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Abstract

Despite significant advances in the fields of biophotonics and oncology alike, several
challenges persist in the study, assessment, and treatment of cancer, ranging from
the accurate identification and examination of potential risk factors, early diagnosis
of dysplastic lesions, and monitoring of the complex heterogeneity of cellular popula-
tions within tumors. To study such dynamics at the microscale, non-invasive optical
toolkits offer the potential to identify, characterize, and visualize key molecules and
their interactions in their native biological context, ranging from in vitro cell cul-
tures to in vivo studies in both animal models and humans. In the present thesis,
examples of such applications of optical tools will be presented, including: (1) the
assessment of cellular oxidative stress in ex vivo human skin cultures by imaging en-
dogenous and exogenous fluorescent compounds using two-photon excitation fluores-
cence (TPEF) and fluorescence lifetime imaging microscopy (FLIM); (2) visualizing
water and lipid distribution as well as cellular morphology using coherent Raman
scattering (CRS) imaging techniques in the stratum corneum, the most superficial
layer of the epidermis; (3) using photoconvertible labels to optically tag cell subpopu-
lations of interest in situ for long-term monitoring of heterogeneous cell cultures from
in vitro monolayers to in vivo xenograft models; (4) visualizing melanin species in the
context of melanoma with coherent anti-Stokes Raman scattering (CARS) and sum-
frequency absorption (SFA) microscopies. Altogether, development of such advanced
microscopy toolkits will serve to improve both understanding of cancer pathology, as
well as to validate clinical diagnostic and therapeutic strategies.

Thesis Supervisor: Conor L. Evans, PhD
Title: Assistant Professor of Dermatology, Harvard Medical School, Wellman Center
for Photomedicine, Massachusetts General Hospital
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Brightfield trans-illumination image acquired from the microscope eye-

piece. (b,d,f) Maximal projection view of CARS image stack of the

mouse ear, showing bright granules from the pheomelanin stores (red

circles) within melanocytes and at the base of the hair follicle. A CARS
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1866 cm-1) was subtracted from the image stack acquired with the

pump beam set to 861 nm (Wp - Ws = 2000 cm-1) to minimize the

non-resonant signal contribution from structures other than pheome-
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set to 861 nm (wp -ws = 2000 cm-') to minimize the non-resonant sig-
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7-6 Imaging of pheomelanin stores in a red-haired (C57BL/6 (Mclr'/e,

Tyr+/+) mouse ear section (5 pm thickness). (a) Immunohistochemi-

cal stain of the mouse ear slide using anti-Sox-10 antibody (counter-

stain: haematoxylin), revealing melanocytes in red, some of which are

indicated by black arrows for added clarity. (b) Image of an adjacent
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Trans-illumination image of the unstained slide shown in (b) acquired

with the pump beam set to 861 nm. (d) CARS and (e) SFA images

of the unstained slide shown in (b), revealing bright granular signals

from pheomelanotic stores consistent with positive staining in (a) and

pigmented areas in (b). (f) False-color overlaid image of (d) in green

and (e) in red. A CARS image acquired with the pump beam set to

871 nm (Wp - Ws = 1866 cm- 1 ) was subtracted from the image ac-

quired with the pump beam set to 861 nm (wp - Ws = 2000 cm- 1) to

minimize the non-resonant signal contribution from structures other
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thickness). (a) Brightfield trans-illumination image of the haematoxylin-

stained mouse ear slide. (b) Magnified view of the area marked by a

red square in (a). Pheomelanotic stores are seen as slightly pigmented

granules. (c) CARS image of the same field of view as (b), showing

bright granular signals from pheomelanotic stores corresponding to the

pigmented areas in (b). A CARS image acquired with the pump beam

set to 871nm (wp - Ws = 1866 cm- 1 ) was subtracted from the image

acquired with the pump beam set to 861 nm (Wp - Ws = 2000 cm 1 )
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7-8 Imaging of human amelanotic melanoma. (a) Clinical photograph of

one amelanotic melanoma lesion. (b) H&E stain of the patient slide

(10 x magnification). (c) Perilesional skin showing normal architecture

of both epidermis and dermis. (d) Brightfield trans-illumination image

acquired from the microscope eyepiece from the perilesional area. (e)

CARS image of the same perilesional area compared to (d) (image ac-

quired with pump beam wavelength at 841 nm (Wp - Ws = 2275cm 1 )

was subtracted from the image acquired with pump beam wavelength

at 855 nm (wp - ws = 2081 cm- 1 ) to minimize the non-resonant back-

ground from structures other than pheomelanin). (f) View of the ame-

lanotic melanoma area showing high density of cells with no obvious

sign of melanin. (g) Brightfield trans-illumination image acquired from

the microscope eyepiece from an unstained slide of the melanoma area,

showing slightly pigmented granular structures (red circle). (h) CARS

image of the same tumor area compared to (g), with the same settings

as for (e). Saturated bright pheomelanin signals were found (red circle)

corresponding to the minimally pigmented region shown in (g). (i,j,k)

Respectively H&E, trans-illumination, and CARS images of the tu-

mor area of slides from a second amelanotic melanoma patient. Strong

pheomelanin signals were again observed (red circles). . . . . . . . . . 172

25



26

-- mil lop



List of Tables

2.1 Summary of cancers diagnosed using various Raman techniques and

selected representative associated references. Please note that this list

is not meant to be absolute or all encompassing. . . . . . . . . . . . . 48

2.2 Common Raman band assignments used in cancer diagnostic studies

[1, 2, 3, 4, 5, 6, 7, 8]. Please note that Raman vibrations may shift

in wavenumber depending on the sample and that these values should

not be regarded as absolute. . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Composition of sun filter formulation . . . . . . . . . . . . . . . . . . 77

5.1 Stratum corneum metric dynamics measured over the time course of

ex vivo human skin dehydration on two different substrates. For the

plastic substrate, asterisks denote rates of change significantly different

from zero; for the gel substrate, they denote rates of change that are sig-

nificantly different from the plastic substrate (*: p < 0.05; **: p < 0.01;

***: p < 0.001, where p-values are adjusted using Holm-Bonferroni cor-

rection with N = 36 metrics. IER: intracellular-to-extracellular ratio;

NND: nearest neighbor distance; CI: confidence interval.) . . . . . . . 128

5.2 Summary of observed changes over the time course of skin explant

rehydration. (N/C: no change; +++, ++, +: strong, moderate, and

modest increase, respectively; - - -, - -, -: strong, moderate, and

modest decrease, respectively.) . . . . . . . . . . . . . . . . . . . . . . 133

27



28

Rm lp"! W MWITMM., wq9llmlwmmplp"" 4"" Pill



Chapter 1

Theory and Principles of Nonlinear

Optics for Biomedical Imaging

1.1 Introduction

Prior to understanding the fundamentals of nonlinear optics, it is a useful exercise to

consider what is meant by linear optics. When a material is exposed to an electric

field 79 (such as light, for example), the material exhibits a polarization j that is

linearly proportional to the field P as shown in Equation 1.1.

9 ~, foxN(1.1)

The proportionality is defined by Eo, a universal constant known as the permittiv-

ity of free space, and x, the material's electric susceptibility. This linear relationship

implies superposition; that is, the polarization response of a material exposed to a

sum of fields simply corresponds to the sum of the polarization responses to each field

considered individually. In addition, this also implies that the incident fields cannot

interact with one another to generate new frequencies at the system's output. This is

a relation commonly introduced in most introductory optics and/or electromagnetic

fields classes in undergraduate science and engineering programs; however, this equa-

tion is but a simple and convenient approximation. In reality, nonlinear polarization
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responses do exist - they simply require an enormous amount of incident power in

order to generate a detectable signal as a result of the vanishingly small nonlinear

electric susceptibility coefficients. In fact, this is because the susceptibility x of a

given material can be represented by a Taylor series expansion, where nonlinear ma-

terial properties emerge with incident fields that are sufficiently strong. This relation

is shown more clearly in Equation 1.2. Considering the large amount of input energy

that is required to elicit this nonlinear optical polarization responses however, an

ensuing question naturally arises: if extremely high irradiation powers are required

to induce nonlinear optical polarizations, how are nonlinear optical signals generated

in biological samples in a non-destructive manner? The answer lies in the use of

ultrafast laser sources.

7P 0 ( (1~)7_j + X(2) J2 + (3 .P3 ) (1.2)

These are laser systems that, instead of emitting a constant beam of coherent

light (unlike continuous wave, or CW, laser sources), emit extremely short - but

extremely powerful - pulses of light. These short pulse durations can range from a

few nanoseconds all the way down to the femtosecond regime. In the case of the

various studies documented in the context of the present thesis, the Spectra-Physics

InSight DeepSee - a commercial femtosecond laser source - is the laser source

of choice. One output can be selectively tuned from 680 up to 1300 nm in single-

nanometer increments, while the other is fixed at 1040 nm. The concurrent use of two

laser beams will become clear in the context of particular nonlinear optical imaging

applications that will be presented in depth in Sections 1.4.2 and 16. The pulse

durations are about 120 fs in duration, and the laser has a repetition rate of 80 MHz.

This also implies an interpulse period of 12.5 ns, which implies that when the laser

is in operation, no light is being emitted 99.999% of the time. However, for the

brief 0.001% of the time where a pulse is emitted, it propagates with a peak power

exceeding 100 kW. The time-averaged power for the laser source nevertheless remains

in the milliwatt range, thereby minimizing photodamage. It is also worth specifying
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that for nonlinear optical imaging, the photon density is crucial factor to consider

from an imaging standpoint. That is, not only does one require kilowatt-range peak

powers, but this energy must also be focused into a small focal volume in order to

generate any appreciable signal. This is conveniently advantageous, because it is this

property that ensures the "intrinsic optical sectioning" that is a hallmark of nonlinear

optical microscopy.

These intrinsic properties of nonlinear optical microscopy eliminate the need for

a confocal pinhole as in the case of single-photon confocal fluorescence microscopy,

for example, used to suppress the out-of-focus light. Given that the signal is strictly

generated at the focus of the microscope objective, full 3D volumetric reconstructions

of biological samples can be achieved by simply scanning the objective focus across

the X, Y, and Z dimensions.

With this introductory framework for nonlinear optics in mind, the following sec-

tions will build on these foundations, ranging from two-photon excitation fluorescence

(TPEF) to coherent Raman scattering (CRS) to sum-frequency and transient absorp-

tion (SFA and TA) imaging techniques.

1.2 Two-Photon Excitation Fluorescence (TPEF)

Two-photon excitation fluorescence (TPEF) is a nonlinear optical interaction whereby

two photons are simultaneously absorbed by a molecule in order to generate a sin-

gle output photon. This nonlinear optical phenomenon was first implemented as a

microscopy technique back in 1990 by Denk and colleagues [9]. It is worth noting,

however, that because TPEF requires the simultaneous absorption of two incident

photons, this nonlinear optical effect is symmetry-forbidden in non-centrosymmetric

molecules. This is because materials and molecules that exhibit inversion symmetry

(i.e. compounds that are centrosymmetric) have even-ordered nonlinear electric sus-

ceptibilities equal to zero. Nevertheless, even-ordered nonlinear optical effects may

still be generated in such media by breaking its symmetry. This can be done by cou-

pling with the molecule's vibrational and/or rotational modes with odd symmetry in
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order to enable excitation.

It is also worth noting that TPEF is not a lossless process. Upon the simultaneous

absorption of two incident photons by a molecule, there is some non-radiative decay,

followed by a transient residency in an excited electronic state for a given period of

time T called the fluorescence lifetime, finally resulting in the emission of a fluorescent

photon as the molecule returns to its ground state. In addition, two-photon excitation

spectra are more complex than simply doubling the wavelength of the single-photon

excitation spectrum. This discrepancy is due to differences in Frank-Condon factors,

which can be better appreciated by taking a look at the 1- and 2-photon spectra of

common fluorophores. Moreover, because TPEF is a X process, the signal intensity

is proportional to the square of the incident power, i.e. 12 (t).

1.3 Fluorescence Lifetime Imaging Microscopy (FLIM)

Fluorescence lifetime imaging microscopy (FLIM) can be viewed as an extension

TPEF when implemented in a two-photon setting, whereby the fluorescence lifetime

T of a given fluorophore can be probed in addition to its intensity [10]. In addition

to probing the optical properties of fluorophores (i.e. excitation and emission param-

eters), FLIM is a tool also capable of probing their temporal dynamics. To this aim,

this imaging technique requires specific hardware (i.e. time-correlated single photon

counting, or TCSPC), and the resulting data can be processed either in the time

domain or in the frequency domain, the latter of which is typically performed using

phasor analysis. FLIM is therefore an extremely useful modality in the context of

molecular imaging, as it provides researchers with an additional dimension of imaging

contrast [11].

1.3.1 Time-Correlated Single Photon Counting (TCSPC)

The implementation of FLIM relies on the operating principles of time-correlated sin-

gle photon counting (TCSPC) [12]. In such a case, the detector (i.e. photomultiplier

tube, or PMT) is connected to pre-amplifier, which is in turn connected to the TC-
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SPC module. For multiple detectors, the each PMT pre-amplifier is first connected to

a routing block before the TCSPC module, whereby the PMTs independently emit an

electronic impulse signal at each photon detection event for multiplexed detection. In

parallel, a synchronization module registers the timing of the laser excitation pulse.

In turn, the time-to-amplitude converter (TAC) measures the time difference between

the arrival of the detected photon and the emission of the following excitation laser

pulse. The difference between this measured time interval and the laser repetition

period (given by the inverse of the pulse repetition frequency, an intrinsic property

of the laser source) corresponds to the fluorescence emission delay for that particular

photon. The hardware network has an overall dead time on the order of 100 ns or

so [12]; for this reason, each incident laser pulse must result in the detection of at

most 1 fluorescence photon per detector in order to limit lifetime biasing towards

shorter values. In other words, this implementation of TCSPC for FLIM does not al-

low for over-counting of photons, which would otherwise result in inaccurate lifetime

measurements.

Once the FLIM data is acquired using the TCSPC techniques described above,

each pixel of the acquired XYT dataset can be analyzed using either time-domain

or frequency-domain analysis - the latter of which is most commonly referred to as

"phasor analysis".

1.3.2 Time-Domain Analysis

Time-domain analysis of FLIM data typically involves curve fitting of fluorescent

decay traces on a pixel-by-pixel basis using a sum of exponential decays. In such a

context, each fluorophore of a given decay trace is characterized by its respective time

constant Ti and relative weight aj, defining its contribution to the overall fluorescence

signal in the pixel in question. The relation between a pixel's temporal decay trace

(t) and the fluorophores therein is summarized in Equation 1.3.

N

I(t) = aie- (1.3)
i=1
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As will be discussed in further detail in Chapter 4, time-domain analysis requires

a fair bit of familiarity with the sample at hand. This encompasses not only the

number of compounds to distinguish, but also an a priori idea of their respective

fluorescent lifetimes [13]. To complicate matters further, there is an added dimen-

sion of complexity when imaging cellular and tissue autofluorescence, including flavin

and nicotinamide adenine dinucleotides (FAD and NADH, respectively). Such com-

pounds naturally exhibit multiple lifetimes, which in turn vary based on their molec-

ular conformation and binding states [14, 15, 16]. Bearing in mind that time-domain

analysis is based on iterative curve fitting, the task of resolving multiple sources of

fluorescence that themselves have multiple lifetimes rapidly becomes computation-

ally demanding. To add to the present challenge, accurate time-domain analysis of

fluorescence lifetimes often requires a prohibitively large number of photon counts

per pixel (typically exceeding 5000 photons), particularly when the fluorescence from

one compound dwarfs the other [13]. This requirement is due to shot noise (also

known as Poisson noise), which is related to the particle nature of light. Consider-

ing that photon emission can be described as a Poisson process, the signal-to-noise

ratio (SNR) is given by SNR = N/v = v , where N is the number of detected

photons. Such elevated photon counts inherently demand longer acquisition times

and/or higher laser excitation power. However, due to the fragile nature of typical

biological samples, these imaging parameters may be incompatible with specimens of

interest - particularly living samples.

1.3.3 Phasor Analysis

As an alternative to time-domain analysis, frequency-domain analysis - more com-

monly referred to as phasor analysis - is much less demanding in terms of prior sam-

ple knowledge [17]. Moreover, this approach yields an intuitive and convenient visual

interpretation of the sample data. Instead of performing curve fitting on a pixel-by-

pixel basis, phasor analysis involves a simple mathematical transform of each pixel's

temporal decay trace. This transformation, related to the Fourier transform, yields

a pair of coordinates (G, S) that describe a so-called phasor, which is characterized
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by its modulus M = 2  S 2 and phase angle # = arctan(S/G). Specifically, the

phasor coordinates (G, S) are obtained by computing the real and imaginary compo-

nents of the Fourier transform of the temporal decay trace evaluated at the angular

laser repetition frequency w, normalized by its area under the curve. These relations

are summarized in Equations 1.4 and 1.5.

100 1(t) cos(wt)dtG = 00 (1.4)
fo I (t) dt

- f I(t) sin(wt)dto 

= DO (1.5)

f0 0 I (t) dt

The angular frequency is defined by w = 27rf, where f corresponds to the laser

repetition frequency in the case of pulsed sources (typically on the order of 80 MHz).

On the other hand, single-photon FLIM systems require intensity modulation of a

continuous wave (CW) laser, where f then corresponds to the modulation frequency.

In the special case of a fluorophore characterized by a single well-defined lifetime,

the phasor transform results in a set of phasor coordinates that obey the relation

shown in Equation 1.6, which describes a semicircle with radius 0.5 centered at (0.5, 0)

[17].

(G - 0.5)2 + S2 = 0.25 (1.6)

In the FLIM community, this is referred to as the universal semicircle. In the case

of a decay trace characterized by two fluorescence lifetimes, the transformed phasor

coordinates lie along a line connecting the two individual lifetimes on the universal

semicircle. The specific phasor coordinates along that line in turn depend on the

relative contributions of either fluorescent compound [17, 18]. Given a mixture of

fluorescent compounds, FLIM data analysis in the phasor domain therefore conve-

niently offers the ability to estimate the relative fluorescence contribution of each

compound at every pixel in the image based on the relative distances between each

pixel's corresponding phasor location and the respective reference phasor clusters of

the fluorophores at hand.
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1.4 Raman Scattering

There are a wide variety of coherent Raman scattering (CRS) techniques, but for the

purposes of the present discussion, the fundamentals of spontaneous Raman scattering

will first be discussed, follow by an overview of two of the most commonly used

implementations of CRS, namely coherent anti-Stokes Raman scattering (CARS) and

stimulated Raman scattering (SRS).

1.4.1 Spontaneous Raman Scattering

Raman scattering is a non-parametric process related to the interaction of light with

a molecule and its associated vibrational states. This process was discovered by

Sir Chandrasekhara Venkata Raman in 1928, when he observed the scattering of an

entire spectrum of light upon illumination of a sample with monochromatic light of

frequency Wp. As he expected, the most prominent feature of the spectrum occurred

at the incident light frequency Wp, which is attributed to an elastic interaction known

as Rayleigh scattering. However, weak spectral lines were also observed, which were

later understood to occur as a result of inelastic interactions between incident photons

and the molecular vibrations present in a sample. As energy is transferred during

this process, the spectral lines had shifted frequencies Wp WR, corresponding to

what are now known as Stokes (Wp - wR) and anti-Stokes shifts (Wp + WR). Raman

observed that these shifts and their resulting spectra were highly material specific

a discovery that was awarded the 1930 Nobel Prize in physics. It is worth noting that

in most use cases, the incident field at Wp is within the visible or infrared range of the

electromagnetic spectrum, while the molecular vibrations themselves can be directly

probed at wR that lie in the mid- or long-wavelength infrared ranges.

Fundamentally, Raman scattering is derived from interactions with the time-

varying electromagnetic field of light and the time-varying electric polarizability

caused by molecular vibrations. When a molecule interacts with a photon, it can

experience an instantaneous coupling with the photon's electric field, leading to a

polarization of the molecule. This coupling can result in the creation of a scattered
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photon at frequency Wp - WR if some of the energy from the incident light is con-

verted to drive the molecular vibration; it is scattered at WP + wR if the molecule is

already in an excited vibrational state, whereupon the scattered photon exits with

energy equal to the sum of those of the incident photon and the molecular vibration.

These interactions at Wp - WR and WP + WR correspond to Stokes and anti-Stokes

shifts, respectively. However, this process is far from efficient, as the creation of a

frequency-shifted photon hinges on an infrequent interaction with the vacuum field.

Given that a spontaneous emission process is defined by the creation of a photon in

a previously unoccupied mode, this Raman process is deemed spontaneous [19].

It should be noted that Raman transitions depend on the rate of change of polar-

izability with respect to the molecule's geometry. This implies that Raman scattering

is only possible for certain symmetries of molecular vibrations, which forms the basis

for the so-called selection rules for Raman scattering. While the formalism here pre-

dicts the existence of Stokes and anti-Stokes frequency components, it fails to consider

the strength of individual Raman transitions, which would otherwise require a more

elaborate quantum mechanical formalism that is beyond the scope of the present

discussion. The reader is encouraged to refer to the textbook by Long for a more

rigorous quantum mechanical approach to the principles of Raman scattering [20].

It is also worth noting that there exists a mechanism whereby the Raman scat-

tering response of a molecule can be increased by several order of magnitude, known

as surface-enhanced Raman scattering (SERS), which involved adsorption of the

molecule onto a roughened or nano-sized metallic substrate. Metallic or plasmonic

nanoparticles are known for their unique interaction with light that results in the

excitation of their localized surface plasmon resonance (LSPR). LSPR excitation re-

sults in not only enhanced light absorption and scattering from the nanoparticle, but

also produces an enhanced electromagnetic field around the surface of the nanopar-

ticle that can be readily exploited for Raman enhancement [21, 22, 23, 24]. When

a molecule is adsorbed onto or is within close proximity of the nanoparticle surface,

the EM field felt by the molecule is that of the incident field and the enhanced EM

field at the nanoparticle surface. While the in-depth discussion of SERS is beyond
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the scope of the present thesis work, a more detailed mathematical description of

plasmonic nanoparticle Raman signal enhancement can be found in several excellent

texts by Van Duyne and colleagues [21, 231.

1.4.2 Coherent Raman Scattering (CRS)

Coherent Raman scattering is a term that refers to a class of stimulated interactions

where Raman processes are driven coherently, leading to the generation of strong

scattering signals. This differs from traditional Raman scattering, which is depen-

dent on spontaneous interactions. As was previously mentioned, spontaneous Raman

scattering depends on an infrequent interaction with the vacuum field. In coherent

Raman scattering, two light fields are introduced into a sample that have an energy

difference equal to a molecular vibration of interest. These two fields act to stimulate,

or drive, the Raman process, increasing its efficiency by several orders of magnitude

[19].

Though many types of coherent Raman scattering processes have been discovered

and developed [25, 26], two types of coherent Raman scattering have been specifically

developed towards biomedical applications: stimulated Raman scattering (SRS) and

coherent anti-Stokes Raman scattering (CARS). Both mechanisms of signal genera-

tion are so-called "four-wave mixing" processes, which implies that incident photons

interact with the material's vibrational properties to produce scattering contrast that

can be used for imaging. Important distinctions exist between CARS and SRS how-

ever, resulting in differences in detection schemes and image contrast. Schematically,

the energy diagrams for spontaneous Raman scattering, SRS, and CARS are pre-

sented in Figure 1-1.

Conceptually, SRS and CARS both involve the use of two incident fields at fre-

quencies Wp and ws, respectively referred to as the pump and Stokes beams, where

the difference between these two frequencies is tuned to match a molecular vibration

of interest. In the case of SRS, the introduction of electric fields at both frequen-

cies allows for a transfer of photons at the pump frequency to photons at the Stokes

frequency due to coupling with the sample's endogenous molecular vibrations. This
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Figure 1-1: Schematic representation of the fields involved in Raman scattering pro-

cesses. (A) Spontaneous Raman scattering, (B) stimulated Raman scattering (SRS),
and (C) coherent anti-Stokes Raman scattering (CARS). The pump, Stokes, and anti-
Stokes frequencies are respectively designated by Wp, ws, and WAS, while the dashed
and solid lines respectively refer to virtual and real molecular states. In spontaneous

Raman scattering, a pump photon scatters inelastically, thus generating a Stokes pho-
ton. In SRS, both pump and Stokes fields are incident on the sample simultaneously;
if there is a vibrational band gap that corresponds to the energy difference between
the two beams, the pump field decreases (stimulated Raman loss, SRL), while the
Stokes field is amplified (stimulated Raman gain, SRG). Finally, in CARS, a new field
is created at the anti-Stokes frequency and can be readily detected via optical filters,
as it is blue-shifted relative to the incident pump and Stokes fields.

implies that the pump beam intensity decreases in the presence of a Raman-active

molecule, while that of the Stokes beam increases. In order to pick up this small

energy transfer, SRS microscopy is achieved either by detecting the decrease in pump

intensity (stimulated Raman loss, SRL) or the increase in Stokes intensity (stimulated

Raman gain, SRG).

SRL is achieved through high-frequency modulation (typically on the order of

several MHz to circumvent laser noise and improve both imaging speed and detection

sensitivity [27]) of the Stokes beam via an acousto-optic or electro-optic modulator

(AOM and EOM, respectively). This implies that the SRS signal will manifest itself

as a high-frequency modulation superimposed onto the intensity of the pump beam

(Figure 1-2). Detection thus requires the use of a lock-in amplifier (LIA) or demod-

ulation to isolate the high-frequency component of the pump intensity. Conversely,
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SRG is performed by modulating the pump beam and detecting the high-frequency

fluctuations of the Stokes intensity. Additional information on SRS microscopy is

provided in section 1.7.

p LLIIIi 111] .SRL Signal

St t

WS

Figure 1-2: Detection scheme for stimulated Raman loss (SRL). Conversely, stimu-
lated Raman gain (SRG) is detected by modulating the pump beam and detecting
the fluctuations of the Stokes beam.

The CARS process, on the other hand, can be conceptually perceived as an initial

induction of a coherent vibrational oscillation of the material, achieved by tuning the

difference ("beat") frequency between the pump and Stokes beams to a given vibra-

tional transition. This results in the creation of a macroscopic, coherently driven

polarization change in the sample at the excited vibrational state of interest. An

interaction of pump photons with this macroscopic polarizability then results in the

strong scattering of photons at the anti-Stokes frequency. In terms of implementation

for microscopy, CARS is.simpler than SRS in that it does not require signal mod-

ulation nor lock-in amplification for detection, since a new wavelength is generated

altogether. As such, detection of the anti-Stokes signal simply requires the use of

proper short-pass and/or band-pass filters that can adequately block out any residual

pump or Stokes light. Additional details on CARS microscopy are described in section

1.7. For further reading, various reviews on the topic are also available [28, 29].

One major difference between CARS and SRS is the existence of the so-called

"non-resonant" background in the CARS signal. This background contribution arises

due to the fact that CARS is a parametric process - that is, the energy state of the

molecule is unchanged after CARS. This differs from SRS and spontaneous Raman,

where molecules gain or lose a quantum of vibrational energy. The parametric nature
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of CARS enables a second, non-resonant, set of interactions that are derived from

purely electronic processes. The end result is that the CARS signal contains both

resonant and non-resonant contributions. This set of additional coherent interactions

has the practical effects of adding a nonspecific, background contribution to CARS

that can also result in shifted and complex vibrational spectra [26].

1.5 Fluorescence Photoconversion

The previous sections of the present chapter focused on microscopy techniques well-

suited for probing the intrinsic properties of endogenous molecular species in a label-

free manner (although they may certainly be used to probe exogenous compounds

as well). In contrast, fluorescent labeling comprises a widely used technique in mi-

croscopy applications in order to allow for the specific visualization of biological fea-

tures of interest [11, 30, 31]. These techniques are highly diverse in their implemen-

tation: standard immunofluorescence (IF) can be used to visualize specific proteins

[32]; genetic engineering allows for the genomic insertion of fluorescent reporter pro-

teins that in turn allow for the monitoring of genetic expression [33, 34, 35, 36, 37];

organelle-specific fluorescent dyes allow for various cytological measurements, both

quantitative and qualitative in their nature [38, 39, 40].

Despite their widespread adoption however, traditional fluorescence-based labeling

techniques are static. That is, they cannot serve to monitor specific cell populations

of interest over time. In fact, there exists a wide variety of applications where the

ability to monitor specific cell subpopulations over time would be of great interest. As

an example, genetic reporters such as green fluorescent protein (GFP) can be useful in

determining whether cells in a cultured population express a particular gene [35, 36].

On the other hand, tracking the fate or lineage of specific cells that express (or do not

express) the gene of interest within the same culture over prolonged periods would

pose a significant challenge [41]. This difficulty is of particular relevance in the study

of treatment resistance in the context of cancer, where resistant subpopulations in

heterogeneous cultures are of particular interest.
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In order to fill this technological niche, so-called "photoconvertible" fluorescent la-

bels have been developed [41, 42, 43, 44]. Much like conventional fluorescent reporters,

these molecules exhibit characteristic excitation and emission profiles. However, they

differ from conventional fluorophores in that their optical properties can be converted

to a new set of excitation and emission spectra. The specific set of optical signa-

tures pre- and post-conversion, as well as the reversibility of the process, are intrinsic

properties of each photoconvertible molecule.

While the excitation and emission properties of biologically relevant fluorescent

reporters can span the entire visible spectrum - ranging from the UV all the way to

the NIR [30] - the red end of the spectrum is typically of greatest value for intravi-

tal imaging. Longer wavelengths such as those in the NIR range have a considerably

lower tendency to be absorbed and scattered by tissues compared to their bluer coun-

terparts, allowing for increased signal generation and collection, in turn maximizing

penetration depth [11, 30, 45]. One such commercially available NIR fluorescent label

is DiR (1,1'-dioctadecyltetramethyl indotricarbocyanine iodide), a cell membrane dye

with excitation and emission peaks at 748 nm and 780 nm, respectively [41]. This

particular reporter has been shown to exhibit irreversible photoconversion following

irradiation with 750 nm femtosecond pulses [41], and is thus particularly well-suited

for the longitudinal monitoring of heterogeneous cancer cell populations (see Chapter

6).

1.6 Sum-Frequency and Transient Absorption (SFA

and TA)

Finally, the same modulation transfer scheme used for acquiring SRS images can

more generally be used to detect any signal where the presence of one beam affects

the intensity of the other beam following an optical interaction with the sample. In

the case of sum-frequency and transient absorption (SFA and TA, respectively), a

signal is generated typically in the case of a strong absorber that can absorb one
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photon from each beam. In the case of SFA, this absorption process is simultaneous;

in the context of TA, the process is step-wise, implying the absorption of one photon

to promote the molecule to a real excited state, followed by a second absorption event

promoting it to an even higher (i.e. more energetic) state. These modalities are thus

ideal for visualizing pigments and chromophores such as hemoglobin and melanin, for

example [46, 47, 48, 49, 50, 51, 52].

1.7 Instrumentation and Microscopy Setup

Nonlinear optical imaging technologies have begun to see a strong push in research

and development that is gaining momentum particularly in the field of cancer research

over the last couple of decades. In the case of coherent Raman scattering for example,

it was not until 1999 that CARS microscopy was developed by Zumbusch et al., where

three-dimensional vibrational imaging of chemical and biological samples was reported

for the first time [53]. Since then, significant strides have been made into applying

these imaging technologies to answer questions in oncology using tools that simply

were not previously available [54].

In order to build a nonlinear optical imaging system, one or more pulsed laser

sources are first required, depending on the imaging modality. The high peak powers

of such pulsed sources are necessary to probe the higher-order optical properties of

samples, while their low average powers avoid damaging the cells and/or tissues at

hand. Early nonlinear optical microscope designs used Ti:sapphire lasers and optical

parametric oscillators (OPO) or amplifiers (OPA) that were tuned to emit near-

infrared (NIR) wavelengths. More recently, commercial laser manufacturers such

as APE, Spectra-Physics, and Coherent have designed automated dual output laser

sources (including an integrated OPO system to allow for wavelength tunability),

which are most useful in the case of imaging techniques requiring more than one beam

(e.g. CARS, SRS, SFA, TA, etc.). For such applications, these sources provide a fixed

NIR output, typically used as the Stokes beam, and another that can be selectively

tuned over a very wide range (generally 680 nm to 1300 nm). The tunable output can
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be readily used for TPEF and FLIM imaging, for example, as they only require one

excitation source. The tunable nature offers the ability to selectively probe a wide

range of fluorophores either sequentially or simultaneously by judiciously selecting

the proper excitation wavelength. The advent of such technology greatly reduces the

complexity of the imaging system, as different molecules can be selectively imaged by

changing the tunable output via the provided laser software in a matter of seconds,

rather than painstakingly adjusting crystal temperatures and cavity length.

In addition to laser wavelength, pulse duration must also be considered when

designing a nonlinear optical platform. In the case of multiphoton processes such

as TPEF, shorter pulses simply imply a greater temporal flux of photons, implying

greater signal generation. In the case of coherent Raman scattering, additional factors

must be considered. Namely, the shorter a pulse is in the temporal domain, the

wider its profile becomes in the spectral domain. Thus, the spectral pulse width of

picosecond laser sources is orders of magnitude narrower than that of femtosecond

pulses. The dependence of pulse duration on spectral resolution thus influences the

performance of a coherent Raman imaging system, which is optimized when the

spectral pulse widths of the laser sources overlap with that of the Raman peak of

interest.

Regarding microscope design, the two external beams are combined using a dichroic

mirror (or, in the case of TPEF and FLIM, the excitation source is simply routed

towards the input port of the microscope). The beams are then raster-scanned across

the sample through a high numerical aperture (NA) objective. Such objectives are

preferred for nonlinear optical imaging - particularly in the case of CRS imaging

- in order to tightly focus the incident light into a small focal volume for optimal

signal generation. Moreover, in the case of CARS, these objectives ensure that the

so-called "phase-matching condition" is met such that anti-Stokes radiation is con-

structively generated [53]. Finally, as with all nonlinear optical techniques, the signal

strictly originates from the focal point of the objective. Therefore, the distribution

of the compound of interest can be mapped in three dimensions by raster scanning

the focus across the sample, and detecting the fluorescence or anti-Stokes light using
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a photomultiplier tube (PMT) downstream of appropriate optical filters.

A branching point in coherent Raman imaging was met in 2008 with the advent of

SRS microscopy [55], following the success of CARS as a label-free microscopy plat-

form. To this end, Freudiger et al. used essentially the same configuration as a CARS

microscope, but modulated the Stokes beam via an electro-optic modulator (EOM)

in order to detect a minuscule variation in the pump beam intensity using a high-end

lock-in amplifier. Such a tool is essential in the context of SRS microscopy, since

the signal originates from small fluctuations of the pump intensity at the modulation

frequency over a significantly larger input power level. As was mentioned earlier, this

configuration is referred to as stimulated Raman loss (SRL), while modulation of the

pump beam and subsequent detection of modulation amplitude in the Stokes beam

is known as stimulated Raman gain (SRG). This same setup is used in SFA and TA

imaging, where the modulation transfer of energy (and therefore, signal amplitude)

is used to detect the presence of strongly absorbing molecules such as hemoglobin or

melanin.

Translation of coherent Raman microscopes from the laboratory to the clinic has

recently begun as well. JenLab now offers the MPTflex CARS, a standalone portable

system with a pivoting handheld scan head capable of both multiphoton fluorescence

and CARS imaging [56]. For a more directed use in intra-operative settings, Invenio

Imaging offers a state of the art portable SRS/CARS imaging system based on fiber

lasers in the form of a compact microscope [57]. The advent of such novel technologies

is promising for the medical community, in that rapid label-free assessments can be

made directly on patients or biopsies in order to improve cancer diagnostic speed and

quality, leading to improved patient well-being.
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Chapter 2

Raman Scattering Technologies for

Cancer Research and Oncology

2.1 In Vitro/Ex Vivo Detection and Diagnostics

2.1.1 Biofluids

The ideal biological specimens for diagnostic tests are biofluids (i.e. blood, urine, or

saliva) as their collection - also known as a "fluid biopsy" - is non-invasive and

they can be repeatedly collected without harm to the patient. Additionally, biofluids

contain a vast amount of important and clinically relevant chemical components, in-

cluding DNA, hormones, proteins, and metabolites. Thus, a considerable amount of

research has been focused on assessing the utility of Raman technologies to analyze

biofluids in cancerous and non-cancerous patients [58, 59, 60]. The following discus-

sion involves prostate, oral and breast cancers; however, a list of additional cancers

diagnosed using biofluid samples and Raman techniques can be found in Table 2.1.

Table 2.2 also provides a compilation of common Raman bands identified in these

studies.
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Table 2.1: Summary of cancers diagnosed
lected representative associated references.
be absolute or all encompassing.

using various Raman techniques and se-
Please note that this list is not meant to

Type of cancer Biofluid Ex vivo tissue In vivo model
Prostate Blood, urine Human
Oral Blood, urine, saliva Human Human
Breast Blood, urine, saliva Human Mouse
Skin Human Human, mouse
Brain Human, pig, mouse Human, mouse
Lung Human Human
Gastrointestinal Blood Human Human, pig, rat
Leukemia Blood
Head and neck Blood Human
Cervical Blood Human Human
Liver Blood Human
Ovarian Human Mouse
Circulating tumor Blood -_
cells

Prostate Cancer

In 2003, Porter and co-workers reported one of the first immunoassays that utilized

SERS for the detection of prostate specific antigen (PSA) in human serum [61]. For

specificity to PSA and signal enhancement, Raman probes were prepared by function-

alizing 30 nm gold nanoparticles (AuNPs) with an anti-human PSA antibody and the

Raman reporter 5,5'-dithiobix(succinimidyl-2-nitrobenzoate) (DSNB). Based upon

their previous studies, the authors found that covalently linking the PSA antibod-

ies to the Raman reporter and in turn the gold nanoparticles increased performance

over physisorption techniques. Solutions of anti-human PSA-gold nanoparticles and

human serum samples containing free PSA were allowed to react, dry onto anti-free

PSA antibody treated gold slides, and interrogated by a fiber-optic Raman system

equipped with a 632 nm HeNe laser. Using the symmetric nitro stretch of DSNB

at 1338 cm- 1 , PSA levels were detected down to 1 pg/mL and were comparable

to commercially available assays. Raman spectroscopy was also coupled with sup-

port vector machine (SVM) analysis to evaluate blood serum from prostate cancer
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Table 2.2: Common Raman band assignments used in cancer diagnostic studies [1,
2, 3, 4, 5, 6, 7, 8]. Please note that Raman vibrations may shift in wavenumber
depending on the sample and that these values should not be regarded as absolute.

shift Vibrational mode Assignment

g vibrations

ng vibrations

Raman

(cm-1)
481
558
600
621
650
678
685
692
798
825
840
903
912
960
1004
1049
1155
1176
1217
1265
1310
1340
1445
1477
1523
1586
1654
1655
1739
2081
2845
2940

v(C-H)
v(C-C6 H5 )
v(C-N), 6(N-H), amide III
t(C-H)
w(CH3-CH2)
6(CH2)
v(C-O)

6(C=C)
v(C=C)
v(C=O), amide I
V(C=O)

v(CH2)
v(CH3)

v(C-C)
v(N-CH3), 6(C=0), fin

t(C-C)
t(C-C)
v(N-CH2), v(C=0), rii
t(C-S)
6(0-C=O)
v(N-H)
as(O-P-0)
6(N-CH 2), ring vibratic
v(C-C-N)
v(C-C)
V(po 43)
v(C-C), ring breathing
v(C-0), v(C-N)

patients and healthy volunteers [1]. While the collected serum samples were investi-

gated using both conventional Raman spectroscopy and SERS, SERS with bare silver
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Glycogen
Uric acid
Creatinine
Phenylalanine
Tryptophan, uric acid
Creatinine
Proteins
Creatinine
Uric acid
DNA backbone
Creatinine
Creatinine
Calcium oxalate dihydrate
Calcium hydroxyapatite
Phenylalanine
Proteins

-carotene
Tyrosine
Tyrosine, phenylalanine
Proteins, a-helix, collagen
Lipids
Collagen, lipids
Collagen, lipids
Calcium oxalate dihydrate
/-carotene
Phenylalanine
Fatty acids
Proteins, a-helix, collagen
Cholesterol esters
Pheomelanin
Lipids
Proteins, lipids
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nanoparticles showed the greatest diagnostic capabilities. The acquired SERS spec-

tra from cancerous and normal patients revealed biochemical changes that correlated

to a malignant state. In prostate cancer serum samples, Raman bands at 481 cm-1

(glycogen), 1217 cm- 1 (C-C6 H5 - phenylalanine, tryptophan) and 1445 cm- 1 (CH 2

bending - collagen/lipids) were seen to decrease, while increases were seen at 650

cm- 1 (C-C twist, tryptophan), 685 cm- 1 (C-S twist) and 1586 cm- 1 (C=C bending

phenylalanine). Spectra classified using the Gaussian radial basis function kernel

SVM model resulted in diagnostic metrics of 100% specificity, 96% sensitivity, and

98% accuracy.

Diagnosis of prostate cancer using SERS has also been extended to urine analysis

[62]. In this study, filtered urine samples were mixed with gold nanoparticles and

then spotted onto a CaF2 microscope slide for measurement. Examination of the dif-

ference spectra revealed an increase in Raman bands associated with the metabolite

hypoxanthine in prostate cancer samples. Using PCA-LDA for classification, a sensi-

tivity of 100%, a specificity of 89%, and an accuracy of 95% were achieved. While the

sample size for this study was limited, this work demonstrates the potential feasibility

of urinalysis via SERS and multivariate spectral analysis for cancer diagnoses.

Oral Cancers

Blood sample analysis via Raman spectroscopy has also been carried out for oral

cancers [63, 64, 65]. In 2013, Sahu et al. demonstrated that conventional Raman

spectroscopy could be used to delineate between serum samples from patients that

had been diagnosed with buccal mucosa and tongue cancer, and those from healthy

volunteers [63]. An efficacy of 85% was found when all spectra were independently

analyzed, while 78% efficacy was reported when replicate measurements for inde-

pendent patients were averaged prior to analysis. PCA-LDA was used as the data

analysis model for classification generation. Similar to that seen in prostate can-

cer analysis, changes in Raman bands associated with amino acids and lipids were

most significant. This same group demonstrated that Raman spectroscopy on serum

samples could potentially predict reoccurrence of oral cancer [65].
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Additionally, urine has been investigated for the detection of oral cancer using

Raman spectroscopy [2]. In this study, voided raw urine was collected from 167

patients (73 healthy and 93 cancerous) and evaluated for its chemical components

between 500-1800 cm- 1 using 785 nm excitation. Molecular vibrations associated

with uric acid, specifically C-C stretching at 558 and 649 cm- 1 and N-H stretching at

798 cm- 1 , showed elevated intensities in cancer patients compared to those that were

healthy. Four Raman bands related to creatinine also showed increases, while the

band at 692 cm- 1 (0-C=O deformation) was only present in cancer patients. Other

urinary metabolites - urea, DNA, indoxyl sulfate, pteridine, flavin, tryptophan, and

phenylalanine - showed differences between cancer and healthy patients. PCA-LDA

spectral analysis resulted in a diagnostic sensitivity, specificity, and accuracy of 98.6%,

87.1%, and 93.7%, respectively. Oral cancer detection has been extended to saliva

analysis through coupling Raman spectroscopy and PCA [66].

