone course instructors at various accredited mechanical engineering

programs. The campaign resulted in agreements to conduct the survey at Boston University,

Carnegie Mellon University, Massachusetts Institute of Technology, Penn State University, Santa

Clara University, Texas A&M University, Tufts University, the University of Connecticut, and the

University of Michigan. This mix of universities consists of four public and five private institutions

from six U.S. states. Public university students constituted the majority (59%) of the resulting

participant sample. The sample's institutional composition, inclusive of a large public school

component, provided a participant base reflective of how at least 80% of the nation's engineering

graduates earned their degrees (Cech et al., 2011). As part of our partnering agreements with the

nine universities, we agreed not to publish results in a manner that conveyed university-to-

university comparisons. We obtained Independent Review Board (IRB) approvals or concurrences

for the survey experiment from all participating institutions before beginning data collection.

97



2.3.2 Development of a survey instrument with embedded conjoint experiment

This study's survey instrument contained three distinct types of questions: those associated

with participant-specific independent variables, those constituting the embedded conjoint experiment,

and those constituting post-experiment manipulation checks. Questions were laid out on a five-page

survey form. The form's first and last pages were identical for all participants and were dedicated to

the collection of participant-specific data and post-experiment checks, while the middle three pages

contained experiment content that was randomized across participants. Each survey form was marked

with a unique identification number.

The survey included measures for participant-specific independent variables in the

following areas: key theoretic variables pertinent to engineering students' career interests,

demographic variables, and additional variables related to empirical control. The complete set of

survey questions for all independent variables employed in this study is presented in Table 2-Al of

this chapter's Appendix. The development and validation of these survey questions, including

approaches taken to minimize question count and response time, are discussed in Chapter 1, which

documents an earlier stage of this research project. Meanwhile, Table 2-1, below, lists definitions

for six key theoretic variables from among the independent variables set shown to be associated

with engineering students' interest in engineering careers based on the multivariate occupational

sorting model presented in Chapter 1. In this current study, some of these key variables are

employed in our empirical analysis ofjob preference interaction effects between participant

characteristics and job attributes. Beyond those variables listed in Table 2-1, the survey instrument

also collected participant-specific data on: career intentions, expected salary, gender, race, student

loan debt status, extracurricular activities participation, graduation date, and verification of

undergraduate major.
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Table 2-1. Definitions of key participant-specific independent variables measured in the survey

variables and definitions

Had a positive engineering internship experience
Subject has held at least one engineering internship or co-op position that they consider as
a positive overall experience.

Averse to financial risk-taking
Subject seeks income stability and job security in an occupation, and seeks to avoid occupations
that have prospects for outsized financial windfalls that come at the expense of income stability or
job security.

Would enjoy working at a job involving advanced mathematics
Subject would enjoy a job that regularly required the use of advanced mathematical concepts that
they experienced as part of their undergraduate engineering curriculum.

Identifies with a specific profession
Subject envisions their ideal career as one that is based upon a specific profession.

Anticipates promotion into formal leadership role by age 25
Subject believes it to be likely that they will be appointed to a formal leadership position by age 25.

Sastisfied with creative opportunities at engineering jobs
Subject is satisfied with the availability of job opportunities in engineering that allow one to engage
in creative design work.

The portion of the survey instrument dedicated to the conjoint experiment followed the layout

shown in Figure 2-1, whereby pairs of randomized job profiles were presented, followed by associated

rating questions. This layout generally follows a configuration developed and tested by Hainmueller et

al. (2014). By convention, each pair of profiles is referred to as one experimental "round." As

Hainmueller et al. (2014) discuss, conjoint methods allow respondents to rate multiple rounds of

profiles in order to increase a study's effective observation count; standard errors of job preference

measurements are then clustered to account for the origination of multiple measurements from the

same individual respondent. We assessed participant response timing by conducting pilot testing of

the survey instrument with student volunteers to determine a tenable number of experimental rounds

to embed in the instrument, given our 12-minute overall survey completion time target. We elected to

include three rounds (e.g., six total profiles for respondents to rate) based on the pilot evaluations.

Development of the job profiles' content, including definition of their fixed and variable features, is

described in detail in Section 2.3.3 (Job attribute manipulations); as discussed therein, certain features
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such as the jobs' title and benefits information, remain constant across all profiles, while other

elements are varied as part of the experimental manipulations.

Below you will find several pairs of Job descriptions.
Please read each pair, compare the two jobs, and answer the questions that follow each pair.
As you answer, assume that each job is located somewhere that is desirable to you,
and that the type of product(s) the company makes are of interest to you.

Job A

Salary

About the
Company

Credentials

Mechanical Design Engineer
$78,950 /year

19 year-old company,
500 employees

B.S. in Mechanical Engineering required

Strong skills required in differential equations
and mechanical analysis (e.g., fluids, thermal,
structural, dynamics)

Responsibilities Youll work on a design team in new product
development. You'll develop concepts,
collaborate on design details, choose
components and materials, and verify the
design through modeling and test.

We are seeking an expert comfortable with
computation and analysis (both hand
calculations and FEA), given the tight margins
for error in this product.

You'll spend most of your time working on
your own tasks, while a small portion of your
time will involve collaborating with peers.

Other This highly selective opportunity is with the
company's Advanced Projects Division, where
a minimum of a 3-year commitment to remain
with the company is expected due to the
specialized and proprietary skills set you'll
develop.

Benefits Generous year-end bonus,
Best-in-class healthcare, 401(k), free gym
membership, flexible hours.

Salary

About the
Company

Credentials

Responsibilities

Other

Benefits

If you had to choose to work at one of these two jobs, which would you select?

El Job A
Based on the limited information in the job descriptions,
please indicate the potential appeal of each of the jobs to you:

Little/n
potent
appea

1 2 3 4 5 6 7

0 unsure Potentially
ial very

appealing

Job B
Mechanical Design Engineer

$78,990 /year

20 year-old company,
400 employees

B.S. in Mechanical Engineering required

Youll work on a design team in new product
development. You'll develop concepts,
collaborate on design details, choose
components and materials, and verify the
design through modeling and test.

You'll work alongside an engineering analysis
group that will run any detailed computation
necessary to support your design work.

You'll spend most of your time in collaborative
team environments, communicating and
coordinating about designs.

This position includes a leadership "fast track"
option for those interested in transitioning into
product or project management (PM) roles.
Qualified candidates can achieve PM roles
within 1-2 years, if desired. A salary increase
accompanies advancement

Generous year-end bonus,
Best-in-class healthcare, 401(k), free gym
membership, flexible hours.

El Job B

1 2 3 4 5 6 7

Little/no
potential
appeal

unsure Potentially
very
appealing

Figure 2-1. Layout of a single conjoint experiment round: job profile pair comparison
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Post-experiment manipulation checks, meanwhile, were employed on the last page of the

survey form to assess participant's cognition of the intended job attribute manipulations. Such checks

allowed us to verify that job preference effects measured in the experiment were non-spurious, and,

instead, could be assumed associated with respondents' reactions to the presence of manipulated

information in the job profiles. The manipulation checks are described in Section 2.3.4 (Data

collection, verfication, and analysis), following a description of the job attribute manipulations

themselves in the next section (Section 2.3.3).

2.3.3 Conceptualization and operationalization ofjob attribute manipulations

Based on our review of literature examining differences among engineering jobs, we

developed a set of job attribute manipulations that entailed presenting experimental participants with

different sets of job profile information in the format shown in Figure 2-1. We tested the effects of

four such manipulations, each based upon variation in one of the following attributes: mathematics

intensity, leadership growth opportunities, commitment duration expectations, and social

characteristics. Each manipulation involved imparting differences within one or more of the following

information categories from among those shown in Figure 2-1: "credentials," "responsibilities," or

"other." We refer to the variants of a particular manipulated job attribute as the "states" of that

attribute; thus, attribute manipulations entailed presenting different attribute states to participants in a

randomized manner. Table 2-2 lists the full set ofjob attribute manipulations. As shown, we tested

manipulations encompassing two different states of the mathematics intensity, leadership growth

opportunities, and commitment duration attributes; meanwhile, we tested three states of the

manipulation encompassing the social characteristics attribute.
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Job Profile Content Differences across Attribute States

State 0

Non-Intensive with support emphasized

Credentials:
"B.S. in Mechanical Engineering
required"

Responsibilities:
"You'll work alongside an engineering
analysis group that will run any detailed
computation necessary to support your
design work"

No opportunity discussed

Other:
N/A

Commitment duration expectation: No duration discussed

Other:
N/A

Social characterization of work: Individualistic role

Responsibilities:
"You'll spend most of your time working
on your own tasks, while a small portion
of your time will involve collaborating
with peers"

Job Attribute

Mathematics Intensity:

State 2

N/A

State 1

Intensive with individual ability emphasized

Credentials:
"B.S. in Mechanical Engineering
required
Strong skills required in differential
equations and mechanical analysis (e.g.,
fluids, thermal, structural, dynamics)"

Responsibilities:
"We are seeking an expert comfortable
with computation and analysis (both hand
calculations and FEA), given the tight
margins for error in this product."

Opportunity discussed

Other:
'This position includes a leadership last
track' option for those interested in
transitioning into product or project
management (PM) roles. Qualified
candidates can achieve PM roles within
1-2 years, if desired. A salary increase
accomoanies advancement."

Duration and skill development discussed

Other:
'This highly selective opportunity is with
the company's Advanced Projects
Division, where a minimum 3-year
commitment to remain with the company
is expected due to the specialized and
proprietary skills set you'll develop"

Collaborative team-based role

Responsibilities:
"You'll spend most of your time in
collaborative team environments,
communicating and coordinating
about designs"

N/A

Inter-organizational coordinative role

Responsibilities:
"You'll spend most of your time interacting
with vendors, interpreting specifications,
and/or updating design details on drawings.
As designs are completed, youll have on-
call responsibility to help keep production
running smoothly"

N/ALeadership growth opportunity:

0
K'



While the "credentials," "responsibilities," and "other" job profile information categories

contained variable elements associated with the job attribute manipulations, other aspects of the job

profile were held consistent across all profiles evaluated by experimental participants. These consistent

job profile elements are shown in Table 2-3. For instance, all profiles had an identical job title,

"Mechanical Design Engineer," all profiles listed an identical set of "benefits," and all contained

identical core language within the "responsibilities" category as follows:

You'll work on a design team in new product development. You'll develop
concepts, collaborate on design details, choose components and materials,
and verify the design through modeling and test.

Meanwhile, "salary" and "about the company" were also designed to be consistent job elements, but

we imparted miniscule variations in this information across job profiles to heighten participants' sense

that each job profile was unique, thus encouraging participants to read all profiles in their entirety. For

example, the posted salary was varied by +/- $50 around a mean of $78,940. The small variations in

salary and company information were intended to be meaningless to participants, a notion that we

empirically confirm as part of the experiment's results verification. Further, instructions printed above

the job profiles advised participants to "assume each job is located somewhere that is desirable to you,

and that the type of product(s) the company makes are of interest to you." All of the job information

not involved in the experimental manipulations was strategically designed to make the jobs appear

neutral or modestly attractive to the participants, so that participants' focus would be on the

manipulated differences, and that worries about other key aspects of the jobs would be eased. The

salary, for example, was set to be slightly higher than the anticipated average salary offered to an

entry-level mechanical engineer - so that salary concerns would not be at the forefront of participants'

minds - but not so high as to be startling. The elevated salary reflects a 10-15% increase over reported

U.S. average starting salaries of mechanical engineers, depending on location (Glassdoor, 2016).
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Meanwhile, company size and age were set so that the company would neither appear to be a young

start-up, nor an old, large company. In the remainder of this section, we describe the attributes of the

jobs that were intentionally manipulated, outlining the theoretical bases behind our conceptualization

of each manipulation, and describing each manipulation's operationalization in the experiment.

Table 2-3. Job attributes not subject to experimental manipulation

Job Attribute Content

Job title "Mechanical Design Engineer"

Salary $78,940 (+/- $50)

About the company Company age: 20 years (+/- 1 year)
Company size: 450 employees (+/- 50 employees)

Responsibilities "You'll work on a design team in new product
development. You'll develop concepts, collaborate on
design details, choose components and materials,
and verify the design through modeling and test"

Benefits "Generous year-end bonus, best-in-class healthcare,
401(k), free gym membership, flexible hours"

We conceptualized the manipulation of jobs' mathematics content in terms of a difference

between roles involving non-intensive mathematics in a supportive environment, and roles involving

intensive mathematics requiring advanced individual abilities. We operationalize this manipulation in

the survey experiment through the two contrasting attribute states shown in the first row of Table 2-2.

In the case of the non-intensive mathematics attribute state, no mention is made of requisite

credentials in mathematics beyond a bachelor's degree in engineering; meanwhile, the job's

responsibilities include "[working] alongside an engineering analysis group that will run any detailed

computation necessary to support your design work." This language reflects the industry-realistic

scenario of a designer-specialist interface, as described by Kent and Noss (2002), and suggests that

this particular role embodies that of a generalist design engineer, rather than a computational

specialist. In contrast, the alternate job attribute state suggests a specialist role. As such, the alternate

state emphasizes individual math ability by listing several field-representative math skills among
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requisite credentials, and makes the analytical nature of the role clear in the job's list of

responsibilities.

The leadership growth opportunity manipulation was conceptualized in a binary manner: a job

would either convey a clear pathway into a future leadership role, or such information would be

absent. The discrepancy between these states captures the inconsistent and often under-articulated

manners in which engineers' growth paths have historically been presented to those in the engineering

pipeline, as discussed in the literature review. We operationalize this manipulation through a

difference between attribute states' posted content within the "other" job profile category, as shown in

the second row of Table 2-2: in one attribute state, nothing is posted under "other," in the alternate

state, specific information about growth opportunities into project management or product

management roles is provided. Project or product management roles were selected due to evidence

from the literature suggesting that such roles compose common career trajectories of engineering

graduates, and toward which some engineering employers sponsor internal professional development.

Meanwhile, the job profile information on the growth opportunity suggests it is neither guaranteed,

nor required (e.g., the opportunity is for "qualified candidates.. .if desired"). Further, a timeline for

realization of the opportunity, "1-2 years," is provided, along with an acknowledgement that increased

compensation accompanies advancement. These latter features provide specific and pragmatic details

of the opportunity.

Similar to the leadership growth opportunity manipulation, we also conceptualized the

manipulation of jobs' expected commitment duration in a binary manner. Here we acknowledge a

divide in the manner in which engineering employers carry out policies related to employee

development and retention: some enact explicit policies to retain those in whom they will invest in

specialized skill development, while others do not (see, e.g., Marx, 2011). We therefore

105



conceptualized the manipulation of commitment duration expectation to encompass a difference

between an attribute state where no mention of commitment duration is made, and a state that outlines

specific terms of employee development and associated commitment expectation. According to the

literature, such employer policies that tie commitment expectations to proprietary, specialized skills

development in areas of firms' competitive advantage have a greater precedent for legal legitimacy

compared to policies unlinked to specialized skill development (Lester, 2001). Here, we thus couple

commitment expectations with notions of specialization and advanced work. The third row of Table 2-

2 depicts the commitment duration job attribute manipulation. This manipulation is operationalized

through differences in language posted within the "other" job information category. The first state of

this attribute consists of nothing posted within the "other" category, while the alternate state contains

language conveying a specific job commitment duration expectation. In this latter case, the job profile

emphasizes the role's positioning within the company's "Advanced Projects Division" and states: "a

minimum 3-year commitment to remain with the company is expected due to the specialized and

proprietary skills set you'll develop." While this manipulation embodies a compound set of job

elements (e.g., notions of both advanced skills development and commitment expectations), the

reviewed literature suggests realism and legitimacy of such a combination.

Finally, we conceptualized a three-state job attribute manipulation pertaining to the social

characterization of jobs. Based on our review of literature examining engineering practice, we

established the three attribute states as follows: one that encompasses individualistic work with

occasional collaboration, one composed of predominately team-based collaborative work, and one

entailing substantial coordination across functions or organizations. We operationalized this

manipulation through three distinct sets of wording, each of which corresponded with one of the three

attribute states, and which were conveyed within the "responsibilities" information category of the job
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profile. Details of this manipulation are presented in the last row of Table 2-2. Language from the first

attribute state, that corresponding with an "individualistic environment," conveys: "you'll spend most

of your time working on your own tasks, while a small portion of your time will involve collaborating

with peers." The second attribute state contains language emphasizing a team-based work

environment: "you'll spend most of your time in collaborative team environments, communicating

and coordinating about designs." Meanwhile, the third state emphasizes communication beyond the

confines of a specific engineering team, through language such as: "you'll spend most of your time

interacting with vendors," and "you'll have on-call responsibility to help keep production running

smoothly."

2.3.4 Data collection, verfication, and analysis

Following survey collection at the nine participating universities, an author of this study and a

research assistant independently conducted data entry from the paper survey forms, then reconciled

results to ensure accuracy of the digitized dataset. Data were then imported into the statistics program

Stata v.15 for analysis. The fundamental analysis approach for this study's experiment involved

computing Average Marginal Component Effects (AMCEs) for each of the manipulated job attributes,

as outlined by Hainmueller et al. (2014). In the case of this study, an AMCE represents the average

difference in probability of a job being preferred between two different states of a specific job

attribute, with this average taken over all possible combinations of the remaining manipulated job

attributes. For instance, the AMCE for this experiment's mathematics intensity job attribute represents

the average difference in probability of participants expressing preference for the math-intense job

variant compared to the math non-intense job variant, with all other job attributes assumed to exist in

random combinations across all jobs. This analytical approach provided a means of quantifying the

effect that each unique attribute manipulation had upon participants' expressed job preference.
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AMCEs can either be computed for the full participant sample, or for specific sub-samples of interest;

we present both full sample and conditional AMCEs in this study's results. Further, Hainmueller et al.

(2014) demonstrate that AMCEs are non-parametrically identified through linear regression of the

outcome variable (in this case, job preference) upon sets of indicator variables representing the

manipulated attribute states, provided that the attributes are independently randomized and

manipulation effects are independent of each other. We computed the AMCEs reported in this study

using Hainmueller et al.'s technique, and we followed those authors' verification steps to confirm

independence of the attribute manipulations. Tests for manipulation effects' independence involved

verifying that regression coefficients for attribute state variables remained statistically similar when the

outcome variable was regressed upon one state variable at a time, compared to when the outcome

variable was regressed upon the full set of state variables together. Similar tests verified that attribute

state variables' coefficients were independent from variables indicating job profile positions within the

survey form. Randomization of the attribute states across the sample of participants was checked by

verifying that the mean of attribute state indicator variables was at or very close to 0.5 for two-state

manipulations, and at or close to 1.0 for the three-state manipulation, for all key participant subsets

(e.g., demographic subsets and subsets associated with the key-theoretic variables listed in Table 2-1).

Meanwhile, also in accord with Hainmueller et al.'s approach, we computed confidence intervals for

the AMCEs using clustered standard errors by participant to account for the fact that multiple

observations (e.g., job preference results) are obtained from each participant.

Several additional checks were conducted to validate this study's AMCE results. First, we

performed a robustness check, as demonstrated by Hainmueller and Hopkins (2015), to confirm the

full-sample AMCEs are substantively similar when computed in two different ways: from the survey

experiment's forced-choice measure of the outcome variable (e.g., binary job preference measure),
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and second, from the appeal scale measure of the outcome variable. In the latter analysis, the job

appeal variable was dichotomized from a 7-pt scale into a 0-1 binary variable by setting scale

responses that were above the scale midpoint equal to one, and the others equal to zero; AMCEs were

then computed in the same manner described above. This robustness check provides confidence that

the forced choice construction of the job preference measure did not introduce constraint that skewed

participants' expression of job appeal relative to its measurement on an unconstrained scale.

We next conducted a realism check on the design of our job profiles: since all of this

experiment's job profiles represented engineering jobs, we expected that those participants who

planned to work as engineers in the real-world would, on average, rate profiles higher than those

participants not planning to work as engineers. To check this expectation, we conducted a test for the

significance of the difference in mean job appeal responses between these two groups. Confirmation

of higher average job appeal ratings from those pursuing real-world engineering jobs gives confidence

that the overall randomized set of job attributes conveyed a balanced and realistic perspective of the

profession: while some respondents are likely better informed than others about industry jobs, and

some attribute combinations likely appeal more than others to those not pursuing engineering, we

deemed it important that the broad set of job profiles not introduce an artificial appeal that

compromised the general concept of the engineering profession among participants. Similarly, in

another test of realism, we computed the full-sample mean job appeal ratings for all 24 possible

combinations of job attributes in the experiment: here we sought to confirm that no one specific job

profile configuration was found to be near-universally unappealing to participants. For instance,

verifying that even the least popular among the job profile configurations was appealing to a

substantive subset of participants would suggest realism; by contrast, a universally unappealing job

would suggest an industry-unrealistic job configuration. While this test does not carry absolute
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meaning, it allowed us to qualitatively confirm that we did not create unrealistically unappealing job

profiles.

Finally, we conducted manipulation checks to verify that participants recognized the job profile

differences that were intended to be conveyed by the job attribute manipulations. Here, following the

three rounds of job profile rating tasks in the survey form, we presented participants with a series of

manipulation check measures as shown in Table 2-A2 of this chapter's Appendix. The manipulation

check question heading reads, "Place a check next to any/all of the attributes that differed meaningfully

among the different jobs," and was followed by a list of eight attribute options, four of which were

intentionally manipulated in the experiment, and four of which were not. We then ran statistical tests to

confirm that correct responses differed significantly from false-positive responses, both overall, as well

as for each of the four intentionally manipulated attributes separately.

The AMCE computation and verification procedures outlined above allowed us to establish a

baseline set of ACMEs for the four job attribute manipulations for the full sample. Once this baseline

was established, we proceeded to investigate the hypothesized interactions between subject-specific

characteristics and job attributes put forth in Sections 2.2.1 - 2.2.4 of this chapter. We carried out this

interaction analysis in two stages. First, we compared relevant participant subsets' mean conditional

job preference results at different job attribute states, testing for significant differences between the

subsets. As Hainmueller et al. (2014) discuss, significant differences detected here should also indicate

significance of associated interactions in a regression model where attribute state indicator variables,

subject characteristic variables, and interaction terms are tested together. Thus, as the second stage in

this interaction analysis, we formally test for the significance of the hypothesized interactions in

regression models.

We present this study's results in the section that follows, beginning with summary and

descriptive statistics characterizing the participant sample. Next, we present AMCEs for job attribute
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manipulations at the full sample level, followed by evaluations of the individual hypothesized

interaction effects. We then present a multivariate model of job preference with both job attribute

manipulations and subject characteristic-job attribute interactions included, and we conclude the

section with a discussion of results interpretation and limitations.

2.4 Results

2.4.1 Description of sample

Conducting the survey at the nine host universities resulted in a sample of 1,061 participants.

The average institution-specific participation rate among target respondents was 86.9%; this rate

ranged from 81.9% to 92.0% across the individual universities. Table 2-4 shows summary statistics

for the sample, beginning with statistics for the key supply-side independent variables theoretically

associated with engineering students' career outcomes (e.g., those variables defined in Table 2-1).

Table 2-4 then presents information on participants' expected career plans, demographics, institution

type, and graduation date. All participants expected to complete their undergraduate degrees in the

year 2017 (an inclusion criteria for this study), with most set to graduate at traditional spring semester

commencements (91.0%) and a small number of participants scheduled to receive their degrees

following their institution's summer or fall terms of that year. Meanwhile, 70.5% of participants

expected to work as an engineer in their first full-time job after college or graduate school.

As shown among statistics for key supply-side independent variables in Table 2-4, the

majority of participants expressed that they had experienced a positive engineering internship

(69.3%). Most rated themselves as averse to financial risk-taking (78.0%). Smaller majorities stated

that they would enjoy working at a job involving advanced mathematics (55.9%) and identified with a

specific profession (54.8%). Meanwhile, approximately half of the candidates anticipated being
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appointed to a formal leadership role by age 25 (50.0%), and approximately half expressed satisfaction

with creative opportunities at engineering jobs (49.9%).

Table 2-4. Summary and descriptive statistics on survey participant sample

Number of
Mean (SD) Observations Percentage

Total participants in sample: 1,061

Key participant-specific independent variables (supply-side factors):

Had a positive engineering intemship experience 735 69.3
Averse to financial risk-taking 828 78.0
Would enjoy working at a job involving advanced mathematics 593 55.9
Identifies with a specific profession 581 54.8
Anticipates promotion into a formal leadership role by age 25

7-pt scale assessment 4.61 (1.37)
Subject rates self above scale midpoint 531 50.0

Satisfied with creative opportunities at engineering jobs
7-pt scale assessment 4.47 (1.29)
Subject rates self above scale midpoint 529 49.9

Participant career plans:

Expected first full-time job:
Engineering' 748 70.5
Non-engineering 255 24.0
Military service2  

19 1.8
Expects to attend graduate school directly after college3  

230 21.7
Salary expectation at first full-time job $70,142 ($13,740)

Participant demographics:

Female 245 23.1
White 752 70.9
Asian 205 19.3
Hispanic or Latino/Latina 87 8.2
Black or African American 40 3.8
Other (non-White) 24 2.3

Other participant information:

Institution type:
Public university 624 58.8
Private university 437 41.2

Graduation term:
Spring 2017 965 91.0
Summer 2017 21 2.0
Fall 2017 75 7.1

Notes:
1. "Engineering" refers to traditionally categorized engineering jobs. Related jobs, such as in project management, are counted as "non-engineering" here.2. Those who indicated military service as their first full-time job are not counted in either of the "engineer" or "non-engineer" career categories above.
3. Those who indicated that they expected to attend graduate school directly after college are also counted in the "engineering" and "non-engineering"

career categories above based on their expected occupation immediately following graduate school.
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Of the 1,061 participants who submitted a survey form, 1,054 (99.3%) contributed responses

to the job profile assessment questions that composed the survey's embedded experiment. Of those

who engaged in the survey experiment to any extent, 98.4% completed all three rounds of

experimental job profile ratings, resulting in a total of 6,220 job preference observations from these

1,054 individuals. These participants who engaged with the survey experiment assessed an average of

5.9 randomized job profiles each (out of the maximum possibility of assessing 6 profiles).

2.4.2 Effects of manipulating job attributes on job preferences

Figure 2-2 shows AMCE results for all of the experiment's job attribute manipulations

based upon job preference responses from the full sample of participants. In Figure 2-2, dots

indicate point estimates ofjob preference AMCEs, while horizontal bars show each estimate's 95%

confidence interval. The horizontal axis scale in Figure 2-2 is demarked in the following unit of

measure: effect upon the probability of preferring a given job over the other possible job

configurations. One state for each job attribute is designated as a reference state, as indicated by a

dot without confidence interval bars around it located on the zero intercept line of the horizontal

axis; thus, job attribute manipulations' effects on probability of job preference are shown in Figure

2-2 as the difference on the horizontal axis between an attribute state's point estimate and its

reference. For instance, in the case of the mathematics intensity attribute, the point estimate for

"intensive with individual ability emphasized," compared to the reference state of "non-intensive

with support emphasized," denotes a -0.12 effect on preference probability, meaning that the

estimated probability that engineering students will prefer a given job is reduced by 0.12 if the job

entails mathematics characterized as "intensive with individual ability emphasized" compared to if

the job entails mathematics characterized as "non-intensive with support emphasized."
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role emphasized
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Effect on Pr(prefer job)

Notes:
This plot shows estimates of the Average Marginal Component Effects (AMCEs) of randomly manipulated job attributes on the probability
of a job being preferred. Horizontal bars represent 95% confidence intervals. The points without horizontal bars denote the attribute state
that is the reference category for each attribute. The plot is based on the study's full sample, consisting of 6,220 observations from 1,054
unique participants.

Figure 2-2. Job attribute manipulations' effects upon probability of job preference - full sample

The set of AMCEs shown in Figure 2-2 were estimated by regression of the dependent

variable, job preference, upon a set of dichotomous indicator variables for the attribute states, with

standard errors clustered by participant, per the method discussed in Section 2.3.4. The regression

model underlying the AMCE results in Figure 2-2 is presented later in this chapter as Model 1 in

Table 2-6 in Section 2.4.4 (Interactions analysis: development and evaluation of an integrated model

ofjob preference). As shown in Figure 2-2, four statistically significant job attribute manipulations at

the full-sample level were identified in this analysis: manipulation of mathematics intensity from
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"non-intensive" to "intensive" was found to have a significant negative effect on probability of job

preference (p < 0.001); manipulation of leadership growth opportunity from "not discussed" to

"discussed" was found to have a significant positive effect on probability of job preference (p <

0.001); manipulation of social characterization of work from "individualistic" to collaborative" was

found to have a significant positive effect on probability ofjob preference (p < 0.001); and,

manipulation of social characterization of work from "individualistic" to "inter-organization

coordination" was found to have a significant positive effect on probability of job preference (p <

0.01). These significant effects represent general trends in job configuration preferences observed at

the full-sample level.

