Modeling Beta Decay Spectra to Analyze the
Sensitivity of a Neutrino Mass Experiment
by
Talia E. Weiss

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Physics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2018
(© Massachusetts Institute of Technology 2018. All rights reserved.

Signature redacted

Department of Physics
May 11, 2018

Signature redacted

Certified by.. — L

- Tofessor Joseph A. Formaggio
Division Head, imental Nuclear and Particle Physics
Thesis Supervisor

Signature redacted

Accepted by ........., T
MASSACHUSETTS INSTITUTE W Professor Scott Hughes
5

OF TECHNOLOGY

ociate Head, Department of Physics

SEP 12 2018

LIBRARIES
ARCHIVES







Modeling Beta Decay Spectra to Analyze the Sensitivity of a
Neutrino Mass Experiment
by
Talia E. Weiss

Submitted to the Department of Physics
on May 11, 2018, in partial fulfillment of the
requirements for the degree of
Bachelor of Science in Physics

Abstract

The Project 8 experiment aims to measure the electron neutrino mass by obtaining
and analyzing (3 spectra from tritium decay. Using an inferential model of the exper-
iment’s anticipated data, I evaluate its projected sensitivity to certain parameters of
interest. I focus on the precision and accuracy with which Project 8 can expect to re-
solve the B-decay spectrum’s endpoint in an upcoming stage of the experiment. I also
present an initial prediction of Project 8’s eventual expected sensitivity to the elec-
tron neutrino mass. This analysis involved generating and analyzing -decay spectral
data using a model implemented in Stan, a platform for Bayesian statistical inference.
The sensitivity analysis was designed to account for the anticipated distribution of
results (mass and endpoint measurements) produced by the potential variation in
a number of physical and experimental parameters. In addition, the method used
here allows for a calibration of the consequences of inferences and decisions made in
reaching those results. I find that, using one year of Project 8 Phase II data, the
T, endpoint can be resolved within a 13.7 eV window (90% C.1.) with 62% coverage
(or accuracy), corresponding to a 4.1 eV posterior standard deviation. Preliminarily,
using one year of Phase IV data, the electron neutrino mass can be resolved within a
0.051 eV window (90% C.1.) with 56% coverage. I also outline a way that model-based
sensitivity procedures and calibration of inference can be extended to the neutrino
mass hierarchy problem.

Thesis Supervisor: Professor Joseph A. Formaggio
Title: Division Head, Experimental Nuclear and Particle Physics
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Chapter 1

Introduction: The Neutrino Mass
Problem and Project 8

The Project 8 Neutrino Mass Experiment aims to determine both the magnitude
of the electron neutrino mass and the ordering of the three neutrino mass eigenval-
ues [1, 2]. Project 8 is expected to yield a direct mass measurement, meaning that
experimenters will derive information regarding the neutrino mass from the shape of
the electron spectrum produced when a particle S-decays [3]. As Project 8 works to
obtain a spectrum that can be used to resolve the neutrino mass, it is valuable to
evaluate the experiment’s expected sensitivity to certain parameters of interest—that
is, the precision and accuracy with which those parameters can be determined.

Here, I assess Project 8’s sensitivity to the endpoint, or energy at which the S3-
decay spectral rate vanishes. The Project 8 Collaboration must measure the endpoint
at an intermediate stage to develop a fuller understanding of the experiment’s setup
and performance [2]|. I also assess experimental sensitivity to the electron neutrino
mass, itself. I perform this analysis by generating spectra resembling Project 8’s
anticipated data sets, then analyzing that data to extract parameter distributions via
Bayesian inference. Such a sensitivity study enables the Project 8 Collaboration to
make predictions regarding the effect of presently unknown physical and experimental
parameters (including runtime) on the Collaboration’s ability to resolve the endpoint
and neutrino mass.

In this chapter, I provide background regarding the neutrino mass scale and or-
dering, as well as Project 8’s approach to addressing the neutrino mass problem.

1.1 The Neutrino Mass Problem

A neutrino is produced in one of three flavor states: electron, muon, and tau,
denoted v, v, and v,, respectively. The discovery of neutrino oscillations demon-
strated that each of these flavor states is a superposition of mass eigenstates v, v
and v3; this superposition allows neutrinos to change flavors by evolving in time. The
neutrino oscillation rate is related to the differences between the mass eigenvalues m,
mq and mg, so at least two of these masses must be non-zero for neutrinos to oscillate.
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Figure 1-1: Neutrino masses corresponding to normal and inverted orderings
Three v masses m; according to (a) normal and (b) inverted hierarchies as functions
of the lightest mass. Points computed nsing mass splitting values obtained from [8].

Oscillations have now been observed by solar [4, 5|, atmospheric [6] and reactor [7]
neutrino experiments, confirming that neutrinos are massive.

The relationship between the flavor eigenstates v, and mass eigenstates v; of the
neutrino is given by

Ve Uel Ue2 UeB 161
v, | = Uy,l U,u2 U,uS 2],
Vr U‘Tl UT2 U‘r3 Vg

where Uj; are the elements of the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. Using this mixing matrix, we can express the approximate electron neutrino
mass mg as a function of the mass eigenvalues:

my = |3 [Vl
i

This formula applies when the differences between the mass eigenvalues are much
smaller than the overall energy scale being considered.

Neutrino physicists formulate the mass and mixing problem in terms of two sets of
parameters that have now been precisely measured: mixing angles and mass splittings.
In terms of mixing angles 6,5 and 6,3, the PMNS elements are defined as

IUeIF — 0052(912) C082(913),
|Uea|* = sin®(8;2) cos®(6;3), (1.1)
Vsl = sin®(013).

Neutrino flavor oscillation frequencies depend on mass splittings Am?; = m? — m?.

10



-
o
w

[T TITT

-+ Projected Limits  f. o
| —— Normal Ordering . :
| = Inverted Ordering

e R

102

LI .I.Jl.!'

Electronic Neutrino Mass [meV]
o

4L i oiidiiiil N WY - i
102 10°
Lightest Neutrino Mass [meV]

Figure 1-2: Allowed electron neutrino mass values, as a function of lightest mass
The allowed values of mgz are constrained by measured mixing parameters. If the
lightest mass falls within the hierarchic region, then a precise mgz measurement can
be used to resolve the mass hierarchy. In the degenerate region, it is more difficult
to distinguish between the two hierarchies. The green dashed lines represent pro-
jected 90% confidence limits from the KATRIN and Project 8 direct neutrino mass
experiments, and well as the Planck spacecraft. Figure from [2].

While the smaller mass splitting, Am3,, is known from solar oscillation experiments,
only the magnitude of the larger splitting, |Am3,| ~ |Am3,|, is known from atmo-
spheric experiments [8]. Thus, two orderings of the mass spectrum are possible: if
Am32, > 0, then m; < my < ms and the masses obey a "normal hierarchy"; al-
ternatively, if Am3;, < 0, then m3 < m; < my and the masses follow an "inverted
hierarchy." So the neutrino mass problem involves two unknowns: the overall scale
of the mass eigenvalues and their ordering. Table 1.1 shows physicists’ knowledge of
the mixing angles and mass splittings, to date.

Parameter Best fit 30

Am3, [1075 eV7] 7.37 6.93 — 7.97

|Am?| [107% eV?]  2.50 (2.46) 2.37 — 2.63 (2.33 — 2.60)

sin? 6, 0.297 0.250 — 0.354

sin? B3 0.437 (0.569) 0.379 — 0.616 (0.383 — 0.637)

sin? 6,5 0.0214 (0.0218)  0.0185 — 0.0246 (0.0186 — 0.0248)

Table 1.1: Current knowledge of mixing parameters from the Particle Data Group
Best fit values and 3¢ confidence intervals from a global fit of oscillation data, as
reported in [8]. Parameter values (values in parentheses) are reported assuming a

normal (inverted) mass ordering. Am? = m32 — (m2 + m?) is the large mass splitting.
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Neutrinos are currently the only elementary particles in the standard model with
unknown masses, but tests of cosmological models place an upper limit on the sum
on their mass eigenvalues, and nuclear physics experiments place an analogous limit
on the electron neutrino mass [3]. Currently, the upper bound on mg is 2 €V, as
determined by the Mainz and Troitsk experiments [9, 10]. Project 8’s major goal
is not only to substantially improve the nuclear physics-based bound, but also to
measure mg (where a "measurement" can be expressed as a pair of bounds, upper
and lower). Moreover, if the electron neutrino mass is sufficiently small (below about
0.1eV, as shown in Figure 1-2), Project 8’s direct mass measurement could rule out
the inverted hierarchy. With enough precision, by analyzing S-decay spectra, it might
also be possible to resolve individual neutrino masses, and thereby to determine both
the scale and ordering of those masses.

