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Abstract

From the global pursuit of clean and efficient sources of energy to the challenges
presented by the high power densities in the semiconductor industry to the problem
of decoherence in quantum systems, thermal processes are ubiquitous across all scales
of space and time. Work done in the last decade has led to a number of experimental
and theoretical developments that have enabled scientists and engineers to construct
an accurate picture of thermal transport at small length and time scales. In this
work, we employ and contribute to this modern toolset by testing and pushing the
limits of our understanding. First, we experimentally examine the effects of domain
walls and crystal structure in ferroelectric thin films on thermal transport. We move
on to study the effect of crystal structure and defects in oxide thin films, in which we
demonstrate a reversible process that can tune thermal conductivity across one order
of magnitude. Secondly, we experimentally and theoretically examine deviations from
the diffusive regime of thermal transport in SiGe alloys, thereby extending current
theory and experiment to the study of size effects in thermal transport to opaque
materials. Finally, we go beyond the single mode approximation to the Boltzmann
transport equation and develop a formalism to study size effects and hydrodynamic
phenomena by solving the full scattering matrix version of the linearized Boltzmann
transport equation. Using this formalism as a guide, we report the experimental
observation of second sound in graphite.

Thesis Supervisor: Gang Chen
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Chapter 1

Introduction

Prometheus stole fire from the gods and the rest is history, so the myth goes.

The storytellers certainly chose an appropriate symbol of knowledge and its pursuit,

because somewhat paradoxically, the theory of heat has continued to challenge scien-

tists. A quote attributed to Rudolf Peierls captures this reality: "It seems there is no

problem in modern physics for which there are on record as many false starts, and as

many theories which overlook some essential feature, as in the problem of the thermal

conductivity of [electrically] non-conducting crystals." And yet given its inseparable

connection with every physical process, one would not be so foolish to believe that all

of the important questions concerning heat have converged on answers. Remarkably,

it is only within the last decade that tools with the power to rigorously challenge

these textbook answers have become available.

The earliest studies of heat conduction begin with the phenomenological equation,

known as Fourier's Law

Q = -kVT(.)

where Q is the heat flux, T is the temperature and the constant of proportionality, k,

is the thermal conductivity. As with other simple equations, much of the physics lies

beneath. Fourier's law is the steady state consequence of the heat diffusion equation

21



=aV 2 T (1.2)
at

where a is the thermal diffusivity. While not known at the time of its original record-

ing, this equation encodes the macroscopic observables that are statistically related

to the Brownian motion of microscopic thermal energy carriers.

The modern reductionist approach led scientists to study the properties of these

microscopic thermal energy carriers. This thrust involved the adoption of a quantum

mechanical framework to describe the energy carriers as particles for metals where

electrons carry charge and heat and quasiparticles for insulators where phonons carry

heat.

As the picture at the microscale and macroscale became independently clearer, the

unification remained challenging. A step was taken by Peierls, who applied the Boltz-

mann Transport Equation (BTE) to describe the transport of single particle phonon

distribution functions [4]. This framework takes as input the phonon properties and

outputs the bulk thermal conductivity, in essence, linking the microscopic and macro-

scopic pictures. Under some approximations, the BTE was shown to be capable of

recovering the scaling of thermal conductivity as a function of temperature [5, 6].

With the successful demonstration of the phonon BTE's ability to recover Fourier's

law, a natural next question was could the BTE be used to study deviations from the

diffusive regime? Casimir provided one such answer for the case of two blackbody

phonon emitters connected by a long narrow cylinder, in essence, an idealization of a

nanowire connected between two heat baths of different temperatures. In neglecting

intrinsic phonon-phonon scattering, Casimir found that the phonon mean free path

was proportional to the radius of the cylinder [7].
Progress can be viewed as attempts to extend Casimir's result to other geometries,

such as the cross-plane, where the temperature gradient is parallel to the finite film

length, or thin-film, where the temperature gradient is perpendicular to the finite

film length, geometries [8]. The inclusion of intrinsic phonon-phonon scattering in

the BTE framework was first treated using the gray approximation, where a single
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representative phonon mode is considered [8, 9], and then subsequently extended to

use the Debye approximation, where a single linear branch of the phonon dispersion

is considered [10, 11], and more recently, the relaxation time approximation, where

the full dispersion is considered [12, 13].

In parallel, the computational tools for modeling the materials progressed from

relying on empirical interatomic potentials and molecular dynamics [14, 15] to using

force constants obtained from approximate solutions to the Schrodinger equation

(i.e.: Density functional theory), thereby enabling the prediction of the bulk thermal

conductivity of simple crystals like silicon without relying on fitting parameters [16,

17].

On the experimental side, optical pump-probe techniques such as the time-domain

thermoreflectance (TDTR) technique [18] and the transient thermal grating (TTG)

technique [19] have been used to thermally characterize bulk and thin film systems.

When such experimental techniques are coupled with nanofabrication techniques [20]

or the developments of the high energy coherent light sources [21], the controlled

creation of nanometer length scales, and thereby nanometer sources of heat, can

be achieved. Electrically-driven thermal characterization techniques, such as the 3w

technique [22], have been extended to study nanostructures such as nanowires [231

and carbon nanotubes [24].

This combination of theoretical, computational and experimental development

has led scientists to revisit old questions. In particular, the possibility of observing

a phonon hydrodynamic regime at higher temperatures than what was previously

known has received intense attention [25, 26]. While there are theoretical predictions

of phonon hydrodynamics in materials like graphene and graphite, no experimental

confirmation at the time of this writing exists.

1.1 Organization of Thesis

The objective of this thesis is to contribute to this modern task of improving the

methodology that is used to study thermal transport. This is accomplished using a
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combination of theory and experiment, in the investigation of three distinct transport

regimes: the diffusive, the nondiffusive and the hydrodynamic regimes.

n-zero t

Boltzmann
Non-equilibrin' uti 

Equ
Green's Functions -

emperatu

Transport

tion Moiecular Dynanics
- - - - - - - - - - - - - - -

Figure 1-1: Diagram of the organization of this thesis.

The organization of the thesis is as follows. In Chapter 2, we will present the'

theoretical background upon which this work is built. The numerical tools and ex-

perimental techniques used in this work will be reviewed. In Chapter 3, under the

diffusive picture, an experimental investigation into the effects of crystal structure,

ferroelectric domain density and ionic insertion on thermal conductivity of thin films

is carried out. We find that while the effect of ferroelectric domains is small to neg-

ligible, the combination of crystal phase transformations and varying ionic species

produces a reversible and tunable one order of magnitude change in thermal conduc-

tivity. In Chapter 4, first principle calculations are used as input into a variational

technique for solving the BTE to obtain predictions of the length-dependent effec-
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tive thermal conductivity in a SiGe alloy. These predictions are then experimentally

verified using reflection-mode transient thermal grating, where agreement between

theory and experiment is found. In Chapter 5, the BTE is extended to study size

effects in materials where the relaxation time approximation fails. In doing so, the

framework is found to be capable of capturing what was previously considered to be

exotic phenomena: hydrodynamic thermal transport. Using this theory, experimental

confirmation of phonon hydrodynamics in graphite is reported. A discussion of future

work is summarized in Chapter 6.

25



26



Chapter 2

Theoretical Foundations and

Experimental Techniques

2.1 Theory

The connection between the Hamiltonian picture of anharmonic lattices and the

Boltzmann Transport equation is presented. First, the harmonic description of phonons

and the role of anharmonicity is reviewed. The Wigner-Weyl transformation is pre-

sented in combination with the necessary approximations to derive the BTE. The

connection to real crystals is made and the quantities that are calculated from first

principles are presented. A brief review of a numerical technique used to simulating

the BTE is offered.

Before we present the mathematical details, some comments about the charac-

teristics of the regime in which we will operate within. First, we assume that a

quasiparticle description is valid. For this to be the case: >> h/kBT [27], where

T is the quasi-particle lifetime. We further restrict ourselves to the case where the

renormilization of the quasiparticle dispersion can be neglected. This is valid if our

materials are not "strongly" anharmonic1 . If the reader is familiar with derivations

of the BTE or would prefer a more general picture, the following section may be

overlooked and revisited at a later reading.

'This is not the case for materials like SrTiO 3 [28].
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2.1.1 From the phonon Hamiltonian to the phonon Boltzmann

Transport Equation

Peierls' original work invoked Fermi's golden rule to arrive at the phonon BTE [4]
as do the standard references [29, 30]. Instead, we will present a single mathematical

framework to obtain the BTE directly from the dynamics of a weakly anharmonic

chain. To do so, we closely follow the presentation of Spohn [31]. To begin, a lattice

is defined as a set of points in Zd, where d is the dimension. We can write our phonon

Hamiltonian H as a sum of a harmonic and anharmonic terms over the lattice:

H = Ho +V (2.1)

where HO corresponds to a Hamiltonian for a lattice of point masses connected by

linear springs

HO = 2 :Pi + 2 E a(xi - xj )qigj (2.2)
EZ3 i,jiZ3

where a denotes the linear spring constant between lattice points i and j and and q

and p are the position (defined as displacement from the equilibrium lattice site) and

momentum variables respectively. The anharmonic contribution to H has the general

form of

Vanh -- 3 V3(qj, q, qk) + 3 , (2.3)
i,j,kEZ 3  ij,...,nEZ3

where V3 is the third-order potential term and Vn is the nth-order potential term.

There exists only a handful of functional forms for Vanh that render H exactly in-

tegrable (i.e.: the equations of motions can be analytically obtained) [32]. For non-

integrable Hamiltonians, perturbation theory based on the single particle functions

is the typical resort. It is sufficient to consider a Hamiltonian of the form

2 L(P2 +wO)qi)+ 2 E a(xi - xj)qiqj + A I qi (2.4)
iEZ3 i,jZ 3 Z3
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where there is now an onsite interaction term, W2q , to illustrate the perturbative

approach 2 . A is the strength of the anharmonic term. We use the following Fourier

transform convention

f S e-2rik.xf. (2.5)
XE7Z

3

Using the Hamiltonian defined in Eq. 2.4, the usual equations of motions of the

Fourier-transformed pi, qj are

Ot qk(t) = pk(t) (2.6)

and

87jpk(t) = -- q4k(t) - A dk1 dk26(k - k1 - k2)Qk1(t)Qk2(t). (2.7)

At this point, one can choose to numerically integrate Eqs. 2.6 and 2.7 and study

systems from a molecular dynamics perspective. Alternatively, one can push on and

investigate the dynamics under certain assumptions. First, let ak be a field operator

defined by3

1 1
ak = - AWqk +i Pk) (2.8)

The position variable can be written in terms of ak as follows

1
qk -vW (ak + a-k)(29

and, likewise, the momentum variable

Pk v'2 (-ak+a* k) (2.10)

2Systems without onsite interaction have unfortunately been referred to as momentum-conserving
[33, 34]. The absence or presence of an onsite term is intimately tied to question of which systems
thermalize.

3 1n the quantum derivation, the field operators become the creation and annihilation operators
acting on a Fock space.
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where * denotes the complex conjugate. Plugging Eqs. 2.9 and 2.10 and setting A = 0,

we recover the solution for the harmonic system:

ak = Ae"'kt. (2.11)

The time-dependence of ak is subsequently taken to be implicit unless otherwise noted.

In the anharmonic system where A # 0:

&ak = -iLaa - i A dkdk 26(k - k1 - k2 )(8wkwkiwk 2 )A(ak1 + _k )(ak 2 + ak2)-atI
(2.12)

At this point, we will assume that ak is a complex random variable with a well-defined

probability measure, where < ... > denotes ensemble average over this probability

measure. This probability measure is not known a priori, and Spohn argues that

Gaussian measures are the most obvious choice. To see why this a reasonable ansatz,

consider an arbitrary distribution of initial values of momenta4 . As time evolves,

this distribution will flow to a stationary distribution, which for the Hamiltonians

considered here, is a Gaussian distribution. This behavior is shown in Figure 2-1 and

further evidence can be found in [35, 36].

probability probability probability

p p p

t =0 1/t>> E 1/t< E

Figure 2-1: Evolution of the probability distribution of the momentum variables p for
a 1D anharmonic chain. The << c is an example of a stationary distribution.

From this statistical perspective, the quantities of interest are not only ak but

also the correlations between the random operators, < ak,1ak,2...ak,n >. This leads us

to a series of statistical statements. The first is that of stationarity (or equivalently,
4The same principle applies to ak.
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translational invariance) in space

< qiqj >' = Q(xi - yj)

< pjpj >' = P(Xj - yj) (2.13)

< qgpj >' = C(xj - yj)

where < ... >6 denotes a local Gaussian average over the region of size E-1 and

stationarity in time (or equivalently, conservation of energy)

< Pi (t')pj(t) > = P(t' - t) (2.14)

< q t')pj(t) >, C(t' - t)

where Q, P, C are placeholder functions that only depend on the differences in space

and time and not absolute points. In the a-field representation the assumption of

space-time stationarity is summarily expressed as

<ak> 0
(2.15)

< akak' > = 0.

To understand the missing statistical definition of < a* ak >', it is worth first recalling

the definition of the Wigner function

W'(x, k) = drle i2 7x-q>*(k - cr,/2)/(k + Eu/2) (2.16)

where / is the Fourier transform of a quantum wavefunction and E is the semiclassical

parameter5 , where E a 0 recovers the classical limit. This is a transformation that

brings functions defined on a Hilbert space, , to functions defined on a phase space,
5This is clearly the case if E = h.
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W (x, k). The relationship with Wk can be seen if E is used to coarse grain the lattice

where x = c- 1y

WC(y, k) = J drei7ry7 < a*(k - 677/2)a(k + ETI/2) >' . (2.17)

Thus, W6(y, k) is naturally referred to as the one-point Wigner function. It is as-

sumed that the distributions that are sufficiently separated in space, 1 << << E-1,

are independent. In the case of the anharmonic chain, this condition states that if

one were to examine two or more distinct local subsets (as part of this assumption,

the existence of these subsets is taken for granted) of the degrees of freedom, inde-

pendent distributions over the canonical observables defined on these subsets would

be obtained. Given the explicit dependence on the spatial coordinate, the Wigner

function can capture spatial variations. Eventually, this will indeed be necessary to

capture the spatial dependence of macroscopic observables, like temperature. 2-point

Wigner functions have the form

W'(yi, ki, Y2, k2 ) = 66 dTi dT 2e i2 7( Y1 .Y2)

< a(ki - 6??1 /2)a*(ki + crij/2)a(k2 - Cr,2/2)a*(k 2 + C??2 / 2) >'

(2.18)

Taking lim,_o recovers what is referred to as the kinetic limit6

n

lim We (yl, ki, .. ,yn, kn) = W(yi, k ). (2.19)

Before continuing, let's examine the kinetic limit of HO. The equation of motion

of the Wigner function is

6 The guaranteed existence of this limit remains a open question. See [37] for a detailed discussion.
Spohn argues that if ak obeys Gaussian statistics, then the limit exists [31]. There is evidence that
the chaotic nature of dynamics of the lattice underlies the Gaussian statistics of the canonical
variables [38].
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< a*(k - cTI/2)a(k + E'I/2) >
at (2.20)

-iE-'(Wk+cq/2 - Wk--E/2) < a*(k - E172)a(k + Er//2) >tle

where < ... >t/c denotes the time-evolved measure at t/c. Taking E -+ 0 and Fourier

transforming from 7r - r

a 1
W(r, k, t) VWk - VW(r, k, t) (2.21)

at 27

which is the free-streaming Boltzmann transport equation where the collision operator

has been set to zero. It shouldn't come as a surprise that W(r, k, t) is indeed the

phonon counting function. With these statistical constraints in mind, we return to

Eq. 2.12. Assuming a Gaussian distribution at initial t = 0 and denoting < .. >t as

the time-evolved measure at t and working through apaq, we can show that equation

of motion of the 2-point correlation function will have the form7

S< a~aq >t= i(w, - w,) < a*aq >t +V F(q,p, t) (2.22)

where we have rescaled A - V/fA and

F(q,p,t)=i S I dk1 dk 2

(q(p, ki, k2)(-p + c-iki + o-k2) < aki,,ak2,a2aq >t (2.23)

-(q, ki, k2)6(q + o-iki + u-1k2 ) < a*aki,,Iak2,o 2 >t

where

(k, ki, k2 ) = A(8wkwkjk 2 ) . (2.24)
7 This form is a classical analogue of the equation of motion of a Green's function 139, 40].
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Since the terms with an odd number of moments vanish by the symmetry of Gaussian

statistics, we must express our non-linear term as an integral in time to account for

correlations between modes q and p at all previous times s that give rise to correlations

at time t and rewrite our kinetic equation as

< a*(t)a(t) >t= i(w, - wq) < a*(t)a(t) >t +c dsG(p, q, t - s, s) (2.25)

where

G (p, q, t, s ) = Y dki k2 (dlidl2o(p, k1, k2)0(q, 11, 12)

a1,02=1 T11,T2= 1 T

(6(-p + cxk1 + c 1 k2)3(q + T 1 11 + T2 l2 )eitWq

+ 6(q + 71k, + uik2 )6(-p + Tili + T2 2 )(it 1Wkl 2k 2 ) < akiol ak2 ,. 2 a1 ,T1 a 2 ,T, >S)

-2 1 f dk dk2 E dl 1 dl 20(k1 , lI 12 )6(o 1 k1 + T1l 1 + T2 l2 )Citwq
O'l, 02 =1 T 1,72 =1 T f

+ 6(q + 71k1 + oik 2)Oi1( p, k1 , k2 )6(-p + u 1 k1 + J~1 k 2)e itWq < aqak2 , , 2 al ,Tla1 2 ,71 >S

- (q, ki, k2 )a(q + ork + oik2 )eitwp < a*ak2 ,. 2 a/1,Tia1 2,Ta >s).

(2.26)

The time integration in Eq. 2.25 extends the correlations from the 3-point functions

in Eq. 2.23 to the 4-point functions in Eq. 2.26. At this point, we can write down

the equations of motion for the 4-point correlation functions that appear in Eq. 2.26,

which will depend on even higher order correlation functions. To decouple this hi-

erarchy, we assume "local stationarity": the idea is that on the kinetic time scale

1 << t << 6-1, the < ... >s distribution does not change and on a space scale

1 << << 6-1, these distributions are statistically independent and are well approx-

imated by Gaussian measures.