After establishing the baseline set of AMCEs shown in Figure 2-2, we conducted

verification and robustness checks upon these results, as outlined in Section 2.3.4. We began by

verifying the mutual independence of attribute manipulation effects by evaluating the statistical

similarity of attribute state indicator variables' regression coefficients computed in two different

ways: first, by separately regressing the dependent variable on each attribute state indicator variable

by itself, and, second, by regressing the dependent variable on the full set of state indicator variables

together. We employed Stata's suest post-estimation command to test the null hypothesis that

specific attribute states' coefficients, when computed in these two different ways, were equal. We

found we could not reject this null hypothesis for any of the attribute state indicator coefficients (p >

0.1 for all tests) in support of the notion that the survey experiment's attribute manipulation effects are

mutually independent from one another. Next, we verified that attribute manipulations' effects were

independent of job profiles' physical position within the survey form - specifically, the left and right

side positions on a given page, and the first, second, and third page positions across the experiment's

three pages. To accomplish this test, we again evaluated the statistical similarity of job attribute state
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indicator coefficients computed in two ways: first, by regressing the dependent variable on the set of

state indicator variables (e.g., our baseline model), and, second, by regressing the dependent variable

upon the set of attribute state indicators variables along with indicator variables for left/right and

first/middle/last page positions, as well as the full set of interaction terms between the position

indicator variables and the attribute state indicator variables. Interaction terms are necessary for this

test because attribute states are randomized with respect to job profile positions; thus, these terms allow

us to detect whether there are undesirable interactions between job profile positions and attribute states

influencing the dependent variable. Again, we used Stata's suest command to conduct this test, where

the null hypothesis was that attribute state indicator variables' coefficients were equivalent when

computed in these two different ways. We again could not reject this null hypothesis for any of the

coefficient equivalency tests (p > 0.1 for all tests), indicating support for the notion that job attribute

manipulation effects are independent of job profile position. This latter test also verified that the non-

experimental job profile parameters listed in Table 2-3 (e.g., information on "salary" and "about the

company") had no appreciable effect on job preference, since these parameters were set to vary

consistently by job profile position.

We next conducted a robustness check, as outlined by Hainmueller and Hopkins (2015), to

assess the sensitivity of this study's job preference results to differences between forced-choice and

appeal scale measurement approaches. As shown in Figure 2-1, both of these types of measures

followed each of the experiment's job profiles within the survey forms. The analyses conducted

thus far in this section have utilized the forced-choice data. In carrying out the robustness check, we

first dichotomized the appeal scale data by coding all responses above the scale midpoint as "1" and

all remaining responses as "0." We then ran the same regression analysis used to generate Figure 2-

2, above, except that we employed the dichotomized appeal scale variable as the dependent variable,
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resulting in a set of AMCEs for the job attribute manipulations that are similar to those shown in the

baseline model in Figure 2-2. We report these results in Figure 2-A l in this chapter's appendix.

Because the substantive meanings of the forced-choice job preference measurements and the appeal

scale measurements are not identical, the results cannot be formally compared. However, as

Hainmueller and Hopkins (2015) suggest, robust results should convey the same general

conclusions about preference behavior across the two measurement methods, as we show to be the

case in Figure 2-A1; here, we observe that the same job attribute manipulations that are shown to be

statistically significant in Figure 2-2 are also significant in Figure 2-Al, each with the same effect

directionality. This robustness check suggests that the forced-choice measure did not unrealistically

constrain participants' ability to express job preference.

Once the experiment's results were confirmed to uphold conjoint analysis assumptions and

measurement conventions, we conducted realism checks, as outlined in Section 2.3.4, for the job

attribute manipulations. As discussed, we expected the mean dichotomized job appeal ratings from

participants expecting to work as engineers to be higher than those of participants expecting to work

outside of traditionally categorized engineering roles. Results support these expectations: a clustered

chi-square test indicates a significant association between job appeal and engineering career intent

(chi-square = 27.62; p < 0.00 1), where mean appeal among those with engineering career intent was

0.77 and that from among those with non-engineering career intent was 0.66. A second realism check

assessed the full-sample mean job appeal ratings for all 24 combinations of job attributes composing

the set of experimental job profiles. Here we checked to ensure that no specific job profile was rated

as near-universally unappealing by participants. Figure 2-A2 in this chapter's appendix shows the

mean job appeal values (with 95% confidence intervals) for all job profile configurations; as

indicated, the least-appealing job profile configuration was found to have a mean appeal value of 0.57
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(e.g., meaning that it was rated as appealing 57% of the time), while the most-appealing job profile

configuration had a mean appeal rating of 0.91. Hence, substantive subsets of participants found the

overall least- and most-appealing jobs to be appealing and unappealing, respectively, suggesting that

neither generated universal sentiment among participants. These realism checks provide confidence

that the set of experimental job profile configurations contains substantial but reasonable variation in

attractiveness for the purposes of examining job preference sorting patterns among engineering

students.

Next, we conducted manipulation checks, as described in Section 2.3.4, to assess participants'

recognition of job attribute differences across job profiles in the experiment. Here, we asked respondents

to assess whether they felt various aspects of jobs differed meaningfully across job profiles (see Table

2-A2 in this chapter's Appendix for manipulation check questions). Participants assessed eight

questions about job differences, four of which referred to attributes that were in fact manipulated across

the experimental job profiles, while the other four referred to attributes of that were not part of the

experimental manipulations. As expected, participants' responses indicating they detected meaningful

variation were significantly higher for the intentionally manipulated attributes (0.63/1 mean response)

compared to for the non-manipulated attributes (0.11/1 mean response). We proceeded to formally test

whether the manipulation checks for each intentionally manipulated attribute produced significantly

higher recognition responses from participants compared to the checks for each non-manipulated

attribute. We accomplished this assessment by running pairwise Wilcoxon signed-rank tests for each of

the 16 possible comparisons: for each check of participants' recognition response to an intentionally

manipulated attribute, we test whether the recognition response is significantly higher in comparison to

their responses for each of the four non-manipulated attributes. Table 2-A3 of the appendix presents the

results of these tests, showing a Z-statistic and significance level for each pairwise comparison - in all

118



cases, the mean recognition responses are found to be significantly higher for the intentionally

manipulated attributes than for the non-manipulated attributes.

Based on the tests and checks described in this section, we deemed the baseline model, as

shown in Figure 2-2, to represent a valid baseline model ofjob preference for our sample of

engineering students (for the limited set of job attribute states examined). With this baseline

established, we proceeded to examine preference differences across different participant subgroups

of interest. Such subgroup analysis can be carried out in two ways: by repeating the type of

regression analysis used to generate Figure 2-2 (e.g., regressing the job preference dependent

variable upon the job attribute state indicator variables) for conditional subgroups among the sample,

or, by formally testing for interaction effects between subject characteristics and job attribute

manipulations within a full sample model. We present the former type of analysis, conditional

modeling, in the next section (Section 2.4.3 - Job attribute manipulation effects upon conditional

subgroups 'job preferences) and present the latter type, interaction effects analysis, in Section 2.4.4.

These two approaches provide alternate means of observing the same phenomena - differences in job

attribute manipulations' effects on job preferences across different subgroups - with each approach

offering convenient means of conducting different types of comparisons. For instance, the conditional

modeling approach allows for simultaneous comparison of full sets ofjob attribute manipulation

AMCEs across different subgroups. We employed this approach to generate a comprehensive table

of conditional AMCEs for numerous theoretically relevant subgroups in our sample, as presented in the

next section. Meanwhile, we employed analysis of interaction terms within full sample models in order

to formally test for such terms' ability to explain additional variance in job preference behavior at the

full sample level - an investigation aligned with the central question of this chapter. In the interactions

analyses presented in Section 2.4.4, we first graphically examine the individual interaction effects of
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interest associated with the specific hypothesized interactions we presented in Sections 2.2.1 - 2.2.4,

as based upon the pertinent literature. After examining these interactions individually, we then tested

them together in a full-sample regression model in order to verify that their statistical significance

held and that their addition to the model improved overall model fit.

2.4.3 Job attribute manipulation effects upon conditional subgroups 'job preferences

This survey experiment's primary dependent variable, dichotomous job preference, has, by

definition, an overall mean value of 0.5 for any particular subgroup of participants, provided that the

subgroup is identified by a variable not associated with the experiment's job profile attribute

manipulations. This is true because the experiment's pairwise forced-choice measure of job preference

counts any participant's choice of preferred job profile from among a given pair as a choice against the

other profile from the pair. Thus, a comparison, for example, of females' and males' overall means of

the job preference variable yields an identical value of 0.5 for both groups. In order to meaningfully

compare females' and males' job preferences, one must therefore assess the subgroups' differences in

their allocation ofjob preference choices across different job attribute states. One way to facilitate such

an assessment is by regressing the job preference variable upon the job attribute manipulation indicator

variables, as was described in the full sample analysis of the preceding section, conditionally for each

subgroup, and then observing differences in job preference AMCEs across job attribute manipulations

for each subgroup. Figure 2-3 shows an example of such a comparison of conditional regressions, in

this case showing the job attribute manipulation AMCEs for participants expecting to work as

engineers (in the left side plot) alongside such AMCEs for participants not expecting to work as

engineers. Comparing these models reveals significant differences between the expectant engineers'

and non-engineers' AMCEs for three attribute manipulations: mathematics intensity (p <0.001),

expected commitment duration (p < 0.05), and emphasis of inter-organization coordination (p <
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0.05). The significance levels for these differences in manipulation effects were determined

analytically by running post-estimation coefficient comparison tests in Stata between the conditional

regression models. The results suggest that an increase in a job's mathematics intensity has a

significantly greater negative effect on estimated probability of job preference for the expectant non-

engineers (-0.25) compared to the expectant engineers (-0.08). This result is congruent with recent

findings that individuals' enjoyment of working with mathematics correlates significantly with their

expectation to work as engineers (see: Chapter 1). Smaller differences in manipulations' effects on job

preference probability were observed for the other two significant manipulation differences. For

instance, the imposition of job commitment duration expectations produced a significant positive effect

on job preference probability among expectant engineers (+ 0.03), but not for expectant non-engineers

(-0.02; not significant). Expectant non-engineers, meanwhile, exhibited a more positive job preference

probability when inter-organization coordination was emphasized in jobs (+ 0.12) compared to

expectant engineers (+ 0.04).

Conditional model comparisons, like that shown in Figure 2-3, can be conducted for any

subgroups of interest among the experiment's sample of engineering students. We present results from

a series of such model comparisons, in tabulated form, rather than graphical form, in Table 2-5 for

subgroups pertinent to the six key supply-side career-related independent variables presented in Table

2-1, as well as for gender. Table 2-5 thus provides a broad overview of job preference trends among

engineering students. While an exhaustive analysis of similarities and differences among student

groups is beyond the scope of this study, we proceeded to formally evaluate the five particular

subgroup-specific differences in job preference behaviors hypothesized in Sections 2.2.1 - 2.2.4. We

first examined these hypotheses by observing subgroup differences in AMCEs between the conditional

models shown in Table 2-5. For instance, we hypothesized that those engineering students who
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anticipated enjoying work involving advanced math would respond differently to informedness about

jobs' mathematics intensity compared to other engineering students; data shown in Table 2-5 implies

support for this assertion based on the subgroups' differences in magnitude and statistical significance

levels for the conditional AMCEs for the mathematics intensity attribute manipulation. We found these

differences in the subgroups' AMCEs to be statistically significant (p <0.001) by conducting a

coefficient comparison test in Stata. Similarly, results in Table 2-5 suggest support for our four other

hypothesized differences in job preference behavior by student subsets; specifically: students with

different levels of anticipation of promotion into early-career leadership roles appear to respond

differently to information about jobs' leadership growth opportunities; students with different levels of

strength of professional identity appear to respond differently to information about jobs' commitment

duration expectations; students with different levels of satisfaction with creative opportunities at

engineering jobs appear to respond differently to information about jobs' commitment duration

expectations, and females appear to respond differently than males to information about engineering

jobs' social characteristics (in both of the two different experimental manipulations of jobs' social

characteristics). We again employed coefficient comparison tests, based on the conditional model data

shown in Table 2-5, to examine each of these observed differences in job preference behavior, and

found each to be statistically significant at p < 0.05 or better. In the next section, we individually

analyzed each of the interaction effects underlying these observed differences in subgroups' job

preference behavior; there, we formalize our conclusions about empirical support for each of the

effects' associated hypotheses.
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Table 2-5. Job attribute manipulations' effects upon probability of job preference - comparisons
across key sample subgroups

Job attribute manipulations'

0

0 3~t o '.- g

00 00 ~

10 00 .o

0 ~Z emu CJ CU

Participant characteristics (conditional subgroups): : .S C: C 8 . . 8
Full sample (n = 1,054) -0.119*" 0.222*" 0.018 0.180" 0.056**

(0.014) (0.013) (0.013) (0.016) (0.017)

Expecting to work as an engineer (n = 745) -0.078"* 0.225*** 0034. 0.175*** 0.043*
Expctngtowok s n ngner n 75)(0.017) (0.015) (0.016) (0.019) (0.020)

Not expecting to work as an engineer (n = 252) -0.251*** 0.21' -0.025 023*** (0.08

Male (n = 802) -0.111*** 0.233"* 0.032* 0.157"* 0.026
(0.016) (0.015) (0.015) (0.018) (0.019)

Female (n = 244) -0.148*** 0.181" -0.026 0.262*** 0.161***
(0.030) (0.027) (0.028) (0.033) (0.032)

Had a positive engineening internship experience (n = 730) (0.17) (0.)05 0.016 0.19) 0.020)

Otherwise (n = 288) -0.130*** 0.221" 0.023 0.179"* 0.029
(0.026) (0.025) (0.024) (0.031) (0.033)

Averse to financial isk-taking (n = 824) -0.116*** 0.218*" 0.031* 0.184" 0.059"
(0.016) (0.015) (0.015) (0.018) (0.019)

Otherwise (n = 215) -0.128"' 0.236" -0.023 0.162" 0.056
(0.030) (0.027) (0.030) (0.034) (0.034)

Would enjoy working at a job involving advanced math (n = 590) -0.026 0.229- 0.038' 0.159"' 0.053'
(0.018) (0.017) (0.018) (0.021) (0.023)

Otherwise (n = 452) -0.233"* 0.204" -0.001 0.206"* 0.061*
(0.021) (0.020) (0.020) (0.024) (0.025)

Identifies with a specific profession (n = 578) -0.078*** 0.225** 0.052" 0.184". 0.044
(0.019) (0.017) (0.018) (0.022) (0.023)

Otherwise (n = 473) -0.165*** 0.223*** -0.023 0.178"' 0.074*
(0.020) (0.019) (0.020) (0.023) (0.024)

2 -0.150"* 0.267*** 0.033 0.178-' 0.074**
Anticipates promotion into a formal leadership role by age 25 (n = 529) (0.020) (0.017) (0.018) (0.021) (0.022)

Otherwise (n = 516) -0.086*** 0.176*** 0.005 0.1863*** 0.039
(0.020) (0.019) (0.020) (0.024) (0.025)
-0.095*** 0.233*** 0.051* 0.156"' 0.061*

Satisfied with creative opportunities at engineering jobs 2 (n = 527) (0.021) (0.018) (0.018) (0.022) (0.024)

Otherwise (n = 512) -0.141*** 0.216"' -0.015 0.205"' 0.051*
(0.019) (0.019) (0.020) (0.023) (0.024)

Notes:
1. The values in each cell are estimates of Average Marginal Component Effects (AMCEs) on the probabilities that subjects from conditional subgroups

will prefer a job based on differences in specific job attribute states. Robust standard errors are in parentheses under AMCE values. Subgroup sample
sizes are shown next to subgroup labels in the left most columns; these values are sometimes lower than these subgroup sizes reported in the overall
study because participants needed to have responded to both subgroup categorization survey questions and job assessment questions to be counted
here.

2. These variables were dichotomized from 7-pt scale variables for the purposes of subgroup comparison; this split distinguishes those who responded
with values above the scale midpoint from the others.
"p<0.001; **p<0.01; *p<O.05 (two-tailed tests)
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2.4.4 Interactions analysis: development and evaluation of an integrated model ofJob preference

We examined each individual hypothesized job preference interaction effect graphically, and

then assessed the significance of all such effects together in a combined job preference regression

model. We graphically inspected interactions by plotting estimates of conditional job preference

probabilities, with 95% confidence intervals, for participant subsets of interest at two different attribute

states. Figure 2-4 shows such an analysis for the mathematics intensity attribute manipulation for two

subsets of participants: those who anticipate enjoying work involving mathematics, and those who do

not. Figure 2-4 shows an asymmetric job preference effect across the subsets - those who do not

anticipate enjoying work involving advanced math exhibit a significant drop in job preference

probability when informed that jobs entail intensive math, while those who anticipate enjoying

work involving advanced math exhibit no statically significant change in preference probability

between the job attribute states. In this latter case, participants' probability of job preference was

near 0.5 for both math intensity job attribute states, suggesting that these individuals' attitudes

toward jobs are minimally impacted by differences in jobs' math intensity. For the other subset of

individuals, however, we observe a drop in estimated probability ofjob preference of 0.23 between

jobs entailing non-intensive math and jobs that are math-intensive. We formally test for the

significance of this interaction by comparing the math intensity attribute state indicator variables'

coefficients between conditional regressions for these two participant subsets, and find the

coefficients to be significantly different (p < 0.001). This result indicates support for our

hypothesis of a significant interaction between individuals' perception of math enjoyment and their

informedness ofjobs' math intensity.
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Figure 2-4. Interaction analysis - Individuals' anticipation of enjoying work involving advanced
mathematics and jobs' mathematics intensity

We next examined the hypothesized interaction between individuals' anticipation of

promotion into early-career leadership roles and their informedness about leadership growth

opportunities at engineering jobs. Figure 2-5 shows plots of conditional job preference

probabilities for the subsets of participants who anticipate promotion to a formal leadership

position by age 25, and those who do not. For both subsets, probabilities ofjob preference were

estimated for two job attribute states: cases where jobs' leadership growth opportunities are not

discussed, and cases when such opportunities are discussed. Figure 2-5 shows that those

participants who anticipate early-career promotion into leadership positions demonstrate a more

substantial increase in job preference probability when informed about leadership growth

opportunities at engineering jobs compared to the other participants. In the former case,

participants' estimated probability ofjob preference increases from 0.37 to 0.63 upon becoming

informed of leadership growth opportunities at jobs (a probability increase of 0.26), while in the
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latter case, estimated job preference probability increases by a more modest 0.18. We again assess

the statistical significance of this interaction by comparing coefficients for the leadership growth

attribute state indicator variable between conditional regressions for the two participant subsets,

and find the difference to be significant (p < 0.001). This result indicates support for our

hypothesis of a significant interaction between individuals' anticipation of promotion into a formal

leadership role by age 25 and individuals' informedness ofjobs' leadership growth opportunities.

0.8
+ Subgroup: Anticipates promotion into leadership role by age 25 (n = 529)
* Subgroup: Otherwise (n = 516)

0.7

a

0.6

0.4

IL

0.3

0.2 Leadership growth Leadership growth
opportunity opportunity

not discussed discussed

Job attribute state

Figure 2-5. Interaction analysis - Individuals' anticipation of promotion to a leadership role by age
25 and jobs' leadership growth opportunity

We examined two interaction effects between participant characteristics and jobs' expected

commitment duration. First we assessed the interaction of participants' strength of professional identity

with manipulation of this job attribute. Figure 2-6 shows conditional job preference probabilities for

those who identify with a specific profession and for those who do not; here, both subsets' probabilities

of preferring jobs were estimated for jobs with expressed commitment duration expectations, and for
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jobs without such expectations. Figure 2-6 shows differences in the job attribute manipulation effect

upon these two subsets, indicating that those with a strong professional identity reacted more positively

to informedness of an expected commitment duration (a 0.05 increase in preference probability)

compared to those with a comparatively weak professional identity (a statistically insignificant

negative response). This difference in job attribute manipulation effect upon these groups was

found to be statistically significant in a comparison of coefficients for the commitment duration

attribute state indicator variable between conditional regressions for the two participant subsets (at

p < 0.01), supporting our hypothesis of a significant interaction between individuals' strength of

professional identity and informedness ofjobs' expected commitment duration. Secondly, we

assessed the interaction between participants' satisfaction with creative opportunities at

engineering jobs and jobs' expected commitment duration, as shown in Figure 2-7. Here we again

found a difference in the expected commitment duration job attribute manipulation's effect upon

participant subsets, where those who are satisfied with creative opportunities at engineering jobs

exhibited an 0.05 increase in estimated probability ofjob preference when informed of

commitment duration expectations, and those who are unsatisfied with creative opportunities at

engineering exhibited a near-flat response. This difference in the job attribute manipulation effect

upon these groups was also found to be statistically significant in a comparison of coefficients for

the commitment duration attribute state indicator variable between conditional regressions for the

two participant subsets (at p < 0.05), supporting our hypothesis of a significant interaction between

individuals' satisfaction with creative opportunities at engineering jobs and informedness of jobs'

expected commitment duration.
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Figure 2-6. Interaction analysis - Individuals' strength of professional identity and jobs' expected
commitment duration
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Finally, we examined interactions between gender and social characterization of engineering

jobs. Here, we ran two analyses corresponding with two distinct manipulations of the social

characterization job attribute: first, we assessed the interaction between gender and the manipulation

from individualistic to collaborative team-based roles, and next, we assessed the interaction between

gender and the manipulation from individualistic to inter-organization coordinative roles. Figure 2-8

shows conditional job preference probabilities for females and males, and for jobs that are largely

individualistic compared to jobs that are largely collaborative. This figure shows that both females and

males reacted positively to this job attribute manipulation, but that females reacted distinctly more

positively than males: females exhibited a 0.27 increase in estimated job preference probability as

jobs' social characterization is shifted from individualistic to collaborative, while males exhibited a

0.16 increase. This difference in manipulation effect upon females and males was found to be

statistically significant in a comparison of coefficients for the collaborative role attribute state

indicator variable between conditional regressions for females and males (p < 0.01). Next, we ran a

similar analysis for gender's interaction with the manipulation of jobs' social characterization from

individualistic to inter-organization coordinative, as shown in Figure 2-9. Here we again see that

females reacted distinctly more positively than males, exhibiting a 0.16 increase in estimated job

preference probability compared to males' near-flat response to this attribute manipulation. We again

find this difference in manipulation effect to be statistically significant between genders based on a

comparison of coefficients for the inter-organization coordination state indicator variable between

conditional regressions for females and males (p < 0.001). As discussed in Section 2.2.4, we generally

hypothesized, based on the literature, that gender would react significantly to informedness about

social components of engineering work in shaping engineering students' attraction to jobs. Here we

tested two types of interactions between gender and manipulation of jobs' social components, and the
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results of both tests find support for the general hypothesis that gender and knowledge of engineering

jobs' social characteristics influences students' expressed job preference.
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We proceeded to construct an integrated job preference model that encompassed all six of the

interaction effects between job attribute manipulations and participant-specific characteristics that we

assessed graphically in this section. Here, we again employed linear regression, as such provides a

non-parametric means of estimating conjoint experimental manipulation effects, given the assumptions

previously discussed about attribute randomization and manipulation effects' mutual independence

(see Section 2.3.4, herein, and Hainmueller et al., 2014). Table 2-6 shows construction of the

integrated model. Model 1 within this table, which includes only job attribute manipulation terms,

represents the baseline model introduced in Figure 2-2 earlier in this chapter. Model 2 in Table 2-6

includes the interaction terms for the six interactions, as well as the participant-specific independent

variables involved in these interactions. Observing interactions' significance is not as straightforward

in this context as it was in our graphical inspection of individual interaction effects; here, a given

interaction's effects can manifest in the coefficients for any of the independent variables involved in

an interaction: attribute manipulation indicator variables (e.g., manipulation base terms), participant-

specific independent variables (e.g., participant characteristic base terms), and in the interaction terms

themselves. Thus, we expected that the introduction of a significant interaction would result in

significant coefficients for one or both of an interaction's base terms, or would result in a significant

coefficient for the interaction term itself. In this manner, we observe in Model 2 that all six of the

incorporated interaction effects are statistically significant, as expected. Further, an incremental F-test

between Model 1 and Model 2 produced a statistically significant F-statistic (F = 9.37, p <0.001), and

Model 2 shows a relative increase in pseudo R-square parameter compared to Model 1, suggesting

that the introduction of these terms to Model 2 explains additional variance in the experiment's job

preference dependent variable compared to Model 1.
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Table 2-6. Models of job attribute manipulations' effects on job preference - with and without interaction effects

Dependent variable: job preference

independent variables Model 1 Model 2

Job Attribute A, Mathematics intensity -0.119*** -0.419***
(0.014) (0.041)

Job Attribute B, Leadership growth opportunity 0.222*** 0.083
(0.013) (0.048)

Job Attribute C, Commitment duration expectation 0.018 -0.118*

(0.013) (0.056)
Job Attribute D1, Social characterization as collaborative and team-based 0.180*** 0.1 59***

(0.016) (0.018)
Job Attribute D2, Social characterization as inter-organization coordinative 0.056** 0.024

(0.017) (0.019)

Would enjoy working at a job involving advanced mathematics -0.062***

(0.008)
Identifies with a specific profession -0.015

(0.008)
Anticipates promotion into a formal leadership role by age 25 -0.013**

(0.005)
Satisfied with creative opportunities at engineering jobs -0.010

(0.005)
Female -0.067**

(0.022)
(Would enjoy working at a job involving advanced mathematics) x (Job Attribute A) 0.130***

(0.017)
(Anticipates promotion into a formal leadership role by age 25) x (Job Attribute B) 0.030**

(0.010)
(Identifies with a specific profession) x (Job Attribute C) 0.032*

(0.015)
(Satisfied with creative opportunities at engineering jobs) x (Job Attribute C) 0.015

(0.010)
(Female) x (Job Attribute D1) 0.093*

(0.038)
(Female) x (Job Attribute D2) 0.140*'*

(0.038)

Constant 0.359*** 0.657***

(0.016) (0.044)

Incremental F-test 9.37*
pseudo R2  0.086 0.102
Total observations 6,220 6,000
Clusters 1,054 1,014

Notes:
All models are linear regression models; robust standard errors are in parenthesis. Reductions in observation count
between successive models is due to the addition of variables to the models: only participants who completed all
corresponding survey questions are included, and some respondents did not respond to certain survey questions about
participant-specific information.
"*p < 0.001; **p <0.01; p < 0.05 (two-tailed tests)

The results of this study's conjoint survey experiment suggest that interaction effects between

engineering students' individual characteristics and jobs' attributes influence engineering students' job
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preferences. These results lend support to the study's central investigation: as suspected, we find

empirical evidence that the general trends in job preferences exhibited by a broad sample of

engineering students contain variance that can be further explained by accounting for differences in

how key subsets among such students uniquely react to differences across engineering jobs.

2.4.5 Limitations ofresults and considerations for future work

Research design limitations should be taken into consideration when interpreting the

generalizability of this study's findings. First, though we were interested in examining mechanisms

underlying job preferences among all types of engineering students, we note that our research sample

was limited to a specific subset of engineering students: mechanical engineering majors. This

sampling choice reflects an intentional tradeoff in research design. Specifically, the constrained

sample allowed us to minimize and control for potential confounding effects on attitudes toward

engineering jobs that could have been present among participants if the sample had been exposed to

the varied job market conditions of differing engineering fields. This choice to constrain participants'

degree field also allowed the study's experimental job profiles to include a realistic, rather than

generic, job title and to include realistic supporting information. The experimental job profile

manipulations we tested were drawn from the broad literature on engineering practice and pertain to

job choice considerations faced by students in a wide array of engineering fields; however, this

study's survey dataset does not allow us to empirically confirm that these results will generalize

across a broader sample of engineering students from diverse disciplines. Follow-on work that

replicates these findings among engineering students from different degree fields would increase

confidence in the generalizability of the findings.