The neutrino mass problem has implications for cosmology, because the neutrino
mass contribution to the matter density of the universe substantially affects late-
times large structure formation [3]. In addition, knowledge of the neutrino mass
hierarchy would enable better predictions of the rate of neutrino-less double beta
(OvBB) decay [11]. Experiments seeking to detect that decay process could potentially
provide an explanation for the universe’s matter-antimatter asymmetry.

1.2 The Project 8 Experiment: A Frequency-Based
Approach

Project 8 aims to solve the neutrino mass problem by analyzing the electron energy
spectrum produced by the the nuclear beta decay of tritium (T) into 3He, an electron
and electron antineutrino. Project 8’s unique addition to past and ongoing direct
mass experiments is its use of cyclotron radiation emission spectroscopy (CRES).
CRES involves measuring the cyclotron frequencies of electrons in a magnetic field to
determine their energies to high precision.

1.2.1 Motivation for a Direct Neutrino Mass Measurement

Direct mass measurements exploit radioactive decay kinematics to determine
the neutrino mass scale. The differential decay rates of both S-decay and electron
capture depend on neutrino mass values, so by examining either of these rates, an
experimenter can determine the mass scale [3]. For example, in the case of S-decay
(the process of interest to Project 8), we expect the size of mg to correspond to the
size of a shift in the decay spectrum’s endpoint energy. Furthermore, as I will show
in Chapter 3, a direct mass measurement combined with external data from reactor
neutrino experiments can yield an independent determination of the mass hierarchy
(no additional neutrino mass or mixing information is needed) [12]. This is possible
because we model and analyze the full spectral shape, instead of only considering the
endpoint location (see Figure 1-3).

Direct mass measurements are so called because the approach of studying decay
features imposed by energy conservation is relatively model-independent. Unlike other

12
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Figure 1-3: Models of beta decay spectra near the endpoint
Spectra are modeled assuming that the neutrinos are ordered according to the normal
(left) and inverted (right) hierarchies. In both cases, the lightest neutrino mass is
zero, (Q = 18575 €V, mean mixing parameters come from [8], and a flat background
is included. With sufficient energy resolution, it should be possible to determine
whether data is better described by a "normal" or "inverted" spectral model.

techniques, a decay kinematics-based method does not depend on cosmological models
or whether neutrinos are their own antiparticle. Direct measurement is therefore a
particularly promising approach to resolving the neutrino mass scale. Currently,
the Karlsruhe Tritium Neutrino (KATRIN) experiment is working to employ MAC-
E (Magnetic Adiabatic Collimation with Electrostatic) Filtering to obtain [-decay
spectra and probe neutrino mass limits as low as 0.2 eV [13]. Project 8 aims to reach
sensitivities as low as mg < 40 meV [2].

1.2.2 Cyclotron Radiation Emission Spectroscopy

The Project 8 Collaboration developed the technique of cyclotron radiation emis-
sion spectroscopy (CRES) for obtaining a S-decay spectrum, as originally proposed by
Monreal and Formaggio [14]. CRES involves confining an isotope gas in a relatively
uniform magnetic field generated by a solenoid-like magnetic trap. The field induces
electrons produced by the isotope decay to travel in a spiral path with cyclotron fre-
quency f., and to emit coherent radiation at the same frequency. For a relativistic
electron, f. depends on electron kinetic energy K and magnetic field strength B:

1 eB
fe= 2_ IR

© m+ K/c
where e is the electron charge, m is the electron mass, and c is the speed of light in
vacuum. By measuring the total power radiated by each electron and computing f,
using the Larmor formula, it is possible to determine electron kinetic energies and
construct a J-decay spectrum [2, 14].

CRES is a particularly valuable technique because it evades the need to trans-

port electrons out of a source [14]. As a result of that necessity, the size of a MAC-E

13
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Figure 1-4: An electron spectogram from demonstrating the success of CRES
From Project 8 Phase I. The frequency jumps upward repeatedly as the electron
scatters with hydrogen, losing energy [2].

spectrometer (like KATRIN’s) would have to scale up dramatically in order to further
improve sensitivity to the neutrino mass. The Project 8 Collaboration successfully im-
plemented CRES for the decay of gaseous *™Kr during Phase I of its experiment [2].
Figure 1-4 shows the cyclotron frequency evolution for a single krypton CRES event.

1.2.3 Extracting Neutrino Masses from Tritium Beta Decay

Spectra
The [(-decay spectrum at high energies can be written!
IN ; .
P(K) = zm_ ~ A Z [|U{,,,j|2((g ~K)- \/((2 _K)? - mf} O(Q - K —my), (1.2)

where N is the number of electrons as a function of energy K, A is a constant that
depends on source activity, U,; are the mixing matrix elements given by Eq. 1.2, and
@ 1s the endpoint. This endpoint is defined as the largest possible electron energy for
the case in which all three neutrino masses are zero. A particular decay’s endpoint
can be calculated given energy conservation constraints [15].

Direct neutrino mass experiments have not yet reached sensitivities that would

! The exact form of P(K) depends on p,FE., where p, and E. are the electron momentum and
energy, respectively. However, near the endpoint, p.E. is essentially constant.
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allow them to detect the each neutrino mass’ individual contribution to the spectrum.
Past experiments have therefore worked to extract the effective electron neutrino mass
mg using a simplified spectral model:

P(K) = AQ - K)-/(Q — K)2 —m3 - 6(Q — K —mp), (1.3)

In this case, the size of the shift of the spectrum’s highest energy from @) can be used
to determine mg.

However, Project 8 aims to probe energy scales at which the full spectral shape
becomes relevant. This shape is a composite of three terms with different maximum
energies, as determined by the © functions in Eq. 1.2. As a result, the region in the
last =~ 0.1 eV of the spectrum includes "kinks" at three energies, corresponding to
the three neutrino mass eigenvalues. The location of the more prominent kink differs
between the two neutrino mass orderings, as shown in Figure 1-3. Thus, by modeling
and analyzing the shape of a spectrum near the endpoint, it should be possible to
distinguish between the normal and inverted hierarchies.

Before the Project 8 Collaboration can extract neutrino masses from tritium -
decay spectra, it faces a few major challenges. Only 2 x 10713 of the spectrum’s events
occur in the last 1 eV of the spectrum, so a large volume of tritium gas is required to
obtain sufficient data [2|. Furthermore, while the experiment’s current phase (Phase
IT) uses Ty, since tritium is easiest to manage in its natural molecular form, the
final states of Ty present an irreducible systematic. Specifically, the uncertainty
introduced by vibrational and rotational states of *HeT+ yields a best-case energy
resolution of 100 meV, preventing Project 8 from probing neutrino mass scales below
that energy [16, 15]. Thus, in its final phase (Phase IV), Project 8 will use an atomic
tritium source. This should enable it to potentially attain an energy resolution of ~40
meV, assuming that magnetic field strength uncertainty is the limiting systematic |2,
16].

One key goal of Phase II is to measure the endpoint of a 3-decay spectrum and
compare it with theoretical predictions. Chapter 4 details a new model-based anal-
ysis of Project 8’s Phase II sensitivity to the endpoint. Chapter 5 details a similar
sensitivity analysis that yields information regarding Project 8’s ability to resolve mg
during Phase IV.

1.3 Modeling Spectra to Assess Sensitivity

This study aims to answer two sets of questions:

1. With what precision can Project 8 (Phase II) resolve the (3-decay endpoint?
How accurate can we expect that endpoint determination to be?