Assuming that the < ... >s terms in Eq. 2.26 satisfy the condition of local sta-

tionarity, the 4-point functions can be written as a sum of products of 2-point pairs
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using Isserlis' theorem 8

< akakallaI2 >s -< akak2 >s< aa 12 >s + < aka1 >< ak2 aI2 >S (2.27)

+ < akla1
2 >s< ak

2 all >s .

Then, the 4-point function terms take the following form

< akl,,, ak 2 ,O-2 aIlT1 a1 2 ,71 >Cc WE (7', k') WE ("r7', k") (2.28)

where we have switched to a set of Wigner variables

ki = k - coir'/2 (2.29)

k2 = " - EO2?]"/2 (2.30)

11 k' + cuir/'/2 (2.31)

12 =k" + Ec 2 '"/2. (2.32)

With the necessary approximations in place, the remaining task is to show that the

last term will in Eq. 2.25 will map to the collision operator of the Boltzmann Transport

Equation. We direct the reader to the references for the detailed manipulations. As

was done for the free-streaming case, the penultimate piece is to take the E - 0 limit

so the kinetic equation then becomes the full-fledged Boltzmann Transport Equation:

0 1
aW(k, t) + VWk - VrW(k, t) = C[W(k, t)] (2.33)

at 27

where C is the collision operator

8In the quantum version of this derivation, Wick's theorem is used to preserve the time ordering
of the operators [31].
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(wkwklwk 2 -'(26(wk + Wk1 - Wk2 )6(k + k1 - k2 )
16

(W(k 1 ,t)W(k 2 , t) + W(k, t)W(k 2 , t) - W(k, t)W(ki , t))
(2.34)

+ (Wk - Wk, - wk 2)(k - ki - k2 )

(W(k1 , t)W(k 2, t) - W(k, t)W(k2 , t) - W(k, t)1W(k1 , t))).

The final step is the linearization of the collision operator.

W=W3 + WA~f (2.35)

where Wf = WO + 19 and we have Taylor expanded about the equilibrium distribu-

tion10 . For the classical case, the solution that satisfies C[W(k, t)] = 0 is

1

/3Wk
(2.36)

where 3 = (kBT) 1. For the quantum case, one obtains the expected Bose-Einstein

distribution

1
e#a- 1 (2.37)

which will be used for the remainder of this work. So Eq. 2.33 becomes the linear

BTE (LBTE)

a 1
f + VW Vrf = -Lf

at 27
(2.38)

where L is the linearized collision operator defined as

9 Some authors implicitly add the VT term to f.
10 A further linearization of the nonequilibrium distribution where the actual temperature rise is

assumed to be small will be discussed in the following sections.
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Lfk = 7 (LkkTk2)
WA'3 f r6

1

(26(wk + Wki - Wk 2 )6(k + ki - k2)Wk,3Wk 1 ,0Wk 2 ,3(fk + fk - fk 2 )
(2.39)

+ - - Wkl - wk 2 > )(ko - k1 - k2)Wk,VWkI,,3Wk 2 ,Afk - - k2 ))

where we have kept terms that are first order in f. Or, equivalently, in a more concise

form

Lfk Z(pi(fk + fk1

k 1 ,k 2

pkk2

Pk2 = 7(Wkki k2) 1 n (no +
k,k1 1(kk kk2 rk, Kn2 + 1) (Wk + Wkl

(f - fk1 - k2 ))

- Wk 2 )6(k + ki - k2 )

pkik 2
Pk Un ki+ 1)(n 2 + 1)(Wk - Wki - Wk2)6(k - ki - k2 ) (2.42)

2.1.2 Extension to real crystals

The usefulness of the above framework comes from its convenient applicability to

physical crystals. Here, we summarize the dictionary that enables the translation from

the idealized anharmonic chain to 3D crystals. To start, the Hamiltonian (Eq.2.1) for

a 3D crystal now becomes [30]

H=T+V (2.43)

where T in the kinetic energy and V is the potential defined as
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V = V + |oua(lb)+ 1 V |0U.(b)uO(1'b')
lb,a Oua(1b) 2 b,b ua(b)au'(l'b') 0 Ualbbu(I'bb

1 ayv
+ b b , b oua(lb)u(I'b')uz,(l"b") +

(2.44)

where ua(lb) denotes the displacement of the b basis atom in the 1 unit cell in the

oz direction. This expansion admits a natural definition of force constants. The

harmonic forces constants are defined by

) a(lb, l'b') - |_/ V - 10Oua(lb) Ou,3(l'b')

and the third-order force constants are defined by

a3V

Ou, (1b) OuO(11'b')Ou-,(I//b"f)

(2.45)

(2.46)|0.

Using the harmonic force constants and neglecting higher order force constants for

a moment, a harmonic (or normal mode) basis description of the system is obtained

from the equations of motion

mbOttu,(lb) = - Y JbaO (lb, l'b') uO(l'b')
1'b'/

and then Fourier transforming the above

w 2 U 0(qb) = 1 b (Ob, hb')
h'b'/O mbmb'h

where h = 1' - 1, yields the characteristic equation

|DO (qbb') - U) 6,,36bbI = 0

where
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(2.48)

(2.49)

XF,0 (1b,'b', 1"b"/) =

UO(qb')eCiq'-"



Dg3 (qbb') 1 I( (0b, hb')ei*.h
Vmbmb' h

(2.50)

By solving the eigenvalue problem of Eq. 2.49 for all q in the first Brillouin zone (BZ),

we obtain the familiar phonon dispersion, where the phonon frequencies are the square

root of the eigenvalues. An example phonon dispersion for silicon is shown in Figure 2-

2. The eigenvectors, also referred to as polarization vectors, form a complete basis

that can be used to study phonons from a normal mode perspective [41].
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Figure 2-2: Phonon dispersion for silicon obtained using force constants from DFT
calculations. Frequency in THz.

To include the anharmonic portion of the potential energy, we begin by Fourier

transforming 2.46

V3 (qs, q's, qs")=

(3 1/2 eq,8  " s" (2.51)
___________________ _ beq eb'l eb''Y /IS// a- (qb, q'b', q"b" )

bb'b",a, mbmb'mb"wqswq's'wq"s"
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where eb is the b, a component of the qs eigenvector and

ja/3,(qb, q'b, q/tb" ) = P O-Y(l b, 1'b' I 11b" je** eC'' eC'' (2.52 )

The second and third force constants can be obtained using empirical potentials [421 or

from first principles [43, 44]. Invoking the dictionary of the 1D chain from Section 2.1.1

and applying the same linearization of Eq 2.39, Eqs. 2.41 and 2.42, which, by matching

k - qs n r, become

n"' = V3 (n, n',n")(Wnon'W,") nr4ny, (no, + 1)(Wn + wu' - Wn")6(n + n' - n") (2.53)

and

n'n"/ V3(n, n', n")(wnon'Wn') )'n1 (n%, + 1)(n',, + 1)(Wn - W- Wn)6(n - n' - n")

(2.54)

where we have used

nn= no + no (no + 1)fn VT. (2.55)

The linear collision operator in matrix form is then

n~
nininso

An,n, = n,+ '" +E n ( n,n,
(nl,n'", (p"i (2.56)

- (Pn' nit - Pn" , + Pn,,no ) + Pn .

We now have all the necessary ingredients to write down an expression for the bulk

thermal conductivity. In a bulk system in steady state under a weak temperature

gradient, the microscopic flux is defined as
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1 S vnhwnnn
N0 V

1 n (2.5 7)

NOVkBT 2 ( v1 hwnn no(no + 1)f7VT

where No the number of discretized q points and V is the volume of the BZ. The heat

flux is macroscopically related to Fourier's law

Q = -kVT. (2.58)

The bulk thermal conductivity tensor k can be written as

kblk - NoVkBT 2 Evnwni(nn + 1)ff . (2.59)
n

fff can then be found by solving the steady state LBTE

- ~ ~ ~ e v1 hXr~r~ 1 (2.60)- ohwno~(no + 1) = Aa If (.0

which is a straightforward inversion problem for fex. The existence of an inverse is

necessary (but not sufficient as will be discussed) for a finite thermal conductivity. "

2.1.3 Application of BTE to nanoscale thermal transport

The bulk LBTE can be extended to study systems which are not bulk, like thin

films or nanowires, or systems where the length scale of the heating profile is com-

mensurate with the mean free path of the phonons or where the time scale is com-

mensurate with the phonon-phonon scattering time. This will be discussed in detail

in the following chapters, but some points of connection with the derivation above

should be mentioned. To begin, this work will use a deviational form of the LBTE

11Spohn pointed out that L has a nondegenerate 0 eigenvalue, but the eigenvector is orthogonal
to the streaming operator of BTE (the left-hand side of Eq. 2.60, so inversion is indeed guaranteed
[31].
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+ n -V gn = n*n (g0, - 9n, (2.61)

where gn = (fn - fBE(k O ) and gO = h (f2 - fBEk w CnT.The dis-

crete sums can be converted to continuous integrations over the Brillouin zone as

E= = Z O 1: b Nv f (d 0, where s is an index running over the b

branches of phonons. The collision matrix Q in this deviational form is related to the

collision matrix of Eq. 2.56 by

1 1
Qnn/ = WnAn,nt 0 . (2.62)

Wn, fn,(f, + 1)

We have seen how the LBTE is capable of recovering the diffusive regime governed

by a bulk thermal conductivity (see Eq. 2.59), but how does the BTE framework

recover the opposite extreme: the ballistic regime? The ballistic regime is recovered

by setting the scattering kernel to zero so that the LBTE becomes

agn -

at + Vn - Vgn = 0 (2.63)

which is identical to the free streaming solution of Eq. 2.21. Solutions to Eq. 2.63 can

be expressed as a sum of weighted cosines, which will only converge in the continuous

limit. In the following chapters, the intermediate regimes between purely ballistic and

purely diffusive will be discussed. In Chapter 4, we will investigate the relationship

between geometry and thermal transport using the relaxation time approximation

(RTA), which can be expressed simply by setting the off-diagonal elements of Qnni

to zero

1
n,n . (2.64)

Tn

In Chapter 5, we will present a theoretical framework for studying size and hydrody-

namic effects using the LBTE with the collision matrix. The point of entry is to add

a a source term Q,, to the right hand side of the Eq. 2.61. Physically, this represents
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a heating (cooling) source (sink) that one encounters in relevant geometries like those

generated in transient thermal grating experiments.

2.1.4 Some remarks concerning the origin of thermal resis-

tance

The long history of the question of what governs the emergence of irreversible

macroscopic behaviour from reversible microscopic dynamics casts its long shadow

once more. In the present context, how do the deterministic dynamics of a given

Hamiltonian unavoidably lead to the dissipation of energy and consequently yield a

finite resistance? While a rigourous answer to this question is still an active area of

research [45], a conceptual one is presented. First consider an electron moving through

a medium. The electron inevitably interacts with other electrons, imperfections or

the lattice itself, its energy is transferred and entropy is generated. Each interaction is

subject to the laws of thermodynamics and thus heat is unavoidably generated. But

how can this picture apply to phonons, which are heat carriers to begin with? How

is the second law of thermodynamics satisfied in the context of phonon transport?

The answer is that phonons act as each others thermodynamic bath and, because

of energy conservation, the treatment of this interaction must be done in a self-

consistent way."" To begin, a self-consistent treatment of phonon thermalization

requires energy conservation. The original non-linear collision operator, Eq. 2.34,

satisfies energy conservation simply' 4

jWkC[W(k t)] = 0. (2.65)

The linearization of the collision operator, Q, does not break the property of energy

conservation. Inserting go = 6Tc, and 6T = Z g into the right hand side of

Eq. 2.61, energy conservation requires
1 2This is in contrast to the device-environment pictures, where the environment is so large that

any change in its energy is taken to be negligible.
1 3This is a necessary condition for thermalization, in contrast to localization [46].
1 4This is strictly true for isotopically pure systems, while isotopic scattering can be modeled to

be energy conserving.
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Z Zn,n' (1 n/1 - gn') = 0. (2.66)
2,n/ n// c

Since this equality must be satisfied for an arbitrary distribution of modes gn, Q is

constrained by

Z2rn C (2.67)
n n

which must be true for every phonon mode indexed by n E M where en is a unit

Cartesian vector and ' is the vector of modewise specific heat. For a scattering

matrix which satisfies the condition of Eq. 2.67, the system is energy conserving in

any heat transfer configuration.

For the RTA, setting the off-diagonal elements to zero (Eq. 2.64), and using the

constraint imposed by Eq. 2.67, we find the following restriction for the relaxation

times in order for the system to be energy conserving

= 1 E C. (2.68)
T, C . Ti

This equation is satisfied if and only if the relaxation times are identical for all modes.

Thus, the only conserving diagonal matrix ( is one where all of the diagonal entries

are the same, which is only satisfied if ( is an identity matrix with a single relaxation

time. What is typically done to alleviate the breaking of energy conservation for

the RTA is a re-definition of the temperature, such that the energy conservation

equation is used to obtain a temperature, called the pseudo-temperature as opposed

to a temperature defined from the energy density given by 6T = g [47].

The collision matrix is formally energy conserving and the temperature is justifiably

defined from the energy density.

How does a self-consistent treatment of phonon scattering relate to a finite value

of thermal conductivity? The literature traditionally draws a category between two

types of scattering: Normal (also known as momentum conserving) and Umklapp

(also known as momentum destroying) processes. It is said that Umklapp processes
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are responsible for a finite thermal resistance. Normal scattering is defined as

ki  k2 - k3 0 (2.69)

and Umklapp scattering is defined as

ki i k2 - k3 G (2.70)

where G is a reciprocal lattice vector. This distinction between Normal and Umklapp

is used in the Callaway approximation to the BTE, which will be reviewed in Chapter 5

as part of the work on phonon hydrodynamics.

However, the distinction between Normal and Umklapp isn't unique. As pointed

out in Ref. [48], the definition of the Brillouin zone is not unique and thus the distinc-

tion between Normal and Umklapp is not gauge invariant as shown in Figure 2-3.15

For instance, one can ask what would be the equivalent distinction between Normal

and Umklapp scattering in an amorphous system? The existence of gauge invariant

normal scattering processes remains an open question.

15This is reminiscent of the gauge fixing that is necessary in the Feynman integral calculations
[49] to account for the invariance of the Lagrangian under the action of a Lie group. To the author's
knowledge, no work has studied the relationship between the collision operator and the relevant Lie
groups. A step in this direction has been taken by Togo et al. who used point and space group
symmetries to remove the redundancy in the 3-phonon scattering calculation [50].
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k
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k1k

Figure 2-3: An example of a 3-phonon scattering process in graphene (or any 2D
material with the same lattice as graphene) that is considered to be a Normal process

in the 2-atom BZ but an Umklapp process in the 4-atom BZ.

Peierls observed that Normal scattering events preserve the non-equilibrium phonon

distribution and keenly pointed out that, in the absence of other types of scattering, a

heat current, that was generated at some time in past due to an imposed temperature

gradient, would continue to persist indefinitely even upon the removal of this tem-

perature gradient. The resolution is that at any non-zero temperature, other types of

scattering (or entropy generating events) cannot be avoided if the phonon system is

considered in a self-consistent way. As pointed out in [48], if we extend our dispersion

to include a minimum of two branches (say LA and TA) such that each branch has

a distinct group velocity, then indeed, momentum conserving events can reverse the

direction of heat flux, as shown in Figure 2-4. Finally, going beyond classical trans-

port, it has been shown that Umklapp scattering is not a necessary requirement for

the existence of a finite resistance 151].
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Figure 2-4: Debye dispersion with two branches. Arrows denote modes involved in a
Normal process that reverses momentum.

We take care to point out if one (a Peierls demon) were to exclude all other types

of scattering except for Normal scattering, the resulting collision operator would not

necessarily obey Boltzmann's famous H-Theorem in the strong sense. This can be

clearly seen from the definition of H

H(t) = d3pd3qf (p, q,t) In f (p, q,t). (2.71)

As a gedanken, consider a three-phonon system (i.e.: a discretization of the BZ)

characterized by single phonon branch with a Debye dispersion, as depicted in Fig-

ure 2-5.

47



I
I
* (A)
I
I
I
I
I
I
I
I
I
I
I
I

I
II
II
II
II
II
II

I 'I

I ii
I ii

- I~I

k

Figure 2-5: Debye dispersion with three
to a single mode.

phonon modes where each arrow corresponds

A possible normal collision operator for such a system that satisfies the condi-

tion 2.69 could have the following properties

Nja, b, c > = le, f, g > (272)

Nje, f, g > = la, b, c > .

Here N = N and H(t) does not decrease with time, but oscillates. Thus, a normal

collision operator potentially has a non-trivial fixed point. 16 A complete collision

operator, on the other hand, necessarily has the following property

lim C'f = 0
n-+oo

(2.73)

and is symmetric (time reversal) and positive semidefinite (any number of phonons

at any time is always >= 0). Under the ergodic assumption 17, a complete collision

operator has only one fixed point, the trivial one. This is equivalent to the statement

that thermalization always occurs under the BTE. Equivalently, since there is a single
16 Another confusing subtlety is that the Normal operator can, but is not required to, satisfy

ergodicity.
171n the phonon systems discussed here, ergodicity is defined as follows: for any k there exists a

finite number of processes that will bring k to any other k'.
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zero eigenvalue, there is only a single conserved quantity: energy [521. 18 Given the

above nuances, this work will treat Normal, Umklapp and disorder processes on equal

footing within the BTE framework.

2.1.5 Numerical techniques for solving the BTE

Solving the phonon BTE for complex geometries requires a numerical approach.

The Variance Reduced Monte Carlo (VRMC) approach to solving the phonon BTE

under the RTA was first described by Peraud et al. [53, 54]. At its core, VRMC is

simulating the random walking of individual phonons as they propagate according

to their group velocity and scatter according to their lifetime. This is illustrated in

Figure 2-6.

le-4

5.0000 -

4.9975-

4.9950

a)
4.9925-

>- 4.9900-

4.9875-

4.9850-

4.9825 -
5.0050 5.0075 5.0100 5.0125 5.0150 5.0175 5.0200

X distance

Figure 2-6: Example of the random walk taken by a particle in VRMC as part of a
simulation of phonon transport in silicon at room temperature.

The computational efficiency of VRMC is due to two observations: the first is that

energy conservation is satisfied by conserving the number of simulated particles and
18In the phonon hydrodynamics literature, quasi-momentum is treated as a conserved quantity.

