
Robot Motion Planning with Contact from Global

Pseudo-inverse Map

by

Changrak Choi

Submitted to the Department of Mechanical Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Author Signature redacted
Department of Mechanical Engineering

July 6, 2018

Certified by..............................Signature redacted
Emilio Frazzoli

Professor of Aeronautics and Astronautics

_,--iTesioSupapvisor
Certified by............................. Signature redacted

Sa ae Kim
Associate Professor of Mechanic ngineering

Chair, Thesis Committee

Accepted by............................ Signature redacted
Rohan AboIaratne

Chairman, Department Committee on Graduate Theses
MASSACHUPSMlS INSMIUTE

OF TECHNOWGY

OCT O2 2018

LIBRARIES
ARCHIVES

2

Robot Motion Planning with Contact from Global

Pseudo-inverse Map

by

Changrak Choi

Submitted to the Department of Mechanical Engineering
on July 6, 2018, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In the robot motion planning problems, environment and its objects are often treated
as obstacles to be avoided. However, there are situations where contacting with the
environment is not costly. Moreover, in many cases, making contact can actually help
a robot to maneuver around to reach a goal state which would not have been possible
otherwise.

This thesis presents a framework for motion planner that utilizes multiple contacts
with the environment and its objects. The planner is targeted to autonomously
generate motion, where robot has to make multiple contact with different part of its
body in order to achieve a task objective. It is motivated by and has significance in
developing a robust humanoid planner that is capable of recovering from a fall down.
The recent DRC has been marked with compilation of humanoid robots falling down,
but only one robot managed to recover to a standing up position. In a real disaster
scenario, the inability to stand up would mean end of the rescue mission for what is
extremely expensive machinery. A robust planner capable of recovery is must and
this work contributes towards it. The developed planner autonomously generates
standing up motion from fall down in the presence of torque limits.

The proposed multi-contact motion planner leverages upon following two key com-
ponents. Existing multi-contact planners require good initial seeds to successfully gen-
erate a motion. These are hard to find and often manually encoded. Here, we utilize
pre-computed global pseudo-inverse map (inverse kinematic map for each contact-
state that has property of global resolution, connected by connectivity functions) to
generate multi-contact motion from current configuration to the goal without need
for an initial seed. Nevertheless, constructing the global pseudo-inverse map is com-
putationally expensive. In an effort to facilitate the construction, we utilize singular
configurations as a heuristic to reduce the search space and justify its use based on
the physical analysis. Although computationally expensive, once pre-computed, the
global map can be used to generate plans fast online in a multi-query manner.

3

Thesis Supervisor: Emilio Frazzoli
Title: Professor of Aeronautics and Astronautics

4

Acknowledgments

To begin with, I would like to thank my supervisor, Professor Emilio Frazzoli, for

his valuable and kind advice, support, guidance and patience during my PhD. Not

only has he given me academic advices regarding the work, but also provided kind

supports and encouragements to which I am truly grateful.

I wish to thank my lab mates, especially Valerio Varricchio, Brian Paden, Prince

Singh, and Sze Zheng Yong for all the help and support they have given me in and

out of the lab. In addition, I would like to express special thank to Prof. Kris Hauser

for the kind advices and meetings over the time I was visiting at Duke.

As a member of KGSAME, I would like to thank all its members, my wonderful

friends and colleagues at MechE whose interaction was a great joy during my graduate

years. Also, I thank Kwanjeong Educational Foundation for supporting me with the

scholarship during the PhD program.

Finally, my deepest gratitude goes to my family for their endless love and support

throughout my life; this thesis would not have been possible without them. Especially,

words cannot describe all the support and happiness that my wife, Seoha Min, has

given me during the years of PhD. She is a recognized scholar in the field of apparel

design whom I deeply respect, both as a person and professional. I owe this Thesis

to her.

5

6

Contents

1 Introduction

1.1 M otivation .

1.2 Problem Formulation .

1.3 Motivational Examples of Interest

1.3.1 Recovery from Fall Down

1.3.2 Navigating inside the International Space Station

1.3.3 Dynamically Climbing a Vertical Surface

1.3.4 Quasi-Static Rock Climbing (Bouldering)

1.4 Literature and Background

1.4.1 From Motion Planning perspective

1.4.2 From Legged Robot Locomotion perspective . . .

1.5 Approaches and Directions

1.6 Statement of Contribution

1.7 Outline of Thesis .

2 Singularity as Search Heuristics

2.1 Introduction

2.2 Singularity

2.3 M odelling

2.4 Force Generation

2.4.1 Mechanical Advantage

2.4.2 Range of Feasible Reaction Forces

2.4.3 Minimum Torque Configuration .

7

21

21

22

25

25

26

28

31

32

32

34

35

36

37

39

. 40

. 42

. 43

. 45

. 45

. 46

. 48

2.5 Momentum Generation

2.5.1 Stroke Motion

2.5.2 Upper Bounds on Momentum Generated . . .

2.5.3 Collinear Stroke

2.6 Conclusion .

3 Global Pseudo-inverse Map

3.1 Motivation .

3.2 Problem Definition

3.2.1 Contact State

3.2.2 Sample within Contact State

3.2.3 Configuration within Sample

3.2.4 Redundancy Resolution

3.3 Overview of Multi-contact Planning Framework . . .

3.4 Pseudo-inverse Function

3.5 Connectivity Function

3.6 Conclusion .

4 Recovery Planner from Fall Down

4.1 M otivation

4.2 Related Work

4.3 Recovery Motion Planner

4.3.1 Feasibility Test

4.3.2 Selecting Optimal Configuration .

4.4 Simulation Result and Discussion

4.5 Conclusion

5 Navigation inside Space Station

5.1 Introduction .

5.2 Problem Formulation .

5.3 K-step Reachability Map .

8

. 49

. 50

. 52

. 53

. 55

57

. 57

. 58

. 58

. 59

. 60

. 61

. 62

. 63

. 66

. 68

69

. 69

. 70

. 73

. 73

. 74

. 76

. 80

81

82

84

85

5.3.1 Discretization of the Surface and Trajectory 86

5.3.2 Assignment of the K-step Number 87

5.3.3 Properties and Computational Cost 89

5.4 Generating a Plan from the Map . 91

5.4.1 Connection to the Map . 91

5.4.2 Minimum Step Plan Generation 92

5.5 Simulation Result . 93

5.6 Discussion on Extension . 95

5.7 Conclusion . 96

6 Conclusion 97

6.1 Extension and Improvements. 98

9

10

List of Figures

1-1 Given system S with dynamics = fi(x, u), obstacle 0, State Space X,

and xjit, Xgoa c X\X0 , Automatically compute u(t) s.t. u(O) = xi't

and u(tf) E Xgoai. The system can switch its mode i when in contact

with the obstacles but is not allowed to penetrate the obstacles. . . . 24

1-2 Darpa Robotics Challenge had numerous instance of robots falling

down. Recovering from the fall down is a non-trivial task that requires

making multiple contact with different part of the robot with the en-

vironment(ground). Image retrieved from https://spectrum.ieee.org/

automaton/robotics/humanoids. 25

1-3 Astronauts need to constantly navigate through narrow and crowded

modules inside the International Space Station as shown on the left.

Rather than seeking to avoid the obstacles, astronauts actively make

contact with the environment objects to help them navigate as seen in

the right. Image courtesy of NASA retrieved from https://www.nasa.gov. 26

1-4 Navigation of 2-Link Robot inside the ISS Problem. A two link robot

has to travel from xi to Xg and it can only control its joint torque. The

robot can change its velocity while in contact by applying appropriate

joint torque. Nevertheless, it has no ability to change its velocity in

flight. 27

11

1-5 Navigation of a Point Mass with one-axis thruster inside the ISS Prob-

lem. A point mass must reach x. starting from xi and it can accelerate

only in one direction. The point mass bounces off the contact such

that the angle of incidence equals that of reflection. While in flight, it

can alter velocity of one axis by controlling its thruster. 27

1-6 Sequence of motions performed by a Parkour practitioner in climbing

up a vertical wall of significant height. Vertically jumping over one

meter wall is hard. Leaping over a wall higher than one's height is

impossible even for strong athletes. However, by running up and mak-

ing sequence of right contacts, Parkour practitioners are able to climb

over a wall that is nearly twice their height. Image retrieved from

https://youtu.be/08x3P2E122U. 29

1-7 Dynamic Climbing of a Vertical Surface Problem. A general multi-

linkage robot (e.g. humanoid or quadruple runner) must climb over a

wall that is higher than what it can leap over in a single jump. Making

appropriate sequence of contacts is crucial and resulting motion will

depend heavily on the available torque limits. 30

1-8 Bouldering is a form of rock climbing that does not rely on the ropes.

Tom Cruise performed bouldering in his famous opening sequence in

the movie Mission Impossible 2 as shown on the left. Professional

climbers compete on a very challenging course in the Boulder World

Cup as shown on the right. Image retrieved from http://www.ifsc-

clim bing.org/ . 31

12

1-9 The diagram shows where the Motion Planning with Contact Problem

fits in the existing literature. From motion planning perspective, this

work challenges the basic assumption of avoiding obstacles at all cost.

By allowing contacts with the obstacles, the planned motion will utilize

forces from the contacts to its advantage. From legged robot locomo-

tion perspective, existing literature focus mostly on periodic motion on

a horizontal surface (e.g. walking and running). What is pursued in

this work is s motion that is non-periodic and not along a horizontal

or flat surfaces. From computer animation perspective, methodologies

exists to automatically generate animated motion of a virtual charac-

ter similar to how human moves. These motions, although looks real,

are physically incorrect and this work will generate motions that are

dynamically consistent. 32

1-10 Basic motion planning problem is described [441. Notice how it differs

from the motion planning with contact problem as shown in Figure 1-1. 33

2-1 The chapter focuses on the anaylsis of how force and momentum are

generated through contact in relation to singular positions. For the

analysis, leg of a robot is modeled as a double inverted pendulum with

massless links. A simple model is chosen over more elaborate models

for advantage in gaining intuitive understandings. 43

2-2 Mechanical advantage of a leg is maximized when unbent and quickly

decreases as it bends. Operating in near or at the singular position

(unbent) is advantageous in terms of generating large reaction force

from the given torques. 46

2-3 A range of feasible reaction forces from a contact can be graphically

constructed. Here, two cases with different torque limits are shown

where shaded regions represent the range of feasible reaction forces

that can be generated from the given torque limits. 47

13

2-4 Configuration of the leg that minimizes the torque required to resist ex-

ternal force depends on the direction of force to be resisted. Three con-

figuration, q1 , q2 , q3 , shown on the left are positions requiring minimum

torque to resist forces directed at F, F2 , F3 respectively. However, in

the presence of knee cap, singular position becomes the configuration

that minimizes the required torque for a large range of force directions.

The range of direction of forces for which the singular position requires

minimum torque to resist is shown as shaded region in the right. . . . 48

2-5 A leg (or arm) in contact needs to push off the contacting surface to

generate a needed momentum. Here, an instance of a stroke motion

is shown as defined, where the leg starts from a bent position and

monotonically decreases its bent angle till fully stretched. This is also

an example of a collinear stroke as defined, since the contact point, hip

joint, and center of mass remain in a single line throughout the stroke. 51

2-6 Stroke motion near singularity is highly desirable in term of the energy

efficiency and momentum generated. Near singularity, even a small

stroke length S is sufficient to generated momentum comparable to

the max momentum generated through full stroke (Above). Moreover,

momentum generated per unit energy dramatically increases near sin-

gularity, making it energy efficient (Below) 54

3-1 Simple skeleton robot is shown in two different contact state. 59

3-2 Simple skeleton robot with configurations shown for different samples

within same contact state c = [0, 1, 0, 0, 0, 1]. 60

3-3 Different configurations are shown for given samples that lie within

self-m anifold. 61

14

3-4 From the given samples w (shown as dots inside the workspace W) that

form vertices, corresponding configuration q(w) in the configuration-

space C is computed. The selection of q(w) is made using neighboring

configurations as initial seed if they exit, or according to defined cost

otherwise, to ensure maximal continuity in the global resolution. Then

each of the edges in the workspace is checked for path-wise resolution. 66

3-5 Once pseudo-inverse function is computed for each of the contact-

state ci, connectivity between adjacent contact-states are established

through connectivity function. Each of the adjacent sample pairs wi

and w3 in adjacent contact state ci and cj are checked edges are estab-

lished for feasible transition between the two (shown as arrow connect-

ing two sample in different contact-state). 67

4-1 Darpa Robotics Challenge has been marked with compilation of hu-

manoid robots falling down. But of all the fall down events, only one

robot managed to recover to a standing up position. Image retrieved

from https://spectrum.ieee.org/automaton/robotics/humanoids. . . . 70

4-2 Contact-state graph used to generate a recovery motion. A node rep-

resents a contact configuration and a vertex represents control to ma-

neuver from one contact configuration to another 1331. 71

4-3 Roll and rise motion used to generate a recovery motion. Swinging leg

motion is utilized to generated required angular momentum to recover

and transitions are defined by a contact-state graph 1841. 72

4-4 The recovery motion planner is applied to 5-link symmetric skeleton

robot for validation. Klamp't simualtor is utilized throughout the sim-

ulations and one example of recovery motion is shown here. 77

4-5 An example of solution returned from the recovery motion planner

is shown. Here, the torque limits were reduced to one-fifth from the

example given in Fig. 4-4 and the resulting motion exhibits robot going

through multiple contacts to sustain its own weight. 78

15

4-6 A robot can experience breakdown of a motor from fall down due to

impacts. The recovery motion planner can quickly adapt to the changes

in torque limits caused by a breakdown and generate a plan. Here, a

solution is shown where available torque on the elbow joint has been

significantly reduced to simulate recovering when a motor at arm fails

after the fall down. 79

5-1 Astronauts need to constantly navigate through narrow and crowded

modules inside the International Space Station as shown on the left.

Rather than seeking to avoid the obstacles, astronauts actively make

contact with the obstacles to help them navigate as seen in the right.

Image courtesy of NASA retrieved from https://www.nasa.gov/ . . . 83

5-2 Navigation inside the Space Station Problem. A robot has to travel

from xi to xg inside the space station by making sequence of contacts.

While in contact, the robot can change its velocity by applying ap-

propriate joint torques. Nevertheless, it has no ability to change the

velocity in m id-flight. 84

5-3 K-step Reachability Map assigns a number kij to each trajectory rij E

T, which equals the minimum number of contacts required to reach the

goal from the current trajectory. The assignment is done recursively,

starting from the trajectory rF. that enters the goal and propagating

backwards as described in Alg. 3. The above diagram shows two-step

propagation from the goal state. In this example, the contact surface is

uniformly discretized and the impact map follows the law of reflection

with control input that can deviate it by maximum angle of 150. . . 87

16

5-4 To generate a feasible plan from the K-step Reachability Map, a given

initial state x, must first be connected to the map. Connection to the

map is executed in two stages. First, the starting trajectory rg which

contains the initial state x,, is steered to the trajectory rij such that

j E Z. This makes the trajectory rij to land on one of the discretized

surface points. The trajectory rij is then steered to one of the trajec-

tories rjm E T in the map to complete the connection. Among the all

possible pairs of trajectories rij and rjm, ones that minimize the k-step

number is chosen using the properties of the map. 90

5-5 The map construction phase of the proposed motion planning algo-

rithm is shown graphically. Starting from the goal state, trajectories

are propagated backwards sequentially to build K-step Reachability

Map. As seen, large part of the state-space is quickly filled as the

number of steps increase. In this example, a robot is inside a rectan-

gular room with a circular obstacle at the center and the maximum

angle that can be deviated by the control input u is set to 15 deg . 94

5-6 Multiple queries can be made on the map to generate a minimum

step feasible trajectory from different initial states. Here, four queries

were answered by the planner using the map constructed in Fig. 5-

5. Based on the key properties of the map, a feasible trajectory that

steers a given initial state to the goal in the minimum steps can be

very efficiently planned. 95

17

18

List of Tables

2.1 List of Notations 44

19

20

, M -

Chapter 1

Introduction

1.1 Motivation

Motion planning has traditionally focused on generating trajectory that views envi-

ronment as obstacles. This is largely because the motivation for motion planning

problems derived from situations where collision with the environment is highly un-

desirable. For example, an assembly robot in a car manufacturing factory must plan

a motion through a rather complex car body without hitting it. Failure to do so will

result in damage to both the car and the manipulator. A quadrotor navigating inside

a crowded building must plan a motion that avoids contacting with the walls and

other native objects. If a quadrotor hits an object, it can lose stability and in the

worst case scenario, fall to the ground and break down. An autonomous car must

plan a motion that avoids collision at all cost. If not, accidents can happen which

may hurt riders inside.

However, there are situations where contacting with the environment is not costly.

Moreover, in many cases, contact can actually help a system to maneuver around

to reach a goal state which would not have been possible otherwise. For example,

an astronaut inside the international space station often needs to move from one

compartment to another through narrow corridors. Here, planning a motion to avoid

any contact whatsoever is not only difficult but unnecessary - in contrary, astronauts

actively seek to make contact and push off with his or her legs and arms to navigate

21

through.

In fact, I would argue that for a general robotic system without thrusters, contact-

ing with the environment is the only means of navigating through. Newton writes

in his book Principia, "Every body under the sole action of its innate force moves

uniformly in a straight line indefinitely unless something extraneous hinders it 1601."

This law of motion is universal and a robot is no exception. Motion of a robotic

system - generalized velocity of its center of mass - can only be changed through

external forces acting on the system. Here lies the fundamental limitation of a robot.

All the joint torques which it controls are internal forces, hence the robot has no

ability to directly generate external forces needed to change its motion. For example,

a humanoid floating in the space will forever drift away with its initial velocity no

matter how hard it actuates its joint torques. That is, until the humanoid comes

into contact with an external object. A robotic system has control authority over its

internal joints torque which can only be translated to external forces when the robot

makes a contact. Environment, in the eyes of a robot, should then be viewed as a

source of external force generators to be utilized through contact.