2. Under what conditions will Project 8 (Phase IV) be able to resolve the electron
neutrino mass, and to what precision (as a function of runtime)? How accurate
can we expect that mass determination to be?

15



To address these questions, I modeled S-decay spectra using the Stan probabilistic
programming language [17, 18], as described in Chapter 2. I employed a modified
spectral function, approximated to facilitate its use in an inferential model (see Chap-
ter 3). With this model, I generated many pseudo-data sets, each of which assumed
a particular configuration (set of values) of experimental and physical parameters.
This allowed me to maximize the degree to which I incorporated available knowl-
edge regarding statistical and systematic uncertainties in the system. I then analyzed
each data set, performing Bayesian inference to extract posterior distributions for the
endpoint and neutrino mass.

In Chapter 6.2, I lay out a similar approach for assessing Project 8’s sensitivity
to the mass hierarchy.

16



Chapter 2

A Model-Based Sensitivity Analysis
with Stan and Morpho

This chapter discusses the methods applied to perform a Bayesian sensitivity
analysis for Project 8. The approach described here involves statistical modeling and
analysis using the Stan platform and probabilistic programming language [17, 18].
The choice to perform a sensitivity analysis with Stan was motivated by the benefits
of bayesian modeling. A Bayesian approach directly illuminates the consequences of
making inferences from data and decisions (e.g. to claim a result) based on those
inferences. It also permits one to consider pseudo-data corresponding to wide re-
gions of parameter space (or "model configurations"), instead of selecting a small
number of "best guess" values [19]. Stan is particularly well suited to a model-based
sensitivity analysis because it deals well with high dimensional problems and highly
correlated posteriors [20]. At a basic level, Stan allows users to mostly abstract from
difficult computation and focus on modeling systems-—in this case, tritium 3-decay.
I implement this sensitivity analysis using morpho, a software tool developed with
collaborators at MIT and Pacific Northwest National Laboratory that organizes in-
formation inflow to and outflow from Stan [21].

2.1 Calibrating Inferences and Decisions

Sensitivity analyses predict whether, given some data, an experiment will be able
to claim a particular result —for example, "The Higgs boson exists," "The neutrino
mass hierarchy is normal," or "The 90% credible interval for mg is 50-90 meV." In
Bayesian analyses (unlike frequentist ones), the decision or action of claiming a result
is decoupled from the process of inference.

Bayesian inference yields posterior distributions 7(8|y) for parameters 6 given data
y. Such inference is based on Bayes’ rule:

m(0ly) oc m(ylf) - 7(6), (2.1)

where 7(y|@) is the likelihood function of y given 6 and = () are priors on 6. Claims
can be made about a data generating process— that is, the system that produces

17



the data—Dby computing expectations from posteriors (e.g. posterior means and in-
tervals). Experimenters can decide whether or how to make a claim (what action to
take) by constructing an inferential loss function L or a utility function U = —L. A
loss function quantifies the loss incurred by selecting a particular action a via some
inferential decision making process [19].

For example, L could equal the percentage of time that a reported posterior inter-
val on the parameter 6, fails to include the the true value §,—one of the possibilities
discussed below. In that case, the loss function yields a Bayesian analogue to a typi-
cally frequentist quantity, since it is based on the distribution of outcomes expected
when one repeats an experiment many times. When performing a sensitivity anal-
ysis, it is important to calibrate the consequences of claiming some sensitivity by
computing the expected loss associated with that claim [19].

2.1.1 Calibrating a Credible Interval or Limit Claim

Calibrating model-based inferences produces a measure of how likely it is that
reported results will be consistent with true parameter values. For this Project 8
sensitivity analysis, a calibration addresses the question: "If we repeatedly generate
data given "true" (inputted) parameter values, how often does the true endpoint or
neutrino mass fall within some reported energy window?" The coverage C of a model
is the frequency with which a parameter of interest falls within a reported window [19].
This coverage is related to the relevant loss function by C =1 — L.

The reported energy window can consist either of an upper limit (with a minimum
value of zero) or of a credibility interval (upper and lower bounds). Either way, the
energy window is constructed given some credibility a—meaning that some fraction o
of the posterior mass falls within the window. Reporting a limit or interval amounts
to claiming that an experiment and associated model has some sensitivity to the
parameter of interest () or mg). The coverage reflects the expected accuracy of that
claim.

I follow the same procedure to calibrate claims of sensitivity to both mg and Q.
For a parameter 6, € 6, the process of estimating the coverage of a credible interval
or limit is as follows [19]:

1. Develop a model of the data generating process, or system being studied, that
depends on parameters 6.

2. Select "true" (input) parameter values 6 by sampling from priors m(6). Those
priors should incorporate as much external knowledge about 8 as is reasonable.!

3. Generate data (in this case, a 3 spectrum) using the model devised in step 1,
with true values (f) as inputs.

Statistical uncertainty on a parameter is incorporated into the model used for both data genera-
tion and analysis (steps 3 and 4), as it reflects an expected variation or fluctuation in the data itself.
Systematic uncertainty is incorporated into priors used for pre-generation sampling and analysis
(steps 2 and 4), as it represents a lack of clarity in our knowledge of naturally fixed parameters.

18



4. Analyze the data using the model devised in step 1 to infer a posterior distri-
bution on 6,.

5. Determine the posterior value(s) of 8, corresponding to an interval or limit with
credibility .

6. Check whether 6, (the true value of 6,) falls within the chosen interval or limit.
7. Repeat steps 2-6 many times.

8. From the results of step 6, estimate the probability that 6, will be consistent
with a reported interval or limit.

The results of executing this procedure for Project 8’s Phases II and IV are presented
in Chapters 4 and 5, respectively.

2.1.2 Evaluating Model Performance

Bayesian modeling allows for an assessment of the extent to which an inferen-
tial process yields reasonable outcomes. Two quantities can be computed for each
"experiment" —that is, for each data set (spectrum) generated and analyzed accord-
ing to the above procedure. First, the posterior z-score Z quantifies the compatibility
between a posterior and true value of a parameter 6;. The z-score is defined as [19]

Z = ilu'post(gi) - H’Ll’ (22)
Upost(gi)

where fin05: (0;) is the posterior mean and opes(6;) is the posterior standard deviation.
As indicated by Eq. 2.2, Z reflects the number of posterior standard deviations dif-
ference between an expectation and the outcome. An experiment with a low z-score
is highly accurate [19].

Second, the posterior shrinkage S quantifies how much the posterior on 6; shrinks
as compared to its prior. It is given by [19]

T post (0:)
5= Zpoul®) (2.3
U[Q)rior(ei) )
where 02;..(6;) is the prior standard deviation. A large shrinkage (close to 1) signals

that an experiment is highly informative.

For an ensemble of experiments, each with inputs § independently sampled from
priors, one can identify pathologies that arise during the process of inference by
considering together the distributions of z-scores and shrinkages (see Figure 2-1) [19].
This enables one to evaluate the performance of a sensitivity analysis model.

19



W s

o Prior/Posterior .
g Conflict Overtit
w 3
~
£
g 2
& Poorly

i Identified _ Idcal

ol _ T AT R

0 02 04 0.6 0.8 |

Posterior Shrinkage

Figure 2-1: An example scatter plot of shrinkage vs. z-score
The model that produced this plot demonstrates good behavior (low z-score, high
shrinkage) most of the time, but it occasionally overfits to the data (high z-score,
high shrinkage). Plot from [19].

2.2 Tools for Modeling and Bayesian Inference

2.2.1 The Stan Statistical Software Platform

This sensitivity analysis uses Stan, a platform for Bayesian statistical model-
ing and computation, to model a -decay spectrum, generate pseudo-data and infer
posteriors. Stan performs Bayesian inference by way of Markov Chain Monte Carlo
(MCMC), which uses Markov chains to explore a probability density parameter space.
By doing so, the chains map out typical sets—the only regions of parameter space
with densities that contribute significantly to parameter expectations. If a Markov
chain moves stochastically for an infinite amount of time, it will completely explore
the typical set, yielding exact posteriors. In reality, MCMC supplies estimates of
posteriors [22].