Clearly, this is not strictly true for all times. However, it appears to produce a reasonable picture
for times t where Tboundary > t > TNormal.
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the second is that an individual phonon scattering event does not require knowledge

on the difference between the local and equilibrium temperature because the nor-

malized distributions from which phonons are sampled is temperature independent.

Algorithm 1 presents the order of operations of this MC technique.

Algorithm 1 Variance Reduced MC
Require: Phonon properties: VV, TV, w,, DOS(v)

1: v +- TvDOS(v)dv

2: while t < total time do

3: if x + vvTv intersects boundary then

4: v <- boundary conditions (i.e.: diffuse or specular)

5: else (Simulate phonon-phonon scattering)

6: V1 +- Tv'DOS(v')dv'

7: V - '

8: Record position and time of v to perform averaging to return observable 0
return 0

end

Using VRMC, it is a straightforward exercise to track phonons and perform sta-

tistical averaging of the quantities of interest (i.e.: temperature, heat flux, etc.). For

example, the mean square displacement as a function of time of the phonons can

be calculated. In Figure 2-7, the scaling of the mean square displacement (MSD)

with time can be seen to clearly delineate between the ballistic (MSD ~ t) and the

diffusive (MSD ~ vf) regimes.
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Figure 2-7: Mean square displacement as a function of time obtained from a VRMC
simulation of a volumetric point heat source in bulk silicon at 300 K.

2.2 Experimental Techniques

2.2.1 Time-domain thermoreflectance

Time-domain thermoreflectance (TDTR) has been described in detail in the liter-

ature [18, 55] and is briefly reviewed here. The Nanoengineering Group at MIT uses

a pulsed laser (Ti:Sapphire) at 800 nm with a repetition rate of 80.7 MHz and a pulse

width of approximately 200 fs and a power per pulse of 15 nJ from which the pump

and probe beams are split using a polarizing beam splitter. Since the changes in

the sample's surface reflectance due to changes in temperature are small (O(10-)), a

lockin-amplifier detection scheme is used. The pump beam passes through an electro-

optic modulator and then converted to 400 nm using a BIBO crystal prior to striking

the sample surface. The probe beam passes through the delay stage and the optical

elements (see Figure 2-8) before striking the sample surface. The reflected probe is

thus modulated at the same frequency of the pump. A photodiode coupled with an
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optical blue filter collects the probe signal, which is then passed to the lockin ampli-

fier that is collecting at the selected modulation frequency. Due to the interplay of

sensitivity and noise, the data presented here was collected at modulation frequencies

between 3 and 12 MHz.

fo

red SHG EOM, f.
filter

4x
compress

r ~x 8 PBS 4xQ

40probe ?2 expand movable
fs delay stage

Sampos

I . x Lq laser, f.

1ox dichroic BS blus detector
Obj- filter

Figure 2-8: Diagram of the TDTR setup used in this work to perform the thermal
conductivity measurements. Courtesy Kimberlee Collins.

The time traces obtained from TDTR are interpreted using a multi-layer solution

to the heat diffusion equation [18, 55]. The heat transfer model of the TDTR geometry

begins with the heat equation in cylindrical coordinates

C T - (r ) + k 2 T (2.74)
at r ar ar aZ2

where C is the volumetric specific heat, kr is the radial component of the thermal

conductivity tensor and k, is the axial component of the thermal conductivity. Using

Fourier and Hankel transforms (denoted byz), the heat equation becomes

iwC T -krk 2t + k, (2.75)
0z2

where w is the frequency Fourier transform variable and k is the spatial Hankel

transform variable. Rearranging using q2 = (kk2 + iwC)/k, gives
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_z2 = q2T. (2.76)
09Z2

This form is amenable to the thermal quadrupole framework, meaning that we can

construct a sequence of solution to the equations that is physically representative of

a layered system. For an individual layer, we define

cosh(qd) -c sinh(qd)
Mn = , (2.77)

kq sinh(qd) cosh(qd)

where d is the layer thickness. For an interface

1 G 1
M = (2.78)

0 1

where G 1 is the interface conductance. Using these definitions, we can construct a

representation of our layered system

-~ - A B ~
Tottom qbottom= MnMn_1... M = Tootop (2.79)

where 4 is the Fourier-Hankel domain heat flux. Using the condition that the bottom

surface is adiabatic, we have

Z -D ~
Tqop = C to, (2.80)

where for a Gaussian-shaped heating flux profile

~ Ao -kqtop = 2exp ). (2.81)

The final step is to perform inverse Fourier and Hankel transforms to obtain Ttop.

With an expression for Ttop as a function of material parameters (thermal conduc-

tivity, interface conductance, heat capacity and layer thickness), a non-linear least

squares minimization against the experimental data is used to extract the unknowns

of a given thermal system (typically the thermal conductivity of the film and the
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Figure 2-9: Example (a) phase and (b) amplitude TDTR traces and fits of an
aluminum-sapphire sample.

interface conductance between the Aluminum layer and the film). Tp is a complex

quantity and therefore one can fit to the amplitude or the phase, examples of which

are shown in Figure 2-919. The parameters used in the fitting procedure are reported

in Appendix A.

While TDTR has been used to investigate deviations from the diffusive regime 156],
in this work, the technique will be used in Chapter 3 to characterize the thermal

conductivity of thin films under a Fourier law interpretation. To experimentally study

thermal transport outside the diffusive regime, an alternative technique, referred to

as the transient thermal grating technique, will be used.

2.2.2 Transient thermal grating

Transient grating spectroscopy is a variant on four-wave-mixing spectroscopic

techniques that can measure thermal transport dynamics over a well-defined in-plane

length scale. In this technique, two pump laser pulses (515 nm, 60 ps FWHM) are

crossed at the surface of the sample, where they interfere to yield a sinusoidal in-

tensity pattern. Absorption by the sample creates a matching temperature profile,

which evolves as a function of time through in-plane and cross-plane transport. The
9 Theoretically, one should fit to the entire complex quantity. Practically, however, this doesn't

consistently yield reliable fits.
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time dynamics of this "transient grating" are measured by the diffraction of a quasi-

continuous probe beam (532 nm), and phase-specific information is extracted through

heterodyned detection of the TTG signal by superposition of the diffracted signal with

a reference beam (local oscillator) derived from the probe beam source. The signal

is detected using a fast photodiode (1 GHz bandwidth) and recorded on an oscillo-

scope (4GHz bandwidth). Specific details of the optical setup can be found elsewhere

[57, 58, 59] and a depiction of the TTG setup is shown in Figure 2-10.

ND
filter
I

Pump

Reference

V 0

Heterodyne
phase control .s Detector

Figure 2-10: A diagram of the reflection mode TTG geometry. The pump and probe
beams are passed through the diffraction grating (referred to here as the phase mask),
the which sets the period length of the heating profile. The 1 orders of the pump
and probe are then imaged on the sample surface using the 4f lens system. An
ND filter attenuates the reference beam of the probe, while an optic (the heterodyne
phase control) is placed in the signal beam of the probe to control the relative phase
between the reference and the signal. The diffracted signal and the reflected reference
are collected at the detector. Reproduced from [1] with permission from the American
Physical Society.

The optical model of the TTG geometry is as follows. A grating of length L is

defined by
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2wr
L =2 e(2.82)

q 2 sin(0/2)

where q is the grating wavector magnitude, Ae is the optical wavelength and 0 is the

angle of incidence. The optical fields for the probe beam, p

Ep = Eop exp (i(kP - q2 /4) 1 / 2 z - i(q/2)x - iwpt + iOP) (2.83)

and the reference beam, R

ER - tEop exp (i(kP - q2 4) - i(q/2)x - iwpt + iOR) (2.84)

are approximated by plane waves where Eop is the original amplitude of the probe,

kp is the optical wavevector, wp is the optical frequency, Op and OR are the phases

of the probe and reference beam respectively and tR is the attenuation factor for the

reference beam. The diffracted signal is obtained from a transfer function model of

the grating

t*(t) = ro(1 + cos(qx)[r'(t) + i(r"(t) - 2kpu(t) cos /3)]) (2.85)

where r'(t) and r"(t) denote the real and imaginary components of the relfectivity and

u(t) is the vertical surface displacement. Both the reflectivity due to a dependence

of the refractive index on temperature (i.e.: thermoreflectance) and the displacement

due to thermal expansion encode temperature information.

The first order diffracted field of the probe is obtained by multiplying Eq. 2.83 by

Eq. 2.85

1
EP 1) = o -r0Eo[r'(t) + i(r"(t) - 2kpu(t) cos Op)

2 (2.86)
exp (i(kP - q4) 1 / 2 z - i(q/2)x - iwpt + i#p)

and the reflected reference field is simply obtained by multiplying Eq. 2.84 by ro
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ER(o) - rotrEop exp (i(kp - q /4)'/2z - i(q/2)x - iwpt + i0R).

As the reference and probe are collinear, their intereference intensity is given by

1
I, -IoRo [t2 + r12 (t) + (r"(t) + 2k u2 (t) cos OP) 2

2 rP(2.88)
2t,(r'(t) cos(o) - (r"(t) - 2kpu(t) cos Op) sin 0)]

where Ro = Iro1 2 and # =O# - #R. If the intensity of the reference beam is much

greater than the diffracted probe beam, the signal is dominated by the last two terms

of Eq. 2.88

Ihet trIopRo r'(t) COS # - (T"(t) - 2kpu(t) COS Op) sin q]. (2.89)

Thus, the TTG signal will in principle have both real and imaginary field contri-

butions due to "amplitude-grating" and "phase-grating" responses, respectively. The

phase grating contributions contains decay components that correspond to thermal

expansion and the imaginary part of the thermoreflectance and acoustic oscillations

corresponding to the impulsive stimulation of surface acoustic waves (SAWs), whereas

the amplitude-grating response only contains one term corresponding to the real part

of the thermoreflectance [58]. Analysis of the amplitude-grating contribution is sim-

pler due to the single contribution, and so this term was isolated during the SiGe mea-

surements discussed in Chapter 4 by optimizing the heterodyne phase to minimize the

SAW signal which only appears in the phase-grating response [58]. The phase-grating

was used for the graphite measurements in Chapter 5 due to the absence of SAWs

and the large contribution to the signal from thermal expansion. Example phase and

amplitude grating signals are shown in Figure 2-11.
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Figure 2-11: Example phase and amplitude grating traces taken from a Si93.4Ge6 .6
sample.
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Chapter 3

Tuning thermal conductivity

3.1 Introduction

Defects such as vacancies, isotopes or alloying compounds are traditionally used

to increase the scattering rates of thermal carriers, thereby reducing thee thermal

conductivity until a minimum is reached [60]. While the established understanding,

which relies on a perturbative treatment 161, 62, 63], of defects has been successful

in improving thermoelectric device performance [64, 65], it has yet to provide the

insight necessary in order to obtain the large tunable ranges of thermal conductivity

necessary for thermal switch applications. For example, the impact of Li+ ion interca-

lation upon thermal conductivity has also been theoretically investigated in graphite,

reporting a 3 to 5 fold change [66] and experimentally studied in MoS 2, reporting a 2

to 5 fold change [67]. Recent work extended this static alloying effect to a "dynamic

alloying effect" via Li+ ion intercalation in the LiCoO 2 electrodes of electrochemi-

cal cells which yielded reversible changes of 150% to 270% in thermal conductivity

[68]. Looking beyond Li+ ions, a negligible effect of oxygen non-stoichiometry in

Lao.5 Sro.5 CoO 3 thin films on thermal conductivity was reported [69]. On the other

hand, oxygen stoichiometry was shown, for example, in Pro.1 Ceo.90 2 thin films to

induce a 50% change in thermal conductivity over a 10% change in the oxygen non-

stoichiometry [70]. The second strategy to dynamically control thermal conductivity

involves the modification of the crystal structure and the concomitant properties of
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thermal carriers (i.e.: phonon dispersion, modewise specific heats, group velocities

and lifetimes) via the application of mechanical, thermal or electrical work. For in-

stance, molecular dynamics simulations have shown an exponential dependence of

thermal conductivity on strain [71]. Examples of temperature-induced phase transi-

tions include the metal to insulator transition in VG 2 which relies on moving across

a critical temperature of ~ 340 K to affect a - 30% change in thermal conductivity

[72]. Similarly, in PbTiO 3 thin films, a - 15% change in thermal conductivity due

to changes in the ferroelectric domain density as a function of electric field has been

reported [73]. A recent molecular dynamics simulation of this system predicts an up-

per limit of ~ 20% change in the interface conductance between ferroelectric domains

[74].

In the first portion of this chapter, we report the investigation of thermal properties

of epitaxial BFO thin films, grown under different conditions on different substrates.

The room temperature phonon thermal conductivity is found to be almost indepen-

dent of the oxygen partial pressure but dependent on the BFO polymorph. Through

piezoresponse force microscopy (PFM) characterization and thermal analysis with

an in-situ electric field, we observed that ferroelectric domain wall density does not

play a significant role in determining the thermal conductivity. In the second part

of this chapter, we make use of the interplay between defects and structure; ions are

electrochemically inserted into strontium cobalt oxide (SrCoO 2.5 , denoted as SCO)

thin films and trigger phase transitions to yield large reversible changes in thermal

conductivity at room temperature. This large tuning range is achieved by spanning

three distinct phases induced via the incorporation of two different ions, H+ and 02.

3.2 BFO

BiFeO3 (BFO) is a lead-free single-phase ferroelectric material of serious interest

due to its complex physical properties including multiferroicity [75]. Bulk BFO ex-

hibits a rhombohedral structure in which oxygen octahedra are slightly tilted from

the center of symmetry along the <111> pseudocubic direction. When epitaxially
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grown on perovskite substrates such as SrTiG3 (STO), a small monoclinic distortion

of the rhombohedral structure is present, and the structure is denoted as R-like BFO.

In general, R-like BFO tends to polarize along the <111> directions [76], resulting in

8 possible domain variants with both in-plane and out of plane components, which is

undesirable for practical applications. As a result, domain engineering of BFO thin

films has been explored as a mechanism to improve the ferroelectric performance, such

as by utilizing different substrates [77, 78] and tuning the buffer thickness [78, 79].

Recently, a new approach for ferroelectric domain engineering of BFO thin films has

emerged with the observation of a new tetragonal polymorph with a large c/a ratio

(~ 1.25) stabilized by much larger in-plane compressive strain (>4.5%) [80], with a

slight monoclinic distortion [81] and therefore denoted as T-like BFO. This T-like

polymorph is expected to support a simpler switching process and a higher remnant

polarization. Furthermore, a reversible morphotropic phase transformation between

R- and T-like BFO can be driven by simple stimuli [82, 83, 84] and the morphotropic

phase boundary shows a strong electromechanical response [85, 86]. In light of these

differences, we investigated the thermal transport properties of epitaxial R- and T-

like BFO thin films and the dependence of thermal conductivity on the polarization

state.

Sample Details

Sample growth and characterization was performed by Shuai Ning and the details

can be found in [2]. The samples are summarized in Table 3.1. The R and T-like

polymorphs are obtained by substrate or underlayer strain engineering, and the film

strain state, as well as the ferroelectric domain features, are controlled via the oxygen

partial pressure during deposition.
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(a) (b)

Figure 3-1: Crystal structures for the (a) R-BFO and (b) T-BFO phases.

Table 3.1: BFO samples

Sample BFO phase Substrate BFO film Unit- cell c/a ratio

Lattice parameter (A) Lattice parameter (A) volume (A3 )

BFO/STO R-like aSTO = cSTo = a = 3.900 62.25 1.049

5 mTorr 3.905 c = 4.093

BFO/STO R-like asTo = csTo = a = 3.904 61.98 1.042

100 mTorr 3.905 c = 4.067

BFO/SRO/LAO R-like asRo = 3.947 a = 3.942 61.07 0.997

5 mTorr csRo = 3.930 c = 3.930

BFO/LAO T-like aLAo = cLAo = a = 3.778 66.93 1.241

5 mTorr 3.788 c = 4.689

BFO/LAO T-like aLAo = cLAO = a = 3.783 66.13 1.222

100 mTorr 3.788 c = 4.621

BFO/LSMO/LAO T-like aLsMo = 3.776 a = 3.772 67.10 1.249

5 mTorr cLSMO = 4.007 c = 4.710

3.2.1 Thermal conductivity characterization

Role of structure

The room temperature thermal conductivity was measured using the TDTR sys-

tem described in Section 2.2.1. The thermal conductivities of the underlying layers

(LSMO and SRO) and the bare substrates (STO and LAO) were first measured
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(see Appendix A), and then used as known input parameters in the non-linear least

squares minimization fitting procedure to obtain the cross-plane thermal conductivity

of BFO thin films. To ensure that the TDTR technique is sensitive to the thermal

conductivity of the BFO films, a sensitivity analysis [87, 55] was carried out and is re-

ported Figure 3-2, indicating that the measurement is indeed sensitive to the thermal

conductivity of BFO.

-G 0 -G
-Cv 2  - Cv2

BFOk kBFOk

025 STOk _STOk

(a) (b)

Figure 3-2: (a) Amplitude and (b) phase sensitivity for the TDTR BFO measure-
ments. Here, BFOk corresponds to the BFO thermal conductivity, G1 corresponds to
the interface condcuctance between aluminum and BFO, Cv2 corresponds volumetric
heat capacity of BFO, G2 corresponds to the interface condcuctance between BFO
and STO and STOk corresponds to the STO substrate thermal conductivity.

To ensure that the fitting procedure yielded a local minimum, the error landscape

was calculated. Sample error landscapes are shown in Figure 3-3, where a local

minimums are found for both the R-like and T-like films. Example fits to phase and

amplitude are shown in Figure 3-4.
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Figure 3-4: Raw TDTR data (circle markers) and best fits (lines) to (a) phase and
(b) amplitude representations for R-BFO (blue) and T-BFO (orange).

Comparing the results of BFO/STO and BFO/SRO/LAO grown under the same

oxygen pressure, as well as BFO/LAO and BFO/LSMO/LAO, one can observe that

the thermal conductivity is independent of the underlayers or substrates. The thermal
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Table 3.2: Effect of film thickness on the thermal conductivity of BFO.