Breast Cancer

Diagnostic evaluations using blood, urine and saliva for breast cancer have also been

performed. Blood serum analysis using conventional Raman spectroscopy coupled

with PCA-LDA was able to distinguish between normal and cancerous patient sam-

ples with 97% sensitivity and 78% specificity [67]. In order to acquire ample signal,

samples were frozen and solid residues were removed for spectral analysis. Multivari-

ate analysis revealed seven Raman band ratios that led to the discrimination between

cancerous and non-cancerous samples; these discriminatory band ratios involved the

amino acids phenylalanine, tryptophan and tyrosine as well as polysaccharides and 3-

carotene. Bhattacharjee et al. demonstrated the feasibility of using urine as a sample

platform for breast cancer diagnosis [68]. Urine was collected from control and breast

tumor bearing rats, and was then evaluated with Raman spectroscopy in either an

unprocessed or concentrated form. The acquired Raman spectra from unprocessed

urine revealed bands associated with urea (1006 cm- 1 and 1161 cm- 1) and creatinine

(680 cm- 1 and 850 cm- 1). The use of urine concentration led to additional spectral

features being revealed. Still, even with additional features present, the Raman bands
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at 680 cm- 1 and 1006 cm- 1 showed the greatest change between control and tumor

bearing rats. Spectral analysis using PCA-LDA resulted in classification efficiencies of

72% and 91% when using unprocessed and concentrated urine samples, respectively.

Saliva has also been recently evaluated as a biological matrix to diagnosis breast

cancer using SERS [3]. Saliva was collected from 33 healthy patients and 31 cancerous

patients, and then mixed with silver nanoparticles immediately before acquiring the

Raman measurement. Difference spectra revealed saliva acquired from cancerous

patients had protein band decreases at 621 cm- 1 (C-C twist phenylalanine), 1049

cm- 1 (C-O, C-N proteins) and 1176 cm- 1 (C-H tyrosine) and protein band increases

at 1004 cm- 1 (C-C phenylalanine), 1208 cm- 1 (C-C6 H5 phenylalanine) and 1340 cm- 1

(CH 3CH 2 wagging collagen). A partial least square (PLS)-DA algorithm was used

to categorize the data and resulted in diagnostic sensitivities above 72%, specificities

above 81%, and accuracies above 78%.

2.1.2 Tissue

Ex vivo tissue examination through histopathological techniques is regarded as the

gold standard for cancer diagnosis. Histopathology, while reliable, does not allow for

in vivo evaluation, which would be extremely beneficial during surgery; the complete

removal of tumor margins is heavily correlated to increased survival [69, 70, 71]. Thus,

the use of Raman technologies to delineate between cancerous and non-cancerous tis-

sues ex vivo has been readily explored as first step toward the potential intraoperative,

real-time evaluation of tissue during surgery [72, 58, 59]. Although the below discus-

sion focuses on breast, lung, skin and brain cancers, a list of other cancers diagnosed

using ex vivo tissue samples and Raman techniques can be found in Table 2.1. Com-

mon Raman bands identified in these works can be found in Table 2.2.

Breast Cancer

With over 260,000 total cases of breast cancer reported each year [73], it is not sur-

prising that breast tissue has been heavily interrogated using Raman techniques. One
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of the first reports of breast tissue evaluation using Raman spectroscopy was pub-

lished more than 20 years ago [74]. This work focused on the characterization of

molecular components in normal breast tissue as well as the optimization of spectro-

scopic experimental parameters, such as the excitation wavelength, laser power, and

the use of a fiber optic probe for spectral acquisition. A year later, the same group

used these results to assess the potential spectral differences between normal and

cancerous (invasive ductal carcinoma, IDC) breast tissues [75]. Using a NIR excita-

tion source with relatively low power (100-200 mW), the authors reported cancerous

tissue having significant differences, especially in bands correlated to lipid content.

For statistical analysis, the band area ratios of 1654 cm- 1 (C=C stretching in fatty

acids) and 1439 cm- 1 (CH2 scissoring) were chosen due to their sensitivity towards

histopathological variations. Discrimination between normal and diseased tissue was

also possible using a fiber optic probe placed 1 mm into the tumor. It should be noted

that both conventional and fiber optic based Raman systems used in this study were

unable to distinguish between benign (fibrocystic change) and cancerous samples.

Feld and co-workers later published a series of works that reported the discrimina-

tion and molecular characterization of breast tissue from normal, fibrocystic change,

fibroadenoma and infiltrating carcinoma pathologies through the combination of a

Raman microspectroscopic setup and linear combination models [76, 77, 78]. Their

analysis model revealed that bands associated with fat and collagen were important

algorithmic parameters and led to a diagnostic classification sensitivity of 94% and

a specificity of 96%. Much work since these foundational studies has been focused

on investigating the utility of different combinations of Raman spectral features and

multivariate analysis techniques to discriminate between normal, benign and diseased

breast tissue [79, 80, 81, 82, 83].

Raman spectroscopy of calcified species has also been reported as a plausible

method to differentiate between normal and cancerous breast tissue. While calcifi-

cations are regarded as harmless when found in bones, their presence in soft tissue,

especially breast tissue, is often associated with disease. Calcifications are gener-

ally composed of either calcium oxalate dihydrate (COD) or calcium hydroxyapatite
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(HAP), and are extremely difficult to distinguish using traditional pathology tech-

niques [84]. Haka et al. reported that bands located at 912 cm- 1 (C-C stretching) and

1477 cm- 1 (C-O stretching) were indicative of COD calcifications while HAP had a

prominent spectral signature at 960 cm 1 that corresponded to phosphate stretching

[85]. While benign tissues could be distinguished using the COD calcification Raman

bands alone, differentiation between benign and diseased tissues using HAP band

measurements required the use of PCA. PCA resulted in a diagnostic sensitivity of

88% and specificity of 93% when monitoring the increase in bands associated with

calcium carbonate and the decrease in protein bands. Stone and Matousek also ex-

plored the use of transmission Raman spectroscopy for distinguishing between HAP

and COD in breast phantoms at depths translatable to in vivo detection [86]. In a

push towards rapid clinical translation, Barman et al. demonstrated the feasibility

of simultaneously identifying between HAP and COD calcifications and diagnosing

breast cancer lesions in real-time during a stereotactic core needle biopsy [87]. A

combination of Raman spectroscopy and SVM analysis resulted in a 100% positive

predicative value, a 95.6% negative predictive value, a 62.5% sensitivity, and a 100%

specificity for diagnosing breast cancer tissues with or without calcifications. An 82%

overall accuracy for calcification status and breast cancer diagnosis was also reported.

However, the most impressive result from this study was the ability of their SVM al-

gorithm to diagnose ductal carcinoma in situ (DCIS), which was not possible with

their previously developed algorithms for biopsy Raman analysis.

While many studies have focused on utilizing conventional Raman spectroscopy,

Wong and co-workers employed CARS imaging and quantitative data analysis to

distinguish between normal, benign and cancerous breast tissue [88]. In addition,

the team demonstrated the ability of CARS to classify cancer subtypes (DCIS, high

grade and low grade invasive ductal carcinoma (IDC), and lobular carcinoma). CARS

imaging using the CH2 vibration located at 2845 cm- 1 revealed normal breast tis-

sue was dominated by adipose and fibrous structures, while malignant tissues showed

morphological alterations especially within tumor cells that were confined to the base-

ment membrane and duct space. Diagnostic features from the acquired images were
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selected according to pathological standards. Using their developed methodology,

80% of intermediate-grade IDC and 85% high-grade IDC samples were accurately

distinguished.

Lung Cancer

Ex vivo tissue analysis using Raman spectroscopy has also been performed on lung

cancer samples. In 2001, Hamaguchi and co-workers demonstrated the possibility

of distinguishing between normal and malignant lung tissues by using NIR Raman

spectroscopy [89]. By using 1064 nm laser excitation, resolvable biological spectra

could be acquired with only minimal tissue autofluorescence. Cancerous tissues were

found to have strong bands located at 1448 cm- 1 and 1666 cm- 1, which corresponded

to collagen. Huang et al. also utilized NIR Raman spectroscopy, probing between

700-1800 cm- 1 with a 785 nm diode laser, to distinguish between normal and dis-

eased bronchial tissues from 10 patients [4]. Their measurements revealed significant

spectral differences of bands associated with amino acids, collagen, nucleic acids and

phospholipids, with the ratio of Raman band intensities at 1445 cm- 1 and 1655 cm 1

serving as a metric of differentiation. The Wong group used CARS microscopy to

discriminate between normal, benign, and malignant lung tissues [90, 91]. Malignan-

cies were categorized using CARS imaging into different subtypes. Distinguishing

between normal and cancerous tissues required 11 features and resulted in classifica-

tion accuracies of 91% and 92%, respectively. In order to separate adenocarcinoma

from squamous cell carcinoma samples, 25 features were required and led to 76% and

72% classification accuracies. Shifted subtracted Raman spectroscopy has also been

explored as a diagnostic technique for the evaluation of lung tissue samples [92].

Skin Cancer

Skin cancer can be divided into three major subtypes: melanoma, basal cell carci-

noma (BCC) and squamous cell carcinoma (SCC), with melanoma accounting for

less than 2% of all skin cancer cases, but responsible for 75% of skin cancer deaths

[73]. BCC and SCC are often referred to as nonmelanoma skin cancers (NMSCs) and
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their detection has been heavily investigated in the Raman community. One of the

first reported studies to investigate the utility of Raman spectroscopy to identify NM-

SCs was conducted by Gniadecka et al. and compared the spectral features of BCC

to those of normal skin biopsies [93]. Using a NIR Fourier transform (FT) Raman

spectrometer with a 1064 nm Nd:YAG excitation laser, this work revealed alterations

in protein, lipid and polysaccharide bands. BCC spectra showed a decrease at 1270

cm- 1 (amide III - protein) and 1650 cm- 1 (amide I - protein) and were correlated

to disturbances in the a-helix secondary structure of the skin. Additional spectral

alterations were seen at 850, 870, 950, 1420 and 1450 cm 1 and were associated with

changes in protein and lipid structures. The authors employed an artificial neural

network analysis technique to achieve complete separation between BCC and normal

tissues using spectral changes in the regions of 830-900 cm- 1, 900-990 cm- 1 and

1220-1360 cm 1 . Building upon this work, Puppels and co-workers used a logistic

regression model to differentiate BCC from the surrounding normal, healthy epider-

mis. Their analytical approach resulted in 100% sensitivity and 93% specificity for

BCC diagnosis [94]. This same group later reported the ability to distinguish between

BCC and surrounding healthy tissue using high wavenumber (2800-3125 cm-) Ra-

man spectroscopy [95]. They achieved 100% and 99% prediction accuracies for BCC

and healthy tissue, respectively. As high wavenumber analysis eliminates background

signals in the fingerprint region that arise from the use of fused-silica-based optical

fibers, this work demonstrated the potential feasibility of using a fiber optic probe to

diagnose tumor borders in BCC.

Multimodal imaging consisting of CARS, second harmonic generation (SHG), and

two-photon excitation fluorescence (TPEF) has also been explored as a potential tech-

nique to discriminate between BCC and normal tissues. Multimodal imaging allows

for not only structural information (SHG - collagen) but also spatial (TPEF

endogenous fluorophores) and chemical (CARS - lipids) information to be resolved.

Vogler et al. used this multimodal imaging strategy in 2010 and revealed that BCC

tumor cells could be distinguished due to their undetectable collagen structures and

large patches of fat reservoirs [96]. Three years later, this group used the same ap-
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proach to distinguish between BCC and SCC as well as normal tissues [97]. BCC and

SCC both showed a lack of collagen structure, but BCC also demonstrated a weaker

CARS (lipid) signal than that of SCC. Additional morphological features that are tra-

ditionally seen in H&E stains could also be visualized using this strategy and added

to the strength of diagnosis.

Melanoma and NMSCs have also been able to be distinguished from one another.

Wulf and co-workers utilized NIR FT-Raman spectroscopy to delineate melanoma

from pigmented nevi, BCC, seborrheic keratoses and normal tissue [5]. Visual differ-

entiation was based upon band intensity decreases at 1660 cm- 1 (amide I - protein)

as well as increases at 1310 and 1330 cm- 1 (CH twisting and wagging - lipids) for

BCC and SCC, respectively. As proposed in other studies, the decrease in in the

amide I band was attributed to conformational changes in proteins of diseased tissue.

When neural network analysis was employed for tissue discrimination, a melanoma

diagnostic sensitivity of 85% and specificity of 99% was achieved while a sensitivity

of 97% and a specificity of 98% were attained for BCC. These metrics are compara-

ble to those achieved with trained pathologists, demonstrating the potential utility

and translation of this methodology for melanoma and BCC diagnosis. BCC and

melanoma discrimination has also been achieved using PCA for spectral analysis

[98, 99].

Brain Cancer

Brain cancer accounts for over 250,000 diagnosed cancer cases and 189,000 deaths

annually worldwide [100]. Of these reported cases, approximately 50% are identified

as gliomas, which are known for their highly aggressive nature. That said, it is not

surprising that the majority of work in the Raman community has been geared toward

the identification of gliomas. In one of the first reported investigations, Koljenovid

et al. evaluated 20 unfixed cryosections of glioblastoma by Raman spectroscopy and

LDA for separating vital and necrotic tissues [6]. The dominating spectral signatures

from difference spectra (necrotic minus glioblastoma) resembled that of cholesterol

and cholesterol esters, indicating necrotic tissues possess higher concentrations of
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cholesterol. Subtle band changes, corresponding to carotenoids and calcifications,

were also observed. Cluster analysis resulted in 100% diagnostic accuracy when run

on 9 independent tissue samples. This group further explored the utility of Raman

spectroscopy for brain cancer diagnosis using high wavenumber (2400-3800 cm- 1)

Raman spectroscopy [101] and a single-fiber optical probe Raman system [102].

Raman spectroscopy was also compared with IR spectroscopy for the delineation

of glioma, meningioma and schwannoma from normal tissues in a study conducted

by Krafft et al. [103]. In this work, both Raman and IR spectroscopic analysis

resulted in significant differences between diseased and normal tissue samples; how-

ever, Raman spectroscopy was determined to be the better technique due its lack of

"contamination" from water and its ability to spatially resolve a greater number of

chemical components. For meningioma, Raman spectral decreases were seen at 857,

939, 1246 and 1684 cm- 1 when compared to normal tissue. As these bands correspond

to collagen, their observed decreases agree well with the notion that tumors have ir-

regular collagen structures. Glioma tissues were evaluated against tissue that had

been subjected to a hemorrhage, and spectral analysis showed that hemorrhage tis-

sues had increased band intensities at 661, 751, 1003, 1124, 1258, 1346, 1454 and 1603

cm 1 . These bands were correlated to the presence of hemoglobin. When compared

to meningioma, close analysis revealed that glioma tissues had greater band inten-

sities at 719 cm- 1 indicating differentiations could be based on phosphatidylcholine

levels. Schwannomas also showed distinct spectral features at 426 cm- 1 and 508 cm 1

when compared to glioma and meningioma tissues. These bands were attributed to

the presence of tricalciumphosphate within the lesions. Krafft and colleagues later

used Raman microscopic imaging and a spectral unmixing algorithm to investigate

histopathological features such as cell density and nuclei [104]. Raman signatures

in combination with the unmixing algorithm revealed high-grade glioblastomas had

increased nucleic acid levels (782, 1099 and 1576 cm-) over low-grade tissues. Fur-

thermore, this group utilized hyperspectral unmixing of Raman images to correlate

morphological (i.e. number and diameter of cell nuclei) and biochemical (i.e. pro-

teins, lipids and nucleic acids) components with the degree of malignancy in brain
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tissues [105].

Coherent Raman imaging has found applications in the identification and mi-

croscale mapping of gliomas. In 2009, Evans et al. demonstrated the ability of CARS

to delineate fresh astrocytoma samples, a type of glioma, from normal brain tissue

in mouse models of human brain cancer [106]. Images were constructed by using the

lipid CH 2 stretching mode located at 2845 cm- 1 and revealed accurate tumor margins

when compared to traditional H&E stains. Kirsch and co-workers have recently used

CARS to evaluate primary and secondary brain tumors against normal tissue [107].

Primary glioblastoma tumors and brain metastases of breast and melanoma where

shown to exhibit decreased CARS signals and were thus distinguishable from normal

surrounding tissues. Tumor infiltrates were also identified by the gradual disappear-

ance of the 2845 cm- 1 CARS signal into the tumorous region. Additionally, the use

of CARS in a multimodal imaging format similar to that described for skin cancer

(BCC) has also been used to analyze brain tumors [108].

Gliomas have also been identified via another coherent Raman technique, namely

SRS. Building upon their work in 2008 that demonstrated the ability of two-color SRS

imaging to produce high quality brain tissue images [55], Xie and colleagues evaluated

the use of this Raman imaging modality to delineate between diseased and normal

brain tissues as well as differentiate between primary and secondary tumors [7]. Mul-

ticolored SRS images were created using two Raman vibrational modes: 2845 cm-1

(CH 2 stretching - lipids) and 2940 cm- 1 (CH 3 stretching - lipids and proteins).

While the CH2 stretching vibration was used alone to produce images of cytoplasm

and myelin sheaths, images of nuclear morphology resulted from the difference image

of CH2 stretching (2845 cm- 1) subtracted from CH3 stretching (2940 cm- 1). Using

this type of image acquisition, brain tumor tissues showed increased cellularity com-

pared to normal brain tissue and exhibited similar diagnostic features as conventional

H&E tissue analysis. Primary glioma tumors were further distinguishable from brain

metastases from the breast by monitoring the tumor margin. Primary glioma tissue

samples displayed infiltrating glial cells along the white matter tracts of the corpus

callosum, while a defined tumor margin could be seen with tissue samples of brain

59



metastases. This group was later able to quantify and correlate acquired SRS signals

at 2845 cm- 1 and 2930 cm- for the differentiation of cellular regions - solid tumor,

cortex and white matter - in human glioblastoma xenografts [109]. The ratio of

Raman signals (2930 cm- 1 /2845 cm- 1 ) revealed solid tumor regions had high levels

of protein compared to both cortex and white matter regions. By monitoring this

Raman signal ratio across the gray matter-tumor interface, tumor infiltration was de-

tectable. Fresh human tumor samples were also analyzed using this multicolor SRS

imaging approach. SRS analysis not only revealed hypercellularity (i.e. increased pro-

tein content), but also cellular and nuclear pleomorphism, pseudopalisading necrosis

and microvascular proliferation. The identified features matched those seen with tra-

ditional H&E analysis further. These impressive studies demonstrate the potential

clinical utility of SRS for intraoperative use in brain tumor cytoreduction surgery

cases as SRS provides ample information to aid in tumor margin identification.

2.2 In Vivo Detection and Diagnostics

2.2.1 Animal Models

Animal models are one of the most invaluable components in translating a diagnostic

or treatment strategy to the clinic. While they do not fully recapitulate the genetic

and epigenetic heterogeneity found in human cancers, animal models allow researchers

to investigate harmful and fatal diseases without risking human lives [110]. Preclin-

ical studies investigating the utility of Raman spectroscopy for the identification of

cancerous lesions have heavily relied on animal models, namely murine models. While

several cancer models have been explored (Table 2.1), the following discussion will fo-

cus on brain and breast cancer detection, as these are the most heavily investigated.

A list of common Raman bands used for in vivo detection and diagnostics can be

found in Table 2.2.
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Brain Cancer

The gold standard for brain tumor detection is histological analysis on biopsied tis-

sues; however this method does not allow surgeons to differentiate infiltrating lesions

from normal tissue in real-time in the operating room. While several groups have

focused on characterizing spectral differences of these tissue populations in ex vivo

tissues, the use of in vivo Raman detection strategies is still in its early stages, with

the majority of work being conducted on experimental animal models. In 2010, Bel-

jebbar et al. demonstrated the potential for in vivo glioblastoma detection using a

microprobe coupled to a portable Raman spectrometer [111]. In this study, rat C6

glioma cells were injected into neonatal Wistar rats and intracerebral tumor devel-

opment was monitored up to 20 days using the Raman microprobe. The microprobe

utilized an 830 nm laser excitation source, a fiber optic probe to deliver incident laser

light and collect the Raman scattered light, and a spectrograph to record Raman spec-

tra. Alterations in bands associated with proteins, lipids and DNA were observed,

and hierarchical cluster analysis of these spectral features showed strong separation

between brain tissue pre-injection (i.e. normal) and tissue from the developed tu-

mor. That same year, Krafft and co-workers reported the in vivo detection of brain

metastases using a Raman spectroscopic imaging system with a 785 nm laser source

[112]. Metastatic brain tumors were induced using murine melanoma cells injected

into the carotid artery of nude mice. Due to the presence of melanin and its associated

Raman signatures (i.e. 587, 976, 1404, and 1595 cm-), the location of melanoma

cells and their developed metastases could be visualized in cortical and subcortical

regions. While the Raman images had lateral resolutions of 250 Pum and required

several minutes to acquire, this work demonstrated the intraoperative potential of

Raman spectroscopic imaging for brain tumor resection.

Recently, SERS has also been recently employed for the in vivo identification of

brain lesions, specifically for fine margin resection. Kircher et al. described the use of

a triple-modality nanoparticle that allowed the combination of MRI, photoacoustic

imaging, and Raman imaging for the intraoperative identification of brain tumor mar-
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gins in live mice [113]. This imaging combination resulted in the location of the whole

brain tumor to be identified (MRI) as well as the tumor's three-dimensional structure

at a high spatial resolution to be visualized (photoacoustic imaging). Raman imaging

further allowed for brain tumor margins to be delineated as confirmed by histological

analysis. To enable the triple imaging strategy, 60 nm spherical gold nanoparticles

were functionalized with Raman reporter and MRI contrasting molecules. Under

this design the nanoparticles served as a photoacoustic contrasting agent, provided

signal enhancement of the Raman tag, and carried contrasting molecules for MRI.

The nanoparticles were injected into the tail vein of orthotopic glioblastoma bearing

mice, and were able to cross the blood-brain barrier and accumulate in tumor cells

via the enhanced permeability and retention (EPR) effect. Tumor site localization

allowed for high signal to noise ratios in all imaging modalities and significantly aided

in the complete resection of glioblastomas. The use of a handheld Raman scanner in

combination with silica coated gold nanoparticles has also been reported [114]. The

handheld scanner allowed for real-time Raman scans of the tumor region and revealed

additional cancer laden regions that were otherwise undetectable by conventional Ra-

man and SERS imaging systems.

The Xie group has demonstrated the use of SRS for rapid and label-free visualiza-

tion of glioblastoma multiforme (GBM) brain tumors [109]. Accurate resections are

of particular importance in the context of brain cancer, given that 85% of recurrent

GBM tumors arise at the resection margin where cancer cells were left behind [115].

Ji et al. used an infiltrative human GBM xenograft mouse model fitted with a cranial

window in order to image the brain tissue non-invasively. Two Raman spectral peaks:

2845 cm- 1 and 2930 cm-1, which correspond to lipids and proteins, respectively, were

chosen to contrast healthy tissue from the brain tumor. These bands were selected

given the marked decrease in lipid content in cancerous tissue, thus offering a source

of endogenous contrast. They showed that while the bright-field image of the tumor

border appears grossly normal, it is readily distinguishable in SRS. While the authors

caution that SRS microscopy still requires rigorous evaluation and validation prior to

clinical translation, their work is among the first to introduce in vivo coherent Raman
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microscopy to the field of cancer research.

Breast Cancer

In an effort to better reconcile rodent models of breast cancer with its human coun-

terpart, Bhattacharjee et al. evaluated the Raman spectra from C57, Swiss albino,

Swiss bare, and agouti mice, as well as Sprague-Dawley rats [116]. They first found

that white-haired rodents provided better signal-to-noise ratio and less background

relative to their colored kin in terms of their Raman spectra. A further investigation

of white-haired and hairless mice across various anatomical sites was then carried out

in order to evaluate the contributions from skin versus those of the mammary tissue.

It was found that the highest quality spectra were obtained from Swiss bare mice,

suggesting they are best suited for future transcutaneous spectroscopic investigations

of breast cancer in animal models.

As for the application of SERS in the context of breast cancer, Qian et al. explored

the applicability of using gold nanorod probes to optically detect breast cancer tumors

in vivo via tagging with polyethylene glycol (PEG) and 3,3-diethylthiatricarbocyanine

iodide (DTTC), a NIR fluorophore and Raman probe [1171. Male nude mice were first

xenografted with human breast cancer cells and maintained until the tumors reached

an approximate size of 5 mm in diameter. The mice were then injected with the

functionalized nanoprobes and imaged at several time points post-injection. Their

work showcased the potential for using SERS and fluorescence simultaneously on a

single platform to map tumors and sentinel lymph nodes in the context of breast

cancer.

A later study by Dinish et al. made use of gold nanoparticles tagged with three

Raman reporters bound to three antibodies for intrinsic breast cancer biomarkers:

Cy5 to TGFLRII, MGITC to CD44, and Rh6G to EGFR [118]. Nude female mice

were inoculated with a human metastatic breast cancer cell line, and nanoprobes were

injected at the center of the tumor once it reached a palpable size. By targeting a

single spectral peak from each Raman reporter, the authors observed the multiplex

SERS spectra in the tumor region up to 48 hours post-administration, followed by
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their clearance after 72 hours. This research suggests the possibility of selectively

targeting and imaging subtypes of breast cancer in vivo for improved diagnosis and

treatment monitoring.

Finally, Jeong et al. recently developed a fluorescence-Raman endomicroscopic

system (FRES) using nanoprobes for simultaneously acquiring fluorescence and SERS

measurements [1191. The nanoprobes consisted of a large silica nanoparticle (200 nm

diameter) covered in smaller Raman-labeled silver nanoparticles (10 nm diameter),

all coated in a silica shell that was conjugated to AF610, a fluorescent dye (10 nm

thickness). To evaluate system performance on a murine breast cancer model, four

mice were xenografted with a human breast cancer cell line expressing high levels of

HER2 and EGFR, both common biomarkers of breast cancer. The authors report

successful molecular detection of the xenografted tumors endoscopically with high

sensitivity via multiplexed active targeting. This technology could thus be translated

to routine endoscopic procedures where diagnosis of particular cancer subtypes in

their early stages is most critical.

2.2.2 Human Studies

Due to the ethical standards surrounding human research, the exploration of Ra-

man spectroscopy techniques for cancer diagnostics has so far been somewhat lim-

ited. However, the works presented here have been conducted on easily accessible

regions that do not require invasive procedures or anatomical regions that can be

accessed through endoscopic probes. Thus the following discussion focuses on skin,

gastrointestinal, cervical and brain cancer detection. Other cancers that have been

investigated using in vivo Raman technologies can be found in Table 2.1. Raman

bands associated with these studies can be found in Table 2.2.

Skin Cancer

Skin cancer is arguably one of the most studied forms of neoplasia in vivo via Raman

spectroscopy, primarily due to the ease of access of suspicious lesions. This avoids
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the need for endoscopy and favors the use of handheld fiber-based Raman probes for

rapid, accurate, and point-of-care diagnosis and classification of suspect skin lesions.

The current clinical standard for skin cancer diagnosis relies on visual inspection

of suspect lesions, often assisted by dermoscopy. This diagnostic methodology leaves

a fair degree of variability in the accuracy of skin cancer diagnosis based on the

experience and training of the dermatologist. This subjectivity thus warrants the

development of tools that are non-invasive, rapid, and portable for a more objective

and rigid framework for evaluating suspicious skin lesions.

To this aim, the Zeng group has been investigating the applicability of Raman

spectroscopy for skin cancer diagnostics. In 2012, the group conducted a clinical

study investigating various types of skin cancer as well as a variety of benign skin

diseases, where the integration time for their studies was set at 1 second or less.

They confirmed the ability to distinguish malignant and pre-malignant lesions from

benign ones, melanomas from nevi (benign pigmented lesions, commonly referred to

as moles), and melanomas from seborrheic keratoses. For highly sensitive detection

(ranging from 95% to 99% sensitivity), a specificity ranging from 15% to 54% was

reported, suggesting the applicability of Raman spectroscopy as a tool for screening

suspicious lesions non-invasively [120]. In a related report, it was also shown that

intentional photobleaching of skin can be a useful technique to reduce the autofluo-

rescence of the sample, effectively increasing the overall signal-to-noise ratio of the

spectroscopic measurements [121]. More recently, the group conducted an indepen-

dent validation of their automatic skin cancer detection methodology, where they used

518 cases from a prior study as a training set and 127 new cases for testing. This

study validated prior work, yielding diagnostic accuracy matching previous findings

[122].

In parallel, the Meinke group conducted an in vivo clinical study using Raman

spectroscopy to discriminate skin cancer from normal tissue via a fiber-coupled probe.

In measuring spectra from 104 cases of various skin cancers, accuracies of 73%, 85%,

and 91% in distinguishing basal cell carcinoma, squamous cell carcinoma, and malig-

nant melanoma from normal skin, respectively, were found [123].
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Related work conducted by the Wulf group further revealed that Raman spec-

troscopy could be used in the context of skin cancer diagnostics in a manner that is

independent of skin pigmentation. Specifically, it was reported that while the degree

of pigmentation does influence the Raman spectra, proper background correction can

negate the contributions from pigments and thus allow for spectral bands of interest

to be interpreted unambiguously [124].

Recent efforts have been made in combining imaging and spectroscopic modalities

to further improve the accuracy of skin cancer diagnostics. One such effort led by

the Tunnell group found that Raman spectroscopy alone was sufficient to distinguish

malignant melanoma from benign pigmented lesions with a diagnostic accuracy of

100%. However, in the case of nonmelanoma skin cancers, the diagnostic accuracy

was improved when reflectance and fluorescence measurements were combined with

the Raman data. In this case, they were able to distinguish actinic keratoses as well

as squamous and basal cell carcinomas from normal skin with a sensitivity and speci-

ficity of 90% and 85%, respectively [125]. Another study conducted by Moryatov

and co-workers found that combining measurements from optical coherence tomog-

raphy (OCT), backscattering, and Raman spectroscopy into a multimodal platform

for diagnosing skin cancer increased sensitivity and specificity by 9% and 8%, re-

spectively, when compared to Raman spectroscopy alone. In particular, they were

able to distinguish melanoma from nonmelanoma tumors with 89% sensitivity and

93% specificity, and basal cell carcinoma (BCC) from non-BCC tumors with 100%

sensitivity and 96% specificity [126]. These two promising trials illustrate that the

advent of multimodal imaging and spectroscopic platforms can be used to improve

skin cancer diagnostics over the use of Raman spectroscopy alone.

Gastrointestinal Cancers

Cancers of the gastrointestinal tract can occur anywhere between the oral cavity and

the anus, and represent a particularly difficult diagnostic challenge. Raman spec-

troscopy has been used in several studies investigating mouth or oral cancer, properly

known as oral squamous cell carcinoma (OSCC). Considerable progress in this field
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has been made by the Krishna group, where a study in 2012 on 10 normal and 10

cancerous ex vivo tissues, as well as 10 in vivo measurements, revealed differences

in the spectra of normal versus cancerous samples. Moreover, they showed that the

spectra from the normal in vivo and ex vivo tissues were similar enough to warrant

further in vivo study in the use of Raman spectroscopy as a diagnostic tool for OSCC

[127]. Indeed, the group later published an investigation of premalignant lesions of

the mouth in vivo, finding that premalignant lesions can effectively be distinguished

from normal and cancerous sites in patients with and without smoking habits [128].

The group further studied the applicability of Raman spectroscopy for OSCC diag-

nostics by investigating whether early changes associated with cancer - including

malignancy-associated changes (MAC) and cancer field effects (CFE) - can be iden-

tified spectroscopically. In acquiring 722 spectra from a total of 84 subjects, it was

found that early neoplastic transformation can indeed be detected via Raman spec-

troscopy [129].

Esophageal and gastric cancers have been another focus of diagnostic research in

the field of Raman spectroscopy, with particular emphasis on the precancerous cellular

transformation from squamous to gastric cells in the lower esophagus - a condition

known as Barrett's esophagus (BE). To this aim, the Huang and Yeoh groups have

put forth a number of reports investigating the applicability of Raman spectroscopy

for esophageal and stomach cancer diagnoses, beginning with an in vivo assessment of

gastric dysplasia. Using narrow-band image-guided Raman spectroscopy, 30 patients

were included in a study where 54 spectra were acquired from normal tissues and 18

from dysplastic gastric tissues, yielding 94.4% sensitivity and 96.3% specificity [130].

In a related study, the same team examined 67 gastric patients and identified gastric

cancer with a diagnostic accuracy of 93.7% (94.0% sensitivity and 93.4% specificity)

[131]. The ability of Raman spectroscopy to distinguish between benign and malig-

nant stomach ulcers was then tested, and sensitivities of 90.8%, 84.7%, and 82.1%

as well as specificities of 93.8%, 94.5%, and 95.3% for classification of normal tis-

sue, benign ulcers, and malignant ulcers, respectively, were found [132]. Using more

elaborate data processing algorithms to improve overall accuracy, an in vivo gastric
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cancer diagnostic accuracy of 94.6% was subsequently achieved [133].

The Stone group has also significantly contributed to the translation of Raman

technologies from the laboratory to the clinic. In 2011, Kendall et al. evaluated a

custom Raman probe designed for esophageal diagnostics on excised biopsy samples.

They studied normal, low risk (Barrett's esophagus), and high risk (dysplasia and

cancer) samples, where 1304 Raman spectra were acquired from a total of 123 sam-

ples. In classifying test spectra against a training set, their methodology resulted

in sensitivity and specificity of 66-84% and 81-96%, respectively [134]. Subsequent

work by Almond et al. in 2014 reported the development of a novel custom Raman

probe, where a confocal design was implemented to specifically interrogate superficial

tissues ( 150 pm) in an attempt to better detect surface lesions that may be cured via

endoscopic therapy. While their study was limited to validation on ex vivo resected

samples, their endoscopic Raman spectroscopy setup detected Barrett's esophagus-

associated high-grade dysplasia (HGD) and esophageal adenocarcinoma with 86%

sensitivity and 88% specificity [135]. While this technology has yet to be fully tested

in vivo, this group is currently focusing on building various probes and adjusting tol-

erances to maximize performance in a clinical trial evaluating their implementation

of endoscopic Raman spectroscopy in patients with Barrett's esophagus.

Extending the use of Raman spectroscopy further into the gastrointestinal tract,

Bergholt et al. investigated Raman spectra from tissues of the esophagus and stom-

ach, both ex vivo and in vivo. This study found that there is significant variability

between the spectra from the esophagus as compared to those of the stomach, but

the spectra from different anatomical sites within a given tissue were fairly similar.

Moreover, cancerous tissues from the esophagus and stomach were found to be dis-

tinguishable with accuracies of 94.7% and 89.3%, respectively [136]. A subsequent

study showcased the relevance of combining Raman spectroscopy with autofluores-

cence measurements in vivo, yielding a diagnostic accuracy for gastric cancer of 92.2%,

greater than either of the two approaches evaluated independently (89.7% for Raman

spectroscopy alone, and 86.3% for autofluorescence alone) [137]. A later study by

Bergholt et al. showed that esophageal cancer could be diagnosed with an accuracy
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of 96.0% when the Raman spectroscopic assessment is guided by a wide-field imaging

modality such as white light reflectance, narrow-band imaging, or autofluorescence

imaging in the context of a clinical endoscopic examination [138]. A fully automated

online Raman spectroscopy platform with multimodal image-guided sampling for gas-

tric cancer diagnosis was then developed, where 305 patients were examined yielding

a diagnostic accuracy of 85.6% [139]. Later work demonstrated that the technology

can be further exploited to target biopsy sites more specifically, as well as providing

a platform for distinguishing between dysplastic and neoplastic lesions more consis-

tently [140].

Subsequently, using a fiber optic confocal Raman endoscope, Bergholt et al. evalu-

ated the potential for in vivo detection of high-grade dysplasia in Barrett's esophagus

and identified diagnostic sensitivity and specificity of 87.0% and 84.7%, respectively

[141]. Different endoscope configurations have also been investigated, where it was

found that a beveled probe tip coupled to a ball lens outperformed the standard vol-

ume Raman probe via selective interrogation of the superficial tissue and suppression

of autofluorescence contributions [142]. Even more recently, Wang et al. investigated

spectral bands in the fingerprint and high-wavenumber regions of Raman spectra from

the esophagus, and distinguished esophageal squamous cell carcinoma (ESCC) from

normal tissue with a diagnostic accuracy of 97.3% [143].

Finally, Raman spectroscopy has also been investigated for the diagnosis colorectal

tissue for cancer by the Huang group. They developed a novel fiber optic probe

capable of acquiring fingerprint and high-wavenumber bands simultaneously from the

subsurface of the colorectal tissue and identified a diagnostic accuracy of 88.8% in

detecting colorectal cancer, with 93.3% sensitivity and 88.3% specificity [144].

Cervical Cancer

The diagnostic potential of Raman spectroscopy has also been studied in the con-

text of cervical cancer, where it was found that spectral variations within normal

tissue were an obstacle in properly identifying cervical cancer lesions. To this aim,

the Mahadevan-Jansen group identified various classes of cervical tissue that can be
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considered normal: truly normal, previously diseased normal, and adjacent-to-disease

normal. The inclusion of these subcategories increased classification accuracy to 97%

[145].

In parallel, the Huang group studied 105 spectra from 29 patients (65 normal and

40 precancerous spectra) using genetic algorithm-partial least squares-discriminant

analysis (GA-PLS-DA), yielding 82.9% diagnostic accuracy (72.5% sensitivity and

89.2% specificity) [146]. As was done in the context of esophageal and gastric cancer

described above, they furthered their research by examining the fingerprint and high-

wavenumber spectral bands of the cervical Raman spectra. Combining the data from

both spectral domains into their analysis, a diagnostic accuracy of 82.6% was identi-

fied for the 476 spectra (356 normal and 120 precancerous) collected from 44 patients

[147]. Duraipandian et al. then evaluated the use of confocal Raman spectroscopy

against near-infrared autofluorescence (NIR AF) spectroscopy alone as well as com-

posite NIR AF/Raman spectroscopy. They found confocal Raman spectroscopy to

have a diagnostic accuracy of 84.1%, an increase over the composite approach (82.3%),

as well as NIR AF spectroscopy alone (59.6%) [148].

Finally, the Krishna group identified a particular challenge in the diagnosis of

cervical cancer in the Indian subcontinent: most cervical cancers in such parts of

the world are already advanced upon detection, leaving few intact cervical regions for

assessment of normal tissue. In order to find normal baseline tissue, they explored the

possibility of using vaginal tissue as an internal control for spectroscopic assessment

of the cervical tissue. Indeed, the spectral features of normal vaginal and cervical

tissues were found to be closely similar, such that cervical cancer diagnoses based on

Raman spectroscopy could be facilitated in conditions where normal cervical tissue

is otherwise unavailable [149].

Brain Cancer

In the context of brain cancer, proper surgical resection of the tumorous mass is

critical to minimize the odds of recurrence. To address this need, the Leblond group

developed a handheld Raman spectroscopy probe for the classification of brain tissue
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intraoperatively [150]. They conducted a study on 17 patients with gliomas ranging

from grade 2 to 4, where a total of 161 spectral measurements were collected. Their

study revealed a diagnostic accuracy of 92%, with 93% sensitivity and 91% specificity

[69]. These results were contrasted with the surgeon's visual inspection of the affected

brain tissue using bright-field microscopy and magnetic resonance (MR) guidance,

which yielded an accuracy of 73%, a sensitivity of 67%, and a specificity of 86%. This

study thus illustrates the utility of Raman spectroscopy in detecting brain tumors

intraoperatively, and sets a robust foundation for pursuing clinical trials to further

contrast the effectiveness of Raman spectroscopy against the current standard of care

for guiding brain cancer resections.
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Chapter 3

Quantification of Oxidative Stress

in Ex Vivo Human Skin Exposed

to Chemical Sun Filters Using

TPEF and FLIM

3.1 Introduction

Despite the growing use of sunscreen products, skin cancer incidence steadily remains

on the rise, with one in five Americans expected to develop some form of skin can-

cer throughout their life [151, 152]. Furthermore, while some evidence of sunscreen

protection against melanoma has been obtained [153], this was rather modest and

challenging to demonstrate, in comparison to other cutaneous tumors [154]. One po-

tential explanation for this discrepancy involves the chemical sun filters in sunscreens,

which are responsible for absorbing ultraviolet radiation to minimize DNA damage to

underlying skin cells. Prior studies have shown that some commercial chemical sun

filters are capable of generating reactive oxygen species (ROS) when exposed to ul-

traviolet (UV) radiation under in vitro experimental conditions [155]. Consequently,

it has been proposed that these compounds may generate ROS in vivo at the site of
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application, thereby inducing oxidative stress in skin [155, 156]. Over a prolonged

period of time, chronic oxidative stress may in turn contribute to skin aging, actinic

keratosis, DNA damage, as well as the onset and pathogenesis of squamous and basal

cell carcinomas [157, 158, 159, 160].

The study of oxidative stress in biological samples can be carried out using a

wide variety of techniques. Traditional tissue processing methods can be used to

extract, isolate, and quantify the amount of flavin and nicotinamide adenine dinu-

cleotides (FAD and NADH, respectively), two key coenzymes in redox metabolism,

using western blotting, quantitative polymerase chain reaction (qPCR), immunohisto-

chemistry (IHC), or liquid chromatography/tandem mass spectrometry (LC/MS-MS)

[161, 162]. However, the processing necessary for these techniques is either inherently

destructive or does not provide spatial information, and as such, bars the ability to

assess heterogeneous cellular-level responses within the tissue. On the other hand,

exogenous labels such as fluorogenic probes can be used to preserve spatial integrity,

and have had great success mapping spatial patterns of ROS generation in vitro [155].

These dyes, however, can be challenging when used in skin, whether ex vivo or in vivo,

as many probes experience uneven uptake within skin [163]. This irregular diffusion

leads to regional differences in probe signal intensity that may arise primarily due to

uneven distribution rather than true contrast in oxidative stress.

Given these challenges, label-free optical imaging techniques have been found to

be well suited for probing oxidative stress within tissues [164]. These tools capture

fluorescence signals that arise from metabolic coenzymes of interest, enabling the

mapping of oxidative stress on the sub-cellular level with submicron spatial resolution

throughout intact tissue. Label-free imaging also removes any artifacts that can

result from processing and permeabilizing tissue, as the imaging contrast arises from

endogenous fluorescence rather than exogenous reporters of ROS.

To study oxidative stress within skin without such exogenous labels, one advan-

tageous approach is two-photon excitation fluorescence (TPEF) microscopy, which

directly assesses the fluorescence intensities of FAD and NADH [162, 165, 166, 167].

The intrinsic fluorescence of these metabolic coenzymes is advantageous for study-
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ing cellular metabolic perturbations, as FAD only fluoresces in its oxidized form,

while NADH is strictly fluorescent in its reduced form; their counterparts, FADH 2

and NAD+, are not fluorescent. Together, these coenzymes act as electron carri-

ers during the catabolic processes that result in ATP production, and the relative

oxidized-to-reduced coenzyme ratio, commonly referred to as the redox ratio, can be

used to make inferences about a cell's metabolic state. By imaging these intrinsic

fluorophores within a given biological sample, one can then compare the signals ob-

tained from both molecules in order to quantitatively assess oxidative stress using the

ratio of FAD fluorescence intensity to that of NADH, i.e. FAD/NADH [164]. The

normalized optical redox ratio (NORR), defined as FAD/(NADH+FAD), is also a

commonly used imaging metric of oxidative stress, as it is strictly bound between 0

and 1 and more closely follows a normal distribution [162, 1681.