However, Stan provides diagnostics that help users ascertain whether the Markov
chains have explored the typical set in a representative way—or, in other words,
whether the estimated posteriors closely approach exact posteriors. The most generic
of these convergence diagnostics is the split R metric, which quantifies the consistency
between the regions explored by a group of Markov chains. R = 1 for perfectly
consistent chains, and R > 1.1 is a sign of problems in the fit. Another indication
of a problem with the fit is that neg/N < 0.001, where N is the number of Markov
chain iterations and n.g is the effective sample size—that is, the effective size of each
posterior array. A small neg indicates that the chains are exploring too slowly [23].2

2There are other important implications of neg. The effective sample size can limit the allowed
credibility of reported limits and intervals. For my analysis, I required at least 150 effective samples
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A particularly powerful algorithm in Stan, and the one used for this analysis, is
Hamiltonian Monte Carlo (HMC). HMC harnesses information about the typical set—
specifically, the gradient of the probability density function at each point in space—
to direct Markov chains to move efficiently. (The mathematics that describes the
differential geometry underlying HMC also describes classical physics, hence the name
"Hamiltonian.") There are additional convergence diagnostics associated with HMC.
Numerical trajectories of the HMC integrator can shoot of toward the boundaries of
parameter space, producing "divergences." These divergences indicate that a chain
‘has failed to properly explore a high-curvature region. In addition, the E-BFMI
metric quantifies the success of a random walk between HMC iterations [22].

When diagnostics indicate pathological behavior, it is almost always possible to
resolve the issue by more fully constraining or otherwise adapting one’s model. Good
diagnostic outcomes do not guarantee convergence, but diagnostic problems suggest
that the algorithm has not fully converged |23]. However, given successful diagnostic
tests, one can be reasonably confident that posteriors are accurate if they have the
approximate shapes, central values, and correlations with other parameters that one
would expect.

2.2.2 The Morpho Analysis Tool

Morpho is an analysis tool that organizes how information is inputted to and
outputted by Stan via a python inferface. It is especially useful for generating pseudo-
data and performing Bayesian statistical inference on real or fake data. Morpho
was developed for this analysis and to serve other needs of Project 8; in fact, the
Collaboration intends to analyze Phase II data using this software. However, it is
designed to be employed by general Stan users, as well.

Morpho is a useful tool for several reasons. It streamlines Stan analyses by en-
abling users to control a range of processes through a single configuration file. These
include loading data, running Stan, saving results, performing convergence diagnostic
tests, and creating plots of posteriors and their correlations. Morpho also provides
a framework for allowing Stan models to share input data, user-defined functions
in Stan, and other information. Furthermore, it minimizes the need to recompile
Stan models, sometimes a time-consuming task. Importantly, morpho automatically
performs and displays the results of convergence checks after running Stan, helping
users to quickly identify whether a model displays pathological behavior. It also offers
options for convergence analysis and plotting, beyond these initial checks.

Using morpho and Stan, I implement the sensitivity analysis and calibration pro-
cedure described in Section 2.1. That procedure begins with devising a model of the
B spectrum that can be implemented in Stan.

to fall outside of each bound. For example, for a 95% credible interval, the standard would be
0.025 - neg = 150 — neg > 6000.
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Chapter 3

A Simplified Beta Decay Spectral
Model

Stan computes posteriors by inducing Markov chains to explore the likelihood
space defined by a model. One can specify features of that likelihood space by adding
log probability density functions (PDF) to a total log probability. To make inferences
about which configurations of a model (i.e. parameter values) are consistent with a
data set, it is necessary to formulate the model in terms of PDFs. In this Chapter, I
show how a (3-decay spectral model can be expressed as a PDF and thus implemented
in Stan, following the derivation by Formaggio in [12].

3.1 A Two Neutrino Approximation

In working to devise a probability density version of a spectral function, we face
a few challenges. The first is that the full 5-decay spectrum, in terms of the three
neutrino masses, does not explicitly depend on or relate simply to the probability
that a particular mass ordering scheme (normal or inverted) is correct. That makes
it difficult to infer posteriors for the hierarchy probabilities, preventing us from as-
sessing a Project 8-like experiment’s sensitivity to the mass hierarchies. However,
it is possible to simplify and re-parameterize the spectrum so that it depends on a
variable that relates directly to the ordering probabilities.

We make two simplifications to the spectral phase space function near the end-
point, introduced in Eq. 1.2:

2

PE) =~ |:IU6,-|2(Q —K) (@ K) - m?} LO(Q — K —my). (3.1)

First, we adopt a two-mass-state approximation, where m, >~ m; ~ ms and my = ms.
This is justified because distinguishing between m; and my—that is, observing the
less prominent "kink" in the spectrum — would require an energy resolution less than
8 meV (see Figure 1-3). Eight meV resolution is not necessary for a direct mass
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measurement to reveal the mass hierarchy, and Project 8’s objective is to reach ~40
meV resolution, so the small mass splitting can be neglected. Second, we expand the
neutrino momenta p,; = 1/(Q — K)? — m? to first order in m? —the same order as
the two-neutrino approximation. Thus, we would expect the effect of the expansion
to similarly be small [12].

With these two simplifications, Eq. 3.1 reduces to

Py (@ Ky - gm2] 0@~ K —ma)
F-n)- (@K~ gmi] -0(@— K —m),

where 1) = |[Uea|® = |Ue1|>+|Ue2|?, and |Uea|?+|Ues|* = 1. To highlight this spectrum’s
dependence on the mass splitting, we can substitute A = m? — m?2 and rewrite
the phase space equation in terms of the lightest and heaviest masses (my and my,
respectively):

P(n,mp,myg) ~n- [(Q - K)* - %mi] -O(Q — K —myp)

(-n)-[@-KP-mi]-0@Q-K-my) (32
%(1—0)6(Q—K—m}1)

This expression describes spectra generated assuming both normal (Ppormal) and in-
verted (Pipverteq) Neutrino mass orderings, provided that

Pnormal = P(nN7 mrpg, mH) Pinverted = P(l — NN, mrg, mH)7

where 7y is the fractional contribution of the m-dependent term to the spectrum,
if the masses are normally ordered. Note that |A| is equivalent to the neutrino
mass splitting Am3, ~ Am3, as measured by vacuum oscillations. In addition, the
(mp, my) formulation is well suited to this analysis because model "fitters" (including
Stan) prefer sets of parameters to be explicitly ordered, instead of having built-in
ordering ambiguities.

A normalized version of Eq 3.2 can be used to model a 8 spectrum in Stan. Infor-
mation regarding the mass hierarchy can be extracted from the posterior distribution
on 7n-—the posterior should center around 7y if the hierarchy is normal and around
[1 — nn] if the hierarchy is inverted. But what is the expected value of ny? If the
solar splitting Am?2, is considered negligible, then

NN = |Ua|* + |Ue2|* = 1 — |Ues|* = cos®(613).

The ordering question can thus be formulated solely in terms of the large mass split-
ting and 6,3, both of which are measured by reactor anti-neutrino disappearance
experiments [12]. Using the reported mean value of cos?(#;3) (pc13) and uncertainty
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in that value (0.3), we can construct a prior on i (m,) in probability density form:

7y = Pn - N(n|pte13, 0cas) + (1 — Pn) - N(0|[1 — peas), 0ers), (3.3)

where N is the normal function and Py is the probability that the neutrino masses
are normally ordered. The log of this PDF can be added to the total log likelihood
in Stan to model Py given some spectral data. The actual implementation of Eq. 3.3
employs a Stan function called 1og_mix that allows a user to combine two PDFs in a
desired ratio—as determined by Py, in this case.

Inferring a posterior on Py provides information regarding the probability that
each hierarchy exists. Hence, the above model enables a mass hierarchy determination
using only a 3 spectrum and priors from reactor experiments. This is of particular
advantage because reactor experiment priors are hierarchy-independent (unlike some
neutrino mixing priors from other sources). It should be possible to perform a mass
hierarchy sensitivity analysis with this model by inferring posteriors on Pp, then
assessing the coverage of potential hierarchy claims made based on those posteriors.
I describe this approach in more detail in section 6.2.