We next acknowledge that participants' stated preferences toward (or against) the simulated

job profiles in our experiment cannot be confirmed to directly map to real-life job choice behaviors.
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Critics have highlighted the importance of survey question wording (Berinsky, 2017) and choice of

research context (Kagan, 2017) to the validity of findings from studies attempting to predict human

attitudes or behaviors toward real-life situations. Berinsky (2017), for instance, discusses that

achieving correct survey question interpretation often involves adjusting the level of specificity or

abstractness of wording to a level most appropriate for the sample of participants. In this regard, we

designed the experimental job profile wording specifically for the audience of U.S. senior year

mechanical engineering students, and piloted the survey experiment with several student volunteers in

the year prior to the main study to assess whether wording was being interpreted correctly. Kagan

(2017), meanwhile, cautions against conducting studies on human attitudes or behaviors in contexts

where research participants are far removed from the real-life phenomena being investigated - for

instance, asking participants to express how they feel about a threat that is not real, or asking

participants to envision how they would respond if they were someone or someplace they were not -

citing potentially poor external validity of findings from such studies. Here, we selected our sample

and research context conscientiously to mitigate this type of concern. We did not ask participants to

envision being anyone they were not - our approach was to measure participants' job preferences

whilst in their own shoes: as senior year engineering students at a timeframe when the engineering job

market was likely near the forefront of their minds. Follow-on research, however, could further

increase our confidence that the preference effects identified in this study translate to real-life job

pursuit behaviors by aligning experimental data collection and real-life job pursuit contexts even more

closely. For instance, future research could test for engineering students' job preferences toward

actual positions in real job search-related situations, such as at university career fairs. This type of

research design would require partnerships with industry employers, and could test the effects of

randomized interventions implemented in the way that real engineering positions were advertised in
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the promotional materials used at the career fairs. Researchers could measure relative job pursuit rates

of career fair visitors in response to the various randomized versions of jobs' promotional materials -

provided that materials sufficiently matched real positions associated with them - meanwhile,

research-pertinent information about individuals could be collected upon the individuals' visits to

career fair booths. Such an arrangement could be repeated at career fairs at multiple universities. This

type of research design, while logistically intensive, could provide additional empirical support

toward the findings of this study.

Finally, we call attention to the particular job attribute manipulations we chose to incorporate

into this study's experiment. While the states of the attributes that we examined in the experiment - in

areas of mathematics intensity, opportunities for growth into leadership positions, commitment

duration expectations, and social characteristics of work - are discussed prevalently in the literature,

we lack information on the specific proportions of real entry-level engineering jobs that embody each

attribute state (for instance, the proportion of engineering jobs best characterized as mathematics-

intensive computational specialist roles). The implications of this study's findings could be

strengthened by research that assessed these proportions in industry, such as through surveys of

engineering employers or through mining of job posting data. While we assume, based on the

presence of supporting literature, that each of this study's job attribute states composes at least a

substantive minority of engineering positions, such research could verify this assumption. Further, this

type of follow-on research could help identify whether there existed any notable gaps between

proportions of engineering job types preferred by engineering students and such jobs' availability in

the labor market - this information could be of use to employers in their design and marketing of

future positions. Finally, engineering jobs characterization research could be useful in identifying

136



additional key dimensions of variance among jobs, in areas beyond the four examined in this study, to

determine whether follow-on studies should incorporate additional pertinent attribute manipulations.

2.5 Discussion and conclusions

This study's experiment allowed us to examine how engineering students' stated preferences

for particular engineering jobs are shaped by differences in certain key attributes across such jobs.

Further, the study facilitated an analysis of how engineering jobs' attributes interact with individual-

level characteristics - engineering students' career-related beliefs and expectations - to influence such

job preferences. Our findings carry implications for those who are involved in developing and

recruiting future engineering workforces. For instance, results suggest that heightening students'

awareness of the variety among engineering work could improve job matching at the college-careers

interface; thus, we call attention to collegiate educators' potential for enhancing students' awareness of

this variety as part of the engineering educational experience. Our results also shed light on how

differences in the detailed information conveyed about engineering jobs during employers' recruiting

and hiring processes could shape engineering students' attraction to jobs, and, in turn, could influence

the sorting of various candidate subsets into pursuit or non-pursuit action choices relative to certain

available positions. Finally, this study contributes empirical evidence in support of implications of

past analyses: that differences across engineering jobs could be a significant source of variance in job

preferences among those in the engineering pipeline (see, e.g., Perlow & Bailyn, 1997; Brunhaver et

al., 2013).

Among a broad sample of senior year mechanical engineering students, we detected general

preference trends suggesting that students tend to favor certain engineering jobs over others: jobs that

are comparably lower in mathematics intensity; jobs that are tied to specific leadership growth paths,

as opposed to those with unstated growth paths; and those that are more socially collaborative or
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coordinative, as opposed to those that are primarily individualistic. These broad trends must be

interpreted with caution: they are generalizations at our full-sample level, and should not be taken to

imply, for instance, that few engineering students are attracted to jobs involving intensive mathematics,

or that few students prefer individualistic work. Quite the contrary: in instances where the randomized

survey experiment presented participants with pairs of job profiles where one profile featured

intensive math, and the other featured non-intensive math, participants expressed preference for the

profile with intensive math 37.3% of the time; and, in situations where participants were presented

with job profile pairs where one profile featured individualistic work, and the other emphasized

collaborative or coordinative work, participants expressed preference for the profile with

individualistic work 36.9% of the time. Thus, while it may be useful to know what types of jobs

majorities of engineering students prefer, this study's primary research contribution lies in identifying

the nuanced job preference patterns of student subsets that underlie these broader trends. We conclude

this chapter by discussing these patterns and their implications relative to key engineering workforce

development issues.

We found, for instance, that differences in students' stated job preferences in response to

manipulation of jobs' mathematics intensity showed notable asymmetry between student subsets

(Figure 2-4). Those students who anticipated enjoying work involving advanced math (55.9% of the

sample) exhibited an insignificant difference in job preference probability between jobs featuring low

and high mathematics intensity, while those students who did not anticipate enjoying work involving

advanced math (42.6% of the sample), exhibited a significant relative drop in job preference

probability when informed that jobs involved intensive math. This asymmetric effect is notable

because it suggests that under-informedness among students about jobs' mathematics content may not

merely introduce random error in student-job matching; rather, such under-informedness could cause a
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skewed mismatching of students to jobs. Literature suggests that engineering work carries a general

reputation as math-intensive (NAE, 2008); yet, studies also indicate that engineering positions differ

substantively among each other in terms of actual math intensity (Kent & Noss, 2002; Alpers, 2010;

Goold, 2012), and that positions often do not involve the same forms of mathematics work students

grow accustomed to in engineering school (Alpers, 2010; van der Wal et al., 2017). Thus, if students

are under-informed about jobs' mathematics intensity, they may default to anticipating that a given

engineering job is more math-intensive than it really is. In turn, our findings suggest that those less

assured of their enjoyment of working with math could be more likely than their peers to avoid

engineering jobs that they might actually be a good fit for - an implication potentially salient toward

gender diversity in light of prior research. For instance, prior studies have found that, net of actual

math ability, women students possessed lower mathematics confidence, on average, compared to men

(Correll, 2001, 2004) - a phenomenon of self-assessment bias believed to be tied to gendered cultural

beliefs about roles and abilities (Hyde et al., 1990; Correll, 2001; Correll, 2004). If such a

phenomenon persists, our findings suggest women could be disproportionately dissuaded from

considering engineering positions if under-informed about the details of positions - until such a

gendered confidence gap is closed. Based on this study's survey data, we indeed found that the females

in our sample reported significantly lower anticipated math enjoyment, on average, compared to the

males (p < 0.05; based on a bivariate Pearson chi-square test). We also found that the experiment's

math intensity manipulation's AMCE was more negative for females (-0.148) compared to males (-0.111),

as shown in Table 2-5, though this difference in AMCE was not statistically significant in our sample

- we call attention to it simply because of its theoretical relevance and its congruence with the

statistically significant difference between females' and males' anticipated math enjoyment. Yet, the

concern about potential mismatching of students and jobs due to under-informedness about jobs' math
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intensity is not limited to gender equity considerations. All participants in this study's sample were on

track to successfully complete an accredited engineering degree, and thus possessed sufficient

mathematics aptitude for that accomplishment - our results suggest that any of the sample's

substantial subset of candidates who did not express anticipation of mathematics enjoyment could be

more susceptible to dissuasion from pursuing engineering jobs due to under-informedness about jobs'

math intensity than their peers. These findings imply that educators should act to make better

connections between how math is used in engineering school compared to in industry, as has been

suggested (Winkelman, 2009), and should continue working to close mathematics confidence gaps

due to self-assessment biases. Meanwhile, results suggest an imperative for employers to express math

requirements accurately in job descriptions. Certainly, employers aspiring to hire computational

specialists should be clear about the mathematical obligations of such comparably math-intensive

roles, but employers looking to hire generalists should be cautious that they may inadvertently push

away highly qualified candidates if job descriptions include boilerplate language about mathematical

or analytical requirements beyond what are needed. Employers, in short, should take steps to create job

descriptions that are unique for computational specialist and generalist roles in ways that appropriately

distinguish the roles from each other.

The job preference patterns identified in response to experimental manipulation of jobs'

leadership growth opportunities carry notably different implications compared to those found for the

manipulation of jobs' math intensity. Here, although key student subsets exhibited statistically

significant differences in their average stated preferences toward jobs depending on whether leadership

growth opportunities were or were not expressed, all of the examined student subsets reacted positively

and significantly (e.g., in terms of increased probability of job preference) when jobs were manipulated

to include opportunities for growth into leadership roles (see: Figure 2-5 and Table 2-5). This finding
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is important in light of recent literature suggesting engineering employers seek an increase in

candidates with leadership abilities and aspirations (Salzman & Lynn, 2010; Cappelli, 2015). The

finding thus suggests that heightening students' awareness of leadership growth opportunities at

engineering jobs could support a key workforce development need for many employers, and could

enhance job attractiveness, on average, across the candidate pool. This is not to say that all students

should be pushed toward leadership roles - recall, the experiment's job attribute statement for

"leadership growth opportunities" framed the opportunities as "[for] qualified candidates...if

interested"; rather, our findings suggest there appears to be little downside to a campaign aimed at

increasing students' awareness of leadership opportunities at engineering jobs. We suggest, again, that

both educators and employers can contribute to this increased awareness. First, we note that the

growing contemporary movement among engineering schools to include engineering leadership

courses or programs (see: Klassen et al., 2016) appears to be well-founded, not only in response to the

literature on employers' needs, but also as a general mechanism for increasing students' cognizance of

the association between leadership and engineering careers. And, second, we again point to an

implication for employers' job descriptions and recruitment processes: our findings suggest that job

descriptions that do not mention opportunities for future growth into leadership roles are likely at a

general disadvantage in attracting candidates in the labor market compared to those descriptions that

do. We are not suggesting employers should falsely advertise such opportunities if they do not exist.

Rather, employers should consider incorporating these growth opportunities into both the design of

positions themselves, as well as into the marketing strategies for positions, in light of this study's

findings on such information's positive effect on candidates' attraction to positions.

Patterns in students' stated job preferences in response to the experimental manipulation of

jobs' expected commitment durations suggest that distinct student groups respond differently to the
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manipulation (see: Figures 2-6 and 2-7). Here, two key subsets among students - those with strong

professional identities and those satisfied with perceived opportunities for creativity at engineering

jobs - reacted positively and significantly to job profiles that included both an expected commitment

duration coupled with training and development of "specialized skills." Meanwhile, those students

who did not belong to either of these groups did not exhibit a positive response to such information;

rather, such students' responses were statistically similar between manipulated job attribute states.

We hypothesized that subsets of students with strong and weak professional identities would

react differently from one another upon being made aware of job commitment duration expectations,

and, similarly, hypothesized that subsets who were satisfied with creative opportunities at engineering

jobs would react differently from those who were not (see: Section 2.2.3). However, we were

surprised not to have measured more of a negative response to the commitment duration expectation

attribute state from those student subsets with weak professional identities and who were not satisfied

with creative opportunities at engineering jobs, given literature documenting negative impacts of

employer-imposed mobility constraint upon job appeal (Marx et al., 2015), and the ostensible lack of

a theoretic reason for these groups' to be ambivalent to such constraint. We note that our commitment

duration expectation job attribute manipulation, as operationalized, was in fact a compound

manipulation: not only did the manipulation impose an expected role commitment duration, but it also

mentioned that the job would involve skills development tied to work on advanced projects. As

explained in Section 2.3.3, the choice to include both such features in this manipulation was

intentional based on the literature: studies suggest that employer-imposed commitment expectations

were more legally viable when coupled with specialized skill development and work related to firms'

competitive advantage (Lester, 2001). We find it plausible, however, that including both such

elements in the attribute manipulation could have tempered negative responses to the manipulation,
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especially in light of literature that finds an association between employers' sponsorship of skills

development and increased retention at jobs (Benson et al., 2004). Thus, in future iterations of this

experiment, we recommend incorporating three job attribute states into this manipulation - such a

three-state manipulation could test for the effect of imposing a commitment duration expectation upon

students' job preference, both with and without the additional attribute elements related to specialty

skills development. Meanwhile, in this present study, our test of the commitment duration expectation

manipulation more generally implies that imposition of a commitment duration expectation can

produce significant differences in job attraction among student subsets.

Finally, we observed differences in the ways that females and males responded to information

about jobs' social characterizations, as was expected based on literature reviewed in Section 2.2.4.

Specifically, we found that female students exhibited a greater increase in probability of preferring

engineering jobs, compared to males, upon being informed that such jobs were rooted in collaborative

or coordinative work, rather than in individualistic work (see: Figures 2-8 and 2-9). These findings

carry potentially salient implications toward improving gender equity in the engineering workforce,

given engineering's historic reputation as centering on individualistic technical work (Seron et al.,

2018) despite substantive literature that contests that reputation's merit, finding, instead, that most

real-world engineering jobs contain substantial social, collaborative, and coordinative elements

(Bucciarelli & Kuhn, 1997; Perlow & Bailyn, 1997; Bucciarelli, 2002; Trevelyan, 2007, 2010;

Robinson, 2012; Stevens et al., 2015). Researchers associate the endurance of this reputation to

longstanding professional socialization experiences endemic to engineering schools that continue to

"valorize" individualistic technical work as a core element of what it means to be an engineer (Seron

et al., 2018, p. 133), and to an engineering professional culture that persists in under-valuing social

elements of engineering work relative to their centrality to engineering project success (see literature

reviewed by Cech, 2015, p. 63). Yet, due to this enduring reputation, we suspect that if students are
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under-informed about the details of particular engineering jobs, they might default to assuming such

jobs are more individualistic than they really are. Such a tendency, in turn, suggests a disproportionate

negative impact on females' interest in engineering jobs, given females' more negative view of

individualistic engineering jobs compared to males. Our results thus offer support to several courses

of action that could increase women's attraction to engineering jobs. First, educators should continue

refining the engineering educational experience, inclusive of student project team experiences, to

reinforce a broader conception of what it means to be an engineer - one that celebrates social,

collaborative, and coordinative roles as existing at the heart of engineering (see, e.g., Cech, 2015).

Second, educators should continue to work to identify and mitigate processes that produce gendered

technical confidence gaps during engineering school (see, e.g., Seron, et al., 2018). Employers,

meanwhile, should highlight collaborative and coordinative aspects of roles during recruiting and

hiring processes for engineering positions. While our findings indicate that females responded more

positively to information about these aspects of roles than males did, our results do not indicate a

negative response from males to this information - in fact, none of the key subsets of engineering

students we examined exhibited a negative reaction to such information (see: Table 2-5) - thus, there

appears to be little downside to a general recommendation that engineering employers' recruitment

efforts should highlight engineering jobs' social elements.

This study's findings underscore the importance of considering both individuals'

characteristics and engineering jobs' unique attributes when examining individuals' attitudes toward

working at engineering jobs. Through the use of a randomized survey experiment, we were able to

make causal inferences about job attributes' effects on engineering students' stated job preferences,

and were also able to assess the joint significance of interaction effects between student characteristics

and job attributes on such preferences. We observed that differences in job attributes explained

variance in engineering students' job preferences, but also found that such interaction effects between
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student characteristics and job attributes explained additional variance in job preferences beyond what

was explained by job attribute differences alone. It is our hope that these findings will influence future

research on engineering students' career outcomes, and will help shape education and recruitment

efforts to better facilitate the matching of students with satisfying, well-fitting jobs and career paths at

the education-careers interface. Recent studies examining processes shaping the composition of the

U.S. engineering workforce have focused largely upon supply-side explanations of students' career

outcomes - explanations centered on students' individual-level preferences, beliefs, and goals as

independent variables tied to career choices - and these works have largely assumed engineering work

to be homogenous. The findings described herein suggest that research in this area could potentially

expose greater detail in student-job sorting mechanisms if variety across engineering jobs is accounted

for in research designs. Similarly, recent federally-funded U.S. education policy efforts have largely

focused on pushing students toward engineering or "STEM" careers, while focusing little on the

effectiveness of post-education matching between students and specific sub-occupations within these

career umbrellas. Here, too, our results suggest that enhanced student-job fit could be attained if such

programs included means to better inform candidates about the substantive differences that exist

across specific roles in engineering. Our findings, in sum, indicate that accounting for differences

across engineering jobs, while continuing to account for differences among students, may be a critical

next step in advancing education and recruitment efforts aimed at strengthening the engineering

workforce - in terms of the workforce's demographic diversity, the satisfaction of its workers, and the

satisfaction of its employers.
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Chapter Appendix

Table 2-Al. Survey questions for participant-specific independent variables

Survey questions:
Key independent variables from engineering student occupational intentions model (Magarian and Seering, 2018a)

Had positive or negative engineering internship experience(s)
Have you ever worked at an engineering internship or co-op?
(either at a company or at a government/non-profit organization; this question does not refer to university labs)

[Yes] [No]

If yes, please check one or both of the following:
[At least one internship/co-op was a positive experience]
[At least one internship/co-op was a negative experience]

Averse to financial risk-taking
If you had to choose between either of the following compensation schemes, which appeals more to you?
(please check only one)

[Guarantee of a consistent upper-middle class salary, but with no chance of additional large monetary payouts]
[A chance for large non-salary monetary payouts, but with high uncertainty in your annual salary and/or job security]

Would enjoy working at a job involving advanced mathematics

Which of the following better describes your relationship with mathematics?
(please check only one; assume "advanced mathematics" is within the bounds of your major's curriculum)

[A job that regularly requires use of advanced mathematics concepts would be enjoyable for me]
[A job that regularly requires use of advanced math would not be enjoyable for me]
[I'm unsure]

Identifies with a specific profession
When you envison your ideal career, is it based upon a specific profession?
(e.g., doctor, engineer, lawyer, consultant, artist, etc.)

[Yes] [No] [Unsure/can't envision ideal career]

Anticipates promotion into formal leadership role by age 25
How likely is it that you will be appointed to a formal leadership position early in your career? (e.g., by age 25)
Please circle the appropriate number on the scale:

[7-pt scale: very unlikely, unsure, very likely]

Satisfied with creative opportunities at engineering jobs

How satisfied are you with the availability of job opportunities that allow graduates to engage in creative design work
in engineering jobs after college? Please circle the appropriate number on the scale:

[7-pt scale: entirely unsatisfied, unsure, entirely satisfied]

Survey questions:
Other participant-specific independent variables

Expected occupational outcome

Which one of the following represents how you will most likely
begin your career journey after undergraduate graduation?
(please check only one)

[Work as an engineer]
[Work in product management, project management, technical consulting, or quantitative analysis]
[Work in management consulting, finance, or venture capital]
[Work other: _ _ I
[Grad school, then work as an engineer]
[Grad school, then work in product management, project management, technical consulting, or quantitative analysis]
[Grad school, then work in management consulting, finance,or venture capital]
[Grad school, then pursue a career in academia]
[Grad school, then other: _

[Other: I
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Table 2-Al. Survey questions for participant-specific independent variables [Continued]

Survey questions:
Other participant-specific independent variables [continued]

Salary expectation at first full-time job after college or graduate school
At whatever point in life you take your first full-time job after college or graduate school,
what starting salary do you expect to earn? (in $/year in today's dollars)

[ _ _

Gender
What is your gender?

[Female] [Male] [ 

Race
How do you identify yourself by race and/or ethnic origin?

[American Indian or Alaska Native] [Asian (Incl. Indian subcontinent)] [Black or African American]
[Hispanic or Latino/Latina] [Native Hawaiian or Pacific Islander] [White]

Student loan debt status
Please indicate true or false for the following statement:
Following undergraduate graduation, I will personally owe $10,000 or more in student loan debt that I'll need to repay.

[True] [False] [Unsure]

Varsity athletics participation status
Have you participated in a collegiate varsity athletics program?

[Yes] [No]
If "Yes," how many seasons wil you have participated in before graduating?

[ ]

Greek life participation status
As an undergraduate, were you a member of a fraternity or sorority?

[Yes] [No]
If "Yes," did you hold an elected leadership position within the fraternity or sorority?

[Yes] [No]

Undergraduate major

Are you a Mechanical Engineering student? (either by degree major or by home department)

[Yes] [No]

If "No," then what is your home department?

[ _

Degree completion date/status
When do you expect to complete your bachelor's degree?
Please indicate the month and year you will earn your degree:

[ Month: I [Year: ]I
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Table 2-A2. Survey questions for experimental manipulation checks

Survey questions:
Conjoint experiment manipulation checks

Please tell us about any meaningful differences that existed among the above job postings in any of the attributes below.

Place a check next to any/all of the attributes that differed meaningfully among the different jobs:

[ Company size
[ The amount or intensity of mathematical work associated with the job

[ Company age
[ Expected commitment duration in the role (e.g., how long you will stay at the role you're hired into)

[ The degree of solitary work versus collaborative work
[ Salary

[ Opportunity to be promoted into leadership positions
Other; please specify:

Mathematics intensity

Non-intensive with support emphasized

Intensive with individual ability emphasized

Leadership growth opportunity

Not discussed

Discussed

Expected commitment duration

Not discussed

Duration and skill development discussed

Social characterization of work

Individualistic role emphasized

Collaborative role emphasized

Inter-organization coordination
role emphasized

-0.3 -0.2

4

I

-0.1 0 0.1 0.2 0.3

Effect on Pr(finding job appealing)

Notes:
This plot shows estimates of the Average Marginal Component Effects (AMCEs) of randomly manipulated job attributes on the probability
of a job being found to be appealing. Horizontal bars represent 95% confidence intervals. The points without horizontal bars denote the
attribute state that is the reference category for each attribute. The plot is based upon this study's ful sample (6,112 job appeal ratings
from 1,056 unique participants).

Figure 2-Al. Robustness check: job attribute manipulation effects based on dichotomized appeal scale data
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CD Job profile formuation (attribute states):

Math Intensity = Low, Leadership Opportunity = Yes, Commitment Duration = No, Social Characterization = Collaborative
Math Intensity a Low, Leadership Opportunity - Yes, Commitment Duration = Yes, Social Characterization = Collaborative
Math Intensity High, Leadership Opportunity = Yes, Commitment Duration = No, Social Characterization = Collaborative

-u Math Intensity = Low, Leadership Opportunity = Yes, Commitment Duration = No, Social Characterization = Inter-org. Coord. --
CD Math Intensity = Low, Leadership Opportunity = No, Commitment Duration = No, Social Characterization = Collaborative

Math Intensity = High, Leadership Opportunity = Yes, Commitment Duration = Yes, Social Characterization = Collaborative ----
Math Intensity = Low, Leadership Opportunity = Yes, Commitment Duration = Yes, Social Characterization = Inter-org. Coord.

Math Intensity = Low, Leadership Opportunity = No, Commitment Duration = Yes, Social Characterization = Collaborative
Math Intensity = Low, Leadership Opportunity = Yes, Commitment Duration = No, Social Characterization = Individualistic

- Math Intensity = Low, Leadership Opportunity = Yes, Commitment Duration = Yea, Social Characterization = IndIvIdualIstIc
0 Math Intensity = High, Leadership Opportunity = Yes, Commitment Duration = No, Social Characterization = inter-org. Coord.

Math Intensity = High, Leadership Opportunity = No, Commitment Duration = No, Social Characterization = Collaborative ---
CDx Math Intensity = Low, Leadership Opportunity = No, Commitment Duration = No, Social Characterization = Inter-org. Coord.

Math Intensity = High, Leadership Opportunity = Yea, Commitment Duration = Yes, Social Characterization = Inter-org. Coord.
W Math Intensity = High, Leadership Opportunity = No, Commitment Duration = Yes, Social Characterization = Collaborative
- Math Intensity = Low, Leadership Opportunity = No, Commitment Duration = Yes, Social Characterization = inter-org. Coord. --

Math Intensity = High, Leadership Opportunity = Yes, Commitment Duration = No, Social Characterization = IndivIdualIstic
Math Intensity = Low, Leadership Opportunity = No, Commitment Duration = No, Social Characterization = indvduallat c

o Math Intensity = High, Leadership Opportunity = Yes, Commitment Duration = Yes, Social Characterization = individualistic
Ca Math Intensity = Low, Leadership Opportunity = No, Commitment Duration = Yes, Social Characterization = indvdualiatic

-( Math Intensity = High, Leadership Opportunity = No, Commitment Duration = No, Social Characterization = Inter-org. Coord,
0 Math Intensity High, Leadership Opportunity = No, Commitment Duration = Yes, Social Characterization = inter-org. Coord.
CD Math Intensity = High, Leadership Opportunity - No, Commitment Duration - No, Social Characterization - Individualistic
CD: Math Intensity = High, Leadership Opportunity = No, Commitment Duration = Yes, Social Characterization = individualistic ----

0.5 0.6 0.7 0.8 0.9 1.0
Mean Job Appeal

0 Notes:
This plot shows estimates of mean job appeal ratings for each job profile formuaition. Data from a dichotomous variable for job appeal was used, where appeal was set to equal one if participants rated appeal above the
scale midpoint, and was set to zero otherwise. The job profile formulations shown here represent the exhaustive set of profiles tested in this study (e.g., the profiles set encompasses all possible job attribute state

0 combinations In the study). Horizontal bars represent 95% confidence intervals. The plot is based on the study's full sample of participants who submitted job appeal ratings (6,112 observations from 1,056 unique individuals)

0
CA)
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Table 2-A3. Results from survey experiment manipulation checks

Z-statistics from pairwise comparisons of responses to attribute manipulation recognition checks

Non-manipullated attributes:
Company size Company age Salary Other

Manipulated attributes:
Mathematics intensity 18.51 21.87*** 13.38*** 20.48***

Leadership growth opportunity 23.96*** 26.07*** 20.72*** 24.74***

Commitment duration expectation 18.16*** 21.27*** 13.40*** 19.82***

Social characterization of work 24,51 26.71 20.89*** 28.82***

Notes:
Z-statistics are presented from Wilcoxon signed-rank tests of differences. The tests compare recognition responses between
attributes that were actually manipulated and placebic attributes that were not manipulated. Positive and significant Z-statistics
indicate significantly higher recognition of the manipulated attributes over the placebos.
***p<0.001; **p<O.01; *p<0.05 (two-tailed tests)
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3. Characterizing engineering work in a changing world:
Synthesis of a typology for engineering graduates' occupational outcomes

3.1 Introduction and background

The 2 1st century has brought an expansion in the variety of occupational roles associated with

product, service, and technological development. As a result, it has become more challenging to

assess the occupational choices of engineering graduates over time. This paper introduces an

engineering graduates' occupational outcomes typology designed to facilitate consistency among

researchers who employ occupational outcome as a dependent variable in original research examining

engineering graduates' occupational outcomes. The typology is synthesized from the results of a

systematic literature review aimed at establishing which work attribute(s) have most consistently

united those practicing engineering. Based on the review, we present a series of propositions that

underpin general definitions of three types of occupational outcomes - engineering work,

engineering-related work, and other work. These definitions serve as the foundation for the typology's

categorization of occupations' engineering-relatedness. We conclude by discussing how utilization of

this new approach for categorizing engineering graduates' occupational outcomes can enhance

transparency and consistency among studies that examine such outcomes. By building the typology

upon fundamental job responsibilities, rather than upon job titles, it is our hope that the typology can

serve in a meaningful, enduring occupational benchmarking capacity as new job titles, role

formulations, or entire technology areas, come and go.

3.1.1 Engineering work - The case for a unfying framework

At a time when engineering educators strive to align student aspirations with engineering

careers, we notice a concurrent call to clarify what working as an engineer really means in the 2 1s



century. Achieving this alignment is challenging, if not intractable, if we lack an accurate means for

measuring and describing what students do after graduation. Educators and policymakers who

envision an enhanced engineering educational system - one aimed at diversifying the engineering

workforce and assuring student preparedness - depend upon a feedback loop that informs about

graduates' occupational outcomes.