Sample Film Thickness [nm] Thermal Conductivity
[W/mK]

Al: BFO on STO 37.7 1.29 0.13
A2: BFO on STO 29.3 1.31 t 0.13
A3: BFO on STO 36.1 1.19 0.07
A4: BFO on STO 41.0 1.26 0.10
A5: BFO on STO 56.9 1.62 0.12
Bi: BFO on LAO 37.7 0.84 t 0.04
B2: BFO on LAO 29.3 0.82 0.02
B3: BFO on LAO 36.1 0.71 0.18

Table 3.3: Effect of substrate on the thermal conductivity of BFO.

Sample Thermal Conductivity [W/mK]
Si: RBFG/SRO/LAO 1.48 t 0.15
S2: SRO/LAO 1.32 0.03
S3: TBFO/LSMO/LAO 0.64 0.06
S4: LSMO/LAO 1.53 0.16
S5: RBFO/STO 1.44 + 0.26
S6: TBFO/LAO 0.50 t 0.04

conductivity is nearly independent of the oxygen pressure for each polymorph despite

the varying film strain states. The thermal conductivity is dependent on the crystal

structure, with the value of T-like BFO consistently ~2/3 that of R-like BFO.

To put the thermal conductivity dependence on structure in perspective, we note

that there are more atoms in the T-like BFO unit cell, there are concominantly more

phonon branches in the first Brouillin zone [821 available to satisfy the scattering

selection rules, leading to a reduction of the phonon lifetimes and decrease in the

overall thermal conductivity relative to R-like BFO. Furthermore, the distortion of

oxygen octahedra caused by the larger c/a ratio may lead to a much weaker Fe-O

bonding along the <001> direction in T-like BFO. The reduced thermal conductivity

of T-like BFO can be also understood as a result of this weaker inter-layer coupling

and increased anharmonicity for T-like BFO.
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Figure 3-5: Vertical PFM phase images of (a) T-5, (b) T-100, (c) R-5, and (d) R-100.
Reproduced from [2] with permission from the American Physical Society.

Role of ferroelectric domains

The ferroelectric domain features were examined by piezoresponse force microscopy

(PFM), which is sensitive to the out-of-plane component of the polarization, on four

representative samples: T-like BFO/LSMO/LAO grown at 5 mTorr and 100 mTorr,

and R-like BFO/Nb:STO grown at 5 mTorr and 100 mTorr, denoted as T-5, T-100,

R-5 and R-100 respectively. The R-like BFO/Nb:STO was used for PFM character-

ization instead of R-like BFO/SRO/LAO because of the higher surface roughness of

the latter.

Figure 3-5 contains representative PFM phase images, where contrast can be seen

in all the samples, indicating ferroelectric domains with different out-of-plane com-

ponents coexist in each sample. A stripe-like domain structure can be seen in both

T-like samples, while a qualitatively different mosaic-like domain pattern exists in

R-like samples. The domain size, shape and density vary considerably with oxygen

pressure during deposition, suggesting that adjusting oxygen pressure during depo-

sition can be an approach to domain engineering in both R- and T-like polymorphs

[881. This may be a result of changes in the surface chemistry during growth at dif-

ferent oxygen pressures in order to achieve charge compensation and maintain the
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Figure 3-6: Schematic of the in-situ TDTR measurement. Reproduced from [2] with
permission from the American Physical Society.

polarization [89, 90], or a consequence of structural relaxation. The micrometers-long

stripes in T-100 shown in Figure 3-5 appear to be much narrower than those in T-5

(see Figure 3-5), thus leading to a much higher domain wall density. Meanwhile,

both of them exhibit a weak vertical PFM contrast, indicating those domains might

have an in-plane polarization component due to a deviation of the ferroelectric axis

from the c-axis[91, 921. As for R-like samples, the domains of R-5 are more random,

smaller, and of a higher density than R-100. As suggested by previous work [93], the

phase image of R-5 in Figure 3-5 indicates 8 possible domain variants might coexist,

resulting in 3 possible polarization angles at the domain walls (1800, 71' and 109'

boundaries, where the latter two are ferroelastic) which can be charged or neutral. In

comparison, the image of R-100 in Figure 3-5 is characteristic of a system with fewer

possible domain variants [94] and lower domain wall density.

To investigate the role that domain walls play in determining the thermal conduc-

tivity, in-situ TDTR measurements were conducted. The physical layout of the PFM

instrument obstructs access to the TDTR laser, so instead the in-situ measurements

were accomplished by applying the DC bias through top electrodes during the TDTR

measurement as shown schematically in Figure 3-6. A DC bias ranging from 0 to

6/-6 V was determined to be sufficient to polarize both BFO polymorph films based

on the hysteresis loops shown in Figure 3-7.
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Figure 3-7: Example P-E loop for R and T-like BFO. Reproduced from [2] with
permission from the American Physical Society.

Table 3.4: In-situ thermal conductivity of BFO as a function of applied electric field.

Sample Applied Voltage [V] Thermal Conductivity
[W/mK]

T-like BFO 0 0.78 0.06
T-like BFO 3 0.74 0.04
T-like BFO 6 0.78 0.06
R-like BFO 0 1.02
R-like BFO 3 1.02
R-like BFO 6 0.96
R-like BFO -3 0.99
R-like BFO -6 1.01

From the raw TDTR traces collected during the in-situ measurement (examples

are shown in Figure 3-8), no dependence on electric field is observed. This is confirmed

in the thermal conductivity estimates obtained from the fitting procedure, which are

reported in Table 3.4.

Some comments concerning the independence of thermal conductivity on electric

field are warranted. To begin, given the thinness of the BFO films, the domain walls

are expected to be oriented through the film thickness which is parallel or at a slight

angle to the direction of heat flow in the TDTR measurements as shown in Figure 3-9
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Figure 3-8: Raw TDTR data taken during the in-situ measurement on (a) R-BFO
and (b) T-BFO.

so that the domain walls do not act as direct barriers to phonon transport.
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Figure 3-9: Possible ferroelectric domain configurations in BFO thin films. Adapted
from [2] with permission from the American Physical Society.

For T-like (001) epitaxial BFO films which are predicted to be polarized out-of-

plane, it is possible that the insensitivity of thermal conductivity to domain wall

density in the in-situ experiment occurs because polarization changes are accom-

plished by movement of only the 180' walls which are not ferroelastic and would

not be expected to interact strongly with phonons due to the absence of structural

distortion.

As for R-like (001) BFO epitaxial films, prior work has shown that an out-of-plane

voltage can result in not only the switching of 180' oriented domains (ferroelectric),

but also the switching of 710 and 109' oriented domains (ferroelastic) [95, 96, 97].

Detailed PFM mapping uncovered a switching path for R-like BFO in which the out-
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of-plane electric field induced 710 switching, and the unstable 710 domains then relax

into stable 1800 domains at remanence [95]. The complex switching mechanisms in

R-like BFO likely produce a distribution over the number of the domain variants.

Previous thermal conductivity measurements on R-BFO controlled for the number of

domain variants and reported small differences (~ 5%) in thermal conductivity as a

function of the number of domain variants [94].

3.2.2 Summary

Two different phases of PLD-grown epitaxial BFO thin films, i.e.: R-like and

T-like BFO, were obtained by substrate strain engineering and characterized using

PFM and TDTR. The as-grown ferroelectric domain features of each polymorph are

quite different: T-like BFO shows a periodic stripe-like domain pattern, while R-like

shows a mosaic domain structure. The oxygen pressure has a substantial effect on the

ferroelectric domain morphology for each polymorph, providing a convenient method

for domain engineering.

There was little difference in thermal conductivity with oxygen pressure suggesting

that the domain configuration for either R-like or T-like samples did not greatly

influence the thermal conductivity. Further in-situ TDTR analysis, in which the

domain state was changed by applying a voltage during the thermal conductivity

measurement, also supports the conclusion that domain wall density in the films and

geometry studied here has only minor effects on the thermal transport.

However, a dependence of thermal conductivity on the morphotropic phase struc-

ture was observed. The thermal conductivity of T-like BFO is about 2/3 that of R-like

BFO. In comparison with the effects of domain walls in our work, as well as that re-

ported in Ref. [941, the structural dependence of thermal conductivity observed here

has a much greater effect, suggesting that the morphotropic phase transformation

could be used to control the thermal properties of BFO thin films.
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3.3 SCO

We chose SCO as the material system of interest due to the "tri-state" phase tran-

sitions achieved by incorporating ionic species by ionic liquid gating [98]. In this

system the phase transitions are essentially controlled by the amount of oxygen ions

and protons in SCO. More specifically, the phase transition from the Brownmillerite

phase SrCoO 2.5 (denoted as BM-SCO) to the perovskite phase SrCoO 3 (denoted

as P-SCO, 5 represents oxygen non-stoichiometry) can be triggered by applying an

anodic bias to oxygenate the SCO [99, 100]. Hydrogenating SCO to form the pro-

ton (H+) containing H-SrCoO 2.5 (denoted as H-SCO) can be induced by reversing

the polarity of the gating voltages to cathodic biases. While BM-SCO - P-SCO

phase transition is accompanied by a metal-insulator transition [101, 100, 1021, the

BM-SCO - H-SCO transition introduces a further opening of the bandgap in SCO

[101]. Considering the distinct chemical compositions, crystal and electronic struc-

tures of these three phases (P-SCO, BM-SCO and H-SCO), it is reasonable to expect

a significant change in thermal transport. We hypothesized that the defect-free P-

SCO phase will have the largest thermal conductivity, since it belongs to the space

group with the highest symmetry of the three different phases and it is understood

that this relatively increased symmetry consequently imposes a greater number of

constraints on the scattering phase space of phonons. On the other hand, the phase

transition to H-SCO is expected to decrease thermal conductivity, due to creation of

more scattering sites introduced by the intercalated protons and reduced Co cations.

TDTR measurements confirmed that the BM-SCO - P-SCO phase transition indeed

increased the thermal conductivity by more than a factor of 3. This is in contrast to

the traditional understanding in which defects only contribute to a reduced thermal

conductivity. On the other hand, the BM-SCO--H-SCO phase transition decreased

the thermal conductivity to -30% of its original value. Combining these bidirec-

tional phase transitions triggered in the same device, we achieved a tunable range of

more than one order of magnitude in thermal conductivity. We also constructed a

solid-state version using ionic gels capable of producing a -4-fold reversible change
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in thermal conductivity.

3.3.1 Sample information

The SCO samples were grown and characterized by Qiyang Lu. High quality

BM-SCO thin films (-44 nm) on yttria-stablized zirconia (YSZ) substrates with

(100)-orientation. A gadolinia-doped ceria (GDC) buffer layer (-10 nm) was used

to bridge the large lattice mismatch between YSZ (a/V/2 = 3.624 A) and BM-

SCO (a = 3.905 A). In previous studies, structural and chemical characterization

including in situ X-ray absorption spectroscopy (XAS)[99] and X-ray diffraction

(XRD)98] were performed on BM-SCO thin films grown by using the same proce-

dure. Ion intercalation induced phase transition was accomplished using ionic liquid

gating with BM-SCO as a working electrode, as shown in Figure 3-10a. 1-hexyl-3-

methylimidazolium bis(trifluormethylsulfonyl)imide (HMIM-TFSI) was used as the

ionic liquid electrolyte. Electrical biases were applied between BM-SCO thin films

and a wound platinum wire as the counter electrode. An anodic bias (oxidizing)

applied on BM-SCO is referred to as a positive gate voltage.

Phase transitions in SCO was achieved by intercalating oxygen anions or protons

into BM-SCO, by using ionic liquid gating with the BM-SCO film as a working

electrode, as shown in Figure 3-10a. BM-SCO was then switched to the oxygenated

perovskite phase P-SCO by applying a +3 V gate voltage, or to the hydrogenated

phase H-SCO by applying a -4 V gate voltage. The phase transition was confirmed by

performing XRD on the switched thin films, as shown in Figure 3-12. The liquid form

of the ionic liquid electrolyte can impose constraints in practical device applications

and also in some material characterization schemes. Therefore, an ionic gel, instead

of an ionic liquid, was used for triggering the ion intercalation and phase transitions

as demonstration of a solid-state application of this concept. The ionic gels were

fabricated by absorbing the ionic liquid into a block copolymer framework [103].

Figure 3-10b shows a schematic of using an ionic gel for gating. The oxygenation

using ionic gels resulted in similar chemical and structural changes to those obtained

by using ionic liquid gating, although a lower oxygen stoichiometry in ionic gel gated
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Figure 3-10: (a) Schematic showing the ionic liquid gating of SrCoO2 . (b) Schematic
showing the overpotential distribution in the BM-SCO thin film sample before the

hydrogenation reaction and the resulting proton concentration gradient. The over-

potential decreases with increasing distance away from the contact due the ohmic

loss from the resistance of SCO thin film. The dashed lines matches the position

in the overpotential gradient with the positions in the optical picture of the sample.

Hydrogenation caused a color change of SCO from brownish to light greyish.
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P-SCO was reached (confirmed by XRD, not shown). Hydrogenation using ionic gels

enabled the design of a geometry by which a lateral gradient of H+ concentration in

the sample could be obtained, as shown in Figure 3-10b. Since both the BM-SCO and

the H-SCO have low electrical conductivity [101], when an electrical bias was applied

between the edge of the sample and the top of the ionic gel, the hydrogenation reaction

was self-limiting due to the difficulty of current collection with high ohmic losses

after forming the insulting H-SCO. Figure 3-10b depicts the estimated overpotential

distribution from the contact to the other end of the BM-SCO sample, before forming

any H-SCO. The electrochemical driving force decreases gradually starting from the

contact region due to the increased ohmic loss from the resistance of the BM-SCO

thin film. The end result was a concentration gradient of H+ from the contact area

to the other edge of the thin film sample and a corresponding a color gradient was

observed in the optical picture of the sample. This concentration gradient was used

to study the effect of H+ concentration on thermal conductivity.

* Sr

* Co 00
0 CO
0@0 0 0
O H

(a) (b) (c) (d)

Figure 3-11: (a) Atomic legend for the (b) H-SCO, (c) BM-SCO and (d) P-SCO
crystal stuctures.
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Figure 3-12: X-ray diffraction showing the BM-SCO (008) diffraction peak, hydro-
genated SrCoO2 5 (H-SCO) (008) peak after -4 V ionic liquid gating, and the oxy-
genated perovskite SrCoO 3 (P-SCO) after +3 V gating. The shoulder peak in H-SCO
at higher 20 position is due to the non-switched BM-SCO regions of the sample under

the silver electrode used.

3.3.2 Thermal conductivity characterization

Role of phase

We performed TDTR measurements on BM-SCO, H-SCO and P-SCO to probe

the effect of incorporated ionic species and phase transitions on the thermal transport

property. Example raw TDTR data is shown in Figure 3-13 and the results of fitting

are reported in Table 3.5.
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Figure 3-13: Raw TDTR data (circle markers) and best fits (lines) to (a) phase
and (b) amplitude representations for H-SCO (orange), BM-SCO (blue) and P-SCO
(green). The H-SCO and P-SCO were obtained by gating BM-SCO through ionic
liquid gating.

A sensitivity analysis, shown in Figure 3-14, was conducted to ensure sensitivity

to the SCO thermal conductivity. As expected, the sensitivity to the SCO thermal

conductivity decreases with increasing the thermal conductivity. Nevertheless, the

measurement remains sensitive to the SCO thermal conductivity relative to the other

thermal model parameters.

76



-- SCOk - SCOk = 0.5 (W/m-K)
.3 - G G1 - SCO k = 1.5 (W/m-K)

---G2 - SCOk = 6 (W/m-K)

-&-YSZ k
5

.2

5

102 103

Delay time [ps]

(a)

( Oman

0

'S 0.1

C.

E0.0

0

0.2

0

201

0.

0.:

0.2

0.

0 1

0.

.5

cO

a-

102 10
Delay time [ps]

(c)

102

-- SCOk - SCOk = 0.5 (W/m-K)
G 1 - SCOk = 1.5 (W/m-K)
G2 - SCOk = 6 (W/m-K)

2 -- YSZk

5

2 101

Delay time [ps]

(b)

101

Delay time [ps]

(d)

Figure 3-14: Sensitivity analysis for the SCO thin film TDTR measurements where
SCOk corresponds to the SCO thermal conductivity, G1 corresponds to the interface
conductance between aluminum and SCO, G 2 corresponds to the interface conduc-
tance between SCO and YSZ and YSZk corresponds to the YSZ substrate thermal
conductivity. Subplots correspond to: (a) amplitude sensitivity at 6 MHz, (b) ampli-
tude sensitivity at 12 MHz, (c) phase sensitivity at 6 MHz and (d) phase sensitivity
at 12 MHz.

Finally, the error landscape was calculated to ensure uniqueness in the estimates
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of the G, k pairs. Example error landscapes are shown in Figure 3-15, where unique

minima are observed.
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Figure 3-15: Error landscapes for the SCO
correspond to (a) BM-SCO, (b) H-SCO,
sample.

thin film TDTR measurements. Subplots
(c) P-SCO and (d) a sapphire reference

A 15-fold range of thermal conductivity modulation by ionic liquid and 4-fold

range by ionic gel gating was achieved (see Table 3.5). The electrical resistivity of
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Table 3.5: Thermal conductivity of H-SCO, BM-SCO and P-SCO.

Sample Thermal Conductivity [W/mK]
P-SCO (liquid) 6.58 t 1.71
BM-SCO 1.70 0.027
H-SCO (liquid) 0.43 0.056
P-SCO (gel) 2.47 0.16
BM-SCO (reversed) 1.36 t 0.063
H-SCO (gel) 0.641 0.086

the P-SCO phase was measured using the van der Pauw resistance geometry of a

Hall effect electronic transport measurement system (Lake Shore 7504), yielding a

value of 5 x 10- 2 q-cm. Using this value and the Weidemann-Franz law, one expects

a thermal conductivity of ~ 0.07 W/(m-K), significantly lower than the measured

value. This suggests that phonons, and not electrons, are the dominant thermal

carriers in the P-SCO phase. The measured value of k for P-SCO is comparable with

other semiconducting oxide perovskite systems [104]. We have also demonstrated the

reversibility of the tuning of thermal conductivity upon switching the sample back to

the BM phase from the P-SCO phase. The slightly decreased thermal conductivity

compared with the as-prepared BM-SCO samples might be due to additional defects

or disordering induced by the switching cycle. This bi-directional tuning of thermal

conductivity by simply reversing the polarity and using multiple ion insertions is a

novel phenomenon not reported in previous literature. Tunable thermal conductivity

can also be obtained by ionic gel gating, albeit the tunable range was smaller compared

with ionic liquid gating because of the non-ideal contact between the ionic gel and

the film.