Hence the importance of planning a motion that incorporates contact with envi-

ronment and utilizes forces from it. Motion Planning with Contact as will be referred

henceforth is the work presented in this thesis. In this work, I explore how to plan a

motion for a dynamical system that takes advantage of the contact forces and develop

planning algorithm framework that can efficiently handle contacts. The dynamic sys-

tem of interest is primarily a general n-linkage robot (e.g. bipedal robot, quadruple

runner, or multi-armed climber) with no restriction placed on its form.

1.2 Problem Formulation

Motion Planning with Contact Problem

22

-

Consider a dynamical control system S with hybrid dynamics given by

dx-x = fi(x, u)
dt

where x is the state, u is the control, i is the mode.

Given

* State Space X

* Obstacle Set Xos, C X

* Initial State x(O) = xini and a Goal Set Xgoai C X

" Constraints on control input umin u < umax

Automatically find, if it exists, a control input u(t) such that the system S

" Satisfies hybrid dynamics and input constraint for all time

" Reaches the goal state, i.e., x(tf) E Xgoal

* Avoids penetrating the obstacles, i.e., x(t) 0 X00b, for Vt E [0, tf

* Switches mode only when in contact with the obstacle, i.e., x E Xob,\X.oo with

impulsive change given by impact map x+ A(x-)

Return failure if no such control signal exists

The dynamical control system S of interest in this work is a generalized n-linkage

robot. The state x = [q, 4J] E R2
n, where q E R' is joint angles and control u E R'

is torque applied to each active joints. The system S may be a bipedal robot, a

quadruple runner or multi-armed climber - no restriction is placed on its form.

The dynamics of the system S is hybrid in nature, because each contact with the

environment results in a change in its dynamics. To be more precise on when the

23

fi '
13ab

Figure 1-1: Given system S with dynamics = fi(x, u), obstacle 0, State Space X,
and xinit, Xgw C X\X0 , Automatically compute u(t) s.t. u(O) = xit and u(tj) -
Xgoi. The system can switch its mode i when in contact with the obstacles but is
not allowed to penetrate the obstacles.

switching in mode and impulsive change takes place, let A(x) C R3 be set of points

in the physical world occupied by the system S at a state x. Let 0 C R' be set of

points occupied by the obstacles. Let c(x) be the cardinality of set A(x) n 0, which

equals the number of points in contact with the obstacles at a state x. Then mode

switches when c(x+) -# c(x-) and impulsive change defined by the impact map occurs

when c(x+) > c(x-).

The tasks of interest which the system S must perform are those that requires

multiple contact with the environment. Ideally, the system S would be operating near

or at control limits in its motion when performing the tasks that makes forces from

contact inevitable. Nevertheless, the planning algorithm should not be task-specific

and work for general tasks.

The planning algorithm would preferably be an anytime in nature, where initial

solution is returned quickly and gradually improved upon over time. Computational

efficiency of the algorithm play a key role in whether it can be planned online or

restricted to pre-planning a feed-forward motion. Ideally, it should target for the

former.

24

1.3 Motivational Examples of Interest

1.3.1 Recovery from Fall Down

Figure 1-2: Darpa Robotics Challenge had numerous instance of robots falling down.

Recovering from the fall down is a non-trivial task that requires making multiple con-

tact with different part of the robot with the environment(ground). Image retrieved

from https: //spectrum.ieee.org/ automaton/robotics/humanoids.

Fixed-base manipulators (e.g. industrial robots) have fixed contact point at the

base and moving contact point at the end-effector which cannot be changed. On

the other hand, floating-base robots (e.g. humanoids) do not have a fixed contact

point, but contacts are generally restricted to feet or hands. But for many motions,

contacting with environment on points besides feet and hand are desirable if not

imperative.

An great example of this is recovery motion from fall down position. A humanoid

robot fallen down may only be able to recover using several contact points in addition

to feet and hand if torque isn't sufficiently large (and in fact, the torques are very

limited compare to the weights of these robots). In fact, the recent DRC has been

marked with compilation of humanoid robots falling down, but only one robot man-

aged to recover to a standing up position. In a real disaster scenario, the inability

to stand up would mean end of the rescue mission for what is extremely expensive

machinery. A robust planner capable of recovery is must and this work contributes

towards it.

25

Figure 1-3: Astronauts need to constantly navigate through narrow and crowded
modules inside the International Space Station as shown on the left. Rather than
seeking to avoid the obstacles, astronauts actively make contact with the environment
objects to help them navigate as seen in the right. Image courtesy of NASA retrieved
from https://www.nasa.gov.

1.3.2 Navigating inside the International Space Station

An astronaut inside the International Space Station (ISS) need to constantly move

from one module to another. Figure 1-3 shows different modules inside the ISS and

how accomodations - sleep compartment, toilet, exercise facilities and many more - are

widely spread out throughout the ISS. These modules are crowded with equipments

and connected by narrow corridors.

Navigating through the ISS in a collision-free manner is very hard, if not impos-

sible. Even if an astronaut is wearing a spacesuit with full-axis thrusters, this is an

daunting task given the crowdedness and narrowness of the ISS. However, astronauts

navigate around the ISS with ease without even needing to turn on the thrusters by

making use of the contacts. Rather than trying to avoid environment objects, astro-

nauts make contact with them and utilizes the reaction forces to help pass through

narrow corridors.

For astronauts, an environment object are not an adversary to be avoided but an

ally to be utilized. In fact, it is because the ISS is crowded and narrow that astro-

nauts can easily navigate around through constantly making contacts. An astronaut

navigating inside the ISS motivates following problems which are abstraction of the

what has been described.

First problem is navigation of 2-link robot inside the ISS as shown in Figure 1-4.

26

-1

Figure 1-4: Navigation of 2-Link Robot inside the ISS Problem. A two link robot has

to travel from xi to xg and it can only control its joint torque. The robot can change

its velocity while in contact by applying appropriate joint torque. Nevertheless, it

has no ability to change its velocity in flight.

Figure 1-5: Navigation of a Point Mass with one-axis thruster inside the ISS Problem.

A point mass must reach x9 starting from xi and it can accelerate only in one direction.

The point mass bounces off the contact such that the angle of incidence equals that of

reflection. While in flight, it can alter velocity of one axis by controlling its thruster.

An astronaut is simplified as a 2-link robot and torque on the joint acts as the control

u(t). The 2-link robot(astronaut) starts at a initial state xi = (qi, 4i), 4i $ 0 where

q is the position of the center of mass. Finding the control input u(t) that will steer

the robot towards the goal state xg is the problem of interest. The robot can change

its velocity while in contact by applying appropriate joint torque. However, it has no

ability to change its velocity off the contact and moves in a straight line till another

contact is made.

Second problem is navigation of a single point mass with one-axis thruster inside

the ISS as depicted in Figure 1-5. Here, an astronaut in a spacesuit is modeled as a

27

single point mass with thruster only in one axis. The single point mass cannot alter

the bouncing off angle as the reflecting angle must equal incident angle. But while in

flight, it can alter velocity in one of the axis by controlling the thruster. Finding the

thruster control input u(t) that steers the point mass from xi to xg is the problem of

interest.

These problems are interesting since both system are inherently not controllable.

If both system were equipped with a two-axis thruster, they could have easily nav-

igated around without contacting the obstacles as the controllability matrix is full

rank. However, despite not being fully controllable, both system can make use of

contact to induce velocity in the direction of controllable null space and act as if it is

fully controllable. In essence, through contacting with obstacles, the system is able

to reach places that would not have been possible by avoiding obstacles.

1.3.3 Dynamically Climbing a Vertical Surface

Suppose there is one meter wall standing in the path that one needs to go. Let's

imagine how one would go on about getting over the wall to continue his way. If the

person happens to be an athlete (e.g. basketball player), he would simply leap over

in a single jump without ever needing to use hands. This is hard for non-athletes,

but a man who is strong enough would put his hand on top of the wall and push off

to leap over without needing to anchor his feet on the side of the wall. However, in

most cases, a person would need to use all parts of the body (hands, feet, forearm,

and so on) and make sequence of contacts both at the side and top surface of the wall

to climb over. In few occasions, if the person is very tired, he may not have strength

to climb despite making proper contacts and has no choice but to go around the wall.

There are two observation that one can gain from this thought experiment. First

observation is that a person's strength(maximum torque one can produce at each

joints to be more precise) acts as the limiting factor that determines resulting motion

when performing an aggressive maneuvers. For example, an athlete was able to leap

over in a single jump which an ordinary man could not have done and this comes

28

Opp rip,

Figure 1-6: Sequence of motions performed by a Parkour practitioner in climbing up

a vertical wall of significant height. Vertically jumping over one meter wall is hard.

Leaping over a wall higher than one's height is impossible even for strong athletes.

However, by running up and making sequence of right contacts, Parkour practitioners

are able to climb over a wall that is nearly twice their height. Image retrieved from

https://youtu.be/08x3P2E122U.

from the difference in the maximum joint torque between the two.

Second observation, which is of greater interest, is that making contacts with

the obstacles(wall in this case) helps one to reach places that would otherwise have

not been possible. For example, an ordinary man jumps about 0.5 meter on average.

However, he is able to go over the one meter wall easily by making contacts. Similarly,

jumping more than one's height is near impossible even for an athlete. But by making

sequence of right contacts as shown in Figure 1-6, a Parkour practitioner is able to

go over a wall of nearly twice his height.

This motivates following problems as illustrated in Figure 1-7. A general multi-

linkage robot(e.g. humanoid) is given as the system S. The vertical wall and ground

acts as the obstacles set Xob and starting from xi on the ground, the robot needs

29

-1 - - - - ----

1~

9 ----------__

XI

*X,

Figure 1-7: Dynamic Climbing of a Vertical Surface Problem. A general multi-linkage
robot (e.g. humanoid or quadruple runner) must climb over a wall that is higher than
what it can leap over in a single jump. Making appropriate sequence of contacts is
crucial and resulting motion will depend heavily on the available torque limits.

reach x9 located over the vertical wall. In this problem, control input u(t) is the input

torque applied at each of the joints and each joint has a limit on the max torque that

can be applied such that u(t) <; Umax is satisfied for all time. Here, the height of a

vertical wall is set higher than what the robot can leap over in a single jump. The

problem of interest is automatically finding u(t) that would steer the robot from xi

to Xg.

This problem of dynamically climbing over a vertical surface is interesting for two

main reasons. First, the resulting motion has to be aggressive and dynamic in nature.

Because the gravity is consistently acting to pull down the robot to the ground, the

motion must be performed quickly while making use of the proper contacts with the

obstacle. Second, the resulting motion will differ greatly depending on the limits on

the max joint torques. Since the motion needs to be as quick as possible, the robot

will generate motion that operates near or at the torque limits. Notice this is far

different from current robot locomotions which are very conservative and operates

well within its torque limits.

Following are real life motions that are well documented in the online video re-

sources which capture the essence of what is described in this problem. A Parkour

30

-4

practitioner often climbs over a high wall that is over the his own height by making

sequence of steps and contacts with the wall and its structures. A man climbs out of

the deep well by making sequence of contacts along the vertical wall using his arm

and legs. A mountain goat safely climbs down between two stiff cliffs by alternatively

contacting between two cliffs to reduce its fall down speed.

1.3.4 Quasi-Static Rock Climbing (Bouldering)

AW

Figure 1-8: Bouldering is a form of rock climbing that does not rely on the ropes. Tom

Cruise performed bouldering in his famous opening sequence in the movie Mission

Impossible 2 as shown on the left. Professional climbers compete on a very challeng-

ing course in the Boulder World Cup as shown on the right. Image retrieved from

http://www.ifsc-climbing.org/

In bouldering, one climbs a rock or a mountain without the help of ropes or

harnesses. As a consequence, securing a stable foothold and grabbing onto a right

place becomes very important. This is well shown in the opening scene of the movie

Mission Impossible 2 where Tom Cruise climbs a rocky mountain without relying

on a rope as shown in Figure 1-8. If there are only few spots that permit stable

foothold, bouldering becomes extremely difficult task. This is demonstrated in the

annual World Cup help by International Federation of Sport Climbing, where even

the world's best climbers have hard time completing the given course.

This problem differs from the dynamic climbing of a vertical surface discussed

previously, as it is quasi-static motion where one transitions from one stable grasp

configuration to another. It is interesting on its own as literally every part of the

31

body can and must be used as potential contact points to complete a given task.

1.4 Literature and Background

Figure 1-9 shows where Motion Planning with Contact problem fits in literature

with respect to different branches of work. In this section, it is described viewing

from motion planning, legged robot locomotion and computer animation perspectives.

Discussion is given as to how Motion Planning with Contact problem differs from and

extends these fields.

Motion Planning
(classical)

allow contact"
"utilize force from contact"

Motion Planning
with Contact

"non-periodic motion" inline with "consider dynamics"
"non-horizontal/flat surface" "whole-body motion" "physically correct"

Legged Robot Computer
Locomotion Animation

Figure 1-9: The diagram shows where the Motion Planning with Contact Problem
fits in the existing literature. From motion planning perspective, this work challenges
the basic assumption of avoiding obstacles at all cost. By allowing contacts with the
obstacles, the planned motion will utilize forces from the contacts to its advantage.
From legged robot locomotion perspective, existing literature focus mostly on periodic
motion on a horizontal surface (e.g. walking and running). What is pursued in this
work is s motion that is non-periodic and not along a horizontal or flat surfaces. From
computer animation perspective, methodologies exists to automatically generate an-
imated motion of a virtual character similar to how human moves. These motions,
although looks real, are physically incorrect and this work will generate motions that
are dynamically consistent.

1.4.1 From Motion Planning perspective

The basic motion planning problem deals with finding a path or trajectory that starts

from a given initial state to a desired goal state while avoiding obstacles. Figure 1-10

illustrates this.

32

Given robot A and obstacle 0 models, C-space C, and qj. qG E Cfree *

Automatically compute a path T : [0. 1 -+ Cfr, so that r(O) = qj and

-r() = qG.

Figure 1-10: Basic motion planning problem is described 1441. Notice how it differs

from the motion planning with contact problem as shown in Figure 1-1.

In terms of representation, an important notion in the motion planning literature

is the idea of configuration space. Lozano-Perez introduced the idea of configura-

tion space [491 which effectively transforms a motion planning problem into a path

planning problem. How to geometrically represent obstacles and compute Cob, is an

important question and what metric is to be used also play a crucial role.

In terms of computational complexity, motion planning problem even in its ba-

sic form is not trivial. Reif proved that the generalized piano mover's problem

is PSPACE-hard [751 and it was later shown to be in fact PSPACE-complete by

Canny 191. Hence, as the number of degree of freedom of a robot increases, the

motion planning problem inherently becomes challenging.

For low dimensional problems(usually less than n < 3), combinatorial methods

are viable and several algorithms exists that are complete. Trapezoidal decompo-

sition [11], maximum-clearance roadmap [62], and reduced visibility graph [42] are

among the popular methods that solves the motion planning problem by building

a roadmap through decomposition of the configuration space. Combinatorial meth-

ods, however, either do not extend or becomes impractical in the higher dimensions

(n > 3). Cylindrical algebraic decomposition extends but is shown to be doubly ex-

ponential time and space [761. Canny's roadmap algorithm 1101 is singly exponential

33

in time but is too complex to be implemented.

For higher dimensional problems (n > 3), practical algorithms are mostly sampling

based. Two of the most well-known sampling-based algorithms are PRM (Probabilistic

Roadmap) introduced by Kavraki and Latombe 1351, and RRT(Randomized Rapidly-

exploring Tree) by LaValle 1431. These algorithms work well for the motion planning

problems in the higher dimensions and many variants exists that improves upon the

original algorithm. The most notable among the variants is RRT* algorithm by

Karaman and Frazzoli [34], which is the first algorithm to guarantee optimality of the

returned solution.

In all of these works, motion planning literature starts from the basic assumption

that environment are obstacles to be avoided. The basic motion planning problem and

its variants focus explicitly on finding collision-free motion from start to goal. This is

because the motivational examples from which the motion planning problems came

about required that collision be avoided at all cost. Robot manipulator performing

assembly should not hit the car body nor other manipulators, a quadrotor navigating

through indoor environment should not hit with wall nor people, and an autonomous

car should never come into collision with any other object in all times.

This work challenges the basic assumption underlying works in motion planning

literature of viewing environment as a must avoid. In many examples, as illustrated

in the previous section, contacting the environment is not costly and may in fact be

greatly beneficial. This work will extend the motion planning literature by allowing

contacts with the environment in the problem formulation such that the resulting

motion utilizes the reaction forces from the contacts to its advantage.

1.4.2 From Legged Robot Locomotion perspective

Planning a motion that incorporates contact naturally arises from problems of legged

locomotion where the foot makes contact with the ground 1871. Footstep plan-

ning is essential for this type of locomotion and number of literature addresses

it [12,16,39,711. More recently, planning for the whole-body motion that incorporates

multi-contact interactions has gained a great interest and is actively being pursued.

34

Approaches based on operational space formulation 136,70,79,801 and centroidal mo-

mentum dynamics [26,46,63,64,861 is gaining traction, while many leverage upon the

power of optimization techniques 15,14,47, 721. However, these works are focused on

generating a quasi-static motion where at least one contact with the surface, usually

a horizontal ground, is maintained.

In my PhD thesis, I aim to develop planning methodology that is suitable for mo-

tions where flight-phase is dominant without being periodic (cf. a robot running 1691

or hopping [741 is dominated by flight-phase but periodic in nature). An example

would be an astronaut navigating inside the space station or a parkour practitioner

jumping between walls to maneuver around the buildings. These motion are charac-

terized by the fact that the robot has no ability to change its centroidal momentum

during flight. Only when in contact, the internal joint torques of the robot can be

translated to external forces affecting the motion, which is then propagated through

the flight-phase till the next contact is reached. Here, obstacles must be utilized

rather than avoided, viewed as an opportunity to change the course of the motion

through contact.

1.5 Approaches and Directions

Planning is a search in a state-space. Success of a planning algorithm depends on

how efficiently it can perform search. This is especially true for motion planner

that deals with contact as pursued in this work. The robot itself has high degree

of freedom and each contact introduced acts as a branching factor that can quickly

grow exponentially. Hence, dimension of the state-space over which a search has to

be performed is substantially high.