This study sought to devise a method to non-invasively and non-destructively

examine the impact of chemical sun filter exposure on the redox metabolism of epi-

dermal skin cells, and determine whether these compounds can cause an oxidative

shift in skin tissue. Viable, cultured ex vivo models of human skin were imaged us-

ing TPEF microscopy to quantify the change in optical redox ratio on a cell-to-cell

level throughout the epidermis of skin based on the endogenous fluorescence of FAD

and NADH [164]. A minimalist model formulation of sunscreen was designed for

the present study containing five commonly used chemical sun filters in proportions

that emulate a sun protection factor (SPF) of roughly 45. This minimalist approach

was preferred in order to avoid any potential interference from inactive sunscreen

ingredients, while adhering to FDA guidelines on maximum concentrations for each

individual sun filter [169].

Due to the competing fluorescence contribution of sun filter compounds, however,

a new analysis method based on FLIM and phasor analysis had to be developed to

extract the optical redox ratio and map oxidative stress changes within skin. Indeed,

the fluorescence from sunscreen formulations is not only fairly weak, but also varies

depending on the combination and relative concentrations of chemical sun filters

therein [170]. In turn, this variability limits the use of hyperspectral fluorescence
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imaging to provide accurate and reliable contrast between endogenous and exogenous

sources of fluorescence. In contrast, the photophysical dynamics of these sun filters

are consistently short-lived [160, 171], warranting a highly sensitive time-correlated

approach such as FLIM to accurately decouple the endogenous tissue fluorescence

from that of the exogenous compounds based on differences in fluorescence lifetime.

This method successfully enabled the quantification of oxidative stress caused by

both ultraviolet light exposure and sun filters, and additionally allowed for the direct

imaging of sun filters as they diffused through skin tissue.

It is worth noting that TPEF imaging is not exclusive to NADH and FAD, as some

other endogenous compounds in skin exhibit fluorescent properties as well, including

melanin, elastin, collagen, and keratin. Conveniently, the optimal excitation and

emission parameters for probing melanin autofluorescence are distinct from those of

NADH and FAD; moreover, the signal from these coenzymes dominates the autoflu-

orescence from the stratum spinosum layer of the epidermis [172]. As for fluorescent

extracellular proteins, elastin and collagen are primarily found within the dermis,

while keratin forms within the more superficial layers of the epidermis. As such,

the imaging parameters described in the present study are based on commonly used

methods to maximize signals from NADH and FAD within the stratum spinosum

roughly 50 pm below the skin surface [161, 162, 168, 173].

3.2 Materials and Methods

3.2.1 Sun Filter Formulation

The minimalist model formulation of sunscreen was composed of five commonly used

chemical sun filters (avobenzone, octocrylene, homosalate, octisalate, and oxyben-

zone) dissolved in a lipophilic solvent typically included in sunscreen formulations

(C12-15 alkyl benzoate, also known as Finsolv TN) in proportions that emulate a

SPF of roughly 45 (see Table 3.1). The fluorescence of the formulation is primarily

attributed to the presence of avobenzone, one of the most commonly used chemical
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sun filters in sunscreens [160, 174].

Table 3.1: Composition of sun filter formulation

Compound Concentration (% m/m)
Avobenzone 3
Octocrylene 4
Homosalate 8
Octisalate 5
Oxybenzone 4
Finsolv TN 76

3.2.2 Tissue Culture and Processing

In order to study oxidative stress in human skin in response to chemical sun filters,

discarded skin tissues were obtained from elective patient surgeries in compliance

with the institutional review board of Massachusetts General Hospital (MGH IRB

protocol #2014P00135). The skin was then processed on arrival, where it was cut

into square pieces roughly 1-2 cm 2 in size, placed on an RPMI-agarose nutritive

gel bed, and maintained in an incubator at 37'C with 5% atmospheric CO2. EX

vivo human skin explants were imaged using FLIM under 4 different experimental

conditions: treatment with a 30 pL topical dose of either the sun filter formulation

described in Table 3.1 or Finsolv TN alone as a vehicle-only control, and subsequently

immediately exposed to either 0 or 20 J/cm 2 of UVA irradiation. This corresponds

to 1 minimal erythemal dose (MED) for a fair-skinned individual of Fitzpatrick skin

type I, i.e. the minimum amount of UVA irradiation necessary to elicit a reddening

response in skin [175, 1761. Three distinct areas were then imaged for each skin

sample, where each field of view consisted of a representative slice of the stratum

spinosum within the viable epidermis, roughly 50 pm below the skin surface.
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3.2.3 TPEF and FLIM Imaging

In using a fluorescence-based approach to study the effects of exogenous compounds

like chemical sun filters, a common challenge often arises: many of these compounds

are natively fluorescent [170], and may therefore interfere with the fluorescent signals

from NADH and/or FAD. In the case of this study, it was found that the mixture

of chemical sun filters was itself fluorescent, with excitation and emission properties

similar to those of NADH. The formulation was not found to be emissive in the FAD

spectral range. Because of this fluorescence, optical redox ratio measurements cannot

be obtained on tissue exposed to the formulation, since there is no way to distinguish

the fluorescence signal of the sun filters from that of NADH using TPEF microscopy

alone. To circumvent this obstacle, the sun filter formulation was imaged using two-

photon FLIM to determine if its fluorescence can be distinguished from that of NADH

based on lifetime.

The laser source used to perform TPEF imaging is a dual-output femtosecond

pulsed laser system (Spectra-Physics Insight DeepSee), where one output can be

tuned to any integer wavelength ranging from 680 to 1300 nm. The beam was di-

rected into the input port of a commercial inverted microscope (Olympus FV1000)

for imaging with a 60 x water immersion objective (Olympus UPLSAPO 60XW, 1.20

NA), and the total laser power at the output of the objective was below 35 mW for

all imaging experiments. The fluorescence signals were detected using two distinct

photomultiplier tubes (Hamamatsu H7422P-40 for NADH and H7422P-50 for FAD).

The FLIM data was collected using time-correlated single photon counting (TCSPC)

hardware (Becker & Hickl SPC-150), with each image containing 256 x 256 pixels

in area and 256 time bins for each pixel's associated fluorescence decay trace. The

imaging acquisition parameters resulted in photon count rates ranging from 2 x 104

to 2 x 105 photons per second, with a total acquisition period of 90 seconds. Cali-

bration of the FLIM system was ensured using a solution of fluorescein (pH 9.0) with

a known lifetime of 4.05 ns. Each area was first imaged with 755 nm laser light for

multiphoton excitation of NADH with detection of fluorescence from 445 to 480 nm,
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followed by 860 nm excitation for FAD with emission detection from 500 to 550 nm.

3.2.4 CARS Imaging

The Finsolv TN molecule can be readily visualized using coherent anti-Stokes Raman

scattering (CARS) microscopy by probing the symmetric CH2 stretching vibration at

2845 cm- 1 of its long C12-15 hydrocarbon tail. As such, the tunable output of the

laser source was set to 803 nm as the pump beam and the fixed 1040 nm output was

used as the Stokes beam to generate a strong anti-Stokes signal at 654 nm, allowing

for the monitoring of solvent penetration dynamics in skin. To this aim, an ex vivo

skin sample was given a single topical treatment of Finsolv TN, and subsequently

monitored at 15-minute intervals over the course of 2 hours, examining depths 0, 40,

and 80 pm below the skin surface.

3.2.5 Non-Euclidean Phasor Analysis

The separation of fluorescent species based on their lifetime is best achieved using

the phasor approach [168, 17, 177, 18]. This method is derived from Fourier anal-

ysis, where rather than fitting a linear combination of decaying exponentials onto a

decay trace Iij(t) in the temporal domain, the data is transformed into a phasor with

coordinates (Gij, Sij) defined as

fo0 hij (t) cos(wt)dt
Gij ij (t) dt(31

and

S?,j foI j (t) sin(wt)dt
Sig= 00 (3.2)so- Ij (t) dt

where the subscripts ij denote the coordinates of a given pixel, W is the angular

frequency related to the laser pulse repetition rate defined as W = 27f, and f here

corresponds to 80 MHz. For a pixel characterized by a single exponential decay, the

phasor transform results in a set of coordinates that lies on the so-called universal
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semicircle described as

(G - 0.5)2 + S 2 = 0.25. (3.3)

For a fluorescence decay trace that contains two lifetimes, the phasor transform

results in a coordinate pair that lies within the semicircle rather than on its bound-

ary. The phasor coordinates here are determined by a linear combination of the two

phasors corresponding to the two fluorescent species contributing to the signal. In

order to compute the fluorescent lifetimes of a two-compound mixture, the eigenvec-

tor associated with the largest eigenvalue of the phasor cluster covariance matrix is

commonly used to determine the orientation of the cluster's major axis. By extend-

ing this axis across the phasor plot, the short and long fluorescent lifetimes can be

determined by the two intersections of the major axis with the universal semicircle

[17, 178].

When there are three lifetimes, as expected in samples exposed to the sun filter

formulation (sun filters: 120 ps; free NADH: 300-800 ps; bound NADH: 1.0-6.5

ns), the phasor coordinates are enclosed within a triangle whose vertices are located

on the universal semicircle and correspond to the individual lifetimes of the three

components [17]. In the context of this study, the goal is to use phasor analysis to

distinguish the NADH fluorescence (a compound with two lifetimes) from that of

the chemical sun filters (a mixture with a third, distinct lifetime). To this aim, one

method would be to compare the phasor coordinates of a given pixel to that of phasor

clusters generated from (1) NADH alone and (2) sun filter formulation alone. This

comparison could be quantified by computing the Euclidean distance between said

pixel's phasor coordinates and those of the NADH and sun filter phasor cluster means.

However, by strictly and only considering the mean coordinates of the NADH and sun

filter phasors, all information relating to their distributions is essentially discarded.

Classically, NADH fluorescence lifetimes are typically thought of as either short

or long, depending on whether the coenzyme is free or protein-bound, respectively.

However, recent work suggests that these protein-bound complexes can result in an
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entire subset of long lifetimes that are dependent on the nature of the protein to which

NADH is bound [179, 180]. As a result, the phasor cluster corresponding to NADH

fluorescence is fairly broad due to its multi-lifetime nature, warranting a separation

technique that considers the statistical distributions of reference clusters for improved

separation accuracy.

To this aim, the use of the Mahalanobis distance is proposed, where this metric

describes the distance between a given observation and an entire distribution, rather

than simply the distribution's mean [181]. Mathematically, given an observation

X~ =[Gij , S2g]T from a pixel with spatial coordinates ij, and a reference set with mean

pref [Gp , SI]T and covariance matrix Cref, the Mahalanobis distance is defined as

Dzj,ref V'~-7;) nJ( i~.(3.4)

For a given pixel with spatial coordinates ij, the proportion kij of photons that

strictly arose from NADH as opposed to chemical sun filters is given by the ratio of

its Mahalanobis distance to the sun filter mixture, Dij,SF, divided by the Mahalanobis

distance from the NADH reference sample mean to the sun filter mixture, DNADH,SF-

If kij is computed to be < 0.5 (i.e. if more than half of the pixel's fluorescence

can be attributed to the exogenous compound), then the perspective is flipped: the

Mahalanobis distance from the phasor to the NADH reference cluster, Dij,NADH, is

now divided by the Mahalanobis distance from the sun filter reference sample mean

to the NADH reference cluster, DSFNADH. This ratio is then subtracted from 1 in

order to provide the fraction of signal that arose from NADH as opposed to the sun

filters. Mathematically, these relations can be expressed as
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_ Dij,sF
DNADH,SF

if

1
kj < -, (3.5)

2'

then

kj = 1 - Dij,NADH
DSF,NADH

By inspection, it is readily apparent that if a given phasor is very far from the

sun filter phasor cluster, the computed proportion of photons generated from NADH

approaches 1; conversely, as said phasor approaches the sun filter phasor cluster, the

value of kij approaches 0. With this in mind, FLIM images containing fluorescence

signals from both NADH and sun filters can be processed on a pixel-by-pixel basis

to produce entire k-arrays whose elements are bound between 0 and 1. The element-

wise product of these arrays with the original TPEF intensity images can then be

computed in order to isolate the fluorescence signal arising strictly from NADH. In

turn, these processed images can be used in conjunction with FAD intensity images

to compute optical redox ratios on a pixel-by-pixel basis to allow for quantification

of oxidative stress in skin cells.

3.2.6 Simulation and Validation

In order to validate the improved accuracy of the proposed non-Euclidean approach

over traditional Euclidean-based separation, simulated image data was generated and

processed in MATLAB. First, endogenous and exogenous compounds were simulated

to generate multivariate normally-distributed random phasors with mean Pendo

[0.42, 0 .3 5 ]T and covariance matrix Cend = 10-4 x [9, -2; -2, 2.25] for the en-

dogenous compound, and mean p- = [0.96 , 0 .0 5 ]T and covariance matrix Cexo =

10-5 x [6.4, -1; -1,1.6] for the exogenous compound. The simulation then gener-

ates a set of three synthetic images 256 x 256 pixels in size: an endogenous reference
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image, an exogenous reference image, and a simulated test image.

For the test image, the concentration of endogenous compound is set to 1 on

the far left pixel column and 0 on the far right, with a sigmoidal decay horizontally

across the image. Conversely, the concentration of exogenous compound is 0 on the

far left and 1 on the far right, with the sigmoidal decay in the opposite direction,

such that the total compound content at any given pixel is 1. The sigmoid describing

the middle 254 columns is described by Equation 3.6, where the column subscripts j
strictly range from 2 to 255, inclusively.

k(j) = 1 (3.6)
1 + exp (j 28)

The test image is then processed by the algorithm described in Section 3.2.5

using the simulated endogenous and exogenous images as NADH and chemical sun

filter references, respectively. In addition, the test image is also processed using

the classical Euclidean approach, where the endogenous fluorescence contribution is

computed by dividing the Euclidean distance between the phasor and the exogenous

reference by the sum of the Euclidean distances between the phasor and each reference

image phasor cluster [18]. The two analysis approaches are then compared by taking

column-wise means in order to generate line plots, which intuitively illustrate the

differences between the two methods from the expected simulated results.

3.2.7 Quantification of Oxidative Stress

In order to accurately calculate the fraction of fluorescence contributed by NADH

as opposed to the chemical sun filters, the NADH images were first spatially binned

using a mask 5 x 5 pixels in size. Only pixels with a minimum photon count of 1000

were considered for subsequent processing, where a custom script written in MAT-

LAB served to transform the data using the phasor approach and separate out the

NADH fluorescence signal versus that of the chemical sun filters based on the non-

Euclidean distance metric described in Section 3.2.5. Using the isolated fluorescence

signal from NADH, NORR values for each field of view were then generated by com-
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puting FAD/(NADH+FAD) on a pixel-by-pixel basis. Given that both NADH and

FAD are predominantly found within the cytoplasm and mitochondria with weaker

fluorescence signals coming from nuclear regions, this correlated spatial distribution

results in fairly consistent pixel-wise NORR values across the cell. As such, these

pixel values can be averaged to obtain a single NORR value for each cell within a

field of view [161, 162, 168]. Individual cells were manually segmented from each

resulting image using FIJI image analysis software. From there, mean NORR values

were computed for each individual cell, from which an average NORR value could

be computed for each individual field of view, representative of the cells present

therein. The triplicate NORR values from all three imaged fields of view for each

experimental condition were then used to compute a mean and a standard deviation.

These triplicate measurements were then used for statistical comparison using the R

software package for all statistical calculations. A one-way ANOVA was first calcu-

lated between all conditions, with the null hypothesis rejected. Pairwise Student's

t-test corrected using Holm's method were then carried out between groups to test

for significance using R defaults. Results were considered statistically significant if

p < 0.01.

3.3 Results and Discussion

Beginning with the sun filter formulation alone, it is found to be transparent with

no visible aggregates under trans-illumination at 755 nm, as can be seen in Figure 3-

1(a); in Figure 3-1(b), however, the formulation's fluorescence intensity in the NADH

channel is readily notable. The corresponding phasor plot (Figure 3-1(c)) shows the

vast majority of the pixels forming a tightly bound cluster near the bottom right of

the plot, highlighting its short lifetime. The formulation's fluorescence lifetime is on

the order of 120 ps, as computed by fitting an exponential decay to the fluorescence

decay trace of the sun filter mixture using SPCImage software (Figure 3-1(d)).

An ex vivo examination of NADH fluorescence in the stratum spinosum of human

epidermis at a depth of 50 pm below the skin surface revealed bright signals from the
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Figure 3-1: Fluorescent properties of the sun filter formulation. (a) Trans-illumination
image of the edge of a droplet of sun filter formulation, acquired with 755 nm light.
(b) TPEF image of the sun filter formulation acquired with 755 nm excitation light
and fluorescence detection from 445 to 480 nm. (c) Phasor plot of the FLIM data
associated with (b), highlighting the short fluorescence lifetime of the sun filter for-
mulation. (d) Temporal decay trace of a typical pixel from (b), illustrating the rapid
decay of the sun filter fluorescence.

cytoplasm, as NADH is located primarily in the mitochondria and cytosol (Figure

3-2(a)). The corresponding phasor plot is shown in Figure 3-2(b), where the NADH

phasors cluster around the central upper region within the universal semicircle; the

associated fluorescence decay of NADH is shown in Figure 3-2(c). In the case of

skin topically treated with the sun filter formulation, a coalesced pool of sun filter

formulation can be appreciated in the bottom right portion of Figure 3-2(d). In this

scenario, the associated phasors are distributed between the original NADH cluster

and the pure sun filter formulation cluster, as is made apparent by the elongated tail

of the phasor plot in Figure 3-2(e). Finally, Figure 3-2(f) illustrates the decay trace

of a pixel with a strong fluorescence contribution from the chemical sun filters.

The use of FLIM throughout the course of this study thus adds a temporal di-

mension over TPEF imaging alone, enabling the distinction of photons emitted by

sun filters from those emitted by NADH using the algorithm described in Section

85



(b)*s .. (C) 1000 TCSPC Data

a5 ----- F1 Curve

.Z 1 2 3 4 5 7 S 0 10 11 12

G Tfte ins]

d)(e) (1 ) 1 low TCSPC Data
o~s --- FR Curve

0 0. 2 0 .3 A 0. 00 07 0S 0 1 4 7 0

5.2 
1

0 0~ 0. 22 32 04 5* 57 7 9 hO@ 10 11 12

Figure 3-2: Fluorescence detected from the stratum spinosum layer of the viable
epidermis, acquired at a depth of 50 pm below the skin surface. (a) TPEF image
of human skin treated with vehicle only, showing endogenous NADH fluorescence.
(b) Phasor plot of the FLIM data associated with (a). (c) Temporal decay trace of
a pixel from (a), showing the progressive decay of NADH fluorescence. (d) TPEF
image of human skin treated with sun filter formulation, showing both endogenous
NADH fluorescence across the field of view, as well as exogenous fluorescence from
the sun filters seen in the lower right region of the image. (e) Phasor plot of the FLIM
data associated with (d). (f) Temporal decay trace of a pixel from (d) with a strong
fluorescence contribution from chemical sun filters.

3.2.5 based on the Mahalanobis distance. In order to validate the accuracy of the

developed method, simulated images of endogenous and exogenous references (i.e.

NADH and chemical sun filters, respectively) as well as a test image were generated

as described in Section 3.2.6. The phasor plots generated for the simulated endoge-

nous reference, exogenous reference, and test sample are shown in Figure 3-3(a-c).

The actual fluorescence contribution of the endogenous sample in the test image is

shown in Figure 3-3(d). Next, the traditional Euclidean method (Figure 3-3(e)) and

the proposed non-Euclidean approach based on the Mahalanobis distance (Figure 3-

3(f)) are both used to estimate the endogenous fluorescence contribution. Finally,

Figure 3-3(g) shows the column-wise means of the endogenous fluorescence contri-

bution images from Figure 3-3(d-f). While both methods accurately distinguish the

two simulated fluorophores when their relative contributions are comparable, the tra-

ditional Euclidean method fails particularly in scenarios where one fluorophore with
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a broad phasor distribution dominates over another. This can be appreciated in the

leftmost region of the curve in Figure 3-3(g), where the Euclidean estimates plateau

around 0.95 as the endogenous fluorescence begins to dominate, while the proposed

Mahalanobis-based approach consistently follows the simulated data curve.
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Figure 3-3: Simulation to validate the proposed non-Euclidean separation algorithm.
(a) Phasor plot of simulated endogenous fluorescence reference sample. (b) Pha-
sor plot of simulated exogenous fluorescence reference sample. (c) Phasor plot of
simulated test image, consisting of both fluorophores with concentrations varying in
opposite sigmoidal fashion. (d) Simulated endogenous fluorescence contribution to
the test image. (e) Estimation of endogenous fluorescence contribution computed
using the traditional Euclidean method. (f) Estimation of endogenous fluorescence
contribution using the proposed non-Euclidean method based on the Mahalanobis
distance. (g) Column-wise means of the images in (d-f), illustrating the superior
accuracy of the proposed method over the classical Euclidean approach.

Having validated the proposed approach on simulated data, the algorithm was

applied to all NADH image sets in order to decouple the endogenous fluorescence from
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that of the chemical sun filters. The performance of the algorithm is demonstrated

in Figure 3-4, showing the TPEF intensity image (Figure 3-4(a)), the Euclidean

estimate of the endogenous fluorescence contribution (Figure 3-4(b)), and the same

estimate computed using the proposed non-Euclidean method (Figure 3-4(c)). Taken

together, the results shown in Figures 3-3 and 3-4 support the applicability of the

described non-Euclidean separation algorithm for distinguishing endogenous NADH

fluorescence from topically applied exogenous compounds with a similar fluorescence

signature but a distinct lifetime.

04

Figure 3-4: Comparison of processing methods to optimally determine endogenous

fluorescence contribution. (a) TPEF intensity image of human skin treated with

chemical sun filters, showing a diffusing pool of formulation in the bottom right por-
tion of the image. (b) Estimate of the endogenous fluorescence contribution computed

using the traditional Euclidean method. (c) Estimate of the endogenous fluorescence
contribution as determined by the proposed non-Euclidean approach based on the
Mahalanobis distance metric.

While commercial sunscreens are typically formulated to remain in the uppermost

layers of skin with minimal transdermal penetration, the FLIM data counterintuitively

suggested that the chemical sun filters in the model formulation diffused throughout

the viable epidermis. This diffusion into the skin is important to understand, as the

pharmacokinetics of the sun filters will influence its oxidative effects.

The optimal design of topical formulations is challenging, as solvents/carriers and

solutes may propagate throughout the tissue at different rates based on their charge,

polarity, and structure [163]. While the imaging approach based on FLIM and phasor

analysis developed here indeed demonstrates the ability to distinguish endogenous

from exogenous fluorescence, coherent Raman imaging is a label-free modality that
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can be used to longitudinally visualize the diffusion of a solvent throughout the tissue

by directly probing its molecular vibrational properties [55].

Sunscreen formulations tend to be complex mixtures of diverse ingredients, while

the model formulation studied here simply consisted of five chemical sun filters dis-

solved in Finsolv TN, a lipophilic solvent commonly used in sunscreen. Considering

its molecular properties and the lipophilic nature of the sun filters, it was hypothesized

that the solvent was acting as a carrier, thereby dragging the formulation contents

into the deeper layers of the epidermis. To verify whether this was indeed the case, a

5 pL droplet of Finsolv TN was topically applied to ex vivo human skin and visualized

using CARS microscopy. CARS is a parametric four-wave mixing process where a

known molecular vibrational resonance can be probed by interacting with two inci-

dent pulsed laser beams, known as the pump and Stokes beams, in order to generate

a unique and spectrally distinct anti-Stokes signal that can be readily detected using

an appropriate set of optical filters [28]. In the case of Finsolv TN, the molecule has

an alkyl tail 12 to 15 carbons in length; by probing the symmetric CH 2 stretching

vibrational mode at 2845 cm- 1 , the solvent can be readily visualized as it diffuses

throughout the tissue.

15 min 30 min 45 min 60 min 75 min 90 min 106 min 120 min

7

E

Figure 3-5: Diffusion of the lipophilic solvent throughout various layers of human
epidermis (0, 40, and 80 pm below the skin surface), as visualized using CARS mi-
croscopy to probe the CH2 vibrational mode of Finsolv TN at 2845 cm-- at 15-minute
intervals over the course of 2 hours. All images are 318 pm x 318 pm in size.

As can be seen in Figure 3-5, the solvent droplet shows bright CARS signals at
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the topmost layer of skin that progressively fades over time as the solvent diffuses

and penetrates into the underlying strata. At 40 and 80 pm below the surface, the

intensity is seen to progressively rise, peak around 60 minutes following application,

and fall thereafter as the Finsolv TN continues to diffuse radially throughout the

epidermis. The use of CARS microscopy thereby confirmed the penetration of the

formulation solvent into the deeper layers of the epidermis, consistent with the prior

observation of sun filter fluorescence in the stratum spinosum using FLIM. More

generally, this application of CARS imaging showcases the use of a distinct nonlinear

optical modality for visualizing the formulation's solvent itself, which can prove useful

in the optimization and validation of topical formulations, among other applications.

Having validated the penetration of and diffusion of both the sun filters and their

solvent, we next studied whether these agents induce oxidative stress onto the cells of

the viable epidermis. To this aim, NADH and FAD fluorescence intensities are used to

compute NORR values, defined as FAD/(NADH+FAD), with a representative image

set shown in Figure 3-6.

Figure 3-6: Fluorescence intensity and computed NORR images of a typical skin
sample. (a) NADH fluorescence intensity. (b) FAD fluorescence intensity. (c) NORR
image, obtained by computing FAD/(NADH+FAD) on a pixel-by-pixel basis.

This study's key finding is shown in Figure 3-7, which shows the magnitude of re-

dox perturbations in skin caused by both UVA and sun filter exposure. The greatest

redox perturbation is a large oxidative shift triggered by exposure to UVA irradiation.

This transition to an oxidative stress state is known to arise from the generation of

ROS via UVA photochemistry and matches well what has been observed previously

[158, 159, 167, 182, 183, 184]. Interestingly, we do indeed observe a small shift in
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redox state towards oxidative stress in skin tissues exposed only to the minimalist

sun filter formulation (p = 0.08971), which would warrant further investigation with

larger sample sizes. It is also worth noting that had the vehicle- and formulation-

treated samples been solely considered, the calculated p-value would have been below

the 0.05 threshold for statistical significance. However, in order to account for the

family-wise error rate stemming from multiple pair-wise comparisons when consider-

ing all treatment conditions, the Holm-Bonferroni correction was used and resulted

in a corrected p-value exceeding 0.05. Nevertheless, the observed oxidative shift is

likely caused by the ROS generation mechanism previously described in in vitro stud-

ies, where the long triplet state lifetime of the chemical sun filters enables them to

react with ground state triplet molecular oxygen, thereby promoting it to an excited

singlet state [155, 171, 185, 186, 187]. Importantly, however, when sun filter-treated

skin was exposed to UVA irradiation, there is a clear benefit, with the chemical sun

filters limiting the oxidative stress induced by UV light exposure. This protection was

observed even though a substantial concentration of the study's sun filter formulation

was found to penetrate into the viable epidermis, indicating that these chemical ab-

sorbers still serve an important function even if they are not confined to the epidermal

surface.

3.4 Conclusions

These results have important implications in the context of commercial sunscreen for-

mulations, and motivate the need for future studies investigating these effects. First,

commercial sunscreens are purposely designed to limit the majority of skin penetra-

tion to the topmost layers of the epidermis; given that the formulation studied here

primarily consisted of Finsolv TN, it is expected that the penetration of chemical sun

filters observed in this context is not entirely representative of commercial sunscreen

behavior [163]. Second, sunscreens contain a wide variety of additional ingredients

ranging from moisturizers to antioxidants, which could limit redox state perturba-

tions, though the exact effects of these additives are not well characterized in vivo

91



0.30
**

* *
I I

**

0.25 -

o10.20

00.15.

0*.

U 0.10

0.05

0.00
Vehicle Only Formulation Formulation + Vehicle + UVA

Only UVA

Figure 3-7: Normalized optical redox ratio (NORR) of cells in the stratum spinosum
layer of the viable epidermis treated with either vehicle only or sun filter formulation,
and exposed to either 0 or 20 J/cm2 (1 MED) of UVA irradiation. Bars correspond to
mean NOR.R measurement of cells from N = 3 fields of view, and error bars represent

1 standard deviation. Statistical significance determined by pair-wise Student's t-
test corrected using Holm's method, annotated with * if p < 0.01 and ** if p < 0.005.

[155, 158, 184]. Still, the small redox changes observed due to the sun filter formula-

tion begs the question as to what occurs following exposure to commercial products,

and could be helpful in understanding how to best design topical sunscreens and

sunscreen-containing cosmetics in the future.

It should be noted that while small oxidative shifts caused by the sun filters in this

study were observed, the patient sample sizes in this preliminary work are small, and

are therefore not intended to support general claims regarding oxidative stress in vivo.

Instead, this study describes a methodology that can now be expanded to investigate

the effects of topical agents applied to skin in a non-invasive manner, in spite of the

intrinsic fluorescence of the applied compounds. Specifically, it was found that the

fluorescent nature of the studied chemical sun filters and, perhaps more importantly,

their intrinsically short fluorescent lifetime, allow for spatiotemporal mapping of these

compounds within skin. By exploiting the brevity of their fluorescence lifetime, the

treated skin samples' time-correlated fluorescent emission from 445 to 480 nm can be
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transformed using the phasor approach to distinguish photons emitted from NADH

versus chemical sun filters. This separation allows for analysis of redox state per-

turbations by processing the isolated NADH signals together with those of FAD to

characterize the response of viable epidermal cells to chemical sun filter and/or UVA

exposure. In addition, this method enables the tracking of exogenous fluorescent

compounds as they penetrate and permeate throughout the epidermis, as was shown

in the present study with chemical sun filters, and further validated using CARS

microscopy to monitor the solvent itself. As such, the proposed methodology can be

applied to study a wide range of topical agents, provided the fluorescence lifetimes of

the exogenous compounds are distinct from those of endogenous fluorophores.

This method is now ready for translation to clinical settings, where large-scale

investigations into the kinetics and physiological dynamics of sun filters can be stud-

ied on human patients. Mobile two-photon FLIM systems are already commercially

available, and would be suitable for capturing the sun filters' diffusion and redox

perturbations in skin [172, 188]. Importantly, future studies can focus on the use of

more realistic commercial sun filter formulations to better inform the dermatology

community, commercial sunscreen manufacturers, and consumers alike.

93



94

MfRIR -IOROMPMMR RIMMOMPIPRIMIM I "M IM, nmw", W4 I IPIRMT



Chapter 4

FLIM Data Analysis in Phasor

Space: A Simulated Comparison of

Euclidean and Non-Euclidean

Distance Metrics to Distinguish

Fluorescent Species

4.1 Introduction

Fluorescence lifetime imaging microscopy (FLIM) is an extremely useful tool in the

context of molecular imaging, as it provides microscopists with an additional dimen-

sion of imaging contrast [10]. In addition to probing the excitation and emission

properties of fluorophores, FLIM is a tool also capable of probing the temporal dy-

namics of these molecules. When a fluorophore absorbs electromagnetic energy -

whether in the form of a single photon or multiple photons simultaneously - it is

promoted to an excited state. Following some degree of rapid non-radiative decay,

the molecule then relaxes back down to its ground state, thereby emitting a photon in

the process. This decay back to the ground state is a stochastic process that follows
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a Poisson distribution, characterized by a time constant known as the fluorescence

lifetime, denoted by r [11].

The fluorescence lifetime of a molecule is a characteristic property, much like its

optical excitation and emission properties. However, this does not imply that the

lifetime is invariant; to the contrary, it can be influenced by the molecule's local

environment. For example, naturally fluorescent coenzymes such as flavin and nicoti-

namide adenine dinucleotides (FAD and NADH, respectively) can exhibit a strong

shift in fluorescence lifetime depending on whether they are free in solution or protein-

bound [165, 164, 14, 15]. Other microenvironmental factors such as temperature, pH,

viscosity, solvent polarity, molecular conformation, and metal ion chelation among

others can also have an impact on fluorescence lifetime [16]. In a typical biological

context however, the factors most likely to have an observable and measurable effect

within a given field of view are enzymatic binding, ion chelation, or molecular quench-

ing, as in the case of F6rster resonance energy transfer (FRET) [189, 190, 17, 191].

With this in mind, the fluorescence lifetime of each fluorophore within an imaging

field can therefore be viewed as an intrinsic characteristic property; FLIM can thus

readily serve to distinguish a mixture of multiple fluorescent species at hand.

This complementary source of imaging contrast in the specific context of NADH

and FAD imaging has already yielded considerable insight into the metabolic states

of cells and tissues [165, 192, 191, 193, 164, 162, 167, 177, 180, 15]. These far-reaching

applications in cancer research range from validation of therapeutics in the laboratory

space to characterization of dysplastic and cancerous lesions in situ in the context of

clinical research. Other applications include the ability to discern cellular and tissue

autofluorescence from exogenous compounds in order to study the pharmacokinetics

and pharmacodynamics of exogenous compounds as they are administered to a given

biological system [14, 16].

Despite its noteworthy benefits, one persistent challenge that often arises in the in-

terpretation of FLIM data lies in the accurate distinction of fluorophores within a mix-

ture, particularly in the case of a large discrepancy in their respective concentrations

[14, 16]. FLIM data analysis can broadly be categorized into two major approaches:
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time-domain and frequency-domain (more commonly referred to as phasor analysis)

[17, 18]. Traditional time-domain analysis of FLIM data entails multi-exponential

curve fitting of the fluorescent decay traces on a pixel-by-pixel basis, where each of

the N fluorophores within a given pixel's decay trace are distinguished based on their

time constants T2 and relative weights ac, as in Equation 4.1.

N

1(t)e (4.1)
i=1

This approach requires considerable a priori knowledge of the sample at hand,

both in terms of the number of compounds N to distinguish, as well as a general

idea of their respective fluorescent lifetimes [13]. An additional layer of complexity

arises in distinguishing exogenous compounds from cellular and tissue autofluores-

cence, which may arise from compounds such as NADH and FAD - compounds that

naturally have multiple lifetimes already, based on their molecular conformation and

binding state [14, 15, 16]. Given that time-domain analysis is fundamentally based

on iterative curve fitting, the distinction of exogenous sources of fluorescence from

endogenous sources that themselves have multiple lifetimes quickly becomes compu-

tationally demanding. Moreover, this approach often requires a prohibitively large

number of photon counts per pixel (typically in excess of 5000 photons) in order to

ensure accurate lifetime estimates, particularly when the concentration of one fluo-

rophore is significantly larger than the other [13]. Such photon counts require longer

sample exposure times and/or higher excitation power, which may be incompatible

with the biological sample at hand. It is worth noting that known fluorescent lifetimes

may be specifically defined as part of the model function used to fit the experimental

data to save on computation time and to favor convergence around biologically rep-

resentative values. The trade-off, however, is that fitting such a model would assume

that there is no variance in lifetime-discrete states - an assumption that is not al-

ways valid in biology, particularly in the context of endogenous coenzymes such as

FAD and NADH.

For the purposes of limiting sample photodamage as well as facilitating data anal-
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ysis and interpretation, phasor analysis is quickly becoming the preferred approach

for processing FLIM data. This alternative methodology requires substantially less

prior knowledge about the sample and conveniently offers an intuitive visual repre-

sentation of the data at hand. Rather than curve fitting, phasor analysis involves a

transformation of each pixel's temporal decay trace into a pair of coordinates (G, S)

that describe a phasor, characterized by its coordinates in two-dimensional space [17].

The transformations correspond to the real and imaginary components of the Fourier

transform of the temporal decay trace normalized by its area under the curve, eval-

uated at the angular laser repetition frequency w, as shown in Equations 4.2 and

4.3.

f 0 I(t) cos(wt)dt
G = 0 (4.2)

fec I (t) dt

rf I(t) sin(wt)dtS_ = 0 (4.3)
fo" I (t) dt

Note that the angular frequency w is related to the laser pulse repetition rate f
by w = 27rf. In the case of pulsed laser sources, f is typically on the order of 80

MHz; with single-photon FLIM systems, a continuous wave (CW) laser is intensity-

modulated, where f then corresponds to the modulation frequency. In the case of a

single fluorophore characterized by a unique lifetime, the phasor transform results in

a set of phasor coordinates that obey the relation shown in Equation 4.4, describing

a semicircle with radius 0.5 centered at (0.5, 0) [17].

(G - 0.5)2 + S2 =0.52 (4.4)

In the context of phasor analysis of FLIM data, this is referred to as the uni-

versal semicircle. For a decay trace characterized by two fluorescence lifetimes, its

transformed phasor coordinates would lie along a line connecting the two individual

lifetimes on the universal semicircle. The exact phasor coordinates along that line

would naturally depend on the relative concentrations of the two fluorescent species

[17, 18]. It follows that for a heterogeneous binary mixture of fluorescent species,
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the transformed FLIM image would result in an elongated cluster stretching one

set of reference phasor coordinates to the other. Given such a mixture, FLIM data

analysis offers the ability to estimate the relative fluorescence contribution of each

compound at every pixel in the image based on the relative distances between each

pixel's corresponding phasor location and the respective reference phasor clusters of

the fluorophores at hand.

A challenge arises however in discerning the two fluorescent species when the

reference phasor clusters are inherently broad. This can result from a number of

contributing factors, including low photon counts and intrinsic variability of the fluo-

rescence lifetime of one or both compounds, as is typically the case with endogenous

fluorophores such as NADH. In such cases, estimating the contribution of either com-

pound using traditional Euclidean distances in phasor space becomes problematic,

resulting in decreased accuracy when pixels from the binary mixture image are dom-

inated by one compound over the other. This is because the pixel's corresponding

phasor falls within the variance of the reference phasor cluster, thereby complicating

accurate distinction. To reduce this inaccuracy, we have previously proposed the use

of the Mahalanobis distance, a non-Euclidean metric, for phasor analysis in the con-

text of signal separation and compound distinction in a binary mixture [14]. Instead

of simply considering the mean phasor cluster coordinates of the reference sample,

this distance metric additionally considers the cluster's covariance, thereby taking

into account the spread of the cluster for separation purposes. The Mahalanobis

distance is given by Equation 4.5 [181].

D(M =- )T C () - p e) (4.5)

In this context, Dij,ref is the Mahalanobis distance between the phasor of a given

pixel ij and a reference cluster; xis a vector composed of the (G, S) phasor coordi-

nates of the pixel ij; t > is a vector composed of the mean (G, S) phasor coordinates

of the reference phasor cluster; and C-1 is the 2 x 2 covariance matrix of the reference

phasor cluster. Note that the Euclidean distance can be obtained by replacing the

99



covariance matrix in Equation 4.5 with the identity matrix, yielding Equation 4.6.

D E ( - p~ )T (7 - Tf) (4.6)

In the present analysis, the Euclidean and Mahalanobis (i.e. non-Euclidean) dis-

tance metrics are compared and contrasted in terms of their ability to estimate the rel-

ative contributions of each fluorescent compound in a heterogeneous mixture. Three

particular contexts are considered here: a binary mixture of compounds with well-

defined single fluorescence lifetimes; a binary mixture of fluorophores with multiple

lifetimes; and a ternary mixture of single-lifetime fluorescent species.

4.2 Materials and Methods

All simulations presented herein were performed in the MATLAB R2017b environ-

ment (MathWorks, Natick, MA). The various functions and scripts are provided in

Appendix A.

4.2.1 Simulation of a Binary Mixture

The main script for simulating a binary mixture of fluorescent compounds and es-

timating their respective concentrations is provided in simulationMainBinary.m.

Throughout the first few lines of code, the user must specify the dimensions of the

imaging field of view in terms of the numbers of pixels along the Y and X dimen-

sions (numPixelsY and numPixelsX, respectively). Next, the lifetimes of the two

compounds (tauTheoreticalA and tauTheoreticalB) must be specified, as well

as the relative uncertainty on these values (tau-error). In the case of a compound

with multiple lifetimes, the relative weights of each lifetime (alphalB, alpha2_B,

and so forth) as well as the uncertainty of these weighting coefficients (alpha-error)

must also be specified. Finally, the number of photons per pixel must also be de-

fined (totalNumPhotonsSignal), in addition to the number of spurious noise pho-

tons for each set of images (totalnumPhotonsNoise-A, totalnumPhotonsNoiseB,
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and totalnumPhotonsNoise_Mix).

Next, a row vector is defined such that the squared sine and cosine functions

describing the concentration of either compound in the mixture image are evaluated

over the course of one full amplitude cycle. Stated mathematically, x is a row vector

with numPixelsX elements spanning 0 to 7r, and the concentration of compound A

(concA) is defined as sin2 x while that of compound B (concB) is given by cos 2 x.

These row vectors are then replicated vertically numPixelsY times in order to generate

the mixture image.

The phasor transform and plotting parameters are then specified by the user.

These include: the harmonic number used for the phasor transform itself (harnomicNumer,

default: 1); the 2D histogram step size in phasor space (steps, default: 0.0025); the

laser repetition frequency in Hz (freqO, default: 80 x 106); the minimum threshold in

order to display a histogram bin count value in the phasor plot relative to the largest

bin value (histogramThreshold, default: 0.001, i.e. bins with at least 0.1% of the

counts in the largest bin will be displayed in the phasor plot); the preferred colormap

for the phasor plot (cmap, default: ' jet'); flags determining whether or not the 95%

confidence ellipse is to be drawn around each generated phasor plot (drawEllipseA,

drawEllipseB, and drawEllipse-Mix; defaults: all 0); flags determining whether

or not the intercepts between the major axis of the 95% confidence ellipse and

the universal semicircle are to be indicated on the phasor plot (drawIntercepts-A,

drawInterceptsB, and drawInterceptsMix; defaults: all 0); and finally, the num-

ber of fluorescent compounds present in each reference image (numSpeciesA and

numSpeciesB; defaults: all 1) and the mixture image (numSpeciesMix, default: 2).

Additional imaging parameters are then set by default, although they can readily

be changed by the user to evaluate different simulation conditions. These include: the

number of time bins for the histogram decay traces (numTimeBins, default: 256) as

well as a pre-defined instrument response function (IRF) used to compute the phasor

transform.

Using all the above input parameters, the simulated images are finally generated,

where each image pixel has its associated fluorescence decay trace defined in terms of
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photon counts in the temporal domain over numTimeBins bins. For each decay trace, a

time constant T is defined by the theoretical lifetime tauTheoretical provided by the

user adjusted by some random variable normally distributed around 0 with a standard

deviation of tauSigma given by tau-error x tauTheoretical. The resulting time

constant is then used to generate an exponential probability density function. This

function is convolved with the instrument response function (IRF), yielding Equation

4.7.

it
f(t) -e -r * IRF(t) (4.7)

T

This is the probability density function from which photon arrival times are drawn

using the MATLAB function datasample. If spurious noise photons are also included

in the simulated decay trace, they are simply drawn from a uniform temporal distri-

bution across the laser pulse period. It is worth noting that the photon arrival times

are drawn from a continuous basis; in order to simulate a decay trace, they are binned

into numTimeBins bins in order to generate the decay trace histogram.