Role of oxygen ions

As defects (isotopic, interstitial, substitutional etc.) are introduced into a perfect

crystal, the thermal conductivity is expected to decrease since these defects provide

an additional scattering sites experienced by thermal energy carriers [105]. In this

sense, the increase of thermal conductivity with electrochemical oxygenation of BM-

SCO is surprising. In order to better understand the mechanism behind the increase

79



in thermal conductivity, additional SrCoO. samples, each with a different oxygen sto-

ichiometry x, where measured. The controlled tuning of stoichiometry was achieved

by applying electrical biases to the SCO thin films on YSZ substrates at 300 'C,

since YSZ conducts oxygen ions at elevated temperatures [98]. Upon electrochemical

insertion of oxygen into BM-SCO on YSZ at 300 'C, the samples were cooled and

their structures and thermal conductivities were measured. We found that applying

moderate electrical biases (< 2 V) induced a partial phase transition (Figure 3-16).

This finding is consistent with literature reporting that reaching a certain oxygen sto-

ichiometry in SCO is needed in order to complete the BM->P phase transition [98].

The mixtures of BM-SCO and P-SCO (Figure 3-16) were found to have higher ther-

mal conductivities than the as-prepared pure BM-SCO at 0 V. Upon completion of

the BM-P transition, the thermal conductivity continued to increase (1 V- 2 V).

To summarize, when the sample consists of a mixture of the BM-SCO and P-SCO

phases (i.e.: incomplete phase transition), the thermal conductivity can be approx-

imated by a rule of mixtures. Once the critical oxygen stoichiometry is reached,

the complete phase transition to P-SCO occurs, and the scattering from the oxygen

vacancies becomes the dominant mechanism affecting thermal conductivity.

Furthermore, the difference in thermal conductivity between the P-SCO obtained

by using ionic liquid or ionic gel as electrolytes (denoted as P-SCO (gel) and P-SCO

(liquid), see Table 3.5) can be attributed to a difference in the obtained oxygen non-

stoichiometry. XRD and X-ray absorption spectroscopy (XAS) results (not shown)

showed that P-SCO (gel) indeed has a larger lattice parameter compared with P-

SCO (liq.), indicating a higher oxygen non-stoichiometry level. That is, the P-SCO

(gel) is more oxygen deficient (6 is greater in SrCoO 3-6) than the P-SCO (liq.). This

higher oxygen defect concentration increases the rate of scattering experienced by the

thermal energy carriers, resulting in a lower thermal conductivity of P-SCO (gel).

Role of hydrogen ions

As previously described, a lateral proton concentration gradient along the SCO

sample was created using ionic gel gating, opening the door for the examination of
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Figure 3-16: (a) Room temperature thermal conductivity of SrCoO, plotted as a
function of applied electrical bias (anodic) at 300'C by using YSZ as a solid gating
electrolyte. (b) XRD results on SrCoO2 upon applying the electrochemical potentials
shown in (a). The gradual transition from a mixture of BM-SCO and P-SCO phases
to single P-SCO phase was observed.
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the role of hydrogen concentration on thermal conductivity. To confirm the presence

of a gradient of H+ along the sample, soft XAS was performed. Example XAS data

is shown in Figure 3-17. Details of the XAS analysis can be found in [99]. Briefly,

by examining the intensity of the peaks, a correlation between chemical state and

hydrogen concentration can be constructed. A relative hydrogen concentration was

extracted by taking XAS measurements at different points along the gradient.

The thermal conductivity obtained from TDTR measurements and the H+ con-

centration estimated from the XAS spectrum fitting are plotted in Figure 3-17. In

contrast to the role played by oxygen in the BM-+P-SCO transition, the thermal con-

ductivity decreases with increasing H+ concentration. Three factors likely contribute

in some manner of combination to yield this decrease in thermal conductivity: first,

the increase in mass disorder as the H+ ions occupy interstitial sites in the BM frame-

work [101], second, the displacement of oxygen ions from their equilibrium positions in

the BM structure when they bond with protons [101] and third, the ionic size change

of Co cations. H+ insertion into the BM-SCO reduces the Co cations from 3+ to 2+

and this is accompanied by an increase of the Co cation radii. The effect of ionic ra-

dius was discussed in previous work on the Pro.1Ceo. 9O2-6 [70], in which it was shown

that the significantly larger size of Pr3+ compared to Pr4+, and the accompanying

lattice distortions, were the dominant reason behind a decrease in thermal conduc-

tivity upon reducing this oxide (increase in 6). Therefore, it is reasonable to expect a

similar effect in H-SCO because of the larger C02+ in H-SCO. Importantly, we point

out that, if the alloy picture describing thermal conductivity [60] were applicable here,

we would obtain a minimum thermal conductivity as a function of H+ concentration

while transitioning from BM-SCO to H-SCO. However, our data, going up to nearly

full hydrogenation using the ionic gel and ionic liquid electrolytes, does not present

a minimum, but rather a continuous decrease in thermal conductivity between BM-

SCO and H-SCO. Theoretical modeling, using tools like molecular dynamics or DFT,

combined with experimental characterization techniques, like inelastic neutron scat-

tering, will provide further insight into the mechanisms responsible for the substantial

and continuous decrease in thermal conductivity from BM-SCO to H-SCO.
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Figure 3-17: The effect of H+ concentration on the thermal transport property of
SCO. (a) Co L2,3-edge XAS spectra fitted with linear combinations of spectra mea-
sured at spot 1 and 2. The symbols are measured data while the lines are the fitting.
(b) Thermal conductivity (in red symbols) of ionic gel hydrogenated SCO measured
along the H+ concentration gradient. In the same plot, the relative H+ concentra-
tions deduced from the spectra fitting results in (a) were plotted in square symbols,
referenced to the spectrum measured at spot 2.
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3.3.3 Summary

In summary, we demonstrated bi-directional and reversible tuning across one order

of magnitude of the thermal conductivity of SCO at room temperature. This large

tunable range was obtained by accessing the tri-state phases of SCO electrochemi-

cally by applying either a positive bias to insert 02 and trigger a phase transition to

P-SCO, or a negative bias to insert H+ to obtain the H-SCO phase. By performing

the 02- electrochemical biasing at 300 'C, we uncovered that, at low oxygen stoi-

chiometry, there exists a mixed BM-P SCO phase where the thermal conductivity

is effectively an average of the two phases. Once a critical oxygen stoichiometry is

reached, the complete BM-P-SCO transition occurs, and thermal conductivity in-

creases with increasing oxygen stoichiometry as a result of increased lattice order and

electronic conductivity. We also succeeded in constructing a solid state version of this

thermal conductivity manipulation by using ionic gels for triggering the phase transi-

tion in SCO. By using ionic gels, a concentration gradient of H+ was obtained in the

SCO thin films, characterized by using synchrotron-based XAS measurements. The

H+ concentration gradient allowed us to correlate the thermal conductivity measured

by TDTR and H+ concentration measured by XAS. The monotonically decreasing

thermal conductivity with increasing H+ concentration suggests that the H+ them-

selves as well as the consequent chemical and structural changes play the role as

phonon scattering sources. Our larger range of tunable thermal conductivity in ox-

ides, compared with previous studies, provides a new path for designing functional

oxides for applications such as smart windows [1061, thermal management and energy

harvesting [1051.

3.4 Future work

The work on BFO and SCO sought to elucidate the impact of ferroelectric domains

and ionic concentration on thermal conductivity, respectively. Recent preliminary

work used TDTR to characterize the impact of strain on the thermal conductivity of

W0 3 thin films. The results, reported in Table 3.6, suggest that strain engineering
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can be a promising knob for tuning thermal conductivity and will be the focus of

future work.

Table 3.6: W0 3 TDTR measurements

Sample

WO 3

W0 2 .96

WO 2 .87

W0 2 .8 3

W0 3

W0 2.95

WO 2 .8 9

WO 3

HxW0 3

Liquid Gating

HYWO3

Liquid Gating

Substrate

LAO

LAO

LAO

LAO

YAO

YAO

YAO

STO

LAO

a (A)

3.788

3.791

3.764

3.775

3.757

3.752

3.739

3.787

3.789

c (A)

3.645

3.742

3.844

3.854

3.846

3.851

3.851

3.649

3.745

out-of-plane

-0.033

-0.007

0.020

-0.023

0.021

0.022

0.022

-0.032

-0.006

LAO 3.789 3.699 -0.018

strain k (W/m-K)

7.84

3.71

1.52

2.46

2.97

3.26

3.17

6.61

3.37

4.14
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Chapter 4

Size effects in SiGe alloys

4.1 Introduction

Deviations from the Fourier regime of thermal transport occur when length scales

become on the order of the mean free paths of thermal energy carriers. Geometries

where the dimensions of heating or sample size can be shrunk to such a scale have

provided experimentalists with a tool for probing size effects in thermal transport.

For instance, Hu et al. used nanoscale metal heaters exposed to optical heating in

the time domain thermoreflectance (TDTR) configuration to measure size effects in

bulk substrates [56] and Cuffe et al. used the transmission mode transient thermal

grating (TTG) geometry to study the effect of film thickness in silicon membranes

[107].

The nano-heater technique requires careful fabrication and microscopic knowledge

of the thermal interface between the heaters and substrate for an accurate description

of the transport. The transmission TTG requires optically thin and mechanically free

membranes, limiting the range of materials that can be studied. Thus, a technique

which overcomes these disadvantages is desirable. First used by Johnson et al. to

observe non-diffusive transport in GaAs [108], the reflection mode TTG technique is a

simple geometry that is not obfuscated by an interface or limited to thin membranes.

The objective of this work is to use a bottom up theoretical approach and apply

the framework to the reflection mode TTG. In doing so, we are able to unify the
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pictures obtained from the macroscopic observables of experiment to the microscopic

properties from theory.

Our candidate material is a silicon-germanium (SiGe) alloy, as this system has

proven to be a canonical case for the study of thermal transport in a mass-disordered,

yet crystalline system, evidenced by the plethora of work, dating back to the original

work by Stohr [109], Toxen [110] and Abeles 1111, 60], where it was noted that the

mass-disorder scatters short-wavelength phonons consequently shifting the dominant

contribution to thermal conductivity to long wavelength phonons.

The concept of large contribution to thermal conductivity from long wavelength

phonons with large mean free paths (MFP) was used to explain the observation from

Koh et al., who reported a modulation frequency dependent estimate of thermal

conductivity under the Fourier model of the experimental geometry of TDTR [112].

The authors suggested that the frequency dependence corresponds to a reduction

in the contribution to thermal conductivity of the large MFP phonons. This result

led to a series of theoretical explanations [113, 114, 115, 116, 117]. However, each

of these explanations invoked a set of fitting parameters to accurately capture the

experimental observable.

Inspired by the multiple theoretical attempts to explain the experimental obser-

vations, we present theoretical predictions that accurately capture our experimental

observables without relying upon fitting parameters or unnecessary approximations.

The structure of the paper is as follows. In Section 4.2 we present the phonon proper-

ties obtained using density functional theory. In Section 4.2.2, the variational solution

to the phonon BTE for the TTG experimental geometry is developed. In Section 4.3,

results obtained from TTG are presented and compared with our BTE-based predic-

tions. Finally, we close with a discussion and outlook in Section 4.4.
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4.2 Theory

4.2.1 First Principle Calculations

We follow the general procedure established by Broido [118, 16] and Esfarjani [17],

to obtain the phonon properties for SiGe. While the details can be found in these

works, an outline of the procedure is included for the sake of completeness.

For a non-alloy system, the harmonic phonon properties are obtained using density-

functional perturbation theory (DFPT). The underlying premise is to treat the me-

chanical displacement corresponding the wavevector of a phonon as a linear pertur-

bation to the electronic Hamiltonian, from which atomic forces can be calculated

under the self-consistent criteria of DFT. These forces are then converted into har-

monic force constants and used to construct the dynamical matrix for the perturbing

wavevector, which can then be diagonalized to obtain the corresponding frequencies.

The anharmonic properties can be obtained by extending the perturbation to higher

orders [119]. The approach we follow begins with constructing a symmetry-reduced

set of atomic displacements in a supercell, where each member of the set undergoes

a standard DFT self-consistent calculation, each yielding the force field for the con-

figuration. With this set of force fields, the third order force constants are extracted.

Phonon lifetimes are related to the third order force constants through the appli-

cation of Fermi's golden rule. Integrating the modal thermal conductivity over the

Brillouin zone, under the relaxation time approximation to the phonon BTE, yields

the lattice thermal conductivity. This full procedure is implemented in the ShengBTE

package [43].

To extend the above procedure to a crystalline alloy, approximations are necessary.

As discussed by Toxen [110] and Abeles [111], the SiGe alloys are ideal candidates

for studying the validity of the VCA. Following Garg et al. [120], we use the VCA to

modify the DFT calculations. Within this approximation, two paths can be taken.

One can compositionally average the pseudopotentials for the constituent atoms, and

then proceed with the usual procedure. Alternatively, one can calculate the harmonic

and third order force constants for the unalloyed crystalline versions of the constituent
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atoms, take the mass normalized compositional average and then proceed to calculate

the phonon properties

AVCA = xASi + (1 - x) AGe (4.1)

where x is the percent composition of silicon and A' is a placeholder for the harmonic

force constants, the third order force constants, the atomic masses and the lattice

constants [121] of the constituent atoms. We have followed both VCA procedures,

and find negligible difference in the phonon properties (see Appendix B).

The penultimate step in the alloy calculation is to include the effect of mass

disorder. Again, following Garg's work, the phonon lifetimes are modified under

Matthiessen's rule using the theory established by Tamura [63] to treat isotope scat-

tering as an elastic perturbation. Garg et al. went a step further to estimate the

anharmonic shifts do due disorder through supercell calculations. Feng et al. used

molecular dynamics to show that the application of Matthiessen's rule leads to an

overestimation of thermal conductivity by more than - 20% in SiGe due to neglect-

ing four and five-phonon processes [122]. Our experimental results will show that the

harmonic mass disorder approximation under Matthiessen's rule produces reasonable

theoretical predictions. We note that the procedure followed in this work will not cap-

ture the frequency shifts that can be observed in the SiGe Raman spectra [123, 124]

(see Appendix B). It is expected that these Raman active modes do not significantly

contribute to thermal conductivity, as their group velocities are small and their life-

times have been reduced by mass disorder scattering. The phonon properties are

reported in Figure 4-1. The DFT calculation parameters used in this Chapter are

the following: for the DFPT portion, a 16 x 16 x 16 Monkhorst-Pack k mesh with

a kinetic energy cutoff of 50 Ry and a convergence criteria of 1E-12 Ry is used. For

the supercell calculations, a 4 x 4 x 4 supercell was used such that third order force

constants up to the fifth nearest neighbor could be obtained and only wavefunctions

at the gamma point were calculated. Both (Si,Ge).pz-bhs.UPF and (Si,Ge).pz-n-

nc.UPF pseudopotentials were tested yielding a negligible difference between thermal
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Figure 4-1: Si93 .4Ge6 .6 MFP accumulation of thermal conductivity and heat capacity
at 300 K. Reproduced from 11] with permission from the American Physical Society.

conductivity estimates. The DFPT calculations were done with a 6 x 6 x 6 q mesh.

Interpolation was done on a 48 x 48 x 48 q mesh with a Gaussian smearing parame-

ter of 0.1 for the Kronecker delta approximation to yield convergence of the thermal

conductivity. All calculations were done with the quantum-ESPRESSO package [125].

4.2.2 Solving the Boltzmann Transport Equation

Given the bulk phonon properties of SiM3.4 Ge6 .6 , we now turn to the study of the

effect of grating period length on thermal transport in the reflection mode TTG ge-

ometry. The diffusive temperature profile has previously been obtained in order to

analyze the temperature signal using TTG for opaque materials [58]. For the exper-

imental conditions of a spatially periodic heat source defined by wavevector q- ,

the temperature is given by T(x, z, t) =T o Toeixh(z, t) in complex form, and this

serves as a definition of the non-dimensional temperature h. The temperature To is

the background equilibrium temperature of the system, for example the room tem-
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perature. The heating by the laser is incorporated with a volumetric heat generation

term, given by the functional form

Q = 6(t)e i Uoe-1z (4.2)

where UO represents the energy per unit area deposited into the substrate by the pulse,

and / is the inverse penetration depth of the heating profile. The derivation found

in [58] takes into consideration different in-plane and cross-plane thermal conduc-

tivities, however the experimental signal is mostly sensitive to the in-plane thermal

conductivity. For simplicity, we show the derivation for an isotropic system, where

the Fourier heat conduction equation simplifies to

A 2 2 h 3Uo
-aq2 h + a + e-z3(t) (4.3)

at OZ2 CTO

with the initial and boundary conditions given by

h(z, t 0-) = 0

|Z=O = 0 (4.4)

h(z - oo,t) = 0

which assumes an adiabatic surface at z = 0, and that the system starts at equilibrium

prior to the energy deposited by the laser. We present the solution in the Laplace

transformed domain for convenience

QUo
h(zs) s + I(q2 _ 2) 2 (4.5)

We intend to utilize this Fourier heat conduction temperature profile in our vari-

ational solution of the BTE. Taking the inverse Laplace transform of this yields the

temperature as a function of the depth into the substrate and time
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h(z, t) = Uo eat(q 2 _ 2 ) e/zerfc( at + ) + e-1zerfc(3 /at - Z
2CTO 2 at 2 atj

(4.6)

where the surface temperature is

h(z = O, t) = 3UO et( 2 2 )erfc(3 at). (4.7)
CTO

Temperature integral equation

We begin with the spectral Boltzmann transport equation under the relaxation

time approximation (RTA)

agw + V, - Vg o = g + (4.8)
at rW 47

where g, is the phonon energy density per unit frequency interval per unit solid

angle above the reference background energy, related to the distribution function as

g9W= (f. - fo(To)). v, is the group velocity, T is the relaxation time, and go

is the equilibrium energy density, given by go ~ (C(T - To) in the linear response

regime. The sinusoidal heating profile in the x-direction (in-plane), given by the

pulse form Q,(x, z, t) =(t)etx Q,(z), means we can expect that the spectral and

equilibrium energy densities to also obey a sinusoidal profile gw = e ixj, and the

equilibrium distribution will simplify accordingly to Jo CTo h(z, t). By inputting

this in-plane sinusoidal profile and utilizing the Laplace transform (denoted by the^

symbol) in the time domain, the BTE simplifies to

+ g STw+ llwUx _ 9o+ (4.9)
Oz + W Awlp2 Awlpz

where we have defined r/s = qAs. For convenience, we define the parameter V

l sT"'iT/w x to group the variables in a compact form for the following solution of the

BTE
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Z 0 (Z', s) + Q_
g (z, S IX, z) = e- V9(z = 0, s, SI, iz) + dz'e-v(zz') ALo + . (4.10)

The boundary conditions are taken to be

LI <0) 0 (4.11)W(z 0, s, , IzP > 0) =.