The first and extremely important question to answer will be defining over what

space the search will be performed. The natural choice from motion planning per-

spective will be configuration space which enables one to capture the kinematics and

reduce the problem to that of a path planning. However, in the presence of dynamics

and actuation limits, planning in configuration space often leads to a path that is not

35

dynamically feasible. On the other hand, planning in state space may be an alterna-

tive, which can guarantee dynamical feasibility by directly satisfying limits imposed

on the joint torques. Nevertheless, dimension of state space is significantly higher and

grows with robot's degree of freedom despite many joints being redundant in nature.

In place of the configuration and state space, an approach is taken to perform

the search over the work space of contacting points. The dimension of the work

space remains constant irrespective of the growth in a robot's degree of the freedom.

So the size of the search space is far smaller and does not suffer from the curse of

dimensionality.

Nevertheless, searching in work space requires one to perform inverse kinematics

at every instance of a sampled point to check for feasibility of the configuration. This

is computationally heavy operation and makes the search extremely slow. In view of

this, an approach is taken to build up a global pseudo-inverse map that relates a point

in the work space to its corresponding points in the configuration space. Building

such a map is performed offline where computational time is not restricted. Then the

search utilizes the map to quickly generate a plan online without needing to perform

inverse kinematics along the way.

The complexity of motion planning with contact problem is PSPACE-hard as the

motion planning problem which is a subset has PSACE-complete complexity. Hence,

finding an optimal solution is computationally intractable. Instead, an approach

is taken to efficiently find approximate solution near optimal using heuristics. Here,

singular configurations are chosen as the heuristic based on the physical understanding

to guide the search.

1.6 Statement of Contribution

The main contribution of the thesis is in developing a framework for a motion planner

that incorporates multiple contact with the environment. The essence of the frame-

work is a fast multi-contact planner that utilizes pre-computed global pseudo-inverse

map. Existing multi-contact planner require good initial seeds for it to successfully

36

m VP "WOM IM IRIMPIRMF I 11111,11MM"M MIMI" A, 11 "W""NIFIV I I R poll , 11"WW"MWMM

generate motion. These are hard to find and often manually encoded. In addition,

current multi-contact planners are single-query and often slow. Here, we leverage

upon a pre-computed global pseudo-inverse map to generate multi-contact motion

from current configuration to the goal without need for an initial seed. The pseudo-

inverse map is an inverse kinematics map for each contact-state that has a property

of global resolution, connected by connectivity functions. Although global pseudo-

inverse map is computationally expensive, once computed, it can be used to generate

plans fast, possibly online, in a multi-query manner.

As an application of the framework, a recovery planner from fall down is developed

that overcomes limitations of existing planner. First, the planner is not specific to a

particular robot and can be used to generate motion of an arbitrary robot in general

when its kinematics is given. Second, it does not rely on pre-defined motion and can

generate feasible recovery motion even when a motor break-down.

In the process, singular configurations are utilized to produce torque efficient

motions. Literature focuses on avoiding singularity due to loss of manipulability,

but here we leverage singular configurations to plan for torque efficient motions as

mechanical advantage is maximized at or near singularity.

1.7 Outline of Thesis

This thesis essentially consists of two parts. In the first part, a general planning

framework to generate motion with contacts is developed. In Chapter 2, singularity

is presented as a search heuristic with analysis of force and momentum generated

through contact in relation to the singular positions. In Chapter 3, a general plan-

ning framework that involves building a global pseudo-inverse map is discussed with

algorithms for generating nodes and connecting edges of the global map.

In the second part of the thesis, specific motion planners that applies to concrete

problems is presented base on the framework developed in the first part. In Chap-

ter 4, a multi-contact motion planner that plans recovery motion from fall down for

humanoids is presented. In Chapter 5, a motion planner that solves actuated mathe-

37

matical billiard problem motivated by an astronaut navigating inside the International

Space Station is presented.

The thesis concludes with Chapter 6 where potential future work and applications

are discussed in detail.

38

Chapter 2

Singularity as Search Heuristics

Constraint on the actuation and power resources is often the critical limiting factor

for a robot to perform desired tasks. Increasing torque and energy capacity may be

a solution, but is seldom viable for robots already built. An attractive alternative is

to carefully generate motion trajectories that maximally leverages upon the limited

torque and energy resources. In this endeavor, singularity, which is deemed undesir-

able due to lose of manipulability, could be utilized to an advantage. This chapter

presents analysis of force and momentum generated through contact in relation to

the singularity. The analysis shows that a motion at or near singularity not only

maximally leverages the torque limits to generate forces in quasi-static motions, but

is also optimally energy efficient for dynamical motion when it comes to momentum

generation. As such, singular configurations can act as a search heuristic for planning

contact based motions where torque is often the limiting factor.

Based on a simplified model, we discuss mechanical advantage aspects of a robotic

leg and describe range of feasible forces that can be generated together with directions

in which singular position becomes minimum torque configuration. Then we define

stroke motion and establish upper bounds on the momentum generated through con-

tact. Collinear stroke, where motion is along a straight line, is examined with respect

to singularity.

39

2.1 Introduction

Limited torque is often the major limiting factor for a robot to perform certain mo-

tions. For example, humanoids in the Darpa Robotics Challenge rarely recovered

from a fall to stand up. On the other hand, little humanoids at Robo-one compe-

tition recover graciously to a stand-up position after being knocked down. What

prevents the former from performing recovery motion of the latter, lies in the torque.

Humanoids at Robo-one are light-weighted and small in size that their joint torques

are comparably large enough to perform aggressive and dynamic recovery. However,

size and weight of humanoids at the DRC are hefty that a quick recovery maneuver

is not possible from given torque limits.

One approach to overcome this issue is to directly increase the maximum torque

capacity of the robot actuator. Success of BigDog and MIT Cheetah largely comes

from it. BigDog uses hydraulic actuators powered by an engine. High torque available

from the hydraulics enables BigDog to place its feet in the desired location quickly in

time to prevent falling when disturbed 1731. MIT Cheetah has custom designed and

built electrical motor that has significantly higher torque density than commercially

available ones 1811. This, coupled with carefully designed leg enable the MIT Cheetah

to perform fast dynamical running. However, directly increasing the torque density

of the actuation involves re-designing and re-building of a robot hardware which is

not often an option.

Limited energy often becomes the critical limiting factor when a robot needs to

perform tasks untethered. For example, in a disaster rescue scenario, prolonged op-

eration without tether is a must. Nevertheless, the operation time is severely limited

by inefficient energy consumption of a humanoid whose specific cost of transportation

is an order of magnitude higher than that of a human 1131. One way to overcome

this issue is by equipping a robot with a power source of high energy density and

capacity. Atlas in the DRC, for instance, carries onboard a heavy 3.7-kilowatt-hour

lithium-ion battery pack. However, even then, the operation time from charge to

charge is relatively short.

40

In the presence of constraints on the torque and energy resources, a more attractive

approach is to carefully generate motion trajectories that leverage upon the limited

torque to achieve a given task while being energy efficient. Number of works in the

literature addresses this through use of optimization 12, 38, 481. Torque and energy

expenditure is encoded as a cost in the objective function and optimization machinery

is cranked to produce desired trajectory. Nevertheless, it does not provide insight into

the nature of the generated trajectory and little work is done that directly exploits

the structure of a robot to an advantage.

The author believes that utilizing singularity is the key in this endeavor. For

example, professional weight-lifter goes through sequence of singular positions to lift

maximum weight possible from torque resources one has. In standing up from fall

down, a person cannot directly push off the ground to a standing up position in one

motion, but rather goes through sequence of singular position due to limited joint

torque. Passive dynamic walker by McGeer 152,531 walks down a slope maintaining

singular position. It has cost of transportation similar to that of a human, and an

order of magnitude better than humanoids that walk with knees bent. As such, sin-

gular configurations can act as a search heuristic for planning contact based motions

where torque is often the limiting factor.

In this chapter, we present analysis of force and momentum generated through

contact in relation to the singular positions. The analysis shows that a motion at

or near singularity not only maximally leverages the torque limits to generate forces

in quasi-static motions, but is also optimally energy efficient for dynamical motion

when it comes to momentum generation. The chapter is organized as follow: Section

II refreshes the concept of singularity and Section III shows modeling used throughout

the analysis. Section IV presents analysis of force generated through contact for quasi-

static motion, with discussion of mechanical advantage of singular position and effect

of knee cap in minimizing torque. Section V addresses momentum generated through

a stroke motion and how it is energy efficient near singularity.

41

2.2 Singularity

Singularity refers to configurations where the robot's degrees of freedom changes in-

stantaneously 1571. For open-chain manipulators, it is directly related to drop in

the rank of the forward-kinematics Jacobian. But for closed-chain mechanisms, sev-

eral types of the singularities exists which differ in nature and several papers in the

literature deal with its classification. Most notably, Gosselin [211 provides classifica-

tion based on the Jacobian matrix corresponding to input/output coordinates and

Park [67,681 presents a framework that geometrically classifies singularities invariant

to the choice of local coordinates describing the kinematics.

This chapter focuses on the singularity that is classified as end-effector singularity,

which is also referred as singularity of the first kind. Let 0 and x represent input and

output coordinates. Assuming that both 0 and x have dimension n, equal to the

degrees of freedom of the robot, the relationship between the two can be expressed

as

F(9, x) = 0

where F : jn x WR -+ R". Differentiating with respect to time gives

aF 'k c9F 0
ax ao

The end-effector singularity occurs when det(%i) = 0 and here, the end-effector loses

one or more instantaneous degrees of freedom. This often corresponds to the robot

configuration reaching boundary of its workspace.

In the literature, end-effector singularities are to be avoided because it directly

leads to lose of manipulability. Inability to move and apply forces in an arbitrary

direction is undesirable for manipulation, and large body of work deal with planning

a path that avoids singularity 13,15,31,37,66,78]. Singularity also poses problem when

performing inverse kinematics as inverse kinematic solutions often run into numerical

stability issues at or near singular configurations 1591.

Nevertheless, the end-effector singularity could be put to an advantage rather

42

CoM(xe,z)
in,!

H(x,,z)

CoM Th

i I K(x,,k

'Uk

Z FZ I

4X

O (0,0) FX

Figure 2-1: The chapter focuses on the anaylsis of how force and momentum are
generated through contact in relation to singular positions. For the analysis, leg of a
robot is modeled as a double inverted pendulum with massless links. A simple model is
chosen over more elaborate models for advantage in gaining intuitive understandings.

than avoided when a motion must be performed within limited torque and energy

resources. The end-effector losing degrees of freedom, from series-parallel duality 1851,

corresponds to existence of family of wrench that the end-effector can resists without

having torque applied. Such property can be utilized as external wrench is largely

opposed structurally near singularity and the chapter shows this through analysis.

2.3 Modelling

Motion of a robot - generalized velocity of its center of mass - can only be changed

through external forces acting it. With the exception of gravity, these external forces

come from contacts with the environment. While in contact, torque applied to the

robot's joints generates external contact forces through actions of the leg and arm.

Hence, understanding how a robot's leg and arm transforms joint torques to reaction

forces at contact and generate momentum is essential.

The analysis of chapter focuses on the force and momentum generated by a sin-

gle robotic leg (or arm) through contact with relation to singular configurations.

43

Table 2.1: List of Notations

Symbol Description

reaction force vector

F2 reaction force in x-direction

F, reaction force in z-direction

Tk torque at knee joint

Th torque at hip joint

Kk, Kh mechanical advantage vectors

1 length of leg

11 length of link 1 (feet-knee)

12 length of link 2 (knee-hip)

r link ratio

Ob bent angle between link 1 & link 2

r! knee position vector ol

r, hip position vector 0Y9

So stroke angle

SL stroke length

ST stroke time

As shown in Fig. 2-1, a single leg (or arm) of a robot is modeled as a planar dou-

ble inverted pendulum consisting of massless links. Each joints, hip and knee, are

independently actuated with limits on the maximum torques that can be applied.

Moreover, contact with the environment is treated as a point contact with friction

and no slip is assumed.

This simple model is chosen over more elaborate models, as it not only makes the

problem analytically tractable, but is also advantageous in gaining intuitive under-

standings. For the same reason, gravity is neglected in the analysis for the simplicity

although its inclusion only adds few terms. Notations used in the chapter is listed in

Table 2.1.

44

PIRMPRP11 I RI MIR I "LIP 11

2.4 Force Generation

When a robot is stationary or moves very conservatively in a quasi-static manner,

the contact wrench sum must counter-balance weight of the robot. Here, how much

force each leg and arm in contact can generate from given torque resources becomes

a question of interest which this section addresses. First, torque-force relation is

established which shows that a given torque input is maximally leveraged to produce

force in singular configuration. Then, description of how to graphically construct

a region of feasible contact forces from given torque limits is detailed. Based on

this, it is shown that, in the presence of knee cap, the singularity is minimal torque

configuration for a large range of direction of force to be resisted.

2.4.1 Mechanical Advantage

Relationship between the force and torque can be derived from momentum principles

which gives the following:

Using geometric relation, this can be rewritten as

Fz 1 h Z k -z Tk

F sinOb x -x I ;

Here, we define Kk and Kh which can be viewed as mechanical advantage vectors

that maps Tk and Th into F

F = = Kkrk + Kh(-Th)
F-

Kk rH a

The derived relationship and defined mechanical advantage vectors Kk and Kh

45

Unit henge ng ee dsret bmitp.Unom

07t i3t

OA 344

0.4 31

0. 2

0.4 2

0.0 1

0.21

0.1' '

Mechanical Adv. In z-dIr as leg bends (vertically straight)

0 0.1 0.2 U 0.4 0. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Leg bent length In z-axis

Figure 2-2: Mechanical advantage of a leg is maximized when unbent and quickly
decreases as it bends. Operating in near or at the singular position (unbent) is
advantageous in terms of generating large reaction force from the given torques.

permit following geometric interpretation. A torque applied to the knee rk produces

reaction force directed towards the hip (r-+), whereas hip torque rh produces

reaction force directed towards the knee (i). In addition, how much the leg is

bent (6 b) acts as a common scaling factor given by S.

Mechanical advantage of a leg in generating reaction force from applied torques

heavily depends on how much the leg is bent. Since 1 acts as a common scaling
sin O

factor, mechanical advantage of a leg is maximized at singular position (9
b = 0) and

quickly decreases as it bends. Fig. 2-2 shows a vertically upright leg at different

bent positions and how z-component of the mechanical advantage changes respec-

tively. It shows operating at or near a singular position holds significant advantage

in generating large reaction force from a given torque.

2.4.2 Range of Feasible Reaction Forces

From the geometric relation, a range of reaction forces possible at a given configura-

tion with torque limits IrkI rk,ma and IThI 5 Th,mn, can be graphically constructed.

As shown in Fig. 2-3, torque limit on knee (Tk,ma) constrains the reaction force to lie

between two lines, parallel to ri, separated by a moment arm of distance)."I. The

same applies to torque limit on hip, and their intersection together with friction cone

46

5 --
0 --

0 -

H(xh,z,)

Z H K(xk, z)

0(0,0)

In this example, b= 7r/2
.Kk= rHand Kh= r

Friction Cone (FC)

- Ir

T4' Vkma

00*

'-

I-

I Friction Cone (FC)

I -- ~-~.-~-~ I
U' I

-1 I
-. I I

N
=1 :'~ 'r -15

* *i kmax
Iv ~1

=1 I hmax -

It ~ I

IrHI '% I
I ~ I

ii 'I
'~ '1% -

I-
A

I - -
I - I
I - -
I I
I - I
I - I

Figure 2-3: A range of feasible reaction forces from a contact can be graphically
constructed. Here, two cases with different torque limits are shown where shaded
regions represent the range of feasible reaction forces that can be generated from the
given torque limits.

gives the range of feasible reaction forces.

This can easily extend to find range of feasible reaction force for multiple link leg.

As previously explained, each joint torque limit ri I Timax introduces two inequality

restricting the reaction force. Therefore, it can be easily seen that the range of feasible

reaction force of a multiple link leg with given torque limits ril 5 ri,ma forms a

convex polyhedron where each edge corresponds to a limiting torque ri. From above

argument, the following proposition becomes evident (proof is omitted here).

Proposition 1 (Relation between Range of Feasible F). Let L denote a multiple

link leg at a particular configuration. Let L' denote a leg equivalent to L in the

same configuration, with one or more joints structurally fixed. Then range of feasible

reaction force for L' is always greater or equal to that of L.

Prop.1 implies that having additional links, if it does not contribute to increase

in manipulability, may be disadvantageous as it reduces the range of feasible reaction

force possible. By the same token, structurally fixing links, if it does not diminish

47

workspace workspace

7 *
F3

q q 'i

ground ground

Figure 2-4: Configuration of the leg that minimizes the torque required to resist
external force depends on the direction of force to be resisted. Three configuration,
qi, q2, q3, shown on the left are positions requiring minimum torque to resist forces
directed at F1 , F2 , F3 respectively. However, in the presence of knee cap, singular
position becomes the configuration that minimizes the required torque for a large
range of force directions. The range of direction of forces for which the singular
position requires minimum torque to resist is shown as shaded region in the right.

manipulability, may be advantageous in terms of force generation. This happens to

leg (and arm) by the action of a knee cap - at singular position, knee cap structurally

fixes the two link into one without compromising the manipulability, and thereby

increases the range of feasible force generated.

2.4.3 Minimum Torque Configuration

A leg in contact with the surface at a singular position can theoretically resist arbi-

trary force directed towards the leg with no torque applied. Therefore, when a leg

makes contact to resist a force, it is always desirable to place it in a singular position

in the direction of force to be resisted.

Nevertheless, this is not always possible when the position of robot's body is

restricted with respect to the contact surface (e.g. when performing rock-climbing).

In Fig. 2-4, for example, hip position of the leg is fixed in relation to the ground and

it can be placed at a singular position only at two directions. Here, configuration that

minimizes the torque differs depending on the direction of force to be resisted. Fig. 2-

4 shows leg configurations that minimizes norm of the torque for different directions

48

of the force. Note that these configuration, in general, are not at singularity.

Singular position, however, becomes a configuration that minimizes required torque

for a large range of direction of forces in the presence of a knee cap. A knee cap makes

the knee joint to act as structurally fixed at the singular position, and from Prop.1,

this increases the range of feasible force. Moreover, it structurally provides torque

required to resist the force at the knee joint, and thus helps to minimize the norm of

torque input.