3.2 Incorporating a Finite Energy Resolution

In practice, the data obtained by a direct mass experiment cannot fully be de-
scribed by Eq. 3.1 because of a "smearing" effect, quantified by energy resolution o.
For Project 8, this smearing derives primarily from the uncertainty in parameters used
to convert an electron frequency measurement to an energy value [12]. Accounting
for smearing, the spectral form becomes

F(K) = / PR (KK, 0)dK’, (3.4)

where N is a normal distribution. This convolution is neither analytic nor normaliz-
able, posing a problem: F cannot be used for an inferential model, as it cannot be
expressed as a normalized probability density function.

This problem can be addressed by again expanding p, to first order in m?, then
considering spectral data within an energy window [a,b]. In that case, for a single
neutrino mass m (or for one term of the full spectrum),

P(K) = [(Q—K)g—%mg] BQ-K-a)00b-Q+K).

The convolution of that expression with A yields a smooth analytic function:

F(K|Q,a,m,0) =N - ['y(Q—K,m,m,a) —W(Q—K,Q—a,m,a)}, (3.5)
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Figure 3-1: Comparison between approximate and exact smeared spectra
The approximate form given in Eq 3.5 is plotted alongside a numerical convolution of
the exact spectral phase space function with a gaussian. In each case, () = 18573.25
eV, a = 18565 eV and o = 0.5 eV.

where

2 _
Y(u,v,m,0) = (u+v)o*N(ulv,0) + % (u2 + 0% — m?) : erfc(i/ﬁ;) i
6

N= m3 — 3m?(Q —a) + 2(Q — a)?’

Furthermore, the result is normalizable in the limit that ¢ — 0 [12]. Figure 3-1
illustrates that this approximation shows good agreement with a numerical convolu-
tion of the single neutrino mass spectrum (not expanded in m?) against a gaussian,
normalized using the analytic expression for NV in Eq. 3.6.

3.3 The Spectrum as a Probability Density Function

Combining the results above, we arrive at an approximate two neutrino model of
a (-decay spectrum given finite energy resolution:

F,(K):n"F(KlQ!aamLsU)—'_(l_n)'J:(K|Qaa’&mh’ag)' (37)

This function is analytic, well-behaved, and normalized, so it can be used to specify a
likelihood space in Stan-—again using the log_mix function. Posteriors on my, my,
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(@, and o can then be extracted. The parameter 77 is modeled according to Eq. 3.3,
facilitating a mass hierarchy determination.

The Project 8 sensitivity analysis results presented in Chapters 4 and 5 do not
consider the mass hierarchy problem. They therefore rely on the one neutrino spectral
model in Eq. 3.5, with the substitution m — mg. In Chapter 6.2, I return to the
two neutrino model in Eq. 3.7 and describe how it would be used in a mass hierarchy
sensitivity analysis.
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Chapter 4

Sensitivity to the Endpoint During
Phase 11

The main goal of this Phase II sensitivity analysis is to assess how precisely Project
8 can expect to resolve the Ty S-decay endpoint Qr,. In addition, the analysis involves
calibrating the consequences of claiming that Qr, falls within some credible interval,
based on inferred posteriors. That calibration yields a coverage metric that indicates
how accurately the endpoint can be resolved, if the model described here is used to
analyze Phase II data (see Chapter 2). I also extract posteriors and report results for
other parameters of interest: the electron neutrino mass mg, the energy resolution o,
and the signal fraction (fraction of total events produced by tritium decays) fs.

4.1 The Model

I generate and analyze data using the same model of Project 8 Phase II data. The
main feature of this model is the approximated probability density form of the S-decay
spectrum F(K') that was derived in Chapter 3 (see Eq. 3.5). I consider the function
F(K|Qt,,a,mg,0). It is reasonable to substitute mg for individual neutrino masses
because this analysis considers a wide energy window and assumes o is of O(1eV); it
should not be possible to distinguish between the mass eigenstatesat that resolution.

The data will also include a background B(K), within the same energy window
[a,b] as the signal F(K). A smeared flat background (convolved with the normal
function N (K, o)) is described by the function

B(Kla,b,0) = 2(1)—1_(;5 {erf(b—\;i—K) — erf<a\/__—2£()} . (4.1)

The full model, then, takes the form
M(K) = fs - F(K|Q,a,mg,0) + (1 — f;) - B(K|a,b,0), (4.2)

where f; = S/(S + B) is the signal fraction, S is the poisson rate of signal events,
and B is the poisson rate of background events. The signal and background PDFs
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Figure 4-1: Phase II pseudo-data and reconstructed spectrum post-analysis
Left: Generated with a runtime of 3 x 10°s. Right: Runtime of 1 year.

are combined in Stan using the log_mix function. The total number of events in a
spectrum Ngai, is sampled from a poisson distribution with rate S + B before data
generation, and the parameters S and B are modeled and extracted using the PDF
poisson(S + B) during data analysis.

The first steps of this sensitivity analysis, following the procedure laid out in
Chapter 2, involved generating data with Eq. 4.2 using inputs sampled from priors.
This requires priors to be constructed for the parameters Qr,, mg, o, and f; (a and b
are fixed inputs). However, the Project 8 Collaboration’s past calculations and Phase
I data supply predictions regarding the signal activity A and background activity
Ap—as opposed to directly informing a prior on f,. Here, A; (A;) is the number of
events per second generated by F(K) (B(K)) in the energy window [a, Q] ([a, b]).
Thus, we can compute f(S, B) from A, and A, using the equations

S=At-A,-(Q—a) B=At A (b—a), (4.3)

where At is the experimental runtime for a given data set. The relationship between
A, Ap and f, is also incorporated into the analysis model, so that the signal fraction
posterior is informed by priors on the signal and background activities.

I perform this analysis for two runtimes—At¢ = 3 x 10°s (about one month),
and At = 3.154 x 107s (one year)—to provide a sense of the effect of the total
event number Ng,, on the precision with which @1, and other parameters can
be resolved. For both runtimes, I consider data within a kinetic energy window
[a = 17573.24 eV, b = 19100.00 eV]. The window extends 1 keV below the value
of Qr, theoretically computed by Bodine, Parno and Robertson in [15]. To permit
a reasonably time-efficient analysis process, I histogram the data with 300 bins for
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Parameter ||

Phase II prior

|

Information contained in prior

Endpoint Qr, || norm(18573.24€eV, 15€eV) | (Extrapolated endpoint—m,) from [15].
(Analysis)
Energy ~(13.30, 3.961eV1) 5% probability mass falls below 2 eV,
Resolution o 5% falls above 5 eV [2, 24].
Neutrino ~v(1.042, 1.538eV ") 1% probability mass below
Mass mg 8 meV [8]), 5% above 2 eV [9, 10].
Background lognorm(-16.12, 1.400) 5% probability mass below 108 events
Activity A, /eV/s, 5% above 10~ events/eV /s [2].
Signal v(36, 24000 keV-s) Mean: 4500 events/(3 x 10°s) in last keV
Activity A, [24]. v/variance: 750 events/(3 x 10°s).

Table 4.1: Phase II priors for pre-generation sampling and analysis.
Prior functions are defined in Appendix A.

both runtimes.! Therefore, during data analysis, I model each data point N;(K;) as
a value sampled from a poisson distribution with spectral rate M(K;) (see Eq. 4.2).

4.2 Priors

In this analysis, five parameters require priors based on external information:
Qr,, mg, 0, As and A,. Before a spectrum is generated, each of these parameters is
sampled from its prior, determining the inputs to the generator. By sampling from
these priors repeatedly, creating an ensemble of model configurations, I can approach
an analysis that accounts for the full range of possible data sets, given statistical and
systematic error. I directly pass Qr,, mg and o to the generator, as they appear in
Eq. 4.2. On the other hand, A; and A, are used to compute f; and Ngaa, which I
then input to the generator. The prior distributions used for pre-generation sampling
are also included in the analyzer model.