The first boundary condition takes an imaginary blackbody wall at length L into

the substrate at the background temperature to account for the semi-infinite sub-

strate, where this length approaches infinity. The second boundary condition provides

the adiabatic boundary condition with diffuse scattering, where o- = JadW8(pz)pzg(z

0, S, lX, -1i), which is proportional to the specular heat flux approaching the surface.

We have utilized the Heaviside step function to reduce the integration over the solid

angle only to consider phonons approaching the surface. Applying the boundary con-

ditions, and taking the artificial length L to infinity yields the formal solution to the

BTE for the spectral energy density in terms of the equilibrium energy density

(ZS, liX, liz) z-IZ) Io e ( (z', s) 47-

, , , = -V( pz ) ) T

+ 2e-v(z)F2 (z') 9o(z' s) + r

where we have defined the following solid angle integral function

F(Z) = fis de s(pz)rmt rn2()-vz. (4.13)

The first term represents phonons moving towards the surface of heating at z = 0,
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whereas the second term represents phonons moving away from the surface.

The temperature can be derived by utilizing the equilibrium condition obtained by

integrating Eq. 4.12 with respect to frequency and the solid angle [8]. The equilibrium

condition in this case can be expressed as

47r dw -2o(zs) =

Performing the solid angle integral,

dimensional temperature expression Yo =

for the temperature distribution

h(z, s) dz Cw
'JTW

dw dQe Z, ,p,) (4.14)

and inputting the expression for the non-

C o h(z, s), we obtain the integral equation

2 AWTW ( CZTO '
(4.15)

+2F2 (z)F2(z')).

This is an integral equation in the spatial variable z for the non-dimensional

temperature in the Laplace domain, which after solving, requires an inverse Laplace

transform in order to obtain the full temperature solution in the time domain. For

the thermal distribution, the spectral heat generation takes the form

Q,(z) = ' Uo/e4 (4.16)

Note that - is a weighting of the contribution of a given mode to heat generation

under the assumption of thermalized distribution [1261. While other distributions

can be taken, we utilize this form in order to compare to the Fourier heat conduction

solution.

Variational solution

Eq. 4.15 can be numerically solved using finite difference methods 113] or Monte

Carlo methods [53, 54]. In this work, we extend a variational approach previously

presented for the 1D TTG [3] and thin film TTG geometries [127] to the reflection
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mode TTG geometry. The starting point of this approach is to select a trial function.

The simplest trial function is to take the diffusive temperature profile and allow

just the thermal diffusivity to be a variational parameter. In general, the size effects

exhibited by the BTE will affect both the temporal as well as the spatial distributions

of the temperature. However, the simple variational solution that varies only one

parameter, the thermal diffusivity, performs well by approximately solving for the

thermal decay from the BTE over a broad range of grating period length scales. We

proceed by taking the Fourier heat conduction solution of Eq. 4.5 as a trial function

and use the thermal diffusivity as the variational parameter.

To solve for the variational parameter, we can utilize mathematical optimization

methods such as least squares on the error residual of the temperature equation [3],

or impose a physical condition that we wish the trial function to satisfy. Here, we

impose that the trial function must satisfy energy conservation taken over the control

volume of the semi-infinite substrate over all time, analogous to the condition utilized

for the thin film TTG geometry [127]. This mathematical condition can be obtained

by integrating the BTE of Eq. 4.14 over the solid angle and frequency, and then also

over the depth variable z as well as over all time to yield

UO = 2i Ddz 0dtq(z, t). (4.17)

This statement says that the total energy per unit area perpendicular to the z-axis

deposited in the semi-infinite substrate initially (left hand side of Eq. 4.16) must be

equal to the total energy that moves away in the in-plane direction. The in-plane heat

flux is obtained by utilizing the spectral energy density of Eq. 4.12, and integrating

over the frequency and solid angle 4x(z, s) = f dw f d vp z s, , ) to obtain

the in-plane heat flux

2(z,s) = Jdw Cvw dz' (h(z', s) + T C4zT ) (Gl(lz - z'J) + 2G2(z)F2 (z'))

(4.18)
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where we have defined the solid angle integral function

G,,(z) = 1 dQO( p2)p"--2p P(C)-2. (4.19)

Inserting the heat flux expression of Eq. 4.18 into the energy conservation state-

ment of Eq. 4.17, and inputting the variational trial function of the Fourier heat

conduction solution of Eq. 4.5 as well as the thermal distribution for the heat gener-

ation rate, we can solve for the effective thermal conductivity after cleaning up some

of the solid angle integrals. We obtain a form similar in structure to the results from

the thin film TTG [127] and the one-dimensional limit of the TTG [3]

k = 1 dwCvA~f(rl, Kn,) (4.20)
1 f dcuC,_g(Tj, Kn,)

where Kn, = A,/3. Note that information concerning the spectral contribution to

heat capacity is needed in the equation for effective thermal conductivity [128]. f

and g are the kernels that weigh a given mode's contribution to effective thermal

conductivity under the imposed size effects, explicitly given as

3 1 2 F(Tj, Kne) - Kn2,T(Tl, Kn,)f (iiKne) = 1 -- arctan(gI) + 2
j Tr 2- Kno (4.21)

1
g(77W, Kno) = arctan(i7) + T(rj, Kno).

Tiw

We have defined the following solid angle integral functions

I I
4'(x, z) = -01(x, z) - _ _ _ (X, Z)

2 1 + - X2 Z(4.22)

2Or (1 + iXpu)n(1 + zp2 + iXlut)

If we take the limit of Knm - 0, i.e. the case of very long penetration depth,

the solid angle integrals vanish as $n(7, Kne - 0) oc Kns, and we recover the one-

dimensional TTG limit described by the previously derived effective thermal con-
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ductivity [3]. The more interesting case for this problem is the reduction to surface

heating, i.e. Kn, - oc. In this case, the kernel functions simplify to

f(71, Kn, -+ oc) - 3 2
2 1W

1N
- 1arctan(7,)

T1W/

1

9(7, Knw -+ o) =
27 7,arctan(7w) + 1.- *

For the general case of arbitrary penetration depth, the solid angle integral func-

tions can be calculated analytically, which allows for a fully analytical effective ther-

mal conductivity for any penetration depth into the substrate

'o(x, z) =

JZ-Z 2 1+X2 + 2

[arctan( x2 - z2 ) + arctan(} /2 - z2 )

-arctan(} +x 2-2-z 2 )],

(1+2)3 -x-1
3x

z iZ2 V-2 + 2 3 In z X+v -/2g
_z-x (_ 2 (1+/z2 2)(1+ -z 2  

_X'(Z - X 2 )2 \(+ 2 x2 (

if z < x

if z = x

if z > x

arctan(x) - 2Z2

[arctan( V2 - z2 ) + arctan(} z2 - z2 )

-arctan(}I/1 +X2 2 - z2 )]

arctan(x) - 1 +

1 a1 ln (1 + 1 X 2x2
1arctan~x) + I In z~2(+ 2x)

98

S 3
+ 1,)2 - -/2
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1 (x, z) = 
0

if z < x

if z = x

if z > X.
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Figure 4-2: Kernels of the effective conductivity in Eq. 4.20. (a) The numerator kernel
f that shows the size effects and appears beside the differential conductivity and (b)
the denominator kernel g that shows the size effects and appears beside the spectral
heat capacity. Reproduced from [1] with permission from the American Physical
Society.

Comparison between the Variational Solution and Monte Carlo Simula-

tions

To study the effect of the optical penetration depth in the case of a diffuse surface

boundary condition, we first plot the kernels f and g as a function of 7 for the extremal

limits of Kn,. The one-dimensional limit of Kns -+ 0 and the surface heating limit

of Kn, - oc define the envelope of curves for which the kernels for arbitrary values

of the penetration depth must lie between. As the Knudsen number increases, the

size effect due to the optical penetration depth increases, which physically results

in a decrease of the effective thermal conductivity. This occurs due to the decrease

in the numerator kernel f, and the increase of the denominator kernel g. However,

the variational solution produces a one-dimensional limit and the surface heating

limit that are practically indistinguishable (Figure 4-2), suggesting that the effective

thermal conductivity due to a diffuse boundary experiences weak effects from the

optical penetration depth.

Utilizing the derived kernels to calculate the effective thermal conductivity for
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Figure 4-3: Effective thermal conductivity for Si93 .4 Ge6 .6 in the one-dimensional limit

and the surface heating limit. The effective thermal conductivity using the gray sup-

pression function for one-dimensional TTG (Eq. 4.24) is also shown [3]. Reproduced
from [1] with permission from the American Physical Society.

Si93 .4 Ge6 .6 , we show in Figure 4-3 the effective thermal conductivity in the various lim-

its. Note that the effective thermal conductivity is quite similar in the one-dimensional

limit and in the surface heating limit. As expected, when the thermal grating period

is much smaller than the optical penetration depth, the effective thermal conductivity

takes on values of the one-dimensional limit, as the transport is mostly in-plane. In

the opposite case, when the grating period is much larger than the optical penetration

depth, the effective thermal conductivity approaches the surface heating limit.

Figure 4-3 demonstrates that the variational technique predicts that transport

has a weak dependence on the optical penetration depth, a consequence of the ker-

nels' weak dependence on optical penetration depth. In the limit of q/ > 1, the

one dimensional TTG is recovered. In the limit of q/ < 1, the modified Fourier

approach fails to capture the short time behavior. In this regime, the use of effective

thermal conductivity (obtained either using the variational approach or otherwise) is

100



1- 1
-- Reflection Variational - Reflection Variational

Monte CarloMotCal

0.8 0.8

0O)

E 0.6 E 0.6

0.4 0.4
E- E

0.2- 0.2

0 0
0 1 2 3 4 0 1 2 3 4

Time (seconds) x10-10  Time (seconds) x10-8

(a) (b)

Figure 4-4: Temperature profiles obtained from Monte Carlo simulations compared
with the corresponding variational predictions for Si93.4Ge6 .6 at 300 K with a (a)
grating period of 100 nm and optical penetration depth of 10 nm and a (b) grating
period of 10 pum and optical penetration depth of 1 pm. The Monte Carlo trace for
case (b) contains noise because of the computational cost of simulating longer decays
for a large number of effective particles. Reproduced from [1] with permission from
the American Physical Society.

insufficient to characterize thermal transport. An example of this failure is presented

in Appendix B. Even with such a limitation, our variational approach sufficiently

characterizes the intermediate regime.

In the limit of q// < 1, the variational method, using the Fourier temperature

profile as input, reveals that the thermal conductivity that best recovers this behavior

is the bulk value. This can be understood as a consequence of the constraint imposed

by the equilibrium condition of Eq. 4.17, which dictates the behavior of the variational

temperature profile in the large time limit where transport is diffusive. To ensure that

this limitation is not present in the current experimental study, we compare against

established Monte Carlo simulations of the RTA-BTE [53, 54].

As is seen in Figure 4-4, agreement at a grating period of 100 nm and an optical

penetration depth of 10 nm and for a grating period of 10 pm and an optical pene-

tration depth of 1 um is observed. As our experiments have penetration depths on

the order of 1 pm for Si93.4 Ge6 .6 1129], and use grating periods of between 1 and 13.5
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pm, we are not in the q/ < 1 regime and we can move forward with our variational

solutions.

4.3 Experiment

4.3.1 Sample specifications

The SiGe sample was fabricated by metal-organic chemical vapor deposition (MOCVD).

Briefly, SiH4 and GeH 4 enter the reactor, which break up into Si, Ge, and H2 from

exposure to high temperatures (750-800'C). The composition is controlled by tun-

ning the flow rates of SiH4 and GeH4 . A single crystal sample consisting of 93.4% Si,

6.6% Ge with a thickness of 6 um on a [1 0 0J oriented Si wafer with 6 degree off-cut

towards the [I 1 1 plane was used for this work. Details of the sample fabrication

and characterization can be found in previous work [130].

4.3.2 Results

All measurements of the Si 93.4Ge6 .6 sample were conducted at room tempera-

ture. Figure 4-5a shows two examples of raw TTG data along with the fits obtained

from using Eq. 4.7. These fits yield an effective thermal conductivity as shown in

Figure 4-5b alongside the prediction from the variational solution using properties

obtained from first principle calculations following Section 4.2. We have used an op-

tical penetration depth of 1500 nm, according to [1291. The effect of uncertainty in

the penetration depth is presented in Appendix B. There is good agreement between

theory and experiment, which persists for a range of grating periods, from - 13.5 to

1 pm.

4.4 Discussion and Outlook

To review, we calculated the first principles phonon properties to match the exact

composition of the sample studied experimentally. We then used these properties and
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Figure 4-5: (a) Raw experimental data for 6.6 pm (top) and 1.8 pm (bottom) grating
periods with the fit obtained from Eq. 4.7. (b) Green circles correspond to measured
TTG data for a range of grating periods, from 13.5 to 1 pm. The black line is
the prediction from the variational solution with DFT properties as input, while
the orange line (yellow line, purple line) corresponds to the variational prediction
for Si9 7 Ge 3 (SisoGe 2o, Si). Reproduced from [1] with permission from the American
Physical Society.
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the variational solution to the RTA-BTE to predict (without any fitting parameters)

the recorded observable of TTG experiments, the temperature decay. In doing so, we

report excellent agreement between the observables and effective thermal conductiv-

ities of theory and experiment. In this section, we draw on past interpretations to

provide some context for this work.

As mentioned earlier, one of the first explanations of size effects in SiGe grew

out of the observation of frequency dependence in TDTR measurements [112]. This

explanation relied on the application of thermal penetration depth, Ltpd ~ 0
2b.-ul,

as a heuristic approximation to estimate the magnitude of the deviation from a bulk

thermal conductivity. For Si93 4Ge 6.6, abulk = 1.2358E-5 m 2 /s, with 10 MHz, yields a

Ltrd ~ 1 Am. Under this approximation, we can take the MFP thermal conductivity

accumulation function at 1 pm, yielding 0.4kbu1k = 7.3 W/mK '. If we apply the

same reasoning to our TTG measurements we arrive at a clear inconsistency: A = 1

pm yields 0. 2 5kbulk = 4.5 W/mK, indicating that the MFP thermal conductivity

accumulation function alone is insufficient to estimate the deviation from bulk. The

next natural step in the interpretation of deviations from bulk required theory to

go beyond the Heaviside cutoff of the thermal penetration depth and obtain a gray

suppression function, Sgray(/w), from solving the gray BTE [135, 136, 201

3 (1_arctan(77,) 77, 4.4Sgray(g7w) = 4 w - . (4.24)
93 7W arctan(77)

This function is then used as a kernel in the effective thermal conductivity integral,

i.e., keff,gray = 3 f' CwvwAwSgray(yw)dw. This picture has also turned out to be an

oversimplification, since the fully spectral solution to the BTE has no suppression

function due to the presence of the denominator term in Eq. 4.20. The presence of

this term is a general feature of effective thermal conductivity expressions that is not

'By this same argument, frequency dependence should also be observed in silicon with abulk =
8.8E-5 m 2 /s, which at 10 MHz, yields a Ltpd ~ 3 jpm and ~ 0. 7 kbulk = 98 W/mK from the
MFP accumulation function [17], but kep > 120 W/mK for the same frequency range is often
reported [117, 131]. The reason for this discrepancy remains an open question in the TDTR literature
[132, 133, 116, 117, 134]. For example, the results of Hua et al. [116] and Wilson et al. [117] suggest
that the reported thermal conductivity obtained from a TDTR measurement is dependent upon the
interface conductance, indicating that this thermal conductivity can no longer be interpreted as an
intrinsic property of the material.
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Figure 4-6: Comparison between the predictions from the variational approach to
using the MFP accumulation function or the gray suppression function for one-
dimensional TTG (Eq. 4.24) [3] to estimate the effective thermal conductivity at
1.00 pm grating period. Reproduced from [1] with permission from the American
Physical Society.

specific to the reflection mode TTG geometry [13, 3]. Our work confirms this fact

by demonstrating that a fully spectral solution to the BTE is required to characterize

experimental observables. The progression from thermal penetration depth to gray

suppression to fully spectral interpretations in the context of reflection TTG is shown

in Figure 4-6. While the gray BTE solution has been used to provide suppression

functions for the MFP reconstruction problem [135, 56], we demonstrate that this

assumption is invalid. Extending the MFP reconstruction problem to allow for fully

spectral solutions is the subject of future work.

In contrast to the interpretation of thermal penetration depth of TDTR, the length

scales in TTG do not depend on the intrinsic value of a material's transport coeffi-

cient, and are therefore physically well-defined independent variables. Although the

information concerning the optical penetration depth is required, this is well within

105

I

-



current characterization technology [137]. Given that the variational solutions to the

ID and surface heating TTG geometries predict approximately the same effective

thermal conductivity dependence on grating period, we have obtained estimates for

the regimes in which the experiment is expected to match theory (i.e., when q/ is

not much less than 1). In doing so, we have presented a theoretical framework that

is testable, given that experimental deviations from theory can be understood as de-

partures from the approximations used in this work: the VCA, the RTA-BTE and

the specific trial solution for the temperature profile used in the variational method.

These approximations can be lifted and are left for future work. With the methodol-

ogy presented here, the TTG can be used to study in-plane transport in opaque thin

films that require a supporting substrate.

While TDTR measurements are sensitive to the cross-plane transport, the TTG

provides a complementary tool for measuring in-plane transport. The variational

method can be extended to more complicated geometries, such as layered systems

with interfaces, ideally suited for providing insight into the interpretations of TDTR

and TTG measurements. Such an extension would provide a path towards unifying

the interpretations of the measurements from TDTR and TTG.