Next in the simulation comes the phasor transform of each individual decay trace

in order to generate all (G, S) coordinates as well as the phasor plots. The phasor

transform function computes the results of Equations 4.2 and 4.3 by trapezoidal

numerical integration. The phasor plots are then generated by binning the (G, S)

coordinates in a 2D histogram and displaying the resulting cluster in a plot along

with the universal semicircle.

In the case of the traditional Euclidean approach for estimating the contribution

of a pair of fluorophores in a binary mixture, the contribution k(E) of compound A

for a given phasor can be estimated by computing the ratio of the Euclidean distance

between the phasor and the mean coordinates of cluster B, to the sum of the Euclidean

distances between the phasor and the mean coordinates of clusters A and B together.

This relation is best summarized by Equation 4.8, where the values D and D(E)
jan baijB

can be computed using Equation 4.6 [18, 177].
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D(E)
k(E) ij,B (4.8)

A D) +D(
ijA j,B

It is readily apparent that a phasor located at the mean coordinates of cluster

A will result in a k(E) value of 1, signifying a pixel whose fluorescence is completely

dominated by compound A. Conversely, a phasor at the center of cluster B will yield

a value of 0, implying the absence of compound A.

In using the Mahalanobis distance however, the mathematics are somewhat more

nuanced. Given that the computed distances are non-Euclidean, they operate in a

space governed by the covariance of each respective reference phasor cluster. For this

reason, Mahalanobis distances calculated using different references cannot be summed

together as is the case of the denominator in Equation 4.8. Instead, the contribution

k(m) of compound A for a given phasor estimated using the Mahalanobis distance is

given Equation 4.9.

D(M) Dij,B I A

D(M) + D(M
k( ) DA ''A (4.9)

2

In this context, D( corresponds to the Mahalanobis distance between the phasor

of pixel ij and the mean coordinates of reference phasor cluster B; D(M) is the- Ma-A,B

halanobis distance between the mean coordinates of phasor cluster A from reference

cluster B. The converse relations are true for D(M) and D(. In this case, it can stillij,A B,A

be observed that a phasor located at the center of cluster A would yield k(m) = 1

since this would imply D(M) D(M) and D(M) D(M) 0. Consistently, a phasorij,B -A,B ij, A -A, A-

located at the mean coordinates of cluster B would result in k(M) = 0, considering

D( = D(M) and D(M) = D(M) = 0.
ij,A -B,A ij,B -B,B

4.2.2 Simulation of a Ternary Mixture

The simulation of a ternary mixture is essentially similar in implementation to that

of the binary mixture, but with a few key differences. The resulting script is available

in simulationMain-Ternary.m.
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In this case, there are three compounds to be simulated, where all parameters re-

lated to the third fluorophore are denoted tauTheoretical-C, totalNumPhotonsNoise_C,

and so forth. In order to generate a ternary mixture with uniform pixel intensity, the

adopted approach is to simulate three distinct sinusoidal concentration patterns, each

phase-shifted relative to one another by 27r/3 radians. Mathematically, this implies

defining a row vector x spanning 0 to 2w, where the concentrations of compounds A, B,

and C are defined by (1+cos (x))/2; (1+cos (x + 27/3))/2; and (1+cos (x - 27r/3))/2.

The functions used to simulate the decay traces and associated images are otherwise

the same as those used in Section 4.2.1.

It is worth recalling that a fluorescence decay trace characterized by three distinct

lifetimes results in a set of phasor coordinates located somewhere within a triangle

whose vertices are located along the circumference of the universal semicircle. The

vertex coordinates in turn are determined by the individual lifetimes of the three

compounds at hand. The exact position of the decay trace's corresponding phasor

depends on the relative weights of each fluorescent compound: if one compound

dominates strongly over the other two, the phasor will be located nearest to that

corresponding triangle vertex.

With this foundation in mind, one may consider a triplet of fluorescent compounds

A, B, and C, each resulting in phasor clusters A, B, and C, corresponding to the ver-

tices of the triangle containing all phasors of the ternary mixture. In order to estimate

the contribution of compound A to a pixel from the mixture image corresponding to

a phasor denoted X, the Euclidean approach now involves calculating the areas of two

triangles in phasor space: triangles ABC and XBC [194]. The sides of these triangles

are computed using the Euclidean distances between triangle vertices. This relation

can be expressed by Equation 4.10.

k(E3) _ AAXBC
kA AAABC

By inspection, it is clear that if phasor X is located at the mean coordinates of

phasor cluster A, then AAXBC = AAABc and therefore k (E3) 1 implying that the
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decay trace is strictly the result of compound A fluorescence. If phasor X is located

anywhere along the line connecting vertices B and C, then AAXBC - 0, resulting

in a null value of kAE3). In such a case, the areas of triangles XAC and XAB can

be computed in order to estimate the relative contributions of compounds B and C,

respectively, by dividing them by the area of triangle ABC as per Equation 4.10.

In the case of ternary separation using the Mahalanobis distance, triangular areas

in phasor space cannot be computed in a straightforward manner. This is because the

Mahalanobis distance is a normalized distance metric that considers the covariance of

a reference distribution. Therefore, computing arithmetic operations such as the area

of a triangle using Mahalanobis distances obtained from different reference samples is

analogous to calculating the area of a geometric shape whose sides are each expressed

in different spatial units. This approach is mathematically incorrect, and results in

wildly inaccurate concentration estimates.

B

C

G

Figure 4-1: Phasor plot showing the mean coordinates of phasor clusters A, B, and
C, as well as the phasor of a given pixel X. A line is drawn between phasor X and the
mean coordinates of reference cluster A, where its intersection with the line connecting
clusters B and C yields the coordinates of R.

To overcome this challenge, an alternative approach can be implemented. Rather

than computing the ratio between the areas of a pair of triangles, one may first

compute the Mahalanobis distance between the coordinates of a given phasor X and

a reference sample A. Next, a line can be drawn between the mean coordinates of

phasor cluster A and phasor X, where the intersection of this line with the line

connecting phasor clusters B and C is denoted R (Figure 4-1). The Mahalanobis
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distance between coordinates R and phasor cluster A is then computed, whereby the

Mahalanobis contribution of compound A to the total fluorescence signal of the decay

trace associated with phasor X is obtained via Equation 4.11.

M3 D(M)
k _ X,A (4.11)

D(M)
R,A

If phasor X is located along the line connecting phasors clusters B and C, then

k(M3) - 0. On the other hand, if it is located at the center of phasor cluster A, then

k(M3) - 1. These mathematical relationships are consistent with those described in

the binary separation case.

4.3 Results and Discussion

4.3.1 Binary Mixture with Single Lifetimes

The first accuracy comparison is that of a mixture of two fluorescent compounds

A and B, heterogeneously distributed across a simulated field of view 512 x 512

pixels in size. In order to ensure a uniform fluorescence intensity across the field

of view, the concentration of compound A is distributed horizontally following a

squared sine function over one full cycle; that of compound B is similarly distributed,

but following a squared cosine function over one cycle. Their fluorescence lifetimes

are set to 4.100 0.205 ns for compound A and 0.200 0.010 ns for compound B,

where the uncertainties correspond to 5% of the corresponding lifetime value. In

order to test the limits of performance of the separation algorithms, the photon count

per pixel is set to 100 for all simulated FLIM images here. The resulting phasor plots

are shown in Figure 4-2.

With larger and larger photon counts, both methods eventually converge to the

correct solution. However, in the present context, low photon counts are simulated in

order to evaluate the separation accuracy of the two methods under strenuous imaging

conditions. As a result, the generated phasor clusters are abnormally broad, posing a

challenge in accurately estimating the contributions of either fluorophore. In applying
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Figure 4-2: Phasor plots of thie simulated data used to test the accuracy of the sep-
aration algorithms in the context of a binary mixture of single-lifetime fluorophores.
(A) Phasor plot of compound A with a lifetime of 4.100 0.205 ns. (B) Phasor plot
of compound B with a lifetime of 0.200 t 0.010 ns. (C) Phasor plot of the binary
mixture of compounds A and B.

Equations 4.8 and 4.9 to the heterogeneous mixture image simulated using squared

sine and cosine distributions of compounds A and B, Euclidean and Mahalanobis

concentration maps of each compound can be generated as seen in Figure 4-3.

In the case of a pair of fluorescent compounds with well-defined single lifetimes that

are on opposite sides of the universal semicircle in phasor space, both the Euclidean

and Mahalanobis approaches for estimating fluorescence contributions perform sim-

ilarly overall. However, it is worth noting the increased accuracy in the case of the

Mahalanobis method, specifically when one compound with a broad phasor cluster

dominates the other in terms of concentration. This observation is particularly ev-

ident in Figure 4-3(G,H), where the Mahalanobis-based approach more accurately

identifies the dominant contribution of compound A and the corresponding absence

of compound B. While both estimates still deviate slightly from the simulated values

in the case of pixels dominated by compound A fluorescence due to the low SNR, the

Mahalanobis algorithm is found to be of equal or superior accuracy relative to the

Euclidean approach in all cases.

4.3.2 Binary Mixture with Multiple Lifetimes

In the second set of simulations, a fluorophore with a single lifetime of 2.500 t 0.125

ns is compared to another with 4 distinct lifetimes, intended to represent the various

possible lifetimes of the endogenous fluorophore NADH [15]. The lifetimes are set to

Ti= 0.770 t 0.0385 ns, T2 = 1.210 0.0605 us, T3 = 3.710 0.1855 ns, and T4 =
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Figure 4-3: Estimated concentration maps of either compound in a binary mixture of
single-lifetime fluorophores. (A,D) Theoretical concentration maps of compounds A
and B, spatially distributed following squared sine and cosine functions, respectively.
(B,E) Concentration maps of compounds A and B, respectively, estimated using the
Mahalanobis distance metric. (C,F) Concentration maps of compounds A and B,
respectively, estimated using the Euclidean distance metric. (G) Column-wise means
of panels A-C. (H) Column-wise means of panels D-F.

0.770 0.239 ns. The weights of each respective lifetime are set to ai = 15 2.25%,

a2 = 25 3.75%, OZ = 35 5.25%, and a 4 = 25 3.75%. These weighted lifetimes

are consistent with what is experimentally observed of NADH fluorescence in cells

and tissues in terms of its phasor cluster size, position, and orientation [15].

In running the same set of simulations as in Section 4.3.1 for this second pair of

fluorophores, the phasor plots shown in Figure 4-4 are generated. It is worth noting

that in this case, a higher number of photons are required to properly resolve the two

clusters given their close proximity in phasor space. The photon count per pixel is
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therefore set to N = 1000. As expected, the phasor cluster of compound A is located

along the universal semicircle since it is defined by a single lifetime (Figure 4-4(A)).

On the other hand, that of compound B (i.e. a simulated rendition of NADH) is

located within the semicircle, roughly at the center of a quadrilateral whose vertices

lie on the semicircle coordinates given by each of its four defining lifetimes (Figure

4-4(B)) [15]. The phasor plot of the mixture image, composed of compounds A and B

distributed horizontally across the simulated field of view following squared sine and

cosine distributions, shows a bimodal phasor cluster as expected (Figure 4-4(C)).

(A) (B) (C)
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Figure 4-4: Phasor plots of the simulated data used to test the accuracy of the

separation algorithms in the context of a binary mixture of fluorophores with multiple

lifetimes. (A) Phasor plot of compound A with a lifetime of 4.100 0.205 ns. (B)

Phasor plot of compound B, characterized by a combination of 4 distinct lifetimes.

(C) Phasor plot of the binary mixture of compounds A and B.

In examining these phasor plots, one can reasonably expect the traditional Eu-

clidean approach to result in a fairly inaccurate estimate of each compound's respec-

tive contribution to the fluorescence signals simulated in the binary mixture image.

As was discussed prior, this is because the Euclidean approach strictly considers the

mean coordinates of the reference phasor clusters. Given their overlapping distribu-

tions, a methodology using a metric that factors in their relative spreads in phasor

space - such as the Mahalanobis distance - would be expected to outperform the

Euclidean method.

To test this hypothesis, the Euclidean and Mahalanobis algorithms are both eval-

uated in terms of their ability to estimate the relative concentrations of either com-

pound in the binary mixture image, similarly to the procedure in Section 4.3.1. The

resulting estimated concentration maps are shown in Figure 4-5.

In the case of two fluorophores whose phasor clusters significantly overlap in pha-
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Figure 4-5: Estimated concentration maps of either compound in a binary mixture
of fluorophores with multiple lifetimes. (A,D) Theoretical concentration maps of
compounds A and B, spatially distributed following squared sine and cosine func-
tions, respectively. (B,E) Concentration maps of compounds A and B, respectively,
estimated using the Mahalanobis distance metric. (C,F) Concentration maps of com-
pounds A and B, respectively, estimated using the Euclidean distance metric. (G)
Column-wise means of panels A-C. (H) Column-wise means of panels D-F.

sor space, the algorithmic approach based on the Mahalanobis distance indeed vastly

outperforms the traditional Euclidean method, as made evident by the column-wise

means of the estimated concentration maps (Figure 4-5(G,H)). In this particular sce-

nario, the Euclidean approach results in concentration estimates that plateau around

80% and 20% when they should be 100% and 0%, respectively; the Mahalanobis

methodology, on the other hand, results in more accurate estimates around 90% and

10%, respectively. As in the previous simulation, these deviations from simulated

values (particularly in the context of one fluorophore dominating over the other) are
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partially related to low SNR. The accuracies of both algorithms increase with larger

photon counts and decreased uncertainty of fluorescence lifetime values, with the

Mahalanobis approach converging at a significantly faster rate.

The simulated performances of both algorithmic approaches assessed in Section

4.3.1 showed generally comparable separation accuracies. This is because the two

compounds at hand were on opposite sides of the universal semicircle, and thus natu-

rally offered a high degree of contrast. In such a scenario, opting for one method over

the other is unlikely to result in any significant discrepancy in data interpretation. In

the present set of simulations however, the differences are indeed significant, where

the Mahalanobis approach is seen to roughly halve the overall separation error. Given

a binary mixture of one compound with a lifetime of 2.5 ns (such as Coumarin 6, for

example) and another that is representative of NADH autofluorescence, this set of

simulations shows the great value in using the proposed non-Euclidean approach for

distinguishing exogenous from endogenous fluorescence.

4.3.3 Ternary Mixture with Single Lifetimes

These separation techniques can also be generalized from a binary mixture to a ternary

mixture and beyond. For the purposes of the present work, the simulations are limited

to a three-compound mixture, where the performances of both the Euclidean and

Mahalanobis techniques are contrasted.

In order to simulate a ternary mixture with constant fluorescence intensity across

the field of view, the concentrations of each respective compound are spread horizon-

tally according to cosine functions, each phase-shifted with respect to one another by

27r/3 radians. The reference phasor clusters of compounds A, B, and C, each defined

by fluorescence lifetimes of 4.100 0.205 ns, 1.600 0.080 ns, and 0.600 + 0.030 ns,

as well as the phasor plot of the ternary mixture are all shown in Figure 4-6.

The three-phase cosine distributions of compounds A, B, and C result in an el-

liptical phasor pattern as seen in Figure 4-6(D). It is worth noting that this ellipse

is contained within the triangle whose vertices lie at the centers of phasor clusters

A, B, and C. The application of the Euclidean and Mahalanobis separation algo-
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Figure 4-6: Phasor plots of the simulated data used to test the accuracy of the sepa-
ration algorithms in the context of a ternary mixture of single-lifetime fluorophores.
(A) Phasor plot of compound A with a lifetime of 4.100 0.205 ns. (B) Phasor plot of
compound B with a lifetime of 1.600 0.080 ns. (C) Phasor plot of compound C with
a lifetime of 0.600 0.030 ns. (D) Phasor plot of the ternary mixture of compounds
A, B, and C.

rithms for ternary mixtures as previously described in Equations 4.8 and 4.9 yield

the concentration estimates shown in Figure 4-7.

In the case of the Euclidean separation method based on computed areas of trian-

gles, it is clear that this standard approach is extremely accurate, failing only in the

absence of a compound it is tasked to detect. Even in such circumstances however,

the Euclidean algorithm yields an estimated concentration of the absent compound

below 5%.

In contrast, the Mahalanobis distance is not found to be as effective in the con-

text of a ternary mixture as it was in the previous simulations of binary mixtures.

Here, the reference phasor clusters tend to be elongated, with orientations more or

less parallel to the line connecting the opposite two phasor clusters. With a smaller

covariance along the axis connecting the phasors of the mixture image to the reference

phasor cluster, small spatial deviations along said axis result in large differences in

concentration estimates. Moreover, because the covariance of the reference cluster is
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Figure 4-7: Estimated concentration maps of each compound in a ternary mixture of
single-lifetime fluorophores. (A,D,G) Theoretical concentration maps of compounds
A, B, and C, respectively, spatially distributed following cosine functions phase-shifted
with respect to one another by 2-r/3 radians (B,E,H) Concentration maps of com-
pounds A, B, and C, respectively, estimated using the Mahalanobis distance metric.
(C,F,I) Concentration maps of compounds A, B, and C, respectively, estimated using
the Euclidean distance metric. (J,K,L) Column-wise means of panels A-C, D-F, and
G-I, respectively.

considered in computing the Mahalanobis distance, the angular differences between

phasors in the mixture image and a particular reference cluster result in asymmetri-

cal concentration estimates. This observation is most apparent in the Mahalanobis

estimates of compound C, where the peak of the red dashed curve in Figure 4-7(L)

is both spatially offset and slanted relative to the simulated theoretical data.

Given a ternary mixture, the Euclidean approach involving the computation of
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ratios of triangle areas is therefore objectively superior to the Mahalanobis method

in terms of estimation accuracy. This is also true of mixtures involving N > 3 com-

pounds, where areas of N-sided polygons can be computed using Euclidean distances

to estimate the contributions of each respective fluorescent compound in the sample

mixture.

4.4 Conclusion

In the present work, two separation algorithms were compared and contrasted in the

context of distinguishing mixtures of fluorescent compounds using simulated fluores-

cence lifetime imaging data. Specifically, these approaches were based on Euclidean

and Mahalanobis distance metrics, where it was found that the Mahalanobis approach

outperformed the Euclidean method in a binary mixture in all tested conditions.

This superior accuracy is the result of additional considerations that are taken into

account in computing the relative concentration of the simulated fluorescence com-

pounds. Namely, the Mahalanobis distance considers the covariance matrix of the

reference phasor clusters at hand, dramatically improving the estimation accuracy -

particularly in the case of spatially broad phasor clusters.

Interestingly, it was found that this conclusion only held true in the case of bi-

nary mixtures of fluorescent species. In ternary mixtures, the Euclidean approach

involving the calculation of triangle areas in phasor space resulted in a vastly su-

perior separation accuracy, while the Mahalanobis approach resulted in consistently

faulty concentration estimates. In the case of a ternary mixture, the shape and rela-

tive orientation of reference phasor clusters worked against the separation algorithm,

resulting in displaced and asymmetric concentration peaks.

Of course, it is impossible to simulate each and every conceivable mixture of

fluorescent compounds, each with their own respective lifetimes. It is for this reason

that the various scripts and functions are provided to the reader in Appendix A. Using

the attached software tools, it is possible to simulate any fluorescent compound by

adjusting parameters such as the fluorescence lifetime (and its associated uncertainty),
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the number of photons per pixel, the number of temporal bins in the decay trace

histogram, the image size, the fluorescence intensity pattern, and so on. In providing

these tools to the FLIM community, it is hoped that researchers will be empowered

to bridge the gap between theory and application by validating their experimental

observations with simulations in order to ultimately strengthen the foundations of

their imaging experiments.
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Chapter 5

Characterization of Human

Stratum Corneum Structure,

Barrier Function, and Chemical

Composition Using CRS

5.1 Introduction

The particular functions of skin beyond its role as an interface are diverse and in-

clude thermal insulation and regulation [195], defense against foreign pathogens [196],

touch-based sensation [197], vitamin D production [198], and prevention of water loss

[199, 200]. These roles are dependent on the skin's unique structure and composition,

of which the epidermis serves as the outermost selectively permeable barrier that

interfaces with the environment.

The epidermis is itself a multilayered structure. The deepest cell layer consists of

the stratum basale which underlies the stratum spinosum, followed by the stratum

granulosum, and finally followed by the stratum corneum at the skin's surface. De-

pending on anatomical site, the stratum corneum typically ranges in thickness from

10 to 30 layers of enucleated cells known as corneocytes and is the primary source
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of the skin's barrier function [201]. This is accomplished through the structural or-

ganization of these cells, which are stacked like protein-rich bricks glued together by

a lipid-rich ceramide mortar [202]. The biochemical compositions of both the intra-

cellular and extracellular spaces of the stratum corneum thus play important roles in

the skin's barrier function and maintaining hydration.

The stratum corneum can be compromised by a wide variety of factors, both

internal and external. Internal perturbations include abnormal enzyme activity, a

decrease in natural moisturizing factors, and reductions in stratum corneum water

content. These chemical changes can all contribute to a decrease in corneodesmoly-

sis, where the rivet-like proteinaceous complexes that bind neighboring corneocytes

together ultimately remain intact rather than undergoing enzyme-driven breakdown,

resulting in the formation of powdery flakes at the skin surface. In contrast, external

factors such as a dry environment can lead to the gradual dehydration of epidermal

layers starting with the stratum corneum. As the deeper layers of the epidermis

dehydrate, various inflammatory mediators are progressively released which induce

keratinocyte proliferation and disruption of epidermal differentiation. This cascade

can ultimately lead to a haphazard synthesis of inadequately structured extracellular

matrix elements and hampers the natural barrier function of healthy stratum corneum

[203, 200, 204].

The management of dry skin is most commonly achieved using topical agents

such as cosmetic moisturizers due to their humectant properties [205, 206]. These

compounds, including glycerin and hyaluronic acid, tend to draw and retain water due

to their abundant hydroxyl groups and can also influence the phase of the extracellular

lipid matrix under dry environmental conditions [207]. Glycerin, for example, favors

an appropriately fluid lamellar arrangement of extracellular lipids rather than the

solid crystalline phase that tends to form under dry conditions [208, 204].

In order to quantitatively monitor skin hydration, conventional methods based

on the measurement of skin electrical properties have been developed and validated.

One such industry standard involves the use of a corneometer, a device equipped with

a pen-sized handheld probe that is gently pressed onto the skin surface to measure
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hydration based on the capacitance of the skin itself [2091. Given the high dielec-

tric constant of water under standard ambient conditions, its capacitive properties

can be probed for non-invasive inferences of skin hydration. Despite its status as

a commercial standard, recent studies have identified sources of small but signifi-

cant experimental variation in corneometry measurements. One study in particular

reported a measurement dependence on the contact pressure applied between the

probe and the skin, with increasing pressure resulting in overestimated hydration

values [210]. The same group later found intra-sample variability in cases where hy-

dration levels approached saturation, suggesting a decrease in probe sensitivity at

the upper limits of hydration [211]. Despite these rather modest sources of vari-

ability, corneometry has been widely used in the validation and efficacy testing of

cosmetic products and topical drug formulations as well as in occupational health

studies [212, 213, 209, 214, 215, 216].

While corneometry is a simple, rapid, and effective method for the indirect as-

sessment of skin hydration via capacitance measurements, it is inherently limited to

point-based acquisitions over a bulk surface area of approximately 1 cm 2. Because

of this, corneometry lacks the sub-cellular spatial resolution needed to identify differ-

ences between intracellular versus extracellular hydration and it cannot be used to

distinguish the hydration of the various layers and sublayers that constitute human

skin [2111. Such information would be useful in assessing and validating treatment

strategies by offering spatial information at the cellular scale in a depth-resolved man-

ner. With such specificity, it would be possible to identify the problematic anatomical

component requiring treatment (e.g. decreased water retention within corneocyte cell

bodies, altered lipid composition of the extracellular matrix), in addition to moni-

toring the effects of the treatment strategy over time. Dermatological investigations

that would otherwise require such levels of contextual detail are technologically lim-

ited to destructive sampling techniques such as histology or cryo-scanning electron

microscopy [217].

As of now, a critical niche remains unaddressed for assessing skin hydration, struc-

ture, and composition in a non-invasive and non-destructive manner with subcellular
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3D resolution on living tissues. A potential solution to this problem lies within the

non-linear optical imaging modalities that have seen increasing use over the past

few decades along with the significant advances in endogenous molecular imaging

[218, 28, 164, 158, 172, 219, 220]. In particular, coherent Raman scattering (CRS)

imaging techniques have become a valuable tool in biomedical research by enabling the

visualization of specific chemical groups via contrast based on molecular vibrational

signatures [54, 29, 27]. Of these techniques, coherent anti-Stokes Raman scattering

(CARS) and stimulated Raman scattering (SRS) are two complementary CRS tech-

niques that can be readily used to visualize and quantify both the structure and the

chemical composition of skin. Moreover, these optical processes occur simultaneously;

it follows that an appropriate microscopy setup allows for simultaneous CARS and

SRS imaging.

In this chapter, the parallel use of both CRS microscopy and corneometry are re-

ported to characterize the structure, barrier function, and chemical content of human

ex vivo skin samples undergoing dehydration and humectant-induced rehydration.

In addition to the bulk hydration assessment offered by corneometry, CRS image

stacks of the stratum corneum in ex vivo skin explants were acquired to examine

the distribution of lipid, protein, and water content by probing their molecular vi-

brational signatures in two separate experimental contexts designed to determine the

morphological and chemical imaging metrics that best explain skin hydration.

5.2 Results and Discussion

5.2.1 CRS Imaging Metrics

The focus of this study was to build an imaging and analysis method for the chemical

and morphological characterization of the stratum corneum under changing hydration

conditions. An ex vivo skin model was imaged with CRS microscopy techniques

without a priori biases such that the data could be assessed post-acquisition using

mathematical and statistical methods. As an exploratory characterization study, the
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number of subjects was initially set at N = 3 per experiment, noting that hundreds

of individual cells and their associated parameters were measured to characterize

changes in skin.

For non-invasive investigations of human skin in a laboratory setting, ex vivo

human skin samples acquired from discarded tissues as a result of elective patient

surgeries are typically used as a model to recapitulate the active physiology of a living

individual's skin [221, 14]. In the context of this study, such human skin explants were

imaged via CRS microscopy to visualize the architecture and biochemical content of

the stratum corneum. Hydration-relevant parameters such as lipid content can be

measured by probing the symmetric CH2 stretching vibrational mode at 2845 cm-1

[28] while the CH3 molecular vibration at 2950 cm- 1 can be used to detect proteins by

their hydrophobic amino acids with methyl groups [222]. Water molecules themselves

can be readily detected by probing the strong OH stretching vibrational mode at 3220

cm- 1 [223].

Representative CARS and SRS images of the stratum corneum acquired simul-

taneously by probing each of the three vibrational bands of interest are shown in

Figure 5-1, illustrating the particularly strong contrast observed between the intra-

cellular and extracellular spaces. Corneocytes appear as polygonal cells surrounded

by a bright extracellular matrix rich in lipids (Figure 5-1(a,d)) and proteins (Figure

5-1(b,e)). Water content (Figure 5-1(c,f)), on the other hand, is mostly confined

within the corneocyte cell bodies, with a much lower abundance in the extracellular

space.

While both imaging modalities generate similar contrast, CARS images uniquely

contain an inherent background anti-Stokes signal that is generated independently of

Raman-active molecules, known as the non-resonant background (NRB). While the

anatomical features in CARS images of the stratum corneum can be readily appre-

ciated, the interpretation of individual pixel values becomes challenging due to the

unspecific contribution from the NRB, which manifests as a broad and homogenous

distribution of background signal centered within the field of view. Importantly, the

generation of NRB is exclusive to CARS; the SRS signals in Figure 5-1(df) strictly
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Figure 5-1: CRS images of human stratum corneum acquired from ex vivo skin ex-
plants. (a-c) CARS and (d-f) SRS images of stratum corneum showing (a,d) lipid-
weighted content; (b,e) protein-weighted content; and (c,f) water-weighted content.
The NRB in the CARS data manifests itself as a homogeneous and unspecific haze
distributed across the field of view.

arise from the targeted Raman-active molecules. Conveniently, since these processes

occur simultaneously, the acquisition of CARS data in addition to SRS comes at no

additional cost.

The CRS microscopy platform used to image human stratum corneum in the

context of this study was capable of generated a total of 35 imaging metrics, although

not all metrics were found to be of value, as will be discussed later. First, the system is

equipped with two simultaneous imaging modalities (i.e. CARS and SRS) to probe the

distribution of three chemical species of interest, namely lipids, proteins, and water,

thereby generating 6 metrics. The relative ratios between these chemical species

(i.e. lipid-to-protein, lipid-to-water, and protein-to-water) can also be assessed by

computing image intensity ratios on a pixel-by-pixel basis, thus bringing the metric

count to 12. With manual segmentation of corneocytes and generation of regions of

interest (ROIs) as shown in Figure 5-2, each of the 12 previously defined metrics can be

redefined with respect to anatomical component (i.e. intracellular vs. extracellular).
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This then doubles the metric count once more for a total of 24 metrics regarding

skin hydration. By further considering intracellular-to-extracellular ratios of chemical

content for both modalities, 6 more metrics are added to the count. Finally, using

the manually generated ROIs for each corneocyte, 5 morphological parameters can be

defined based on cellular geometry: cell diameter, perimeter, and circularity, as well

as the nearest neighbor distances (NND) between adjacent corneocyte cell centers

(NNDCenters) and cell walls (NNDwaiis). Together with corneometer measurements

acquired in parallel with CRS imaging, this investigative toolkit is therefore capable of

characterizing 36 observable morphological and chemical metrics for each skin sample

at a given timepoint under a particular set of experimental conditions. However,

imaging metrics generated using CARS microscopy were ultimately discarded due to

the generation of strong NRB resulting in poorly interpretable longitudinal data.

Figure 5-2: Manual segmentation of SRS lipid content image to distinguish intra-
cellular and extracellular spaces for subsequent analysis. (a) Unlabeled image. (b)
Manually segmented image, showing corneocytes identified by indices 1 through 22,
and extracellular space corresponding to the surrounding region identified by index
number 23.

Initial assessment of the acquired CRS imaging data found a strikingly similar

contrast in the protein and lipid channels across all experimental conditions (Figure

5-1(d,e), for example). This is not surprising, as femtosecond laser sources such as

the one used in this study have an inherently broad frequency spectrum. As such,

such laser sources can generate strong CRS signals at the cost of decreased spectral

specificity [28]. Following acquisition of the imaging data, it was unclear whether

the observed similarities truly illustrated correlations in the distribution of lipids and
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proteins, or whether the femtosecond laser sources used were too spectrally broad

to resolve the two vibrational peaks of interest (2845 and 2950 cm- 1 for lipids and

proteins, respectively). To verify whether this was indeed the case, the SRS lipid and

protein chemical content image sets were statistically analyzed to determine whether

the observed SRS lipid intensity in each cell could be explained by its corresponding

SRS protein intensity. As seen in Figure 5-3, a strong correlation was indeed observed

between the SRS lipid and protein signals (Pearson's R = 0.921). This lipid-protein

correlation was less strong in the case of CARS, but nevertheless significant (Pearson's

R = 0.812). Therefore, protein-associated imaging metrics were not considered for the

statistical analysis of the dehydration and rehydration results that follow. It is worth

noting, however, that methods to increase the spectral specificity in femtosecond CRS

microscopy - collectively referred to as "spectral focusing" - have been previously

reported [222, 224, 225], and can be implemented to include the ability to reliably

probe protein content within cells and tissues.
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Figure 5-3: Scatter plot of all intracellular lipid and protein data collected via SRS,
showing a strong correlation (Pearson's R =0.921) between the observed metrics and
therefore indicative of spectral overlap.

5.2.2 Stratum Corneum Dehydration

For the dehydration investigation, ex vivo skin explants were first imaged with CRS

microscopy and probed with the corneometer immediately upon retrieval from the

124



incubator. Following the first set of data acquisition, one set of skin samples was

allowed to dry on a plastic substrate while the other was maintained in parallel on

its nutritive gel under ambient conditions bed to limit dehydration. Imaging was

then performed at two additional timepoints alongside corneometer measurements

performed in triplicates for each experimental timepoint and each treatment condi-

tion. The corneometer data is shown over time for both the dehydrated and moist

conditions in Figure 5-4, and illustrates a net overall decrease in skin hydration as

the skin samples are left to dry. As expected, the skin samples that were maintained

on the moist gel bed retained their hydration more efficiently.
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Figure 5-4: Corneometer measurements obtained from ex vivo human skin throughout
the dehydration time course on a plastic substrate (i.e. rapid dehydration) and a
gel substrate (i.e. slow dehydration). Data points correspond to the mean of the
triplicate corneometer measurements with error bars indicating the standard error of
the mean. Statistically significant deviations from the corresponding initial timepoint
are denoted by asterisks and determined via Student's t-test (*: p < 0.05/N; **:
p < 0.01/N; ***: p < 0.001/N, adjusted using Bonferroni correction with N = 4
pairwise comparisons).

Linear regression analysis was performed for each CRS imaging metric and cor-

neometer measurement in order to find statistically significant trends over time and

to investigate the environmental influence on these dynamics. A linear mixed effect

model for each metric was designed to explore the possibility of modeling each ob-
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served metric as a linear function of time (a fixed factor). Each patient was considered

as a random factor and each field of view per patient as a nested random factor within

each patient, given that each skin sample for each patient was imaged at 3 different

areas per treatment condition. Note that the given area imaged at each timepoint

was different. As opposed to a marginal model which would indiscriminately con-

sider the means from all subjects together, this conditional model approach allows

for subject-specific statistical analysis. Given that patient number and patient sample

area were exchangeable (since all samples were completely anonymized), they could

readily be assigned as random factors. The linear mixed model was adopted while

holding the treatment condition constant by first modeling the data collected under

the rapid drying condition before modeling the kinetics of slowed dehydration over a

moist nutritive gel substrate.

CARS imaging data was closely explored during this step of the analysis. As men-

tioned above, CARS microscopy images contain both a chemically specific response

as well as a nonspecific response (i.e. NRB). This latter nonspecific response arises

as a function of the density of a given material and its electronic polarizability; these

two factors mix to give rise to a coherent signal that adds to the chemically specific

signal. In analyzing the CARS imaging data, it became clear that the CARS data

contained at least two responses to dehydration: not only were there changes in the

chemical content of the skin, but there were changes in cellular morphology as well.

These morphological changes, which included changes in tissue thickness, cell size,

and intercellular distance, could lead to variations in the proportion of the CARS

signal that arises from non-resonant contributions. As this nonspecific factor leads to

chemically independent changes in the total CARS signal intensity [28], chemically-

weighted CARS imaging data was not included in the statistical analysis. CARS

imaging is therefore used to inform manual image segmentation and morphological

assessment, i.e. metrics independent of chemical signatures.

The hourly rates of change for each metric under both dehydration conditions are

listed in Table 5.1 along with the 95% confidence intervals and p-values. The most

significant changes observed under both conditions were primarily morphological,
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with parameters such as cell diameter and perimeter seen to decrease, while the

NND between cell walls was observed to increase. These observations suggest that

corneocytes undergo a generalized decrease in size as they dehydrate in addition to

progressively retracting away from one another, consistent with previous findings

using cryo-scanning electron microscopy [217].

As seen in Table 5.1, relative water content as determined by SRS water intensity

was found to decrease at an average rate of approximately 7% per hour for both

intracellular and extracellular spaces under the dry environmental condition. This

rapid dehydration rate was diminished by the wet gel substrate where the time-

dependent variation of tissue water content was no longer significant. Interestingly,

these changes are also reflected in the corneometry measurements where a dramatic

dehydration rate of -15.3 units per hour was recorded on the plastic substrate while

the corresponding rate on the gel substrate was found to be roughly 35% slower (i.e.

-9.92 units per hour). The lipid-to-water ratio in both intracellular and extracellular

spaces was consistently seen to increase only under the dry condition and more so in

the case of the extracellular space. While the intracellular lipid content also decreased

slightly over time under both conditions, this decrease was more rapid over the plastic

substrate which further contributed to the contrast in lipid-to-water ratios between

the two experimental conditions.

Despite the small number of patient samples, this imaging based approach was able

to measure and visualize a large number of cells needed to generate a significant body

of data. Overall, marked differences in hydration dynamics were observed between ex

vivo patient samples depending on the type of substrate, most strikingly in the case

of intracellular water content assessed via SRS microscopy. Given these newfound

nuances, the proposed methodology supports the applicability of using CRS imaging

to complement corneometry in order to non-invasively and non-destructively measure

cellular morphology and probe hydration-relevant metrics with subcellular resolution.

Whereas corneometry relies on making bulk 1 cm2 point measurements that extends

down to the dermal layer, CRS imaging in the context of this study was able to detect

subtle chemical changes in a micron-thin slice of the stratum corneum on a pixel-by-
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Table 5.1: Stratum corneum metric dynamics measured over the time course of ex
vivo human skin dehydration on two different substrates. For the plastic substrate,
asterisks denote rates of change significantly different from zero; for the gel substrate,
they denote rates of change that are significantly different from the plastic substrate

(*: p < 0.05; **: p < 0.01; ***: p < 0.001, where p-values are adjusted using Holm-
Bonferroni correction with N = 36 metrics. IER: intracellular-to-extracellular ratio;
NND: nearest neighbor distance; CI: confidence interval.)

PLASTIC SUBSTRATE GEL SUBSTRATE
METRIC Hourly rate 95% C1 p-value Hourly rate of 95% CI p-valueof change change

Corneometry
Corneometer -15.3 [-22.1, -8.57] 3.13 x 10-3 -9.92 [-21.6, 1.79] 1.00

Water content
Intracellular -6.66 % * [-8.35, -4.97] % 1.38 x 10-' -2.46 % *** [-4.33, -0.60] % 2.90 x 10-22
Extracellular -6.95 % *** [-9.08, -4.82] % 1.26 x 10-5 -1.98 % [-5.67, 1.71] % 6.84 x 10-2
IER 0.17% [-0.18, 0.53] % 1.00 -0.42 % [-1.03, 0.19] % 0.543

Lipid content
Intracellular -4.42% [-6.62, -2.21] % 7.55 x 10-2 -2.56 % *** [-4.86, -0.27] % 1.43 x 10-
Extracellular -3.20% [-5.96, -0.44] % 1.00 -2.74% [-6.41, 0.92]% 1.00
IER -1.23% [-2.57,0.11]% 0.821 0.14% [-2.02,2.29] % 1.00

Lipid-to-water ratio
Intracellular 2.26% [0.61, 3.91] % 0.256 -0.02 % *** [-1.85, 1.81] % 5.74 x 10-
Extraceliular 3.73 % * [1.88, 5.57] % 1.48 x 10-2 -0.49 % * [-3.14, 2.17] % 1.44 x 10-2

Morphology
Cell diameter -7.06 pm * [-14.6, 0.51] pm 4.94 x 10-2 -3.97 pm [-13.0, 5.09] pm 0.545
Cell perimeter -4.92 pm [-8.70, -1.13] pm 0.756 -3.61 pm [-9.58, 2.36] pm 1.00
NNDcentm -0.28 pm [-0.96,0.41] pm 1.00 0.45 pm [-0.54, 1.45] pm 0.912
NNDw.j, 2.01 pm [0.79,3.231 pm 0.0265 1.11 pm [-0.75, 2.97] pm 1.00

pixel basis. With a field of view of 212 x 212 pm2 , objects such as single corneocytes

and entire extracellular spaces surrounding collections of corneocytes can be analyzed

at high resolution with chemical specificity. Thus, while total probed volume for CRS

measurements is several orders of magnitude smaller than that of the corneometer, it

can still serve as a useful complementary tool between in hydration studies.

5.2.3 Stratum Corneum Rehydration

The second portion of this study was focused on the rehydration dynamics of skin

following topical application of two humectant agents: glycerin and hyaluronic acid.

To simulate dehydrated skin tissue, ex vivo skin explants were removed from the

incubator and allowed to dry under ambient conditions prior to humectant treatment.

As confirmed by a plateau in the corneometer hydration measurements, samples in

this model approach were considered dehydrated at the initial timepoint of the CRS

rehydration study. Experiments were carried out in subject batches, where each batch
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encompassed a single day of experiments of all conditions on all tissue samples from

a single subject.

Linear mixed effect model regression analysis was performed for each CRS imaging

metric along for each corneometer measurements in order to find statistically signif-

icant trends in treatment response over time and to investigate the environmental

influence on these dynamics.

* Ambient, No Treatment
_ Ambient, Glycerin

E * Ambient, Hyaluronic Acid
0 n Humid, No Treatment
E * Humid, Glycerin

U *** w Humid, Hyaluronic Acid

-25 -15 -5 5 15 25 35 45 55 65
Rate of Change [1/hour]

Figure 5-5: Corneometry-based assessment of ex vivo human skin hydration dynamics

during rehydration under various environmental and treatment conditions. Data

points correspond to the rate of change of corneometer measurements per hour, with

error bars showing the 95% confidence interval. For the ambient condition without

treatment (control), asterisks denote rates of change significantly different from zero;

for all other conditions, they denote rates of change that are significantly different

from the control (*: p < 0.05; **: p < 0.01; ***: p < 0.001, where p-values are

adjusted using Holm-Bonferroni correction with N = 36 metrics).

Corneometer measurements performed throughout the various rehydration con-

dition time courses are shown in Figure 5-5. From the results, it can be seen that

the sample left under ambient conditions without topical treatment continued to de-

hydrate slightly, albeit without statistical significance. Interestingly, all treatment

conditions significantly improved the rehydration rate and successfully restored skin

hydration as verified by corneometry.

Interestingly, the most significant metric impacted by both time course and topical

treatment was the intracellular water and lipid contents of corneocytes as measured

by SRS microscopy (Figure 5-6(a,b)). Under both dry and hydrated conditions, the

intracellular water and lipid contents were found to decrease over time, except in the

event of glycerin application under ambient conditions - the only condition where

intracellular chemical content increased at a positive rate. This was also the con-

dition under which the intracellular lipid-to-water ratio decreased most significantly
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Figure 5-6: Chemical content dynamics of ex vivo human skin during rehydration
under various environmental and treatment conditions. Data points correspond to
the rate of change of CRS imaging metrics per hour, with error bars showing the 95%
confidence interval. For the ambient condition without treatment (control), asterisks
denote rates of change significantly different from zero; for all other conditions, they
denote rates of change that are significantly different from the control (*: p < 0.05;
**: p < 0.01; ***: p < 0.001, where p-values are adjusted using Holm-Bonferroni
correction with N = 36 metrics).

throughout the rehydration process (Figure 5-6(c)). In contrast to these CRS re-

sults, corneometry indicated an increase in skin hydration following both glycerin

and hyaluronic acid treatment, although the hydration increase following the latter

treatment was less pronounced under ambient environmental conditions. These find-

ings suggest the possibility that, in this ex vivo model system, the water retained by

the tissue following humectant application is taken up but not necessarily retained

in corneocyte cell bodies. This disagreement is not necessarily problematic: while

corneometry is considered most sensitive to the topmost 15 to 45 pm of the interro-

gated sample, its bulk probing volume actually extends several tens of microns deeper

into the skin albeit with decreasing sensitivity [211, 226]. This lack of spatial speci-

ficity may result in a significant portion of the viable epidermis and dermis being

interrogated as well, which could explain the apparent discrepancy in the changes in

corneocyte water content as measured by SRS imaging.