Some key considerations guided my choice of priors. In particular, I selected
distributions with boundary conditions that reflected physical limits on parameters.
Because each of the five parameters of interest must be positive, I often used v
distributions, which are lower bounded at zero. I employed a gaussian instead of a
v prior for the endpoint, because the distribution is localized far enough from zero
that the negative portion of the gaussian tail is negligible. The background activity
is also an exception; I chose a lognormal prior to account for the fact that the range
of possible values spans multiple orders of magnitude (see Table 4.1). I discuss the
reasoning behind each prior in more detail, below.

e The prior on the energy resolution (¢) was constructed so that 5% of its
probability mass would fall below 2 eV, and 5% would fall above 5 eV. This is
consistent with Project 8’s Phase I energy resolution measurements of 3.3 eV

'T performed one test ensemble analysis with 1000 bins for At =1 year. It resulted in a coverage
within 1% of the corresponding ensemble analysis with 300 bins.
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and 3.6 eV, for two different sets of spectral lines [2|. Current predictions for
the Phase II resolution (2.6-3.0 €V) also fall near the center of the prior [24].

The neutrino mass (mg) prior was constructed so that 1% of its probability
mass would fall below 8 meV, reflecting the relatively hard lower bound from
mass splitting measurements [8]; this bound is not strict only because of uncer-
tainties on those measurements. In addition, 5% of the prior mass falls above 2
eV, to account for the limit by the Mainz and Troitsk experiments [9, 10}).

90% of the probability mass of the background activity (A,;) prior falls in the
range [1078, 107°] events/eV/s. This reflects the small number of background
events seen previously by Project 8 within some cyclotron frequency window,
and it is centered well above the minimum A; expected due to the emission of
delta electrons caused by cosmic rays passing through the source |2, 24].

The mean of the signal activity (A;) prior was calculated based on Project 8’s
current expectation of detecting 4500 events/3 x 10° s in the last 1 keV of spec-
trum [24]. The prior’s variance (corresponding to a FWHM of 750 events,/3 x 10°
s in the last keV) was chosen to roughly account for the uncertainty introduced
by possible HT contamination and details of the magnetic trap configuration.

In a typical Bayesian sensitivity analysis, all available information about the
main parameter of interest—in this case, the endpoint—would be incorpo-
rated into the prior on that parameter. However, Phase II is expected to
approximately confirm pre-existing knowledge of QT,, not improve upon that
knowledge, so the prior used for analysis must be wider than the true best-guess
prior. (Otherwise, the Qr, posteriors would be unaffected by the data.) Thus,
while the endpoint is known to ~1eV [15], the analysis prior has a standard
deviation of 15 €V, to guide Stan’s Markov chains to the desired region without
strongly informing the results. For a realistic sensitivity analysis, the endpoint
values used to generate spectra should be sampled from a prior with a standard
deviation Q" of ~1 eV. However, the model’s ability to distinguish between dif-
ferent Qr, values can be seen more clearly when a broader pre-sampling prior is
used. Thus, for each runtime, I performed two sets of pseudo-experments: one
realistic set with Q*=1 eV, and one illustrative set with Q=15 eV.

4.3 Endpoint Sensitivity Results

Fifty pseudo-experiments were performed for each of the four ensemble analyses

(with Q"=1 eV or 15 eV, and At=3 x 10%s or 1 year). Qualitatively, the posteriors
produced by analyzing each spectrum appear to agree with the data, as seen in
Figure 4-1. There, "reconstructed spectra" were produced by first sampling from
posteriors, then computing spectral points with Eq 4.2, given those sampled values.

Furthermore, the data strongly informed posteriors on Qr,, as expected. The

informative capacity of the experiments is quantified by posterior shrinkage values
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Figure 4-2: Expected ()1, means and 95% credible intervals after 3 x 10%s of runtime
Left: Q"—1 €V, right: Q"=15 eV. The red dashed lines indicate where posterior
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Figure_4—3: Expected @1, means and 95% credible intervals after 1 year of runtime
Left: Q=1 eV, right: Q"=15 eV.

for @1, —all relatively close to 1, as seen in Figure 4-4. In addition, Figures 4-2b
and 4-3b reinforce the notion that the data and spectral model generally affect Qr,
posteriors as expected, since they show that higher inputted values correspond to
higher posterior means.

Figures 4-2 and 4-3 show 95% posterior credible intervals (C.Ls) on Qr,. The lower
(upper) bound of each of these intervals was estimated by computing the endpoint
value below which 2.5% (97.5%) of the points in the Stan posterior array fall. For each
data analysis run, the effective sample size n.g was ~18,000, large enough that 95%
C.Ls could be reliably estimated. For each of the four ensemble analyses, posterior
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Figure 4-4: Z-score vs. shrinkage plots for the molecular tritium endpoint
The z-score indicates the number of posterior deviations of difference between the
true value and posterior mean. Shrinkage indicates how informative the data is.
Here, Q"=1 eV. For the left plot, At = 3 x 10%s, and for the right plot, At = 1 year.

coverages were computed as described in Chapter 2 for both 90 and 95% credible
intervals on each parameter of interest, including Qr, (see Tables 4.3, 4.4).

| | Sensitivity (eV), 3 x 10%s | Sensitivity (eV), 1 year |

Standard dev. 10.1 4.1
90% C.I. 33.6 13.7
95% C.I. 39.9 17.7

Table 4.2: Sensitivity to Q1,: median posterior credible intervals, standard deviations
Results reported for the "realistic" pre-generation sampling prior, Q" =1 eV.

Sensitivity results for (), are summarized in Table 4.2. Each "sensitivity" is a
median of the 50 standard deviations or C.Ls inferred during one ensemble analysis.?
I find that, using the spectral model M, Qr, can be resolved after one year of runtime
within a ~ 13.7 eV window (90% C.1.) with 62% coverage. In other words, the true
value of Qr, would fall within the reported interval 62% of the time. Alternatively, the
endpoint can be resolved within a ~ 16.3 eV window (95% C.1.) with 68% coverage.
Those predicted sensitivities correspond to a median posterior standard deviation of
4.1 eV after one year.

Endpoint coverage results were only minimally affected by the width of the pre-
sampling endpoint prior and by the runtime. While this sensitivity analysis suggests
that Phase II data can enable an endpoint determination with reasonable precision,

2 Average and median energy windows (standard deviations or C.Ls) differ by < 1.5€V.
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| At [ QF (eV) | Qr, coverage | o coverage | m coverage | f, coverage |

3 x 10%s 1.0 62% 76% 90% 100%
15 62 % 84 % 86% 98%

1 year 1.0 62% 70% 94% 94%
15 60% 60% 98% 100%

Table 4.3: Coverage of 90% credible intervals for Phase I1 _
Coverage results reported for runtimes At and endpoint standard deviations Q' on
the prior used for pre-generation sampling.

[ At | QP (eV) | Qr, coverage | o coverage | m coverage | f, coverage |

3x 10°s 1.0 68% 80% 94% 100%
15 74 % 90% 88% 100%

1 year 1.0 68% 74% 100% 94%
15 68% 68% 98% 100%

Table 4.4: Coverage of 95% credible intervals for Phase I1 ‘
Coverage results reported for runtimes At and endpoint standard deviations Q¥ on
the prior used for pre-generation sampling.

that determination is likely to be inaccurate about a third of the time. It is possible
that this coverage could be improved by including more or different priors, adapting
how the spectral model M is implemented in Stan, or making changes to M itself.

4.4 Evaluating Model Performance

Several checks and metrics can be considered when evaluating the performance
of the Phase II model. First, for each generation or analysis Stan run, one can
diagnose whether the MCMC Markov Chain Monte Carlo algorithm appeared to
converge properly, as described in section 2.2.1. For all parameters of interest in
the generator and analyzer, R was < 1.1, Neg/N was < 0.001, and the E-BFMI
diagnostic indicated no pathological behavior. A small number of generator iterations
(<0.1%) did consistently diverge; those divergences were caused by some aspect of the
signal and background PDFs. However, it is unlikely that the generator divergences
substantially affected coverage results, because, when S and B were replaced with
other PDFs that did not yield divergences, the analyzer was able to recover input
parameters at similar frequencies.