4.5 Conclusion

Our TTG experimental results augmented with DFT-based modeling and the vari-

ational BTE solution indicate that this experimental geometry is capable of meeting

the predictive criteria necessary for studying size effects on thermal transport in com-

plex materials, such as the SiGe alloy studied here. Interesting questions can now

be asked, such as in what systems or at what length scales can we expect to find a

breakdown of the VCA? Moreover, this geometry will prove useful in the study of

systems where the relaxation time approximation fails, such as graphene, graphite

and diamond as will be shown in Chapter 5. The TTG platform provides a path

towards tabletop studies of the microscopic properties of thermal transport.
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Chapter 5

The Full Scattering Matrix BTE and

Phonon Hydrodynamics

5.1 Introduction

In Chaper 3, we relied on the validity of Fourier's law to describe transport in the

TDTR geometry and in Chapter 4, the RTA-BTE was used to describe transport in

SiGe in the TTG geometry. Here, we go beyond these pictures. The RTA has an in-

herent flaw in that it is not energy conserving, and is best suited to describe materials

with low Debye temperatures where the distinction between Normal and Umklapp

process can be ignored [16, 11]. However, at low temperatures, interactions between

phonons can be dominated by Normal processes (i.e.: processes that do not directly

contribute to the dissipation of heat flux) because of the relatively high population of

small wavevector modes, leading to a conceptual inadequacy of the RTA description

in which all scattering events are treated as dissipative. In order to rigorously account

for these normal scattering processes, the exact solution of LBTE [29] is required. The

conventional approach to numerically solving the LBTE relies on an iterative strat-

egy [138, 43], which has so far been limited to the case of diffusive transport in single

crystal but in theory could be extended to include boundaries. As of this writing,

the boundary effect is typically addressed via a phenomenological model which treats

the boundary scattering probability as independent of a given mode's distance from
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the boundary [139]. More recently, modern computational capabilities have made it

possible to solve the LBTE directly using matrix algebra [139], as opposed relying on

an iterative numerical procedure. Through direct diagonalization of the collision op-

erator (also referred to as the scattering matrix), a "relaxon" description of transport

was used to characterize transport beyond the RTA [140]. In a follow-up work, Cepel-

lotti et al. [141] used the "relaxon" description to study in-plane thermal transport,

where they assumed thermal equilibrium at the boundary which is not generally the

case [142], and cross-plane thermal transport, where they assumed a diffusive temper-

ature profile which fails to capture the temperature jump at the wall, a well-known

effect in non-diffusive transport [143]. As such, the effect of heating source pattern

on thermal transport has yet to be adequately considered in the exact solution to

LBTE. The analysis considered here aims to address this missing piece by solving the

LBTE with non-stationary and non-uniform heating profiles and provide a framework

for the study of nondiffusive heat transport beyond the RTA. Here, we seek solutions

for the LBTE with the complete collision operator, which contains the full details of

the intrinsic phonon scattering processes obtained from first principles calculations.

We obtain the temperature distribution for a material with no boundaries and with

a general space and time dependent volumetric heat generation rate. Our solution

provides a framework from which any heating configuration can be constructed.

As a concrete example, we provide predictions for the simple configuration of a

steady state thermal grating (SSTG) in one dimension to demonstrate the difference

between the thermal transport predicted by using the full scattering matrix compared

to the RTA for graphene. Furthermore, we will demonstrate that this formalism is

capable of capturing hydrodynamic phenomena [144], such as second sound, enabling

the prediction of hydrodynamic observables in current and practical experimental

configurations and thereby opening the door for systematic experimental work.
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5.2 Theory

In Section 2.1.1, a derivation of the bulk LBTE was presented. Like the size

effect study under the RTA-BTE presented in Chapter 3, we will extend the LBTE

to include a source term Q,

+ Vn Vg n n,n' (go/ - gn') + Qn. (5.1)
n/

Eq. 5.1 is now further linearized so that not only are deviations of the nonequilibrium

distribution from the equilibrium distribution at the local temperature small, but

also the deviations of the equilibrium distribution from the background constant

temperature distribution are also small

fn ~ fBE( hn ) + n cnOT. (5.2)
kB ( 

N2
In doing so, the scattering matrix ( will depend on the background room temperature

To but not on the temperature rise 6T. Recalling that gn - (fn - fBE( k

and go = (fn - fBE( = crOT and setting Z fBE Q knIWnfn

gives the temperature rise as the ratio of the nonequilibrium energy density of phonons

divided by the heat capacity

6T = gn. (5.3)

Inserting go= cO6T into Eq. 5.1 gives

g,+ Vn -Vgn = Q nn'i(cnT - gni) + Qn. (5.4)at
n'

To solve for the phonon distribution for a system with no boundaries, we take the

spatial and temporal Fourier transform of Eq. 5.4 to convert the differential equation

into an algebraic matrix equation

(iw + i-. = Q(iTc- 2) Q2i+ (5.5)
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where ~ denotes the Fourier transformed variable. Rearranging for the Fourier trans-

form of the deviational non-equilibrium distribution function yields

=Q 1
1 + 6T(I - iQ-1 Dc) (5.6)

where i= /C and we utilize the following notation to define the vectors and matrices

in this work

D (,n (W + q . Vn)6 ,n, (5.7)

=n,ari + (W + q* - )i . (5.8)

We note that w represents the frequency from the Fourier transform, so as not to

be confused with the frequency of a particular phonon mode, Wn. A similar Fourier

transform strategy was used by Hua and Minnich for the RTA-BTE [126]. We solve

for 3T after inserting Eq. 5.6 into Eq. 5.3

[T Q (5.9)
~snm[iQ'-1-

where we define the sum operation of a vector to add up the values of its elements,

i.e.: sum[a] = an. Eq. 5.9 is the essence of the contribution of this work. This

provides the general temperature response from the BTE for a configuration with no

boundaries, but with an arbitrary heating profile Q, with the full scattering matrix

under the linear temperature response assumption. Given the scattering matrix (

of a crystal, and the heating profile Q, the temperature rise in the Fourier trans-

formed domain can be calculated and then inverse Fourier transformed to yield the

temperature rise as a function of space and time. The computational difficulty lies in

inverting the matrix Q, which involves the full scattering matrix Q, which scales as

O(Nb) where N is the number of discretized q points in the BZ and b is the number

of branches.

Taking the solution of Eq. 5.9 and inserting into Eq. 5.6 yields the nonequilibrium
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phonon energy density distribution

S m+ [Q-1 (I - iQ-'Dc (5.10)
s'um[iQ 'Dc -

Using the phonon distribution function, one can calculate not only the temperature

response, but also the dynamics of individual phonon modes. This formalism and the

solution provided by Eq. 5.9 enables the study of thermal transport in the absence of

boundaries in the nondiffusive regime.

5.3 Numerical studies

5.3.1 Steady state TG

As a preliminary example, we study the one dimensional steady state thermal

grating (SSTG), in which the heating in the system is given by a sinusoid. A steady

state sinusoidal thermal grating is given by Q = Qeiq, in complex number notation.

This is a grating in one dimension along the direction of the vector q in the 3D

volume with a grating period A = 2ir/q. The elegance of this geometry is that the

temperature distribution predicted by the Fourier heat conduction equation and by

the BTE are identical: both are sinusoids of the same spatial wavevector q as the

volumetric heating profile. The temperature profile from the Fourier heat conduction

equation is given by

6T = Q (5.11)
q2kq

where kq= qTKq is the element of the thermal conductivity tensor in the direction

of the thermal grating. By matching the Fourier temperature profile to the solution

of the BTE for the case of a SSTG from Eq. 5.9, an effective thermal conductivity

is derived which depends on the grating spacing A and has a similar structure to the

previous effective thermal conductivities derived using the variational method [3, 127]1

'In this geometry, a nondiffusive effective thermal conductivity can be exactly calculated with no
approximation by matching the Fourier temperature profile to the BTE temperature profile, unlike
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1 sum[iQ-Dc] (5.12)
q2 sum[Q- 1p]

where the matrix Q is given by Eq. 5.7 like before, but the matrix D simplifies

to the steady form (zero frequency) given by D,,, = (t. ) Visually, the

appearance of the complex number i is not an issue as the inversion symmetry of

the crystal will guarantee that the effective thermal conductivity will be a purely real

quantity. This effective conductivity is valid for d-dimensional material in the absence

of boundaries or when the scattering at boundaries does not have a strong effect

on the thermal transport. The effective conductivity obtained for the steady state

configuration is exactly the conductivity that would be obtained from a variational

solution with the energy conservation condition considering a control volume over

all time [3]. Therefore, for the one dimensional transient thermal grating decay, the

conductivity from Eq. 5.12 can be understood as the parameter that matches the

area under the decay curve from the exact solution to the approximate variational

solution.

We explore the comparison between predictions obtained using the full scattering

matrix and the RTA for graphene to illustrate the need for the previously described

theoretical framework. Figure 5-1 shows the effective thermal conductivity as a func-

tion of the grating period for the case of a thermal distribution. This represents

the first effective thermal conductivity derived for a material with the full scattering

matrix in a nondiffusive heat transfer configuration without boundary scattering.

more complicated geometries.
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Figure 5-1: Effective thermal conductivity of graphene at room temperature as a
function of the grating period for the steady state thermal grating geometry.

All DFT calculations for graphene were done with the quantum-ESPRESSO pack-

age [125] using the C.pz-vbc.UPF pseudopotential. Graphene was simulated using

a hexagonal unit cell with 2 carbon atoms at the relative coordinates of [0,0,01 and

[j, 2,0 and lattice parameters a = 4.61 Bohr and c/a = 10.2 Bohr. For the DFPT

portion, a 32 x 32 x 1 Monkhorst-Pack k mesh with a kinetic energy cutoff of 100

Ry and a convergence criteria of 1E-12 Ry was used. These DFPT calculations were

performed on an 8 x 8 x 1 q mesh. An 8 x 8 x 1 supercell such that interactions

up to the fifth nearest neighbor could be captured was used for extraction of the

third order force constants (only electronic wavefunctions at the Gamma point were

considered for the sake of computational efficiency) [139]. The full scattering matrix

was constructed using the D3Q module [139j. The matrix was constructed by inter-

polating to 64 x 64 x 1 q mesh with a Gaussian smearing parameter of 20 cm- for

the Kronecker delta approximation to yield convergence of the thermal conductivity.

The direct inversion of Q in Eq. 5.12 was performed using the NUMPY library [145]

on a cluster consisting of Intel CPU cores operating at 2.8 GHz with access to 128

Gb of memory.

As reported elsewhere [146, 147], the bulk value of the thermal conductivity de-
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pends on the chosen BTE scattering kernel. We are able to further demonstrate

that the grating period at which size effects become observable also depends on the

scattering kernel. Figure 5-1 captures the prediction that size effects in graphene in

a SSTG geometry can be observed for grating periods of around 100 pm at room

temperature. RTA, on the other hand, predicts the onset of size effects occurs at

grating periods of only a few micron.

5.3.2 Hydrodynamic regime

The SSTG provides theoretically elegant system to study because of the exact

matching between the Fourier and BTE profiles, thereby ensuring a well-defined ef-

fective thermal conductivity. However, there are thermal transport regimes where an

effective thermal conductivity will fail to adequately capture the dynamics of ther-

malization, of which two are of interest: the ballistic and the hydrodynamic regimes.

The ballistic limit was discussed in Chapter 2. Phonon hydrodynamics has a long

history; of which a short retelling will be giving here.

Second sound and phonon hydrodynamics history

As theoretical attempts at understanding the exotic properties of liquid helium II

were put forward, the possibility of observing a phenomenon that eventually became

known as second sound emerged. Tisza, building upon the ideas of London, proposed

a description of the superfluid phase where a portion of the atoms composed a de-

generate ground state while the remaining atoms existed in excited states [1481. By

assuming the interaction between these two phases to be negligible, a hydrodynamic

description, often referred to as a "two-fluid model", of the composite system revealed

the existence of wave propagation of temperature differences. Landau independently

arrived at a similar prediction, with a detailed description of the excited phase [149],
composed of both phonons and rotons.

Experimental confirmation of the existence of second sound in helium II below the

lambda point (2.18 K) was first provided by Peshkov [150] and later by Lane et al.
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[151]. The slow velocity of the second sound speed (10-20 m/s) made the detection

accessible to the rudimentary instruments available at the time.

Peshkov [152] and later Ward and Wilks [153] pointed out that the same hydrody-

namical concepts apply to a phonon gas in crystalline materials under conditions in

which phonons momentum-conserving processes dominate over Umklapp processes.

This prediction was experimentally confirmed first in solid Helium by Ackerman et al.

at temperatures below 0.7 K [1541. Direct observations of second sound in other solids

include He3 in a temperature range of 0.42 to 0.58 K [155], NaF in a temperature

range of 11 to 14.5 K [156, 157] and Bi in a temperature range of 1.2 to 4 K [158].

Theoretical developments of the description of second sound in crystalline solids

were led by Guyer and Krumhansl, who applied the Callaway collision kernel to the

phonon BTE to derive a set of hydrodynamical equations for the conservation of

energy and momentum [159]. Hardy solved the full collision matrix BTE [160] in

terms of the eigenvectors of the collision matrix, but lacked the necessary data to

explicitly construct the collision matrix. In parallel, Gotze and Michel adopted a

phonon Green's function description to demonstrate the existence of hydrodynamic

singularities [161]. By carefully calculating the contributions to these singularities,

the authors were able to derive a similar two-fluid description to the one initially

proposed by Tisza, where the equations of motion of the elastic deformation and the

phonon gas are weakly coupled.

With these theoretical ideas, it became clear that there existed other hydrody-

namic signatures beyond second sound. Sussman and Thellung [162] and, indepen-

dently, Gurzi [163] showed that, under the same conditions that give rise to second

sound, a steady state temperature difference geometry can bring about a drift motion

of the phonon gas. Given the similarity to flow of a fluid under the steady state appli-

cation of a pressure difference, this motion is referred to as a Poiseuille flow of phonons.

Guyer and Krumhansl pointed out the possibility of observing this Poiseuille flow by

reporting the scaling of thermal conductivity as a function of temperature [164]. This

observation coincided with Mezov-Deglin, who experimentally reported the thermal

conductivity as a function of temperature for solid He and observed a scaling of T -
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prior to the maximum [165]. This temperature scaling, shown in Figure 5-2, has

been used as indirect evidence for hydrodynamic transport in strontium titanate in

a temperature range of ~ 7 to 11 K [166] and black phosphorus in a temperature

range of - 5 to 12 K [167]. However, this scaling has not been reported in other

candidate materials that are predicted to support phonon hydrodynamics, such as

graphene [168] and graphite [169], and therefore direct observation of hydrodynamic

signatures must be sought.

4
T4-8

IT-1

T3 I

Ball istic'Hydrodynam ic Diffusive

Temperature

Figure 5-2: Schematic of the hydrodynamic window for a crystalline solid.

There has been a recent resurgence in the interest of observing second sound with

the emergence of 2D materials being projected to be good candidates for supporting

hydrodynamic phenomena [25, 261. We make these predictions concrete with the

experimental observation of hydrodynamic transport in graphite using the theory

developed in Section 5.2.

116



A conceptual description of second sound

To provide some physical intuition behind phonon hydrodynamics, we begin by

following Prohofsky and Krumhansl [170]. Let us consider a gas composed of hard

particles experiencing plane-wave sound propagation in the x direction. The density

is denoted as p(x, t) = po + pi (x, t), with po being the equilibrium density and p,

being the change in density due to the sound wave. For a given differential volume,

the gas has a velocity ux with respect to the lab reference frame.

The conservation of mass is written as

api &
+ (POUx) = 0. (5.13)Ot OX

The conservation of momentum is written as

__ = + fx = OPO + T (5.14)
Ot OX OPO Ox T

Combining by taking the 0 of Eq. 5.13 and 0 of Eq. 5.14 yields

a(pu)+ - - --- (pou) (5.15)
Ot 2  a Ot apo ax2

Eq. 5.15 is the damped wave-equation with solutions of the form:

pouX(t) Oc e- sin(wt + 0). (5.16)

The difference between the diffusive regime and the hydrodynamic regime can now

be stated. When WT >> 1, the wave is underdamped and wave phenomena can be

observed. This is the hydrodynamic regime. Wr << 1, the wave is overdamped and

the diffusive regime applies. A depiction of the two regimes is shown in Figure 5-3.
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Figure 5-3: Schematic depiction of (a) diffusive and (b) hydrodynamic transport of
gas particles.

The extension from a gas of hard particles to the case of a phonon gas traditionally

begins with the Callaway approximation to the BTE [160, 171]

fn fn-f f- f*
Tn,Umklapp Tn,Normal (5.17)

where TUmklapp and TNormal are the Umklapp and Normal scattering rates respectively,

which are related to the RTA relaxation times by

1 1 1
- + . (5.18)

TRTA TUmklapp TNormal

f* is referred to as the flowing or displaced distribution and is assumed to take the

form

1
f*w=1) - (5.19)

where q is the phonon wavevector and u is a "drift velocity". When Normal processes

are assumed to dominate and momentum is conserved 2, the out-of- equilibrium dis-

2 Confusion often arises over this point. Quasi- or crystal-momentum is not real momentum.
Consider the following thought experiment. A neutron with an observable momentum impacts a
crystal, interacts, and scatters. The momentum of the scattered neutron is reduced by an amount k,
corresponding to the excitation of a phonon of k. If we stop here, it would seem that quasi and real
momentum are equivalent. However, we are always free to add a reciprocal lattice vector without
violating conservation of quasi-momentum, so k -+ k + G. This freedom confirms the observation
that the real momentum of the neutron is transferred to the bulk translation of the center of mass of
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tribution is subsequently set to the displaced distribution

f 1_ ~ 0 i+pftf + 1)W - (5.20)

Without loss of generality, an isotropic crystal with transport along a single dimension

is considered. Eq. 5.13 is converted from conservation of mass to conservation of

energy by multiplying by tiwn and summing over n

Enh j'Bnfn + 13 h-neVVfn = 0 (5.21)
n

setting E = En hwf and Q = En VnWnfn gives3

E+ VQ = 0 (5.22)
at

where we have assumed that the collision term satisfies energy conservation. Like

the RTA, the Callaway kernel doesn't satisfy energy conservation unless all modes

have an identical T. Nevertheless, this detail doesn't appear to obscure the essential

physics. To obtain a relation for heat flux, Eq. 5.17 is multiplied by vntwn and again

summing over n

a 8f + E nhnknf fn akn fn (.3
at +Znh nVfn = vutipf (5.23)

Noting that the fno(f2 + 1)q - u is odd in q and setting Vfn = afrOVT and K

nV~tl~n~? IT0 , we find

aQ Q_+ KVT + = 0. (5.24)
at 711

Combining by taking i of Eq. 5.22 and V of Eq. 5.24 and using the proportionality

between E and T, we arrive at a damped wave equation for temperature

the crystal. Alternatively, one can ask: does heat transport imply real momentum transport? Any
molecular dynamics simulation answers in the negative. This point becomes overlooked once a BTE
framework is adopted and the real crystal has been abstracted away.