Of note, the diameter of cells treated with glycerin was also observed to gradually

increase over the time course of the experiment under all conditions with the exception

of glycerin treatment in the humid incubator environment. This observation may be

interpreted as a transient swelling of the cells over time, however, without statistically
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significant retention of hydration (Figure 5-7). This correlation between corneocyte

size and hydration is generally consistent with previous findings assessed via cryo-

scanning electron microscopy [217].
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Figure 5-7: Morphological dynamics of ex vivo human corneocytes during rehydration
under various environmental and treatment conditions. Data points correspond to
the rate of change of each spatial metric in microns per hour with error bars show-

ing the 95% confidence interval. Nearest neighbor distances are computed between
corneocyte cell centers (NNDCenters) as well as between cell walls (NNDwa,,nsr). For the
ambient condition without treatment (control), asterisks denote rates of change sig-
nificantly different from zero; for all other conditions, they denote rates of change that
are significantly different from the control (*: p < 0.05; **: p < 0.01; ***: p < 0.001,
where p-values are adjusted using Holm-Bonferroni correction with N = 36 metrics).

Skin explants treated with hyaluronic acid and left to rehydrate under ambient

conditions showed an overall decrease in terms of intracellular water content, although

these changes differed in magnitude from their untreated counterparts in a statistically

significant manner. Indeed, under ambient conditions, the intracellular water loss

was slowed, while the humid and warm environment of the incubator was found to

exacerbate the water loss rate. This overall trend is consistent with that observed

in samples treated with glycerin. Interestingly, the intracellular lipid content in the

131



hyaluronic acid treated explants under ambient conditions was now found to decrease

at a significantly accelerated rate relative to the untreated samples. It is also worth

noting that some aspects of cellular morphology were also impacted by hyaluronic

acid treatment under ambient conditions. In particular, the hyaluronic acid treatment

under the humid and warm conditions of the tissue incubator resulted in increased

distances between corneocyte cell centers and their walls, suggestive of tissue swelling

as a result of increased hydration.

It is also worth examining the overall similarities and differences in the samples

kept at room temperature relative to those maintained in the tissue incubator at 37'C,

5% atmospheric C0 2, and 95% relative humidity between measurements. The warm

and humid environment of the incubator was found to significantly affect the water

and lipid loss rates, with intracellular loss rates increasing 2- and 3-fold, respectively,

relative to the untreated sample under ambient conditions. The extracellular water

and lipid contents were also found to decrease significantly, which was otherwise only

observed in the case of hyaluronic acid treatment under ambient conditions. Despite

this radical shift in water content throughout the stratum corneum, the corneometer

nevertheless measured a dramatic rise in skin hydration, similar in magnitude to a

topical application of glycerin under ambient conditions. This discrepancy highlights

the difference in probing volumes between corneometry and water content assessment

via SRS microscopy.

When skin samples were treated with either glycerin or hyaluronic acid and main-

tained in the incubator between measurements, the observed trends generally resem-

bled those of untreated incubated skin: the intracellular and extracellular water and

lipid loss rates increased significantly, despite corneometry showing a marked increase

in terms of skin hydration. Corneocyte morphology, however, was generally found to

remain unaffected, other than in the particular case of hyaluronic acid treatment

under humid and warm conditions as noted above.

A summary of all observable metrics that show variability over time is presented

in Table 5.2. As demonstrated by corneometry, skin samples required the warm

and humid environment of the incubator and/or a topical application of glycerin or
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Table 5.2: Summary of observed changes over the time course of skin explant rehy-
dration. (N/C: no change; +++, ++, +: strong, moderate, and modest increase,
respectively; - , -, -: strong, moderate, and modest decrease, respectively.)

AMBIENT ENVIRONMENT HUMID ENVIRONMENT
METRIC No treatment Glycerin Hyaluronic No treatment Glycerin Hyaluronic

____________acid acid
Corneometry

Comeometer -+++ + +++ +++ +++

Water content
Intracellular -- + ---- ---
Extracellular N/C N/C N/C --- --- ---
IER N/C N/C N/C N/C N/C N/C

Lipid content
Intracellular N/C N/C ---- ---
Extracellular N/C N/C ---- --- ---
IER N/C N/C N/C N/C N/C N/C

Lipid-to-water ratio
Intracellular +-- N/C N/C - N/C
Extracellular N/C N/C N/C N/C N/C N/C

Morphology
Cell diameter N/C N/C N/C N/C N/C N/C
Cell perimeter N/C N/C N/C N/C N/C N/C
NNDten. N/C N/C N/C N/C N/C +
NNDwan. N/C N/C N/C N/C + ++

hyaluronic acid in order to rehydrate. The SRS imaging results point to an interest-

ing suggestion that the stratum corneum itself may not retain or increase its water

content within corneocytes during glycerin and hyaluronic acid induced rehydration.

In fact, in this ex vivo model system, the SRS imaging results indicate that the rate

of intracellular water loss from the stratum corneum accelerated for all conditions un-

der the warm and humid incubator conditions. It should be noted that calculations

carried out on the CARS images (data not shown) show the opposite overall trend, an

effect that is hypothesized to arise from two factors. First, as noted above, structural

changes to the skin are likely to cause changes to the non-resonant signal contribution

that contaminates the CARS signal. Second, an additional non-resonant contribution

in the CARS images arises from the glycerin and hyaluronic acid treatments them-

selves, creating a false increase in apparent water content. The SRS imaging data,

which instead scales linearly with molecular concentration and does not contain non-

resonant signal contributions, clearly points to a net dehydration effect in all tested

model samples.

Interestingly, this finding does not exactly agree with conventional understand-

ing of stratum corneum behavior, warranting further discussion. First, it should be
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kept in mind that while the data is generated from many dozens of cells over many

tissue samples, all samples were derived from a small set of subjects who underwent

surgery. Discarded ex vivo tissue samples from these procedures were transported

under cold, wet conditions prior to processing and placement into the tissue explant

culture system for one to three days. It is therefore important to note that this ex

vivo skin explant model may not be entirely representative of normal, healthy skin.

Despite this fact, skin explant models are used widely in biological, cosmetic, and

drug studies [163, 221, 14], highlighting the importance of understanding how they

respond to various challenges and conditions on the cellular level.

Second, the dehydration approach used in this study approximated, but did not

match, normal skin drying in humans. Dry skin in vivo involves changes and al-

terations in skin cellular biology that can occur over the course of days and weeks.

The drying method used here created a bulk dehydration of thinned skin samples in

mere hours, and may have driven the skin to states not normally experienced in vivo.

While this caveat may not apply to skin undergoing the initial stages of dehydration,

it may indeed affect rehydration. As this dehydration/rehydration approach is used in

research [227, 163], it is important to understand the implications of findings derived

from such models.

It is furthermore worth recalling that CRS imaging modalities are non-destructive

techniques that assesses chemical content directly based on the intrinsic molecular vi-

brations of the chemical groups of interest. Other techniques have previously been

used to study stratum corneum hydration including high pressure freezing before

freeze substitution [228] and cryo-scanning electron microscopy [217], although in us-

ing such investigational approaches, it cannot be excluded that the harsh tissue pro-

cessing protocols affect the integrity of the corneocytes themselves. CRS microscopy

methods therefore offer the advantage of requiring little-to-no sample preparation,

and have already been used to pursue dermatological investigations in human sub-

jects [229]. Having an established framework for processing CRS image data using

linear mixed effect models, investigations can further be performed on human vol-

unteers in order to ascertain stratum corneum hydration dynamics in the most ideal
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biological context in vivo.

The discrepancy in hydration between corneometry and CRS imaging in the

present model system is thought to arise from both the volumes of tissue interro-

gates and the nature of the measurement itself. Nonlinear optical imaging techniques

such as SRS are able to probe focal volumes on the scale of the cubic micron with

three-dimensional spatial resolution. In contrast, the current industry standard for

hydration measurements, corneometry, is known to integrate signals over several tens

of microns and can encompass all layers of the epidermis beyond the stratum corneum

as well as a portion of the dermis within human skin. Whereas CRS imaging directly

measures the concentration of given molecular species such as water, corneometry

indirectly measures tissue water content via quantification of capacitance. This dif-

ference highlights the need for complementary chemically sensitive CRS microscopy

techniques with corneometry. The CRS imaging method developed for this study

does indeed suggest something unexpected occurring to the stratum corneum, a find-

ing that is not anticipated by the corneometry measurements alone. The ex vivo

models in this study experienced major, opposite changes in water content between

bulk tissue and the stratum corneum under conditions that were expected to lead to

tissue rehydration.

These results strongly suggest the need for future studies that make use of im-

proved model systems, increased subject numbers, and perhaps a pivot to in vivo

experiments. For the reasons discussed above, improved tissue sources and model

systems should be explored. Optimized and traceable skin explant cultures can now

be purchased from commercial vendors such as Genoskin Inc., providing improved

tissue cultures that remain viable for substantially longer time courses than mod-

els such as those used in the present study. Genoskin and similar vendors can also

provide tissues from a wider range of donors, which can increase subject numbers

to ensure that results arise from respective populations. Ultimately, however, these

experiments should transition away from model systems to in vivo studies. Skin cul-

ture models are only a way to prolong the eventual decay of ex vivo skin tissue, and

dehydration/rehydration models can never fully match real dry skin.
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To meet these clinical research needs, we are developing new, portable CARS and

SRS microscopy systems with the goal of carrying out in vivo CRS imaging of skin

in the near future. A portable clinic-ready imaging system will be key to visualize

dry or compromised skin and capture the full biological dynamics of treatment re-

sponse. Such an instrument can also incorporate additional detection methods and

imaging modalities, including two-photon excited fluorescence (TPEF), which can

be used to probe coenzymes such as flavin and nicotinamide adenine dinucleotides

(FAD and NADH, respectively) to probe metabolic perturbations [164, 14]; tran-

sient and sum-frequency absorption (TA and SFA, respectively) to probe the strong

absorptive properties of pigments and chromophores such as melanin species and

hemoglobin [52, 51, 8]; as well as second-harmonic generation (SHG), which relies on

the birefringent nature of collagen fibers to generate a strong signal that maps ori-

ented extracellular matrix proteins without the use of exogenous labels [230]. These

imaging techniques can be judiciously combined with one another to best comple-

ment standard measurement techniques to tease out the detailed biological response

to dehydration and rehydration.

In the present study, investigations were limited to the stratum corneum, where

each imaging field of view typically contained a few tens of corneocytes that, together

with the extracellular space, translated to tens of observations. In exploring other

layers of skin with additional nonlinear imaging techniques such as those described

above, this methodological approach to assessing imaging metrics therefore allows

one to easily record many hundreds or even thousands of observables, each defined by

a handful of categorical descriptors such as patient number or treatment condition.

Programming languages such as Matlab and Python lend themselves particularly

well to processing such datasets, as the computations involve iterative processing of

multichannel image data with binary masks generated via manual segmentation. The

image analysis then returns a data table where each row corresponds to an individual

observation, and each vector corresponds to either a descriptor (e.g. patient number,

treatment condition, timepoint, etc.) or an observed metric (e.g. water content,

lipid content, cell diameter, etc.). Such data formats are ideal for statistical software
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packages such as R, where linear mixed effect models can serve to identify longitudinal

trends and differences between treatment conditions.

Further work in assessing chemical content across the various strata of human skin

using CRS microscopy (and other complementary nonlinear optical imaging methods)

may also further inform the development of new topical formulations; combining these

imaging toolkits with corneometry will further shed light on both the microscopic and

macroscopic effects of topical treatment strategies.

5.3 Materials and Methods

5.3.1 Tissue Culture. and Processing

Human skin samples were obtained from discarded tissues resulting from elective pa-

tient surgeries in compliance with the institutional review board of Massachusetts

General Hospital (MGH IRB protocol #2015P001267). Upon receiving the skin sam-

ples, they were immediately trimmed to remove the subcutaneous fat, and subse-

quently cut into square pieces approximately 1 to 2 cm2 in size. The skin samples

were then placed on a nutritive gel bed consisting of complete cell medium supple-

mented with 2% agarose and placed in an incubator at 37'C with 5% atmospheric

CO 2 and 95% relative humidity.

5.3.2 Corneometer Measurements

Skin hydration state was measured on ex vivo human skin explants using a corneome-

ter (Corneometer CM 825, Courage+Khazaka Electronic GmbH, Cologne, Germany)

according to the manufacturer's instructions. For each measurement, the probe was

applied to the skin which then outputs a readout in arbitrary units ranging from 0 to

120. Prior work has served to classify the corneometer readouts obtained from 349

volunteers, where values below 30 indicate very dry skin; measurements ranging from

30 to 40 correspond to dry skin; and values above 40 are considered normal [209]. It

is worth noting, however, that these classifications were determined based on data
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acquired from intact patient skin; the cutoffs between very dry, dry, and normal skin

for ex vivo human skin explants that have been maintained in an incubator at 37'C

with high humidity are likely to differ.

5.3.3 CRS Microscopy

CRS imaging was performed using a dual-output femtosecond pulsed laser source

(Insight DeepSee, Spectra-Physics, Santa Clara, CA). One output is widely tunable

from 680 to 1300 nm and is used as the pump beam in all CRS experiments, while the

other output, fixed at 1040 nm, is used as the Stokes beam. Imaging lipids requires

tuning the pump beam to 803 nm in order to probe the symmetric CH2 stretching

vibrational mode at 2845 cm- 1 , which generates an anti-Stokes signal at 654 nm. Pro-

teins can be probed at a slightly higher energy using a pump wavelength of 796 nm to

collect the 645 nm anti-Stokes light, where the CH3 stretching vibration at 2950 cm-1

has been associated with protein signatures. Finally, the OH vibrational stretching

mode at 3220 cm 1 can be probed by tuning the pump beam to 779 nm, generating

anti-Stokes light at 623 nm. The laser beams were combined using a dichroic mirror

and routed to the input port of a commercial inverted microscope (FV1000, Olympus,

Tokyo, Japan), where imaging was performed using a 1.20 NA objective (UPLSAPO

60XW, Olympus, Tokyo, Japan). Laser powers were maintained below 40 mW at the

output of the microscope objective for all skin imaging experiments. CARS detec-

tion was achieved using a photomultiplier tube (H7422PA-50, Hamamatsu Photonics,

Hamamatsu City, Japan) with appropriate optical filters for detecting each respective

anti-Stokes signal in an epi-configuration. For SRS, the Stokes beam intensity was

modulated using an electro-optic modulator (EO-AM-R-20-C2, Thorlabs, Newton,

NJ) driven at 20 MHz. The detector consisted of a commercial system comprised of

a photodiode coupled to a lock-in amplifier (Lock-In Amplifier, APE GmbH, Berlin,

Germany) placed downstream of the sample in a trans-configuration.
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5.3.4 Image Analysis

Three-dimensional CRS image stacks of the stratum corneum under both hydrated

and dehydrated conditions were acquired from the skin surface down to a depth

of 15 pm at 1-[m intervals along the depth axis. The vibrational bands of lipids,

proteins, and water were probed using both CARS and SRS imaging modalities,

resulting in a total of 6 image stacks per imaging area, per timepoint, per treatment

condition. Each image stack was then inspected visually and the most superficial

slice containing clearly delineated corneocytes - i.e. the topmost slice underlying the

keratin layer - was used for all subsequent image analysis. Each corneocyte image set

was then processed using FIJI image processing software in order to manually segment

corneocytes from the lipid SRS image and generate one region of interest (ROI) per

corneocyte within a given field of view. The lipid channel was selected for manual

segmentation due to the high contrast between the extracellular and intracellular

chemical composition. Once all cells in the field of view were identified, the region

of the image encompassing all the identified cells was also selected as an ROI itself.

The cell ROIs were then subtracted from this region, resulting in a single ROI that

can be used to analyze the extracellular space within the stratum corneum.

The ROIs are then all imported into Matlab (Mathworks, Natick, MA), where a

custom image analysis routine applies the segmented masks to the imaging data from

all 6 channels, allowing for average measurements of water, lipid, and protein con-

tent to be computed for each individual cell within a field of view, in addition to the

extracellular space. The algorithm uses the ROI data to perform morphological anal-

ysis, where metrics such as cell diameter, perimeter, circularity, and nearest neighbor

distances are computed. Applying the ROIs to the imaging data results in a variety

of metrics that can be extracted beyond water, lipid, and protein content. Ratios

can be computed to compare signals from intracellular and extracellular spaces, or

to compare the content of one compound (e.g. lipid) to another (e.g. water) within

a given ROI. In total, the image analysis routing returns 35 morphological and com-

positional metrics per imaging field of view, which are then subjected to statistical
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analysis using linear regression models to identify trends and correlation between the

imaging metrics and the corneometer measurements.

5.3.5 Skin Explant Dehydration

In order to investigate the dynamics of skin dehydration using CRS imaging, two sets

of skin samples were used, where both samples were processed and maintained in an

incubator as previously described in order to reach a steady state of hydration. The

skin samples were then both removed from the incubator, whereupon skin hydration

was measured using the corneometer and CRS imaging was performed on both sets.

Next, one sample was maintained on the nutritive gel bed in order to preserve hydra-

tion; the other was left on a plastic dish under ambient atmospheric conditions (22'C,

24% relative humidity) to facilitate dehydration. Subsequent corneometer and CRS

imaging measurements were then performed 2 more times at 1-hour intervals. This

investigation was performed using specimens from 3 different patients. Of note, the

third timepoint data for Patient #3 could not be collected, as the epidermis of the

skin sample on the gel substrate was compromised after the second timepoint. For

this reason, only the data collected from the first two timepoints for Patient #3 was

included in the statistical analysis.

5.3.6 Skin Explant Rehydration

To study the effects of moisturizing compounds on dry skin, four sets of skin samples

were necessary per patient. All samples were first processed and maintained in an

incubator as described above in order to attain a stable hydrated state. Next, all

samples were removed from the incubator and allowed to dry in plastic dishes under

ambient atmospheric conditions for 2 hours to allow the skin to dry and reach a sta-

ble dehydrated state, as confirmed by corneometry. The samples were then subjected

to corneometry and CRS imaging before undergoing moisturizer treatment in order

to assess the hydration status of the baseline dehydrated state, to be used as the

reference for all rehydration comparisons. To this aim, two moisturizing compounds
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were used, namely 12% deuterated glycerin dissolved in water, and 0.25% hyaluronic

acid dissolved in water, designed to match typical humectant concentrations found

in commercial formulations [231, 232]. The deuterated form of glycerin was selected

in order to avoid CRS signal generation from its CH2 and OH moieties. This was

not a concern in the case of hyaluronic acid for two reasons: (1) its concentration

was nearly 50-fold lower, and (2) it does not contain any CH2 groups. Thus, the

only potential source of spectral cross-talk are the molecule's OH groups, but they

are dwarfed in numbers by the surrounding water molecules. Of each treatment pair,

one subset was returned to the incubator, while the other remained at ambient con-

ditions. Additional CRS and corneometer measurements were obtained 2 more times

at 1-hour intervals. As above, this investigation was also performed using specimens

from 3 different patients. Of note, the samples treated with glycerin absorbed the

formulation over the time course of the experiment, allowing for a straightforward

assessment of the stratum corneum using corneometry and CRS imaging. The skin

samples treated with hyaluronic acid, on the other hand, remained noticeably wet at

their surface throughout the experimental time course, barring any assessment at the

second timepoint without perturbing rehydration dynamics. For the final timepoint,

the residual moisture on the skin surface was carefully wiped with delicate task wipers

prior to data collection.

5.3.7 Statistical Analysis

Processed image data was analyzed using the notebooks written in the R language.

Data was analyzed using R 3.4.1 within the RStudio environment with extra packages

compiled from the R 3.4.3 distribution. Correlation tests were first used to assess

whether certain image analysis outcomes were independent since spectral overlap

between the probed vibrational bands of interest was considered a potential factor

between different chemical weightings (e.g. lipid vs. protein). To examine correlation,

Pearson's R was calculated between image analysis outcomes in a pairwise manner

with a coefficient of correlation greater than 0.8 considered to be highly correlated.

Highly correlated outcomes were considered potentially linked due to spectral overlap.
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The outcomes calculated from image analysis such as cellular water content mea-

sured via SRS were each subjected to linear regression analysis for longitudinal data.

Cell- and region-specific information was collected from 3 distinct imaging areas across

multiple subjects. As these areas and subjects were statistically exchangeable, they

were considered random factors in the analysis. Linear regression was performed

through the use of linear mixed effect models using the lme4 and imerTest R pack-

ages. In the initial analysis, individual image analysis outcomes were tested serially

via linear mixed effect model regression analysis where the timepoint was treated as

a fixed factor. Subject was considered a random factor and tissue area considered

a random factor nested within each subject. For each image analysis outcome, the

effect size f, t-statistic, and p-value were calculated and tabulated. It should be noted

that while a threshold of 0.05 is conventionally set for p-values in order to determine

significance, linear regression was performed once for each imaging metric across all

paired conditions. Thus, for the dehydration experiment, the Holm-Bonferroni cor-

rection should be used to compensate for family-wise error by adjusting the p-value

threshold given the number of statistical tests run. In the case of both the dehy-

dration and rehydration experiments, this therefore results in a corrective factor of

36.

To compare conditions and assess the effect of treatments, a linear mixed effect

model regression equation was built using the categorical treatment condition values

as independent indicator variables. The baseline comparator condition was set as

ambient environment without topical treatment. The regression equation specifically

included not only the timepoint of the outcome, but also a timepoint-condition in-

teraction term to separately test whether the treatment condition was a modifier for

the time-dependent outcome.
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Chapter 6

Longitudinal Monitoring of Cancer

Cell Subpopulations from In Vitro

to In Vivo Using Fluorescence

Photoconversion

6.1 Introduction

Fluorescent labeling strategies are widely used in microscopy applications in order

to glean a proper understanding of the biomolecular mechanisms underlying normal

and aberrant cellular behaviors [11, 30, 31]. These techniques are highly diverse:

standard immunofluorescence (IF) can be used to tag proteins of interest with high

specificity [32]; genetic engineering can allow for the genomic insertion of fluores-

cent reporter proteins to monitor expression of particular genes [33, 34, 35, 36, 37];

organelle-specific fluorescent dyes can also be used for quantitative and/or qualitative

cytological measurements [38, 39, 40]. Such methods have been used to study key mi-

croscopic processes in models spanning monolayers and 3D spheroids in vitro [30, 38]

all the way up to animal models and humans in vivo [233, 234, 235, 236, 237, 238].

However, despite their widespread adoption in microscopy, traditional fluorescence-
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based techniques are static in their labeling. In other words, they cannot be used to

monitor specific cell populations of interest that have been identified after the initial

labeling step. For example, a population of fluorescently labeled stem cells cultured in

vitro or injected in an animal xenograft model cannot be monitored longitudinally to

study their differentiation, as the dye's fluorescence is an intrinsic molecular property

and is therefore independent of the cell's phenotypic behavior [41, 44).

In fact, there exists a wide variety of applications where the monitoring of spe-

cific cell subpopulations over a particular time course would be of great biological

relevance. Biomolecular reporters such as green fluorescent protein (GFP), for in-

stance, can be useful in determining whether the cells in a cultured population ex-

press a particular gene [35, 36]. However, tracking the fate of specific expressing or

non-expressing cells within the same culture over prolonged periods would pose a

significant challenge [41]. This difficulty is of particular importance in the study of

treatment resistance in the context of cancer. In an ideal scenario, cells of interest

would first be identified based on the expression of some reporter protein. Those

same cells would then be monitored over time as they are challenged with therapeu-

tic strategies in order to ascertain the response to therapy and probe aspects of a

cell population's heterogeneity [239]. One can also envision a similar challenge in

the study of immune infiltration within cancerous lesions. For instance, by using

the techniques discussed above, the rate of immune cell turnover in the context of

immunosurveillance would be extremely challenging to quantify as there is no straight-

forward manner of distinguishing specific immune cells over a longitudinal series of

imaging experiments. These examples highlight some of the current limitations in us-

ing conventional fluorescent labeling strategies, particularly in the context of cancer

research on the cellular scale.

A great deal of effort has been dedicated to the development of photoconvert-

ible fluorescent labels to fill this biotechnological niche [41, 42, 43, 44]. Much like

any other fluorescent molecule, these reporters exhibit a characteristic excitation and

emission profile. However, they are distinct from conventional labels in that their

optical profile can be predictably and reproducibly converted to a new set of excita-
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tion and emission characteristics. The particular set of optical signatures before and

after conversion, as well as the reversibility of the process, are intrinsic properties

of each photoconvertible reporter. Genetic reporter systems such as Kaede[240] and

Dendra2[241] have been been found particularly useful[242], but the natural turnover

of fluorescent proteins makes these labeling strategies transient. Many studies could

benefit from a photoconvertable approach that has permanence over eight or even ten

cell division cycles.

While the excitation and emission properties of fluorescent reporters can range

from the ultraviolet all the way to the near-infrared (NIR) [30], the red end of the

spectrum is typically of greatest value for intravital imaging. These longer wavelength

signals have a lower tendency to be absorbed and scattered by tissues compared to

their bluer counterparts. This allows for increased signal generation and collection,

and thus maximizes penetration depth [11, 30, 45]. One such commercially available

NIR fluorescent label known as DiR (1,1 '-dioctadecyltetramethyl indotricarbocyanine

iodide) is a membrane dye with excitation and emission peaks at 748 nm and 780

nm, respectively [41]. This particular dye has been shown to exhibit irreversible

photoconversion upon irradiation with a mere 8 to 45 mW of 750 nm femtosecond

pulses over a period as short as 5 to 20 seconds depending on the nature of the sample

at hand (i.e. in vitro vs. in vivo) [41].

In the context of this study, we sought to demonstrate the use of DiR as a pho-

toconvertible membrane dye for tracking specific cells in solid tissues. These include

labeling ovarian cancer cells (OVCAR5) in both 2D monolayer and 3D spheroid cul-

tures, performing photoconversion on a given subpopulation, and monitoring their

development over time. The selective isolation of photoconverted cells derived from

such in vitro cultures using fluorescence-activated cell sorting (FACS) is also demon-

strated and highlights the applicability of this method to identify specific cells of

interest within a given in vitro context. Finally, the photoconversion of DiR is also

demonstrated in a melanoma (UACC62) xenograft model in a live zebrafish moni-

tored longitudinally over several days. In building upon prior efforts elucidating the

photoconvertible nature of DiR and similar cyanine dyes [41, 43, 44], these demonstra-
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tions set the stage for novel avenues of research in the context of molecular pathology

where longitudinal monitoring of cell lineages can offer insight pertaining to thera-

peutic response and acquired resistance.

6.2 Materials and Methods

6.2.1 Monolayer Cell Culture

The OVCAR5 cell line (Fox Chase Cancer Center) consists of human epithelial car-

cinoma cells and was derived from the ascitic fluid of a patient with progressive

ovarian adenocarcinoma without prior cytotoxic treatment. Cells were plated onto

6-well glass-bottom plates (Cellvis P06-14-0-N, Mountain View, CA) and cultured

using Roswell Park Memorial Institute (RPMI) culture medium (Corning 10-040-CV,

Corning, NY) supplemented with 10% fetal bovine serum (FBS; Gibco 10437-028,

Waltham, MA) and 1% penicillin-streptomycin (Corning 30-001-CL, Corning, NY).

Each well was seeded with 6.5 x 104 cells and incubated at 37'C with 5% atmospheric

CO 2 for 5 days prior to imaging.

In order to label the cells with DiR, the culture medium was first removed from

each well and substituted with fresh medium containing 5pM of DiR. The cells were

then incubated for 20 minutes at 37'C prior to two washing steps with Dulbecco's

phosphate-buffered saline (DPBS without calcium and magnesium; Corning 21-031-

CV, Corning, NY). Cells were maintained in DPBS for imaging, and switched back

to complete culture medium for longitudinal monitoring.

6.2.2 3D Spheroid Culture

Ovarian cancer spheroids were cultured in a manner consistent with previously de-

scribed methods [243]. Briefly, in order to generate 3D spheroids for in vitro culture,

120 pL of Matrigel basement membrane matrix (Corning 356234, Corning, NY) was

first dispensed uniformly to fill the glass-bottom well of a 35 mm dish (MatTek Cor-

poration P35G-0-14-C, Ashland, MA). The dish was then incubated at 37'C for 45
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minutes. Next, a suspension of cells in complete medium was prepared with a final

concentration of 18,600 cells/mL, such that a total volume of 200 ML of cell suspen-

sion was sufficient to seed the gel with roughly 3,700 cells. The volume was dispensed

drop-wise onto the gel layer and incubated at 37'C for another 45 minutes. Dur-

ing the incubation time, a 2% v/v solution of Matrigel dissolved in complete culture

medium was prepared, of which 1.8 mL was added to the dish following incubation

for a final volume of 2 mL over the gel bed.

Every 2 days following the initial seeding, the culture medium was replaced with

fresh medium containing 2% v/v Matrigel and 10 4M DiR in order to ensure complete

preliminary staining throughout the entirety of the formed spheroids. By maintaining

this routine over the course of 2 weeks, 3D ovarian cancer spheroids with diameters

in the few hundred of microns are readily formed [243, 244].

6.2.3 Spheroid Disaggregation and Fluorescence-Activated

Cell Sorting (FACS)

In order to isolate specific cells of interest from a sample of 3D tumor spheroids using

FACS, the spheroids first required disaggregation. To this aim, the culture medium

was first removed from the glass-bottom dish containing the spheroids. The dish was

then filled with 1 mL of dispase solution (Corning 354235, Corning, NY) and incu-

bated at 37'C for 2 hours to break down the Matrigel matrix. Following incubation,

the dish was supplemented with 1 mL of 10 mM EDTA (ethylenediaminetetraacetic

acid; Fisher Scientific BP120-500, Waltham, MA) in DPBS to stop the dispase re-

action. Next, cells were collected and centrifuged at 250 g for 5 minutes. The su-

pernatant was then removed, and the cell pellet was washed two additional times

with fresh DPBS and centrifugation at 250 g for 5 minutes each time. Next, the cell

pellet was resuspended in 3 mL of 0.05% trypsin protease solution (GE Healthcare

HyClone Trypsin Protease SH30236.01, Chicago, IL) and incubated at 37'C for 10

minutes. The protease solution was then neutralized by adding 5 mL of complete

culture medium following incubation. The cells were then centrifuged one last time
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at 250 g for 5 minutes, and resuspended in 500 pL of FACS buffer consisting of DPBS

supplemented with 5 mL of FBS (1% v/v), 2 mM EDTA, and 25 mM HEPES (4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid; Corning 25-060-Cl, Corning, NY).

The resulting cell suspension was then sorted using a commercial FACS system (BD

FACSAria, Franklin Lakes, NJ), where gating parameters were determined based on

the intensities of two fluorescence channels set to capture fluorescence within the

640-680 nm and 750-810 nm ranges.

6.2.4 Zebrafish Xenograft Model

To generate a short term xenograft model of melanoma, UACC62 melanoma cells

were first cultured in vitro using complete cell medium (RPMI supplemented with

10% FBS and 1% penicillin-streptomycin). For staining the melanoma cells with

DiR, the culture medium was first removed prior to washing with DPBS. Next, the

cells were then exposed to a 5 pM solution of DiR in complete culture medium and

incubated at 37'C for 20 minutes. The cells were then washed twice with DPBS

before reintroducing them to fresh complete culture medium and allowing them to

incubate at 37'C for an additional 20 minutes prior to xenografting.

For the transplantation procedure, zebrafish were handled in full compliance with

a protocol approved by the institutional animal care and use committee (IACUC)

of Massachusetts General Hospital (MGH IACUC protocol #2011-N-000127). The

injection procedure is similar to previously reported methods [245, 246]. First, DiR-

labeled cells were collected and resuspended such that a final volume of 5 PL con-

taining 1.5 to 2 million cells could be used for the xenograft. Fish were anesthetized

by placing them in a dish containing tricaine solution (0.16 mg/mL). Next, each fish

was held dorsal side up for the retro-orbital injection, which was performed using a

Hamilton syringe. With the bevel side up, the syringe was positioned at an angle of

450 relative to the plane of the fish; if the fish's eye were a clock, the syringe was

placed pointing at the 7:00 position of the eye and inserted 1-2 mm into the tissue.

Following the injection, the fish was allowed to recover in fresh water for 7 days prior

to photoconversion experiments.
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6.2.5 Fluorescence Microscopy

Confocal fluorescence microscopy was performed using a commercial inverted micro-

scope (Olympus FV1000 IX81, Tokyo, Japan). All image data was recorded with a

bit depth of 12, i.e. pixel intensities had a dynamic range from 0 to 4095. The 635 nm

continuous wave (CW) laser line was used as the excitation for both standard and

photoconverted DiR for all imaging experiments. Lambda-scan image stacks were

acquired from 650 nm to 790 nm in 5 nm steps, with a spectral bandwidth of 10 nm

at each step.

In the case of the in vivo xenograft model, cellular fluorescence was captured

sequentially: signals emitted between 650 nm and 690 nm were first recorded, followed

by the fluorescence from 760 nm to 800 nm. Z-stacks were acquired over a depth of

300 pm with a step size of 10 pm, using the fish's eye as a fiducial marker to ensure

the same field of view was revisited at each experimental time point.

6.2.6 Photoconversion

A femtosecond pulsed laser source tuned to a center wavelength of 750 nm (Spectra-

Physics InSight DeepSee, Santa Clara, CA) was used to photoconvert the DiR label

[41]. The laser light was routed into the optical input port of the confocal microscope

described in Sec. 6.2.5. The total power at the output of the microscope objective

was kept below 25 mW for all imaging experiments, whether in vitro or in vivo. The

pixel dwell time was limited to 4 ps/pixel, resulting in an approximate scan time of

1 second per frame for a region 512 x 512 pixels in size. Each ROI was thus raster-

scanned over the course of 15 to 30 seconds in order to achieve complete and uniform

photoconversion of the DiR label across the entire field of view.

6.2.7 Image Analysis

All image analysis was performed using Matlab R2017a (MathWorks, Natick, MA).

In order to generate the fluorescence emission profiles of standard and photoconverted

DiR, the pixel intensities of each image slice within a given lambda-scan were summed
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together. Thus, each spectral image stack was reduced in size from 512 x 512 x 29

pixels to a single 29-element vector, with each element corresponding to the total

fluorescence intensity from the entire field of view within a given 10-nm spectral

window. A similar process was used to obtain the emission profiles of specific regions

of interest within a field of view, where the pixels strictly within the ROI were summed

together.

For the xenograft model, given that the z-stacks were acquired sequentially (650-

690 nm first, followed by 760-800 nm), image registration was required to properly

align the two datasets. To facilitate this process, maximum intensity projections

were computed for both z-stacks to generate 2D renditions of the 3D datasets. The

projections were then smoothed using a 2D Gaussian kernel with a standard deviation

of 0.75. The corresponding fluorescent signals from the 650-690 nm and 760-800 nm

channels were then visually matched on a cell-by-cell basis using the control point

selection tool in Matlab (cpselect(). For each image pair, 150 to 250 control point

pairs were manually identified. Next, a geometric transform was computed to fit the

control point pairs via a local weighted mean transformation with 50 nearest points

using the fitgeotrans() Matlab function.

The processed fluorescence intensity images were then overlaid, with the 650-690

nm channel in green (G) and the 760-800 nm channel in red (R), thus generating the

images in the top row of Fig. 6-5. The scatter plots in the middle row were gener-

ated by plotting each pixel's green channel intensity against that of its red channel,

resulting in data representation visually reminiscent of flow cytometry scatter plots.

Finally, the fluorescent signals were gated using two experimentally-derived crite-

ria to generate the discrete images in the bottom row. First, a pixel was identified

as containing DiR if the combined intensity exceeded exceeded a threshold, i.e. if

G + R > Thesh. Next, if G > R/3 + Subthresh then the DiR was classified as

photoconverted; if G < R/3 + Subthresh, then it was considered standard, i.e. its

native non-converted form. In this manner, pixels that remained black were deter-

mined not to contain any detectable levels of DiR. On the other hand, pixels that

were either green or red were classified as containing photoconverted or standard DiR,
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respectively.

6.3 Results and Discussion

6.3.1 Photoconversion in Monolayers In Vitro

Ovarian cancer cells (OVCAR5) were first grown in vitro and allowed to reach conflu-

ence before labeling with DiR. Upon illumination with 635 nm laser light, the bright

fluorescence signals observed from the stained cells revealed the two characteristic

DiR emission peaks located around 660 nm and 760 nm as can be seen in the plotted

emission spectra in Fig. 6-1. By encoding every probed emission wavelength from the

scan to a color scale element from Matlab's "hot" color map, the two standard DiR

peaks result in a vivid yellow false color. On the other hand, photoconverted DiR

exhibits 2 notable spectral features that distinguish it from its standard counterpart:

(1) a marked increase in fluorescence emission at 660 nm, and (2) the elimination

of the second peak at 760 nm. This results in a dark red false color, allowing for a

simple and intuitive visual distinction between converted and unconverted cells.

Building upon these results, fresh OVCAR5 cells were newly plated and stained

with DiR prior to imaging with 635 nm illumination. A single region of interest (ROI)

636 pim x 636 pm in size (i.e. a full field of view at 20x magnification) was photo-

converted on Day 0, where Fig. 6-2(a) and Fig. 6-2(b) show the ROI before and after

photoconversion, respectively. The same ROI was then revisited daily over the next 48

hours and imaged at both 10x and 20x magnification (Fig. 6-2(c-f)). As expected,

the cells were observed to be growing normally and retained sufficient amounts of

the DiR dye to generate readily detectable fluorescence signals despite multiple cell

divisions. Interestingly, after 48 hours following the initial seeding, labeling, and pho-

toconversion, the borders of the ROI became blurred as cells labeled with standard

DiR are seen to infiltrate the area and, conversely, cells with photoconverted DiR are

observed to expand beyond their site of origin.

Given the permanent spectral shift, this methodology can be widely used in in vitro
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Figure 6-1: In vitro monolayer model of ovarian cancer showcasing the fluorescence
of DiR before (a) and after (b) photoconversion, with associated fluorescence spectra
summed across the entire field of view (c).

settings where temporal dynamics are of particular scientific interest. For example,

cell lines genetically modified with the ability report the expression of a gene of

interest using fluorescent proteins can all be uniformly stained with DiR. Then, cells

that do express the reporter protein can be photoconverted in situ while imaging to

permanently mark which individual cells within the heterogeneous population express

the gene of interest on Day 0. In this manner, this subpopulation of interest can be

monitored within the context of its heterogeneous environment over a time course

spanning several days or even weeks as it is challenged with various therapeutic

strategies. This methodology would therefore allow one to monitor the genetic state

of specific individual cells over time, offering insight pertaining to the expression

dynamics of the gene of interest. This methodology can also be applied to cellular

co-cultures in order to monitor key interaction parameters of interest between specific
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members of either cell population.
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Figure 6-2: Longitudinal monitoring of an ovarian cancer cell subpopulation of in-

terest, seen before (a) and after (b) photoconversion on Day 0. The same field of

view was revisited 24 hours (c,d) and 48 hours (e,f) following the photoconversion

process to monitor the cellular proliferation over time. All scale bars correspond to

100 pm. Images in (a,b,d,f) and (c,e) were acquired at 20x and 10x magnification,
respectively.

6.3.2 Photoconversion in 3D Spheroids In Vitro and FACS

While cellular monolayers cultured in vitro are advantageous for study given their

ease of use and simplicity, they are not representative of cancer in vivo. Indeed, in-

teractions with extracellular matrix elements and neighboring cells in all three spatial

dimensions can significantly influence tumor pathophysiology. Three-dimensional in

vitro tumor culture models can replicate many of the molecular and structural fea-

tures of human tumors, and therefore offer a convenient middle ground between in
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vitro monolayer cultures and live animal experiments in vivo [243].

There are many situations where a specific subpopulation of cells within a tumor

spheroid may be of interest. For instance, one may want to differentiate between

the cells located towards the core of a spheroid rather than those on its periphery to

study biochemical pathways related to hypoxia in the context of cancer pathogenesis

[243, 244, 247]. Alternatively, one may expose cultured tumors to particular chemical

gradients in order to model the diffusion of therapeutic compounds, and study the

resulting tumor response at the cellular population level. In such cases, the ability

to visualize, target, and permanently label a portion of the studied tumor would be

of significant value, as it would allow one to correlate longitudinal observations with

spatially-resolved subpopulations of interest within a tumor throughout its develop-

ment.

In order to demonstrate this application, OVCAR5 cells were grown on a bed of

Matrigel, a commercially available gelatinous culture substrate that mimics extracel-

lular matrix and favors the formation of 3D spheroids [243, 244]. Once these cellular

clusters reached a few hundred microns in diameter, a subpopulation of cells along

the topmost peripheral section of a tumor spheroid was targeted for photoconversion

as seen in Fig. 6-3. An ROI defined within the targeted area revealed the signature

twin peaks of standard DiR at 660 nm and 760 nm prior to photoconversion. Fol-

lowing the conversion process, the second peak was found to disappear while the first

peak's signal increased as expected (Fig. 6-3(c)). In examining a second ROI defined

outside the targeted area, the emission signature of standard DiR was preserved all

throughout the procedure. Some minor photobleaching was observed and helps to

explain the modest drop in fluorescence signal.

Given a partially photoconverted tumor spheroid where the optical contrast per-

manently identifies specific cells of interest, it follows that a manner for isolating

said cells for subsequent expansion and study would be of great practical value. For

example, in the context of ovarian cancer metastasis, spheroids are known to spread

intraperitoneally and continue growing at distant sites along the walls of the peri-

toneum [243]. Here, one may seek to optically label the cancer cells in contact with
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Figure 6-3: 3D tumor spheroid of ovarian cancer cells before (a) and after (b) photo-
conversion of the topmost peripheral region indicated by the gray box. Two regions
of interest (ROI) have been selected within the image, where ROI #1 encompassed
photoconverted cells while ROI #2 did not. The corresponding fluorescence spectra
are shown in (c), where solid and dashed lines refer to ROIs #1 and #2, and diamonds
and circles refer to before and after photoconversion, all respectively.

the endothelial cells along the peritoneal walls to later study their protein expression.

To demonstrate the applicability of this platform for such a scenario, 3D in vitro

spheroids of OVCAR5 cells were grown across the entire surface of a glass-bottom

dish filled with Matrigel-rich media and cultured over the course of 2 weeks. This

favored the formation of hundreds of spheroids that are each comprised of many

hundreds more cells [243, 244]. After registering the location of each spheroid via

visual microscopy inspection, the photoconversion routine was automated. At each

location, the external pulsed 750 nm laser light was used to illuminate a coarsely-

defined z-stack through approximately one half of the spheroids. They were then

disaggregated and prepared for cell sorting via FACS.
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The fluorescence captured from a representative sampling of the disaggregated

tumor cells revealed two distinct populations of labeled cells as shown in Fig. 6-

4(a). The fluorescence intensity from the NIR emission band of DiR is shown on the

horizontal axis, while the vertical axis indicates red fluorescence, which is markedly

increased upon photoconversion. Following the sorting process via FACS, the isolated

non-converted and photoconverted cells were plated and cultured as shown in Fig.

6-4(b,c). These results show that not only was the DiR label retained in the cell

membrane despite the multiple processing and handling steps, but both its standard

and photoconverted forms were present at readily detectable levels. Moreover, the

spectral shift following the photoconversion process was indeed found to be permanent

and irreversible, as verified in Fig. 6-4.
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Figure 6-4: FACS plot of a cell sample from disaggregated, partially photoconverted
ovarian cancer spheroids (a), and subsequent seeding of sorted non-converted (b) and
photoconverted (c) cells. The fluorescence spectra from the sorted cells are shown in
(d), demonstrating the irreversible nature of in situ DiR photo conversion.