Proposition 2 (Singularity as Min. Torque Configuration). Let TF - (Tk,F, Th,F) be

torque required by the leg to resist a given force ?. Then, in the presence of knee

cap, singular configuration minimizes |IITFII when the force to resist is directed at

or away outwards from the singular position.

Proof. (Sktech) Suppose 7 is directed at or away outwards from the singular position.

Then the moment arm acting on the hip joint by the reaction force -P at the contact

is shortest in the singular configuration compared to other feasible configurations and

hence ITh,FI is minimized. Also, the reaction force -? at contact exerts torque

on the knee joint which is structurally provided by the knee cap in the singular

position, requiring Tk,F = 0. From the above two statements, it follows that singular

configuration minimizes |ITF|I, the torque required resist force 7.

2.5 Momentum Generation

When a robot is stationary or moves very conservatively, the contact wrench sum

only needs to resist weight of the robot and how much force each leg and arm in con-

tact can generate is important. However, when a robot tries to perform a dynamic

maneuver, contact wrench sum must equal the desired rate of change of centroidal

momentum. Here, the question of how much momentum the leg in contact can gen-

erate becomes more relevant. This section presents analysis of momentum generated

from a contact in relation to singular configuration. We first define a stroke motion

in which a leg pushes off from contact to generate momentum. Then upper bounds

49

on the momentum generated from a stroke is established with respect to the torque

limits. Collinear stroke is discussed as a special case of the stroke and it is shown

that momentum generated per energy expenditure is maximized approaching singular

position.

2.5.1 Stroke Motion

A leg (or arm) in contact needs to push off from the contacting surface in order

to generate momentum. Here, we formally define stroke that describes such motion

through which a leg generates momentum. Parameters that are relevant are also

defined.

Problem Formulation 1 (Stroke). Let Stroke be a motion of a leg from t = tj to

t = tf that satisfies the following:

1) bent angle of a leg | 9b(t)I is monotonically non-increasing function for t E (ti, tf]

2) leg remains in contact without slipping for vt E [ti, t1]

3) Ob(tf) = 0

Problem Formulation 2 (Stroke Angle, Length, and Time). Let Stroke Angle (So)

be defined as So IOb(tf) - Ob(ti)| - |Ob(ti)I and Stroke Length (SL) as SL - |ri(tf)|-

|r7(tj)| where r1 is a position vector of the hip joint. Time duration At = t1 - t of

a stroke is defined as Stroke Time (ST)

An example of a stroke motion is shown in Fig. 2-5. Notice that stroke length SL

and stroke angle So are geometric properties with the following relation

SL = ir (tB)I - ir-(t)I = 11 + 12 - l + l + 212 cos(So)

Once So (or SL) is given and the torque inputs are known, stroke time ST can be

calculated by solving through governing equation of motion.

Momentum generated from a stroke can be expressed as

mke(t1) - mie(t) = ijFz (t)dt

50

INI'mIR FIR III'l I mplelIRM111"11 11 . - ROMIMP 'WITI "W"IMIRRIFIRMI M0MMJMJFWWP"MflM- W_ _ , 1. 1 1.1

CoM(xe, z)
m, I

CoM(x, z')
m,I H(xh,zh)

H(xh,zh) Stroke 12

Obt, 'i Ob(t)=0

ZZ ' ' ,

0(0,0) F, 0(0,0) FX

Figure 2-5: A leg (or arm) in contact needs to push off the contacting surface to
generate a needed momentum. Here, an instance of a stroke motion is shown as
defined, where the leg starts from a bent position and monotonically decreases its
bent angle till fully stretched. This is also an example of a collinear stroke as defined,
since the contact point, hip joint, and center of mass remain in a single line throughout
the stroke.

mxc(tf) - mL e(ti) = Fx(t)dt

where xc, z, and F2, F, are z,x components of CoM position and reaction force at

contact as shown in Fig. 2-5. Ideally, to maximize the momentum generated from a

stroke, both F, , Fx and stroke time ST = tf - ti must increase. For the given torque

limits, F_ and Fx can be increased by reducing the bent angle 9 b since mechanical

advantage in both z and x direction scale commonly with .

However, reducing 9 b to increase F_ and Fx comes at a cost of decreasing the stroke

time ST. It can be easily shown that reducing 0 b decreases both So and SL which leads

to a shorter ST. In fact, F. and Fx is maximized when Ob = 0 (leg unbent) but this

makes ST = 0 and no momentum can be generated in singular configuration. Hence

F, , Fx and ST = tf - ti cannot both be increased and the momentum generated from

a stroke is bounded above.

51

2.5.2 Upper Bounds on Momentum Generated

It is useful to establish upper bounds on the momentum generated from a stroke.

This can be done by directly calculating the forces and working through the equation

of motion. Nevertheless, it is more easily derived by considering the work done by

torques at each joints.

From work-energy principle, we have following where last two terms represent the

work done by torques at knee and hip respectively

T2- T1 = !m v,(tf)|2 - m v(ti)|2

2 2

/Ob(tf) 0(tf)

U1-+2 = k()d9 + rh(9)dO
6 b(ti) J (t)

Since maximum angle through which the joint torques can do work is 7r, it follows

/6b(tf) fBj~if)

Ui-4 2 < Tk,max dO - Th,max f d 7r(Tk,max - Th,max)
9
b(t*) J 2**

Assuming the stroke starts from a rest (vc(ti) 0), we have

1 1 21

~m Iv(tj)|2 - m Iv(ti)|2 = mIve(ti)I 2 (Tma+Thm)

Hence an upper bound on the momentum generated from a stroke can be established

as

IAmVcl = ImvC(tf) - mvc(ti)I 2mr(Tk,max + Thmax)

This expression gives the upper bound on the momentum generated from a stroke

and equality holds when maximum torque is applied at each joint and each joint

moves through maximum angle of 7r through the stroke. It can easily be extended

to multiple n-link legs, where the upper bound is given as IAmvcl 2mir Z Timax

where ri,max is the torque limit of the i-th joint.

The established upper bound does not contain any information on the directional-

ity of the momentum generated. Depending on the direction of momentum generated,

52

" M I - 1 .1 1 , - I - .1 1 1. , 1~. -11 IM 111 1 P11WT4"MM1__ "1 11 -

a stroke motion that equals the upper bound may fail to exist. In fact, finding an

optimal stroke motion that maximizes the momentum generated in a desired direction

is not trivial.

2.5.3 Collinear Stroke

This subsection examines collinear stroke where the contact point(O), hip joint(H),

and center of mass(CoM) all lie in a single line throughout the stroke motion. In

many instances where a robot's leg or arm pushes off the contact surface, the motion

is or close to being collinear. Thus, it is worthwhile looking into collinear stroke as a

special case of a stroke.

Fig. 2-5 shows an instance of a collinear stroke. In this example, the line through

which the contact point, hip joint, and center of mass lie is vertical, but it can also

be slanted or even horizontal (e.g. when pushing off a vertical wall). In a collinear

stroke, torque applied to hip should be kept zero to ensure that the motion remains

collinear. This is because the hip torque Th creates a reaction force directed towards

the knee as shown in Section 2.4. On the other hand, the knee torque Tk creates a

reaction force inline with the collinear motion. When the collinear stroke is vertical

as in Fig. 2-5, vertical force F, produced by rk is given by

Fz = Kk,zTk = Z Tk TksinOb Xk

and the equation of motion for the stroke simply becomes

1
mz F = -- Tk

Xk

where Xk can be expressed in terms of stroke angle So or stroke length SL from the

given geometry.

The momentum generated through a collinear stroke can be related to the given

parameters, stroke angle So, stroke length SL and stroke time ST. Following from the

53

Figure 2-6: Stroke motion near singularity is highly desirable in term of the energy
efficiency and momentum generated. Near singularity, even a small stroke length
S, is sufficient to generated momentum comparable to the max momentum gener-
ated through full stroke (Above). Moreover, momentum generated per unit energy
dramatically increases near singularity, making it energy efficient (Below).

prior analysis, relationship between the momentum generated and So becomes

|MVc(tf) - mvc(tj}| = N/2msk,maxSO

Assuming length of the links 11 = 12 = 0.51 (1 = length of the leg), relation between

So and SL can be established through geometry as

SL = 1(1 - +co(S)2

Using the relation, momentum generated can then be expressed in terms of SL

|moc(t) mvc (ti)= 2m-rk,max cos-1 (2(l - SL) 2 _
iI

It s nteesingt oeta h oetmgnrtdi ocv ucino

54

So, and that So is also a concave function of SL. Because of this, even a small stroke

length SL is sufficient to generate momentum comparable to the max momentum

from a full stroke length 3L. Fig. 2-6 illustrates this where for a leg with equal link

lengths, it only needs to bend one-tenth of the leg length to produce more than half

of the max momentum generated through bending to the limit of entire leg length.

Finding Stroke Time ST requires solving through differential equation describ-

ing equation of motion and it is closely related to Joule loss in the electric motor.

The energy consumed by the motor is proportional to Jt TkTTkdt. Assuming max

torque Tk,max is applied throughout the vertical stroke, energy expenditure becomes

proportional to ST

Jtf Tk TTkdt
2

k,max i dt T
2

k,maxST

Hence, for equal momentum gained through a stroke motion, having a smaller

Stroke Time ST is more energy-efficient. Since mechanical advantage of a leg is

significantly higher near singularity, for equal momentum gained, stroke time ST is

much smaller near singular position (leg unbent). This is shown in the Fig. 2-6

which indicates that momentum generated through stroke per unit energy consumed

is maximal near singularity.

These two facts put together makes stroke motion near singularity highly desirable.

Stroke motion near singularity operates in a region where mechanical advantage is

high (large reaction force possible from given torque limits), momentum generated per

energy consumed is maximal (optimally energy efficient), and yet able to generated

momentum comparable to the maximum from a small Stroke Length SL.

2.6 Conclusion

In this chapter, forces and momentum generated through contact has been analyzed

with focus on the singular configuration. We discussed mechanical advantage near

singularity and described geometrical construction of the range of feasible reactions

forces. It is shown that singular position minimizes the torque required to resist forces

55

coming from large range of directions. Moreover, we have established an upper bound

on the momentum generated through a stroke motion and showed that operating

collinear stroke near singularity is highly desirable in terms of energy efficiency.

The analysis shows that a motion at or near singularity not only maximally lever-

ages the torque limits to generate forces in quasi-static motions, but is also opti-

mally energy efficient for dynamical motion when it comes to momentum generation.

These properties make singularity attractive when desired motion must be performed

within limited torque and energy resources which floating-based robots bound to

have. Therefore, singularity is utilized as a search heuristics in the motion planning

framework to follow.

56

Chapter 3

Global Pseudo-inverse Map

3.1 Motivation

The existing multi-contact planners in the literature share a common shortcoming in

that they require good initial seeds to successfully generate a motion. Depending on

the task to perform, these initial seeds can be extremely difficult to find and often

have to be manually encoded. Moreover, these planners are single-query, slow to

converge and vulnerable to local minima.

Hauser [25] presented a multi-contact planner which laid foundation that was

followed by subsequent works [4-6, 17, 18]. The planners developed in these work

gives a single solution for a task, convergence is slow, and must be recomputed even

for similar tasks. Posa 1721 developed optimization based trajectory planner to deal

with contact but it too relies on having a good initial seed and is single query in nature.

Mordatch 1551 proposed a multi-contact planner that can perform versatile tasks

that closely resemble human-like motion. But these impose soft-constraints that are

dynamically feasible. To remedy the slow convergence, Park 1481 and Bicchi [1] utilized

principle component that can generate motion quickly, but these are suitable for

natural movement generation and task specific. Similarly, Kris 1241 and Frazzoli 119]

presented planners using motion primitives for a fast planning which is close to the

approach taken in the thesis but is local in nature.

Here, we propose a multi-contact motion planning framework that utilizes global

57

pseudo-inverse map which are pre-computed offline. The global pseudo-inverse map

is a set of inverse kinematic map for each contact-state that has property of global

resolution which are then connected by connectivity functions. It is essentially a

roadmap that captures the global structure of the problem that can be used to gener-

ate multi-contact motion from current configuration to the goal without need for an

initial seed. Although global pseudo-inverse map is computationally expensive, once

computed, it can be used to generate plans fast online in a multi-query manner.

3.2 Problem Definition

In this framework, several assumptions are to make the problem tractable. First,

we assume that the environment, objects, and robot are all rigid-bodies that do not

undergo deformation. A contact between two rigid bodies, in general, can be a point

contact, a edge contact, or a face contact depending on the situation. Here, we assume

all the contacts between the robot and the environment to be point contacts. Both

edge contacts and face contacts are thereby reduced to equivalent point contacts.

Friction at the point of contact is assumed to be following Coulomb model of friction

characterized by a friction cone with static coefficient.

In real scenario, an arbitrary part of the robot can come into contact with the

environment. In the framework, arbitrary point of contacts along the robot's body

is allowed but must be pre-designated in advance. Once chosen, the planner allows

the robot to make contacts only at these pre-designated points along its body. In the

following, we provide definition for the key terms used.

3.2.1 Contact State

In the framework, the planner will allow contact to be made only at pre-designated

points of the robot. A contact-state c defines which of the robot's pre-designated

points are in the state of contact. To be more precise, a contact-state c is a binary

vector of size N, where N is cardinality of the pre-designated contact points. Each

entry of the vector c corresponds to a pre-designated point and takes on value 1 if

58

01111011 WWI I " -!-' R P

the pre-designated point is in contact and 0 otherwise.

To illustrate this, Fig. 3-1 shows a five-linkage robot in two different contact

state. In the example, six points in the robot are pre-designated for contact, and

these correspond to feet, knee, hip, shoulder, elbow, hand. Hence, contact state c is

a binary vector of size six. When the robot is completely lying down on the ground,

as shown on the left of the figure, all six points are in contact and robot's contact

state is c = [1, 1, 1,1, 1, 1]. On the other hand, when the robot is standing on its feet

as on the right, only feet is in contact. In this configuration, the robot's contact state

is c= [1, 00, 0, 0, 0].

1 2 3 4 S 6

fr iew Wed Vie..

At fall down position C = [1,1,1,1,1,1] At stand-up position cg [1,0,0,0,0,0]

Figure 3-1: Simple skeleton robot is shown in two different contact state.

Two contact states ci and cj are are called adjacent contact states if they differ

by one bit. That is they share common contact state except for one pre-designated

point.

3.2.2 Sample within Contact State

Contact state c only gives information on which of the pre-designated points are in

contact. A sample w within contact-state defines coordinates of the points in contact.

A sample w is a vector whose dimension equals size of the workspace W multiply by

N(c), where N(c) is number of 1 bits in the contact state c.

To illustrate this, Fig. 3-2 shows a five-linkage robot in configurations correspond-

ing to three different samples within a same contact state. Here, knee and hand of the

59

robot is in contact so its contact state is c = [0, 1, 0, 0, 0, 1]. Since it is 2D robot with

ground being ID line, the workspace W = R and N(c) = 2 as only two contacts are

made. Thus, a sample w is real vector of size two giving coordinates of two contact

points. From hereinafter, we refer to workspace W as space of the sample, deviating

away from the conventional meaning of workspace used for manipulation.

w [0,3.71 2= [0,31 w3 =[0,21

Figure 3-2: Simple skeleton robot with configurations shown for different samples
within same contact state c = [0, 1, 0, 0, 0, 1].

A sample within contact state is called feasible if there exists at least one con-

figuration of the robot that satisfies kinematic constraints while making contacts as

defined by the sample. If no such configuration exists then the sample within contact

state is called infeasible.

Two samples wi and wj in two different contact states ci and cj are called adjacent

samples if following holds: 1) ci and cj are adjacent contact states, and 2) wi and wj

share the common contact coordinates except for one.

3.2.3 Configuration within Sample

When a sample w within contact state c is specified, a robot can be placed in a

configuration to satisfy it. We define q(w) as a robot configuration whose contact

coordinates equals w.

It is important to note that for a given sample w, there may be multiple config-

urations q(w) that satisfy w. In fact, due to redundancy of a robot, a sample would

rarely fix a robot to one configuration. Given a sample w, configuration q(w) can lie

anywhere in the self-manifold of the robot.

Fig. 3-3 is shown to illustrate this point. Here, three different samples, w1 , w 2 ,

w3 , are given within a contact state c = [0, 1, 0,0 0, 1]. Due to redundancy, placing

60

w eW"M
- w, = 10,3.71 w2 = [0,3] w3 = [0,2)

self-manifold

q1(wI) q1(w2) q1(ws)

qqwi) 2(w2) q2(ws)

Q3(w1) qs(w2) q5(W5)

Figure 3-3: Different configurations are shown for given samples that lie within self-

manifold.

robot's knee and hand at coordinates specified by w does not fix the robot to one

configuration. The figure shows several configurations q1(w), q2 (w), q3 (w), which lie

within the self-manifold and are all feasible.

3.2.4 Redundancy Resolution

For a given sample w in a workspace W, multiple configurations q(w) are possible

due to redundancy. Similarly, when a path is given in a workspace, configurations

corresponding to samples along the path can be arbitrary and disjointed. However,

from motion planning perspective, it is highly desirable to come up with a contin-

uous configuration-space path that correspond to the given workspace path. Once

such continuous configuration-space path is established, motion planning along its

corresponding workspace path becomes trivial and deemed solved.

The problem of finding or generating a continuous configuration-space path for

a given workspace path is called pathwise redundancy resolution. Several works in

the robotics literature [51,58,65,771 presents methodology for solving the redundancy

resolution.

When the redundancy resolution is extended from a path in a workspace to the

entire workspace, it is called global redundancy resolution. The problem of global re-

61

dundancy resolution is finding continuous pseudo-inverse function that maps samples

in the workspace to configurations in the configuration-space. If such function exists

and is computed, then motion planning problem along any path in the workspace can

easily be found.

Few works in the literature deals with the problem of global resolution 18,23,50].

Global redundancy resolution may fail to exist because of joint limits, singularities,

and self-collisions. However, computing piecewise-continuous pseudo-inverse function

is still highly desirable as it solves the motion planning problems along the paths

in the workspace where continuity holds. In the planning framework, we directly

utilize global redundancy resolution to compute continuous pseudo-inverse function

of contact-states. It is motivated by and closely follows Hauser's recent work [231.