It is also worth examining the posteriors on parameters other than Qr,, to as-
sess whether the data and model are informing inferences as expected. We expect
posterior means to track with input values; in other words, the points in Figures 4-5
and 4-6 should fall near the red dashed line. For both f; and o, input value and
posterior means are highly correlated. Note that the true ("inputted") values of f
were estimated from the generated data by examining an effectively pure background
region to compute the overall background fraction. This calculation was performed
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to account for the discrepancy between the pre-sampled signal fraction and the fi,
cause by a poisson uncertainty inherent in the data generation process.

The distribution of posterior z-scores and shrinkage values for each parameter
helps to diagnose pathologies of Bayesian inference [19]. Most Qr, posteriors had the
desired combination of low z-score and high shrinkage, characteristic of an accurate
and informative model (see Figure 4-4). However, some endpoint outcomes overfit to
the data (high z-score, high shrinkage). The model overfitted A,, A, and o to the
data, as well, while msz outcomes were weakly identified but accurate, as expected.?
The model’s tendency to display an overfitting pathology indicates that it may be
possible to revise the model or adjust its priors in order to improve its accuracy. In
considering how the model might be adapted, there is no parameter in the model that
obviously requires attention, as the model’s ability to recover 1, was not correlated
with any particular region of parameter space (see Figure 4-7).
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Figure 4-5: Expected f; means and 95% credible intervals (Phase II) with Q"=1 eV
Left: At =3 x 10%s. Right: At =1 year.

3While the model overfitted A, and Ay, it demonstrated ideal behavior with respect to f, (if
the "true" signal fractions are computed from pseudo-data post-generation). That suggests that
overfitting of A, and Aj is likely caused by a poisson counting error inherent in the data generation
process, and/or by the anti-correlation between S and B.
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Chapter 5

Sensitivity to the Neutrino Mass
During Phase IV

The goal of this Phase IV sensitivity analysis is to assess how precisely Project 8
can expect to resolve the electron neutrino mass mg, and with what coverage. I also
extract posteriors and report results for other parameters of interest.

5.1 The Model

The Phase IV 8 spectrum model largely resembles the Phase II model described
in Chapter 4, with a few distinctions:

1. The priors differ, to reflect the difference in experimental conditions.

2. Phase IV data is analyzed within a much narrower kinetic energy window of
[a = 18562.25 eV, b = 18564.25 eV]— centered around the atomic tritium mean
endpoint Q; = 18563.25€V [15].

3. In the Phase IV analysis, the endpoint is modeled as a normal distribution with
mean Q7 and standard deviation 6@). This reflects the fact that the endpoint
varies on an event-to-event basis because of the final state distribution—that
is, the variation in energy states of the decay product.

A fuller Phase IV analysis would exploit a model that incorporates multiple neutrino
mass eigenstates, as described in Section 6.2.

5.2 Priors

The reasoning underlying the choice of each Phase IV prior is as follows:

e The endpoint Qr: The mean and error on the mean were calculated in [15].
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Figure 5-1: Posteriors of the endpoint spread 0() under varying conditions

Posteriors inferred using a Stan model of the endpoint given final states. "KATRIN-
like" refers to the conditions specified in Table XV of [15]. A gaussian fit to the
posterior for an atomic tritium source was used as a prior on 6Q for the Phase IV
spectrum analysis.

e The endpoint spread /Q: I devised a Stan model that extracted a posterior
for the mean expected endpoint spread due to final states (ps¢), as well as the
uncertainty on that spread (osg), under variable conditions (i.e. temperature
and source composition). Normal distributions were fitted to the us;o and o5
posteriors for a trap at 0.3 Kelvin with negligible T, contamination. The mean
(v variance) of the ~ distribution prior on §Q was taken to be the mean of the
Hsq (0sg) posterior from the final states model. Phase IV will likely operate at
a temperature below 0.3 K, making this prior somewhat conservative.

The neutrino mass mg: The Phase II and Phase IV priors are identical.

The energy resolution o: To resolve the mass hierarchy using only the value
of mg, 0 < 50 meV is needed (see Figure 1-2). (For a hierarchy analysis that
accounts for the full spectral shape, this requirement may not be as stringent.)
Thus, Project 8’s target resolution is 40 meV. A magnetic field uncertainty
of AB/B =~ 1077 is required to achieve this, if that represents the limiting
systematic [2]. As this field uncertainty will be difficult to achieve, the -
distribution prior on ¢ has a mean of 50 meV and a variance of [10 meV]?.

e The signal activity A,: The expected Phase IV signal activity was computed
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Parameter || Phase IV prior

Information contained in prior

Endpoint Q1 || norm(18563.25¢€V, 0.3€eV) (Extrapolated endpoint—m,) and error
on the mean from [15].
Endpoint ~(59.82, 2868 eV 1) Mean: 0.0209eV; v/variance: 0.0027 eV.
Spread 6QT From Stan final states model based on [15].
Energy ~(25, 500 eV 1) Mean: 50 meV; v/variance: 10meV.
Resolution o From planned B-field uncertainty [2].
Neutrino ~(1.042, 1.538 eV ) 1% probability mass below
Mass mg 8 meV [8]), 5% above 2 eV [9, 10].
Background lognorm(-27.63, 1.400) 5% probability mass below 10~ events
Activity A /eV /s, 5% above 107% events/eV /s [24].
Signal lognorm(-5.634, 1.400) 5% probability mass below 0.000357 events
Activity A, eV /s, 5% above 0.0357 events/eV /s [1, 2].

Table 5.1: Phase IV priors for pre-generation sampling and analysis

Prior functions are defined in Appendix A.

from the half life of tritium (7,2) and the fraction of events in the last 1 eV
of the S-spectrum (f), as well as estimated Phase IV quantities: the effective
volume (Veg) and the atomic density of the source (p). Following the approach
in 1], the A, prior should center around

In(2 In(2
ta, =n- Ve - ﬂ - f =10 a‘coms/m3 - 10m® n(2)

R S 10713
T1/2 12.3 years

(5.1)

— = 112,700 events in one year.

The values chosen for Vg and p correspond to the predictions in [2]. The Phase
IV model included a lognormal prior on Ay, constructed so that 90% of its
probability mass falls within one order of magnitude of A,, (the distribution’s
"soft bounds" differ by two orders of magnitude). This large range reflects the
fact that predictions of Vg and p are relatively speculative, at this stage.

The background activity A,: The near elimination of almost all sources of
background is needed for Phase IV. Project 8’s goal is for the dominant source
of background to be cosmic rays passing through the source gas. Since the
expected background from cosmic rays is around 107!2/eV/s, I constructed a
lognormal prior on A, with 90% of its probability mass falling between 10713
and 107 /eV /s.

5.3 Neutrino Mass Sensitivity Results

Nine pseudo-experiments were performed, enough to provide a very preliminary
indication of Phase IV sensitivity. This analysis should be conducted on a larger scale
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in the future to better account for the range of possible model configurations. Each
experiment had a runtime of At =1 year.

In general, the data strongly informed posteriors on mg; all mass posteriors demon-
strate high shrinkage. Moreover, the mg outcomes appear to follow the expected
trend-line on which posterior means correspond with true values (the red dashed line
in Figure 5-2). The left plot in Figure 5-2 shows 90% posterior C.I.s on mg. The
effective sample size neg was always greater than 3000, large enough that 90% C.I.s
could be reliably estimated. However, sometimes, n.s was < 6000, so 95% C.I.s are
not reported. Posterior coverages were computed as described in Chapter 2.
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Figure 5-2: Left: expected mg means and 90% C.Ls; right: shrinkage vs. z-score

I find that the electron neutrino mass can be resolved after one year of runtime
within a median 90% credible window of 0.051 eV with 56% coverage.! In other words,
the "true value" of mg would fall within the reported interval 56% of the time. That
predicted sensitivity corresponds to a median posterior standard deviation of 0.016
eV after one year.