This methodology is therefore particularly applicable in contexts where an es-

pecially small subpopulation of cells are of interest for subsequent experimentation.

Using in situ photoconversion, these cells can be isolated via FACS and then expanded

in vitro to generate large numbers of cells from the subpopulation of interest.
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6.3.3 Photoconversion in Zebrafish Xenograft Model In Vivo

Finally, in the context of in vivo imaging, there are many scenarios where the labeling

of one cellular subpopulation of interest may be of use. One such example is that of

lineage tracing in the context of metastasis: given an initially heterogeneous popula-

tion of cells within the primary tumor, there is a persistent and challenging need to

identify which ones are the first to spread; which ones divide most rapidly; and which

cell subpopulations grow and expand despite therapeutic administration.

Pre-conversion

Day 0

.i.

Day 0

Post-conversion

Day 4 Day 6 Day 7

4a ...-

-. - - -,11IU

Figure 6-5: In vivo longitudinal monitoring of a photoconverted subpopulation of
melanoma cells indicated by the gray box in a zebrafish xenograft model following in
situ photoconversion. In all images, the eye is located at the bottom-left of the field of
view and was consistently used as a fiducial marker throughout the experimental time
course to ensure monitoring of the same area over time. The top row shows a colored
overlay of the two collected fluorescence emission bands, namely 650-690 nm in green
and 760-800 nm in red. The middle row shows a scatter plot of each pixel, where
green and red channel intensities are plotted against one another in order to generate
a representation visually reminiscent of flow cytometry plots. The red dashed lines in
the scatter plots correspond to the gating criteria to identify pixels containing either
photoconverted or standard DiR. These gates are then used to recolor the images
from the top row, where the images in the bottom row show photoconverted and
standard DiR fluorescence in green and red, respectively.

In order to better model such a scenario, melanoma cells were first cultured and

labeled with DiR. They were then injected retro-orbitally in zebrafish to produce
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melanoma xenograft models in vivo. After 7 days, the fish were anesthetized and

imaged using confocal fluorescence microscopy with 635 nm illumination to visualize

the implanted DiR-labeled melanoma cells behind the eye as seen in the leftmost

column of Fig. 6-5 (top panel). A small field of view roughly 364 Am x 364 Am in

size containing several tens of cells was then arbitrarily selected for photoconversion.

The overlay in the second column of Fig. 6-5 shows the 760-800 nm intensity in red,

while the 650-690 nm signal is shown in green.

The added convenience of such a platform is that images can be processed in a

manner similar to flow cytometric analysis, where pixel intensities can be shown in

a scatter plot that visually relates one channel's intensity to that of the other. This

familiar data representation then allows for a straightforward gating of the fluores-

cence signals to identify cellular subpopulations of interest over time in a wide variety

of platforms ranging from in vitro to in vivo. Indeed, as can be appreciated in the

bottommost row of Fig. 6-5, the initial cluster of cells within the photoconverted

ROI is clearly visualized on Day 0 and is then seen spreading over the course of the

following week, reaching areas far beyond the original photoconversion site. This

demonstration is of particular value in the context of in vivo animal models of metas-

tasis, where one may photoconvert cells at the primary tumor site that are more or

less likely to metastasize. As tumors then form at distant anatomical sites, their spec-

tral signatures would allow one to infer specifically which cells from the heterogeneous

primary tumor were the ones to metastasize. The major advantage of this approach,

in particular for patient xenograft studies, is that this photoconversion method does

not require cellular genomic manipulation as is the case with fluorescent reporters.

Cells never have to be transformed, grown on hard plastic surfaces, or exposed to cell

culture conditions to prepare for photolabeling. This has the advantage of preserving

tumor cellular heterogeneity and may allow for photoconversion techniques to be used

with minced tumor implantation models [248].

158



6.4 Conclusion

The advent of photoconvertible dyes in the context of biomedical imaging has pro-

vided the optics community with a toolkit that allows for the selective labeling of a

specific cellular subpopulation of interest where the parameter of interest is identified

visually in situ. This predictable and convenient conversion process, non-invasively

triggered via an external pulsed near-infrared laser source, is further perpetuated

to the daughter cells of the converted targets thus greatly facilitating longitudinal

studies of heterogeneous cell populations.

The implications for future avenues of research are numerous. Combining this

NIR photoconversion methodology with in vivo flow cytometry in an animal model

[249, 250, 251], for example, would allow one to not only count the number of cells

circulating within a particular vascular network, but to identify which cells have

already been counted by triggering 750 nm pulsed light irradiation for photoconversion

following each detection of a circulating non-converted cell. The DiR labeling the cell

would thus be permanently photoconverted and would allow one to obtain highly

accurate counts of circulating cells by avoiding repetitious counts.

In another scenario, one may seek to characterize the in vivo response to therapy

of a growing tumor exposed to injected therapeutics. For instance, animal models

fitted with window chambers for direct observation of the implanted tumor may be

imaged periodically over a defined time course to study the response of individual

cells to the therapy over time [252, 253]. By photoconverting responsive (or non-

responsive) cells at particular time points in the days and weeks following treatment,

a more complete portrait of therapeutic response in the context of cancer treatment

can be ascertained.

It is worth noting that the photoconversion of DiR can be completed within

seconds rather than minutes of raster-scanning across the targeted area. This can

greatly accelerate experimental protocols compared to the use of other photoconvert-

ible agents such as Dendra2 that require conversion times on the order of several

minutes in addition to genetic engineering [254, 255]. The simplicity of the presented
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approach, where labeling merely requires a brief incubation period in the presence

of the dye without harsh permeabilizing agents, can be easily adopted by scientists

with minimal experience using photobiological assays. The potential applications of

photoconversion technology in the field of cancer research are thus widely diverse,

given the minimally invasive nature and simplicity of the presented methodology.
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Chapter 7

In Vivo Imaging of the

Melanomagenesis-Associated

Pigment Pheomelanin Using

CARS and SFA

7.1 Introduction

The yearly global incidence of melanoma is over 232,000 individuals, with more than

55,000 of those diagnosed succumbing to the disease [100]. Individuals with fair skin

and red hair exhibit the highest risk for developing melanoma [256], with evidence

suggesting the red/blond pigment known as pheomelanin may elevate melanoma risk

through both UV radiation-dependent and -independent mechanisms. Moreover, red-

haired melanoma patients often develop amelanotic lesions, so-called due to the ab-

sence of macroscopically detectable dark eumelanin pigments within the visible tumor

margin. Because they are harder to recognize upon examination, these tumors are

frequently diagnosed at more advanced stages and are associated with higher mor-

tality [257]. Similar amelanotic melanomas arise in mice bred on the Mclre/e genetic

background, which recapitulates the red-haired, fair-skinned phenotype. The non-
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visible pheomelanin in these lesions was found to functionally contribute to melanoma

formation, as the introduction of an albino allele onto the same genetic background

abrogated melanoma risk [258]. Although the ability to identify and monitor pheome-

lanin within skin is vital to improve our understanding of the underlying biology of

these lesions, no tools exist for real-time, in vivo characterization of the pigment.

Studies using Raman spectroscopy to explore the pigment of red bird feathers pre-

viously suggested that a unique vibrational band centered between 2000-2100 cm 1

may be a marker for pheomelanin. However, it was not clear if this weak vibrational

resonance could be used for in situ identification of the red pigment. Coherent anti-

Stokes Raman scattering (CARS) microscopy, a label-free vibrational imaging tech-

nique based on Raman scattering, offers significantly enhanced signal levels compared

to spontaneous Raman scattering, and may be suitable for non-invasively identify-

ing pheomelanin inside the skin in real time. Here, we show that the distribution

of pheomelanin in cells and tissues can be visually characterized non-destructively

and non-invasively in vivo with CARS microscopy. We validated our CARS imaging

strategy in vitro to in vivo using synthetic pheomelanin, isolated melanocytes, and

the Mclre/e red-haired mice model. Nests of pheomelanotic melanocytes were ob-

served in the red-haired animals, but not in the genetically matched Mclre/e; Tyrc/c

("albino-red-haired") mice. Importantly, samples from human amelanotic melanomas

imaged with CARS microscopy exhibited strong pheomelanotic signals. This is the

first time, to our knowledge, that pheomelanin has been visualized and spatially lo-

calized in melanocytes, skin, or human amelanotic melanomas.

7.2 Results and Discussion

7.2.1 Synthetic Pheomelanin

To demonstrate that CARS microscopy can selectively and sensitively visualize pheome-

lanin, the pigment was synthesized following an established procedure that makes

use of the mushroom tyrosinase enzyme [259]. When distributed as small particles
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in a water/hexane emulsion, synthetic pheomelanin was found to yield a very strong

CARS signal whose vibrational spectrum corresponds to that observed with Raman

spectroscopy (Figure 7-1) [260, 261].

(C) CARS Spectrum of Synthetic Pheomelanin
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Figure 7-1: Synthetic pheomelanin in a 4:1 water:hexane emulsion. (a) CARS image
acquired at wpws = 2000 cm-1 . Pheomelanin is observed as small, insoluble aggre-
gates with bright CARS intensity. The surrounding water/hexane bubbles show low-
level non-resonant CARS background. (b) Trans-illumination image acquired with
the 861 nm pump beam. (c) CARS spectrum of synthetic pheomelanin referenced
to the wavelength-independent non-resonant signal from a glass coverslip, normalized
by area under the curve. Three synthetic pheomelanin samples were measured, with
each spectrum shown in gray; the curve in red corresponds to the mean of the three
measurements.

7.2.2 Pheomelanin in FACS-Sorted Mouse Melanocytes

With the ability to visualize and spectroscopically confirm the presence of pheome-

lanin using CARS microscopy, the next step was the detection of naturally-occurring

phcomelanin. Red-haired mice (Mclr'/e) were bred to incorporate B6.Cg-Gt(ROSA)

2 6 Sortm6(CAG-ZsGreen1)Hze (Jackson Laboratory catalog #007906) or B6.Cg-Gt(ROSA)

2 6 Sortm9(CAG-tdTomato)Hze (Jackson Laboratory catalog #007909) and melanocyte tar-
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geted CRE (Tyr-CRE) [262], thereby enabling FACS-based isolation of neonatal Zs-

Green or tdTomato fluorescent tagged melanocytes. A detailed protocol regarding

melanocyte extraction can be found in Section 7.3.6. The tdTomato mice were sacri-

ficed, their skin harvested, and dermal cells sorted based on fluorescence of both td-

Tomato and FITC-labeled antibodies tagging c-Kit, a surface marker [263]. ZsGreen-

labelled mice underwent a similar procedure, with melanocytes selected via their

ZsGreen and c-Kit signals. The sorted melanocytes were fixed, and imaged with both

CARS and confocal fluorescence microscopy.

As shown in Figure 7-2, pheomelanin signals exhibited the predicted perinuclear

localization of melanosomes. As a control, genetically matched tdTomato-tagged,

tyrosinase-deficient (Mclre/e, Tyrc/c) "albino-red-haired" mouse-derived melanocytes

were subjected to the same analysis and no visible pheomelanin signals were observed

(Figure 7-3). Importantly, CARS spectra acquired from the red-haired mice, but not

the albino red-haired mice, matched CARS spectra collected from synthetic pheome-

lanin, confirming the ability of coherent Raman scattering imaging to selectively

visualize the red pigment within cells.

7.2.3 Ex Vivo, In Vivo, and Histological Visualization of

Pheomelanin in Mouse Skin

With the evidence that pheomelanin may be selectively visualized in isolated geneti-

cally defined cells, we explored the detection and localization of pheomelanin within

intact mouse skin. Ex vivo ear skin from C57BL/6 (Mclre/e, Tyr+/+) red-haired mice

proved to be an advantageous sample, as brightfield images acquired alongside CARS

could be used to verify the location of melanin within the tissue. Under the eyepiece,

pheomelanotic cells in the thin ear skin appeared brown-red, with visible cell bod-

ies and dendrites (Figure 7-4). Individual pheomelanin-containing organelles were

distinctly visualized via CARS imaging and co-localized with the pigmented areas

observable by brightfield microscopy.

To translate these findings, CARS imaging was carried in vivo on red-haired mouse
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Figure 7-2: Melanocytes isolated from red-haired C57BL/6 (Mclre/e, Tyr+/+) mice
exhibit strong CARS signal at Wp - Ws = 2000 cm-'. (a) Trans-illumination image
acquired with the pump beam, where the overall shape of the cells can be well vi-
sualized. (b) Confocal fluorescence image of tdTomato. (c) False color (Green fire
blue colormap in ImageJ) CARS image mapping intracellular pheomelanin distribu-
tion. (d) 4x-zoomed view of (c) showing a perinuclear distribution of signal intensity,
consistent with the known biology of protective melanin caps.

(Mclre/e, Tyr+/+) ears. Identical patterns of pheomelanin-rich cells were found (Fig-

ure 7-5). Importantly, these ex vivo and in vivo experiments were repeated for both

control albino-red (Mclre/e, Tyrc/c) and albino (Mclr+/+, Tyrc/c) mice: no visible

pheomelanin signals could be observed in the skin of these animals.

To confirm these measurements and positively identify the observed pheomelanin-

rich cells as melanocytes, thin sections (5 pum in thickness) were prepared from

Mclre/e, Tyr+/+ red-haired mouse ears for histology and immunohistochemistry (IHC).

As the red fluorescence from eosin was found to interfere with the CARS signal,

immunostained slides where accompanied by an adjacent unstained slide for coher-

ent Raman imaging. Sry-related HMG-BOX gene 10 (SoxIG) is a nuclear tran-

scription factor that participates in neural crest development and in the specifica-

tion and differentiation of cells of the melanocytic lineage. Soxl0 is expressed in

Schwann cells and melanocytes/melanomas [2641, making it a specific marker for
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Figure 7-3: Melanocytes isolated from albino-red C57BL/6 (Mclre/e Tyrc/c) mice
exhibit negligible CARS signal at wp-ws = 2000 cm- 1. (a) Trans-illumination image
acquired with the 861 nm pump beam. (b) Confocal fluorescence image of tdTomato.
(c) False color CARS image acquired with pump (Ap = 861 nm) and Stokes beams
(As = 1040 nm). (d) False color image acquired only using the pump beam, showing
prominent two-photon fluorescence signals from tdTomato. (e) False color image
acquired only using the Stokes beam, showing weak two-photon fluorescence signals
from tdTomato. (f) False color image illustrating the true CARS signal obtained by
subtracting tdTomato fluorescence in (d) and (e) from the raw CARS image in (c).

dermal melanocytes. Figure 7-6(a) shows IHC staining for Sox1O (EP268, Cell Mar-

que), where the pheomelanin-containing melanocytes were found to be Sox1O positive.

Pheomelanin stores inside the red-haired mouse skin can also be seen under bright-

field illumination in the adjacent unstained slide, as shown in Figure 7-6(b). When

imaging the same unstained slide with CARS targeting the pheomelanin vibrational

band, bright pheomelanin signals were found corresponding to the pigmented areas

seen under brightfield and in the SoxlO positive areas via IHC. A separate experiment

was also conducted to image a different mouse ear sample without IHC staining, such

that CARS imaging can be performed directly on the haematoxylin-stained slice. As

shown in Figure 7-7, pheomelanotic stores are observed as bright granular structures,

consistent with imaging data shown in Figure 7-6.

In order to further cross-validate the pheomelanin signals from the CARS im-

ages, we also simultaneously performed sum frequency absorption (SFA) imaging in

a multimodal configuration, where SFA microscopy is an imaging toolkit that enables

166



20 pm

Figure 7-4: Imaging of pheomelanin stores in red-haired mouse ear skin. (a,c,e)
Brightfield trans-illumination image acquired from the microscope eyepiece. (b,d,f)
Maximal projection view of CARS image stack of the mouse ear, showing bright
granules from the pheomelanin stores (red circles) within melanocytes and at the
base of the hair follicle. A CARS image stack acquired with the pump beam set to
871 nm (Wp - ws = 1866 cm-1 ) was subtracted from the image stack acquired with
the pump beam set to 861 nm (Wp - Ws = 2000 cm- 1 ) to minimize the non-resonant
signal contribution from structures other than pheomelanin. Image stacks are 27 Pm
thick, with a step size of 1 pm. Note that an out-of-focus hair (blue arrow) caused a
shadow in the trans-illumination image (a), whereas CARS is highly depth-resolved;
therefore, the hair was not prominently seen in (b).

the visualization of light-absorbing molecules like pheomelanin [46, 49]. This optical

process is characterized by a molecule's ability to simultaneously absorb two photons

without the necessary involvement of an intermediate real energy level between the

ground state and the final excited state. The signal was confirmed to arise from

SFA and not stimulated Raman scattering (SRS) by tuning the pump wavelength

167



(a)

Figure 7-5: Imaging of pheomelanin stores in a red-haired mouse ear in vivo. (a)
Brightfield trans- illumination image acquired from the microscope eyepiece. (b) Max-
imal projection view of CARS image stack of the mouse ear, showing bright signals
from pheomelanin (red circle). A CARS image stack acquired with the pump beam
set to 871 nm (Wp - ws = 1866 cm 1 ) was subtracted from the image stack acquired
with pump beam set to 861 nm (Wp - s = 2000 cm-) to minimize the non-resonant
signal contribution from structures other than pheomelanin. The image stack in (b)
is 15 pum thick, with a step size of 1 pm.

across the expected pheomelanin Raman band. As no variation in signal intensity

was observed, the signal was determined to arise solely from absorption contrast.

As shown in Figure 7-6(e) and (f), a one-to-one correlation can be found between

CARS and SFA images, indicating that pheomelanin within melanocytes can indeed

be well visualized using CARS microscopy. It should be noted that the overlap of

the CARS and SFA images with Figure 7-6(a) is not perfect, as each tissue slice is 5

pm thick. Moreover, the signal-to-noise ratio in the image shown in Figure 7-6(d) is

reduced compared to that obtained in tissue due to the configuration of the imaging

system: as the position of the CARS detector is in the epi-direction, the collected

signal depends in part on back-scattering in order to redirect the forward-generated

anti-Stokes light back into the microscope objective. Considering the 5 pm thickness

of the tissue slice, the CARS image quality in this scenario does not benefit from

the scattering properties of thick biological samples that would otherwise generate a

much stronger signal [28]. It is also possible that the actual amount of pheomelanin

in thin tissue slices is slightly diminished relative to intact tissue as a result of the

frozen section preparation itself. Nevertheless, the consistency in spatial localization

between the signals observed in Figure 7-6(d) and (e) indeed supports the ability of

CARS microscopy to specifically visualize pheomelanin in a label-free manner.
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Figure 7-6: Imaging of pheomelanin stores in a red-haired (C57BL/6 (Mclre/e,
Tyr+/+) mouse ear section (5 gm thickness). (a) Immunohistochemical stain of the
mouse ear slide using anti-Sox-10 antibody (counterstain: haematoxylin), revealing
melanocytes in red, some of which are indicated by black arrows for added clarity.
(b) Image of an adjacent unstained 5 pym thick slide under brightfield illumination,
revealing pheomelanin-rich deposits (shown by black arrows) consistent with the lo-
calization of the melanocytes in the adjacent slide shown in (a). (c) Trans-illumination
image of the unstained slide shown in (b) acquired with the pump beam set to 861
nm. (d) CARS and (e) SFA images of the unstained slide shown in (b), revealing
bright granular signals from pheomelanotic stores consistent with positive staining in
(a) and pigmented areas in (b). (f) False-color overlaid image of (d) in green and (e)
in red. A CARS image acquired with the pump beam set to 871 nm (wp -WS = 1866
cm-1) was subtracted from the image acquired with the pump beam set to 861 rim
(WP - ws = 2000 cm- 1) to minimize the non-resonant signal contribution from struc-
tures other than pheomelanin.

7.2.4 Pheomelanin Detection in Human Amelanotic Melanoma

With evidence showing that pheomelanin can be non-invasively visualized in syn-

thetic, in vitro, ex vivo, and in vivo settings, we investigated whether pheomelanin

could be visualized in human specimens, specifically in the context of amelanotic

melanoma. This melanoma subtype is characterized by its lack of traditional brown-

black pigmentation upon visual inspection, typically presents as a raised lesion on

the skin that is reddish in color, and can easily be misdiagnosed due to its lack

of dark pigmentation [265]. While the terminology seemingly implies the lack of

any pigmentation, it is unclear whether some amelanotic melanoma lesions actually
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(a)

Figure 7-7: Imaging of pheomelanin stores in a red-haired mouse ear section (5
pm thickness). (a) Brightfield trans-illumination image of the haematoxylin-stained
mouse ear slide. (b) Magnified view of the area marked by a red square in (a).
Pheomelanotic stores are seen as slightly pigmented granules. (c) CARS image of
the same field of view as (b), showing bright granular signals from pheomelanotic
stores corresponding to the pigmented areas in (b). A CARS image acquired with
the pump beam set to 871nm (Wp - s = 1866 cm-') was subtracted from the image
acquired with the pump beam set to 861 nm (up - Ws = 2000 cm-') to minimize the
non-resonant signal contribution from structures other than pheomelanin.

do harbor stores of pheomelanin that are simply indistinguishable from surrounding

healthy skin. Moreover, recent studies [258] have indicated the oncogenic potential of

pheomelanin in red-haired and fair-skinned backgrounds, raising the possibility that

at least some seemingly unpigmented melanoma lesions may contain pheomelanin,

but are undetectable to the naked eye. CARS imaging and spectroscopic measure-

ments were performed on fixed and unstained sections (10 pm in thickness) from three
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cutaneous amelanotic melanoma specimens. One such lesion can be seen in Figure

7-8(a) along with its corresponding H&E cross-section. Inspection of normal, healthy

perilesional skin with CARS (Figure 7-8(c-e)) did not reveal detectable pheomelanin.

Within the amelanotic melanoma lesion, however, strong pheomelanin CARS signals

were observed indicating a high density of pheomelanin (representative images shown

in Figure 7-8(f-h)). Pheomelanin was ultimately detected in all three patient samples

imaged, with representative images from a second patient shown in Figure 7-8(i-k).

This suggests that amelanotic melanoma lesions can indeed contain dense stores of

pheomelanin, which may be detected non-invasively using CARS imaging.

It should be emphasized that the number of human samples surveyed in this work

was limited to three, corresponding to the total number of amelanotic melanoma

tissues available for study. In order to truly determine the incidence of pheomelanotic

melanoma lesions among those diagnosed as "amelanotic", this proof-of-concept work

will have to be expanded into a broader study: one where multiple CARS image stacks

taken from a large patient cohort will be processed and statistically analyzed to gain

insight that can impact clinical practice.

Indeed, it has been proposed that an intrinsic pheomelanin pathway may rep-

resent a biologically significant contributor to melanomagenesis [258]. Building a

complete understanding of this contribution, however, has been hampered by an in-

ability to spatially map and quantify pheomelanin within skin. While the detection

and differentiation of melanins has been accomplished using pump-probe microscopy

[48, 49, 266, 50], measurements of pigments' excited state can be complicated by

compounds in the local environment (e.g. metals such as iron). Moreover, distin-

guishing melanin subtypes using pump-probe microscopy requires the acquisition of

so-called "delay stacks", where images are sequentially acquired with varying time

delay between the pump and probe beams in order to obtain transient absorption

traces on a pixel-by-pixel basis. From there, melanin subtypes can be differentiated

using post-processing techniques such as principal component [49] or phasor analyses

[50]. However, each frame typically requires an acquisition time of several tens of

seconds, leading to a total acquisition period ranging from 5 to 15 minutes for a sin-
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(9)

Figure 7-8: Imaging of human amelanotic melanoma. (a) Clinical photograph of one
amelanotic melanoma lesion. (b) H&E stain of the patient slide (10x magnification).
(c) Perilesional skin showing normal architecture of both epidermis and dermis. (d)
Brightfield trans-illumination image acquired from the microscope eyepiece from the
perilesional area. (e) CARS image of the same perilesional area compared to (d)
(image acquired with pump beam wavelength at 841 nm (Wp - ws = 2275cm- 1 )
was subtracted from the image acquired with pump beam wavelength at 855 nm

(Wp - WS = 2081 cm- 1) to minimize the non-resonant background from structures
other than pheomelanin). (f) View of the amelanotic melanoma area showing high
density of cells with no obvious sign of melanin. (g) Brightfield trans-illumination
image acquired from the microscope eyepiece from an unstained slide of the melanoma
area, showing slightly pigmented granular structures (red circle). (h) CARS image of
the same tumor area compared to (g), with the same settings as for (e). Saturated
bright pheomelanin signals were found (red circle) corresponding to the minimally
pigmented region shown in (g). (i,j,k) Respectively H&E, trans-illumination, and
CARS images of the tumor area of slides from a second amelanotic melanoma patient.
Strong pheomelanin signals were again observed (red circles).

gle delay stack [50]. On the other hand, CARS imaging offers a specific, direct, and

facile route for the detection of pheomelanin in vivo in real-time, since the detected

signal arises from the generation of a new color of light mediated by the pheomelanin
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pigment itself. In this regard, CARS microscopy offers many of the same benefits as

multiphoton microscopy: the signal can be readily detected using an appropriate set

of laser sources and optical filters, and has additionally been shown to operate up to

video-rate imaging speeds [267].

Prior investigation of melanin pigments using spontaneous Raman spectroscopy

found pheomelanin to harbor three broad vibrational peaks at 500, 1490, and 2000

cm-1, while eumelanin was shown to have peaks at 500, 1380, and 1580 cm- [260,

261]. The first two peaks of pheomelanin as well as all those of eumelanin are located

within the fingerprint region of the Raman spectrum; they are therefore unlikely to

offer a straightforward route to highly specific detection of melanin pigment subtypes

in the native context of human skin, as vibrational peaks from other chemical species

would result in spectral interference. However, in the particular case of pheomelanin,

the broad vibrational peak of interest in this study is located in the 2000-2100 cm-1

range [260, 261], well within the so-called "silent region" of the Raman spectrum of

biological samples [28]. This spectral region, which ranges approximately from 1800

to 2700 cm- 1, is devoid of vibrational peaks that may arise from other endogenous

biochemical moieties, making this particular band of pheomelanin an ideal target

for future clinical CARS imaging with minimal interference from other compounds.

It is worth nothing that the use of deuterated chemical groups as Raman reporters

may interfere with pheomelanin imaging, as the carbon-deuterium vibrational band

is located around 2200 cm 1 . In this highly special case, the use of hyperspectral

coherent Raman imaging may be used to distinguish the peaks in the event of signal

overlap between pheomelanin and deuterated probes. It should also be noted that the

unlikely possibility of interference from eumelanin at the 2000-2100 cm- 1 band was

also investigated in the context of this study. Importantly, no coherent Raman signals

could be detected from eumelanin within the pheomelanin Raman band range (data

not shown), further strengthening the specificity of CARS for the direct visualization

of pheomelanin without interference from its eumelanin counterpart.

In this work, the use of multiple genetically controlled systems, including the Mclr

mutant mice and their corresponding albino/red-haired controls (Mclre/e, Tyrc/c),
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enabled confirmation of the CARS signal as specifically arising from pheomelanin

since these animal models are incapable of producing eumelanin [258]. Interestingly,

the strength of the observed anti-Stokes signal was far greater than anticipated based

on the previously published spontaneous Raman scattering data [260, 261], indicating

the possibility that the observed signal is resonantly enhanced [28].

Furthermore, for future work in translating this imaging modality for clinical stud-

ies, CARS microscopy has even been performed using a single laser source, where one

portion of the laser light was used as the pump beam, while the remainder was

routed through either a tapered fiber [268] or a photonic crystal fiber [269] in order

to generate the Stokes beam. This flexibility in terms of optical design in conjunction

with the chemical specificity offered by CARS imaging makes it a prime candidate

as an imaging tool for future clinical investigations in human patients. In fact, as

portable CARS systems are already commercially available [56], the translation of

the presented technology for further investigation in research or clinical settings can

be immediate and rapid. We believe this imaging approach will aid in improving

our biological understanding of skin changes in the context of pheomelanin, including

both UV-induced and UV-independent effects. This imaging approach may also help

to refine our understanding of which cutaneous lesions are truly "amelanotic" as op-

posed to those that may be "pheomelanotic" and currently invisible to the naked eye.

Additionally, the method may help to define inhomogeneously colored melanocytic

or non-melanocytic lesions, whose "unpigmented" regions might contain detectable

pheomelanin, and represent challenges in defining surgical margins. The ability to

identify such lesions non-invasively and non-destructively will enable future studies

investigating the impact of pheomelanin on melanoma formation, pathogenesis and

metastasis in different human skin types. The prospect of utilizing this method to

detect suspicious, pre-malignant lesions in high-risk (red-haired, fair-skinned) indi-

viduals, may offer new diagnostic tools able to translate knowledge from basic science

to clinical application.
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7.3 Materials and Methods

7.3.1 Mice

Mice with the Mclr frameshift mutant allele (Mclre/e) have a phenotype analogous

to red-hair/fair-skin in humans (also caused by non-functional alleles of MC1R) [258].

As a control, we crossed these mice to the albino allele (Mclre/e, Tyrc/c), which ablates

all melanin pigment production. All mouse strains were maintained on the C57BL/6

background.

7.3.2 CARS Microscopy

The CARS microscope was built over a customized confocal microscope (Olympus

FV1000, Center Valley, PA, USA), which has an additional laser entry port to ac-

cept external light sources. CARS microscopy was performed using a dual output

femtosecond pulsed laser system (Spectra-Physics Insight DeepSee, Santa Clara, CA,

USA), where the first output is tunable from 680 to 1300 nm, while the second is fixed

at 1040 nm. To achieve CARS imaging at the reported 2000 cm-- band of pheome-

lanin, the 1040 nm output was chosen as the Stokes beam (Ws), while the pump beam

(Wp) was set to 861 nm and 855 nm (Wp - ws = 2000cm- 1 and wp - Ws = 2081cm- 1 ,

respectively), in order to generate anti-Stokes signals at 735 nm and 726 nm, respec-

tively. A half-wave plate and a polarizer were placed at each of the two laser output

ports of the DeepSee system to adjust beam power. To focus the beams onto the

sample, a 1.20 NA 60x water immersion microscope objective (Olympus UPLSAPO

60XW, Center Valley, PA, USA) was used. The CARS signal was detected in the

epi-direction using both a shortpass and a bandpass filter (Chroma ET750sp-2p8 and

ET730/40m, Bellows Falls, VT, USA) placed in front of a thermoelectrically cooled

photomultiplier tube (Hamamatsu H7422PA-50, Hamamatsu City, Japan). The sum

power of the two beams at the objective was less than 10 mW for all experiments

performed in this study. In order to correct for the non-resonant background signal

generated in tissues, both resonant and non-resonant CARS images were obtained in
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order to subtract the non-resonant contribution from the resonant CARS images. To

this aim, the pump beam was tuned to either 841 nm or 871 nm (resulting in a Raman

shift of 2275 cm 1 or 1866 cm 1 , respectively). In both of these non-resonant imaging

settings, the background levels were found to be identical; the choice of tuning the

pump beam to 841 nm or 871 nm was therefore simply based on the convenience of

the experiment at hand. This correction was not necessary for cellular samples, as the

signal detected in the epi-direction contains minimal contribution from back-scattered

light and has inherently low non-resonant background [28].

7.3.3 SFA Microscopy

All SFA imaging experiments were performed simultaneously with CARS imaging on

the same system as described above, using the same wavelengths and power levels.

However, instead of detecting signal in the epi-direction, the SFA detector was placed

downstream of the sample in the trans-direction. The 1040 nm beam was modulated

at 20 MHz using an electro-optic modulator (ThorLabs EO-AM-R-20-C2, Newton,

NJ, USA), and the modulation transfer from the 1040 nm beam to the pump beam

was detected using a photodiode coupled to a lock-in amplifier (APE Lock-In Am-

plifier, Berlin, Germany). In order to restrict the light incident on the SFA detector

to only that of the pump beam, a shortpass filter (ThorLabs FES0950, Newton, NJ,

USA) was used to eliminate the 1040 nm light. Ordinarily, this detection setup would

be sensitive to stimulated Raman scattering (SRS) signals as well. However, it was

found that when imaging pheomelanin, the detected signal remained constant across

a range spanning 1866 to 2275 cm 1 . This observation was additionally confirmed

in synthetic pheomelanin samples, which showed the same temporal and wavelength

tuning properties as the pheomelanin detected in tissue samples. This suggests that

the signals obtained from pheomelanin are primarily a result of its absorptive prop-

erties, rather than its intrinsic vibrational modes.
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7.3.4 Preparation of Synthetic Pheomelanin

Pheomelanin was synthesized following the protocol published by d'Ischia et al. [259].

The synthesized pheomelanin was then lyophilized to yield a dense, reddish-brown

powder. To emulsify the pheomelanin, a small quantity (~0.1 mg) was placed in a 2

mL microcentrifuge tube, to which 1 mL H 20 and 0.25 mL hexane were added. The

resulting mixture was sonicated for two cycles of three minutes each to generate an

emulsion of pheomelanin microparticles. The sample was then sandwiched between a

glass slide and a coverslip with an imaging spacer (Grace Bio-Labs Secure-Seal, Bend,

OR). To prevent sample evaporation, the edges of the coverslip were sealed to the

glass slide with nail polish.

7.3.5 CARS Spectral Data Acquisition and Processing

In order to generate CARS spectra of pheomelanin samples, the pump wavelength

was tuned from 841 nm to 871 nm in single nanometer increments. For each wave-

length value, 3 images were acquired: the first with only the pump beam, the second

with only the Stokes beam, and the third with both. While the first two image sets

showed only minimal intensity, they nevertheless corresponded to the weak multipho-

ton fluorescence of pheomelanin and were thus subtracted from the CARS images to

isolate the coherent Raman signal. In order to normalize the CARS signal against a

neutral reference, the sample's glass coverslip was also imaged under the same con-

ditions. Glass produces a non-resonant background signal that is invariant across

the spectral range of interest, justifying its use as a reference to compensate for

wavelength-dependent intensity variations that may arise from the optical compo-

nents throughout the imaging system.

In order to generate the spectra, the 31 corrected CARS images were first summed

together, and the resulting image was binarized to generate a mask. The mask was

then applied to all CARS and glass images in order to isolate the regions corresponding

to pheomelanin. The masked CARS images were then divided by the masked glass

images on a pixel-by-pixel basis, and the resulting ratiometric values were averaged to
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obtain a single data point for a given wavelength. This process was iterated across all

31 sampled wavelengths, and the resulting spectra were normalized by the area under

the curve and multiplied by a factor of 30 (corresponding to n - 1 data points) such

that a flat spectral response was centered at a normalized value of 1 across the entire

spectral range. The experiment was performed in triplicate, where each individual

spectrum is plotted in gray and the mean of the three measurements is plotted in

red. As an added control, the analysis was repeated for the image background by

inverting the binary mask generated earlier. Given that the image background signal

arises from the non-resonant background generated by the water and hexane emulsion,

the analysis performed on the background revealed a flat spectrum centered at 1, as

expected.

7.3.6 Melanocyte Extraction

Two mouse strains were utilized to isolate neonatal cutaneous melanocytes: 1) Mclre/e-

K14-SCFTg+ [258]; Tyr-CreTg+ [262]: B6.Cg-Gt(ROSA) 2 6 Sortm9(CAG-tdTomato)Hze/J

(Jackson Laboratory catalog #007909) and 2) Mclre/e: K14-SCFTg+; Tyr-Cre:

B6.Cg-Gt(ROSA) 2 6 Sortm6(CAG-ZsGreen1)Hze/J (Jackson Laboratory catalog #007906)

were used as sources of neonatal pheomelanotic cutaneous melanocytes. The K14-

SCF transgene mimics human epidermal expression of SCF and enhances the yield

of cutaneous melanocytes [258]. Melanocyte targeted fluorescent tags were generated

using the constitutive Tyr:Cre transgene [262]. Neonates (day 2) were euthanized.

The truncal skin was peeled away and washed twice with PBS containing Pen:Strep

and Fungizone. The skin was then placed in a 60 mm tissue culture dish with 3 mL

of dispase (25 mg/mL) and placed in a 37'C, 5% CO2 incubator for 2 hours. The

epidermal layer was peeled away and incubated in another 60 mm tissue culture dish

containing 3 mL of 0.25% trypsin for 15 minutes at 37'C. The skin tissue was washed

in 10 mL of Hams F10 medium containing 10% FBS, ten times. The cells removed

using this procedure were then washed and suspended in PBS that contained DNAse

I (50 pg/mL) and 5 mM EDTA. The cells were sorted for the highest expression of

either tdTomato or ZsGreen in a BD FACSAria II SORP cell sorter. ZsGreen cells
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were excited with a 488 nm laser and detected with a 525/50 nm bandpass filter;

tdTomato cells were excited with a 561 nm laser and detected with a 582/15 nm

bandpass filter. To confirm the identity of the melanocyte population, the tdTomato

cells in another experiment were counterstained with FITC c-Kit, a surface marker

for both melanocytes and mast cells. When imaging FACS-isolated cells using CARS

microscopy, the presence of fluorescent proteins in the sample (i.e. tdTomato and

ZsGreen) sometimes resulted in a background signal generated via two-photon ex-

citation fluorescence from either or both the pump and Stokes lasers. To correct

for this, a raw CARS image was first acquired using both lasers; then, two-photon

fluorescence images were acquired by using each laser beam individually. The result-

ing fluorescence images were then subtracted from the raw CARS image in order to

isolate the true CARS signal from the sample.

7.3.7 Mouse Ear Imaging

For ex vivo mouse ear imaging, the ear tissue was acquired via ear punch (# = 3

mm). A commercial hair removal lotion (Nair, Church & Dwight Co., Inc., Prince-

ton, NJ) was used to remove fine hairs from the ear tissue. The sample was then

sandwiched between a coverslip and a glass slide, and imaged as described above. For

in vivo mouse ear imaging, the mice were anesthetized with isoflurane mixed with

0.2 L/min oxygen and 0.8 L/min air via face mask. Fine hairs were removed using

the same hair removal lotion as in the ex vivo sample. The ear was then fixed onto

a coverslip using double-sided tape, and imaged as described above. All studies and

procedures involving animal subjects were approved by the Institutional Animal Care

and Use Committee of Massachusetts General Hospital, and were conducted strictly

in accordance with the approved animal handling protocols.
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Chapter 8

Outlook and Future Perspectives

Nonlinear optical imaging technologies comprise a subset of microscopy tools that

have been gaining considerable momentum in terms of their applicability in cancer

research over the past couple of decades. Since the first uses of multiphoton fluo-

rescence imaging [9] and coherent Raman scattering microscopy [53], these nonlinear

modalities have undergone several generations of technological advancement. The

past decade alone has seen considerable efforts on topics ranging from signal process-

ing and algorithm development on the software side, to improved detector design and

fiber optic implementation for endoscopic applications on the hardware side.

A variety of biotechnological advances are sure to maintain the forward momen-

tum of these nonlinear optical techniques. One example in the field of coherent

Raman scattering is the use of alkyne tags of varying length and isotopic mass, which

can be used as CARS and SRS labels due to their sharp characteristic vibrational

peaks. With the added benefit of their small relative size, they can be used in a

manner that is minimally perturbative to study various biomolecular processes of

interest, foregoing the need for bulkier fluorescent reporters [270]. These tagging

techniques are of particular interest in the case of pharmacokinetic and pharmaco-

dynamics (PK/PD) studies, where the visualization of small-molecule drugs or the

solvents carrier molecules themselves may be of interest. In such contexts, the use

of Raman-active tags for CRS imaging may offer a solution that allows for accu-

rate and specific imaging of the compound of interest without significantly altering
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its biochemical properties. Another still is in the development of next-generation

photoconvertible fluorescent dyes, where efforts are converging on the development

of two-photon photoconvertible reporters, which would allow for a high degree of

conversion selectivity in situ [43].

It is also worth emphasizing the various engineering efforts at institutions that have

focused on the acceleration of imaging speed through creative hardware innovations.

One exemplary group at MIT has pioneered the application of multiphoton imaging in

a wide-field setting using temporal focusing in order to allow for acquisition of three-

dimensional datasets in very short periods of time [271]. Such technologies can prove

to be a useful tool for in vivo monitoring of rapid-timescale biological events such as

cancer cell migration in the context of metastasis. Parallel advancements in the field

of CRS imaging include the advent of hyperspectral modalities, typically achieved

either through spectral focusing or wavelength tuning. With further development

in the field of hyperspectral SRS imaging in particular, interpretation of pathology

slides may be greatly simplified and rendered possible in the operating room itself,

foregoing the need to prepare, stain, and examine samples over the course of days

[57]. Indeed, the combination of hyperspectral SRS imaging and machine learning

in the image analysis space can offer pathologists an intuitive false-color rendering

of the pathological sample, reminiscent of conventional H&E staining. In turn, this

familiar visualization would save a considerable amount of time and hospital resources,

ultimately benefiting patient health.

The application of these powerful advanced microscopy toolkits to cancer research

has taken the nonlinear optical community several decades of combined and comple-

mentary effort, and the current results are indeed remarkable. With some of the

clinical specificities and sensitivities of Raman technologies exceeding 95% (see 2),

their application in the context of cancer research is growing still, with improvements

being published every year. Naturally, the next step and perhaps the biggest chal-

lenge yet is the widespread adoption and successful translation of these technologies

to the clinic.

In order to propel the adoption of these advanced technologies into the therapeutic
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work flow, a considerable amount of conscientious effort must be dedicated to the

interpretation of the various images that are generated. For example, it cannot be

expected of a dermatologist to learn the specifics of fluorescence lifetime imaging in

order to develop an intuition for the range of NADH lifetimes within the cells of a

suspicious lesion that may be indicative of skin cancer. Similarly, a pathologist cannot

be expected to examine the individual Raman spectra of a hyperspectral SRS image

set to identify whether the margins of a resected sample are positive. It is in these

contexts that clinical research will be of great use in order to develop a large body of

reference data that has been validated by pathologists. These datasets can then be

used to train machine learning algorithms such that image features and/or diagnostic

results can be provided directly to the healthcare professional in order to best guide

medical decision-making.

Of course, this is not to say that the outputs of these complex tools must be

reduced to a straightforward binary response. However, the current state of imaging

complexity in the research space is unlikely to offer informative value to a healthcare

professional in a realistic hospital setting. An ideal middle ground, for example,

would be to highlight regions of interest within the imaged sample that may be of

particular clinical interest. One can also envision complementing these highlighted

regions with some probability or other numerical or categorical indicator of disease

likelihood. These metrics may then serve the medical team to inform them whether

a certain clinical risk is worth taking, when considering the patients overall health

status.