Yet, measuring these occupational outcomes and their congruence with familiar engineering

roles has become increasingly difficult. The turn of the 2 1s' century brought an expansion in the

breadth of role types embedded in the product, service, and technological development workforces -

an effect dubbed "the rise of the project workforce" (Melik, 2007), which manifests as substantial

variation on project and product analytical, coordinative, and customer-liaison-type roles (see: Hong

et al., 2005, Van de Weerd et al., 2006; Van der Linden et al., 2007; Rauniar et al., 2008; Salzman &

Lynn, 2010; PMI, 2013). These often cross-disciplinary jobs blur the boundaries of engineering and

strain our existing ability to measure engineering occupational participation (see: DiVincenzo, 2006,

as an example of categorization challenge). Existing measurement systems range from the U.S.

Bureau of Labor Statistics' Occupational Employment Statistics program (U.S. BLS, 2016), to the

National Science Foundation's Characteristics of Recent Science and Engineering Graduates

program (U.S. NSF, 2016), to individual universities' alumni surveys.

Changes in the occupational landscape have compounded society's already-fragile

understanding of engineering work at the turn of this century, prompting top leaders in engineering

education to call for renewed clarification. Former National Academy of Engineering president

Charles Vest (2011) concluded: "engineering as a profession has done a poor job of communicating

what engineers really do" (p. 8) and "years of effort to create an accurate, compelling image of

engineering have fallen far short of that goal" (p. 9). A branding expert called on by the NAE to study
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the matter referred to engineering work as "decentralized," adding that: "engineers themselves do not

always agree on what engineering is" (Baranowski, 2011, p. 15). Current NAE president C. Dan

Mote (2015) recently listed building a public understanding of engineering as one of the top strategic

goals of the Academy.

While this "decentralization" is, on the one hand, a testament to the profound reach

engineering has had across industries and organizations, it has also produced a vexing challenge:

engineering roles have become more difficult to pinpoint and, thus, graduates' participation and

engagement more difficult to measure. Historians and education researchers who have studied the

unfolding of our present state have been bold in asserting: "engineering is undergoing... [an] expansive

disintegration" (Williams, 2002, p. 30); or in asking: "are engineers losing control over technology?"

(Downey, 2005, p. 584); or in simply questioning whether engineers suffer reduced visibility amidst

an increasingly complex network of workplace roles (Newberry, 2009).

This study inquires into the most fundamental core of engineering work by identifying

unifying attribute(s) that have endured as consistent markers of engineering. We then examine how

this core of engineering work is nested within the network of related roles in today's product, service,

and technological development workforces. These results allow for synthesis of an objective and

communicable scale of occupations' engineering relatedness that is meaningful to students, educators,

and researchers alike. We are cautiously aware of categorization challenges posed by engineering's

continued evolution - Williams (2002), for instance, warns that engineering's expansion away from

well-defined profession and toward a "hybrid" identity makes attempts to bound engineering futile,

given that "[engineering] is most dynamic at its peripheries, where it is most engaged with science and

with the marketplace" (p. 80). Consequently, this study seeks not to bound the extremities of
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engineering. It instead identifies engineering's simplest enduring center while allowing for the

continued outgrowth of modern occupations.

We conceive of an occupational outcomes typology for engineering graduates that avoids

imposing value judgment on any of graduates' wide-ranging job choices. Rather, the typology is a tool

for standardizing feedback for education programs working to increase diversity and engagement in

engineering, and for those aiming to assess alignment of the curriculum with graduates' changing

occupational outcomes. Educators, we presume, are concerned with whether students' professional

interest in engineering is waxing or waning, or, if curricula are sliding further into or out of alignment

with graduates' realized occupational trajectories. Capturing these trends demands a means of

consistent measurement. This consistency would also enable more meaningful comparison across

future published engineering education research that examines occupational outcome. If there exists a

core to engineering work, such a typology will help researchers elucidate whether graduates are

gravitating toward or away from it.

3.1.2 A history of engineering identity crises

Our present period is by no means the first characterized by an identity crisis in engineering.

In the U.S., engineering's modern era spans from the humble beginnings of a niche occupation - one

with fewer than 1,000 practitioners by the midpoint of the 19 th century (Sobek, 2001) - through the

birth of engineering professional societies in the late 191h century (Grayson, 1980), through the

infusion of "engineering science" into the engineering curriculum in the early-to-mid-20th century

(Grayson, 1980; Seely, 1999; Downey, 2005; Crawley et al., 2014), to the 2 0 1h and 21s'centuries' rises

of high tech, the internet, and globalization. Throughout this complex history, scholars have observed

waves of "identity politics" at play as engineers grappled with how to define their field (Downey and

Lucena, 2004). When craft practitioners banded together to form engineering's primary professional
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societies between 1852 and 1908 in the U.S., they worked to standardize arcane knowledge and

fought to establish credentialed privilege. These efforts marked the first serious attempts toward

forging a stable engineering professional identity (Layton, 1971; Grayson, 1980; Meiksins, 1988).

Yet, such formal efforts at professionalization were also spurred by serious safety, quality, and ethical

concerns associated with rapid technological evolution. The American Society of Mechanical

Engineers, for example, traces its coming of age to the aftermath of a major boiler explosion (ASME,

2016a). The historic shaping of engineering identity has included a complex blend of both strategic

and reactive elements.

Historians describe a pronounced push toward formal professionalization in the late 19th and

early 2 0 th centuries, perhaps peaking during the period Layton famously called "the revolt of the

engineers" in reference to the years surrounding World War I (Layton, 1971). Many consider this era

a pinnacle of professional strength and solidarity among engineers, after which dispersion and

decentralization of professional identity have continued to this day (Layton, 1971; Meiksins, 1988;

Seely, 1995). As Seely (1995) explains, "engineers.. .had been determined to achieve the recognition,

prestige, and professional status that society accorded to law, medicine, and other professions." And,

while the details surrounding the actual strength and potential of this "revolt" have been debated (see:

Meiksins, 1988), evidence points toward corporatization of engineering careers as a key factor in the

movement's dissolution: many top engineers were happy with the prospects of being promoted out of

engineering roles, perhaps as far as into the executive ranks of their companies (Layton, 1971;

Meiksins, 1988). Though the dissent dissipated, one can argue that engineers achieved the path to

prestige they sought - it so happened that this path led outboard of the then-ostensible professional

bounds of engineering.

The time period surrounding World War II and the dawn of the Cold War prompted engineers,

again, to advocate for professional recognition reflective of the unique value they felt they provided to
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society as designers and problem solvers - especially in light of the attention and credit granted to

scientists for wartime accomplishments (Seely, 1995). Kemper (1967) summarizes a telling

perspective: "Every rocket firing that is successful is hailed as a scientific achievement; every one that

isn't is regarded as an engineering failure" (p. 84). The "physics envy" (Seely, 1995, p. 747) that

followed the Second World War corresponded with a shift toward endorsing engineering science as a

backbone of engineering education (Grayson, 1980; Seely, 1995, 1999, & 2005; Crawley et al., 2014).

Leaders among engineers began embracing undergraduate curricular reforms that introduced more

science among required subjects - a move they thought would prove legitimizing for the profession,

yet one that may have gone too far, weakening the connection between practitioners and the

educational system (Seely, 2005).

A less unified practitioner base eventually paralleled an expansion in scope and variety of

engineering work, which proceeded to branch and morph throughout the remainder of the 2 0th century

(Williams, 2002; Downey, 2005). On the one hand, the general public began to confuse scientists and

engineers (Bush, 1965; Petroski, 2010; Vest, 2011), while on the other hand, previously unforeseen

engineering-marketing and engineering-business hybrid roles began to emerge, as well as roles

uniquely tuned to computing and software realms (Sheard, 1996; Van de Weerd et al., 2006; Rauniar

et al., 2008). Some may consider this evolutionary flexibility a boon to our era's blossoming product

development activity; others may feel unease about dilution of professional integrity in engineering

(see: Cunningham et al., 2013). Either way, we have witnessed the bounds of engineering work

strained in at least two dimensions: first, in the diversity of capabilities called upon across varied roles

(Williams, 2002; Downey, 2005), and second, in the emergence of natural career role progressions

tending toward a variety of managerial roles following individual contributor roles (Bailyn & Lynch,

1983; Rynes et al., 1988; Biddle & Roberts, 1994). Engineers also began embracing hybrid technical-

project coordinator roles as long-term career identities, solidifying an alternate perspective to an
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engineering-management dialectic (Watson & Meiksins, 1991; Allen & Katz, 1995). Generally

speaking, we now observe diverse expectations about roles befitting engineers in industry and about

the range of experiences soon-to-be engineering graduates can aspire toward in their careers.

Yet, throughout the dramatic broadening of society's conception of "engineering," the original

professional societies have endured with consistent missions (e.g., ASCE, ASME, AIChE, IEEE, and

others), professional engineering licensure remains a requisite credential in certain areas of practice,

and engineering honor societies espousing century-old values continue to have a presence in the

engineering educational and professional scenes (see: Seely, 2005; AIChE, 2016; ASCE, 2016;

ASME, 2016b; IEEE, 2016; NPSE, 2016; TBP, 2016). Scholars of engineering practice point out that

social and coordinative processes are intrinsic to carrying out engineering design and should be

embraced, not solely as evidence of novel role formulations, but as endemic to the practice of

engineering itself (Bucciarelli, 2002; Trevelyan, 2007). Where some historians see evidence of

disintegration, others sense an impetus to identify binding ties and to construct a robust 2 1 " century

engineering identity. Many engineering educators, policymakers, and researchers, for example, have

responded to this impetus through initiatives that affirm key attributes of 21s century engineers and

refine engineering curricula and pedagogy for a new era (for example: NAE, 2004 and 2005;

Sheppard et al., 2009; Atman et al., 2010; NSB, 2010; Crawley, 2014; ASEE, 2016). We do not

diminish or reinvent such valuable work; rather, we limit our scope to the development and

presentation of a succinct career paths typology to provide a dependent variable for studies of

engineering graduates' occupational outcomes.

3.1.3 Reconciling key competing perspectives

Prominent engineers and educators have offered no shortage of general occupational

descriptions over the past century: "scientists study the world as it is; engineers create the world that

never has been" (Von Kirmin, as quoted in: U.S. NSF, 2012); "engineering is the creative application

168



of scientific principles used to plan, build, direct, guide, manage, or work on systems to maintain and

improve our daily lives" (National Society of Professional Engineers, 2006); "engineers create

products and processes.. .to enhance.. .our everyday lives" (Martin & Schinzinger, 2005). These

generalizations have served the noble purposes of inspiring individuals to pursue engineering and of

boosting public support, but they offer little assistance in discerning engineering work among

contemporary job listings.

An attempt to distill a most basic unifying criterion of the engineering workforce - a

rudimentary threshold of commonality among those practicing engineering - quickly reveals

incongruence between two prominent camps in the literature. Specifically, sociologists and the

scholars of engineering ethics offer differing conclusions on whether engineering is in fact distinctly

identifiable as a profession. Bailyn and Lynch (1983, citing Kerr et al., 1977, and Child & Fulk, 1982)

summarize a sociological perspective: "engineering, even though it is based on technical expertise, [is

not] a profession. It is subject to organizational rather than occupational control" (p. 264). Meiksins

(1988) adds: "what was missing.. .was any serious commitment to the idea of the engineering

profession as a whole as an independent, organized force." (p. 224). Goldner and Ritti (1967) suggest

that engineers have eschewed a united professional identity in exchange for greater career mobility.

Bailyn and Lynch (1983, citing Ritti, 1971, and Bailyn, 1980) add: "practitioners have been shown, as

a group, to subscribe more to organizational than professional values" (p. 264). Williams (2002)

offers an even broader view: "Engineering has evolved into an open-ended Profession of

Everything.. .with no strong institutions to define an overarching mission" (p. 70). This scholarly

community asserts that, following shared engineering educational experiences, many engineers

subsequently relinquish control of career specifics to corporate entities whom, in turn, adjust the

definition of engineering work as needed to fit their operational contexts. Today we thus see a
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perpetual outgrowth of diverse job titles, hybrid roles, and role progressions that strain the concept of

engineering as a distinct and unified work activity.

Before discussing how the social scientists' and engineering ethicists' arguments differ, it is

first worth noting the common practice, if not near-universality, that engineering ethics textbooks

include a decomposition of factors supporting (and challenging) engineering's status as a cohesive

profession (see: Fleddermann, 2004; Martin & Schinzinger, 2005; Whitbeck, 2011; Harris et al.,

2013). Such analysis in this area of the literature is expected for two reasons. First, applied ethics

texts conventionally describe a "professional ethics" lens, which differentiates the unique ethical

obligations of certain sets of practitioners from those obligations of all humans (e.g., "general

morality"); thus, it follows that these texts also conventionally analyze the parameters unifying their

subject set of practitioners (see: Wueste, 1994; Robinson, et. al, 2007; Harris et al., 2013). Second, a

part of the EC2000 revision of the ABET engineering accreditation criteria, Outcome (k), "an

understanding of professional and ethical responsibility," is prescribed as a general component of

engineering education in the U.S. and in other locales recognizing this governance (ABET, 2015).

Assuming that many engineering ethics texts aspire to be part of accredited curricula, it is unsurprising

that these texts address the issue of professional definition and associated responsibilities. What is of

chief interest, more so than conclusions about engineering's status as a profession, are commonalities

in these scholars' rationales for the existence of engineers' shared professional bonds - and, in

particular, whether key components of these rationales are supported in the separate literatures

describing engineering practice. The latter question is explored in detail in the literature review in Part

2 of this paper.

To understand scholarly disciplines' differing perspectives on engineering's status as a distinct

profession, it is necessary to consider definitions posited for what constitutes a profession. At least
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three defining criteria for professions emerge in similar forms across popular ethics texts: 1) requisite

advanced skills and knowledge, 2) self-regulation (e.g., the profession dictates its own standards for

membership and operation), and, 3) an embrace of duty toward public good (see: Fledderman, 2004;

Martin & Schinzinger, 2005; Whitbeck, 2011). As Didier (2010) points out, professional definitions

can vary globally. And as Davis (1997) discusses, social scientists, compared to engineering ethicists,

tend to focus more heavily on membership and self-regulation criteria of such definitions; this

conclusion is consistent with Meiksins' and Smith's (1993) review of social scientists' definitions-in-

use , and with the observation that some engineering ethics texts soften or leave out the self-regulation

criterion (Baura, 2006; Harris et al., 2013). Davis (1997), alternatively, presents a case for an

engineering professional definition primarily rooted in members' commitment to serve a specific

moral ideal. These differing foci of professional definitions - those focusing on a commitment to

serve a particular moral function versus those rooted in self-regulation - help explain key differences

in scholars' conclusions about engineers' professional unity.

While the set of constituent factors governing professions' bounds may not be universally

agreed upon, our review nonetheless reveals instances of relatively wide support for certain sub-

factors' salience as indicators of cohesion among engineers. Such support does not prove anything by

itself, but it can, if corroborated via a broad, systematic review of the engineering practice literature,

help us build reasonable propositions about definitions of engineering work. One such example,

related to the public duty professional dimension, is seen reiterated across engineering ethicists'

accounts: that an engineer holds responsibility for the safety, quality, and efficacy of the products (or

processes, services, or systems) he or she designs and implements (Fleddermann, 2004; Martin &

Schinzinger, 2005; Whitbeck, 2011; Harris et al., 2013). These scholars purport that the consequence

of a given product's design falls within the responsibility bestowed upon individuals working in the

role of engineer.
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We call attention to this design responsibility aspect of the ethicists' analysis for several

reasons. First, it stands out as a factor that social scientists do not appear to refute in their accounts of

engineers' roles or in their critiques of engineering professional status. Second, it is a potential node

of cohesion at the center of what it means to be an engineer. And third, it is an attribute that may

manifest explicitly in engineers' job roles (e.g., it has the potential to be connected to visible,

measurable activities of jobs). Meanwhile, social scientists and engineering ethicists also appear to

generally agree about specialized knowledge or skill dimensions of engineering. Social scientists,

however, explicitly reject the professional self-regulation criterion - in fact, engineers' cession of job,

career, and career path definitions to organizational or market control is the primary basis of their

denial of professional unity of engineering (e.g., Layton, 1971; Bailyn & Lynch, 1983; Meiksins,

1988; Williams, 2002).

It is not the goal of this paper to demonstrate whether engineering is a profession - as Van de

Poel (2010) discusses, such determination may be close to impossible. It is, however, our goal to

discern engineering's most-recognized center of gravity, so as to establish an occupational relatedness

scale grounded upon such. Our analysis begins with a review of the published analyses and critiques

of engineering's professional cohesion in order to uncover pertinent relational factors among engineers;

then, having recognized design responsibility as a unifying characteristic prevalently supported by the

literature, our analysis proceeds to review the engineering practice literature with an aim to identify

whether, and in what manner, ostensible markers of this attribute may exist prevalently in practice

contexts. Finally, we review occupational data to assist with contextualizing core and related roles in

order to build out the typology.

3.1.4 Why Refine the categorization approach? The pragmatic challenges of categorization

Recent decades' proliferation of new job roles and titles has had an unfortunate, and

presumably unintended, side effect: decreasing the transparency and precision of legacy workforce
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statistics and participation tracking systems. In the case of the U.S. Bureau of Labor Statistics'

Occupational Employment Statistics, the system attempts to account for every working individual in

the U.S. by means of establishing a standardized list of occupations (e.g., the Standard Occupation

Classification (SOC) codes), by surveying a subset of employers about their workforces, and by

extrapolating to (theoretically) categorize every working American into one of 840 occupation codes

in order to construct a proportionally-accurate workforce cross-section. The SOC list is updated

relatively infrequently, at approximately 8-year intervals. The BLS openly acknowledges that the 840

job codes are far too sparse to cover most individuals' exact job titles - particularly those in hybrid

roles - yet because of the organization's imperative to provide proportionally accurate workforce

descriptions, it is essential that they do not double-count the same individual in multiple job categories

(U.S. BLS, 2010). Other nations' labor statistics bureaus likely face a similar dilemma. This single-

counting imperative manifests in the BLS's avoidance of cross disciplinary and hybrid-type job

categories among the SOCs, which directly challenges our ability to understand the number of

individuals who work in these types of roles. While it is simple enough to count workers with the

word "engineer" in their title, as a BLS Labor Economist explains, individuals in roles such as

"project manager" are not as easily categorized. No such SOC currently exists for project managers,

so they must be counted elsewhere - distributed into categories that more neatly fit under specific

disciplines, such as in construction management or information systems management (DiVincenzo,

2006). Thus, this system neither informs us of how many project managers there are, nor does it

provide consensus on how many among them should be considered as working in roles close to or

encompassing "engineering." The U.S. BLS is not the only organization that attempts to account for

the number of working engineers - the U.S. Census Bureau attempts to do so (U.S. Census Bureau,

2014), as does the National Science Foundation's Center for Science and Engineering Statistics'
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Characteristics ofRecent Graduates program (U.S. NSF, 2016) - but a review of each of those

organizations' results suggests the presence of similar issues related to generalization of roles.

This categorical imprecision impairs educators' and education policymakers' abilities to

understand attrition and career engagement among engineering graduates. For example, a recent U.S.

Census report indicates that approximately 50% of engineering graduates, averaged across all ages,

now work outside of "engineering" or "STEM," but it is unclear where these individuals actually

work - especially given that over one third of those who've ostensibly left engineering are categorized

in the report as "Managers, non-STEM" (U.S. Census Bureau, 2014). Similarly, data released by the

U.S. Department of Commerce concludes that the U.S. has accumulated a pool of 2 million working-

age degreed engineers currently engaged in "Non-STEM Employment" (Langdon et al., 2011). Could

a substantial portion of these roles in fact be engineering-related hybrid roles that are labeled as "non-

STEM"? Lowell et al. (2009) discuss that it is likely that categorical obfuscation occurs throughout

workforce statistics pertaining to engineering graduates.

Government agencies understand these categorization challenges and are working to reduce

the vagueness of legacy methods - yet as hybrid roles continue to proliferate, this will be an ongoing,

perhaps endless, uphill battle. The U.S. Department of Labor recently sponsored the development of a

large, detailed occupations database (e.g., Occupational Information Network, or, O*Net) that

provides descriptive details on over a thousand job titles (Peterson et al., 2001). Similarly, the Bureau

of Labor Statistics periodically issues a job title-mapping file that links over 6,000 job titles to their

closest match from among the 840 standard SOC titles (U.S. BLS, 2013). These helpful tools add

clarity, yet are not linked to occupational participation statistics. In other words: O*Net may provide

detailed descriptions of "sustainability specialists," "systems analysts," or "information technology
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project managers" (O*Net, 2017), but we have little consensus on the engineering-relatedness of these

roles, nor do we know how many engineering graduates land at them.

We hereafter propose a categorization approach designed expressly for those conducting

original research tied to occupational outcomes of engineering graduates. The approach centers on

discerning occupational roles' association with engineering's widely acknowledged core - what we

recognize as design responsibility - not by means of job title, but by intrinsic work attributes.

3.1.5 The purpose and criteria of a new occupational outcomes typology

The exploration of connections between educational and social factors and engineering

students' career outcomes constitutes a vibrant research area in our present time. In engineering

education, various recent studies, both qualitative and quantitative, have related educational

experiences, curricular reforms, and pedagogical innovations to student occupational aspirations or

occupational outcomes (for example: Chubin et al., 2005; Lichtenstein et al., 2009; Lord et al., 2009;

Atman et al., 2010; Eris et al., 2010; Dasgupta et al., 2015; Godwin et al., 2016). Similarly, in

sociological and inter-disciplinary work, researchers have explored the salience of diverse factors in

predicting students' and graduates' persistence in engineering occupations (for example: Correll,

2004; Cech et al., 2011; Herman, 2015; Hunt, 2016; Seron et al., 2016). All such studies, which

contribute toward the important goals of increasing women's and minorities' representation in

engineering jobs and to boosting overall interest in engineering careers, require researchers to choose

a means of conceptualizing and measuring what counts as engineering work. Occupational outcome is

often the dependent variable of interest in these works, yet researchers' ability to conceptualize and

measure it in a manner consistent with the rest of the research community can be challenging in the

absence of either a unifying framework or gold-standard governmental database.

175



Summary of design criteria

With this research community's needs in mind, and in consideration of the complex historic

factors that have shaped engineering professional identity, we employ the following criteria to guide

the construction of a typology aimed at categorizing engineering graduates' occupational outcomes in

meaningful relation to discerned core attributes of engineering work:

" The typology shall provide a means of categorizing occupations being pursued or obtained by
engineering students and graduates in terms of the occupations' engineering-relatedness.

" The typology shall be an occupational role-based (rather than professional membership-
based) categorization system; the typology shall not attempt to designate engineering
professional status.

e The typology shall accommodate a temporal dimension - it shall be robust to the
changing nature of what engineering work may mean over the life of a working
individual. For example, it shall provide a means of measuring engineering-relatedness
of occupations held at various points in graduates' lives, encompassing entry-level roles
and advanced career roles.

" Engineering-relatedness of occupations need not be forced into binary categorical
designation (e.g., "engineering" vs. "non-engineering"). Therefore, more than two
engineering-relatedness strata may compose the typology.

* Categorical label assignment shall avoid implicit or explicit value judgment of
occupations (e.g. language employed in labels shall not imply one occupation group is
more important than others).

Concept of use

We focus on original research as the use case for this typology. For reasons discussed,

competing methodological constraints currently prevent existing occupational categorization schemes

from achieving greater accuracy and precision in their discernment of careers' engineering-relatedness

(e.g., the U.S. BLS's single-counting imperative). The typology is envisioned as a tool for

engineering education researchers (and others) engaged in such efforts as longitudinal studies, tests of

interventions, or alumni or workforce surveys. When researchers have their own opportunity to query

individual respondents about details of their occupations (or aspired-to occupations), this typology can

176



assist in gauging engineering-relatedness. In particular: for studies employing occupational outcome

as dependent variable, this typology aims to help facilitate consistent definition of the variable.

3.2 Systematic exploration: Discerning the core and extended network of engineering
work in the 2 1V century

3.2.1 Overview of sequential literature review approach

We employed a series of nested systematic literature reviews to discern unifying attributes of

engineering work and, subsequently, to situate such work among the broader set of documented

present-day employment contexts. Content analysis from initial review rounds informed search terms

for later reviews in order to complete a four-part serial thread of inquiry: (1) what attribute(s) are most

consistently discussed in the literature as unifiers of work characterized as "engineering"? (2) What

jobfunctions are involved in carrying out these unifying attribute(s) of work? (3) What specific types

of activities compose these engineering job functions? And finally, (4) what occupations involve

similar or related activities to various extents? In sum: we aimed to establish a basic, conventionally-

recognized core of engineering work expressed in terms of specific observable role markers, the

presence (or lack of presence) of which could meaningfully categorize real-world jobs. Once

established, this engineering core (and other roles' comparison to such) informed the construction of

the engineering graduates' career outcomes typology (see: Part 3: Typology Synthesis and Discussion).

Methods employed for each round of systematic literature search and results qualification

were informed by documented best practices summarized by Borrego et al. (2014, 2015) and

Petticrew and Roberts (2006). The section that follows discusses our application of these methods to

each round of search and literature review. Though differing sets of search terms and logic were

established for each round, all rounds followed similar guidelines for repeatability and reliability, as

outlined by Borrego et al. (2014): construction of clear research questions and scope, definition of
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specific result inclusion criteria, identification of specific databases upon which to conduct the

searches, establishment of critique and appraisal criteria (e.g., to qualify results), establishment of a

means of results synthesis, and identification of limitations, validity, or reliability concerns of the

search method.

Searches 1 through 3 considered sources from academic journal articles, as well as books,

identified through two search portals. The first portal was an EBSCO Host-powered meta-search

engine configured to simultaneously search a broad set of leading databases, including Education

Source, Academic Search Complete, Business Source Complete, ERIC, PsycARTICLES, and the e-

journal sets from several major publishers (Elsevier/Science Direct, Wiley, Springer, Taylor and

Francis, and Sage). EBSCO Host provides a complete list of databases included in the search portal

that we utilized (see: EBSCO Host, 2016). A second portal, WorldCat, was utilized specifically for

book searches, allowing for broad search through the catalogs of over 10,000 worldwide libraries

(WorldCat, 2016). Between the EBSCO Host and WorldCat portals, a deliberately broad search

capability was established to accommodate the likelihood that pertinent results would be found in

databases across disciplines, such as sociology, history, business/management, education, and

engineering. We did not limit the country of origin of the results. While such a broad search naturally

produces large initial results lists requiring substantial further processing, we believe such a search

was necessary due to the cross-disciplinary nature of this topic. Search 4, on the other hand, was

conducted specifically within the U.S. Department of Labor-sponsored Occupational Information

Network (O*Net) database in order to access its refined and consistently formatted catalog of detailed

occupation descriptions (Peterson et al., 2001).

Following acquisition of raw search results for each search, we next conducted manual

qualification review and filtering based upon specific sets of inclusion criteria established for each

round of search (see: Petticrew & Roberts, 2006). As part of the manual review, we introduced a small
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number of titles (e.g., less than 5% of the result count) from among our awareness into the results lists

that did not turn up by automated search. No titles were added that did not fully comply with the

search logic. Any added titles were either 15 years old or older, or came from chapters or proceedings

embedded within larger works - in such instances, incomplete source indexing and/or limited

digitization are probable causes for these sources' failure to be retrieved automatically. For each of

Searches I - 3, the manual processes of result qualification were accomplished in multiple passes

through the documents sets that were initially identified via systematized search. The first-pass review

was based on within-document key word searches, as well as reviews of document abstracts and

tables of contents to ascertain topic areas. Any source that did not explicitly violate qualification

criteria was retained for a second-pass analysis. The second-pass review entailed ascertaining context

in which key words were used from body text review - for example, was the keyword used as part of

a critique or discussion related to the specific search question, or was it merely used as a common

noun casually in a discussion about something else? Sources that passed both the first- and second-

pass manual qualification reviews were retained for the purposes of in-depth content analysis, while

summary lists of excluded source topics were recorded.

Once qualified search results sets were established, content analysis methods, as presented by

Krippendorff (2004), were employed to draw summative themes from content clusters identified from

each of the results sets. Content analysis was carried out uniquely for each of Searches 1, 2, 3 and 4;

the specific content analysis methods and results associated with each round of search and review are

discussed in detail in the following section.

3.2.2 Search-specific questions, methods, and literature review results

Figure 3-1 illustrates the overall flow of the sequential literature review process, indicating how

outcomes from preceding search rounds informed the search criteria employed in subsequent searches.
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In keeping with the sequential flow of our investigation, we present the results from each search round

immediately following the description of its methods. Thus, for each round, we describe its specific search

question, means of search systemization and qualification, content analysis method, and results synthesis.