3.3 Overview of Multi-contact Planning Framework

The planning framework consists of two phases. In the first phase, a global pseudo-

inverse map is generated that consists of pseudo-inverse map for each of the contact-

states which are linked by by connectivity function. In the second phase, a query is

made on the global pseudo-inverse map to find motion from given initial configuration

to a goal configuration.

In the global pseudo-inverse map construction phase, a set of pre-designated points

along the robot's body that are allowed contact are determined. This usually corre-

sponds to joints that can come into contact. A set of contact state C has a total of

2 N contact states where N is number of pre-designated contact points.

For a contact state ci E C, a pseudo-inverse function f(ci) is computed that is

maximally continuous based on appropriate samples (e.g. grid network or random

samples). The pseudo-inverse function f(ci) maps samples in the workspace defined

by the contact state ci to configurations in the configuration-space while attempting to

maintain redundancy resolution. The configurations of samples are added as vertices

to a graph G = (V, E) and resolved paths are added as edges to the graph.

This is repeated for each of the contact state ci E C and the planner now equipeed

62

with pseudo-inverse functions f(ci) for all ci E C.

For every adjacent sample pairs wi and wj in adjacent contact state ci and cj,

connectivity function k(q(wi), q(wj)) is computed. Connectivity function represents

feasibility of motion between two given configurations. If k(q(wi), q(wj)) = 1, then

(q(wj), q(wj)) is added to the edge of the graph G = (V, E).

In the query phase, a motion is generated using the pre-computed global pseudo-

inverse map above. First, for a given initial configuration q, and a goal configuration

q., we determine contact states c. and cg that these configurations belong to. Then

steering is attempted to the neighboring configurations q' and q' that are vertices

of the graph G and within the same contact state c, and c.. These steering is done

through checking feasibility of sliding between q and q'.

If steering to neighboring configurations within same contact state fails, then

configuration q, and qg is extended a set of configurations Q, and Qg in its adjacent

samples where q' E Q, are feasible configurations that are equivalent to q, but in its

adjacent contact state by breaking one contact. Then steering is attempted to each

of q" to its neighboring configurations in the vertex of the graph within same contact

state as before till a successful steering is made.

Once steering to q' and q' is established, then graph search is performed on the

graph G = (V, E) to find a path. Path is not unique and a optimal path with respect

to a given objective can be found depending on the information encoded on the edges.

In the following sections, we describe in detail how the pseudo-inverse map is com-

puted for each of the contact state and connectivity is checked for two configurations.

3.4 Pseudo-inverse Function

For a contact state ci c C, a pseudo-inverse function f(C) is computed that is max-

imally continuous based on appropriate set of samples (e.g. grid network or random

samples). The purpose of the pseudo-inverse function f(ci) is to map samples in the

workspace to configurations in the configuration-space while attempting to maintain

redundancy resolution. Note that, the dimension of the workspace W will depend on

63

the number of contact points made and hence will be defined by the given contact-

state.

To begin with, a set of samples are selected that will sufficiently cover the workspace.

Examples of such set could be 1) samples from regular grid, or 2) random samples

from uniform distribution, but is left for the user to determine. Once a set of samples

are selected, we form a graph Gw = (Vw, Ew) where samples y are vertices Vw and

straight line between two adjacent samples (w,w') form edges Ew. For each of the

sample vertices, the pseudo-inverse function f : w E Vw -+ q(w), computes corre-

sponding configuration q in configuration-space through performing inverse kinemat-

ics. While doing so, the pseudo-inverse function tries ensure that edges (w, w') E E,

are path-wise resolvable. The pseudo-inverse function returns a graph Gc = (V, E,),

where q(w) are form vertices V, and edges E, are established between q(w) and

q(w') if (w, w') is path-wise resolvable. The mapping between Gw and Gc is given

by Q[w] which connects vertices V, in workspace to its corresponding vertices V in

configuration-space.

For each contact-state ci , pseudo-inverse function f(c) is computed via following

algorithm. It is adaptation from the Pointwise-Global-Resolution algorithm presented

in Hauser's work [231.

Algorithm 1 : G, <- Contact-State Pseudo-inverse(Gw), Gw = (Vw, Ew)

1: Initialize configuration-space graph G, = (V, Ec)
2: for each w E V, do
3: Let Q,,, <- UQ[wn], w E Neighbor(w)
4: for each q, E Q, do
5: q 4- InverseKinemtics(w, q.)
6: if Feasible(q) then
7: Add q to V and goto Step 2

8: q <- SelectOptimal(w)
9: Add q to Vc

10: for all edges (w, w') E Ew such that Q [w] 0 and Q[w'] f 0 do
11: if Reachable(w, w', Q[w], Q[w']) then
12: Add (q, q') to E,

13: if Reachable(w', w, Q[w'], Q[w]) then
14: Add (q', q) to E,

15: return G,

64

"" M- 1- 11 1~, .1--l I IMIM 111101,111IMP P11 R11", 1111110111111111111 P IMOP 911MORMFIRMN - MM .. F-MVMM.MPqPWMW 0M

Several subroutines are called for in Alg. 1 and here are details of these subrou-

tines. InverseKinemtics(w, q) is a routine that solves inverse kinematics for a given

workspace sample w using q as a initial seed. A common inverse kinematics solver uses

Newton-Rhapson method to iteratively converge to a solution from the initial guess.

But there are variety of inverse kinematics solvers available and user can choose the

solver. In line 6, q found from the InverseKinematics is checked for feasibility. The

feasibility test varies from one problem to another and is defined by what is accepted

as being feasible. Feasible(q) return true if given configuration q passes feasibility test

and false otherwise.

SelectOptimal(w) is a routine that first performs inverse kinematics to form a set of

candidate configurations. From the set of configurations, it then select one configura-

tion that is optimal with respect to the cost defined by the problem. The exact detail

of the SelectOptimal(w) will differ for different problems but the returned optimal

configuration should bring about least discontinuity in the redundancy resolution.

Reachable(w, w', Q[w], Q[w']) checks whether straight path ww' formed by two

neighboring workspace samples w and w' is path-wise resolvable. Following Alg. 2

computes Reachable. It is similar to algorithm presented in 1831 with inclusion of

additional checks for feasibility and slidability.

Algorithm 2 : Reachable (w, w', q, q')

1: if d(q, q') ; e then return true

2: Let wm +- (w + w')/2 and q" <- (q + q')/2
3: Let q +- InverseKinematics(wm, q")
4: if -,Feasible(qm) or -,Slidable(qm, wi, w') then return false

5: if max(d(qm, q'), d(qm, q)) > c -d(q, q') then return false

6: if Reachable(w, w., q, qm) and Reachable(wm, w', q., q') then return true

7: return false

The subroutine Slidable(q, w, w') checks if a robot in configuration q can slide

itself in the direction of w -+ w' within the torque limits.

Fig. 3-4 illustrate the computation process of the Pseudo-inverse Function f(c).

From the given samples w (shown as dots inside the workspace W) that form vertices,

corresponding configuration q(w) in the configuration-space C (shown as dots inside

65

the configuration-space C) is computed. The selection of q(w) is made using neighbor-

ing configurations as initial seed if they exit, or according to defined cost otherwise,

to ensure maximal continuity in the global resolution. Once this process is complete,

the algorithm tries to solve for path-wise resolution of the edges in the workspace.

When an edge is path-wise resolvable, connections are made and the samples in the

workspace can be grouped into connected components (shown as sample with arrows

connections in the workspace W). The samples in a connected component can be

transversed from one to another through sliding.

workspace W

W, Gw;=(Vw, Ew)

contact-state c,

q (w) G,=(V,E)

configuration-space C

Figure 3-4: From the given samples w (shown as dots inside the workspace W)
that form vertices, corresponding configuration q(w) in the configuration-space C is
computed. The selection of q(w) is made using neighboring configurations as initial
seed if they exit, or according to defined cost otherwise, to ensure maximal continuity
in the global resolution. Then each of the edges in the workspace is checked for
path-wise resolution.

3.5 Connectivity Function

Pseudo-inverse function maps out feasible motions within samples inside a same

contact-state. Once pseudo-inverse function is computed for each of the possible

contact-states, then connectivity function generates cross connections between the

samples in the different but adjacent contact states.

For every adjacent sample pairs wi and wj in adjacent contact state Ci and cj,

connectivity function k(q(wi), q(wj)) is called for. Connectivity function represents

66

workspace W

contact-state c,

contact-state Ci

contact-state ck

Figure 3-5: Once pseudo-inverse function is computed for each of the contact-state
ci, connectivity between adjacent contact-states are established through connectivity
function. Each of the adjacent sample pairs wi and wj in adjacent contact state ci and
cj are checked edges are established for feasible transition between the two (shown as
arrow connecting two sample in different contact-state).

feasibility of motion between two given configurations. If k(q(wi), q(wj)) = 1, then

(q(wi), q(wj)) is added to the edge of the graph G = (V, E). As defined previously, two

samples wi and w3 that are adjacent, share the same contact point locations except for

one. Here, without loss of generality, we can assume w to have an addition contact

over wi.

Transitioning from wi to wj is often feasible as it is making an additional contact

which provides extra support. The harder transition is from w to wi where breaking

of an existing contact has to occur. If the transition motion is confined to being

quasi-static, checking for the center-of-mass being inside the supporting polygon can

be used as an effective tool to determine the feasibility of the motion. However, this

will restrict the quantity of cross-connections that are made between adjacent samples

in different contact-state. Far more cross-connections can be established if dynamic

motions are allowed. This, however, greatly increases the computation cost as finding

dynamic motion connecting two samples is non-trivial.

For computing connectivity function to establish cross-connections, user can choose

a method that is most suitable for the problem domain. For example, it can be a

67

sampling-based planner to find motion from sample wi to wj, or an optimization-

based planner. Once connection is established and edges are added for the feasible

connections, then we now have a graph G = (V, E) that approximately maps out a

global roadmap of the problem. Multi-queries can be made on this global map to find

multi-contact motion solutions from an inital configuration q. to a goal configuration

q, which belong to different contact-states.

3.6 Conclusion

In this chapter, we presented a framework for the multi-contact motion planning which

utilizes global pseudo-inverse map for a fast planning. The global pseudo-inverse map

is a set of inverse kinematic map for each contact-state that which are connected by

connectivity functions. It is essentially a roadmap that captures the global structure

of the problem that can be used to generate multi-contact motion from current con-

figuration to the goal without need for an initial seed. The construction of the global

map is done such that the redundancy resolution is maximized between the paths

and the algorithms for construction is detailed.

Although global pseudo-inverse map is computationally expensive, once computed,

it can be used to generate plans fast online in a multi-query manner.

68

Chapter 4

Recovery Planner from Fall Down

4.1 Motivation

The recent Darpa Robotics Challenge aimed at demonstrating capabilities of a robot

to operate in a disaster scenarios. The competition presented several tasks that were

challenging for a humanoid robot to perform. But perhaps the biggest challenge came

not from the tasks itself, but from being able to balance itself as to prevent fall down.

As shown in Fig. 4-1, Darpa Robotics Challenge has been marked with compilation

of humanoid robots falling down. But of all the fall down events, only one robot

was able to recover to a standing up position. All the other robots required having

manual intervention to have itself up whenever there was a fall down.

The implication of this is severe and defeats the mission objective of the Darpa

Robotics Challenge to a great extent. A disaster scene will be clustered with objects

and obstacles that are unknown priori and losing balance will inevitably occur to

a robot operating in such environment. Here, the inability to self-recover from a

fall down would mean end of the rescue mission for what is an extremely expensive

machinery.

The challenge lies in the fact that human-sized humanoid robots have limited

torque. For example, small humanoids at Robo-one competitions battle each other

and points are awarded to the one that knocks down the opponent. All the humanoids

must be able recover from fall down and stand up to fight another round. In fact,

69

Figure 4-1: Darpa Robotics Challenge has been marked with compilation of
humanoid robots falling down. But of all the fall down events, only one
robot managed to recover to a standing up position. Image retrieved from
https://spectrum.ieee.org/automaton/robotics/humanoids.

majority of the humanoids recover from the fall down in simple maneuvers. How-

ever, these simple maneuvers are not possible by human-sized humanoids because

its torque-to-weight ratio significantly smaller compared to small humanoids (torque

increases by the square of the dimension but weight is increased by the cube). Due

to the limitation in the torque, the ensuing recovery motion has to be multi-contact

in nature - the robot will have to make contact on several different part of the body

(e.g. hand, knee, elbow) to support its own weight during the recovery action. Never-

theless, planning a multi-contact motion is non-trivial as each contact made changes

the kinematics and dynamics of the robot.

4.2 Related Work

In the robotics literature, there are several bodies of work that tackle the problem of

recovering from fall down dating back to 1995. Inaba et al [29] first worked on this

problem with a little humanoid. In this work, when the robot falls down, it performs

roll motion such that it is in face down position. Then a pre-defined stand up motion

is performed for the recovery. In the subsequent work [28], the pre-defined stand up

maneuver was expanded to include hand supporting motion on a table.

Kanehiro [33] presented first human sized robot to stand up and lie down. Here,

the concept of contact-state graph is developed and used for generating recovery mo-

tion. Fig 4-2 shows the contact-state graph where each node represents a contact

configuration and each vertex represents control to maneuver from one contact con-

70

A1

8 * 7 2 3 4

9 10 1 6 5

Figure 4-2: Contact-state graph used to generate a recovery motion. A node repre-
sents a contact configuration and a vertex represents control to maneuver from one
contact configuration to another 1331.

figuration to another. The planner is implemented and tested on a HRP robot. The

construction of nodes and vertex, however, are done manually.

Stuckler and Behnke 1821 presented pre-defined getting-up routine for humanoid

robot that is robust to its fall down position. Determining what position the robot is

after the fall may not be trivial and in the work, it utilizes stretching out motion to

force the robot to be in fully lying down position. Then based on the attitude sensor

reading, pre-defined recovery motion is performed depending on whether the robot is

in prone or supine position. Similarly, Ishida 1301 also worked on planner that works

for both prone and supine position relying on predefined motion for standing up.

Terada [841 analyzed 'roll and rise' motion of human sized robot and presented a

unique recovery motion based on it. Different from other stand up motions, which

are quasi-static, 'roll and rise' motion is dynamic and uses angular momentum gained

by swinging leg movement to stand up. Fig. 4-3 shows contact-state graph of the

roll and rise motion developed. In the work, angular momentum required to complete

stand up is calculated from the anaylsis. Then swinging leg motion is performed to

achieve the required angular velocity. Using the motion, the robot was able to roll

and standup in simulation and roll and sit-up in the experiment using K1 robot. In

the later work 1401, the motion was extended to have recovery motion when angular

velocity is too high by using hand to push recover.

71

81 ;23 24 ; S+6

87 n- S8 S9 1l 0 S11

Figure 4-3: Roll and rise motion used to generate a recovery motion. Swinging leg
motion is utilized to generated required angular momentum to recover and transitions
are defined by a contact-state graph [841.

Several works also exist that take learning based approach. Morimoto 1561 pro-

posed a hierarchical reinforcement learning method and applied to 3 link, 2 joint

robot for stand up task. Here, upper and lower level is separated to reduce the di-

mensionality. Upper level learning is implemented with Q-learning while lower level

uses a continuous actor-critic method. The robot successfully learned to stand up in

7 out of 10 simulation runs but scalability to higher dof robot is questionable. Mis-

try [541 presented work where a robot stands up from a chair based on a human demo.

Here, the center of mass trajectory of human stand up motion is recorded and robot

imitates by following the center of mass trajectory. Similarly, Gonzalez-Fierro [201

has robot stand up motion from sitting on a chair where learning based on human

demonstration is used.

As a side note, Kajita 127,32] developed control motion to reduce landing speed

when falling. Safely falling down when the robot loses its balance is important to

reduce the potential damage. Several works are also developed in this direction.

The existing recovery planners in the literature share common limitations. First,

motions generated from the recovery planner are specific to a particular robot. A

recovery motion planner for one robot cannot be directly used to generate recovery

motion for another robot with different kinematics and torque limits. Second, the

generated recovery motion often consist of sequence of pre-defined motions which

are not adaptable. For example, most recovery planners require a robot to be in

72

particular initial configurations from which the recovery action can be taken. If the

robot fails to be in one of the these specified configurations, then recovery planner

would fail. Similarly, if the torque limits of the robot changes, the planned motion

may fail despite kinematics being the same. Last but not least, existing recovery

planners are limited to a flat horizontal surfaces. If the surface is slanted or curved,

the planner would not work.

4.3 Recovery Motion Planner

The recovery motion planner is developed following the multi-contact motion planning

framework using global pseudo-inverse map as described in the Chapter 3. Chapter

3 presented a general multi-contact framework to which several subroutines must be

carefully chosen specific to the problem. In the following, we describe the specifics of

subroutines used in the recovery planner with justifications for the choices made.

4.3.1 Feasibility Test

The planner requires computation of pseudo-inverse function for each of the contact-

states and constantly calls feasibility test in the process. Feasible(q) in Line 6 of Alg.1

is the subroutine used to check feasibility of a given configuration q. In the recovery

planner, a given configuration q must satisfy following conditions to be feasible.

G(q) =T + E Ji(q)fi

fz E FC,

Ir TI max

q E C\CObs

Here r is joint torques of the robot, Ji is contact point Jacobian, and fi is contact

forces (reaction force at the contact). The generalized gravity vector is represented

by G(q) and FCi is friction cone at the i-th contact point. C is the configuration

space with Cobs being obstacles in the configuration space.

73

The first condition imposes that the configuration to be in static equilibrium where

forces and moments are balanced. The second condition check that the reaction forces

at the contacts are within the friction cone and the third condition makes sure the

joint torques do not violate the torque limitations. Finally, the last condition ensures

that the configuration is in the free space of the configuration space and also allows

it to be at the surface of obstacles.

Assuming torque limits to be at infinity, the test for static equilibrium above can be

simplified into testing whether the center of mass lies within a supporting polygon.