While this sensitivity analysis suggests that Phase IV will have a neutrino mass
sensitivity near that expected from analytical predictions [1], an mg result with 90%
credibility is likely to be inaccurate over 40% of the time. As in the case of the Phase
IT analysis, this coverage could potentially be improved by modifying priors and the
spectral model M.

Stan convergence diagnostics showed similar behavior to diagnostics for the Phase
IT analysis, as described in Section 4.4. As expected, posteriors means track with input
values for o, ()7 and dQ (see Figure 5-3). Signal fractions were never successfully
recovered, likely because the Markov chains failed to explore the space corresponding

!That window is the median of the C.I. windows inferred from the nine experiments. The mean
window is somewhat larger, at 0.085 €V. This discrepancy likely reflects both the small number of
experiments in this analysis and the wide A, prior, producing data with widely varying statistics
underscoring the importance of achieving a high enough signal activity.
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to fs values very close to 1. Only the mass and signal activity posteriors showed
signs of overfitting; still, it would be worth re-parameterizing the model in an effort
to improve its accuracy.

0.09

o o o °
(=1 (=] o o
w (=] ~ o

Posterior 7 (90.0% intervals)

o
=3
5

-
\

0.0&03

0.04 0.05 0.06

Inputted o

0.07 0.08 0.09

Posterior @ (90.0% intervals)

0.35

+1.85632e4

o
w
=4

o
N
wn

o
N
o

o
-
n

0.10

o
(=]
w

0"}({5’.00

g

0.30
+1.85632e4

0 0.15 0.20

Inputted @

0.25

Figure 5-3: Expected o (left) and Qr (right) Phase IV means and 90% C.Ls

40

0.35



Chapter 6

Discussion and Conclusions

6.1 Discussion of One-Neutrino Sensitivity Analysis

In this thesis, I presented a new simplified model of the tritium S-decay spectrum
measured with a finite energy resolution. This model is analytic and normalizable [12];
it is therefore amenable to being formulated as a probability density function. I also
presented results of a Bayesian analysis of the Project 8 Neutrino Mass Experiment’s
sensitivity to the Ty endpoint and electron neutrino mass. I find that, using one
year of Project 8 Phase II data, the Ty endpoint can be resolved within a ~ 13.7 eV
window (90% C.I.) with 62% coverage, corresponding to a ~ 4.1 eV posterior standard
deviation. Preliminarily, using one year of Phase IV data, the electron neutrino mass
can be resolved within a ~ 0.051 eV window (90% C.I.) with 56% coverage. The
neutrino mass sensitivity result suggests that Project 8 will be able to probe near the
energy at which one can distinguish between mass orderings on the basis of an mg
measurement. While 0.051 eV just exceeds the minimum allowed inverted hierarchy
mass, it may be possible to resolve the hierarchy at that sensitivity given a multi-
neutrino mass analysis that accounts for the full spectral shape (see Section 6.2).

These results indicate that certain future steps should be taken to advance this
sensitivity analysis. First, it is worth re-parameterizing or otherwise adapting the
spectral model and priors in an effort to improve coverage. In addition, the Phase IV
inference and calibration procedure should be performed for limits on mg, instead of
credible intervals. The limits and credible intervals should converge at some neutrino
mass value; this value would serve as an estimate of the mass above which it should
be possible to report a measurement instead of a limit. Finally, the Phase II and IV
analyses should be repeated using pseudo-data generated with a more exact spectral
model, to more thoroughly test the validity of the approximations made in Chapter 3.
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6.2 A Bayesian Approach to Assessing Sensitivity to
the Mass Hierarchy

6.2.1 Returning to a Two Neutrino Model

The next stage of this sensitivity analysis will involve predicting the precision and
accuracy with which Project 8 can expect to resolve the mass hierarchy. Chapter 3
detailed how one could infer a posterior on the normal hierarchy probability Py, us-
ing a spectral model M, spectral data and external mixing information from reactor
experiments. To estimate the hierarchy probabilities, one might think that instead of
modeling Py, it makes sense to determine the frequency with which Stan’s Markov
chains explore typical sets corresponding to each mass ordering. However, the lat-
ter approach is ill advised because of a MCMC multimodality problem: each chain
gets "stuck" exploring one typical set. Thus, it would require infinite time for the
probability that Markov chains converge to a solution to reflect the probability that
that solution describes the data generating process. In the future, a technique called
Adiabatic Monte Carlo technique should address the multimodality problem in Stan
from a computation-focused perspective, precluding the need to avoid multimodality
when modeling systems [25].

Once an experimenter infers a posterior on Py from real spectral data, the next
step will be to decide what action a to take, given that posterior. Should the ex-
perimenter report that the mass ordering is normal? That it is inverted? Should he
or she report nothing, until more data can be collected? An analysis of sensitivity
to the mass hierarchy involves estimating the utility or loss associated with each of
these actions for a range of possible model configurations.

6.2.2 Calibrating the Consequences of Reporting a Hierarchy

Result

i H Report normal W{eport inverted | No claimJ
Truth: normal Un g Ury Ulone
Truth: inverted Ul’f,,H Uy UL o

Table 6.1: Average expected utilities of claims regarding the mass hierarchy

This approach is an adaptation of the method for calibrating discovery claims
detailed in [19]. Say that one can only claim an inverted (normal) hierarchy deter-
mination if most of the posterior mass of Py falls below (above) some value b; (by).
If most of the mass falls between b, and by, one should claim to be unable to resolve
the hierarchy. It is possible to calibrate the consequences of those actions by calcu-
lating the utilities Uy g, Urg and Unene associated with each claim. These utilities are
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Figure 6-1: Hypothetical Py posteriors, given normal and inverted true orderings
The black dashed lines indicate probability cut-offs (b; and b) that dictate what
result is claimed. The locations of the black lines can be adjusted, affecting the
relative utilities of different actions.

computed from posterior probabilities Py:

Unp = O(Py — by) Ui = O(b — Pn) (6.1)
Unone = O(Py — b))O(by, — Py). ’
For a particular data set (3 spectrum), one can calculate mean utilities Uy, Upy
and U" . by taking averages of the posterior arrays obtained using Eq. 6.1. These
hypothetical mean values are organized in Table 6.2.2. They quantify the trade-
off between the certainty with which an experimenter can claim a mass hierarchy
determination and how often that result can be claimed in the first place. Hence, by
changing b; and by, one can adjust the relative magnitudes of average utilities. For
example, if one moves b; and by, closer to 0 and 1, respectively, the average utilities of
reporting normal and inverted hierarchy determinations increase, while the average
utility of reporting nothing decreases. However, that stricter reporting requirement
means that the hierarchy can be resolved less often. Thus, an experimenter can decide
how stringent to make his or her hierarchy reporting requirements by considering
average utilities. By repeating this process for a large number of model configurations
sampled from priors, one can calibrate an experiment’s predicted sensitivity to the
mass hierarchy.
In conclusion, the study described in this thesis successfully applies model-based
sensitivity and calibration procedures to predict the precision and accuracy with
which the Project 8 Experiment can expect to measure the molecular tritium end-
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point and electron neutrino mass. This analysis both accounts for a range of model
configurations given parameter uncertainties and corroborates analytical predictions
of Project 8’s sensitivity. Furthermore, this thesis lays out a procedure for extending
model-based sensitivity methods to the neutrino mass hierarchy problem.
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Appendix A

Functional Forms of Prior
Distributions

The prior distributions used in both the Phase II and Phase IV sensitivity analyses
are defined as follows. Each PDF below is implemented via a Stan function that
outputs the log of the probability density of a parameter y [20].

1. Normal distribution

norm(p, o) = norm(y|u, o) = \/21—7TUGXP( - %(y ~ M)Q)

2. Gamma distribution

a

Y(a, B) = Y(ylo, B) = Fﬂ(a) y*exp(—PBy)

% (A.1)
where I'(a) = / r* e %dx
0

3. Lognormal distribution

1 1 /1 — 2
o) = )~ o (22 )
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