Search Aims:

Identify Identify Identify Identify
unifying attributes(s) job functions involved work activities that occupations involving
of engineering work in carrying out compose these similar or related

attribute(s) of work job functions work activities

Search I
I. - Search 2
Search 2 criteria based on Search 3result from Search 1:

Search 3 criteria based on Search 4Design responsibility Results from Search 2:
Search 4 criteria based Onl

Design formulation, results from Search 3: Engineering
Design configuration control, (various activities) "nearest-neighbor"
Design error/failure detection/response occupations

and the nature of their
relationships to engineering

Figure 3-1. Sequential nature of searches employed in systematic literature review

Search 1 - Identifying unifying attribute(s) of engineering work

Search question: Among literature that analyzes engineering's status as a distinct
profession, what attributes(s) are discussed as unifiers of work characterized as
"engineering" (or, if applicable, are discussed as evidencing dis-unity of "engineering")?

In Search 1 we elected to search the wide date range from 1966 -2016 in order to trace the

historic critique of the professional unity of engineers. Within that date range, we ran 5 sub-rounds of

search with unique criteria designed to cover a wide range of topic areas within which scholars may

have explored the questions of whether and how engineering is unified as a profession. Aware of the

differences between engineering ethicists' and social scientists' published conclusions about this

question, we designed the sub-rounds of Search 1 to ensure coverage, at a minimum, of both of those

areas. Each sub-round of Search 1 featured specific subject terms, text terms, and Boolean
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combinatory logic as summarized in Table 3-1. Qualification review of the Search 1 raw results

sought to verify that sources specifically commented on the professional status of engineering, and

that they provided discussion or analysis on factors uniting (or straining the unification of) engineers.

A total of 144 sources were retained for inclusion in the qualified results set. The qualification criteria

employed and the resultant topic areas of excluded sources are also summarized in Table 3-1.

Content analysis of Search 1 results began with high-level source topic area binning to

categorize the unique areas of scholarship from which each of these sources were drawn. Based on a

review of the indexed subject terms associated with the articles and books, we established 6 broad

topic bins as follows: (1) historical reviews of engineering practice and the educational system, (2)

analyses of organizational aspects of engineering work and careers, (3) literature on gender and

engineering professional identity, (4) analyses of the development of engineering norms and

standards, (5) discussion on societal and occupational expectations of engineers, and (6) engineering

ethics textbooks. We allowed for sources to be binned into multiple topic areas. We then proceeded

with clustering analysis to discern key themes supported by groups of sources within each of the

bins (Krippendorf, 2004). This analysis first entailed a review of the body texts of each source to

identify substantiating argument(s) made within the texts in support of or against the case of

professional unity among engineers. Once each source had been reviewed and its specific critique of

professional unity identified, cluster statements were generated that encompassed the arguments of

related or complimentary sources. We first identified the clusters pertaining to support for unity

among engineers; we next discerned clusters suggesting dis-unity among engineers. Table 3-2

summarizes the content analysis for the Search 1 results - in order to present these findings

compactly, we have arranged the results in groups so that "unifying" and "dis-unifying" thematic

conclusions could be presented side-by-side when possible.
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Sub-rounds of Search

1 2 3 4 5

Subject Search Terms engineer* OR technolog* engineer* engineer* OR technolog* engineer* engineer*, ethics

Text Search Terms engineer*, profession, engineer*, profession, history, engineer*, profession, engineer*, profession,
(all terms required) work, occupation, career, ideology history, change history, "engineering engineer*, ethics

organization education"

Excluded Subject Terms "K-12", counseling, immigration, "high school",
legal, marketing, operations, parent*

Media academic journal articles and books

Date Range 1966-2016

Raw Result Count 367 167 316 347 426

Qualification:

Inclusion Criteria
Source must specifically comment on the professional status of engineering
Source must provide discussion or analysis on what unites (or strains the unification of) engineers

Excluded Topics
ethics learning activities, pedagogy,

curriculum, design ideology, curriculum, engineers' salaries ethics in experiments, ethics of

curriculum, graduate student early education, faculty, and job markets, faculty, job communication, ethics of specific

Issues, job counseling, job search, 'dign ideoly, .e history of specific products or counseling, job search, life- sub-disciplines, ethics of war,
pedagogy, STEM policy, specific e in faclty se . technologies, pedagogy, long learning, offshoring, nation or culture-specific

engineering design issues, faculty science-specific issues, specific pedagogy, STEM policy, discussions, specific ethics case
engineering design issues graduate student issues studies, student assessment in

ethics, theology, ethics workshops

Qualifying Result Count 29 15 10 24 38
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Table 3-2 thus reveals a collection of discussions substantiating or contesting engineering's

professional cohesion. While the underlying attributes of engineering work that these arguments

cite vary across the six source categories, one substantiating attribute uniquely stands out as both

being discussed recurrently and being met with scant contestation among the overall literature set.

Specifically, engineers' design responsibility - their responsibility for the outcomes of design

implementation, inclusive of safety, ethicality, and general effectiveness of designs - emerges as a

fundamental characteristic of engineering occupational identity. It is important to note that the

literature review methods employed herein cannot prove there is no counterargument to this

assertion - only that there does not appear to be a substantial or cogent one among the sources

identified in our search. As such, we do not seek to prove what unifies engineers, but rather, to

recognize conventionality and prevalence of a means for unifying engineering work based on the

literature. Example statements from among sources in Table 3-2 illustrate this theme of design

responsibility:

"Responsible engineers are expected to foresee.. .consequences [of design decisions]"
(Whitbeck, 2011, p. 178).

* "... when something goes wrong on an engineering project, the responsibility falls heavily
on engineers" (Basart & Serra, 2013, p. 181).

* "Engineers can expect to be held accountable, if not legally liable.. .for caused harms"
(Harris et al., 2013, p. 50).

"Attention to detail is a watchword of the engineering profession" (Dias, 2014, p. 545)

e "The engineer thus assumes a responsibility to determine which dangers are pertinent to
each [design].. .to decide how to best deal with them..." (Schmidt, 2014, p. 998)

Other key attributes involved in the discussion about engineering cohesion include:

specialized knowledge or skill, established standards, common educational experiences, and
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conventional work artifacts or protocols - none, however, are as straightforward and uncontested as

the notion of design responsibility. We proceed assuming that design responsibility is a recognized

hallmark of what it means to belong to an engineering occupation, though we do not contend it is the

sole factor uniting engineering practitioners. We do, however, make the assumption that it is a widely

acknowledged "necessary condition" of engineering work, and can thus reasonably serve as a central

identifier of engineering practice for the purposes of anchoring an occupational outcomes typology.
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What attributes of engineering are discussed as unifying or dis-unifying it as a profession?
Source Topic Area Supporting Sources Unifying Dis-unifying

Layton (1971); Noble (1977); Meiksins - Lack of consensus understanding of

(1988); Reynolds (1991); Meiksins and Smith - Formalization of craft practices into engineering work in society

(1993); Kemper and Sanders (2001); Lawson codified practices - Lack of universal recognition of professional

(2002); Pursell (2006); Auyang (2004); Kline - Campaigns for professional unity bounds by society, employers, and

(2008); Jones (2011); Verin and Gouzevich - Broad societal need for services practitioners

(2011); Diogo and de Matos (2012) -Societal confusion about roles of scientists
versus engineers

Historical reviews of Ferrall (1995); Thom (1998); Williams (2002); - Technological change prompting

engineering practice Downey and Lucena (2004); Downey (2005); hybridization and reformulation of work

and the education system Sorensen (2009); Jamison (2013) - Dynamic expectations of engineers' duties or
required skills

Grayson (1980); NRC (1985); Dreicer (1995); - Ongoing discourse about the need for
Seely (1995); Vest (1995); Thom (1998); Seely -mpngdingi ers cbut aline mef t
(1999); Downey and Lucena (2004); NAE - Attempts to establish (national, global) improved engineering curricular alignment
(2005); Lucena et al. (2008); Heywood standards and approaches for engineering (e.g., reconciliation of academia,

(2009); Sheppard et al (2009); Atman et al. education practitioner, industry leader perspectives)

(2010); Grasso and Burkins (2010); Jamison - Ongoing debate about missing, over-, and

(2013); Crawley et al. (2014) o under-represented curricular components

- Job and task standards in place - orltsadpoetdfnto
Burke (1969); Meiksins and Watson (1989); (e.g., that engineers have bought into) -Job, role, task, and project definition

Yip and Rowlinson (2009) - Acknowledged need to stay current with sometimes formulated outside the control

disciplinary, project, or product knowledge of engineers (e.g., such as project schedules)

Ferrall (1995) - Ostensible and structured role and
responsibility designations among engineers

Ritti (1968); Perrucci and Gerstl (1969); Kerr - Organizations, rather than a centralized

Analyses of organizational et al. (1977); Child and Fulk (1982); Bailyn engineering profession, define job details

aspects of engineering work and Lynch (1983); Rynes et al. (1988); -Specialized knowledge and skill requirements and expectations

and careers Bacharach et al. (1990); Reynolds (1991); tied to job roles - Career advancement paths are often

(20th - 21st century) Meiksins and Smith (1993); Igbaria et al., established by individual organizations
(1999); Holt (2001) rather than by an overarching profession

- Engineers identify with their (varied)
Watson and Meiksins (1991); - Specialized knowledge and skill requirements work or technology specialty itself,
Perlow and Bailyn (1997); Newberry (2007) tied to job roles rather than with a unified professional

identity

Goldner and Ritti (1967) - Specialized knowledge and skill requirements - Engineers face career mobility incentive to
tied to job roles avoid professional unification

- Career identity as personally, rather
Literature on gender and Morgan (2000); Jorgenson (2002); Faulkner - Perceived need for entry/aceptance than professionally, defined
engineering professional (2009); Cech et al. (2011); Ayre et al. (2013); associated with engineering (e.g., level of - Career identity as construed through a
identity (21st century) Herman (2015); Cech (2015) soite wt jngneerigt(e. reved variety of positionings, rather than

commitment at job, capabilities required) through a centralized profession
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What attributes of engineering are discussed as unifying or dis-unifying it as a profession?
Source Topic Area Supporting Sources Unifying Dis-unifying

- Responsibility for producing specific artifacts

Analyses of the development Gerstl and Hutton (1966); Noble (1977); (e.g., technical drawings, software code) in

of engineering norms and Lawson (2002); Auyang (2004); Keltikangas accordance with standardized practices

standards and Martinsuo (2009); Gainsburg et al. -Adherence to engineering design standards
(2010); Kedrowicz and Sullivan (2012) -Socialization of unique ways of thinking

and communicating as engineers

Johnson (1991); Davis (2001); Herkert (2001);
Kemper and Sanders (2001); Spier (2001);
Martin (2002); Vesilind (2002); Antoniou et
al. (2007); Frey and O'Neill-Carillo (2008); - Responsibilities to one's community, - Sense of social obligation not consistent
Downey et al. (2007); Harris (2008); Son nation, and/or world for public safety, periods; not consistently integrated into
(2008); Lucena and Schneider (2008); Stovall health, welfare, and the environment engineering education
(2011); Diogo and de Matos (2012); Didier
and Derouet (2013); Michelfelder and Jones
(2013)

- Responsibility for documenting,
Kemper and Sanders (2001); Auyang (2009); communicating, and collaborating about
Trevelyan (2010); Dias (2014); Gainsburg et designs and associated risks, issues, and

Discussion on societal and al. (2010); Schmidt (2014) concerns with stakeholders, other

occupational expectations of engineers, and/or adjacent functions

engineers Lynch and Kline (2000); Kemper and Sanders - Responsibility for outcomes and
(2001); Auyang (2009); Delahousse (2009); consequences of design / development
Basart and Serra (2013); Hayes (2015); projects (e.g., accountability for failures
Schmidt (2014); Lurie and Mark (2016) of designs)

Klepas (1997); Gotterbarn (1999); Kemper - Responsibility for (and attention to) minute
and Sanders (2001); Harris (2008); Dias details, and the associated risks and
(2014); Lurie and Mark (2016) broader implications of such details

Gotterbarn (1999); Kemper and Sanders
(2001); Martin (2002); Downey et al. (2007); - Formal codes of professional ethics published - Ethics codes may be incomplete,
Walesh (2012); Brauer (2013); Schmidt . . , . inconsistently revered, inconsistently
(2014); Michelfelder and Jones (2013); by engineering disciplines societies integrated into engineering education
Schlossberger (2016)
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What attributes of engineering are discussed as unifying or dis-unifying It as a profession?

Source Topic Area Supporting Sources Unifying Dis-unifying

- Professional societies are weaker than
those of other established professions

Schlossberger (1993); Unger (1994); Beder - Professional societies are in place (e.g., medicine and law)
(1998); Vesilind and Gunn (1998); representing the major engineering sub- - Incomplete adoption of licensing or
Fleddermann (2004); Martin and Schinzinger disciplines society memberships among engineers
(2005); Robinson et al. (20071 - Societies' memberships not limited to

specific job types or areas of practice

Unger (1994); Pinkus et al. (1997); Vesilind- Areas of commonality across published codes
UndGr (199); irkustr et al. (1; Veof engineering ethics, such as:
and Gunn (1998); Armstrong et al. (1999); - Acceptance of responsibility to protect

Engineering ethics textbooks Humrihreys (1999); Fleddermann (2004); safety, health, and welfare of the public
Martin and Schinzinger (2005); Robinson et - Commitment to practice only in areas of
al. (2007); McCuen and Gilroy (2010); competence; to defer to experts otherwise
Whitbeck (2011); Bowen (2014); Catalano - Commitment to honesty and objectivity in
(2014); Harris et al. (2013) statements made to the public

Unger (1994); Pinkus et al. (1997); Beder - Responsibility for (and attention to) minute
(1998); Fleddermann (2004); Govindarajan et design details, and the associated risks and
al. (2004); Martin and Schinzinger (2005); broader implications of such details
Baura (2006); Pfatteicher (2010); Whitbeck (e.g., discussed as 'preventative ethics'
(2011); Harris et al. (2013) in these texts)
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Search 2 - Identifying job functions involved in carrying out attribute(s) of engineering work

Search question: Among literature that discusses design responsibility of engineers,
which of engineers 'job functions does this literature identify as being involved in
carrying out design responsibility?

In basing the design of Search 2 upon the content analysis results from Search 1, we

sought to discover evidence of where engineers' design responsibility manifests in practice (e.g.,

through which engineering job functions does this design responsibility manifest?). We

narrowed the search date range to 1990 to 2016 to capture the discussion of engineering practice

surrounding the turn of the 2 1st century. Within this date range, we ran two sub-rounds of search,

as differentiated by the first's broad inquiry into literature describing the practice of engineering

design and the second's focused inquiry into ethnographic accounts of engineering workplaces.

Both sub-rounds of Search 2 featured specific subject terms, text terms, and Boolean

combinatory logic as summarized in Table 3-3. Qualification review of the Search 2 raw results

sought to verify that sources described engineers' job responsibilities and referenced real-world

practice contexts. A total of 63 sources were retained in the qualified results set. Search 2's

qualification criteria and the resultant topic areas of excluded sources are summarized in

Table 3-3.

Search 2's content analysis was carried out to broadly identify areas where design

responsibility appears in engineering practice - an approach designed to set the stage for the

follow-on search's narrower focus on finding detailed examples of design responsibility (e.g., at

the task or activity level) within these broadly defined areas. For each of the 63 qualified sources

identified in Search 2, we searched the body text to locate the specific discussion about "design

responsibility" within the source, and then identified the one or more general areas of

engineering practice that the source referred to - we frame these general areas of practice as "job
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functions" constituting engineering. At least six job function clusters related to design

responsibility were discernable within the literature; however, as we show, three of these were

cited substantially more frequently than all of the others. Table 3-4 summarizes the results of

Search 2's content analysis, listing the discerned job functions, along with the supporting sources

for each from the literature.

Table 3-3. Criteria and results count for Search 2: Sources discussing design responsibility of engineers

Sub-rounds of Search

Subject Search Terms

Text Search Terms
(all terms required)

Excluded Subject Terms

Media

Date Range

engineer* AND [design OR
engineer* 'product development"]

engineer* AND engineer* AND ethnograph*AND

design AND responsibilit* responsibility AND
desin AD rsponibiit*[work OR practice]

"K-12", counseling, "high school",
immigration, marketing, parent*

academic journal articles & books

1990 - 2016

Raw Result Count 962 365

Qualification:

Inclusion Criteria <- Source must discuss engineers' job responsibilities
Source must reference engineering practice context(s)

ethnography as part of the design
corporate ethics, corporate social process or as a design tool,

Excluded Topics responsibility, description of sub- literature that does not discuss or
discipline-specific engineering tasks explain engineering job or task

responsibilities

Qualifying Result Count 48 11
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Table 3-4. Results from Search 2 - Job functions encompassing engineers' design responsibility

Job functions

EJ c

C ci

Sources discussing engineering Eninern dscpln

~En
job functions through which O gineering discipline

"design responsibility' W 2
manifests in practice -t 2 2

C NC

Avvakumovits (1996) X Civil
Baird et al. (2000) X X Mechanical
Beder(1998) X X General
Bibby et al. (2006) X Civil
Brown (2007) X General
Bucciarelli (1994) X X General
Bucciarelli (2002) X Mechanical / Electrical
Burk (2011) X X X Systems
Coeckelbergh (2006) X General
Collin (2004) X General
Cunningham et al. (2013) X General
Filho and Kaminski (2009) X X Mechanical
Fleischer and Liker (1992) X Mechanical
Gainsburg et al. (2010) X Civil
Galpin et al. (2007) X General
Gillum (2000) X X Civil
Gotternbarn (1999) X X Software
Hailpern and Santhanam (2002) X Software
Hall (2009) X Software
Hayes (2015) X Civil
Hwang et al. (2009) X General
Jack (2013) X X General
Jackson and Hundley (2004) X Civil
Jemielniak (2007) X Software
Karlsson et al. (2008) X X Civil
Kemper and Sanders (2001) X X General
Kunda (2006) X General
Le May and Le May (2016) X Civil
Lindsay (2002) X General
Loui (1998) X General
Loulakis and McLaughlin (2016) X X Civil
Main (2002) X General
Millet (1999) X Civil
_Nethercot (2008) X Civil
Onarheim (2012) X Mechanical
Pahl et al. (2007) X X X General
Pesch (2014) X General
Pfatteicher (2000) X X Civil
Robinson (2000) X Civil
Roeser (2012) X General
Rowland and Rowland (1995) X Software
Shankar et al. (2012) X Mechanical
Suchman (2000) X Civil
Swierstra and Jelsma (2006) X General
Trevelyan (2007) X X X X General
Trevelyan (2010) X X X X General
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Table 3-4. Results from Search 2 - Job functions encompassing engineers' design responsibility [continued]

Job functions

U
bO 0

Sources discussing engineering ~ BEngineering discipline
job functions through which t k o8d

"design responsibility" ~osre/icse
manifests in practice e

aD -

Van de Poel and Royakkers (2011) X X ____General

Van de Poel and Van Gorp (2006) X ____General

Vinck et al. (2003) X X X X General
Waelbers (2011) EninX General
Walesh (2012) X X X Civil
Whitbeck (2011) X X General
Wirfs-Brock (2009) X X Software
Workman (1995) X Computer
Wright (1997) X General
Yogeswaran and Kumaraswamy (1999) X Civil

Though the literature uses the word "responsibility" frequently regarding engineers' actions in

practice, our analysis suggests that much of design responsibility's manifestation is encompassed

within the engineers' job functions of: (1) design formulation, (2) configuration control of designs

(e.g., control and management of design releases and design changes), and, (3) design error or failure

discovery and response. Search 2 also produced a disjointed variety of other results that fall beyond

these three job function clusters - clearly engineers have responsibilities in a wide variety of other

aspects of the product realization process. Yet, given that this search aimed to establish high-

confidence areas of "where to look" for visible markers of design responsibility embodied in practice,

we chose to focus the subsequent search (Search 3) on identifying activities falling within these three

primary job functions. Example statements from among sources listed in Table 3-4 illustrate design

responsibility's manifestation within the three areas:
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Design formulation:

e "Engineers have the primary responsibility for making a product, machine, or system
work in accord with established design criteria" (Main, 2002, p. 28).

e "Detailed design is primarily the responsibility of discipline-specific engineers"
(Burk, 2011, p. 202).

Configuration Control of Designs:

- "...problems... can arise from implementing an engineering change order
(ECO)... The responsibility for these problems is usually placed squarely on the
shoulders of the design engineer" (Wright, 1997, p. 37).

e "Engineers coordinate, monitor, and evaluate work while it is being performed,
adapting plans and organization to circumstances" (Trevelyan, 2010, p. 189).

Error or Failure Detection and Response:

- "[Engineers] diagnose perceived performance deficiencies (or failures), conceive and
design remediation works, and predict how well the modified system will perform"
(Trevelyan, 2010, p. 189).

e "[Software engineers] take responsibility for detecting, correcting, and reporting
errors in software and associated documents on which they work" (Gotterbarn, 1999,
p. 88).

Search 3 - Identifying work activities that compose the job functions of engineers

Search question: Among literature that discusses the engineering job functions of design
formulation, configuration control of designs, and design error or failure detection and
response, what specific work activities does this literature identify as composing these
job functions?

In Search 3 we employed a date range from 1990 to 2016 and constructed the search in order

to discern specific work activities that compose the three job functions established in Search 2. Here

we ran three sub-rounds of search utilizing the specific subject terms, text terms, and Boolean

combinatory logic as summarized in Table 3-5. Qualification review of the Search 3 raw results aimed

to retain sources that discussed particular engineering work processes or practices in real-world

contexts. A total of 129 sources were retained in the qualified results set. Search 3's qualification

criteria and the resultant topic areas of excluded sources are summarized in Table 3-5.
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Content analysis for Search 3 involved a two-level source sorting approach similar to that

employed for Search 1. Here, however, the high-level topic bins were pre-established by the job

functions identified in Search 2 (e.g., engineering design formulation, configuration control of

designs, and design error or failure detection and response). For all sources within each topic bin,

we searched body texts to identify discussions of engineers' specific activities in the context of

carrying out the subject job functions. As with the Search 1 content analysis, here we also carried

out clustering to establish broad themes encompassing groups of related sources - in this case the

clustered themes are of the form of specific job activities. Table 3-6 summarizes the content

analysis of the Search 3 results. This table thus takes the form of a list of 10 job activities tied to

overarching "design responsibility" that the literature commonly associates with the practice of

engineering.

The activities listed in Table 3-6 highlight engineers' myriad roles in carrying out

processes, conducting analyses, processing changes, collaborating and coordinating, and making

corrective actions as they fulfill their design responsibility during various aspects of the product

realization process. Since thematic clustering processes such as the one employed in this study do

an injustice to certain sparse or more nuanced discussions within the literature, we do not purport

that these 10 activities in fulfillment of design responsibility are the only ones. We instead assert

that these activities reflect the more prominently documented examples of how design

responsibility is enacted in engineering practice.
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Table 3-5. Criteria and results count for Search 3: Sources discussing job functions of engineering

Sub-rounds of Search

1 2 3

Subject Search Terms

Text Search Terms
(all terms required)

Excluded Subject Terms

Media

Date Range

engineer* AND
[design OR "product

development"]

engineer* AND
"design process" AND
responsibilit* AND role

engineer*

engineer* AND
["change management"

OR "change control"
OR "configuration

management'
OR "design change"]

engineer*

engineer* AND
[failure OR error] AND

[prevention OR process]

"K-12", counseling, "high school",
immigration, marketing, parent*

academic journal articles & books

1990 - 2016

Raw Result Count 437 879 636

Qualification:

inclusion Criteria Source must discuss engineering work process or practice details
Source must reference engineering practice contexts

architecture, curricula, .o. c contingency planning,
design process not autoto, communton financial impacts of design

generlizale byond networks, cost control,generalizablecurricula, government, legal failure, injuries/accidents in
specific sub-disciplines (e.g., . industrial plants, materials

Excluded Topics genetics), manufacturing m a trcal 'is, failure analysis (e.g.,
processes, pedagogy, matheati aoim, microscopy, specimen testing),

product portfolio p peictivemeling, predictive modeling,
management, specific spfic cme robustness algorithms, system
environmental issues diagnostics and prognostics

Qualifying Result Count 50 43 24

194



Topic Area Supporting Sources Emergent Themes:
Work activities through which design responsibility manifests in practice

Ichida and Voigt (1996); Magrab (1997); Adams (1999);
Samuel and Weir (1999); Murdoch and McDermid (2000);
Armstrong (2001); Main (2002); Annacchino (2003); Anderson Engineers follow protocols that impose checks upon their designs (e.g.,
(2004); Ciambrone (2007); Hart (2007); Pah et al. (2007); design reviews, peer reviews, stakeholder reviews, drawing and/or codeCross (2008); Dym and Little (2009); Eder and Hosnedl (2010); reviews, verification testing, qualification testing) to verify safety andJones (2010); Benavides (2012); Dieter and Schmidt (2012); efctvns
Catic and Malmqvist (2013); Weiss (2013); Williams and effectiveness
Johnson (2013); Britton and Torvinen (2014); Mital et al.
(2014); Horenstein (2015); Ulrich and Eppinger (2016)

Pugh (1991); Magrab (1997); Skalak et al. (1997); Hazelrigg
(1998); Cather, et, al, (2001); Annacchino (2003); Anderson
(2004); Dick (2006); Hatamura (2006); Morgan and Liker
(2006); Pahl et al. (2007); Park (2007); Cross (2008); Dym - Engineers commit to a thorough consideration of possible solution concepts
and Little (2009); Eder and Hosnedl (2010); Cussler and before deciding upon the best concept suited to meet identified
Moggridge (2011); Haik and Shahin (2011); Benavides (2012); usersd/customers needs, and thus to be carried forward into design realization
Dieter and Schmidt (2012); Cadden and Downes (2013);
Weiss (2013); Britton and Torvinen (2014); Mital et al.
(2014); Cobb et al. (2016); Ullman (2016); Ulrich and

Engineering Design Formulation Eppinger (2016)

Ichida and Voigt (1996); Moss (1996); Twigg (1998);
Armstrong (2001); Annacchino (2003); Allard et al. (2009);
Lloyd and Busby (2003); Anderson (2004); Ciambrone (2007); - Engineers accept responsibility for documentation and communication of
Pah et al. (2007); Dym and Little (2009); Eder and Hosnedi designs, including the key underlying assumptions, constraints, and trade-offs
(2010); Jones (2010); Dieter and Schmidt (2012); Pavkovic et that drove the designs
al. (2013); Weiss (2013); Britton and Torvinen (2014); Mital,
et. al. (2014); Monticolo et al. (2014); Horenstein (2015);
Ullman (2016); Ulrich and Eppinger (2016)

Moss (1996); Magrab (1997); Jeng and Eastman (1999);
Armstrong (2001); Monplaisir and Singh (2002); Annacchino
(2003); Anderson (2004); Morgan and Liker (2006);
Ciambrone (2007); Pahl et al. (2007); Dym and Little (2009); - Engineers engage in collaboration and coordination routines in order to enact
Maier et al. (2009); Holt and Barnes (2010); Whyte and designs that accommodate the aggregate needs of the other participatory
Lobo (2010); Zirpoli and Becker (2010); Cussler and stakeholders in the product value creation process (e.g., other engineering
Moggridge (2011); Benavides (2012); Dieter and Schmidt teams, manufacturing, supply chain, marketing)
(2012); Cataldo and Herbsleb (2013); David (2013); Weiss
(2013); Britton and Torvinen (2014); Horenstein (2015);
Ullman (2016); Ulrich and Eppinger (2016)



Topic Area Supporting Sources Emergent Themes:
Work activities through which design responsibility manifests in practice

Buckley (1996); Wright (1997); Terwiesch and Loch (1999);
Dart (2000); Lyon (2000); Haug et al. (2001); Keyes (2004); - Engineers follow organized and controlled processes to release new productMoreira (2004); Jarratt et al. (2005); Jarratt et al. (2006); dsgsadt usqetymk hne oteedsgs nier'hl
Watts (2008); Watts (2010); Jarratt et al. (2011); Shankar et design (and design change) review and approval responsibilities as part of
al. 2012); Veldman and Alblas (2012); Reddi and Moon (2013); these processes
Son et al. (2014); Leon (2015); Quigley and Robertson (2015);
Watts (2015); Aiello and Sachs (2016)

Wright (1997); Lyon (2000); Haug et al. (2001); Eckert et al.
(2004), Keyes (2004); Jarratt et al. (2005); Jarratt et al. (2006);
Scholz-Reiter et al. (2007); Watts (2008); Hansen and Gammel
(2008); Mohan et al. (2008); Rovegard (2008); Fei et al. - Before changing or correcting a design, engineers analyze the proposed
(2011); Jarratt et al. (2011); Koh et al. (2012); Manuele (2012); change for any potential adverse impacts to baseline product performance
Ahmad et al. (2013); Hamraz et. al. (2013a); Hamraz et. al.