3 The unit cell volume prefactor cancels out.
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0 2 T l OT
+ =vJ1 V 2 T (5.25)Ot2 TI, at

where the speed of second sound is defined as

2 = Cn> n -Vn (5.26)
Vil - n Cn

and the decay constant is

1 _ Z If"(f2n0 + 1)hwfnvnqfn- n = n .rm~p (5.27)
T11 E n fn' U f + 1) hwLn qn

Now, we have a concrete expectation of what we are looking for: wave-like solutions to

the temperature equation. However, in arriving at this equation, we assumed knowl-

edge of the form for the fn term 4 and sacrificed energy conservation. Furthermore,

since a heating source term was neglected and boundaries were ignored, Eq. 5.25

must be considered to be a bulk description. The shortcomings of the above descrip-

tion of phonon hydrodynamics can be surmounted by adopting the LBTE framework

developed in Section 5.2.

Using this LBTE theory, we can avoid invoking the displaced distribution ansatz

while simultaneously capturing deviations from bulk transport and satisfying energy

conservation by explicitly calculating the temperature response obtained from directly

solving the LBTE for a given geometry, given by Eq. 5.9. The simplest geometry is

constructed by setting Q (i.e.: Q(r, t) = Qeiqr5(t)) in Eq. 5.9 to a scalar quantity

which corresponds to the temperature response for the 1D-TTG. Unlike the calcula-

tion of effective thermal conductivity of the SSTG using Eq. 5.12, Eq. 5.9 requires

the inversion of Q for not only each grating q, but also for each frequency w. Since

6T(w, q) is an uncoupled equation for w and q, the calculation is amenable to a trivial

parallelization methodology where tuples of (w, q) can be processed simultaneously

on different CPU cores. The matrices in this work are on the order of 25000 by 25000,

which takes about 30 minutes to directly invert on a 2.8 GHz core. Using this par-

41f the expansion of Eq. 5.20 is taken to the second order, a non-linear term for heat flux is
obtained and the heat flux equation, Eq. 5.24 becomes analogous to the Navier-Stokes equation [172].
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allelization scheme, the time to calculate the temperature response in the frequency

domain is on the order of a single day (depending on the number of cores available).
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Figure 5-4: (a) Time-domain and (b) frequency-domain representation of the tem-
perature response for isotopically-pure graphite at 100 K in the 1D-TTG geometry.

Figure 5-4 is an example of one such calculation for isotopically pure graphite at

100 K for a 10 pm grating. We use the second- and third-order force constants calcu-

lated by Zhiwei Ding 1173] to construct 2 on a 16 x 16 x 8 q mesh with a Gaussian

smearing parameter of 20 cm-1 for the Kronecker delta approximation is used. The

size of f is presently limited by memory resources because direct inversion requires,

at a minimum, both the original and inverted matrix to be stored in memory5 . A

strong resonance is observed in the frequency domain and the corresponding sign

flip of 6T is observed in the time domain. This change in sign corresponds to the

shifting of the original temperature maximum by one half of a grating period, which

we attribute to be a signature of hydrodynamic phonon transport since the hot and

cold regions of the initial heating profile have become reversed while maintaining the

original symmetry of the initial heating profile. Using the resonance frequency and

grating period as time and length scales, the second sound speed is estimated to be

vjj = 4100 m/s. The damping time constant, TrI, can be extracted by fitting a Loren-

ztian, which is the Fourier transform of Eq. 5.16, to the resonance. Therefore, the
5 A larger mesh was used in [1731 under the Callaway approximation, but meshes comparable to

the one used here have been used in the past [174] to study the LBTE.

121



relevant macroscopic observables can be obtained from LBTE framework presented

in Chapter 2.

Our task is now clear. Given a material at a reference background temperature, we

simply sweep through the temporal and spatial Fourier transform variables that are

input into Eq. 5.9 in search of resonant features in the temperature response. In other

words, rather than following the usual strategy and looking for materials that meet the

condition TNormal >> TUmklapp [26, 1731, we seek materials and geometries that contain

poles6 in Eq. 5.9. Using the same D3Q codebase that was previously used to calculate

the effective thermal conductivity in graphene, we have generated collision matrices

for graphene and graphite under a range of temperatures and defect concentrations.

By sweeping through grating periods, we can construct a hydrodynamic dispersion

relation (i.e.: the dependence of w on q) and in doing so determine the so-called

hydrodynamic window.
6The poles here are reminiscent of the poles of a single particle Green's function that become

associated with quasiparticles [175].
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Figure 5-5: Hydrodynamic dispersion relations via grating period versus frequency
(w) plots for graphene (a) at 50 K with no isotopes, (b) at 50 K with isotopes, (c) at
100 K with isotopes and (d) at 300 K with isotopes. The intensity of corresponds to
the ratio of the amplitude of 6T(w, q) to the amplitude of 6T(0, q).

Hydrodynamic dispersion relations for graphene are shown Figure 5-5, where the

intensity of the colormap corresponds to the ratio of the amplitude of 6T(w, q) to

the amplitude of T(0, q). The resonant frequency approximately scales linearly with

wavevector. Two observations can be made. The first is that with increasing tem-

perature, the hydrodynamic window shifts to higher frequencies and smaller gratings,

while the intensity of the resonances decreases with temperature. This can be under-

stood as a consequence of the higher energy phonon modes, that become activated

with increasing temperature, playing the role of opening momentum relaxation chan-

123



nels that destroy the modes that preserve the direction of heat flux necessary for the

emergence and propagation of a temperature wave. The second observation is that

isotope scattering has a strong effect on the intensity of the resonance. This effect

is similar to that of increasing temperature; isotope scattering is a momentum relax-

ing process. The hydrodynamic window for isotopic graphene, constructed by taking

the maximum value of the derivative of 6T(w, q) with respect to w for each grating

period7 , is shown in Figure 5-6.
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Figure 5-6: The hydrodynamic window of isotopic graphene.

7Recall that an ideal resonance will have a positive inifinite derivative and in the absence of a
resonance, the maximum derivative will be zero.
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Figure 5-7: Hydrodynamic dispersion relations via grating period versus frequency
(w) plots for graphite (a) at 50 K with no isotopes, (b) at 50 K with isotopes, (c) at
100 K with no isotopes and (d) at 100 K with isotopes.

Hydrodynamic dispersion relations for graphite are shown Figure 5-7. In con-

trast to graphene, the hydrodynamic window is narrower and the intensities of the

resonances are reduced. As shown in Figure 5-7b, at low enough temperatures, the

isotope scattering processes dominate the intrinsic phonon-phonon processes, thereby

closing the hydrodynamic window (shown in Figure 5-8 and constructed in an iden-

tical manner to that of graphene). Nevertheless, as predicted in [173], a distinct

hydrodynamic regime exists, under a natural abundance of carbon isotopes, and is

accessible to experimental inquisition, which is the subject of the following section.
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Figure 5-8: The hydrodynamic window of isotopic graphite.

5.4 Experiments

5.4.1 Graphite

Like diamond and graphene, graphite is a suitable candidate for testing the the

LBTE theory because of its high thermal conductivity and high Debye temperature.

However, unlike diamond, graphite is crystallographically anistropic, with layers of

sp' bonded graphene stacked with weak Van der Waals interactions.

We use commercially available highly-oriented pyrolytic graphite samples pur-

chased from SPI. XRD analysis on a representative sample reveals that the expected

A-B-A-B orientation between layers is lacking. Future work with higher quality sam-

ples is expected to yield better agreement between theory and experiment.
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Figure 5-9: (a) Out-of-plane XRD and (b) in-plane XRD on HOPG.

Room temperature measurements

Room temperature measurements on HOPG were performed by Ryan Duncan

using the same TTG setup as described in Section 2.2.2. Due to the strong thermal

conductivity anisotropy (kab = 1800 - 2000 W/m-K and k, = 6 - 10 W/m-K [169]),

the thermal transport is one-dimensional in the ab plane, which is confirmed by the

pure exponential behavior of the experimental temperature decays.

The effective thermal conductivity of graphite is calculated using Eq. 5.12. The

result is plotted in Figure 5-10. General agreement between the full scattering matrix

theoretical predictions and the experimental TG measurements is obtained. While

the bulk theoretical and experimental measurements of the HOPG are ~ 2000 and

- 1850 W/m-K respectively, the normalized trend in effective thermal conductivities

agree. This suggests that only a single parameter rescaling is needed to go from the

theoretical prediction to the experimental measurement. The Callaway model [173],
on the other hand, is unable to recover the experimental trend.
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Figure 5-10: Theoretical predictions of the (a) absolute and (b) normalized effective
thermal conductivity alongside TTG measurements of graphite at room temperature.

Low temperature measurements

Liquid nitrogen temperature (~ 85 K) TTG measurements were performed under

vacuum. The graphite sample was mounted directly to the cold finger of the cryostat.

To reduce the anticipated temperature rise (calculated using the pump spot size,

optical penetration depth, pulse energy and sample heat capacity) so as to remain

within the theoretically predicted hydrodynamic window, the pump power was set

to 20 nJ (typical TTG measurements on silicon are conducted with pump powers

on the order of 0.2 pJ [176]). At this pump power, the estimated peak temperature

rise is ~ 60 K. However, this consequently reduced the signal-to-noise ratio, thereby

requiring the collection of more traces to average over. For the data reported here,

each individual grating measurement required 24 to 48 hours to collect 1000 to 2000

traces. Effects of the pump and probe power were investigated and are reported

in the Appendix C. For graphite, since the dominant contribution to the thermal

signal is the displacement due to thermal expansion, measurements were conducted

in the phase grating mode of TTG operation. This was confirmed by performing

an amplitude grating measurement for a single grating (not shown). The absence of

SAW contributions to the phase grating signal is attributed to the lack of in-plane

displacement generated during the excitation due to the unique anisotropy of the

128



thermal expansion coefficients [177].
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Figure 5-11: (a) Theoretical prediction of the temperature decay in graphite at 80 K
as function of grating period in the 1D-TTG geometry. (b) Experimental TTG traces
on HOPG at ~85 K as a function of grating period.

Figure 5-11 summarizes the theoretical predictions and the experimental mea-

surements of the temperature response in 1D-TTG for HOPG. A clear flipping of 6T

is observed, indicating that transport occurs within the hydrodynamic regime. As

was done to estimate the second sound speed from the theoretical predictions, the

extracted experimental second speed for graphite at liquid nitrogen temperature is

~3400 m/s. A plausible explanation for the discrepancy between theory and exper-

iment is the lack of orientation between the graphene layers of the actual sample as

compared with the A-B-A-B stacking that is necessarily assumed in the DFT calcu-

lations in order to obtain the force constants.

The damping time constant, T1r, can be extracted by fitting an exponential envelop

to the 6T signal. However, like the decay times that were observed in the size effect

study presented in Chapter 4, TI, is non-trivial function of the grating period. For a

grating period of 7.5 pm, fitting yields a rj - 0.7 ns and the propagation length of

the temperature wave is then vJ1 TJJ - 2.5 ptm.
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Figure 5-12: (a) Theoretical prediction of the temperature decay in graphite as func-
tion of temperature in the 1D-TTG geometry for a 10.0 pm grating period. (b)
Experimental TTG traces on HOPG for a 10.0 Mm grating period at -85 K, at ~104
K, at ~124 K and at -144 K.

To provide further empirical evidence for observation of hydrodynamic transport

in graphite, preliminary temperature dependent measurements were performed so as

to, when combined with the grating dependent traces, fully characterize the hydro-

dynamic window. Figure 5-12a shows theoretical traces for graphite as a function

temperature for a fixed grating. Figure 5-12b is the experimental equivalent of Fig-

ure 5-12a, where promising agreement with theory is observed. Future experiments

on different graphite samples will be necessary in order to explain the quantitative

differences between theory and experiment.

5.4.2 Conclusion

In conclusion, we have developed a framework to predict the temperature solution

to the LBTE in the linear temperature rise regime using a full collision matrix con-

structed from ab-initio calculations for any heating profile geometry where boundaries

are neglected. This exact solution can serve as a benchmark to study the validity of

the RTA or Callaway kernels for a variety of materials not only for bulk transport, but

also in the nondiffusive and hydrodynamic thermal transport regimes. For instance,

recent work has relied heavily on the Callaway kernel [171, 173] to simulate phonon
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Poiseuille flow. The LBTE framework presented here can naturally be incorporated

into multiscale BTE solvers where boundaries are accounted for, enabling the study

of phonon Poiseuille flow [178].

Using this framework, we calculated the windows of the phonon hydrodynamic

regime for graphene and graphite. We validated the theory with experimental mea-

surements on HOPG at liquid nitrogen temperatures where clear signatures of hydro-

dynamic transport were observed. While quantitative differences between observables

calculated from theory and measured in experiment are found, the theory proved ex-

tremely useful in guiding experiment. Future measurements on other materials are

necessary to illuminate the precise reasons for these differences.
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Chapter 6

Conclusions and outlook

The three major contributions of this thesis are:

* The experimental demonstration of reversible bi-directional tuning of thermal

conductivity at room temperature in an oxide system (see Chapter 3).

" The unification of theory and experiment to enable the use of reflection mode

TTG as a platform for studying size effects on thermal transport (see Chapter 4).

" The development of a theoretical framework that enables the study of non-

diffusive and hydrodynamic thermal transport in systems where the RTA fails.

Using this theory as a guide, the experimental observation of hydrodynamic

transport in graphite was reported (see Chapter 5).
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These achievements are put in perspective in Figure 6-1 and should be considered

as incremental steps along the path to answering some of the following questions.

" What is the upper bound on the dynamic range of the tuning of thermal con-

ductivity?

* What is lower bound on the thermal diffusivity of a solid? Recent work from

Hartnoll studied the lower bound on electron diffusivity in "incoherent met-

als", which are characterized by the breakdown of the quasiparticle picture of

transport. In essence, the single electron carrying charge and energy no longer

applies. Recent work has shown the breakdown of the phonon and electron

picture to describe thermal transport in single crystal YBa2Cu3O6 +, and al-

ternatively, the transport is better described by an "incoherent electron-phonon

soup" [179]. Past work has demonstrated the breakdown of the phonon picture

in crystalline Bi2Sr2YCu 20 8 [180]. Hartnoll proposed the use of the following

bound to assess the incoherent regime [27]:

D > V 2 T > V2 h (6.1)
-S - kBT
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where v, is the speed of sound and Tp is the "Planckian time", which can be

thought of the minimum time that obeys the uncertainty principle for a given

thermal energy. If we convert our H-SCO thermal conductivity to thermal

diffusivity and use the speed of sound -3.76 km/s [181], we find that H-SCO falls

below this bound by ~50% at room temperature. Does Hartnoll's conjecture

apply to thermal carriers?

" Can hydrodynamic signatures be observed in amorphous solids? Can a "two-

fluid" model be used to describe the relationship between the propagating and

localized modes?

" Given the recent emergence of work studying electron hydrodynamics [182, 183,

184], it is natural to ask what is the simplest Hamiltonian that can support

hydrodynamic transport?

* There has been work using fluids [185, 186, 187] and Bose-Einstein conden-

sates 1188] to study Hawking radiation. Can geometries be devised so as to

create black hole analogues for the phonon hydrodynamic regime?

" How far does the fluid analogy go? Can a crossover from laminar-like to

turbulent-like flow be observed in the phonon hydrodynamic regime? An anal-

ogous Reynolds number can defined as

Re = v11L (6.2)
VgAMFP

where v11 is the speed of second sound, L is a device length scale, like a grat-

ing period or propagation length, v9 is an average phonon group velocity and

AMFP an average phonon mean free path. Using properties of graphene at room

temperature, we find a Re ~1 so it would seem that some fine tuning would

necessary for the observation of turbulence.
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Appendix A

A.1 TDTR reference data

Table A.1: Thermal properties at 300 K of materials that are used as inputs into the
thermal model of the TDTR measurements.

Material Thermal Conductivity Heat Capacity [J/m 3K]

[W/m-K]

Al 236.9181 2.4969e+06

A1 2 0 3  35 (30.3 - 41.7) 3.0995e+06

Si 142 1.6531e+06

SrTiO 3  11.8 2.7109e+06

SrRuO 3  2.5 (1.3-5.6) 2.3544e+06

Lao. 66Sro.33 MnO 3  1.6 3.7488e+06

LaAlO3  14.5 2.8204e+06

BiFeO 3  1.2(R), 0.7(T) 2.9340e+06

CoFeO 3  5 3.3164e+06

YSZ 1.8 2.7000e+06

SrCoO. 0.44-6.58 2.8600e+06
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Appendix B

B.1 SiGe study supplementary material
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Figure B-1: Effect of uncertainty in the optical penetration depth (1, 1.5 and 2 Am)
on the measurement of effective thermal conductivity with TTG. The error is larger
for larger grating periods, as the transport transitions into the q/,3 < 1 regime.
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Figure B-2: Monte Carlo simulation of reflection TTG geometry for Si with grating
period of 10 um and optical penetration depth of 10 nm. This example demonstrates
the limitations of a modified Fourier treatment, independent of the variational frame-
work. No theory based upon a Fourier model will capture this behavior because a
time-dependent thermal conductivity is required to do so and the interpretation of
such a quantity can only be phenomenologically understood. However, the variational
approach can provide a quantitative measure of the extent of this failure. or instance,
one could substitute the variational temperature decay back into the BTE (Eq. 15 in
the main text) and calculate the difference between the left and right hand side of the
equation as a proxy for the error. Another possible avenue is to test the performance
of the ballistic solution for the geometry as the trial solution.
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pseudopotentials. TC denotes the thermal conductivity accumulation function and
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Appendix C

C.1 Hydrodynamic study supplementary material
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Figure C-1: Effect of probe power in low temperature graphite TTG measurements.
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Figure C-2: Effect of pump power in low temperature graphite TTG measurements.
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Figure C-3: Comparison between the detector response and a representative low
temperature graphite TTG measurements.
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