The method is presented in 171 describes this procedure and it can be utilized to

quickly reject infeasible configurations. Note that for a given configuration, there is

multiple pairs of fi and r that satisfy the static equilibrium condition. Among the

possible pairs, the planner tries to find one requires minimum torque while satisfying

other conditions.

4.3.2 Selecting Optimal Configuration

An extremely important step in the computation of pseudo-inverse function is the

selection of a configuration q among the possible configurations in the self-manifold.

Due to redundancy nature of robots in general, for a given sample w, its inverse

kinematics solution q(w) is not unique, but lies within the self-manifold of certain

dimension. Which configuration is chosen as the inverse kinematics solution greatly

impacts the connectivity of the global pseudo-inverse map and hence the coverage of

the planner.

SelectOptimal(w) in Line 8 of Alg. 1 is the routine that selects one configuration

among the self-manifold that is optimal with respect to the given problem. In the

implementation of recovery planner, the most ideal configuration in the space of self-

mainfold is the one that requires minimum torque to maintain its configuration.

The minimum torque configuration is suitable and attractive for the recovery

planning problem for several reasons. First, torque is often the limiting factor in

performing a recovery motion. Being in the configuration that requires less torque

to sustain is favorable as the it decreases the likelihood of subsequent motions from

74

the configuration violating the torque constraints. Second, selecting min torque con-

figuration ensures that the increasing chance of having path-wise resolution along

the edges. One of the bottlenecks that prevents edges in the workspace from being

path-wise resolvable is the inability to slide due to the friction. For a given sample, if

a configuration that minimizes torque is chosen, then the reserved torque (maximum

torque minus the torque required to sustain the configuration) is maximized. Higher

the reserved torque, higher the friction force that can be overcome and more likely

sliding is possible.

Besides the , power consumption also greatly favors selecting minimum torque

configuration over others. One of the critical limiting factors in the operation of a

legged robot is the power consumption. To contrast, specific cost of transportation

(ct = (energyused)/(weight * distance)) for humanoids is at least an order of magni-

tude higher than that of human [13,41,52,531. Such high power consumption becomes

critical limiting factor, especially when a robot cannot be tethered for its operation.

For example, in a disaster rescue scenarios, a prolonged operation without tether is

a must which is hampered by inefficient power consumption of the robot. For this,

it is highly desirable to generate a trajectory that is power efficient to execute and

choosing configurations that minimizes required torque is beneficial.

Computation of Minimum Torque Configuration

For a given sample, computing minimum torque configuration is referred as static

multi-contact inverse problem in the robotics literature and is not trivial. Bou-

yarmane [41 approached static multi-contact inverse problem by formulating it as

non-linear optimization problem. Optimization variables are q (configuration) and

A (non-negative coefficient of polyhedral friction cone rays for contact force). With

object function chosen to minimize actuator torque, gradient-based optimization is

performed but is computationally slow.

Noda 1611 introduces planner that minimizes the normalized joint torque and

contact forces. In the paper's terminology, normalized joint torque and contact forces

is defined as Body Retention Load Vector (BRLV). Important part of the planner

75

is key pose generator that generates static posture with respect to given contacts

that minimizes BRLV. It works by iteratively solving through sequence of inverse

kinematics that incrementally changes position of the center of mass to minimize

BRLV. This approach is quicker than solving non-linear optimization in 14] but is still

computationally heavy despite giving suboptimal solution.

Singular Configurations as Approximate Minimum Torque Configuration

The routine SelectOptimal(w) is called frequently throughout the global pseudo-

inverse map construction and having an efficient solver is advantageous. However,

finding optimal solution requires costly optimization. Instead of running through

optimization or series of inverse kinematics as described previously, the planner uti-

lizes singular configurations as an approximate solution to finding minimum torque

configuration.

From the analysis performed in Chapter 2, we showed that a motion at or near

singularity not only maximally leverages the torque limits to generate forces in quasi-

static motions, but is also optimally energy efficient for dynamical motion when it

comes to momentum generation. Also, motions exhibited by human or other animals

often goes through singular configurations in an effort to minimize effort.

Singular configuration is not always the optimal minimum torque configurations

for given sample, but the level of sub-optimality is close. Computation of singular

configuration, on the other hand, can be done far more quickly than the latter. In

the implementation of the planner, SelectOptimal(w) routine first computes a set of

singular configurations and random configurations from the given sample. Then a

configuration that minimizes torque is chosen among the configurations in the set.

This is found to be efficient yet the resulting configuration sufficiently close to optimal.

4.4 Simulation Result and Discussion

Recovery motion planner is applied to simple 5-link symmetric skeleton robot to

validate the working of through simulation.

76

Figure 4-4: The recovery motion planner is applied to 5-link symmetric skeleton

robot for validation. Klamp't simualtor is utilized throughout the simulations and

one example of recovery motion is shown here.

In the simulation setting, the link ratio of the five links were set to 1:1:2:1:1 and

torque limit on each joints were restricted to 100 Nm. For the samples, total of 500

samples were placed at regular interval to cover the workspace. For feasibility test,

quasi-static motion was assumed, and checking for the center of mass being inside

supporting polygon was used to quickly reject infeasible configurations.

The construction of global pseudo-inverse map required computation of one hour

on a personal laptop with single core 2.20GHz processor. The query from the map was

completed within seconds and variations in time depending on how far the initial and

goal configurations were from nearby configurations in the graph. For the simulator,

Klamp't [221 was extensively used for to generate physically accurate simulation in-

volving multiple contacts. Klamp't specializes in providing robust and stable contact

forces compare to other robot simulators (e.g., Gazebo) and hence was suitable for

the application.

Figures in this section shows several examples of solutions returned from the

recovery motion planner. Fig. 4-4 shows one example of a solution where torque

limit on each joints were allowed up to 10ONm. In the example shown, the returned

solution extensively uses hands to raise itself to the stand up position. The initial

torque limit given were sufficient high that such motion is possible.

In the second example, the torque limit on the joints were reduced to one-fifth,

77

,am

Figure 4-5: An example of solution returned from the recovery motion planner is
shown. Here, the torque limits were reduced to one-fifth from the example given in
Fig. 4-4 and the resulting motion exhibits robot going through multiple contacts to
sustain its own weight.

from 100 Nm to 20 Nm. Fig. 4-5 shows a returned solution based on the changed

reduced torque limits. The resulting solution now shows the robot going through

several contact states as the torque is limiting. It closely resembles how a person

would stand up from fall down position. In the third example, torque limit of the

elbow joint was further reduced from 20 Nm to 5 Nm. This was to imitate a situation

where robot falls and one or more motors become malfunctioning due to the high

impact force from fall down. The returned solution, as demonstrated in Fig. 4-6,

shows a motion where action of the elbow is minimized. Note that reduction in torque

limits does not require re-computation of the global pseudo-inverse map. From the

initially constructed global pseudo-inverse map, a solution can be found for reduced

torque limits by pruning the edges in the map that violate the new torque limits prior

to the search. As pruning is computationally inexpensive, the motion planner can

quickly adapt and generate recovery solutions in the presence motor breakdown due

to fall down impacts.

The simulation results show that the recovery motion planner works well in the

2D case. When applying the recovery planner to a high degrees of freedom robot in

3D, several issues need to be addressed for the computation of global pseudo-inverse

78

Figure 4-6: A robot can experience breakdown of a motor from fall down due to im-

pacts. The recovery motion planner can quickly adapt to the changes in torque limits

caused by a breakdown and generate a plan. Here, a solution is shown where available

torque on the elbow joint has been significantly reduced to simulate recovering when

a motor at arm fails after the fall down.

map to be tractable.

The first and foremost important issue is the sample selection. Extending from 2D

to 3D, samples required to cover the workspace becomes significantly higher. How

many sample one has to choose that will sufficiently cover the workspace becomes

an non-trivial question. There is a tradeoff between the increasing coverage of the

workspace and reducing the computation time required for map construction. Once

the number of samples to be placed are chosen, where to place these sample becomes

an important consideration. A simple approach is placing the over a regular grid of

equal intervals to ensure the even spacing. However, some parts of the workspace

region are more interesting than others and placing more sample in those parts are

beneficial. An adaptive sampling based on the curvature of the surface could be one

of the candidate for distributing the samples.

A robot often exhibit kinematic structure which can be exploited to reduce the

computation of the global pseudo-inverse map. First is the symmetry. Often a robot

will have several symmetries with respect to its kinematics. One contact state can

have identical pseudo-inverse function with another in the presence of symmetry and

these redundant computation can be avoided. Also, kinematics of a robot may have

79

MAI P 11 R

several sub-chains which are identical. These common sub-chains can also be used to

reduce the computation.

The recovery motion planner in current form is a batch process. A batch of sample

are used to construct the map and query is done afterwards which are two separate

phases. However, during querying phase, connections made to steer initial and goal

configuration can be utilized to update the tree so that it is incremental.

4.5 Conclusion

In this chapter, a recovery motion planner is presented based on the framework devel-

oped in the Chapter 3. The recovery planner overcomes several limitations of existing

recovery planners. First, the planner is not specific to a particular robot and can be

used to generate motion of an arbitrary robot in general when its kinematics is given.

Second, it does not rely on pre-defined motion and can generate feasible recovery

motion even when a motor break-down. Moreover, the ground surface do not needed

to be flat and the planner can generate recovery motions to inclined or even curved

surfaces, although global pseudo-inverse map need to be computed for each different

surfaces. Simulated results are shown to demonstrate working of the recovery planner

and discussion on potential extensions is presented.

80

Chapter 5

Navigation inside Space Station

Motion planning problem traditionally focuses on generating trajectories that avoid

obstacles at all cost. However, obstacles can often be put to an advantage when the

external force generated from a contact is utilized. For example, an astronaut inside a

space station constantly makes contact with obstacles to navigate around, rather then

trying to avoid them. In this chapter, we apply the planning framework discussed

in Chapter 3 to solve motion planning problems that is abstracted from astronauts

traveling inside a space station. The method works by building a global map which

will be refered as K-step Reachability Map which consists of a set of trajectories that

connect two contact points and k-step number assigned to each trajectory. The set of

trajectories is chosen to evenly fill up the state-space through arc-length discretization

of the contact surface and k-step number indicates minimum number of contacts

require to reach the goal. From the map, multiple queries can be made to generate

feasible trajectory from given starting states. It works by connecting the initial state

to the trajectories on the map, from which a minimum step trajectory to the goal is

easily generated. The method is applied to solve the problem of a robot navigating

inside a space station. Discussion of properties of the map, computational complexity

and how it can extended be is also presented.

81

5.1 Introduction

Motion planning has traditionally focused on generating a trajectory that avoids ob-

stacles [451. This is largely because the motivation for motion planning problems

derived from situations where collision with obstacles is highly undesirable. For ex-

ample, an assembly robot in a car manufacturing factory must plan a motion through

a rather complex car body without hitting it. Failure to do so will result in damage to

both the car and the manipulator. A quadrotor navigating inside a crowded building

must plan a motion that avoids contacting with the environment(e.g. walls, people,

furnitures). If a quadrotor hits an object, it can lose stability and in the worst case

scenario, fall to the ground and break down. An autonomous car must plan a motion

that avoids collision at all cost. If not, accidents can happen which may hurt riders

inside.

However, there are situations where contacting with an obstacle or environment is

not costly. Moreover, in many cases, contact can actually help a system to maneuver

around to reach a goal state which would not have been possible otherwise. For

example, an astronaut inside the International Space Station often needs to move

from one compartment to another through narrow corridors. Here, planning a motion

to avoid any contact whatsoever is not only difficult but unnecessary - in contrary,

astronauts actively seek to make contact with and push off the obstacles to navigate

through.

Planning a motion that incorporates contact naturally arises from problems of

legged locomotion where the foot makes contact with the ground 1871. Footstep

planning is essential for this type of locomotion and number of literature addresses

it 112,16,39,711. More recently, planning for the whole-body motion that incorporates

multi-contact interactions has gained a great interest and is actively being pursued.

Approaches based on operational space formulation [36,70,79,801 and centroidal mo-

mentum dynamics 126,46,63,64,861 is gaining traction, while many leverage upon the

power of optimization techniques 15, 14,47, 721. However, these works are focused on

generating a quasi-static motion where at least one contact with the surface, usually

82

Figure 5-1: Astronauts need to constantly navigate through narrow and crowded
modules inside the International Space Station as shown on the left. Rather than
seeking to avoid the obstacles, astronauts actively make contact with the obstacles
to help them navigate as seen in the right. Image courtesy of NASA retrieved from
https://www.nasa.gov/

a horizontal ground, is maintained.

In this work, we apply planning framework in Chap. 3 to present a method

that is suitable for motions where flight-phase is dominant without being periodic

(cf. a robot running 1691 or hopping 174] is dominated by flight-phase but periodic

in nature). An example would be an astronaut navigating inside the space station

or a parkour practitioner jumping between walls to maneuver around the buildings.

These motion are characterized by the fact that the robot has no ability to change its

centroidal momentum during flight. Only when in contact, the internal joint torques

of the robot can be translated to external forces affecting the motion, which is then

propagated through the flight-phase till the next contact is reached. Here, obstacles

must be utilized rather than avoided, viewed as an opportunity to change the course

of the motion through contact.

The proposed planning method is based on the global map and consists of two

phases: map construction and query phase. In the map building phase, a gloabl map

(referred as K-step Reachability Map from onwards) is created which first chooses a

set of trajectories that connect two contact points and evenly fill up the state-space

based on the arc-length discretization. Then k-step number is sequentially assigned

to each chosen feasible trajectory by propagating backwards from the goal. This

k-step number equals the minimum number of contacts required to reach the goal

83

Figure 5-2: Navigation inside the Space Station Problem. A robot has to travel from
Xi to Xg inside the space station by making sequence of contacts. While in contact,
the robot can change its velocity by applying appropriate joint torques. Nevertheless,
it has no ability to change the velocity in mid-flight.

state from the current trajectory. In the query phase, a feasible plan is generated by

first connecting a given initial state to the map and then concatenating successive

trajectories that each reduces the k-step number by one.

The result is a multi-query planner that, once the map is constructed, very quickly

gives a minimum step plan from any initial state. The methodology is motivated from

and applied to the problem of an astronaut navigating around the International Space

Station, but can be extend to solve more general cases.

5.2 Problem Formulation

This section formulates the problem to be addressed in the chapter. It is motivated

from how astronauts move around the clustered environment inside the International

Space Station (ISS) by pushing off the obstacles. As shown in Fig. 5-2, the problem

is to plan a motion for a robot inside the ISS to navigate from the current state

to a desired goal state. Here, planned motion is allowed to make contact with the

obstacle. In fact, collision-free motion is not possible as the robot is unable to change

its velocity in the mid-flight. Rather, a sequence of contacts with obstacles must be

made and utilized to reach the goal state.

To formally state the motion planning problem with contact in general, consider

84

a system with dynamics given by ik(t) = f(x(t), u(t)), where x is the state, u is the

control. Let X denote state space, Xob, C X obstacle set, with given initial state

x(O) = xii a goal set Xgoai c X, and constraints on control input umin u < umax.

The problem is to find, if it exists, a control input u(t) that results in a feasible path

x(t) E X\X.0b, for Vt E [0, t1] such that the system reaches the goal state X(tf) E Xgol

from the initial state x(0) = Xini while satisfying the dynamics. Note that the feasible

path x(t) is allowed to make contact with the obstacles s.t. x(tc) E Xobs\Xoos for

some t, E [0, tf] and hence not strictly collision-free.

In this chapter, we consider problem described in Fig. 5-2 which will be referred

as Navigation inside the Space Station Problem henceforth. Here, the kinematics

of a robot is not explicitly encoded and only the robot's center of mass motion is

considered for simplicity. The workspace is W C R 2 and the state x(t) is position

and velocity of the robot's center of the mass. The dynamics of the system is given

as :i(t) = const while x(t) E X\Xob, and the state x(t) undergoes impulsive change

upon contact with the obstacle, described by the impact map x(t+) = A((t-), u).

The impact map can be arbitrary, but we specifically look at a perfectly elastic

collision that obeys the law of reflection when u = 0. It is assumed that the control

input u during contact changes the direction of the velocity but not its magnitude

such that the kinetic energy before and after the collision is conserved. To what

extent direction of the velocity can be altered from that prescribed by the law of

reflection depends on the property of the contacting surface, configuration of the

robot at contact, and constraints on the control input u. For simplicity, it is assumed

that the maximum angle of deviation Omax that can be induced by the control input

u, is given for each contacting point along the surface.

5.3 K-step Reachability Map

This section presents map construction phase of the proposed motion planning method.

First, discretization of the contact surface is explained from which a set of trajecto-

ries that belong to the map is generated. Then a recursive algorithm that assigns

85

k-step number to each trajectories is described. The key properties of the K-step

Reachability Map as well as its computational complexity is discussed.

5.3.1 Discretization of the Surface and Trajectory

It is highly desirable for the set of trajectories on the map to evenly fill up the state

space. To this end, K-step Reachability Map generates trajectories based on the

discretization of the surface in the following manner. First, it will be assumed that

the contacting surface is a piecewise simple and closed regular curve a : I C R1 -> R'

that is parametrized by arc-length s. Then for each s E I, a(s) uniquely determines

a point on the contact surface and vice-versa. The direction of parametrization is

chosen such that signed normal vector n(s) always points towards Xfree = X\Xb,.

This makes the curve negatively oriented for the obstacles.

The contact surface is discretized at a regular arc-length interval ds, which is a

parameter that determines the resolution of the planner. Let s(i) _ i * ds, then the

set of discretized points S along the contact surface becomes

S = {a(s(i))ji E [1,N], i E Z}

where N = Fl/dsl is the total number of the discretized point along the surface with

1 being the total arc-length of the contact surface. The vector a(s(i)) represents

coordinate of i-th discretized -point along the contact surface when i is an integer

taking a value from 1 to N.