Configuration Control of Designs (2013b); Leon (2015); Quigley and Robertson (2015); Watts
(2015); Aiello and Sachs (2016)

Lyon (2000); Haug et al. (2001); Berczuk and Appleton (2003);
Keyes (2004); Mohan et al. (2008); Shiau and Wee (2008);
Watts (2008); Kocar and Akgunduz (2010); Watts (2010); Son - Engineers utilize design baseline management information systems to control
et al. (2014); Papinniemi et al. (2014); Monticolo et al. (2015); design data, authorize design data access, and to provide design change
Subrahmanian et al. (2015); Leon (2015); Quigley and traceability in collaborative design environments
Robertson (2015); Watts (2015); Aiello and Sachs (2016);
Morris et al. (2016)

Wright (1997); Lyon (2000); Haug et al. (2001); Keyes (2004); - Throughout a product's lifecycle, engineers ensure continued design
Scholz-Reiter et al. (2007); Quintana et al. (2012); Reddi and information accuracy, prevent information conflicts, and oversee dissemination
Moon (2013); Han et al. (2015); Quigley and Robertson of design baseline and change information to stakeholders (e.g., via a design
(2015); Watts (2015); Morris et al. (2016); Aiello and Sachs baseline management information system)
(2016)

Petroski (1994); Millet (1999); Busby and Strutt (2001); Keil
and Robey (2001); Evan and Manion (2002); Busby and
Coeckelbergh (2003); Davidson and Labib (2003); Kardon - Engineers continually monitor designs and design processes for possible
(2005); Kappelman et al. (2006); Lee et al. (2006); Boin and errors and issues throughout the product lifecycle, advocating for changes
Schulman (2008); Savoie and Frey (2012); Cataldo and when necessary

Design Error/Failure Herbsleb (2013); Williams and Johnson (2013); Horenstein
Detection and Response (2015); Williams and Johnson (2015)

Petroski (1994); Gillum (2000); Moncarz and Taylor (2000); - Engineers commit to determining root causes of failures that have occurred,
Pfatteicher (2000); Evan and Manion (2002); Pahl et al. and to following up with design, implementation, standards and/or process
(2007); Wearne (2008); Willis (2009); Lopez et al. (2010); Love corrective actions
et al. (2011); Fehr (2012); Le May and Le May (2016)



Search 4 - Identifying occupations involving similar or related work activities as engineers

Search question: Among the documented set ofpresent-day occupations, which of them
show evidence of similar work activities to those of engineering practice identified in
Search 3, beyond those occupations with the word "engineer" in their titles?

Search 4 was conducted within the 0*Net database (O*Net, 2017) with the aim of identifying

occupational titles and descriptions, rather than journal articles or books. The search occurred in

September 2017 and considered the entirety of U.S. occupations set listed within the database. By

striving to identify occupations consisting of activities similar to those of engineering roles, yet not

titled as such, we aimed to identify the set of roles in next-closest proximity to conventional

engineering roles - engineering's "nearest neighbors." A keyword search was employed utilizing the

following combinatory search logic: engineer* + (design* +process) + (analyze + configuration OR

change) + (collaborate + communicate OR coordinate). This search logic was derived from the

results of Search 3 in order to construct a query for roles with similar work components to

engineering; however, we opted not to use the words "error" or "failure" in the search criteria because

of their widely varied usage contexts across job description data. As expected, job titles with the word

"engineer" in the title dominated the top of the list. Thus, we began processing the results set by

filtering the set to remove any entries with "engineer" in the title. We next removed jobs requiring

less than a bachelor's degree, given our focus on occupations mostly likely to be pursued by

engineering school graduates. We also removed all jobs in teaching and architecture fields due to their

clear association with other specific occupation groups. Finally, we retained the 100 remaining results

in order of relatedness to the search terms, and added each of their top-ten listed "alternate

occupational titles" from the database. O*Net's search algorithm lists occupation results in descending

order of relation to search terms based on several factors: job titles, job descriptions, job tasks, and

detailed work activities (see: Morris, 2017, for a description of the algorithm). The alternate titles we
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added are those that O*Net reports as the closest title variants to each of its database's primary entries

if the primary entry is searched for independently. Search 4 thus resulted in a list of 1,000 present-day

non-engineering-titled occupations bearing a relatively strong relationship to engineering roles as

compared to other occupations. The search criteria and results counts are summarized in Table 3-7.

Table 3-7. Criteria and results count for Search 4: Occupations in close proximity to engineering roles

Occupations Search Query

engineer* AND [design* AND process] AND [analyze AND
Search Terms change OR configuration]

AND [collaborate AND communicate OR coordinate]

Database Occupation*NET Database
(https://www.onetonline.org/find)

Date of Search September, 2017

Raw Results Count 1022 (primary job titles)

Occupations with "engineer" in job title

Exclusion Filters Occupations requiring less than a bachelor's degree
Architect occupations
Teaching occupations

Final Results Count

(based on cutoff threshold) 100 (primary job titles)
1000 (primary job titles + top-10 alternate titles for each)

The method of qualification for Search 4's results was distinct from the other searches, given

that Search 4 encompassed a jobs database review rather than a literature review. Though the jobs in

the results set were arrived at systematically, discretion was needed to establish the cutoff threshold

for the quantity of nearest-matching results included in the results set. We opted to evaluate setting

this threshold at 100 primary job titles. A cutoff threshold was necessary because the O*Net algorithm

would otherwise proceed to report all results in its database in decreasing order of relatedness to the

search terms. We tested the robustness of our threshold choice by conducting a preliminary results

clustering analysis based on job title. We sought to ensure that we were not curtailing any prominent
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job clusters through our imposition of the threshold. We noticed that job titles became increasingly

unrelated to each other with increased distance down the results list. We thus reviewed the next 50 job

titles beyond the initial threshold of 100 results, and were not able to discern any clusters of 5 or more

similarly titled jobs among the 50. Our assessment is that jobs in the region beyond the threshold are

sparsely related, and that our threshold choice of 100 produces a results set that is appropriately

aligned with our goal of being able to identify the occupational groups in closest proximity to

traditional engineering jobs.

We next carried out formal content analysis on the Search 4 results, with the goal of

discerning clusters of engineering-similar jobs from among the qualified results list. We based this

clustering analysis on both job titles and job description summary statements (e.g., the 1-2 sentence

heading statements atop each O*Net database entry) to arrive at four pronounced clusters of related

occupations: developers (as pertaining to software or computer-related contexts); designers;

coordinative and managerial roles; and analyst and technical communicator roles. Table 3-8 presents

a summary of Search 4's content analysis, wherein each column delineates a specific occupational

cluster and contains several example constituent job titles, one of which is expanded as a detailed

example. While the results in Table 3-8 do not tell us anything definitive about which of these jobs

should be considered "engineering" jobs, we do make the assumption that this roles set encompasses

engineering's "nearest neighbor" occupations within product, process, service, or system development

ecosystems. We proceed, in Part 3 of this paper, to develop a parsing scheme for these engineering

nearest neighbors.
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Job Title Developers - De r Coordinative and Analysts and
Clusters: Software or Computer Context gners Managerial Roles Technical Communicators

- Software Application Developers - industrial Designers - Project Managers (c) - Computer Systems Analysts
- System Software Developers - Designers (a) - Product/Systems Development Managers (d) - Operations Research Analysts

Example - Web Developers - Design Directors - Managers (e) - Decision Analysts
Job Titles - Computer Network Architects - Systems Designers (b) - Leads (f) - Sustainability Analysts

- Software Architects - Environmental Designers - Directors (g) - Technical Writers
- Network Developers - Interface Designers - Chief Technical Officers - Technical Editors

Example
Job Deta. SoftworeApplkcatlon Developers Indust" mlDesigners Project Managers COnputer SystemsAnalypts

Develop, create, and modify general computer Analyze science, engineering, business, and other dateapplications software or specialized utility programs. Develop and design manufactured prodwcs, such as Plan, initiate, and manage projects. Lead and guide the processing problems to Implement and Improve
Analyze user needs and develop software solutions. cars, home appliances, and children's toys. Combine work of technc staff. Serve as liaison bet computer systems. Analyze user requirements,
Design software or customize software for client use with artistic talent with research on product use, marketing, business and technical aspects of projects. Plan p procedures, and problems to automate or improve
the aim of optimizing operational efficiency. May analyze and materials to create the most functional and stages and assess business Implications for each stage. existing system and review computer systemand design databases within an application area, working appealing product design. Monitor progress to assure deadlines, standards, and capabilities, workflow, and scheduling limitations. May
individually or coordinating database development as cost targets are met. analyze or recommnnd comrnrdally available software.
part of a team. May supervise computer programmers.

- Test, maintain, and monitor computer programs and
- Modifyexstatlng software to correct errors or to Improve - Manage project execution to ensure adherence to systems, Including coordinating the installation of
i pne r sance r- Prepare sketches of ideas, detailed drawings, budget, schedule, and scope computer programs and systems
SAnalyze user needs and requirements to determine lilustrations, artwork, and blueprints - Develop or update project plans, Including Information - Troubleshoot program and system malfunctions to
fersibility of designs - Confer with engineering, marketing, production, or such as objectives, technologies, systems, specifications, restore normal functioning

Primary -Confer with systems analysts, engineers, programmers sales departments, or with customers schedules, funding, and staffing - Expand or modify system to serve new purposes or
Tasks and others to design systems - Modify and refine designs using working models - Monitor or track project milestones and deliverables Improve work flow

system capabilities and requiraents - Direct and coordinate the fabrication of models or -Confer with project personnel to identify and resolve - Use computers in the analysis and solution of business

Design, develop, and modify software systems samples problems problems, such as development of integrated production

scientific aalysis and mathematical models to redict Evaluate feasibility of design ideas - Develop and manage work breakdown structures of and inventory control and cost analysis systems
andmeasureoutyoe and coseqnca es o ei. projects -Consult with management to ensure agreement on
and measure outcome and consequences of design. system principles

-Analytical Thinking - Innovation - Leadership - Analytical Thinking
-Attention to Detail - Attention to Detail - Initiative - Attention to Detail
- Innovation -Analytical Thinking - Persistence - Adaptablity/Flexdbility

Work Styles -Integrity -Persistence - Attention to Detail - Dependability
-Achievement/Effort -Dependability -Dependability -Integrity

Notes:
1. Column headings represent the 4 primary occupation clusters discerned in Search 4
2. Example Job Titles are drawn from both primary and alternate job title results from the specified Occupadon hIformalon Network (ONet) search
3. Example Job Details are excerpted from O*Net database entries for the first example given in each category; in the case of project managers where there are multiple entries, verbiage is taken from the rT Project Manager profile
4. Primary Tasks and Primary Work Styles: excerpted from the DeNet detailed occupational profile of the subject job; the top 5 attributes in the database are shown for both Tasks and Work Styles
5. Curtailed job titles are presented for those with multiple similar entries In the database; the notes below explain how the curtailed titles are often used as the root of longertitles:

(a) "Designer' is a recurrent job title root In the results set, referencing various product development contexts. Examples titles include: "Automotive Designers," "Bicycle Designers," "Boat Designers," "Athletic Shoe Designers," etc.
(b) Examples of "Systems Designer" roles In the results set include: 'Computer Systems Designers" and "Industrial Green Systems Designers"
(c) "Project Manager" roles are usually preceded by discipline modifiers in the results set. Examples include: 'Information Technology Project Managers,' "Energy Project Managers," "Construction Project Managers, "Transportation Project Managers," etc.
(d) "Product Manager," "Product Development Manager," and 'System Development Manager' are listed In the results set in reference to computing and alternative energy contexts
le) 'Manager" is a recurrent job title root in the results set. Examples tites include: "Software Development Manager," 'Comphance Manager," "Information Security Manager,' "Technical Manager,""Sustainability Manager," and others
(f) "Lead" is a recurrent job title root In the results set. Examples include:'Systems Applications Programming Lead," "Lead Simulation Modeler,"'Energy Projects Lead," "Software Development Team Lead,* "Computer Network Specialist Lead," and others
(g) "Director" Is a recurrent job title root in the results set. Example titles incude: "Web Development Director," Planning Director," "Construction Director," 'Water Resources Program Director," Technology Director," and others
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In sum, this sequential literature review provided us with key substantiation for constructing a

set of propositions to underpin an engineering graduates' occupational outcomes typology. The review

allowed us to discern a core attribute of engineering work and to identify visible markers (e.g., work

activities) representative of how this attribute is likely to manifest in practice (Table 3-6). We then

examined a sampling of occupation roles in near proximity to engineering roles, and established a set

of non-engineering-titled role types that clearly exhibit some degree of overlap with engineering roles

(Table 3-8). We hereafter proceed in Part 3 of this paper to develop and present a typological system

relating these engineering "nearest neighbor" roles, engineering roles, and roles of more distant

proximity to engineering.

3.2.3 Limitations of methods and results

Methods employed in this study have known deficiencies. We chose to employ systematic

literature review to enable a broad inquiry into the fundamental characteristics of what it means to

work as an engineer. Such an inquiry required consideration of wide time ranges and sought to draw

highly generalized inferences from large quantities of search results. To handle this scope, we

employed thematic clustering analysis. Cluster statements are paraphrases, and thus are not directly

extracted from any specific source (Krippendorf, 2004). Detail is inevitably lost in this process;

therefore, content analysis results are inherently incomplete and should be viewed as such. While we

worked to ensure an absence of conflicts among clustered sources, we are unable to precisely quantify

the degree of nuanced detail that is lost during processing.

The nature of our sources also limits the completeness of our analysis. For example, we rely

on journal articles and books for a meta-analysis of engineering practice. As Trevelyan and Tilli

(2007) note, engineering practice may be inadequately covered in these types of sources; therefore,

use of field research methods or consultation of literature sources from additional realms may have

improved the fidelity of our analysis. But such alternate methods are not without their own risks or
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limitations. For example, drawing from non-peer reviewed sources may have provided views more

specifically focused on engineering practice but at the expense of accuracy and unbiasedness.

Meanwhile, field research methods such as ethnography provide an excellent means of building rich

descriptions of specific context, but at the expense of the efficiency necessary to cover our broad

desired scope. Again, these considerations imply an incompleteness of the coverage of our inferences

about engineering work, prompting us to frame our results as a series of propositions (culminating in a

proposed framework) rather than as a set of verified and conclusive statements.

Finally, our use of 0*Net as a primary source for detailed current job description data in

Search 4, coupled with the content analysis applied to such, carry limitations. Though our content

analysis identified four prominent occupational clusters among the results, we acknowledge that other,

less definitive groupings of the occupations likely also exist, as do lone occupations that do not fit

neatly among the four clusters (e.g., niche specialist roles). A challenge to the comprehensiveness of

clustering centers on the fact that the search algorithm is keyword-based, yet the ways in which

certain words are used in job descriptions vary considerably, resulting in some less relevant

occupations permeating the results set. Additionally, certain less-common job descriptions are likely

missing from the O*Net database, as suggested by the comparatively larger volume of job titles in the

Bureau of Labor Statistics' Direct Match File (US BLS, 2013). While O*Net covers approximately

1,100 jobs, plus their alternate titles, and includes rich descriptions across an array of attribute

categories within each (Peterson et al., 2001), we nonetheless limit our interpretation of O*Net results:

we assume that results represent common examples of jobs encompassing the job attribute search

terms, but we do not assume that results represent a comprehensive list of possible job titles. We do

assume that O*Net search results we acquired represent typical and reasonable examples of jobs in

close proximity to engineering roles in our present time.
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3.3 Typology synthesis and discussion

3.3.1 Typology synthesis: Characterizing occupational outcomes of engineering graduates

We proceed to develop a series of propositions to support construction of a typology that

delineates engineering work, identifies and situates engineering-related work in proximity to

engineering work, and distinguishes other work from either of the preceding. Collier et al. (2012)

define a typology as "an organized system of types", which, in this case, we establish as the system of

occupational outcome types that present-day engineering graduates achieve and then propagate

through. The typology strives to account for two dimensions of variance that differentiate the types:

divergence in the nature of job responsibilities and progression of role types with age and experience.

Both such dimensions are conceptualized with reference to an occupation type datum: the roles set

that most embodies the discerned core of engineering work and that is temporally placed at the junior-

most phase of engineering graduates' careers. The typology then categorizes other occupational role

types in relation to the datum across both dimensions. At a most basic level, our synthesis builds upon

the notion of design responsibility as a unifying criterion of engineering's core; therefore, we begin

with the following proposition:

Proposition 1: possession of design responsibility is a consensus (or near-consensus)
unifier of those in engineering occupational roles.

The enduring nature of design responsibility as a definitive attribute of engineering practice

gives us confidence in this proposition - historic literature preceding our review calls similar attention

to it. Baddour et al. (1961), for example, describe engineers' "willingness to assume final

responsibility for a useful result" (p. 650). Mann (1962) discusses "the engineer's responsibility for

the physical realizability of his creation," and "acceptance of responsibility for solutions" (p. 2). And
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Hall (1965) explains: "After a design has been formulated, the engineer has the responsibility of

following it through to its realization... [to ensure] the product of the design can be achieved" (p. 294).

We see design responsibility signifying an engineering occupational obligation over the many decades

leading to our sources' similar conclusions in the 2 1st century.

Yet, despite this seemingly straightforward assertion - that design responsibility

characterizes engineering practice - a more detailed review of the literature and of sample job

descriptions make it clear that such a criterion is not without complications. The following

additional propositions address these complications.

First we must acknowledge that the precise nature of design responsibility and the way

it is enacted by engineering practitioners is likely to change over the course of individuals'

careers. A rich history of scholarship on the organization of engineering work describes a

common (and long-established) tendency for engineering practitioners to gravitate toward

increasingly managerial roles as they progress through their careers (see: Goldner & Ritti, 1967;

Bailyn & Lynch, 1983; Rynes et al., 1988; Biddle & Roberts, 1994; Busby & Coeckelbergh, 2003).

For the purposes of developing an occupational outcomes typology, we must ask: do we or do

we not wish to count engineering practitioners who have transitioned to managerial roles as

having relinquished their engineering status? We assert that many of such managers should

certainly continue to be counted among those practicing engineering - but that the distinction,

similar to the case of early-career roles, can also be explained by the individual's proximity to

design responsibility. Robinson (2012) presents evidence that many individuals in the role of

"engineering manager" continue to be responsible for "technical" elements of work, while

Trevelyan and Tilli (2007) conclude: "management is an intrinsic part of many engineering

roles" (p. 302). If we view engineering as a particular occupational function in the context of
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organizations or projects - one with its own internal seniority hierarchy - we may consider the

occupational function itself as holding design responsibility, with its members as enactors of

this responsibility at various levels of accountability. For instance, if an individual contributor

engineer makes a flawed design decision, is this individual's direct-line manager not ultimately

responsible for ensuring the flaw is resolved, just as the individual contributor also holds

responsibility? In a most direct exemplification of this responsibility hierarchy, certain safety-

critical engineering contexts employ an "engineer of record" to sign off on designs (Gillum,

2000; Kardon, 2005). On large projects, such individuals may oversee teams of contributing

engineers yet preside as authority over the design. While the visible formality of this authority

undoubtedly varies by situation, we argue that an engineering managerial chain of command

ultimately presides over - and bears the consequence of - design responsibility. However, one

cannot presume that all managerial roles that an individual engineer may be promoted into

necessarily fall along this chain of command: if an individual is promoted from an engineering

role into a managerial role in other occupational functions, such as in business development,

strategy, or operations, they may effectively move to a position one or more degrees removed

from design responsibility, and thus no longer be most appropriately categorized as "engineer"

in the conventional sense. We summarize our conclusions about engineers' career advancement

progression in relation to design responsibility through the following proposition.

Proposition 2: the nature of engineers' design responsibility can evolve over the course
of a career, from junior to senior stages.

Proposition 2a: junior members of the engineering occupation hold design
responsibility over their contributions toward engineering projects, though they
may or may not (depending on experience levels and context) require a more
senior engineering or engineering manager to validate their contributions.

Proposition 2b: senior and managerial members of the engineering occupation
hold design responsibility over their own contributions, as well as over their
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team's / department's / directorate's contributions. Individuals who have
delegated engineering design responsibility but are ultimately responsible for
outcomes may still be considered engineers.

Figure 3-2 illustrates the partial typology we've constructed thus far. Here we have

simply instantiated the two primary axes of the framework: one of progression in engineers'

careers, and one of proximity to design responsibility. The following additional propositions

serve to incorporate further differentiating detail into the framework.

Early Roles - Advanced Roles
Engineering
Graduates Engineering Occupations Hold Design

Responsibility

Further
Other Occupations from Design

Responsibility

Figure 3-2. Partial construction of engineering graduates' occupational outcomes typology

We next turn to the elaborative question of: design responsibility over what? In other

words, what is the scope that this responsibility encompasses? Clearly there are others

involved in designs beyond engineers, even if we limit our consideration of "design" to specific

contexts that involve design parameters rooted in applied sciences or mathematics. Other

occupations' involvement is highlighted by the prevalence of documented hybrid roles entailing

collaboration with engineers - such as examples revealed by our Search 4: industrial designers

who "prepare sketches of ideas" and "refine designs using working models," or project managers

who "lead and guide the work of technical staffs" and "identify and resolve problems [with the
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project]," among others (see: Table 3-8). Time spent reviewing modern job descriptions in

technology development labor markets make it clear, as one author states, that: "engineers will

become more and more engaged in broad, trans-disciplinary collaboration" (Sorensen, 2009).

Defining engineering work in the 21 s century involves acknowledging that design is

collaborative across varied occupational roles in product/technology development ecosystems

while also acknowledging that engineers' responsibility over design is unique in its nature. The

engineering ethicists' (and others') arguments that to be an engineer is to be responsible for the

outcomes of designs (see: Table 3-2), combined with a more granular definition of design help

to elucidate this uniqueness. Scholars of engineering design have long defined design in terms

of bothform andfunction, and have identified processes by which a design is evolved from

functional requirements (e.g., target functions) into a specific implemented form (e.g., realized

form with its consequent functions). Cross (2006), for example, describes a product

development process through which the initial gap between a product's envisioned functional

design requirements and its formalized design structure achieves closure. And, Pahl et al.

(2007) describe stages of conceptualization, embodiment, and detailing that, in succession,

involve giving increasingly specific form to functional requirements. When it comes to the

functional specification of products - what a product should accomplish, the utility it should

provide to its users, even the appearance it should exude - our literature review makes it clear

such decisions are collaborative endeavors in today's product development ecosystem between

engineers and complimentary roles, such as user experience designers, product managers,

analysts, strategists, and others. But our review also makes a strong case that the final

implementedform of products - and, in particular, how the specified product functionality maps

to a final product implementation - is generally viewed as the unique responsibility of
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engineers. The following examples help illustrate these complimentary but differing natures of

responsibility.

In engineered products (or processes, systems, or services), particularly complex ones,

we see evidence that designforms are generally codified via revision-controlled sets of governing

information artifacts - software source code, drawings, schematics, chemical formulae, etc. -

and that engineers are tasked with being responsible for the integrity of this formal design

definition (see: Table 3-6). In short, engineers instantiate (or oversee the instantiation of) the

specific final form of the design that ultimately gets delivered. Eckert et al. (2004), for example,

describe an environment at an aerospace firm where numerous product design changes were

being processed in rapid succession as the firm worked to incorporate issue resolutions and

responses to customer concerns. They describe a collaborative environment, with many

participants from different disciplines involved in proposing and reviewing the design changes -

but ultimately a senior engineer was responsible for vetting and approving changes to the

design baseline. Kardon (2005) describes scenarios in civil and structural engineering where

engineers-of-record are formally liable for the performance of designs instantiated under their

watch, and can be charged with negligence if designs fail to perform (e.g., perform as

functionally specified). And Twigg (1998) describes a complex supply chain in the automotive

industry, replete with design interdependencies across suppliers and sub-systems - yet one for

which control over design integrity is maintained through clear assignment of engineering

design authority and sign-off responsibility. Our review (see: Table 3-2 and Table 3-6) suggests

that ownership of the form representation of designs is a hallmark of what it means to be an

engineer - the taking of responsibility for what actually gets built, shipped, compiled, uploaded,

etc., often as marked by technical sign-off duties in design information management systems.
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To offer a summative example: consider a scenario where members of many

complimentary occupations are deeply involved in collaborating to specify how a laptop

computer should look and feel, and how well it should perform across a variety of technical

parameters. Inputs from a range of occupational roles may inform the conclusion that the

aesthetic characteristics of an aluminum case are most appropriate for the laptop - but when it

comes to formalizing what exact alloy of aluminum will be used, taking into account such

considerations as heat transfer, structural integrity, and manufacturability, among other things,

such formalization becomes the engineer's responsibility. We posit that responsibility for an as-

delivered design inclusive of the most infinitesimal levels of design definition is what uniquely

characterizes engineers' design responsibility. Yet, the way engineers are often embedded in

broader product and technology development ecosystems suggests engineers' work is often

moderated by others in complimentary roles. Though engineers are responsible for instantiation

of design form, the well-documented presence of complimentary roles suggest engineers may

rarely have free-reign. Industrial designers, for example, may establish the net shape of a

product while "conferring with engineering," or, project managers may "establish objectives"

while "conferring with project personnel" (Table 3-8). The broad set of pertinent 21st century

role descriptions thus suggests a give-and-take surrounding products' target functionalities,

which we conceptualize as a collaborative responsibility shared between engineers and others.

We offer Proposition 3 to distinguish conventional engineers' roles among the nested and

complimentary responsibilities at play.

Proposition 3: the nature of engineers' design responsibility differs as it pertains to the
form of designs versus the function of designs.
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Proposition 3a: those occupying engineering roles hold determinate
responsibility for instantiating the form of designs, and for form-consequent
function emerging from this instantiated form.

Proposition 3b: those occupying engineering roles share collaborative
responsibility with other related occupations over the target function of designs.

Proposition 3 prompts an expansion of the occupations typology from its basic skeleton

(Figure 3-2) to account for this more granular distinction of the nature of design responsibilities

among occupation types. An intermediate occupation type is introduced, as shown in Figure 3-3.

This expansion presents a need to establish categorical names - a delicate task, given our

imperative for neutral, non-judgmental type-labeling.

We opt to employ English-Latin hybrid categorical names in pursuit of such neutrality.

As with labeling choices in other scientific fields, use of Latin-based categorization takes

advantage of the diminished emotional anchoring associated with a legacy language. It allows us

to uniquely conceptualize the new hybrid terms without their being laden with prejudicial

meaning. We introduce the following terms for the typology's upper two strata:

" Engineer-Agnita Occupations (Engineer-A's, or EA's, or per convention, Engineers) -
historically recognized, or conventionally acknowledged engineers.
(The hybrid name utilizes the Latin "agnita," meaning recognized or acknowledged)

* Engineer-Conpar Occupations (Engineer-C's, or EC's) - engineering partners and
colleagues; fellow participants in product or technology development.
(The hybrid name utilizes the Latin "conpar," meaning companion, mate, or partner)

The scheme in Figure 3-3 illustrates the complimentary, interdependent nature of the

roles that engineers and engineer-C's hold in product or technology development realms.
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Early Roles - 0 Advanced Roles

Engineering Engineer-Agnita p Hold Determinate Responsibility
Graduates ccupaons for instantiating Design Form

(Conventionally recognized engineering roles) (and form-consequent function)

......... - - - - > Share
influence and moderate Collaborative Responsibility

Engineer-Conpar Occupations Design Form for Targeted Design Function
(and form-consequent function)

Other Occupations Differ from either of above
in one or more ways

Figure 3-3. Expansion of engineering graduates' occupational outcomes typology

We proceed now to more specifically explore collaborative responsibilityfor targeted

design function and to elaborate upon the defining criteria for engineer-C's. Our review suggests

a proximal relationship between engineers and engineer-C's that is distinctly close compared to

that between the conventionally acknowledged engineers and other occupations. Sources

provide several examples of this proximity:

e Sheard (1996) describes system analysts' role to "confirm that the designed system will meet
requirements" (p. 2), inclusive of conducting modeling to ascertain design performance.

e Kemper and Sanders (2001) describe an interplay between engineers and industrial
designers, whereby stylistic and usability attributes of designs are specified by the latter.

e Van de Weerd et al. (2006) illustrate product managers' role in establishing product
requirements based on customer needs and parsing these requirements into specific
planned product releases.

e Rauniar et al. (2008) discuss product managers' role in setting project-level goals and
targets for product development teams that are in "strategic alignment" with business and
company goals.

e Onarheim (2012) describes project managers' responsibility for translating "target product
profiles" into design constraints through a process described as "establishing corner
flags."

e O*Net (2017) describes information technology project managers' role as "a liaison
between business and technical aspects of a project," and lists project scoping, planning,
objective setting, and conferring with project personal to resolve problems among
"primary tasks."
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The above analyst, designer, product manager, and project manager portrayals illustrate

design form-moderating roles that are characteristic of engineer-C's in our framework. In each

of these cases, we see how the work of such individuals is carried out complimentarily with that

of engineers, who presumably act upon and are guided by the outputs of each of the above.