All things considered, nonlinear optical technologies are unlikely to bear an impact

on clinical work flow unless a variety of biomedical engineering factors are taken into

account. These imaging tools must offer clinicians sensitivity and specificity in order

for them to obtain as much clinically relevant information as possible, all while main-

taining affordability. Furthermore, they must operate at rapid acquisition speeds;

tools like FLIM, for example, require several minutes of imaging time, which may be

prohibitively long in some clinical contexts. Finally, once the data is acquired, the

analysis and interpretation must be performed at a similarly rapid pace in a manner

183



that informs the medical staff and guides their decision-making, rather than provid-

ing a direct diagnosis or medical recommendation. Investing in both technological

advancements of imaging hardware as well as next-generation image analysis using

machine learning and artificial intelligence are likely to accelerate the adoption of

advanced microscopy technologies in the clinical space, contributing the improved

patient care, survivability, and well-being.
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Appendix A

MATLAB Scripts and Functions

A.1 Simulation of Binary Mixture

1 %4-Iiitializations

2 close all

3 clear all;

4 clC

6 saveFiles = 0;

saved

7 saveFig = 0;

XFlag determining

%XFlag deteJrrminIing

whether

WIet her

or niot fi I e S a

oI: not fig ures

saved

(Stait tinier

10 efine S 1111 tiil at .0i I'a) R I* C e t (e- S

11 numPixelsY = 512;

12 numPixelsX numPixelsY;

13

14 %--Phot onIs I)er pixel: 1000

15 tau-error = 0.05;
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8 tic ;

9

a1(



16 tauTheoreticalA = 2.5E-9; %Coullarill 6

17 tauSigmaA = tau-error*t auTheoretical-A;

18 tauTheoreticalB = 1E-9*[0.77 1.21 3.71 4.78]; WNADH

19 tauSigma-B = tau-error*tauTheoretical_B;

20 alpha-error 0.15;

21 alphalB = 0.15;

22 alphalsigmaB = alpha-error*alphalB;

23 alphalImageB = alphal-B + alpha1_sigmaB *randn (numPixelsY,

numPixelsX) ;

24 alpha2_B = 0.25;

25 alpha2_sigma-B = alpha-error*alpha2_B;

26 alpha2_ImageB = alpha2_B + alpha2_sigmaB*randn(numPixelsY,

numPixelsX);

27 alpha3_B = 0.35;

28 alpha3-sigmaB = alpha-error*alpha3B;

29 alpha3-ImageB = alpha3_B + alpha3-sigmaB*raiilnd(numPixelsY,

numPixelsX);

3o alpha4_B = 0.25;

31 alpha4_sigmaB = alpha-error*alpha4-B;

32 alpha4_ImageB = alpha4_B + alpha4_sigma-B*randn(numPixelsY,

numPixelsX) ;

33 totalNumPhotonsSignal = 1000;

34

35 %-Define mh111ber of sp tri OIIs n oise( 1 )hotOnS

36 totalnumPhotonsNoiseA = 0; %Set 1oise to 0 for comlpound

A

37 photonCountImageNoiseA = totalnumPhotonsNoiseA *ones (

numPixelsY , numPixelsX) ;

38 tot alnumPhotonsNoiseB = 0; %Set nOise to ) 0 for compollu1n(d
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39 photonCountlmageNoise-B = totalnumPhotonsNoiseB *ones (

numPixelsY , numPixelsX);

40 totalnumPhotonsNoiseMix = 0; %Set n.ois to 0 for mn ixt Iure

41 photonCountlmageNoise -Mix = tot alnumPhotonsNoise _Mix* ones (

numPixelsY , numPixelsX);

42

43 %A-Nixtiire t1 e 1. a 111 follo Wing sin '2 aid cos '2 distribl0ti()ns

44 x = linspace (0, pi , numPixelsX);

v c c 1 0) I

45 concA = repmat(sin(x). ^2, [numPixelsY ,1]);

of A

46 conc-B = repmat (Cos (x) .

d(Is I It ) ]t 11.

^ 2 , [ numPixelsY , 1] ) ;

of B

4 cmapA = hot (512);

red hot )

48 cmapB =

% Clf irm

,/c ()( I ol-iiia

fliI)Ir (cmapA);

can .h( t)

49

50 %--Displav th1eorc0tical

51 f21 = figure ;

52 imagesc (concA , [0

53 c0lor map (cmapA)

54 COlorbar ;

s axis image;

56 titlel( Theoretical

c o 11 c c 1 t ra t 1 o 11 maps_) of A 11d B

1]);

oicentrat io n Map o f Compound A )

57 f31 = figure ;

58 images (concB , [0

59 colorinap (cmapB)

60 C ( o)(r ar

61 axis image;

for A

for. B(

1]);
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C oin ce it rat i on Map of Compound B ) ;

63

64 '/(--Sa V(e fi 'ures if specified

65 if saveFig

saveas ( f2 1 .CoiiCentratioiMapATlheoretic al_

numPixelsY) ...

num2str (

lpx num2str (tot alNumPhotonsSignal) ph. t if ] )
saveas (f31 , [ ' ConcentrationMapB Theoretical_ num2str (

numPixelsY) ...

ipX nurn2str (tot alNumPhotonsSignal)

72 W-St ph - - Sr t ran s for m

73 harmonicNumber = 1;

7 steps = 0.0025;

75 freqO = 80E6;

76 histogramThreshold = 0.

77 cmap = 'jet';

78 drawEllipse-A = 0;

79 drawInterceptsA =

80 drawEllipseB = 0;

81 drawlnterceptsB =

anid histogram paam(t(rs

001;

0;

0;

82 drawEllipse-Mix = 0;

83 drawInterceptsMix =

84 numSpeciesA = 1;

85 numSpecies-B = 1;

86 numSpeciesMix =

0;

2;

87

88 W-SO-t i inage pa rameterS

89 imageParametersA = default imageParameters (tauTheoreticalA)
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67

68

69

70 (1(

71
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90 imageParameters-A. tau-sigma = tauSigmaA;

Ii fet1im ni U l1 e(rtaiintyv

91 imageParameters-A. display = 1;

displaI.Ng111 comI.Ipltation pro)gress

92 plotsA .G = zeros (numPixelsY, numPixelsX)

array for A

93 plots-A.S = plotsA .G;

array for A

94 imageParametersB = default-imageParameters

%(onpound A

%AFlag for

%I1 a:iIaliz G-

% I Initialize S-

(tauTheoreticalB)

95 imageParametersB. tau-sigma = tauSigmaB; %Coipon1d H3

lifetime11 uncer aInt y

96 imageParametersB. display = 1; %Flag for

display (in.g .OMpi 'tat ki progress

97 plotsB .G zeros (numPixelsY , numPixelsX) ; %In i t i l. z e G-

rr ay fo 13

98 plotsB.S = plotsB.G; %Initi'alize S-

array for B

99 imageParametersMix = default-imageParameters ([

tauTheoretical-A ...

100 tauTheoreticalB ]) ;

101 imageParametersMix. tau-sigma = [imageParametersA. tau-sigma

102 imageParameters-B. tau-sigma I.; %Compomd A and B

lifi ime iuii.ertaijnties

103 imageParametersMix. display = 1; %cFlag for

(isplying cmutl)lltion progrjcss

104 plotsMix.G = zeros(numPixelsY,numPixelsX); KInit iaize G-

arrav flor mlixtulre
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105 plotsMix.S = plotsMix.G;

rra 1 1 for IiiX1,11re

106

107 photonCountImageSignalA =

108

totalNumPhotonsSignal *...

ones (numPixelsY , numPixelsX) ;

r fr [e n I e I iIt e11sit v

109 decaylmageA = simulateDecaylmage (photonCountImageSignalA

photonCountImageNoiseA , imageParameters-A) ; %Creat Ce deci a v

image A

i1 photonCountImageSignalB = round (totalNumPhotonsSignal* cat

(3 ,...

112 alphalImageB , alpha2_ImageB ...

alpha3_ImageB , alpha4_Image-B));

in t e siy Y

IC tCreate reference

iage B

114 decayImageB = simulateDecaylmage (photonCountlmageSignalB

photonCountImageNoiseB , imageParametersB);

image B

% C a tc dC ( c av

116 photonCountImageSignalMix = round (tot alNumPhotonsSignal* cat

(3 ,...

117 conc-A , conc_B * alphalImage B , conc_B * alpha2_ImageB ,....

conc-B .* alpha3_Image B ,concB .* alpha4_Image-B));

() ve rI C1a i d

%'Cr eate

milixture 1i.n tensit' image

119 photonCountlmageSignal-sumMix = sum (

photonCountImageSignalMix ,3) ; %Create m ire int ensit y

imilage

120 decaylmageMix = simulateDecaylmage(

photonCountImageSignal Mix

photonCountImageNoise-Mix, imageParametersMix) ;

190

irmage A

110

%eC I e at e

113

115

118

121 % Ce ( te

%"I i t ialIz S_



mixture dccav ilage

f r

122

123

124

125

126

end

eild

140

141 %-Generate phasor plots for all sets of transformieid ccav

142 tauA = phasorPlot (plotsA .G, plotsA .S ,...

143 harmonicNumber , steps , freqO , histogram Threshold , cmap, ....

144 drawEllipseA , drawInterceptsA ,numSpeciesA)

145 f11 = gCf;

146 t it1e( Phasor Plot of Compound A')

191

!o1-1.pIte ) as() r t r a n1 S fo . nis S f o 1. 1 3 e(1 y ic a I g es

m = 1: numPixelsY

fo r n = 1: numPixelsX

decayPixel = phasorTransform (decayImage-A (m, n)

harmonicNumber) ;

plotsA .G(m,n) = decayPixel .G;

plotsA.S(m,n) = decayPixel.S;

clear decayPixel ;

decayPixel = phasorTransform (decaylmage-B(m, n)

harmonicNumber) ;

plots-B .G(m,n) = decayPixel .G;

plotsB.S(m,n) = decayPixel.S;

clear decayPixel;

decayPixel = phasorTransform (decaylmageMix (m, n)

harmonicNumber) ;

plotsMix .G(m,n) = decayPixel .G;

plotsMix.S(m,n) = decayPixel.S;

clear decayPixel;

127

128

129

130

131

132

133

134

135

136

137

138

139



tau-B = phasorPlot (plotsB.G, plotsB .S ,....

harmonicNumber , steps , freqO , histogramThreshold , cmap, ....

drawEllipseB , drawIntercepts-B , numSpecies-B);

f12 = gef;

title ('Phasor Plot of Compound B');

[tauMixB ,tauMixA] = phasorPlot (plots-Mix.G, plots-Mix.S,.

harmonicNumber , steps , freqO , histogramThreshold , cmap ,...

drawEllipseMix , drawInterceptsMix , numSpeciesMix);

f13 = gef;

title ( Phasor Plot of Mixture');

if

Sv.VV FiguI lres if s p cci fi e (d

saveFig

saveas (f11 , [ 'PhasorPlot_A_ num2str (numPixelsY) ...

px . num2str (totalNumPhotonsSignal) 'ph. t if ] ) ;

saveas (f12 , [ 'PhiasorPlot _B_ num2str (numPixelsY) ...

px 'num2str (tot alNumPhotonsSignal) 'ph. t if ] )
saveas (f13 , [ PliasorPlot Mixture num2str (numPixelsY)

px' num2str ( tot alNumPhotonsSignal) ph. t if ] )
enld(

%c- R c foriIat

plotsA .G =

plotsA.S =

plotsA .Z =

plotsB .G =

plots-B.S =

plotsB .Z =

plots-Mix .G

plots-Mix. 

phasor coordin i ate arra8 ys into column vectors

reshape(plotsA.G,[numel(plots A .G) 1]) ;

reshape (plotsA.S,[numel(plotsA.S) 1]) ;

[plotsA .G, plotsA .S];

reshape (plotsB .G, [numel(plotsB .G) 1]) ;

reslia)e(plotsB.S,[numel(plotsB.S) 1]);

[plots-B .G, plotsB .S];

= reshape (plots _Mix .G, [ numel(plots _Mix .G) 1]);

= reshape(plotsMix.S,[numel(plotsMix.S) 1]) ;

192



[ plotsMix .G, plots-Mix .S];

178

179 --- Co]lpu t Euclidean1 (i St caIceS )ct wec1I Z

180 edMixB =

181 edMixA =

Sq1t (sum((plotsMix.Z - mnean(plots-B.Z)).^2,2));

s(lrt (sum((plotsMix .Z - mean(plotsA .Z) ) .2 ,2) );
182

183 -- 1ljl to k-ar ra vs S's)cia t e(1 With Eill(;idean diSt a11ceS

c a c u 1a te (I a) ) bOve

184 (NIi XtUr

185 k-edMixA = reshape (edMixA. / (ed-MixA+edMixB) , [ numPixelsY

numPixelsX ]) ;

186 k-ed-MixB = reshape (edMixB./(ed-MixA+edMixB) ,[numPixelsY

numPixelsX ]) ;

187

188 - oljplI Malha alltobiS diStances hetWO( Z arraiyS

189 mdMixB = sqrt (mahal(plotsMix .Z, plotsB .Z));

190 mdAB-Ref = sqr t (mahal(mean( plotsA .Z) , plotsB .Z));

191 mdMixA = sqrt (mahal(plotsMix.Z, plotsA.Z)) ;

192 mdBA-Ref = sqrt (mahal(mean( plotsB .Z) , plotsA .Z) );

193

194 (--CO1)lpU.t e k-a rraY s associated With [ahalan0his ( i St a 1C1 c S

cailculated above

195 cmixture

196 k-mdMixAO = mdMixA/mdBARef;

197 k-mdMixBO = mdMixB/md-AB-Ref;

198 k-mdMixA = (k-mdMixAO + (1-k-mdMixBO)) /2;

199 k-mdMixB = (k-md-MixBO + (1-k-md-MixAO)) /2;

200

201 k-mdMixA (k-mdMixA > 1) = 1;

202 k-md-MixA(k.mdMixA < 0) = 0;

193

a rray s

17 plotsMix . Z =



203 k-mdMixA = reshape (k-mdMixA, [numPixelsY

204

205 k-mdMixB (k-mdMixB > 1) = 1;

206 k-md-MixB(k-mdMixB < 0)

207 k-mdMixB = res ha pe (k-md-MixB, [numPixelsY numPixelsX ]) ;

208

est i nIateS

210 %i\ Ia halao.bi.0) s map

211 f22 = figur e ; imagese (k-mdMixB, [0

cmapA) ; colorbar;

1]) ; axis

Imr ages

image ; colormiap (

212 t it le ( IMahalanobis

213 has1 maa ) I) 1 p o f (colmrpoun(Id 13 in Ni

of Coipound A');

xture imlage

214 f32 = figure ; imagese (k-mdMixA, [0

cmap-B) ; colorbar;

1]) ; axis image ; colormnap (

215 t it le ( 'Mahalanobis

216 /%" Li d I (10 111 )Iap of

217 f23 = figure ;images (k-edMixB,[0

cmapA) ; colorbar ;

Concentration Map of Co mpound B );
iII NIMixtur: i inage

1]) ; axis

218 title ( 'Euclidean Concentration Map of

uage; colormap (

Compound A');

219 %(Euclideani mt1ap of compounid 13 in Mixtu-Are im8age

220 f33 = figure;imagesc(k-edMixA [0

cmapB,) ; colorbar;

1]) ; axis image ; colormap (

221 title ('Euclidean Concentration Map of Compound B );

222

figures . if Sp e cifi edc

224 if saveFig

225 saveas ( f22 , [ 'ConcentrationiMapAMiahalanobis_' num2str

numPixelsY) ...

pX num2str ( tot alNumPhotonsSignal)

saveas ( f32 , [ 'Concentr at ionMapliBMahalanobis_'

i ph . t if 9 ]);

num2str (

194

= 0;

209 (---i)sp a V

A in iMixture image

223 /-S

226

227

numPixelsX ]) ;

COmplite( d is trib i ol t1 .

of compoun'd

comipound A.



numPixelsY) ...

piX 1unr2str (totalNumPhotonsSignal) ph. t if ] )
saveas (f23 ,[C~oneeiil rationMapAEuclidean_' num2str(

numPixelsY) ...

px num2str (totalNumPhotonsSignal) 'ph. t if ])
saveas (f33 , [ ' ConcentrationMapB-Euclidein_ ' num2str (

numPixelsY) ...

px' num2str (totalNumPhotonsSignal) 'ph. t if )

228

229

230

231

232

233

234

235 %Columnn-WiSC e incans of compound A iii Mixturc inlage

236 f4 = figure

237 plot (1:numPixelsX , sin (x) .2 , 'k LineWidth

238 plot ( 1: numPixelsX , nean(k-mdMixB) , 'r , LineWidth

239 plot (1: numPixelsX , mean (k-ed-MixB) , b: , LineWidth

240 Xlabel ('Column Index')

241 vlabel (R elative Concentration')

242 xlim ([1 numPixelsX])

243 ylim ([-0.1 1.1]) ;

244 t i t 1 e ( Column-wise Means of Compound A Cont ributi

245 legend ( 'Simulation , Mahalanobis ', uclidean , 'L

NorthEast ') ;

hold on;

,3)

,3)

oi ) ;

)cation'

KColumn-wise ineanS of cOmpound B in Mixture image

f42 - figure

plot (1: numPixelsX , cos (x). ^2, 'k , . LineWidth ',1.5) ; hold on;

plot (1: numPixelsX , mean(k-mdMixA) , r , 'LineWidth ',3)

p lot (1: numPixelsX , mean (k-ed-MixA) , b: , ' LineWidth ' 3);

xlabel ( 'Columni Index

yla bel ( Relative Concentration )

195

(I1A1d

246

247

248

249

250

251

252

253



254 xlim ([1 numPixelsX])

255 ylim([-O.1 1.1]) ;

256 title ( 'Coimnin-w ise Means of Compound B C o n t r ibut ion' );
257 1egen ( Siinulatioi , n ' ahalancbis ElcIi dea ' , ' Location

SouthEast ") ;

-- Save fi U 1r e s if e ci e d

if saveFig

saveas ( f41 , [ 'ColumnWiseMeas-A_' nun12str

)X num2str (tot alNumPhotonsSignal)

saveas (f42 , [ ' ColumnWisM eansB_ ' nun12str

pX num2str (totalNumPhotonsSignal)

e 11(1

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

num2str (d . Minute, '%02.2u)

(numPixelsY)

* ph . t i f ' I ) ;

(numPixelsY)

A ph. t i f ' ]) ;

num2str (d. Month, '%02.2ii')

num2str (d . Hour , "X%02.2u')

. nat ' ] , '-v7.3 ' ) ;

e id

%---isplav tot- al elapsed siniulation tine

elapsedTime = toe;

fp r i TI t f ([ '\n Total sinuIlat ion time: ..

nun2str ( fl o or (elapsedTime /3600) , '%402.2u ')

num2str (rem( floor (elapsedTime /60) ,60) , 1%02.2u ')

196

Save worksp aCe, if speCeified

if saveFiles

d = datetime;

save ( [ ' Simnilat ion -

num2str (d. Year , %04.4u ')

num2str (d. Day, (%02.2u')

273

274

275

276

277

278

279

280



nun2str (rein (round ( elapsedTime ) ,60) , "%02.2u )
\n saveFiles

\n saveFig

\inn ) ;

num2str(saveFiles)

- num2str(saveFig) ...

A.2 Simulation of Ternary Mixture

1 -- I itil 1za1 ions

2 close all

3 clear all

4 Cle;

6 saveFiles = 0;

sav(d

saveFig = 0;

% Flag (ete rmin1ng

%Flag o det erini nng

wh ether

Whether

or I t fit s a 1'e

or not figures

save

%> S tart tI I I II (e I

10 X-Define siluilatioil paraleters

11 numPixelsY = 512;

12 numPixelsX = numPixelsY;

13

14 %4>-Ph1oto S per pixel:

15 tau.-error = 0.05;

16 tauTheoretical-A = 4.1E-9;

17 tauSigmaA

18 tauTheoreticalB =

19 tauSigmaB =

= tau-error*tauTheoretical-A ;

1.6E-9;

tau-error*tauTheoreticalB;

20 tauTheoretical-C = 0.6E-9;

21 tauSigmaC = tau-error*tauTheoretical_C

197

281

282

283

284

8 tiC ;e
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22 totalNumPhotonsSignal =

23

24 %-Defin m11111her of spurious

25 totalnumPhotonsNoiseA = 0; (Set noise to) 0 forv comllpouniidl

A

26 photonCountlmageNoiseA = totalnumPhotonsNoiseA*ones(

numPixelsY , numPixelsX);

27 totalnumPhotonsNoiseB = 0; % (Se t .n .oise to 0 for com(upou id

B

28 photonCountImageNoiseB = tot alnumPhotonsNoise _B *ones (
numPixelsY , numPixelsX);

29 totalnumPhotonsNoise-C = 0;

B

30 photonCountImageNoiseC = tot alnumPhotonsNoiseC *ones (

numPixelsY , numPixelsX);

31 totalnumPhotonsNoiseMix = 0; %/(SetI~ise to ( for miixture

32 photonCountlmageNoiseMix = tot alnumPhotonsNoiseMix*ones (
numPixelsY , numPixelsX);

33

34 -- M.iXti ( following 3 pha1 -rlse-shIifte C

fl n 11 c ti o ii S

35 x = linspace(0,2*pi ,numPixelsX);

36 y = (1+cos(x))/2;

37 y2 = (1+cos (x+2*pi /3))/2;

38 y3 = (1+cos (x-2*pi/3))/2;

39 yyl y1 . /(yly2 y3);

40 yy2 = y2 ./(yl+y2+y3);

41 yy3 = y3./(yl+y2+y3);

42 concA = repmat (yl , [numPixelsY ,1]);

43 concB = repmat (y2 , [ numPixelsY , 1]);

%/ Dcfi noc support v c c to . r

%X D efinc d is t ribit ion

%cDecf 11 e d Is, t r. 1) but i. 11

198

1000;

o ise 1hct,)s

c 0 S i II e

of A

) f B

%ASet nomise to0 for)I comIIpoutlld

p

g enIIeralti.n ()



u conc-C = repmat (y3, [numPixelsY , 1]);

45 cmapA = hot (512);

WDeftine distrihution of B

for A r (Ied hot)

46 cmapB =

)

4cmapC =

circshift (cmap-A,1 ,2);

circshift (cmap-A,2 ,2) ;

for 11 (cyan%C olorlap

%eColcrmnap

hot

for 13 (miagenta

hot)

48 CCi

49 -iSlplay t he ( o 1 e ti C a.1. C OCeIn. 1 tr t i 01I of A., 1. and

50 f21 = figure ;

51 imagese (repmat (yyl , numPixelsY , 1]) , [0 11);

52 coloriap (cmapA)

53 Colorbar;

54 axis image;

55 title ( 'Theoretical

56 f31 = figure

57 imagese (repmat (yy2

58 C() lormiap (cmap-B)

59 COlorbar ;

60 axis image;

61 title ( Theoretical

62 f41 = figure ;

63 imagesC (repmat (yy3

64 C Oirmap (cmapC)

65 Co lorbar;

66 aXiS image;

67 title ( Theoretical

68 (X

C 0i C en tI t i (I Map of Compound A );

, [numPixelsY ,1]) ,[0 1]) ;

Concentration Map of Compound 3

, [ numPixelsY , 1]) , [0 1]) ;

Coin c ent rat i o 11 Map of Compound C )

69 Wc--S8Ve figures , if SIpeCcifie d

70 if saveFig

71 saveas (f21 , ConcentrationMapA _TheoreticaLTern512px . t if )

199
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72 saveas (f31 , ConcentrationlapBTheoreticaLTerS12px. t if )

73 saveas ( f41 , Concentration MapC_ TheoreticalTern512px . t if )

74 C,11(1

75

76 -Set p asor t ra sfor in and Ii's togr amIi.i .para.etecrS

77 harmonicNumber = 1;

78 steps = 0.0025;

79 freqO = 80E6;

80 histogramThreshold = 0.001;

81 cmap * Ct

82 drawEllipseA = 0;

83 drawInterceptsA = 0;

84 drawEllipseB = 0;

85 drawInterceptsB = 0;

86 drawEllipseC = 0;

87 drawlnterceptsC = 0;

88 drawEllipseMix = 0;

89 drawInterceptsMix = 0;

90 numSpecies-A 1;

91 numSpeciesB = 1;

92 numSpeciesC 1;

93 numSpecies-Mix = 2;

94

95 %- t im11age pJ)a r aicter' S

96 imageParametersA = default-imageParameters(tauTheoreticalA)

97 imageParametersA. tau-sigma = tauSigma-A; %Compound A

200



life t i Ic uleerta ilt Y

98 imageParametersA. display = 1;

dis Ip Ia y in g colm plitation prot)gress

99 plotsA .G = zeros (numPixelsY , numPixelsX) ;

arav for A

1oo plotsA . S = plots-A G;

%Flag for

( I i t i al i .z e

(%I 1 i t i ali z Ce

array fOr A

101 imageParametersB = default-imageParameters(tauTheoreticalB)

102 imageParametersB. tau-sigma = tauSigma-B;

lifetimle 111ncertaliltyv

103 imageParametersB. display = 1;

d l y () )1, 11gt co puat ion p rogr(ss

104 plots..B .G zeros (numPixelsY , numPixelsX)

array for

105 plotsB.S =

B

plotsB G;

%/C(Mipound B

%FTlag f0r

%I it i a liz e

%.I nit i a 1 i zCe

ar.1r L. V f(.) V 13

106 imageParameters-C = default _imageParameters (tauTheoreticalC )

107 imageParametersC .tau-sigma = tauSigmaC;

lifetime111( un1certlainty

108 imageParametersC. display =

(Ii S p layi g

1;

'Xnpound C

%lag

copliu)Htation progress

109 plots _ C .G = ze ros (numPixelsY , numPixelsX) ;

arIay for

% I nt i t i al Ii z e

C

no plotsC.S = plotsC.G;

array for C

i1 imageParameters-Mix = default-imageParameters ([
tauTheoreticalA ...

112 tauTheoreticalB tauTheoretical-C])

201
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113 imageParametersMix. tau-sigma =A

imageParametersB. tau-sigma , imageParametersC. tau-sigma ] ;

%Coipounr1(d A., B., ( 1 I -i I i c S

115 imageParameters-Mix. display = 1; %Y F i ag fo r

()mput ati Oil progreSs

116 plot s _Mix .G = zer o s (numPixelsY , numPixelsX) ; %i n i t i (1i z (,

a.ray for

-'I
"3-

mixt ure

117 plotsMix .S = plots-Mix.G; %AJ iii ti ali z(,

array for mixture

118

119 photonCountImageSignalA = totalNumPhotonsSignal*...

ones (numPixelsY , numPixelsX) ; c r e at e

r c f C r c ii c c ilitC Sity

121 decayImageA = simulateDecaylmage (photonCountImageSignal-A

photonCountImageNoiseA , imageParametersA);

iiage A

123 photonCountImageSignalB = totalNumPhotonsSignal * ...

ones (numPixelsY , numPixelsX) ;

r (- f C r c II c C int c ns it Y

125 decayImage-B = simulateDecaylmage(photonCountImageSignalB

126 photonCountImageNoiseB , imageParametersB) ; %C cat dec c av

i..age B

127 photonCountImageSignalC = tot alNumPhotonsSignal*...

ones (numPixelsY , numPixelsX) ;

I- r f r c c (, int C I it v

129 decaylmageC = simulateDecaylmage (photonCountImageSignalC

202

114

120

i-li (agc A

122

124

imicage 13

128

11 ge I I gCI

[ imageParametersA . tau-sigma

d i splayig V1.

%Cre atle de a~y

% Cr ec at e

%/(C rcIat e



photonCountImageNoise-C , imageParametersC) ;

image C

131 photonCountImageSignalMix = round (totalNumPhotonsSignal* cat

(3 ,...

conc-A , concB , concC) ) ;

ov \ U r1a i (id m1lixtulre iltenlsity

VCre te

iIa ge(

133 photonCountImageSignal-sum-Mix = sum(

photonCountImageSignalMix 3) ; %Crea( t e ixture ilt U I Sit y

Iag1 (1.

134 decayImageMix = simulateDecaylmage (
photonCountlmageSignalMix ....

photonCountlmageNoise-Mix ,imageParametersMix) ; %Crca t e

IlXtilre deCay IlILOage

r) s o r traIIsforin s for all 3 dcaY images

138 for m = 1: numPixelsY

n = 1: numPixelsX

decayPixel = phasorTransform(decayImage-A(m,n)

harmonicNumber) ;

plotsA .G(m,n)

plotsA . S(m,n)

= decayPixel.G;

= decayPixel .S;

clear decayPixel;

decayPixel = phasorTransform (decaylmageB (m,n)

harmonic Number) ;

plotsB.G(m,n)

plotsB .S(m,n)

= decayPixel.G;

= decayPixel.S;

clear decayPixel;

decayPixel = phasorTransform (decaylmageC (m, n)

harmonicNumber) ;

plotsC.G(m,n) = decayPixel.G;

203

132

135

136

139

140

0 1'

141

142

143

144

145

146

147

148

149

% ,C re a- t (, dIc .a~y130

137 -COmp t 1.1U.C



plots-C.S(m,n) = decayPixel.S;

clear decayPixel;

decayPixel = phasorTransform (decaylmageMix (m,n)

harmonicNumber) ;

plotsMix.G(m,n) = decayPixel.G;

plotsMix .S(m,n) = decayPixel.S;

clear decayPixel;

150

151

152

153

154

155

156

157

158

c 1 d

159 -- 1 1 Cii r at ) p , a S o r

i. a. g e

160 tauA = phasorPlot

161 harmonicNumber

162 drawEllipseA

163 fi 1 = (Yf

164 title ( Phasor Plot

165 tau-B = phasorPlot

166 harmonicNumber

167 drawEllipseB

168 f12 = gef;

169 title ( Phasor Plot

170 tau-C = phasorPlot

171 harmonicNumber

172 drawEllipseC

173 f13 = gef;

174 title (' Phasor Plot

175 [tauMix ,tauMix2

harmonicNumber176

177

pl o t S fto r a 11 S c t S of t ran al s fo r tn e d. (1 C ay

(plots-A .G, plotsA .S , ...

,steps , freqO , histogramThreshold , cmap , ...

drawIntercepts-A numSpeciesA)

of Compound A )

(plotsB.G, plotsB .S,...

,steps , freqO , histogramThreshold , cmap , ...

drawlnterceptsB numSpeciesB)

of Compound B' )
(plotsC.G, plotsC .S,...

,steps , freqO , histogramThreshold , cmap , ...

drawInterceptsC numSpecies-C)

of Compound C')

= phasorPlot (plotsMix.G, plotsMix.S ,..

,steps , freqO , histogramThreshold , cmap, ....

drawEllipseMix , drawlnterceptsMix , numSpeciesMix) ;

204

c I d



f14 = gCf;

title ( 'Phasor Plot of Mixture )

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

1) e c.i f ied(

PhasorPlotATern512px t if )

PhasorPlot-BTern512px t if )

PhasorPl ot C-Tern5 1.2px t if )

PhasorPlot-Nixture _Tern5 12px t if )

-11a

i' iii fo-nat phliasor COOl(t1.1ate &r ay '1I:Vi *5 into0 0 111 co lll Xrc orus

plotsA .G

plotsA .S

plotsA .Z

plotsB .G

plotsB .S

plotsB .Z

plotsC .G

plotsC .S

plotsC . Z

plotsMix

plotsMix

plots Mix

reshape (plotsA .G, [ numel(plots-A .G)

S

z

reshape (plots-A .S, [

[ plotsA .G, plots-A.

reshape (plotsB G,

reshape (plotsB .S,

[ plotsB G, plots-B .

reshape (plots C G,

reshape (plotsC .S,

[plots-C G, plotsC.

= reshape (plots-Mix

= reshape (plotsMix

[plotsMix .G, plot

---Co)ipute Euclidean t

A-ref.G = mean(plotsA

B-ref.G = inean(plotsB

Cref.G = mean(plots-C

Aref.S = iean(plotsA

r i aiil a g

.G ) );

.G ) );

.G (:) )

.S(:) )

1]);
numel(plots-A .S) 1]);

S];

numel(plots-B .G) 1])

numel(plotsB .S) 1])

SI;
numel(plots-C .G) 1])

numel(plotsC.S) 1]);

S];

.G, [numel(plotsMix .G)

.S, [numel(plotsMix .S)

s._Mix. S ] ;

a r e a S

205

-- Save fgres

if saveFig

saveas(fll,

saveas(f12,

saveas(f13,

saveas(f4,

1]);

1]);



208 B-ref.S = mean(plots-B .S(:) )

209 C-ref.S = nle(an(plots-C .S (:) )

21o refArea = polyarea([A-ref.G B-ref.G

C-ref.S]);

C-ref.G,[A-ref.S

211

212 k-ed-A = zeros (size (plotsA .G));

213 k-edB = k-edA;

214 k-ed-C = ked_A;

215

216 for p = 1:numel(k-edA)

k-edA (p) = polyarea([plotsMix.G(p)

[plots-Mix S (p)

B-ref.G C-ref.G]

B-ref.S C-ref.S])/refArea;

219 k-edB(p)

[A-ref.S

k-ed-C (p)

[A-ref.S

= polyarea([A-ref.G

plots-Mix.S(p)

= polyarea ([A-ref.G

plots-Mix .G(p) C-ref.G]

C-ref.S]) /refArea;

B-ref .G plotsMix .G(p) ]

B-ref.S plotsMix.S(p)])/refArea;

225 k-edA =

226 kedB =

227 k-edC =

reshape (k-edA ,[numPixelsY numPixelsX])

reshape (k edB , [numPixelsY numPixelsX])

reshape (k-edC , [ numPixelsY numPixelsX ]) ;

228

229 %-Display

230 %Euc, dean

computed distribution

iap of comipound A. in

231 f23 = figure ; imagesc (k-edA ,[0

) ; colorbar;

estiniates images

Mixture image

1]) ; axis image ; colormaj) (cmap-A

232 title ( Euclidean Concentration Map of Compound A')

233 (%EuEclidean map of compound 13 in ixture image

234 f33 = figur e ;images (k-edB ,[0

) ; colorbar ;

1]) ; axis image ; col ormap (cmapB

206

B-ref.S

217

218

220

221

222

223 end

224

11



title ( Euclidean Concentration

%/Enclidean ma)p of comnpound 13 I

f43 = figure ; imagese (kedC , [0

) ; colorbar

title ( Euclidean Concentration

235

236

237

238

239

240

241

242

243

244

Map of Compound B')

I] N i xt ure iinage

1]) ; axis image; colormap (cmap-C

Map of Compound C' );

, if SpI)e'c if ied(

'Concentration\M.lapA-Euclidean-Tern512px. t if )
ConcentrationiMapBEuclideanTern512px. t if )
CoiientrationMapC-EuclideaniITern512px. t if )

247 4

248 ---- Cp1)t(' Malaanobis distances

249 plots-A .Zmean = mean(plotsA .Z);

250 plotsB.Zmean = mean(plots-B .Z);

251 plotsC .Zmean = mean(plotsC .Z)

252

between Z aC-r aYs

253 md-MixA

254 mdMixB

255 mdMixC

sqr t (mahal(

s qrt (mahal(

sqrt (mahal(

plots-Mix .Z

plotsMix .Z

plotsMix .Z

, plotsA .Z));

, plotsB .Z));

, plots-C .Z));

256

257 k-mdA = zeros (size (plotsA .G))

258 k-mdB = kmd_A;

259 k-mdC = kmd_A;

260

261 for p = 1:numel(k-mdA)

262 mMixA = (plots-Mix .S(p)-plotsA. Zmean(2) ) /(plotsMix.G(p

)-plotsA .Zmean(1));

207

(--Save fii gu. res

if saveFig

saveas(f23,

saveas(f33,

saveas(f43,

245 C(I d

246



263

264

265

266

267

268

269

270

271

272

273

284 m-MixC = (plotsMix.S(p)-plotsC .Zmean(2))/(plotsMix.G(p

)-plot sC .Zmean (1) );

285 bMixC = plots-C.Zmean(2) - mMixC* plots _C . Zmean (1);

286 mAB = (plotsA.Zmean(2)-plotsB.Zmean(2))/(plotsA.Zmean

(1)-plots _B .Zmean(1));

287 bAB = plots _A. Zmean (2) - mAB* plot sA. Zmean (1);

208

bMixA = plots-A.Zmean(2) - mMixA*plotsA.Zmean(1);

m_BC = (plotsB.Zmean(2)-plotsC .Zmean(2))/(plotsB.Zmean

(1)-plots_C.Zmean(1));

b_BC = plotsB.Zmean(2) - mBC*plots-B .Zmean(1);

Y_MixABC = (g) mMixA*g + bMixA - (mBC*g + bBC);

RBC.G = f z e r o (YMixABC, 0. 5);

R3C. S = YMixABC (RBC.G);

RBC.Z = [RBC.G RBC.S];

mdRBC = sqrt (mahal(RBC.Z, plotsA .Z));

k-md-A(p) = 1 - mdMixA(p)/mdRBC;

mMixB = (plots-Mix.S(p)-plotsB.Zmean(2))/(plotsMix.G(p

)-plotsB .Zmean(1));

bMixB = plotsB.Zmean(2) - mMixB* plots _B . Zmean (1);

m_AC = (plotsA.Zmean(2)-plotsC . Zmean(2) ) /(plotsA.Zmean

(1)-plotsC .Zmean(1));

bAC = plots -A. Zmean(2) - mAC* plots _A. Zmean(1);

Y_MixBAC = @(g) mMixB*g + bMixB - (mAC*g + bAC);

RAC.G = f z e r o (Y-MixB-AC, 0. 5);

RAC. S = YMixBAC (RAC.G);

RAC.Z = [RAC.G RAC.S];

mdRAC = sqrt(mahal(RAC.Z,plotsB.Z));

k-mdB (p) = 1 - mdMixB (p) /mdR-AC;

274

275

276

277

278

279

280

281

282

283



288 YMixCAB = L(g) m-MixC*g + b-MixC - (mAB*g + bAB);

289 RAB.G =f z e r o (YMixCAB, 0. 5)

290 RAB. S Y-MixCAB(R-AB.G);

291 RAB.Z= [RAB.G RAB.S];

292 mdRAB = sqrt (mahal(RAB.Z, plotsC .Z));

293 k-mdC(p) = 1 - mdMixC(p)/md-RAB;

294 (d.

295 (/

296 k-mdA = reshape (k-mdA, [numPixelsY numPixelsX ])

297 k-md-B = reshape (kmdB , [numPixelsY numPixelsX])

298 k-mdC = reshape (k-mdC , [numPixelsY numPixelsX])

299

300 Dispi.1V coIIlpited( (list ribut 1 011 CS t iiia tes IIiagi S

301 %Mah alan ois 8ip of compound A in M ixture image

302 f2 2 = fig ure ; imagese (kmd-A, [0 1) ;axis image ; colormap (cmap-A

) ; colorlbar;

303 title ( Mahalanobis Concentration Map of Compound A.)

304( %Mh1anob is map of colpound B 1in Nixture image

305 f32 = fig ur e ; imagesc (k-mdB , [0 1]) ; axis image ; colormap (cmapB

) ; C olorb ar ;

306 title ( 'Mahalanobis Concentration Mal) of Compound B');

307 %Nkahalanobis map of compound B in Mixtlure inage

308 fN2 = figure ; imagesc (k-mdC , [0 1]) ; axis image; colornap (cmapC

) ; colorbar ;

309 title Malialanobis Concentration Map of Compound C')

310

311 % avc figurs CS if Specified

312 if saveFig

313 saveas (f22 , ConcentrationMapAMahalobisTerl512px . t if )

209



314 saveas ( f32 , ConeentrationMapBlMahalauobis_ Tern 512px t if )

315 saveas ( f42 , CoIcen tr a ion.M apC Ma haanobi s Aern5 1.2 x. t if )

316 C11(1

317

318 j/

319 CEOluii-WI se means of compound A in i\IiXtiu re irnage

320 f51 = figure

321 plot (1: numPixelsX , yyl, k LineWidth ,1.5); hold on;

322 p 10 t (1: numPixelsX , mean (k-mdA ) , ' LineWidth , 3)

323 plot (1: numPixelsX , mean (ked-A ) , : ' LineWidth , 3)

324 xlabel ('Colimn Index ');

32.5 vlabel (Relative Concentration')

326 Xlim ([1 numPixelsX ]);

327 ylim([-0.1 1.1])

328 t i t le ( Column-wise Means of Compound A Con tribtioin );

329 legend ( 'Siimula tion ,'Mahalanobis ' Euclidean Location

NorthEast )
330

331 KColinin-WiS means of compound . in N ixture image

332 f52 = figure;

333 plot (1: numPixelsX , yy2, k ' , LineWidth ',1.5); hold on;

334 Plot (1: numPixelsX ,mean (k-mdB ) , r : ' LineWidth' ,3) ;

33 Plot (1: numPixelsX , mean (k-edB) , 'b: , ' LineWidth ' ,3) ;

336 Xlabel ( 'Column Index )

337 Vlabel( Relative Concentration )
338 xlim ([1 numPixelsX ]);

339 ylimU-0.1 1. 1

340 tit le ('Coluin-wise Means of Compound B Cointribution )

210



341 legend ( 'Siniul atio1

NorthEast *) ;

'Malialanobis E uclideai L o a 1

342

343 NColumh-wise

344 f53 = figure;

iN NIixt ine I11l8g(

345p lot (1: numPixelsX , yy3 , k , 'LineWidth ', 1.5) hold on;

346 plot (1: numPixelsX , mean (k-mdC) , r :' , Line\Width ' ,3) ;

347 plot (1: numPixelsX , mean(ked-C ) , : ' , 'LineWidth, ,3) ;

348 Xl a b e 1 ( ' Column IndeX );

349 y abel ( elat i ve ConCenit rat ion )
350 xlim ([1 numPixelsX])

351 ylim ([-0.1 1.1]) ;

352 t it 1 e ('ColumnI-wise
353 legend (' Simulation

MNeains of Cmpound C

Miahlalanobis

C)o1ntribution );
'Euclidean Locati () n

NorthEast )

354

355 %---S ave fi I 1 1 es . if specified

356 if saveFig

saveas (f51 , ColumnWiseMeansA-Tern5i2px .

saveas (f52 , 'ColumnuWiseMeans-BIern5i2px .

saveas (f53 , 'ColiuniWiseMeans _C-Tern5i2px V.t i f

360 (1(

361

362 -S aLVC workspace

363 if saveFiles

364 d = datetime;

save ( [ Simulcat ion _ . ..

nunm2str (d.Year , *%04.4u )

nuimn2str (d .Day, '%02.2u ')

num2styr (d . Month,

numn2str (d . Hour , '%02.2u

211

357

358

359

tif *);

tif *)

365

366

367

'%02.2u ')

- L ocation

LIan s .)I. Cpo un 1- 3

it' specified



368 num2str (d. Minute , '%02.2u )

369 e 11d

370

371 %-D oispla t(dtal S ai)sd si11ulati 101

i. at ] , -v73 )

tiIe

372 elapsedTime = toe ;

Total simlhliationi

numn2str( floor (elapsedTime/3600) , '%02.2u)

nuin2str (rem( floor ( elapsedTime /60) ,60) , '%02.2u )

1um2str (rem(round (elapsedTime ) ,60) 02.2u)

\n saveFiles

\ Sisa veFig

= 'num2str(savcFiles)

iun2str(saveFig) ...

r9 n )

A.3 MATLAB Functions for Phasor Analysis

A.3.1 Loading Default Simulated Image Parameters

i function imageParameters = default-imageParameters (tau)

2 % defCAlult t, r <a c ( l a rm e I I t e rs d efault (ec a'y tra ce

SimUlatio paralie(ers

3 % DEFAULT[TACEPAPAMEPERS()

4 %C

fi uoreS cenice decav

tr (a c. pa 'r ame1 Ct ('rs

gen erates

given the specified

a set of deflalt

liumber of

filO(reSc enc e specieS

5 % (1mExp)oIl tials )

no life t i s c s a.r( specified .. use defaiult value of 2

if isempty (tau)

imageParameters. tau

374

375

376

377

378

If

US

8

9 = 2E-9;
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373 fp1)rin1.t f ( [ '\n 1 t iim e:

3



10 %--ther-wise .use lif etiies specified by user

11 elseif isnumeric(tau)

12 imageParameters .tau = tau;

13 'k -ClleCk. for error iii in plit

14 else

error ( ERROR,: Input must be empty or numeric

scalar or array.)