From the set S, a set of trajectories T is generated as follow. Let rij be a trajectory

that connects two points on the contact surface, starting at a(s(i)) and ending at

a(s(j)) with i, j E R. For the navigation inside the spacee station problem, rij is

unique and it is the ray from a(s(i)) to a(s(j)). Now, T is defined as

T = {rij la(s(i)), a(s(j)) E S,i z, j,rej E Xfree}

The set T contains all collision-free trajectories that connect two distinct dis-

86

25 24 23 22 P 4 P 3 P2 Pi 17 16

26 *- -15
Pi

27
p=

2811

29 12UO

30 11

1 2 3 4 5 6 7 8 9 10

Figure 5-3: K-step Reachability Map assigns a number ki3 to each trajectory rij E T,
which equals the minimum number of contacts required to reach the goal from the
current trajectory. The assignment is done recursively, starting from the trajectory
r?. that enters the goal and propagating backwards as described in Alg. 3. The above
diagram shows two-step propagation from the goal state. In this example, the contact
surface is uniformly discretized and the impact map follows the law of reflection with
control input that can deviate it by maximum angle of +15'.

cretized points along the contact surface, and forms trajectories of the map. It is a

finite subset in the space of trajectories with cardinality in the order O(N2), TI < N2

to be more precise. Moreover, the trajectories evenly fill up the state-space due to its

construction, although more precise quantification is needed.

5.3.2 Assignment of the K-step Number

K-step Reachability Map, K : rij E T -+ Z, assigns k-step number to each trajectory

rij in the set T. The k-step number, denoted kij, is defined as the minimum number

of contacts required to reach the goal state from the trajectory ri. The assignment

of the k-step number is done recursively propagating from the trajectory r?- that

directly reaches the goal state (Alg 3).

In the algorithm, Qk is a queue that contains all the trajectories that is assigned

k-step number equal to k. Initially, k = 0 with Qo having only one trajectory r?., and

k is increased sequentially to generate Qk. It is continued till Qk becomes an empty

set. The final value of k = kma, indicates the following: all the trajectories in the

set T that can reach the goal through concatenation of trajectories within the set T,

requires at most kmax number of contacts.

87

Algorithm 3 : ki3 <- KstepReachabilityMap(T, rq)

2: Q +-r

3: k. - 013
4: assigned[r- <- true
5: while Q is not empty do
6: rij +- Q.pop(
7: for all rpi E T do
8: if , assigned[rpi] and r -+ rij reachable then
9: Q.push(rpi)

10: kpi +- kij + I

11: assigned[rpi +- true

12: return kij

The most computationally expensive part of the algorithm is determining whether

the trajectory rij is reachable from rpi (line 10). To be precise on the terminology used

here, the trajectory rij is reachable from rpi if 3u satisfying ri,(ti) = A(rpi(tf), u) such

that the final state of the trajectory rpi(tf) together with control input u produces

the initial state of the trajectory rij(ti) through the impact map. Depending on

the structure of the impact map, finding the existence of a control input given two

trajectories rpi and rij can become expensive.

For the navigation inside the space station problem, checking reachability of two

trajectories ri and rij is a simple computation. Since the impact map follows the

law of reflection in the absence of a control input, the velocity v9 of the trajectory

rij can be expressed in terms of velocity vp, of the trajectory rpi and normal vector

n(i) at the contact surface

v9 = A(vp,, 0) = vpi + 2(vpi * n(i))rn(i)

Now from the problem formulation, the control input u is assumed to deviate the

direction with maximum angle of 9
max,i. The reachability then reduces to checking

whether the angle between v9 and vij is less than 6
max,i

88

IMMIRWRIP11111111 1-- - - 1 11 I 1-5-1,11,", 1 "1 1 11 '1 ' .. -R . I I I.7M"ITMPW I IRPOPM

5.3.3 Properties and Computational Cost

The K-step Reachability Map has following key properties that enables it to act as a

roadmap. These properties will be utilized to generate a feasible plan from a given

starting state in the query phase.

The first property is about connectivity among the trajectories on the map. For

any trajectory Vrpi E T with k-step number kpi = k, there exist at least one trajectory

rij E T that is reachable from ri with k-step number kij = k - 1. This property

comes directly from the map construction (Alg.3). If there exists a trajectory rpi E T

that does not have a reachable trajectory rij E T with kij = kpi - 1, then it directly

contradicts the algorithm (Alg.3, line 6,7,10,11).

This property ensures that every trajectory in the map with k-step number as-

signed, can be connected to the goal by concatenating number of trajectories in the

map equal to its k-step number. Note that there may be trajectories in the map whose

k-step number has not been assigned during the map construction (Alg.3, line 8) and

remain at infinity. Unassigned k-step number kij = oc gives a weak certificate of the

reachability of trajectories rij to the goal. The set Tinf = {rij E TJ kij = oo} defines

a subset of trajectories on the map that cannot reach the goal through trajectories

on the map. It is a weak certificate of the reachability in the sense that a trajectory

rj C Tinf can still reach the goal travelling through trajectories outside the map, but

cannot do so only with trajectories in the map.

Proposition 3. For any trajectory Vrpi E T with k-step number kpi = k, there exist

at least one trajectory rij z T that is reachable from rpi with k-step number kij = k - 1

The second property is about assignment of k-step number to trajectories that

are outside the map but ends on one of the discretized contact surface points. Let

rij 0 T be a trajectory not on the map but ends on one of the discretized surface point

s.t a(s(j)) E S. If its neighboring trajectories rri1j, rtijj E T, then min[kriaj, k[iJj] <

kij 5 max[ki1 j, k[iJJ] and moreover, if ki1 j = kLiJj then kij = krili = kLiJi

This property is conjectured to be true when the following conditions are met:

89

25 m 23 22 21 20 17 16

27 -// 14

rim k,=k--I

28 k = P k 13

29 1/12

30 11

1 2 3 4 j 6 7 a 9 P10

Figure 5-4: To generate a feasible plan from the K-step Reachability Map, a given
initial state x, must first be connected to the map. Connection to the map is executed
in two stages. First, the starting trajectory r,*, which contains the initial state x, is
steered to the trajectory rij such that j E Z. This makes the trajectory ri to land on
one of the discretized surface points. The trajectory rij is then steered to one of the
trajectories rjm E T in the map to complete the connection. Among the all possible
pairs of trajectories rij and rjm, ones that minimize the k-step number is chosen using
the properties of the map.

1) curve a(s(n)), n E [Li , Fil] is simple and regular

2) region enclosed by two trajectory r-ily, r ijy and a(s(n)), n E [[ij , Fi] contains no

obstacle

3) mapping from control input u to space of trajectories is smooth.

These conditions generally hold when the trajectory rij 0 T is reasonably close to its

neighboring trajectories rrily, rLijj E T.

Therefore, when the set of trajectories in the map sufficiently fills up the state-

space, the above property makes it possible to assign a k-step number to trajectories

outside the map. This allows an arbitrary trajectory to be connected to the map

through appropriate steering.

The computational complexity of constructing the map is O(N3) where N =

[l/dsl is the total number of the discretized point along the surface as defined pre-

viously. This can be shown as follow. The set of trajectories T in the map has

cardinality IT| <; N 2 . Now, during the construction, each trajectory rij enters the

queue (Alg.3, line 11) at most once. For each trajectory in the queue, reachability

check (Alg.3, line 10) is performed at most N times, equalling N when all trajecto-

90

ries ri are in the map for p from 1 to N. Therefore, the reachability check which

dominates the computational cost in the algorithm is executed at most N 3 times.

Proposition 4. Let rij T be a trajectory not on the map but ends on one of

the discretized surface point. If its neighboring trajectories ril, r ijj E T, then

min[kiJ,k iJJ] kij max[kiqj,k iJi] under the smoothness assumptions. More-

over, if kij = k[isj then kij = krig = knijj

5.4 Generating a Plan from the Map

This section describes the query phase of the proposed motion planning method.

When a query is made by giving an initial state, a feasible plan to the goal can

be quickly generated using the constructed map. First, how the given initial state

is connected to the map is explained. Then, generation of a feasible plan once the

trajectory enters the map is detailed.

5.4.1 Connection to the Map

To generate a feasible plan, it is necessary to connect the given initial state x, to

the constructed map. This is done by steering the initial trajectory that contains

x, towards a trajectory in the map. Since the control input u only acts to change

dynamics when in contact, a trajectory that contains the initial state x, is unique

and we denote it by r (Alg.4, line 1).

The initial trajectory rai lands on the surface at a(s(i)) which is not necessary in

the set S of the discretized contact surface points (i Z) as shown in Fig. 5-4. The

first step of steering is to apply control input u at the initial contact point a(s(i))

such that the ensuing trajectory rij lands on one of the discretized surface points

(j E Z). Now, there may be more than one value of j E Z for which the trajectory rij

is reachable from r", (Alg.4, line 5). Among these trajectories, r"1 is steered to the one

that minimizes the k-step number. This is done by assuming k-step number of the

trajectory rij to be equal to the max k-step number of its two neighboring trajectories

91

rpipj and r[ijj (Alg.4, line 6) which is a consequence of the second property of the

map (Section 5.3.3). Note that in the implementation, Concatenate(P, rij) function

concatenates the trajectory rij to the tail of plan P.

After the trajectory r is steered to rij such that j E Z, it now remains to steer the

trajectory rij to one of the trajectories rjm E T in the map. Among the trajectories

rjm E T that can be reached from rij, one that has minimum k-step number is

chosen as the destination. The connection to the map is complete as the trajectories

r -+ rij -+ rjm steers the given initial state x, onto the map with rjm E T. This

two-step execution is done in a way that minimize the k-step number of the last

trajectory rjm that enters the map.

5.4.2 Minimum Step Plan Generation

Once the given initial state x. is steered to a trajectory in the map, a plan to the

goal can be generated very quickly as a consequence of the first property of the map

(Section 5.3.3). The connectivity guarantees that a trajectory rpi E T with k-step

Algorithm 4 : P +- ConnectToMap(T, kij, x,)
1: rp>, <-InitialTrajectory(x,)
2: P +-InitializePlan(r')
3: kmin+-oo
4: for j' = 1 to N do
5: if rij E Xfree and r -+ rij, reachable then
6: k' = max[k ili', k iJA]
7: if k' < kmin then
8: kmin -k

9: j + '
10: P +- Concatenate(P, rij)
11: kmin-oo
12: for m'= 1 to N do
13: if rjm' E T and ri -+ rjm' reachable then
14: if kjm, < kmin then
15: kmin <- kjm'
16: m <- m'
17: P +- Concatenate(P, rim)
18: return P

92

Algorithm 5 : P +- GeneratePlan(T, kij, x,)

1: P +- ConnectToMap(T, kij, x,)
2: rpi- LastTrajectory(P)
3: while kpi > 0 do
4: for all rij E T s.t. kij = kpi - I do

5: if ri -+rij reachable then
6: P +- Concatenate(P, rij)
7: Terminate For Loop;

8: rpi *- LastTrajectory(P)

9: return P

number kpi always has at least one trajectory rij E T that can be reached with a

reduced k-step number kij = kij -1.

The planner follows through the trajectories in the map in a greedy manner, each

time steering to a trajectory with k-step number one less than the current (Alg.5,

line 4-6). The result is a feasible plan that reaches the goal from a given initial

state x, while making minimum number of contacts in the process. In the algorithm,

LastTrajectory(P) function returns the tail trajectory that has been concatenated

lastly. In the implementation, a trajectory is chosen arbitrarily among the trajectories

rij that have same k-step number. When desirable, a heuristic (e.g. min length) can

be introduced to break a tie between trajectories rij with same k-step number to

improve the quality of the returned plan with respect to a designed cost.

The computation time of generating a plan from a given initial state to the goal

is O(N). Hence, once the map is constructed (which requires O(N3) computation),

a feasible plan can be generated efficiently and multiple queries can be answered

quickly.

5.5 Simulation Result

The proposed motion planning algorithm is applied to the problem of navigating inside

the space station as described in Section 5.2. In this example, the space station is a

rectangular room with a circular obstacle in the center and a robot has to navigate

around by making sequence of contacts. The impact map follows the law of reflection

93

(a) 2 step propagation ()4 step propagation

(c) 6 step propagation (d) complete map

Figure 5-5: The map construction phase of the proposed motion planning algorithm
is shown graphically. Starting from the goal state, trajectories are propagated back-
wards sequentially to build K-step Reachability Map. As seen, large part of the
state-space is quickly filled as the number of steps increase. In this example, a robot
is inside a rectangular room with a circular obstacle at the center and the maximum
angle that can be deviated by the control input u is set to +15 deg

with the robot having ability to deviate the angle by maximum of +15 deg while in

contact through controlling its joint torques. The simulation was performed using

MATLAB on Core i5-2430 (2.40GHz) workstation.

The planner first builds K-step Reachability Map in the construction phase as

shown in Fig. 5-5. The resolution of the constructed map depends on the parameter

ds which is the regular arc-length interval that the contact surface is discretized.

Averaging over 100 trials, computation times of building the map were 0.22s, 0.84s,

3.89s for resolution level ds = 1.00, 0.50, and 0.25 respectively. The Fig. 5-5 shows

the case when ds = 0.5 and here, the total arc-length of the environment(rectangular

room and circular obstacle) is 1 = 39.42 making N = Fl/dsl = 79.

From the constructed K-step Reachability Map, the planner can answer multiple

queries to generate a feasible minimum step trajectory from a given initial state to the

goal. Fig. 5-6 shows trajectories generated by the planner for different initial states.

The plan generation is done very quickly once the map is built - the computation

94

-------- ----

- -- - - -- -- - -- - -- -

(a) query #1

(a) query #3

(b) query #2

(b) query #4

Figure 5-6: Multiple queries can be made on the map to generate a minimum step
feasible trajectory from different initial states. Here, four queries were answered by
the planner using the map constructed in Fig. 5-5. Based on the key properties of the
map, a feasible trajectory that steers a given initial state to the goal in the minimum
steps can be very efficiently planned.

time to generate a plan was 0.05s averaged over 100 trials.

5.6 Discussion on Extension

The described motion planning method focuses on generating a feasible plan that

makes minimum number of contacts to reach the goal. However, in certain situations,

a cost function other than the number of steps may be more desirable. For example,

one may be more interested in a plan that minimizes the length or the control input.

The planner can be generalized towards this end by making few changes in building

the map. Dynamic programming algorithm can be applied in the construction phase

to additionally compute cost-to-go value for each trajectory recursively. This will

allow the planner to generated optimal plan with respect to the trajectories in the

map.

A more important generalization, from the author's perspective, is to make the

planner handle changes in the magnitude of the velocity. In the chapter, the problem

95

assumed the magnitude of the velocity to be constant, while allowing only the direc-

tional change. This is a reasonable assumption for the cases when there is no gravity

acting (e.g. a robot navigating inside the space station), since a velocity profile can

be easily imposed onto the planned path. However, in the presence of the gravity,

the planner must handle both changes in the magnitude and direction to generate a

feasible trajectory.

To handle the change in the magnitude of the velocity, the set of contact surface

points S can be expanded to include magnitude of the velocity as an additional

dimension. This will introduce significant increase in the computation time of the

map construction depending on the level of discretization of the speed. But once the

map is constructed, plan generation will remain computationally inexpensive as the

properties of the map still hold and can be leveraged.

5.7 Conclusion

In this chapter, a motion planning method based on the framework developed in

Chapter 3 has been proposed that is suitable for motions where flight-phase is dom-

inant. The planner explicitly deals with and utilizes contact with the obstacles to

generate a feasible plan. The key component of the method is in building the K-

step Reachability Map, which recursively assigns k-step number to the selected set

of trajectories. The set of trajectories is chosen that evenly fills up the state-space

based on the discretization of the contact surface. The k-step number assigned to

each trajectory in the map indicates the minimum number of contacts required to

reach the goal from the trajectory.

The proposed planning method efficiently generates a feasible minimum step plan

from the K-step Reachability Map by leveraging on its properties. Multiple queries

can be answered on the map to give trajectories leading to the goal for different

initial states. The planner is applied to solve the problem of navigating inside the

space station. It can also be extended to solve more general problems.

96

Chapter 6

Conclusion

This thesis presented a framework for motion planner that utilizes multiple contacts

with the environment and its objects. In the robot motion planning problems, en-

vironment and its objects are often treated as obstacles to be avoided. However,

there are situations where contacting with the environment is not costly. Moreover,

in many cases, making contact can actually help a robot to maneuver around to reach

a goal state which would not have been possible otherwise. The framework presents

a planner that autonomously generate motions, where robot has to make multiple

contact with different part of its body in order to achieve a task objective.

The essence of the framework is a fast multi-contact planner that utilizes pre-

computed global pseudo-inverse map. Existing multi-contact planner require good

initial seeds for it to successfully generate motion. These are hard to find and often

manually encoded. In addition, current multi-contact planners are single-query and

often slow. Here, we leverage upon a pre-computed global pseudo-inverse map to

generate multi-contact motion from current configuration to the goal without need

for an initial seed. In Chapter 3, details of how the pseudo-inverse map is constructed

is presented. The pseudo-inverse map is an inverse kinematics map for each contact-

state that has a property of global resolution, connected by connectivity functions.

To make the construction process more computationally tractable, we leveraged

singular configurations to produce torque efficient motions. In Chapter 2, singularity

is presented as a search heuristic with analysis of force and momentum generated

97

through contact in relation to the singular positions. Although global pseudo-inverse

map is computationally expensive, once computed, it can be used to generate plans

fast, possibly online, in a multi-query manner. Its application is presented in Chapter

4 and 5. In Chapter 4, the framework is applied to give a multi-contact motion

planner that plans recovery motion from fall down for humanoids. In Chapter 5, a

motion planner that solves actuated mathematical billiard problem motivated by an

astronaut navigating inside the International Space Station is presented.

6.1 Extension and Improvements

There are several aspects of the presented framework that can be extended as well as

improved. The planning framework, in its current form, is batch process in nature.

From the samples generated, a global pseudo-inverse map is constructed and then

queries are made on this pre-constructed global map. Construction and query phase

are separated and do not affect each other. However, when a query is made, compu-

tation done to steer a given sample to the map can be utilized to expand the global

map. The framework can be extended to be incremental, where map is incrementally

built and queries can be part of the building process. This will make the planner

asymptotically complete and failure less likely.