Further, the typology distinguishes other occupations from both engineer-A's and -C's in

that others do not directly share collaborative design responsibility for target product function,

nor do they directly influence, moderate, or instantiate product form. For example, consider the

possible difference between an engineer-C (for example, a project manager with cost control

and product specification responsibilities on an engineering project) and a financial analyst

housed within the same product development firm. The financial analyst is certainly also a

participant in the broader product development economy, but is likely further removed from

engineering. The financial analyst may determine how costs need to be controlled within a

particular product line or division; this determination may be translated into project-specific

cost targets, which in turn may translate into design constraints. But, while the project manager

is likely to directly interface with engineering to control these costs and translate them into

design-influencing parameters, the financial analyst is more likely to influence design only

through intermediaries (e.g., such as the project manager), rather than directly. In some cases,

the project manager may be considered an engineer himself or herself, depending on how

design responsibility is allocated in particular contexts.

The nature of the jobs within the four engineering "nearest neighbor" occupational

clusters from Search 4, combined with supporting role descriptions (see: Sheard (1996); Van de

Weerd et al. (2006); Rauniar et al. (2008); Onarheim (2012)), suggest possible modes of

collaborative responsibility shared between engineers and engineer-C occupations. We posit a
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series of expected markers of collaborative responsibility over target design function in Table 3-9,

alongside distilled markers of determinate responsibility over design form based upon our review

(e.g., Search 3 results). The characteristics summarized in Table 3-9 may inform the

construction of research survey questions targeted at engineering graduates whose

occupational outcomes are of interest. Such questions could be used to help identify the nature

of survey respondents' design responsibilities, and, in turn, could assist in placing respondents

into engineer, engineer-C, or other occupation categories. It is important to note that the

statements in Table 3-9 assume that design responsibility is held at the occupation function-

level (e.g., at a given instant, an individual need not be doing design work to be considered an

engineer if she or he belongs to a occupational function holding design responsibility), and that

the "product" could be of the form of a product, process, service, or system. Affirmation of any

one of the given responsibility statements in Table 3-9 indicates an individual holds

responsibility at the associated categorical level (e.g., collaborative-over-function or

determinate-over-form). Table 3-9 does not constitute an exhaustive list, but serves to illustrate

the characteristics of these two primary responsibility categories as we have conceptualized

them based upon the literature review.

Proposition 4 formalizes the conceptualization of engineer-C occupations. Proposition 5

elaborates on what distinguishes other occupations from both engineers and engineer-Cs.

Proposition 4: Engineer-Conpar (Engineer-C, or EC) occupations share collaborative
responsibility over the targetfunction of designs with engineering occupations, and
influence and moderate theform of designs (and the form-consequent function of
designs).

Proposition 5: Other Occupations (e.g., neither engineers nor engineer-C's) do not share
collaborative responsibility over the function of designs, and do not directly influence or
moderate the form of designs.
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Table 3-9. Characteristics of the categories of design responsibility

In each case, affirmation of any one or more of the markers indicates posession of the responsibility type
The term "products" refers to products, processes, services, or systems

Markers of Colaborative ResponsibIlity over target design function

Individual belongs to an ocupation that:

- Plays a direct role in establishing the target functional specifications of products

- Provides information directly to (or shares information directly with) those who are
designing a product (or part of a product) in order to influence its design

- Participates in reviewing proposals for product designs and design changes

- Monitors, simulates, or analyzes product performance to establish feedback on how well it is
performing, and relays this feedback to those working on the design of the product

- Conveys information about product issues or failures directly to those tasked with correcting
the design of the product

- Creates communication artifacts or documents that explain, discuss, or clarify technical
information about a product by working directly with those who are designing the product

Markers of Determinate Responsibility for instantiating design form

Individual belongs to an occupation that:

- Holds responsibility for establishing the specific defining details of a product or part of a product,
and Is ultimately accountable for the correctness and integrity of these details

- Should there be a product flaw discovered, is responsible for establishing conclusions about the
cause of the flaw, and for establishing and implementing the specific design change that will
resolve the flaw

- "Signs off" as the technical authority certifying the effectiveness and safety of a design, part
of a design, or on behalf of a particular technical sub-domain involved in the design

Full instantiation of the engineering graduates' occupational outcomes typology based

upon Propositions 1-5 is shown in Figure 3-4. Notional career progression and dispersion

patterns are overlaid to exemplify how the typology accommodates these dynamics. The

descriptive text within the cells of Figure 3-4 serve to illustrate how job scope, expertise level,

and/or leadership or managerial purview may vary within the established bounds of each

occupational category. However, this text is not intended to represent specific job titles. The

typology avoids utilizing job titles as a means of type-categorization due to the potential for

variation in their meaning across employment contexts. The typology thus best serves as a tool
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for original research when the nature of subjects' job responsibilities can be assessed, through

surveying, interviewing, or other means, rather than as a scheme for parsing existing job titles

into categories. In the remaining sections of this paper, we discuss employing the typology in

original research, the typology's strengths and limitations, and opportunities for further

development.

Early Roles Advanced Roles

Engineering Engineering Occupations: Design Instantiating Roles
Graduates Individual contributor Subject matter expertsuates engineers, team leads leaders, + Hold determinate responsibility for instantiating design form*

managers/directors * Share collaborative responsibility for targeted design function

Engineer-C (EC) Occupations: Design Moderating Roles
Planners, analysts, leaders, managers, * Influence and moderate design form*associates top executives of P .Os * Share collaborative responsibility for targeted design function

Other Occupations

Other 'Collaboration or influence on product form or function
is indirect or not part of the role

*Here we refer to both design form and form-consequent function
P00 = Product (or, process/servlce/systeml Development Organization

Figure 3-4. Engineering graduates' occupational outcomes typology with notional career progression
and dispersion patterns overlaid

3.3.2 Employing the typology

The example job profiles uncovered in Search 4 of this review provide good cases for

exploring this new typological approach (see: Table 3-8) - such are the jobs in today's market that are

identified as nearest neighbors to engineering roles, yet are not titled as "engineer." We identified four

groups of common jobs in this area: developers, designers, coordinative and managerial roles, and

analysts and technical communicators. A foundational assumption of our approach is that there is

unlikely to be an effective way of automatically parsing these boundary-blurring jobs into engineer,

engineer-C, or other categories without knowing about the specific nature ofjob responsibilities.
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However, data from 0*Net gives us at least enough information to discuss possible categorization

rationales for the sake of methodological illustration.

Let us first consider "Software Application Developers," as listed in Table 3-8 - setting aside,

for a moment, an ongoing discussion about whether software developers should be entitled to formal

engineering professional licensure (see Davis, 1996, for issues challenging such licensing, and

NCEES, 2012, for a recent developments paving the way for licensing). From Table 3-8, we observe

that the "Software Application Developer" profile includes such language as: "develop, create, and

modify general computer applications software," "may supervise computer programmers," "modify

existing software to correct errors or to improve performance," and "design, develop, and modify

software systems using scientific analysis and mathematical models.. .to predict and measure outcome

and consequences of design." This language tells us about several factors related to our framework:

that the role is not limited to that of a computer programmer - the role appears to involve

accountability over software product design, its associated validation, with conscious purview over

design outcome and consequence. The description also implies duties to correct errors and to improve

baseline product performance. This role thus appears consistent with the markers of determinate

responsibility over designform as listed in Table 3-9. Additionally, the job profile states that the

individual will "analyze user needs and requirements" and "confer with systems analysts, engineers,

programmers, and others to design systems" -job features considered to be markers of collaborative

responsibility over target designfunction from Table 3-9. Ideally, survey response or interview data

from this role's occupant would bolster our conclusions about the role's inherent design

responsibilities, but from the evidence we have, the role appears consistent with that of an engineer

based upon the typology. We cannot, however, generalize that all "developers" are engineers, nor can
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we draw such a conclusion about the many other software development-related job titles utilized in

today's job market based on this one simple example.

Next we consider the "Project Manager" profile from Table 3-8. This profile includes such

language as "plan, initiate, and manage projects," "lead and guide the work of technical staffs, "serve

as liaison between business and technical aspects of projects," "ensure adherence to budget, schedule,

and scope," and "confer with project personnel to identify and resolve problems." Throughout this

profile, we see language associated with collaborative responsibility over design function (e.g., "lead

and guide," "serve as liaison," "confer"), but no such language that suggests design responsibility over

the final configuration or of specific design details. This information suggests a role consistent with an

engineer-C occupation. Yet, we cannot conclude that all project managers are engineer-C's; it is entirely

conceivable that "player/coach" roles exist whereby a project manager also possesses responsibility over

determinate design details (see: Allen & Katz, 1995), and thus could be considered an engineer.

Again, original research data about individual subjects' job responsibilities are needed to lead

researchers to the most robust conclusions about occupational categorization using the typology.

Analyses similar to these can be carried out for any of the types of jobs listed in Table 3-8 and

beyond: from "industrial designers" and "interface designers," to "product development managers"

and "project leads," to "systems analysts" and "sustainability analysts." Some cases are more nuanced

than others; for example, designers clearly have responsibility over "design" - yet here we return to

our discussion on the breadth of what "design" encompasses for purposes of this typology: it is not

simply what a product looks like nor its list of performance requirements. Engineers, we contend, are

"on the hook" for the finalized and specific instantiation of the lowest level of design details (whether

they delegate tasks related to these design details, or whether they instantiate these details

themselves): such is the essence of determinate responsibility over designform.
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3.3.3 Challenging cases and typology limitations

As we set out to develop this typology, we were cognizant that long lists of categorization

rules would make the framework unwieldy, or in some cases even fragile. We sought to balance

parsimony of the typology with maximal coverage of engineering graduates' occupational outcomes.

As a result, we expect there to be some number of occupational roles that may require a particularly

nuanced analysis or simply may not be categorize-able using the typology.

Engineering faculty members create one such categorization dilemma: are professors of

engineering themselves engineers? Should engineering graduates in pursuit of faculty roles be counted

among those exiting the engineering pipeline? On the one hand engineering faculty members are the

educators of future engineers and are experts in their engineering domains. But, in many (though not

all) cases, they do not hold determinate responsibility over design forms because their engagement in

teaching and basic research limits their participation in engineering practice. At the same time, they

are not categorized effectively by the typology's other designations. Engineering faculty members

represent one case where we simply recommend counting participants separately as their own

occupational category. This approach lends transparency and allows the user of occupational

outcomes results to further interpret or process the results as they wish.

Technical and/or engineering consultants compose another challenging case; however, here

we assert that such individuals can likely be parsed into one of two type-categories depending on

detailed information about their design responsibilities. For example, engineering consultants who

provide design services in such realms as civil, structural, geotechnical, or environmental engineering

disciplines, among others, may carry determinate design responsibility over the form of designs in

cases where they supply finalized designs to construction contractors (or other external entities) while

remaining affixed to the associated projects as "engineers of record" or "design authority." In these
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types of cases, contractors cannot change designs at will and consulting engineers are liable for design

outcomes, solidifying their position as engineers in the typology. In other cases, however, individuals

may employ the title of "consultant" in seemingly engineering-related contexts, but not possess

determinate design responsibility over form. Such may be the case when consultants are retained to

provide design recommendations, carry out supporting studies, and/or provide various non-binding

inputs to engineering teams. These latter roles are presumably better characterized as engineer-C's.

The field of systems engineering and its sub-domains also provide challenges to this

categorization framework. The International Council on Systems Engineering (INCOSE) defines

systems engineering quite broadly:

Systems Engineering is an interdisciplinary approach and means to enable the
realization of successful systems. It focuses on defining customer needs and required
functionality early in the development cycle, documenting requirements, then proceeding
with design synthesis and system validation while considering the complete problem
(INCOSE, 2017).

At first glance this definition appears primarily aligned with the collaborative responsibilities

over target designfunction roles set, suggesting categorization of systems engineers as engineer-C's.

However, the systems engineering discipline continues to grapple with its identity and occupational

definition (see commentary within INCOSE, 2017; also: Emes et al., 2005; Kasser & Hitchens, 2012).

Closer consideration of possible manifestations of the "design synthesis" and "system validation"

aspects of the role suggests that responsibility for the final realizedform and consequentfunction of

systems can sometimes be part of the role as well. While systems engineers may be involved in design

at a higher level of abstraction than other engineers (e.g., at the "architectural" level), these

individuals may have sign-off authority on detailed design manifestations at lower levels, and may test

designs and play a direct role in design refinements as a result of those tests (e.g., as opposed to

simply reporting test results to another group) - such arrangements, should they be in place, point
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toward possession of design responsibility over both form and function. Meanwhile, Sheard's (1996)

"Twelve systems engineering roles", describes a pronounced diversity of what may be considered

systems engineering; here we see analysts, designers, managers, engineers, and coordinators, among

others, all listed under a systems engineering umbrella. It thus seems plausible that some systems

engineering roles are better described as engineering roles while other are better described as

engineer-C roles.

Finally, we call attention to roles within very small companies and start-ups. In these

contexts, where individuals may wear many hats, we expect a blurring of some of the category

boundaries. For example, certain roles in small organizations may involve interfacing and

collaborating directly with engineers in ways that would be uncharacteristic of that same role in many

other types of organizations. Consider a start-up company employing one individual whose job it is to

both run the company's finances as well as to serve in a project manager capacity, directing and

conferring with engineers. For such cases, we recommend simply employing the typology as

described in this paper, whereby for any given individual, it is explored whether they may possess any

of the forms of design responsibility listed in Table 3-9. This "start-up effect" may introduce

increased breadth to the variety of roles categorized as engineers or engineer-C's, but provided that

the roles legitimately include the form of design responsibility as recorded, measurement error is

avoided.

3.3.4 Future work

Various next steps can serve to further validate the typology and to enhance its usability for

researchers. First, the tangible markers of design responsibility (e.g., Table 3-9) can be further

substantiated through field validation. This field research would assess the degree of corroboration

between these markers and workers' and their managers' acknowledgement of the underlying
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responsibilities, resulting in potential refinement to Table 3-9. Sampling for such studies would be of

chief concern, as all elements of this typology are derived from commonalities across an intentionally

broad range of engineering practice literature. We must avoid adding new markers to the list that are

drawn from niche contexts; however, we should scour practice contexts for substantive examples that

disprove the list in order to refine the wording to make it more robust.

Next, evaluating the typology's degree of coverage is prudent: for a given sample of

engineering graduates, what percentage of their occupational outcomes over time are categorize-able

by this typology? For the typology to be useful to the research community, high coverage is a

necessity. Initial attempts at employing the typology for engineering schools' alumni surveys, for

example, could serve as excellent opportunities to gauge coverage and to understand reasons for any

coverage issues. Discerned reasons for coverage problems could prompt refinement to the typology to

increase coverage - but as discussed, the benefits of any added categorization rules must be weighed

against the usability benefits of a parsimonious framework.

In the typology's present form, the definition of design domain is largely left unresolved - and

accommodation of varying design domains is not yet provided by the typology. For example, herein

we state an assumption that engineers operate in specific contexts involving "design parameters rooted

in applied sciences or mathematics" but we provide no such rubric for establishing the precise bounds

of such contexts. A follow-on systematic review that helps to more clearly delineate those bounds

may be prudent. Additionally, we envision that this typology could possibly be expanded into a third

dimension - one where the idea of design responsibility as a roles delineator could be applied across

other domains (e.g., apparel, culinary, multimedia, theatrical, etc.). Were such an expansion to be

made, the typology could help clarify roles sets beyond engineering product development.
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Finally, and importantly, the research community's inputs from studying engineering

graduates' occupational outcomes should be used to evolve the typology and to inform the design of

follow-on typology validation studies. This paper is intended to start a conversation about a new way

of talking about engineering graduates' occupational outcomes. Enhancing the consistency and clarity

by which we measure this important variable benefits the entire community, and this typology and its

subsequent iterations can be a platform to facilitate this clarity.

3.3.5 Conclusions: Engineers, Engineer-C's, and shifting the conversation toward "design responsibility"

Adoption of an engineering graduates' occupational outcomes typology that acknowledges a

range of engineering-relatedness among occupations has the potential to provide pronounced benefits

to the engineering education research community. According to the U.S. Census Bureau, nearly 20%

of engineering graduates (across all ages) are counted as leaving engineering specifically due to their

obtaining of managerial roles outside of STEM (U.S. Census Bureau, 2014). Yet, legacy occupational

measurement systems make it quite difficult to know the true nature of the work that these particular

graduates have taken on - some likely remain closer to engineering than others. We ponder how

many of these graduates would best be characterized as engineer-C's, rather than remain

uncategorized, based upon this new typology. Relatedly, measurement of graduates' attrition from

engineering roles can suffer from inconsistency or opacity if different researchers measure it in

different ways. This typology offers a way for the research community to unify its occupational

outcomes measurement method while enhancing one another's understanding of empirical results.

The rise of the Engineer-C's

The 21st century brings evidence that the number of individuals engaged in engineer-C

work may be growing rapidly - for instance, the leading project management professional
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society's membership quadrupled between 1999 and 2005 (DiVincenzo, 2006). Engineering

educators are faced with a choice of whether to acknowledge that a significant number of

engineering graduates will likely land at these types of roles, and if so, to decide whether

engineering education should address student preparedness for such roles. The answer to the

latter question is beyond the scope of this paper, but we contend that measurement of graduates'

participation among engineer-C roles should be carried out nonetheless in order to best prepare

educators to answer it in the near future.

An additional benefit of measuring engineering graduates' occupational outcomes with

the increased granularity afforded by this three-tiered typology relates to efforts aimed at

enhancing diversity and equality in the engineering workforce. If engineering attrition is

measured in a binary fashion (e.g., persistence vs. departure), then we learn less about the nature

of departures. Information about the alternate occupational paths pursued by underrepresented

groups may support efforts aimed at increasing these groups' representation in core engineering

roles. Seron et al. (2016), for example, describe an apparent tendency for female engineering

students to gravitate toward project management roles on engineering teams, while males seem

to associate more with hands-on design roles. This typology may help reveal inequality among

its occupation sub-types if the research community employs it consistently across engineering

career outcomes research.

Shifting the conversation

Williams (2002), Downey (2005), and others, contend that the nature of technological

work is changing rapidly in the 2 1st century, and that an ever-broadening array of occupations

will routinely engage with technology and play roles in its development. Indeed, lists of job titles

and job profiles associated with technological development in our present era can be dizzying.
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As engineering graduates participate in increasing varieties of jobs, educators will be faced with

choices about how their academic institutions view and deal with this career dispersion. Keeping

pace with ever-changing sets of job titles in real-time may be near impossible. Yet, decades of

literature on the nature of engineering work suggest an enduring central theme about what it has

consistently meant to be an engineer: design responsibility. Though we can't predict the future, a

means of monitoring graduates' occupational outcomes based upon relatedness to this theme

may serve an important benchmarking/comparison function that can reveal how workforce roles

and graduates' participation patterns are evolving. Meanwhile, in our present time, engineering

educators have the opportunity to foster renewed clarity about what it means to be an engineer by

framing engineering work as centered upon design responsibility. Not only can this approach

serve to further elucidate the widely-recognized core of engineering work, but the design

responsibility gradient established in this typology may prove to be an enduring way of relating

other work to this core as job titles continue to come and go.

Amid the recent push to clarify the meaning of engineering work, scholars of engineering

education have built a compelling case that educators should include social, coordinative, and

collaborative job characteristics in their conceptions of engineering practice (see: Bucciarelli,

2002; Trevelyan & Tilli, 2007; Trevelyan, 2010). These scholars emphasize that collaboration

and coordination are central parts of engineering, not merely peripheral job attributes. We must

underscore that this typology fully aligns with that notion. The typology highlights that

engineering (and other occupations) involve collaboration in carrying out technical work - yet

that engineers simultaneously possess a unique level of responsibility over design outcomes

compared to other occupations. It is difficult to know if today's soon-to-be graduates understand

this key distinction between types of work. These students are no doubt exposed to a complex
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array of informal messages about typical engineer-C roles via social media and the popular press

- such as one piece touting product managers as "the digital industry's rock stars" (Tsuchiyama,

2011).

In these changing times, and as we work to increase the engagement of underrepresented

groups in engineering practice, we are compelled to investigate whether these groups'

engagement is growing at the heart of engineering design responsibility, whether the growth is

largely in the engineer-C roles, or in both. We aim not to negatively judge graduates' decisions

to pursue engineer-C roles - in fact, enhancing engineering education's preparation of graduates

for these roles may be prudent. But we contend that measurement of graduates' engagement in

engineering roles is perhaps most accurately and most transparently achieved through the use of

a stratified engineering-relatedness typology. Through this means, we can identify whether

progress is attained at making the core of engineering work more inclusive and welcoming for all

engineering graduates.
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4. Reconsidering the college-careers interface in engineering:
Removing impediments to students' career development

4.1 Engineering schools confront a growing challenge

The National Academy of Engineering (NAE, 2005), the American Society for Engineering

Education (ASEE, 2012) and other key stakeholder organizations regard undergraduate engineering

education as a foundational component of aspiring engineers' professional development. Over the past

two decades, such groups have launched campaigns to assess engineering degree programs' effectiveness

at preparing students for engineering careers, and have proposed wide-ranging curricular and

programmatic improvements toward this end, often informed by industry feedback (see, e.g., ASEE,

1996, 2012, 2015; NAE 2004, 2005). During these same decades, however, substantive changes have

transpired in the careers landscapes faced by engineering students. The boundaries around engineering

work have expanded and blurred during this timeframe, as traditionally categorized engineering roles

have been joined in job markets by increasing numbers of engineering-related hybrid roles and new job

formulations that attract engineering students (for a review, see: Chapter 3); further, engineering

students are now commonly recruited for non-engineering roles (Carnevale et al., 2011; Langdon et

al., 2011). Though the supply of engineering graduates has largely accommodated this expansion in

variety of labor demand (Anft, 2013; Salzman, 2013), recent literature, reviewed herein, suggests that

today's engineering students are increasingly at risk of being underprepared to make well-fitting

career decisions - such as whether to pursue engineering, engineering-related, or non-engineering

occupations - as they approach graduation. In this changing world, engineering educators face

reckoning with the scope of their mission: to what extent should engineering schools take

responsibility for undergraduate students' preparedness to make well-informed career decisions?

Implications of the variation in career plans among engineering students at the end of

bachelor's degree programs require careful assessment. Upon initial inspection, such variation appears



benign: recent engineering graduates have fared notably well in job markets, whether in acquiring jobs

within or outside of their fields of study. Unemployment rates among recent engineering graduates are

presently low (e.g., at or below 4% across the primary engineering degree fields, as of January 2018),

and under-employment rates are currently lower for recent engineering graduates than they are for

recipients of all other bachelor's degree types, with the exception of nursing and education (Federal

Reserve Bank of New York, 2018). Thus, while studies indicate that 20% - 30% of engineering

students expect to work outside of their degree fields at their first full-time jobs (Chapter 1; see also:

Atman et al., 2010), this career path variation does not appear to tend toward adverse employment

outcomes for engineering students. Moreover, many of these ostensible "exits" from engineering

career paths likely lead to positions in close proximity to traditionally categorized engineering roles,

in areas such as project management, product management, or quantitative analysis, among others (See

Chapter 1 for statistics on engineering students' post-graduation plans; see Chapter 3 for a discussion

on occupations' engineering-relatedness).

Yet, despite favorable employment statistics for recent engineering graduates, other indicators

suggest that opportunities exist for improvement in student-occupation matching during early career

stages. Among students who successfully earn engineering degrees, attrition from traditional

engineering career paths appears to be at least partly systemic, with certain student subsets exhibiting

a greater likelihood of taking jobs outside of their degree field at or soon after graduation compared to

their peers. These subsets include female students (Frehill, 2012; Ayre, et al., 2013; Glass et al.,

2013), as well as students possessing certain self-perceptions about their skills and abilities, such as

those with relatively high self-assessed interpersonal and leadership abilities (Chapter 1; see also:

Atman et al., 2010), and those with relatively low confidence or perceived enjoyment in working with

mathematics (Chpater 1; see also: Correll, 2001; Eris et al., 2010). Original empirical research

(Chapter 2) indicates that these trends of disproportionate attrition may, in part, reflect missed
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opportunities for more ideal student-job matching, as such matching may be constrained by students'

under-informedness about variation in attributes across available engineering jobs. These findings,

based on a random controlled job preference survey experiment conducted on over 1,000 senior year

mechanical engineering students, as described in Chapter 2, suggest that becoming informed about

particular attributes of a given engineering job affects job attraction differently, on average, for

different types of students. The three student subsets discussed above - females, those with high self-

assessed leadership potential, and those with low perceived enjoyment of working with mathematics

- exhibited significant differences in their average job attraction, compared to their peers, in response

to information about jobs' social characteristics, advancement opportunities into leadership roles, and

mathematics intensity, respectively. Moreover, this study found that statistical models for students'

job attraction that included interactions between students' characteristics and jobs' attributes

explained significantly more variance in job attraction compared to similar models that omitted such

interaction terms. These findings call attention to under-informedness as a potential risk factor for

undue student attrition from engineering career paths: qualified students who might otherwise be

drawn to working at a particular engineering role might be inclined to avoid the role if they are

insufficiently aware of key job attributes.

Existing studies examining factors underlying engineering students' occupational outcomes

often have not accounted for variability in what it can mean to work as an engineer, nor have they

typically controlled for the extent that students are aware of this variability (Brunhaver et al., 2013).

Such omissions make the implicit assumption that students possess a universal, homogenous

conception of engineering work. This assumption appears to be increasingly unreasonable in today's

world, as literature has reported on substantial differences in attributes across traditionally categorized

engineering jobs in areas such as computational intensity, social interactivity, and career advancement

prospects, among others (Perlow & Bailyn, 1997; Ranson, 2003; Goold, 2012; Brunhaver et al.,
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2013), and as other studies have documented a growing presence of engineering-related hybrid jobs

featuring elements of engineering work juxtaposed with work from other disciplines (Chapter 3; see

also: Williams, 2002; Downey, 2005). These hybridizations have included elements of marketing,

management, design, or data analysis, and such positions often exist alongside traditionally

categorized engineering roles in workplaces. Hybrid roles, moreover, carry a wide range of job titles,

most of which are not yet formally tracked in government labor statistics systems (see discussion

within Chapter 3). Yet, the roles' titles often center on terms such as "designer," "manager," or

"analyst" (e.g., "interface designer," "project manager," "product development manager," "system

analyst," "decision analyst") (Chapter 3, Table 3-8). While some of these roles, such as project

managers, are not new, the roles' prevalence have nonetheless undergone sharp increases since the

turn of the 2 1st century - as suggested, in the case of project managers, by a quadrupling of membership

in the primary professional society of project managers between 1999 and 2005 (DiVincenzo, 2006).

Recent survey data indicates that 14% of graduating mechanical engineering seniors expected to work

in these types of roles in their first full-time job after college or graduate school - moreover, students

with such career expectations composed the majority, at 55%, of those in the survey's sample who

expected to work outside of traditionally categorized engineering jobs after graduation (Chapter 1).

While some of these roles' job titles, particularly those that include the term "manager," may appear to

indicate positions more advanced than entry-level roles, contemporary students' expectations to work

in such areas likely reflect companies' recent trend of developing entry-level variants of the positions.

Tech giant Google, for example, has launched a popular "associate product manager" position for

which it recruits candidates directly out of college (Levy, 2011), and other firms have created similarly-

titled entry-level or early-career positions (Glassdoor, 2018a, 2018b, 2018c).

The presence of variety among engineering and engineering-related work underscores the

importance of job attribute informedness in shaping engineering students' career intentions. This
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variety likely introduces further complexity into students' process of forming an engineering

professional identity during undergraduate educational years as they begin to explore job options.