15

16

17

ei. (I

18 c--- R c Sape i et i Ill air lv Io row V cc to 1

19 imageParameters. tau = reshape (imageParameters. tau ,...

20 [1 numel(imageParameters. tau) ]) ;

21 %X--DefaUlt tinceirtaInty on life ct im i alc: t 0 ns

22 imageParameters. tau-sigma = zeros (size (imageParameter

tau))

23 :-Defalt nunher of teniporal biins 256

24 imageParameters .numTimeBins = 256;

25 %--Dfauht laser repetition frequency :80 MHz

26 imageParameters. freqO = 80E6;

27 'k--BOolelil valtie Specifying Wllet il( a plWt o detectio

evenit exceeding

28 0/c 111. 1 ase r repe t iii or period s1ot.il1(1 l)e wrappe( to th1e

next cycle or

29 rodra wil froni tH P oisso1iai 1 di 1 i nit i oil

30 imageParameters .wrapLongEvents 1;

31 %/--Bo(lea~n value specify ing. whether progress text sho

l)b( (is)laed

32 imageParameters. display = 0;

33

34 r/s---Loa ( 'e If e 1Ce iil r1in t icSp oise hiit io n (1 F) file

213
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S load ( 'IRFtOAUC1.mat , IRF , IRFN')

36 ---iRt 1id IRFN are tlie ra1,w plhoton1 counts

inst1llmieiint response

(XfIl 11.( t i. o II as well 41 tIie .lIll)er ()i [) i() t O.S ii thle IRF trace

imageParameters.IRF = IRF;

imageP arameters . IRFN = IRFN;

40 -- Create 1) 1

imageParameters .t = (1/(imageParameters. freqO*

imageParameters. numTimeBins) ) * ...

(0: imageParameters. numTimeBins-1);

43 i- i I i .Iliz e d(i s t r i) ut i 0 11's W\it 111d without

IBF

imageParameters.prob = zeros (length (imageParameters. tau)

imageParameters . numTimeBins);

imageParameters. probIRF = imageParameters .prob;

47 ('11d

A.3.2 Simulating a Decay Image

1 function decayImage = simulateDecaylmage (...

2 photonCountImageSignal , photonCountImageNoise ,

imageParameters)

3 (,s1 iii uate DeCaIlm age Generate f 1luo i. c nc c c

FLIN) iiage

% SIM [LATEDIE)C AYIMAGE()

give t.i the nuiiiber

ge ne rCa t es a fli ores cice

5 % of timte bins (1num imeBiins)

f r ( l CI I (; Y

the laser repctition

i Ii z ( fIeq0

6 %) 1 ,iIaly 76 MHz or 80 Niiz for mnost nitrafaSt

so 11rCs ) ,

37

38

39

of t htie

41

42

44

45

46

decay (

dec ay t race

t II e

a ser

214

35

temN11)o r al row Nrector

p)r ob1 ab iIi ty

a, simula11"ted



lifetine ( tauTheore cal i 

numil ber o f photos011

8 C ( in1 t ie f r C e ( e il 1 () l J . h t st 11 e l1 aIrl I i C

Il]un1) rof tfl (A

9 ( plIsor tr8nsfOiril ( harin()niNumbi er) . and a flag to

(eterInine Wxhether or

10 C I t e v e ItS thlat OC Ci W it ha *1*l i'i V.al 1i.lic exceeding

1 i s C r

1 C re p e t it 0 p erio d a8.1 Wrapped into the subsequenit

p.) cr i 0d

12 (X4 ( wrIa)pLOgEven ts )

13

14 % The fu ict h it Outpults phasor cO 0 r din at c s

inu)Ut d (.1c

as Well

ass i 1111

as a Cst ilnlate Of the fluoresCence

8 single

IIod ei ( i . e. t a u E x 1) er i ine iit A 1

17 % S( harmoniN CNumuber*2* pi * freq0*C))

18 (

19 Assuiptions

20 C > cial) should

S etc . )
21 % > numi~iSpec'(ies

1e ,. mlJatlab So (..11-1 a.rm (e.g. parula , jet

must be (ither 1 or 2

22 C

23 C D e f ault v alues :

24 %4 > nuimTiimeBis = 256

25 % > freqO

26 X > numnPhotons = 5000*o11(s(1, length ( talTheoret ical ) )
27 % > harmonCNumler

28 C > wrxapLongEve1lts
1

215

t lhe

15 (A:(

trace .

(G.,S)

16 % eX)Oileliti i

()f tle

Ii f e.i IIe

hot

7 % thI-Ior et ic al in secon()ids . the

d et cc tio ,)1

= 80E6



29

30

31

numPixelsY

numPixelsX

= s i z e (photonCountlmageSignal ,1) ;

= s iz e (photonCountlmageSignal ,2) ;

en d(

- If iimage paramCtcrs arn1 speCified .use (lCtaU its

if isempty (imageParameters)

imageParameters = default imageParameters ([])

else if isnumeric (imageParameters)

tau = imageParameters;

clear imageParameters;

imageParameters = default imageP arameters (tau);

clear tau

eIseif ~isstruct (imageParameters)

error ERROR: 'inageParameters should be struct

or numeric Ii fet i me value. ');

49 end

50

%-Check Vthat lifetime is defined

i f ~ s f i eld (imageParameters , 'tau )

error ( [ ' ERROR: Attempted to simulate decay (FLIM)

image' . . .

216

% -Ch ck for c n i i st c v in imjage dielnsions

if size (photonCountImageSignal ,1) ~= size (

photonCountlmageNoise , 1) 11 ...

size (photonCountlmageSignal ,2) ~= size (

photonCountlmageNoise ,2)

error ( ERROR: Signal and noise images size

mismnatch .)

e ls e

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

51

52

53

1,



with undefined f Lu orn e e C e

I1l1I1her ) f 11o 1e S cl]I ti

lifetim e . 1 ) ;

Spe C Ci e S

numExponentials = length (imageParameters. tau) ;

59

60 St de fault values ia f IlnSpeCified

if ~ is field (imageParameters , *tau-sigiia )
imageParameters. tau-sigma =

enld

i f ~ i s f i e l d (imageParameters ,

imageParameters. numTimeBins =

zeros (1, numExponentials) ;

66 end

67 i f ~ is field (imageParameters , freq O)

68 imageParameters. freqO = 80E6;

69 e 1.1 (1

i f ~ is fie l d (imageParameters , wrapLongEvents *)

imageParameters. wrapLongEvents =

72 clI(1

73

IaSer rSe e)ttio 

75 T = 1/imageParameters. freqO

76

consiste lIC in numi ber of flulores c e nt

i f s i z e (photonCountlmageSignal ,3) ~= numExponentials

length (imageParameters. tau-sigma)

numExponentials

ERROR1: Inputs for lifetiie

counts Per fluorophore

217

54

55

56

(elid

57 - )I11t

58

61

62

63

64

65 256;

70

71

74

1;

77

78

79

s .) c c i c S

80 error ([

numiriimefins )

%-D)e f in e p.)(erIod

%-Check for

anld phlotonl



are misiatCled .] )

d(Cca I J.R s i UC t it r c

decaylmage (numPixelsY , numPixelsX) .N

for m = 1: numPixelsY

f c r n = 1: numPixelsX

W--Cei1eraite a roW

1];

vector coni tai 1ifl1 all arrival

t im e s for e a ch photo .

decaylmage (m, n) .N = sum( photonCountImageSignal (m,

n,:)) +

photonCountlmageNoise (m, n);

for p = 1: length (imageParameters. tau)

tau = imageParameters. tau (p) +
imageParameters. tau-sigma (p) *randn;

imageParameters. prob (p,:) = (1/tau)*exp (...

-imageParameters. t /tau)

prob-IRF = conv(imageParameters.prob(p,:)

imageParameters . IRF) ;

imageParameters .probIRF (p,:) =

probIRF (1: imageParameters .numTimeBins);

end

R = zeros (1 , decayImage (m, n) .N)

R_IRF = R;

R(1: photonCountImageSignal (m, n, 1)) = datasample

imageParameters . t , photonCountlImageSignal (m, n

,1 ) ,...

218

81

82

83

el( d

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

84 %- I i1.a1iZ e



106

107

error ( EMORI-: Non-wra)ped

functioality Yet )

w hile sI ze (R(A,) 2) >

k fi(1 (1>T) ;

f o 1

tau(t) +

r11(di) ;

eve1ts5 S (a U t a

p 1: s ize (R(>T) .2)

IA(k ( ))) - eXprud ( illage23dmfetei5

imaIgCPa.Inleters . taiisigiia (1) *

en1l

onid

if numExponentials > 1

for p = 2:numExponentials

R(sum( photonCountlImageSignal (mn, 1,1: p-1) )

(1: photonCountImageSignal (m, n, p) ) )

datasample (. ..

128 imageParameters. t

219

Weights , imageParameters . prob (1,:));

RIRF (1: photonCountImageSignal (m, n,1)) =

datasample ( ...

imageParameters . t , photonCountImageSignal (m, n

,1 ) ,...

' Weights' , imageParameters . prob-IRF (1,:));

if imageParameters .wrapLongEvents 1

R(R>T) = rem (R(R>T) ,T) ;

RIRF (R-IRF>T) = rem (RIRF (RIRF>T) ,T);

else

108

109

110

i1

112

113

114

115

116

117

118 /C

119 C

120 %/

121 ,(

122

123

124

125

126

127



photonCountlmageSignal(m,n,p) ,...

Weights , imageParameters. prob (p ,: ) ) ;

RIRF (sum (photonCountlmageSignal (m, n, 1: p

-1)) + . . .

(1: photonCountImageSignal (m, n, p))) =

datasample (...

imageParameters. t ,

photonCountImageSignal (m,n n, p) ,...

Weights' , imageParameters. probIRF (p

if imageParameters .wrapLongEvents - 1

R(R>T) = rei (R(R>T) ,T) ;

RARF (RIRF>T) = rem (RIRF (RIRF>T) ,T

else

error ( ERROR: Non-wrapped events

aren t a functionality

whlile SIZc (R(IR>T) .2)

yet . )

>)

k = find (R>T):

f o r 1 =: 1: size (R(R>T) .2)

142 %A R(k(i1)) = expriud(

im age P a m et ers . tan (m)

ta -Sigma (mu) * raidn );

end

e(I d.

+

inageP a ramet ers .

e 11d

c1ld

II ( d

if sum (photonCountImageNoise (:) )
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129

130

131

132

133

134

135

136

137

138

139

140

141

%A
%Ac

143 (.

(A

Wj

144

145

146

147

148

149

0



150

151

152

153

154

155

156

157

158

159 if S p C c ifi ( by user wrap 10lolg

flext, period Ot herwise

as long as ther(- are photois wi

times exceeding the laser

rel)etitio)i Perio(. replace themn

si 111111ated 1 a rival timte

(o force a sub-period arri vral t

SiIuiated (vents.

eVH .S OtO

th arrival

With a .e wlv

i.111 for all

A--G en1e(Ce t, Vlie (leCaUy trace a.(ile s ) )iPort

Vector via histograming .

[decayImage (m, n) . trace , decaylmage (m, n) . t]

histcounts (R, ...

[imageParameters. t T])

decayImage (m, n) . traceIRF = hist counts (RIRF,[

imageParameters. t T]) ;

decayImage (m, n) t = decayImage (m, n) .t (1: end-1);

isequal (decaylmage (m, n) . t , imageParameters. t

error (' ERROR: Time domain defin ition

221

traceNoise = T*rand (1, photonCountImageNoise (m

,n)) ;

R(sum( photonCountImageSignal (m, n,:) ) + ...

(1:photonCountImageNoise(m,n)))

traceNoise ;

RIRF (sum( photonCountImageSignal (m, n,:)) +

(1:photonCountImageNoise(m,n)))

traceNoise

011(d

160

161

162

163

164

165

166

167

168

169

170



mismatch .

('11d

decayImage (m, n) . freqO = imageParameters. freqO;

decayImage (m, n) .numTimeBins = imageParameters.

numTimeBins;

decaylmage (m, n) .IRF = imageParameters. IRF;

decaylmage(m,n).IRFN = imageParameters.IRF-N;

e (td

if imageParameters. display

171

172

173

174

175

176

177

178

179 fprintf ([ '\n

n u n 2 st r (M)

fprintf ( [ '\n

num2str (M)

1) ;

fprintf ( '\ii

simu1lated

Finished sini u1 a tin g row #

of ' nun2str (numPixelsY)

Finished simulating row #

of num2str (numPixelsY)

Success fl ge n (- r at e (1

FLIM data!\n');

185 end

186 C,'1d

A.3.3 Performing the Phasor Transform

I function decayPixelOut = phasorTransform(decayPixelIn ,

harmonicNumber)

2 %phasor ransform 1 r aiis for II temnpora 1 dle ay into phasoI

C, PHAS )VRTANSF ORM()

decaV trace inHto a

transforms ta I t1plolr)a f I )I e s c e n c

222

if m < numPixelsY

180

181

e I S o

182

183

184

e('ld

end

') ;



4 A pir .f pha8sor cOOrdinAtes

e' x p r u n e 11.t 8 1

5 1uo I. cS c e IIce l.i f et IIllie (tZAu
1. 0 1li a ) t Q 0 1 e1 Qe 11 I 11 ' I 1
v'elat ion taill

6 S/ (n*omnega*G) Where n is

llarmlOniiCNurlr() and

7 01li1iega iS the 8 ngular laSer

as 2*pi * freqO.

C

(/

C

A

G and S. a1(d computes 11

Experinmental) usin g the

the harmonic nu mbner (

repetitio11 [reqellv defilted

ssuml1ptiOnls:

D(cav spa11s entire int erpil1Se period ald begiris at t

0.

Default values

> freq = 80EG

> liar'll1.iNit11 er 1

16 le(icck isf freqp is specci id nOt fOice default

value

17 if isemipty (decayPixelIn)

18 decayPixelIn = simulateDecayTrace ([])
19 elseif isnumeric(decayPixelln)

20 decayPixelOut. trace = decayPixelIn;

21 decayPixelOut . traceARF = zeros ( size (decayPixelOut.

t race ) );
22 clear decaySampleIn;

23 decayPixelIn. trace = decayPixelOut. trace;

24 decayPixelIn .traceIRF = decayPixelOut . trace _RF

25 elseif ~isstruct(decayPixelln)

26 error ( 'EROR: decaySampeIn ' sould be st rict

223

8

9

10

11

12

13

14

15



or numeric

27 (11d.

28 if isempt y (harmonicNumber)

harmonicNumber = 1;

eI)(I

if ~isfield (decayPixelIn , *traee )

error ([ ERROR.: Attempted

tralnsfor I .

oil undefilled decav trace

elseif isfield (decayPixelln , 'N')

i f ~isequal (sumn(decayPixelln . trace) , decayPixelIn .N)

isequal (sum( decayPixelln . traceIRF)

decayPixelln .N)

error ([
corn t a in

ERROR: Decay trace was not found to

sp eci fi c'(I nurlber of plo1tons ~1) ;
end

if ~isfield (decayPixelln , 'freq( ')

decayPixelln. freqO = 80E6;

end

if ~isfield (decayPixelln , 't ')

decayPixelln .t = 0:1/( decayPixelln. freqO *256) :255/(

decayPixelln . freqO *256)

end

if decayPixelln. freqO

decayPixelln . t (2) )

~= 1/( decayPixelIn . t (end)+

224

29

30

31

32

33

34

35

36

37

38

39

40 end

41

42

43

44

45

46

47

48

49

1r r ay .v

t o 1)e r form" phtias or



50 error (' ERROR: Laser repetition frequency does not.

iatch time bill edges . ') ;

51 elseif length (decayPixelln .trace) length (decayPixelln.

t)

52 error ( ERROR: Decay trace and time vector size

niisinatcl );
53 elld

54

55 %--Define (1 Zig i l s r r ep it iti 11 frequency

56 omega=2*pi*decayPixelln. freqO;

57 decayPixelOut = decayPixelln;

58

59 G--Coiite G and S viia t rapczoidal numcrical integration

60 decayPixelOut.G-ref = trapz(decayPixelln.IRF * ...

61 Cos(omega * harmonicNumber * decayPixelln.t)) / ...

62 trapz (decayPixelln. IRF) ;

63 decayPixelOut. S-ref = trapz(decayPixelln.IRF .* ...

64 sin (omega * harmonicNumber * decayPixelln .t)) / ...

65 trapz (decayPixelln . IRF) ;

66 decayPixelOut. G2_ref = trapz (decayPixelIn .IRF * ...

67 cos(omega * 2*harmonicNumber * decayPixelln.t)) / ...

68 trapz ( decayPixelIn . IRF) ;

69 decayPixelOut. S2-ref = trapz (decayPixelln.IRF .*

70 sin (omega * 2*harmonicNumber * decayPixelln. t)) / ...

71 trapz (decayPixelIn. IRF);

72 m0-ref = decayPixelOut. G-ref - 4*decayPixelOut. G2_ref;

73 mlref decayPixelOut. Sref - 2*decayPixelOut. S2_ref;

74 m2_ref = -decayPixelOut . G-ref + decayPixelOut. G2_ref;

75 m3_ref = -decayPixelOut . Sref + 0.5* decayPixelOut . S2_ref;

76 delta-ref m2ref*m0_ref - ml-reV2;

225



77

78

79

80

81

226

thetalref = (m3-ref*mOref - m2_ref*mlref)/delta-ref;

theta2_ref = (m3-ref*mlref - m2_ref^2)/delta-ref ;

al-ref = (thetal-ref - sqrt(thetalref^2 - 4*theta2_ref))

/2;

a2_ref = (thetal-ref + sqrt (thetal-ref^2 - 4*theta2_ref))

/2;

f2_ref = (decayPixelOut. G-ref - (1+(harmonicNumber*alref

^2)^-(-l)) / ...

((1+(harmonicNumber*a2._ ref) ^2) ^(-1) - (1+(

harmonicNumber * a 1 _ r e f 2) ^(-1));

if f2_ref < 0

f2_ref = 0;

elseif f2-ref > 1

f2-ref = 1;

en1ld

flref = 1-f2 _ ref

decayPixelOut.biexp.tau-ref = [al-ref a2_ref]/omega;

decayPixelOut.biexp.f .ref = [fl-ref f2_ref];

decayPixelOut .G= trapz (decayPixelIn. trace .* ...

cos (omega * harmonicNumber * decayPixelln . t)) / ...

trapz ( decayPixelln. trace ) ;

decayPixelOut . S = trapz (decayPixelln. trace .* ...

sin (omega * harmonicNumber * decayPixelIn.t)) / ...

trapz (decayPixelln. trace);

decayPixelOut. G2 = trapz (decayPixelIn. trace .* ...

cos (omega * 2*harmonicNumber * decayPixelIn . t)) / ...

trapz ( decayPixelIn. trace ) ;

decayPixelOut . S2 = trapz ( decayPixelIn . tr ace .* ...

sin (omega * 2*harmonicNumber * decayPixelln . t)) /

trapz ( decayPixelIn. trace ) ;

82

83

84

85

El



103 mO = harmonicNumber^2*decayPixelOut .G - (2*harmonicNumber

) ^2*decayPixelOut .G2;

104 ml = harmonicNumber*decayPixelOut .S - (2*harmonicNumber)*

decayPixelOut. S2;

105 m2 = -decayPixelOut .G + decayPixelOut .G2;

106 m3 = -decayPixelOut . S/harmonicNumber + decayPixelOut . S2

/(2* harmonicNumber);

107 delta = m2*mO - m1^2;

108 thetal = (m3*mO - m2*ml)/delta;

109 theta2 = (m3*ml - m2^2)/delta;

110 al = (thetal - sqrt(theta1^2 4*theta2))/2;

ill a2 = (thetal + sqit(theta1^2 - 4*theta2))/2;

112 f2 = (decayPixelOut .G - (1+(harmonicNumber*al)^2)^(-1))

113 ((l+(harmonicNumber*a2) ^2) ^(-1) - (1+(harmonicNumber*

al)^2)^(-1)) ;

114 if f2 < 0

11 f2 = 0;

116 elseif f2 > 1

117 f2 = 1;

118 e d

119 fi = 1-f2;

120 decayPixelOut. biexp. tau = [al a2]/omega;

121 decayPixelOut.biexp. f = [fi f2];

122 decayPixelOut.GIRF = tr apz(decayPixelIn.trace-IRF .*

123 cos (omega * harmonicNumber * decayPixelln . t)) / ...

124 tralpz ( decayPixelln . traceIRF ) ;

125 decayPixelOut .S-IRF = trapz(decayPixelln.trace-IRF .F*

126 sin (omega * harmonicNumber * decayPixelln.t)) / ...

127 trapz (decayPixelln. traceIRF);

227



128 decayPixelOut.G2-IRF = trapz(decayPixelln. traceIRF

cOs (omega * 2*harmonicNumber * decayPixelIn . t) )

trapz (decayPixelln. traceIRF ) ;

decayPixelOut. S2_IRF = trapz (decayPixelln. traceIRF

sin (omega * 2*harmonicNumber * decayPixelln . t))

/

/

133 trapz ( decayPixelln. traceIRF ) ;

134 mOIRF = decayPixelOut.GIRF - 4*decayPixelOut.G2_IRF;

135 ml-IRF = decayPixelOut. SIRF - 2* decayPixelOut . S2IRF;

136 m2_IRF = -decayPixelOut .G-IRF + decayPixelOut.G2-IRF;

m3_IRF = -decayPixelOut . SARF + 0.5* decayPixelOut . S2_IRF;

deltaIRF m2_IRF*mO-IRF - m1_IRF^2;

thetalIRF = (m3-IRF*mOIRF - m2_IRF*m1IRF)/deltaIRF;

theta2_IRF = (m3_IRF*m1_IRF

alIRF = (thetal-IRF -

- m2_IRF^2)/deltaIRF;

sqrt (thetalIRF^2 - 4*theta2-IRF))

/2;

a2-IRF = (thetalIRF + sqrt(thetalIRF^2 - 4*theta2_IRF))

/2;

f2_IRF = (decayPixelOut . GIRF - (1+(harmonicNumber*a1_IRF

)^2) ^(-1)) /...

((1+(harmonicNumber*a2IRF) "2) ^(-1)

harmonicNumber*alIRF) ^2) ^(-1));

f2_IRF < 0

f2-IRF = 0;

eif f2-IRF > 1

- (1+(

f2_RF = 1;

('11d

flIRF = 1-f2_IRF;

decayPixelOut . biexp . tau-IRF = [alIRF a2-IRF]/omega;
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152 decayPixelOut. biexp. fIRF =

iiip~ate ex erill riI a. fl I s cr( c eYce life t i1e

decayPixelOut .N = sum(decayPixelOut . trace)

if isfield (decayPixeln , 'N')

if decayPixelOut.N ~= decayPixelln .N

153

154

155

156

157

158

159

160

161

162

163

164

lislIatch.

e(n d

ei (I

decayPixelOut . freqO = decayPixelIn . freqO;

decayPixelOut . t = decayPixelln. t ;

decayPixelOut. harmonicNumber = harmonicNumber;

decayPixelOut. phiref = atan (decayPixelOut. Sref /
decayPixelOut. G-ref) ;

decayPixelOut. m-ref = sqrt (decayPixelOut . G-ref^2 +

decayPixelOut . Sref ^2) ;

decayPixelOut. phi2-ref = atan (decayPixelOut . S2_ref /
decayPixelOut. G2_ref) ;

decayPixelOut. m2_ref = sqrt (decayPixelOut. G2-ref^2 +

decayPixelOut. S2_ref ^2) ;

decayPixelOut. phi = atan (decayPixelOut . S / decayPixelOut .

decayPixelOut .m = sqrt (decayPixelOut .G^2 + decayPixelOut .

S^2) ;

decayPixelOut. phi2 = atan (decayPixelOut . S2

decayPixelOut .G2) ;

decayPixelOut .m2 = sqrt (decayPixelOut .G2^2

decayPixelOut. S2 ^2) ;

/

+

decayPixelOut . phiIRF = atan ( decayPixelOut . SIRF

decayPixelOut. GRF) ;
/

229

error (' ERROR: PhotoH COunlting

165

166

167

168

169

170

171

172

[ fl-IRF f2-IRF ] ;



decayPixelOut .mIRF = sqrt (decayPixelOut .GIRF^2 +

decayPixelOut. S-IRF ^2) ;

decayPixelOut .phi2_IRF = atan (decayPixelOut .S2IRF /
decayPixelOut. G2_IRF) ;

decayPixelOut .m2_IRF = sqrt (decayPixelOut .G2_IRF2 +

decayPixelOut. S2_IRF ^2) ;

decayPixelOut. phi _corr = decayPixelOut .phiIRF -

decayPixelOut. phi-ref;

decayPixelOut. mcorr = decayPixelOut .m-IRF/decayPixelOut.

m-ref;

decayPixelOut . tauP-ref = (1 /(omega*harmonicNumber) )
tai (decayPixelOut. phiref ) ;

decayPixelOut . tauM-ref = (1 /(omega*harmonicNumber) )
abs(sqrt (1/decayPixelOut . mref^2 -

decayPixelOut . tauP =

*

*

1));

(1 / (omega* harmonicNumber)) *

tan (decayPixelOut . phi) ;

decayPixelOut .tauM = (1 / (omega*harmonicNumber) )

abs ( sqrt (1/ decayPixelOut .m^2 -

*

1));

decayPixel Out . tauPIRF = (1 / (omega*harmonicNumber))

tan (decayPixelOut . phiIRF) ;

decayPixelOut . tauM-IRF = (1 /(omega*harmonicNumber))
abs(sqrt(1/decayPixelOut.mIRF^2 -

*

*

1));

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

a)s ( sqrt (1/decayPixelOut . mcorr^2 -

*

*

1));

230

173

-I

174

175

176

177

decayPixelOut . tauP-corr = (1/(omega*harmonicNumber) )

tan (decayPixelOut . phi-corr)

decayPixelOut.tauM-corr = (1/(omega*harmonicNumber))



196 decayPixelOut. phi-sigma-ref = ...

197 sqrt (1-decayPixelOut . m2-ref*cos (2* decayPixelOut.

phi ref-decayPixelOut. phi2-ref)) /...

198 (decayPixelOut . mref * sqrt (2*decayPixelIn .IRFN));

199 decayPixelOut. m-sigma-ref

200 S(lrt (1 - 2*decayPixelOut. m-ref^2 + ...

201 decayPixelOut. m2_ref*cos (2* decayPixelOut. phi-ref -

decayPixelOut . phi2-ref))/...

202 sqrt (2* decayPixelln .IRFN)

203 decayPixelOut . phi-sigma = ...

204 sqi-t (1-decayPixelOut .m2*cos (2* decayPixelOut . phi-

decayPixelOut . phi2)) /...

205 (decayPixelOut .m * sqrt (2* decayPixelOut .N))

206 decayPixelOut . m-sigma

207 s(lrt (1 - 2*decayPixelOut .m^2 + ...

208 decayPixelOut .m2*cos (2* decayPixelOut .phi-

decayPixelOut . phi2) ) / ...

209 S(r1t (2*decayPixelOut .N)

210 decayPixelOut . phi-sigmaIRF =

211 sqrt (1-decayPixelOut .m2_IRF* cos (2* decayPixelOut.

phiIRF-decayPixelOut . phi2_IRF)) / ...

212 (decayPixelOut.mIRF * sqrt(2*decayPixelOut.N));

213 decayPixelOut . m-sigmaIRF =

214 sqrt (1 - 2*decayPixelOut.mIRF^2 +.

215 decayPixelOut . m2-IRF* cos (2* decayPixelOut . phi-IRF-

decayPixelOut . phi2_IRF)) /...

216 sqrt (2*decayPixelOut .N) ;

217 decayPixelOut. phi-sigma-corr = sqrt (decayPixelOut .

phi-sigma-ref^2 + ...

218 decayPixelOut . phi-sigmaIRF ^2);

231



219 decayPixelOut. m-sigma-corr = sqrt (decayPixelOut.

m-sigma-ref^2 + ...

220 decayPixelOut . m-sigmaIRF 2);

221

222 decayPixelOut . tauP-sigma-ref decayPixelOut.

phisigmaref /(omega*harmonicNumber *...

223 ( cos (decayPixelOut. phi-ref ))^2) ;

224 decayPixelOut . tauM-sigma-ref = decayPixelOut. m-sigma-ref

/ (omega*harmonicNumber * ...

225 decayPixelOut . m-ref^2 * sqrt (1 - decayPixelOut . m-ref

^2));

226 decayPixelOut . tauP-sigma = decayPixelOut . phi-sigma /(omega

*harmonicNumber * ...

227 (cos (decayPixelOut. phi) ) ^2);

228 decayPixelOut . tauM-sigma = decayPixelOut . m-sigma/(omega*

harmonicNumber * ...

229 decayPixelOut .m^2 * sqrt (1 - decayPixelOut .m^2));

230 decayPixelOut . tauP-sigmaIRF = decayPixelOut.

phi-sigmaAIRF /(omega*harmonicNumber *...

231 (cos(decayPixelOut.phi-IRF)) ^2);

232 decayPixelOut . tauM-sigmaIRF = decayPixelOut . m-sigmaIRF

/ (omega*harmonicNumber * ...

233 decayPixelOut .mIRF^2 * sqrt (1 - decayPixelOut .mIRF

^2)) ;

234 decayPixelOut. tauP-sigma-corr = decayPixelOut.

phi-sigma-corr /(omega*harmonicNumber *...

235 ( cos (decayPixelOut. phi-corr )) ^2) ;

236 decayPixelOut . tauM-sigma-corr = decayPixelOut.

m-sigmacorr /(omega*harmonicNumber * ...

237 decayPixelOut . m-corr^2 * sqrt (1 - decayPixelOut.

232



m-corr 2) ) ;

decayPixelOut . tauP-interval-ref = decayPixelOut . tauP-ref

1.96*[-decayPixelOut . tauP-sigma-ref decayPixelOut .

tauP-sigma-ref ];

decayPixelOut. tauM-interval-ref = decayPixelOut . tauM-ref

1.96*[ - decayPixelOut . tauM-sigma-ref

tauM-sigma-ref ];

decayPixelOut. tauPinterval

1.96*[ - decayPixelOut . tauP-sigma

decayPixelOut.

= decayPixelOut . tauP +

decayPixelOut.

tauP-sigma 1;
decayPixelOut . tauM-interval = decayPixelOut .tauM + ...

1.96*[-decayPixelOut .tauM-sigma decayPixelOut.

tauM-sigma 1;
decayPixelOut . tauPintervalIRF = decayPixelOut . tauPIRF

1.96*[ - decayPixelOut . tauP-sigmaIRF decayPixelOut.

tauP-sigma-IRF ];

decayPixelOut . tauM-intervalIRF = decayPixelOut ..tauMIRF

1.96* [ - decayPixelOut . tauM-sigma-IRF decayPixelOut.

tauM-sigmaIRF ];

decayPixelOut. tauP-interval-corr = decayPixelOut .

tauP-corr + ...

1.96*[-decayPixelOut . tauP-sigma-corr decayPixelOut.

tauP-sigma-corr ];

decayPixelOut. t auM _interval corr = decayPixelOut.

tauM-corr + ...
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254 1.96*[-decayPixelOut .tauM-sigma-corr decayPixelOut.

tauM-sigma-corr ] ;

255 decayPixelOut. FPref = (decayPixelOut . tauPsigma-ref/

decayPixelOut . tauPref) * ...

256 sqrt (decayPixelIn .IRFN) ;

257 decayPixelOut . FMref = (decayPixelOut . tauM-sigma-ref/

decayPixelOut . tauM-ref) *...

258 SqTrt (decayPixelln .IRFN) ;

259 decayPixelOut . F-P = (decayPixelOut . tauP-sigma/

decayPixelOut . tauP) *...

260 sqrt (decayPixelOut .N)

261 decayPixelOut .FM = (decayPixelOut . tauM-sigma/

decayPixelOut .tauM) * ...

262 sqrt (decayPixelOut .N)

263 decayPixelOut . F-PIRF = (decayPixelOut . tauPsigmaIRF/

decayPixelOut . tauPIRF) *...

264 sqrt (decayPixelOut .N) ;

265 decayPixelOut . FMIRF = (decayPixelOut . tauM-sigmaIRF/

decayPixelOut .tauMIRF) *...

266 sqrt (decayPixelOut .N) ;

267 decayPixelOut . FPcorr = (decayPixelOut . tauP-sigma-corr/

decayPixelOut . tauPcorr) *...

268 sqrt (decayPixelOut .N) ;

269 decayPixelOut. F-M-corr = (decayPixelOut . tauM-sigma-corr/

decayPixelOut. tauM-corr)*...

270 s(lrt (decayPixelOut .N)

271 ('11d

A.3.4 Generating the Phasor Plot

1 funct ion varargout = phasorPlot (G, S, harmonicNumber , steps

234



freqO ,...

histogramThreshold ,cmap, drawEllipse , drawIntercepts

numSpecies)

3 %phlasor lOw P ot a pilasor 1 a. pit asor arayI Onto (GS)

Coordiinat e map.

4 PLAS RPL )T() plOts either a single phasor mr1

phaso:rs onto a

5 pliaSor plOt giveil inpJilte pasor coordinates G and S.

harmonic

6 1J4 1number ( 1arinoiiNumber ) used to compute the phasor

C001(dinates must be

7 .( specified ( ot1erwise the default vali e 1. will be assumed

The 2D

8 c histo(gra n Step Size ( Steps ) tll. laSer repetitioni

f r ! q1 cli 11eV

tle inilinii r aC t i on Of plhasmrs a given 21. bin 11must

C01tain t () e

10 C displayed 0i tite phasor p1 0t re I a t i v C to the InaXIIiuinU

cOun It

C % ( hi stogra in'I hresbol d), the o IlO'rmla ) to be used for

(isp] ayi ng

S% p lot ( emap ) a fi ag

shoul) 11d b) c

to specify whether r not ain ellipse

13 % fitted and drawn 8ar0ud th e phasor cluster

and the

14 (, iiuinber of

Specified .

15 ( Otherwise

f 1 (orosceint

they

Sl)tCieS ( 11 ln.1S1)e(itS)

( drawEllipse)

unist also be

will all be set to their default v lIsi .

either outnilts)
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an array of

The

( frcq() ) I

bi)11

16 (

17 1 The 0i11Cti.011

tephascor

a sinlgle lifet ime i f



I 1l11 Sp CIec s I or

18 C )01 the short aTI(l long li fe t i res i f nuSpeCies 2.

19 X

20 Assunipt Ions

21 C > C-riap s1ould be a ]\latLb colormuap (e g . parll i,et ilot

.etC .)

22 > uIni]Species miust be either I or 2

23 C

24 % Def Ul t valuies:

25 % > harmlonieNumb~ler = I

26 % > steps 0.0025

27 freq 80E6

28 > h ist ogr ranThreshold 0.001

29 C > CH 1 jet

30 f > drawEllipse - 0

31 > rlllnSpeeiS I

32

33 % - I i t iatIz falgS

34 flagLongInfinite 0;

35 flagShortZero = 0;

36

37 A-Set default values if unspeCified

38 if isempt y(harmonicNumber)

39 harmonicNumber = 1;

40 (11d

41 if isempty(steps)

42 steps - 0.0025;

43 eOT1 

44 if isempty(freqO)

45 freqO = 80E6;
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(i(d

i f

end

i f

e 1.1(1

if

eid((

if

en11d

i f

ed 11(1

'X---Rearrano-ge (t an (

if size(G,2) > 1 1

G = reshape (G,

S = reshape (S,

end

%- (Rimove NaN valu

G(isnan(G)) = [1;
S(isnan(S)) =

Z = [G,S];

S into cOlUlOn

size (S,2) >

numel(G) 1])

numel(S) 1)

(' s a1(1d defiine Z airay

%-Define histogora.n bill e ers and lrinlber of bills

G-bins = 0:steps:1;

S-bins = 0:steps:1;
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isellpty (histogramThreshold)

histogramThreshold = 0.001;

isemy1)tv (cmap)

cmap = jet;

isempty (drawEllipse)

drawEllipse = 0;

isempty ( drawIntercepts)

drawIntercepts = 1;

isempty (numSpecies)

numSpecies = 1;

v c ( t or S

72

73

74

75



76

77

78

79

80

iA 1 s IIl (in o

LNumBins ,G, linear

G-NumBins = length (Gbins);

SNumBins = length (S-bins);

W S oI.' 1 . 1 ((.'. S) c (o i. (lj 111 C c \

Gi = round ( interp1(G-bins ,1: C

Si = round ( interpi ( S-bins 1: S

%-Remove binu Values O8ts1id( t

G _i = max ( mi ( G A , G-NumBins) , 1

S-i = max(min( Si , SNumBins) ,1

%-Cmt billn coinis

H = accumarray ([ Si (:) Gi (:)

he range

extrap

extra p

[1 ,Numnlins]

1 , [SNumBins GNumBins]) ;

87 Plot 2D histogram using bin counts and (GS) bin

c Ce rit c 1S

88 figure

89 imagese (G-bins , Sbins ,H)

90 %-Apply spc e i fi d'(1 Matlab1i (o ma ( lCf8 iilt :j j(t )

91 cmap-fh = str2func (cmap) ;

92 j = cmapfh(round(1/histogramThreshold))

93 W%-Force sub-threshold bin courits to appear as White

94 i f stremp (cmap, 'hot )

95 j(1,:) =0.85* ones (1 ,3);

96 else

97 j (1,:) ones(1 ,3);

98 end

99

100 -- App lV colo r18p

101 colormap ()

102 /;<.--Akdd ind lablel colorbar
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81

82

83

84

85

86



cb = colorbar ;

vlabel (cb, Phasor Counts )
set (gca , 'Ydir 'Normal')

hold on

%--Calenlate the eigelivectors an1d c (igelnva1Ucs

covMatrix = cov (Z, ' omitrows )

[V,D] = eig(covMatrix);

%u--Gt the index of the largest eigenvector

eigenvalueMajor = max(sum(D));

eigenvalueMinor = ini (sum(D) );
if D(1) - eigenvalueMajor

eigenvectorMajor = V(: 1) ;

else

eigenvectorMajor = V(: ,2) ;

en1d

%--Calculatc the angle b(twQco the x--axis and the la rgest

ig e 11 v e c t o r

angleMajor = atan2(eigenvectorMajor (2) , eigenvectorMajor

(1));

%-Thi s angle can be anywhere between -pi and pi this

shift, ellsures

%4 that it is between ( and 2*pi

if (angleMajor < 0)

angleMajor = angleMajor + 2*pi;

e n d
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123

124

125

126

127
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129



130 %--Omput, phasolust(1 1HCan

Z-mean = mean (Z, oinitnan' )

132

i. 111 C v 8 1133 (/o-Get th1.e 95% confidenice

134 theta = linspace (0 ,2* pi)

135 G-mean = Zmean(1);

136 S-mean Zmean (2) ;

a = sqrt (eigenvalueMajor

b sqrt ( eigenvalueMinor

* chi2inv (0.95 ,2));

* chi2inv (0.95 ,2));

iI X u(d V c(0(rdiIadtCS

*cos(theta);b*sin (theta)]';

t i o) in a tIiix

R = [ cos (angleMajor)

cos (angleMajor) ];

sin (angleMajor) ; -sin (angleMajor)

e- G otc t 

ellipseGSR

149 (--Draw t 1I e

e li ps 1 1 all Ig I ii A Iige I ap r

- ellipseGS * R;

erI.)r ellipSe

if drawEllipse

plot (ellipseGSR (: ,1)+G-mean, ellipseGSR (: ,2)+S-mean,

' LineWidth , 1);

end

154 %--UNWEIASAL CIRCLE,

155 r--Plot

156 g =0:0

157

Ni s I ' 1

FITTING.

c ir c I !

.001:1;

semicircle = sqrt (0.25 - (g -0.5) .^2) ;
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131

137

138

139

140 -11 (e 'I lii 1. S C

141 ellipseGS = [a

142

143 e--- ---- C fine roti

144

145

146

147

148

150

151

152

153

C 0 1'd in f)t-,cs

err'Vo)r e l Iip)S e

ETC.--%



plot (g, semicircle 1

axis equal tight ;

axis ([0 1 0 0. 6]);

Xlabe1( G );

I If let ji.l C, S,

majorAxis = U(g) (eigenvectorMajor (2) /eigenvectorMajor (1)

) *(g-G-mean)+S-mean;

S(iIi I r 0l ff(g) sq (0.25

intersectionMajorAxisSemicircle = A(g) sqrt (0.25 (g

-0.5).^2) -

(eigenvectorMajor (2) /eigenvectorMajor (1) ) *(g-G.mean)-

S-mean;

, maxIntersectionIndex ] = max (
intersectionMajorAxisSemicircle (g)) ;

try

G-interl = fzero (intersectionMajorAxisSemicircle ,[0 g

(maxIntersectionIndex) ]) ;

catch

warning ( 'Warning:

infinite . ');

G-interl = 0;

flagLongInfinite

Long life ti IIC computed to be

= 1;

n d

t ry

G_inter2 = fzero (intersectionMajorAxisSemicircle

maxIntersectionIndex)

241

158

159

160

161

162

163

165

166 C(

167

168

169

170

171

172

173

174

175

176

177

178

179

180 catch

1I);

, iLiincWidth ,1) ;I'

164 1/(-- &1 C 111. a e

(og--0.5) . '2)



warning( IWarning:

than 0 ps . ');

Short lifetime compited to be less

G_inter2 = 1;

flagShortZero = 1;

majorAxis(G-interl);

= majorAxis (G-inter2);

189 omega = 2*1pi*freq0;

190

191 if numSpecies - I

varargout{1} = S-mean/ (harmonicNumber*omega*G-mean);

if drawIntercepts

if (Ginterl-G-mean)^2+(S-inter1-S-mean)^2 <

G _inter2-G-mean) ^2+(Sinter2-S-mean) ^2

plot ( G interi , S-interl ,...

else

'Marker I, ' , Color ,[0 0.666 0],

LineWidth ' 1, MarkerFaceColor

0.666 0]);

plot (Ginter2 , S_inter2 ,

Marker , (1 'Color , [0

(

,[0

0.666 0] ,

LineWidth , 1, iMarkerFaceColor , [0

0.666 0]);

end

end

if ~flagShortZero
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181

end

182

183

184

185

186

187

188

S-interl

S_inter2

192

193

194

195

196

197

198

199

200

201

202

203

204

else



S int er 2 / (harmonicNumber*omega*

G-inter2); ~2< Slioit life ti In C ill Seconds

e 1S e
varargout{1} = 0;

end

if ~flagLongInfinite

varargout{2} =

G-interl);

S int er l / (harmonicNumber *omega*

.i. t(, I i 1

else

varargout{2} =

end

if drawIntercepts

p.lot ([ Ginteri

iarker , d

JIf ;

Ginter2 ] , [ S-interl

' Color 1, [0

S-inter2 ] , ..

0.666 0], LineWidth

,1, 'iMarkerFaceColor ,[0 0.666 0]) ;

219 end
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214

215

216

217

218

enU d

e 11 (1

varargout{1} =205
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