The performance of the presented planner largely depends on whether the samples

used to construct the global pseudo-inverse map sufficiently covers the landscape of

the global structure. Having a large number of sample definitely helps but comes

at the cost of computation. Thus, from given computational resources, number of

samples will be bounded and this poses questions of how do we choose 'good' samples

to have the needed coverage. In the implementation of framework, we have used

regular grids to select the samples. This approach is simple and robust, but may

unnecessarily waste sample in an uninteresting flat ground. A more adaptive sampling

strategy will be needed to improve the performance of the planner in increasing the

success rate of the returned plan. An idea toward such strategy will be incorporating

curvature information and utilizing homotopy in the selection of the samples.

98

The framework generates a global pseudo-inverse map based on the torque limits

of the robot. However, when those torque limits change, the global map has to be

recomputed from scratch even if robot's kinematics is not altered. Being able to

adapt to changes in torque limit can be useful when there is possibility of actuators

malfunctioning during an operation. For example, when robot hits or falls with high

impact, it may break down some of the motors and thereby changing maximum

torque that can be produced. The construction of global pseudo-inverse map can be

extended to incorporate these torque limit changes. This can be achieved simply by

setting the torque limit to infinity during map construction and encoded the maximum

torque required for each of the edges and vertices. Then the map can be truncated

based on the given torque limit during the query process. Having no torque limit

during construction will significantly increase the size of the map as torque feasibility

condition accounts for rejection of large portion of edges and vertices. But once

computed, the planner will be able to generated motion robust to changes in the

actuator torque which can occur through hard contacts.

99

100

Bibliography

[11 Antonio Bicchi, Marco Gabiccini, and Marco Santello. Modelling natural and
artificial hands with synergies. Phil. Trans. R. Soc. B, 366(1581):3153-3161,
2011.

[21 James E Bobrow, B Martin, G Sohl, EC Wang, Frank C Park, and Junggon
Kim. Optimal robot motions for physical criteria. Journal of Robotic systems,
18(12):785-795, 2001.

[3] Oriol Bohigas, Michael E Henderson, Lluis Ros, Montserrat Manubens, and
Josep M Porta. Planning singularity-free paths on closed-chain manipulators.
IEEE Transactions on Robotics, 29(4):888-898, 2013.

141 Karim Bouyarmane and Abderrahmane Kheddar. Static multi-contact inverse
problem for multiple humanoid robots and manipulated objects. In Humanoid
Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages
8-13. IEEE, 2010.

[5] Karim Bouyarmane and Abderrahmane Kheddar. Multi-contact stances plan-
ning for multiple agents. In IEEE International Conference on Robotics and
Automation, 2011.

[6] Karim Bouyarmane and Abderrahmane Kheddar. Humanoid robot locomotion
and manipulation step planning. Advanced Robotics, 26(10):1099-1126, 2012.

[71 Tim Bretl, Jean-Claude Latombe, and Stephen Rock. Toward autonomous free-
climbing robots. In Robotics Research. The Eleventh International Symposium,
pages 6-15. Springer, 2005.

18] Katie Byl, Marten Byl, and Brian Satzinger. Algorithmic optimization of inverse
kinematics tables for high degree-of-freedom limbs. In ASME 2014 Dynamic
Systems and Control Conference, pages V001T04A005-V001T04A005. American
Society of Mechanical Engineers, 2014.

191 John Canny. The complexity of robot motion planning. MIT press, 1988.

1101 John Canny. Computing roadmaps of general semi-algebraic sets. The Computer
Journal, 36(5):504-514, 1993.

101

[11] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete &
Computational Geometry, 6(1):485-524, 1991.

[121 Joel Chestnutt, Manfred Lau, German Cheung, James Kuffner, Jessica Hodgins,
and Takeo Kanade. Footstep planning for the honda asimo humanoid. In IEEE
International Conference on Robotics and Automation, 2005.

113] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient bipedal
robots based on passive-dynamic walkers. Science, 307(5712):1082-1085, 2005.

114] Hongkai Dai, Andres Valenzuela, and Russ Tedrake. Whole-body motion plan-
ning with centroidal dynamics and full kinematics. In IEEE-RAS International

Conference on Humanoid Robots, 2014.

[151 Anjan Kumar Dash, I-Ming Chen, Song Huat Yeo, and Guilin Yang. Singularity-
free path planning of parallel manipulators using clustering algorithm and line

geometry. In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE In-

ternational Conference on, volume 1, pages 761-766. IEEE, 2003.

116] Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with mixed-
integer convex optimization. In IEEE-RAS International Conference on Hu-

manoid Robots, 2014.

[171 Adrien Escande, Abderrahmane Kheddar, and Sylvain Miossec. Planning sup-
port contact-points for humanoid robots and experiments on hrp-2. In Intelligent

Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 2974-
2979. IEEE, 2006.

[18] Adrien Escande, Abderrahmane Kheddar, and Sylvain Miossec. Planning contact
points for humanoid robots. Robotics and Autonomous Systems, 61(5):428-442,
2013.

1191 Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. IEEE transactions on robotics,
21(6):1077-1091, 2005.

1201 Miguel GonzAlez-Fierro, Carlos Balaguer, Nicola Swann, and Thrishantha
Nanayakkara. A humanoid robot standing up through learning from demonstra-
tion using a multimodal reward function. In 2013 13th IEEE-RAS International

Conference on Humanoid Robots (Humanoids), pages 74-79. IEEE, 2013.

[211 Clement Gosselin and Jorge Angeles. Singularity analysis of closed-loop kine-
matic chains. IEEE transactions on robotics and automation, 6(3):281-290, 1990.

1221 Kris Hauser. Robust contact generation for robot simulation with unstructured
meshes. In Robotics Research, pages 357-373. Springer, 2016.

[231 Kris Hauser. Continuous pseudoinversion of a multivariate function: Application
to global redundancy resolution. 2017.

102

1241 Kris Hauser, Timothy Bretl, Kensuke Harada, and Jean-Claude Latombe. Using
motion primitives in probabilistic sample-based planning for humanoid robots.
In Algorithmic foundation of robotics VII, pages 507-522. Springer, 2008.

1251 Kris K Hauser, Timothy Bretl, and Jean-Claude Latombe. Non-gaited humanoid
locomotion planning. In Humanoids, pages 7-12, 2005.

[261 Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger, Stefan
Schaal, and Ludovic Righetti. Momentum control with hierarchical inverse dy-
namics on a torque-controlled humanoid. Autonomous Robots, pages 1-19, 2015.

127] Hirohisa Hirukawa, Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, and
Takakatsu Isozumi. The human-size humanoid robot that can walk, lie down
and get up. The International Journal of Robotics Research, 24(9):755-769,
2005.

1281 Masayuki Inaba, Takashi Igarashi, Satoshi Kagami, and Hirochika Inoue. A 35
dof humanoid that can coordinate arms and legs in standing up, reaching and
grasping an object. In Intelligent Robots and Systems' 96, IROS 96, Proceedings
of the 1996 IEEE/RSJ International Conference on, volume 1, pages 29-36.
IEEE, 1996.

1291 Masayuki Inaba, Fumio Kanehiro, Satoshi Kagami, and Hirochika Inoue. Two-
armed bipedal robot that can walk, roll over and stand up. In Intelligent Robots
and Systems 95.'Human Robot Interaction and Cooperative Robots', Proceedings.
1995 IEEE/RSJ International Conference on, volume 3, pages 297-302. IEEE,
1995.

1301 Tatsuzo Ishida, Yoshihiro Kuroki, and Taro Takahashi. Analysis of motions of a
small biped entertainment robot. In Intelligent Robots and Systems, 2004. (IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 1,
pages 142-147. IEEE, 2004.

[311 Tor Arne Johansen, Thor I Fossen, and Stig P Berge. Constrained nonlinear
control allocation with singularity avoidance using sequential quadratic program-
ming. IEEE Transactions on Control Systems Technology, 12(1):211-216, 2004.

1321 Kiyoshi FUJIWARA Fumio KANEHIRO Shuuji KAJITA, Kazuhito YOKOI,
Hajime SAITO Kensuke HARADA Kenji KANEKO, and Hirohisa HIRUKAWA.
The first human-size humanoid that can fall over safely and stand-up again.
In IEEE-RSJ International Conference on Intelligent Robots and Systems, Las
Vegas, NV, USA, volume 27, pages 1920-1926, 2003.

1331 Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke Harada, Shuuji
Kajita, Kazuhito Yokoi, Hirohisa Hirukawa, Kazuhiko Akachi, and Takakatsu
Isozumi. The first humanoid robot that has the same size as a human and
that can lie down and get up. In Robotics and Automation, 2003. Proceedings.

103

ICRA '03. IEEE International Conference on, volume 2, pages 1633-1639. IEEE,
2003.

1341 Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846-
894, 2011.

1351 Lydia E Kavraki, Jean-Claude Latombe, Rajeev Motwani, and Prabhakar
Raghavan. Randomized query processing in robot path planning. In Proceedings
of the twenty-seventh annual ACM symposium on Theory of computing, pages

353-362. ACM, 1995.

1361 Oussama Khatib, Luis Sentis, and Jae-Heung Park. A unified framework for
whole-body humanoid robot control with multiple constraints and contacts. In
European Robotics Symposium 2008, pages 303-312. Springer, 2008.

[37] Jinhyun Kim, Giacomo Marani, Wan Kyun Chung, and Junku Yuh. Task recon-
struction method for real-time singularity avoidance for robotic manipulators.
Advanced Robotics, 20(4):453-481, 2006.

1381 Soonkyum Kim and Frank Chongwoo Park. Fast robot motion generation us-
ing principal components: framework and algorithms. IEEE Transactions on

Industrial Electronics, 55(6):2506-2516, 2008.

1391 James J Kuffner Jr, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hi-
rochika Inoue. Footstep planning among obstacles for biped robots. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2001.

1401 Yasuo Kuniyoshi, Yoshiyuki Ohmura, Koji Terada, and Akihiko Nagakubo. Dy-
namic roll-and-rise motion by an adult-size humanoid robot. International Jour-

nal of Humanoid Robotics, 1(03):497-516, 2004.

141] Arthur D Kuo, J Maxwell Donelan, and Andy Ruina. Energetic consequences of
walking like an inverted pendulum: step-to-step transitions. Exercise and sport

sciences reviews, 33(2):88-97, 2005.

1421 Jean-Claude Latombe. Robot motion planning, volume 124. Springer Science &
Business Media, 2012.

1431 Steven M LaValle. Rapidly-exploring random trees a new tool for path planning.

1998.

1441 Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

1451 Steven M. LaValle. Motion planning. Robotics & Automation Magazine, IEEE,

18(1):79-89, 2011.

1461 Sung-Hee Lee and Ambarish Goswami. A momentum-based balance controller for
humanoid robots on non-level and non-stationary ground. Autonomous Robots,
33(4):399-414, 2012.

104

1471 Sebastien Lengagne, Joris Vaillant, Eiichi Yoshida, and Abderrahmane Khed-
dar. Generation of whole-body optimal dynamic multi-contact motions. The
International Journal of Robotics Research, 32(9-10):1104-1119, 2013.

1481 Bokman Lim, Syungkwon Ra, and Frank C Park. Movement primitives, prin-
cipal component analysis, and the efficient generation of natural motions. In
Proceedings of the 2005 IEEE international conference on robotics and automa-
tion, pages 4630-4635. IEEE, 2005.

1491 Tomas Lozano-Perez. Spatial planning: A configuration space approach. Com-
puters, IEEE Transactions on, 100(2):108-120, 1983.

[501 Carlos L Luck. Self-motion representation and global path planning optimization
for redundant manipulators through topology-based discretization. Journal of
Intelligent and Robotic Systems, 19(1):23-38, 1997.

[511 Daniel P Martin, John Baillieul, and John M Hollerbach. Resolution of kinematic
redundancy using optimization techniques. IEEE Transactions on Robotics and
Automation, 5(4):529-533, 1989.

152] Tad McGeer. Principles of walking and running. Advances in comparative and
environmental physiology, 11:113-139, 1992.

153] Tad McGeer. Dynamics and control of bipedal locomotion. Journal of Theoretical
Biology, 163(3):277-314, 1993.

1541 Michael Mistry, Akihiko Murai, Katsu Yamane, and Jessica Hodgins. Sit-to-
stand task on a humanoid robot from human demonstration. In 2010 10th IEEE-
RAS International Conference on Humanoid Robots, pages 218-223. IEEE, 2010.

1551 Igor Mordatch, Emanuel Todorov, and Zoran Popovi6. Discovery of complex be-
haviors through contact-invariant optimization. ACM Transactions on Graphics
(TOG), 31(4):43, 2012.

1561 Jun Morimoto and Kenji Doya. Acquisition of stand-up behavior by a real robot
using hierarchical reinforcement learning. Robotics and Autonomous Systems,
36(1):37-51, 2001.

1571 Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A
mathematical introduction to robotic manipulation. CRC press, 1994.

1581 Yoshihiko Nakamura. Advanced robotics: redundancy and optimization. Addison-
Wesley Longman Publishing Co., Inc., 1990.

1591 Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control. Journal of dynamic systems,
measurement, and control, 108(3):163-171, 1986.

105

1601 Isaac Newton. Philosophiae naturalis principia mathematica. sumptibus Soci-
etatis, 1723.

161] Shintaro Noda, Masaki Murooka, Shunichi Nozawa, Yohoei Kakiuchi, Kei Okada,
and Masayuki Inaba. Generating whole-body motion keep away from joint
torque, contact force, contact moment limitations enabling steep climbing with
a real humanoid robot. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, pages 1775-1781. IEEE, 2014.

1621 Petter Ogren. Formations and obstacle avoidance in mobile robot control. 2003.

1631 David E Orin and Ambarish Goswami. Centroidal momentum matrix of a hu-
manoid robot: Structure and properties. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008.

164] David E Orin, Ambarish Goswami, and Sung-Hee Lee. Centroidal dynamics of
a humanoid robot. Autonomous Robots, 35(2-3):161-176, 2013.

[651 Giuseppe Oriolo and Christian Mongillo. Motion planning for mobile manipu-
lators along given end-effector paths. In Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, pages 2154-
2160. IEEE, 2005.

1661 Georges Pagis, Nicolas Bouton, S6bastien Briot, and Philippe Martinet. Design
of a controller for enlarging parallel robots workspace through type 2 singularity
crossing. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 4249-4255. IEEE, 2014.

[67] FC Park and Jin Wook Kim. Singularity analysis of closed kinematic chains.
Journal of mechanical design, 121(1):32-38, 1999.

[681 Frank C Park and Jin Wook Kim. Manipulability and singularity analysis of
multiple robot systems: A geometric approach. In Robotics and Automation,
1998. Proceedings. 1998 IEEE International Conference on, volume 2, pages
1032-1037. IEEE, 1998.

[691 Hae-Won Park, Sangin Park, and Sangbae Kim. Variable-speed quadrupedal
bounding using impulse planning: Untethered high-speed 3d running of mit chee-
tah 2. In IEEE International Conference on Robotics and Automation, 2015.

[701 Jaeheung Park and Oussama Khatib. Contact consistent control framework for
humanoid robots. In IEEE International Conference on Robotics and Automa-
tion, 2006.

1711 Nicolas Perrin, Olivier Stasse, Leo Baudouin, Florent Lamiraux, and Eiichi
Yoshida. Fast humanoid robot collision-free footstep planning using swept vol-
ume approximations. IEEE Transactions on Robotics, 28(2):427-439, 2012.

106

1721 Michael Posa and Russ Tedrake. Direct trajectory optimization of rigid body
dynamical systems through contact. In Algorithmic foundations of robotics X,
pages 527-542. Springer, 2013.

1731 Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter, et al. Bigdog,
the rough-terrain quadruped robot. In Proceedings of the 17th World Congress,
volume 17, pages 10822-10825, 2008.

1741 Marc H Raibert, H Benjamin Brown, and Michael Chepponis. Experiments in
balance with a 3d one-legged hopping machine. The International Journal of

Robotics Research, 3(2):75-92, 1984.

[751 John H Reif. Complexity of the generalized mover's problem. Center for Research
in Computing Techn., Aiken Computation Laboratory, Univ., 1985.

1761 Jacob T Schwartz and Micha Sharir. On the "piano movers" problem. ii. gen-
eral techniques for computing topological properties of real algebraic manifolds.
Advances in applied Mathematics, 4(3):298-351, 1983.

1771 Sanjeev Seereeram and John T Wen. A global approach to path planning
for redundant manipulators. IEEE Transactions on Robotics and Automation,
11(1):152-160, 1995.

1781 Shamik Sen, Bhaskar Dasgupta, and Asok Kumar Mallik. Variational approach
for singularity-free path-planning of parallel manipulators. Mechanism and Ma-
chine Theory, 38(11):1165-1183, 2003.

[791 Luis Sentis and Oussama Khatib. Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives. International Journal of Humanoid
Robotics, 2(4):505-518, 2005.

1801 Luis Sentis, Jaeheung Park, and Oussama Khatib. Compliant control of multi-
contact and center-of-mass behaviors in humanoid robots. IEEE Transactions
on Robotics, 26(3):483-501, 2010.

[81] Sangok Seok, Albert Wang, David Otten, and Sangbae Kim. Actuator design for
high force proprioceptive control in fast legged locomotion. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1970-1975.
IEEE, 2012.

1821 J~rg Stfickler, Johannes Schwenk, and Sven Behnke. Getting back on two feet:
Reliable standing-up routines for a humanoid robot. In IAS, pages 676-685,
2006.

1831 Russell H Taylor. Planning and execution of straight line manipulator trajecto-
ries. IBM Journal of Research and Development, 23(4):424-436, 1979.

107

1841 Koji Terada, Yoshiyuki Ohmura, and Yasuo Kuniyoshi. Analysis and control
of whole body dynamic humanoid motion-towards experiments on a roll-and-
rise motion. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, volume 2, pages 1382-1387. IEEE,
2003.

1851 Kenneth J Waldron and Kenneth H Hunt. Series-parallel dualities in ac-
tively coordinated mechanisms. The International Journal of Robotics Research,
10(5):473-480, 1991.

[861 Patrick M Wensing and David Orin. Generation of dynamic humanoid behav-
iors through task-space control with conic optimization. In IEEE International
Conference on Robotics and Automation, 2013.

1871 Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau, Jun Ho Choi, and
Benjamin Morris. Feedback control of dynamic bipedal robot locomotion. CRC
press, 2007.

108