Development of a strong professional identity has often been examined as a key factor in relation to

students' persistence from engineering school into engineering careers (Stevens et al., 2008;

Matusovich et al., 2010; Cech et al., 2011; Eliot & Turns, 2011; Ayre et al., 2013; Hatmaker, 2013;

Cech, 2015). In our recent survey study of senior year mechanical engineering students, we

expectedly found a statistically significant association between strong professional identity (defined as

a student's identification with one specific profession) and students' intention to work in engineering-

titled occupations (Chapter 1). These results corroborate earlier findings, such as those from

Matusovich et al. (2010), who found that students at highest risk of leaving engineering were those

with "limited connection between engineering and their personal sense of self' (p. 300), and those

from Ayre et al. (2013), who found that individuals who persisted in engineering careers more often

reported possessing a "sense of belonging" to their specific field (p. 230). Yet, recent studies report

that many engineering students struggle in formulating professional identity over the course of their

undergraduate engineering school experience (Stevens et al., 2008; Lichtenstein et al., 2009). In our

survey sample of over 1,000 mechanical engineering students, for example, 45% of these students did

not identify with a specific profession (or were unsure about identifying with a profession) by their

senior year (Chapter 1).

Recent evidence makes clear that today's undergraduate engineering students are often

unconvinced about what they want to do for a living; yet, we ask: is the engineering educational

experience designed for this type of an uncertain audience? Further, given that the undergraduate

years encompass an influential period in the formation of professional perceptions and intentions

(Stevens et al., 2008; Lichtenstein et al., 2009), what can engineering educators due to ensure that the

occupational sorting that occurs at the college-careers interface is equitable, well-informed, and
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conducive to satisfying student-occupation matches? We do not mean to imply that all students should

be expected to attain a best-fitting occupation on the first try - literature on career development has

highlighted that exploration and iteration are often necessary in achieving career fit (Ibarra, 1999,

2004; Ibarra & Barbulescu, 2010). Nor do we impose value judgment on whether an engineering,

engineering-related, or non-engineering role is the best fit for a given student. Rather, we call

attention to systemic nature of attrition from traditional engineering careers in the current system and

inquire whether certain career development impediments exist that disproportionately hinder

particular student subsets' pursuit of engineering careers.

We next review results from recent original survey experiment research (Chapter 2) indicating

that specific information about engineering jobs can influence attraction to these jobs in different

ways for different subsets of engineering students. We discuss implications of these findings in light

of additional literature that suggests students' experiences during their undergraduate engineering

education, as well as their exposure to longstanding reputations about engineering work, risks leaving

them with incomplete or inaccurate impressions of the role possibilities available among traditionally

categorized engineering jobs. We then conclude this chapter by reviewing possible constraints and

limitations inherent in engineering education that can impede students' preparedness to make career-

related decisions, while reviewing potential opportunities for educators to enhance preparedness.

4.2 Students' attraction to working in engineering: The critical role of job information

Since awareness about key job attributes has been shown to interact with engineering students'

personal characteristics to influence their job attraction (Chapter 2), a lack of awareness about certain

engineering job variants can limit the breadth of the profession's appeal across the spectrum of

students. Personal characteristics found to be salient in such job preference interactions include

gender, anticipation of early-career appointment to leadership roles, and anticipated enjoyment of
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working with mathematics, among others (see: Chapter 2). Yet, engineering work carries enduring,

generalized reputations in key areas related to jobs' attractiveness that do not accurately characterize

all engineering jobs. In the absence of a more complete awareness about types of available positions,

these "default" reputations can make engineering work more attractive to certain subsets of students

compared to others, and under-informedness about job attribute variation across positions can

potentially lead to relatively lower propensities for certain student subsets to be attracted to the

prospect of working at traditionally categorized engineering jobs.

For example, literature suggests the prevalence of at least three role configurations among

individual-contributor engineering jobs that differ substantively in their social characteristics: technical

specialist roles that are largely individualistic but include periodic interaction (Kent & Noss, 2002,

2003; Alpers, 2010; Anderson et al., 2010); collaborative team-based roles that feature frequent or

continual interaction (Bucciarelli & Kuhn, 1997; Bucciarelli, 2002; Trevelyan, 2010; Robinson, 2012;

Stevens et al., 2015); and, roles that involve substantial coordination across team and organizational

boundaries (Lakemond et al, 2006; Herbsleb, 2007; Trevelyan, 2007; Stevens et al., 2015). Studies

indicate, however, that despite engineering schools' efforts to include elements of teamwork and

communication in the engineering curriculum, engineering work still largely carries a reputation of

being centered on individualistic technical contribution (Seron et al., 2018). Individualistic problem set

assignments in engineering courses (Bucciarelli & Kuhn, 1997; Stevens et al., 2015) and tendencies

toward role segregation within student project teams that isolate and "valorize" the individualistic

technical work from the more administrative or coordinative work among team members (Seron et al.,

2016, 2018) may perpetuate this reputation among students. In the latter case, studies have found that

such role segregation tends to be gendered, with females exhibiting a higher propensity to take the

more socially-focused administrative and coordinative roles compared to males (Cech 2013; Seron et
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al., 2016, 2018). Studies critique at least two key aspects of this gendered role segregation: first, that

the role segregation appears to be enabled by an engineering culture that fosters competitive

establishment of technical hierarchies within teams through means that have undermined development

of females' technical self-confidence (Seron et al., 2016), and, second, that this culture seems to

convey that social and coordinative components of engineering work are not central to "real"

engineering, despite these components' essential contributions to engineering projects' success and

their integral place in industry engineering practice (Cech, 2013; Seron et al., 2018). Researchers have

characterized processes of "professional socialization" based on these observations that shape males'

and females' senses of fit in engineering roles, and have found these processes to pervade certain

engineering educational experiences, such as the formation of student teams in courses (Seron et al.,

2016, 2018). While these recent research efforts have advanced our understanding of such processes

in order to help educators mitigate them and improve equality, the literature suggests that gendered

role preferences will continue to replicate in contemporary samples of students until widespread reform

manifests.

An investigation within our job preferences survey experiment (Chapter 2) examined the

presence of gendered role preferences toward engineering positions that featured experimentally

manipulated social characteristics. Experimental participants - senior year mechanical engineering

students - were each asked to assess the appeal of several randomly manipulated job profiles, all of

which were affixed the same job title ("Mechanical Design Engineer"). Here we found, as expected,

that engineering job profiles that included more pronounced social characteristics - such as emphasis

of collaborative or coordinative aspects of jobs - were rated higher, on average, by females, while job

profiles that emphasized individualistic work were rated higher, on average, by males. However, all

variants of the experimental job profiles were designed to embody common, industry-realistic
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configurations. Findings thus suggest that if female students are under-informed about the availability

of engineering roles with prevalent social characteristics, then they might harbor a reduced sense of

appeal toward working in engineering, compared to if they were more informed about the range of

engineering job options.

Survey experiment results also suggest that engineering students' informedness about

opportunities for advancement from entry-level roles into leadership positions influences the appeal of

jobs differently for different subsets of students (Chapter 2). Literature has long documented the

engineering profession's struggle to establish clarity about the sets of advancement trajectories that

compose engineering careers (see, e.g., Bailyn & Lynch, 1983; Shapira & Griffith, 1990; Watson &

Meiksins, 1991; Biddle & Roberts, 1994; Allen & Katz, 1995; Perlow & Bailyn, 1997; Igbarria et al.,

1999; Hodgson et al., 2011; Joseph et al., 2012; Paton & Hodgson, 2016). For instance, the profession

has grappled with whether engineers' advancement from individual-contributor roles into

management roles - a common occurrence (Biddle & Roberts, 1994; Badawy, 1995; Mael et al.,

2001; Hodgson et al., 2011; Joseph et al., 2012) - constitutes a continuation of an engineering career,

or marks a career change (Biddle & Roberts, 1994; Perlow & Bailyn, 1997; Trevelyan, 2007; Joseph

et al., 2012). Citing the likely types of professional paths followed by engineering students, key

engineering education advisors called for adding leadership development components to the

engineering curriculum (NAE, 2004, 2005), yet, more than a decade since such calls, educators

continue to struggle to integrate such elements into degree programs (Knight & Novoselich, 2017).

Suspecting, based on the literature, that engineering students may generally lack awareness

about engineering careers' leadership growth opportunities, we tested for how such awareness might

affect the appeal of engineering jobs among students. Again, through the use of a survey experiment

involving engineering students assessing the appeal of manipulated job profiles (Chapter 2), we

257



examined the effect of including a statement in the profiles disclosing advancement opportunities

associated with the job. The statement explained that in 1-2 years, job candidates would be eligible, if

desired, to advance into project or product management roles. We found that mentioning these

opportunities increased the appeal of jobs, on average, across the participant sample - but, more

notably, we found that mentioning the opportunities increased the appeal of jobs to a significantly

greater extent, on average, for students with higher self-appraisal of their leadership ability, compared

to those with lower self-appraisals. This latter finding is relevant because studies have shown that

those engineering students with higher self-appraisal of interpersonal or leadership abilities are more

likely to expect to work outside of traditional engineering occupations after college compared to their

peers (Chapter 1; see also: Atman et al., 2010). Engineering employers, meanwhile, currently express

comparative difficulty in recruiting engineering graduates possessing such interpersonal and leadership

abilities (Salzman & Lynn, 2010; Cappelli, 2015). Findings thus suggest that engineering students

who possess leadership abilities might find the prospect of working in engineering to be more

appealing, overall, if they are more aware of entry-level engineering positions' growth paths into

leadership roles.

While the current engineering curriculum may insufficiently develop students' awareness of

how leadership can be involved in typical engineering careers (Knight & Novoselech, 2017), the

curriculum may encourage students' over-estimation of the extent that mathematical work is

embedded in most engineering jobs (Winkelman, 2009). Engineering carries a general reputation as

being a mathematically intensive profession (NAE, 2008); yet, specific occupational roles in

engineering practice have been shown to vary considerably in the intensiveness of their inherent

mathematics activity (Kent & Noss, 2002, Alpers, 2010; Goold, 2012). Studies have shown that some

engineering positions are indeed best characterized as computational or analytical specialist roles,
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requiring mastery of certain mathematical abilities; in many cases, such positions reside in dedicated

expertise groups within firms or in special consultancies (Kent & Noss, 2002; Alpers, 2010). Other

engineering roles, such as design engineering positions, however, are often better categorized as

generalist roles - practitioners in these types of positions use math more conceptually, or through the

aid of pre-existing analysis software programs or in collaboration with experts who run detailed

analyses in support of their projects (Alpers, 2010; Anderson et al., 2010; Goold, 2012). Scholars of

engineering education have expressed concern that the way mathematics coursework and math-based

problem solving are enacted in the engineering curriculum may thwart students' awareness of how

engineering design and problem-solving are frequently carried out in industry: by teams of individuals

embodying different roles in collaborative pursuit of solutions to open-ended problems (Bucciarelli &

Kuhn, 1997; Winkelman, 2009; Trevelyan, 2010). Literature, meanwhile, discusses that engineering

practitioners often report that their math usage in practice is substantially less intensive compared to

their math usage during engineering degree programs (Alpers, 2010; van der Wal et al., 2017).

Based on the literature, we suspected that engineering students might generally be under-

informed about the variety of use patterns of mathematics across different engineering-titled roles in

industry. By means of our survey experiment (Chapter 2), we examined how engineering students'

sense of job appeal was influenced by their informedness about different levels math intensity among

identically titled engineering positions. We found that two subsets of students - those who anticipated

enjoying work involving advanced mathematics, and those who did not - responded significantly

differently in their ratings of job profiles that described realistic engineering positions of differing

mathematics intensity. Those students who anticipated enjoying work involving advanced math (56%

of the survey's sample) expressed statistically similar appeal ratings across the job profiles, regardless

of whether the profiles' described jobs involving intensive or non-intensive mathematics usage;
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meanwhile, those students who did not anticipate enjoying working with advanced math (43% of the

sample) expressed significantly lower job appeal when informed that engineering positions involved

intensive math. All students who participated in this survey experiment were senior year students on

track to complete accredited engineering degrees, so, while their mathematics aptitude likely varied, it

is unlikely that many (or any) possessed a low aptitude for mathematics. These findings thus suggest

that a substantive subset of engineering students - those who do not anticipate enjoying working with

advanced math - are likely to find engineering work less appealing than their peers if students are

generally under-informed about the variety of mathematics usage inherent in different types of

engineering positions.

Finally, we found that two key beliefs of engineering students - students' satisfaction with

opportunities to exercise creativity at engineering jobs, and students' strength of professional identity

- were significantly associated with students' expectations to work at traditionally categorized

engineering positions after graduation (Chapter 1), and that these beliefs were also components of

significant interaction effects in our survey experiment on job attraction (Chapter 2). In the latter case,

we observed that conditional subsets of students based on the beliefs - those satisfied with

opportunities for creativity at engineering jobs, and those identifying with one specific profession -

both reported significantly higher job appeal ratings compared to their peers, on average, when rating

engineering job profiles that expressed an expected commitment duration to remain with the jobs'

employer for three years. We examined the effect of expected job commitment duration upon

students' attraction to jobs because various forms of career mobility-restrictive policies - such as non-

compete covenants (Lester, 2001; Marx, 2011; Cappelli & Keller, 2014) and training repayment

agreements tied to commitment durations (Lester, 2001; Long, 2005; Cappelli & Keller, 2014) - have

gained attention for their enactment by engineering employers in recent years (for overviews, see:
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Lobel, 2013; Hyde, 2015). These policies, designed to protect firms' intellectual property and

investment in employee development, have received scrutiny due to concerns that they tend to push

technical talent away from regions that allow such policies, and toward those that prohibit them (Marx

et al., 2015), and that they demotivate employees (Amir & Lobel, 2013). An experimental study,

however, found that those job candidates who perceived a position's work as creative, rather than rote,

were comparatively less demotivated by mobility-restrictive policies (Amir & Lobel, 2013). Research

also found employers' investment in specialized training in areas aligned with individuals'

professional interests to be associated with employees' increased retention at jobs (Benson et al.,

2004). Legal precedent shows that commitment duration policies tied to employer-funded specialized

training, rather than general skills training, are more likely to be upheld by courts (Lester, 2001).

In the job appeal survey experiment (Chapter 2), we tested for the effect of randomly

introducing a commitment duration expectation, coupled with special skills training, to experimental

job profiles. We observed that those engineering students who perceived engineering work to be

creative, as well as those students with strong professional identities, reacted more positively to the

presence of this job attribute than their peers. These result suggest that development of engineering

students' sense that engineering work is creative, and students' sense of professional identity, both

may make students more resilient to potentially adverse information about an engineering job (e.g.,

knowledge of a mobility-restrictive policy).

4.3 Reconsidering the college-careers interface in engineering

As cohorts of contemporary engineering students consider job markets or the prospects of

graduate study as they complete engineering school, they must contemplate a larger array of job

options and career path possibilities than their recent predecessors did. Further, they must do so

despite undergoing the same number of preparatory years, composed of roughly the same core
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curriculum, that their predecessors underwent (Seely, 2005; Sheppard et al., 2009). While the survey

experiment described in Chapter 2 identifies job attributes that attract key subsets of students to

traditionally categorized engineering jobs, it is clear that students' decisions on whether to pursue

engineering work are far from binary. These decisions will increasingly involve navigating job

options that fall along a spectrum of engineering-relatedness (see: Chapter 3). We presume that the

role of job information becomes even more critical in such a multi-faceted careers landscape. Labor

economists, for instance, have called attention to limitations of information flows in complex labor

markets, suggesting that ideal candidate-job matching is often hindered by individuals' lack of

awareness about job possibilities (Autor, 2001; Manning, 2011). In the case of soon-to-be engineering

graduates, engineering schools face consideration of whether better developing students' awareness of

career options should fall within their scope of developing "professional preparedness" in these

graduates.

Though we lack information about the causal phenomena underlying graduates' sorting into

the various alternative career paths that fall outside of traditional engineering routes, a multinomial

analysis of engineering students' occupational expectations (Chapter 1) provides associational data on

such sorting. This analysis identifies key student characteristics and perceptions that are uniquely

associated with various occupational outcomes types, highlighting that the students who expect to

work outside of traditional engineering roles are a notably heterogeneous group who likely depart

traditional engineering paths for different reasons (See: Chapter 1, Table 1-6). For instance, the

multinomial model indicates that the students who pursue alternative roles that are engineering-related

(e.g., in project or product management, in technical consulting, or as analysts) expect to earn similar

salaries, on average, as engineers, yet, are less satisfied with the creative opportunities they perceive to

exist at engineering jobs, are more anticipatory of being promoted to an early-career leadership roles,
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and find less enjoyment in working with advanced mathematics, among other differences. In contrast,

those pursuing alternative roles in management consulting or finance, expect to earn higher salaries,

on average, than engineers, yet, are similarly satisfied with creative opportunities at engineering jobs,

are more anticipatory of promotion into an early-career leadership role, and find less enjoyment in

working with advanced mathematics. Unique sets of factors are shown to be associated with each of

the four alternative career pathways analyzed in the multinomial analysis (Chapter 1, Table 1-6). With

presently available data, we are unsure about how comprehensively students are informed about key

job attribute differences across roles within these alternative pathways, but, similar to the case of the

job attraction survey experiment outlined in Chapter 2, we suspect job attraction to depend, in part, on

students' degree of informedness about roles. If informedness is imperfect, as it most likely is (Autor,

2001; Manning, 2011), then the engineering profession's enduring, generalized reputations in certain

key areas, as discussed in Section 4.2, might hinder ideal student-career matching by masking key

differences across available engineering roles.

4.3.1 Constraints on preparedness: The strained boundaries of traditional degree programs

The literature and empirical findings reviewed in this chapter highlight the potential risk that

students' under-informedness about engineering jobs poses toward sub-optimal student-career

matching. We are far from the first, however, to warn about the limits of the engineering curriculum

in preparing students for the diversity of work inherent in the fast-changing ecosystems of product and

technology development. Williams (2002), for instance, describes an "expansive disintegration" of

engineering work (p. 30), suggesting that engineering's progression toward "an open-ended

Profession of Everything" (p. 70) strains engineering schools' ability to address the breadth of work

varieties a graduate might face. Downey (2005) critiques the curriculum's core, which, at most

engineering schools, remains primarily filled by coursework in the engineering sciences: "at present,
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engineering curricula everywhere tend to include a technical core and a non-technical periphery" (p.

592), instead, he recommends, schools should "locate and champion both technical and non-technical

bodies of knowledge at the core" (p. 592). The National Academy of Engineering (2004), acknowledges

that "the population of individuals who are involved with or affected by technology ... will be

increasingly diverse and multidisciplinary" (p. 53), and prescribes, in its influential "Educating the

Engineer of 2020" report (2005), that engineering educators do more to "introduce interdisciplinary

learning in the undergraduate [engineering] environment" (p. 55). Meanwhile, Sheppard et al. (2009),

Trevelyan (2010), Knight & Novoselich (2017), and others, critique students' lack of greater exposure

to the social, interactive, and leadership elements of engineering work in the core engineering

curriculum, citing these elements' centrality to many roles in engineering practice. While such

educational components do exist at many of today's engineering schools, they are often placed at the

outskirts of the learning experience, in optional or co-curricular experiences (see: Knight and

Novoselich, 2017).

Yet, the case for diversifying the learning at engineering's curricular core centers not solely

upon skills development - it is also about cultivating students' balanced, accurate, and well-informed

images of engineering's breadth of job configurations. Denying social and coordinative skills (Seron

et al., 2018), problem-framing skills (Downey, 2005), and leadership skills (Knight & Novoselich,

2017) their central place among learning experiences could limit not only students' development in

these key areas, but also their conceptions of the types of work that can compose a successful

engineering career.

Literature widely acknowledges that the present undergraduate engineering curriculum

cannot, in four years, take on the additional scope of comprehensively exposing students to the myriad

types of work they could face in today's product and technology development ecosystems. The
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engineering curriculum has been referred to as "overstuffed" (King, 2010; Graham, 2018),

"overloaded" (Seely, 2005), and "overcrowded" (Trevelyan, 2010; ASEE, 2012), due in part to the

curriculum's longstanding retention of a theory-based core that limits the time available for

exploration of non-technical elements of engineering practice (Sheppard et al, 2009). In light of this

curricular strain, influential advisors on engineering education have advocated for expanding the

standard engineering credentialing process to six years, consisting of a four-year period of general

education, followed by a period of Master's-level specialization (see, e.g., NAE, 2005; Duderstadt,

2010).

The concept of an extension alone, however, does not address how educators will prepare

students for choosing a well-fitting area of specialization or occupational pursuit. As researchers have

observed, it is not uncommon for engineering students to be uncertain about their professional

identities and career aspirations at the end of four years of undergraduate study (Stevens et al., 2008;

Lichtenstein et al., 2009). We conclude this chapter with a brief review of possible means by which

engineering educators can enhance their students' preparedness for career choices based on prior

studies and recent engineering education reform proposals.

4.3.2 Opportunities to enhance preparedness for key choices

Students' opportunities to contemplate and explore varied engineering roles are substantially

limited in the traditional four-year engineering undergraduate period (Seron & Silbey, 2009; Sheppard

et al., 2009). Yet, literature on career development highlights the importance of roles awareness,

exploration, and self-reflection in developing individuals' sense of career fit (Ibarra, 1999; Eliot &

Turns, 2011). A recent and growing literature identifies mechanisms for building such awareness and

facilitating exploration and reflection among engineering students. These mechanisms center on

themes of: faculty-student engagement (Chubin et al., 2005; Lichtenstein et al., 2009; Amelink &
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Creamer, 2010; ASEE, 2012), pre-professional work experiences (Atman et al., 2010; Zhao & Linden,

2011; Malcom & Feder, 2016), deferred declaration of specialty (NAE, 2005; Duderstadt, 2010), and

a softening of the boundary around institutional education (e.g., extending education into just-in-time

and lifelong learning realms) (NAE, 2005; Duderstadt, 2010; NAE, 2017). Foundational to all such

themes, however, is a call for adapting engineering education to "legitimize and encourage becoming

more than one thing, i.e., more than one type of technical professional" (Downey, 2005, p. 592).

Studies have shown that faculty-student interactions can strengthen engineering students'

confidence in career directions and help them build professional identity (Chubin et al., 2005;

Lichtenstein et al., 2009; Amelink & Creamer, 2010). Yet, assessment reports on engineering

education have found that faculty members' often limited industry experiences can potentially hinder

their ability to connect with students about careers and professional development (ASEE, 2012,

2017). Recommendations in recent ASEE reports (2012, 2017) call for engineering schools to

instantiate programs allowing faculty members to acquire more industry exposure, such as by

encouraging gap years prior to entering the tenure track, promoting industry sabbaticals, and

recruiting a greater proportion of "professors of the practice" with industry backgrounds. When

coupled with sufficient faculty-student ratios and institutional cultures that encourage faculty to take a

role in students' career development, such efforts could bolster a valuable career-related information

channel for students.

Engineering students' participation in internships, co-ops, and other pre-professional work

experiences have also been identified as a key source of awareness about real-world work roles

(Atman et al., 2010; Zhao & Linden, 2011; Malcom & Feder, 2016). Internships can help engineering

students discover connections between their interests and compatible roles in engineering workplaces

(Malcom & Feder, 2016), and have been identified as a means for students to experience exercising
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creativity in engineering contexts (Zhao & Linden, 2011). Though findings are associational, a large-

scale study indicates that students who participate in internships are significantly more likely to plan to

work in their field of study after graduation (Atman et al., 2010). Yet, students face differing

opportunities to engage in internships, co-ops, and other forms of pre-professional work depending on

their university. The summer season provides such an opportunity for many students, but summers are

limited in number and are time-restricted. Some engineering schools, such as those at Northeastern

University (2018), Purdue University (2018), and Drexel University (2018), among others, offer a

means for students to undertake one or more longer-term co-op employment assignments (e.g., typically

six months in duration) integral to their undergraduate degree program, often for degree credit. Such

programs correspond with extended duration bachelor's degrees - usually 5-years in length - and could

be considered in tandem with other curricular reforms designed to enhance students' preparedness for

career choices, such as deferred specialization schemes and bachelor's-to-master's programs.

Deferred specialization stands out as a recommendation in key recent reports on engineering

curricular reform (NAE, 2005; Duderstadt, 2010). This approach centers on adapting the

undergraduate engineering degree to be a general liberal-arts educational foundation, while

establishing a distinct period for intensive study in an engineering specialty area during the Master's

degree years. The National Academy of Engineering (2005), further, notes that such a two-stage

credentialing structure provides an off-ramp at the end of the undergraduate years for students who

wish shift toward various other (e.g., less engineering-related) career pursuits. Duderstadt (2010),

similarly, proposes that the engineering bachelor's degree could be broadened to serve as a general

liberal arts degree for any students with engineering-related interests. This type of proposal would

allow students to sample engineering topics while attaining a bachelor's-level foundation suitable for

various career pursuits. Yet, deferring the timeline for specialization does not, in itself, help students
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become more informed about engineering career options. Toward this end, the Massachusetts Institute

of Technology (2018a) recently began testing a different approach for adapting the undergraduate

educational experience that facilitates a deferral of students' choice of degree major. In its New

Engineering Education Transformation (NEET) program, MIT offers engineering students the option

of enrolling in a project-based engineering bachelor's curriculum, where project-centric coursework is

introduced earlier in the undergraduate years (e.g., at the beginning of their sophomore year) and

where students can delay choosing their major until the end of sophomore year, after they have had a

chance to experience project work in a disciplinary area of their choosing (MIT, 2018a).

Undergraduate engineering students at Stanford University, meanwhile, can declare their degree major

as late as the start of their junior year (Stanford, 2018). While the concept of deferred specialization

may increase students' opportunities to accrue valuable experiences prior to deciding on a specialty,

this approach, alone, lacks an explicit means for students to gain information about the details of

industry job variants.

A hybrid strategy, discussed increasingly in recent years, begins with a degree-based

engineering education (either at Bachelor's or graduate levels), but extends education into individuals'

careers through follow-on coursework taken in a distributed and as-needed manner (NAE, 2005;

Duderstadt, 2010; NAE, 2017). Such an approach can be facilitated through various forms of online,

distance, or flexible learning. While these learning concepts are not new, a more recent development

in engineering education has been the conceptualization of how these types of learning could be part

of the engineering credentialing process, and how institutions can help scaffold individuals' programs

of study. For instance, Georgia Institute of Technology (2018) has recently launched an initiative that

will grant students "microcredentials" for coursework taken in a distributed manner; further, Georgia

Tech will allow students to construct a "decentralized transcript" that "combines evidence of learning
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and achievements into credentials that are relevant to potential employers" (p. 6). The National

Academy of Engineering (2005) has envisioned engineering schools' development of "'executive'

technical degrees similar to executive MBAs" that are designed for mid-career technical professions

to tune their knowledge base to align with changing work demands or interests (p. 55). MIT (2018b),

meanwhile, has established "MicroMasters" credentials designed to be earned in an online manner by

working professionals and those seeking to adjust their career trajectories; these microcredentials can

also build credit toward a formal Master's degree. Allowing individuals to build customized programs

of study that are informed by their exploratory real-world work experiences aligns with key theoretic

propositions on how individuals achieve career fit through processes of trial, adjustment, and

convergence toward a career identity over time (Lent et al., 1994; Ibarra, 1999; Ibarra & Barbalescu,

2010). This approach also addresses concern of an "overstuffed" engineering curriculum and the

challenge of facilitating individuals' specialization within the constraints of a traditional engineering

degree. But, aside from enabling tailored skills development over a more flexible timeline, the

approach also allows individuals to develop informedness about specific jobs before "completing"

their education.

Whether through increased faculty engagement and mentorship, through facilitation of varied

pre-professional experiences, or through flexible credentialing processes that allow for students'

exploration and customization, educators have options to help students increase their informedness

about jobs in engineering and engineering-related fields. The empirical findings summarized in this

chapter suggest that students' awareness of jobs' unique social characteristics, leadership advancement

opportunities, and mathematics intensity are particularly salient in shaping interest in jobs. There are

almost certainly additional important job dimensions as well. Given that engineering work carries

longstanding reputations in certain areas - reputations that do not accurately reflect all job

269



configurations - enhancing students' awareness about jobs could boost the overall appeal of

engineering work and mitigate some students' propensities to withdraw from engineering careers. In

light of the growing variety of job opportunities available to engineering students - some more closely

related to engineering than others - engineering educators should revisit the scope of their mission to

provide "professional preparedness." To help foster a diverse, satisfied, and confident engineering

workforce, educators should consider embracing career decision preparedness as an integral part of

professional preparedness.
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